NASA Astrophysics Data System (ADS)
Descloux, A.; Grußmayer, K. S.; Bostan, E.; Lukes, T.; Bouwens, A.; Sharipov, A.; Geissbuehler, S.; Mahul-Mellier, A.-L.; Lashuel, H. A.; Leutenegger, M.; Lasser, T.
2018-03-01
Super-resolution fluorescence microscopy provides unprecedented insight into cellular and subcellular structures. However, going `beyond the diffraction barrier' comes at a price, since most far-field super-resolution imaging techniques trade temporal for spatial super-resolution. We propose the combination of a novel label-free white light quantitative phase imaging with fluorescence to provide high-speed imaging and spatial super-resolution. The non-iterative phase retrieval relies on the acquisition of single images at each z-location and thus enables straightforward 3D phase imaging using a classical microscope. We realized multi-plane imaging using a customized prism for the simultaneous acquisition of eight planes. This allowed us to not only image live cells in 3D at up to 200 Hz, but also to integrate fluorescence super-resolution optical fluctuation imaging within the same optical instrument. The 4D microscope platform unifies the sensitivity and high temporal resolution of phase imaging with the specificity and high spatial resolution of fluorescence microscopy.
Cross-correlation photothermal optical coherence tomography with high effective resolution.
Tang, Peijun; Liu, Shaojie; Chen, Junbo; Yuan, Zhiling; Xie, Bingkai; Zhou, Jianhua; Tang, Zhilie
2017-12-01
We developed a cross-correlation photothermal optical coherence tomography (CC-PTOCT) system for photothermal imaging with high lateral and axial resolution. The CC-PTOCT system consists of a phase-sensitive OCT system, a modulated pumping laser, and a digital cross-correlator. The pumping laser was used to induce the photothermal effect in the sample, causing a slight phase modulation of the OCT signals. A spatial phase differentiation method was employed to reduce phase accumulation. The noise brought by the phase differentiation method and the strong background noise were suppressed efficiently by the cross-correlator, which was utilized to extract the photothermal signals from the modulated signals. Combining the cross-correlation technique with spatial phase differentiation can improve both lateral and axial resolution of the PTOCT imaging system. Clear photothermal images of blood capillaries of a mouse ear in vivo were successfully obtained with high lateral and axial resolution. The experimental results demonstrated that this system can enhance the effective transverse resolution, effective depth resolution, and contrast of the PTOCT image effectively, aiding the ongoing development of the accurate 3D functional imaging.
Espe, Emil K S; Zhang, Lili; Sjaastad, Ivar
2014-10-01
Phase-contrast MRI (PC-MRI) is a versatile tool allowing evaluation of in vivo motion, but is sensitive to eddy current induced phase offsets, causing errors in the measured velocities. In high-resolution PC-MRI, these offsets can be sufficiently large to cause wrapping in the baseline phase, rendering conventional eddy current compensation (ECC) inadequate. The purpose of this study was to develop an improved ECC technique (unwrapping ECC) able to handle baseline phase discontinuities. Baseline phase discontinuities are unwrapped by minimizing the spatiotemporal standard deviation of the static-tissue phase. Computer simulations were used for demonstrating the theoretical foundation of the proposed technique. The presence of baseline wrapping was confirmed in high-resolution myocardial PC-MRI of a normal rat heart at 9.4 Tesla (T), and the performance of unwrapping ECC was compared with conventional ECC. Areas of phase wrapping in static regions were clearly evident in high-resolution PC-MRI. The proposed technique successfully eliminated discontinuities in the baseline, and resulted in significantly better ECC than the conventional approach. We report the occurrence of baseline phase wrapping in PC-MRI, and provide an improved ECC technique capable of handling its presence. Unwrapping ECC offers improved correction of eddy current induced baseline shifts in high-resolution PC-MRI. Copyright © 2013 Wiley Periodicals, Inc.
Ultra-high resolution coded wavefront sensor.
Wang, Congli; Dun, Xiong; Fu, Qiang; Heidrich, Wolfgang
2017-06-12
Wavefront sensors and more general phase retrieval methods have recently attracted a lot of attention in a host of application domains, ranging from astronomy to scientific imaging and microscopy. In this paper, we introduce a new class of sensor, the Coded Wavefront Sensor, which provides high spatio-temporal resolution using a simple masked sensor under white light illumination. Specifically, we demonstrate megapixel spatial resolution and phase accuracy better than 0.1 wavelengths at reconstruction rates of 50 Hz or more, thus opening up many new applications from high-resolution adaptive optics to real-time phase retrieval in microscopy.
BLIPPED (BLIpped Pure Phase EncoDing) high resolution MRI with low amplitude gradients
NASA Astrophysics Data System (ADS)
Xiao, Dan; Balcom, Bruce J.
2017-12-01
MRI image resolution is proportional to the maximum k-space value, i.e. the temporal integral of the magnetic field gradient. High resolution imaging usually requires high gradient amplitudes and/or long spatial encoding times. Special gradient hardware is often required for high amplitudes and fast switching. We propose a high resolution imaging sequence that employs low amplitude gradients. This method was inspired by the previously proposed PEPI (π Echo Planar Imaging) sequence, which replaced EPI gradient reversals with multiple RF refocusing pulses. It has been shown that when the refocusing RF pulse is of high quality, i.e. sufficiently close to 180°, the magnetization phase introduced by the spatial encoding magnetic field gradient can be preserved and transferred to the following echo signal without phase rewinding. This phase encoding scheme requires blipped gradients that are identical for each echo, with low and constant amplitude, providing opportunities for high resolution imaging. We now extend the sequence to 3D pure phase encoding with low amplitude gradients. The method is compared with the Hybrid-SESPI (Spin Echo Single Point Imaging) technique to demonstrate the advantages in terms of low gradient duty cycle, compensation of concomitant magnetic field effects and minimal echo spacing, which lead to superior image quality and high resolution. The 3D imaging method was then applied with a parallel plate resonator RF probe, achieving a nominal spatial resolution of 17 μm in one dimension in the 3D image, requiring a maximum gradient amplitude of only 5.8 Gauss/cm.
Deformation Estimation In Non-Urban Areas Exploiting High Resolution SAR Data
NASA Astrophysics Data System (ADS)
Goel, Kanika; Adam, Nico
2012-01-01
Advanced techniques such as the Small Baseline Subset Algorithm (SBAS) have been developed for terrain motion mapping in non-urban areas with a focus on extracting information from distributed scatterers (DSs). SBAS uses small baseline differential interferograms (to limit the effects of geometric decorrelation) and these are typically multilooked to reduce phase noise, resulting in loss of resolution. Various error sources e.g. phase unwrapping errors, topographic errors, temporal decorrelation and atmospheric effects also affect the interferometric phase. The aim of our work is an improved deformation monitoring in non-urban areas exploiting high resolution SAR data. The paper provides technical details and a processing example of a newly developed technique which incorporates an adaptive spatial phase filtering algorithm for an accurate high resolution differential interferometric stacking, followed by deformation retrieval via the SBAS approach where we perform the phase inversion using a more robust L1 norm minimization.
Larsson, Daniel H; Lundström, Ulf; Westermark, Ulrica K; Arsenian Henriksson, Marie; Burvall, Anna; Hertz, Hans M
2013-02-01
Small-animal studies require images with high spatial resolution and high contrast due to the small scale of the structures. X-ray imaging systems for small animals are often limited by the microfocus source. Here, the authors investigate the applicability of liquid-metal-jet x-ray sources for such high-resolution small-animal imaging, both in tomography based on absorption and in soft-tissue tumor imaging based on in-line phase contrast. The experimental arrangement consists of a liquid-metal-jet x-ray source, the small-animal object on a rotating stage, and an imaging detector. The source-to-object and object-to-detector distances are adjusted for the preferred contrast mechanism. Two different liquid-metal-jet sources are used, one circulating a Ga∕In∕Sn alloy and the other an In∕Ga alloy for higher penetration through thick tissue. Both sources are operated at 40-50 W electron-beam power with ∼7 μm x-ray spots, providing high spatial resolution in absorption imaging and high spatial coherence for the phase-contrast imaging. High-resolution absorption imaging is demonstrated on mice with CT, showing 50 μm bone details in the reconstructed slices. High-resolution phase-contrast soft-tissue imaging shows clear demarcation of mm-sized tumors at much lower dose than is required in absorption. This is the first application of liquid-metal-jet x-ray sources for whole-body small-animal x-ray imaging. In absorption, the method allows high-resolution tomographic skeletal imaging with potential for significantly shorter exposure times due to the power scalability of liquid-metal-jet sources. In phase contrast, the authors use a simple in-line arrangement to show distinct tumor demarcation of few-mm-sized tumors. This is, to their knowledge, the first small-animal tumor visualization with a laboratory phase-contrast system.
Du, Baoqiang; Dong, Shaofeng; Wang, Yanfeng; Guo, Shuting; Cao, Lingzhi; Zhou, Wei; Zuo, Yandi; Liu, Dan
2013-11-01
A wide-frequency and high-resolution frequency measurement method based on the quantized phase step law is presented in this paper. Utilizing a variation law of the phase differences, the direct different frequency phase processing, and the phase group synchronization phenomenon, combining an A/D converter and the adaptive phase shifting principle, a counter gate is established in the phase coincidences at one-group intervals, which eliminates the ±1 counter error in the traditional frequency measurement method. More importantly, the direct phase comparison, the measurement, and the control between any periodic signals have been realized without frequency normalization in this method. Experimental results show that sub-picosecond resolution can be easily obtained in the frequency measurement, the frequency standard comparison, and the phase-locked control based on the phase quantization processing technique. The method may be widely used in navigation positioning, space techniques, communication, radar, astronomy, atomic frequency standards, and other high-tech fields.
High-resolution electron microscope
NASA Technical Reports Server (NTRS)
Nathan, R.
1977-01-01
Employing scanning transmission electron microscope as interferometer, relative phases of diffraction maximums can be determined by analysis of dark field images. Synthetic aperture technique and Fourier-transform computer processing of amplitude and phase information provide high resolution images at approximately one angstrom.
A High Resolution Phase Shifting Interferometer.
NASA Astrophysics Data System (ADS)
Bayda, Michael; Bartscher, Christoph; Wilkinson, Allen
1997-03-01
Configuration, operation, and performance details of a high resolution phase shifting Twyman-Green interferometer are presented. The instrument was used for density relaxation experiments of very compressible liquid-vapor critical fluids.(A companion talk in the Nonequilibrium Phenomena session under Complex Fluids presents density equilibration work.) A sample assembly contained the cell, beam splitter, phase shifter, and mirrors inside a 6 cm diameter by 6 cm long aluminum cylinder. This sample assembly was contained inside a thermostat stable to 50 μK RMS deviation. A thin phase retarding Liquid Crystal Cell (LCC) was placed in the reference arm of the interferometer. The LCC provided four cumulative 90 degree phase shifts to produce four images used in computing each phase map. The Carré technique was used to calculate a phase value for each pixel from the four intensities of each pixel. Four images for one phase map could be acquired in less than two seconds. The spatial resolution was 25 μm. The phase resolution of the interferometer in a six second period was better than λ/400. The phase stability of the interferometer during 25 hours was better than λ/70. Factors affecting timing, resolution, and other phase shifting devices will be discussed. WWW Presentation
THz holography in reflection using a high resolution microbolometer array.
Zolliker, Peter; Hack, Erwin
2015-05-04
We demonstrate a digital holographic setup for Terahertz imaging of surfaces in reflection. The set-up is based on a high-power continuous wave (CW) THz laser and a high-resolution (640 × 480 pixel) bolometer detector array. Wave propagation to non-parallel planes is used to reconstruct the object surface that is rotated relative to the detector plane. In addition we implement synthetic aperture methods for resolution enhancement and compare Fourier transform phase retrieval to phase stepping methods. A lateral resolution of 200 μm and a relative phase sensitivity of about 0.4 rad corresponding to a depth resolution of 6 μm are estimated from reconstructed images of two specially prepared test targets, respectively. We highlight the use of digital THz holography for surface profilometry as well as its potential for video-rate imaging.
NASA Astrophysics Data System (ADS)
Matthews, L. D.; Crew, G. B.; Doeleman, S. S.; Lacasse, R.; Saez, A. F.; Alef, W.; Akiyama, K.; Amestica, R.; Anderson, J. M.; Barkats, D. A.; Baudry, A.; Broguière, D.; Escoffier, R.; Fish, V. L.; Greenberg, J.; Hecht, M. H.; Hiriart, R.; Hirota, A.; Honma, M.; Ho, P. T. P.; Impellizzeri, C. M. V.; Inoue, M.; Kohno, Y.; Lopez, B.; Martí-Vidal, I.; Messias, H.; Meyer-Zhao, Z.; Mora-Klein, M.; Nagar, N. M.; Nishioka, H.; Oyama, T.; Pankratius, V.; Perez, J.; Phillips, N.; Pradel, N.; Rottmann, H.; Roy, A. L.; Ruszczyk, C. A.; Shillue, B.; Suzuki, S.; Treacy, R.
2018-01-01
The Atacama Millimeter/submillimeter Array (ALMA) Phasing Project (APP) has developed and deployed the hardware and software necessary to coherently sum the signals of individual ALMA antennas and record the aggregate sum in Very Long Baseline Interferometry (VLBI) Data Exchange Format. These beamforming capabilities allow the ALMA array to collectively function as the equivalent of a single large aperture and participate in global VLBI arrays. The inclusion of phased ALMA in current VLBI networks operating at (sub)millimeter wavelengths provides an order of magnitude improvement in sensitivity, as well as enhancements in u–v coverage and north–south angular resolution. The availability of a phased ALMA enables a wide range of new ultra-high angular resolution science applications, including the resolution of supermassive black holes on event horizon scales and studies of the launch and collimation of astrophysical jets. It also provides a high-sensitivity aperture that may be used for investigations such as pulsar searches at high frequencies. This paper provides an overview of the ALMA Phasing System design, implementation, and performance characteristics.
Sub-pixel spatial resolution wavefront phase imaging
NASA Technical Reports Server (NTRS)
Stahl, H. Philip (Inventor); Mooney, James T. (Inventor)
2012-01-01
A phase imaging method for an optical wavefront acquires a plurality of phase images of the optical wavefront using a phase imager. Each phase image is unique and is shifted with respect to another of the phase images by a known/controlled amount that is less than the size of the phase imager's pixels. The phase images are then combined to generate a single high-spatial resolution phase image of the optical wavefront.
NASA Astrophysics Data System (ADS)
Wang, Kai; Lin, Wei; Dai, Fei; Li, Jun; Qi, Xiaobo; Lei, Haile; Liu, Yuanqiong
2018-05-01
Due to the high spatial resolution and contrast, the optical lens coupled X-ray in-line phase contrast imaging system with the secondary optical magnification is more suitable for the characterization of the low Z materials. The influence of the source to object distance and the object to scintillator distance on the image resolution and contrast is studied experimentally. A phase correlation algorithm is used for the image mosaic of a serial of X-ray phase contrast images acquired with high resolution, the resulting resolution is less than 1.0 μm, and the whole field of view is larger than 1.4 mm. Finally, the geometric morphology and the inner structure of various weakly absorbing samples and the evaporation of water in the plastic micro-shell are in situ characterized by the optical lens coupled X-ray in-line phase contrast imaging system.
Spatial resolution limitation of liquid crystal spatial light modulator
NASA Astrophysics Data System (ADS)
Wang, Xinghua; Wang, Bin; McManamon, Paul F., III; Pouch, John J.; Miranda, Felix A.; Anderson, James E.; Bos, Philip J.
2004-10-01
The effect of fringing electric fields in a liquid crystal (LC) Optical Phased Array (OPA), also referred to as a spatial light modulator (SLM), is a governing factor that determines the diffraction efficiency (DE) of the LC OPA for high resolution spatial phase modulation. In this article, the fringing field effect in a high resolution LC OPA is studied by accurate modeling the DE of the LC blazed gratings by LC director simulation and Finite Difference Time Domain (FDTD) simulation. Influence factors that contribute significantly to the DE are discussed. Such results provide fundamental understanding for high resolution LC devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Huiqiang; Wu, Xizeng, E-mail: xwu@uabmc.edu, E-mail: tqxiao@sinap.ac.cn; Xiao, Tiqiao, E-mail: xwu@uabmc.edu, E-mail: tqxiao@sinap.ac.cn
Purpose: Propagation-based phase-contrast CT (PPCT) utilizes highly sensitive phase-contrast technology applied to x-ray microtomography. Performing phase retrieval on the acquired angular projections can enhance image contrast and enable quantitative imaging. In this work, the authors demonstrate the validity and advantages of a novel technique for high-resolution PPCT by using the generalized phase-attenuation duality (PAD) method of phase retrieval. Methods: A high-resolution angular projection data set of a fish head specimen was acquired with a monochromatic 60-keV x-ray beam. In one approach, the projection data were directly used for tomographic reconstruction. In two other approaches, the projection data were preprocessed bymore » phase retrieval based on either the linearized PAD method or the generalized PAD method. The reconstructed images from all three approaches were then compared in terms of tissue contrast-to-noise ratio and spatial resolution. Results: The authors’ experimental results demonstrated the validity of the PPCT technique based on the generalized PAD-based method. In addition, the results show that the authors’ technique is superior to the direct PPCT technique as well as the linearized PAD-based PPCT technique in terms of their relative capabilities for tissue discrimination and characterization. Conclusions: This novel PPCT technique demonstrates great potential for biomedical imaging, especially for applications that require high spatial resolution and limited radiation exposure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Ling; Zhao, Haihua; Zhang, Hongbin
2016-04-01
The phase appearance/disappearance issue presents serious numerical challenges in two-phase flow simulations. Many existing reactor safety analysis codes use different kinds of treatments for the phase appearance/disappearance problem. However, to our best knowledge, there are no fully satisfactory solutions. Additionally, the majority of the existing reactor system analysis codes were developed using low-order numerical schemes in both space and time. In many situations, it is desirable to use high-resolution spatial discretization and fully implicit time integration schemes to reduce numerical errors. In this work, we adapted a high-resolution spatial discretization scheme on staggered grid mesh and fully implicit time integrationmore » methods (such as BDF1 and BDF2) to solve the two-phase flow problems. The discretized nonlinear system was solved by the Jacobian-free Newton Krylov (JFNK) method, which does not require the derivation and implementation of analytical Jacobian matrix. These methods were tested with a few two-phase flow problems with phase appearance/disappearance phenomena considered, such as a linear advection problem, an oscillating manometer problem, and a sedimentation problem. The JFNK method demonstrated extremely robust and stable behaviors in solving the two-phase flow problems with phase appearance/disappearance. No special treatments such as water level tracking or void fraction limiting were used. High-resolution spatial discretization and second- order fully implicit method also demonstrated their capabilities in significantly reducing numerical errors.« less
NASA Astrophysics Data System (ADS)
Zhao, Chaoying; Qu, Feifei; Zhang, Qin; Zhu, Wu
2012-10-01
The accuracy of DEM generated with interferometric synthetic aperture radar (InSAR) technique mostly depends on phase unwrapping errors, atmospheric effects, baseline errors and phase noise. The first term is more serious if the high-resolution TerraSAR-X data over urban regions and mountainous regions are applied. In addition, the deformation effect cannot be neglected if the study regions are suffering from surface deformation within the SAR acquisition dates. In this paper, several measures have been taken to generate high resolution DEM over urban regions and mountainous regions with TerraSAR data. The SAR interferometric pairs are divided into two subsets: (a) DEM subsets and (b) deformation subsets. These two interferometric sets serve to generate DEM and deformation, respectively. The external DEM is applied to assist the phase unwrapping with "remove-restore" procedure. The deformation phase is re-scaled and subtracted from each DEM observations. Lastly, the stochastic errors including atmospheric effects and phase noise are suppressed by averaging heights from several interferograms with weights. Six TerraSAR-X data are applied to generate a 6-m-resolution DEM over Xi'an, China using these procedures. Both discrete GPS heights and local high resolution and high precision DEM data are applied to calibrate the DEM generated with our algorithm, and around 4.1 m precision is achieved.
A high resolution InSAR topographic reconstruction research in urban area based on TerraSAR-X data
NASA Astrophysics Data System (ADS)
Qu, Feifei; Qin, Zhang; Zhao, Chaoying; Zhu, Wu
2011-10-01
Aiming at the problems of difficult unwrapping and phase noise in InSAR DEM reconstruction, especially for the high-resolution TerraSAR-X data, this paper improved the height reconstruction algorithm in view of "remove-restore" based on external coarse DEM and multi-interferogram processing, proposed a height calibration method based on CR+GPS data. Several measures have been taken for urban high resolution DEM reconstruction with TerraSAR data. The SAR interferometric pairs with long spatial and short temporal baselines are served for the DEM. The external low resolution and low accuracy DEM is applied for the "remove-restore" concept to ease the phase unwrapping. The stochastic errors including atmospheric effects and phase noise are suppressed by weighted averaging of DEM phases. Six TerraSAR-X data are applied to create the twelve-meter's resolution DEM over Xian, China with the newly-proposed method. The heights in discrete GPS benchmarks are used to calibrate the result, and the RMS of 3.29 meter is achieved by comparing with 1:50000 DEM.
Digital multi-channel high resolution phase locked loop for surveillance radar systems
NASA Astrophysics Data System (ADS)
Rizk, Mohamed; Shaaban, Shawky; Abou-El-Nadar, Usama M.; Hafez, Alaa El-Din Sayed
This paper present a multi-channel, high resolution, fast lock phase locked loop (PLL) for surveillance radar applications. Phase detector based PLLs are simple to design, suffer no systematic phase error, and can run at the highest speed. Reducing loop gain can proportionally improve jitter performance, but also reduces locking time and pull-in range. The proposed system is based on digital process and control the error signal to the voltage controlled oscillator (VCO) adaptively to control its gain in order to achieve fast lock times while improving in lock jitter performance. Under certain circumstances the design also improves the frequency agility capability of the radar system. The results show a fast lock, high resolution PLL with transient time less than 10 µ sec which is suitable to radar applications.
Yang, Cheng-Xiong; Liu, Chang; Cao, Yi-Meng; Yan, Xiu-Ping
2015-08-07
A simple and facile room-temperature solution-phase synthesis was developed to fabricate a spherical covalent organic framework with large surface area, good solvent stability and high thermostability for high-resolution chromatographic separation of diverse important industrial analytes including alkanes, cyclohexane and benzene, α-pinene and β-pinene, and alcohols with high column efficiency and good precision.
Effect of subaperture beamforming on phase coherence imaging.
Hasegawa, Hideyuki; Kanai, Hiroshi
2014-11-01
High-frame-rate echocardiography using unfocused transmit beams and parallel receive beamforming is a promising method for evaluation of cardiac function, such as imaging of rapid propagation of vibration of the heart wall resulting from electrical stimulation of the myocardium. In this technique, high temporal resolution is realized at the expense of spatial resolution and contrast. The phase coherence factor has been developed to improve spatial resolution and contrast in ultrasonography. It evaluates the variance in phases of echo signals received by individual transducer elements after delay compensation, as in the conventional delay-andsum beamforming process. However, the phase coherence factor suppresses speckle echoes because phases of speckle echoes fluctuate as a result of interference of echoes. In the present study, the receiving aperture was divided into several subapertures, and conventional delay-and-sum beamforming was performed with respect to each subaperture to suppress echoes from scatterers except for that at a focal point. After subaperture beamforming, the phase coherence factor was obtained from beamformed RF signals from respective subapertures. By means of this procedure, undesirable echoes, which can interfere with the echo from a focal point, can be suppressed by subaperture beamforming, and the suppression of the phase coherence factor resulting from phase fluctuation caused by such interference can be avoided. In the present study, the effect of subaperture beamforming in high-frame-rate echocardiography with the phase coherence factor was evaluated using a phantom. By applying subaperture beamforming, the average intensity of speckle echoes from a diffuse scattering medium was significantly higher (-39.9 dB) than that obtained without subaperture beamforming (-48.7 dB). As for spatial resolution, the width at half-maximum of the lateral echo amplitude profile obtained without the phase coherence factor was 1.06 mm. By using the phase coherence factor, spatial resolution was improved significantly, and subaperture beamforming achieved a better spatial resolution of 0.75 mm than that of 0.78 mm obtained without subaperture beamforming.
NASA Astrophysics Data System (ADS)
Watanabe, A.; Furukawa, H.
2018-04-01
The resolution of multichannel Fourier transform (McFT) spectroscopy is insufficient for many applications despite its extreme advantage of high throughput. We propose an improved configuration to realise both performance using a two-dimensional area sensor. For the spectral resolution, we obtained the interferogram of a larger optical path difference by shifting the area sensor without altering any optical components. The non-linear phase error of the interferometer was successfully corrected using a phase-compensation calculation. Warping compensation was also applied to realise a higher throughput to accumulate the signal between vertical pixels. Our approach significantly improved the resolution and signal-to-noise ratio by factors of 1.7 and 34, respectively. This high-resolution and high-sensitivity McFT spectrometer will be useful for detecting weak light signals such as those in non-invasive diagnosis.
The laboratory demonstration and signal processing of the inverse synthetic aperture imaging ladar
NASA Astrophysics Data System (ADS)
Gao, Si; Zhang, ZengHui; Xu, XianWen; Yu, WenXian
2017-10-01
This paper presents a coherent inverse synthetic-aperture imaging ladar(ISAL)system to obtain high resolution images. A balanced coherent optics system in laboratory is built with binary phase coded modulation transmit waveform which is different from conventional chirp. A whole digital signal processing solution is proposed including both quality phase gradient autofocus(QPGA) algorithm and cubic phase function(CPF) algorithm. Some high-resolution well-focused ISAL images of retro-reflecting targets are shown to validate the concepts. It is shown that high resolution images can be achieved and the influences from vibrations of platform involving targets and radar can be automatically compensated by the distinctive laboratory system and digital signal process.
High-resolution short-exposure small-animal laboratory x-ray phase-contrast tomography
NASA Astrophysics Data System (ADS)
Larsson, Daniel H.; Vågberg, William; Yaroshenko, Andre; Yildirim, Ali Önder; Hertz, Hans M.
2016-12-01
X-ray computed tomography of small animals and their organs is an essential tool in basic and preclinical biomedical research. In both phase-contrast and absorption tomography high spatial resolution and short exposure times are of key importance. However, the observable spatial resolutions and achievable exposure times are presently limited by system parameters rather than more fundamental constraints like, e.g., dose. Here we demonstrate laboratory tomography with few-ten μm spatial resolution and few-minute exposure time at an acceptable dose for small-animal imaging, both with absorption contrast and phase contrast. The method relies on a magnifying imaging scheme in combination with a high-power small-spot liquid-metal-jet electron-impact source. The tomographic imaging is demonstrated on intact mouse, phantoms and excised lungs, both healthy and with pulmonary emphysema.
Co-Phasing the Large Binocular Telescope:. [Status and Performance of LBTI-PHASECam
NASA Technical Reports Server (NTRS)
Defrere, D.; Hinz, P.; Downey, E.; Ashby, D.; Bailey, V.; Brusa, G.; Christou, J.; Danchi, W. C.; Grenz, P.; Hill, J. M.;
2014-01-01
The Large Binocular Telescope Interferometer is a NASA-funded nulling and imaging instrument designed to coherently combine the two 8.4-m primary mirrors of the LBT for high-sensitivity, high-contrast, and high-resolution infrared imaging (1.5-13 micrometer). PHASECam is LBTI's near-infrared camera used to measure tip-tilt and phase variations between the two AO-corrected apertures and provide high-angular resolution observations. We report on the status of the system and describe its on-sky performance measured during the first semester of 2014. With a spatial resolution equivalent to that of a 22.8-meter telescope and the light-gathering power of single 11.8-meter mirror, the co-phased LBT can be considered to be a forerunner of the next-generation extremely large telescopes (ELT).
Xu, Ou; Zhang, Jiejun; Yao, Jianping
2016-11-01
High speed and high resolution interrogation of a fiber Bragg grating (FBG) sensor based on microwave photonic filtering and chirped microwave pulse compression is proposed and experimentally demonstrated. In the proposed sensor, a broadband linearly chirped microwave waveform (LCMW) is applied to a single-passband microwave photonic filter (MPF) which is implemented based on phase modulation and phase modulation to intensity modulation conversion using a phase modulator (PM) and a phase-shifted FBG (PS-FBG). Since the center frequency of the MPF is a function of the central wavelength of the PS-FBG, when the PS-FBG experiences a strain or temperature change, the wavelength is shifted, which leads to the change in the center frequency of the MPF. At the output of the MPF, a filtered chirped waveform with the center frequency corresponding to the applied strain or temperature is obtained. By compressing the filtered LCMW in a digital signal processor, the resolution is improved. The proposed interrogation technique is experimentally demonstrated. The experimental results show that interrogation sensitivity and resolution as high as 1.25 ns/με and 0.8 με are achieved.
Laghi, A; Iafrate, F; Paolantonio, P; Iannaccone, R; Baeli, I; Ferrari, R; Catalano, C; Passariello, R
2002-04-01
To assess the normal anatomy of the anal sphincter complex using high-resolution MR imaging with phased -array coil. Twenty patients, 13 males and 7 females, ranging in age between 27 and 56 years underwent MRI evaluation of the pelvic region, using a superconductive 1.5 T magnet (maximum gradient strength, 25 mT/m; minimum rise time 600 microseconds, equipped with phased-array coil. High-resolution T2-weighted Turbo Spin Echo sequences (TR, 4055 ms; TE, 132 ms; matrix 390x512; in-plane resolution, 0.67x0.57 mm) were acquired on multiple axial, sagittal and coronal planes. Images were reviewed by two experienced gastrointestinal radiologists in order to evaluate the normal anal sphincter complex. Optimal image quality of the anal sphincter complex was obtained in all cases. Different muscular layers were observed between the upper and lower aspects of the anal canal. In the lower part of the anal canal, internal and external sphincter muscles could be observed; in the upper part, puborectal and internal sphincter muscles were depicted. Good visualization of intersphincteric space, levator ani muscle and ischioanal space was also obtained in all cases. High-resolution MR images with phased-array coil provide optimal depiction of the anal canal and the anal sphincter complex.
Transmission/Scanning Transmission Electron Microscopy | Materials Science
imaging such as high resolution TEM. Transmission electron diffraction patterns help to determine the microstructure of a material and its defects. Phase-contrast imaging or high-resolution (HR) TEM imaging gives high scattering angle can be collected to form high-resolution, chemically sensitive, atomic number (Z
High-resolution short-exposure small-animal laboratory x-ray phase-contrast tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larsson, Daniel H.; Vågberg, William; Yaroshenko, Andre
X-ray computed tomography of small animals and their organs is an essential tool in basic and preclinical biomedical research. In both phase-contrast and absorption tomography high spatial resolution and short exposure times are of key importance. However, the observable spatial resolutions and achievable exposure times are presently limited by system parameters rather than more fundamental constraints like, e.g., dose. Here we demonstrate laboratory tomography with few-ten μm spatial resolution and few-minute exposure time at an acceptable dose for small-animal imaging, both with absorption contrast and phase contrast. The method relies on a magnifying imaging scheme in combination with a high-powermore » small-spot liquid-metal-jet electron-impact source. Lastly, the tomographic imaging is demonstrated on intact mouse, phantoms and excised lungs, both healthy and with pulmonary emphysema.« less
High-resolution short-exposure small-animal laboratory x-ray phase-contrast tomography
Larsson, Daniel H.; Vågberg, William; Yaroshenko, Andre; ...
2016-12-13
X-ray computed tomography of small animals and their organs is an essential tool in basic and preclinical biomedical research. In both phase-contrast and absorption tomography high spatial resolution and short exposure times are of key importance. However, the observable spatial resolutions and achievable exposure times are presently limited by system parameters rather than more fundamental constraints like, e.g., dose. Here we demonstrate laboratory tomography with few-ten μm spatial resolution and few-minute exposure time at an acceptable dose for small-animal imaging, both with absorption contrast and phase contrast. The method relies on a magnifying imaging scheme in combination with a high-powermore » small-spot liquid-metal-jet electron-impact source. Lastly, the tomographic imaging is demonstrated on intact mouse, phantoms and excised lungs, both healthy and with pulmonary emphysema.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larsson, Daniel H.; Lundstroem, Ulf; Burvall, Anna
Purpose: Small-animal studies require images with high spatial resolution and high contrast due to the small scale of the structures. X-ray imaging systems for small animals are often limited by the microfocus source. Here, the authors investigate the applicability of liquid-metal-jet x-ray sources for such high-resolution small-animal imaging, both in tomography based on absorption and in soft-tissue tumor imaging based on in-line phase contrast. Methods: The experimental arrangement consists of a liquid-metal-jet x-ray source, the small-animal object on a rotating stage, and an imaging detector. The source-to-object and object-to-detector distances are adjusted for the preferred contrast mechanism. Two different liquid-metal-jetmore » sources are used, one circulating a Ga/In/Sn alloy and the other an In/Ga alloy for higher penetration through thick tissue. Both sources are operated at 40-50 W electron-beam power with {approx}7 {mu}m x-ray spots, providing high spatial resolution in absorption imaging and high spatial coherence for the phase-contrast imaging. Results: High-resolution absorption imaging is demonstrated on mice with CT, showing 50 {mu}m bone details in the reconstructed slices. High-resolution phase-contrast soft-tissue imaging shows clear demarcation of mm-sized tumors at much lower dose than is required in absorption. Conclusions: This is the first application of liquid-metal-jet x-ray sources for whole-body small-animal x-ray imaging. In absorption, the method allows high-resolution tomographic skeletal imaging with potential for significantly shorter exposure times due to the power scalability of liquid-metal-jet sources. In phase contrast, the authors use a simple in-line arrangement to show distinct tumor demarcation of few-mm-sized tumors. This is, to their knowledge, the first small-animal tumor visualization with a laboratory phase-contrast system.« less
Propagation-based phase-contrast tomography for high-resolution lung imaging with laboratory sources
NASA Astrophysics Data System (ADS)
Krenkel, Martin; Töpperwien, Mareike; Dullin, Christian; Alves, Frauke; Salditt, Tim
2016-03-01
We have performed high-resolution phase-contrast tomography on whole mice with a laboratory setup. Enabled by a high-brilliance liquid-metal-jet source, we show the feasibility of propagation-based phase contrast in local tomography even in the presence of strongly absorbing surrounding tissue as it is the case in small animal imaging of the lung. We demonstrate the technique by reconstructions of the mouse lung for two different fields of view, covering the whole organ, and a zoom to the local finer structure of terminal airways and alveoli. With a resolution of a few micrometers and the wide availability of the technique, studies of larger biological samples at the cellular level become possible.
Application of the phase extension method in virus crystallography.
Reddy, Vijay S
2016-01-01
The procedure for phase extension (PX) involves gradually extending the initial phases from low resolution (e.g., ~8Å) to the high-resolution limit of a diffraction data set. Structural redundancy present in the viral capsids that display icosahedral symmetry results in a high degree of non-crystallographic symmetry (NCS), which in turn translates into higher phasing power and is critical for improving and extending phases to higher resolution. Greater completeness of the diffraction data and determination of a molecular replacement solution, which entails accurately identifying the virus particle orientation(s) and position(s), are important for the smooth progression of the PX procedure. In addition, proper definition of a molecular mask (envelope) around the NCS-asymmetric unit has been found to be important for the success of density modification procedures, such as density averaging and solvent flattening. Regardless of the degree of NCS, the PX method appears to work well in all space groups, provided an accurate molecular mask is used along with reasonable initial phases. However, in the cases with space group P1, in addition to requiring a molecular mask, starting the phase extension at a higher resolution (e.g., 6Å) overcame the previously reported problems due to Babinet phases and phase flipping errors.
NASA Astrophysics Data System (ADS)
Katkovnik, Vladimir; Shevkunov, Igor; Petrov, Nikolay V.; Egiazarian, Karen
2017-06-01
In-line lensless holography is considered with a random phase modulation at the object plane. The forward wavefront propagation is modelled using the Fourier transform with the angular spectrum transfer function. The multiple intensities (holograms) recorded by the sensor are random due to the random phase modulation and noisy with Poissonian noise distribution. It is shown by computational experiments that high-accuracy reconstructions can be achieved with resolution going up to the two thirds of the wavelength. With respect to the sensor pixel size it is a super-resolution with a factor of 32. The algorithm designed for optimal superresolution phase/amplitude reconstruction from Poissonian data is based on the general methodology developed for phase retrieval with a pixel-wise resolution in V. Katkovnik, "Phase retrieval from noisy data based on sparse approximation of object phase and amplitude", http://www.cs.tut.fi/ lasip/DDT/index3.html.
Global spectroscopic survey of cloud thermodynamic phase at high spatial resolution, 2005-2015
NASA Astrophysics Data System (ADS)
Thompson, David R.; Kahn, Brian H.; Green, Robert O.; Chien, Steve A.; Middleton, Elizabeth M.; Tran, Daniel Q.
2018-02-01
The distribution of ice, liquid, and mixed phase clouds is important for Earth's planetary radiation budget, impacting cloud optical properties, evolution, and solar reflectivity. Most remote orbital thermodynamic phase measurements observe kilometer scales and are insensitive to mixed phases. This under-constrains important processes with outsize radiative forcing impact, such as spatial partitioning in mixed phase clouds. To date, the fine spatial structure of cloud phase has not been measured at global scales. Imaging spectroscopy of reflected solar energy from 1.4 to 1.8 µm can address this gap: it directly measures ice and water absorption, a robust indicator of cloud top thermodynamic phase, with spatial resolution of tens to hundreds of meters. We report the first such global high spatial resolution survey based on data from 2005 to 2015 acquired by the Hyperion imaging spectrometer onboard NASA's Earth Observer 1 (EO-1) spacecraft. Seasonal and latitudinal distributions corroborate observations by the Atmospheric Infrared Sounder (AIRS). For extratropical cloud systems, just 25 % of variance observed at GCM grid scales of 100 km was related to irreducible measurement error, while 75 % was explained by spatial correlations possible at finer resolutions.
AIRS Subpixel Cloud Characterization Using MODIS Cloud Products.
NASA Astrophysics Data System (ADS)
Li, Jun; Menzel, W. Paul; Sun, Fengying; Schmit, Timothy J.; Gurka, James
2004-08-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS) measurements from the Earth Observing System's (EOS's) Aqua satellite enable improved global monitoring of the distribution of clouds. MODIS is able to provide, at high spatial resolution (1 5 km), a cloud mask, surface and cloud types, cloud phase, cloud-top pressure (CTP), effective cloud amount (ECA), cloud particle size (CPS), and cloud optical thickness (COT). AIRS is able to provide CTP, ECA, CPS, and COT at coarser spatial resolution (13.5 km at nadir) but with much better accuracy using its high-spectral-resolution measurements. The combined MODIS AIRS system offers the opportunity for improved cloud products over those possible from either system alone. The key steps for synergistic use of imager and sounder radiance measurements are 1) collocation in space and time and 2) imager cloud amount, type, and phase determination within the sounder pixel. The MODIS and AIRS measurements from the EOS Aqua satellite provide the opportunity to study the synergistic use of advanced imager and sounder measurements. As the first step, the MODIS classification procedure is applied to identify various surface and cloud types within an AIRS footprint. Cloud-layer information (lower, midlevel, or high clouds) and phase information (water, ice, or mixed-phase clouds) within the AIRS footprint are sorted and characterized using MODIS 1-km-spatial-resolution data. The combined MODIS and AIRS data for various scenes are analyzed to study the utility of the synergistic use of high-spatial-resolution imager products and high-spectral-resolution sounder radiance measurements. There is relevance to the optimal use of data from the Advanced Baseline Imager (ABI) and Hyperspectral Environmental Suite (HES) systems, which are to fly on the Geostationary Operational Environmental Satellite (GOES)-R.
NASA Astrophysics Data System (ADS)
Haldren, H. A.; Perey, D. F.; Yost, W. T.; Cramer, K. E.; Gupta, M. C.
2018-05-01
A digitally controlled instrument for conducting single-frequency and swept-frequency ultrasonic phase measurements has been developed based on a constant-frequency pulsed phase-locked-loop (CFPPLL) design. This instrument uses a pair of direct digital synthesizers to generate an ultrasonically transceived tone-burst and an internal reference wave for phase comparison. Real-time, constant-frequency phase tracking in an interrogated specimen is possible with a resolution of 0.000 38 rad (0.022°), and swept-frequency phase measurements can be obtained. Using phase measurements, an absolute thickness in borosilicate glass is presented to show the instrument's efficacy, and these results are compared to conventional ultrasonic pulse-echo time-of-flight (ToF) measurements. The newly developed instrument predicted the thickness with a mean error of -0.04 μm and a standard deviation of error of 1.35 μm. Additionally, the CFPPLL instrument shows a lower measured phase error in the absence of changing temperature and couplant thickness than high-resolution cross-correlation ToF measurements at a similar signal-to-noise ratio. By showing higher accuracy and precision than conventional pulse-echo ToF measurements and lower phase errors than cross-correlation ToF measurements, the new digitally controlled CFPPLL instrument provides high-resolution absolute ultrasonic velocity or path-length measurements in solids or liquids, as well as tracking of material property changes with high sensitivity. The ability to obtain absolute phase measurements allows for many new applications than possible with previous ultrasonic pulsed phase-locked loop instruments. In addition to improved resolution, swept-frequency phase measurements add useful capability in measuring properties of layered structures, such as bonded joints, or materials which exhibit non-linear frequency-dependent behavior, such as dispersive media.
An advanced algorithm for deformation estimation in non-urban areas
NASA Astrophysics Data System (ADS)
Goel, Kanika; Adam, Nico
2012-09-01
This paper presents an advanced differential SAR interferometry stacking algorithm for high resolution deformation monitoring in non-urban areas with a focus on distributed scatterers (DSs). Techniques such as the Small Baseline Subset Algorithm (SBAS) have been proposed for processing DSs. SBAS makes use of small baseline differential interferogram subsets. Singular value decomposition (SVD), i.e. L2 norm minimization is applied to link independent subsets separated by large baselines. However, the interferograms used in SBAS are multilooked using a rectangular window to reduce phase noise caused for instance by temporal decorrelation, resulting in a loss of resolution and the superposition of topography and deformation signals from different objects. Moreover, these have to be individually phase unwrapped and this can be especially difficult in natural terrains. An improved deformation estimation technique is presented here which exploits high resolution SAR data and is suitable for rural areas. The implemented method makes use of small baseline differential interferograms and incorporates an object adaptive spatial phase filtering and residual topography removal for an accurate phase and coherence estimation, while preserving the high resolution provided by modern satellites. This is followed by retrieval of deformation via the SBAS approach, wherein, the phase inversion is performed using an L1 norm minimization which is more robust to the typical phase unwrapping errors encountered in non-urban areas. Meter resolution TerraSAR-X data of an underground gas storage reservoir in Germany is used for demonstrating the effectiveness of this newly developed technique in rural areas.
Micro-computed tomography pore-scale study of flow in porous media: Effect of voxel resolution
NASA Astrophysics Data System (ADS)
Shah, S. M.; Gray, F.; Crawshaw, J. P.; Boek, E. S.
2016-09-01
A fundamental understanding of flow in porous media at the pore-scale is necessary to be able to upscale average displacement processes from core to reservoir scale. The study of fluid flow in porous media at the pore-scale consists of two key procedures: Imaging - reconstruction of three-dimensional (3D) pore space images; and modelling such as with single and two-phase flow simulations with Lattice-Boltzmann (LB) or Pore-Network (PN) Modelling. Here we analyse pore-scale results to predict petrophysical properties such as porosity, single-phase permeability and multi-phase properties at different length scales. The fundamental issue is to understand the image resolution dependency of transport properties, in order to up-scale the flow physics from pore to core scale. In this work, we use a high resolution micro-computed tomography (micro-CT) scanner to image and reconstruct three dimensional pore-scale images of five sandstones (Bentheimer, Berea, Clashach, Doddington and Stainton) and five complex carbonates (Ketton, Estaillades, Middle Eastern sample 3, Middle Eastern sample 5 and Indiana Limestone 1) at four different voxel resolutions (4.4 μm, 6.2 μm, 8.3 μm and 10.2 μm), scanning the same physical field of view. Implementing three phase segmentation (macro-pore phase, intermediate phase and grain phase) on pore-scale images helps to understand the importance of connected macro-porosity in the fluid flow for the samples studied. We then compute the petrophysical properties for all the samples using PN and LB simulations in order to study the influence of voxel resolution on petrophysical properties. We then introduce a numerical coarsening scheme which is used to coarsen a high voxel resolution image (4.4 μm) to lower resolutions (6.2 μm, 8.3 μm and 10.2 μm) and study the impact of coarsening data on macroscopic and multi-phase properties. Numerical coarsening of high resolution data is found to be superior to using a lower resolution scan because it avoids the problem of partial volume effects and reduces the scaling effect by preserving the pore-space properties influencing the transport properties. This is evidently compared in this study by predicting several pore network properties such as number of pores and throats, average pore and throat radius and coordination number for both scan based analysis and numerical coarsened data.
Interference Confocal Microscope Integrated with Spatial Phase Shifter.
Wang, Weibo; Gu, Kang; You, Xiaoyu; Tan, Jiubin; Liu, Jian
2016-08-24
We present an interference confocal microscope (ICM) with a new single-body four-step simultaneous phase-shifter device designed to obtain high immunity to vibration. The proposed ICM combines the respective advantages of simultaneous phase shifting interferometry and bipolar differential confocal microscopy to obtain high axis resolution, large dynamic range, and reduce the sensitivity to vibration and reflectance disturbance seamlessly. A compact single body spatial phase shifter is added to capture four phase-shifted interference signals simultaneously without time delay and construct a stable and space-saving simplified interference confocal microscope system. The test result can be obtained by combining the interference phase response and the bipolar property of differential confocal microscopy without phase unwrapping. Experiments prove that the proposed microscope is capable of providing stable measurements with 1 nm of axial depth resolution for either low- or high-numerical aperture objective lenses.
High resolution quantitative phase imaging of live cells with constrained optimization approach
NASA Astrophysics Data System (ADS)
Pandiyan, Vimal Prabhu; Khare, Kedar; John, Renu
2016-03-01
Quantitative phase imaging (QPI) aims at studying weakly scattering and absorbing biological specimens with subwavelength accuracy without any external staining mechanisms. Use of a reference beam at an angle is one of the necessary criteria for recording of high resolution holograms in most of the interferometric methods used for quantitative phase imaging. The spatial separation of the dc and twin images is decided by the reference beam angle and Fourier-filtered reconstructed image will have a very poor resolution if hologram is recorded below a minimum reference angle condition. However, it is always inconvenient to have a large reference beam angle while performing high resolution microscopy of live cells and biological specimens with nanometric features. In this paper, we treat reconstruction of digital holographic microscopy images as a constrained optimization problem with smoothness constraint in order to recover only complex object field in hologram plane even with overlapping dc and twin image terms. We solve this optimization problem by gradient descent approach iteratively and the smoothness constraint is implemented by spatial averaging with appropriate size. This approach will give excellent high resolution image recovery compared to Fourier filtering while keeping a very small reference angle. We demonstrate this approach on digital holographic microscopy of live cells by recovering the quantitative phase of live cells from a hologram recorded with nearly zero reference angle.
A novel vibration sensor based on phase grating interferometry
NASA Astrophysics Data System (ADS)
Li, Qian; Liu, Xiaojun; Zhao, Li; Lei, Zili; Lu, Zhen; Guo, Lei
2017-05-01
Vibration sensors with high accuracy and reliability are needed urgently for vibration measurement. In this paper a vibration sensor with nanometer resolution is developed. This sensor is based on the principle of phase grating interference for displacement measurement and spatial polarization phase-shift interference technology, and photoelectric counting and A/D signal subdivision are adopted for vibration data output. A vibration measurement system consisting of vibration actuator and displacement adjusting device has been designed to test the vibration sensor. The high resolution and high reliability of the sensor are verified through a series of comparison experiments with Doppler interferometer.
A common-path phase-shift interferometry surface plasmon imaging system
NASA Astrophysics Data System (ADS)
Su, Y.-T.; Chen, Shean-Jen; Yeh, T.-L.
2005-03-01
A biosensing imaging system is proposed based on the integration of surface plasmon resonance (SPR) and common-path phase-shift interferometry (PSI) techniques to measure the two-dimensional spatial phase variation caused by biomolecular interactions upon a sensing chip. The SPR phase imaging system can offer high resolution and high-throughout screening capabilities to analyze microarray biomolecular interaction without the need for additional labeling. With the long-term stability advantage of the common-path PSI technique even with external disturbances such as mechanical vibration, buffer flow noise, and laser unstable issue, the system can match the demand of real-time kinetic study for biomolecular interaction analysis (BIA). The SPR-PSI imaging system has achieved a detection limit of 2×10-7 refraction index change, a long-term phase stability of 2.5x10-4π rms over four hours, and a spatial phase resolution of 10-3 π with a lateral resolution of 100μm.
Wang, Jiafei; Bai, Ligai; Wei, Zhen; Qin, Junxiao; Ma, Yamin; Liu, Haiyan
2015-06-01
An ionic liquid was incorporated into the porous polymer monoliths to afford stationary phases with enhanced chromatographic performance for small molecules in reversed-phase high-performance liquid chromatography. The effect of the ionic liquid in the polymerization mixture on the performance of the monoliths was studied in detail. While monoliths without ionic liquid exhibited poor resolution and low efficiency, the addition of ionic liquid to the polymerization mixture provides highly increased resolution and high efficiency. The chromatographic performances of the monoliths were demonstrated by the separations of various small molecules including aromatic hydrocarbons, isomers, and homologues using a binary polar mobile phase. The present column efficiency reached 27 000 plates/m, which showed that the ionic liquid monoliths are alternative stationary phases in the separation of small molecules by high-performance liquid chromatography. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Phase-contrast tomography of neuronal tissues: from laboratory- to high resolution synchrotron CT
NASA Astrophysics Data System (ADS)
Töpperwien, Mareike; Krenkel, Martin; Müller, Kristin; Salditt, Tim
2016-10-01
Assessing the three-dimensional architecture of neuronal tissues with sub-cellular resolution presents a significant analytical challenge. Overcoming the limitations associated with serial slicing, phase-contrast x-ray tomography has the potential to contribute to this goal. Even compact laboratory CT at an optimized liquid-metal jet micro- focus source combined with suitable phase-retrieval algorithms and preparation protocols can yield renderings with single cell sensitivity in millimeter sized brain areas of mouse. Here, we show the capabilities of the setup by imaging a Golgi-Cox impregnated mouse brain. Towards higher resolution we extend these studies at our recently upgraded waveguide-based cone-beam holo-tomography instrument GINIX at DESY. This setup allows high resolution recordings with adjustable field of view and resolution, down to the voxel sizes in the range of a few ten nanometers. The recent results make us confident that important issues of neuronal connectivity can be addressed by these methods, and that 3D (virtual) histology with nanoscale resolution will become an attractive modality for neuroscience research.
Shot-noise-limited monitoring and phase locking of the motion of a single trapped ion.
Bushev, P; Hétet, G; Slodička, L; Rotter, D; Wilson, M A; Schmidt-Kaler, F; Eschner, J; Blatt, R
2013-03-29
We perform a high-resolution real-time readout of the motion of a single trapped and laser-cooled Ba+ ion. By using an interferometric setup, we demonstrate a shot-noise-limited measurement of thermal oscillations with a resolution of 4 times the standard quantum limit. We apply the real-time monitoring for phase control of the ion motion through a feedback loop, suppressing the photon recoil-induced phase diffusion. Because of the spectral narrowing in the phase-locked mode, the coherent ion oscillation is measured with a resolution of about 0.3 times the standard quantum limit.
Takayama, Yuki; Maki-Yonekura, Saori; Oroguchi, Tomotaka; Nakasako, Masayoshi; Yonekura, Koji
2015-01-28
In this decade coherent X-ray diffraction imaging has been demonstrated to reveal internal structures of whole biological cells and organelles. However, the spatial resolution is limited to several tens of nanometers due to the poor scattering power of biological samples. The challenge is to recover correct phase information from experimental diffraction patterns that have a low signal-to-noise ratio and unmeasurable lowest-resolution data. Here, we propose a method to extend spatial resolution by enhancing diffraction signals and by robust phasing. The weak diffraction signals from biological objects are enhanced by interference with strong waves from dispersed colloidal gold particles. The positions of the gold particles determined by Patterson analysis serve as the initial phase, and this dramatically improves reliability and convergence of image reconstruction by iterative phase retrieval. A set of calculations based on current experiments demonstrates that resolution is improved by a factor of two or more.
Takayama, Yuki; Maki-Yonekura, Saori; Oroguchi, Tomotaka; Nakasako, Masayoshi; Yonekura, Koji
2015-01-01
In this decade coherent X-ray diffraction imaging has been demonstrated to reveal internal structures of whole biological cells and organelles. However, the spatial resolution is limited to several tens of nanometers due to the poor scattering power of biological samples. The challenge is to recover correct phase information from experimental diffraction patterns that have a low signal-to-noise ratio and unmeasurable lowest-resolution data. Here, we propose a method to extend spatial resolution by enhancing diffraction signals and by robust phasing. The weak diffraction signals from biological objects are enhanced by interference with strong waves from dispersed colloidal gold particles. The positions of the gold particles determined by Patterson analysis serve as the initial phase, and this dramatically improves reliability and convergence of image reconstruction by iterative phase retrieval. A set of calculations based on current experiments demonstrates that resolution is improved by a factor of two or more. PMID:25627480
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caballero, F.G.; Yen, Hung-Wei; Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006
2014-02-15
Interphase carbide precipitation due to austenite decomposition was investigated by high resolution transmission electron microscopy and atom probe tomography in tempered nanostructured bainitic steels. Results showed that cementite (θ) forms by a paraequilibrium transformation mechanism at the bainitic ferrite–austenite interface with a simultaneous three phase crystallographic orientation relationship. - Highlights: • Interphase carbide precipitation due to austenite decomposition • Tempered nanostructured bainitic steels • High resolution transmission electron microscopy and atom probe tomography • Paraequilibrium θ with three phase crystallographic orientation relationship.
NASA Astrophysics Data System (ADS)
Quiers, M.; Perrette, Y.; Etienne, D.; Develle, A. L.; Jacq, K.
2017-12-01
The use of organic proxies increases in paleoenvironmental reconstructions from natural archives. Major advances have been achieved by the development of new highly informative molecular proxies usually linked to specific compounds. While studies focused on targeted compounds, offering a high information degree, advances on bulk organic matter are limited. However, this bulk is the main contributor to carbon cycle and has been shown to be a driver of many mineral or organic compounds transfer and record. Development of target proxies need complementary information on bulk organic matter to understand biases link to controlling factors or analytical methods, and provide a robust interpretation. Fluorescence methods have often been employed to characterize and quantify organic matter. However, these technics are mainly developed for liquid samples, inducing material and resolution loss when working on natural archives (either stalagmite or sediments). High-resolution solid phase fluorescence (SPF) was developed on speleothems. This method allows now to analyse organic matter quality and quantity if procedure to constrain the optical density are adopted. In fact, a calibration method using liquid phase fluorescence (LPF) was developed for speleothem, allowing to quantify organic carbon at high-resolution. We report here an application of such a procedure SPF/LPF measurements on lake sediments. In order to avoid sediment matrix effects on the fluorescence signal, a calibration using LPF measurements was realised. First results using this method provided organic matter quality record of different organic matter compounds (humic-like, protein-like and chlorophylle-like compounds) at high resolution for the sediment core. High resolution organic matter fluxes are obtained in a second time, applying pragmatic chemometrics model (non linear models, partial least square models) on high resolution fluorescence data. SPF method can be considered as a promising tool for high resolution record on organic matter quality and quantity. Potential application of this method will be evocated (lake ecosystem dynamic, changes in trophic levels)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siegel, J.; Gawelda, W.; Puerto, D.
2008-01-15
Phase transformations of crystalline Ge{sub 2}Sb{sub 2}Te{sub 5} films upon pulsed laser irradiation have been studied using in situ reflectivity measurements with temporal resolution. Two different configurations allowed point probing with nanosecond temporal resolution and imaging with subpicosecond temporal and micrometer spatial resolution. The role of the pulse duration and laser fluence on the dynamics of the phase change and the degree of amorphization is discussed. Several advantageous features of femtosecond compared to nanosecond laser-induced amorphization are identified. Moreover, a high-resolution study of the amorphization dynamics reveals the onset of amorphization at moderate fluences to occur within {approx}100 ps aftermore » arrival of the laser pulse. At high fluences, amorphization occurs after {approx}430 ps and the molten phase is characterized by an anomalously low reflectivity value, indicative of a state of extreme supercooling.« less
Brun, E; Grandl, S; Sztrókay-Gaul, A; Barbone, G; Mittone, A; Gasilov, S; Bravin, A; Coan, P
2014-11-01
Phase contrast computed tomography has emerged as an imaging method, which is able to outperform present day clinical mammography in breast tumor visualization while maintaining an equivalent average dose. To this day, no segmentation technique takes into account the specificity of the phase contrast signal. In this study, the authors propose a new mathematical framework for human-guided breast tumor segmentation. This method has been applied to high-resolution images of excised human organs, each of several gigabytes. The authors present a segmentation procedure based on the viscous watershed transform and demonstrate the efficacy of this method on analyzer based phase contrast images. The segmentation of tumors inside two full human breasts is then shown as an example of this procedure's possible applications. A correct and precise identification of the tumor boundaries was obtained and confirmed by manual contouring performed independently by four experienced radiologists. The authors demonstrate that applying the watershed viscous transform allows them to perform the segmentation of tumors in high-resolution x-ray analyzer based phase contrast breast computed tomography images. Combining the additional information provided by the segmentation procedure with the already high definition of morphological details and tissue boundaries offered by phase contrast imaging techniques, will represent a valuable multistep procedure to be used in future medical diagnostic applications.
Detailed Investigation of Core-Shell Precipitates in a Cu-Containing High Entropy Alloy
NASA Astrophysics Data System (ADS)
Alam, T.; Gwalani, B.; Viswanathan, G.; Fraser, H.; Banerjee, R.
2018-05-01
Due to the competing influences of configurational entropy and enthalpy of mixing, in recent years, secondary (including intermetallic) phases have been reported in many high entropy alloy (HEA) systems. These secondary phases offer great potential in terms of strengthening the HEA beyond the solid solution strengthening effects, and as such are of great interest in regards to alloy design for engineering applications. The present research investigates novel nano-scale core-shell precipitates forming within the disordered bcc matrix phase of an Al2CrCuFeNi2 HEA, utilizing complementary high-resolution microscopy techniques of atom probe tomography (APT) and transmission electron microscopy (TEM). The size, morphology, and local chemistry of these core-shell precipitates was measured by APT, and the composition was further corroborated by high-resolution scanning transmission electron microscopy-energy dispersive spectroscopy in an aberration-corrected TEM. Furthermore, high-resolution TEM imaging of the core-shell structure indicates that the Cu-rich core exhibits a bcc crystal structure.
Laboratory-based x-ray phase-contrast tomography enables 3D virtual histology
NASA Astrophysics Data System (ADS)
Töpperwien, Mareike; Krenkel, Martin; Quade, Felix; Salditt, Tim
2016-09-01
Due to the large penetration depth and small wavelength hard x-rays offer a unique potential for 3D biomedical and biological imaging, combining capabilities of high resolution and large sample volume. However, in classical absorption-based computed tomography, soft tissue only shows a weak contrast, limiting the actual resolution. With the advent of phase-contrast methods, the much stronger phase shift induced by the sample can now be exploited. For high resolution, free space propagation behind the sample is particularly well suited to make the phase shift visible. Contrast formation is based on the self-interference of the transmitted beam, resulting in object-induced intensity modulations in the detector plane. As this method requires a sufficiently high degree of spatial coherence, it was since long perceived as a synchrotron-based imaging technique. In this contribution we show that by combination of high brightness liquid-metal jet microfocus sources and suitable sample preparation techniques, as well as optimized geometry, detection and phase retrieval, excellent three-dimensional image quality can be obtained, revealing the anatomy of a cobweb spider in high detail. This opens up new opportunities for 3D virtual histology of small organisms. Importantly, the image quality is finally augmented to a level accessible to automatic 3D segmentation.
NASA Astrophysics Data System (ADS)
De Haan, D. O.; Riva, M.; Surratt, J. D.; Cazaunau, M.; Doussin, J. F.
2016-12-01
Minimal organic aerosol forms when aerosol particles are exposed to gas-phase methylglyoxal, but condensed phase laboratory studies of aerosol chemistry have suggested that methylglyoxal is a significant source of oligomerized aerosol material. In this study, various types of seed particles were exposed to gaseous methylglyoxal and then cloud-processed in the CESAM chamber. The gas phase was continuously probed by high-resolution PTR-MS during the experiments, and the particle phase WSOC was chemically characterized by high-resolution UPLC/ESI-DAD-QTOFMS. Uptake of methylglyoxal to dry particles caused optical rather than size changes, along with the release of imine products to the gas phase. High RH and cloud processing released some particle-bound methylglyoxal back to the gas phase but triggered an uptake of imine products. Analysis of the particle phase identified N-containing aldol condensation products derived from methylglyoxal, imine (produced from methylglyoxal and amine reactions), acetaldehyde (produced by methylglyoxal photolysis) and hydroxyacetone (produced by methylglyoxal disproportionation) monomers.
Three-Dimensional Terahertz Coded-Aperture Imaging Based on Single Input Multiple Output Technology.
Chen, Shuo; Luo, Chenggao; Deng, Bin; Wang, Hongqiang; Cheng, Yongqiang; Zhuang, Zhaowen
2018-01-19
As a promising radar imaging technique, terahertz coded-aperture imaging (TCAI) can achieve high-resolution, forward-looking, and staring imaging by producing spatiotemporal independent signals with coded apertures. In this paper, we propose a three-dimensional (3D) TCAI architecture based on single input multiple output (SIMO) technology, which can reduce the coding and sampling times sharply. The coded aperture applied in the proposed TCAI architecture loads either purposive or random phase modulation factor. In the transmitting process, the purposive phase modulation factor drives the terahertz beam to scan the divided 3D imaging cells. In the receiving process, the random phase modulation factor is adopted to modulate the terahertz wave to be spatiotemporally independent for high resolution. Considering human-scale targets, images of each 3D imaging cell are reconstructed one by one to decompose the global computational complexity, and then are synthesized together to obtain the complete high-resolution image. As for each imaging cell, the multi-resolution imaging method helps to reduce the computational burden on a large-scale reference-signal matrix. The experimental results demonstrate that the proposed architecture can achieve high-resolution imaging with much less time for 3D targets and has great potential in applications such as security screening, nondestructive detection, medical diagnosis, etc.
X-ray phase contrast tomography from whole organ down to single cells
NASA Astrophysics Data System (ADS)
Krenkel, Martin; Töpperwien, Mareike; Bartels, Matthias; Lingor, Paul; Schild, Detlev; Salditt, Tim
2014-09-01
We use propagation based hard x-ray phase contrast tomography to explore the three dimensional structure of neuronal tissues from the organ down to sub-cellular level, based on combinations of synchrotron radiation and laboratory sources. To this end a laboratory based microfocus tomography setup has been built in which the geometry was optimized for phase contrast imaging and tomography. By utilizing phase retrieval algorithms, quantitative reconstructions can be obtained that enable automatic renderings without edge artifacts. A high brightness liquid metal microfocus x-ray source in combination with a high resolution detector yielding a resolution down to 1.5 μm. To extend the method to nanoscale resolution we use a divergent x-ray waveguide beam geometry at the synchrotron. Thus, the magnification can be easily tuned by placing the sample at different defocus distances. Due to the small Fresnel numbers in this geometry the measured images are of holographic nature which poses a challenge in phase retrieval.
Random phase detection in multidimensional NMR.
Maciejewski, Mark W; Fenwick, Matthew; Schuyler, Adam D; Stern, Alan S; Gorbatyuk, Vitaliy; Hoch, Jeffrey C
2011-10-04
Despite advances in resolution accompanying the development of high-field superconducting magnets, biomolecular applications of NMR require multiple dimensions in order to resolve individual resonances, and the achievable resolution is typically limited by practical constraints on measuring time. In addition to the need for measuring long evolution times to obtain high resolution, the need to distinguish the sign of the frequency constrains the ability to shorten measuring times. Sign discrimination is typically accomplished by sampling the signal with two different receiver phases or by selecting a reference frequency outside the range of frequencies spanned by the signal and then sampling at a higher rate. In the parametrically sampled (indirect) time dimensions of multidimensional NMR experiments, either method imposes an additional factor of 2 sampling burden for each dimension. We demonstrate that by using a single detector phase at each time sample point, but randomly altering the phase for different points, the sign ambiguity that attends fixed single-phase detection is resolved. Random phase detection enables a reduction in experiment time by a factor of 2 for each indirect dimension, amounting to a factor of 8 for a four-dimensional experiment, albeit at the cost of introducing sampling artifacts. Alternatively, for fixed measuring time, random phase detection can be used to double resolution in each indirect dimension. Random phase detection is complementary to nonuniform sampling methods, and their combination offers the potential for additional benefits. In addition to applications in biomolecular NMR, random phase detection could be useful in magnetic resonance imaging and other signal processing contexts.
NASA Astrophysics Data System (ADS)
Singla, Neeru; Dubey, Kavita; Srivastava, Vishal; Ahmad, Azeem; Mehta, D. S.
2018-02-01
We developed an automated high-resolution full-field spatial coherence tomography (FF-SCT) microscope for quantitative phase imaging that is based on the spatial, rather than the temporal, coherence gating. The Red and Green color laser light was used for finding the quantitative phase images of unstained human red blood cells (RBCs). This study uses morphological parameters of unstained RBCs phase images to distinguish between normal and infected cells. We recorded the single interferogram by a FF-SCT microscope for red and green color wavelength and average the two phase images to further reduced the noise artifacts. In order to characterize anemia infected from normal cells different morphological features were extracted and these features were used to train machine learning ensemble model to classify RBCs with high accuracy.
Czyrska-Filemonowicz, A; Buffat, P A
2009-01-01
Surface processing of a Ti-6Al-4V alloy led to a complex multilayered microstructure containing several phases of the Ni-Ti-P-Al-O system, which improves the mechanical and tribological surface properties. The microstructure, chemical and phase compositions of the hard layer formed on the surface were investigated by LM, XRD, SEM as well as analytical/high-resolution TEM, STEM, EDS, electron diffraction and FIB. Phase identification based on electron diffraction, HRTEM and EDS microanalysis revealed the presence of several binary and ternary phases in the system Ti-Ni-P, sometimes with partial substitution of Ti by Al. However some phases, mainly nanoparticles, still remain not identified satisfactorily. Electron microscopy techniques used for identification of phases present in surface multilayers and some practical limits to their routine application are reminded here.
Weber, Stefan A L; Kilpatrick, Jason I; Brosnan, Timothy M; Jarvis, Suzanne P; Rodriguez, Brian J
2014-05-02
Atomic force microscopy (AFM) is widely used in liquid environments, where true atomic resolution at the solid-liquid interface can now be routinely achieved. It is generally expected that AFM operation in more viscous environments results in an increased noise contribution from the thermal motion of the cantilever, thereby reducing the signal-to-noise ratio (SNR). Thus, viscous fluids such as ionic and organic liquids have been generally avoided for high-resolution AFM studies despite their relevance to, e.g. energy applications. Here, we investigate the thermal noise limitations of dynamic AFM operation in both low and high viscosity environments theoretically, deriving expressions for the amplitude, phase and frequency noise resulting from the thermal motion of the cantilever, thereby defining the performance limits of amplitude modulation, phase modulation and frequency modulation AFM. We show that the assumption of a reduced SNR in viscous environments is not inherent to the technique and demonstrate that SNR values comparable to ultra-high vacuum systems can be obtained in high viscosity environments under certain conditions. Finally, we have obtained true atomic resolution images of highly ordered pyrolytic graphite and mica surfaces, thus revealing the potential of high-resolution imaging in high viscosity environments.
NASA Astrophysics Data System (ADS)
Weber, Stefan A. L.; Kilpatrick, Jason I.; Brosnan, Timothy M.; Jarvis, Suzanne P.; Rodriguez, Brian J.
2014-05-01
Atomic force microscopy (AFM) is widely used in liquid environments, where true atomic resolution at the solid-liquid interface can now be routinely achieved. It is generally expected that AFM operation in more viscous environments results in an increased noise contribution from the thermal motion of the cantilever, thereby reducing the signal-to-noise ratio (SNR). Thus, viscous fluids such as ionic and organic liquids have been generally avoided for high-resolution AFM studies despite their relevance to, e.g. energy applications. Here, we investigate the thermal noise limitations of dynamic AFM operation in both low and high viscosity environments theoretically, deriving expressions for the amplitude, phase and frequency noise resulting from the thermal motion of the cantilever, thereby defining the performance limits of amplitude modulation, phase modulation and frequency modulation AFM. We show that the assumption of a reduced SNR in viscous environments is not inherent to the technique and demonstrate that SNR values comparable to ultra-high vacuum systems can be obtained in high viscosity environments under certain conditions. Finally, we have obtained true atomic resolution images of highly ordered pyrolytic graphite and mica surfaces, thus revealing the potential of high-resolution imaging in high viscosity environments.
Liao, Congyu; Chen, Ying; Cao, Xiaozhi; Chen, Song; He, Hongjian; Mani, Merry; Jacob, Mathews; Magnotta, Vincent; Zhong, Jianhui
2017-03-01
To propose a novel reconstruction method using parallel imaging with low rank constraint to accelerate high resolution multishot spiral diffusion imaging. The undersampled high resolution diffusion data were reconstructed based on a low rank (LR) constraint using similarities between the data of different interleaves from a multishot spiral acquisition. The self-navigated phase compensation using the low resolution phase data in the center of k-space was applied to correct shot-to-shot phase variations induced by motion artifacts. The low rank reconstruction was combined with sensitivity encoding (SENSE) for further acceleration. The efficiency of the proposed joint reconstruction framework, dubbed LR-SENSE, was evaluated through error quantifications and compared with ℓ1 regularized compressed sensing method and conventional iterative SENSE method using the same datasets. It was shown that with a same acceleration factor, the proposed LR-SENSE method had the smallest normalized sum-of-squares errors among all the compared methods in all diffusion weighted images and DTI-derived index maps, when evaluated with different acceleration factors (R = 2, 3, 4) and for all the acquired diffusion directions. Robust high resolution diffusion weighted image can be efficiently reconstructed from highly undersampled multishot spiral data with the proposed LR-SENSE method. Magn Reson Med 77:1359-1366, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Seo, Jeongmin; Han, Min Cheol; Yeom, Yeon Soo; Lee, Hyun Su; Kim, Chan Hyeong; Jeong, Jong Hwi; Kim, SeongHoon
2017-04-01
In proton therapy, the spot scanning method is known to suffer from the interplay effect induced from the independent movements of the proton beam and the organs in the patient during the treatment. To study the interplay effect, several investigators have performed four-dimensional (4D) dose calculations with some limited temporal resolutions (4 or 10 phases per respiratory cycle) by using the 4D computed tomography (CT) images of the patient; however, the validity of the limited temporal resolutions has not been confirmed. The aim of the present study is to determine whether the previous temporal resolutions (4 or 10 phases per respiratory cycle) are really high enough for adequate study of the interplay effect in spot scanning proton therapy. For this study, a series of 4D dose calculations were performed with a virtual water phantom moving in the vertical direction during dose delivery. The dose distributions were calculated for different temporal resolutions (4, 10, 25, 50, and 100 phases per respiratory cycle), and the calculated dose distributions were compared with the reference dose distribution, which was calculated using an almost continuously-moving water phantom ( i.e., 1000 phases per respiratory cycle). The results of the present study show that the temporal resolutions of 4 and 10 phases per respiratory cycle are not high enough for an accurate evaluation of the interplay effect for spot scanning proton therapy. The temporal resolution should be at least 14 and 17 phases per respiratory cycle for 10-mm and 20-mm movement amplitudes, respectively, even for rigid movement ( i.e., without deformation) of the homogeneous water phantom considered in the present study. We believe that even higher temporal resolutions are needed for an accurate evaluation of the interplay effect in the human body, in which the organs are inhomogeneous and deform during movement.
Lu, Hangwen; Chung, Jaebum; Ou, Xiaoze; Yang, Changhuei
2016-01-01
Differential phase contrast (DPC) is a non-interferometric quantitative phase imaging method achieved by using an asymmetric imaging procedure. We report a pupil modulation differential phase contrast (PMDPC) imaging method by filtering a sample’s Fourier domain with half-circle pupils. A phase gradient image is captured with each half-circle pupil, and a quantitative high resolution phase image is obtained after a deconvolution process with a minimum of two phase gradient images. Here, we introduce PMDPC quantitative phase image reconstruction algorithm and realize it experimentally in a 4f system with an SLM placed at the pupil plane. In our current experimental setup with the numerical aperture of 0.36, we obtain a quantitative phase image with a resolution of 1.73μm after computationally removing system aberrations and refocusing. We also extend the depth of field digitally by 20 times to ±50μm with a resolution of 1.76μm. PMID:27828473
Remmersmann, Christian; Stürwald, Stephan; Kemper, Björn; Langehanenberg, Patrik; von Bally, Gert
2009-03-10
In temporal phase-shifting-based digital holographic microscopy, high-resolution phase contrast imaging requires optimized conditions for hologram recording and phase retrieval. To optimize the phase resolution, for the example of a variable three-step algorithm, a theoretical analysis on statistical errors, digitalization errors, uncorrelated errors, and errors due to a misaligned temporal phase shift is carried out. In a second step the theoretically predicted results are compared to the measured phase noise obtained from comparative experimental investigations with several coherent and partially coherent light sources. Finally, the applicability for noise reduction is demonstrated by quantitative phase contrast imaging of pancreas tumor cells.
NASA Technical Reports Server (NTRS)
Fymat, A. L.
1975-01-01
Device has resolution required to analyze polarization of the spectra of unknown gases, liquids, or solids (or a mixture of these phases). Such resolution has not been available on conventional instruments.
High-Resolution Global Soil Moisture Map
2015-05-19
High-resolution global soil moisture map from NASA SMAP combined radar and radiometer instruments, acquired between May 4 and May 11, 2015 during SMAP commissioning phase. The map has a resolution of 5.6 miles (9 kilometers). The data gap is due to turning the instruments on and off during testing. http://photojournal.jpl.nasa.gov/catalog/PIA19337
Modulating complex beams in amplitude and phase using fast tilt-micromirror arrays and phase masks.
Roth, Matthias; Heber, Jörg; Janschek, Klaus
2018-06-15
The Letter proposes a system for the spatial modulation of light in amplitude and phase at kilohertz frame rates and high spatial resolution. The focus is fast spatial light modulators (SLMs) consisting of continuously tiltable micromirrors. We investigate the utilization of such SLMs in combination with a static phase mask in a 4f setup. The phase mask enables the complex beam modulation in a linear optical arrangement. Furthermore, adding so-called phase steps to the phase mask increases both the number of image pixels at constant SLM resolution and the optical efficiency. We illustrate our concept based on numerical simulations.
Image restoration method based on Hilbert transform for full-field optical coherence tomography
NASA Astrophysics Data System (ADS)
Na, Jihoon; Choi, Woo June; Choi, Eun Seo; Ryu, Seon Young; Lee, Byeong Ha
2008-01-01
A full-field optical coherence tomography (FF-OCT) system utilizing a simple but novel image restoration method suitable for a high-speed system is demonstrated. An en-face image is retrieved from only two phase-shifted interference fringe images through using the mathematical Hilbert transform. With a thermal light source, a high-resolution FF-OCT system having axial and transverse resolutions of 1 and 2.2 μm, respectively, was implemented. The feasibility of the proposed scheme is confirmed by presenting the obtained en-face images of biological samples such as a piece of garlic and a gold beetle. The proposed method is robust to the error in the amount of the phase shift and does not leave residual fringes. The use of just two interference images and the strong immunity to phase errors provide great advantages in the imaging speed and the system design flexibility of a high-speed high-resolution FF-OCT system.
HIGH RESOLUTION SPECTROSCOPY IN THE GAS PHASE: Even Large Molecules Have Well-Defined Shapes
NASA Astrophysics Data System (ADS)
Pratt, David W.
1998-10-01
A review of recent high-resolution microwave, infrared, and optical spectroscopy experiments demonstrates that remarkable progress has been made in the past 20 years in determining the equilibrium geometries of large polyatomic molecules and their clusters in the gas phase, and how these geometries change when the photon is absorbed. A special focus is on the dynamical information that can be obtained from such studies, particularly of electronically excited states.
DETERMINATION OF ELEMENTAL COMPOSITIONS BY HIGH RESOLUTION MASS SPECTROMETRY WITHOUT MASS CALIBRANTS
Widely applicable mass calibrants, including perfluorokerosene, are available for gas-phase introduction of analytes ionized by electron impact (EI) prior to analysis using high resolution mass spectrometry. Unfortunately, no all-purpose calibrants are available for recently dev...
NASA Astrophysics Data System (ADS)
Wang, Guochao; Yan, Shuhua; Zhou, Weihong; Gu, Chenhui
2012-08-01
Traditional displacement measurement systems by grating, which purely make use of fringe intensity to implement fringe count and subdivision, have rigid demands for signal quality and measurement condition, so they are not easy to realize measurement with nanometer precision. Displacement measurement with the dual-wavelength and single-grating design takes advantage of the single grating diffraction theory and the heterodyne interference theory, solving quite well the contradiction between large range and high precision in grating displacement measurement. To obtain nanometer resolution and nanometer precision, high-power subdivision of interference fringes must be realized accurately. A dynamic tracking down-conversion signal processing method based on the reference signal is proposed. Accordingly, a digital phase measurement module to realize high-power subdivision on field programmable gate array (FPGA) was designed, as well as a dynamic tracking down-conversion module using phase-locked loop (PLL). Experiments validated that a carrier signal after down-conversion can constantly maintain close to 100 kHz, and the phase-measurement resolution and phase precision are more than 0.05 and 0.2 deg, respectively. The displacement resolution and the displacement precision, corresponding to the phase results, are 0.139 and 0.556 nm, respectively.
Sim, Arum; Cho, Yunju; Kim, Daae; Witt, Matthias; Birdwell, Justin E.; Kim, Byung Ju; Kim, Sunghwan
2014-01-01
A reversed-phase separation technique was developed in a previous study (Loegel et al., 2012) and successfully applied to the de-asphalted fraction of crude oil. However, to the best of our knowledge, the molecular-level characterization of oil fractions obtained by reversed-phase high-performance liquid chromatography (HPLC) coupled with high-resolution mass spectrometry (MS) has not yet been reported. A detailed characterization of the oil fractions prepared by reversed-phase HPLC was performed in this study. HPLC fractionation was carried out on conventional crude oil and an oil shale pyrolysate. The analyses of the fractions showed that the carbon number of alkyl chains and the double bond equivalent (DBE) value were the major factors determining elution order. The compounds with larger DBE (presumably more condensed aromatic structures) and smaller carbon number (presumably compounds with short side chains) were eluted earlier but those compounds with lower DBE values (presumably less aromatic structures) and higher carbon number (presumably compounds with longer alkyl chains) eluted later in the chromatograms. This separation behavior is in good agreement with that expected from the principles of reversed-phase separation. The data presented in this study show that reversed-phase chromatography is effective in separating crude oil compounds and can be combined with ultrahigh-resolution MS data to better understand natural oils and oil shale pyrolysates.
ERIC Educational Resources Information Center
Pacilio, Julia E.; Tokarski, John T.; Quiñones, Rosalynn; Iuliucci, Robbie J.
2014-01-01
High-resolution solid-state NMR (SSNMR) spectroscopy has many advantages as a tool to characterize solid-phase material that finds applications in polymer chemistry, nanotechnology, materials science, biomolecular structure determination, and others, including the pharmaceutical industry. The technology associated with achieving high resolution…
A Dedicated Micro-Tomography Beamline For The Australian Synchrotron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayo, Sheridan C.; Stevenson, Andrew W.; Wilkins, Stephen W.
2010-07-23
A dedicated micro-tomography beamline is proposed for the Australian Synchrotron. It will enable high-resolution micro-tomography with resolution below a micron and supporting phase-contrast imaging modes. A key feature of the beamline will be high-throughput/high-speed operation enabling near real-time micro-tomography.
Propagation phasor approach for holographic image reconstruction
Luo, Wei; Zhang, Yibo; Göröcs, Zoltán; Feizi, Alborz; Ozcan, Aydogan
2016-01-01
To achieve high-resolution and wide field-of-view, digital holographic imaging techniques need to tackle two major challenges: phase recovery and spatial undersampling. Previously, these challenges were separately addressed using phase retrieval and pixel super-resolution algorithms, which utilize the diversity of different imaging parameters. Although existing holographic imaging methods can achieve large space-bandwidth-products by performing pixel super-resolution and phase retrieval sequentially, they require large amounts of data, which might be a limitation in high-speed or cost-effective imaging applications. Here we report a propagation phasor approach, which for the first time combines phase retrieval and pixel super-resolution into a unified mathematical framework and enables the synthesis of new holographic image reconstruction methods with significantly improved data efficiency. In this approach, twin image and spatial aliasing signals, along with other digital artifacts, are interpreted as noise terms that are modulated by phasors that analytically depend on the lateral displacement between hologram and sensor planes, sample-to-sensor distance, wavelength, and the illumination angle. Compared to previous holographic reconstruction techniques, this new framework results in five- to seven-fold reduced number of raw measurements, while still achieving a competitive resolution and space-bandwidth-product. We also demonstrated the success of this approach by imaging biological specimens including Papanicolaou and blood smears. PMID:26964671
Analytical description of high-aperture STED resolution with 0–2π vortex phase modulation
Xie, Hao; Liu, Yujia; Jin, Dayong; Santangelo, Philip J.; Xi, Peng
2014-01-01
Stimulated emission depletion (STED) can achieve optical superresolution, with the optical diffraction limit broken by the suppression on the periphery of the fluorescent focal spot. Previously, it is generally experimentally accepted that there exists an inverse square root relationship with the STED power and the resolution, but with arbitrary coefficients in expression. In this paper, we have removed the arbitrary coefficients by exploring the relationship between the STED power and the achievable resolution from vector optical theory for the widely used 0–2π vortex phase modulation. Electromagnetic fields of the focal region of a high numerical aperture objective are calculated and approximated into polynomials of radius in the focal plane, and analytical expression of resolution as a function of the STED intensity has been derived. As a result, the resolution can be estimated directly from the measurement of the saturation power of the dye and the STED power applied in the region of high STED power. PMID:24323224
Enhancing the performance of the light field microscope using wavefront coding
Cohen, Noy; Yang, Samuel; Andalman, Aaron; Broxton, Michael; Grosenick, Logan; Deisseroth, Karl; Horowitz, Mark; Levoy, Marc
2014-01-01
Light field microscopy has been proposed as a new high-speed volumetric computational imaging method that enables reconstruction of 3-D volumes from captured projections of the 4-D light field. Recently, a detailed physical optics model of the light field microscope has been derived, which led to the development of a deconvolution algorithm that reconstructs 3-D volumes with high spatial resolution. However, the spatial resolution of the reconstructions has been shown to be non-uniform across depth, with some z planes showing high resolution and others, particularly at the center of the imaged volume, showing very low resolution. In this paper, we enhance the performance of the light field microscope using wavefront coding techniques. By including phase masks in the optical path of the microscope we are able to address this non-uniform resolution limitation. We have also found that superior control over the performance of the light field microscope can be achieved by using two phase masks rather than one, placed at the objective’s back focal plane and at the microscope’s native image plane. We present an extended optical model for our wavefront coded light field microscope and develop a performance metric based on Fisher information, which we use to choose adequate phase masks parameters. We validate our approach using both simulated data and experimental resolution measurements of a USAF 1951 resolution target; and demonstrate the utility for biological applications with in vivo volumetric calcium imaging of larval zebrafish brain. PMID:25322056
Enhancing the performance of the light field microscope using wavefront coding.
Cohen, Noy; Yang, Samuel; Andalman, Aaron; Broxton, Michael; Grosenick, Logan; Deisseroth, Karl; Horowitz, Mark; Levoy, Marc
2014-10-06
Light field microscopy has been proposed as a new high-speed volumetric computational imaging method that enables reconstruction of 3-D volumes from captured projections of the 4-D light field. Recently, a detailed physical optics model of the light field microscope has been derived, which led to the development of a deconvolution algorithm that reconstructs 3-D volumes with high spatial resolution. However, the spatial resolution of the reconstructions has been shown to be non-uniform across depth, with some z planes showing high resolution and others, particularly at the center of the imaged volume, showing very low resolution. In this paper, we enhance the performance of the light field microscope using wavefront coding techniques. By including phase masks in the optical path of the microscope we are able to address this non-uniform resolution limitation. We have also found that superior control over the performance of the light field microscope can be achieved by using two phase masks rather than one, placed at the objective's back focal plane and at the microscope's native image plane. We present an extended optical model for our wavefront coded light field microscope and develop a performance metric based on Fisher information, which we use to choose adequate phase masks parameters. We validate our approach using both simulated data and experimental resolution measurements of a USAF 1951 resolution target; and demonstrate the utility for biological applications with in vivo volumetric calcium imaging of larval zebrafish brain.
Bibliography of In-House and Contract Reports. Supplement 17
1991-10-01
Area Exit Pupil Viewer ETL-0399 1985 63 TILE REPORT NO. YEAR Extension of Kendall’s Concordance Test Where ETL-0316 1983 Ties are Allowed, An Extraction...Phase 11 ETL-0360 1984 High Resolution Optical Power Spectrum Analyzer ETL-0127 1978 High Resolution Orthophoto Output Table (HIROOT) AD 856 731L 1969...High Resolution Orthophoto Output Table ETL-ETR-72-3 1972 High Speed Disc Memory and a Color Image AD 878 975L 1970 Display for a Small Computer High
Spread spectrum phase modulation for coherent X-ray diffraction imaging.
Zhang, Xuesong; Jiang, Jing; Xiangli, Bin; Arce, Gonzalo R
2015-09-21
High dynamic range, phase ambiguity and radiation limited resolution are three challenging issues in coherent X-ray diffraction imaging (CXDI), which limit the achievable imaging resolution. This paper proposes a spread spectrum phase modulation (SSPM) method to address the aforementioned problems in a single strobe. The requirements on phase modulator parameters are presented, and a practical implementation of SSPM is discussed via ray optics analysis. Numerical experiments demonstrate the performance of SSPM under the constraint of available X-ray optics fabrication accuracy, showing its potential to real CXDI applications.
Xu, Zihao; Yang, Chengliang; Zhang, Peiguang; Zhang, Xingyun; Cao, Zhaoliang; Mu, Quanquan; Sun, Qiang; Xuan, Li
2017-08-30
There are more than eight large aperture telescopes (larger than eight meters) equipped with adaptive optics system in the world until now. Due to the limitations such as the difficulties of increasing actuator number of deformable mirror, most of them work in the infrared waveband. A novel two-step high-resolution optical imaging approach is proposed by applying phase diversity (PD) technique to the open-loop liquid crystal adaptive optics system (LC AOS) for visible light high-resolution adaptive imaging. Considering the traditional PD is not suitable for LC AOS, the novel PD strategy is proposed which can reduce the wavefront estimating error caused by non-modulated light generated by liquid crystal spatial light modulator (LC SLM) and make the residual distortions after open-loop correction to be smaller. Moreover, the LC SLM can introduce any aberration which realizes the free selection of phase diversity. The estimating errors are greatly reduced in both simulations and experiments. The resolution of the reconstructed image is greatly improved on both subjective visual effect and the highest discernible space resolution. Such technique can be widely used in large aperture telescopes for astronomical observations such as terrestrial planets, quasars and also can be used in other applications related to wavefront correction.
Chang, Hing-Chiu; Bilgin, Ali; Bernstein, Adam; Trouard, Theodore P.
2018-01-01
Over the past several years, significant efforts have been made to improve the spatial resolution of diffusion-weighted imaging (DWI), aiming at better detecting subtle lesions and more reliably resolving white-matter fiber tracts. A major concern with high-resolution DWI is the limited signal-to-noise ratio (SNR), which may significantly offset the advantages of high spatial resolution. Although the SNR of DWI data can be improved by denoising in post-processing, existing denoising procedures may potentially reduce the anatomic resolvability of high-resolution imaging data. Additionally, non-Gaussian noise induced signal bias in low-SNR DWI data may not always be corrected with existing denoising approaches. Here we report an improved denoising procedure, termed diffusion-matched principal component analysis (DM-PCA), which comprises 1) identifying a group of (not necessarily neighboring) voxels that demonstrate very similar magnitude signal variation patterns along the diffusion dimension, 2) correcting low-frequency phase variations in complex-valued DWI data, 3) performing PCA along the diffusion dimension for real- and imaginary-components (in two separate channels) of phase-corrected DWI voxels with matched diffusion properties, 4) suppressing the noisy PCA components in real- and imaginary-components, separately, of phase-corrected DWI data, and 5) combining real- and imaginary-components of denoised DWI data. Our data show that the new two-channel (i.e., for real- and imaginary-components) DM-PCA denoising procedure performs reliably without noticeably compromising anatomic resolvability. Non-Gaussian noise induced signal bias could also be reduced with the new denoising method. The DM-PCA based denoising procedure should prove highly valuable for high-resolution DWI studies in research and clinical uses. PMID:29694400
Bergman, Arik; Langer, Tomi; Tur, Moshe
2017-03-06
A novel technique combining Brillouin phase-shift measurements with Brillouin dynamic gratings (BDGs) reflectometry in polarization-maintaining fibers is presented here for the first time. While a direct measurement of the optical phase in standard BDG setups is impractical due to non-local phase contributions, their detrimental effect is reduced by ~4 orders of magnitude through the coherent addition of Stokes and anti-Stokes reflections from two counter-propagating BDGs in the fiber. The technique advantageously combines the high-spatial-resolution of BDGs reflectometry with the increased tolerance to optical power fluctuations of phasorial measurements, to enhance the performance of fiber-optic strain sensors. We demonstrate a distributed measurement (20cm spatial-resolution) of both static and dynamic (5kHz of vibrations at a sampling rate of 1MHz) strain fields acting on the fiber, in good agreement with theory and (for the static case) with the results of commercial reflectometers.
Progress on PEEM3 -- An Aberration Corrected X-Ray Photoemission Electron Microscope at the ALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDowell, A. A.; Feng, J.; DeMello, A.
2007-01-19
A new ultrahigh-resolution photoemission electron microscope called PEEM3 is being developed and built at the Advanced Light Source (ALS). An electron mirror combined with a much-simplified magnetic dipole separator is to be used to provide simultaneous correction of spherical and chromatic aberrations. It is installed on an elliptically polarized undulator (EPU) beamline, and will be operated with very high spatial resolution and high flux to study the composition, structure, electric and magnetic properties of complex materials. The instrument has been designed and is described. The instrumental hardware is being deployed in 2 phases. The first phase is the deployment ofmore » a standard PEEM type microscope consisting of the standard linear array of electrostatic electron lenses. The second phase will be the installation of the aberration corrected upgrade to improve resolution and throughput. This paper describes progress as the instrument enters the commissioning part of the first phase.« less
Progress on PEEM3 - An Aberration Corrected X-Ray PhotoemissionElectron Microscope at the ALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDowell, Alastair A.; Feng, J.; DeMello, A.
2006-05-20
A new ultrahigh-resolution photoemission electron microscope called PEEM3 is being developed and built at the Advanced Light Source (ALS). An electron mirror combined with a much-simplified magnetic dipole separator is to be used to provide simultaneous correction of spherical and chromatic aberrations. It is installed on an elliptically polarized undulator (EPU) beamline, and will be operated with very high spatial resolution and high flux to study the composition, structure, electric and magnetic properties of complex materials. The instrument has been designed and is described. The instrumental hardware is being deployed in 2 phases. The first phase is the deployment ofmore » a standard PEEM type microscope consisting of the standard linear array of electrostatic electron lenses. The second phase will be the installation of the aberration corrected upgrade to improve resolution and throughput. This paper describes progress as the instrument enters the commissioning part of the first phase.« less
[INVITED] Laser-induced forward transfer: A high resolution additive manufacturing technology
NASA Astrophysics Data System (ADS)
Delaporte, Philippe; Alloncle, Anne-Patricia
2016-04-01
Among the additive manufacturing techniques, laser-induced forward transfer addresses the challenges of printing thin films in solid phase or small volume droplets in liquid phase with very high resolution. This paper reviews the physics of this process and explores the pros and cons of this technology versus other digital printing technologies. The main field of applications are printed electronics, organic electronics and tissue engineering, and the most promising short terms ones concern digital laser printing of sensors and conductive tracks. Future directions and emerging areas of interest are discussed such as printing solid from a liquid phase and 3D digital nanomanufacturing.
NASA Astrophysics Data System (ADS)
Srivastava, Vishal; Nandy, Sreyankar; Singh Mehta, Dalip
2013-04-01
Topography and tomography of fish cornea is reconstructed using high resolution white light interference microscopy. White light interferograms at different depths were recorded by moving the object axially. For each depth position, five phase shifted interferograms were recorded and analyzed. From the reconstructed phase maps, the corneal topography and hence the refractive index was determined and from amplitude images the cross-sectional image of fish cornea was reconstructed. In the present method, we utilize a nearly common-path interference microscope and wide field illumination and hence do not require any mechanical B-scan. Therefore, the phase stability of the recorded data is improved.
Guelpa, Valérian; Laurent, Guillaume J; Sandoz, Patrick; Zea, July Galeano; Clévy, Cédric
2014-03-12
This paper presents a visual measurement method able to sense 1D rigid body displacements with very high resolutions, large ranges and high processing rates. Sub-pixelic resolution is obtained thanks to a structured pattern placed on the target. The pattern is made of twin periodic grids with slightly different periods. The periodic frames are suited for Fourier-like phase calculations-leading to high resolution-while the period difference allows the removal of phase ambiguity and thus a high range-to-resolution ratio. The paper presents the measurement principle as well as the processing algorithms (source files are provided as supplementary materials). The theoretical and experimental performances are also discussed. The processing time is around 3 µs for a line of 780 pixels, which means that the measurement rate is mostly limited by the image acquisition frame rate. A 3-σ repeatability of 5 nm is experimentally demonstrated which has to be compared with the 168 µm measurement range.
Integer aperture ambiguity resolution based on difference test
NASA Astrophysics Data System (ADS)
Zhang, Jingyu; Wu, Meiping; Li, Tao; Zhang, Kaidong
2015-07-01
Carrier-phase integer ambiguity resolution (IAR) is the key to highly precise, fast positioning and attitude determination with Global Navigation Satellite System (GNSS). It can be seen as the process of estimating the unknown cycle ambiguities of the carrier-phase observations as integers. Once the ambiguities are fixed, carrier phase data will act as the very precise range data. Integer aperture (IA) ambiguity resolution is the combination of acceptance testing and integer ambiguity resolution, which can realize better quality control of IAR. Difference test (DT) is one of the most popular acceptance tests. This contribution will give a detailed analysis about the following properties of IA ambiguity resolution based on DT: 1.
Luo, An; Wan, Qiang; Fan, Huajun; Chen, Zhi; Wu, Xuehao; Huang, Xiaowen; Zang, Linquan
2014-09-01
Chromatographic behaviors for enantiomeric separation of arylpropionic acid drugs were systematically developed by reversed phase-high performance liquid chromatography (RP-HPLC) using cellulose-tris-(4-methylbenzoate) (CTMB) as chiral stationary phase (CSP). The effects of the composition of the mobile phase, additives and temperature on chiral separation of flurbiprofen, pranoprofen, naproxen, ibuprofen and loxoprofen were further investigated. The enantiomers had been successfully separated on CSP of CTMB by the mobile phase of methanol-0.1% (v/v) formic acid except naproxen by acetonitrile-0.1% (v/v) formic acid at 25 °C. The mechanisms of the racemic resolution for the above mentioned five drugs are discussed thermodynamically and structurally. The resolutions between respective enantiomers for arylpropionic acid drugs on CTMB had significant differences due to their chromatographic behaviors. The order of resolutions ranked pranoprofen, loxoprofen, flurbiprofen, ibuprofen and naproxen. The method established has been successfully applied to the determination of the enantiomers of the five drugs in commercial preparations under the optimized conditions. It proved that the method is simple, reliable and accurate.
NASA Astrophysics Data System (ADS)
Tian, Lei; Waller, Laura
2017-05-01
Microscope lenses can have either large field of view (FOV) or high resolution, not both. Computational microscopy based on illumination coding circumvents this limit by fusing images from different illumination angles using nonlinear optimization algorithms. The result is a Gigapixel-scale image having both wide FOV and high resolution. We demonstrate an experimentally robust reconstruction algorithm based on a 2nd order quasi-Newton's method, combined with a novel phase initialization scheme. To further extend the Gigapixel imaging capability to 3D, we develop a reconstruction method to process the 4D light field measurements from sequential illumination scanning. The algorithm is based on a 'multislice' forward model that incorporates both 3D phase and diffraction effects, as well as multiple forward scatterings. To solve the inverse problem, an iterative update procedure that combines both phase retrieval and 'error back-propagation' is developed. To avoid local minimum solutions, we further develop a novel physical model-based initialization technique that accounts for both the geometric-optic and 1st order phase effects. The result is robust reconstructions of Gigapixel 3D phase images having both wide FOV and super resolution in all three dimensions. Experimental results from an LED array microscope were demonstrated.
Bibliography of In-House and Contract Reports. Supplement 16
1989-10-01
Differences from ETL-71-CR-10 1971 Grav,t% and Gravity Gradients 54 TiLE REPORT NO. YEAR Determination of Level Sensitivity (Field ETL-RN-74-4 1974...Data Base Study, Phase II ETL-0360 1984 High Resolution Optical Power Spectrum Analyzer ETL-0127 1978 High Resolution Orthophoto Output Table (HIROOT...AD 856 731L 1969 High Resolution Orthophoto Output Table ETL-ETR-72-3 1972 High Speed Disc Memory and a Color Image AD 878 975L 1970 Display for a
NASA Astrophysics Data System (ADS)
Yin, Leilei; Chen, Ying-Chieh; Gelb, Jeff; Stevenson, Darren M.; Braun, Paul A.
2010-09-01
High resolution x-ray computed tomography is a powerful non-destructive 3-D imaging method. It can offer superior resolution on objects that are opaque or low contrast for optical microscopy. Synchrotron based x-ray computed tomography systems have been available for scientific research, but remain difficult to access for broader users. This work introduces a lab-based high-resolution x-ray nanotomography system with 50nm resolution in absorption and Zernike phase contrast modes. Using this system, we have demonstrated high quality 3-D images of polymerized photonic crystals which have been analyzed for band gap structures. The isotropic volumetric data shows excellent consistency with other characterization results.
NASA Astrophysics Data System (ADS)
Yilmaz, Hasan
2016-03-01
Structured illumination enables high-resolution fluorescence imaging of nanostructures [1]. We demonstrate a new high-resolution fluorescence imaging method that uses a scattering layer with a high-index substrate as a solid immersion lens [2]. Random scattering of coherent light enables a speckle pattern with a very fine structure that illuminates the fluorescent nanospheres on the back surface of the high-index substrate. The speckle pattern is raster-scanned over the fluorescent nanospheres using a speckle correlation effect known as the optical memory effect. A series of standard-resolution fluorescence images per each speckle pattern displacement are recorded by an electron-multiplying CCD camera using a commercial microscope objective. We have developed a new phase-retrieval algorithm to reconstruct a high-resolution, wide-field image from several standard-resolution wide-field images. We have introduced phase information of Fourier components of standard-resolution images as a new constraint in our algorithm which discards ambiguities therefore ensures convergence to a unique solution. We demonstrate two-dimensional fluorescence images of a collection of nanospheres with a deconvolved Abbe resolution of 116 nm and a field of view of 10 µm × 10 µm. Our method is robust against optical aberrations and stage drifts, therefore excellent for imaging nanostructures under ambient conditions. [1] M. G. L. Gustafsson, J. Microsc. 198, 82-87 (2000). [2] H. Yilmaz, E. G. van Putten, J. Bertolotti, A. Lagendijk, W. L. Vos, and A. P. Mosk, Optica 2, 424-429 (2015).
Boureau, Victor; McLeod, Robert; Mayall, Benjamin; Cooper, David
2018-06-04
In this paper we discuss developments for Lorentz mode or "medium resolution" off-axis electron holography such that it is now routinely possible obtain very high sensitivity phase maps with high spatial resolution whilst maintaining a large field of view. Modifications of the usual Fourier reconstruction procedure have been used to combine series of holograms for sensitivity improvement with a phase-shifting method for doubling the spatial resolution. In the frame of these developments, specific attention is given to the phase standard deviation description and its interaction with the spatial resolution as well as the processing of reference holograms. An experimental study based on Dark-Field Electron Holography (DFEH), using a SiGe/Si multilayer epitaxy sample is compared with theory. The method's efficiency of removing the autocorrelation term during hologram reconstruction is discussed. Software has been written in DigitalMicrograph that can be used to routinely perform these tasks. To illustrate the real improvements made using these methods we show that a strain measurement sensitivity of ± 0.025 % can be achieved with a spatial resolution of 2 nm and ± 0.13 % with a spatial resolution of 1 nm whilst maintaining a useful field of view of 300 nm. In the frame of these measurements a model of strain noise for DFEH has also been developed. Copyright © 2018. Published by Elsevier B.V.
Concern over persistence, bioaccumulation, and toxicity has led to international regulation and phase-outs of certain perfluorinated compounds and little is known about their replacement products. High resolution mass spectrometry was used to investigate the occurrence and identi...
Chen, Nan-kuei; Guidon, Arnaud; Chang, Hing-Chiu; Song, Allen W.
2013-01-01
Diffusion weighted magnetic resonance imaging (DWI) data have been mostly acquired with single-shot echo-planar imaging (EPI) to minimize motion induced artifacts. The spatial resolution, however, is inherently limited in single-shot EPI, even when the parallel imaging (usually at an acceleration factor of 2) is incorporated. Multi-shot acquisition strategies could potentially achieve higher spatial resolution and fidelity, but they are generally susceptible to motion-induced phase errors among excitations that are exacerbated by diffusion sensitizing gradients, rendering the reconstructed images unusable. It has been shown that shot-to-shot phase variations may be corrected using navigator echoes, but at the cost of imaging throughput. To address these challenges, a novel and robust multi-shot DWI technique, termed multiplexed sensitivity-encoding (MUSE), is developed here to reliably and inherently correct nonlinear shot-to-shot phase variations without the use of navigator echoes. The performance of the MUSE technique is confirmed experimentally in healthy adult volunteers on 3 Tesla MRI systems. This newly developed technique should prove highly valuable for mapping brain structures and connectivities at high spatial resolution for neuroscience studies. PMID:23370063
Ponderomotive phase plate for transmission electron microscopes
Reed, Bryan W [Livermore, CA
2012-07-10
A ponderomotive phase plate system and method for controllably producing highly tunable phase contrast transfer functions in a transmission electron microscope (TEM) for high resolution and biological phase contrast imaging. The system and method includes a laser source and a beam transport system to produce a focused laser crossover as a phase plate, so that a ponderomotive potential of the focused laser crossover produces a scattering-angle-dependent phase shift in the electrons of the post-sample electron beam corresponding to a desired phase contrast transfer function.
Prieto, Claudia; Uribe, Sergio; Razavi, Reza; Atkinson, David; Schaeffter, Tobias
2010-08-01
One of the current limitations of dynamic contrast-enhanced MR angiography is the requirement of both high spatial and high temporal resolution. Several undersampling techniques have been proposed to overcome this problem. However, in most of these methods the tradeoff between spatial and temporal resolution is constant for all the time frames and needs to be specified prior to data collection. This is not optimal for dynamic contrast-enhanced MR angiography where the dynamics of the process are difficult to predict and the image quality requirements are changing during the bolus passage. Here, we propose a new highly undersampled approach that allows the retrospective adaptation of the spatial and temporal resolution. The method combines a three-dimensional radial phase encoding trajectory with the golden angle profile order and non-Cartesian Sensitivity Encoding (SENSE) reconstruction. Different regularization images, obtained from the same acquired data, are used to stabilize the non-Cartesian SENSE reconstruction for the different phases of the bolus passage. The feasibility of the proposed method was demonstrated on a numerical phantom and in three-dimensional intracranial dynamic contrast-enhanced MR angiography of healthy volunteers. The acquired data were reconstructed retrospectively with temporal resolutions from 1.2 sec to 8.1 sec, providing a good depiction of small vessels, as well as distinction of different temporal phases.
Progress toward accurate high spatial resolution actinide analysis by EPMA
NASA Astrophysics Data System (ADS)
Jercinovic, M. J.; Allaz, J. M.; Williams, M. L.
2010-12-01
High precision, high spatial resolution EPMA of actinides is a significant issue for geochronology, resource geochemistry, and studies involving the nuclear fuel cycle. Particular interest focuses on understanding of the behavior of Th and U in the growth and breakdown reactions relevant to actinide-bearing phases (monazite, zircon, thorite, allanite, etc.), and geochemical fractionation processes involving Th and U in fluid interactions. Unfortunately, the measurement of minor and trace concentrations of U in the presence of major concentrations of Th and/or REEs is particularly problematic, especially in complexly zoned phases with large compositional variation on the micro or nanoscale - spatial resolutions now accessible with modern instruments. Sub-micron, high precision compositional analysis of minor components is feasible in very high Z phases where scattering is limited at lower kV (15kV or less) and where the beam diameter can be kept below 400nm at high current (e.g. 200-500nA). High collection efficiency spectrometers and high performance electron optics in EPMA now allow the use of lower overvoltage through an exceptional range in beam current, facilitating higher spatial resolution quantitative analysis. The U LIII edge at 17.2 kV precludes L-series analysis at low kV (high spatial resolution), requiring careful measurements of the actinide M series. Also, U-La detection (wavelength = 0.9A) requires the use of LiF (220) or (420), not generally available on most instruments. Strong peak overlaps of Th on U make highly accurate interference correction mandatory, with problems compounded by the ThMIV and ThMV absorption edges affecting peak, background, and interference calibration measurements (especially the interference of the Th M line family on UMb). Complex REE bearing phases such as monazite, zircon, and allanite have particularly complex interference issues due to multiple peak and background overlaps from elements present in the activation volume, as well as interferences from fluorescence at a distance from adjacent phases or distinct compositional domains in the same phase. Interference corrections for elements detected during boundary fluorescence are further complicated by X-ray focusing geometry considerations. Additional complications arise from the high current densities required for high spatial resolution and high count precision, such as fluctuations in internal charge distribution and peak shape changes as satellite production efficiency varies from calibration to analysis. No flawless method has yet emerged. Extreme care in interference corrections, especially where multiple and sometime mutual overlaps are present, and maximum care (and precision) in background characterization to account for interferences and curvature (e.g., WDS scan or multipoint regression), are crucial developments. Calibration curves from multiple peak and interference calibration measurements at different concentrations, and iterative software methodologies for incorporating absorption edge effects, and non-linearities in interference corrections due to peak shape changes and off-axis X-ray defocussing during boundary fluorescence at a distance, are directions with significant potential.
Defect-induced local variation of crystal phase transition temperature in metal-halide perovskites.
Dobrovolsky, Alexander; Merdasa, Aboma; Unger, Eva L; Yartsev, Arkady; Scheblykin, Ivan G
2017-06-26
Solution-processed organometal halide perovskites are hybrid crystalline semiconductors highly interesting for low-cost and efficient optoelectronics. Their properties are dependent on the crystal structure. Literature shows a variety of crystal phase transition temperatures and often a spread of the transition over tens of degrees Kelvin. We explain this inconsistency by demonstrating that the temperature of the tetragonal-to-orthorhombic phase transition in methylammonium lead triiodide depends on the concentration and nature of local defects. Phase transition in individual nanowires was studied by photoluminescence microspectroscopy and super-resolution imaging. We propose that upon cooling from 160 to 140 K, domains of the crystal containing fewer defects stay in the tetragonal phase longer than highly defected domains that readily transform to the high bandgap orthorhombic phase at higher temperatures. The existence of relatively pure tetragonal domains during the phase transition leads to drastic photoluminescence enhancement, which is inhomogeneously distributed across perovskite microcrystals.Understanding crystal phase transition in materials is of fundamental importance. Using luminescence spectroscopy and super-resolution imaging, Dobrovolsky et al. study the transition from the tetragonal to orthorhombic crystal phase in methylammonium lead triiodide nanowires at low temperature.
High resolution laboratory grating-based x-ray phase-contrast CT
NASA Astrophysics Data System (ADS)
Viermetz, Manuel P.; Birnbacher, Lorenz J. B.; Fehringer, Andreas; Willner, Marian; Noel, Peter B.; Pfeiffer, Franz; Herzen, Julia
2017-03-01
Grating-based phase-contrast computed tomography (gbPC-CT) is a promising imaging method for imaging of soft tissue contrast without the need of any contrast agent. The focus of this study is the increase in spatial resolution without loss in sensitivity to allow visualization of pathologies comparable to the convincing results obtained at the synchrotron. To improve the effective pixel size a super-resolution reconstruction based on subpixel shifts involving a deconvolution of the image is applied on differential phase-contrast data. In our study we could achieve an effective pixel sizes of 28mm without any drawback in terms of sensitivity or the ability to measure quantitative data.
NASA Astrophysics Data System (ADS)
Zhou, Renjie; Jin, Di; Yaqoob, Zahid; So, Peter T. C.
2017-02-01
Due to the large number of available mirrors, the patterning speed, low-cost, and compactness, digital-micromirror devices (DMDs) have been extensively used in biomedical imaging system. Recently, DMDs have been brought to the quantitative phase microscopy (QPM) field to achieve synthetic-aperture imaging and tomographic imaging. Last year, our group demonstrated using DMD for QPM, where the phase-retrieval is based on a recently developed Fourier ptychography algorithm. In our previous system, the illumination angle was varied through coding the aperture plane of the illumination system, which has a low efficiency on utilizing the laser power. In our new DMD-based QPM system, we use the Lee-holograms, which is conjugated to the sample plane, to change the illumination angles for much higher power efficiency. Multiple-angle illumination can also be achieved with this method. With this versatile system, we can achieve FPM-based high-resolution phase imaging with 250 nm lateral resolution using the Rayleigh criteria. Due to the use of a powerful laser, the imaging speed would only be limited by the camera acquisition speed. With a fast camera, we expect to achieve close to 100 fps phase imaging speed that has not been achieved in current FPM imaging systems. By adding reference beam, we also expect to achieve synthetic-aperture imaging while directly measuring the phase of the sample fields. This would reduce the phase-retrieval processing time to allow for real-time imaging applications in the future.
Quantitative x-ray phase imaging at the nanoscale by multilayer Laue lenses
Yan, Hanfei; Chu, Yong S.; Maser, Jörg; Nazaretski, Evgeny; Kim, Jungdae; Kang, Hyon Chol; Lombardo, Jeffrey J.; Chiu, Wilson K. S.
2013-01-01
For scanning x-ray microscopy, many attempts have been made to image the phase contrast based on a concept of the beam being deflected by a specimen, the so-called differential phase contrast imaging (DPC). Despite the successful demonstration in a number of representative cases at moderate spatial resolutions, these methods suffer from various limitations that preclude applications of DPC for ultra-high spatial resolution imaging, where the emerging wave field from the focusing optic tends to be significantly more complicated. In this work, we propose a highly robust and generic approach based on a Fourier-shift fitting process and demonstrate quantitative phase imaging of a solid oxide fuel cell (SOFC) anode by multilayer Laue lenses (MLLs). The high sensitivity of the phase to structural and compositional variations makes our technique extremely powerful in correlating the electrode performance with its buried nanoscale interfacial structures that may be invisible to the absorption and fluorescence contrasts. PMID:23419650
Nakamura, Masanobu; Yoneyama, Masami; Tabuchi, Takashi; Takemura, Atsushi; Obara, Makoto; Sawano, Seishi
2012-01-01
Detailed information on anatomy and hemodynamics in cerebrovascular disorders such as AVM and Moyamoya disease is mandatory for defined diagnosis and treatment planning. Arterial spin labeling technique has come to be applied to magnetic resonance angiography (MRA) and perfusion imaging in recent years. However, those non-contrast techniques are mostly limited to single frame images. Recently we have proposed a non-contrast time-resolved MRA technique termed contrast inherent inflow enhanced multi phase angiography combining spatial resolution echo planar imaging based signal targeting and alternating radiofrequency (CINEMA-STAR). CINEMA-STAR can extract the blood flow in the major intracranial arteries at an interval of 70 ms and thus permits us to observe vascular construction in full by preparing MIP images of axial acquisitions with high spatial resolution. This preliminary study demonstrates the usefulness of the CINEMA-STAR technique in evaluating the cerebral vasculature.
NASA Astrophysics Data System (ADS)
Guan, Huifeng; Anastasio, Mark A.
2017-03-01
It is well-known that properly designed image reconstruction methods can facilitate reductions in imaging doses and data-acquisition times in tomographic imaging. The ability to do so is particularly important for emerging modalities such as differential X-ray phase-contrast tomography (D-XPCT), which are currently limited by these factors. An important application of D-XPCT is high-resolution imaging of biomedical samples. However, reconstructing high-resolution images from few-view tomographic measurements remains a challenging task. In this work, a two-step sub-space reconstruction strategy is proposed and investigated for use in few-view D-XPCT image reconstruction. It is demonstrated that the resulting iterative algorithm can mitigate the high-frequency information loss caused by data incompleteness and produce images that have better preserved high spatial frequency content than those produced by use of a conventional penalized least squares (PLS) estimator.
NASA Astrophysics Data System (ADS)
McDonald, S. A.; Marone, F.; Hintermüller, C.; Bensadoun, J.-C.; Aebischer, P.; Stampanoni, M.
2009-09-01
The use of conventional absorption based X-ray microtomography can become limited for samples showing only very weak absorption contrast. However, a wide range of samples studied in biology and materials science can produce significant phase shifts of the X-ray beam, and thus the use of the phase signal can provide substantially increased contrast and therefore new and otherwise inaccessible information. The application of two approaches for high-throughput, high-resolution X-ray phase contrast tomography, both available on the TOMCAT beamline of the SLS, is illustrated. Differential Phase Contrast (DPC) imaging uses a grating interferometer and a phase-stepping technique. It has been integrated into the beamline environment on TOMCAT in terms of the fast acquisition and reconstruction of data and the availability to scan samples within an aqueous environment. The second phase contrast approach is a modified transfer of intensity approach that can yield the 3D distribution of the phase (refractive index) of a weakly absorbing object from a single tomographic dataset. These methods are being used for the evaluation of cell integrity in 3D, with the specific aim of following and analyzing progressive cell degeneration to increase knowledge of the mechanistic events of neurodegenerative disorders such as Parkinson's disease.
Ortín, A; Torres-Lapasió, J R; García-Álvarez-Coque, M C
2011-08-26
Situations of minimal resolution are often found in liquid chromatography, when samples that contain a large number of compounds, or highly similar in terms of structure and/or polarity, are analysed. This makes full resolution with a single separation condition (e.g., mobile phase, gradient or column) unfeasible. In this work, the optimisation of the resolution of such samples in reversed-phase liquid chromatography is approached using two or more isocratic mobile phases with a complementary resolution behaviour (complementary mobile phases, CMPs). Each mobile phase is dedicated to the separation of a group of compounds. The CMPs are selected in such a way that, when the separation is considered globally, all the compounds in the sample are satisfactorily resolved. The search of optimal CMPs can be carried out through a comprehensive examination of the mobile phases in a selected domain. The computation time of this search has been reported to be substantially reduced by application of a genetic algorithm with local search (LOGA). A much simpler approach is here described, which is accessible to non-experts in programming, and offers solutions of the same quality as LOGA, with a similar computation time. The approach makes a sequential search of CMPs based on the peak count concept, which is the number of peaks exceeding a pre-established resolution threshold. The new approach is described using as test sample a mixture of 30 probe compounds, 23 of them with an ionisable character, and the pH and organic solvent contents as experimental factors. Copyright © 2011 Elsevier B.V. All rights reserved.
Lee, Jin-Hyuk; Kim, Dae-Hyun
2014-10-01
A sensor of a biomimetic robot has to measure very small environmental changes such as, nanometer scale strains or displacements. Fiber optic sensor can be also one of candidates for the biomimetic sensor because the sensor is like thread and the shape of the sensor is similar to muscle fiber. A fiber optic interferometer, which is an optical-based sensor, can measure displacement precisely, so such device has been widely studied for the measurement of displacement on a nanometer-scale. Especially, a Quadrature Phase-Shifted Fiber Fabry-Pérot interferometer (QPS-FFPI) uses phase-information for this measurement, allowing it to provide a precision result with high resolution. In theory, the QPS-FFPI generates two sinusoidal signals of which the phase difference should be 90 degrees for the exact measurement of the displacement. In order to guarantee the condition of the phase difference, the relative adjustment of the cavities of the optical fibers is required. However, with such precise adjustment it is very hard to fix the proper difference of the two cavities for quadrature-phase-shifting. In this paper, a dual-cavity FFPI is newly proposed to measure the displacement on a nanometer-scale with a specific type of signal processing. In the signal processing, a novel phase-compensation algorithm is applied to force the phase difference to be exactly 90 degrees without any physical adjustment. As a result, the paper shows that the phase-compensated dual-cavity FFPI can effectively measure nanometer-scale displacement with high resolution under dynamic conditions.
NASA Astrophysics Data System (ADS)
Singh, Vijay Raj; Yaqoob, Zahid; So, Peter T. C.
2017-02-01
Quantitative phase microscopy (QPM) techniques developed so far primarily belongs to high speed transmitted light based systems that has enough sensitivity to resolve membrane fluctuations and dynamics, but has no depth resolution. Therefore, most biomechanics studies using QPM today is confined to simple cells, such as RBCs, without internal organelles. An important instrument that will greatly extend the biomedical applications of QPM is to develop next generation microscope with 3D capability and sufficient temporal resolution to study biomechanics of complex eukaryotic cells including the mechanics of their internal compartments. For eukaryotic cells, the depth sectioning capability is critical and should be sufficient to distinguish nucleic membrane fluctuations from plasma membrane fluctuations. Further, this microscope must provide high temporal resolution since typical eukaryotes membranes are substantially stiffer than RBCs. A confocal reflectance quantitative phase microscope is presented based on multi-pinhole scanning, with the capabilities of higher temporal resolution and sensitivity for nucleic and plasma membranes of eukaryotic cells. System hardware is developed based on an array of confocal pinhole generated by using the `ON' state of subset of micro-mirrors of digital micro-mirror device (DMD, from Texas Instruments) and high-speed raster scanning provides 14ms imaging speed in wide-field mode. A common path interferometer is integrated at the imaging arm for detection of specimens' quantitative phase information. Theoretical investigation of quantitative phase reconstructed from system is investigated and application of system is presented for dimensional fluctuations measurements of both cellular plasma and nucleic membranes of embryonic stem cells.
Chung, Euiheon; Kim, Daekeun; Cui, Yan; Kim, Yang-Hyo; So, Peter T. C.
2007-01-01
The development of high resolution, high speed imaging techniques allows the study of dynamical processes in biological systems. Lateral resolution improvement of up to a factor of 2 has been achieved using structured illumination. In a total internal reflection fluorescence microscope, an evanescence excitation field is formed as light is total internally reflected at an interface between a high and a low index medium. The <100 nm penetration depth of evanescence field ensures a thin excitation region resulting in low background fluorescence. We present even higher resolution wide-field biological imaging by use of standing wave total internal reflection fluorescence (SW-TIRF). Evanescent standing wave (SW) illumination is used to generate a sinusoidal high spatial frequency fringe pattern on specimen for lateral resolution enhancement. To prevent thermal drift of the SW, novel detection and estimation of the SW phase with real-time feedback control is devised for the stabilization and control of the fringe phase. SW-TIRF is a wide-field superresolution technique with resolution better than a fifth of emission wavelength or ∼100 nm lateral resolution. We demonstrate the performance of the SW-TIRF microscopy using one- and two-directional SW illumination with a biological sample of cellular actin cytoskeleton of mouse fibroblast cells as well as single semiconductor nanocrystal molecules. The results confirm the superior resolution of SW-TIRF in addition to the merit of a high signal/background ratio from TIRF microscopy. PMID:17483188
NASA Astrophysics Data System (ADS)
Jacques, Alain
2016-12-01
The dislocation-based modeling of the high-temperature creep of two-phased single-crystal superalloys requires input data beyond strain vs time curves. This may be obtained by use of in situ experiments combining high-temperature creep tests with high-resolution synchrotron three-crystal diffractometry. Such tests give access to changes in phase volume fractions and to the average components of the stress tensor in each phase as well as the plastic strain of each phase. Further progress may be obtained by a new method making intensive use of the Fast Fourier Transform, and first modeling the behavior of a representative volume of material (stress fields, plastic strain, dislocation densities…), then simulating directly the corresponding diffraction peaks, taking into account the displacement field within the material, chemical variations, and beam coherence. Initial tests indicate that the simulated peak shapes are close to the experimental ones and are quite sensitive to the details of the microstructure and to dislocation densities at interfaces and within the soft γ phase.
Algorithms for image recovery calculation in extended single-shot phase-shifting digital holography
NASA Astrophysics Data System (ADS)
Hasegawa, Shin-ya; Hirata, Ryo
2018-04-01
The single-shot phase-shifting method of image recovery using an inclined reference wave has the advantages of reducing the effects of vibration, being capable of operating in real time, and affording low-cost sensing. In this method, relatively low reference angles compared with that in the conventional method using phase shift between three or four pixels has been required. We propose an extended single-shot phase-shifting technique which uses the multiple-step phase-shifting algorithm and the corresponding multiple pixels which are the same as that of the period of an interference fringe. We have verified the theory underlying this recovery method by means of Fourier spectral analysis and its effectiveness by evaluating the visibility of the image using a high-resolution pattern. Finally, we have demonstrated high-contrast image recovery experimentally using a resolution chart. This method can be used in a variety of applications such as color holographic interferometry.
RAPID COMMUNICATION: Study of superstructure II in multiferroic BiMnO3
NASA Astrophysics Data System (ADS)
Ge, Bing-Hui; Li, Fang-Hua; Li, Xue-Ming; Wang, Yu-Mei; Chi, Zhen-Hua; Jin, Chang-Qing
2008-09-01
The crystal structure of the minor phase, named superstructure II, existing in multiferroic compound BiMnO3 has been studied by electron diffraction and high-resolution transmission electron microscopy. Domains of major and minor phases coexisting in BiMnO3 were observed in high-resolution electron microscope images. The unit cell of minor phase was determined to be triclinic with the size 4×4×4 times as large as the distorted perovskite subcell. The [111] and [10bar 1] projected structure maps of the minor phase have been derived from the corresponding images by means of the image processing. A possible rough three-dimensional (3D) structure model was proposed based on the 3D structural information extracted from the two projected structure maps. Since there is no inversion centre in the proposed model, the minor phase may contribute to the ferroelectric property of BiMnO3.
Development of a 20-MHz wide-bandwidth PMN-PT single crystal phased-array ultrasound transducer.
Wong, Chi-Man; Chen, Yan; Luo, Haosu; Dai, Jiyan; Lam, Kwok-Ho; Chan, Helen Lai-Wa
2017-01-01
In this study, a 20-MHz 64-element phased-array ultrasound transducer with a one-wavelength pitch is developed using a PMN-30%PT single crystal and double-matching layer scheme. High piezoelectric (d 33 >1000pC/N) and electromechanical coupling (k 33 >0.8) properties of the single crystal with an optimized fabrication process involving the photolithography technique have been demonstrated to be suitable for wide-bandwidth (⩾70%) and high-sensitivity (insertion loss ⩽30dB) phased-array transducer application. A -6dBbandwidth of 91% and an insertion loss of 29dBfor the 20-MHz 64-element phased-array transducer were achieved. This result shows that the bandwidth is improved comparing with the investigated high-frequency (⩾20MHz) ultrasound transducers using piezoelectric ceramic and single crystal materials. It shows that this phased-array transducer has potential to improve the resolution of biomedical imaging, theoretically. Based on the hypothesis of resolution improvement, this phased-array transducer is capable for small animal (i.e. mouse and zebrafish) studies. Copyright © 2016 Elsevier B.V. All rights reserved.
Flexible, phase-matched, linear receive arrays for high-field MRI in monkeys.
Goense, Jozien; Logothetis, Nikos K; Merkle, Hellmut
2010-10-01
High signal-to-noise ratios (SNR) are essential for high-resolution anatomical and functional MRI. Phased arrays are advantageous for this but have the drawback that they often have inflexible and bulky configurations. Particularly in experiments where functional MRI is combined with simultaneous electrophysiology, space constraints can be prohibitive. To this end we developed a highly flexible multiple receive element phased array for use on anesthetized monkeys. The elements are interchangeable and different sizes and combinations of coil elements can be used, for instance, combinations of single and overlapped elements. The preamplifiers including control electronics are detachable and can serve a variety of prefabricated and phase matched arrays of different configurations, allowing the elements to always be placed in close proximity to the area of interest. Optimizing performance of the individual elements ensured high SNR at the cortical surface as well as in deeper laying structures. Performance of a variety of arrangements of gapped linear arrays was evaluated at 4.7 and 7T in high-resolution anatomical and functional MRI. Copyright © 2010 Elsevier Inc. All rights reserved.
Wavefront coding for fast, high-resolution light-sheet microscopy (Conference Presentation)
NASA Astrophysics Data System (ADS)
Olarte, Omar E.; Licea-Rodriguez, Jacob; Loza-Alvarez, Pablo
2017-02-01
Some biological experiments demand the observation of dynamics processes in 3D with high spatiotemporal resolution. The use of wavefront coding to extend the depth-of-field (DOF) of the collection arm of a light-sheet microscope is an interesting alternative for fast 3D imaging. Under this scheme, the 3D features of the sample are captured at high volumetric rates while the light sheet is swept rapidly within the extended DOF. The DOF is extended by coding the pupil function of the imaging lens by using a custom-designed phase mask. A posterior restoration step is required to decode the information of the captured images based on the applied phase mask [1]. This hybrid optical-digital approach is known as wavefront coding (WFC). Previously, we have demonstrated this method for performing fast 3D imaging of biological samples at medium resolution [2]. In this work, we present the extension of this approach for high-resolution microscopes. Under these conditions, the effective DOF of a standard high NA objective is of a few micrometers. Here we demonstrate that by the use of WFC, we can extend the DOF more than one order of magnitude keeping the high-resolution imaging. This is demonstrated for two designed phase masks using Zebrafish and C. elegans samples. [1] Olarte, O.E., Andilla, J., Artigas, D., and Loza-Alvarez, P., "Decoupled Illumination-Detection Microscopy. Selected Optics in Year 2105," in Optics and Photonics news 26, p. 41 (2015). [2] Olarte, O.E., Andilla, J., Artigas, D., and Loza-Alvarez, P., "Decoupled illumination detection in light sheet microscopy for fast volumetric imaging," Optica 2(8), 702 (2015).
Ultra-sensitive wide dynamic range temperature sensor based on in-fiber Lyot interferometer
NASA Astrophysics Data System (ADS)
Nikbakht, Hamed; Poorghdiri Isfahani, Mohamad Hosein; Latifi, Hamid
2017-04-01
An in-fiber Lyot interferometer for temperature measurement is presented. The sensor utilizes high temperature-dependence of the birefringence in Panda polarization maintaining fibers to achieve high resolution in temperature measurements. Temperature variation modulates the phase difference between the polarization modes propagating in different modes of the Panda fiber. The Lyot interferometer produces a spectrum which varies with the phase difference. Therefore, by monitoring this spectrum a high resolution of 0.003°C was achieved. A fiber Bragg grating is added to the setup to expand its dynamic range. This sensor does not need complicated fabrication process and can be implemented in many applications.
NASA Astrophysics Data System (ADS)
Xu, Jincheng; Liu, Wei; Wang, Jin; Liu, Linong; Zhang, Jianfeng
2018-02-01
De-absorption pre-stack time migration (QPSTM) compensates for the absorption and dispersion of seismic waves by introducing an effective Q parameter, thereby making it an effective tool for 3D, high-resolution imaging of seismic data. Although the optimal aperture obtained via stationary-phase migration reduces the computational cost of 3D QPSTM and yields 3D stationary-phase QPSTM, the associated computational efficiency is still the main problem in the processing of 3D, high-resolution images for real large-scale seismic data. In the current paper, we proposed a division method for large-scale, 3D seismic data to optimize the performance of stationary-phase QPSTM on clusters of graphics processing units (GPU). Then, we designed an imaging point parallel strategy to achieve an optimal parallel computing performance. Afterward, we adopted an asynchronous double buffering scheme for multi-stream to perform the GPU/CPU parallel computing. Moreover, several key optimization strategies of computation and storage based on the compute unified device architecture (CUDA) were adopted to accelerate the 3D stationary-phase QPSTM algorithm. Compared with the initial GPU code, the implementation of the key optimization steps, including thread optimization, shared memory optimization, register optimization and special function units (SFU), greatly improved the efficiency. A numerical example employing real large-scale, 3D seismic data showed that our scheme is nearly 80 times faster than the CPU-QPSTM algorithm. Our GPU/CPU heterogeneous parallel computing framework significant reduces the computational cost and facilitates 3D high-resolution imaging for large-scale seismic data.
Remote sensing in support of high-resolution terrestrial carbon monitoring and modeling
NASA Astrophysics Data System (ADS)
Hurtt, G. C.; Zhao, M.; Dubayah, R.; Huang, C.; Swatantran, A.; ONeil-Dunne, J.; Johnson, K. D.; Birdsey, R.; Fisk, J.; Flanagan, S.; Sahajpal, R.; Huang, W.; Tang, H.; Armstrong, A. H.
2014-12-01
As part of its Phase 1 Carbon Monitoring System (CMS) activities, NASA initiated a Local-Scale Biomass Pilot study. The goals of the pilot study were to develop protocols for fusing high-resolution remotely sensed observations with field data, provide accurate validation test areas for the continental-scale biomass product, and demonstrate efficacy for prognostic terrestrial ecosystem modeling. In Phase 2, this effort was expanded to the state scale. Here, we present results of this activity focusing on the use of remote sensing in high-resolution ecosystem modeling. The Ecosystem Demography (ED) model was implemented at 90 m spatial resolution for the entire state of Maryland. We rasterized soil depth and soil texture data from SSURGO. For hourly meteorological data, we spatially interpolated 32-km 3-hourly NARR into 1-km hourly and further corrected them at monthly level using PRISM data. NLCD data were used to mask sand, seashore, and wetland. High-resolution 1 m forest/non-forest mapping was used to define forest fraction of 90 m cells. Three alternative strategies were evaluated for initialization of forest structure using high-resolution lidar, and the model was used to calculate statewide estimates of forest biomass, carbon sequestration potential, time to reach sequestration potential, and sensitivity to future forest growth and disturbance rates, all at 90 m resolution. To our knowledge, no dynamic ecosystem model has been run at such high spatial resolution over such large areas utilizing remote sensing and validated as extensively. There are over 3 million 90 m land cells in Maryland, greater than 43 times the ~73,000 half-degree cells in a state-of-the-art global land model.
On Super-Resolution and the MUSIC Algorithm,
1985-05-01
SUPER-RESOLUTION AND THE MUSIC ALGORITHM AUTHOR: G D de Villiers DATE: May 1985 SUMMARY Simulation results for phased array signal processing using...the MUSIC algorithm are presented. The model used is more realistic than previous ones and it gives an indication as to how the algorithm would perform...resolution ON SUPER-RESOLUTION AND THE MUSIC ALGORITHM 1. INTRODUCTION At present there is a considerable amount of interest in "high-resolution" b
NASA Astrophysics Data System (ADS)
Chang, Chih-Hsuan; Nesbitt, David J.
2016-07-01
A series of CH stretch modes in phenyl radical (C6H5) has been investigated via high resolution infrared spectroscopy at sub-Doppler resolution (˜60 MHz) in a supersonic discharge slit jet expansion. Two fundamental vibrations of a1 symmetry, ν1 and ν2, are observed and rotationally analyzed for the first time, corresponding to in-phase and out-of-phase symmetric CH stretch excitation at the ortho/meta/para and ortho/para C atoms with respect to the radical center. The ν1 and ν2 band origins are determined to be 3073.968 50(8) cm-1 and 3062.264 80(7) cm-1, respectively, which both agree within 5 cm-1 with theoretical anharmonic scaling predictions based on density functional B3LYP/6-311g++(3df,3dp) calculations. Integrated band strengths for each of the CH stretch bands are analyzed, with the relative intensities agreeing remarkably well with theoretical predictions. Frequency comparison with previous low resolution Ar-matrix spectroscopy [A. V. Friderichsen et al., J. Am. Chem. Soc. 123, 1977 (2001)] reveals a nearly uniform Δν ≈ + 10-12 cm-1 blue shift between gas phase and Ar matrix values for ν1 and ν2. This differs substantially from the much smaller red shift (Δν ≈ - 1 cm-1) reported for the ν19 mode, and suggests a simple physical model in terms of vibrational mode symmetry and crowding due to the matrix environment. Finally, the infrared phenyl spectra are well described by a simple asymmetric rigid rotor Hamiltonian and show no evidence for spectral congestion due to intramolecular vibrational coupling, which bodes well for high resolution studies of other ring radicals and polycyclic aromatic hydrocarbons. In summary, the combination of slit jet discharge methods with high resolution infrared lasers enables spectroscopic investigation of even highly reactive combustion and interstellar radical intermediates under gas phase, jet-cooled (Trot ≈ 11 K) conditions.
Next Generation Instrumentation for the Very Large Telescope Interferometer
NASA Astrophysics Data System (ADS)
Quirrenbach, A.
The scientific capabilities of the VLT Interferometer can be substantially enhanced through new focal-plane instruments. Many interferometric techniques - astrometry, phase-referenced imaging, nulling, and differential phase measurements - require control of the phase to <~ 1 rad; this capability will be provided at the VLTI by the PRIMA facility. Phase-coherent operation of the VLTI will also make it possible to perform interferometry with spectral resolution up to R ~ 100,000 by building fiber links to the high-resolution spectrographs UVES and CRIRES. These developments will open new approaches to fundamental problems in fields as diverse as extrasolar planets, stellar atmospheres, circumstellar matter, and active galactic nuclei.
Droux, S; Roy, M; Félix, G
2014-10-01
We report here the study of the stability under subcritical water conditions of one of the most popular polysaccharide chiral stationary phase (CSP): Chiralcel OD. This CSP was used under high temperature and reversed phase conditions with acetonitrile and 2-propanol as modifier, respectively. The evolution of selectivity and resolution was investigated both in normal and reversed mode conditions with five racemates after packing, heating at 150 °C and separations of some racemic compounds under different high temperatures and mobile phase conditions. The results show that after using at high temperature and subcritical water conditions the selectivity was only moderately affected while the resolution fell dramatically especially in reversed mode due to the creation of a void at the head of the columns which reflects the dissolution of the silica matrix. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mackie, Cameron J.; Candian, Alessandra; Huang, Xinchuan; Maltseva, Elena; Petrignani, Annemieke; Oomens, Jos; Mattioda, Andrew L.; Buma, Wybren Jan; Lee, Timothy J.; Tielens, Alexander G. G. M.
2016-08-01
The study of interstellar polycyclic aromatic hydrocarbons (PAHs) relies heavily on theoretically predicted infrared spectra. Most earlier studies use scaled harmonic frequencies for band positions and the double harmonic approximation for intensities. However, recent high-resolution gas-phase experimental spectroscopic studies have shown that the harmonic approximation is not sufficient to reproduce experimental results. In our previous work, we presented the anharmonic theoretical spectra of three linear PAHs, showing the importance of including anharmonicities into the theoretical calculations. In this paper, we continue this work by extending the study to include five non-linear PAHs (benz[a]anthracene, chrysene, phenanthrene, pyrene, and triphenylene), thereby allowing us to make a full assessment of how edge structure, symmetry, and size influence the effects of anharmonicities. The theoretical anharmonic spectra are compared to spectra obtained under matrix isolation low-temperature conditions, low-resolution, high-temperature gas-phase conditions, and high-resolution, low-temperature gas-phase conditions. Overall, excellent agreement is observed between the theoretical and experimental spectra although the experimental spectra show subtle but significant differences.
Mackie, Cameron J; Candian, Alessandra; Huang, Xinchuan; Maltseva, Elena; Petrignani, Annemieke; Oomens, Jos; Mattioda, Andrew L; Buma, Wybren Jan; Lee, Timothy J; Tielens, Alexander G G M
2016-08-28
The study of interstellar polycyclic aromatic hydrocarbons (PAHs) relies heavily on theoretically predicted infrared spectra. Most earlier studies use scaled harmonic frequencies for band positions and the double harmonic approximation for intensities. However, recent high-resolution gas-phase experimental spectroscopic studies have shown that the harmonic approximation is not sufficient to reproduce experimental results. In our previous work, we presented the anharmonic theoretical spectra of three linear PAHs, showing the importance of including anharmonicities into the theoretical calculations. In this paper, we continue this work by extending the study to include five non-linear PAHs (benz[a]anthracene, chrysene, phenanthrene, pyrene, and triphenylene), thereby allowing us to make a full assessment of how edge structure, symmetry, and size influence the effects of anharmonicities. The theoretical anharmonic spectra are compared to spectra obtained under matrix isolation low-temperature conditions, low-resolution, high-temperature gas-phase conditions, and high-resolution, low-temperature gas-phase conditions. Overall, excellent agreement is observed between the theoretical and experimental spectra although the experimental spectra show subtle but significant differences.
Signal detectability in diffusive media using phased arrays in conjunction with detector arrays.
Kang, Dongyel; Kupinski, Matthew A
2011-06-20
We investigate Hotelling observer performance (i.e., signal detectability) of a phased array system for tasks of detecting small inhomogeneities and distinguishing adjacent abnormalities in uniform diffusive media. Unlike conventional phased array systems where a single detector is located on the interface between two sources, we consider a detector array, such as a CCD, on a phantom exit surface for calculating the Hotelling observer detectability. The signal detectability for adjacent small abnormalities (2 mm displacement) for the CCD-based phased array is related to the resolution of reconstructed images. Simulations show that acquiring high-dimensional data from a detector array in a phased array system dramatically improves the detectability for both tasks when compared to conventional single detector measurements, especially at low modulation frequencies. It is also observed in all studied cases that there exists the modulation frequency optimizing CCD-based phased array systems, where detectability for both tasks is consistently high. These results imply that the CCD-based phased array has the potential to achieve high resolution and signal detectability in tomographic diffusive imaging while operating at a very low modulation frequency. The effect of other configuration parameters, such as a detector pixel size, on the observer performance is also discussed.
Active phase correction of high resolution silicon photonic arrayed waveguide gratings
Gehl, M.; Trotter, D.; Starbuck, A.; ...
2017-03-10
Arrayed waveguide gratings provide flexible spectral filtering functionality for integrated photonic applications. Achieving narrow channel spacing requires long optical path lengths which can greatly increase the footprint of devices. High index contrast waveguides, such as those fabricated in silicon-on-insulator wafers, allow tight waveguide bends which can be used to create much more compact designs. Both the long optical path lengths and the high index contrast contribute to significant optical phase error as light propagates through the device. Thus, silicon photonic arrayed waveguide gratings require active or passive phase correction following fabrication. We present the design and fabrication of compact siliconmore » photonic arrayed waveguide gratings with channel spacings of 50, 10 and 1 GHz. The largest device, with 11 channels of 1 GHz spacing, has a footprint of only 1.1 cm 2. Using integrated thermo-optic phase shifters, the phase error is actively corrected. We present two methods of phase error correction and demonstrate state-of-the-art cross-talk performance for high index contrast arrayed waveguide gratings. As a demonstration of possible applications, we perform RF channelization with 1 GHz resolution. In addition, we generate unique spectral filters by applying non-zero phase offsets calculated by the Gerchberg Saxton algorithm.« less
Active phase correction of high resolution silicon photonic arrayed waveguide gratings.
Gehl, M; Trotter, D; Starbuck, A; Pomerene, A; Lentine, A L; DeRose, C
2017-03-20
Arrayed waveguide gratings provide flexible spectral filtering functionality for integrated photonic applications. Achieving narrow channel spacing requires long optical path lengths which can greatly increase the footprint of devices. High index contrast waveguides, such as those fabricated in silicon-on-insulator wafers, allow tight waveguide bends which can be used to create much more compact designs. Both the long optical path lengths and the high index contrast contribute to significant optical phase error as light propagates through the device. Therefore, silicon photonic arrayed waveguide gratings require active or passive phase correction following fabrication. Here we present the design and fabrication of compact silicon photonic arrayed waveguide gratings with channel spacings of 50, 10 and 1 GHz. The largest device, with 11 channels of 1 GHz spacing, has a footprint of only 1.1 cm2. Using integrated thermo-optic phase shifters, the phase error is actively corrected. We present two methods of phase error correction and demonstrate state-of-the-art cross-talk performance for high index contrast arrayed waveguide gratings. As a demonstration of possible applications, we perform RF channelization with 1 GHz resolution. Additionally, we generate unique spectral filters by applying non-zero phase offsets calculated by the Gerchberg Saxton algorithm.
Lísa, Miroslav; Holcapek, Michal; Sovová, Helena
2009-11-20
The selection of column packing during the development of high-performance liquid chromatography method is a crucial step to achieve sufficient chromatographic resolution of analyzed species in complex mixtures. Various stationary phases are tested in this paper for the analysis of complex mixture of triacylglycerols (TGs) in blackcurrant oil using non-aqueous reversed-phase (NARP) system with acetonitrile-2-propanol mobile phase. Conventional C(18) column in the total length of 45 cm is used for the separation of TGs according to their equivalent carbon number, the number and positions of double bonds and acyl chain lengths. The separation of TGs and their more polar hydrolysis products after the partial enzymatic hydrolysis of blackcurrant oil in one chromatographic run is achieved using conventional C(18) column. Retention times of TGs are reduced almost 10 times without the loss of the chromatographic resolution using ultra high-performance liquid chromatography with 1.7 microm C(18) particles. The separation in NARP system on C(30) column shows an unusual phenomenon, because the retention order of TGs changes depending on the column temperature, which is reported for the first time. The commercial monolithic column modified with C(18) is used for the fast analysis of TGs to increase the sample throughput but at cost of low resolution.
High-speed Fourier ptychographic microscopy based on programmable annular illuminations.
Sun, Jiasong; Zuo, Chao; Zhang, Jialin; Fan, Yao; Chen, Qian
2018-05-16
High-throughput quantitative phase imaging (QPI) is essential to cellular phenotypes characterization as it allows high-content cell analysis and avoids adverse effects of staining reagents on cellular viability and cell signaling. Among different approaches, Fourier ptychographic microscopy (FPM) is probably the most promising technique to realize high-throughput QPI by synthesizing a wide-field, high-resolution complex image from multiple angle-variably illuminated, low-resolution images. However, the large dataset requirement in conventional FPM significantly limits its imaging speed, resulting in low temporal throughput. Moreover, the underlying theoretical mechanism as well as optimum illumination scheme for high-accuracy phase imaging in FPM remains unclear. Herein, we report a high-speed FPM technique based on programmable annular illuminations (AIFPM). The optical-transfer-function (OTF) analysis of FPM reveals that the low-frequency phase information can only be correctly recovered if the LEDs are precisely located at the edge of the objective numerical aperture (NA) in the frequency space. By using only 4 low-resolution images corresponding to 4 tilted illuminations matching a 10×, 0.4 NA objective, we present the high-speed imaging results of in vitro Hela cells mitosis and apoptosis at a frame rate of 25 Hz with a full-pitch resolution of 655 nm at a wavelength of 525 nm (effective NA = 0.8) across a wide field-of-view (FOV) of 1.77 mm 2 , corresponding to a space-bandwidth-time product of 411 megapixels per second. Our work reveals an important capability of FPM towards high-speed high-throughput imaging of in vitro live cells, achieving video-rate QPI performance across a wide range of scales, both spatial and temporal.
NASA Astrophysics Data System (ADS)
Liu, Weixin; Jin, Ningde; Han, Yunfeng; Ma, Jing
2018-06-01
In the present study, multi-scale entropy algorithm was used to characterise the complex flow phenomena of turbulent droplets in high water-cut oil-water two-phase flow. First, we compared multi-scale weighted permutation entropy (MWPE), multi-scale approximate entropy (MAE), multi-scale sample entropy (MSE) and multi-scale complexity measure (MCM) for typical nonlinear systems. The results show that MWPE presents satisfied variability with scale and anti-noise ability. Accordingly, we conducted an experiment of vertical upward oil-water two-phase flow with high water-cut and collected the signals of a high-resolution microwave resonant sensor, based on which two indexes, the entropy rate and mean value of MWPE, were extracted. Besides, the effects of total flow rate and water-cut on these two indexes were analysed. Our researches show that MWPE is an effective method to uncover the dynamic instability of oil-water two-phase flow with high water-cut.
Improving image quality in laboratory x-ray phase-contrast imaging
NASA Astrophysics Data System (ADS)
De Marco, F.; Marschner, M.; Birnbacher, L.; Viermetz, M.; Noël, P.; Herzen, J.; Pfeiffer, F.
2017-03-01
Grating-based X-ray phase-contrast (gbPC) is known to provide significant benefits for biomedical imaging. To investigate these benefits, a high-sensitivity gbPC micro-CT setup for small (≍ 5 cm) biological samples has been constructed. Unfortunately, high differential-phase sensitivity leads to an increased magnitude of data processing artifacts, limiting the quality of tomographic reconstructions. Most importantly, processing of phase-stepping data with incorrect stepping positions can introduce artifacts resembling Moiré fringes to the projections. Additionally, the focal spot size of the X-ray source limits resolution of tomograms. Here we present a set of algorithms to minimize artifacts, increase resolution and improve visual impression of projections and tomograms from the examined setup. We assessed two algorithms for artifact reduction: Firstly, a correction algorithm exploiting correlations of the artifacts and differential-phase data was developed and tested. Artifacts were reliably removed without compromising image data. Secondly, we implemented a new algorithm for flatfield selection, which was shown to exclude flat-fields with strong artifacts. Both procedures successfully improved image quality of projections and tomograms. Deconvolution of all projections of a CT scan can minimize blurring introduced by the finite size of the X-ray source focal spot. Application of the Richardson-Lucy deconvolution algorithm to gbPC-CT projections resulted in an improved resolution of phase-contrast tomograms. Additionally, we found that nearest-neighbor interpolation of projections can improve the visual impression of very small features in phase-contrast tomograms. In conclusion, we achieved an increase in image resolution and quality for the investigated setup, which may lead to an improved detection of very small sample features, thereby maximizing the setup's utility.
NASA Astrophysics Data System (ADS)
Mok, Aaron T. Y.; Lee, Kelvin C. M.; Wong, Kenneth K. Y.; Tsia, Kevin K.
2018-02-01
Biophysical properties of cells could complement and correlate biochemical markers to characterize a multitude of cellular states. Changes in cell size, dry mass and subcellular morphology, for instance, are relevant to cell-cycle progression which is prevalently evaluated by DNA-targeted fluorescence measurements. Quantitative-phase microscopy (QPM) is among the effective biophysical phenotyping tools that can quantify cell sizes and sub-cellular dry mass density distribution of single cells at high spatial resolution. However, limited camera frame rate and thus imaging throughput makes QPM incompatible with high-throughput flow cytometry - a gold standard in multiparametric cell-based assay. Here we present a high-throughput approach for label-free analysis of cell cycle based on quantitative-phase time-stretch imaging flow cytometry at a throughput of > 10,000 cells/s. Our time-stretch QPM system enables sub-cellular resolution even at high speed, allowing us to extract a multitude (at least 24) of single-cell biophysical phenotypes (from both amplitude and phase images). Those phenotypes can be combined to track cell-cycle progression based on a t-distributed stochastic neighbor embedding (t-SNE) algorithm. Using multivariate analysis of variance (MANOVA) discriminant analysis, cell-cycle phases can also be predicted label-free with high accuracy at >90% in G1 and G2 phase, and >80% in S phase. We anticipate that high throughput label-free cell cycle characterization could open new approaches for large-scale single-cell analysis, bringing new mechanistic insights into complex biological processes including diseases pathogenesis.
Zeineh, Michael M; Parekh, Mansi B; Zaharchuk, Greg; Su, Jason H; Rosenberg, Jarrett; Fischbein, Nancy J; Rutt, Brian K
2014-05-01
The objectives of this study were to acquire ultra-high resolution images of the brain using balanced steady-state free precession (bSSFP) at 7 T and to identify the potential utility of this sequence. Eight volunteers participated in this study after providing informed consent. Each volunteer was scanned with 8 phase cycles of bSSFP at 0.4-mm isotropic resolution using 0.5 number of excitations and 2-dimensional parallel acceleration of 1.75 × 1.75. Each phase cycle required 5 minutes of scanning, with pauses between the phase cycles allowing short periods of rest. The individual phase cycles were aligned and then averaged. The same volunteers underwent scanning using 3-dimensional (3D) multiecho gradient recalled echo at 0.8-mm isotropic resolution, 3D Cube T2 at 0.7-mm isotropic resolution, and thin-section coronal oblique T2-weighted fast spin echo at 0.22 × 0.22 × 2.0-mm resolution for comparison. Two neuroradiologists assessed image quality and potential research and clinical utility. The volunteers generally tolerated the scan sessions well, and composite high-resolution bSSFP images were produced for each volunteer. Rater analysis demonstrated that bSSFP had a superior 3D visualization of the microarchitecture of the hippocampus, very good contrast to delineate the borders of the subthalamic nucleus, and relatively good B1 homogeneity throughout. In addition to an excellent visualization of the cerebellum, subtle details of the brain and skull base anatomy were also easier to identify on the bSSFP images, including the line of Gennari, membrane of Liliequist, and cranial nerves. Balanced steady-state free precession had a strong iron contrast similar to or better than the comparison sequences. However, cortical gray-white contrast was significantly better with Cube T2 and T2-weighted fast spin echo. Balanced steady-state free precession can facilitate ultrahigh-resolution imaging of the brain. Although total imaging times are long, the individually short phase cycles can be acquired separately, improving examination tolerability. These images may be beneficial for studies of the hippocampus, iron-containing structures such as the subthalamic nucleus and line of Gennari, and the basal cisterns and their contents.
Shen, Yufeng; Tolić, Nikola; Piehowski, Paul D; Shukla, Anil K; Kim, Sangtae; Zhao, Rui; Qu, Yi; Robinson, Errol; Smith, Richard D; Paša-Tolić, Ljiljana
2017-05-19
Separation of proteoforms for global intact protein analysis (i.e. top-down proteomics) has lagged well behind what is achievable for peptides in traditional bottom-up proteomic approach and is becoming a true bottle neck for top-down proteomics. Herein, we report use of long (≥1M) columns containing short alkyl (C1-C4) bonded phases to achieve high-resolution RPLC for separation of proteoforms. At a specific operation pressure limit (i.e., 96.5MPa or 14Kpsi used in this work), column length was found to be the most important factor for achieving maximal resolution separation of proteins when 1.5-5μm particles were used as packings and long columns provided peak capacities greater than 400 for proteoforms derived from a global cell lysate with molecular weights below 50kDa. Larger proteoforms (50-110kDa) were chromatographed on long RPLC columns and detected by MS; however, they cannot be identified yet by tandem mass spectrometry. Our experimental data further demonstrated that long alkyl (e.g., C8 and C18) bonded particles provided high-resolution RPLC for <10kDa proteoforms, not efficient for separation of global proteoforms. Reversed-phase particles with porous, nonporous, and superficially porous surfaces were systematically investigated for high-resolution RPLC. Pore size (200-400Å) and the surface structure (porous and superficially porous) of particles was found to have minor influences on high-resolution RPLC of proteoforms. RPLC presented herein enabled confident identification of ∼900 proteoforms (1% FDR) for a low-microgram quantity of proteomic samples using a single RPLC-MS/MS analysis. The level of RPLC performance attained in this work is close to that typically realized in bottom-up proteomics, and broadly useful when applying e.g., the single-stage MS accurate mass tag approach, but less effective when combined with current tandem MS. Our initial data indicate that MS detection and fragmentation inefficiencies provided by current high-resolution mass spectrometers are key challenges for characterization of larger proteoforms. Copyright © 2017. Published by Elsevier B.V.
Shen, Yufeng; Tolić, Nikola; Piehowski, Paul D.; ...
2017-01-05
Separation of proteoforms for global intact protein analysis (i.e. top-down proteomics) has lagged well behind what is achievable for peptides in traditional bottom-up proteomic approach and is becoming a true bottle neck for top-down proteomics. We report use of long (≥1 M) columns containing short alkyl (C1-C4) bonded phases to achieve high-resolution RPLC for separation of proteoforms. At a specific operation pressure limit (i.e., 96.5 MPa or 14 K psi used in this work), column length was found to be the most important factor for achieving maximal resolution separation of proteins when 1.5–5 μm particles were used as packings andmore » long columns provided peak capacities greater than 400 for proteoforms derived from a global cell lysate with molecular weights below 50 kDa. Furthermore, we chromatographed larger proteoforms (50–110 kDa) on long RPLC columns and detected by MS; however, they cannot be identified yet by tandem mass spectrometry. Our experimental data further demonstrated that long alkyl (e.g., C8 and C18) bonded particles provided high-resolution RPLC for <10 kDa proteoforms, not efficient for separation of global proteoforms. Reversed-phase particles with porous, nonporous, and superficially porous surfaces were systematically investigated for high-resolution RPLC. Pore size (200–400 Å) and the surface structure (porous and superficially porous) of particles was found to have minor influences on high-resolution RPLC of proteoforms. RPLC presented herein enabled confident identification of ~900 proteoforms (1% FDR) for a low-microgram quantity of proteomic samples using a single RPLC–MS/MS analysis. The level of RPLC performance attained in this work is close to that typically realized in bottom-up proteomics, and broadly useful when applying e.g., the single-stage MS accurate mass tag approach, but less effective when combined with current tandem MS. Finally, our initial data indicate that MS detection and fragmentation inefficiencies provided by current high-resolution mass spectrometers are key challenges for characterization of larger proteoforms.« less
Goding, Julian C; Ragon, Dorisanne Y; O'Connor, Jack B; Boehm, Sarah J; Hupp, Amber M
2013-07-01
The fatty acid methyl ester (FAME) content of biodiesel fuels has traditionally been determined using gas chromatography with a polar stationary phase. In this study, a direct comparison of the separation of FAMEs present in various biodiesel samples on three polar stationary phases and one moderately polar stationary phase (with comparable column dimensions) was performed. Retention on each column was based on solubility in and polarity of the phase. Quantitative metrics describing the resolution of important FAME pairs indicate high resolution on all polar columns, yet the best resolution, particularly of geometric isomers, is achieved on the cyanopropyl column. In addition, the separation of four C18 monounsaturated isomers was optimized and the elution order determined on each column. FAME composition of various biodiesel fuel types was determined on each column to illustrate (1) chemical differences in biodiesels produced from different feedstocks and (2) chemical similarities in biodiesels of the same feedstock type produced in different locations and harvest seasons.
Rapid, low dose X-ray diffractive imaging of the malaria parasite Plasmodium falciparum.
Jones, Michael W M; Dearnley, Megan K; van Riessen, Grant A; Abbey, Brian; Putkunz, Corey T; Junker, Mark D; Vine, David J; McNulty, Ian; Nugent, Keith A; Peele, Andrew G; Tilley, Leann
2014-08-01
Phase-diverse X-ray coherent diffractive imaging (CDI) provides a route to high sensitivity and spatial resolution with moderate radiation dose. It also provides a robust solution to the well-known phase-problem, making on-line image reconstruction feasible. Here we apply phase-diverse CDI to a cellular sample, obtaining images of an erythrocyte infected by the sexual stage of the malaria parasite, Plasmodium falciparum, with a radiation dose significantly lower than the lowest dose previously reported for cellular imaging using CDI. The high sensitivity and resolution allow key biological features to be identified within intact cells, providing complementary information to optical and electron microscopy. This high throughput method could be used for fast tomographic imaging, or to generate multiple replicates in two-dimensions of hydrated biological systems without freezing or fixing. This work demonstrates that phase-diverse CDI is a valuable complementary imaging method for the biological sciences and ready for immediate application. © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Huang, S. S.; Huang, C. F.; Huang, K. N.; Young, M. S.
2002-10-01
A highly accurate binary frequency shift-keyed (BFSK) ultrasonic distance measurement system (UDMS) for use in isothermal air is described. This article presents an efficient algorithm which combines both the time-of-flight (TOF) method and the phase-shift method. The proposed method can obtain larger range measurement than the phase-shift method and also get higher accuracy compared with the TOF method. A single-chip microcomputer-based BFSK signal generator and phase detector was designed to record and compute the TOF, two phase shifts, and the resulting distance, which were then sent to either an LCD to display or a PC to calibrate. Experiments were done in air using BFSK with the frequencies of 40 and 41 kHz. Distance resolution of 0.05% of the wavelength corresponding to the frequency of 40 kHz was obtained. The range accuracy was found to be within ±0.05 mm at a range of over 6000 mm. The main advantages of this UDMS system are high resolution, low cost, narrow bandwidth requirement, and ease of implementation.
Yao, Xiaobin; Tan, Timothy Thatt Yang; Wang, Yong
2014-01-24
This work is the first demonstration of a simple thiol-ene click chemistry to anchor vinyl imidazolium β-CD onto thiol silica to form a novel cationic native cyclodextrin (CD) chiral stationary phase (CSP). The CSP afforded high enantioseparation ability towards dansyl (Dns) amino acids, carboxylic aryl compounds and flavonoids in chiral HPLC. The current CSP demonstrates the highest resolving ability (selectivity >1.1, resolution >1.5) towards Dns amino acids in a mobile phase buffered at pH=6.5, with the resolution of Dns-dl-leucine as high as 6.97. 2,4-dichloride propionic acid (2,4-ClPOPA) was well resolved with the selectivity and resolution of 1.37 and 4.88, respectively. Compared to a previously reported native CD-CSP based on a triazole linkage, the current cationic CD-CSP shows a stronger retention and higher resolution towards acidic chiral compounds, ascribed to the propitious strong electrostatic attraction. Stability evaluation results indicated that thiol-ene reaction can provide a facile and robust approach for the preparation of positively charged CD CSPs. Copyright © 2013 Elsevier B.V. All rights reserved.
Continuous Beam Steering From a Segmented Liquid Crystal Optical Phased Array
NASA Technical Reports Server (NTRS)
Titus, Charles M.; Pouch, John; Nguyen, Hung; Miranda, Felix; Bos, Philip J.
2002-01-01
Optical communications to and from deep space probes will require beams possessing divergence on the order of a microradian, and must be steered with sub-microradian precision. Segmented liquid crystal spatial phase modulators, a type of optical phased array, are considered for this ultra-high resolution beam steering. It is shown here that in an ideal device of this type, there are ultimately no restrictions on the angular resolution. Computer simulations are used to obtain that result, and to analyze the influence of beam truncation and substrate flatness on the performance of this type of device.
Continuous Beam Steering From A Segmented Liquid Crystal Optical Phased Array
NASA Technical Reports Server (NTRS)
Pouch, John; Nguyen, Hung; Miranda, Felix; Titus, Charles M.; Bos, Philip J.
2002-01-01
Optical communications to and from deep space probes will require beams possessing divergence on the order of a microradian, and must be steered with sub-microradian precision. Segmented liquid crystal spatial phase modulators, a type of optical phased array, are considered for this ultra-high resolution beam steering. It is shown here that in an ideal device of this type, there are ultimately no restrictions on the angular resolution. Computer simulations are used to obtain that result, and to analyze the influence of beam truncation and substrate flatness on the performance of this type of device.
Guelpa, Valérian; Laurent, Guillaume J.; Sandoz, Patrick; Zea, July Galeano; Clévy, Cédric
2014-01-01
This paper presents a visual measurement method able to sense 1D rigid body displacements with very high resolutions, large ranges and high processing rates. Sub-pixelic resolution is obtained thanks to a structured pattern placed on the target. The pattern is made of twin periodic grids with slightly different periods. The periodic frames are suited for Fourier-like phase calculations—leading to high resolution—while the period difference allows the removal of phase ambiguity and thus a high range-to-resolution ratio. The paper presents the measurement principle as well as the processing algorithms (source files are provided as supplementary materials). The theoretical and experimental performances are also discussed. The processing time is around 3 μs for a line of 780 pixels, which means that the measurement rate is mostly limited by the image acquisition frame rate. A 3-σ repeatability of 5 nm is experimentally demonstrated which has to be compared with the 168 μm measurement range. PMID:24625736
Intermediate-scale plasma irregularities in the polar ionosphere inferred from GPS radio occultation
NASA Astrophysics Data System (ADS)
Shume, E. B.; Komjathy, A.; Langley, R. B.; Verkhoglyadova, O.; Butala, M. D.; Mannucci, A. J.
2015-02-01
We report intermediate-scale plasma irregularities in the polar ionosphere inferred from high-resolution radio occultation (RO) measurements using GPS (Global Positioning System) to CASSIOPE (CAScade Smallsat and IOnospheric Polar Explorer) satellite radio links. The high inclination of CASSIOPE and the high rate of signal reception by the GPS Attitude, Positioning, and Profiling RO receiver on CASSIOPE enable a high-resolution investigation of the dynamics of the polar ionosphere with unprecedented detail. Intermediate-scale, scintillation-producing irregularities, which correspond to 1 to 40 km scales, were inferred by applying multiscale spectral analysis on the RO phase measurements. Using our multiscale spectral analysis approach and satellite data (Polar Operational Environmental Satellites and Defense Meteorological Satellite Program), we discovered that the irregularity scales and phase scintillations have distinct features in the auroral oval and polar cap. We found that large length scales and more intense phase scintillations are prevalent in the auroral oval compared to the polar cap implying that the irregularity scales and phase scintillation characteristics are a function of the solar wind and magnetospheric forcings.
Luo, Y.; Xia, J.; Liu, J.; Xu, Y.; Liu, Q.
2008-01-01
Multichannel Analysis of Surface Waves utilizes a multichannel recording system to estimate near-surface shear (S)-wave velocities from high-frequency Rayleigh waves. A pseudo-2D S-wave velocity (vS) section is constructed by aligning 1D models at the midpoint of each receiver spread and using a spatial interpolation scheme. The horizontal resolution of the section is therefore most influenced by the receiver spread length and the source interval. The receiver spread length sets the theoretical lower limit and any vS structure with its lateral dimension smaller than this length will not be properly resolved in the final vS section. A source interval smaller than the spread length will not improve the horizontal resolution because spatial smearing has already been introduced by the receiver spread. In this paper, we first analyze the horizontal resolution of a pair of synthetic traces. Resolution analysis shows that (1) a pair of traces with a smaller receiver spacing achieves higher horizontal resolution of inverted S-wave velocities but results in a larger relative error; (2) the relative error of the phase velocity at a high frequency is smaller than at a low frequency; and (3) a relative error of the inverted S-wave velocity is affected by the signal-to-noise ratio of data. These results provide us with a guideline to balance the trade-off between receiver spacing (horizontal resolution) and accuracy of the inverted S-wave velocity. We then present a scheme to generate a pseudo-2D S-wave velocity section with high horizontal resolution using multichannel records by inverting high-frequency surface-wave dispersion curves calculated through cross-correlation combined with a phase-shift scanning method. This method chooses only a pair of consecutive traces within a shot gather to calculate a dispersion curve. We finally invert surface-wave dispersion curves of synthetic and real-world data. Inversion results of both synthetic and real-world data demonstrate that inverting high-frequency surface-wave dispersion curves - by a pair of traces through cross-correlation with phase-shift scanning method and with the damped least-square method and the singular-value decomposition technique - can feasibly achieve a reliable pseudo-2D S-wave velocity section with relatively high horizontal resolution. ?? 2008 Elsevier B.V. All rights reserved.
Multimodal hard x-ray imaging with resolution approaching 10 nm for studies in material science
NASA Astrophysics Data System (ADS)
Yan, Hanfei; Bouet, Nathalie; Zhou, Juan; Huang, Xiaojing; Nazaretski, Evgeny; Xu, Weihe; Cocco, Alex P.; Chiu, Wilson K. S.; Brinkman, Kyle S.; Chu, Yong S.
2018-03-01
We report multimodal scanning hard x-ray imaging with spatial resolution approaching 10 nm and its application to contemporary studies in the field of material science. The high spatial resolution is achieved by focusing hard x-rays with two crossed multilayer Laue lenses and raster-scanning a sample with respect to the nanofocusing optics. Various techniques are used to characterize and verify the achieved focus size and imaging resolution. The multimodal imaging is realized by utilizing simultaneously absorption-, phase-, and fluorescence-contrast mechanisms. The combination of high spatial resolution and multimodal imaging enables a comprehensive study of a sample on a very fine length scale. In this work, the unique multimodal imaging capability was used to investigate a mixed ionic-electronic conducting ceramic-based membrane material employed in solid oxide fuel cells and membrane separations (compound of Ce0.8Gd0.2O2‑x and CoFe2O4) which revealed the existence of an emergent material phase and quantified the chemical complexity at the nanoscale.
MiX: a position sensitive dual-phase liquid xenon detector
NASA Astrophysics Data System (ADS)
Stephenson, S.; Haefner, J.; Lin, Q.; Ni, K.; Pushkin, K.; Raymond, R.; Schubnell, M.; Shutty, N.; Tarlé, G.; Weaverdyck, C.; Lorenzon, W.
2015-10-01
The need for precise characterization of dual-phase xenon detectors has grown as the technology has matured into a state of high efficacy for rare event searches. The Michigan Xenon detector was constructed to study the microphysics of particle interactions in liquid xenon across a large energy range in an effort to probe aspects of radiation detection in liquid xenon. We report the design and performance of a small 3D position sensitive dual-phase liquid xenon time projection chamber with high light yield (Ly122=15.2 pe/keV at zero field), long electron lifetime (τ > 200 μs), and excellent energy resolution (σ/E = 1% for 1,333 keV gamma rays in a drift field of 200 V/cm). Liquid xenon time projection chambers with such high energy resolution may find applications not only in dark matter direct detection searches, but also in neutrinoless double beta decay experiments and other applications.
NASA Technical Reports Server (NTRS)
Tarbell, Theodore D.
1993-01-01
Technical studies of the feasibility of balloon flights of the former Spacelab instrument, the Solar Optical Universal Polarimeter, with a modern charge-coupled device (CCD) camera, to study the structure and evolution of solar active regions at high resolution, are reviewed. In particular, different CCD cameras were used at ground-based solar observatories with the SOUP filter, to evaluate their performance and collect high resolution images. High resolution movies of the photosphere and chromosphere were successfully obtained using four different CCD cameras. Some of this data was collected in coordinated observations with the Yohkoh satellite during May-July, 1992, and they are being analyzed scientifically along with simultaneous X-ray observations.
High-Resolution Adaptive Optics Test-Bed for Vision Science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilks, S C; Thomspon, C A; Olivier, S S
2001-09-27
We discuss the design and implementation of a low-cost, high-resolution adaptive optics test-bed for vision research. It is well known that high-order aberrations in the human eye reduce optical resolution and limit visual acuity. However, the effects of aberration-free eyesight on vision are only now beginning to be studied using adaptive optics to sense and correct the aberrations in the eye. We are developing a high-resolution adaptive optics system for this purpose using a Hamamatsu Parallel Aligned Nematic Liquid Crystal Spatial Light Modulator. Phase-wrapping is used to extend the effective stroke of the device, and the wavefront sensing and wavefrontmore » correction are done at different wavelengths. Issues associated with these techniques will be discussed.« less
Diffraction Efficiency of Thin Film Holographic Beam Steering Devices
NASA Technical Reports Server (NTRS)
Titus, Charles M.; Pouch, John; Nguyen, Hung; Miranda, Felix; Bos, Philip J.
2003-01-01
Dynamic holography has been demonstrated as a method for correcting aberrations in space deployable optics, and can also be used to achieve high-resolution beam steering in the same environment. In this paper, we consider some of the factors affecting the efficiency of these devices. Specifically, the effect on the efficiency of a highly collimated beam from the number of discrete phase steps per period is considered for a blazed thin film beam steering grating. The effect of the number of discrete phase steps per period on steering resolution is also considered. We also present some result of Finite-Difference Time-Domain (FDTD) calculations of light propagating through liquid crystal "blazed" gratings. Liquid crystal gratings are shown to spatially modulate both the phase and amplitude of the propagating light.
Simultaneous interrogation of interferometric and Bragg grating sensors
NASA Astrophysics Data System (ADS)
Brady, G.; Kalli, K.; Webb, D. J.; Jackson, D. A.; Reekie, L.; Archambault, J. L.
1995-06-01
We propose a new method for the simultaneous interrogation of conventional two-beam interferometers and Bragg grating sensors. The technique employs an unbalanced Mach-Zehnder interferometer illuminated by a single low-coherence source, which acts as a wavelength-tunable source for the grating and as a path-matched filter for the Fizeau interferometer, thus providing a high phase resolution output for each sensor. The grating sensor demonstrates a dynamic strain resolution of \\similar 0.05 mu 3 / \\radical Hz \\end-radical at 20 Hz, while the interferometric phase resolution is better than 1mrad/ \\radical Hz \\end-radical at 20 Hz, corresponding to an rms mirror displacement of 0.08 nm.
Diffraction encoded position measuring apparatus
Tansey, Richard J.
1991-01-01
When a lightwave passes through a transmission grating, diffracted beams appear at the output or opposite side of the grating that are effectively Doppler shifted in frequency (phase) whereby a detector system can compare the phase of the zero order and higher order beams to obtain an indication of position. Multiple passes through the grating increase resolution for a given wavelength of a laser signal. The resolution can be improved further by using a smaller wavelength laser to generate the grating itself. Since the grating must only have a pitch sufficient to produce diffracted orders, inexpensive, ultraviolet wavelength lasers can be utilized and still obtain high resolution detection.
Diffraction encoded position measuring apparatus
Tansey, R.J.
1991-09-24
When a lightwave passes through a transmission grating, diffracted beams appear at the output or opposite side of the grating that are effectively Doppler shifted in frequency (phase) whereby a detector system can compare the phase of the zero order and higher order beams to obtain an indication of position. Multiple passes through the grating increase resolution for a given wavelength of a laser signal. The resolution can be improved further by using a smaller wavelength laser to generate the grating itself. Since the grating must only have a pitch sufficient to produce diffracted orders, inexpensive, ultraviolet wavelength lasers can be utilized and still obtain high resolution detection. 3 figures.
NASA Astrophysics Data System (ADS)
Aghaei, A.
2017-12-01
Digital imaging and modeling of rocks and subsequent simulation of physical phenomena in digitally-constructed rock models are becoming an integral part of core analysis workflows. One of the inherent limitations of image-based analysis, at any given scale, is image resolution. This limitation becomes more evident when the rock has multiple scales of porosity such as in carbonates and tight sandstones. Multi-scale imaging and constructions of hybrid models that encompass images acquired at multiple scales and resolutions are proposed as a solution to this problem. In this study, we investigate the effect of image resolution and unresolved porosity on petrophysical and two-phase flow properties calculated based on images. A helical X-ray micro-CT scanner with a high cone-angle is used to acquire digital rock images that are free of geometric distortion. To remove subjectivity from the analyses, a semi-automated image processing technique is used to process and segment the acquired data into multiple phases. Direct and pore network based models are used to simulate physical phenomena and obtain absolute permeability, formation factor and two-phase flow properties such as relative permeability and capillary pressure. The effect of image resolution on each property is investigated. Finally a hybrid network model incorporating images at multiple resolutions is built and used for simulations. The results from the hybrid model are compared against results from the model built at the highest resolution and those from laboratory tests.
NASA Astrophysics Data System (ADS)
Wang, Shuai; Sun, Huayan; Guo, Huichao
2018-01-01
Aiming at the problem of beam scanning in low-resolution APD array in three-dimensional imaging, a method of beam scanning with liquid crystal phase-space optical modulator is proposed to realize high-resolution imaging by low-resolution APD array. First, a liquid crystal phase spatial light modulator is used to generate a beam array and then a beam array is scanned. Since the sub-beam divergence angle in the beam array is smaller than the field angle of a single pixel in the APD array, the APD's pixels respond only to the three-dimensional information of the beam illumination position. Through the scanning of the beam array, a single pixel is used to collect the target three-dimensional information multiple times, thereby improving the resolution of the APD detector. Finally, MATLAB is used to simulate the algorithm in this paper by using two-dimensional scalar diffraction theory, which realizes the splitting and scanning with a resolution of 5 x 5. The feasibility is verified theoretically.
NASA Astrophysics Data System (ADS)
Shume, E. B.; Komjathy, A.; Langley, R. B.; Verkhoglyadova, O. P.; Butala, M.; Mannucci, A. J.
2014-12-01
In this research, we report intermediate scale plasma density irregularities in the high-latitude ionosphere inferred from high-resolution radio occultation (RO) measurements in the CASSIOPE (CAScade Smallsat and IOnospheric Polar Explorer) - GPS (Global Positioning System) satellites radio link. The high inclination of the CASSIOPE satellite and high rate of signal receptionby the occultation antenna of the GPS Attitude, Positioning and Profiling (GAP) instrument on the Enhanced Polar Outflow Probe platform on CASSIOPE enable a high temporal and spatial resolution investigation of the dynamics of the polar ionosphere, magnetosphere-ionospherecoupling, solar wind effects, etc. with unprecedented details compared to that possible in the past. We have carried out high spatial resolution analysis in altitude and geomagnetic latitude of scintillation-producing plasma density irregularities in the polar ionosphere. Intermediate scale, scintillation-producing plasma density irregularities, which corresponds to 2 to 40 km spatial scales were inferred by applying multi-scale spectral analysis on the RO phase delay measurements. Using our multi-scale spectral analysis approach and Polar Operational Environmental Satellites (POES) and Defense Meteorological Satellite Program (DMSP) observations, we infer that the irregularity scales and phase scintillations have distinct features in the auroral oval and polar cap regions. In specific terms, we found that large length scales and and more intense phase scintillations are prevalent in the auroral oval compared to the polar cap region. Hence, the irregularity scales and phase scintillation characteristics are a function of the solar wind and the magnetospheric forcing. Multi-scale analysis may become a powerful diagnostic tool for characterizing how the ionosphere is dynamically driven by these factors.
NASA Astrophysics Data System (ADS)
Chen, Hao; Zhang, Xinggan; Bai, Yechao; Tang, Lan
2017-01-01
In inverse synthetic aperture radar (ISAR) imaging, the migration through resolution cells (MTRCs) will occur when the rotation angle of the moving target is large, thereby degrading image resolution. To solve this problem, an ISAR imaging method based on segmented preprocessing is proposed. In this method, the echoes of large rotating target are divided into several small segments, and every segment can generate a low-resolution image without MTRCs. Then, each low-resolution image is rotated back to the original position. After image registration and phase compensation, a high-resolution image can be obtained. Simulation and real experiments show that the proposed algorithm can deal with the radar system with different range and cross-range resolutions and significantly compensate the MTRCs.
Vera, C M; Shock, D; Dennis, G R; Farrell, W; Shalliker, R A
2017-04-14
The chiral separation of d- and l- FMOC amino acids was undertaken using the Lux Cellulose-1 polysaccharide based chiral column in HPLC (normal phase and reverse phase) and SFC conditions. This was done to compare the relative selectivity and separation between the three separation modes and to evaluate the potential benefits of SFC separations with regards to resolution, throughput, economic and environmental impact. It was established that the separation of d- and l- FMOC amino acids in SFC displayed behaviours that were similar to both normal phase and reversed phase, rather than distinctly one or the other. Additionally, although reversed phase conditions yielded significantly higher resolution values between enantiomers across the range of amino acids studied, improvements in selectivity in SFC via the introduction of higher concentrations of formic acid in the mobile phase allowed for better resolution per unit of time. Moreover since the SFC mobile phase is composed mostly of recyclable CO 2 , there is a reduction in organic solvent consumption, which minimises the economic and environmental costs. Copyright © 2017. Published by Elsevier B.V.
High-resolution electron microscopy and its applications.
Li, F H
1987-12-01
A review of research on high-resolution electron microscopy (HREM) carried out at the Institute of Physics, the Chinese Academy of Sciences, is presented. Apart from the direct observation of crystal and quasicrystal defects for some alloys, oxides, minerals, etc., and the structure determination for some minute crystals, an approximate image-contrast theory named pseudo-weak-phase object approximation (PWPOA), which shows the image contrast change with crystal thickness, is described. Within the framework of PWPOA, the image contrast of lithium ions in the crystal of R-Li2Ti3O7 has been observed. The usefulness of diffraction analysis techniques such as the direct method and Patterson method in HREM is discussed. Image deconvolution and resolution enhancement for weak-phase objects by use of the direct method are illustrated. In addition, preliminary results of image restoration for thick crystals are given.
Recent developments in heterodyne laser interferometry at Harbin Institute of Technology
NASA Astrophysics Data System (ADS)
Hu, P. C.; Tan, J. B. B.; Yang, H. X. X.; Fu, H. J. J.; Wang, Q.
2013-01-01
In order to fulfill the requirements for high-resolution and high-precision heterodyne interferometric technologies and instruments, the laser interferometry group of HIT has developed some novel techniques for high-resolution and high-precision heterodyne interferometers, such as high accuracy laser frequency stabilization, dynamic sub-nanometer resolution phase interpolation and dynamic nonlinearity measurement. Based on a novel lock point correction method and an asymmetric thermal structure, the frequency stabilized laser achieves a long term stability of 1.2×10-8, and it can be steadily stabilized even in the air flowing up to 1 m/s. In order to achieve dynamic sub-nanometer resolution of laser heterodyne interferometers, a novel phase interpolation method based on digital delay line is proposed. Experimental results show that, the proposed 0.62 nm, phase interpolator built with a 64 multiple PLL and an 8-tap digital delay line achieves a static accuracy better than 0.31nm and a dynamic accuracy better than 0.62 nm over the velocity ranging from -2 m/s to 2 m/s. Meanwhile, an accuracy beam polarization measuring setup is proposed to check and ensure the light's polarization state of the dual frequency laser head, and a dynamic optical nonlinearity measuring setup is built to measure the optical nonlinearity of the heterodyne system accurately and quickly. Analysis and experimental results show that, the beam polarization measuring setup can achieve an accuracy of 0.03° in ellipticity angles and an accuracy of 0.04° in the non-orthogonality angle respectively, and the optical nonlinearity measuring setup can achieve an accuracy of 0.13°.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueno, Yuko; Matsumoto, Takashi; Yamano, Akihito
2013-07-12
Highlights: •A single amino acid change on the ferredoxin surface affects electron transfer. •Precise positions of amide atoms were located utilizing no prior structural data. •Ultra high resolution and SAD phasing may be used for bias-free model building. -- Abstract: Cyanidioschyzon merolae (Cm) is a single cell red algae that grows in rather thermophilic (40–50 °C) and acidic (pH 1–3) conditions. Ferredoxin (Fd) was purified from this algae and characterized as a plant-type [2Fe–2S] Fd by physicochemical techniques. A high resolution (0.97 Å) three-dimensional structure of the CmFd D58N mutant molecule has been determined using the Fe-SAD phasing method tomore » clarify the precise position of the Asn58 amide, as this substitution increases the electron-transfer ability relative to wild-type CmFd by a factor of 1.5. The crystal structure reveals an electro-positive surface surrounding Asn58 that may interact with ferredoxin NADP{sup +} reductase or cytochrome c.« less
Cooke, D. Wayne; Jahan, Muhammad S.
1989-01-01
Detection of surface impurity phases in high-temperature superconducting materials. Thermally stimulated luminescence has been found to occur in insulating impurity phases which commonly exist in high-temperature superconducting materials. The present invention is sensitive to impurity phases occurring at a level of less than 1% with a probe depth of about 1 .mu.m which is the region of interest for many superconductivity applications. Spectroscopic and spatial resolution of the emitted light from a sample permits identification and location of the impurity species. Absence of luminescence, and thus of insulating phases, can be correlated with low values of rf surface resistance.
Resonating periodic waveguides as ultraresolution sensors in biomedicine
NASA Astrophysics Data System (ADS)
Wawro, Debra D.; Priambodo, Purnomo; Magnusson, Robert
2004-10-01
Optical sensor technology based on subwavelength periodic waveguides is applied for tag-free, high-resolution biomedical and chemical detection. Measured resonance wavelength shifts of 6.4 nm for chemically attached Bovine Serum Albumin agree well with theory for a sensor tested in air. Reflection peak efficiencies of 90% are measured, and do not degrade upon biolayer attachment. Phase detection methods are investigated to enhance sensor sensitivity and resolution. Direct measurement of the resonant phase response is reported for the first time using ellipsometric measurement techniques.
In-plane "superresolution" MRI with phaseless sub-pixel encoding.
Hennel, Franciszek; Tian, Rui; Engel, Maria; Pruessmann, Klaas P
2018-04-15
Acquisition of high-resolution imaging data using multiple excitations without the sensitivity to fluctuations of the transverse magnetization phase, which is a major problem of multi-shot MRI. The concept of superresolution MRI based on microscopic tagging is analyzed using an analogy with the optical method of structured illumination. Sinusoidal tagging is shown to provide subpixel resolution by mixing of neighboring spatial frequency (k-space) bands. It represents a phaseless modulation added on top of the standard Fourier encoding, which allows the phase fluctuations to be discarded at an intermediate reconstruction step. Improvements are proposed to correct for tag distortions due to magnetic field inhomogeneity and to avoid the propagation of Gibbs ringing from intermediate low-resolution images to the final image. The method was applied to diffusion-weighted EPI. Artifact-free superresolution images can be obtained despite a finite duration of the tagging sequence and related pattern distortions by a field map based phase correction of band-wise reconstructed images. The ringing effect present in the intermediate images can be suppressed by partial overlapping of the mixed k-space bands in combination with an adapted filter. High-resolution diffusion-weighted images of the human head were obtained with a three-shot EPI sequence despite motion-related phase fluctuations between the shots. Due to its phaseless character, tagging-based sub-pixel encoding is an alternative to k-space segmenting in the presence of unknown phase fluctuations, in particular those due to motion under strong diffusion gradients. Proposed improvements render the method practicable in realistic conditions. © 2018 International Society for Magnetic Resonance in Medicine.
Lensless transport-of-intensity phase microscopy and tomography with a color LED matrix
NASA Astrophysics Data System (ADS)
Zuo, Chao; Sun, Jiasong; Zhang, Jialin; Hu, Yan; Chen, Qian
2015-07-01
We demonstrate lens-less quantitative phase microscopy and diffraction tomography based on a compact on-chip platform, using only a CMOS image sensor and a programmable color LED array. Based on multi-wavelength transport-of- intensity phase retrieval and multi-angle illumination diffraction tomography, this platform offers high quality, depth resolved images with a lateral resolution of ˜3.7μm and an axial resolution of ˜5μm, over wide large imaging FOV of 24mm2. The resolution and FOV can be further improved by using a larger image sensors with small pixels straightforwardly. This compact, low-cost, robust, portable platform with a decent imaging performance may offer a cost-effective tool for telemedicine needs, or for reducing health care costs for point-of-care diagnostics in resource-limited environments.
Combined dispersive/interference spectroscopy for producing a vector spectrum
Erskine, David J.
2002-01-01
A method of measuring the spectral properties of broadband waves that combines interferometry with a wavelength disperser having many spectral channels to produce a fringing spectrum. Spectral mapping, Doppler shifts, metrology of angles, distances and secondary effects such as temperature, pressure, and acceleration which change an interferometer cavity length can be measured accurately by a compact instrument using broadband illumination. Broadband illumination avoids the fringe skip ambiguities of monochromatic waves. The interferometer provides arbitrarily high spectral resolution, simple instrument response, compactness, low cost, high field of view and high efficiency. The inclusion of a disperser increases fringe visibility and signal to noise ratio over an interferometer used alone for broadband waves. The fringing spectrum is represented as a wavelength dependent 2-d vector, which describes the fringe amplitude and phase. Vector mathematics such as generalized dot products rapidly computes average broadband phase shifts to high accuracy. A Moire effect between the interferometer's sinusoidal transmission and the illumination heterodynes high resolution spectral detail to low spectral detail, allowing the use of a low resolution disperser. Multiple parallel interferometer cavities of fixed delay allow the instantaneous mapping of a spectrum, with an instrument more compact for the same spectral resolution than a conventional dispersive spectrometer, and not requiring a scanning delay.
NASA Astrophysics Data System (ADS)
Mehta, Dalip Singh; Ahmad, Azeem; Dubey, Vishesh; Singh, Veena; Butola, Ankit; Mohanty, Tonmoy; Nandi, Sreyankar
2018-02-01
We report longitudinal spatial coherence (LSC) gated high-resolution tomography and quantitative phase microscopy of biological cells and tissues with uniform illumination using laser as a light source. To accomplish this a pseudo thermal light source was synthesized by passing laser beams through an optical system, which is basically a speckle reduction system with combined effect of spatial, temporal, angular and polarisation diversity. The longitudinal spatial coherence length of such light was significantly reduced by synthesizing a pseudo thermal source with the combined effect of spatial, angular and temporal diversity. This results in a low spatially coherent (i.e., broad angular frequency spectrum) light source with narrow temporal frequency spectrum. Light from such a pseudo thermal light source was passed through an interference microscope with varying magnification, such as, 10X and 50X. The interference microscope was used for full-field OCT imaging of multilayer objects and topography of industrial objects. Experimental results of optical sectioning of multilayer biological objects with high axial-resolution less than 10μm was achieved which is comparable to broadband white light source. The synthesized light source with reduced speckles having uniform illumination on the sample, which can be very useful for fluorescence microscopy as well as quantitative phase microscopy with less phase noise. The present system does not require any dispersion compensation optical system for biological samples as a highly monochromatic light source is used.
Holloway, Jason; Wu, Yicheng; Sharma, Manoj K.; Cossairt, Oliver; Veeraraghavan, Ashok
2017-01-01
Synthetic aperture radar is a well-known technique for improving resolution in radio imaging. Extending these synthetic aperture techniques to the visible light domain is not straightforward because optical receivers cannot measure phase information. We propose to use macroscopic Fourier ptychography (FP) as a practical means of creating a synthetic aperture for visible imaging to achieve subdiffraction-limited resolution. We demonstrate the first working prototype for macroscopic FP in a reflection imaging geometry that is capable of imaging optically rough objects. In addition, a novel image space denoising regularization is introduced during phase retrieval to reduce the effects of speckle and improve perceptual quality of the recovered high-resolution image. Our approach is validated experimentally where the resolution of various diffuse objects is improved sixfold. PMID:28439550
Cloud properties inferred from 8-12 micron data
NASA Technical Reports Server (NTRS)
Strabala, Kathleen I.; Ackerman, Steven A.; Menzel, W. Paul
1994-01-01
A trispectral combination of observations at 8-, 11-, and 12-micron bands is suggested for detecting cloud and cloud properties in the infrared. Atmospheric ice and water vapor absorption peak in opposite halves of the window region so that positive 8-minus-11-micron brightness temperature differences indicate cloud, while near-zero or negative differences indicate clear regions. The absorption coefficient for water increases more between 11 and 12 microns than between 8 and 11 microns, while for ice, the reverse is true. Cloud phases is determined by a scatter diagram of 8-minus-11-micron versus 11-minus-12-micron brightness temperature differences; ice cloud shows a slope greater than 1 and water cloud less than 1. The trispectral brightness temperature method was tested upon high-resolution interferometer data resulting in clear-cloud and cloud-phase delineation. Simulations using differing 8-micron bandwidths revealed no significant degradation of cloud property detection. Thus, the 8-micron bandwidth for future satellites can be selected based on the requirements of other applications, such as surface characterization studies. Application of the technique to current polar-orbiting High-Resolution Infrared Sounder (HIRS)-Advanced Very High Resolution Radiometer (AVHRR) datasets is constrained by the nonuniformity of the cloud scenes sensed within the large HIRS field of view. Analysis of MAS (MODIS Airborne Simulator) high-spatial resolution (500 m) data with all three 8-, 11-, and 12-micron bands revealed sharp delineation of differing cloud and background scenes, from which a simple automated threshold technique was developed. Cloud phase, clear-sky, and qualitative differences in cloud emissivity and cloud height were identified on a case study segment from 24 November 1991, consistent with the scene. More rigorous techniques would allow further cloud parameter clarification. The opportunities for global cloud delineation with the Moderate-Resolution Imaging Spectrometer (MODIS) appear excellent. The spectral selection, the spatial resolution, and the global coverage are all well suited for significant advances.
Are Human Peripheral Nerves Sensitive to X-Ray Imaging?
Scopel, Jonas Francisco; de Souza Queiroz, Luciano; O’Dowd, Francis Pierce; Júnior, Marcondes Cavalcante França; Nucci, Anamarli; Hönnicke, Marcelo Gonçalves
2015-01-01
Diagnostic imaging techniques play an important role in assessing the exact location, cause, and extent of a nerve lesion, thus allowing clinicians to diagnose and manage more effectively a variety of pathological conditions, such as entrapment syndromes, traumatic injuries, and space-occupying lesions. Ultrasound and nuclear magnetic resonance imaging are becoming useful methods for this purpose, but they still lack spatial resolution. In this regard, recent phase contrast x-ray imaging experiments of peripheral nerve allowed the visualization of each nerve fiber surrounded by its myelin sheath as clearly as optical microscopy. In the present study, we attempted to produce high-resolution x-ray phase contrast images of a human sciatic nerve by using synchrotron radiation propagation-based imaging. The images showed high contrast and high spatial resolution, allowing clear identification of each fascicle structure and surrounding connective tissue. The outstanding result is the detection of such structures by phase contrast x-ray tomography of a thick human sciatic nerve section. This may further enable the identification of diverse pathological patterns, such as Wallerian degeneration, hypertrophic neuropathy, inflammatory infiltration, leprosy neuropathy and amyloid deposits. To the best of our knowledge, this is the first successful phase contrast x-ray imaging experiment of a human peripheral nerve sample. Our long-term goal is to develop peripheral nerve imaging methods that could supersede biopsy procedures. PMID:25757086
Spheroid imaging of phase-diversity homodyne OCT
NASA Astrophysics Data System (ADS)
Senda, Naoko; Osawa, Kentaro
2017-02-01
Non-invasive 3D imaging technique is essential for regenerative tissues evaluation. Optical coherence tomography (OCT) is one of 3D imaging tools with no staining and is used extensively for fundus examination. We have developed Phase-Diversity Homodyne OCT which enables cell imaging because of high resolution, whereas conventional OCT was not used for cell imaging because of low resolution. We demonstrated non-invasive imaging inside living spheroids with Phase-Diversity Homodyne OCT. Spheroids are spheroidal cell aggregates and used as regenerative tissues. Cartilage cells were cultured in low-adhesion 96-well plates and spheroids were manufactured. Cell membrane and cytoplasm of spheroid were imaged with OCT.
The phase-contrast imaging instrument at the matter in extreme conditions endstation at LCLS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagler, Bob; Schropp, Andreas; Galtier, Eric C.
2016-10-07
Here, we describe the phase-contrast imaging instrument at the Matter in Extreme Conditions (MEC) endstation of the Linac Coherent Light Source. The instrument can image phenomena with a spatial resolution of a few hundreds of nanometers and at the same time reveal the atomic structure through X-ray diffraction, with a temporal resolution better than 100 fs. It was specifically designed for studies relevant to high-energy-density science and can monitor, e.g., shock fronts, phase transitions, or void collapses. This versatile instrument was commissioned last year and is now available to the MEC user community.
REVIEWS OF TOPICAL PROBLEMS: Global phase-stable radiointerferometric systems
NASA Astrophysics Data System (ADS)
Dravskikh, A. F.; Korol'kov, Dimitrii V.; Pariĭskiĭ, Yu N.; Stotskiĭ, A. A.; Finkel'steĭn, A. M.; Fridman, P. A.
1981-12-01
We discuss from a unitary standpoint the possibility of building a phase-stable interferometric system with very long baselines that operate around the clock with real-time data processing. The various problems involved in the realization of this idea are discussed: the methods of suppression of instrumental and tropospheric phase fluctuations, the methods for constructing two-dimensional images and determining the coordinates of radio sources with high angular resolution, and the problem of the optimal structure of the interferometric system. We review in detail the scientific problems from the various branches of natural science (astrophysics, cosmology, geophysics, geodynamics, astrometry, etc.) whose solution requires superhigh angular resolution.
Zarzycki, Colin M.; Thatcher, Diana R.; Jablonowski, Christiane
2017-01-22
This paper describes an objective technique for detecting the extratropical transition (ET) of tropical cyclones (TCs) in high-resolution gridded climate data. The algorithm is based on previous observational studies using phase spaces to define the symmetry and vertical thermal structure of cyclones. Storm tracking is automated, allowing for direct analysis of climate data. Tracker performance in the North Atlantic is assessed using 23 years of data from the variable-resolution Community Atmosphere Model (CAM) at two different resolutions (DX 55 km and 28 km), the Climate Forecast System Reanalysis (CFSR, DX 38 km), and the ERA-Interim Reanalysis (ERA-I, DX 80 km).more » The mean spatiotemporal climatologies and seasonal cycles of objectively detected ET in the observationally constrained CFSR and ERA-I are well matched to previous observational studies, demonstrating the capability of the scheme to adequately find events. High resolution CAM reproduces TC and ET statistics that are in general agreement with reanalyses. One notable model bias, however, is significantly longer time between ET onset and ET completion in CAM, particularly for TCs that lose symmetry prior to developing a cold-core structure and becoming extratropical cyclones, demonstrating the capability of this method to expose model biases in simulated cyclones beyond the tropical phase.« less
A Complex Solar Coronal Jet with Two Phases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jie; Su, Jiangtao; Deng, Yuanyong
2017-05-01
Jets often occur repeatedly from almost the same location. In this paper, a complex solar jet was observed with two phases to the west of NOAA AR 11513 on 2012 July 2. If it had been observed at only moderate resolution, the two phases and their points of origin would have been regarded as identical. However, at high resolution we find that the two phases merge into one another and the accompanying footpoint brightenings occur at different locations. The phases originate from different magnetic patches rather than being one phase originating from the same patch. Photospheric line of sight (LOS)more » magnetograms show that the bases of the two phases lie in two different patches of magnetic flux that decrease in size during the occurrence of the two phases. Based on these observations, we suggest that the driving mechanism of the two successive phases is magnetic cancellation of two separate magnetic fragments with an opposite-polarity fragment between them.« less
Soft x-ray coherent diffraction imaging on magnetic nanostructures
NASA Astrophysics Data System (ADS)
Shi, Xiaowen; Lee, James; Mishra, Shrawan; Parks, Daniel; Tyliszczak, Tolek; Shapiro, David; Roy, Sujoy; Kevan, Steve; Stxm Team At Als Collaboration; Soft X-Ray Microscopy Group At Als Collaboration; Soft X-ray scattering at ALS, LBL Team
2014-03-01
Coherent soft X-rays diffraction imaging enable coherent magnetic resonance scattering at transition metal L-edge to be probed so that magnetic domains could be imaged with very high spatial resolution with phase contrast, reaching sub-10nm. One of the overwhelming advantages of using coherent X-rays is the ability to resolve phase contrast images with linearly polarized light with both phase and absorption contrast comparing to real-space imaging, which can only be studied with circularly polarized light with absorption contrast only. Here we report our first results on high-resolution of magnetic domains imaging of CoPd multilayer thin film with coherent soft X-ray ptychography method. We are aiming to resolve and understand magnetic domain wall structures with the highest obtainable resolution here at Advanced Light Source. In principle types of magnetic domain walls could be studied so that Neel or Bloch walls can be distinguished by imaging. This work at LBNL was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy (contract no. DE-AC02- 05CH11231).
Multiplexed phase-space imaging for 3D fluorescence microscopy.
Liu, Hsiou-Yuan; Zhong, Jingshan; Waller, Laura
2017-06-26
Optical phase-space functions describe spatial and angular information simultaneously; examples of optical phase-space functions include light fields in ray optics and Wigner functions in wave optics. Measurement of phase-space enables digital refocusing, aberration removal and 3D reconstruction. High-resolution capture of 4D phase-space datasets is, however, challenging. Previous scanning approaches are slow, light inefficient and do not achieve diffraction-limited resolution. Here, we propose a multiplexed method that solves these problems. We use a spatial light modulator (SLM) in the pupil plane of a microscope in order to sequentially pattern multiplexed coded apertures while capturing images in real space. Then, we reconstruct the 3D fluorescence distribution of our sample by solving an inverse problem via regularized least squares with a proximal accelerated gradient descent solver. We experimentally reconstruct a 101 Megavoxel 3D volume (1010×510×500µm with NA 0.4), demonstrating improved acquisition time, light throughput and resolution compared to scanning aperture methods. Our flexible patterning scheme further allows sparsity in the sample to be exploited for reduced data capture.
Morgan, Kaye S; Paganin, David M; Siu, Karen K W
2011-01-01
The ability to quantitatively retrieve transverse phase maps during imaging by using coherent x rays often requires a precise grating or analyzer-crystal-based setup. Imaging of live animals presents further challenges when these methods require multiple exposures for image reconstruction. We present a simple method of single-exposure, single-grating quantitative phase contrast for a regime in which the grating period is much greater than the effective pixel size. A grating is used to create a high-visibility reference pattern incident on the sample, which is distorted according to the complex refractive index and thickness of the sample. The resolution, along a line parallel to the grating, is not restricted by the grating spacing, and the detector resolution becomes the primary determinant of the spatial resolution. We present a method of analysis that maps the displacement of interrogation windows in order to retrieve a quantitative phase map. Application of this analysis to the imaging of known phantoms shows excellent correspondence.
High Resolution Deformation Time Series Estimation for Distributed Scatterers Using Terrasar-X Data
NASA Astrophysics Data System (ADS)
Goel, K.; Adam, N.
2012-07-01
In recent years, several SAR satellites such as TerraSAR-X, COSMO-SkyMed and Radarsat-2 have been launched. These satellites provide high resolution data suitable for sophisticated interferometric applications. With shorter repeat cycles, smaller orbital tubes and higher bandwidth of the satellites; deformation time series analysis of distributed scatterers (DSs) is now supported by a practical data basis. Techniques for exploiting DSs in non-urban (rural) areas include the Small Baseline Subset Algorithm (SBAS). However, it involves spatial phase unwrapping, and phase unwrapping errors are typically encountered in rural areas and are difficult to detect. In addition, the SBAS technique involves a rectangular multilooking of the differential interferograms to reduce phase noise, resulting in a loss of resolution and superposition of different objects on ground. In this paper, we introduce a new approach for deformation monitoring with a focus on DSs, wherein, there is no need to unwrap the differential interferograms and the deformation is mapped at object resolution. It is based on a robust object adaptive parameter estimation using single look differential interferograms, where, the local tilts of deformation velocity and local slopes of residual DEM in range and azimuth directions are estimated. We present here the technical details and a processing example of this newly developed algorithm.
NASA Technical Reports Server (NTRS)
Tarbell, Theodore D.; Topka, Kenneth P.
1992-01-01
The definition phase of a scientific study of active regions on the sun by balloon flight of a former Spacelab instrument, the Solar Optical Universal Polarimeter (SOUP) is described. SOUP is an optical telescope with image stabilization, tunable filter and various cameras. After the flight phase of the program was cancelled due to budgetary problems, scientific and engineering studies relevant to future balloon experiments of this type were completed. High resolution observations of the sun were obtained using SOUP components at the Swedish Solar Observatory in the Canary Islands. These were analyzed and published in studies of solar magnetic fields and active regions. In addition, testing of low-voltage piezoelectric transducers was performed, which showed they were appropriate for use in image stabilization on a balloon.
NASA Astrophysics Data System (ADS)
Ismail, I.; Guillemin, R.; Marchenko, T.; Travnikova, O.; Ablett, J. M.; Rueff, J.-P.; Piancastelli, M.-N.; Simon, M.; Journel, L.
2018-06-01
A new setup has been designed and built to study organometallic complexes in gas phase at the third-generation Synchrotron radiation sources. This setup consists of a new homemade computer-controlled gas cell that allows us to sublimate solid samples by accurately controlling the temperature. This cell has been developed to be a part of the high-resolution X-ray emission spectrometer permanently installed at the GALAXIES beamline of the French National Synchrotron Facility SOLEIL. To illustrate the capabilities of the setup, the cell has been successfully used to record high-resolution Kα emission spectra of gas-phase ferrocene F e (C5H5) 2 and to characterize their dependence with the excitation energy. This will allow to extend resonant X-ray emission to different organometallic molecules.
Detecting phase-amplitude coupling with high frequency resolution using adaptive decompositions
Pittman-Polletta, Benjamin; Hsieh, Wan-Hsin; Kaur, Satvinder; Lo, Men-Tzung; Hu, Kun
2014-01-01
Background Phase-amplitude coupling (PAC) – the dependence of the amplitude of one rhythm on the phase of another, lower-frequency rhythm – has recently been used to illuminate cross-frequency coordination in neurophysiological activity. An essential step in measuring PAC is decomposing data to obtain rhythmic components of interest. Current methods of PAC assessment employ narrowband Fourier-based filters, which assume that biological rhythms are stationary, harmonic oscillations. However, biological signals frequently contain irregular and nonstationary features, which may contaminate rhythms of interest and complicate comodulogram interpretation, especially when frequency resolution is limited by short data segments. New method To better account for nonstationarities while maintaining sharp frequency resolution in PAC measurement, even for short data segments, we introduce a new method of PAC assessment which utilizes adaptive and more generally broadband decomposition techniques – such as the empirical mode decomposition (EMD). To obtain high frequency resolution PAC measurements, our method distributes the PAC associated with pairs of broadband oscillations over frequency space according to the time-local frequencies of these oscillations. Comparison with existing methods We compare our novel adaptive approach to a narrowband comodulogram approach on a variety of simulated signals of short duration, studying systematically how different types of nonstationarities affect these methods, as well as on EEG data. Conclusions Our results show: (1) narrowband filtering can lead to poor PAC frequency resolution, and inaccuracy and false negatives in PAC assessment; (2) our adaptive approach attains better PAC frequency resolution and is more resistant to nonstationarities and artifacts than traditional comodulograms. PMID:24452055
Yücelen, Emrah; Lazić, Ivan; Bosch, Eric G T
2018-02-08
Using state of the art scanning transmission electron microscopy (STEM) it is nowadays possible to directly image single atomic columns at sub-Å resolution. In standard (high angle) annular dark field STEM ((HA)ADF-STEM), however, light elements are usually invisible when imaged together with heavier elements in one image. Here we demonstrate the capability of the recently introduced Integrated Differential Phase Contrast STEM (iDPC-STEM) technique to image both light and heavy atoms in a thin sample at sub-Å resolution. We use the technique to resolve both the Gallium and Nitrogen dumbbells in a GaN crystal in [[Formula: see text
Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution
Yan, Hanfei; Nazaretski, Evgeny; Lauer, Kenneth R.; ...
2016-02-05
Here, we developed a scanning hard x-ray microscope using a new class of x-ray nano-focusing optic called a multilayer Laue lens and imaged a chromosome with nanoscale spatial resolution. The combination of the hard x-ray's superior penetration power, high sensitivity to elemental composition, high spatial-resolution and quantitative analysis creates a unique tool with capabilities that other microscopy techniques cannot provide. Using this microscope, we simultaneously obtained absorption-, phase-, and fluorescence-contrast images of Pt-stained human chromosome samples. The high spatial-resolution of the microscope and its multi-modality imaging capabilities enabled us to observe the internal ultra-structures of a thick chromosome without sectioningmore » it.« less
Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Hanfei; Nazaretski, Evgeny; Lauer, Kenneth R.
Here, we developed a scanning hard x-ray microscope using a new class of x-ray nano-focusing optic called a multilayer Laue lens and imaged a chromosome with nanoscale spatial resolution. The combination of the hard x-ray's superior penetration power, high sensitivity to elemental composition, high spatial-resolution and quantitative analysis creates a unique tool with capabilities that other microscopy techniques cannot provide. Using this microscope, we simultaneously obtained absorption-, phase-, and fluorescence-contrast images of Pt-stained human chromosome samples. The high spatial-resolution of the microscope and its multi-modality imaging capabilities enabled us to observe the internal ultra-structures of a thick chromosome without sectioningmore » it.« less
Erb-Eigner, Katharina; Taupitz, Matthias; Asbach, Patrick
2016-01-01
The purpose of this study was to compare contrast and image quality of whole-body equilibrium-phase high-spatial-resolution MR angiography using a non-protein-binding unspecific extracellular gadolinium-based contrast medium with that of two contrast media with different protein-binding properties. 45 patients were examined using either 15 mL of gadobutrol (non-protein-binding, n = 15), 32 mL of gadobenate dimeglumine (weakly protein binding, n = 15) or 11 mL gadofosveset trisodium (protein binding, n = 15) followed by equilibrium-phase high-spatial-resolution MR-angiography of four consecutive anatomic regions. The time elapsed between the contrast injection and the beginning of the equilibrium-phase image acquisition in the respective region was measured and was up to 21 min. Signal intensity was measured in two vessels per region and in muscle tissue. Relative contrast (RC) values were calculated. Vessel contrast, artifacts and image quality were rated by two radiologists in consensus on a five-point scale. Compared with gadobutrol, gadofosveset trisodium revealed significantly higher RC values only when acquired later than 15 min after bolus injection. Otherwise, no significant differences between the three contrast media were found regarding vascular contrast and image quality. Equilibrium-phase high-spatial-resolution MR-angiography using a weakly protein-binding or even non-protein-binding contrast medium is equivalent to using a stronger protein-binding contrast medium when image acquisition is within the first 15 min after contrast injection, and allows depiction of the vasculature with high contrast and image quality. The protein-binding contrast medium was superior for imaging only later than 15 min after contrast medium injection. Copyright © 2015 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Z; Pang, J; Yang, W
Purpose: To develop a retrospective 4D-MRI technique (respiratory phase-resolved 3D-MRI) for providing an accurate assessment of tumor motion secondary to respiration. Methods: A 3D projection reconstruction (PR) sequence with self-gating (SG) was developed for 4D-MRI on a 3.0T MRI scanner. The respiration-induced shift of the imaging target was recorded by SG signals acquired in the superior-inferior direction every 15 radial projections (i.e. temporal resolution 98 ms). A total of 73000 radial projections obtained in 8-min were retrospectively sorted into 10 time-domain evenly distributed respiratory phases based on the SG information. Ten 3D image sets were then reconstructed offline. The techniquemore » was validated on a motion phantom (gadolinium-doped water-filled box, frequency of 10 and 18 cycles/min) and humans (4 healthy and 2 patients with liver tumors). Imaging protocol included 8-min 4D-MRI followed by 1-min 2D-realtime (498 ms/frame) MRI as a reference. Results: The multiphase 3D image sets with isotropic high spatial resolution (1.56 mm) permits flexible image reformatting and visualization. No intra-phase motion-induced blurring was observed. Comparing to 2D-realtime, 4D-MRI yielded similar motion range (phantom: 10.46 vs. 11.27 mm; healthy subject: 25.20 vs. 17.9 mm; patient: 11.38 vs. 9.30 mm), reasonable displacement difference averaged over the 10 phases (0.74mm; 3.63mm; 1.65mm), and excellent cross-correlation (0.98; 0.96; 0.94) between the two displacement series. Conclusion: Our preliminary study has demonstrated that the 4D-MRI technique can provide high-quality respiratory phase-resolved 3D images that feature: a) isotropic high spatial resolution, b) a fixed scan time of 8 minutes, c) an accurate estimate of average motion pattern, and d) minimal intra-phase motion artifact. This approach has the potential to become a viable alternative solution to assess the impact of breathing on tumor motion and determine appropriate treatment margins. Comparison with 4D-CT in a clinical setting is warranted to assess the value of 4D-MRI in radiotherapy planning. This work supported in part by grant 1R03CA173273-01.« less
Single grating x-ray imaging for dynamic biological systems
NASA Astrophysics Data System (ADS)
Morgan, Kaye S.; Paganin, David M.; Parsons, David W.; Donnelley, Martin; Yagi, Naoto; Uesugi, Kentaro; Suzuki, Yoshio; Takeuchi, Akihisa; Siu, Karen K. W.
2012-07-01
Biomedical studies are already benefiting from the excellent contrast offered by phase contrast x-ray imaging, but live imaging work presents several challenges. Living samples make it particularly difficult to achieve high resolution, sensitive phase contrast images, as exposures must be short and cannot be repeated. We therefore present a single-exposure, high-flux method of differential phase contrast imaging [1, 2, 3] in the context of imaging live airways for Cystic Fibrosis (CF) treatment assessment [4]. The CF study seeks to non-invasively observe the liquid lining the airways, which should increase in depth in response to effective treatments. Both high spatial resolution and sensitivity are required in order to track micron size changes in a liquid that is not easily differentiated from the tissue on which it lies. Our imaging method achieves these goals by using a single attenuation grating or grid as a reference pattern, and analyzing how the sample deforms the pattern to quantitatively retrieve the phase depth of the sample. The deformations are mapped at each pixel in the image using local cross-correlations comparing each 'sample and pattern' image with a reference 'pattern only' image taken before the sample is introduced. This produces a differential phase image, which may be integrated to give the sample phase depth.
Delta Ori Phase-Dependent Variability from Chandra and MOST Campaign
NASA Astrophysics Data System (ADS)
Nichols, Joy; Naze, Yael; Moffatt, Anthony F. J.; Corcoran, Michael; Richardson, Noel; Williams, S.; Pollock, A. M. T.; Ignace, Richard; Hole, T.; Waldron, W.; Evans, Nancy Remage; MOST Collaboration
2013-06-01
We report preliminary results from variability analysis of delta Ori in Chandra high-resolution X-ray spectroscopy and concurrent MOST high-precision optical photometry. With nearly complete phase coverage of the 5-day eclipsing binary orbit, it is possible to measure directly radial velocity and flux variations as a function of phase, leading to a mapping of the stellar wind distribution for the massive primary star. The phase dependence of the X-ray overall intensity and the comparative behavior of the emission lines are also presented.
High Resolution X-Ray Phase Contrast Imaging with Acoustic Tissue-Selective Contrast Enhancement
2005-06-01
Ultrasonics Symp 1319 (1999). 17. Sarvazyan, A. P. Shear Wave Elasticity Imaging: A New Ultrasonic Technology of Medical Diagnostics. Ultrasound in...samples using acoustically modulated X-ray phase contrast imaging. 15. SUBJECT TERMS x-ray, ultrasound, phase contrast, imaging, elastography 16...x-rays, phase contrast imaging is based on phase changes as x-rays traverse a body resulting in wave interference that result in intensity changes in
Efficient fabrication method of nano-grating for 3D holographic display with full parallax views.
Wan, Wenqiang; Qiao, Wen; Huang, Wenbin; Zhu, Ming; Fang, Zongbao; Pu, Donglin; Ye, Yan; Liu, Yanhua; Chen, Linsen
2016-03-21
Without any special glasses, multiview 3D displays based on the diffractive optics can present high resolution, full-parallax 3D images in an ultra-wide viewing angle. The enabling optical component, namely the phase plate, can produce arbitrarily distributed view zones by carefully designing the orientation and the period of each nano-grating pixel. However, such 3D display screen is restricted to a limited size due to the time-consuming fabricating process of nano-gratings on the phase plate. In this paper, we proposed and developed a lithography system that can fabricate the phase plate efficiently. Here we made two phase plates with full nano-grating pixel coverage at a speed of 20 mm2/mins, a 500 fold increment in the efficiency when compared to the method of E-beam lithography. One 2.5-inch phase plate generated 9-view 3D images with horizontal-parallax, while the other 6-inch phase plate produced 64-view 3D images with full-parallax. The angular divergence in horizontal axis and vertical axis was 1.5 degrees, and 1.25 degrees, respectively, slightly larger than the simulated value of 1.2 degrees by Finite Difference Time Domain (FDTD). The intensity variation was less than 10% for each viewpoint, in consistency with the simulation results. On top of each phase plate, a high-resolution binary masking pattern containing amplitude information of all viewing zone was well aligned. We achieved a resolution of 400 pixels/inch and a viewing angle of 40 degrees for 9-view 3D images with horizontal parallax. In another prototype, the resolution of each view was 160 pixels/inch and the view angle was 50 degrees for 64-view 3D images with full parallax. As demonstrated in the experiments, the homemade lithography system provided the key fabricating technology for multiview 3D holographic display.
Zhang, Jing; Yuan, Changan; Huang, Guohua; Zhao, Yinjun; Ren, Wenyi; Cao, Qizhi; Li, Jianying; Jin, Mingwu
2018-01-01
A snapshot imaging polarimeter using spatial modulation can encode four Stokes parameters allowing instantaneous polarization measurement from a single interferogram. However, the reconstructed polarization images could suffer a severe aliasing signal if the high-frequency component of the intensity image is prominent and occurs in the polarization channels, and the reconstructed intensity image also suffers reduction of spatial resolution due to low-pass filtering. In this work, a method using two anti-phase snapshots is proposed to address the two problems simultaneously. The full-resolution target image and the pure interference fringes can be obtained from the sum and the difference of the two anti-phase interferograms, respectively. The polarization information reconstructed from the pure interference fringes does not contain the aliasing signal from the high-frequency component of the object intensity image. The principles of the method are derived and its feasibility is tested by both computer simulation and a verification experiment. This work provides a novel method for spatially modulated imaging polarization technology with two snapshots to simultaneously reconstruct a full-resolution object intensity image and high-quality polarization components. PMID:29714224
Gu, Zhi-Yuan; Yang, Cheng-Xiong; Chang, Na; Yan, Xiu-Ping
2012-05-15
In modern analytical chemistry researchers pursue novel materials to meet analytical challenges such as improvements in sensitivity, selectivity, and detection limit. Metal-organic frameworks (MOFs) are an emerging class of microporous materials, and their unusual properties such as high surface area, good thermal stability, uniform structured nanoscale cavities, and the availability of in-pore functionality and outer-surface modification are attractive for diverse analytical applications. This Account summarizes our research on the analytical applications of MOFs ranging from sampling to chromatographic separation. MOFs have been either directly used or engineered to meet the demands of various analytical applications. Bulk MOFs with microsized crystals are convenient sorbents for direct application to in-field sampling and solid-phase extraction. Quartz tubes packed with MOF-5 have shown excellent stability, adsorption efficiency, and reproducibility for in-field sampling and trapping of atmospheric formaldehyde. The 2D copper(II) isonicotinate packed microcolumn has demonstrated large enhancement factors and good shape- and size-selectivity when applied to on-line solid-phase extraction of polycyclic aromatic hydrocarbons in water samples. We have explored the molecular sieving effect of MOFs for the efficient enrichment of peptides with simultaneous exclusion of proteins from biological fluids. These results show promise for the future of MOFs in peptidomics research. Moreover, nanosized MOFs and engineered thin films of MOFs are promising materials as novel coatings for solid-phase microextraction. We have developed an in situ hydrothermal growth approach to fabricate thin films of MOF-199 on etched stainless steel wire for solid-phase microextraction of volatile benzene homologues with large enhancement factors and wide linearity. Their high thermal stability and easy-to-engineer nanocrystals make MOFs attractive as new stationary phases to fabricate MOF-coated capillaries for high-resolution gas chromatography (GC). We have explored a dynamic coating approach to fabricate a MOF-coated capillary for the GC separation of important raw chemicals and persistent organic pollutants with high resolution and excellent selectivity. We have combined a MOF-coated fiber for solid-phase microextraction with a MOF-coated capillary for GC separation, which provides an effective MOF-based tandem molecular sieve platform for selective microextraction and high-resolution GC separation of target analytes in complex samples. Microsized MOFs with good solvent stability are attractive stationary phases for high-performance liquid chromatography (HPLC). These materials have shown high resolution and good selectivity and reproducibility in both the normal-phase HPLC separation of fullerenes and substituted aromatics on MIL-101 packed columns and position isomers on a MIL-53(Al) packed column and the reversed-phase HPLC separation of a wide range of analytes from nonpolar to polar and acidic to basic solutes. Despite the above achievements, further exploration of MOFs in analytical chemistry is needed. Especially, analytical application-oriented engineering of MOFs is imperative for specific applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Li; Chen, Shunli; Wang, Hongfei
2016-03-03
Reliably determination of the spectral features and their phases in sum-frequency generation vibrational spectroscopy (SFG-VS) for surfaces with closely overlapping peaks has been a standing issue. Here we present two approaches towards resolving such issue. The first utilizes the high resolution and accurate lineshape from the recently developed sub-wavenumber high resolution broadband SFG-VS (HR-BB-SFG-VS), from which the detail spectral parameters, including relative spectral phases, of overlapping peaks can be determined through reliable spectral fitting. These results are further validated by using the second method that utilizes the azimuthal angle phase dependence of the z-cut α-quartz crystal, a common phase standard,more » through the spectral interference between the SFG fields of the quartz surface, as the internal phase reference, and the adsorbed molecular layer. Even though this approach is limited to molecular layers that can be transferred or deposited onto the quartz surface, it is simple and straightforward, as it requires only an internal phase standard with a single measurement that is free of phase drifts. More importantly, it provides unambiguous SFG spectral phase information of such surfaces. Using this method, the absolute phase of the molecular susceptibility tensors of the CH3, CH2 and chiral C-H groups in different Langmuir-Blodgett (LB) molecular monolayers and drop-cast peptide films are determined. These two approaches are fully consistent with and complement to each other, making both easily applicable tools in SFG-VS studies. More importantly, as the HR-BB-SFG-VS technique can be easily applied to various surfaces and interfaces, such validation of the spectral and phase information from HR-BB-SFG-VS measurement demonstrates it as one most promising tool for interrogating the detailed structure and interactions of complex molecular interfaces.« less
Solar microwave bursts - A review
NASA Technical Reports Server (NTRS)
Kundu, M. R.; Vlahos, L.
1982-01-01
Observational and theoretical results on the physics of microwave bursts that occur in the solar atmosphere are reviewed. Special attention is given to the advances made in burst physics over the last few years with the great improvement in spatial and time resolution, especially with instruments like the NRAO three-element interferometer, the Westerbork Synthesis Radio Telescope, and more recently the Very Large Array. Observations made on the preflare build-up of an active region at centimeter wavelengths are reviewed. Three distinct phases in the evolution of cm bursts, namely the impulsive phase, the post-burst phase, and the gradual rise and fall, are discussed. Attention is also given to the flux density spectra of centimeter bursts. Descriptions are given of observations of fine structures with temporal resolution of 10-100 ms in the intensity profiles of cm-wavelength bursts. High spatial resolution observations are analyzed, with special reference to the one- and two-dimensional maps of cm burst sources.
NASA Astrophysics Data System (ADS)
Pott, J.-U.; Woillez, J.; Ragland, S.; Wizinowich, P. L.; Eisner, J. A.; Monnier, J. D.; Akeson, R. L.; Ghez, A. M.; Graham, J. R.; Hillenbrand, L. A.; Millan-Gabet, R.; Appleby, E.; Berkey, B.; Colavita, M. M.; Cooper, A.; Felizardo, C.; Herstein, J.; Hrynevych, M.; Medeiros, D.; Morrison, D.; Panteleeva, T.; Smith, B.; Summers, K.; Tsubota, K.; Tyau, C.; Wetherell, E.
2010-07-01
Recently, the Keck interferometer was upgraded to do self-phase-referencing (SPR) assisted K-band spectroscopy at R ~ 2000. This means, combining a spectral resolution of 150 km/s with an angular resolution of 2.7 mas, while maintaining high sensitiviy. This SPR mode operates two fringe trackers in parallel, and explores several infrastructural requirements for off-axis phase-referencing, as currently being implemented as the KI-ASTRA project. The technology of self-phasereferencing opens the way to reach very high spectral resolution in near-infrared interferometry. We present the scientific capabilities of the KI-SPR mode in detail, at the example of observations of the Be-star 48 Lib. Several spectral lines of the cirumstellar disk are resolved. We describe the first detection of Pfund-lines in an interferometric spectrum of a Be star, in addition to Br γ. The differential phase signal can be used to (i) distinguish circum-stellar line emission from the star, (ii) to directly measure line asymmetries tracing an asymetric gas density distribution, (iii) to reach a differential, astrometric precision beyond single-telescope limits sufficient for studying the radial disk structure. Our data support the existence of a radius-dependent disk density perturbation, typically used to explain slow variations of Be-disk hydrogen line profiles.
Preliminary Correlations of Gravity and Topography from Mars Global Surveyor
NASA Technical Reports Server (NTRS)
Zuber, M. T.; Tyler, G. L.; Smith, D. E.; Balmino, G. S.; Johnson, G. L.; Lemoine, F. G.; Neumann, G. A.; Phillips, R. J.; Sjogren, W. L.; Solomon, S. C.
1999-01-01
The Mars Global Surveyor (MGS) spacecraft is currently in a 400-km altitude polar mapping orbit and scheduled to begin global mapping of Mars in March of 1999. Doppler tracking data collected in this Gravity Calibration Orbit prior to the nominal mapping mission combined with observations from the MGS Science Phasing Orbit in Spring - Summer 1999 and the Viking and mariner 9 orbiters has led to preliminary high resolution gravity fields. Spherical harmonic expansions have been performed to degree and order 70 and are characterized by the first high spatial resolution coverage of high latitudes. Topographic mapping by the Mars Orbiter Laser Altimeter on MGS is providing measurements of the height of the martian surface with sub-meter vertical resolution and 5-30 m absolute accuracy. Data obtained during the circular mapping phase are expected to provide the first high resolution measurements of surface heights in the southern hemisphere. The combination of gravity and topography measurements provides information on the structure of the planetary interior, i.e. the rigidity and distribution of internal density. The observations can also be used to address the mechanisms of support of surface topography. Preliminary results of correlations of gravity and topography at long planetary wavelengths will be presented and the implications for internal structure will be addressed.
Pollen structure visualization using high-resolution laboratory-based hard X-ray tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Qiong; Gluch, Jürgen; Krüger, Peter
A laboratory-based X-ray microscope is used to investigate the 3D structure of unstained whole pollen grains. For the first time, high-resolution laboratory-based hard X-ray microscopy is applied to study pollen grains. Based on the efficient acquisition of statistically relevant information-rich images using Zernike phase contrast, both surface- and internal structures of pine pollen - including exine, intine and cellular structures - are clearly visualized. The specific volumes of these structures are calculated from the tomographic data. The systematic three-dimensional study of pollen grains provides morphological and structural information about taxonomic characters that are essential in palynology. Such studies have amore » direct impact on disciplines such as forestry, agriculture, horticulture, plant breeding and biodiversity. - Highlights: • The unstained whole pine pollen was visualized by high-resolution laboratory-based HXRM for the first time. • The comparison study of pollen grains by LM, SEM and high-resolution laboratory-based HXRM. • Phase contrast imaging provides significantly higher contrast of the raw images compared to absorption contrast imaging. • Surface and internal structure of the pine pollen including exine, intine and cellular structures are clearly visualized. • 3D volume data of unstained whole pollen grains are acquired and the specific volumes of the different layer are calculated.« less
White-light diffraction phase microscopy at doubled space-bandwidth product.
Shan, Mingguang; Kandel, Mikhail E; Majeed, Hassaan; Nastasa, Viorel; Popescu, Gabriel
2016-12-12
White light diffraction microscopy (wDPM) is a quantitative phase imaging method that benefits from both temporal and spatial phase sensitivity, granted, respectively, by the common-path geometry and white light illumination. However, like all off-axis quantitative phase imaging methods, wDPM is characterized by a reduced space-bandwidth product compared to phase shifting approaches. This happens essentially because the ultimate resolution of the image is governed by the period of the interferogram and not just the diffraction limit. As a result, off-axis techniques generates single-shot, i.e., high time-bandwidth, phase measurements, at the expense of either spatial resolution or field of view. Here, we show that combining phase-shifting and off-axis, the original space-bandwidth is preserved. Specifically, we developed phase-shifting diffraction phase microscopy with white light, in which we measure and combine two phase shifted interferograms. Due to the white light illumination, the phase images are characterized by low spatial noise, i.e., <1nm pathlength. We illustrate the operation of the instrument with test samples, blood cells, and unlabeled prostate tissue biopsy.
A single-phase elastic hyperbolic metamaterial with anisotropic mass density.
Zhu, R; Chen, Y Y; Wang, Y S; Hu, G K; Huang, G L
2016-06-01
Wave propagation can be manipulated at a deep subwavelength scale through the locally resonant metamaterial that possesses unusual effective material properties. Hyperlens due to metamaterial's anomalous anisotropy can lead to superior-resolution imaging. In this paper, a single-phase elastic metamaterial with strongly anisotropic effective mass density has been designed. The proposed metamaterial utilizes the independently adjustable locally resonant motions of the subwavelength-scale microstructures along the two principal directions. High anisotropy in the effective mass densities obtained by the numerical-based effective medium theory can be found and even have opposite signs. For practical applications, shunted piezoelectric elements are introduced into the microstructure to tailor the effective mass density in a broad frequency range. Finally, to validate the design, an elastic hyperlens made of the single-phase hyperbolic metamaterial is proposed with subwavelength longitudinal wave imaging illustrated numerically. The proposed single-phase hyperbolic metamaterial has many promising applications for high resolution damage imaging in nondestructive evaluation and structural health monitoring.
Superpixel-based spatial amplitude and phase modulation using a digital micromirror device.
Goorden, Sebastianus A; Bertolotti, Jacopo; Mosk, Allard P
2014-07-28
We present a superpixel method for full spatial phase and amplitude control of a light beam using a digital micromirror device (DMD) combined with a spatial filter. We combine square regions of nearby micromirrors into superpixels by low pass filtering in a Fourier plane of the DMD. At each superpixel we are able to independently modulate the phase and the amplitude of light, while retaining a high resolution and the very high speed of a DMD. The method achieves a measured fidelity F = 0.98 for a target field with fully independent phase and amplitude at a resolution of 8 × 8 pixels per diffraction limited spot. For the LG10 orbital angular momentum mode the calculated fidelity is F = 0.99993, using 768 × 768 DMD pixels. The superpixel method reduces the errors when compared to the state of the art Lee holography method for these test fields by 50% and 18%, with a comparable light efficiency of around 5%. Our control software is publicly available.
Iterative Nonlinear Tikhonov Algorithm with Constraints for Electromagnetic Tomography
NASA Technical Reports Server (NTRS)
Xu, Feng; Deshpande, Manohar
2012-01-01
Low frequency electromagnetic tomography such as the capacitance tomography (ECT) has been proposed for monitoring and mass-gauging of gas-liquid two-phase system under microgravity condition in NASA's future long-term space missions. Due to the ill-posed inverse problem of ECT, images reconstructed using conventional linear algorithms often suffer from limitations such as low resolution and blurred edges. Hence, new efficient high resolution nonlinear imaging algorithms are needed for accurate two-phase imaging. The proposed Iterative Nonlinear Tikhonov Regularized Algorithm with Constraints (INTAC) is based on an efficient finite element method (FEM) forward model of quasi-static electromagnetic problem. It iteratively minimizes the discrepancy between FEM simulated and actual measured capacitances by adjusting the reconstructed image using the Tikhonov regularized method. More importantly, it enforces the known permittivity of two phases to the unknown pixels which exceed the reasonable range of permittivity in each iteration. This strategy does not only stabilize the converging process, but also produces sharper images. Simulations show that resolution improvement of over 2 times can be achieved by INTAC with respect to conventional approaches. Strategies to further improve spatial imaging resolution are suggested, as well as techniques to accelerate nonlinear forward model and thus increase the temporal resolution.
Multibeam monopulse radar for airborne sense and avoid system
NASA Astrophysics Data System (ADS)
Gorwara, Ashok; Molchanov, Pavlo
2016-10-01
The multibeam monopulse radar for Airborne Based Sense and Avoid (ABSAA) system concept is the next step in the development of passive monopulse direction finder proposed by Stephen E. Lipsky in the 80s. In the proposed system the multibeam monopulse radar with an array of directional antennas is positioned on a small aircaraft or Unmanned Aircraft System (UAS). Radar signals are simultaneously transmitted and received by multiple angle shifted directional antennas with overlapping antenna patterns and the entire sky, 360° for both horizontal and vertical coverage. Digitizing of amplitude and phase of signals in separate directional antennas relative to reference signals provides high-accuracy high-resolution range and azimuth measurement and allows to record real time amplitude and phase of reflected from non-cooperative aircraft signals. High resolution range and azimuth measurement provides minimal tracking errors in both position and velocity of non-cooperative aircraft and determined by sampling frequency of the digitizer. High speed sampling with high-accuracy processor clock provides high resolution phase/time domain measurement even for directional antennas with wide Field of View (FOV). Fourier transform (frequency domain processing) of received radar signals provides signatures and dramatically increases probability of detection for non-cooperative aircraft. Steering of transmitting power and integration, correlation period of received reflected signals for separate antennas (directions) allows dramatically decreased ground clutter for low altitude flights. An open architecture, modular construction allows the combination of a radar sensor with Automatic Dependent Surveillance - Broadcast (ADS-B), electro-optic, acoustic sensors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Chih-Hsuan; Nesbitt, David J.
A series of CH stretch modes in phenyl radical (C{sub 6}H{sub 5}) has been investigated via high resolution infrared spectroscopy at sub-Doppler resolution (∼60 MHz) in a supersonic discharge slit jet expansion. Two fundamental vibrations of a{sub 1} symmetry, ν{sub 1} and ν{sub 2}, are observed and rotationally analyzed for the first time, corresponding to in-phase and out-of-phase symmetric CH stretch excitation at the ortho/meta/para and ortho/para C atoms with respect to the radical center. The ν{sub 1} and ν{sub 2} band origins are determined to be 3073.968 50(8) cm{sup −1} and 3062.264 80(7) cm{sup −1}, respectively, which both agree within 5more » cm{sup −1} with theoretical anharmonic scaling predictions based on density functional B3LYP/6-311g++(3df,3dp) calculations. Integrated band strengths for each of the CH stretch bands are analyzed, with the relative intensities agreeing remarkably well with theoretical predictions. Frequency comparison with previous low resolution Ar-matrix spectroscopy [A. V. Friderichsen et al., J. Am. Chem. Soc. 123, 1977 (2001)] reveals a nearly uniform Δν ≈ + 10-12 cm{sup −1} blue shift between gas phase and Ar matrix values for ν{sub 1} and ν{sub 2}. This differs substantially from the much smaller red shift (Δν ≈ − 1 cm{sup −1}) reported for the ν{sub 19} mode, and suggests a simple physical model in terms of vibrational mode symmetry and crowding due to the matrix environment. Finally, the infrared phenyl spectra are well described by a simple asymmetric rigid rotor Hamiltonian and show no evidence for spectral congestion due to intramolecular vibrational coupling, which bodes well for high resolution studies of other ring radicals and polycyclic aromatic hydrocarbons. In summary, the combination of slit jet discharge methods with high resolution infrared lasers enables spectroscopic investigation of even highly reactive combustion and interstellar radical intermediates under gas phase, jet-cooled (T{sub rot} ≈ 11 K) conditions.« less
High sensitivity pressure transducer based on the phase characteristics of GMI magnetic sensors
NASA Astrophysics Data System (ADS)
Benavides, L. S.; Costa Silva, E.; Costa Monteiro, E.; Hall Barbosa, C. R.
2018-03-01
This paper presents a new configuration for a GMI pressure transducer based on the reading of the phase characteristics of GMI sensor, intended for biomedical applications. The development process of this new class of magnetic field transducers is discussed, beginning with the definition of the ideal conditioning of the GMI sensor elements (dc level and frequency of the excitation current and sample length) and continuing with computational simulations of the full electronic circuit performed using the experimental data obtained from measured GMI curves, and have shown that the improvement in the sensitivity of GMI magnetometers is larger when phase-based transducers are used instead of magnitude-based transducers. Parameters of interest of the developed prototype are thoroughly analyzed, such as: sensitivity, linearity and frequency response. Also, the spectral noise density of the developed pressure transducer is evaluated and its resolution in the passband is estimated. A low-cost GMI pressure transducer was developed, presenting high resolution, high sensitivity and a frequency bandwidth compatible to the desired biomedical applications.
Method of LSD profile asymmetry for estimating the center of mass velocities of pulsating stars
NASA Astrophysics Data System (ADS)
Britavskiy, Nikolay; Pancino, Elena; Romano, Donatella; Tsymbal, Vadim
2015-08-01
We present radial velocity analysis for 20 solar neighborhood RR Lyrae and 3 Population II Cepheids. High-resolution spectra were observed with either TNG/SARG or VLT/UVES over varying phases. To estimate the center of mass (barycentric) velocities of the program stars, we utilized two independent methods. First, the 'classic' method was employed, which is based on RR Lyrae radial velocity curve templates. Second, we provide the new method that used absorption line profile asymmetry to determine both the pulsation and the barycentric velocities even with a low number of high-resolution spectra and in cases where the phase of the observations is uncertain. This new method is based on a Least Squares Deconvolution (LSD) of the line profiles in order to analyze line asymmetry that occurs in the spectra of pulsating stars. By applying this method to our sample stars we attain accurate measurements (± 1 km/s) of the pulsation component of the radial velocity. This results in determination of the barycentric velocity to within 5 km/s even with a low number of high-resolution spectra. A detailed investigation of LSD profile asymmetry shows the variable nature of the project factor at different pulsation phases, which should be taken into account in the detailed spectroscopic analysis of pulsating stars.
Method of LSD profile asymmetry for estimating the center of mass velocities of pulsating stars
NASA Astrophysics Data System (ADS)
Britavskiy, N.; Pancino, E.; Tsymbal, V.; Romano, D.; Cacciari, C.; Clementini, C.
2016-05-01
We present radial velocity analysis for 20 solar neighborhood RR Lyrae and 3 Population II Cepheids. High-resolution spectra were observed with either TNG/SARG or VLT/UVES over varying phases. To estimate the center of mass (barycentric) velocities of the program stars, we utilized two independent methods. First, the 'classic' method was employed, which is based on RR Lyrae radial velocity curve templates. Second, we provide the new method that used absorption line profile asymmetry to determine both the pulsation and the barycentric velocities even with a low number of high-resolution spectra and in cases where the phase of the observations is uncertain. This new method is based on a least squares deconvolution (LSD) of the line profiles in order to an- alyze line asymmetry that occurs in the spectra of pulsating stars. By applying this method to our sample stars we attain accurate measurements (+- 2 kms^-1) of the pulsation component of the radial velocity. This results in determination of the barycentric velocity to within 5 kms^-1 even with a low number of high- resolution spectra. A detailed investigation of LSD profile asymmetry shows the variable nature of the project factor at different pulsation phases, which should be taken into account in the detailed spectroscopic analysis of pulsating stars.
NASA Astrophysics Data System (ADS)
Yazıcı, Birsen; Son, Il-Young; Cagri Yanik, H.
2018-05-01
This paper introduces a new and novel radar interferometry based on Doppler synthetic aperture radar (Doppler-SAR) paradigm. Conventional SAR interferometry relies on wideband transmitted waveforms to obtain high range resolution. Topography of a surface is directly related to the range difference between two antennas configured at different positions. Doppler-SAR is a novel imaging modality that uses ultra-narrowband continuous waves (UNCW). It takes advantage of high resolution Doppler information provided by UNCWs to form high resolution SAR images. We introduce the theory of Doppler-SAR interferometry. We derive an interferometric phase model and develop the equations of height mapping. Unlike conventional SAR interferometry, we show that the topography of a scene is related to the difference in Doppler frequency between two antennas configured at different velocities. While the conventional SAR interferometry uses range, Doppler and Doppler due to interferometric phase in height mapping; Doppler-SAR interferometry uses Doppler, Doppler-rate and Doppler-rate due to interferometric phase in height mapping. We demonstrate our theory in numerical simulations. Doppler-SAR interferometry offers the advantages of long-range, robust, environmentally friendly operations; low-power, low-cost, lightweight systems suitable for low-payload platforms, such as micro-satellites; and passive applications using sources of opportunity transmitting UNCW.
High resolution kilometric range optical telemetry in air by radio frequency phase measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guillory, Joffray; García-Márquez, Jorge; Truong, Daniel
2016-07-15
We have developed an optical Absolute Distance Meter (ADM) based on the measurement of the phase accumulated by a Radio Frequency wave during its propagation in the air by a laser beam. In this article, the ADM principle will be described and the main results will be presented. In particular, we will emphasize how the choice of an appropriate photodetector can significantly improve the telemeter performances by minimizing the amplitude to phase conversion. Our prototype, tested in the field, has proven its efficiency with a resolution better than 15 μm for a measurement time of 10 ms and distances upmore » to 1.2 km.« less
Sensitivity and resolution in frequency comb spectroscopy of buffer gas cooled polyatomic molecules
NASA Astrophysics Data System (ADS)
Changala, P. Bryan; Spaun, Ben; Patterson, David; Doyle, John M.; Ye, Jun
2016-12-01
We discuss the use of cavity-enhanced direct frequency comb spectroscopy in the mid-infrared region with buffer gas cooling of polyatomic molecules for high-precision rovibrational absorption spectroscopy. A frequency comb coupled to an optical enhancement cavity allows us to collect high-resolution, broad-bandwidth infrared spectra of translationally and rotationally cold (10-20 K) gas-phase molecules with high absorption sensitivity and fast acquisition times. The design and performance of the combined apparatus are discussed in detail. Recorded rovibrational spectra in the CH stretching region of several organic molecules, including vinyl bromide (CH_2CHBr), adamantane (C_{10}H_{16}), and diamantane (C_{14}H_{20}) demonstrate the resolution and sensitivity of this technique, as well as the intrinsic challenges faced in extending the frontier of high-resolution spectroscopy to large complex molecules.
NASA Astrophysics Data System (ADS)
Thompson, D. R.; Kahn, B. H.; Green, R. O.; Chien, S.; Middleton, E.; Tran, D. Q.
2017-12-01
Clouds' variable ice and liquid content significantly influences their optical properties, evolution, and radiative forcing potential (Tan and Storelvmo, J. Atmos. Sci, 73, 2016). However, most remote measurements of thermodynamic phase have spatial resolutions of 1 km or more and are insensitive to mixed phases. This under-constrains important processes, such as spatial partitioning within mixed phase clouds, that carry outsize radiative forcing impacts. These uncertainties could shift Global Climate Model (GCM) predictions of future warming by over 1 degree Celsius (Tan et al., Science 352:6282, 2016). Imaging spectroscopy of reflected solar energy from the 1.4 - 1.8 μm shortwave infrared (SWIR) spectral range can address this observational gap. These observations can distinguish ice and water absorption, providing a robust and sensitive measurement of cloud top thermodynamic phase including mixed phases. Imaging spectrometers can resolve variations at scales of tens to hundreds of meters (Thompson et al., JGR-Atmospheres 121, 2016). We report the first such global high spatial resolution (30 m) survey, based on data from 2005-2015 acquired by the Hyperion imaging spectrometer onboard NASA's EO-1 spacecraft (Pearlman et al., Proc. SPIE 4135, 2001). Estimated seasonal and latitudinal distributions of cloud thermodynamic phase generally agree with observations made by other satellites such as the Atmospheric Infrared Sounder (AIRS). Variogram analyses reveal variability at different spatial scales. Our results corroborate previously observed zonal distributions, while adding insight into the spatial scales of processes governing cloud top thermodynamic phase. Figure: Thermodynamic phase retrievals. Top: Example of a cloud top thermodynamic phase map from the EO-1/Hyperion. Bottom: Latitudinal distributions of pure and mixed phase clouds, 2005-2015, showing Liquid Thickness Fraction (LTF). LTF=0 corresponds to pure ice absorption, while LTF=1 is pure liquid. The archive contains over 45,000 scenes. Copyright 2017, California Institute of Technology. Government Support Acknowledged.
Theoretical motivation for high spatial resolution, hard X-ray observations during solar flares
NASA Technical Reports Server (NTRS)
Emslie, A. G.
1986-01-01
The important role played by hard X-ray radiation as a diagnostic of impulsive phase energy transport mechanism is reviewed. It is argued that the sub-arc second resolution offered by an instrument such as the Pinhole/Occulter Facility (P/OF) can greatly increase our understanding of such mechanisms.
NASA Astrophysics Data System (ADS)
Yang, Byungkuen; Cho, Jee-Hyun; Song, Simon
2016-11-01
For the use of clinical purpose magnetic resonance velocimeter (MRV) is a versatile flow visualization technique in that it allows opaque flow, complex geometry, no use of tracer particles and facile fast non-invasive measurements of 3 dimensional and 3 component velocity vectors. However, the spatial resolution of a commercial MR machine is lower than optics-based techniques like PIV. On the other hand, the use of MRV for clinical purposes like cardiovascular flow visualization requires accurate measurements or estimations on wall shear stress (WSS) with a high spatial resolution. We developed a custom-built solenoid RF coil for phase-contrast (PC) MRV to improve its resolution. We compared signal-to-noise ratio, WSS estimations, partial volume effects near wall between the custom RF coil and a commercial coil. Also, a Hagen-Poiseuille flow was analyzed with the custom RF coil. This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (No. 2016R1A2B3009541).
On precise phase difference measurement approach using border stability of detection resolution.
Bai, Lina; Su, Xin; Zhou, Wei; Ou, Xiaojuan
2015-01-01
For the precise phase difference measurement, this paper develops an improved dual phase coincidence detection method. The measurement resolution of the digital phase coincidence detection circuits is always limited, for example, only at the nanosecond level. This paper reveals a new way to improve the phase difference measurement precision by using the border stability of the circuit detection fuzzy areas. When a common oscillator signal is used to detect the phase coincidence with the two comparison signals, there will be two detection fuzzy areas for the reason of finite detection resolution surrounding the strict phase coincidence. Border stability of fuzzy areas and the fluctuation difference of the two fuzzy areas can be even finer than the picoseconds level. It is shown that the system resolution obtained only depends on the stability of the circuit measurement resolution which is much better than the measurement device resolution itself.
Luo; Hashimoto
2000-10-01
A new ordered structure W' with a lattice parameter (a = 2.05 nm) about three times as large as that of the fundamental face-centered cubic W phase (a = 0.6848 nm) has been found in the Mg-Zn-Y system by means of transmission electron microscopy. The W' and W phases have the cube-to-cube orientation relationship. Moreover, the strong electron diffraction spots of the W' phase showed pseudoicosahedral symmetry, implying that it is a crystalline approximant of the Mg-Zn-Y icosahedral quasicrystal. In the high-resolution electron microscopic images of the W' phase, Penrose tiles of pentagons and boats with an edge length of a(p) = 0.481 nm can be identified. A binary tile of crown subunit has also been deduced from such a tiling. Translation domains of the W' phase have also been observed and the translation vectors at the domain boundary are: a(p), tau x a(p) and (1 + tau) x a(p), respectively, where (1 + tau) x a(p) equals to the edge length a(r) of the big obtuse rhombus of the W' phase and tau = (1 + square root of 5)/2, is the golden ratio.
A High Resolution Capacitive Sensing System for the Measurement of Water Content in Crude Oil
Aslam, Muhammad Zubair; Tang, Tong Boon
2014-01-01
This paper presents the design of a non-intrusive system to measure ultra-low water content in crude oil. The system is based on a capacitance to phase angle conversion method. Water content is measured with a capacitance sensor comprising two semi-cylindrical electrodes mounted on the outer side of a glass tube. The presence of water induces a capacitance change that in turn converts into a phase angle, with respect to a main oscillator. A differential sensing technique is adopted not only to ensure high immunity against temperature variation and background noise, but also to eliminate phase jitter and amplitude variation of the main oscillator that could destabilize the output. The complete capacitive sensing system was implemented in hardware and experiment results using crude oil samples demonstrated that a resolution of ±50 ppm of water content in crude oil was achieved by the proposed design. PMID:24967606
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tjessum, K.; Stegeman, J.J.
1979-10-15
Addition of primary organic amines, such as n-butylamine, to the mobile phase altered the capacity factors and selectivity of benzo(a)pyrene metabolites obtained with reverse-phase high pressure liquid chromatography on an ODS column. Separation of benzo(a)pyrene phenols in particular was improved with 8 of the 10 available metabolites resolved, including those known to be biologically produced. The method offers sufficiently improved resolution or convenience that it should prove useful in comparative studies of metabolism of benzo(a)-pyrene and other polynuclear aromatic hydrocarbons. Applying the method to analysis of benzo(a)pyrene metabolites produced in vitro by hepatic microsomes from the marine fish Stenotomus versicolormore » indicated the principal phenolic derivatives produced by this fish were 1-hydroxy-, 3-hydroxy-, 7-hydroxy-, and 9-hydroxybenzo(a)pyrene.« less
NASA Technical Reports Server (NTRS)
Cloutis, E. A.; Lambert, J.; Smith, D. G. W.; Gaffey, M. J.
1987-01-01
High-resolution visible and near-infrared diffuse reflectance spectra of mafic silicates can be deconvolved to yield quantitative information concerning mineral mixture properties, and the results can be directly applied to remotely sensed data. Spectral reflectance measurements of laboratory mixtures of olivine, orthophyroxene, and clinopyroxene with known chemistries, phase abundances, and particle size distributions have been utilized to develop correlations between spectral properties and the physicochemical parameters of the samples. A large number of mafic silicate spectra were measured and examined for systematic variations in spectral properties as a function of chemistry, phase abundance, and particle size. Three classes of spectral parameters (ratioed, absolute, and wavelength) were examined for any correlations. Each class is sensitive to particular mafic silicate properties. Spectral deconvolution techniques have been developed for quantifying, with varying degrees of accuracy, the assemblage properties (chemistry, phase abundance, and particle size).
A high resolution capacitive sensing system for the measurement of water content in crude oil.
Zubair, Muhammad; Tang, Tong Boon
2014-06-25
This paper presents the design of a non-intrusive system to measure ultra-low water content in crude oil. The system is based on a capacitance to phase angle conversion method. Water content is measured with a capacitance sensor comprising two semi-cylindrical electrodes mounted on the outer side of a glass tube. The presence of water induces a capacitance change that in turn converts into a phase angle, with respect to a main oscillator. A differential sensing technique is adopted not only to ensure high immunity against temperature variation and background noise, but also to eliminate phase jitter and amplitude variation of the main oscillator that could destabilize the output. The complete capacitive sensing system was implemented in hardware and experiment results using crude oil samples demonstrated that a resolution of ± 50 ppm of water content in crude oil was achieved by the proposed design.
Ichikado, Kazuya
2014-02-01
Diffuse alveolar damage (DAD) is the pathologic feature of rapidly progressive lung diseases, including acute respiratory distress syndrome, acute interstitial pneumonia, and acute exacerbation of idiopathic pulmonary fibrosis. The clinical significance and limitation of high-resolution computed tomography (HRCT) findings in these diseases were reviewed. The HRCT findings correlate well with pathologic phases (exudative, proliferative, and fibrotic) of DAD, although it cannot detect early exudative phase. Traction bronchiolectasis or bronchiectasis within areas of increased attenuation on HRCT scan is a sign of progression from the exudative to the proliferative and fibrotic phase of DAD. Extensive abnormalities seen on HRCT scans, which are indicative of fibroproliferative changes, were independently predictive of poor prognosis in patients with clinically early acute respiratory distress syndrome, acute interstitial pneumonia, and acute exacerbation of idiopathic pulmonary fibrosis. © 2013 Published by Elsevier Inc.
Yaqoob, Zahid; Choi, Wonshik; Oh, Seungeun; Lue, Niyom; Park, Yongkeun; Fang-Yen, Christopher; Dasari, Ramachandra R.; Badizadegan, Kamran; Feld, Michael S.
2010-01-01
We report a quantitative phase microscope based on spectral domain optical coherence tomography and line-field illumination. The line illumination allows self phase-referencing method to reject common-mode phase noise. The quantitative phase microscope also features a separate reference arm, permitting the use of high numerical aperture (NA > 1) microscope objectives for high resolution phase measurement at multiple points along the line of illumination. We demonstrate that the path-length sensitivity of the instrument can be as good as 41 pm/Hz, which makes it suitable for nanometer scale study of cell motility. We present the detection of natural motions of cell surface and two-dimensional surface profiling of a HeLa cell. PMID:19550464
Effects of whispering gallery mode in microsphere super-resolution imaging
NASA Astrophysics Data System (ADS)
Zhou, Song; Deng, Yongbo; Zhou, Wenchao; Yu, Muxin; Urbach, H. P.; Wu, Yihui
2017-09-01
Whispering Gallery modes have been presented in microscopic glass spheres or toruses with many applications. In this paper, the possible approaches to enhance the imaging resolution by Whispering Gallery modes are discussed, including evanescent waves coupling, transformed and illustration by Whispering Gallery modes. It shows that the high-order scattering modes play the dominant role in the reconstructed virtual image when the Whispering Gallery modes exist. Furthermore, we find that the high image resolution of electric dipoles can be achieved, when the out-of-phase components exist from the illustration of Whispering Gallery modes. Those results of our simulation could contribute to the knowledge of microsphere-assisted super-resolution imaging and its potential applications.
Linkages of periodic climatic and social-economic changes in China during the past 2000 years
NASA Astrophysics Data System (ADS)
Fang, Xiuqi; Su, Yu; Yin, Jun; Wei, Zhudeng
2016-04-01
Impacts of climate change on rise and fall of human civilization in the history could provide lessons for understanding how impacts of climatic change and human response interacted. However, such a study is highly restricted by lacking in high-resolution series concerning long-term social-economic processes. China is a country that has great potential for providing long-term socio-economic series in high-resolution because it has abundant related historical records as long as thousands of years in the Chinese historical literatures. In this paper, A methodology named Semantic Differential for quantifying historical literal descriptions to grade numbers is developed. Using the methodology, 10-year resolution graded series of social-economic system change of China, including harvest of agriculture, economy, social rise and fall, are reconstructed during the past 2000 years. To compare the periodic changes of climate, harvest, economy, social rise and fall in China during the past 2000 years, it is found that : (1) There are similar periods on multiple time scales among all the series. (2) On the centurial scale, the better economic and social phases generally occurred in the better harvest phases when generally had a warm climate. (3) In the warm phases, both economic and social status were recovered faster and flourished longer than that in the cold phases. (4) The direct impact of climatic change on food security could be enlarged or diminished when it transmitted from harvest I to other social-economic subsystems because of feedbacks of the system.
NASA Astrophysics Data System (ADS)
Fialová, Stanislava; Augustin, Marco; Plasenzotti, Roberto; Rauscher, Sabine; Gröger, Marion; Pircher, Michael; Hitzenberger, Christoph K.; Baumann, Bernhard
2015-07-01
Animal models play an important role for understanding the pathophysiology of glaucoma and age-related macular degeneration. With these models, longitudinal studies can be performed and therefore there is need for non-invasive evaluation of disease progress. For that purpose optical coherence tomography (OCT) can be used. Since tissues with different polarization properties are important in these diseases, polarization sensitive OCT (PS-OCT) could be a valuable tool in preclinical research. In this work a high resolution PS-OCT (HR-PS-OCT) system was used in-vivo for rodent retinal imaging. A super luminescent diode with a bandwidth of 100 nm was used as a light source that yielded an axial resolution of 5.1 μm in air (3.8 μm in tissue). The A-scan rate was 83 kHz, a whole 3D dataset was acquired in a few seconds (1536x1024x200 pixels in 3.5 s) which reduced motion artifacts. Rats (Sprague-Dawley, Long-Evans and Brown Norway) as well as mice (C57BL/6) were imaged. High resolution reflectivity images showed all retinal layers in all animals. From acquired data also phase retardation, fast axis orientation and degree of polarization uniformity (DOPU) images were calculated. On phase retardation images sclera was identified as birefringent and retinal pigment epithelium (RPE) and choroid as depolarizing tissues. Our results demonstrate the suitability of the system for high speed/resolution imaging in follow up studies on rodents.
A hybrid analog-digital phase-locked loop for frequency mode non-contact scanning probe microscopy.
Mehta, M M; Chandrasekhar, V
2014-01-01
Non-contact scanning probe microscopy (SPM) has developed into a powerful technique to image many different properties of samples. The conventional method involves monitoring the amplitude, phase, or frequency of a cantilever oscillating at or near its resonant frequency as it is scanned across the surface of a sample. For high Q factor cantilevers, monitoring the resonant frequency is the preferred method in order to obtain reasonable scan times. This can be done by using a phase-locked-loop (PLL). PLLs can be obtained as commercial integrated circuits, but these do not have the frequency resolution required for SPM. To increase the resolution, all-digital PLLs requiring sophisticated digital signal processors or field programmable gate arrays have also been implemented. We describe here a hybrid analog/digital PLL where most of the components are implemented using discrete analog integrated circuits, but the frequency resolution is provided by a direct digital synthesis chip controlled by a simple peripheral interface controller (PIC) microcontroller. The PLL has excellent frequency resolution and noise, and can be controlled and read by a computer via a universal serial bus connection.
A hybrid analog-digital phase-locked loop for frequency mode non-contact scanning probe microscopy
NASA Astrophysics Data System (ADS)
Mehta, M. M.; Chandrasekhar, V.
2014-01-01
Non-contact scanning probe microscopy (SPM) has developed into a powerful technique to image many different properties of samples. The conventional method involves monitoring the amplitude, phase, or frequency of a cantilever oscillating at or near its resonant frequency as it is scanned across the surface of a sample. For high Q factor cantilevers, monitoring the resonant frequency is the preferred method in order to obtain reasonable scan times. This can be done by using a phase-locked-loop (PLL). PLLs can be obtained as commercial integrated circuits, but these do not have the frequency resolution required for SPM. To increase the resolution, all-digital PLLs requiring sophisticated digital signal processors or field programmable gate arrays have also been implemented. We describe here a hybrid analog/digital PLL where most of the components are implemented using discrete analog integrated circuits, but the frequency resolution is provided by a direct digital synthesis chip controlled by a simple peripheral interface controller (PIC) microcontroller. The PLL has excellent frequency resolution and noise, and can be controlled and read by a computer via a universal serial bus connection.
NASA Astrophysics Data System (ADS)
Ibrahim, Dahi Ghareab Abdelsalam; Yasui, Takeshi
2018-04-01
Two-wavelength phase-shift interferometry guided by optical frequency combs is presented. We demonstrate the operation of the setup with a large step sample simultaneously with a resolution test target with a negative pattern. The technique can investigate multi-objects simultaneously with high precision. Using this technique, several important applications in metrology that require high speed and precision are demonstrated.
High-accurate optical vector analysis based on optical single-sideband modulation
NASA Astrophysics Data System (ADS)
Xue, Min; Pan, Shilong
2016-11-01
Most of the efforts devoted to the area of optical communications were on the improvement of the optical spectral efficiency. Varies innovative optical devices are thus developed to finely manipulate the optical spectrum. Knowing the spectral responses of these devices, including the magnitude, phase and polarization responses, is of great importance for their fabrication and application. To achieve high-resolution characterization, optical vector analyzers (OVAs) based on optical single-sideband (OSSB) modulation have been proposed and developed. Benefiting from the mature and highresolution microwave technologies, the OSSB-based OVA can potentially achieve a resolution of sub-Hz. However, the accuracy is restricted by the measurement errors induced by the unwanted first-order sideband and the high-order sidebands in the OSSB signal, since electrical-to-optical conversion and optical-to-electrical conversion are essentially required to achieve high-resolution frequency sweeping and extract the magnitude and phase information in the electrical domain. Recently, great efforts have been devoted to improve the accuracy of the OSSB-based OVA. In this paper, the influence of the unwanted-sideband induced measurement errors and techniques for implementing high-accurate OSSB-based OVAs are discussed.
Development of a high-resolution cavity-beam position monitor
NASA Astrophysics Data System (ADS)
Inoue, Yoichi; Hayano, Hitoshi; Honda, Yosuke; Takatomi, Toshikazu; Tauchi, Toshiaki; Urakawa, Junji; Komamiya, Sachio; Nakamura, Tomoya; Sanuki, Tomoyuki; Kim, Eun-San; Shin, Seung-Hwan; Vogel, Vladimir
2008-06-01
We have developed a high-resolution cavity-beam position monitor (BPM) to be used at the focal point of the ATF2, which is a test beam line that is now being built to demonstrate stable orbit control at ˜nanometer resolution. The design of the cavity structure was optimized for the Accelerator Test Facility (ATF) beam in various ways. For example, the cavity has a rectangular shape in order to isolate two dipole modes in orthogonal directions, and a relatively thin gap that is less sensitive to trajectory inclination. A two stage homodyne mixer with highly sensitive electronics and phase-sensitive detection was also developed. Two BPM blocks, each containing two cavity BPMs, were installed in the existing ATF beam line using a rigid support frame. After testing the basic characteristics, we measured the resolution using three BPMs. The system demonstrated 8.7 nm position resolution over a dynamic range of 5μm.
Pressure cryocooling protein crystals
Kim, Chae Un [Ithaca, NY; Gruner, Sol M [Ithaca, NY
2011-10-04
Preparation of cryocooled protein crystal is provided by use of helium pressurizing and cryocooling to obtain cryocooled protein crystal allowing collection of high resolution data and by heavier noble gas (krypton or xenon) binding followed by helium pressurizing and cryocooling to obtain cryocooled protein crystal for collection of high resolution data and SAD phasing simultaneously. The helium pressurizing is carried out on crystal coated to prevent dehydration or on crystal grown in aqueous solution in a capillary.
High-Resolution Imaging of Colliding and Merging Galaxies
NASA Astrophysics Data System (ADS)
Whitmore, Brad
1991-07-01
We propose to obtain high-resolution images, using the WF/PC, of two colliding and merging galaxies (i.e., NGC 4038/4039 = "The Antennae" and NGC 7252 ="Atoms-for-Peace Galaxy". Our goal is to use HST to make critical observations of each object in order to gain a better understanding of the various phases of the merger process. Our primary objective is to determine whether globular clusters are formed during mergers\\?
High resolution microwave spectrometer sounder (HIMSS), volume 1, book 1
NASA Technical Reports Server (NTRS)
1990-01-01
The following topics are presented with respect to the high resolution microwave spectrometer sounder (HIMSS) that is to be used as an instrument for NASA's Earth Observing System (EOS): (1) an instrument overview; (2) an instrument description; (3) the instrument's conceptual design; (4) technical risks and offsets; (5) instrument reliability; (6) commands and telemetry; (7) mass and power budgets; (8) integration and test program; (9) program implementation; and (10) phase CD schedule.
Hussaini, Zahra; Lin, Pin Ann; Natarajan, Bharath; Zhu, Wenhui; Sharma, Renu
2018-03-01
For many reaction processes, such as catalysis, phase transformations, nanomaterial synthesis etc., nanoscale observations at high spatial (sub-nanometer) and temporal (millisecond) resolution are required to characterize and comprehend the underlying factors that favor one reaction over another. The combination of such spatial and temporal resolution (up to 600 µs), while rich in information, produces a large number of snapshots, each of which must be analyzed to obtain the structural (and thereby chemical) information. Here we present a methodology for automated quantitative measurement of real-time atomic position fluctuations in a nanoparticle. We leverage a combination of several image processing algorithms to precisely identify the positions of the atomic columns in each image. A geometric model is then used to measure the time-evolution of distances and angles between neighboring atomic columns to identify different phases and quantify local structural fluctuations. We apply this technique to determine the atomic-level fluctuations in the relative fractions of metal and metal-carbide phases in a cobalt catalyst nanoparticle during single-walled carbon nanotube (SWCNT) growth. These measurements provided a means to obtain the number of carbon atoms incorporated into and released from the catalyst particle, thereby helping resolve carbon reaction pathways during SWCNT growth. Further we demonstrate the use of this technique to measure the reaction kinetics of iron oxide reduction. Apart from reducing the data analysis time, the statistical approach allows us to measure atomic distances with sub-pixel resolution. We show that this method can be applied universally to measure atomic positions with a precision of 0.01 nm from any set of atomic-resolution video images. With the advent of high time-resolution direct detection cameras, we anticipate such methods will be essential in addressing the metrology problem of quantifying large datasets of time-resolved images in future. Published by Elsevier B.V.
Spiral Transformation for High-Resolution and Efficient Sorting of Optical Vortex Modes.
Wen, Yuanhui; Chremmos, Ioannis; Chen, Yujie; Zhu, Jiangbo; Zhang, Yanfeng; Yu, Siyuan
2018-05-11
Mode sorting is an essential function for optical multiplexing systems that exploit the orthogonality of the orbital angular momentum mode space. The familiar log-polar optical transformation provides a simple yet efficient approach whose resolution is, however, restricted by a considerable overlap between adjacent modes resulting from the limited excursion of the phase along a complete circle around the optical vortex axis. We propose and experimentally verify a new optical transformation that maps spirals (instead of concentric circles) to parallel lines. As the phase excursion along a spiral in the wave front of an optical vortex is theoretically unlimited, this new optical transformation can separate orbital angular momentum modes with superior resolution while maintaining unity efficiency.
Spiral Transformation for High-Resolution and Efficient Sorting of Optical Vortex Modes
NASA Astrophysics Data System (ADS)
Wen, Yuanhui; Chremmos, Ioannis; Chen, Yujie; Zhu, Jiangbo; Zhang, Yanfeng; Yu, Siyuan
2018-05-01
Mode sorting is an essential function for optical multiplexing systems that exploit the orthogonality of the orbital angular momentum mode space. The familiar log-polar optical transformation provides a simple yet efficient approach whose resolution is, however, restricted by a considerable overlap between adjacent modes resulting from the limited excursion of the phase along a complete circle around the optical vortex axis. We propose and experimentally verify a new optical transformation that maps spirals (instead of concentric circles) to parallel lines. As the phase excursion along a spiral in the wave front of an optical vortex is theoretically unlimited, this new optical transformation can separate orbital angular momentum modes with superior resolution while maintaining unity efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Yanwei, E-mail: yanwei.huang@hpstar.ac.cn, E-mail: wangling@hpstar.ac.cn; College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018; Chen, Fengjiao
We report a unique phase transition in compressed exposed curved surface nano-TiO{sub 2} with high photocatalytic activity using in situ synchrotron X-ray diffraction and Raman Spectroscopy. High-pressure studies indicate that the anatase phase starts to transform into baddeleyite phase upon compression at 19.4 GPa, and completely transforms into the baddeleyite phase above 24.6 GPa. Upon decompression, the baddeleyite phase was maintained until the pressure was released to 6.4 GPa and then transformed into the α-PbO{sub 2} phase at 2.7 GPa. Together with the results of high-resolution transmission electron microscopy and the pressure-volume relationship, this phase transition's characteristics during the compression-decompression cycle demonstrate that themore » truncated biconic morphology possessed excellent stability. This study may provide an insight to the mechanisms of stability for high photocatalytic activity of nano-TiO{sub 2}.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Cang; Fezzaa, Kamel; Cunningham, Ross W.
Here, we employ the high-speed synchrotron hard X-ray imaging and diffraction techniques to monitor the laser powder bed fusion (LPBF) process of Ti-6Al-4V in situ and in real time. We demonstrate that many scientifically and technologically significant phenomena in LPBF, including melt pool dynamics, powder ejection, rapid solidification, and phase transformation, can be probed with unprecedented spatial and temporal resolutions. In particular, the keyhole pore formation is experimentally revealed with high spatial and temporal resolutions. The solidification rate is quantitatively measured, and the slowly decrease in solidification rate during the relatively steady state could be a manifestation of the recalescencemore » phenomenon. The high-speed diffraction enables a reasonable estimation of the cooling rate and phase transformation rate, and the diffusionless transformation from β to α’ phase is evident. The data present here will facilitate the understanding of dynamics and kinetics in metal LPBF process, and the experiment platform established will undoubtedly become a new paradigm for future research and development of metal additive manufacturing.« less
Yang, Xiaohong; Li, Changxia; Qi, Meiling; Qu, Liangti
2016-08-19
This work presents the separation performance of graphene-ZIF8 (G-Z) composite material as stationary phase for capillary gas chromatography (GC). The G-Z stationary phase achieved high column efficiency of 5000 plates/m determined by n-dodecane (k=1.22) at 120°C and showed weakly polar nature. Importantly, it exhibited high selectivity and resolving capability for branched alkane isomers and aromatic positional isomers, showing clear advantages over the reported neat graphene and ZIF8. In addition, it attained high resolution for geometric cis-/trans-isomers. The G-Z column exhibited good column thermal stability up to 300°C and column repeatability with RSD values of retention times in the range of 0.01-0.19% for intra-day, 0.05-0.88% for inter-day and 0.66-5.6% for between-column, respectively, Moreover, the G-Z column was employed for the determination of minor impurity isomers in real reagent samples, which demonstrates its promising potential in GC applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhao, Cang; Fezzaa, Kamel; Cunningham, Ross W.; ...
2017-06-15
Here, we employ the high-speed synchrotron hard X-ray imaging and diffraction techniques to monitor the laser powder bed fusion (LPBF) process of Ti-6Al-4V in situ and in real time. We demonstrate that many scientifically and technologically significant phenomena in LPBF, including melt pool dynamics, powder ejection, rapid solidification, and phase transformation, can be probed with unprecedented spatial and temporal resolutions. In particular, the keyhole pore formation is experimentally revealed with high spatial and temporal resolutions. The solidification rate is quantitatively measured, and the slowly decrease in solidification rate during the relatively steady state could be a manifestation of the recalescencemore » phenomenon. The high-speed diffraction enables a reasonable estimation of the cooling rate and phase transformation rate, and the diffusionless transformation from β to α’ phase is evident. The data present here will facilitate the understanding of dynamics and kinetics in metal LPBF process, and the experiment platform established will undoubtedly become a new paradigm for future research and development of metal additive manufacturing.« less
CARMENES: Commissioning and first scientific results at the telescope. A precursor for HIRES@E-ELT
NASA Astrophysics Data System (ADS)
Amado, P. J.; The Carmenes Consortium
2017-03-01
CARMENES is the next generation instrument built for the CAHA 3.5m telescope by a large international consortium of 11 institutes in Spain and Germany. It consists of two separate highly-stabilized, high-resolution echelle spectrographs covering both the visible, from 550 to 950 nm, and the near-IR, from 950 to 1700 nm, wavelength ranges with spectral resolution of R=82,000. They are fed by fibres from the Cassegrain focus of the telescope and were designed and built to achieve high-accuracy radial velocities of nearby M-dwarf stars. This contribution overviews the main and unique design characteristics of CARMENES. The instrument MAIV phase was achieved in the last two years (2014-2015) and started commissioning in November 2015. The commissioning phases, both technical and scientific, took six full weeks in the last two months of 2015. They have shown that the instrument is well within requirements and performing to be able to achieve its objective, not proven before in the near-infrared, of providing radial velocities precisions of 5 ms^{-1}, with a goal of 1 ms^{-1}. The Guaranteed Time Observations (GTO) program has started in January 1st, 2016. CARMENES is, therefore, currently conducting a radial-velocity survey of 300 M dwarfs with a precision sufficient for detecting Earth-like planets in their habitable zones. It is also being offered in open time by the CAHA. Its modular design is the idea in which HIRES, the next very high-resolution, high-fidelity spectrograph with wide wavelength coverage at the E-ELT, is based on. This E-ELT instrument might consist of four different high-resolution spectrographs covering the blue, the visible, the near-infrared (Y, J and H bands) and the K band. A proposal to the ESO call for Phase-A studies for a HIRES at the E-ELT was submitted by the HIRES consortium last December. This proposal was accepted by ESO and the Phase-A kick-off meeting between ESO and the consortium took place in March 22, 2016.
Teng, Chaoyi; Demers, Hendrix; Brodusch, Nicolas; Waters, Kristian; Gauvin, Raynald
2018-06-04
A number of techniques for the characterization of rare earth minerals (REM) have been developed and are widely applied in the mining industry. However, most of them are limited to a global analysis due to their low spatial resolution. In this work, phase map analyses were performed on REM with an annular silicon drift detector (aSDD) attached to a field emission scanning electron microscope. The optimal conditions for the aSDD were explored, and the high-resolution phase maps generated at a low accelerating voltage identify phases at the micron scale. In comparisons between an annular and a conventional SDD, the aSDD performed at optimized conditions, making the phase map a practical solution for choosing an appropriate grinding size, judging the efficiency of different separation processes, and optimizing a REM beneficiation flowsheet.
Super-resolution differential interference contrast microscopy by structured illumination.
Chen, Jianling; Xu, Yan; Lv, Xiaohua; Lai, Xiaomin; Zeng, Shaoqun
2013-01-14
We propose a structured illumination differential interference contrast (SI-DIC) microscopy, breaking the diffraction resolution limit of differential interference contrast (DIC) microscopy. SI-DIC extends the bandwidth of coherent transfer function of the DIC imaging system, thus the resolution is improved. With 0.8 numerical aperture condenser and objective, the reconstructed SI-DIC image of 53 nm polystyrene beads reveals lateral resolution of approximately 190 nm, doubling that of the conventional DIC image. We also demonstrate biological observations of label-free cells with improved spatial resolution. The SI-DIC microscopy can provide sub-diffraction resolution and high contrast images with marker-free specimens, and has the potential for achieving sub-diffraction resolution quantitative phase imaging.
NASA Astrophysics Data System (ADS)
Davtyan, Arman; Biermanns, Andreas; Loffeld, Otmar; Pietsch, Ullrich
2016-06-01
Coherent x-ray diffraction imaging is used to measure diffraction patterns from individual highly defective nanowires, showing a complex speckle pattern instead of well-defined Bragg peaks. The approach is tested for nanowires of 500 nm diameter and 500 nm height predominately composed by zinc-blende (ZB) and twinned zinc-blende (TZB) phase domains. Phase retrieval is used to reconstruct the measured 2-dimensional intensity patterns recorded from single nanowires with 3.48 nm and 0.98 nm spatial resolution. Whereas the speckle amplitudes and distribution are perfectly reconstructed, no unique solution could be obtained for the phase structure. The number of phase switches is found to be proportional to the number of measured speckles and follows a narrow number distribution. Using data with 0.98 nm spatial resolution the mean number of phase switches is in reasonable agreement with estimates taken from TEM. However, since the resolved phase domain still is 3-4 times larger than a single GaAs bilayer we explain the non-ambiguous phase reconstruction by the fact that depending on starting phase and sequence of subroutines used during the phase retrieval the retrieved phase domain host a different sequence of randomly stacked bilayers. Modelling possible arrangements of bilayer sequences within a phase domain demonstrate that the complex speckle patterns measured can indeed be explained by the random arrangement of the ZB and TZB phase domains.
Optoelectronic frequency discriminated phase tuning technology and its applications
NASA Astrophysics Data System (ADS)
Lin, Gong-Ru; Chang, Yung-Cheng
2000-07-01
By using a phase-tunable optoelectronic phase-locked loop, we are able to continuously change the phase as well as the delay-time of optically distributed microwave clock signals or optical pulse train. The advantages of the proposed technique include such as wide-band operation up to 20GHz, wide-range tuning up to 640 degrees, high tuning resolution of <6x10-2 degree/mV, ultra-low short-term phase fluctuation and drive of 4.7x10-2 degree and 3.4x10- 3 degree/min, good linearity with acceptable deviations, and frequency-independent transferred function with slope of nearly 90 degrees/volt, etc. The novel optoelectronic phase shifter is performed by using a DC-voltage controlled, optoelectronic-mixer-based, frequency-down-converted digital phase-locked-loop. The maximum delay-time is continuously tunable up to 3.9 ns for optical pulses repeated at 500 MHz from a gain-switched laser diode. This corresponds to a delay responsivity of about 0.54 ps/mV. The using of the OEPS as being an optoelectronic delay-time controller for optical pulses is demonstrated with temporal resolution of <0.2 ps. Electro-optic sampling of high-frequency microwave signals by using the in-situ delay-time-tunable pulsed laser as a novel optical probe is primarily reported.
Xia, J.; Miller, R.D.; Xu, Y.
2008-01-01
Inversion of multimode surface-wave data is of increasing interest in the near-surface geophysics community. For a given near-surface geophysical problem, it is essential to understand how well the data, calculated according to a layered-earth model, might match the observed data. A data-resolution matrix is a function of the data kernel (determined by a geophysical model and a priori information applied to the problem), not the data. A data-resolution matrix of high-frequency (>2 Hz) Rayleigh-wave phase velocities, therefore, offers a quantitative tool for designing field surveys and predicting the match between calculated and observed data. We employed a data-resolution matrix to select data that would be well predicted and we find that there are advantages of incorporating higher modes in inversion. The resulting discussion using the data-resolution matrix provides insight into the process of inverting Rayleigh-wave phase velocities with higher-mode data to estimate S-wave velocity structure. Discussion also suggested that each near-surface geophysical target can only be resolved using Rayleigh-wave phase velocities within specific frequency ranges, and higher-mode data are normally more accurately predicted than fundamental-mode data because of restrictions on the data kernel for the inversion system. We used synthetic and real-world examples to demonstrate that selected data with the data-resolution matrix can provide better inversion results and to explain with the data-resolution matrix why incorporating higher-mode data in inversion can provide better results. We also calculated model-resolution matrices in these examples to show the potential of increasing model resolution with selected surface-wave data. ?? Birkhaueser 2008.
Truong, Trong-Kha; Guidon, Arnaud
2014-01-01
Purpose To develop and compare three novel reconstruction methods designed to inherently correct for motion-induced phase errors in multi-shot spiral diffusion tensor imaging (DTI) without requiring a variable-density spiral trajectory or a navigator echo. Theory and Methods The first method simply averages magnitude images reconstructed with sensitivity encoding (SENSE) from each shot, whereas the second and third methods rely on SENSE to estimate the motion-induced phase error for each shot, and subsequently use either a direct phase subtraction or an iterative conjugate gradient (CG) algorithm, respectively, to correct for the resulting artifacts. Numerical simulations and in vivo experiments on healthy volunteers were performed to assess the performance of these methods. Results The first two methods suffer from a low signal-to-noise ratio (SNR) or from residual artifacts in the reconstructed diffusion-weighted images and fractional anisotropy maps. In contrast, the third method provides high-quality, high-resolution DTI results, revealing fine anatomical details such as a radial diffusion anisotropy in cortical gray matter. Conclusion The proposed SENSE+CG method can inherently and effectively correct for phase errors, signal loss, and aliasing artifacts caused by both rigid and nonrigid motion in multi-shot spiral DTI, without increasing the scan time or reducing the SNR. PMID:23450457
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brun, E., E-mail: emmanuel.brun@esrf.fr; Grandl, S.; Sztrókay-Gaul, A.
Purpose: Phase contrast computed tomography has emerged as an imaging method, which is able to outperform present day clinical mammography in breast tumor visualization while maintaining an equivalent average dose. To this day, no segmentation technique takes into account the specificity of the phase contrast signal. In this study, the authors propose a new mathematical framework for human-guided breast tumor segmentation. This method has been applied to high-resolution images of excised human organs, each of several gigabytes. Methods: The authors present a segmentation procedure based on the viscous watershed transform and demonstrate the efficacy of this method on analyzer basedmore » phase contrast images. The segmentation of tumors inside two full human breasts is then shown as an example of this procedure’s possible applications. Results: A correct and precise identification of the tumor boundaries was obtained and confirmed by manual contouring performed independently by four experienced radiologists. Conclusions: The authors demonstrate that applying the watershed viscous transform allows them to perform the segmentation of tumors in high-resolution x-ray analyzer based phase contrast breast computed tomography images. Combining the additional information provided by the segmentation procedure with the already high definition of morphological details and tissue boundaries offered by phase contrast imaging techniques, will represent a valuable multistep procedure to be used in future medical diagnostic applications.« less
High resolution imaging and wavefront aberration correction in plenoptic systems.
Trujillo-Sevilla, J M; Rodríguez-Ramos, L F; Montilla, I; Rodríguez-Ramos, J M
2014-09-01
Plenoptic imaging systems are becoming more common since they provide capabilities unattainable in conventional imaging systems, but one of their main limitations is the poor bidimensional resolution. Combining the wavefront phase measurement and the plenoptic image deconvolution, we propose a system capable of improving the resolution when a wavefront aberration is present and the image is blurred. In this work, a plenoptic system is simulated using Fourier optics, and the results show that an improved resolution is achieved, even in the presence of strong wavefront aberrations.
Klein, Thomas; Clemens, Helmut; Mayer, Svea
2016-01-01
Advanced intermetallic alloys based on the γ-TiAl phase have become widely regarded as most promising candidates to replace heavier Ni-base superalloys as materials for high-temperature structural components, due to their facilitating properties of high creep and oxidation resistance in combination with a low density. Particularly, recently developed alloying concepts based on a β-solidification pathway, such as the so-called TNM alloy, which are already incorporated in aircraft engines, have emerged offering the advantage of being processible using near-conventional methods and the option to attain balanced mechanical properties via subsequent heat-treatment. Development trends for the improvement of alloying concepts, especially dealing with issues regarding alloying element distribution, nano-scale phase characterization, phase stability, and phase formation mechanisms demand the utilization of high-resolution techniques, mainly due to the multi-phase nature of advanced TiAl alloys. Atom probe tomography (APT) offers unique possibilities of characterizing chemical compositions with a high spatial resolution and has, therefore, been widely used in recent years with the aim of understanding the materials constitution and appearing basic phenomena on the atomic scale and applying these findings to alloy development. This review, thus, aims at summarizing scientific works regarding the application of atom probe tomography towards the understanding and further development of intermetallic TiAl alloys. PMID:28773880
Klein, Thomas; Clemens, Helmut; Mayer, Svea
2016-09-06
Advanced intermetallic alloys based on the γ-TiAl phase have become widely regarded as most promising candidates to replace heavier Ni-base superalloys as materials for high-temperature structural components, due to their facilitating properties of high creep and oxidation resistance in combination with a low density. Particularly, recently developed alloying concepts based on a β-solidification pathway, such as the so-called TNM alloy, which are already incorporated in aircraft engines, have emerged offering the advantage of being processible using near-conventional methods and the option to attain balanced mechanical properties via subsequent heat-treatment. Development trends for the improvement of alloying concepts, especially dealing with issues regarding alloying element distribution, nano-scale phase characterization, phase stability, and phase formation mechanisms demand the utilization of high-resolution techniques, mainly due to the multi-phase nature of advanced TiAl alloys. Atom probe tomography (APT) offers unique possibilities of characterizing chemical compositions with a high spatial resolution and has, therefore, been widely used in recent years with the aim of understanding the materials constitution and appearing basic phenomena on the atomic scale and applying these findings to alloy development. This review, thus, aims at summarizing scientific works regarding the application of atom probe tomography towards the understanding and further development of intermetallic TiAl alloys.
Instrumentation progress at the Giant Magellan Telescope project
NASA Astrophysics Data System (ADS)
Jacoby, George H.; Bernstein, R.; Bouchez, A.; Colless, M.; Crane, Jeff; DePoy, D.; Espeland, B.; Hare, Tyson; Jaffe, D.; Lawrence, J.; Marshall, J.; McGregor, P.; Shectman, Stephen; Sharp, R.; Szentgyorgyi, A.; Uomoto, Alan; Walls, B.
2016-08-01
Instrument development for the 24m Giant Magellan Telescope (GMT) is described: current activities, progress, status, and schedule. One instrument team has completed its preliminary design and is currently beginning its final design (GCLEF, an optical 350-950 nm, high-resolution and precision radial velocity echelle spectrograph). A second instrument team is in its conceptual design phase (GMACS, an optical 350-950 nm, medium resolution, 6-10 arcmin field, multi-object spectrograph). A third instrument team is midway through its preliminary design phase (GMTIFS, a near-IR YJHK diffraction-limited imager/integral-field-spectrograph), focused on risk reduction prototyping and design optimization. A fourth instrument team is currently fabricating the 5 silicon immersion gratings needed to begin its preliminary design phase (GMTNIRS, a simultaneous JHKLM high-resolution, AO-fed, echelle spectrograph). And, another instrument team is focusing on technical development and prototyping (MANIFEST, a facility robotic, multifiber feed, with a 20 arcmin field of view). In addition, a medium-field (6 arcmin, 0.06 arcsec/pix) optical imager will support telescope and AO commissioning activities, and will excel at narrow-band imaging. In the spirit of advancing synergies with other groups, the challenges of running an ELT instrument program and opportunities for cross-ELT collaborations are discussed.
Holographic line field en-face OCT with digital adaptive optics in the retina in vivo.
Ginner, Laurin; Schmoll, Tilman; Kumar, Abhishek; Salas, Matthias; Pricoupenko, Nastassia; Wurster, Lara M; Leitgeb, Rainer A
2018-02-01
We demonstrate a high-resolution line field en-face time domain optical coherence tomography (OCT) system using an off-axis holography configuration. Line field en-face OCT produces high speed en-face images at rates of up to 100 Hz. The high frame rate favors good phase stability across the lateral field-of-view which is indispensable for digital adaptive optics (DAO). Human retinal structures are acquired in-vivo with a broadband light source at 840 nm, and line rates of 10 kHz to 100 kHz. Structures of different retinal layers, such as photoreceptors, capillaries, and nerve fibers are visualized with high resolution of 2.8 µm and 5.5 µm in lateral directions. Subaperture based DAO is successfully applied to increase the visibility of cone-photoreceptors and nerve fibers. Furthermore, en-face Doppler OCT maps are generated based on calculating the differential phase shifts between recorded lines.
Novel Fourier-domain constraint for fast phase retrieval in coherent diffraction imaging.
Latychevskaia, Tatiana; Longchamp, Jean-Nicolas; Fink, Hans-Werner
2011-09-26
Coherent diffraction imaging (CDI) for visualizing objects at atomic resolution has been realized as a promising tool for imaging single molecules. Drawbacks of CDI are associated with the difficulty of the numerical phase retrieval from experimental diffraction patterns; a fact which stimulated search for better numerical methods and alternative experimental techniques. Common phase retrieval methods are based on iterative procedures which propagate the complex-valued wave between object and detector plane. Constraints in both, the object and the detector plane are applied. While the constraint in the detector plane employed in most phase retrieval methods requires the amplitude of the complex wave to be equal to the squared root of the measured intensity, we propose a novel Fourier-domain constraint, based on an analogy to holography. Our method allows achieving a low-resolution reconstruction already in the first step followed by a high-resolution reconstruction after further steps. In comparison to conventional schemes this Fourier-domain constraint results in a fast and reliable convergence of the iterative reconstruction process. © 2011 Optical Society of America
Nature of phase transitions in crystalline and amorphous GeTe-Sb2Te3 phase change materials.
Kalkan, B; Sen, S; Clark, S M
2011-09-28
The thermodynamic nature of phase stabilities and transformations are investigated in crystalline and amorphous Ge(1)Sb(2)Te(4) (GST124) phase change materials as a function of pressure and temperature using high-resolution synchrotron x-ray diffraction in a diamond anvil cell. The phase transformation sequences upon compression, for cubic and hexagonal GST124 phases are found to be: cubic → amorphous → orthorhombic → bcc and hexagonal → orthorhombic → bcc. The Clapeyron slopes for melting of the hexagonal and bcc phases are negative and positive, respectively, resulting in a pressure dependent minimum in the liquidus. When taken together, the phase equilibria relations are consistent with the presence of polyamorphism in this system with the as-deposited amorphous GST phase being the low entropy low-density amorphous phase and the laser melt-quenched and high-pressure amorphized GST being the high entropy high-density amorphous phase. The metastable phase boundary between these two polyamorphic phases is expected to have a negative Clapeyron slope. © 2011 American Institute of Physics
Speckle-field digital holographic microscopy.
Park, YongKeun; Choi, Wonshik; Yaqoob, Zahid; Dasari, Ramachandra; Badizadegan, Kamran; Feld, Michael S
2009-07-20
The use of coherent light in conventional holographic phase microscopy (HPM) poses three major drawbacks: poor spatial resolution, weak depth sectioning, and fixed pattern noise due to unwanted diffraction. Here, we report a technique which can overcome these drawbacks, but maintains the advantage of phase microscopy - high contrast live cell imaging and 3D imaging. A speckle beam of a complex spatial pattern is used for illumination to reduce fixed pattern noise and to improve optical sectioning capability. By recording of the electric field of speckle, we demonstrate high contrast 3D live cell imaging without the need for axial scanning - neither objective lens nor sample stage. This technique has great potential in studying biological samples with improved sensitivity, resolution and optical sectioning capability.
Phase contrast imaging with coherent high energy X-rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snigireva, I.
X-ray imaging concern high energy domain (>6 keV) like a contact radiography, projection microscopy and tomography is used for many years to discern the features of the internal structure non destructively in material science, medicine and biology. In so doing the main contrast formation is absorption that makes some limitations for imaging of the light density materials and what is more the resolution of these techniques is not better than 10-100 {mu}m. It was turned out that there is now way in which to overcome 1{mu}m or even sub-{mu}m resolution limit except phase contrast imaging. It is well known inmore » optics that the phase contrast is realised when interference between reference wave front and transmitted through the sample take place. Examples of this imaging are: phase contrast microscopy suggested by Zernike and Gabor (in-line) holography. Both of this techniques: phase contrast x-ray microscopy and holography are successfully progressing now in soft x-ray region. For imaging in the hard X-rays to enhance the contrast and to be able to resolve phase variations across the beam the high degree of the time and more importantly spatial coherence is needed. Because of this it was reasonable that the perfect crystal optics was involved like Bonse-Hart interferometry, double-crystal and even triple-crystal set-up using Laue and Bragg geometry with asymmetrically cut crystals.« less
High-performance liquid-chromatographic separation of subcomponents of antimycin-A
Abidi, S.L.
1988-01-01
Using a reversed-phase high-performance liquid chromatographic (HPLC) technique, a mixture of antimycins A was separated into eight hitherto unreported subcomponents, Ala, Alb, A2a, A2b, A3a, A3b, A4a, and A4b. Although a base-line resolution of the known four major antimycins Al, A2, A3, and A4 was readily achieved with mobile phases containing acetate buffers, the separation of the new antibiotic subcomponents was highly sensitive to variation in mobile phase conditions. The type and composition of organic modifiers, the nature of buffer salts, and the concentration of added electrolytes had profound effects on capacity factors, separation factors, and peak resolution values. Of the numerous chromatographic systems examined, a mobile phase consisting of methanol-water (70:30) and 0.005 M tetrabutylammonium phosphate at pH 3.0 yielded the most satisfactory results for the separation of the subcomponents. Reversed-phase gradient HPLC separation of the dansylated or methylated antibiotic compounds produced superior chromatographic characteristics and the presence of added electrolytes was not a critical factor for achieving separation. Differences in the chromatographic outcome between homologous and structural isomers were interpretated based on a differential solvophobic interaction rationale. Preparative reversed-phase HPLC under optimal conditions enabled isolation of pure samples of the methylated antimycin subcomponents for use in structural studies.
Linac coherent light source (LCLS) undulator RF BPM system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lill, R.; Waldschmidt, G.; Morrison, L.
2006-01-01
The Linac Coherent Light Source (LCLS) will be the world's first x-ray free-electron laser (FEL) when it becomes operational in 2009. The LCLS is currently in the construction phase. The beam position monitor (BPM) system planned for the LCLS undulator will incorporate a high-resolution X-band cavity BPM system described in this paper. The BPM system will provide high-resolution measurements of the electron beam trajectory on a pulse-to-pulse basis and over many shots. The X-band cavity BPM size, simple fabrication, and high resolution make it an ideal choice for LCLS beam position detection. We will discuss the system specifications, design, andmore » prototype test results.« less
Linac Coherent Light Source Undulator RF BPM System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lill, R.M.; Morrison, L.H.; Waldschmidt, G.J.
2007-04-17
The Linac Coherent Light Source (LCLS) will be the world's first x-ray free-electron laser (FEL) when it becomes operational in 2009. The LCLS is currently in the construction phase. The beam position monitor (BPM) system planned for the LCLS undulator will incorporate a high-resolution X-band cavity BPM system described in this paper. The BPM system will provide high-resolution measurements of the electron beam trajectory on a pulse-to-pulse basis and over many shots. The X-band cavity BPM size, simple fabrication, and high resolution make it an ideal choice for LCLS beam position detection. We will discuss the system specifications, design, andmore » prototype test results.« less
NASA Astrophysics Data System (ADS)
Hizir, F. E.; Hardt, D. E.
2017-05-01
An in-depth understanding of the liquid transport in roll-based printing systems is essential for advancing the roll-based printing technology and enhancing the performance of the printed products. In this study, phase-field simulations are performed to characterize the liquid transport in roll-based printing systems, and the phase-field method is shown to be an effective tool to simulate the liquid transport. In the phase-field simulations, the liquid transport through the ink transfer rollers is approximated as the stretching and splitting of liquid bridges with pinned or moving contact lines between vertically separating surfaces. First, the effect of the phase-field parameters and the mesh characteristics on the simulation results is examined. The simulation results show that a sharp interface limit is approached as the capillary width decreases while keeping the mobility proportional to the capillary width squared. Close to the sharp interface limit, the mobility changes over a specified range are observed to have no significant influence on the simulation results. Next, the ink transfer from the cells on the surface of an ink-metering roller to the surface of stamp features is simulated. Under negligible inertial effects and in the absence of gravity, the amount of liquid ink transferred from an axisymmetric cell with low surface wettability to a stamp with high surface wettability is found to increase as the cell sidewall steepness and the cell surface wettability decrease and the stamp surface wettability and the capillary number increase. Strategies for improving the resolution and quality of roll-based printing are derived based on an analysis of the simulation results. The application of novel materials that contain cells with irregular surface topography to stamp inking in high-resolution roll-based printing is assessed.
Yui, Yuko; Miyazaki, Shota; Ma, Yan; Ohira, Masayoshi; Fiehn, Oliver; Ikegami, Tohru; McCalley, David V; Tanaka, Nobuo
2016-06-10
Separation of diastereomers of dl-α-tocopherol was studied by reversed-phase liquid chromatography using three types of stationary phases, polymeric ODS, polymeric C30, and monomeric ODS. Polymeric ODS stationary phase (Inertsil ODS-P, 3mmID, 20cm) was effective for the separation of the isomers created by the presence of three chiral centers on the alkyl chain of synthetic dl-α-tocopherol. Considerable improvement of the separation of isomers was observed on ODS-P phase at high pressure and at low temperature. Complete separation of four pairs of diastereomers was achieved at 12.0°C, 536bar, while three peaks were observed when the separation was carried out either at 12.0°C at low pressure or at 20°C at 488bar. Higher temperature (30.0°C) with the ODS-P phase resulted in only partial separation of the diastereomers even at high pressure. Only slight resolution was observed for the mixture of diastereomers with the C30 stationary phase (Inertsil C30) at 12.0°C and 441bar, although the stationary phase afforded greater resolution for β- and γ-tocopherol than ODS-P. A monomeric C18 stationary phase did not show any separation at 12.0°C and 463bar. The results suggest that the binding site of the polymeric ODS-P phase is selective for flexible alkyl chains that provided the longest retention for the natural form, (R,R,R) form, and the enantiomer, (S,S,S) form, of dl-α-tocopherol. Copyright © 2016. Published by Elsevier B.V.
Neukum, G; Jaumann, R; Hoffmann, H; Hauber, E; Head, J W; Basilevsky, A T; Ivanov, B A; Werner, S C; van Gasselt, S; Murray, J B; McCord, T
2004-12-23
The large-area coverage at a resolution of 10-20 metres per pixel in colour and three dimensions with the High Resolution Stereo Camera Experiment on the European Space Agency Mars Express Mission has made it possible to study the time-stratigraphic relationships of volcanic and glacial structures in unprecedented detail and give insight into the geological evolution of Mars. Here we show that calderas on five major volcanoes on Mars have undergone repeated activation and resurfacing during the last 20 per cent of martian history, with phases of activity as young as two million years, suggesting that the volcanoes are potentially still active today. Glacial deposits at the base of the Olympus Mons escarpment show evidence for repeated phases of activity as recently as about four million years ago. Morphological evidence is found that snow and ice deposition on the Olympus construct at elevations of more than 7,000 metres led to episodes of glacial activity at this height. Even now, water ice protected by an insulating layer of dust may be present at high altitudes on Olympus Mons.
NASA Astrophysics Data System (ADS)
Knight, Kevin S.; Price, G. David; Stuart, John A.; Wood, Ian G.
2015-01-01
The nature of the apparently continuous structural phase transition at 1,049 K in the perovskite-structured, MgSiO3 isomorph, neighborite (NaMgF3), from the orthorhombic ( Pbnm) hettotype phase to the cubic () aristotype structure, has been re-investigated using high-resolution, time-of-flight neutron powder diffraction. Using data collected at 1 K intervals close to the nominal phase transition temperature, the temperature dependence of the intensities of superlattice reflections at the M point and the R point of the pseudocubic Brillouin zone indicate the existence of a new intermediate tetragonal phase in space group P4/ mbm, with a narrow phase field extending from ~1,046.5 to ~1,048.5 K, at ambient pressure. Group theoretical analysis shows that the structural transitions identified in this study, Pbnm- P4/ mbm, and P4/ mbm-, are permitted to be second order. The observation of the tetragonal phase resolves the longstanding issue of why the high-temperature phase transition, previously identified as Pbnm-, and which would be expected to be first order under Landau theory, is in fact found to be continuous. Analysis of the pseudocubic shear strain shows it to vary with a critical exponent of 0.5 implying that the phase transition from Pbnm to P4/ mbm is tricritical in character. The large librational modes that exist in the MgF6 octahedron at high temperature, and the use of Gaussian probability density functions to describe atomic displacements, result in apparent bond shortening in the Mg-F distances, making mode amplitude determination an unreliable method for determination of the critical exponent from internal coordinates. Crystal structures are reported for the three phases of NaMgF3 at 1,033 K ( Pbnm), 1,047 K ( P4/ mbm) and 1,049 K ().
Lutaty, Aviv; Soboh, Soaad; Schif-Zuck, Sagie; Zeituni-Timor, Orly; Rostoker, Ran; Podolska, Malgorzata J.; Schauer, Christine; Herrmann, Martin; Muñoz, Luis E.; Ariel, Amiram
2018-01-01
During the resolution of inflammation, macrophages engulf apoptotic polymorphonuclear cells (PMN) and can accumulate large numbers of their corpses. Here, we report that resolution phase macrophages acquire the neutrophil-derived glycoprotein lactoferrin (Lf) and fragments thereof in vivo and ex vivo. During the onset and resolving phases of inflammation in murine peritonitis and bovine mastitis, Lf fragments of 15 and 17 kDa occurred in various body fluids, and the murine fragmentation, accumulation, and release were mediated initially by neutrophils and later by efferocytic macrophages. The 17-kDa fragment contained two bioactive tripeptides, FKD and FKE that promoted resolution phase macrophage conversion to a pro-resolving phenotype. This resulted in a reduction in peritoneal macrophage numbers and an increase in the CD11blow subset of these cells. Moreover, FKE, but not FKD, peptides enhanced efferocytosis of apoptotic PMN, reduced TNFα and interleukin (IL)-6, and increased IL-10 secretion by lipopolysaccharide-stimulated macrophages ex vivo. In addition, FKE promoted neutrophil-mediated resolution at high concentrations (100 µM) by enhancing the formation of cytokine-scavenging aggregated NETs (tophi) at a low cellular density. Thus, PMN Lf is processed, acquired, and “recycled” by neutrophils and macrophages during inflammation resolution to generate fragments and peptides with paramount pro-resolving activities. PMID:29643857
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Yufeng; Tolic, Nikola; Piehowski, Paul D.
We report development of an approach providing high-resolution RPLC of proteins and its utility for mass spectrometry-based top-down proteomics. A chromatographic peak capacity of ~450 was achieved for proteins and large polypeptides having MWs up to 43 kDa in the context of proteomics applications. RPLC column lengths from 20 to 200 cm, particle sizes from 1.5 to 5 m, bonding alkyl chains from C1 to C2, C4, C8, and C18, and particle surface structures that spanned porous, superficially porous (porous shell, core-shell), and nonporous were investigated at pressures up to14K psi. Column length was found as the most important factormore » for >20 kDa proteins in gradient RPLC, and shortening column length degraded RPLC resolution and sensitivity regardless of the size and surface structure of the packing particles used. The alkyl chains bonded to the silica particle surface significantly affected the RPLC recovery and efficiency, and short alkyl C1-C4 phases provided higher sensitivity and resolution than C8 and C18 phases. Long gradient separations (e.g., >10 hours) with long columns (e.g., 100 cm) were particularly effective in conjunction with use of high accuracy mass spectrometers (e.g., the Orbitrap Elite) for top-down proteomics with improved proteoform coverage by allowing multiple HCD, CID, and ETD dissociation modes. It was also found that HCD produced small fragments useful for proteoform identification, while low energy CID and ETD often complemented HCD by providing large fragments.« less
Ultra-long high-sensitivity Φ-OTDR for high spatial resolution intrusion detection of pipelines.
Peng, Fei; Wu, Han; Jia, Xin-Hong; Rao, Yun-Jiang; Wang, Zi-Nan; Peng, Zheng-Pu
2014-06-02
An ultra-long phase-sensitive optical time domain reflectometry (Φ-OTDR) that can achieve high-sensitivity intrusion detection over 131.5km fiber with high spatial resolution of 8m is presented, which is the longest Φ-OTDR reported to date, to the best of our knowledge. It is found that the combination of distributed Raman amplification with heterodyne detection can extend the sensing distance and enhances the sensitivity substantially, leading to the realization of ultra-long Φ-OTDR with high sensitivity and spatial resolution. Furthermore, the feasibility of applying such an ultra-long Φ-OTDR to pipeline security monitoring is demonstrated and the features of intrusion signal can be extracted with improved SNR by using the wavelet detrending/denoising method proposed.
Applications of phase-contrast x-ray imaging to medicine using an x-ray interferometer
NASA Astrophysics Data System (ADS)
Momose, Atsushi; Yoneyama, Akio; Takeda, Tohoru; Itai, Yuji; Tu, Jinhong; Hirano, Keiichi
1999-10-01
We are investigating possible medical applications of phase- contrast X-ray imaging using an X-ray interferometer. This paper introduces the strategy of the research project and the present status. The main subject is to broaden the observation area to enable in vivo observation. For this purpose, large X-ray interferometers were developed, and 2.5 cm X 1.5 cm interference patterns were generated using synchrotron X-rays. An improvement of the spatial resolution is also included in the project, and an X-ray interferometer designed for high-resolution phase-contrast X-ray imaging was fabricated and tested. In parallel with the instrumental developments, various soft tissues are observed by phase- contrast X-ray CT to find correspondence between the generated contrast and our histological knowledge. The observation done so far suggests that cancerous tissues are differentiated from normal tissues and that blood can produce phase contrast. Furthermore, this project includes exploring materials that modulate phase contrast for selective imaging.
High Resolution Radar for NASA and Space Situational Awareness for Observation and Monitoring
NASA Astrophysics Data System (ADS)
Geldzahler, B.; D'Addario, L.; Ott, M.; Birr, R.; Woods, G.; Miller, M.
2014-09-01
NASA has embarked on a series of demonstrations that will enable the implementation of a high power, high resolution X/Ka-band radar system using a phased array of widely spaced 12m antennas to better track and characterize near Earth objects and orbital debris. This radar system also has applications for cost effective space situational awareness. Ka band can provide 5cm ranging resolution, and, with arrays in the western United States and Australia used in an astrometric mode, ? 10 cm resolution at GEO. Here we report the results of a successful X-band demonstration of coherent uplink arraying with real time compensation for atmospheric phase fluctuations at the Kennedy Space Center (KSC) using a system simplified from work previously undertaken. The X-band system is a prelude to the Ka-band work currently underway. The target satellites were components of the DSCS and WGS systems. KSC was chosen for the demonstration site because [a] of reduced implementation costs, [b] there is a lot of water vapor in the air (not Ka-band friendly), and [c] some of the test satellites have low elevations thereby adding more attenuation and turbulence to the demonstration. When Ka-band coherent uplink arraying is demonstrated to work at KSC, it will work and can be deployed anywhere.
Bajt, Sasa
2003-07-08
A highly sensitive and high resolution magnetic microscope images magnetic properties quantitatively. Imaging is done with a modified transmission electron microscope that allows imaging of the sample in a zero magnetic field. Two images from closely spaced planes, one in focus and one slightly out of focus, are sufficient to calculate the absolute values of the phase change imparted to the electrons, and hence obtain the magnetization vector field distribution.
Varma, Gopal; Wang, Xiaoen; Vinogradov, Elena; Bhatt, Rupal S.; Sukhatme, Vikas; Seth, Pankaj; Lenkinski, Robert E.; Alsop, David C.; Grant, Aaron K.
2015-01-01
Purpose In balanced steady state free precession (bSSFP), the signal intensity has a well-known dependence on the off-resonance frequency, or, equivalently, the phase advance between successive radiofrequency (RF) pulses. The signal profile can be used to resolve the contributions from the spectrally separated metabolites. This work describes a method based on use of a variable RF phase advance to acquire spatial and spectral data in a time-efficient manner for hyperpolarized 13C MRI. Theory and Methods The technique relies on the frequency response from a bSSFP acquisition to acquire relatively rapid, high-resolution images that may be reconstructed to separate contributions from different metabolites. The ability to produce images from spectrally separated metabolites was demonstrated in-vitro, as well as in-vivo following administration of hyperpolarized 1-13C pyruvate in mice with xenograft tumors. Results In-vivo images of pyruvate, alanine, pyruvate hydrate and lactate were reconstructed from 4 images acquired in 2 seconds with an in-plane resolution of 1.25 × 1.25mm2 and 5mm slice thickness. Conclusions The phase advance method allowed acquisition of spectroscopically selective images with high spatial and temporal resolution. This method provides an alternative approach to hyperpolarized 13C spectroscopic MRI that can be combined with other techniques such as multi-echo or fluctuating equilibrium bSSFP. PMID:26507361
Common-path digital holographic microscopy based on a beam displacer unit
NASA Astrophysics Data System (ADS)
Di, Jianglei; Zhang, Jiwei; Song, Yu; Wang, Kaiqiang; Wei, Kun; Zhao, Jianlin
2018-02-01
Digital holographic microscopy (DHM) has become a novel tool with advantages of full field, non-destructive, high-resolution and 3D imaging, which captures the quantitative amplitude and phase information of microscopic specimens. It's a well-established method for digital recording and numerical reconstructing the full complex field of wavefront of the samples with a diffraction-limited lateral resolution down to 0.3 μm depending on the numerical aperture of microscope objective. Meanwhile, its axial resolution through axial direction is less than 10 nm due to the interferometric nature in phase imaging. Compared with the typical optical configurations such as Mach-Zehnder interferometer and Michelson interferometer, the common-path DHM has the advantages of simple and compact configuration, high stability, and so on. Here, a simple, compact, and low-cost common-path DHM based on a beam displacer unit is proposed for quantitative phase imaging of biological cells. The beam displacer unit is completely compatible with commercial microscope and can be easily set up in the output port of the microscope as a compact independent device. This technique can be used to achieve the quantitative phase measurement of biological cells with an excellent temporal stability of 0.51 nm, which makes it having a good prospect in the fields of biological and medical science. Living mouse osteoblastic cells are quantitatively measured with the system to demonstrate its capability and applicability.
Jing, Wencai; Zhang, Yimo; Zhou, Ge
2002-07-15
A new structure for bit synchronization in a tera-bit/s optical interconnection network has been designed using micro-electro-mechanical system (MEMS) technique. Link multiplexing has been adopted to reduce data packet communication latency. To eliminate link set-up time, adjustable optical delay lines (AODLs) have been adopted to shift the phases of the distributed optical clock signals for bit synchronization. By changing the optical path distance of the optical clock signal, the phase of the clock signal can be shifted at a very high resolution. A phase-shift resolution of 0.1 ps can be easily achieved with 30-microm alternation of the optical path length in vacuum.
Zernike phase contrast cryo-electron tomography of whole bacterial cells
Guerrero-Ferreira, Ricardo C.; Wright, Elizabeth R.
2014-01-01
Cryo-electron tomography (cryo-ET) provides three-dimensional (3D) structural information of bacteria preserved in a native, frozen-hydrated state. The typical low contrast of tilt-series images, a result of both the need for a low electron dose and the use of conventional defocus phase-contrast imaging, is a challenge for high-quality tomograms. We show that Zernike phase-contrast imaging allows the electron dose to be reduced. This limits movement of gold fiducials during the tilt series, which leads to better alignment and a higher-resolution reconstruction. Contrast is also enhanced, improving visibility of weak features. The reduced electron dose also means that more images at more tilt angles could be recorded, further increasing resolution. PMID:24075950
Phase stability and microstructures of high entropy alloys ion irradiated to high doses
NASA Astrophysics Data System (ADS)
Xia, Songqin; Gao, Michael C.; Yang, Tengfei; Liaw, Peter K.; Zhang, Yong
2016-11-01
The microstructures of AlxCoCrFeNi (x = 0.1, 0.75 and 1.5 in molar ratio) high entropy alloys (HEAs) irradiated at room temperature with 3 MeV Au ions at the highest fluence of 105, 91, and 81 displacement per atom, respectively, were studied. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) analyses show that the initial microstructures and phase composition of all three alloys are retained after ion irradiation and no phase decomposition is observed. Furthermore, it is demonstrated that the disordered face-centered cubic (FCC) and disordered body-centered cubic (BCC) phases show much less defect cluster formation and structural damage than the NiAl-type ordered B2 phase. This effect is explained by higher entropy of mixing, higher defect formation/migration energies, substantially lower thermal conductivity, and higher atomic level stress in the disordered phases.
NASA Astrophysics Data System (ADS)
Zhang, Kai; Zhu, Yongtian; Hu, Zhongwen
2016-08-01
The Maunakea Spectroscopic Explorer (MSE) project will transform the CFHT 3.6m optical telescope into a 10m class dedicated multi-object spectroscopic facility, with an ability to simultaneously measure thousands of objects with a spectral resolution range spanning 2,000 to 40,000. MSE will develop two spectrographic facilities to meet the science requirements. These are respectively, the Low/Medium Resolution spectrographs (LMRS) and High Resolution spectrographs (HRS). Multi-object high resolution spectrographs with total of 1,156 fibers is a big challenge, one that has never been attempted for a 10m class telescope. To date, most spectral survey facilities work in single order low/medium resolution mode, and only a few Wide Field Spectrographs (WFS) provide a cross-dispersion high resolution mode with a limited number of orders. Nanjing Institute of Astronomical Optics and Technology (NIAOT) propose a conceptual design with the use of novel image slicer arrays and single order immersed Volume Phase Holographic (VPH) grating for the MSE multi-object high resolution spectrographs. The conceptual scheme contains six identical fiber-link spectrographs, each of which simultaneously covers three restricted bands (λ/30, λ/30, λ/15) in the optical regime, with spectral resolution of 40,000 in Blue/Visible bands (400nm / 490nm) and 20,000 in Red band (650nm). The details of the design is presented in this paper.
Jackson, Ryan N.; McCoy, Airlie J.; Terwilliger, Thomas C.; ...
2015-07-30
Structures of multi-subunit macromolecular machines are primarily determined by either electron microscopy (EM) or X-ray crystallography. In many cases, a structure for a complex can be obtained at low resolution (at a coarse level of detail) with EM and at higher resolution (with finer detail) by X-ray crystallography. The integration of these two structural techniques is becoming increasingly important for generating atomic models of macromolecular complexes. A low-resolution EM image can be a powerful tool for obtaining the "phase" information that is missing from an X-ray crystallography experiment, however integration of EM and X-ray diffraction data has been technically challenging.more » Here we show a step-by-step protocol that explains how low-resolution EM maps can be placed in the crystallographic unit cell by molecular replacement, and how initial phases computed from the placed EM density are extended to high resolution by averaging maps over non-crystallographic symmetry. As the resolution gap between EM and Xray crystallography continues to narrow, the use of EM maps to help with X-ray crystal structure determination, as described in this protocol, will become increasingly effective.« less
Buchicchio, Alessandro; Bianco, Giuliana; Sofo, Adriano; Masi, Salvatore; Caniani, Donatella
2016-07-01
In this study, the capability of pharmaceutical biodegradation of fungus Trichoderma harzianum was evaluated through the comparison with the well-known biodegradation capability of white-rot fungus Pleurotus ostreatus. The study was performed in aqueous phase under aerobic conditions, using two of the most frequently detected drugs in water bodies: carbamazepine and clarithromycin, with concentrations commonly found in treated wastewater (4μg/l and 0.03μg/l respectively). For the first time, we demonstrated that T. harzianum is able to remove carbamazepine and clarithromycin. The analyses were performed by reversed-phase liquid chromatography/mass spectrometry, using high-resolution Fourier-transform ion cyclotron resonance mass spectrometry upon electrospray ionization in positive ion mode. The high selectivity and mass accuracy provided by high-resolution mass spectrometry, allowed us to identify some unknown metabolites. On the basis of our study, the major metabolites detected in liquid culture treated by T. harzianum were: 14-hydroxy-descladinosyl- and descladinosyl-clarithromycin, which are pharmacologically inactive products not dangerous for the environment. Copyright © 2016 Elsevier B.V. All rights reserved.
High Efficiency Multi-shot Interleaved Spiral-In/Out Acquisition for High Resolution BOLD fMRI
Jung, Youngkyoo; Samsonov, Alexey A.; Liu, Thomas T.; Buracas, Giedrius T.
2012-01-01
Growing demand for high spatial resolution BOLD functional MRI faces a challenge of the spatial resolution vs. coverage or temporal resolution tradeoff, which can be addressed by methods that afford increased acquisition efficiency. Spiral acquisition trajectories have been shown to be superior to currently prevalent echo-planar imaging in terms of acquisition efficiency, and high spatial resolution can be achieved by employing multiple-shot spiral acquisition. The interleaved spiral in-out trajectory is preferred over spiral-in due to increased BOLD signal CNR and higher acquisition efficiency than that of spiral-out or non-interleaved spiral in/out trajectories (1), but to date applicability of the multi-shot interleaved spiral in-out for high spatial resolution imaging has not been studied. Herein we propose multi-shot interleaved spiral in-out acquisition and investigate its applicability for high spatial resolution BOLD fMRI. Images reconstructed from interleaved spiral-in and -out trajectories possess artifacts caused by differences in T2* decay, off-resonance and k-space errors associated with the two trajectories. We analyze the associated errors and demonstrate that application of conjugate phase reconstruction and spectral filtering can substantially mitigate these image artifacts. After applying these processing steps, the multishot interleaved spiral in-out pulse sequence yields high BOLD CNR images at in-plane resolution below 1x1 mm while preserving acceptable temporal resolution (4 s) and brain coverage (15 slices of 2 mm thickness). Moreover, this method yields sufficient BOLD CNR at 1.5 mm isotropic resolution for detection of activation in hippocampus associated with cognitive tasks (Stern memory task). The multi-shot interleaved spiral in-out acquisition is a promising technique for high spatial resolution BOLD fMRI applications. PMID:23023395
High-resolution photoluminescence electro-modulation microscopy by scanning lock-in
NASA Astrophysics Data System (ADS)
Koopman, W.; Muccini, M.; Toffanin, S.
2018-04-01
Morphological inhomogeneities and structural defects in organic semiconductors crucially determine the charge accumulation and lateral transport in organic thin-film transistors. Photoluminescence Electro-Modulation (PLEM) microscopy is a laser-scanning microscopy technique that relies on the modulation of the thin-film fluorescence in the presence of charge-carriers to image the spatial distribution of charges within the active organic semiconductor. Here, we present a lock-in scheme based on a scanning beam approach for increasing the PLEM microscopy resolution and contrast. The charge density in the device is modulated by a sinusoidal electrical signal, phase-locked to the scanning beam of the excitation laser. The lock-in detection scheme is achieved by acquiring a series of images with different phases between the beam scan and the electrical modulation. Application of high resolution PLEM to an organic transistor in accumulation mode demonstrates its potential to image local variations in the charge accumulation. A diffraction-limited precision of sub-300 nm and a signal to noise ratio of 21.4 dB could be achieved.
NASA Astrophysics Data System (ADS)
Schulz-Hildebrandt, H.; Münter, Michael; Ahrens, M.; Spahr, H.; Hillmann, D.; König, P.; Hüttmann, G.
2018-03-01
Optical coherence tomography (OCT) images scattering tissues with 5 to 15 μm resolution. This is usually not sufficient for a distinction of cellular and subcellular structures. Increasing axial and lateral resolution and compensation of artifacts caused by dispersion and aberrations is required to achieve cellular and subcellular resolution. This includes defocus which limit the usable depth of field at high lateral resolution. OCT gives access the phase of the scattered light and hence correction of dispersion and aberrations is possible by numerical algorithms. Here we present a unified dispersion/aberration correction which is based on a polynomial parameterization of the phase error and an optimization of the image quality using Shannon's entropy. For validation, a supercontinuum light sources and a costume-made spectrometer with 400 nm bandwidth were combined with a high NA microscope objective in a setup for tissue and small animal imaging. Using this setup and computation corrections, volumetric imaging at 1.5 μm resolution is possible. Cellular and near cellular resolution is demonstrated in porcine cornea and the drosophila larva, when computational correction of dispersion and aberrations is used. Due to the excellent correction of the used microscope objective, defocus was the main contribution to the aberrations. In addition, higher aberrations caused by the sample itself were successfully corrected. Dispersion and aberrations are closely related artifacts in microscopic OCT imaging. Hence they can be corrected in the same way by optimization of the image quality. This way microscopic resolution is easily achieved in OCT imaging of static biological tissues.
Andrade-Eiroa, Auréa; Diévart, Pascal; Dagaut, Philippe
2010-04-15
A new procedure for optimizing PAHs separation in very complex mixtures by reverse phase high performance (RPLC) is proposed. It is based on changing gradually the experimental conditions all along the chromatographic procedure as a function of the physical properties of the compounds eluted. The temperature and speed flow gradients allowed obtaining the optimum resolution in large chromatographic determinations where PAHs with very different medium polarizability have to be separated. Whereas optimization procedures of RPLC methodologies had always been accomplished regardless of the physico-chemical properties of the target analytes, we found that resolution is highly dependent on the physico-chemical properties of the target analytes. Based on resolution criterion, optimization process for a 16 EPA PAHs mixture was performed on three sets of difficult-to-separate PAHs pairs: acenaphthene-fluorene (for the optimization procedure in the first part of the chromatogram where light PAHs elute), benzo[g,h,i]perylene-dibenzo[a,h]anthracene and benzo[g,h,i]perylene-indeno[1,2,3-cd]pyrene (for the optimization procedure of the second part of the chromatogram where the heavier PAHs elute). Two-level full factorial designs were applied to detect interactions among variables to be optimized: speed flow, temperature of column oven and mobile-phase gradient in the two parts of the studied chromatogram. Experimental data were fitted by multivariate nonlinear regression models and optimum values of speed flow and temperature were obtained through mathematical analysis of the constructed models. An HPLC system equipped with a reversed phase 5 microm C18, 250 mm x 4.6mm column (with acetonitrile/water mobile phase), a column oven, a binary pump, a photodiode array detector (PDA), and a fluorimetric detector were used in this work. Optimum resolution was achieved operating at 1.0 mL/min in the first part of the chromatogram (until 45 min) and 0.5 mL/min in the second one (from 45 min to the end) and by applying programmed temperature gradient (15 degrees C until 30 min and progressively increasing temperature until reaching 40 degrees C at 45 min). (c) 2009 Elsevier B.V. All rights reserved.
MEMS phase former kit for high-resolution wavefront control
NASA Astrophysics Data System (ADS)
Gehner, Andreas; Wildenhain, Michael; Neumann, Hannes; Elgner, Andreas; Schenk, Harald
2005-08-01
The MEMS Phase Former Kit developed by the Fraunhofer IPMS is a complete Spatial Light Modulator system based on a piston-type Micro Mirror Array (MMA) for the use in high-resolution, high-speed optical phase control. It has been designed for an easy system integration into an user-specific environment to offer a platform for first practical investigations to open up new applications in Adaptive Optics. The key component is a fine segmented 240 x 200 array of 40 μm piston-type mirror elements capable of 400 nm analog deflection for a 2pi phase modulation in the visible. Each mirror can be addressed and deflected independently by means of an integrated CMOS backplane address circuitry at an 8bit height resolution. Full user programmability and control is provided by a newly developed comfortable driver software for Windows XP based PCs supporting both a Graphical User Interface (GUI) for stand-alone operation with pre-defined data patterns as well as an open ActiveX programming interface for a closed-loop operation with real-time data from an external source. An IEEE1394a FireWire interface is used for high-speed data communication with an electronic driving board performing the actual MMA programming and control allowing for an overall frame rate of up to 500 Hz. Successful proof-of-concept demonstrations already have been given for eye aberration correction in ophthalmology, for error compensation of leightweight primary mirrors of future space telescopes and for ultra-short laser pulse shaping. Besides a presentation of the basic device concept and system architecture the paper will give an overview of the obtained results from these applications.
High Resolution X-ray Scattering Studies of Structural Phase Transitions in BaFe2-x Cr x As 2
NASA Astrophysics Data System (ADS)
Gaulin, B. D.; Clancy, J. P.; Wagman, J. J.; Sefat, A. S.
2011-03-01
While the effects of electron-doping on the parent compounds of the 122 family of Fe-based superconductors have been extremely well-studied in recent years, far less is known about the influence of hole-doping in compounds such as BaFe 2-x Cr x As 2 . In contrast to the electron-doped 122 systems, the hole-doped compounds do not become superconducting. Furthermore, while the hole-doped compounds exhibit similar structural and magnetic phase transitions, they appear to be much less sensitive to dopant concentration. We have performed high resolution x-ray scattering and magnetic susceptibility measurements on single crystal samples of BaFe 2-x Cr x As 2 for Cr concentrations ranging from 0 <= x <= 0.67 . These measurements allow us to determine the magnetic and structural phase transitions for this series and map out the low temperature phase diagram as a function of doping. In particular, we have carried out detailed measurements of the tetragonal (I4/mmm) to orthorhombic (Fmmm) structural phase transition which reveal how the orthorhombicity of the system evolves with increasing Cr concentration and how this correlates with the values of Ts and Tm .
Yeh, Jun-Jun; Neoh, Choo-Aun; Chen, Cheng-Ren; Chou, Christine Yi-Ting; Wu, Ming-Ting
2014-01-01
This study evaluated the use of high-resolution computed tomography (HRCT) to predict the presence of culture-positive pulmonary tuberculosis (PTB) in adult patients with pulmonary lesions in the emergency department (ED). The study included a derivation phase and validation phase with a total of 8,245 patients with pulmonary disease. There were 132 patients with culture-positive PTB in the derivation phase and 147 patients with culture-positive PTB in the validation phase. Imaging evaluation of pulmonary lesions included morphology and segmental distribution. The post-test probability ratios between both phases in three prevalence areas were analyzed. In the derivation phase, a multivariate analysis model identified cavitation, consolidation, and clusters/nodules in right or left upper lobe (except anterior segment) and consolidation of the superior segment of the right or left lower lobe as independent positive factors for culture-positive PTB, while consolidation of the right or left lower lobe (except superior segment) were independent negative factors. An ideal cutoff point based on the receiver operating characteristic (ROC) curve analysis was obtained at a score of 1. The sensitivity, specificity, positivity predictive value, and negative predictive value from derivation phase were 98.5% (130/132), 99.7% (3997/4008), 92.2% (130/141), and 99.9% (3997/3999). Based on the predicted positive likelihood ratio value of 328.33 in derivation phase, the post-test probability was observed to be 91.5% in the derivation phase, 92.5% in the validation phase, 94.5% in a high TB prevalence area, 91.0% in a moderate prevalence area, and 76.8% in moderate-to-low prevalence area. Our model using HRCT, which is feasible to perform in the ED, can promptly diagnose culture-positive PTB in moderate and moderate-to-low prevalence areas.
New Light Sources and Concepts for Electro-Optic Sampling
1994-03-01
Research to improve electro - optic sampling led to the development of several high performance optical phase modulators. These phase modulators serve...method of optical pulse shape measurement was demonstrated with 3 ps time resolution, excellent power sensitivity and relative system simplicity. These experiments have opened up the field of temporal optics. Electro - optic sampling.
Tao, Yufeng; Xia, Wei; Wang, Ming; Guo, Dongmei; Hao, Hui
2017-02-06
Integration of phase manipulation and polarization multiplexing was introduced to self-mixing interferometry (SMI) for high-sensitive measurement. Light polarizations were used to increase measuring path number and predict manifold merits for potential applications. Laser source was studied as a microwave-photonic resonator optically-injected by double reflected lights on a two-feedback-factor analytical model. Independent external paths exploited magnesium-oxide doped lithium niobate crystals at perpendicular polarizations to transfer interferometric phases into amplitudes of harmonics. Theoretical resolutions reached angstrom level. By integrating two techniques, this SMI outperformed the conventional single-path SMIs by simultaneous dual-targets measurement on single laser tube with high sensitivity and low speckle noise. In experimental demonstration, by nonlinear filtering method, a custom-made phase-resolved algorithm real-time figured out instantaneous two-dimensional displacements with nanometer resolution. Experimental comparisons to lock-in technique and a commercial Ploytec-5000 laser Doppler velocity meter validated this two-path SMI in micron range without optical cross-talk. Moreover, accuracy subjected to slewing rates of crystals could be flexibly adjusted.
Masters, Robert C; Pearson, Andrew J; Glen, Tom S; Sasam, Fabian-Cyril; Li, Letian; Dapor, Maurizio; Donald, Athene M; Lidzey, David G; Rodenburg, Cornelia
2015-04-24
The resolution capability of the scanning electron microscope has increased immensely in recent years, and is now within the sub-nanometre range, at least for inorganic materials. An equivalent advance has not yet been achieved for imaging the morphologies of nanostructured organic materials, such as organic photovoltaic blends. Here we show that energy-selective secondary electron detection can be used to obtain high-contrast, material-specific images of an organic photovoltaic blend. We also find that we can differentiate mixed phases from pure material phases in our data. The lateral resolution demonstrated is twice that previously reported from secondary electron imaging. Our results suggest that our energy-filtered scanning electron microscopy approach will be able to make major inroads into the understanding of complex, nano-structured organic materials.
The MM5 Numerical Model to Correct PSInSAR Atmospheric Phase Screen
NASA Astrophysics Data System (ADS)
Perissin, D.; Pichelli, E.; Ferretti, R.; Rocca, F.; Pierdicca, N.
2010-03-01
In this work we make an experimental analysis to research the capability of Numerical Weather Prediction (NWP) models as MM5 to produce high resolution (1km-500m) maps of Integrated Water Vapour (IWV) in the atmosphere to mitigate the well-known disturbances that affect the radar signal while travelling from the sensor to the ground and back. Experiments have been conducted over the area surrounding Rome using ERS data acquired during the three days phase in '94 and using Envisat data acquired in recent years. By means of the PS technique SAR data have been processed and the Atmospheric Phase Screen (APS) of Slave images with respect to a reference Master have been extracted. MM5 IWV maps have a much lower resolution than PSInSAR APS's: the turbulent term of the atmospheric vapour field cannot be well resolved by MM5, at least with the low resolution ECMWF inputs. However, the vapour distribution term that depends on the local topography has been found quite in accordance.
Iterative projection algorithms for ab initio phasing in virus crystallography.
Lo, Victor L; Kingston, Richard L; Millane, Rick P
2016-12-01
Iterative projection algorithms are proposed as a tool for ab initio phasing in virus crystallography. The good global convergence properties of these algorithms, coupled with the spherical shape and high structural redundancy of icosahedral viruses, allows high resolution phases to be determined with no initial phase information. This approach is demonstrated by determining the electron density of a virus crystal with 5-fold non-crystallographic symmetry, starting with only a spherical shell envelope. The electron density obtained is sufficiently accurate for model building. The results indicate that iterative projection algorithms should be routinely applicable in virus crystallography, without the need for ancillary phase information. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagelueken, Gregor; Huang, Hexian; Harlos, Karl
2012-10-01
The optimization of WbdD crystals using a novel dehydration protocol and experimental phasing at 3.5 Å resolution by cross-crystal averaging followed by molecular replacement of electron density into a non-isomorphous 3.0 Å resolution native data set are reported. WbdD is a bifunctional kinase/methyltransferase that is responsible for regulation of lipopolysaccharide O antigen polysaccharide chain length in Escherichia coli serotype O9a. Solving the crystal structure of this protein proved to be a challenge because the available crystals belonging to space group I23 only diffracted to low resolution (>95% of the crystals diffracted to resolution lower than 4 Å and most onlymore » to 8 Å) and were non-isomorphous, with changes in unit-cell dimensions of greater than 10%. Data from a serendipitously found single native crystal that diffracted to 3.0 Å resolution were non-isomorphous with a lower (3.5 Å) resolution selenomethionine data set. Here, a strategy for improving poor (3.5 Å resolution) initial phases by density modification and cross-crystal averaging with an additional 4.2 Å resolution data set to build a crude model of WbdD is desribed. Using this crude model as a mask to cut out the 3.5 Å resolution electron density yielded a successful molecular-replacement solution of the 3.0 Å resolution data set. The resulting map was used to build a complete model of WbdD. The hydration status of individual crystals appears to underpin the variable diffraction quality of WbdD crystals. After the initial structure had been solved, methods to control the hydration status of WbdD were developed and it was thus possible to routinely obtain high-resolution diffraction (to better than 2.5 Å resolution). This novel and facile crystal-dehydration protocol may be useful for similar challenging situations.« less
Riffel, Philipp; Zoellner, Frank G; Budjan, Johannes; Grimm, Robert; Block, Tobias K; Schoenberg, Stefan O; Hausmann, Daniel
2016-11-01
The purpose of the present study was to evaluate a recently introduced technique for free-breathing dynamic contrast-enhanced renal magnetic resonance imaging (MRI) applying a combination of radial k-space sampling, parallel imaging, and compressed sensing. The technique allows retrospective reconstruction of 2 motion-suppressed sets of images from the same acquisition: one with lower temporal resolution but improved image quality for subjective image analysis, and one with high temporal resolution for quantitative perfusion analysis. In this study, 25 patients underwent a kidney examination, including a prototypical fat-suppressed, golden-angle radial stack-of-stars T1-weighted 3-dimensional spoiled gradient-echo examination (GRASP) performed after contrast agent administration during free breathing. Images were reconstructed at temporal resolutions of 55 spokes per frame (6.2 seconds) and 13 spokes per frame (1.5 seconds). The GRASP images were evaluated by 2 blinded radiologists. First, the reconstructions with low temporal resolution underwent subjective image analysis: the radiologists assessed the best arterial phase and the best renal phase and rated image quality score for each patient on a 5-point Likert-type scale.In addition, the diagnostic confidence was rated according to a 3-point Likert-type scale. Similarly, respiratory motion artifacts and streak artifacts were rated according to a 3-point Likert-type scale.Then, the reconstructions with high temporal resolution were analyzed with a voxel-by-voxel deconvolution approach to determine the renal plasma flow, and the results were compared with values reported in previous literature. Reader 1 and reader 2 rated the overall image quality score for the best arterial phase and the best renal phase with a median image quality score of 4 (good image quality) for both phases, respectively. A high diagnostic confidence (median score of 3) was observed. There were no respiratory motion artifacts in any of the patients. Streak artifacts were present in all of the patients, but did not compromise diagnostic image quality.The estimated renal plasma flow was slightly higher (295 ± 78 mL/100 mL per minute) than reported in previous MRI-based studies, but also closer to the physiologically expected value. Dynamic, motion-suppressed contrast-enhanced renal MRI can be performed in high diagnostic quality during free breathing using a combination of golden-angle radial sampling, parallel imaging, and compressed sensing. Both morphologic and quantitative functional information can be acquired within a single acquisition.
Gasparetto, Emerson L; Souza, Carolina A; Tazoniero, Priscilla; Davaus, Taisa; Escuissato, Dante L; Marchiori, Edson
2007-02-01
The aim of this study was to present the clinical and high-resolution CT scan findings of angioinvasive pulmonary aspergillosis (APA) in 12 patients who underwent allogeneic bone marrow transplantation (BMT). The CT scans were reviewed by three chest radiologists who assessed the pattern and distribution of findings by consent. There were 7 (58%) female and 5 (42%) male patients, with aging between 5 and 50 years (average of 26 years). All patients were submitted to BMT for the treatment of hematological conditions. The diagnosis of APA was defined between 5 and 373 days after BMT, with average of 111 days. Three cases (25%) were diagnosed in the neutropenic phase after the BMT, five (42%) in the early phase and four patients in the late phase post-BMT. Regarding high-resolution CT (HRCT) scan findings, nodules were found in 75% of the cases (9/12), most of the cases with more than 10 lesions (7/9) and of centrilobular localization (6/9). Consolidations were identified in seven patients (58%), being single in six, and commonly presenting ill defined borders (n=3) and subsegmental localization (n=5). Ground glass attenuation was found in six patients (50%). The halo sign was observed in nine cases (75%). Cavitations were seen in two air-space consolidations and one large nodule (2.5 cm). Patients submitted to BMT presenting respiratory symptoms and nodules or consolidations with halo sign at HRCT scan need to have the diagnosis of angioinvasive pulmonary aspergillosis included in all the post BMT phases.
Merboldt, Klaus-Dietmar; Uecker, Martin; Voit, Dirk; Frahm, Jens
2011-10-01
This work demonstrates that the principles underlying phase-contrast MRI may be used to encode spatial rather than flow information along a perpendicular dimension, if this dimension contains an MRI-visible object at only one spatial location. In particular, the situation applies to 3D mapping of curved 2D structures which requires only two projection images with different spatial phase-encoding gradients. These phase-contrast gradients define the field of view and mean spin-density positions of the object in the perpendicular dimension by respective phase differences. When combined with highly undersampled radial fast low angle shot (FLASH) and image reconstruction by regularized nonlinear inversion, spatial phase-contrast MRI allows for dynamic 3D mapping of 2D structures in real time. First examples include 3D MRI movies of the acting human hand at a temporal resolution of 50 ms. With an even simpler technique, 3D maps of curved 1D structures may be obtained from only three acquisitions of a frequency-encoded MRI signal with two perpendicular phase encodings. Here, 3D MRI movies of a rapidly rotating banana were obtained at 5 ms resolution or 200 frames per second. In conclusion, spatial phase-contrast 3D MRI of 2D or 1D structures is respective two or four orders of magnitude faster than conventional 3D MRI. Copyright © 2011 Wiley-Liss, Inc.
Image Reconstruction for Interferometric Imaging of Geosynchronous Satellites
NASA Astrophysics Data System (ADS)
DeSantis, Zachary J.
Imaging distant objects at a high resolution has always presented a challenge due to the diffraction limit. Larger apertures improve the resolution, but at some point the cost of engineering, building, and correcting phase aberrations of large apertures become prohibitive. Interferometric imaging uses the Van Cittert-Zernike theorem to form an image from measurements of spatial coherence. This effectively allows the synthesis of a large aperture from two or more smaller telescopes to improve the resolution. We apply this method to imaging geosynchronous satellites with a ground-based system. Imaging a dim object from the ground presents unique challenges. The atmosphere creates errors in the phase measurements. The measurements are taken simultaneously across a large bandwidth of light. The atmospheric piston error, therefore, manifests as a linear phase error across the spectral measurements. Because the objects are faint, many of the measurements are expected to have a poor signal-to-noise ratio (SNR). This eliminates possibility of use of commonly used techniques like closure phase, which is a standard technique in astronomical interferometric imaging for making partial phase measurements in the presence of atmospheric error. The bulk of our work has been focused on forming an image, using sub-Nyquist sampled data, in the presence of these linear phase errors without relying on closure phase techniques. We present an image reconstruction algorithm that successfully forms an image in the presence of these linear phase errors. We demonstrate our algorithm’s success in both simulation and in laboratory experiments.
Orzó, László
2015-06-29
Retrieving correct phase information from an in-line hologram is difficult as the object wave field and the diffractions of the zero order and the conjugate object term overlap. The existing iterative numerical phase retrieval methods are slow, especially in the case of high Fresnel number systems. Conversely, the reconstruction of the object wave field from an off-axis hologram is simple, but due to the applied spatial frequency filtering the achievable resolution is confined. Here, a new, high-speed algorithm is introduced that efficiently incorporates the data of an auxiliary off-axis hologram in the phase retrieval of the corresponding in-line hologram. The efficiency of the introduced combined phase retrieval method is demonstrated by simulated and measured holograms.
Shayovitz, Dror; Herrmann, Harald; Sohler, Wolfgang; Ricken, Raimund; Silberhorn, Christine; Marom, Dan M
2012-11-19
We demonstrate high resolution and increased efficiency background-free time-to-space conversion using spectrally resolved non-degenerate and collinear SFG in a bulk PPLN crystal. A serial-to-parallel resolution factor of 95 and a time window of 42 ps were achieved. A 60-fold increase in conversion efficiency slope compared with our previous work using a BBO crystal [D. Shayovitz and D. M. Marom, Opt. Lett. 36, 1957 (2011)] was recorded. Finally the measured 40 GHz narrow linewidth of the output SFG signal implies the possibility to extract phase information by employing coherent detection techniques.
Observation of superradiant synchrotron radiation in the terahertz region
NASA Astrophysics Data System (ADS)
Billinghurst, B. E.; Bergstrom, J. C.; Dallin, L.; de Jong, M.; May, T. E.; Vogt, J. M.; Wurtz, W. A.
2013-06-01
We report the first high-resolution measurement of superradiance, using coherent synchrotron radiation in the terahertz region from the Canadian Light Source synchrotron and a Michelson interferometer with a nominal frequency resolution of 0.00096cm-1. Superradiance arises when a high degree of phase coherence exists between the radiation fields of the individual electron bunches, and manifests itself as a series of narrow spectral peaks at harmonics of the bunch frequency. We observe an enhancement factor of 16 at the spectral peaks, limited by the interferometer resolution. The spectral distribution and relative amplitudes of the superradiant peaks are modified by altering the pattern of bunches along the bunch train.
NASA Astrophysics Data System (ADS)
Mitchell, Roger H.; Kennedy, Brendan J.; Knight, Kevin S.
2018-01-01
Refinement of time-of-flight high-resolution neutron powder diffraction data for lueshite (Na, Ca)(Nb, Ta, Ti)O3, the natural analogue of synthetic NaNbO3, demonstrates that lueshite at room temperature (298 K) adopts an orthorhombic structure with a 2 a p × 2 a p × 4 a p superlattice described by space group Pmmn [#59: a = 7.8032(4) Å; b = 7.8193(4) Å; c = 15.6156(9) Å]. This structure is analogous to that of phase S of synthetic NaNbO3 observed at 753-783 K (480-510 °C). In common with synthetic NaNbO3, lueshite exhibits a series of phase transitions with decreasing temperature from a cubic (Pm\\bar{3}m) aristotype through tetragonal ( P4/ mbm) and orthorhombic ( Cmcm) structures. However, the further sequence of phase transitions differs in that for lueshite the series terminates with the room temperature S ( Pmmn) phase, and the R ( Pmmn or Pnma) and P ( Pbcm) phases of NaNbO3 are not observed. The appearance of the S phase in lueshite at a lower temperature, relative to that of NaNbO3, is attributable to the effects of solid solution of Ti, Ta and Ca in lueshite.
Propagation Diagnostic Simulations Using High-Resolution Equatorial Plasma Bubble Simulations
NASA Astrophysics Data System (ADS)
Rino, C. L.; Carrano, C. S.; Yokoyama, T.
2017-12-01
In a recent paper, under review, equatorial-plasma-bubble (EPB) simulations were used to conduct a comparative analysis of the EPB spectra characteristics with high-resolution in-situ measurements from the C/NOFS satellite. EPB realizations sampled in planes perpendicular to magnetic field lines provided well-defined EPB structure at altitudes penetrating both high and low-density regions. The average C/NOFS structure in highly disturbed regions showed nearly identical two-component inverse-power-law spectral characteristics as the measured EPB structure. This paper describes the results of PWE simulations using the same two-dimensional cross-field EPB realizations. New Irregularity Parameter Estimation (IPE) diagnostics, which are based on two-dimensional equivalent-phase-screen theory [A theory of scintillation for two-component power law irregularity spectra: Overview and numerical results, by Charles Carrano and Charles Rino, DOI: 10.1002/2015RS005903], have been successfully applied to extract two-component inverse-power-law parameters from measured intensity spectra. The EPB simulations [Low and Midlatitude Ionospheric Plasma DensityIrregularities and Their Effects on Geomagnetic Field, by Tatsuhiro Yokoyama and Claudia Stolle, DOI 10.1007/s11214-016-0295-7] have sufficient resolution to populate the structure scales (tens of km to hundreds of meters) that cause strong scintillation at GPS frequencies. The simulations provide an ideal geometry whereby the ramifications of varying structure along the propagation path can be investigated. It is well known path-integrated one-dimensional spectra increase the one-dimensional index by one. The relation requires decorrelation along the propagation path. Correlated structure would be interpreted as stochastic total-electron-content (TEC). The simulations are performed with unmodified structure. Because the EPB structure is confined to the central region of the sample planes, edge effects are minimized. Consequently, the propagated signal phase can be comparted to path-integrated phase for evaluating TEC extraction. Only the frequency dependence of phase scintillation distinguishes phase scintillation. The simulations allow scale-dependent exploration of remote-sensing diagnostics.
A Specialized Multi-Transmit Head Coil for High Resolution fMRI of the Human Visual Cortex at 7T.
Sengupta, Shubharthi; Roebroeck, Alard; Kemper, Valentin G; Poser, Benedikt A; Zimmermann, Jan; Goebel, Rainer; Adriany, Gregor
2016-01-01
To design, construct and validate radiofrequency (RF) transmit and receive phased array coils for high-resolution visual cortex imaging at 7 Tesla. A 4 channel transmit and 16 channel receive array was constructed on a conformal polycarbonate former. Transmit field efficiency and homogeneity were simulated and validated, along with the Specific Absorption Rate, using [Formula: see text] mapping techniques and electromagnetic simulations. Receiver signal-to-noise ratio (SNR), temporal SNR (tSNR) across EPI time series, g-factors for accelerated imaging and noise correlations were evaluated and compared with a commercial 32 channel whole head coil. The performance of the coil was further evaluated with human subjects through functional MRI (fMRI) studies at standard and submillimeter resolutions of upto 0.8mm isotropic. The transmit and receive sections were characterized using bench tests and showed good interelement decoupling, preamplifier decoupling and sample loading. SNR for the 16 channel coil was ∼ 1.5 times that of the commercial coil in the human occipital lobe, and showed better g-factor values for accelerated imaging. fMRI tests conducted showed better response to Blood Oxygen Level Dependent (BOLD) activation, at resolutions of 1.2mm and 0.8mm isotropic. The 4 channel phased array transmit coil provides homogeneous excitation across the visual cortex, which, in combination with the dual row 16 channel receive array, makes for a valuable research tool for high resolution anatomical and functional imaging of the visual cortex at 7T.
High-Resolution Graphene Films for Electrochemical Sensing via Inkjet Maskless Lithography.
Hondred, John A; Stromberg, Loreen R; Mosher, Curtis L; Claussen, Jonathan C
2017-10-24
Solution-phase printing of nanomaterial-based graphene inks are rapidly gaining interest for fabrication of flexible electronics. However, scalable manufacturing techniques for high-resolution printed graphene circuits are still lacking. Here, we report a patterning technique [i.e., inkjet maskless lithography (IML)] to form high-resolution, flexible, graphene films (line widths down to 20 μm) that significantly exceed the current inkjet printing resolution of graphene (line widths ∼60 μm). IML uses an inkjet printed polymer lacquer as a sacrificial pattern, viscous spin-coated graphene, and a subsequent graphene lift-off to pattern films without the need for prefabricated stencils, templates, or cleanroom technology (e.g., photolithography). Laser annealing is employed to increase conductivity on thermally sensitive, flexible substrates [polyethylene terephthalate (PET)]. Laser annealing and subsequent platinum nanoparticle deposition substantially increases the electroactive nature of graphene as illustrated by electrochemical hydrogen peroxide (H 2 O 2 ) sensing [rapid response (5 s), broad linear sensing range (0.1-550 μm), high sensitivity (0.21 μM/μA), and low detection limit (0.21 μM)]. Moreover, high-resolution, complex graphene circuits [i.e., interdigitated electrodes (IDE) with varying finger width and spacing] were created with IML and characterized via potassium chloride (KCl) electrochemical impedance spectroscopy (EIS). Results indicated that sensitivity directly correlates to electrode feature size as the IDE with the smallest finger width and spacing (50 and 50 μm) displayed the largest response to changes in KCl concentration (∼21 kΩ). These results indicate that the developed IML patterning technique is well-suited for rapid, solution-phase graphene film prototyping on flexible substrates for numerous applications including electrochemical sensing.
Chen, Dawei; Zhang, Yiping; Miao, Hong; Zhao, Yunfeng; Wu, Yongning
2015-11-11
A novel dispersive micro solid phase extraction (DMSPE) method based on a polymer cation exchange material (PCX) was applied to the simultaneous determination of the 30 triazine herbicides in drinking water with ultrahigh-performance liquid chromatography-high-resolution mass spectrometric detection. Drinking water samples were acidified with formic acid, and then triazines were adsorbed by the PCX sorbent. Subsequently, the analytes were eluted with ammonium hydroxide/acetonitrile. The chromatographic separation was performed on an HSS T3 column using water (4 mM ammonium formate and 0.1% formic acid) and acetonitrile (0.1% formic acid) as the mobile phase. The method achieved LODs of 0.2-30.0 ng/L for the 30 triazines, with recoveries in the range of 70.5-112.1%, and the precision of the method was better than 12.7%. These results indicated that the proposed method had the advantages of convenience and high efficiency when applied to the analysis of the 30 triazines in drinking water.
Mackie, Cameron J; Candian, Alessandra; Huang, Xinchuan; Maltseva, Elena; Petrignani, Annemieke; Oomens, Jos; Buma, Wybren Jan; Lee, Timothy J; Tielens, Alexander G G M
2015-12-14
Current efforts to characterize and study interstellar polycyclic aromatic hydrocarbons (PAHs) rely heavily on theoretically predicted infrared (IR) spectra. Generally, such studies use the scaled harmonic frequencies for band positions and double harmonic approximation for intensities of species, and then compare these calculated spectra with experimental spectra obtained under matrix isolation conditions. High-resolution gas-phase experimental spectroscopic studies have recently revealed that the double harmonic approximation is not sufficient for reliable spectra prediction. In this paper, we present the anharmonic theoretical spectra of three PAHs: naphthalene, anthracene, and tetracene, computed with a locally modified version of the SPECTRO program using Cartesian derivatives transformed from Gaussian 09 normal coordinate force constants. Proper treatments of Fermi resonances lead to an impressive improvement on the agreement between the observed and theoretical spectra, especially in the C-H stretching region. All major IR absorption features in the full-scale matrix-isolated spectra, the high-temperature gas-phase spectra, and the most recent high-resolution gas-phase spectra obtained under supersonically cooled molecular beam conditions in the CH-stretching region are assigned.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackie, Cameron J., E-mail: mackie@strw.leidenuniv.nl; Candian, Alessandra; Tielens, Alexander G. G. M.
2015-12-14
Current efforts to characterize and study interstellar polycyclic aromatic hydrocarbons (PAHs) rely heavily on theoretically predicted infrared (IR) spectra. Generally, such studies use the scaled harmonic frequencies for band positions and double harmonic approximation for intensities of species, and then compare these calculated spectra with experimental spectra obtained under matrix isolation conditions. High-resolution gas-phase experimental spectroscopic studies have recently revealed that the double harmonic approximation is not sufficient for reliable spectra prediction. In this paper, we present the anharmonic theoretical spectra of three PAHs: naphthalene, anthracene, and tetracene, computed with a locally modified version of the SPECTRO program using Cartesianmore » derivatives transformed from Gaussian 09 normal coordinate force constants. Proper treatments of Fermi resonances lead to an impressive improvement on the agreement between the observed and theoretical spectra, especially in the C–H stretching region. All major IR absorption features in the full-scale matrix-isolated spectra, the high-temperature gas-phase spectra, and the most recent high-resolution gas-phase spectra obtained under supersonically cooled molecular beam conditions in the CH-stretching region are assigned.« less
Zheng, Juan; Lu, Cuiming; Huang, Junlong; Chen, Luyi; Ni, Chuyi; Xie, Xintong; Zhu, Fang; Wu, Dingcai; Ouyang, Gangfeng
2018-08-15
Novel powdery polymer aerogel (PPA) prepared via the (micro)emulsion polymerization and the following hyper crosslinking reaction was fabricated as stationary phase of capillary column for the first time. Due to its powdery morphology, unique 3D nano-network structure, high surface area and good thermostability, the PPA-coated capillary column demonstrated high-resolution chromatographic separation towards nonpolar and weakly polar organic compounds, including benzene series, n-alkanes, ketone mixtures and trichlorobenzenes. Moreover, the reproducibility, quantitative analysis ability and thermostability of PPA-coated capillary column were also evaluated. The relative standard deviations for three replicate determinations of selected analytes were 0.02-0.11%, 0.12-0.26% and 1.2-3.6% for run-to-run, day-to-day and column-to-column analyses, respectively. The PPA demonstrated good thermostability, and the PPA-coated capillary column was proved to be heat-resistant (270 °C). The results of this study show PPA is an excellent candidate to be employed as stationary phase for gas chromatography capillary. Copyright © 2018 Elsevier B.V. All rights reserved.
Vasudevan, Srivathsan; Chen, George C K; Lin, Zhiping; Ng, Beng Koon
2015-05-10
Photothermal microscopy (PTM), a noninvasive pump-probe high-resolution microscopy, has been applied as a bioimaging tool in many biomedical studies. PTM utilizes a conventional phase contrast microscope to obtain highly resolved photothermal images. However, phase information cannot be extracted from these photothermal images, as they are not quantitative. Moreover, the problem of halos inherent in conventional phase contrast microscopy needs to be tackled. Hence, a digital holographic photothermal microscopy technique is proposed as a solution to obtain quantitative phase images. The proposed technique is demonstrated by extracting phase values of red blood cells from their photothermal images. These phase values can potentially be used to determine the temperature distribution of the photothermal images, which is an important study in live cell monitoring applications.
Optical and UV spectroscopy of the peculiar RS CVn system, RT Lacertae
NASA Technical Reports Server (NTRS)
Huenemoerder, D. P.; Barden, S. C.
1985-01-01
Spectra in the H-alpha and H-beta regions of the peculiar double-lined RS CVn binary, RT Lacertae, were obtained in the fall of 1984. Limited International Ultraviolet Explorer (IUE) long wavelength low and high resolution spectra were obtained concurrently. The ground based spectra have shown an asymmetry with orbital phase in the H-alpha profile. The H-beta profiles were consistent with the same effect. One hemisphere showed excess emission and the other excess absorption, with a broad Gaussian emission component superposed upon the excess H-alpha line. An improved radial velocity curve, giving a better determined mass ratio and geometry was derived. This combined with the radii implied by the rotational broadening of the spectra, showed one component to be 80 to 90% filling the equilibrium Roche surface. The two-faced nature is, therfore, very likely due to mass transfer from the contact component impacting upon its companion. Low resolution ultraviolet data showed that the supposed cooler component is bluer than its companion. High resolution ultraviolet data taken during secondary eclipse showed Mg II emission strength which decreased more slowly than the area visible. The phase behavior of the low resolution data support the former situation, indicating traditional chromospheric activity.
Optical and UV spectroscopy of the peculiar RS CVn system, RT Lacertae
NASA Astrophysics Data System (ADS)
Huenemoerder, D. P.; Barden, S. C.
1985-11-01
Spectra in the H-alpha and H-beta regions of the peculiar double-lined RS CVn binary, RT Lacertae, were obtained in the fall of 1984. Limited International Ultraviolet Explorer (IUE) long wavelength low and high resolution spectra were obtained concurrently. The ground based spectra have shown an asymmetry with orbital phase in the H-alpha profile. The H-beta profiles were consistent with the same effect. One hemisphere showed excess emission and the other excess absorption, with a broad Gaussian emission component superposed upon the excess H-alpha line. An improved radial velocity curve, giving a better determined mass ratio and geometry was derived. This combined with the radii implied by the rotational broadening of the spectra, showed one component to be 80 to 90% filling the equilibrium Roche surface. The two-faced nature is, therfore, very likely due to mass transfer from the contact component impacting upon its companion. Low resolution ultraviolet data showed that the supposed cooler component is bluer than its companion. High resolution ultraviolet data taken during secondary eclipse showed Mg II emission strength which decreased more slowly than the area visible. The phase behavior of the low resolution data support the former situation, indicating traditional chromospheric activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zarzycki, Colin M.; Thatcher, Diana R.; Jablonowski, Christiane
This paper describes an objective technique for detecting the extratropical transition (ET) of tropical cyclones (TCs) in high-resolution gridded climate data. The algorithm is based on previous observational studies using phase spaces to define the symmetry and vertical thermal structure of cyclones. Storm tracking is automated, allowing for direct analysis of climate data. Tracker performance in the North Atlantic is assessed using 23 years of data from the variable-resolution Community Atmosphere Model (CAM) at two different resolutions (DX 55 km and 28 km), the Climate Forecast System Reanalysis (CFSR, DX 38 km), and the ERA-Interim Reanalysis (ERA-I, DX 80 km).more » The mean spatiotemporal climatologies and seasonal cycles of objectively detected ET in the observationally constrained CFSR and ERA-I are well matched to previous observational studies, demonstrating the capability of the scheme to adequately find events. High resolution CAM reproduces TC and ET statistics that are in general agreement with reanalyses. One notable model bias, however, is significantly longer time between ET onset and ET completion in CAM, particularly for TCs that lose symmetry prior to developing a cold-core structure and becoming extratropical cyclones, demonstrating the capability of this method to expose model biases in simulated cyclones beyond the tropical phase.« less
NASA Technical Reports Server (NTRS)
Savage, Blair D.; Cardelli, Jason A.; Sofia, Ulysses J.
1992-01-01
Goddard High Resolution Spectrograph echelle mode measurements at 3.5 km/s resolution are presented for interstellar absorption produced by C II, O I, Mg I, Mg II, Al III, P II, Cr II, Mn II, Fe II, Ni II, Cu II, Zn II, Ga II, Ge II, and Kr I. The absorption line measurements are converted into representations of apparent column density per unit velocity in order to study the multicomponent nature of the absorption. The high spectral resolution of the measurements allows a comparative study of gas phase abundances for many species in the absorbing clouds near -27 and -15 km/s with a typical precision of about 0.05 dex. The matter absorbing near -27 km/s is situated in the local interstellar medium and has log N(H I) of about 19.74. This absorption provides information about the modest 'base' depletion associated with the lower density interstellar medium. The depletion results suggest that accretion processes are operating interstellar clouds that exhibit similar depletion efficiencies for some elements but much higher depletion efficiencies for others.
In search of the elusive IrB 2: Can mechanochemistry help?
Xie, Zhilin; Blair, Richard G.; Orlovskaya, Nina; ...
2015-10-20
We produced hexagonal ReB 2-type IrB 2 diboride and orthorhombic IrB monoboride phases, that were previously unknown and saw them produced by mechanochemical syntheses. High energy ball milling of elemental Ir and B powder for 30 h, followed by annealing of the powder at 1050 °C for 48 h, resulted in the formation of the desired phases. Both traditional laboratory and high resolution synchrotron X-ray diffraction (XRD) analyses were used for phase identification of the synthesized powder. Additionally, scanning electron microscopy and transmission electron microscopy were employed, along with XRD, to further characterize the microstructure of the phases produced.
In search of the elusive IrB 2: Can mechanochemistry help?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Zhilin; Blair, Richard G.; Orlovskaya, Nina
We produced hexagonal ReB 2-type IrB 2 diboride and orthorhombic IrB monoboride phases, that were previously unknown and saw them produced by mechanochemical syntheses. High energy ball milling of elemental Ir and B powder for 30 h, followed by annealing of the powder at 1050 °C for 48 h, resulted in the formation of the desired phases. Both traditional laboratory and high resolution synchrotron X-ray diffraction (XRD) analyses were used for phase identification of the synthesized powder. Additionally, scanning electron microscopy and transmission electron microscopy were employed, along with XRD, to further characterize the microstructure of the phases produced.
Phase-detected Brillouin optical correlation-domain reflectometry
NASA Astrophysics Data System (ADS)
Mizuno, Yosuke; Hayashi, Neisei; Fukuda, Hideyuki; Nakamura, Kentaro
2018-05-01
Optical fiber sensing techniques based on Brillouin scattering have been extensively studied for structural health monitoring owing to their capability of distributed strain and temperature measurement. Although a higher signal-to-noise ratio (leading to high spatial resolution and high-speed measurement) is generally obtained for two-end-access systems, they reduce the degree of freedom in embedding the sensors into structures, and render the measurement no longer feasible when extremely high loss or breakage occurs at a point of the sensing fiber. To overcome these drawbacks, a one-end-access sensing technique called Brillouin optical correlation-domain reflectometry (BOCDR) has been developed. BOCDR has a high spatial resolution and cost efficiency, but its conventional configuration suffered from relatively low-speed operation. In this paper, we review the recently developed high-speed configurations of BOCDR, including phase-detected BOCDR, with which we demonstrate real-time distributed measurement by tracking a propagating mechanical wave. We also demonstrate breakage detection with a wide strain dynamic range.
Phase-detected Brillouin optical correlation-domain reflectometry
NASA Astrophysics Data System (ADS)
Mizuno, Yosuke; Hayashi, Neisei; Fukuda, Hideyuki; Nakamura, Kentaro
2018-06-01
Optical fiber sensing techniques based on Brillouin scattering have been extensively studied for structural health monitoring owing to their capability of distributed strain and temperature measurement. Although a higher signal-to-noise ratio (leading to high spatial resolution and high-speed measurement) is generally obtained for two-end-access systems, they reduce the degree of freedom in embedding the sensors into structures, and render the measurement no longer feasible when extremely high loss or breakage occurs at a point of the sensing fiber. To overcome these drawbacks, a one-end-access sensing technique called Brillouin optical correlation-domain reflectometry (BOCDR) has been developed. BOCDR has a high spatial resolution and cost efficiency, but its conventional configuration suffered from relatively low-speed operation. In this paper, we review the recently developed high-speed configurations of BOCDR, including phase-detected BOCDR, with which we demonstrate real-time distributed measurement by tracking a propagating mechanical wave. We also demonstrate breakage detection with a wide strain dynamic range.
The GKSS beamlines at PETRA III and DORIS III
NASA Astrophysics Data System (ADS)
Haibel, A.; Beckmann, F.; Dose, T.; Herzen, J.; Utcke, S.; Lippmann, T.; Schell, N.; Schreyer, A.
2008-08-01
Due to the high brilliance of the new storage ring PETRA III at DESY in Hamburg, the low emittance of 1 nmrad and the high fraction of coherent photons also in the hard X-ray range extremely intense and sharply focused X-ray light will be provided. These advantages of the beam fulfill excellently the qualifications for the planned Imaging BeamLine IBL and the High Energy Materials Science Beamline (HEMS) at PETRA III, i.e. for absorption tomography, phase enhanced and phase contrast experiments, for diffraction, for nano focusing, for nano tomography, and for high speed or in-situ experiments with highest spatial resolution. The existing HARWI II beamline at the DORIS III storage ring at DESY completes the GKSS beamline concept with setups for high energy tomography (16-150 keV) and diffraction (16-250 keV), characterized by a large field of view and an excellent absorption contrast with spatial resolutions down to 2 μm.
Rayleigh-wave mode separation by high-resolution linear radon transform
Luo, Y.; Xia, J.; Miller, R.D.; Xu, Y.; Liu, J.; Liu, Q.
2009-01-01
Multichannel analysis of surface waves (MASW) method is an effective tool for obtaining vertical shear wave profiles from a single non-invasive measurement. One key step of the MASW method is generation of a dispersion image and extraction of a reliable dispersion curve from raw multichannel shot records. Because different Rayleigh-wave modes normally interfere with each other in the time and space domain, it is necessary to perform mode separation and reconstruction to increase the accuracy of phase velocities determined from a dispersion image. In this paper, we demonstrate the effectiveness of high-resolution linear Radon transform (LRT) as a means of separating and reconstructing multimode, dispersive Rayleigh-wave energy. We first introduce high-resolution LRT methods and Rayleigh-wave mode separation using high-resolution LRT. Next, we use synthetic data and a real-world example to demonstrate the effectiveness of Rayleigh-wave mode separation using high-resolution LRT. Our synthetic and real-world results demonstrate that (1) high-resolution LRT successfully separates and reconstructs multimode dispersive Rayleigh-wave energy with high resolution allowing the multimode energy to be more accurately determined. The horizontal resolution of the Rayleigh-wave method can be increased by extraction of dispersion curves from a pair of traces in the mode-separated shot gather and (2) multimode separation and reconstruction expand the usable frequency range of higher mode dispersive energy, which increases the depth of investigation and provides a means for accurately determining cut-off frequencies. ?? 2009 The Authors Journal compilation ?? 2009 RAS.
High Temperature Superconductivity Applications for Electronic Warfare and Microwave Systems
1990-05-01
instantaneous frequency measurement (IFM), as well as, switched delay lines for EW radar range deception and low loss, high resolution MMIC phase...Junction (JJ). This device has been demonstrated in LTSC and is used in very stable ( low noise ), frequency selective, oscillators and very low noise ...following HTSC components: 1) MMIC Filters 2) MMIC Delay Lines/Phase Shifters 3) Microwave Resonators 4) Antenna Feed Networks 5) Low Frequency Antennas 1
NASA Astrophysics Data System (ADS)
Kobayashi, T.; Ida, K.; Itoh, K.; Yoshinuma, M.; Moon, C.; Inagaki, S.; Yamada, I.; Funaba, H.; Yasuhara, R.; Tsuchiya, H.; Ohdachi, S.; Yoshimura, Y.; Igami, H.; Shimozuma, T.; Kubo, S.; Tsujimura, T. I.
2016-04-01
This paper provides a software application of the sampling scope concept for fusion research. The time evolution of Thomson scattering data is reconstructed with a high temporal resolution during a modulated electron cyclotron resonance heating (MECH) phase. The amplitude profile and the delay time profile of the heat pulse propagation are obtained from the reconstructed signal for discharges having on-axis and off-axis MECH depositions. The results are found to be consistent with the MECH deposition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, T., E-mail: kobayashi.tatsuya@LHD.nifs.ac.jp; Yoshinuma, M.; Ohdachi, S.
2016-04-15
This paper provides a software application of the sampling scope concept for fusion research. The time evolution of Thomson scattering data is reconstructed with a high temporal resolution during a modulated electron cyclotron resonance heating (MECH) phase. The amplitude profile and the delay time profile of the heat pulse propagation are obtained from the reconstructed signal for discharges having on-axis and off-axis MECH depositions. The results are found to be consistent with the MECH deposition.
Kobayashi, T; Ida, K; Itoh, K; Yoshinuma, M; Moon, C; Inagaki, S; Yamada, I; Funaba, H; Yasuhara, R; Tsuchiya, H; Ohdachi, S; Yoshimura, Y; Igami, H; Shimozuma, T; Kubo, S; Tsujimura, T I
2016-04-01
This paper provides a software application of the sampling scope concept for fusion research. The time evolution of Thomson scattering data is reconstructed with a high temporal resolution during a modulated electron cyclotron resonance heating (MECH) phase. The amplitude profile and the delay time profile of the heat pulse propagation are obtained from the reconstructed signal for discharges having on-axis and off-axis MECH depositions. The results are found to be consistent with the MECH deposition.
Broadband metasurface holograms: toward complete phase and amplitude engineering
Wang, Qiu; Zhang, Xueqian; Xu, Yuehong; Gu, Jianqiang; Li, Yanfeng; Tian, Zhen; Singh, Ranjan; Zhang, Shuang; Han, Jiaguang; Zhang, Weili
2016-01-01
As a revolutionary three-dimensional imaging technique, holography has attracted wide attention for its ability to photographically record a light field. However, traditional phase-only or amplitude-only modulation holograms have limited image quality and resolution to reappear both amplitude and phase information required of the objects. Recent advances in metasurfaces have shown tremendous opportunities for using a planar design of artificial meta-atoms to shape the wave front of light by optimal control of both its phase and amplitude. Inspired by the concept of designer metasurfaces, we demonstrate a novel amplitude-phase modulation hologram with simultaneous five-level amplitude modulation and eight-level phase modulation. Such a design approach seeks to turn the perceived disadvantages of the traditional phase or amplitude holograms, and thus enable enhanced performance in resolution, homogeneity of amplitude distribution, precision, and signal-to-noise ratio. In particular, the unique holographic approach exhibits broadband characteristics. The method introduced here delivers more degrees of freedom, and allows for encoding highly complex information into designer metasurfaces, thus having the potential to drive next-generation technological breakthroughs in holography. PMID:27615519
Broadband metasurface holograms: toward complete phase and amplitude engineering.
Wang, Qiu; Zhang, Xueqian; Xu, Yuehong; Gu, Jianqiang; Li, Yanfeng; Tian, Zhen; Singh, Ranjan; Zhang, Shuang; Han, Jiaguang; Zhang, Weili
2016-09-12
As a revolutionary three-dimensional imaging technique, holography has attracted wide attention for its ability to photographically record a light field. However, traditional phase-only or amplitude-only modulation holograms have limited image quality and resolution to reappear both amplitude and phase information required of the objects. Recent advances in metasurfaces have shown tremendous opportunities for using a planar design of artificial meta-atoms to shape the wave front of light by optimal control of both its phase and amplitude. Inspired by the concept of designer metasurfaces, we demonstrate a novel amplitude-phase modulation hologram with simultaneous five-level amplitude modulation and eight-level phase modulation. Such a design approach seeks to turn the perceived disadvantages of the traditional phase or amplitude holograms, and thus enable enhanced performance in resolution, homogeneity of amplitude distribution, precision, and signal-to-noise ratio. In particular, the unique holographic approach exhibits broadband characteristics. The method introduced here delivers more degrees of freedom, and allows for encoding highly complex information into designer metasurfaces, thus having the potential to drive next-generation technological breakthroughs in holography.
High-resolution Interferometer Sounder (HIS), phase 2
NASA Technical Reports Server (NTRS)
1988-01-01
The High-resolution Interferometer Sounder (HIS) was successfully built, tested, and flight proven on the NASA U-2/ER-2 high altitude aircraft. The HIS demonstration has shown that, by using the technology of Fourier Transform Spectroscopy (FTS), it is possible to measure the spectrum of upwelling infrared radiance needed for temperature and humidity sounding with high spectral resolution and high radiometric precision. By resolving individual carbon dioxide lines, the retrieved temperature profiles have vertical resolutions of 1 to 2 km and RMS errors less than 1 C, about 2 to 4 times better than possible with current sounders. Implementing this capability on satellite sounders will greatly enhance the dynamical information content of temperature measurements from space. The aircraft model HIS is now a resource which should be used to support field experiments in mesoscale meteorology, to monitor trace gas concentrations and to better understand their effects on climate, to monitor the surface radiation budget and the radiative effects of clouds, and to collect data for research into retrieval techniques, especially under partially cloudy conditions.
The Subaru Coronagraphic Extreme AO project: an XAO4ELT precursor
NASA Astrophysics Data System (ADS)
Martinache, F.
2011-09-01
A diffraction-limited 30-meter telescope theoretically provides a 10 mas resolution limit in the near infrared. Modern coronagraphs like the Vortex, the 8OPM and the PIAA offer the means to take full advantage of this angular resolution allowing to explore at high contrast, the innermost parts of nearby planetary systems to within a fraction of an astronomical unit: an unprecedented capability that will revolutionize our understanding of planet formation across the habitable zone. A precursor of such a system is the Subaru Coronagraphic Extreme AO project. SCExAO combines a high performance PIAA-based coronagraph downstream Subaru's AO188 AO system and a 1024-actuator MEMS DM. SCExAO employs advanced wavefront control schemes that make high contrast detection possible at 1 λ/D, providing for a few cases, the possibility to detect the light reflected by exoplanets. Moderate-high contrast detection in the super-resolution regime (<λ/D) is also possible using well calibrated closure quantities like closure-phase for a non-redundant (masked) aperture and its extension for to arbitrary apertures (Kernel-phase). Lessons learned from SCExAO's incremental deployment plan during its first 2011 engineering campaign provides insights that will guide future development of high contrast instrumentation on an ELT.
Hiesgen, Renate; Helmly, Stefan; Galm, Ines; Morawietz, Tobias; Handl, Michael; Friedrich, K. Andreas
2012-01-01
The conductivity of fuel cell membranes as well as their mechanical properties at the nanometer scale were characterized using advanced tapping mode atomic force microscopy (AFM) techniques. AFM produces high-resolution images under continuous current flow of the conductive structure at the membrane surface and provides some insight into the bulk conducting network in Nafion membranes. The correlation of conductivity with other mechanical properties, such as adhesion force, deformation and stiffness, were simultaneously measured with the current and provided an indication of subsurface phase separations and phase distribution at the surface of the membrane. The distribution of conductive pores at the surface was identified by the formation of water droplets. A comparison of nanostructure models with high-resolution current images is discussed in detail. PMID:24958429
High-resolution digital holography with the aid of coherent diffraction imaging.
Jiang, Zhilong; Veetil, Suhas P; Cheng, Jun; Liu, Cheng; Wang, Ling; Zhu, Jianqiang
2015-08-10
The image reconstructed in ordinary digital holography was unable to bring out desired resolution in comparison to photographic materials; thus making it less preferable for many interesting applications. A method is proposed to enhance the resolution of digital holography in all directions by placing a random phase plate between the specimen and the electronic camera and then using an iterative approach to do the reconstruction. With this method, the resolution is improved remarkably in comparison to ordinary digital holography. Theoretical analysis is supported by numerical simulation. The feasibility of the method is also studied experimentally.
NASA Astrophysics Data System (ADS)
Bonino, L.; Bresciani, F.; Piasini, G.; Flebus, C.; Lecat, J.-H.; Roose, S.; Pisani, M.; Cabral, A.; Rebordão, J.; Proença, C.; Costal, J.; Lima, P. U.; Musso, F.
2017-11-01
This paper describes the study of an interferometric instrument for the high-resolution surveillance of the Earth from geostationary orbit (GEO) performed for the EUCLID CEPA 9 RTP 9.9 "High Resolution Optical Satellite Sensor" project of the WEAO Research Cell. It is an in-depth description of a part of the activities described in. The instrument design, both optical and mechanical, is described; tradeoffs have been done for different restoration methods, based on an image generated using calculated point spread functions (PSF's) for the complete FOV. Co-phasing concept for the optical interferometer has been defined together with the optical metrology needed. Design and simulation of the overall instrument control system was carried out.
Degeneracy Lifting of Adsorbate Orbitals Imaged by High-Resolution Momentum Microscopy
NASA Astrophysics Data System (ADS)
Graus, Martin; Metzger, Christian; Grimm, Manuel; Feyer, Vitaliy; Puschnig, Peter; Schöll, Achim; Reinert, Friedrich
2018-06-01
On the topical example of the symmetry splitting of degenerate orbitals due to adsorption we drive the technique of orbital imaging by momentum microscopy (k-PEEM) ahead, demonstrating the potential of the method when performed with high accuracy in terms of experimental quality, energy resolution and data evaluation. Upon adsorption on the twofold symmetric substrate Ag(110), the symmetry of Iron-phthalocyanine reduces from fourfold two twofold, leading to distinct binding energies of the two e1g orbitals which constitute the twofold degenerate lowest unoccupied molecular orbital of the gas-phase molecule. In this combined experimental and theoretical study, we show that by k-PEEM with high energy resolution the individual orbitals can be identified and distinguished by mapping in momentum space.
Phase-measuring laser holographic interferometer for use in high speed flows
NASA Astrophysics Data System (ADS)
Yanta, William J.; Spring, W. Charles, III; Gross, Kimberly Uhrich; McArthur, J. Craig
Phase-measurement techniques have been applied to a dual-plate laser holographic interferometer (LHI). This interferometer has been used to determine the flowfield densities in a variety of two-dimensional and axisymmetric flows. In particular, LHI has been applied in three different experiments: flowfield measurements inside a two-dimensional scramjet inlet, flow over a blunt cone, and flow over an indented nose shape. Comparisons of experimentally determined densities with computational results indicate that, when phase-measurement techniques are used in conjunction with state-of-the-art image-processing instrumentation, holographic interferometry can be a diagnostic tool with high resolution, high accuracy, and rapid data retrieval.
Cryogenic x-ray diffraction microscopy utilizing high-pressure cryopreservation
NASA Astrophysics Data System (ADS)
Lima, Enju; Chushkin, Yuriy; van der Linden, Peter; Kim, Chae Un; Zontone, Federico; Carpentier, Philippe; Gruner, Sol M.; Pernot, Petra
2014-10-01
We present cryo x-ray diffraction microscopy of high-pressure-cryofixed bacteria and report high-convergence imaging with multiple image reconstructions. Hydrated D. radiodurans cells were cryofixed at 200 MPa pressure into ˜10-μm-thick water layers and their unstained, hydrated cellular environments were imaged by phasing diffraction patterns, reaching sub-30-nm resolutions with hard x-rays. Comparisons were made with conventional ambient-pressure-cryofixed samples, with respect to both coherent small-angle x-ray scattering and the image reconstruction. The results show a correlation between the level of background ice signal and phasing convergence, suggesting that phasing difficulties with frozen-hydrated specimens may be caused by high-background ice scattering.
High-Resolution Infrared Spectroscopy of Carbon-Sulfur Chains: II. C_5S and SC_5S
NASA Astrophysics Data System (ADS)
Thorwirth, Sven; Salomon, Thomas; Dudek, John B.
2016-06-01
Unbiased high-resolution infrared survey scans of the ablation products from carbon-sulfur targets in the 2100 to 2150 cm-1 regime reveal two bands previously not observed in the gas phase. On the basis of comparison against laboratory matrix-isolation work and new high-level quantum-chemical calculations these bands are attributed to the linear C_5S and SC_5S clusters. While polar C_5S was studied earlier using Fourier-transform microwave techniques, the present work marks the first gas-phase spectroscopic detection of SC_5S. H. Wang, J. Szczepanski, P. Brucat, and M. Vala 2005, Int. J. Quant. Chem. 102, 795 Y. Kasai, K. Obi, Y. Ohshima, Y. Hirahara, Y. Endo, K. Kawaguchi, and A. Murakami 1993, ApJ 410, L45 V. D. Gordon, M. C. McCarthy, A. J. Apponi, and P. Thaddeus 2001, ApJS 134, 311
Copernicus observations of Ly-alpha and Mg II emission from HR 1099 /V711 Tauri/ and UX Ari
NASA Technical Reports Server (NTRS)
Weiler, E. J.
1978-01-01
Ultraviolet observations of two RS CVn binaries obtained with Copernicus are described. High-resolution (0.05 A) U1 observations indicate that both HR 1099 and UX Ari display broad Ly-alpha emission. The Ly-alpha emission strength from HR 1099 is variable and seems to be correlated with orbital phase, while the UX Ari results indicate no significant variation. Moderate resolution (0.51 A) V2 scans of both systems show variable Mg II h and k emission-line profiles which usually matched the velocity of the more active star in each binary. Additionally, displaced emission components were seen at velocities of up to + or - 250 km/s, indicative of high-velocity gas motions. The radial velocities of these emission features from HR 1099 are marginally correlated with orbital phase. Highly active and variable chromospheric phenomena are found to be the most consistent explanation of these results.
Experimental study on nonmonotonicity of Capillary Desaturation Curves in a 2-D pore network
NASA Astrophysics Data System (ADS)
Rodríguez de Castro, Antonio; Shokri, Nima; Karadimitriou, Nikolaos; Oostrom, Mart; Joekar-Niasar, Vahid
2015-10-01
Immiscible displacement in porous media is important in many applications such as soil remediation and enhanced oil recovery. When gravitational forces are negligible, two-phase immiscible displacement at the pore level is controlled by capillary and viscous forces whose relative importance is quantified through the dimensionless capillary number Ca and the viscosity ratio M between liquid phases. Depending on the values of Ca and M, capillary fingering, viscous fingering, or stable displacement may be observed resulting in a variety of patterns affecting the phase entrapment. The Capillary Desaturation Curve (CDC), which represents the relationship between the residual oil saturation and Ca, is an important relation to describe the phase entrapment at a given Ca. In the present study, we investigated the CDC as influenced by the viscosity ratio. To do so, we have conducted a comprehensive series of experiments using a high-resolution microscope and state-of-art micromodels to investigate the dynamics and patterns of phase entrapment at different Ca and M. By postprocessing of the experimental high-resolution images, we calculated the CDC and quantified the effects of the Ca and M on the phase entrapment and number of blobs trapped in the micromodel and their size distributions during immiscible two-phase flow. Our results show that CDCs are not necessarily monotonic for all M, and the physical mechanisms causing this nonmonotonic behavior are discussed.
Reversed-phase thin-layer chromatography of homologs of Antimycin-A and related derivatives
Abidi, Sharon L.
1989-01-01
Using a reversed-phase high-performance liquid chromatographic (HPLC) technique, a mixture of antimycins A was separated into eight hitherto unreported subcomponents, Ala, Alb, A2a, A2b, A3a, A3b, A4a, and A4b. Although a base-line resolution of the known four major antimycins Al, A2, A3, and A4 was readily achieved with mobile phases containing acetate buffers, the separation of the new antibiotic subcomponents was highly sensitive to variation in mobile phase conditions. The type and composition of organic modifiers, the nature of buffer salts, and the concentration of added electrolytes had profound effects on capacity factors, separation factors, and peak resolution values. Of the numerous chromatographic systems examined, a mobile phase consisting of methanol-water (70:30) and 0.005 M tetrabutylammonium phosphate at pH 3.0 yielded the most satisfactory results for the separation of the subcomponents. Reversed-phase gradient HPLC separation of the dansylated or methylated antibiotic compounds produced superior chromatographic characteristics and the presence of added electrolytes was not a critical factor for achieving separation. Differences in the chromatographic outcome between homologous and structural isomers were interpretated based on a differential solvophobic interaction rationale. Preparative reversed-phase HPLC under optimal conditions enabled isolation of pure samples of the methylated antimycin subcomponents for use in structural studies.
Irakli, Maria N; Samanidou, Victoria F; Papadoyannis, Ioannis N
2012-03-07
The separation and determination of tocopherols (Ts) and tocotrienols (T3s) by reversed-phase high-performance liquid chromatography with fluorescence detection has been developed and validated after optimization of various chromatographic conditions and other experimental parameters. Analytes were separated on a PerfectSil Target ODS-3 (250 × 4.6 mm, 3 μm) column filled with a novel sorbent material of ultrapure silica gel. The separation of Ts and T3s was optimized in terms of mobile-phase composition and column temperature on the basis of the best compromise among efficiency, resolution, and analysis time. Using a gradient elution of mobile phase composed of isopropanol/water and 7 °C column temperature, a satisfactory resolution was achieved within 62 min. For the quantitative determination, α-T acetate (50 μg/mL) was used as the internal standard. Detection limits ranged from 0.27 μg/mL (γ-T) to 0.76 μg/mL (γ-T3). The validation of the method was examined performing intraday (n = 5) and interday (n = 3) assays and was found to be satisfactory, with high accuracy and precision results. Solid-phase extraction provided high relative extraction recoveries from cereal samples: 87.0% for γ-T3 and 115.5% for δ-T. The method was successfully applied to cereals, such as durum wheat, bread wheat, rice, barley, oat, rye, and corn.
Facing the phase problem in Coherent Diffractive Imaging via Memetic Algorithms.
Colombo, Alessandro; Galli, Davide Emilio; De Caro, Liberato; Scattarella, Francesco; Carlino, Elvio
2017-02-09
Coherent Diffractive Imaging is a lensless technique that allows imaging of matter at a spatial resolution not limited by lens aberrations. This technique exploits the measured diffraction pattern of a coherent beam scattered by periodic and non-periodic objects to retrieve spatial information. The diffracted intensity, for weak-scattering objects, is proportional to the modulus of the Fourier Transform of the object scattering function. Any phase information, needed to retrieve its scattering function, has to be retrieved by means of suitable algorithms. Here we present a new approach, based on a memetic algorithm, i.e. a hybrid genetic algorithm, to face the phase problem, which exploits the synergy of deterministic and stochastic optimization methods. The new approach has been tested on simulated data and applied to the phasing of transmission electron microscopy coherent electron diffraction data of a SrTiO 3 sample. We have been able to quantitatively retrieve the projected atomic potential, and also image the oxygen columns, which are not directly visible in the relevant high-resolution transmission electron microscopy images. Our approach proves to be a new powerful tool for the study of matter at atomic resolution and opens new perspectives in those applications in which effective phase retrieval is necessary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blaschke, David; Instytut Fizyki Teoretycznej, Uniwersytet Wroclawski, 50-204 Wroclaw; Alvarez-Castillo, David E.
2016-01-22
We aim at contributing to the resolution of three of the fundamental puzzles related to the still unsolved problem of the structure of the dense core of compact stars (CS): (i) the hyperon puzzle: how to reconcile pulsar masses of 2 M{sub ⊙} with the hyperon softening of the equation of state (EoS); (ii) the masquerade problem: modern EoS for cold, high density hadronic and quark matter are almost identical; and (iii) the reconfinement puzzle: what to do when after a deconfinement transition the hadronic EoS becomes favorable again? We show that taking into account the compositeness of baryons (bymore » excluded volume and/or quark Pauli blocking) on the hadronic side and confining and stiffening effects on the quark matter side results in an early phase transition to quark matter with sufficient stiffening at high densities which removes all three present-day puzzles of CS interiors. Moreover, in this new class of EoS for hybrid CS falls the interesting case of a strong first order phase transition which results in the observable high mass twin star phenomenon, an astrophysical observation of a critical endpoint in the QCD phase diagram.« less
X-ray phase-contrast tomography for high-spatial-resolution zebrafish muscle imaging
NASA Astrophysics Data System (ADS)
Vågberg, William; Larsson, Daniel H.; Li, Mei; Arner, Anders; Hertz, Hans M.
2015-11-01
Imaging of muscular structure with cellular or subcellular detail in whole-body animal models is of key importance for understanding muscular disease and assessing interventions. Classical histological methods for high-resolution imaging methods require excision, fixation and staining. Here we show that the three-dimensional muscular structure of unstained whole zebrafish can be imaged with sub-5 μm detail with X-ray phase-contrast tomography. Our method relies on a laboratory propagation-based phase-contrast system tailored for detection of low-contrast 4-6 μm subcellular myofibrils. The method is demonstrated on 20 days post fertilization zebrafish larvae and comparative histology confirms that we resolve individual myofibrils in the whole-body animal. X-ray imaging of healthy zebrafish show the expected structured muscle pattern while specimen with a dystrophin deficiency (sapje) displays an unstructured pattern, typical of Duchenne muscular dystrophy. The method opens up for whole-body imaging with sub-cellular detail also of other types of soft tissue and in different animal models.
NASA Technical Reports Server (NTRS)
Gneses, M. I.; Berg, D. S.
1981-01-01
Specifications for the pointing stabilization system of the large space telescope were used in an investigation of the feasibility of reducing ring laser gyro output quantization to the sub-arc-second level by the use of phase locked loops and associated electronics. Systems analysis procedures are discussed and a multioscillator laser gyro model is presented along with data on the oscillator noise. It is shown that a second order closed loop can meet the measurement noise requirements when the loop gain and time constant of the loop filter are appropriately chosen. The preliminary electrical design is discussed from the standpoint of circuit tradeoff considerations. Analog, digital, and hybrid designs are given and their applicability to the high resolution sensor is examined. the electrical design choice of a system configuration is detailed. The design and operation of the various modules is considered and system block diagrams are included. Phase 1 and 2 test results using the multioscillator laser gyro are included.
Yusuf, Kareem; Badjah-Hadj-Ahmed, Ahmed Yacine; Aqel, Ahmad; ALOthman, Zeid Abdullah
2016-03-01
A monolithic capillary column containing a composite of metal-organic framework MIL-53(Al) incorporated into hexyl methacrylate-co-ethylene dimethacrylate was prepared to enhance the separation of mixtures of small aromatic compounds by using capillary liquid chromatography. The addition of 10 mg/mL MIL-53(Al) microparticles increased the micropore content in the monolithic matrix and increased the Brunauer-Emmett-Teller surface area from 26.92 to 85.12 m(2) /g. The presence of 1,4-benzenedicarboxylate moieties within the structure of MIL-53(Al) as an organic linker greatly influenced the separation of aromatic mixtures through π-π interactions. High-resolution separation was obtained for a series of alkylbenzenes (with resolution factors in the range 0.96-1.75) in less than 8 min, with 14 710 plates/m efficiency for propylbenzene, using a binary polar mobile phase of water/acetonitrile in isocratic mode. A reversed-phase separation mechanism was indicated by the increased retention factor and resolution as the water percentage in the mobile phase increased. A stability study on the composite column showed excellent mechanical stability under various conditions. The higher resolution and faster separation observed at increased temperature indicated an exothermic separation, whereas the negative values for the free energy change of transfer indicated a spontaneous process. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Multi-Contact, Low Capacitance HPGe Detector for High Rate Gamma Spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, Christopher
2014-12-04
The detection, identification and non-destructive assay of special nuclear materials and nuclear fission by-products are critically important activities in support of nuclear non-proliferation programs. Both national and international nuclear safeguard agencies recognize that current accounting methods for spent nuclear fuel are inadequate from a safeguards perspective. Radiation detection and analysis by gamma-ray spectroscopy is a key tool in this field, but no instrument exists that can deliver the required performance (energy resolution and detection sensitivity) in the presence of very high background count rates encountered in the nuclear safeguards arena. The work of this project addresses this critical need bymore » developing a unique gamma-ray detector based on high purity germanium that has the previously unachievable property of operating in the 1 million counts-per-second range while achieving state-of-the-art energy resolution necessary to identify and analyze the isotopes of interest. The technical approach was to design and fabricate a germanium detector with multiple segmented electrodes coupled to multi-channel high rate spectroscopy electronics. Dividing the germanium detector’s signal electrode into smaller sections offers two advantages; firstly, the energy resolution of the detector is potentially improved, and secondly, the detector is able to operate at higher count rates. The design challenges included the following; determining the optimum electrode configuration to meet the stringent energy resolution and count rate requirements; determining the electronic noise (and therefore energy resolution) of the completed system after multiple signals are recombined; designing the germanium crystal housing and vacuum cryostat; and customizing electronics to perform the signal recombination function in real time. In this phase I work, commercial off-the-shelf electrostatic modeling software was used to develop the segmented germanium crystal geometry, which underwent several iterations before an optimal electrode configuration was found. The model was tested and validated against real-world measurements with existing germanium detectors. Extensive modeling of electronic noise was conducted using established formulae, and real-world measurements were performed on candidate front-end electronic components. This initial work proved the feasibility of the design with respect to expected high count rate and energy resolution performance. Phase I also delivered the mechanical design of the detector housing and vacuum cryostat to be built in Phase II. Finally, a Monte Carlo simulation was created to show the response of the complete design to a Cs-137 source. This development presents a significant advance for nuclear safeguards instrumentation with increased speed and accuracy of detection and identification of special nuclear materials. Other significant applications are foreseen for a gamma-ray detector that delivers high energy resolution (1keV FWHM noise) at high count rate (1 Mcps), especially in the areas of physics research and materials analysis.« less
High-resolution Ceres Low Altitude Mapping Orbit Atlas derived from Dawn Framing Camera images
NASA Astrophysics Data System (ADS)
Roatsch, Th.; Kersten, E.; Matz, K.-D.; Preusker, F.; Scholten, F.; Jaumann, R.; Raymond, C. A.; Russell, C. T.
2017-06-01
The Dawn spacecraft Framing Camera (FC) acquired over 31,300 clear filter images of Ceres with a resolution of about 35 m/pxl during the eleven cycles in the Low Altitude Mapping Orbit (LAMO) phase between December 16 2015 and August 8 2016. We ortho-rectified the images from the first four cycles and produced a global, high-resolution, uncontrolled photomosaic of Ceres. This global mosaic is the basis for a high-resolution Ceres atlas that consists of 62 tiles mapped at a scale of 1:250,000. The nomenclature used in this atlas was proposed by the Dawn team and was approved by the International Astronomical Union (IAU). The full atlas is available to the public through the Dawn Geographical Information System (GIS) web page [http://dawngis.dlr.de/atlas] and will become available through the NASA Planetary Data System (PDS) (http://pdssbn.astro.umd.edu/).
High-resolution x-ray tomography using laboratory sources
NASA Astrophysics Data System (ADS)
Tkachuk, Andrei; Feser, Michael; Cui, Hongtao; Duewer, Fred; Chang, Hauyee; Yun, Wenbing
2006-08-01
X-ray computed tomography (XCT) is a powerful nondestructive 3D imaging technique, which enables the visualization of the three dimensional structure of complex, optically opaque samples. High resolution XCT using Fresnel zone plate lenses has been confined in the past to synchrotron radiation centers due to the need for a bright and intense source of x-rays. This confinement severely limits the availability and accessibility of x-ray microscopes and the wide proliferation of this methodology. We are describing a sub-50nm resolution XCT system operating at 8 keV in absorption and Zernike phase contrast mode based on a commercially available laboratory x-ray source. The system utilizes high-efficiency Fresnel zone plates with an outermost zone width of 35 nm and 700 nm structure height resulting in a current spatial resolution better than 50 nm. In addition to the technical description of the system and specifications, we present application examples in the semiconductor field.
Zernike phase contrast cryo-electron tomography of whole bacterial cells.
Guerrero-Ferreira, Ricardo C; Wright, Elizabeth R
2014-01-01
Cryo-electron tomography (cryo-ET) provides three-dimensional (3D) structural information of bacteria preserved in a native, frozen-hydrated state. The typical low contrast of tilt-series images, a result of both the need for a low electron dose and the use of conventional defocus phase-contrast imaging, is a challenge for high-quality tomograms. We show that Zernike phase-contrast imaging allows the electron dose to be reduced. This limits movement of gold fiducials during the tilt series, which leads to better alignment and a higher-resolution reconstruction. Contrast is also enhanced, improving visibility of weak features. The reduced electron dose also means that more images at more tilt angles could be recorded, further increasing resolution. Copyright © 2013 Elsevier Inc. All rights reserved.
Chen, Kai; Lynen, Frédéric; De Beer, Maarten; Hitzel, Laure; Ferguson, Paul; Hanna-Brown, Melissa; Sandra, Pat
2010-11-12
Stationary phase optimized selectivity liquid chromatography (SOSLC) is a promising technique to optimize the selectivity of a given separation by using a combination of different stationary phases. Previous work has shown that SOSLC offers excellent possibilities for method development, especially after the recent modification towards linear gradient SOSLC. The present work is aimed at developing and extending the SOSLC approach towards selectivity optimization and method development for green chromatography. Contrary to current LC practices, a green mobile phase (water/ethanol/formic acid) is hereby preselected and the composition of the stationary phase is optimized under a given gradient profile to obtain baseline resolution of all target solutes in the shortest possible analysis time. With the algorithm adapted to the high viscosity property of ethanol, the principle is illustrated with a fast, full baseline resolution for a randomly selected mixture composed of sulphonamides, xanthine alkaloids and steroids. Copyright © 2010 Elsevier B.V. All rights reserved.
X-ray phase imaging-From static observation to dynamic observation-
DOE Office of Scientific and Technical Information (OSTI.GOV)
Momose, A.; Yashiro, W.; Olbinado, M. P.
2012-07-31
We are attempting to expand the technology of X-ray grating phase imaging/tomography to enable dynamic observation. X-ray phase imaging has been performed mainly for static cases, and this challenge is significant since properties of materials (and hopefully their functions) would be understood by observing their dynamics in addition to their structure, which is an inherent advantage of X-ray imaging. Our recent activities in combination with white synchrotron radiation for this purpose are described. Taking advantage of the fact that an X-ray grating interferometer functions with X-rays of a broad energy bandwidth (and therefore high flux), movies of differential phase imagesmore » and visibility images are obtained with a time resolution of a millisecond. The time resolution of X-ray phase tomography can therefore be a second. This study is performed as a part of a project to explore X-ray grating interferometry, and our other current activities are also briefly outlined.« less
NASA Astrophysics Data System (ADS)
Palma, K. D.; Pichotka, M.; Hasn, S.; Granja, C.
2017-02-01
In mammography the difficult task to detect microcalcifications (≈ 100 μm) and low contrast structures in the breast has been a topic of interest from its beginnings. The possibility to improve the image quality requires the effort to employ novel X-ray imaging techniques, such as phase-contrast, and high resolution detectors. Phase-contrast techniques are promising tools for medical diagnosis because they provide additional and complementary information to traditional absorption-based X-ray imaging methods. In this work a Hamamatsu microfocus X-ray source with tungsten anode and a photon counting detector (Timepix operated in Medipix mode) was used. A significant improvement in the detection of phase-effects using Medipix detector was observed in comparison to an standard flat-panel detector. An optimization of geometrical parameters reveals the dependency on the X-ray propagation path and the small angle deviation. The quantification of these effects was achieved taking into account the image noise, contrast, spatial resolution of the phase-enhancement, absorbed dose, and energy dependence.
Xie, Zhilin; Terracciano, Anthony C.; Cullen, David A.; ...
2015-05-13
The formation of IrB 2, IrB 1.35, IrB 1.1 and IrB monoboride phases in the Ir–B ceramic nanopowder was confirmed during mechanochemical reaction between metallic Ir and elemental B powders. The Ir–B phases were analysed after 90 h of high energy ball milling and after annealing of the powder for 72 h at 1050°C in vacuo. The iridium monoboride (IrB) orthorhombic phase was synthesised experimentally for the first time and identified by powder X-ray diffraction. Additionally, the ReB 2 type IrB 2 hexagonal phase was also produced for the first time and identified by high resolution transmission electron microscope. Irmore » segregation along disordered domains of the boron lattice was found to occur during high temperature annealing. Furthermore, these nanodomains may have useful catalytic properties.« less
NASA Astrophysics Data System (ADS)
Omidi, Parsa; Diop, Mamadou; Carson, Jeffrey; Nasiriavanaki, Mohammadreza
2017-03-01
Linear-array-based photoacoustic computed tomography is a popular methodology for deep and high resolution imaging. However, issues such as phase aberration, side-lobe effects, and propagation limitations deteriorate the resolution. The effect of phase aberration due to acoustic attenuation and constant assumption of the speed of sound (SoS) can be reduced by applying an adaptive weighting method such as the coherence factor (CF). Utilizing an adaptive beamforming algorithm such as the minimum variance (MV) can improve the resolution at the focal point by eliminating the side-lobes. Moreover, invisibility of directional objects emitting parallel to the detection plane, such as vessels and other absorbing structures stretched in the direction perpendicular to the detection plane can degrade resolution. In this study, we propose a full-view array level weighting algorithm in which different weighs are assigned to different positions of the linear array based on an orientation algorithm which uses the histogram of oriented gradient (HOG). Simulation results obtained from a synthetic phantom show the superior performance of the proposed method over the existing reconstruction methods.
Vermeir, Lien; Sabatino, Paolo; Balcaen, Mathieu; Declerck, Arnout; Dewettinck, Koen; Martins, José C; Guthausen, Gisela; Van der Meeren, Paul
2016-08-01
The accuracy of the inner water droplet size determination of W/O/W emulsions upon water diffusion measurement by diffusion NMR was evaluated. The resulting droplet size data were compared to the results acquired from the diffusion measurement of a highly water soluble marker compound with low permeability in the oil layer of a W/O/W emulsion, which provide a closer representation of the actual droplet size. Differences in droplet size data obtained from water and the marker were ascribed to extra-droplet water diffusion. The diffusion data of the tetramethylammonium cation marker were measured using high-resolution pulsed field gradient NMR, whereas the water diffusion was measured using both low-resolution and high-resolution NMR. Different data analysis procedures were evaluated to correct for the effect of extra-droplet water diffusion on the accuracy of water droplet size analysis. Using the water diffusion data, the use of a low measurement temperature and diffusion delay Δ could reduce the droplet size overestimation resulting from extra-droplet water diffusion, but this undesirable effect was inevitable. Detailed analysis of the diffusion data revealed that the extra-droplet diffusion effect was due to an exchange between the inner water phase and the oil phase, rather than by exchange between the internal and external aqueous phase. A promising data analysis procedure for retrieving reliable size data consisted of the application of Einstein's diffusion law to the experimentally determined diffusion distances. This simple procedure allowed determining the inner water droplet size of W/O/W emulsions upon measurement of water diffusion by low-resolution NMR at or even above room temperature. Copyright © 2016 Elsevier Inc. All rights reserved.
Ab initio structure determination from prion nanocrystals at atomic resolution by MicroED
Sawaya, Michael R.; Rodriguez, Jose; Cascio, Duilio; Collazo, Michael J.; Shi, Dan; Reyes, Francis E.; Gonen, Tamir; Eisenberg, David S.
2016-01-01
Electrons, because of their strong interaction with matter, produce high-resolution diffraction patterns from tiny 3D crystals only a few hundred nanometers thick in a frozen-hydrated state. This discovery offers the prospect of facile structure determination of complex biological macromolecules, which cannot be coaxed to form crystals large enough for conventional crystallography or cannot easily be produced in sufficient quantities. Two potential obstacles stand in the way. The first is a phenomenon known as dynamical scattering, in which multiple scattering events scramble the recorded electron diffraction intensities so that they are no longer informative of the crystallized molecule. The second obstacle is the lack of a proven means of de novo phase determination, as is required if the molecule crystallized is insufficiently similar to one that has been previously determined. We show with four structures of the amyloid core of the Sup35 prion protein that, if the diffraction resolution is high enough, sufficiently accurate phases can be obtained by direct methods with the cryo-EM method microelectron diffraction (MicroED), just as in X-ray diffraction. The success of these four experiments dispels the concern that dynamical scattering is an obstacle to ab initio phasing by MicroED and suggests that structures of novel macromolecules can also be determined by direct methods. PMID:27647903
High-Resolution Strain Analysis of the Human Heart with Fast-DENSE
NASA Astrophysics Data System (ADS)
Aletras, Anthony H.; Balaban, Robert S.; Wen, Han
1999-09-01
Single breath-hold displacement data from the human heart were acquired with fast-DENSE (fast displacement encoding with stimulated echoes) during systolic contraction at 2.5 × 2.5 mm in-plane resolution. Encoding strengths of 0.86-1.60 mm/π were utilized in order to extend the dynamic range of the phase measurements and minimize effects of physiologic and instrument noise. The noise level in strain measurements for both contraction and dilation corresponded to a strain value of 2.8%. In the human heart, strain analysis has sufficient resolution to reveal transmural variation across the left ventricular wall. Data processing required minimal user intervention and provided a rapid quantitative feedback. The intrinsic temporal integration of fast-DENSE achieves high accuracy at the expense of temporal resolution.
Okutan, Leyla; Kongstad, Kenneth T; Jäger, Anna K; Staerk, Dan
2014-11-26
Type 2 diabetes affects millions of people worldwide, and new improved drugs or functional foods containing selective α-amylase inhibitors are needed for improved management of blood glucose. In this article the development of a microplate-based high-resolution α-amylase inhibition assay with direct photometric measurement of α-amylase activity is described. The inhibition assay is based on porcine pancreatic α-amylase with 2-chloro-4-nitrophenyl-α-D-maltotriose as substrate, which this gives a stable, sensitive, and cheap inhibition assay as requested for high-resolution purposes. In combination with HPLC-HRMS-SPE-NMR, this provides an analytical platform that allows simultaneous chemical and biological profiling of α-amylase inhibitors in plant extracts. Proof-of-concept with an artificial mixture of six compounds-of which three are known α-amylase inhibitors-showed that the high-resolution α-amylase inhibition profiles allowed detection of sub-microgram amounts of the α-amylase inhibitors. Furthermore, the high-resolution α-amylase inhibition assay/HPLC-HRMS-SPE-NMR platform allowed identification of cinnamaldehyde as the α-amylase inhibitor in cinnamon (Cinnamomum verum Presl.).
Spaced-antenna wind estimation using an X-band active phased-array weather radar
NASA Astrophysics Data System (ADS)
Venkatesh, Vijay
Over the past few decades, several single radar methods have been developed to probe the kinematic structure of storms. All these methods trade angular-resolution to retrieve the wind-field. To date, the spaced-antenna method has been employed for profiling the ionosphere and the precipitation free lower atmosphere. This work focuses on applying the spaced-antenna method on an X-band active phased-array radar for high resolution horizontal wind-field retrieval from precipitation echoes. The ability to segment the array face into multiple displaced apertures allows for flexible spaced-antenna implementations. The methodology employed herein comprises of Monte-Carlo simulations to optimize the spaced-antenna system design and analysis of real data collected with the designed phased-array system. The contribution that underpins this dissertation is the demonstration of qualitative agreement between spaced-antenna and Doppler beam swinging retrievals based on real data. First, simulations of backscattered electric fields at the antenna array elements are validated using theoretical expressions. Based on the simulations, the degrees of freedom in the spaced-antenna system design are optimized for retrieval of mean baseline wind. We show that the designed X-band spaced-antenna system has lower retrieval uncertainty than the existing S-band spaced-antenna implementation on the NWRT. This is because of the flexibility to synthesize small overlapping apertures and the ability to obtain statistically independent samples at a faster rate at X-band. We then demonstrate a technique to make relative phase-center displacement measurements based on simulations and real data from the phased-array spaced-antenna system. This simple method uses statistics of precipitation echoes and apriori beamwidth measurements to make field repeatable phase-center displacement measurements. Finally, we test the hypothesis that wind-field curvature effects are common to both the spaced-antenna and Doppler beam swinging methods. Based on a close-range winter storm data set, we find that the spaced-antenna and fine-resolution Doppler beam swinging retrievals are in qualitative agreement. The correlation between the spaced-antenna and fine-resolution Doppler beam swinging retrievals was 0.57. The lowered correlation coefficient was, in part, due to the high standard deviation of the DBS retrievals. At high wind-speeds, the spaced-antenna retrievals significantly departed from variational retrievals of mean baseline wind.
2007-08-31
explosions at the former Soviet Semipalatinsk test site (STS). Labeled stations are those for which high resolution digital data are available. 12 8...characteristics of regional phase observations from underground nuclear explosions at the former Soviet Semipalatinsk and Novaya Zemlya test sites , the...various regional phases observed from underground nuclear explosions at the former Soviet Semipalatinsk test site (STS). Labeled stations are those for
NASA Astrophysics Data System (ADS)
Li, Runze; Peng, Tong; Liang, Yansheng; Yang, Yanlong; Yao, Baoli; Yu, Xianghua; Min, Junwei; Lei, Ming; Yan, Shaohui; Zhang, Chunmin; Ye, Tong
2017-10-01
Focusing and imaging through scattering media has been proved possible with high resolution wavefront shaping. A completely scrambled scattering field can be corrected by applying a correction phase mask on a phase only spatial light modulator (SLM) and thereby the focusing quality can be improved. The correction phase is often found by global searching algorithms, among which Genetic Algorithm (GA) stands out for its parallel optimization process and high performance in noisy environment. However, the convergence of GA slows down gradually with the progression of optimization, causing the improvement factor of optimization to reach a plateau eventually. In this report, we propose an interleaved segment correction (ISC) method that can significantly boost the improvement factor with the same number of iterations comparing with the conventional all segment correction method. In the ISC method, all the phase segments are divided into a number of interleaved groups; GA optimization procedures are performed individually and sequentially among each group of segments. The final correction phase mask is formed by applying correction phases of all interleaved groups together on the SLM. The ISC method has been proved significantly useful in practice because of its ability to achieve better improvement factors when noise is present in the system. We have also demonstrated that the imaging quality is improved as better correction phases are found and applied on the SLM. Additionally, the ISC method lowers the demand of dynamic ranges of detection devices. The proposed method holds potential in applications, such as high-resolution imaging in deep tissue.
NASA Astrophysics Data System (ADS)
Linnenberger, A.
2018-02-01
Wavefront shaping devices such as deformable mirrors, liquid crystal spatial light modulators (SLMs), and active lenses are of considerable interest in microscopy for aberration correction, volumetric imaging, and programmable excitation. Liquid crystal SLMs are high resolution phase modulators capable of creating complex phase profiles to reshape, or redirect light within a three-dimensional (3D) volume. Recent advances in Meadowlark Optics (MLO) SLMs reduce losses by increasing fill factor from 83.4% to 96%, and improving resolution from 512 x 512 pixels to 1920 x 1152 pixels while maintaining a liquid crystal response time of 300 Hz at 1064 nm. This paper summarizes new SLM capabilities, and benefits for microscopy.
Miyata, Tomohiro; Mizoguchi, Teruyasu
2018-03-01
Understanding structures and spatial distributions of molecules in liquid phases is crucial for the control of liquid properties and to develop efficient liquid-phase processes. Here, real-space mapping of molecular distributions in a liquid was performed. Specifically, the ionic liquid 1-Ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (C2mimTFSI) was imaged using atomic-resolution scanning transmission electron microscopy. Simulations revealed network-like bright regions in the images that were attributed to the TFSI- anion, with minimal contributions from the C2mim+ cation. Simple visualization of the TFSI- distribution in the liquid sample was achieved by binarizing the experimental image.
Solid state high resolution multi-spectral imager CCD test phase
NASA Technical Reports Server (NTRS)
1973-01-01
The program consisted of measuring the performance characteristics of charge coupled linear imaging devices, and a study defining a multispectral imaging system employing advanced solid state photodetection techniques.
NASA Technical Reports Server (NTRS)
Eliason, E.; Hansen, C. J.; McEwen, A.; Delamere, W. A.; Bridges, N.; Grant, J.; Gulich, V.; Herkenhoff, K.; Keszthelyi, L.; Kirk, R.
2003-01-01
Science return from the Mars Reconnaissance Orbiter (MRO) High Resolution Imaging Science Experiment (HiRISE) will be optimized by maximizing science participation in the experiment. MRO is expected to arrive at Mars in March 2006, and the primary science phase begins near the end of 2006 after aerobraking (6 months) and a transition phase. The primary science phase lasts for almost 2 Earth years, followed by a 2-year relay phase in which science observations by MRO are expected to continue. We expect to acquire approx. 10,000 images with HiRISE over the course of MRO's two earth-year mission. HiRISE can acquire images with a ground sampling dimension of as little as 30 cm (from a typical altitude of 300 km), in up to 3 colors, and many targets will be re-imaged for stereo. With such high spatial resolution, the percent coverage of Mars will be very limited in spite of the relatively high data rate of MRO (approx. 10x greater than MGS or Odyssey). We expect to cover approx. 1% of Mars at approx. 1m/pixel or better, approx. 0.1% at full resolution, and approx. 0.05% in color or in stereo. Therefore, the placement of each HiRISE image must be carefully considered in order to maximize the scientific return from MRO. We believe that every observation should be the result of a mini research project based on pre-existing datasets. During operations, we will need a large database of carefully researched 'suggested' observations to select from. The HiRISE team is dedicated to involving the broad Mars community in creating this database, to the fullest degree that is both practical and legal. The philosophy of the team and the design of the ground data system are geared to enabling community involvement. A key aspect of this is that image data will be made available to the planetary community for science analysis as quickly as possible to encourage feedback and new ideas for targets.
Effect of laser pulse shaping parameters on the fidelity of quantum logic gates.
Zaari, Ryan R; Brown, Alex
2012-09-14
The effect of varying parameters specific to laser pulse shaping instruments on resulting fidelities for the ACNOT(1), NOT(2), and Hadamard(2) quantum logic gates are studied for the diatomic molecule (12)C(16)O. These parameters include varying the frequency resolution, adjusting the number of frequency components and also varying the amplitude and phase at each frequency component. A time domain analytic form of the original discretized frequency domain laser pulse function is derived, providing a useful means to infer the resulting pulse shape through variations to the aforementioned parameters. We show that amplitude variation at each frequency component is a crucial requirement for optimal laser pulse shaping, whereas phase variation provides minimal contribution. We also show that high fidelity laser pulses are dependent upon the frequency resolution and increasing the number of frequency components provides only a small incremental improvement to quantum gate fidelity. Analysis through use of the pulse area theorem confirms the resulting population dynamics for one or two frequency high fidelity laser pulses and implies similar dynamics for more complex laser pulse shapes. The ability to produce high fidelity laser pulses that provide both population control and global phase alignment is attributed greatly to the natural evolution phase alignment of the qubits involved within the quantum logic gate operation.
Phased Array 3D MR Spectroscopic Imaging of the Brain at 7 Tesla
Xu, Duan; Cunningham, Charles H; Chen, Albert P.; Li, Yan; Kelley, Douglas AC; Mukherjee, Pratik; Pauly, John M.; Nelson, Sarah J.; Vigneron, Daniel B.
2008-01-01
Ultrahigh field 7T MR scanners offer the potential for greatly improved MR spectroscopic imaging due to increased sensitivity and spectral resolution. Prior 7T human single-voxel MRS studies have shown significant increases in SNR and spectral resolution as compared to lower magnetic fields, but have not demonstrated the increase in spatial resolution and multivoxel coverage possible with 7T MR spectroscopic imaging. The goal of this study was to develop specialized rf pulses and sequences for 3D MRSI at 7T to address the challenges of increased chemical shift misregistration, B1 power limitations, and increased spectral bandwidth. The new 7T MRSI sequence was tested in volunteer studies and demonstrated the feasibility of obtaining high SNR phased-array 3D MRSI from the human brain. PMID:18486386
Geostationary earth climate sensor: Scientific utility and feasibility, phase A
NASA Technical Reports Server (NTRS)
Campbell, G. Garrett; Vonderharr, T. H.; Evert, T.; Kidder, Stanley Q.; Purdom, James F. W.
1991-01-01
The possibility of accurate broad band radiation budget measurements from a GEO platform will provide a unique opportunity for viewing radiation processes in the atmosphere-ocean system. The CSU/TRW team has prepared a Phase 1 instrument design study demonstrating that measurements of radiation budget are practical from geosynchronous orbit with proven technology. This instrument concept is the Geostationary Earth Climate Sensor (GECS). A range of resolutions down to 20 km at the top of the atmosphere are possible, depending upon the scientific goals of the experiment. These tradeoffs of resolution and measurement repeat cycles are examined for scientific utility. The design of a flexible instrument is shown to be possible to meet the two goals: long-term, systematic monitoring of the diurnal cycles of radiation budget; and high time and space resolution studies of regional radiation features.
Masters, Robert C.; Pearson, Andrew J.; Glen, Tom S.; Sasam, Fabian-Cyril; Li, Letian; Dapor, Maurizio; Donald, Athene M.; Lidzey, David G.; Rodenburg, Cornelia
2015-01-01
The resolution capability of the scanning electron microscope has increased immensely in recent years, and is now within the sub-nanometre range, at least for inorganic materials. An equivalent advance has not yet been achieved for imaging the morphologies of nanostructured organic materials, such as organic photovoltaic blends. Here we show that energy-selective secondary electron detection can be used to obtain high-contrast, material-specific images of an organic photovoltaic blend. We also find that we can differentiate mixed phases from pure material phases in our data. The lateral resolution demonstrated is twice that previously reported from secondary electron imaging. Our results suggest that our energy-filtered scanning electron microscopy approach will be able to make major inroads into the understanding of complex, nano-structured organic materials. PMID:25906738
Tomková, Jana; Ondra, Peter; Válka, Ivo
2015-06-01
This paper presents a method for the simultaneous determination of α-amanitin, β-amanitin and muscarine in human urine by solid-phase extraction (SPE) and ultra-high-performance liquid chromatography coupled with ultra-high-resolution TOF mass spectrometry. The method can be used for a diagnostics of mushroom poisonings. Different SPE cartridges were tested for sample preparation, namely hydrophilic modified reversed-phase (Oasis HLB) and polymeric weak cation phase (Strata X-CW). The latter gave better results and therefore it was chosen for the subsequent method optimization and partial validation. In the course of validation, limits of detection, linearity, intraday and interday precisions and recoveries were evaluated. The obtained LOD values of α-amanitin and β-amanitin were 1ng/mL and of muscarine 0.09ng/mL. The intraday and interday precisions of human urine spiked with α-amanitin (10ng/mL), β-amanitin (10ng/mL) and muscarine (1ng/mL) ranged from 6% to 10% and from 7% to 13%, respectively. The developed method was proved to be a relevant tool for the simultaneous determination of the studied mushroom toxins in human urine after mushroom poisoning. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Hollow Cone Electron Imaging for Single Particle 3D Reconstruction of Proteins
Tsai, Chun-Ying; Chang, Yuan-Chih; Lobato, Ivan; Van Dyck, Dirk; Chen, Fu-Rong
2016-01-01
The main bottlenecks for high-resolution biological imaging in electron microscopy are radiation sensitivity and low contrast. The phase contrast at low spatial frequencies can be enhanced by using a large defocus but this strongly reduces the resolution. Recently, phase plates have been developed to enhance the contrast at small defocus but electrical charging remains a problem. Single particle cryo-electron microscopy is mostly used to minimize the radiation damage and to enhance the resolution of the 3D reconstructions but it requires averaging images of a massive number of individual particles. Here we present a new route to achieve the same goals by hollow cone dark field imaging using thermal diffuse scattered electrons giving about a 4 times contrast increase as compared to bright field imaging. We demonstrate the 3D reconstruction of a stained GroEL particle can yield about 13.5 Å resolution but using a strongly reduced number of images. PMID:27292544
Togni Filho, Paulo Henrique; Casagrande, João Luiz Marin; Lederman, Henrique Manoel
2017-01-01
Objective To evaluate the utility of the inspiratory phase in high-resolution computed tomography (HRCT) of the chest for the diagnosis of post-bone marrow transplantation bronchiolitis obliterans. Materials and Methods This was a retrospective, observational, cross-sectional study. We selected patients of either gender who underwent bone marrow transplantation and chest HRCT between March 1, 2002 and December 12, 2014. Ages ranged from 3 months to 20.7 years. We included all examinations in which the HRCT was performed appropriately. The examinations were read by two radiologists, one with extensive experience in pediatric radiology and another in the third year of residency, who determined the presence or absence of the following imaging features: air trapping, bronchiectasis, alveolar opacities, nodules, and atelectasis. Results A total of 222 examinations were evaluated (mean, 5.4 ± 4.5 examinations per patient). The expiratory phase findings were comparable to those obtained in the inspiratory phase, except in one patient, in whom a small uncharacteristic nodule was identified only in the inspiratory phase. Air trapping was identified in a larger number of scans in the expiratory phase than in the inspiratory phase, as was atelectasis, although the difference was statistically significant only for air trapping. Conclusion In children being evaluated for post-bone marrow transplantation bronchiolitis obliterans, the inspiratory phase can be excluded from the chest HRCT protocol, thus reducing by half the radiation exposure in this population. PMID:28428651
High-resolution Observation of Moving Magnetic Features in Active Regions
NASA Astrophysics Data System (ADS)
Li, Qin; Deng, Na; Jing, Ju; Wang, Haimin
2017-08-01
Moving magnetic features (MMFs) are small photospheric magnetic elements that emerge and move outward toward the boundary of moat regions mostly during a sunspot decaying phase, in a serpent wave-like magnetic topology. Studies of MMFs and their classification (e.g., unipolar or bipolar types) strongly rely on the high spatiotemporal-resolution observation of photospheric magnetic field. In this work, we present a detailed observation of a sunspot evolution in NOAA active region (AR) 12565, using exceptionally high resolution Halpha images from the 1.6 New Solar telescope (NST) at Big Bear Solar Observatory (BBSO) and the UV images from the Interface Region Imaging Spectrograph (IRIS). The spectropolarimetric measurements of photospheric magnetic field are obtained from the NST Near InfraRed Imaging Spectropolarimeter (NIRIS) at Fe I 1.56 um line. We investigate the horizontal motion of the classified MMFs and discuss the clustering patterns of the geometry and motion of the MMFs. We estimate the rate of flux generation by appearance of MMFs and the role MMFs play in sunspot decaying phase. We also study the interaction between the MMFs and the existing magnetic field features and its response to Ellerman bombs and IRIS bombs respectively at higher layers.
Tracing the phase of focused broadband laser pulses
NASA Astrophysics Data System (ADS)
Hoff, Dominik; Krüger, Michael; Maisenbacher, Lothar; Sayler, A. M.; Paulus, Gerhard G.; Hommelhoff, Peter
2017-10-01
Precise knowledge of the behaviour of the phase of light in a focused beam is fundamental to understanding and controlling laser-driven processes. More than a hundred years ago, an axial phase anomaly for focused monochromatic light beams was discovered and is now commonly known as the Gouy phase. Recent theoretical work has brought into question the validity of applying this monochromatic phase formulation to the broadband pulses becoming ubiquitous today. Based on electron backscattering at sharp nanometre-scale metal tips, a method is available to measure light fields with sub-wavelength spatial resolution and sub-optical-cycle time resolution. Here we report such a direct, three-dimensional measurement of the spatial dependence of the optical phase of a focused, 4-fs, near-infrared pulsed laser beam. The observed optical phase deviates substantially from the monochromatic Gouy phase--exhibiting a much more complex spatial dependence, both along the propagation axis and in the radial direction. In our measurements, these significant deviations are the rule and not the exception for focused, broadband laser pulses. Therefore, we expect wide ramifications for all broadband laser-matter interactions, such as in high-harmonic and attosecond pulse generation, femtochemistry, ophthalmological optical coherence tomography and light-wave electronics.
High resolution powder diffraction at HASYLAB
NASA Astrophysics Data System (ADS)
Wroblewski, Thomas; Ihringer, Jorg; Maichle, Josef
1988-04-01
HASYLAB's beamline F1 was modified for powder diffraction in a triple-axis geometry. The diffractometer consists of two independent circles for θ and 2θ motion on either side of the beam. The θ circle can be translated along its axis. This makes the instrument highly flexible for the installation of different attachments like a cryostat which was used for low temperature measurements on the new high Tc superconductors. Measurements on zeolites demonstrate the excellent resolution and signal-to-noise ratio. Novel measuring strategies concerning the use of multiple analyzers, the examination of phase transitions and anomalous dispersion are presented.
Resolution Of Phase Ambiguities In QPSK
NASA Technical Reports Server (NTRS)
Nguyen, Tien M.
1992-01-01
Report discusses several techniques for resolution of phase ambiguities in detection and decoding of radio signals modulated by coherent quadrature phase-shift keying (QPSK) and offset QPSK (OQPSK). Eight ambiguities: four associated with phase of carrier signal in absence of ambiguity in direction of rotation of carrier phase, and another four associated with carrier phase in presence of phase-rotation ambiguity.
A trade-off between model resolution and variance with selected Rayleigh-wave data
Xia, J.; Miller, R.D.; Xu, Y.
2008-01-01
Inversion of multimode surface-wave data is of increasing interest in the near-surface geophysics community. For a given near-surface geophysical problem, it is essential to understand how well the data, calculated according to a layered-earth model, might match the observed data. A data-resolution matrix is a function of the data kernel (determined by a geophysical model and a priori information applied to the problem), not the data. A data-resolution matrix of high-frequency (??? 2 Hz) Rayleigh-wave phase velocities, therefore, offers a quantitative tool for designing field surveys and predicting the match between calculated and observed data. First, we employed a data-resolution matrix to select data that would be well predicted and to explain advantages of incorporating higher modes in inversion. The resulting discussion using the data-resolution matrix provides insight into the process of inverting Rayleigh-wave phase velocities with higher mode data to estimate S-wave velocity structure. Discussion also suggested that each near-surface geophysical target can only be resolved using Rayleigh-wave phase velocities within specific frequency ranges, and higher mode data are normally more accurately predicted than fundamental mode data because of restrictions on the data kernel for the inversion system. Second, we obtained an optimal damping vector in a vicinity of an inverted model by the singular value decomposition of a trade-off function of model resolution and variance. In the end of the paper, we used a real-world example to demonstrate that selected data with the data-resolution matrix can provide better inversion results and to explain with the data-resolution matrix why incorporating higher mode data in inversion can provide better results. We also calculated model-resolution matrices of these examples to show the potential of increasing model resolution with selected surface-wave data. With the optimal damping vector, we can improve and assess an inverted model obtained by a damped least-square method.
Chang, Hing-Chiu; Chen, Nan-kuei
2016-01-01
Diffusion-weighted imaging (DWI) obtained with interleaved echo-planar imaging (EPI) pulse sequence has great potential of characterizing brain tissue properties at high spatial-resolution. However, interleaved EPI based DWI data may be corrupted by various types of aliasing artifacts. First, inconsistencies in k-space data obtained with opposite readout gradient polarities result in Nyquist artifact, which is usually reduced with 1D phase correction in post-processing. When there exist eddy current cross terms (e.g., in oblique-plane EPI), 2D phase correction is needed to effectively reduce Nyquist artifact. Second, minuscule motion induced phase inconsistencies in interleaved DWI scans result in image-domain aliasing artifact, which can be removed with reconstruction procedures that take shot-to-shot phase variations into consideration. In existing interleaved DWI reconstruction procedures, Nyquist artifact and minuscule motion-induced aliasing artifact are typically removed subsequently in two stages. Although the two-stage phase correction generally performs well for non-oblique plane EPI data obtained from well-calibrated system, the residual artifacts may still be pronounced in oblique-plane EPI data or when there exist eddy current cross terms. To address this challenge, here we report a new composite 2D phase correction procedure, which effective removes Nyquist artifact and minuscule motion induced aliasing artifact jointly in a single step. Our experimental results demonstrate that the new 2D phase correction method can much more effectively reduce artifacts in interleaved EPI based DWI data as compared with the existing two-stage artifact correction procedures. The new method robustly enables high-resolution DWI, and should prove highly valuable for clinical uses and research studies of DWI. PMID:27114342
High resolution ultrasonic spectroscopy system for nondestructive evaluation
NASA Technical Reports Server (NTRS)
Chen, C. H.
1991-01-01
With increased demand for high resolution ultrasonic evaluation, computer based systems or work stations become essential. The ultrasonic spectroscopy method of nondestructive evaluation (NDE) was used to develop a high resolution ultrasonic inspection system supported by modern signal processing, pattern recognition, and neural network technologies. The basic system which was completed consists of a 386/20 MHz PC (IBM AT compatible), a pulser/receiver, a digital oscilloscope with serial and parallel communications to the computer, an immersion tank with motor control of X-Y axis movement, and the supporting software package, IUNDE, for interactive ultrasonic evaluation. Although the hardware components are commercially available, the software development is entirely original. By integrating signal processing, pattern recognition, maximum entropy spectral analysis, and artificial neural network functions into the system, many NDE tasks can be performed. The high resolution graphics capability provides visualization of complex NDE problems. The phase 3 efforts involve intensive marketing of the software package and collaborative work with industrial sectors.
In Situ Environmental TEM in Imaging Gas and Liquid Phase Chemical Reactions for Materials Research.
Wu, Jianbo; Shan, Hao; Chen, Wenlong; Gu, Xin; Tao, Peng; Song, Chengyi; Shang, Wen; Deng, Tao
2016-11-01
Gas and liquid phase chemical reactions cover a broad range of research areas in materials science and engineering, including the synthesis of nanomaterials and application of nanomaterials, for example, in the areas of sensing, energy storage and conversion, catalysis, and bio-related applications. Environmental transmission electron microscopy (ETEM) provides a unique opportunity for monitoring gas and liquid phase reactions because it enables the observation of those reactions at the ultra-high spatial resolution, which is not achievable through other techniques. Here, the fundamental science and technology developments of gas and liquid phase TEM that facilitate the mechanistic study of the gas and liquid phase chemical reactions are discussed. Combined with other characterization tools integrated in TEM, unprecedented material behaviors and reaction mechanisms are observed through the use of the in situ gas and liquid phase TEM. These observations and also the recent applications in this emerging area are described. The current challenges in the imaging process are also discussed, including the imaging speed, imaging resolution, and data management. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Development of phase detection schemes based on surface plasmon resonance using interferometry.
Kashif, Muhammad; Bakar, Ahmad Ashrif A; Arsad, Norhana; Shaari, Sahbudin
2014-08-28
Surface plasmon resonance (SPR) is a novel optical sensing technique with a unique ability to monitor molecular binding in real-time for biological and chemical sensor applications. Interferometry is an excellent tool for accurate measurement of SPR changes, the measurement and comparison is made for the sensitivity, dynamic range and resolution of the different analytes using interferometry techniques. SPR interferometry can also employ phase detection in addition to the amplitude of the reflected light wave, and the phase changes more rapidly compared with other approaches, i.e., intensity, angle and wavelength. Therefore, the SPR phase interferometer offers the advantages of spatial phase resolution and high sensitivity. This work discusses the advancements in interferometric SPR methods to measure the phase shifts due to refractive index changes. The main application areas of SPR sensors are demonstrated, i.e., the Fabry-Perot interferometer, Michelson interferometer and Mach-Zehnder interferometer, with different configurations. The three interferometers are discussed in detail, and solutions are suggested to enhance the performance parameters that will aid in future biological and chemical sensors.
Development of Phase Detection Schemes Based on Surface Plasmon Resonance Using Interferometry
Kashif, Muhammad; Bakar, Ahmad Ashrif A.; Arsad, Norhana; Shaari, Sahbudin
2014-01-01
Surface plasmon resonance (SPR) is a novel optical sensing technique with a unique ability to monitor molecular binding in real-time for biological and chemical sensor applications. Interferometry is an excellent tool for accurate measurement of SPR changes, the measurement and comparison is made for the sensitivity, dynamic range and resolution of the different analytes using interferometry techniques. SPR interferometry can also employ phase detection in addition to the amplitude of the reflected light wave, and the phase changes more rapidly compared with other approaches, i.e., intensity, angle and wavelength. Therefore, the SPR phase interferometer offers the advantages of spatial phase resolution and high sensitivity. This work discusses the advancements in interferometric SPR methods to measure the phase shifts due to refractive index changes. The main application areas of SPR sensors are demonstrated, i.e., the Fabry-Perot interferometer, Michelson interferometer and Mach-Zehnder interferometer, with different configurations. The three interferometers are discussed in detail, and solutions are suggested to enhance the performance parameters that will aid in future biological and chemical sensors. PMID:25171117
Simultaneous fluorescence and quantitative phase microscopy with single-pixel detectors
NASA Astrophysics Data System (ADS)
Liu, Yang; Suo, Jinli; Zhang, Yuanlong; Dai, Qionghai
2018-02-01
Multimodal microscopy offers high flexibilities for biomedical observation and diagnosis. Conventional multimodal approaches either use multiple cameras or a single camera spatially multiplexing different modes. The former needs expertise demanding alignment and the latter suffers from limited spatial resolution. Here, we report an alignment-free full-resolution simultaneous fluorescence and quantitative phase imaging approach using single-pixel detectors. By combining reference-free interferometry with single-pixel detection, we encode the phase and fluorescence of the sample in two detection arms at the same time. Then we employ structured illumination and the correlated measurements between the sample and the illuminations for reconstruction. The recovered fluorescence and phase images are inherently aligned thanks to single-pixel detection. To validate the proposed method, we built a proof-of-concept setup for first imaging the phase of etched glass with the depth of a few hundred nanometers and then imaging the fluorescence and phase of the quantum dot drop. This method holds great potential for multispectral fluorescence microscopy with additional single-pixel detectors or a spectrometer. Besides, this cost-efficient multimodal system might find broad applications in biomedical science and neuroscience.
Characterisation of LSO:Tb scintillator films for high resolution X-ray imaging applications
NASA Astrophysics Data System (ADS)
Cecilia, A.; Rack, A.; Douissard, P.-A.; Martin, T.; Dos Santos Rolo, T.; Vagovič, P.; Pelliccia, D.; Couchaud, M.; Dupré, K.; Baumbach, T.
2011-05-01
Within the framework of an FP6 project (SCINTAX)1The Project SCINTAX is funded by the European Community (STRP 033 427),
Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media
NASA Astrophysics Data System (ADS)
Edrei, Eitan; Scarcelli, Giuliano
2016-09-01
High-resolution imaging through turbid media is a fundamental challenge of optical sciences that has attracted a lot of attention in recent years for its wide range of potential applications. Here, we demonstrate that the resolution of imaging systems looking behind a highly scattering medium can be improved below the diffraction-limit. To achieve this, we demonstrate a novel microscopy technique enabled by the optical memory effect that uses a deconvolution image processing and thus it does not require iterative focusing, scanning or phase retrieval procedures. We show that this newly established ability of direct imaging through turbid media provides fundamental and practical advantages such as three-dimensional refocusing and unambiguous object reconstruction.
Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media.
Edrei, Eitan; Scarcelli, Giuliano
2016-09-16
High-resolution imaging through turbid media is a fundamental challenge of optical sciences that has attracted a lot of attention in recent years for its wide range of potential applications. Here, we demonstrate that the resolution of imaging systems looking behind a highly scattering medium can be improved below the diffraction-limit. To achieve this, we demonstrate a novel microscopy technique enabled by the optical memory effect that uses a deconvolution image processing and thus it does not require iterative focusing, scanning or phase retrieval procedures. We show that this newly established ability of direct imaging through turbid media provides fundamental and practical advantages such as three-dimensional refocusing and unambiguous object reconstruction.
High-speed transport-of-intensity phase microscopy with an electrically tunable lens.
Zuo, Chao; Chen, Qian; Qu, Weijuan; Asundi, Anand
2013-10-07
We present a high-speed transport-of-intensity equation (TIE) quantitative phase microscopy technique, named TL-TIE, by combining an electrically tunable lens with a conventional transmission microscope. This permits the specimen at different focus position to be imaged in rapid succession, with constant magnification and no physically moving parts. The simplified image stack collection significantly reduces the acquisition time, allows for the diffraction-limited through-focus intensity stack collection at 15 frames per second, making dynamic TIE phase imaging possible. The technique is demonstrated by profiling of microlens array using optimal frequency selection scheme, and time-lapse imaging of live breast cancer cells by inversion the defocused phase optical transfer function to correct the phase blurring in traditional TIE. Experimental results illustrate its outstanding capability of the technique for quantitative phase imaging, through a simple, non-interferometric, high-speed, high-resolution, and unwrapping-free approach with prosperous applications in micro-optics, life sciences and bio-photonics.
Ciftci, Harun; Er, Cigdem
2013-03-01
In the present study, a separation/preconcentration procedure for determination of aluminum in water samples has been developed by using a new atomic absorption spectrometer concept with a high-intensity xenon short-arc lamp as continuum radiation source, a high-resolution double-echelle monochromator, and a charge-coupled device array detector. Sample solution pH, sample volume, flow rate of sample solution, volume, and concentration of eluent for solid-phase extraction of Al chelates with 4-[(dicyanomethyl)diazenyl] benzoic acid on polymeric resin (Duolite XAD-761) have been investigated. The adsorbed aluminum on resin was eluted with 5 mL of 2 mol L(-1) HNO(3) and its concentration was determined by high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS). Under the optimal conditions, limit of detection obtained with HR-CS FAAS and Line Source FAAS (LS-FAAS) were 0.49 μg L(-1) and 3.91 μg L(-1), respectively. The accuracy of the procedure was confirmed by analyzing certified materials (NIST SRM 1643e, Trace elements in water) and spiked real samples. The developed procedure was successfully applied to water samples.
Metrology measurements for large-aperture VPH gratings
NASA Astrophysics Data System (ADS)
Zheng, Jessica R.; Gers, Luke; Heijmans, Jeroen
2013-09-01
The High Efficiency and Resolution Multi Element Spectrograph (HERMES) for the Australian Astronomical Observatory (AAO) uses four large aperture, high angle of incidence volume phase holographic gratings (VPHG) for high resolution `Galactic archaeology' spectroscopy. The large clear aperture, the high diffraction efficiency, the line frequency homogeneity, and mosaic alignment made manufacturing and testing challenging. We developed new metrology systems at the AAO to verify the performance of these VPH gratings. The measured diffraction efficiencies and line frequency of the VPH gratings received so far meet the vendor's provided data. The wavefront quality for the Blue VPH grating is good but the Green and Red VPH gratings need to be post polishing.
NASA Astrophysics Data System (ADS)
Furlong, Cosme; Yokum, Jeffrey S.; Pryputniewicz, Ryszard J.
2002-06-01
Sensitivity, accuracy, and precision characteristics in quantitative optical metrology techniques, and specifically in optoelectronic holography based on fiber optics and high-spatial and high-digital resolution cameras, are discussed in this paper. It is shown that sensitivity, accuracy, and precision dependent on both, the effective determination of optical phase and the effective characterization of the illumination-observation conditions. Sensitivity, accuracy, and precision are investigated with the aid of National Institute of Standards and Technology (NIST) traceable gages, demonstrating the applicability of quantitative optical metrology techniques to satisfy constantly increasing needs for the study and development of emerging technologies.
NASA Astrophysics Data System (ADS)
Wang, Xin; Jones, Tucker A.; Treu, Tommaso; Morishita, Takahiro; Abramson, Louis E.; Brammer, Gabriel B.; Huang, Kuang-Han; Malkan, Matthew A.; Schmidt, Kasper B.; Fontana, Adriano; Grillo, Claudio; Henry, Alaina L.; Karman, Wouter; Kelly, Patrick L.; Mason, Charlotte A.; Mercurio, Amata; Rosati, Piero; Sharon, Keren; Trenti, Michele; Vulcani, Benedetta
2017-03-01
We combine deep Hubble Space Telescope grism spectroscopy with a new Bayesian method to derive maps of gas-phase metallicity for 10 star-forming galaxies at high redshift (1.2≲ z≲ 2.3). Exploiting lensing magnification by the foreground cluster MACS1149.6+2223, we reach sub-kiloparsec spatial resolution and push the limit of stellar mass associated with such high-z spatially resolved measurements below {10}8 {M}⊙ for the first time. Our maps exhibit diverse morphologies, indicative of various effects such as efficient radial mixing from tidal torques, rapid accretion of low-metallicity gas, and other physical processes that can affect the gas and metallicity distributions in individual galaxies. Based upon an exhaustive sample of all existing sub-kiloparesec resolution metallicity gradient measurements at high z, we find that predictions given by analytical chemical evolution models assuming a relatively extended star-formation profile in the early disk-formation phase can explain the majority of observed metallicity gradients, without involving galactic feedback or radial outflows. We observe a tentative correlation between stellar mass and metallicity gradients, consistent with the “downsizing” galaxy formation picture that more massive galaxies are more evolved into a later phase of disk growth, where they experience more coherent mass assembly at all radii and thus show shallower metallicity gradients. In addition to the spatially resolved analysis, we compile a sample of homogeneously cross-calibrated integrated metallicity measurements spanning three orders of magnitude in stellar mass at z ˜ 1.8. We use this sample to study the mass-metallicity relation (MZR) and find that the slope of the observed MZR can rule out the momentum-driven wind model at a 3σ confidence level.
Miller, Evan W.; Slak Rupnik, Marjan
2013-01-01
Oscillatory electrical activity is regarded as a hallmark of the pancreatic beta cell glucose-dependent excitability pattern. Electrophysiologically recorded membrane potential oscillations in beta cells are associated with in-phase oscillatory cytosolic calcium activity ([Ca2+]i) measured with fluorescent probes. Recent high spatial and temporal resolution confocal imaging revealed that glucose stimulation of beta cells in intact islets within acute tissue slices produces a [Ca2+]i change with initial transient phase followed by a plateau phase with highly synchronized [Ca2+]i oscillations. Here, we aimed to correlate the plateau [Ca2+]i oscillations with the oscillations of membrane potential using patch-clamp and for the first time high resolution voltage-sensitive dye based confocal imaging. Our results demonstrated that the glucose-evoked membrane potential oscillations spread over the islet in a wave-like manner, their durations and wave velocities being comparable to the ones for [Ca2+]i oscillations and waves. High temporal resolution simultaneous records of membrane potential and [Ca2+]i confirmed tight but nevertheless limited coupling of the two processes, with membrane depolarization preceding the [Ca2+]i increase. The potassium channel blocker tetraethylammonium increased the velocity at which oscillations advanced over the islet by several-fold while, at the same time, emphasized differences in kinetics of the membrane potential and the [Ca2+]i. The combination of both imaging techniques provides a powerful tool that will help us attain deeper knowledge of the beta cell network. PMID:24324777
NASA Astrophysics Data System (ADS)
Bartkowiak, M.; Hofmann, T.; Stüßer, N.
2017-02-01
Energy resolution is an important design goal for time-of-flight instruments and neutron spectroscopy. For high-resolution applications, it is required that the burst times of choppers be short, going down to the μs-range. To produce short pulses while maintaining high neutron flux, we propose beam masks with more than two slits on a counter-rotating 2-disc chopper, behind specially adapted focusing multi-channel guides. A novel non-regular arrangement of the slits ensures that the beam opens only once per chopper cycle, when the masks are congruently aligned. Additionally, beam splitting and intensity focusing by guides before and after the chopper position provide high intensities even for small samples. Phase-space analysis and Monte Carlo simulations on examples of four-slit masks with adapted guide geometries show the potential of the proposed setup.
NASA Astrophysics Data System (ADS)
Tsukasaki, Hirofumi; Ishii, Yui; Tanaka, Eri; Kurushima, Kosuke; Mori, Shigeo
2016-01-01
In order to understand the ferroelectric and ferroelastic phases in Ba1-xSrxAl2O4 for 0.7 ≤ x ≤ 1.0, we have investigated the crystal structures and their associated microstructures of the ferroelectric and ferroelastic phases mainly by transmission electron microscopy (TEM) and scanning transmission electron microscopy-high-angle angular dark-field (STEM-HAADF) experiments, combined with powder X-ray diffraction experiments. Electron diffraction experiments showed that the ferroelectric and ferroelastic phases of Ba1-xSrxAl2O4 for 0.7 ≤ x ≤ 1.0 should be characterized as a modulated structure with the modulation vector of \\boldsymbol{{q}} = 0,1/2,0, whose space group should be monoclinic P21. High-resolution TEM experiments revealed that the microstructures in the monoclinic phase can be characterized as twin structures and nanometer-sized planar defects due to the monoclinic structure with the modulated structures, which are responsible for anomalous elastic behaviors and mechanoelectro-optical properties. In addition, subatomic-resolution STEM-HAADF images clearly indicated that the displacement of Al3+ ions involved in the AlO4 tetrahedra should play a crucial role in the formation of the modulated structures and twin structures.
Ye, Haoyu; Ignatova, Svetlana; Peng, Aihua; Chen, Lijuan; Sutherland, Ian
2009-06-26
This paper builds on previous modelling research with short single layer columns to develop rapid methods for optimising high-performance counter-current chromatography at constant stationary phase retention. Benzyl alcohol and p-cresol are used as model compounds to rapidly optimise first flow and then rotational speed operating conditions at a preparative scale with long columns for a given phase system using a Dynamic Extractions Midi-DE centrifuge. The transfer to a high value extract such as the crude ethanol extract of Chinese herbal medicine Millettia pachycarpa Benth. is then demonstrated and validated using the same phase system. The results show that constant stationary phase modelling of flow and speed with long multilayer columns works well as a cheap, quick and effective method of optimising operating conditions for the chosen phase system-hexane-ethyl acetate-methanol-water (1:0.8:1:0.6, v/v). Optimum conditions for resolution were a flow of 20 ml/min and speed of 1200 rpm, but for throughput were 80 ml/min at the same speed. The results show that 80 ml/min gave the best throughputs for tephrosin (518 mg/h), pyranoisoflavone (47.2 mg/h) and dehydrodeguelin (10.4 mg/h), whereas for deguelin (100.5 mg/h), the best flow rate was 40 ml/min.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maksimova, Alevtina A.; Petrova, Evgeniya V.; Grokhovsky, Victor I.
2014-10-27
Study of Chelyabinsk LL5 ordinary chondrite fragment with a light lithology and its fusion crust, fallen on February 15, 2013, in Russian Federation, was carried out using Mössbauer spectroscopy with a high velocity resolution. The Mössbauer spectra of the internal matter and fusion crust were fitted and all components were related to iron-bearing phases such as olivine, pyroxene, troilite, Fe-Ni-Co alloy, and chromite in the internal matter and olivine, pyroxene, troilite, Fe-Ni-Co alloy, and magnesioferrite in the fusion crust. A comparison of the content of different phases in the internal matter and in the fusion crust of this fragment showedmore » that ferric compounds resulted from olivine, pyroxene, and troilite combustion in the atmosphere.« less
Efficient level set methods for constructing wavefronts in three spatial dimensions
NASA Astrophysics Data System (ADS)
Cheng, Li-Tien
2007-10-01
Wavefront construction in geometrical optics has long faced the twin difficulties of dealing with multi-valued forms and resolution of wavefront surfaces. A recent change in viewpoint, however, has demonstrated that working in phase space on bicharacteristic strips using eulerian methods can bypass both difficulties. The level set method for interface dynamics makes a suitable choice for the eulerian method. Unfortunately, in three-dimensional space, the setting of interest for most practical applications, the advantages of this method are largely offset by a new problem: the high dimension of phase space. In this work, we present new types of level set algorithms that remove this obstacle and demonstrate their abilities to accurately construct wavefronts under high resolution. These results propel the level set method forward significantly as a competitive approach in geometrical optics under realistic conditions.
Liu, Ken H.; Walker, Douglas I.; Uppal, Karan; Tran, ViLinh; Rohrbeck, Patricia; Mallon, Timothy M.; Jones, Dean P.
2016-01-01
Objective To maximize detection of serum metabolites with high-resolution metabolomics (HRM). Methods Department of Defense Serum Repository (DoDSR) samples were analyzed using ultra-high resolution mass spectrometry with three complementary chromatographic phases and four ionization modes. Chemical coverage was evaluated by number of ions detected and accurate mass matches to a human metabolomics database. Results Individual HRM platforms provided accurate mass matches for up to 58% of the KEGG metabolite database. Combining two analytical methods increased matches to 72%, and included metabolites in most major human metabolic pathways and chemical classes. Detection and feature quality varied by analytical configuration. Conclusions Dual chromatography HRM with positive and negative electrospray ionization provides an effective generalized method for metabolic assessment of military personnel. PMID:27501105
Phased-array of microcoils allows MR microscopy of ex vivo human skin samples at 9.4 T.
Göbel, K; Gruschke, O G; Leupold, J; Kern, J S; Has, C; Bruckner-Tuderman, L; Hennig, J; von Elverfeldt, D; Baxan, N; Korvink, J G
2015-02-01
The aim of this study was to demonstrate the feasibility of a custom-made phased-array microcoil within a 400 MHz animal system for the morphological characterization of human skin tissue in correlation with histopathology. A dedicated 7-channel microcoil-based MR detector arranged in a phased-array geometry was developed to combine the advantages of both a large field of view and a high signal-to-noise ratio. Standard gradient echo sequences were adapted for the characterization of skin morphology ex vivo. In this study, the feasibility of using this type of microdetector, combined with specially manufactured sample holders, to achieve high-resolution MR images of fresh and formalin-fixed, normal and hidradenitis suppurativa diseased skin was successfully demonstrated. The setup presented in this work allows reliable acquisitions of high-resolution images with in-plane resolution up to 25 × 25 μm², and 100 μm in the orthogonal direction, thereby allowing the differentiation of typical layers of the skin, sebaceous glands and hair follicle. This study demonstrates that MR microscopy on skin biopsies can be applied at low cost on a standard animal MR imaging system. The successful imaging of different skin structures ex vivo is a prerequisite for non-invasive, in vivo application of skin MR microscopy for accurate complementary disease diagnosis in dermatology. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Pandiyan, Vimal Prabhu; Khare, Kedar; John, Renu
2017-09-01
A constrained optimization approach with faster convergence is proposed to recover the complex object field from a near on-axis digital holography (DH). We subtract the DC from the hologram after recording the object beam and reference beam intensities separately. The DC-subtracted hologram is used to recover the complex object information using a constrained optimization approach with faster convergence. The recovered complex object field is back propagated to the image plane using the Fresnel back-propagation method. The results reported in this approach provide high-resolution images compared with the conventional Fourier filtering approach and is 25% faster than the previously reported constrained optimization approach due to the subtraction of two DC terms in the cost function. We report this approach in DH and digital holographic microscopy using the U.S. Air Force resolution target as the object to retrieve the high-resolution image without DC and twin image interference. We also demonstrate the high potential of this technique in transparent microelectrode patterned on indium tin oxide-coated glass, by reconstructing a high-resolution quantitative phase microscope image. We also demonstrate this technique by imaging yeast cells.
A Specialized Multi-Transmit Head Coil for High Resolution fMRI of the Human Visual Cortex at 7T
Sengupta, Shubharthi; Roebroeck, Alard; Kemper, Valentin G.; Poser, Benedikt A.; Zimmermann, Jan; Goebel, Rainer; Adriany, Gregor
2016-01-01
Purpose To design, construct and validate radiofrequency (RF) transmit and receive phased array coils for high-resolution visual cortex imaging at 7 Tesla. Methods A 4 channel transmit and 16 channel receive array was constructed on a conformal polycarbonate former. Transmit field efficiency and homogeneity were simulated and validated, along with the Specific Absorption Rate, using B1+ mapping techniques and electromagnetic simulations. Receiver signal-to-noise ratio (SNR), temporal SNR (tSNR) across EPI time series, g-factors for accelerated imaging and noise correlations were evaluated and compared with a commercial 32 channel whole head coil. The performance of the coil was further evaluated with human subjects through functional MRI (fMRI) studies at standard and submillimeter resolutions of upto 0.8mm isotropic. Results The transmit and receive sections were characterized using bench tests and showed good interelement decoupling, preamplifier decoupling and sample loading. SNR for the 16 channel coil was ∼ 1.5 times that of the commercial coil in the human occipital lobe, and showed better g-factor values for accelerated imaging. fMRI tests conducted showed better response to Blood Oxygen Level Dependent (BOLD) activation, at resolutions of 1.2mm and 0.8mm isotropic. Conclusion The 4 channel phased array transmit coil provides homogeneous excitation across the visual cortex, which, in combination with the dual row 16 channel receive array, makes for a valuable research tool for high resolution anatomical and functional imaging of the visual cortex at 7T. PMID:27911950
Improvements in Virtual Sensors: Using Spatial Information to Estimate Remote Sensing Spectra
NASA Technical Reports Server (NTRS)
Oza, Nikunj C.; Srivastava, Ashok N.; Stroeve, Julienne
2005-01-01
Various instruments are used to create images of the Earth and other objects in the universe in a diverse set of wavelength bands with the aim of understanding natural phenomena. Sometimes these instruments are built in a phased approach, with additional measurement capabilities added in later phases. In other cases, technology may mature to the point that the instrument offers new measurement capabilities that were not planned in the original design of the instrument. In still other cases, high resolution spectral measurements may be too costly to perform on a large sample and therefore lower resolution spectral instruments are used to take the majority of measurements. Many applied science questions that are relevant to the earth science remote sensing community require analysis of enormous amounts of data that were generated by instruments with disparate measurement capabilities. In past work [1], we addressed this problem using Virtual Sensors: a method that uses models trained on spectrally rich (high spectral resolution) data to "fill in" unmeasured spectral channels in spectrally poor (low spectral resolution) data. We demonstrated this method by using models trained on the high spectral resolution Terra MODIS instrument to estimate what the equivalent of the MODIS 1.6 micron channel would be for the NOAA AVHRR2 instrument. The scientific motivation for the simulation of the 1.6 micron channel is to improve the ability of the AVHRR2 sensor to detect clouds over snow and ice. This work contains preliminary experiments demonstrating that the use of spatial information can improve our ability to estimate these spectra.
High-resolution imaging of biological tissue with full-field optical coherence tomography
NASA Astrophysics Data System (ADS)
Zhu, Yue; Gao, Wanrong
2015-03-01
A new full-field optical coherence tomography system with high-resolution has been developed for imaging of cells and tissues. Compared with other FF-OCT (Full-field optical coherence tomography, FF-OCT) systems illuminated with optical fiber bundle, the improved Köhler illumination arrangement with a halogen lamp was used in the proposed FF-OCT system. High numerical aperture microscopic objectives were used for imaging and a piezoelectric ceramic transducer (PZT) was used for phase-shifting. En-face tomographic images can be obtained by applying the five-step phase-shifting algorithm to a series of interferometric images which are recorded by a smart camera. Three-dimensional images can be generated from these tomographic images. Imaging of the chip of Intel Pentium 4 processor demonstrated the ultrahigh resolution of the system (lateral resolution is 0.8μm ), which approaches the theoretical resolution 0.7 μm× 0.5 μm (lateral × axial). En-face images of cells of onion show an excellent performance of the system in generating en-face images of biological tissues. Then, unstained pig stomach was imaged as a tissue and gastric pits could be easily recognized using FF-OCT system. Our study provides evidence for the potential ability of FFOCT in identifying gastric pits from pig stomach tissue. Finally, label-free and unstained ex vivo human liver tissues from both normal and tumor were imaged with this FFOCT system. The results show that the setup has the potential for medical diagnosis applications such liver cancer diagnosis.
Crystallization of the glassy phase of grain boundaries in silicon nitride
NASA Technical Reports Server (NTRS)
Jefferson, D. A.; Thomas, J. M.; Wen, S.
1984-01-01
Three types of hot-pressed silicon nitride specimens (containing 5wt% Y2O3 and 2wt% Al2O3 additives) which were subjected to different temperature heat treatments were studied by X-ray diffraction, X-ray microanalysis and high resolution electron microscopy. The results indicated that there were phase changes in the grain boundaries after heat treatment and the glassy phase at the grain boundaries was crystallized by heat treatment.
Controlling total spot power from holographic laser by superimposing a binary phase grating.
Liu, Xiang; Zhang, Jian; Gan, Yu; Wu, Liying
2011-04-25
By superimposing a tunable binary phase grating with a conventional computer-generated hologram, the total power of multiple holographic 3D spots can be easily controlled by changing the phase depth of grating with high accuracy to a random power value for real-time optical manipulation without extra power loss. Simulation and experiment results indicate that a resolution of 0.002 can be achieved at a lower time cost for normalized total spot power.
Intact Imaging of Human Heart Structure Using X-ray Phase-Contrast Tomography.
Kaneko, Yukihiro; Shinohara, Gen; Hoshino, Masato; Morishita, Hiroyuki; Morita, Kiyozo; Oshima, Yoshihiro; Takahashi, Masashi; Yagi, Naoto; Okita, Yutaka; Tsukube, Takuro
2017-02-01
Structural examination of human heart specimens at the microscopic level is a prerequisite for understanding congenital heart diseases. It is desirable not to destroy or alter the properties of such specimens because of their scarcity. However, many of the currently available imaging techniques either destroy the specimen through sectioning or alter the chemical and mechanical properties of the specimen through staining and contrast agent injection. As a result, subsequent studies may not be possible. X-ray phase-contrast tomography is an imaging modality for biological soft tissues that does not destroy or alter the properties of the specimen. The feasibility of X-ray phase-contrast tomography for the structural examination of heart specimens was tested using infantile and fetal heart specimens without congenital diseases. X-ray phase-contrast tomography was carried out at the SPring-8 synchrotron radiation facility using the Talbot grating interferometer at the bending magnet beamline BL20B2 to visualize the structure of five non-pretreated whole heart specimens obtained by autopsy. High-resolution, three-dimensional images were obtained for all specimens. The images clearly showed the myocardial structure, coronary vessels, and conduction bundle. X-ray phase-contrast tomography allows high-resolution, three-dimensional imaging of human heart specimens. Intact imaging using X-ray phase-contrast tomography can contribute to further structural investigation of heart specimens with congenital heart diseases.
Tong, Shengqiang; Zhang, Hu; Shen, Mangmang
2014-01-01
The enantioseparation of ten mandelic acid derivatives was performed by reverse phase high performance liquid chromatography with hydroxypropyl-β-cyclodextrin (HP-β-CD) or sulfobutyl ether-β-cyclodextrin (SBE-β-CD) as chiral mobile phase additives, in which inclusion complex formations between cyclodextrins and enantiomers were evaluated. The effects of various factors such as the composition of mobile phase, concentration of cyclodextrins and column temperature on retention and enantioselectivity were studied. The peak resolutions and retention time of the enantiomers were strongly affected by the pH, the organic modifier and the type of β-cyclodextrin in the mobile phase, while the concentration of buffer solution and temperature had a relatively low effect on resolutions. Enantioseparations were successfully achieved on a Shimpack CLC-ODS column (150×4.6 mm i.d., 5 μm). The mobile phase was a mixture of acetonitrile and 0.10 mol L-1 of phosphate buffer at pH 2.68 containing 20 mmol L-1 of HP-β-CD or SBE-β-CD. Semi-preparative enantioseparation of about 10 mg of α-cyclohexylmandelic acid and α-cyclopentylmandelic acid were established individually. Cyclodextrin-enantiomer complex stoichiometries as well as binding constants were investigated. Results showed that stoichiomertries for all the inclusion complex of cyclodextrin-enantiomers were 1:1. PMID:24893270
Winkler, Florian; Tavabi, Amir H; Barthel, Juri; Duchamp, Martial; Yucelen, Emrah; Borghardt, Sven; Kardynal, Beata E; Dunin-Borkowski, Rafal E
2017-07-01
The phase and amplitude of the electron wavefunction that has passed through ultra-thin flakes of WSe 2 is measured from high-resolution off-axis electron holograms. Both the experimental measurements and corresponding computer simulations are used to show that, as a result of dynamical diffraction, the spatially averaged phase does not increase linearly with specimen thickness close to an [001] zone axis orientation even when the specimen has a thickness of only a few layers. It is then not possible to infer the local specimen thickness of the WSe 2 from either the phase or the amplitude alone. Instead, we show that the combined analysis of phase and amplitude from experimental measurements and simulations allows an accurate determination of the local specimen thickness. The relationship between phase and projected potential is shown to be approximately linear for extremely thin specimens that are tilted by several degrees in certain directions from the [001] zone axis. A knowledge of the specimen thickness then allows the electrostatic potential to be determined from the measured phase. By using this combined approach, we determine a value for the mean inner potential of WSe 2 of 18.9±0.8V, which is 12% lower than the value calculated from neutral atom scattering factors. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
He, Jianfeng; Fan, Jun; Yan, Yilun; Chen, Xiaodong; Wang, Tai; Zhang, Yaomou; Zhang, Weiguang
2016-11-01
Enantiomeric pairs of triticonazole have been successfully separated by supercritical fluid chromatography coupled with a tris(3,5-dimethylphenylcarbamoyl) cellulose-coated chiral stationary phase in this work. The effects of co-solvent, dissolution solvent, flow rate, backpressure, and column temperature have been studied in detail with respect to retention, selectivity, and resolution of triticonazole. As indicated, the co-solvents mostly affected the retention factors and resolution, due to the different molecular structure and polarity. In addition, the dissolution solvents, namely, chloromethanes and alcohols, have been also important for enantioseparation because of the different interaction with stationary phase. Higher flow rate and backpressure led to faster elution of the triticonazole molecules, and the change of column temperature showed slight effect on the resolution of triticonazole racemate. Moreover, a comparative separation experiment between supercritical fluid chromatography and high performance liquid chromatography revealed that chiral supercritical fluid chromatography gave the 3.5 times value of R s /t R2 than high performance liquid chromatography, which demonstrated that supercritical fluid chromatography had much higher separation efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Carbon Nanotubes as an Ultrafast Emitter with a Narrow Energy Spread at Optical Frequency.
Li, Chi; Zhou, Xu; Zhai, Feng; Li, Zhenjun; Yao, Fengrui; Qiao, Ruixi; Chen, Ke; Cole, Matthew Thomas; Yu, Dapeng; Sun, Zhipei; Liu, Kaihui; Dai, Qing
2017-08-01
Ultrafast electron pulses, combined with laser-pump and electron-probe technologies, allow ultrafast dynamics to be characterized in materials. However, the pursuit of simultaneous ultimate spatial and temporal resolution of microscopy and spectroscopy is largely subdued by the low monochromaticity of the electron pulses and their poor phase synchronization to the optical excitation pulses. Field-driven photoemission from metal tips provides high light-phase synchronization, but suffers large electron energy spreads (3-100 eV) as driven by a long wavelength laser (>800 nm). Here, ultrafast electron emission from carbon nanotubes (≈1 nm radius) excited by a 410 nm femtosecond laser is realized in the field-driven regime. In addition, the emitted electrons have great monochromaticity with energy spread as low as 0.25 eV. This great performance benefits from the extraordinarily high field enhancement and great stability of carbon nanotubes, superior to metal tips. The new nanotube-based ultrafast electron source opens exciting prospects for extending current characterization to sub-femtosecond temporal resolution as well as sub-nanometer spatial resolution. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
High efficiency multishot interleaved spiral-in/out: acquisition for high-resolution BOLD fMRI.
Jung, Youngkyoo; Samsonov, Alexey A; Liu, Thomas T; Buracas, Giedrius T
2013-08-01
Growing demand for high spatial resolution blood oxygenation level dependent (BOLD) functional magnetic resonance imaging faces a challenge of the spatial resolution versus coverage or temporal resolution tradeoff, which can be addressed by methods that afford increased acquisition efficiency. Spiral acquisition trajectories have been shown to be superior to currently prevalent echo-planar imaging in terms of acquisition efficiency, and high spatial resolution can be achieved by employing multiple-shot spiral acquisition. The interleaved spiral in/out trajectory is preferred over spiral-in due to increased BOLD signal contrast-to-noise ratio (CNR) and higher acquisition efficiency than that of spiral-out or noninterleaved spiral in/out trajectories (Law & Glover. Magn Reson Med 2009; 62:829-834.), but to date applicability of the multishot interleaved spiral in/out for high spatial resolution imaging has not been studied. Herein we propose multishot interleaved spiral in/out acquisition and investigate its applicability for high spatial resolution BOLD functional magnetic resonance imaging. Images reconstructed from interleaved spiral-in and -out trajectories possess artifacts caused by differences in T2 decay, off-resonance, and k-space errors associated with the two trajectories. We analyze the associated errors and demonstrate that application of conjugate phase reconstruction and spectral filtering can substantially mitigate these image artifacts. After applying these processing steps, the multishot interleaved spiral in/out pulse sequence yields high BOLD CNR images at in-plane resolution below 1 × 1 mm while preserving acceptable temporal resolution (4 s) and brain coverage (15 slices of 2 mm thickness). Moreover, this method yields sufficient BOLD CNR at 1.5 mm isotropic resolution for detection of activation in hippocampus associated with cognitive tasks (Stern memory task). The multishot interleaved spiral in/out acquisition is a promising technique for high spatial resolution BOLD functional magnetic resonance imaging applications. © 2012 Wiley Periodicals, Inc.
Nikcevic, Irena; Wyrzykiewicz, Tadeusz K.; Limbach, Patrick A.
2010-01-01
Summary An LC-MS method based on the use of high resolution Fourier transform ion cyclotron resonance mass spectrometry (FTIRCMS) for profiling oligonucleotides synthesis impurities is described. Oligonucleotide phosphorothioatediesters (phosphorothioate oligonucleotides), in which one of the non-bridging oxygen atoms at each phosphorus center is replaced by a sulfur atom, are now one of the most popular oligonucleotide modifications due to their ease of chemical synthesis and advantageous pharmacokinetic properties. Despite significant progress in the solid-phase oligomerization chemistry used in the manufacturing of these oligonucleotides, multiple classes of low-level impurities always accompany synthetic oligonucleotides. Liquid chromatography-mass spectrometry has emerged as a powerful technique for the identification of these synthesis impurities. However, impurity profiling, where the entire complement of low-level synthetic impurities is identified in a single analysis, is more challenging. Here we present an LC-MS method based the use of high resolution-mass spectrometry, specifically Fourier transform ion cyclotron resonance mass spectrometry (FTIRCMS or FTMS). The optimal LC-FTMS conditions, including the stationary phase and mobile phases for the separation and identification of phosphorothioate oligonucleotides, were found. The characteristics of FTMS enable charge state determination from single m/z values of low-level impurities. Charge state information then enables more accurate modeling of the detected isotopic distribution for identification of the chemical composition of the detected impurity. Using this approach, a number of phosphorothioate impurities can be detected by LC-FTMS including failure sequences carrying 3′-terminal phosphate monoester and 3′-terminal phosphorothioate monoester, incomplete backbone sulfurization and desulfurization products, high molecular weight impurities, and chloral, isobutyryl, and N3 (2-cyanoethyl) adducts of the full length product. When compared with low resolution LC-MS, ~60% more impurities can be identified when charge state and isotopic distribution information is available and used for impurity profiling. PMID:21811394
Dual-scale phase-field simulation of Mg-Al alloy solidification
NASA Astrophysics Data System (ADS)
Monas, A.; Shchyglo, O.; Höche, D.; Tegeler, M.; Steinbach, I.
2015-06-01
Phase-field simulations of the nucleation and growth of primary α-Mg phase as well as secondary, β-phase of a Mg-Al alloy are presented. The nucleation model for α- and β-Mg phases is based on the “free growth model” by Greer et al.. After the α-Mg phase solidification we study a divorced eutectic growth of α- and β-Mg phases in a zoomed in melt channel between α-phase dendrites. The simulated cooling curves and final microstructures of α-grains are compared with experiments. In order to further enhance the resolution of the interdendritic region a high-performance computing approach has been used allowing significant simulation speed gain when using supercomputing facilities.
Wang, Shinn-Fwu
2009-01-01
A small-displacement sensor based on total-internal reflection theory and surface plasmon resonance technology is proposed for use in heterodyne interferometry. A small displacement can be obtained simply by measuring the variation in phase difference between s- and p-polarization states with the small-displacement sensor. The theoretical displacement resolution of the small-displacement sensor can reach 0.45 nm. The sensor has some additional advantages, e.g., a simple optical setup, high resolution, high sensitivity and rapid measurement. Its feasibility is also demonstrated.
NASA Astrophysics Data System (ADS)
Vaks, V. L.; Domracheva, E. G.; Chernyaeva, M. B.; Pripolzin, S. I.; Revin, L. S.; Tretyakov, I. V.; Anfertyev, V. A.; Yablokov, A. A.; Lukyanenko, I. A.; Sheikov, Yu. V.
2018-02-01
We show prospects for using the method of high-resolution terahertz spectroscopy for a continuous analysis of the decomposition products of energy substances in the gas phase (including short-lived ones) in a wide temperature range. The experimental setup, which includes a terahertz spectrometer for studying the thermal decomposition reactions, is described. The results of analysis of the gaseous decomposition products of energy substances by the example of ammonium nitrate heated from room temperature to 167°C are presented.
Growth of a decagonal Al 70Ni 15Co 15 single quasicrystal by the Czochralski method
NASA Astrophysics Data System (ADS)
Jeong, H. T.; Kim, S. H.; Kim, W. T.; Kim, D. H.; Inkson, B. J.
2000-07-01
Single decagonal quasicrystals of Al 70Ni 15Co 15 were grown by the Czochralski method at Ar atmosphere. The grown crystals were of single decagonal phase without any secondary phases due to the peritectic reaction and contained a large single quasicrystal of cm order size. The high quality and single quasicrystallinity of them were examined by the Laue transmission photography, single crystal X-ray diffraction, and high-resolution electron microscopy investigations.
Weber, Stefan M; Extermann, Jérôme; Bonacina, Luigi; Noell, Wilfried; Kiselev, Denis; Waldis, Severin; de Rooij, Nico F; Wolf, Jean-Pierre
2010-09-15
We demonstrate the capabilities of a new optical microelectromechanical systems device that we specifically developed for broadband femtosecond pulse shaping. It consists of a one-dimensional array of 100 independently addressable, high-aspect-ratio micromirrors with up to 3 μm stroke. We apply linear and quadratic phase modulations demonstrating the temporal compression of 800 and 400 nm pulses. Because of the device's surface flatness, stroke, and stroke resolution, phase shaping over an unprecedented bandwidth is attainable.
Condensation of helium in aerogel and athermal dynamics of the random-field Ising model.
Aubry, Geoffroy J; Bonnet, Fabien; Melich, Mathieu; Guyon, Laurent; Spathis, Panayotis; Despetis, Florence; Wolf, Pierre-Etienne
2014-08-22
High resolution measurements reveal that condensation isotherms of (4)He in high porosity silica aerogel become discontinuous below a critical temperature. We show that this behavior does not correspond to an equilibrium phase transition modified by the disorder induced by the aerogel structure, but to the disorder-driven critical point predicted for the athermal out-of-equilibrium dynamics of the random-field Ising model. Our results evidence the key role of nonequilibrium effects in the phase transitions of disordered systems.
SHINOMIYA, Kazufusa; YOSHIDA, Kazunori; TOKURA, Koji; TSUKIDATE, Etsuhiro; YANAGIDAIRA, Kazuhiro; ITO, Yoichiro
2015-01-01
Protein separation was performed using the high-speed counter-current chromatograph (HSCCC) at both synchronous and nonsynchronous type-J planetary motions. The partition efficiency was evaluated with two different column configurations, eccentric coil and toroidal coil, on the separation of a set of stable protein samples including cytochrome C, myoglobin and lysozyme with a polymer phase system composed of 12.5% (w/w) polyethylene glycol 1000 and 12.5% (w/w) dibasic potassium phosphate. Better peak resolution was obtained by the eccentric coil than by the toroidal coil using either lower or upper phase as the mobile phase. The peak resolution was further improved using the eccentric coil by the nonsynchronous type-J planetary motion with the combination of 1066 rpm of column rotation and 1000 rpm of revolution. PMID:25765276
Shinomiya, Kazufusa; Yoshida, Kazunori; Tokura, Koji; Tsukidate, Etsuhiro; Yanagidaira, Kazuhiro; Ito, Yoichiro
2015-01-01
Protein separation was performed using the high-speed countercurrent chromatograph (HSCCC) at both synchronous and nonsynchronous type-J planetary motions. The partition efficiency was evaluated with two different column configurations, eccentric coil and toroidal coil, on the separation of a set of stable protein samples including cytochrome C, myoglobin and lysozyme with a polymer phase system composed of 12.5% (w/w) polyethylene glycol 1000 and 12.5% (w/w) dibasic potassium phosphate. Better peak resolution was obtained by the eccentric coil than by the toroidal coil using either lower or upper phase as the mobile phase. The peak resolution was further improved using the eccentric coil by the nonsynchronous type-J planetary motion with the combination of 1066 rpm of column rotation and 1000 rpm of revolution.
Jeffrey T. Morisette; Jaime E. Nickeson; Paul Davis; Yujie Wang; Yuhong Tian; Curtis E. Woodcock; Nikolay Shabanov; Matthew Hansen; Warren B. Cohen; Doug R. Oetter; Robert E. Kennedy
2003-01-01
Phase 1I of the Scientific Data Purchase (SDP) has provided NASA investigators access to data from four different satellite and airborne data sources. The Moderate Resolution Imaging Spectrometer (MODIS) land discipline team (MODLAND) sought to utilize these data in support of land product validation activities with a lbcus on tile EOS Land Validation Core Sites. These...
Rotational modulation of hydrogen Lyman alpha flux from 44ii Bootis
NASA Technical Reports Server (NTRS)
Vilhu, O.; Neff, J. E.; Rahunen, T.
1988-01-01
Observations with IUE that cover the entire 6.4 hr orbital cycle of the late-type contact binary 44i Bootis are presented. Intrinsic stellar hydrogen Lyman alpha emission flux was determined from low-resolution IUE spectra, compensating for geocoronal emission and for interstellar absorption. The variation of the stellar Lyman alpha emission flux correlates well with the variation of the C II and C IV emission fluxes, and shows orbital modulation in phase with the visual light curve. The ratio of Lyman alpha to CII flux (15 to 20) is similar to that observed in solar active regions. Hydrogen Lyman alpha emission is thus one of the most important cooling channels in the outer atmosphere of 44i Boo. A high-resolution spectrum of the Lyman alpha line was obtained between orbital phases 0.0 and 0.6. The integrated flux in the observed high-resolution Lyman alpha profile is consistent with the fluxes determined using low-resolution spectra, and the composite profile indicates that both components of this binary have equally active chromospheres and transition regions. The uncertainty in the interstellar hydrogen column density cannot mimic the observed variation in the integrated Lyman alpha flux, because the stellar line is very much broader than the interstellar absorption.
Rotational modulation of hydrogen Lyman alpha flux from 44i Bootis
NASA Technical Reports Server (NTRS)
Vilhu, O.; Neff, J. E.; Rahunen, T.
1989-01-01
Observations with IUE that cover the entire 6.4 hr orbital cycle of the late-type contact binary 44i Bootis are presented. Intrinsic stellar hydrogen Lyman alpha emission flux was determined from low-resolution IUE spectra, compensating for geocoronal emission and for interstellar absorption. The variation of the stellar Lyman alpha emission flux correlates well with the variation of the CII and CIV emission fluxes, and shows orbital modulation in phase with the visual light curve. The ratio of Lyman alpha to CII flux (15 to 20) is similar to that observed in solar active regions. Hydrogen Lyman alpha emission is thus one of the most important cooling channels in the outer atmosphere of 44i Boo. A high-resolution spectrum of the Lyman alpha line was obtained between orbital phases 0.0 and 0.6. The integrated flux in the observed high-resolution Lyman alpha profile is consistent with the fluxes determined using low-resolution spectra, and the composite profile indicates that both components of this binary have equally active chromospheres and transition regions. The uncertainty in the interstellar hydrogen column density cannot mimic the observed variation in the integrated Lyman alpha flux, because the stellar line is very much broader than the interstellar absorption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKinsey, Daniel Nicholas
The McKinsey group at Yale has been awarded a grant from DTRA for the building of a Liquid Xenon Gamma Ray Color Camera (LXe-GRCC), which combines state-of-the-art detection of LXe scintillation light and time projection chamber (TPC) charge readout. The DTRA application requires a movable detector and hence only a single phase (liquid) xenon detector can be considered in this case. We propose to extend the DTRA project to applications that allow a two phase (liquid/gas) xenon TPC. This entails additional (yet minimal) hardware and extension of the research effort funded by DTRA. The two phase detector will have bettermore » energy and angular resolution. Such detectors will be useful for PET medical imaging and detection of special nuclear material in stationary applications (e.g. port of entry). The expertise of the UConn group in gas phase TPCs will enhance the capabilities of the Yale group and the synergy between the two groups will be very beneficial for this research project as well as the education and research projects of the two universities. The LXe technology to be used in this project has matured rapidly over the past few years, developed for use in detectors for nuclear physics and astrophysics. This technology may now be applied in a straightforward way to the imaging of gamma rays. According to detailed Monte Carlo simulations recently performed at Yale University, energy resolution of 1% and angular resolution of 3 degrees may be obtained for 1.0 MeV gamma rays, using existing technology. With further research and development, energy resolution of 0.5% and angular resolution of 1.3 degrees will be possible at 1.0 MeV. Because liquid xenon is a high density, high Z material, it is highly efficient for scattering and capturing gamma rays. In addition, this technology scales elegantly to large detector areas, with several square meter apertures possible. The Yale research group is highly experienced in the development and use of noble liquid detectors for astrophysics, most recently in the XENON10 experiment. The existing facilities at Yale are fully adequate for the completion of this project. The facilities of the UConn group at the LNS at Avery Point include a (clean) lab for detector development and this group recently delivered an Optical Readout TPC (O-TPC) for research in Nuclear Astrophysics at the TUNL in Duke University. The machine shop at UConn will be used (free of charge) for producing the extra hardware needed for this project including grids and frames.« less
On the Fringe Field of Wide Angle LC Optical Phased Array
NASA Technical Reports Server (NTRS)
Wang, Xighua; Wang, Bin; Bos, Philip J.; Anderson, James E.; Pouch, John; Miranda, Felix; McManamon, Paul F.
2004-01-01
For free space laser communication, light weighted large deployable optics is a critical component for the transmitter. However, such an optical element will introduce large aberrations due to the fact that the surface figure of the large optics is susceptable to deformation in the space environment. We propose to use a high-resolution liquid crystal spatial light modulator to correct for wavefront aberrations introduced by the primary optical element, and to achieve very fine beam steering and shaping at the same time. A 2-D optical phased array (OPA) antenna based on a Liquid Crystal on Silicon (LCOS) spatial light modulator is described. This device offers a combination of low cost, high resolution, high accuracy, high diffraction efficiency at video speed. To quantitatively understand the influence factor of the different design parameters, a computer simulation of the device is given by the 2-D director simulation and the Finite Difference Time domain (FDTD) simulation. For the 1-D OPA, we define the maximum steering angle to have a grating period of 8 pixel/reset scheme; as for larger steering angles than this criterion, the diffraction efficiency drops dramatically. In this case, the diffraction efficiency of 0.86 and the Strehl ratio of 0.9 are obtained in the simulation. The performance of the device in achieving high resolution wavefront correction and beam steering is also characterized experimentally.
High resolution digital delay timer
Martin, Albert D.
1988-01-01
Method and apparatus are provided for generating an output pulse following a trigger pulse at a time delay interval preset with a resolution which is high relative to a low resolution available from supplied clock pulses. A first lumped constant delay (20) provides a first output signal (24) at predetermined interpolation intervals corresponding to the desired high resolution time interval. Latching circuits (26, 28) latch the high resolution data (24) to form a first synchronizing data set (60). A selected time interval has been preset to internal counters (142, 146, 154) and corrected for circuit propagation delay times having the same order of magnitude as the desired high resolution. Internal system clock pulses (32, 34) count down the counters to generate an internal pulse delayed by an interval which is functionally related to the preset time interval. A second LCD (184) corrects the internal signal with the high resolution time delay. A second internal pulse is then applied to a third LCD (74) to generate a second set of synchronizing data (76) which is complementary with the first set of synchronizing data (60) for presentation to logic circuits (64). The logic circuits (64) further delay the internal output signal (72) to obtain a proper phase relationship of an output signal (80) with the internal pulses (32, 34). The final delayed output signal (80) thereafter enables the output pulse generator (82) to produce the desired output pulse (84) at the preset time delay interval following input of the trigger pulse (10, 12).
Effect of anisotropic MoS2 nanoparticles on the blue phase range of a chiral liquid crystal.
Lavrič, Marta; Cordoyiannis, George; Kralj, Samo; Tzitzios, Vassilios; Nounesis, George; Kutnjak, Zdravko
2013-08-01
Liquid-crystalline blue phases are attracting significant interest due to their potential for applications related to tunable photonic crystals and fast optical displays. In this work a brief theoretical model is presented accounting for the impact of anisotropic nanoparticles on the blue phase stability region. This model is tested by means of high-resolution calorimetric and optical measurements of the effect of anisotropic, surface-functionalized MoS2 nanoparticles on the blue phase range of a chiral liquid crystal. The addition of these nanoparticles effectively increases the temperature range of blue phases and especially the cubic structure of blue phase I.
Revisiting resolution in hydrodynamic countercurrent chromatography: tubing bore effect.
Berthod, A; Faure, K
2015-04-17
A major challenge in countercurrent chromatography (CCC), the technique that works with a support-free biphasic liquid system, is to retain the liquid stationary phase inside the CCC column (Sf parameter). Two solutions are commercially available: the hydrostatic CCC columns, also called centrifugal partition chromatographs (CPC), with disks of interconnected channels and rotary seals, and the hydrodynamic CCC columns with bobbins of coiled open tube and no rotary seals. It was demonstrated that the amount of liquid stationary phase retained by a coiled tube was higher with larger bore tubing than with small bore tubes. At constant column volume, small bore tubing will be longer producing more efficiency than larger bore tube that will better retain the liquid stationary phase. Since the resolution equation in CCC is depending on both column efficiency and stationary phase retention ratio, the influence of the tubing bore should be studied. This theoretical work showed that there is an optimum tubing bore size depending on solute partition coefficient and mobile phase flow rate. The interesting result of the theoretical study is that larger tubing bores allow for dramatically reduced experiment durations for all solutes: in reversed phase CCC (polar mobile phase), hydrophobic solutes are usually highly retained. These apolar solutes can be separated by the same coil at high flow rates and reduced Sf with similar retention times as polar solutes separated at smaller flow rates and much higher Sf. Copyright © 2015 Elsevier B.V. All rights reserved.
Laser System for Precise, Unambiguous Range Measurements
NASA Technical Reports Server (NTRS)
Dubovitsky, Serge; Lay, Oliver
2005-01-01
The Modulation Sideband Technology for Absolute Range (MSTAR) architecture is the basis of design of a proposed laser-based heterodyne interferometer that could measure a range (distance) as great as 100 km with a precision and resolution of the order of 1 nm. Simple optical interferometers can measure changes in range with nanometer resolution, but cannot measure range itself because interference is subject to the well-known integer-multiple-of-2 -radians phase ambiguity, which amounts to a range ambiguity of the order of 1 m at typical laser wavelengths. Existing rangefinders have a resolution of the order of 10 m and are therefore unable to resolve the ambiguity. The proposed MSTAR architecture bridges the gap, enabling nanometer resolution with an ambiguity range that can be extended to arbitrarily large distances. The MSTAR architecture combines the principle of the heterodyne interferometer with the principle of extending the ambiguity range of an interferometer by using light of two wavelengths. The use of two wavelengths for this purpose is well established in optical metrology, radar, and sonar. However, unlike in traditional two-color laser interferometry, light of two wavelengths would not be generated by two lasers. Instead, multiple wavelengths would be generated as sidebands of phase modulation of the light from a single frequency- stabilized laser. The phase modulation would be effected by applying sinusoidal signals of suitable frequencies (typically tens of gigahertz) to high-speed electro-optical phase modulators. Intensity modulation can also be used
Nael, Kambiz; Fenchel, Michael; Krishnam, Mayil; Finn, J Paul; Laub, Gerhard; Ruehm, Stefan G
2007-06-01
To evaluate the technical feasibility of high spatial resolution contrast-enhanced magnetic resonance angiography (CE-MRA) with highly accelerated parallel acquisition at 3.0 T using a 32-channel phased array coil, and a high relaxivity contrast agent. Ten adult healthy volunteers (5 men, 5 women, aged 21-66 years) underwent high spatial resolution CE-MRA of the pulmonary circulation. Imaging was performed at 3 T using a 32-channel phase array coil. After intravenous injection of 1 mL of gadobenate dimeglumine (Gd-BOPTA) at 1.5 mL/s, a timing bolus was used to measure the transit time from the arm vein to the main pulmonary artery. Subsequently following intravenous injection of 0.1 mmol/kg of Gd-BOPTA at the same rate, isotropic high spatial resolution data sets (1 x 1 x 1 mm3) CE-MRA of the entire pulmonary circulation were acquired using a fast gradient-recalled echo sequence (TR/TE 3/1.2 milliseconds, FA 18 degrees) and highly accelerated parallel acquisition (GRAPPA x 6) during a 20-second breath hold. The presence of artifact, noise, and image quality of the pulmonary arterial segments were evaluated independently by 2 radiologists. Phantom measurements were performed to assess the signal-to-noise ratio (SNR). Statistical analysis of data was performed by using Wilcoxon rank sum test and 2-sample Student t test. The interobserver variability was tested by kappa coefficient. All studies were of diagnostic quality as determined by both observers. The pulmonary arteries were routinely identified up to fifth-order branches, with definition in the diagnostic range and excellent interobserver agreement (kappa = 0.84, 95% confidence interval 0.77-0.90). Phantom measurements showed significantly lower SNR (P < 0.01) using GRAPPA (17.3 +/- 18.8) compared with measurements without parallel acquisition (58 +/- 49.4). The described 3 T CE-MRA protocol in addition to high T1 relaxivity of Gd-BOPTA provides sufficient SNR to support highly accelerated parallel acquisition (GRAPPA x 6), resulting in acquisition of isotopic (1 x 1 x 1 mm3) voxels over the entire pulmonary circulation in 20 seconds.
Emerging optical nanoscopy techniques
Montgomery, Paul C; Leong-Hoi, Audrey
2015-01-01
To face the challenges of modern health care, new imaging techniques with subcellular resolution or detection over wide fields are required. Far field optical nanoscopy presents many new solutions, providing high resolution or detection at high speed. We present a new classification scheme to help appreciate the growing number of optical nanoscopy techniques. We underline an important distinction between superresolution techniques that provide improved resolving power and nanodetection techniques for characterizing unresolved nanostructures. Some of the emerging techniques within these two categories are highlighted with applications in biophysics and medicine. Recent techniques employing wider angle imaging by digital holography and scattering lens microscopy allow superresolution to be achieved for subcellular and even in vivo, imaging without labeling. Nanodetection techniques are divided into four subcategories using contrast, phase, deconvolution, and nanomarkers. Contrast enhancement is illustrated by means of a polarized light-based technique and with strobed phase-contrast microscopy to reveal nanostructures. Very high sensitivity phase measurement using interference microscopy is shown to provide nanometric surface roughness measurement or to reveal internal nanometric structures. Finally, the use of nanomarkers is illustrated with stochastic fluorescence microscopy for mapping intracellular structures. We also present some of the future perspectives of optical nanoscopy. PMID:26491270
Active control of bright electron beams with RF optics for femtosecond microscopy
Williams, J.; Zhou, F.; Sun, T.; ...
2017-08-01
A frontier challenge in implementing femtosecond electron microscopy is to gain precise optical control of intense beams to mitigate collective space charge effects for significantly improving the throughput. In this paper, we explore the flexible uses of an RF cavity as a longitudinal lens in a high-intensity beam column for condensing the electron beams both temporally and spectrally, relevant to the design of ultrafast electron microscopy. Through the introduction of a novel atomic grating approach for characterization of electron bunch phase space and control optics, we elucidate the principles for predicting and controlling the phase space dynamics to reach optimalmore » compressions at various electron densities and generating conditions. We provide strategies to identify high-brightness modes, achieving ~100 fs and ~1 eV resolutions with 10 6 electrons per bunch, and establish the scaling of performance for different bunch charges. These results benchmark the sensitivity and resolution from the fundamental beam brightness perspective and also validate the adaptive optics concept to enable delicate control of the density-dependent phase space structures to optimize the performance, including delivering ultrashort, monochromatic, high-dose, or coherent electron bunches.« less
Active control of bright electron beams with RF optics for femtosecond microscopy
Williams, J.; Zhou, F.; Sun, T.; Tao, Z.; Chang, K.; Makino, K.; Berz, M.; Duxbury, P. M.; Ruan, C.-Y.
2017-01-01
A frontier challenge in implementing femtosecond electron microscopy is to gain precise optical control of intense beams to mitigate collective space charge effects for significantly improving the throughput. Here, we explore the flexible uses of an RF cavity as a longitudinal lens in a high-intensity beam column for condensing the electron beams both temporally and spectrally, relevant to the design of ultrafast electron microscopy. Through the introduction of a novel atomic grating approach for characterization of electron bunch phase space and control optics, we elucidate the principles for predicting and controlling the phase space dynamics to reach optimal compressions at various electron densities and generating conditions. We provide strategies to identify high-brightness modes, achieving ∼100 fs and ∼1 eV resolutions with 106 electrons per bunch, and establish the scaling of performance for different bunch charges. These results benchmark the sensitivity and resolution from the fundamental beam brightness perspective and also validate the adaptive optics concept to enable delicate control of the density-dependent phase space structures to optimize the performance, including delivering ultrashort, monochromatic, high-dose, or coherent electron bunches. PMID:28868325
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhadram, Venkata S.; Liu, Hanyu; Xu, Enshi
We report the discovery of a long-sought-after phase of titanium nitride with stoichiometry Ti3N4 using diamond anvil cell experiments combined with in situ high-resolution x-ray diffraction and Raman spectroscopy techniques, supported by ab initio calculations.
Femtosecond gas phase electron diffraction with MeV electrons.
Yang, Jie; Guehr, Markus; Vecchione, Theodore; Robinson, Matthew S; Li, Renkai; Hartmann, Nick; Shen, Xiaozhe; Coffee, Ryan; Corbett, Jeff; Fry, Alan; Gaffney, Kelly; Gorkhover, Tais; Hast, Carsten; Jobe, Keith; Makasyuk, Igor; Reid, Alexander; Robinson, Joseph; Vetter, Sharon; Wang, Fenglin; Weathersby, Stephen; Yoneda, Charles; Wang, Xijie; Centurion, Martin
2016-12-16
We present results on ultrafast gas electron diffraction (UGED) experiments with femtosecond resolution using the MeV electron gun at SLAC National Accelerator Laboratory. UGED is a promising method to investigate molecular dynamics in the gas phase because electron pulses can probe the structure with a high spatial resolution. Until recently, however, it was not possible for UGED to reach the relevant timescale for the motion of the nuclei during a molecular reaction. Using MeV electron pulses has allowed us to overcome the main challenges in reaching femtosecond resolution, namely delivering short electron pulses on a gas target, overcoming the effect of velocity mismatch between pump laser pulses and the probe electron pulses, and maintaining a low timing jitter. At electron kinetic energies above 3 MeV, the velocity mismatch between laser and electron pulses becomes negligible. The relativistic electrons are also less susceptible to temporal broadening due to the Coulomb force. One of the challenges of diffraction with relativistic electrons is that the small de Broglie wavelength results in very small diffraction angles. In this paper we describe the new setup and its characterization, including capturing static diffraction patterns of molecules in the gas phase, finding time-zero with sub-picosecond accuracy and first time-resolved diffraction experiments. The new device can achieve a temporal resolution of 100 fs root-mean-square, and sub-angstrom spatial resolution. The collimation of the beam is sufficient to measure the diffraction pattern, and the transverse coherence is on the order of 2 nm. Currently, the temporal resolution is limited both by the pulse duration of the electron pulse on target and by the timing jitter, while the spatial resolution is limited by the average electron beam current and the signal-to-noise ratio of the detection system. We also discuss plans for improving both the temporal resolution and the spatial resolution.
NASA Astrophysics Data System (ADS)
Azarderakhsh, M.; McDonald, K. C.; Norouzi, H.; Rebolledo, M. A.; Prakash, S.
2017-12-01
The freeze and thaw (FT) cycles in high-latitude regions have great impact on many biogeochemical transitions, hydrology and ecosystem especially in wetland areas. Passive and active microwave remote sensing data from satellite observations have been deployed in the past to define the status of the surface in terms of freeze and thaw. While many progresses have been made in this field, the limitations attached to such observations have hindered our ability to fully predict the change of surface state in the scale that is appropriate for the aforementioned applications. The transition between freeze and thaw states may occur frequently (even within a day) especially during shifts from cold to warm seasons and vice versa. Passive microwave sensors have different acquisition times, and data fusion of these sensors may provide a complete diurnal variation estimate of FT states. However, the coarse spatial resolution of these measurements may undermine their applicability. However, active microwave backscatter measurements from sensors such as Sentinel 1A and the Advanced Land Observing Satellite Phased Array L-Band SAR (ALOS PALSAR) can deliver high resolution information about wetlands and FT status. In this project, Synthetic Aperture Radar (SAR) c-band backscatter data from Sentinel 1 from April 2014 to June 2017 are deployed to detect high resolution freeze/thaw states and wetland areas. The contrasts between frozen and thawed seasons are used to define FT states after performing required radiometric corrections and calibrations. A method based on phase changes in polarized images is developed for different land cover types to maximize the accuracy of the detections. The aggregated (up-scaled) estimates from active measurements are compared to passive microwave-based FT product. The results of this method reveal that the estimates are relatively in good agreement with SNOw TELemetry (SNOTEL) ground measurements. Finally, a downscaling method is tried to link passive emissivity-based FT product to high resolution active FT estimates to increase the temporal frequency of the high-resolution Sentinel data. The results of this study contribute to better understanding sources of positive carbon and methane (CH4) feedback to the atmosphere.
Condensation in Supernova Ejecta at High Spatial Resolution
NASA Astrophysics Data System (ADS)
Fedkin, A. V.; Meyer, B. S.; Grossman, L.; Desch, S. J.
2009-03-01
^44Ti-rich TiC condenses before graphite in SN ejecta only if thin sub-layers of the main burning zones mix together; such mixing is also needed to form Fe-olivine. High-T phases change from carbides to oxides along composition gradients within the He/N zone.
Proceedings of the seventh international conference on high voltage electron microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisher, R.M.; Gronsky, R.; Westmacott, K.H.
1983-01-01
Eight-four papers are arranged under the following headings: high resolution, techniques and instrumentation, radiation effects, in-situ and phase transformations, minerals and ceramics, and semiconductors and thin films. Twenty-three papers were abstracted separately for the data base; three of the remainder had previously been abstracted. (DLC)
Shan, Yi-chu; Zhang, Yu-kui; Zhao, Rui-huan
2002-07-01
In high performance liquid chromatography, it is necessary to apply multi-composition gradient elution for the separation of complex samples such as environmental and biological samples. Multivariate stepwise gradient elution is one of the most efficient elution modes, because it combines the high selectivity of multi-composition mobile phase and shorter analysis time of gradient elution. In practical separations, the separation selectivity of samples can be effectively adjusted by using ternary mobile phase. For the optimization of these parameters, the retention equation of samples must be obtained at first. Traditionally, several isocratic experiments are used to get the retention equation of solute. However, it is time consuming especially for the separation of complex samples with a wide range of polarity. A new method for the fast optimization of ternary stepwise gradient elution was proposed based on the migration rule of solute in column. First, the coefficients of retention equation of solute are obtained by running several linear gradient experiments, then the optimal separation conditions are searched according to the hierarchical chromatography response function which acts as the optimization criterion. For each kind of organic modifier, two initial linear gradient experiments are used to obtain the primary coefficients of retention equation of each solute. For ternary mobile phase, only four linear gradient runs are needed to get the coefficients of retention equation. Then the retention times of solutes under arbitrary mobile phase composition can be predicted. The initial optimal mobile phase composition is obtained by resolution mapping for all of the solutes. A hierarchical chromatography response function is used to evaluate the separation efficiencies and search the optimal elution conditions. In subsequent optimization, the migrating distance of solute in the column is considered to decide the mobile phase composition and sustaining time of the latter steps until all the solutes are eluted out. Thus the first stepwise gradient elution conditions are predicted. If the resolution of samples under the predicted optimal separation conditions is satisfactory, the optimization procedure is stopped; otherwise, the coefficients of retention equation are adjusted according to the experimental results under the previously predicted elution conditions. Then the new stepwise gradient elution conditions are predicted repeatedly until satisfactory resolution is obtained. Normally, the satisfactory separation conditions can be found only after six experiments by using the proposed method. In comparison with the traditional optimization method, the time needed to finish the optimization procedure can be greatly reduced. The method has been validated by its application to the separation of several samples such as amino acid derivatives, aromatic amines, in which satisfactory separations were obtained with predicted resolution.
Time domain para hydrogen induced polarization.
Ratajczyk, Tomasz; Gutmann, Torsten; Dillenberger, Sonja; Abdulhussaein, Safaa; Frydel, Jaroslaw; Breitzke, Hergen; Bommerich, Ute; Trantzschel, Thomas; Bernarding, Johannes; Magusin, Pieter C M M; Buntkowsky, Gerd
2012-01-01
Para hydrogen induced polarization (PHIP) is a powerful hyperpolarization technique, which increases the NMR sensitivity by several orders of magnitude. However the hyperpolarized signal is created as an anti-phase signal, which necessitates high magnetic field homogeneity and spectral resolution in the conventional PHIP schemes. This hampers the application of PHIP enhancement in many fields, as for example in food science, materials science or MRI, where low B(0)-fields or low B(0)-homogeneity do decrease spectral resolution, leading to potential extinction if in-phase and anti-phase hyperpolarization signals cannot be resolved. Herein, we demonstrate that the echo sequence (45°-τ-180°-τ) enables the acquisition of low resolution PHIP enhanced liquid state NMR signals of phenylpropiolic acid derivatives and phenylacetylene at a low cost low-resolution 0.54 T spectrometer. As low field TD-spectrometers are commonly used in industry or biomedicine for the relaxometry of oil-water mixtures, food, nano-particles, or other systems, we compare two variants of para-hydrogen induced polarization with data-evaluation in the time domain (TD-PHIP). In both TD-ALTADENA and the TD-PASADENA strong spin echoes could be detected under conditions when usually no anti-phase signals can be measured due to the lack of resolution. The results suggest that the time-domain detection of PHIP-enhanced signals opens up new application areas for low-field PHIP-hyperpolarization, such as non-invasive compound detection or new contrast agents and biomarkers in low-field Magnetic Resonance Imaging (MRI). Finally, solid-state NMR calculations are presented, which show that the solid echo (90y-τ-90x-τ) version of the TD-ALTADENA experiment is able to convert up to 10% of the PHIP signal into visible magnetization. Copyright © 2012 Elsevier Inc. All rights reserved.
Advantages of intermediate X-ray energies in Zernike phase contrast X-ray microscopy.
Wang, Zhili; Gao, Kun; Chen, Jian; Hong, Youli; Ge, Xin; Wang, Dajiang; Pan, Zhiyun; Zhu, Peiping; Yun, Wenbing; Jacobsen, Chris; Wu, Ziyu
2013-01-01
Understanding the hierarchical organizations of molecules and organelles within the interior of large eukaryotic cells is a challenge of fundamental interest in cell biology. Light microscopy is a powerful tool for observations of the dynamics of live cells, its resolution attainable is limited and insufficient. While electron microscopy can produce images with astonishing resolution and clarity of ultra-thin (<1 μm thick) sections of biological specimens, many questions involve the three-dimensional organization of a cell or the interconnectivity of cells. X-ray microscopy offers superior imaging resolution compared to light microscopy, and unique capability of nondestructive three-dimensional imaging of hydrated unstained biological cells, complementary to existing light and electron microscopy. Until now, X-ray microscopes operating in the "water window" energy range between carbon and oxygen k-shell absorption edges have produced outstanding 3D images of cryo-preserved cells. The relatively low X-ray energy (<540 eV) of the water window imposes two important limitations: limited penetration (<10 μm) not suitable for imaging larger cells or tissues, and small depth of focus (DoF) for high resolution 3D imaging (e.g., ~1 μm DoF for 20 nm resolution). An X-ray microscope operating at intermediate energy around 2.5 keV using Zernike phase contrast can overcome the above limitations and reduces radiation dose to the specimen. Using a hydrated model cell with an average chemical composition reported in literature, we calculated the image contrast and the radiation dose for absorption and Zernike phase contrast, respectively. The results show that an X-ray microscope operating at ~2.5 keV using Zernike phase contrast offers substantial advantages in terms of specimen size, radiation dose and depth-of-focus. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Willis, Kyle V.; Srogi, LeeAnn; Lutz, Tim; Monson, Frederick C.; Pollock, Meagen
2017-12-01
Textures and compositions are critical information for interpreting rock formation. Existing methods to integrate both types of information favor high-resolution images of mineral compositions over small areas or low-resolution images of larger areas for phase identification. The method in this paper produces images of individual phases in which textural and compositional details are resolved over three orders of magnitude, from tens of micrometers to tens of millimeters. To construct these images, called Phase Composition Maps (PCMs), we make use of the resolution in backscattered electron (BSE) images and calibrate the gray scale values with mineral analyses by energy-dispersive X-ray spectrometry (EDS). The resulting images show the area of a standard thin section (roughly 40 mm × 20 mm) with spatial resolution as good as 3.5 μm/pixel, or more than 81 000 pixels/mm2, comparable to the resolution of X-ray element maps produced by wavelength-dispersive spectrometry (WDS). Procedures to create PCMs for mafic igneous rocks with multivariate linear regression models for minerals with solid solution (olivine, plagioclase feldspar, and pyroxenes) are presented and are applicable to other rock types. PCMs are processed using threshold functions based on the regression models to image specific composition ranges of minerals. PCMs are constructed using widely-available instrumentation: a scanning-electron microscope (SEM) with BSE and EDS X-ray detectors and standard image processing software such as ImageJ and Adobe Photoshop. Three brief applications illustrate the use of PCMs as petrologic tools: to reveal mineral composition patterns at multiple scales; to generate crystal size distributions for intracrystalline compositional zones and compare growth over time; and to image spatial distributions of minerals at different stages of magma crystallization by integrating textures and compositions with thermodynamic modeling.
NASA Astrophysics Data System (ADS)
Shoemaker, Daniel P.; Chung, Duck Young; Claus, Helmut; Francisco, Melanie C.; Avci, Sevda; Llobet, Anna; Kanatzidis, Mercouri G.
2012-11-01
Superconductivity in iron selenides has experienced a rapid growth, but not without major inconsistencies in the reported properties. For alkali-intercalated iron selenides, even the structure of the superconducting phase is a subject of debate, in part because the onset of superconductivity is affected much more delicately by stoichiometry and preparation than in cuprate or pnictide superconductors. If high-quality, pure, superconducting intercalated iron selenides are ever to be made, the intertwined physics and chemistry must be explained by systematic studies of how these materials form and by and identifying the many coexisting phases. To that end, we prepared pure K2Fe4Se5 powder and superconductors in the KxFe2-ySe2 system, and examined differences in their structures by high-resolution synchrotron and single-crystal x-ray diffraction. We found four distinct phases: semiconducting K2Fe4Se5, a metallic superconducting phase KxFe2Se2 with x ranging from 0.38 to 0.58, the phase KFe1.6Se2 with full K occupancy and no Fe vacancy ordering, and a oxidized phase K0.51(5)Fe0.70(2)Se that forms the PbClF structure upon exposure to moisture. We find that the vacancy-ordered phase K2Fe4Se5 does not become superconducting by doping, but the distinct iron-rich minority phase KxFe2Se2 precipitates from single crystals upon cooling from above the vacancy ordering temperature. This coexistence of separate metallic and semiconducting phases explains a broad maximum in resistivity around 100 K. Further studies to understand the solubility of excess Fe in the KxFe2-ySe2 structure will shed light on the maximum fraction of superconducting KxFe2Se2 that can be obtained by solid state synthesis.
Microstructural analysis of aluminum high pressure die castings
NASA Astrophysics Data System (ADS)
David, Maria Diana
Microstructural analysis of aluminum high pressure die castings (HPDC) is challenging and time consuming. Automating the stereology method is an efficient way in obtaining quantitative data; however, validating the accuracy of this technique can also pose some challenges. In this research, a semi-automated algorithm to quantify microstructural features in aluminum HPDC was developed. Analysis was done near the casting surface where it exhibited fine microstructure. Optical and Secondary electron (SE) and backscatter electron (BSE) SEM images were taken to characterize the features in the casting. Image processing steps applied on SEM and optical micrographs included median and range filters, dilation, erosion, and a hole-closing function. Measurements were done on different image pixel resolutions that ranged from 3 to 35 pixel/μm. Pixel resolutions below 6 px/μm were too low for the algorithm to distinguish the phases from each other. At resolutions higher than 6 px/μm, the volume fraction of primary α-Al and the line intercept count curves plateaued. Within this range, comparable results were obtained validating the assumption that there is a range of image pixel resolution relative to the size of the casting features at which stereology measurements become independent of the image resolution. Volume fraction within this curve plateau was consistent with the manual measurements while the line intercept count was significantly higher using the computerized technique for all resolutions. This was attributed to the ragged edges of some primary α-Al; hence, the algorithm still needs some improvements. Further validation of the code using other castings or alloys with known phase amount and size may also be beneficial.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Chen, Yuan L.; Miller, Robert A.
2003-01-01
Advanced oxide thermal barrier coatings have been developed by incorporating multi-component rare earth oxide dopants into zirconia-yttria to effectively promote the creation of the thermodynamically stable, immobile oxide defect clusters and/or nano-scale phases within the coating systems. The presence of these nano-sized defect clusters has found to significantly reduce the coating intrinsic thermal conductivity, improve sintering resistance, and maintain long-term high temperature stability. In this paper, the defect clusters and nano-structured phases, which were created by the addition of multi-component rare earth dopants to the plasma-sprayed and electron-beam physical vapor deposited thermal barrier coatings, were characterized by high-resolution transmission electron microscopy (TEM). The defect cluster size, distribution, crystallographic and compositional information were investigated using high-resolution TEM lattice imaging, selected area diffraction (SAD), electron energy-loss spectroscopy (EELS) and energy dispersive spectroscopy (EDS) analysis techniques. The results showed that substantial defect clusters were formed in the advanced multi-component rare earth oxide doped zirconia- yttria systems. The size of the oxide defect clusters and the cluster dopant segregation was typically ranging from 5 to 50 nm. These multi-component dopant induced defect clusters are an important factor for the coating long-term high temperature stability and excellent performance.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Chen, Yuan L.; Miller, Robert A.
1990-01-01
Advanced oxide thermal barrier coatings have been developed by incorporating multi- component rare earth oxide dopants into zirconia-yttria to effectively promote the creation of the thermodynamically stable, immobile oxide defect clusters and/or nano-scale phases within the coating systems. The presence of these nano-sized defect clusters has found to significantly reduce the coating intrinsic thermal conductivity, improve sintering resistance, and maintain long-term high temperature stability. In this paper, the defect clusters and nano-structured phases, which were created by the addition of multi-component rare earth dopants to the plasma- sprayed and electron-beam physical vapor deposited thermal barrier coatings, were characterized by high-resolution transmission electron microscopy (TEM). The defect cluster size, distribution, crystallographic and compositional information were investigated using high-resolution TEM lattice imaging, selected area diffraction (SAD), and energy dispersive spectroscopy (EDS) analysis techniques. The results showed that substantial defect clusters were formed in the advanced multi-component rare earth oxide doped zirconia-yttria systems. The size of the oxide defect clusters and the cluster dopant segregation was typically ranging fiom 5 to 50 nm. These multi-component dopant induced defect clusters are an important factor for the coating long-term high temperature stability and excellent performance.
2014-05-08
This image is one of the highest-resolution MDIS observations to date! Many craters of varying degradation states are visible, as well as gentle terrain undulations. Very short exposure times are needed to make these low-altitude observations while the spacecraft is moving quickly over the surface; thus the images are slightly noisier than typical MDIS images. This image was acquired as a high-resolution targeted observation. Targeted observations are images of a small area on Mercury's surface at resolutions much higher than the 200-meter/pixel morphology base map. It is not possible to cover all of Mercury's surface at this high resolution, but typically several areas of high scientific interest are imaged in this mode each week. Date acquired: March 15, 2014 Image Mission Elapsed Time (MET): 37173522 Image ID: 5936740 Instrument: Narrow Angle Camera (NAC) of the Mercury Dual Imaging System (MDIS) Center Latitude: 71.91° Center Longitude: 232.7° E Resolution: 5 meters/pixel Scale: The image is approximately 8.3 km (5.2 mi.) across. Incidence Angle: 79.4° Emission Angle: 4.0° Phase Angle: 83.4° http://photojournal.jpl.nasa.gov/catalog/PIA18370
Wavelength scanning achieves pixel super-resolution in holographic on-chip microscopy
NASA Astrophysics Data System (ADS)
Luo, Wei; Göröcs, Zoltan; Zhang, Yibo; Feizi, Alborz; Greenbaum, Alon; Ozcan, Aydogan
2016-03-01
Lensfree holographic on-chip imaging is a potent solution for high-resolution and field-portable bright-field imaging over a wide field-of-view. Previous lensfree imaging approaches utilize a pixel super-resolution technique, which relies on sub-pixel lateral displacements between the lensfree diffraction patterns and the image sensor's pixel-array, to achieve sub-micron resolution under unit magnification using state-of-the-art CMOS imager chips, commonly used in e.g., mobile-phones. Here we report, for the first time, a wavelength scanning based pixel super-resolution technique in lensfree holographic imaging. We developed an iterative super-resolution algorithm, which generates high-resolution reconstructions of the specimen from low-resolution (i.e., under-sampled) diffraction patterns recorded at multiple wavelengths within a narrow spectral range (e.g., 10-30 nm). Compared with lateral shift-based pixel super-resolution, this wavelength scanning approach does not require any physical shifts in the imaging setup, and the resolution improvement is uniform in all directions across the sensor-array. Our wavelength scanning super-resolution approach can also be integrated with multi-height and/or multi-angle on-chip imaging techniques to obtain even higher resolution reconstructions. For example, using wavelength scanning together with multi-angle illumination, we achieved a halfpitch resolution of 250 nm, corresponding to a numerical aperture of 1. In addition to pixel super-resolution, the small scanning steps in wavelength also enable us to robustly unwrap phase, revealing the specimen's optical path length in our reconstructed images. We believe that this new wavelength scanning based pixel super-resolution approach can provide competitive microscopy solutions for high-resolution and field-portable imaging needs, potentially impacting tele-pathology applications in resource-limited-settings.
Phase gradient algorithm based on co-axis two-step phase-shifting interferometry and its application
NASA Astrophysics Data System (ADS)
Wang, Yawei; Zhu, Qiong; Xu, Yuanyuan; Xin, Zhiduo; Liu, Jingye
2017-12-01
A phase gradient method based on co-axis two-step phase-shifting interferometry, is used to reveal the detailed information of a specimen. In this method, the phase gradient distribution can only be obtained by calculating both the first-order derivative and the radial Hilbert transformation of the intensity difference between two phase-shifted interferograms. The feasibility and accuracy of this method were fully verified by the simulation results for a polystyrene sphere and a red blood cell. The empirical results demonstrated that phase gradient is sensitive to changes in the refractive index and morphology. Because phase retrieval and tedious phase unwrapping are not required, the calculation speed is faster. In addition, co-axis interferometry has high spatial resolution.
Time-resolved quantitative-phase microscopy of laser-material interactions using a wavefront sensor.
Gallais, Laurent; Monneret, Serge
2016-07-15
We report on a simple and efficient technique based on a wavefront sensor to obtain time-resolved amplitude and phase images of laser-material interactions. The main interest of the technique is to obtain quantitative self-calibrated phase measurements in one shot at the femtosecond time-scale, with high spatial resolution. The technique is used for direct observation and quantitative measurement of the Kerr effect in a fused silica substrate and free electron generation by photo-ionization processes in an optical coating.
PIZZA: a phase-induced zonal Zernike apodization designed for stellar coronagraphy
NASA Astrophysics Data System (ADS)
Martinache, Frantz
2004-08-01
I explore here the possibilities offered by the general formalism of coronagraphy for the very special case of phase contrast. This technique, invented by Zernike, is commonly used in microscopy, to see phase objects such as micro-organisms, and in strioscopy, to control the quality of optics polishing. It may find application in telescope pupil apodization with significant advantages over classical pupil apodization techniques, including high throughput and no off-axis resolution loss, which is essential for exoplanet imaging.
Fuel-injector/air-swirl characterization
NASA Technical Reports Server (NTRS)
Mcvey, J. B.; Kennedy, J. B.; Russell, S.
1988-01-01
Experimental data on the characteristics of the spray produced by a gas-turbine engine airblast fuel injector are reported. The data acquired include the mass-flux distribution measured by use of a high-resolution spray patternator; the gas-phase velocity field measured by use of a two-component laser Doppler velocimeter, and the liquid droplet size and velocity distributions measured by use of a single-component phase-Doppler anemometer. The data are intended for use in assessments of two-phase flow computational methods as applied to combustor design procedures.
Microstructural study of the polymorphic transformation in pentacene thin films.
Murakami, Yosuke; Tomiya, Shigetaka; Koshitani, Naoki; Kudo, Yoshihiro; Satori, Kotaro; Itabashi, Masao; Kobayashi, Norihito; Nomoto, Kazumasa
2009-10-02
We have observed, by high-resolution cross-sectional transmission electron microscopy, the first direct evidence of polymorphic transformation in pentacene thin films deposited on silicon oxide substrates. Polymorphic transformation from the thin-film phase to the bulk phase occurred preferentially near polycrystalline grain boundaries, which exhibit concave surfaces. This process is thought to be driven by compressive stress caused by the grain boundaries. In addition to this stress, lattice mismatch between the two phases also results in structural defect formation.
Prospects and challenges of quantitative phase imaging in tumor cell biology
NASA Astrophysics Data System (ADS)
Kemper, Björn; Götte, Martin; Greve, Burkhard; Ketelhut, Steffi
2016-03-01
Quantitative phase imaging (QPI) techniques provide high resolution label-free quantitative live cell imaging. Here, prospects and challenges of QPI in tumor cell biology are presented, using the example of digital holographic microscopy (DHM). It is shown that the evaluation of quantitative DHM phase images allows the retrieval of different parameter sets for quantification of cellular motion changes in migration and motility assays that are caused by genetic modifications. Furthermore, we demonstrate simultaneously label-free imaging of cell growth and morphology properties.
Le Guellec, C; Gaudet, M L; Breteau, M
1998-11-20
We report a high-performance liquid chromatography method for clonazepam determination in plasma. The use of a synthetic silica-based stationary phase markedly improved clonazepam resolution compared to standard reversed-phase columns. A liquid-liquid extraction was used, associated with reversed-phase chromatography, gradient elution and ultraviolet detection. Accuracy and precision were satisfactory at therapeutic concentrations. Selectivity was studied for benzodiazepines or other antiepileptic drugs, with particular attention to newly marketed drugs i.e., gabapentine and vigabatrin. No interfering substance was evidenced. Under the conditions described, it was possible to quantify clonazepam at nanogram level even when carbamazepine was present at therapeutic concentrations.
LLNL compiled first pages ordered by ascending B&R code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, G; Kumar, M; Tobin, J
We aim to develop a fundamental understanding of materials dynamics (from {micro}s to ns) in systems where the required combination of spatial and temporal resolution can only be reached by the dynamic transmission electron microscope (DTEM). In this regime, the DTEM is capable of studying complex transient phenomena with several orders of magnitude time resolution advantage over any existing in-situ TEM. Using the unique in situ capabilities and the nanosecond time resolution of the DTEM, we seek to study complex transient phenomena associated with rapid processes in materials, such as active sites on nanoscale catalysts and the atomic level mechanismsmore » and microstructural features for nucleation and growth associated with phase transformations in materials, specifically in martensite formation and crystallization reactions from the amorphous phase. We also will study the transient phase evolution in rapid solid-state reactions, such as those occurring in reactive multilayer foils (RMLF). Program Impact: The LLNL DTEM possesses unique capabilities for capturing time resolved images and diffraction patterns of rapidly evolving materials microstructure under strongly driven conditions. No other instrument in the world can capture images with <10 nm spatial resolution of interesting irreversible materials processes such as phase transformations, plasticity, or morphology changes with 15 ns time resolution. The development of this innovative capability requires the continuing collaboration of laser scientists, electron microscopists, and materials scientists experienced in time resolved observations of materials that exist with particularly relevant backgrounds at LLNL. The research team has made observations of materials processes that are possible by no other method, such as the rapid crystallization of thin film NiTi that identified a change in mechanism at high heating rates as compared to isothermal anneals through changes in nucleation and growth rates of the crystalline phase. The project is designed to reveal these fundamental processes and mechanisms in rapid microstructure evolution that form the foundation of understanding that is an integral part of the DOE-BES mission.« less
Hoguet, Vanessa; Charton, Julie; Hecquet, Paul-Emile; Lakhmi, Chahinaze; Lipka, Emmanuelle
2018-05-11
For analytical applications, SFC has always remained in the shadow of LC. Analytical enantioseparation of eight dihydropyridone derivatives, was run in both High Performance Liquid Chromatography and Supercritical Fluid Chromatography. Four polysaccharide based chiral stationary phases namely amylose and cellulose tris(3, 5-dimethylphenylcarbamate), amylose tris((S)-α-phenylethylcarbamate) and cellulose tris(4-methylbenzoate) with four mobile phases consisted of either n-hexane/ethanol or propan-2-ol (80:20 v:v) or carbon dioxide/ethanol or propan-2-ol (80:20 v:v) mixtures were investigated under same operatory conditions (temperature and flow-rate). The elution strength, enantioselectivity and resolution were compared in the two methodologies. For these compounds, for most of the conditions, HPLC afforded shorter retention times and a higher resolution than SFC. HPLC appears particularly suitable for the separation of the compounds bearing two chiral centers. For instance compound 7 was baseline resolved on OD-H CSP under n-Hex/EtOH 80/20, with resolution values equal to 2.98, 1.55, 4.52, between the four stereoisomers in less than 17 min, whereas in SFC, this latter is not fully separated in 23 min under similar eluting conditions. After analytical screenings, the best conditions were transposed to semi-preparative scale. Copyright © 2018 Elsevier B.V. All rights reserved.
Ab initio structure determination from prion nanocrystals at atomic resolution by MicroED
Sawaya, Michael R.; Rodriguez, Jose; Cascio, Duilio; ...
2016-09-19
Electrons, because of their strong interaction with matter, produce high-resolution diffraction patterns from tiny 3D crystals only a few hundred nanometers thick in a frozen-hydrated state. This discovery offers the prospect of facile structure determination of complex biological macromolecules, which cannot be coaxed to form crystals large enough for conventional crystallography or cannot easily be produced in sufficient quantities. Two potential obstacles stand in the way. The first is a phenomenon known as dynamical scattering, in which multiple scattering events scramble the recorded electron diffraction intensities so that they are no longer informative of the crystallized molecule. The second obstaclemore » is the lack of a proven means of de novo phase determination, as is required if the molecule crystallized is insufficiently similar to one that has been previously determined.We showwith four structures of the amyloid core of the Sup35 prion protein that, if the diffraction resolution is high enough, sufficiently accurate phases can be obtained by direct methods with the cryo-EM method microelectron diffraction (MicroED), just as in X-ray diffraction. The success of these four experiments dispels the concern that dynamical scattering is an obstacle to ab initio phasing by MicroED and suggests that structures of novel macromolecules can also be determined by direct methods.« less
Ab initio structure determination from prion nanocrystals at atomic resolution by MicroED
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawaya, Michael R.; Rodriguez, Jose; Cascio, Duilio
Electrons, because of their strong interaction with matter, produce high-resolution diffraction patterns from tiny 3D crystals only a few hundred nanometers thick in a frozen-hydrated state. This discovery offers the prospect of facile structure determination of complex biological macromolecules, which cannot be coaxed to form crystals large enough for conventional crystallography or cannot easily be produced in sufficient quantities. Two potential obstacles stand in the way. The first is a phenomenon known as dynamical scattering, in which multiple scattering events scramble the recorded electron diffraction intensities so that they are no longer informative of the crystallized molecule. The second obstaclemore » is the lack of a proven means of de novo phase determination, as is required if the molecule crystallized is insufficiently similar to one that has been previously determined.We showwith four structures of the amyloid core of the Sup35 prion protein that, if the diffraction resolution is high enough, sufficiently accurate phases can be obtained by direct methods with the cryo-EM method microelectron diffraction (MicroED), just as in X-ray diffraction. The success of these four experiments dispels the concern that dynamical scattering is an obstacle to ab initio phasing by MicroED and suggests that structures of novel macromolecules can also be determined by direct methods.« less
Optimisation of a propagation-based x-ray phase-contrast micro-CT system
NASA Astrophysics Data System (ADS)
Nesterets, Yakov I.; Gureyev, Timur E.; Dimmock, Matthew R.
2018-03-01
Micro-CT scanners find applications in many areas ranging from biomedical research to material sciences. In order to provide spatial resolution on a micron scale, these scanners are usually equipped with micro-focus, low-power x-ray sources and hence require long scanning times to produce high resolution 3D images of the object with acceptable contrast-to-noise. Propagation-based phase-contrast tomography (PB-PCT) has the potential to significantly improve the contrast-to-noise ratio (CNR) or, alternatively, reduce the image acquisition time while preserving the CNR and the spatial resolution. We propose a general approach for the optimisation of the PB-PCT imaging system. When applied to an imaging system with fixed parameters of the source and detector this approach requires optimisation of only two independent geometrical parameters of the imaging system, i.e. the source-to-object distance R 1 and geometrical magnification M, in order to produce the best spatial resolution and CNR. If, in addition to R 1 and M, the system parameter space also includes the source size and the anode potential this approach allows one to find a unique configuration of the imaging system that produces the required spatial resolution and the best CNR.
From lows to highs: using low-resolution models to phase X-ray data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stuart, David I.; Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot; Abrescia, Nicola G. A., E-mail: nabrescia@cicbiogune.es
2013-11-01
An unusual example of how virus structure determination pushes the limits of the molecular replacement method is presented. The study of virus structures has contributed to methodological advances in structural biology that are generally applicable (molecular replacement and noncrystallographic symmetry are just two of the best known examples). Moreover, structural virology has been instrumental in forging the more general concept of exploiting phase information derived from multiple structural techniques. This hybridization of structural methods, primarily electron microscopy (EM) and X-ray crystallography, but also small-angle X-ray scattering (SAXS) and nuclear magnetic resonance (NMR) spectroscopy, is central to integrative structural biology. Here,more » the interplay of X-ray crystallography and EM is illustrated through the example of the structural determination of the marine lipid-containing bacteriophage PM2. Molecular replacement starting from an ∼13 Å cryo-EM reconstruction, followed by cycling density averaging, phase extension and solvent flattening, gave the X-ray structure of the intact virus at 7 Å resolution This in turn served as a bridge to phase, to 2.5 Å resolution, data from twinned crystals of the major coat protein (P2), ultimately yielding a quasi-atomic model of the particle, which provided significant insights into virus evolution and viral membrane biogenesis.« less
McAleavey, Stephen A
2014-05-01
Shear wave induced phase encoding (SWIPE) imaging generates ultrasound backscatter images of tissue-like elastic materials by using traveling shear waves to encode the lateral position of the scatters in the phase of the received echo. In contrast to conventional ultrasound B-scan imaging, SWIPE offers the potential advantages of image formation without beam focusing or steering from a single transducer element, lateral resolution independent of aperture size, and the potential to achieve relatively high lateral resolution with low frequency ultrasound. Here a Fourier series description of the phase modulated echo signal is developed, demonstrating that echo harmonics at multiples of the shear wave frequency reveal target k-space data at identical multiples of the shear wavenumber. Modulation transfer functions of SWIPE imaging systems are calculated for maximum shear wave acceleration and maximum shear constraints, and compared with a conventionally focused aperture. The relative signal-to-noise ratio of the SWIPE method versus a conventionally focused aperture is found through these calculations. Reconstructions of wire targets in a gelatin phantom using 1 and 3.5 MHz ultrasound and a cylindrical shear wave source are presented, generated from the fundamental and second harmonic of the shear wave modulation frequency, demonstrating weak dependence of lateral resolution with ultrasound frequency.
Phase-ambiguity resolution for QPSK modulation systems. Part 1: A review
NASA Technical Reports Server (NTRS)
Nguyen, Tien Manh
1989-01-01
Part 1 reviews the current phase-ambiguity resolution techniques for QPSK coherent modulation systems. Here, those known and published methods of resolving phase ambiguity for QPSK with and without Forward-Error-Correcting (FEC) are discussed. The necessary background is provided for a complete understanding of the second part where a new technique will be discussed. An appropriate technique to the Consultative Committee for Space Data Systems (CCSDS) is recommended for consideration in future standards on phase-ambiguity resolution for QPSK coherent modulation systems.
NASA Astrophysics Data System (ADS)
Schaeper, M.; Schmidt, R.; Kostbade, R.; Damaschke, N.; Gimsa, J.
2016-07-01
Circular spatial filtering velocimetry (CSFV) was tested during the microscopic registration of the individual rotations of baker’s yeast cells. Their frequency-dependent rotation (electrorotation; ER) was induced in rotating electric fields, which were generated in a glass chip chamber with four electrodes (600 μm tip-to-tip distance). The electrodes were driven with sinusoidal quadrature signals of 5 or 8 V PP with frequencies up to 3 MHz. The observed cell rotation was of the order of 1-100 s per revolution. At each measuring frequency, the independent rotations of up to 20 cells were simultaneously recorded with a high-speed camera. CSFV was software-implemented using circular spatial filters with harmonic gratings. ER was proportional to the phase shift between the values of the spatial filtering signal of consecutive frames. ER spectra obtained by CSFV from the rotation velocities at different ER-field frequencies agreed well with manual measurements and theoretical spectra. Oscillations in the rotation velocity of a single cell in the elliptically polarized field near an electrode, which were resolved by CSFV, could not be visually discerned. ER step responses after field-on were recorded at 2500 frames per second. Analysis proved the high temporal resolution of CSFV and revealed a largely linear torque-friction relation during the acceleration phase of ER. Future applications of CSFV will allow for the simple and cheap automated high-resolution analysis of rotational movements where mechanical detection has too low a resolution or is not possible, e.g. in polluted environments or for gas and fluid vortices, microscopic objects, etc.
High resolution T2(*)-weighted Magnetic Resonance Imaging at 3 Tesla using PROPELLER-EPI.
Krämer, Martin; Reichenbach, Jürgen R
2014-05-01
We report the application of PROPELLER-EPI for high resolution T2(*)-weighted imaging with sub-millimeter in-plane resolution on a clinical 3 Tesla scanner. Periodically rotated blades of a long-axis PROPELLER-EPI sequence were acquired with fast gradient echo readout and acquisition matrix of 320 × 50 per blade. Images were reconstructed by using 2D-gridding, phase and geometric distortion correction and compensation of resonance frequency drifts that occurred during extended measurements. To characterize these resonance frequency offsets, short FID calibration measurements were added to the PROPELLER-EPI sequence. Functional PROPELLER-EPI was performed with volunteers using a simple block design of right handed finger tapping. Results indicate that PROPELLER-EPI can be employed for fast, high resolution T2(*)-weighted imaging provided geometric distortions and possible resonance frequency drifts are properly corrected. Even small resonance frequency drifts below 10 Hz as well as non-corrected geometric distortions degraded image quality substantially. In the initial fMRI experiment image quality and signal-to-noise ratio was sufficient for obtaining high resolution functional activation maps. Copyright © 2014. Published by Elsevier GmbH.
Optical resolution of rotenoids
Abidi, S.L.
1987-01-01
Optical resolution of selected rotenoids containing 1-3 asymmetric centers in dihydrobenzopyranofuroben-zopyranone and dihydrobisbenzopyranopyranone series has been achieved on two chiral high-performance liquid chromatographic (hplc) stationary phases. In most cases, the absolute stereochemistry at the cis-B/C ring junction of the rotenoidal antipodes can be related to their elution order. Generally, the 6aα,12aα-enantiomers were more strongly retained by the chiral substrate than their corresponding optical antipodes. The elution-configuration relationship provides potential utility for predicting the absolute configuration of related rotenoidal compounds. Chiral phase hplc on amino-acid-bonded-silica yielded results explicable in terms of Pirkle's bonding schemes for chiral recognition. Resolution data for 12a-hydroxy-, 12a-methoxy-, and 12-hydroxyiminorotenoids further corroborate the mechanistic rationale, and demonstrate that nonpolar π-π interactions appeared to be important for enantiomeric separation on helic poly-triphenylmethylacryl-ate-silica (CPOT). In the latter system, steric effects and conformational factors in association with the modification of E-ring structures might play significant roles in the chiral separation process in view of the reversal to the elution order observed for all methoxylated rotenoids and elliptone derivatives including the parent deguelin. The unique separability (α = 1.44) of 12a-hydroxyelliptone on CPOT was suggestive of structural effects of the 5-side chain on the resolution of the rotenoids having a five-membered-E-ring. The results obtained with two different types of chiral phases are complementary and useful for optical resolution of a wide variety of natural and synthetic rotenoidal compounds.
Single Crystal Faceplate Evaluation
1993-10-25
conventional powder phosphor. The utility of garnets is amplified by the high state of the art of liquid phase epitaxy ( LPE ). Liquid phase epitaxy of...7]. Much the research at Allied-Signal, Inc. in garnet layer growth has been involved with the kinetics of crystallization of garnet from LPE melts...acceptable resolution and light output characteristics. Single crystal faceplates being evaluated are composed of yttrium aluminum garnet (YAG) with an
A method for the determination of low molecular weight aldehydes in water using aqueous-phase derivatization with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride has been improved by the use of high-resolution capillary GC. Detection limits with GC/ECD and GC/MS with ...
High-resolution X-ray spectra of solar flares. IV - General spectral properties of M type flares
NASA Technical Reports Server (NTRS)
Feldman, U.; Doschek, G. A.; Kreplin, R. W.; Mariska, J. T.
1980-01-01
The spectral characteristics in selected narrow regions of the X-ray spectrum of class M solar flares are analyzed. High-resolution spectra in the ranges 1.82-1.97, 2.98-3.07, 3.14-3.24 and 8.26-8.53 A, which contain lines important for the determination of electron temperature and departure from ionization equilibrium, were recorded by spaceborne Bragg crystal spectrometers. Temperatures of up to 20,000,000 K are obtained from line ratios during flare rise phases in M as well as X flares, while in the decay phase the calcium temperature can be as low as 8,000,000 K, which is significantly lower than in X flares. Large nonthermal motions (on the order of 130 km/sec at most) are also observed in M as well as X flares, which are largest during the soft X-ray rise phase. Finally, it is shown that the method proposed by Gabriel and Phillips (1979) for detecting departures of electrons from Maxwellian velocity distributions is not sufficiently sensitive to give reliable results for the present data.
Quantification of the Conditioning Phase in Cooled Pixelated TlBr Detectors
NASA Astrophysics Data System (ADS)
Koehler, Will; He, Zhong; O'Neal, Sean; Yang, Hao; Kim, Hadong; Cirignano, Leonard; Shah, Kanai
2015-08-01
Thallium-bromide (TlBr) is currently under investigation as an alternative room-temperature semiconductor gamma-ray spectrometer due to its favorable material properties (large bandgap, high atomic numbers, and high density). Previous work has shown that 5 mm thick pixelated TlBr detectors can achieve sub-1% FWHM energy resolution at 662 keV for single-pixel events. These results are limited to - 20° C operation where detector performance is stable. During the first one to five days of applied bias at - 20° C, many TlBr detectors undergo a conditioning phase, where the energy resolution improves and the depth-dependent electron drift velocity stabilizes. In this work, the spectroscopic performance, drift velocity, and freed electron concentrations of multiple 5 mm thick pixelated TlBr detectors are monitored throughout the conditioning phase. Additionally, conditioning is performed twice on the same detector at different times to show that improvement mechanisms relax when the detector is stored without bias. We conclude that the improved spectroscopy results from internal electric field stabilization and uniformity caused by fewer trapped electrons.
Tracing sources of nitrate in snowmelt runoff using a high-resolution isotopic technique
NASA Astrophysics Data System (ADS)
Ohte, N.; Sebestyen, S. D.; Shanley, J. B.; Doctor, D. H.; Kendall, C.; Wankel, S. D.; Boyer, E. W.
2004-11-01
The denitrifier method to determine the dual isotopic composition (δ15N and δ18O) of nitrate is well suited for studies of nitrogen contributions to streams during runoff events. This method requires only 70 nmol of NO3- and enables high throughput of samples. We studied nitrate sources to a headwater stream during snowmelt by generating a high-temporal resolution dataset at the Sleepers River Research Watershed in Vermont, USA. In the earliest phase of runoff, stream NO3- concentrations were highest and stream discharge, NO3- concentrations, and δ18O of NO3- generally tracked one another during diurnal melting. The isotopic composition of stream NO3- varied in-between atmospheric and groundwater NO3- end members indicating a direct contribution of atmospherically-derived NO3- from the snow pack to the stream. During the middle to late phases of snowmelt, the source shifted toward soil NO3- entering the stream via shallow subsurface flow paths.
Transthoracic Ultrafast Doppler Imaging of Human Left Ventricular Hemodynamic Function
Osmanski, Bruno-Félix; Maresca, David; Messas, Emmanuel; Tanter, Mickael; Pernot, Mathieu
2016-01-01
Heart diseases can affect intraventricular blood flow patterns. Real-time imaging of blood flow patterns is challenging because it requires both a high frame rate and a large field of view. To date, standard Doppler techniques can only perform blood flow estimation with high temporal resolution within small regions of interest. In this work, we used ultrafast imaging to map in 2D human left ventricular blood flow patterns during the whole cardiac cycle. Cylindrical waves were transmitted at 4800 Hz with a transthoracic phased array probe to achieve ultrafast Doppler imaging of the left ventricle. The high spatio-temporal sampling of ultrafast imaging permits to rely on a much more effective wall filtering and to increase sensitivity when mapping blood flow patterns during the pre-ejection, ejection, early diastole, diastasis and late diastole phases of the heart cycle. The superior sensitivity and temporal resolution of ultrafast Doppler imaging makes it a promising tool for the noninvasive study of intraventricular hemodynamic function. PMID:25073134
NASA Astrophysics Data System (ADS)
Reolon, David; Jacquot, Maxime; Verrier, Isabelle; Brun, Gérald; Veillas, Colette
2006-12-01
In this paper we propose group refractive index measurement with a spectral interferometric set-up using a broadband supercontinuum generated in an air-silica Microstructured Optical Fibre (MOF) pumped with a picosecond pulsed microchip laser. This source authorizes high fringes visibility for dispersion measurements by Spectroscopic Analysis of White Light Interferograms (SAWLI). Phase calculation is assumed by a wavelet transform procedure combined with a curve fit of the recorded channelled spectrum intensity. This approach provides high resolution and absolute group refractive index measurements along one line of the sample by recording a single 2D spectral interferogram without mechanical scanning.
NASA Astrophysics Data System (ADS)
Domiri, D. D.
2017-01-01
Rice crop is the most important food crop for the Asian population, especially in Indonesia. During the growth of rice plants have four main phases, namely the early planting or inundation phase, the vegetative phase, the generative phase, and bare land phase. Monitoring the condition of the rice plant needs to be conducted in order to know whether the rice plants have problems or not in its growth. Application of remote sensing technology, which uses satellite data such as Landsat 8 and others which has a spatial and temporal resolution is high enough for monitoring the condition of crops such as paddy crop in a large area. In this study has been made an algorithm for monitoring rapidly of rice growth condition using Maximum of Vegetation Index (EVI Max). The results showed that the time of early planting can be estimated if known when EVI Max occurred. The value of EVI Max and when it occured can be known by trough spatial analysis of multitemporal EVI Landsat 8 or other medium spatial resolution satellites.
NASA Astrophysics Data System (ADS)
Harmand, M.; Krygier, A.; Appel, K.; Galtier, E.; Hartley, N.; Konopkova, Z.; Lee, H. J.; McBride, E. E.; Miyanishi, K.; Nagler, B.; Nemausat, R.; Vinci, T.; Zhu, D.; Ozaki, N.; Fiquet, G.
2017-12-01
An accurate knowledge of the properties of iron and iron alloys at high pressures and temperatures is crucial for understanding and modelling planetary interiors. While Earth-size and Super-Earth Exoplanets are being discovered in increasingly large numbers, access to detailed information on liquid properties, melting curves and even solid phases of iron and iron at the pressures and temperatures of their interiors is still strongly limited. In this context, XFEL sources coupled with high-energy lasers afford unique opportunities to measure microscopic structural properties at far extreme conditions. Also the achievable time resolution allows the shock history and phase transition mechanisms to be followed during laser compression, improving our understanding of the high pressure and high strain experiments. Here we present recent studies devoted to investigate the solid-solid and solid-liquid transition in laser-shocked iron and iron alloys (Fe-Si, Fe-C and Fe-O alloys) using X-ray diffraction and X-ray diffuse scattering. Experiment were performed at the MEC end-station of the LCLS facility at SLAC (USA). Detection of the diffuse scattering allowed the identification of the first liquid peak position along the Hugoniot, up to 4 Mbar. The time resolution shows ultrafast (between several tens and several hundreds of picoseconds) solid-solid and solid-liquid phase transitions. Future developments at XFEL facilities will enable detailed studies of the solid and liquid structures of iron and iron alloys as well as out-of-Hugoniot studies.
High resolution human diffusion tensor imaging using 2-D navigated multi-shot SENSE EPI at 7 Tesla
Jeong, Ha-Kyu; Gore, John C.; Anderson, Adam W.
2012-01-01
The combination of parallel imaging with partial Fourier acquisition has greatly improved the performance of diffusion-weighted single-shot EPI and is the preferred method for acquisitions at low to medium magnetic field strength such as 1.5 or 3 Tesla. Increased off-resonance effects and reduced transverse relaxation times at 7 Tesla, however, generate more significant artifacts than at lower magnetic field strength and limit data acquisition. Additional acceleration of k-space traversal using a multi-shot approach, which acquires a subset of k-space data after each excitation, reduces these artifacts relative to conventional single-shot acquisitions. However, corrections for motion-induced phase errors are not straightforward in accelerated, diffusion-weighted multi-shot EPI because of phase aliasing. In this study, we introduce a simple acquisition and corresponding reconstruction method for diffusion-weighted multi-shot EPI with parallel imaging suitable for use at high field. The reconstruction uses a simple modification of the standard SENSE algorithm to account for shot-to-shot phase errors; the method is called Image Reconstruction using Image-space Sampling functions (IRIS). Using this approach, reconstruction from highly aliased in vivo image data using 2-D navigator phase information is demonstrated for human diffusion-weighted imaging studies at 7 Tesla. The final reconstructed images show submillimeter in-plane resolution with no ghosts and much reduced blurring and off-resonance artifacts. PMID:22592941
NASA Astrophysics Data System (ADS)
Yan, Hui; Wang, K. G.; Jones, Jim E.
2016-06-01
A parallel algorithm for large-scale three-dimensional phase-field simulations of phase coarsening is developed and implemented on high-performance architectures. From the large-scale simulations, a new kinetics in phase coarsening in the region of ultrahigh volume fraction is found. The parallel implementation is capable of harnessing the greater computer power available from high-performance architectures. The parallelized code enables increase in three-dimensional simulation system size up to a 5123 grid cube. Through the parallelized code, practical runtime can be achieved for three-dimensional large-scale simulations, and the statistical significance of the results from these high resolution parallel simulations are greatly improved over those obtainable from serial simulations. A detailed performance analysis on speed-up and scalability is presented, showing good scalability which improves with increasing problem size. In addition, a model for prediction of runtime is developed, which shows a good agreement with actual run time from numerical tests.
Ojeda, J; Arrell, C A; Grilj, J; Frassetto, F; Mewes, L; Zhang, H; van Mourik, F; Poletto, L; Chergui, M
2016-03-01
A tuneable repetition rate extreme ultraviolet source (Harmonium) for time resolved photoelectron spectroscopy of liquids is presented. High harmonic generation produces 30-110 eV photons, with fluxes ranging from ∼2 × 10(11) photons/s at 36 eV to ∼2 × 10(8) photons/s at 100 eV. Four different gratings in a time-preserving grating monochromator provide either high energy resolution (0.2 eV) or high temporal resolution (40 fs) between 30 and 110 eV. Laser assisted photoemission was used to measure the temporal response of the system. Vibrational progressions in gas phase water were measured demonstrating the ∼0.2 eV energy resolution.
High density terahertz frequency comb produced by coherent synchrotron radiation
Tammaro, S.; Pirali, O.; Roy, P.; Lampin, J.-F.; Ducournau, G.; Cuisset, A.; Hindle, F.; Mouret, G.
2015-01-01
Frequency combs have enabled significant progress in frequency metrology and high-resolution spectroscopy extending the achievable resolution while increasing the signal-to-noise ratio. In its coherent mode, synchrotron radiation is accepted to provide an intense terahertz continuum covering a wide spectral range from about 0.1 to 1 THz. Using a dedicated heterodyne receiver, we reveal the purely discrete nature of this emission. A phase relationship between the light pulses leads to a powerful frequency comb spanning over one decade in frequency. The comb has a mode spacing of 846 kHz, a linewidth of about 200 Hz, a fractional precision of about 2 × 10−10 and no frequency offset. The unprecedented potential of the comb for high-resolution spectroscopy is demonstrated by the accurate determination of pure rotation transitions of acetonitrile. PMID:26190043
The ICE spectrograph for PEPSI at the LBT: preliminary optical design
NASA Astrophysics Data System (ADS)
Pallavicini, Roberto; Zerbi, Filippo M.; Spano, Paolo; Conconi, Paolo; Mazzoleni, Ruben; Molinari, Emilio; Strassmeier, Klaus G.
2003-03-01
We present a preliminary design study for a high-resolution echelle spectrograph (ICE) to be used with the spectropolarimeter PEPSI under development at the LBT. In order to meet the scientific requirements and take full advantage of the peculiarities of the LBT (i.e. the binocular nature and the adaptive optics capabilities), we have designed a fiber-fed bench mounted instrument for both high resolution (R ≍ 100,000; non-AO polarimetric and integral light modes) and ultra-high resolution (R ≍ 300,000; AO integral light mode). In both cases, 4 spectra per order (two for each primary mirror) shall be accomodated in a 2-dimensional cross dispersed echelle format. In order to obtain a resolution-slit product of ≍ 100,000 as required by the science case, we have considered two alternative designs, one with two R4 echelles in series and the other with a sigle R4 echelle and fiber slicing. A white-pupil design, VPH cross-dispersers and two cameras of different focal length for the AO and non-AO modes are adopted in both cases. It is concluded that the single-echelle fiber-slicer solution has to be preferred in terms of performances, complexity and cost. It can be implemented at the LBT in two phases, with the long-camera AO mode added in a second phase depending on the availability of funds and the time-scale for implementation of the AO system.
ERIC Educational Resources Information Center
Karasek, Francis W.; And Others
1984-01-01
This review covers fundamental developments in gas chromatography during 1982 and 1983. Literature is considered under these headings: columns; liguid phases; solid supports; sorption processes and solvents; open tubular column gas chromatography; instrumentation; high-resolution columns and applications; other techniques; qualitative and…
In vivo optical elastography: stress and strain imaging of human skin lesions
NASA Astrophysics Data System (ADS)
Es'haghian, Shaghayegh; Gong, Peijun; Kennedy, Kelsey M.; Wijesinghe, Philip; Sampson, David D.; McLaughlin, Robert A.; Kennedy, Brendan F.
2015-03-01
Probing the mechanical properties of skin at high resolution could aid in the assessment of skin pathologies by, for example, detecting the extent of cancerous skin lesions and assessing pathology in burn scars. Here, we present two elastography techniques based on optical coherence tomography (OCT) to probe the local mechanical properties of skin. The first technique, optical palpation, is a high-resolution tactile imaging technique, which uses a complaint silicone layer positioned on the tissue surface to measure spatially-resolved stress imparted by compressive loading. We assess the performance of optical palpation, using a handheld imaging probe on a skin-mimicking phantom, and demonstrate its use on human skin. The second technique is a strain imaging technique, phase-sensitive compression OCE that maps depth-resolved mechanical variations within skin. We show preliminary results of in vivo phase-sensitive compression OCE on a human skin lesion.
High-resolution discrete absorption spectrum of α-methallyl free radical in the vapor phase
NASA Astrophysics Data System (ADS)
Bayrakçeken, Fuat; Telatar, Ziya; Arı, Fikret; Tunçyürek, Lale; Karaaslan, İpek; Yaman, Ali
2006-09-01
The α-methallyl free radical is formed in the flash photolysis of 3-methylbut-1-ene, and cis-pent-2-ene in the vapor phase, and then subsequent reactions have been investigated by kinetic spectroscopy and gas-liquid chromatography. The photolysis flash was of short duration and it was possible to follow the kinetics of the radicals' decay, which occurred predominantly by bimolecular recombination. The measured rate constant for the α-methallyl recombination was (3.5 ± 0.3) × 10 10 mol -1 l s -1 at 295 ± 2 K. The absolute extinction coefficients of the α-methallyl radical are calculated from the optical densities of the absorption bands. Detailed analysis of related absorption bands and lifetime measurements in the original α-methallyl high-resolution discrete absorption spectrum image were also carried out by image processing techniques.
NASA Technical Reports Server (NTRS)
Steiner, Bruce; Dobbyn, Ronald C.; Black, David; Burdette, Harold; Kuriyama, Masao; Fripp, Archibald; Simchik, Richard
1991-01-01
Irregularities in three crystals grown in space and in four terrestrial crystals grown under otherwise comparable conditions have been observed in high resolution diffraction imaging. The images provide important new clues to the nature and origins of irregularities in each crystal. For two of the materials, mercuric iodide and lead tin telluride, more than one phase (an array of non-diffracting inclusions) was observed in terrestrial samples; but the formation of these multiple phases appears to have been suppressed in directly comparable crystals grown in microgravity. The terrestrial seed crystal of triglycine sulfate displayed an unexpected layered structure, which propagated during directly comparable space growth. Terrestrial Bridgman regrowth of gallium arsenide revealed a mesoscopic structure substantially different from that of the original Czochralski material. A directly comparable crystal is to be grown shortly in space.
Mizutani, Aya; Nagase, Kenichi; Kikuchi, Akihiko; Kanazawa, Hideko; Akiyama, Yoshikatsu; Kobayashi, Jun; Annaka, Masahiko; Okano, Teruo
2010-09-17
Poly(N-isopropylacrylamide-co-N-tert-butylacrylamide) [P(IPAAm-co-tBAAm)] brushes were prepared on poly(hydroxy methacrylate) (PHMA) [hydrolyzed poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate)] beads having large pores by surface-initiated atom transfer radical polymerization (ATRP) and applied to the stationary phases of thermo-responsive chromatography. Optimized amount of copolymer brushes grafted PHMA beads were able to separate peptides and proteins with narrow peaks and a high resolution. The beads were found to have a specific surface area of 43.0 m(2)/g by nitrogen gas adsorption method. Copolymer brush of P(IPAAm-co-tBAAm) grafted PHMA beads improved the stationary phase of thermo-responsive chromatography for the all-aqueous separation of peptides and proteins. 2010 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eggert, J H; Wark, J
2012-02-15
The National Ignition Facility (NIF) is currently a 192 beam, 1.6 MJ laser. NIF Ramp-Compression Experiments have already made the relevant exo-planet pressure range from 1 to 50 Mbar accessible. We Proposed to Study Carbon Phases by X-Ray Diffraction on NIF. Just a few years ago, ultra-high pressure phase diagrams for materials were very 'simple'. New experiments and theories point out surprising and decidedly complex behavior at the highest pressures considered. High pressures phases of aluminum are also predicted to be complex. Recent metadynamics survey of carbon proposed a dynamic pathway among multiple phases. We need to develop diagnostics andmore » techniques to explore this new regime of highly compressed matter science. X-Ray Diffraction - Understand the phase diagram/EOS/strength/texture of materials to 10's of Mbar. Strategy and physics goals: (1) Powder diffraction; (2) Begin with diamond; (3) Continue with metals etc.; (4) Explore phase diagrams; (5) Develop liquid diffraction; and (6) Reduce background/improve resolution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durand, Mathieu; Morville, Jerome; Romanini, Daniele
2010-09-15
We report on a promising approach to high-sensitivity anisotropy measurements using a high-finesse cavity locked by optical feedback to a diode laser. We provide a simple and effective way to decouple the weak anisotropy of interest from the inherent mirror's birefringence whose drift may be identified as the key limiting parameter in cavity-based techniques. We demonstrate a shot-noise-limited phase shift resolution previously inaccessible in an optical cavity, readily achieving the state-of-the-art level of 3x10{sup -13} rad.
A low power MICS band phase-locked loop for high resolution retinal prosthesis.
Yang, Jiawei; Skafidas, Efstratios
2013-08-01
Ultra low power dissipation is essential in retinal prosthesis and many other biomedical implants. Extensive research has been undertaken in designing low power biomedical transceivers, however to date, most effort has been focused on low frequency inductive links. For higher frequency, more robust and more complex applications, such as Medical Implant Communication Service (MICS) band multichannel transceivers, power consumption remains high. This paper explores the design of micro-power data links at 400 MHz for a high resolution retinal prosthesis. By taking advantage of advanced small geometry CMOS technology and precise transistor-level modeling, we successfully utilized subthreshold FET operation, which has been historically limited to low frequency circuits due to the inadequate transistor operating speed in and near weak inversion; we have implemented a low power MICS transceiver. Particularly, a low power, MICS band multichannel phase-locked loop (PLL) that employs a subthreshold voltage controlled oscillator (VCO) and digital synchronous dividers has been implemented on a 65-nm CMOS. A design methodology is presented in detail with the demonstration of EKV model parameters extraction. This PLL provides 600- mVpp quadrature oscillations and exhibits a phase noise of -102 dBc/Hz at 200-kHz offset, while only consuming 430- μW from a 1-V supply. The VCO has a gain (KVCO) of 12 MHz/V and is designed to operate in the near-weak inversion region and consumes 220- μA DC current. The designed PLL has a core area of 0.54 mm(2). It satisfies all specifications of MICS band operation with the advantage of significant reduction in power which is crucial for high resolution retinal prosthesis.
NASA Astrophysics Data System (ADS)
Rettmann, M. E.; Holmes, D. R., III; Gunawan, M. S.; Ge, X.; Karwoski, R. A.; Breen, J. F.; Packer, D. L.; Robb, R. A.
2012-03-01
Geometric analysis of the left atrium and pulmonary veins is important for studying reverse structural remodeling following cardiac ablation therapy. It has been shown that the left atrium decreases in volume and the pulmonary vein ostia decrease in diameter following ablation therapy. Most analysis techniques, however, require laborious manual tracing of image cross-sections. Pulmonary vein diameters are typically measured at the junction between the left atrium and pulmonary veins, called the pulmonary vein ostia, with manually drawn lines on volume renderings or on image cross-sections. In this work, we describe a technique for making semi-automatic measurements of the left atrium and pulmonary vein ostial diameters from high resolution CT scans and multi-phase datasets. The left atrium and pulmonary veins are segmented from a CT volume using a 3D volume approach and cut planes are interactively positioned to separate the pulmonary veins from the body of the left atrium. The cut plane is also used to compute the pulmonary vein ostial diameter. Validation experiments are presented which demonstrate the ability to repeatedly measure left atrial volume and pulmonary vein diameters from high resolution CT scans, as well as the feasibility of this approach for analyzing dynamic, multi-phase datasets. In the high resolution CT scans the left atrial volume measurements show high repeatability with approximately 4% intra-rater repeatability and 8% inter-rater repeatability. Intra- and inter-rater repeatability for pulmonary vein diameter measurements range from approximately 2 to 4 mm. For the multi-phase CT datasets, differences in left atrial volumes between a standard slice-by-slice approach and the proposed 3D volume approach are small, with percent differences on the order of 3% to 6%.
Indentation measurements on the eardrum with automated projection moiré profilometry
NASA Astrophysics Data System (ADS)
Buytaert, J. A. N.; Aernouts, J. E. F.; Dirckx, J. J. J.
2009-03-01
Computer modeling of middle ear mechanics is an important tool to investigate its complex behavior, but correct mechanical and elastic parameters are needed to obtain realistic simulations. A possible way to determine eardrum elasticity in situ is the use of point indentation measurements. The eardrum is, however, a small fragile membrane, so a non-contacting high-resolution technique is needed to measure the shape change caused by point indentation. We have developed a projection moiré interferometer combined with an indentation actuator and a high-resolution force sensor. The apparatus applies deformations up to 1 mm with a resolution of 1 μm, while the indentation force is measured with a resolution better than 1 mN. The moiré setup delivers height data on 512×512 points through phase-shifting, with a height resolution of 15 μm. Shape recordings are made on a rabbit eardrum at different indentation distances, and indentation force is recorded simultaneously.
Lin, Yu-Zi; Huang, Kuang-Yuh; Luo, Yuan
2018-06-15
Half-circle illumination-based differential phase contrast (DPC) microscopy has been utilized to recover phase images through a pair of images along multiple axes. Recently, the half-circle based DPC using 12-axis measurements significantly provides a circularly symmetric phase transfer function to improve accuracy for more stable phase recovery. Instead of using half-circle-based DPC, we propose a new scheme of DPC under radially asymmetric illumination to achieve circularly symmetric phase transfer function and enhance the accuracy of phase recovery in a more stable and efficient fashion. We present the design, implementation, and experimental image data demonstrating the ability of our method to obtain quantitative phase images of microspheres, as well as live fibroblast cell samples.
Gijsen, Frank J.; Marquering, Henk; van Ooij, Pim; vanBavel, Ed; Wentzel, Jolanda J.; Nederveen, Aart J.
2016-01-01
Introduction Wall shear stress (WSS) and oscillatory shear index (OSI) are associated with atherosclerotic disease. Both parameters are derived from blood velocities, which can be measured with phase-contrast MRI (PC-MRI). Limitations in spatiotemporal resolution of PC-MRI are known to affect these measurements. Our aim was to investigate the effect of spatiotemporal resolution using a carotid artery phantom. Methods A carotid artery phantom was connected to a flow set-up supplying pulsatile flow. MRI measurement planes were placed at the common carotid artery (CCA) and internal carotid artery (ICA). Two-dimensional PC-MRI measurements were performed with thirty different spatiotemporal resolution settings. The MRI flow measurement was validated with ultrasound probe measurements. Mean flow, peak flow, flow waveform, WSS and OSI were compared for these spatiotemporal resolutions using regression analysis. The slopes of the regression lines were reported in %/mm and %/100ms. The distribution of low and high WSS and OSI was compared between different spatiotemporal resolutions. Results The mean PC-MRI CCA flow (2.5±0.2mL/s) agreed with the ultrasound probe measurements (2.7±0.02mL/s). Mean flow (mL/s) depended only on spatial resolution (CCA:-13%/mm, ICA:-49%/mm). Peak flow (mL/s) depended on both spatial (CCA:-13%/mm, ICA:-17%/mm) and temporal resolution (CCA:-19%/100ms, ICA:-24%/100ms). Mean WSS (Pa) was in inverse relationship only with spatial resolution (CCA:-19%/mm, ICA:-33%/mm). OSI was dependent on spatial resolution for CCA (-26%/mm) and temporal resolution for ICA (-16%/100ms). The regions of low and high WSS and OSI matched for most of the spatiotemporal resolutions (CCA:30/30, ICA:28/30 cases for WSS; CCA:23/30, ICA:29/30 cases for OSI). Conclusion We show that both mean flow and mean WSS are independent of temporal resolution. Peak flow and OSI are dependent on both spatial and temporal resolution. However, the magnitude of mean and peak flow, WSS and OSI, and the spatial distribution of OSI and WSS did not exhibit a strong dependency on spatiotemporal resolution. PMID:27669568
Synthetic aperture radar images with composite azimuth resolution
Bielek, Timothy P; Bickel, Douglas L
2015-03-31
A synthetic aperture radar (SAR) image is produced by using all phase histories of a set of phase histories to produce a first pixel array having a first azimuth resolution, and using less than all phase histories of the set to produce a second pixel array having a second azimuth resolution that is coarser than the first azimuth resolution. The first and second pixel arrays are combined to produce a third pixel array defining a desired SAR image that shows distinct shadows of moving objects while preserving detail in stationary background clutter.
Moshopoulou, E G; Ibberson, R M; Sarrao, J L; Thompson, J D; Fisk, Z
2006-04-01
The room-temperature crystal structure of the heavy fermion antiferromagnet Ce2RhIn8, dicerium rhodium octaindide, has been studied by a combination of high-resolution synchrotron X-ray reciprocal-space mapping of single crystals and high-resolution time-of-flight neutron powder diffraction. The structure is disordered, exhibiting a complex interplay of non-periodic, partially correlated planar defects, coexistence and segregation of polytypic phases (induced by periodic planar ;defects'), mosaicity (i.e. domain misalignment) and non-uniform strain. These effects evolve as a function of temperature in a complicated way, but they remain down to low temperatures. The room-temperature diffraction data are best represented by a complex mixture of two polytypic phases, which are affected by non-periodic, partially correlated planar defects, differ slightly in their tetragonal structures, and exhibit different mosaicities and strain values. Therefore, Ce2RhIn8 approaches the paracrystalline state, rather than the classic crystalline state and thus several of the concepts of conventional single-crystal crystallography are inapplicable. The structural results are discussed in the context of the role of disorder in the heavy-fermion state and in the interplay between superconductivity and magnetism.
NASA Astrophysics Data System (ADS)
Pfister, T.; Günther, P.; Nöthen, M.; Czarske, J.
2010-02-01
Both in production engineering and process control, multidirectional displacements, deformations and vibrations of moving or rotating components have to be measured dynamically, contactlessly and with high precision. Optical sensors would be predestined for this task, but their measurement rate is often fundamentally limited. Furthermore, almost all conventional sensors measure only one measurand, i.e. either out-of-plane or in-plane distance or velocity. To solve this problem, we present a novel phase coded heterodyne laser Doppler distance sensor (PH-LDDS), which is able to determine out-of-plane (axial) position and in-plane (lateral) velocity of rough solid-state objects simultaneously and independently with a single sensor. Due to the applied heterodyne technique, stationary or purely axially moving objects can also be measured. In addition, it is shown theoretically as well as experimentally that this sensor offers concurrently high temporal resolution and high position resolution since its position uncertainty is in principle independent of the lateral object velocity in contrast to conventional distance sensors. This is a unique feature of the PH-LDDS enabling precise and dynamic position and shape measurements also of fast moving objects. With an optimized sensor setup, an average position resolution of 240 nm was obtained.
Selenium Derivatization of Nucleic Acids for Crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang,J.; Sheng, J.; Carrasco, N.
2007-01-01
The high-resolution structure of the DNA (5'-GTGTACA-C-3') with the selenium derivatization at the 2'-position of T2 was determined via MAD and SAD phasing. The selenium-derivatized structure (1.28 {angstrom} resolution) with the 2'-Se modification in the minor groove is isomorphorous to the native structure (2.0 {angstrom}). To directly compare with the conventional bromine derivatization, we incorporated bromine into the 5-postion of T4, determined the bromine-derivatized DNA structure at 1.5 {angstrom} resolution, and found that the local backbone torsion angles and solvent hydration patterns were altered in the structure with the Br incorporation in the major groove. Furthermore, while the native andmore » Br-derivatized DNAs needed over a week to form reasonable-size crystals, we observed that the Se-derivatized DNAs grew crystals overnight with high-diffraction quality, suggesting that the Se derivatization facilitated the crystal formation. In addition, the Se-derivatized DNA sequences crystallized under a broader range of buffer conditions, and generally had a faster crystal growth rate. Our experimental results indicate that the selenium derivatization of DNAs may facilitate the determination of nucleic acid X-ray crystal structures in phasing and high-quality crystal growth. In addition, our results suggest that the Se derivatization can be an alternative to the conventional Br derivatization.« less
Bussy, Ugo; Chung-Davidson, Yu-Wen; Li, Ke; Li, Weiming
2014-11-01
Electrochemistry combined with (liquid chromatography) high resolution mass spectrometry was used to simulate the general reductive metabolism of three biologically important nitro aromatic molecules: 3-trifluoromethyl-4-nitrophenol (TFM), niclosamide, and nilutamide. TFM is a pesticide used in the Laurential Great Lakes while niclosamide and nilutamide are used in cancer therapy. At first, a flow-through electrochemical cell was directly connected to a high resolution mass spectrometer to evaluate the ability of electrochemistry to produce the main reduction metabolites of nitro aromatic, nitroso, hydroxylamine, and amine functional groups. Electrochemical experiments were then carried out at a constant potential of -2.5 V before analysis of the reduction products by LC-HRMS, which confirmed the presence of the nitroso, hydroxylamine, and amine species as well as dimers. Dimer identification illustrates the reactivity of the nitroso species with amine and hydroxylamine species. To investigate xenobiotic metabolism, the reactivity of nitroso species to biomolecules was also examined. Binding of the nitroso metabolite to glutathione was demonstrated by the observation of adducts by LC-ESI(+)-HRMS and the characteristics of their MSMS fragmentation. In conclusion, electrochemistry produces the main reductive metabolites of nitro aromatics and supports the observation of nitroso reactivity through dimer or glutathione adduct formation.
NASA Astrophysics Data System (ADS)
Tsen, S.-C. Y.; Smith, David J.; Tsen, K. T.; Kim, W.; Morkoç, H.
1997-12-01
A series of Mg-doped GaN films (˜1-1.3 μm) grown by reactive molecular beam epitaxy at substrate temperatures of 750 and 800 °C has been studied by high-resolution electron microscopy (HREM) and Raman spectroscopy. Stacking defects parallel to the substrate surface were observed in samples grown on sapphire substrates at 750 °C with AlN buffer layers (60-70 nm) at low Mg concentration. A transition region with mixed zinc-blende cubic (c) and wurtzite hexagonal (h) phases having the relative orientations of (111)c//(00.1)h and (11¯0)c//(10.0)h was observed for increased Mg concentration. The top surfaces of highly doped samples were rough and assumed a completely zinc-blende phase with some inclined stacking faults. Samples grown with a Mg cell temperature of 350 °C and high doping levels were highly disordered with many small crystals having inclined stacking faults, microtwins, and defective wurtzite and zinc-blende phases. Correlation between HREM and Raman scattering results points towards the presence of compressive lattice distortion along the growth direction which might be attributable to structural defects. The films grown at 800 °C had better quality with less observable defects and less yellow luminescence than samples grown at 750 °C.
NASA Astrophysics Data System (ADS)
Gravity Collaboration; Abuter, R.; Accardo, M.; Amorim, A.; Anugu, N.; Ávila, G.; Azouaoui, N.; Benisty, M.; Berger, J. P.; Blind, N.; Bonnet, H.; Bourget, P.; Brandner, W.; Brast, R.; Buron, A.; Burtscher, L.; Cassaing, F.; Chapron, F.; Choquet, É.; Clénet, Y.; Collin, C.; Coudé Du Foresto, V.; de Wit, W.; de Zeeuw, P. T.; Deen, C.; Delplancke-Ströbele, F.; Dembet, R.; Derie, F.; Dexter, J.; Duvert, G.; Ebert, M.; Eckart, A.; Eisenhauer, F.; Esselborn, M.; Fédou, P.; Finger, G.; Garcia, P.; Garcia Dabo, C. E.; Garcia Lopez, R.; Gendron, E.; Genzel, R.; Gillessen, S.; Gonte, F.; Gordo, P.; Grould, M.; Grözinger, U.; Guieu, S.; Haguenauer, P.; Hans, O.; Haubois, X.; Haug, M.; Haussmann, F.; Henning, Th.; Hippler, S.; Horrobin, M.; Huber, A.; Hubert, Z.; Hubin, N.; Hummel, C. A.; Jakob, G.; Janssen, A.; Jochum, L.; Jocou, L.; Kaufer, A.; Kellner, S.; Kendrew, S.; Kern, L.; Kervella, P.; Kiekebusch, M.; Klein, R.; Kok, Y.; Kolb, J.; Kulas, M.; Lacour, S.; Lapeyrère, V.; Lazareff, B.; Le Bouquin, J.-B.; Lèna, P.; Lenzen, R.; Lévêque, S.; Lippa, M.; Magnard, Y.; Mehrgan, L.; Mellein, M.; Mérand, A.; Moreno-Ventas, J.; Moulin, T.; Müller, E.; Müller, F.; Neumann, U.; Oberti, S.; Ott, T.; Pallanca, L.; Panduro, J.; Pasquini, L.; Paumard, T.; Percheron, I.; Perraut, K.; Perrin, G.; Pflüger, A.; Pfuhl, O.; Phan Duc, T.; Plewa, P. M.; Popovic, D.; Rabien, S.; Ramírez, A.; Ramos, J.; Rau, C.; Riquelme, M.; Rohloff, R.-R.; Rousset, G.; Sanchez-Bermudez, J.; Scheithauer, S.; Schöller, M.; Schuhler, N.; Spyromilio, J.; Straubmeier, C.; Sturm, E.; Suarez, M.; Tristram, K. R. W.; Ventura, N.; Vincent, F.; Waisberg, I.; Wank, I.; Weber, J.; Wieprecht, E.; Wiest, M.; Wiezorrek, E.; Wittkowski, M.; Woillez, J.; Wolff, B.; Yazici, S.; Ziegler, D.; Zins, G.
2017-06-01
GRAVITY is a new instrument to coherently combine the light of the European Southern Observatory Very Large Telescope Interferometer to form a telescope with an equivalent 130 m diameter angular resolution and a collecting area of 200 m2. The instrument comprises fiber fed integrated optics beam combination, high resolution spectroscopy, built-in beam analysis and control, near-infrared wavefront sensing, phase-tracking, dual-beam operation, and laser metrology. GRAVITY opens up to optical/infrared interferometry the techniques of phase referenced imaging and narrow angle astrometry, in many aspects following the concepts of radio interferometry. This article gives an overview of GRAVITY and reports on the performance and the first astronomical observations during commissioning in 2015/16. We demonstrate phase-tracking on stars as faint as mK ≈ 10 mag, phase-referenced interferometry of objects fainter than mK ≈ 15 mag with a limiting magnitude of mK ≈ 17 mag, minute long coherent integrations, a visibility accuracy of better than 0.25%, and spectro-differential phase and closure phase accuracy better than 0.5°, corresponding to a differential astrometric precision of better than ten microarcseconds (μas). The dual-beam astrometry, measuring the phase difference of two objects with laser metrology, is still under commissioning. First observations show residuals as low as 50 μas when following objects over several months. We illustrate the instrument performance with the observations of archetypical objects for the different instrument modes. Examples include the Galactic center supermassive black hole and its fast orbiting star S2 for phase referenced dual-beam observations and infrared wavefront sensing, the high mass X-ray binary BP Cru and the active galactic nucleus of PDS 456 for a few μas spectro-differential astrometry, the T Tauri star S CrA for a spectro-differential visibility analysis, ξ Tel and 24 Cap for high accuracy visibility observations, and η Car for interferometric imaging with GRAVITY.
Television experiment for Mariner Mars 1971
Masursky, H.; Batson, R.; Borgeson, W.; Carr, M.; McCauley, J.; Milton, D.; Wildey, R.; Wilhelms, D.; Murray, B.; Horowitz, N.; Leighton, R.; Sharp, R.; Thompson, W.; Briggs, G.; Chandeysson, P.; Shipley, E.; Sagan, C.; Pollack, J.; Lederberg, J.; Levinthal, E.; Hartmann, W.; McCord, T.; Smith, B.; Davies, M.; De Vaucouleurs, G.; Leovy, C.
1970-01-01
The Television Experiment objectives are to provide imaging data which will complement previously gathered data and extend our knowledge of Mars. The two types of investigations will be fixed-feature (for mapping) and variable-feature (for surface and atmospheric changes). Two cameras with a factor-of-ten difference in resolution will be used on each spacecraft for medium- and high-resolution imagery. Mapping of 70% of the planet's surface will be provided by medium-resolution imagery. Spot coverage of about 5% of the surface will be possible with the high-resolution imagery. The experiment's 5 Principal Investigators and 21 Co-Investigators are organized into a team. Scientific disciplines and technical task groups have been formed to provide the formulation of experiment requirements for mission planning and instrument development. It is expected that the team concept will continue through the operational and reporting phases of the Mariner Mars 1971 Project. ?? 1970.
Native phasing of x-ray free-electron laser data for a G protein-coupled receptor.
Batyuk, Alexander; Galli, Lorenzo; Ishchenko, Andrii; Han, Gye Won; Gati, Cornelius; Popov, Petr A; Lee, Ming-Yue; Stauch, Benjamin; White, Thomas A; Barty, Anton; Aquila, Andrew; Hunter, Mark S; Liang, Mengning; Boutet, Sébastien; Pu, Mengchen; Liu, Zhi-Jie; Nelson, Garrett; James, Daniel; Li, Chufeng; Zhao, Yun; Spence, John C H; Liu, Wei; Fromme, Petra; Katritch, Vsevolod; Weierstall, Uwe; Stevens, Raymond C; Cherezov, Vadim
2016-09-01
Serial femtosecond crystallography (SFX) takes advantage of extremely bright and ultrashort pulses produced by x-ray free-electron lasers (XFELs), allowing for the collection of high-resolution diffraction intensities from micrometer-sized crystals at room temperature with minimal radiation damage, using the principle of "diffraction-before-destruction." However, de novo structure factor phase determination using XFELs has been difficult so far. We demonstrate the ability to solve the crystallographic phase problem for SFX data collected with an XFEL using the anomalous signal from native sulfur atoms, leading to a bias-free room temperature structure of the human A 2A adenosine receptor at 1.9 Å resolution. The advancement was made possible by recent improvements in SFX data analysis and the design of injectors and delivery media for streaming hydrated microcrystals. This general method should accelerate structural studies of novel difficult-to-crystallize macromolecules and their complexes.