Zimmerman, S C; Saionz, K W; Zeng, Z
1993-01-01
The synthesis of hosts with improved binding affinities for nitroaromatic guests is described. Association constants for several host-guest complexes were measured in chloroform solution and ranged over three orders of magnitude. Two hosts were covalently linked to silica gel to produce chemically bonded stationary phases for HPLC. The use of these phases for HPLC analysis of nitro-substituted polycyclic aromatic hydrocarbons is discussed. PMID:8433981
Shak, S
1987-01-01
LTB4 and its omega-oxidation products may be rapidly, sensitively, and specifically quantitated by the methods of solid-phase extraction and reversed-phase high-performance liquid chromatography (HPLC), which are described in this chapter. Although other techniques, such as radioimmunoassay or gas chromatography-mass spectrometry, may be utilized for quantitative analysis of the lipoxygenase products of arachidonic acid, only the technique of reversed-phase HPLC can quantitate as many as 10 metabolites in a single analysis, without prior derivatization. In this chapter, we also reviewed the chromatographic theory which we utilized in order to optimize reversed-phase HPLC analysis of LTB4 and its omega-oxidation products. With this information and a gradient HPLC system, it is possible for any investigator to develop a powerful assay for the potent inflammatory mediator, LTB4, or for any other lipoxygenase product of arachidonic acid.
USDA-ARS?s Scientific Manuscript database
In this study, 30 hard red spring (HRS) wheat cultivars released between 1910 and 2013 were analyzed to determine how they cluster in terms of parentage and protein data, analyzed by reverse-phase HPLC (RP-HPLC) of gliadins, and size-exclusion HPLC (SE-HPLC) of unreduced proteins. Dwarfing genes in...
A simple method for plasma total vitamin C analysis suitable for routine clinical laboratory use.
Robitaille, Line; Hoffer, L John
2016-04-21
In-hospital hypovitaminosis C is highly prevalent but almost completely unrecognized. Medical awareness of this potentially important disorder is hindered by the inability of most hospital laboratories to determine plasma vitamin C concentrations. The availability of a simple, reliable method for analyzing plasma vitamin C could increase opportunities for routine plasma vitamin C analysis in clinical medicine. Plasma vitamin C can be analyzed by high performance liquid chromatography (HPLC) with electrochemical (EC) or ultraviolet (UV) light detection. We modified existing UV-HPLC methods for plasma total vitamin C analysis (the sum of ascorbic and dehydroascorbic acid) to develop a simple, constant-low-pH sample reduction procedure followed by isocratic reverse-phase HPLC separation using a purely aqueous low-pH non-buffered mobile phase. Although EC-HPLC is widely recommended over UV-HPLC for plasma total vitamin C analysis, the two methods have never been directly compared. We formally compared the simplified UV-HPLC method with EC-HPLC in 80 consecutive clinical samples. The simplified UV-HPLC method was less expensive, easier to set up, required fewer reagents and no pH adjustments, and demonstrated greater sample stability than many existing methods for plasma vitamin C analysis. When compared with the gold-standard EC-HPLC method in 80 consecutive clinical samples exhibiting a wide range of plasma vitamin C concentrations, it performed equivalently. The easy set up, simplicity and sensitivity of the plasma vitamin C analysis method described here could make it practical in a normally equipped hospital laboratory. Unlike any prior UV-HPLC method for plasma total vitamin C analysis, it was rigorously compared with the gold-standard EC-HPLC method and performed equivalently. Adoption of this method could increase the availability of plasma vitamin C analysis in clinical medicine.
NASA Astrophysics Data System (ADS)
Martono, Y.; Rohman, A.; Riyanto, S.; Martono, S.
2018-04-01
Solid Phase Extraction (SPE) method using silica as sorbent for stevioside and rebaudiosida A analysis in Stevia rebaudiana Bertoni leaf have not been performed. The aim of this study is to develop SPE method using silica as sorbent for Reverse Phase-High Performance Liquid Chromatography (RP-HPLC) analysis of stevioside and rebaudiosida A in S. rebaudiana leaf. The results of this study indicate that the optimal conditions for normal phase SPE (silica) are conditioned with 3.0 mL of hexane. The sample loading volume is 0.1 mL. Cartridge is eluted with 1.0 mL acetonitrile: water (80: 20, v/v) to separate both analytes. The cartridge is washed with chloroform and water of 0.3 mL respectively. The developed SPE sample preparation method meets the accuracy and precision test and can be used for the analysis of stevioside and rebaudioside A by RP-HPLC.
2012-05-01
methods demonstrated that desorption into solvents suitable for subsequent chemical analysis (into acetonitrile for HPLC analysis or hexane for GC...SPME. Analysis by HPLC with EPA 8310 with fluorescent detection. a) surface water quality criteria (NRWQC) are given for comparison to detection... analysis ) or hexane (for PCB analysis ) was added to the inserts. The vials were then analyzed directly by HPLC (PAHs) or GC-ECD (PCBs). Fiber achieved
This research was conducted in cooperation with EPA Region 4 in Athens, GA to develop a method to analyze selected pyrethroid pesticides using Reverse Phase-High Pressure Liquid Chromatography (HPLC). This HPLC method will aid researchers in separating and identifying these py...
Yang, Yu; Strickland, Zackary; Kapalavavi, Brahmam; Marple, Ronita; Gamsky, Chris
2011-03-15
In this work, chromatographic separation of niacin and niacinamide using pure water as the sole component in the mobile phase has been investigated. The separation and analysis of niacinamide have been optimized using three columns at different temperatures and various flow rates. Our results clearly demonstrate that separation and analysis of niacinamide from skincare products can be achieved using pure water as the eluent at 60°C on a Waters XTerra MS C18 column, a Waters XBridge C18 column, or at 80°C on a Hamilton PRP-1 column. The separation efficiency, quantification quality, and analysis time of this new method are at least comparable with those of the traditional HPLC methods. Compared with traditional HPLC, the major advantage of this newly developed green chromatography technique is the elimination of organic solvents required in the HPLC mobile phase. In addition, the pure water chromatography separations described in this work can be directly applied in industrial plant settings without further modification of the existing HPLC equipment. Copyright © 2011 Elsevier B.V. All rights reserved.
2012-08-01
subsequent chemical analysis (into acetonitrile for high-performance liquid chromatography [ HPLC ] analysis or hexane for gas chromatography [GC... analysis ) is rapid and complete. In this work, PAHs were analyzed by Waters 2795 HPLC with fluorescent detection (USEPA Method 8310) and PCBs were...detection limits by direct water injection versus SPME with PDMS and coefficient of variation and correlation coefficient for SPME. Analysis by HPLC
This research was conducted in cooperation with EPA Region 4 in Athens, GA to develop a method to analyze selected pyrethroid pesticides using Reverse Phase-High Pressure Liquid Chromatography (HPLC). This HPLC method will aid researchers in separating and identifying these pyre...
Quality Analysis of Chlorogenic Acid and Hyperoside in Crataegi fructus
Weon, Jin Bae; Jung, Youn Sik; Ma, Choong Je
2016-01-01
Background: Crataegi fructus is a herbal medicine for strong stomach, sterilization, and alcohol detoxification. Chlorogenic acid and hyperoside are the major compounds in Crataegi fructus. Objective: In this study, we established novel high-performance liquid chromatography (HPLC)-diode array detection analysis method of chlorogenic acid and hyperoside for quality control of Crataegi fructus. Materials and Methods: HPLC analysis was achieved on a reverse-phase C18 column (5 μm, 4.6 mm × 250 mm) using water and acetonitrile as mobile phase with gradient system. The method was validated for linearity, precision, and accuracy. About 31 batches of Crataegi fructus samples collected from Korea and China were analyzed by using HPLC fingerprint of developed HPLC method. Then, the contents of chlorogenic acid and hyperoside were compared for quality evaluation of Crataegi fructus. Results: The results have shown that the average contents (w/w %) of chlorogenic acid and hyperoside in Crataegi fructus collected from Korea were 0.0438% and 0.0416%, respectively, and the average contents (w/w %) of 0.0399% and 0.0325%, respectively. Conclusion: In conclusion, established HPLC analysis method was stable and could provide efficient quality evaluation for monitoring of commercial Crataegi fructus. SUMMARY Quantitative analysis method of chlorogenic acid and hyperoside in Crataegi fructus is developed by high.performance liquid chromatography.(HPLC).diode array detectionEstablished HPLC analysis method is validated with linearity, precision, and accuracyThe developed method was successfully applied for quantitative analysis of Crataegi fructus sample collected from Korea and China. Abbreviations used: HPLC: High-performance liquid chromatography, GC: Gas chromatography, MS: Mass spectrometer, LOD: Limits of detection, LOQ: Limits of quantification, RSD: Relative standard deviation, RRT: Relative retention time, RPA: Relation peak area. PMID:27076744
Regio- and stereospecific analysis of glycerolipids.
Kuksis, Arnis; Itabashi, Yutaka
2005-06-01
In recent years researchers have recognized the potential value of comprehensive lipid profiling (lipidomics), which was invented and promoted by lipidologists who recognized the many valuable applications that grew out of the fields of DNA profiling (genomics) and protein profiling (proteonomics). Through lipid class-selective intrasource ionization and subsequent analysis of two-dimensional cross-peak intensities, the chemical identity and mass composition of individual molecular species of most lipid classes can now be determined in a chloroform extract. There remains, however, the necessity to distinguish the enantiomers and isobaric regioisomers resulting from enzymatic and chemical reactions, which conventional high performance liquid chromatography/mass spectrometry (HPLC/MS) has been slow to accommodate, and tandem MS unable to provide. While reversed-phase HPLC can separate regioisomers, normal-phase HPLC can resolve diastereomers, and chiral-phase HPLC can effect dramatic resolution of enantiomers, the full potential of the combined systems has seldom been exploited. The present chapter calls attention to both recent and earlier combinations of these methodologies with mass spectrometry, which allows the HPLC/ESI (electrospray ionization)-MS/MS separation and identification of enantiomeric diacylglycerols, triacylglycerols, and glycerophospholipids as well as their isobaric regioisomers. These developments permit further expansion of lipid profiling (lipidomics) and better understanding of lipid metabolism.
Aberham, Anita; Cicek, Serhat Sezai; Schneider, Peter; Stuppner, Hermann
2010-10-27
Today, the medicinal use of wormwood (Artemisia absinthium) is enjoying a resurgence of popularity. This study presents a specific and validated high-performance liquid chromatography (HPLC)-diode array detection method for the simultaneous determination and quantification of bioactive compounds in wormwood and commercial preparations thereof. Five sesquiterpene lactones, two lignans, and a polymethoxylated flavonoid were baseline separated on RP-18 material, using a solvent gradient consisting of 0.085% (v/v) o-phosphoric acid and acetonitrile. The flow rate was 1.0 mL/min, and chromatograms were recorded at 205 nm. The stability of absinthin was tested exposing samples to light, moisture, and different temperatures. Methanolic and aqueous solutions of absinthin were found to be stable for up to 6 months. This was also the case when the solid compound was kept in the refrigerator at -35 °C. In contrast, the colorless needles, when stored at room temperature, turned yellow. Three degradation compounds (anabsin, anabsinthin, and the new dimer 3'-hydroxyanabsinthin) were identified by HPLC-mass spectrometry and HPLC-solid-phase extraction-nuclear magnetic resonance and quantified by the established HPLC method.
The use of dihexyldithiocarbamate in reverse-phase HPLC of metal chelates
NASA Astrophysics Data System (ADS)
Fatimah, S. S.; Bahti, H. H.; Hastiawan, I.; Permanasari, A.
2018-05-01
Dialkyldithiocarbamates have long been used as chelating agents in reverse-phase HPLC of transition metals. In the previous study, an alkyl homolog of this type of ligand, namely dihexyldithiocarbamate (DHDTC), was synthesized and characterized. The use of this particular ligand in the revese-phase HPLC of some selected transition metal ions is now reported for the first time. The mobile phase comprising of the flow rate and of the detection, in the separation of the metal chelates of Cd (II), Fe (III), Cu (II), and Co (III), were investigated on a C-18 column. The results showed that dihexylditiocarbamate could be used for separating Cd (II), Fe(III), Cu(II), and Co(III). Therefore, it could be used in simultaneous analysis.
Petruczynik, Anna; Wroblewski, Karol; Szultka-Mlynska, Malgorzata; Buszewsk, Boguslaw; Karakula-Juchnowicz, Hanna; Gajewski, Jacek; Morylowska-Topolska, Justyna; Waksmundzka-Hajnosi, Monika
2017-05-01
A high performance liquid chromatography (HPLC) method for simultaneous analysis of venlafaxine and its major metabolite 0-desmethylvenlafaxine and vilazodone and its methabolite M10 have been devel- oped and validated. Chromatography was performed on the Phenyl-Hexyl column with mobile phase containing methanol, acetate buffer at pH 3.5 and diethylamine. The application of stationary phase with 7r-7c moieties and mobile phase containing diethylamine as silanol blocker lets to obtain double protection against silanols and thus very high theoretical plate numbers were obtained. The good separation selectivity, good peaks' symmetry and very high systems efficiency for all investigated compounds were obtained in applied chromatographic system. The method is very efficient and suitable for the analysis of investigated drugs and their metabolites in human serum for patients' pharmacotherapy control.
Sandmann, Gerhard
2010-01-01
Acetonitrile-based HPLC systems are the most commonly used for carotenoid analysis from different plant tissues. Because of the acetonitrile shortage, an HPLC system for the separation of carotenoids on C(18) reversed-phase columns was developed in which an acetonitrile-alcohol-based mobile phase was replaced by nitromethane. This solvent comes closest to acetonitrile with respect to its elutrophic property. Our criterion was to obtain similar separation and retention times for a range of differently structured carotenoids. This was achieved by further increase in the lipophilicity with ethylacetate. For all the carotenoids which we tested, we found co-elution only of β-cryptoxanthin and lycopene. By addition of 1% of water, separation of this pair of carotenoids was also achieved. The final recommended mobile phase consisted of nitromethane : 2-propanol : ethyl acetate : water (79 : 10 : 10 : 1, by volume). On Nucleosil C(18) columns and related ones like Hypersil C(18), we obtained separation of carotenes, hydroxyl, epoxy and keto derivatives, which resembles the excellent separation properties of acetonitrile-based mobile phases on C(18) reversed phase columns. We successfully applied the newly developed HPLC system to the separation of carotenoids from different vegetables and fruit. Copyright © 2010 John Wiley & Sons, Ltd.
Development and Validation of an HPLC Method for Karanjin in Pongamia pinnata linn. Leaves.
Katekhaye, S; Kale, M S; Laddha, K S
2012-01-01
A rapid, simple and specific reversed-phase HPLC method has been developed for analysis of karanjin in Pongamia pinnata Linn. leaves. HPLC analysis was performed on a C(18) column using an 85:13.5:1.5 (v/v) mixtures of methanol, water and acetic acid as isocratic mobile phase at a flow rate of 1 ml/min. UV detection was at 300 nm. The method was validated for accuracy, precision, linearity, specificity. Validation revealed the method is specific, accurate, precise, reliable and reproducible. Good linear correlation coefficients (r(2)>0.997) were obtained for calibration plots in the ranges tested. Limit of detection was 4.35 μg and limit of quantification was 16.56 μg. Intra and inter-day RSD of retention times and peak areas was less than 1.24% and recovery was between 95.05 and 101.05%. The established HPLC method is appropriate enabling efficient quantitative analysis of karanjin in Pongamia pinnata leaves.
Development and Validation of an HPLC Method for Karanjin in Pongamia pinnata linn. Leaves
Katekhaye, S; Kale, M. S.; Laddha, K. S.
2012-01-01
A rapid, simple and specific reversed-phase HPLC method has been developed for analysis of karanjin in Pongamia pinnata Linn. leaves. HPLC analysis was performed on a C18 column using an 85:13.5:1.5 (v/v) mixtures of methanol, water and acetic acid as isocratic mobile phase at a flow rate of 1 ml/min. UV detection was at 300 nm. The method was validated for accuracy, precision, linearity, specificity. Validation revealed the method is specific, accurate, precise, reliable and reproducible. Good linear correlation coefficients (r2>0.997) were obtained for calibration plots in the ranges tested. Limit of detection was 4.35 μg and limit of quantification was 16.56 μg. Intra and inter-day RSD of retention times and peak areas was less than 1.24% and recovery was between 95.05 and 101.05%. The established HPLC method is appropriate enabling efficient quantitative analysis of karanjin in Pongamia pinnata leaves. PMID:23204626
Direct injection analysis of fatty and resin acids in papermaking process waters by HPLC/MS.
Valto, Piia; Knuutinen, Juha; Alén, Raimo
2011-04-01
A novel HPLC-atmospheric pressure chemical ionization/MS (HPLC-APCI/MS) method was developed for the rapid analysis of selected fatty and resin acids typically present in papermaking process waters. A mixture of palmitic, stearic, oleic, linolenic, and dehydroabietic acids was separated by a commercial HPLC column (a modified stationary C(18) phase) using gradient elution with methanol/0.15% formic acid (pH 2.5) as a mobile phase. The internal standard (myristic acid) method was used to calculate the correlation coefficients and in the quantitation of the results. In the thorough quality parameters measurement, a mixture of these model acids in aqueous media as well as in six different paper machine process waters was quantitatively determined. The measured quality parameters, such as selectivity, linearity, precision, and accuracy, clearly indicated that, compared with traditional gas chromatographic techniques, the simple method developed provided a faster chromatographic analysis with almost real-time monitoring of these acids. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Carranco, Núria; Farrés-Cebrián, Mireia; Saurina, Javier
2018-01-01
High performance liquid chromatography method with ultra-violet detection (HPLC-UV) fingerprinting was applied for the analysis and characterization of olive oils, and was performed using a Zorbax Eclipse XDB-C8 reversed-phase column under gradient elution, employing 0.1% formic acid aqueous solution and methanol as mobile phase. More than 130 edible oils, including monovarietal extra-virgin olive oils (EVOOs) and other vegetable oils, were analyzed. Principal component analysis results showed a noticeable discrimination between olive oils and other vegetable oils using raw HPLC-UV chromatographic profiles as data descriptors. However, selected HPLC-UV chromatographic time-window segments were necessary to achieve discrimination among monovarietal EVOOs. Partial least square (PLS) regression was employed to tackle olive oil authentication of Arbequina EVOO adulterated with Picual EVOO, a refined olive oil, and sunflower oil. Highly satisfactory results were obtained after PLS analysis, with overall errors in the quantitation of adulteration in the Arbequina EVOO (minimum 2.5% adulterant) below 2.9%. PMID:29561820
Kamal, Abid; Khan, Washim; Ahmad, Sayeed; Ahmad, F. J.; Saleem, Kishwar
2015-01-01
Objective: The present study was used to design simple, accurate and sensitive reversed phase-high-performance liquid chromatography RP-HPLC and high-performance thin-layer chromatography (HPTLC) methods for the development of quantification of khellin present in the seeds of Ammi visnaga. Materials and Methods: RP-HPLC analysis was performed on a C18 column with methanol: Water (75: 25, v/v) as a mobile phase. The HPTLC method involved densitometric evaluation of khellin after resolving it on silica gel plate using ethyl acetate: Toluene: Formic acid (5.5:4.0:0.5, v/v/v) as a mobile phase. Results: The developed HPLC and HPTLC methods were validated for precision (interday, intraday and intersystem), robustness and accuracy, limit of detection and limit of quantification. The relationship between the concentration of standard solutions and the peak response was linear in both HPLC and HPTLC methods with the concentration range of 10–80 μg/mL in HPLC and 25–1,000 ng/spot in HPTLC for khellin. The % relative standard deviation values for method precision was found to be 0.63–1.97%, 0.62–2.05% in HPLC and HPTLC for khellin respectively. Accuracy of the method was checked by recovery studies conducted at three different concentration levels and the average percentage recovery was found to be 100.53% in HPLC and 100.08% in HPTLC for khellin. Conclusions: The developed HPLC and HPTLC methods for the quantification of khellin were found simple, precise, specific, sensitive and accurate which can be used for routine analysis and quality control of A. visnaga and several formulations containing it as an ingredient. PMID:26681890
2005-08-15
phase was terminated when HPLC analysis showed that the initial TNT was in the form of DHA6NT and aminophenols , products that have been reported...terminated when HPLC analysis showed that the initial TNT was in the form of DHA6NT and aminophenols , products that have been reported previously (2...Department of Defense HPLC High Performance Liquid Chromatography IPTG Isopropyl-β-D-1-thiogalactopyranoside LB Luria-Bertani Broth NB Nitrobenzene
Restivo, Annalaura; Degano, Ilaria; Ribechini, Erika; Colombini, Maria Perla
2014-01-01
A method for the HPLC-MS/MS analysis of phenols, including phenolic acids and naphtoquinones, using an amide-embedded phase column was developed and compared to the literature methods based on classical C18 stationary phase columns. RP-Amide is a recently developed polar embedded stationary phase, whose wetting properties mean that up to 100% water can be used as an eluent. The increased retention and selectivity for polar compounds and the possibility of working in 100% water conditions make this column particularly interesting for the HPLC analysis of phenolic acids and derivatives. In this study, the chromatographic separation was optimised on an HPLC-DAD, and was used to separate 13 standard phenolic acids and derivatives. The method was validated on an HPLC-ESI-Q-ToF. The acquisition was performed in negative polarity and MS/MS target mode. Ionisation conditions and acquisition parameters for the Q-ToF detector were investigated by working on collision energies and fragmentor potentials. The performance of the method was fully evaluated on standards. Moreover, several raw materials containing phenols were analysed: walnut, gall, wine, malbec grape, French oak, red henna and propolis. Our method allowed us to characterize the phenolic composition in a wide range of matrices and to highlight possible matrix effects.
Zhang, Yong; Zhou, An; Xie, Xiao-Mei
2013-03-01
A simple and sensitive method has been developed to simultaneously determine betunilic acid, oleanolic acid and ursolic acid in the fruits of Ziziphus jujuba from different regions by HPLC-MS. This HPLC assay was performed on PAH polymeric C18 bonded stationary phase column with mobile phase contained acetonitrile-water (90: 10) and with negative ESI detection mode. The developed approach was characterized by short time consumption for chromatographic separation, high sensitivity and good reliability so as to meet the requirements for rapid analysis of large-batch fruits of Z. jujuba from different habitats.
Yoshie, Ayano; Kanda, Ayato; Nakamura, Takahiro; Igusa, Hisao; Hara, Setsuko
2009-01-01
Although there are various determination methods for gamma -oryzanol contained in rice bran oil by absorptiometry, normal-phase HPLC, and reversed-phase HPLC, their accuracies and the correlations among them have not been revealed yet. Chloroform-containing mixed solvents are widely used as mobile phases in some HPLC methods, but researchers have been apprehensive about its use in terms of safety for the human body and the environment.In the present study, a simple and accurate determination method was developed by improving the reversed-phase HPLC method. This novel HPLC method uses methanol/acetonitrile/acetic acid (52/45/3 v/v/v), a non-chlorinated solvent, as the mobile phase, and shows an excellent linearity (y = 0.9527x + 0.1241, R(2) = 0.9974) with absorptiometry. The mean relative errors among the existing 3 methods and the novel method, determined by adding fixed amounts of gamma-oryzanol into refined rice salad oil, were -4.7% for the absorptiometry, -6.8% for the existing normal-phase HPLC, +4.6% for the existing reversed-phase HPLC, and -1.6% for the novel reversed-phase HPLC method. gamma -Oryzanol content in 12 kinds of crude rice bran oils obtained from different sources were determined by the four methods. The mean content of those oils were 1.75+/-0.18% for the absorptiometry, 1.29+/-0.11% for the existing normal-phase HPLC, 1.51+/-0.10% for the existing reversed-phase HPLC, and 1.54+/-0.19% for the novel reversed-phase HPLC method.
Liquid chromatography of hydrocarbonaeous quaternary amines on cyclodextrin bonded silica
Abidi, S.L.
1986-01-01
Mixtures of n-alkylbenzyldimethylammonium chloride (ABDAC) were resolved into homologous components by high-performance liquid chromatography (HPLC) with a cyclodextrin-bonded silica stationary phase. With a few exceptions, results from this study are similar to those obtained from traditional reversed-phase HPLC. It was found that the presence of electrolytes in aqueous mobile phases is not a critical factor in determining the success of HPLC separation. Under normal HPLC conditions, a mobile phase consisting of either methanol–water (50:50) or acetonitrile–water (30:70) was employed for obtaining adequate resolution of the quaternary ammonium mixtures. Although the percent organic modifier–water profiles were similar to those in previous studies with these compounds, resolution (R) and selectivity (α) parameters were found to be quite susceptible to changes in the mobile phase solvent composition. The retention behavior of the cationic analytes in the homologous series is consistent with the hydrophobic-interaction concept proposed for the retention mechanism via dominant inclusion complex formation. Several electrolytes were chosen for a study of the counter ion effect on the chromatographic characteristics of ABDAC components. Among the electrolytes examined, the perchlorate ion was found most likely to act as an ion-pairing counter ion for ammonium cations in the HPLC system studied. A correlation study established linear relationships between the chain length of ABDAC and the logarithmic capacity factor (k2). The analytical utility of the HPLC method was demonstrated by the analysis of various unknown mixtures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawamura, K.; Okuwaki, A.; Verheyen, T.V.
In order to develop separation processes and analytical methods for aromatic carboxylic acids for the coal oxidation products, the separation behavior of aromatic carboxylic acids on a reversed-phase HPLC using eluent containing quaternary ammonium salt was optimized using the solvent gradient method. This method was applied for the analysis of Loy Yang coal oxidation products. It was confirmed that the analytical data using this method were consistent with those determined using gas chromatography.
Katsifis, Andrew; Loc'h, Christian; Henderson, David; Bourdier, Thomas; Pham, Tien; Greguric, Ivan; Lam, Peter; Callaghan, Paul; Mattner, Filomena; Eberl, Stefan; Fulham, Michael
2011-01-01
To develop a rapid and reliable method for estimating non-metabolised PBR ligands fluoroethoxy ([(18)F]PBR102)- and fluoropropoxy ([(18)F]PBR111)-substituted 2-(6-chloro-2-phenyl)imidazo[1,2-a]pyridine-3-yl)-N,N-diethylacetamides in plasma. Rats and baboons were imaged with PET up to 2 h postinjection of [(18)F]PBR102 and [(18)F]PBR111 under baseline conditions, after pre-blocking or displacement with PK11195. Arterial plasma samples were directly analysed by reverse-phase solid-phase extraction (RP-SPE) and RP-HPLC and by normal-phase TLC. SPE cartridges were successively washed with acetonitrile/water mixtures. SPE eluant radioactivity was measured in a γ-counter to determine the parent compound fraction and then analysed by HPLC and TLC for validation. In SPE, hydrophilic and lipophilic radiolabelled metabolites were eluted in water and 20% acetonitrile/water. All non-metabolised [(18)F]PBR102 and [(18)F]PBR111 were in SPE acetonitrile fraction as confirmed by HPLC and TLC analysis. Unchanged (%) [(18)F]PBR102 and [(18)F]PBR111 from SPE analysis in rat and baboon plasma agreed with those from HPLC and TLC analysis. In rats and baboons, the fraction of unchanged tracer followed a bi-exponential decrease, with half-lives of 7 to 10 min for the fast component and >80 min for the slow component for both tracers. Direct plasma SPE analysis of [(18)F]PBR102 and [(18)F]PBR111 can reliably estimate parent compound fraction. SPE was superior to HPLC for samples with low activity; it allows rapid and accurate metabolite analysis of a large number of plasma samples for improved estimation of metabolite-corrected input function during quantitative PET imaging studies. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.
High Performance Liquid Chromatography
NASA Astrophysics Data System (ADS)
Talcott, Stephen
High performance liquid chromatography (HPLC) has many applications in food chemistry. Food components that have been analyzed with HPLC include organic acids, vitamins, amino acids, sugars, nitrosamines, certain pesticides, metabolites, fatty acids, aflatoxins, pigments, and certain food additives. Unlike gas chromatography, it is not necessary for the compound being analyzed to be volatile. It is necessary, however, for the compounds to have some solubility in the mobile phase. It is important that the solubilized samples for injection be free from all particulate matter, so centrifugation and filtration are common procedures. Also, solid-phase extraction is used commonly in sample preparation to remove interfering compounds from the sample matrix prior to HPLC analysis.
Restivo, Annalaura; Degano, Ilaria; Ribechini, Erika; Colombini, Maria Perla
2014-01-01
A method for the HPLC-MS/MS analysis of phenols, including phenolic acids and naphtoquinones, using an amide-embedded phase column was developed and compared to the literature methods based on classical C18 stationary phase columns. RP-Amide is a recently developed polar embedded stationary phase, whose wetting properties mean that up to 100% water can be used as an eluent. The increased retention and selectivity for polar compounds and the possibility of working in 100% water conditions make this column particularly interesting for the HPLC analysis of phenolic acids and derivatives. In this study, the chromatographic separation was optimised on an HPLC-DAD, and was used to separate 13 standard phenolic acids and derivatives. The method was validated on an HPLC-ESI-Q-ToF. The acquisition was performed in negative polarity and MS/MS target mode. Ionisation conditions and acquisition parameters for the Q-ToF detector were investigated by working on collision energies and fragmentor potentials. The performance of the method was fully evaluated on standards. Moreover, several raw materials containing phenols were analysed: walnut, gall, wine, malbec grape, French oak, red henna and propolis. Our method allowed us to characterize the phenolic composition in a wide range of matrices and to highlight possible matrix effects. PMID:24551158
ERIC Educational Resources Information Center
Mei-Ratliff, Yuan
2012-01-01
Trace levels of oxytetracylcine spiked into commercial milk samples are extracted, cleaned up, and preconcentrated using a C[subscript 18] solid-phase extraction column. The extract is then analyzed by a high-performance liquid chromatography (HPLC) instrument equipped with a UV detector and a C[subscript 18] column (150 mm x 4.6 mm x 3.5 [mu]m).…
Pyridylamination as a means of analyzing complex sugar chains
Hase, Sumihiro
2010-01-01
Herein, I describe pyridylamination for versatile analysis of sugar chains. The reducing ends of the sugar chains are tagged with 2-aminopyridine and the resultant chemically stable fluorescent derivatives are used for structural/functional analysis. Pyridylamination is an effective “operating system” for increasing sensitivity and simplifying the analytical procedures including mass spectrometry and NMR. Excellent separation of isomers is achieved by reversed-phase HPLC. However, separation is further improved by two-dimensional HPLC, which involves a combination of reversed-phase HPLC and size-fractionation HPLC. Moreover, a two-dimensional HPLC map is also useful for structural analysis. I describe a simple procedure for preparing homogeneous pyridylamino sugar chains that is less laborious than existing techniques and can be used for functional analysis (e.g., sugar-protein interaction). This novel approach was applied and some of the results are described: i) a glucosyl-serine type sugar chain found in blood coagulation factors; ii) discovery of endo-β-mannosidase (EC 3.2.1.152) and a new type plant α1,2-l-fucosidase; and iii) novel substrate specificity of a cytosolic α-mannosidase. Moreover, using homogeneous sugar chains of a size similar to in vivo substrates we were able to analyze interactions between sugar chains and proteins such as enzymes and lectins in detail. Interestingly, our studies reveal that some enzymes recognize a wider region of the substrate than anticipated. PMID:20431262
Lopes, Nilva P; Collins, Kenneth E; Jardim, Isabel C S F
2004-03-19
Polybutadiene (PBD) has been immobilized on high-performance liquid chromatography (HPLC) silica by microwave radiation at various power levels (52-663 W) and actuation times (3-60 min). Columns prepared from these reversed-phase HPLC materials, as well as from similar non-irradiated materials, were tested with standard sample mixtures and characterized by elemental analysis (%C) and infrared spectroscopy. A microwave irradiation of 20 min at 663 W gives a layer of immobilized PBD that presented good performance. Longer irradiation times give thicker immobilized layers having less favorable chromatographic properties.
NASA Astrophysics Data System (ADS)
Syarifah, V. B.; Rafi, M.; Wahyuni, W. T.
2017-05-01
Brotowali (Tinospora crispa) is widely used in Indonesia as ingredient of herbal medicine formulation. To ensure the quality, safety, and efficacy of herbal medicine products, its chemical constituents should be continuously evaluated. High performance liquid chromatography (HPLC) fingerprint is one of powerful technique for this quality control process. In this study, HPLC fingerprint analysis method was developed for quality control of brotowali. HPLC analysis was performed in C18 column and detection was performed using photodiode array detector. The optimum mobile phase for brotowali fingerprint was acetonitrile (ACN) and 0.1% formic acid in gradient elution mode at a flow rate of 1 mL/min. The number of peaks detected in HPLC fingerprint of brotowali was 32 peaks and 23 peaks for stems and leaves, respectively. Berberine as marker compound was detected at retention time of 20.525 minutes. Evaluation of analytical performance including precision, reproducibility, and stability prove that this HPLC fingerprint analysis was reliable and could be applied for quality control of brotowali.
Surface confined ionic liquid as a stationary phase for HPLC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qian; Baker, Gary A; Baker, Sheila N
Trimethoxysilane ionosilane derivatives of room temperature ionic liquids based on alkylimidazolium bromides were synthesized for attachment to silica support material. The derivatives 1-methyl-3-(trimethoxysilylpropyl)imidazolium bromide and 1-butyl-3-(trimethoxysilylpropyl)imidazolium bromide were used to modify the surface of 3 {micro}m diameter silica particles to act as the stationary phase for HPLC. The modified particles were characterized by thermogravimetric analysis (TGA) and {sup 13}C and {sup 29}Si NMR spectroscopies. The surface modification procedure rendered particles with a surface coverage of 0.84 {micro}mol m{sup -2} for the alkylimidazolium bromide. The ionic liquid moiety was predominantly attached to the silica surface through two siloxane bonds of themore » ionosilane derivative (63%). Columns packed with the modified silica material were tested under HPLC conditions. Preliminary evaluation of the stationary phase for HPLC was performed using aromatic carboxylic acids as model compounds. The separation mechanism appears to involve multiple interactions including ion exchange, hydrophobic interaction, and other electrostatic interactions.« less
Guo, Henan; Yang, Xuedong; Liu, Jun; Zheng, Wenfeng
2012-07-01
Flavonoid reference standards were targeted-prepared from Scutellariae Radix under the guidance of high performance liquid chromatography-mass spectrometry (HPLC-MS) analysis. With HPLC-MS analysis of Scutellariae Radix, 19 flavonoid components were identified by analyzing and comparing their retention times, ultraviolet spectra, and mass spectrometry data with literature. The separation and purification protocols of all targeted flavonoid reference standards were optimally designed according to the results of HPLC-MS analysis and related literature. The ethanol extract of Scutellariae Radix was suspended in water and extracted with petroleum ether, ethyl acetate, and n-butanol successively. The ethyl acetate extract and n-butanol extract were separately subjected to primary separation by low pressure reverse phase preparative chromatography. Then the fractions containing targeted compounds were further purified by low pressure reverse and normal phases preparative chromatography. Finally, baicalin and wogonoside reference standards were obtained from n-butanol extract; baicaelin, wogonin, and oroxylin A reference standards were obtained from ethyl acetate extract. The structures of the 5 reference standards were identified by mass spectrometry (MS) and 1H nuclear magnetic resonance (1H NMR) spectroscopy. The HPLC analytical results showed that the purities of the 5 reference standards were all above 98%. It is demonstrated that the rapid targeted-preparation method under the guidance of the HPLC-MS analysis is applicable for the isolation and preparation of chemical components in traditional Chinese medicines.
Straub, B; Schollenberger, M; Kicherer, M; Luckas, B; Hammes, W P
1993-09-01
A convenient method is described for the analysis of biogenic amines (BA) by means of reversed-phase-HPLC. The method is characterized by multi-channel UV detection (diodearray), subsequent post-column derivatization with o-phthaldialdehyde and 3-mercaptopropionic acid, and fluorescence detection. For the analysis of meat products and especially fermented sausages an optimized perchloric acid extraction process was introduced to determine putrescine, cadaverine, histamine, tyramine and 2-phenylethylamine. BA recoveries from meat ranged between 96 and 113% with a detection limit for amines of 0.5 mg/kg.
Parallel mass spectrometry (APCI-MS and ESI-MS) for lipid analysis
USDA-ARS?s Scientific Manuscript database
Coupling the condensed phase of HPLC with the high vacuum necessary for ion analysis in a mass spectrometer requires quickly evaporating large amounts of liquid mobile phase to release analyte molecules into the gas phase, along with ionization of those molecules, so they can be detected by the mass...
Sanli, Senem; Akmese, Bediha; Altun, Yuksel
2013-01-01
In this study, ionization constant (pKa) values were determined by using the dependence of the retention factor on the pH of the mobile phase for four ionizable drugs, namely, risperidone (RI), clozapine (CL), olanzapine (OL), and sertindole (SE). The effect of the mobile phase composition on the pKa was studied by measuring the pKa at different acetonitrile-water mixtures in an HPLC-UV method. To explain the variation of the pKa values obtained over the whole composition range studied, the quasi-lattice quasi-chemical theory of preferential solvation was applied. The pKa values of drugs were correlated with the Kamlet and Taft solvatochromic parameters. Kamlet and Taft's general equation was reduced to two terms by using combined factor analysis and target factor analysis in these mixtures: the independent term and the hydrogen-bond donating ability a. The HPLC-UV method was successfully applied for the determination of RI, OL, and SE in pharmaceutical dosage forms. CL was chosen as an internal standard. Additionally, the repeatability, reproducibility, selectivity, precision, and accuracy of the method in all media were investigated and calculated.
Lin, Chung-Ho; Lerch, Robert N.; Thurman, E. Michael; Garrett , Harold E.; George, Milon F.
2002-01-01
Balance (isoxaflutole, IXF) belongs to a new family of herbicides referred to as isoxazoles. IXF has a very short soil half-life (<24 h), degrading to a biologically active diketonitrile (DKN) metabolite that is more polar and considerably more stable. Further degradation of the DKN metabolite produces a nonbiologically active benzoic acid (BA) metabolite. Analytical methods using solid phase extraction followed by high-performance liquid chromatography−UV (HPLC-UV) or high-performance liquid chromatography−mass spectrometry (HPLC-MS) were developed for the analysis of IXF and its metabolites in distilled deionized water and ground water samples. To successfully detect and quantify the BA metabolite by HPLC-UV from ground water samples, a sequential elution scheme was necessary. Using HPLC-UV, the mean recoveries from sequential elution of the parent and its two metabolites from fortified ground water samples ranged from 68.6 to 101.4%. For HPLC-MS, solid phase extraction of ground water samples was performed using a polystyrene divinylbenzene polymer resin. The mean HPLC-MS recoveries of the three compounds from ground water samples spiked at 0.05−2 μg/L ranged from 100.9 to 110.3%. The limits of quantitation for HPLC-UV are approximately 150 ng/L for IXF, 100 ng/L for DKN, and 250 ng/L for BA. The limit of quantitation by HPLC-MS is 50 ng/L for each compound. The methods developed in this work can be applied to determine the transport and fate of Balance in the environment.
Lin, Chung-Ho; Lerch, Robert N; Thurman, E Michael; Garrett, Harold E; George, Milon F
2002-10-09
Balance (isoxaflutole, IXF) belongs to a new family of herbicides referred to as isoxazoles. IXF has a very short soil half-life (<24 h), degrading to a biologically active diketonitrile (DKN) metabolite that is more polar and considerably more stable. Further degradation of the DKN metabolite produces a nonbiologically active benzoic acid (BA) metabolite. Analytical methods using solid phase extraction followed by high-performance liquid chromatography-UV (HPLC-UV) or high-performance liquid chromatography-mass spectrometry (HPLC-MS) were developed for the analysis of IXF and its metabolites in distilled deionized water and ground water samples. To successfully detect and quantify the BA metabolite by HPLC-UV from ground water samples, a sequential elution scheme was necessary. Using HPLC-UV, the mean recoveries from sequential elution of the parent and its two metabolites from fortified ground water samples ranged from 68.6 to 101.4%. For HPLC-MS, solid phase extraction of ground water samples was performed using a polystyrene divinylbenzene polymer resin. The mean HPLC-MS recoveries of the three compounds from ground water samples spiked at 0.05-2 microg/L ranged from 100.9 to 110.3%. The limits of quantitation for HPLC-UV are approximately 150 ng/L for IXF, 100 ng/L for DKN, and 250 ng/L for BA. The limit of quantitation by HPLC-MS is 50 ng/L for each compound. The methods developed in this work can be applied to determine the transport and fate of Balance in the environment.
Analogs of Estrogen Metabolites as Probes of Estrogen-Induced Tumorigenesis
1999-07-01
bromination reaction by reverse phase HPLC revealed a mixture of 4-bromoestradiol (5-10%), 2-bromoestradiol 28 (’-15%) and 2,4- dibromoestradiol 29...mixture. HPLC analysis of the reaction mixture revealed that the estradiol was completely consumed and 2,4-dibromoestradiol 29 was the major product...purification by HPLC .5 A solution of 30 in THF at -78’C was treated with various organolithium reagents and stirred for three hours after which the
Giegold, Sascha; Teutenberg, Thorsten; Tuerk, Jochen; Kiffmeyer, Thekla; Wenclawiak, Bernd
2008-10-01
A fast HPLC method for the analysis of eight selected sulfonamides (SA) and trimethoprim has been developed with the use of high temperature HPLC. The separation could be achieved in less than 1.5 min on a 50 mm sub 2 microm column with simultaneous solvent and temperature gradient programming. Due to the lower viscosity of the mobile phase and the increased mass transfer at higher temperatures, the separation could be performed on a conventional HPLC system obtaining peak widths at half height between 0.6 and 1.3 s.
Effect of /sup 60/Co-irradiation on penicillin G procaine in veterinary mastitis products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsuji, K.; Goetz, J.F.; Vanmeter, W.
The effect of /sup 60/Co-irradation on penicillin G procaine in a peanut oil-based veterinary mastitis product was examined by reversed-phase high-performance liquid chromatography (HPLC). The HPLC method is capable of separating and quantifiying procaine, penicillin G, and various degradation compounds. Values obtained by the HPLC method on the product irradiated and stored at various temperatures correlated well with those of the microbiological assay. No significant decrease in the procaine was detected even after 4.0-Mrad irradiation. The HPLC method is applicable for analysis of other beta-lactam antibiotics.
Fanali, Chiara; Dugo, Laura; D'Orazio, Giovanni; Lirangi, Melania; Dachà, Marina; Dugo, Paola; Mondello, Luigi
2011-01-01
Nano-LC and conventional HPLC techniques were applied for the analysis of anthocyanins present in commercial fruit juices using a capillary column of 100 μm id and a 2.1 mm id narrow-bore C(18) column. Analytes were detected by UV-Vis at 518 nm and ESI-ion trap MS with HPLC and nano-LC, respectively. Commercial blueberry juice (14 anthocyanins detected) was used to optimize chromatographic separation of analytes and other analysis parameters. Qualitative identification of anthocyanins was performed by comparing the recorded mass spectral data with those of published papers. The use of the same mobile phase composition in both techniques revealed that the miniaturized method exhibited shorter analysis time and higher sensitivity than narrow-bore chromatography. Good intra-day and day-to-day precision of retention time was obtained in both methods with values of RSD less than 3.4 and 0.8% for nano-LC and HPLC, respectively. Quantitative analysis was performed by external standard curve calibration of cyanidin-3-O-glucoside standard. Calibration curves were linear in the concentration ranges studied, 0.1-50 and 6-50 μg/mL for HPLC-UV/Vis and nano-LC-MS, respectively. LOD and LOQ values were good for both methods. In addition to commercial blueberry juice, qualitative and quantitative analysis of other juices (e.g. raspberry, sweet cherry and pomegranate) was performed. The optimized nano-LC-MS method allowed an easy and selective identification and quantification of anthocyanins in commercial fruit juices; it offered good results, shorter analysis time and reduced mobile phase volume with respect to narrow-bore HPLC. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kalafut, P; Kucera, R; Klimes, J; Sochor, J
2009-07-12
3-[4-(2-Methylpropyl)phenyl]propanoic acid has been introduced as impurity F to the European Pharmacopoeia in its Supplement 4.2. In contrast to other impurities, which are evaluated by HPLC, the content of impurity F is determined by gas chromatography after previous derivatization. Thus a novel reversed-phase HPLC method was developed to simplify the evaluation of pharmacopoeial impurity F of ibuprofen. Favourable properties of zirconia stationary phases were employed for this purpose. The HPLC separation was achieved on a Zr-CARB column (150 mm x 4.6mm i.d., 5 microm) using the mobile phase acetonitrile-phosphate buffer (pH 3.5, 25 mM) (38:62, v/v), temperature 80 degrees C and the flow rate 1.2 ml min(-1). The fluorescence detection was employed to enhance the sensitivity of the method. Optimal detection parameters were chosen on the basis of fluorescence spectra of the analytes. The excitation and emission wavelengths were 220 nm and 285 nm, respectively. The analysis was completed within 25 min. The subsequent validation of the method confirmed the applicability of method for the analytical assay of impurity F.
Reverse-phase HPLC analysis of human alpha crystallin.
Swamy, M S; Abraham, E C
1991-03-01
A rapid and highly sensitive reverse-phase HPLC (RP-HPLC) method was used to separate crystallin subunits from human alpha crystallin. Three distinct peaks were separated; by electrophoretic and immunological analyses the first and second peaks were identified as alpha B and alpha A respectively. On the other hand, peak 3 appeared to be a modified form of alpha crystallin. The ratio of alpha A and alpha B proteins was 3:1 in 1 day old lenses which gradually changed to 2:1 in 17 year old lenses and to 1:1 in the 50 and 82 year old whole lenses and 82 year old lens cortex, with a concomitant increase in the modified alpha, suggesting that alpha A subunits are relatively more involved in aggregation. Analysis of the 82 year old lens nucleus also supported this conclusion. The RP-HPLC analysis of the HMW aggregate fraction showed substantial enrichment of the modified alpha. The alpha A and alpha B subunits independently reassociated to form polymeric alpha crystallin whereas the modified alpha reassociated to form HMW aggregates as shown by molecular sieve HPLC. Hence it appears that the HMW aggregate peak was constituted by modified alpha crystallin. Only in the peak 3 material the 280 nm absorbance was about 2-fold higher than what was expected from the actual protein content. The data suggest that the changes induced by post-translational modifications may have some role in the formation of modified alpha. The present RP-HPLC method is useful in separating these modified alpha from the unmodified alpha A and alpha B subunits.
Bailey-Shaw, Y A; Golden, K D; Pearson, A G M; Porter, R B R
2012-09-01
This paper describes the determination of fatty acid composition of coffee, citrus and rum distillery wastes using reversed-phase high-performance liquid chromatography (RP-HPLC). Lipid extracts of the waste samples are derivatized with phenacyl bromide and their phenacyl esters are separated on a C8 reversed-phase column by using continuous gradient elution with water and acetonitrile. The presence of saturated and unsaturated fatty acids in quantifiable amounts in the examined wastes, as well as the high percentage recoveries, are clear indications that these wastes have potential value as inexpensive sources of lipids. The HPLC procedures described here could be adopted for further analysis of materials of this nature.
High-Performance Liquid Chromatography (HPLC)-Based Detection and Quantitation of Cellular c-di-GMP.
Petrova, Olga E; Sauer, Karin
2017-01-01
The modulation of c-di-GMP levels plays a vital role in the regulation of various processes in a wide array of bacterial species. Thus, investigation of c-di-GMP regulation requires reliable methods for the assessment of c-di-GMP levels and turnover. Reversed-phase high-performance liquid chromatography (RP-HPLC) analysis has become a commonly used approach to accomplish these goals. The following describes the extraction and HPLC-based detection and quantification of c-di-GMP from Pseudomonas aeruginosa samples, a procedure that is amenable to modifications for the analysis of c-di-GMP in other bacterial species.
NASA Astrophysics Data System (ADS)
Hermawan, D.; Suwandri; Sulaeman, U.; Istiqomah, A.; Aboul-Enein, H. Y.
2017-02-01
A simple high performance liquid chromatography (HPLC) method has been developed in this study for the analysis of miconazole, an antifungal drug, in powder sample. The optimized HPLC system using C8 column was achieved using mobile phase composition containing methanol:water (85:15, v/v), a flow rate of 0.8 mL/min, and UV detection at 220 nm. The calibration graph was linear in the range from 10 to 50 mg/L with r 2 of 0.9983. The limit of detection (LOD) and limit of quantitation (LOQ) obtained were 2.24 mg/L and 7.47 mg/L, respectively. The present HPLC method is applicable for the determination of miconazole in the powder sample with a recovery of 101.28 % (RSD = 0.96%, n = 3). The developed HPLC method provides short analysis time, high reproducibility and high sensitivity.
Patel, Rashmin B; Patel, Nilay M; Patel, Mrunali R; Solanki, Ajay B
2017-03-01
The aim of this work was to develop and optimize a robust HPLC method for the separation and quantitation of ambroxol hydrochloride and roxithromycin utilizing Design of Experiment (DoE) approach. The Plackett-Burman design was used to assess the impact of independent variables (concentration of organic phase, mobile phase pH, flow rate and column temperature) on peak resolution, USP tailing and number of plates. A central composite design was utilized to evaluate the main, interaction, and quadratic effects of independent variables on the selected dependent variables. The optimized HPLC method was validated based on ICH Q2R1 guideline and was used to separate and quantify ambroxol hydrochloride and roxithromycin in tablet formulations. The findings showed that DoE approach could be effectively applied to optimize a robust HPLC method for quantification of ambroxol hydrochloride and roxithromycin in tablet formulations. Statistical comparison between results of proposed and reported HPLC method revealed no significant difference; indicating the ability of proposed HPLC method for analysis of ambroxol hydrochloride and roxithromycin in pharmaceutical formulations. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Fingerprint of Hedyotis diffusa Willd. by HPLC-MS.
Yang, Ting; Yang, Yi-Hua; Yang, Ju-Yun; Chen, Ben-Mei; Duan, Ju-Ping; Yu, Shu-Yi; Ouyang, Hong-Tao; Cheng, Jun-Ping; Chen, Yu-Xiang
2008-01-01
A HPLC-MS fingerprint method has been developed based on the consistent chromatographic features of the major chemical constituents among 10 batches of Hedyotis diffusa Willd. Chromatographic separation was conducted on a Hypersil-Keystone Hypurity C(18) column using methanol:water:acetic acid as the mobile phase. Major compounds, including oleanolic acid, ursolic acid and ferulic acid, were analysed by HPLC-MS. Their analysis was ascertained by comparison with data derived from the standard compounds. The HPLC-MS fingerprint was successfully applied to analyse and differentiate samples from different geographical origins, or processing methods. H. diffusa was well distinguished from Hedyotis chrysotricha by HPLC-MS. Therefore the establishment of fingerprint of H. diffusa is critical in assessing and controlling its overall quality.
Tao, Dingyin; Zhang, Lihua; Shan, Yichu; Liang, Zhen; Zhang, Yukui
2011-01-01
High-performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI-MS-MS) is regarded as one of the most powerful techniques for separation and identification of proteins. Recently, much effort has been made to improve the separation capacity, detection sensitivity, and analysis throughput of micro- and nano-HPLC, by increasing column length, reducing column internal diameter, and using integrated techniques. Development of HPLC columns has also been rapid, as a result of the use of submicrometer packing materials and monolithic columns. All these innovations result in clearly improved performance of micro- and nano-HPLC for proteome research.
Analyses of procyanidins in foods using Diol phase HPLC
USDA-ARS?s Scientific Manuscript database
Separation of procyanidins using silica-based HPLC suffered from poor resolution for higher oligomers and low sensitivity due to the fluorescence quenching effects of methylene chloride in the mobile phase. Optimization of a published Diol-phase HPLC method resulted in near baseline separation for p...
Zhao, Xia; Wang, Bo; Xie, Kaizhou; Liu, Jianyu; Zhang, Yangyang; Wang, Yajuan; Guo, Yawen; Zhang, Genxi; Dai, Guojun; Wang, Jinyu
2018-06-15
A high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method and an ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for determining eight coccidiostat (halofuginone, lasalocid, maduramicin, monensin, narasin, nigericin, robenidine and salinomycin) residues in beef were developed and compared. Samples were extracted with a mixture of acetic acid, acetonitrile and ethyl acetate and were then purified on a C 18 solid-phase extraction (SPE) column. The purified samples were analyzed by HPLC-MS/MS and UPLC-MS/MS, using 0.1% formic acid-water solution (A) and pure methanol (B) as the mobile phase. The samples were fractionated on a C 18 column using different gradient elution procedures, followed by qualitative analysis using a mass spectrometer operated in multiple reaction monitoring (MRM) mode with positive electrospray ionization; the external standard method was used for quantitation. At spiked levels that ranged from the limit of quantification (LOQ) to 100 μg/kg, the average recoveries were 71.96%-100.32% and 71.24%-89.24%, with relative standard deviations (RSDs) of 2.65%-12.38% and 2.98%-14.86% for UPLC-MS/MS and HPLC-MS/MS, respectively. The limits of detection (LODs) and LOQs of the eight coccidiostats were 0.14-0.32 μg/kg and 0.43-1.21 μg/kg, respectively, for UPLC-MS/MS analysis and 0.16-0.58 μg/kg and 0.53-1.92 μg/kg, respectively, for HPLC-MS/MS analysis. Both methods had good accuracy and precision, but UPLC-MS/MS had higher sensitivity than HPLC-MS/MS. Copyright © 2018 Elsevier B.V. All rights reserved.
Downey, Mark O; Rochfort, Simone
2008-08-01
A limitation of large-scale viticultural trials is the time and cost of comprehensive compositional analysis of the fruit by high-performance liquid chromatography (HPLC). In addition, separate methods have generally been required to identify and quantify different classes of metabolites. To address these shortcomings a reversed-phase HPLC method was developed to simultaneously separate the anthocyanins and flavonols present in grape skins. The method employs a methanol and water gradient acidified with 10% formic acid with a run-time of 48 min including re-equilibration. Identity of anthocyanins and flavonols in Shiraz (Vitis vinifera L.) skin was confirmed by mass spectral analysis.
Fourneron, Jean-Dominique; Naït-Si, Youssef
2006-01-01
The effect of the pH of the mobile phase in HPLC analysis of hyperforin was investigated. Working with an extract of St. John's Wort (Hypericum perforatum L.) that is rich in hyperforin, significant differences were observed in conventional chromatograms depending on whether the mobile phase was acidic or alkaline. Chromatogram changes were paralleled by changes in the UV spectrum of the hyperforin peak. The structural changes in hyperforin occur in the chromatographic column itself, as has been confirmed by UV spectroscopy performed on a sample of purified hyperforin, which showed that the UV spectrum is indeed dependent on the pH of its environment.
Bremner, P D; Blacklock, C J; Paganga, G; Mullen, W; Rice-Evans, C A; Crozier, A
2000-06-01
After minimal sample preparation, two different HPLC methodologies, one based on a single gradient reversed-phase HPLC step, the other on multiple HPLC runs each optimised for specific components, were used to investigate the composition of flavonoids and phenolic acids in apple and tomato juices. The principal components in apple juice were identified as chlorogenic acid, phloridzin, caffeic acid and p-coumaric acid. Tomato juice was found to contain chlorogenic acid, caffeic acid, p-coumaric acid, naringenin and rutin. The quantitative estimates of the levels of these compounds, obtained with the two HPLC procedures, were very similar, demonstrating that either method can be used to analyse accurately the phenolic components of apple and tomato juices. Chlorogenic acid in tomato juice was the only component not fully resolved in the single run study and the multiple run analysis prior to enzyme treatment. The single run system of analysis is recommended for the initial investigation of plant phenolics and the multiple run approach for analyses where chromatographic resolution requires improvement.
Sharma, Upendra K; Sharma, Nandini; Sinha, Arun K; Kumar, Neeraj; Gupta, Ajai P
2009-10-01
In this study, two novel chromatographic methods based on monolithic column high-performance liquid chromatography (HPLC) and ultra-performance liquid chromatography (UPLC) were developed for the ultrafast determination of principal flavor compounds namely vanillin, vanillic acid, p-hydroxybenzoic acid, and p-hydroxybenzaldehyde in ethanolic extracts of Vanilla planifolia pods. Good separation was achieved within 2.5 min using Chromolith RP18e column (100 mm x 4.6 mm) for HPLC and Acquity BEH C-18 (100 mm x 2.1 mm, 1.7 microm) column for UPLC. Both methods were compared in terms of total analysis time, mobile phase consumption, sensitivity, and validation parameters like precision, accuracy, LOD, and LOQ. Further, system suitability test data including resolution, capacity factor, theoretical plates, and tailing factor was determined for both the methods by ten replicate injections. Monolithic column based HPLC gave better results for most of the selected parameters while UPLC was found to be more eco-friendly with low mobile phase consumption and better sensitivity. Both methods may be used conveniently for the high throughput analysis of large number of samples in comparison to traditional particulate column.
Azevedo de Brito, Wanessa; Gomes Dantas, Monique; Andrade Nogueira, Fernando Henrique; Ferreira da Silva-Júnior, Edeildo; Xavier de Araújo-Júnior, João; Aquino, Thiago Mendonça de; Adélia Nogueira Ribeiro, Êurica; da Silva Solon, Lilian Grace; Soares Aragão, Cícero Flávio; Barreto Gomes, Ana Paula
2017-08-30
Guanylhydrazones are molecules with great pharmacological potential in various therapeutic areas, including antitumoral activity. Factorial design is an excellent tool in the optimization of a chromatographic method, because it is possible quickly change factors such as temperature, mobile phase composition, mobile phase pH, column length, among others to establish the optimal conditions of analysis. The aim of the present work was to develop and validate a HPLC and UHPLC methods for the simultaneous determination of guanylhydrazones with anticancer activity employing experimental design. Precise, exact, linear and robust HPLC and UHPLC methods were developed and validated for the simultaneous quantification of the guanylhydrazones LQM10, LQM14, and LQM17. The UHPLC method was more economic, with a four times less solvent consumption, and 20 times less injection volume, what allowed better column performance. Comparing the empirical approach employed in the HPLC method development to the DoE approach employed in the UHPLC method development, we can conclude that the factorial design made the method development faster, more practical and rational. This resulted in methods that can be employed in the analysis, evaluation and quality control of these new synthetic guanylhydrazones.
Novell, Arnau; Méndez, Alberto; Minguillón, Cristina
2015-07-17
The chromatographic behaviour and performance of four polyproline-derived chiral stationary phases (CSPs) were tested using supercritical fluid chromatography (SFC). A series of structurally related racemic compounds, whose enantioseparation was proved to be sensitive to the type of mobile phase used in NP-HPLC, were chosen to be tested in the SFC conditions. Good enantioselection ability was shown by the CSPs for the analytes tested in the new conditions. Resolution, efficiency and analysis time, were considerably improved with respect to NP-HPLC when CO2/alcohol mobile phases were used. Monolithic columns clearly show enhanced chromatographic parameters and improved performance respect to their bead-based counterparts. Copyright © 2015 Elsevier B.V. All rights reserved.
Zan, Ke; Jiao, Xing-Ping; Guo, Li-Nong; Zheng, Jian; Ma, Shuang-Cheng
2016-06-01
This study is to establish the HPLC specific chromatogram and determine four main effective components of Lamiophlomis Herba and its counterfeit.Chlorogenic acid, forsythoside B, acteoside and luteoloside were reference substance.HPLC analysis was performed on a Waters XSelect C₁₈ column (4.6 mm×250 mm,5 μm).The mobile phase was acetonitrile-0.5% phosphoric acid solution (18∶82) with isocratic elution.The flow rate was 1.0 mL•min⁻¹, the detection wavelength was 332 nm and the column temperature was 30 ℃.Chemometrics software Chempattern was employed to analyze the research data.HPLC specific chromatogram of Lamiophlomis Herba from different samples were of high similarity, but the similarity of the HPLC specific chromatogram of its counterfeit were less than 0.65.Both of cluster and principal component analysis can distinguish certified products and adulterants.The HPLC specific chromatogram and contents of four effective components can be used for the quality control of Lamiophlomis Herba and its preparations.It provided scientific basis to standardize the use of the crude drug. Copyright© by the Chinese Pharmaceutical Association.
Major and Modified Nucleosides, RNA, and DNA
NASA Astrophysics Data System (ADS)
Gehrke, Charles W.; Kuo, Kenneth C.
Most analytical chemists are well aware of the rapid rate of development of high-performance liquid chromatography (HPLC) over the past 5 years. A number of articles have been published in Analytical Chemistry on different topics in HPLC and many papers appear in the chromatographic journals. Some books also have been published covering this subject. HPLC has proved to be a very effective, broadly applicable chromatographic method for the separation and analysis of complex molecules in fields as diverse as biochemistry and environmental, pharmaceutical, medical, and polymer chemistry. HPLC is now having a major impact on the clinical and research aspects of medical biochemistry. Although the contributions of HPLC to other disciplines generally complements gas-liquid chromatography, this method is destined to play a much greater role in medical and biochemical research. This is because many of the biomolecules, owing to their molecular complexity and size, are thermally unstable or nonvolatile, preventing or complicating an analysis by GC. A major factor contributing to the powerful advances in biomedical liquid chromatography is the development of reversed-phase high-performance liquid chromatography (RP-HPLC) using n-alkyl and phenyl chemically bonded substrates.
Lu, Mingbo; Zhang, Yang'e; Zhao, Chunfang; Zhou, Pengpeng; Yu, Longjiang
2010-01-01
This study presents an HPLC method for simultaneous analysis of astaxanthin and its carotenoid precursors from Xanthophyllomyces dendrorhous. The HPLC method is accomplished by employing a C18 column and the mobile phase methanol/water/acetonitrile/ dichloromethane (70:4:13:13, v/v/v/v). Astaxanthin is quantified by detection at 480 nm. The carotenoid precursors are identified by LC-APCI-MS and UV-vis absorption spectra. Peaks showed in the HPLC chromatogram are identified as carotenoids in the monocyclic biosynthetic pathway or their derivatives. In the monocyclic carotenoid pathway, 3,3'-dihydroxy-beta,psi-carotene-4,4'-dione (DCD) is produced through gamma-carotene and torulene.
Ma, Zhen; Ge, Liya; Lee, Anna S Y; Yong, Jean Wan Hong; Tan, Swee Ngin; Ong, Eng Shi
2008-03-10
Coconut (Cocos nucifera L.) water, which contains many uncharacterized phytohormones is extensively used as a growth promoting supplement in plant tissue culture. In this paper, a high-performance liquid chromatography (HPLC) method was developed for the simultaneous determination of various classes phytohormones, including indole-3-acetic acid (IAA), indole-3-butyric acid (IBA), abscisic acid (ABA), gibberellic acid (GA), zeatin (Z), N(6)-benzyladenine (BA), alpha-naphthaleneacetic acid (NAA) and 2,4-dichlorophenoxyacetic acid (2,4-D) in young coconut water (CW). The analysis was carried out using a reverse-phase HPLC gradient elution, with an aqueous mobile phase (containing 0.1% formic acid, pH adjusted to 3.2 with triethylamine (TEA)) modified by methanol, and solute detection made at 265 nm wavelength. The method was validated for specificity, quantification, accuracy and precision. After preconcentration of putative endogenous phytohormones in CW using C(18) solid-phase extraction (SPE) cartridges, the HPLC method was able to screen for putative endogenous phytohormones present in CW. Finally, the identities of the putative phytohormones present in CW were further confirmed using independent liquid chromatography-tandem mass spectrometry (LC-MS/MS) equipped with an electrospray ionization (ESI) interface.
Simultaneous analysis of 17 diuretics in dietary supplements by HPLC and LC-MS/MS.
Woo, H; Kim, J W; Han, K M; Lee, J H; Hwang, I S; Lee, J H; Kim, J; Kweon, S J; Cho, S; Chae, K R; Han, S Y; Kim, J
2013-01-01
In order to test health foods for illegally added diuretics for weight loss, we developed simple, rapid, selective, and sensitive methods using HPLC and LC-MS/MS for the simultaneous analysis of 17 diuretics in dietary supplements. HPLC conditions were set with a Capcell-pak C18, using a mobile phase consisting of gradient conditions, UV detection at 254 nm and validated for linearity (r(2)> 0.999), precision (CV ≤ 3%), recoveries (90.4-102.8%) and reproducibility. Identification and quantification of 17 diuretics were accomplished by ion-spray LC-MS/MS using multiple reaction monitoring (MRM). The chromatographic separation was carried out under the reversed-phase mechanism on an HSS-T3 column. The LC-MS/MS method was validated for linearity (r(2)> 0.99) and precision (CV < 13%). Sixteen dietary supplements were tested with the developed methods. Diuretics were not detected in all samples. Extraction recovery was also investigated and the extraction recoveries in different formulations were from 88% to 110% and from 81% to 116% using HPLC and LC-MS/MS, respectively. There was no significant difference in recoveries in the type of dietary supplements. Based on this result, the developed methods to monitor illegal drug adulterations in dietary supplements using HPLC and LC-MS/MS are simple, fast and reliable. Therefore, it is applicable to routine drug-adulteration screening.
Analysis of condensed and hydrolysable tannins from commercial plant extracts.
Romani, A; Ieri, F; Turchetti, B; Mulinacci, N; Vincieri, F F; Buzzini, P
2006-05-03
High performance liquid chromatography (HPLC)/DAD and MS qualitative and quantitative analyses of polyphenols, hydrolysable and condensed tannins from Pinus maritima L. and tannic acid (TA) extracts were performed using normal and reverse phase. Normal-phase HPLC was more suitable for pine bark (PBE) and tannic acid extracts analysis. The chromatographic profile revealed that P. maritima L. extract was mainly composed by polymeric flavanols (containing from two to seven units) and tannic acid (characterized by a mixture of glucose gallates containing from three to seven units of gallic acid). Concerning their antimycotic properties, P. maritima L. extract exhibited a broad activity towards yeast strains of the genera Candida, Cryptococcus, Filobasidiella, Issatchenkia, Saccharomyces: MICs from 200 to 4000 microg/ml (corresponding to 140-2800 microg/ml of active polyphenols) were determined. Conversely, no activity of tannic acid was observed over the same target microorganisms. Taken into consideration the above results of HPLC analysis and on the basis of the current literature, we may conclude that only 70.2% of polyphenols (recognized as condensed tannins) occurring in P. maritima L. extract can be apparently considered responsible for its antimycotic activity.
Lloyd, T L; Perschy, T B; Gooding, A E; Tomlinson, J J
1992-01-01
A fully automated assay for the analysis of ranitidine in serum and plasma, with and without an internal standard, was validated. It utilizes robotic solid phase extraction with on-line high performance liquid chromatographic (HPLC) analysis. The ruggedness of the assay was demonstrated over a three-year period. A Zymark Py Technology II robotic system was used for serial processing from initial aspiration of samples from original collection containers, to final direct injection onto the on-line HPLC system. Automated serial processing with on-line analysis provided uniform sample history and increased productivity by freeing the chemist to analyse data and perform other tasks. The solid phase extraction efficiency was 94% throughout the assay range of 10-250 ng/mL. The coefficients of variation for within- and between-day quality control samples ranged from 1 to 6% and 1 to 5%, respectively. Mean accuracy for between-day standards and quality control results ranged from 97 to 102% of the respective theoretical concentrations.
Laboratory Detection and Analysis of Organic Compounds in Rocks Using HPLC and XRD Methods
NASA Technical Reports Server (NTRS)
Dragoi, D.; Kanik, I.; Bar-Cohen, Y.; Sherrit, S.; Tsapin, A.; Kulleck, J.
2004-01-01
In this work we describe an analytical method for determining the presence of organic compounds in rocks, limestone, and other composite materials. Our preliminary laboratory experiments on different rocks/limestone show that the organic component in mineralogical matrices is a minor phase on order of hundreds of ppm and can be better detected using high precision liquid chromatography (HPLC). The matrix, which is the major phase, plays an important role in embedding and protecting the organic molecules from the harsh Martian environment. Some rocks bear significant amounts of amino acids therefore, it is possible to identify these phases using powder x-ray diffraction (XRD) by crystallizing the organic. The method of detection/analysis of organics, in particular amino acids, that have been associated with life will be shown in the next section.
Gaonkar, Roopa; Yallappa, S; Dhananjaya, B L; Hegde, Gurumurthy
2016-11-15
Citral is a widely used monoterpene aldehyde in aromatherapy, food and pesticide industries. A new validated reverse phase high performance liquid chromatography (RP - HPLC) procedure for the detection and quantification of cis-trans isomers of citral was developed. The RP-HPLC analysis was carried out using Enable C - 18G column (250×4.6mm, 5μ), with acetonitrile and water (70: 30) mobile phase in isocratic mode at 1mL/min flow. A photodiode array (PDA) detector was set at 233nm for the detection of citral. The method showed linearity, selectivity and accuracy for citral in the range of 3-100μg/mL. In order to compare the new RP-HPLC method with the available methods, one of the commercially available essential oil from Cymbopogon flexuosus was analyzed using new RP-HPLC method and the same was analyzed using GC-MS for the comparison of the method for the detection of citral. The GC-MS analysis was done using mass selective detector (MSD) showed citral content to be of 72.76%; wherein the new method showed to contain that same at 74.98%. To prove the application of the new method, essential oils were extracted from lemongrass, lemon leaves and mosambi peels by steam distillation. The citral content present in the essential and also in the condensate was analyzed. The method was found to be suitable for the analysis of citral in essential oils and water based citral formulations with a very good resolution of its components geranial and neral. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gupta, Lokesh Kumar
2012-11-01
Seven process related impurities were identified by LC-MS in the atorvastatin calcium drug substance. These impurities were identified by LC-MS. The structure of impurities was confirmed by modern spectroscopic techniques like 1H NMR and IR and physicochemical studies conducted by using synthesized authentic reference compounds. The synthesized reference samples of the impurity compounds were used for the quantitative HPLC determination. These impurities were detected by newly developed gradient, reverse phase high performance liquid chromatographic (HPLC) method. The system suitability of HPLC analysis established the validity of the separation. The analytical method was validated according to International Conference of Harmonization (ICH) with respect to specificity, precision, accuracy, linearity, robustness and stability of analytical solutions to demonstrate the power of newly developed HPLC method.
Theodoridis, Georgios
2006-01-18
Protein-drug interactions of seven common pharmaceuticals were studied using solid-phase microextraction (SPME). SPME can be used in such investigations on the condition that no analyte depletion occurs. In multi-compartment systems (e.g. a proteinaceous matrix) only the free portion of the analyte is able to partition into the SPME fiber. In addition if no sample depletion occurs, the bound drug-free drug equilibria are not disturbed. In the present study seven pharmaceuticals (quinine, quinidine, naproxen, ciprofloxacin, haloperidol, paclitaxel and nortriptyline) were assayed by SPME. For quantitative purposes SPME was validated first in the absence of proteins. Calibration curves were constructed for each drug by HPLC-fluorescence and HPLC-UV analysis. SPME was combined to HPLC off-line, desorption occurring in HPLC inserts filled with 200 microL methanol. Binding of each drug to human serum albumin was studied independently. Experimental results were in agreement with literature data and ultrafiltration experiments, indicating the feasibility of the method for such bioanalytical purposes.
NASA Astrophysics Data System (ADS)
Larsen, Erik H.
1998-02-01
Achievement of optimum selectivity, sensitivity and robustness in speciation analysis using high performance liquid chromatography (HPLC) with inductively coupled mass spectrometry (ICP-MS) detection requires that each instrumental component is selected and optimized with a view to the ideal operating characteristics of the entire hyphenated system. An isocratic HPLC system, which employs an aqueous mobile phase with organic buffer constituents, is well suited for introduction into the ICP-MS because of the stability of the detector response and high degree of analyte sensitivity attained. Anion and cation exchange HPLC systems, which meet these requirements, were used for the seperation of selenium and arsenic species in crude extracts of biological samples. Furthermore, the signal-to-noise ratios obtained for these incompletely ionized elements in the argon ICP were further enhanced by a factor of four by continously introducing carbon as methanol via the mobile phase into the ICP. Sources of error in the HPLC system (column overload), in the sample introduction system (memory by organic solvents) and in the ICP-MS (spectroscopic interferences) and their prevention are also discussed. The optimized anion and cation exchange HPLC-ICP-MS systems were used for arsenic speciation in contaminated ground water and in an in-house shrimp reference sample. For the purpose of verification, HPLC coupled with tandem mass spectrometry with electrospray ionization was additionally used for arsenic speciation in the shrimp sample. With this analytical technique the HPLC retention time in combination with mass analysis of the molecular ions and their collision-induced fragments provide almost conclusive evidence of the identity of the analyte species. The speciation methods are validated by establishing a mass balance of the analytes in each fraction of the extraction procedure, by recovery of spikes and by employing and comparing independent techniques. The urgent need for reference materials certified for elemental species is stressed.
Molinski, Tadeusz F.; Reynolds, Kirk A.; Morinaka, Brandon I.
2012-01-01
The absolute stereostructures of the components of symplocin A (3), a new N,N-dimethyl-terminated peptide from the Bahamian cyanobacterium, Symploca sp., were assigned from spectroscopic analysis, including MS and 2D NMR and Marfey’s analysis. The complete absolute configuration of symplocin A, including the unexpected D-configurations of the terminal N,N-dimethylisoleucine and valic acid residues, were assigned by chiral-phase HPLC of the corresponding 2-naphthacyl esters, a highly sensitive, complementary strategy for assignment of N-blocked peptide residues where Marfey’s method is ineffectual, or other methods fall short. Symplocin A exhibited potent activity as an inhibitor of cathepsin E (IC50 300 pM). PMID:22360587
Sandra, Koen; Moshir, Mahan; D'hondt, Filip; Tuytten, Robin; Verleysen, Katleen; Kas, Koen; François, Isabelle; Sandra, Pat
2009-04-15
Multidimensional liquid-based separation techniques are described for maximizing the resolution of the enormous number of peptides generated upon tryptic digestion of proteomes, and hence, reduce the spatial and temporal complexity of the sample to a level that allows successful mass spectrometric analysis. This review complements the previous contribution on unidimensional high performance liquid chromatography (HPLC). Both chromatography and electrophoresis will be discussed albeit with reversed-phase HPLC (RPLC) as the final separation dimension prior to MS analysis.
Analysis of Biomass Sugars Using a Novel HPLC Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agblevor, F. A.; Hames, B. R.; Schell, D.
The precise quantitative analysis of biomass sugars is a very important step in the conversion of biomass feedstocks to fuels and chemicals. However, the most accurate method of biomass sugar analysis is based on the gas chromatography analysis of derivatized sugars either as alditol acetates or trimethylsilanes. The derivatization method is time consuming but the alternative high-performance liquid chromatography (HPLC) method cannot resolve most sugars found in biomass hydrolysates. We have demonstrated for the first time that by careful manipulation of the HPLC mobile phase, biomass monomeric sugars (arabinose, xylose, fructose, glucose, mannose, and galactose) can be analyzed quantitatively andmore » there is excellent baseline resolution of all the sugars. This method was demonstrated for standard sugars, pretreated corn stover liquid and solid fractions. Our method can also be used to analyze dimeric sugars (cellobiose and sucrose).« less
NASA Astrophysics Data System (ADS)
Karsten, Ulf; Escoubeyrou, Karine; Charles, François
2009-09-01
Many macroalgal species that are regularly exposed to high solar radiation such as the eulittoral green alga Prasiola crispa and the red alga Porphyra umbilicalis synthesize and accumulate high concentrations of mycosporine-like amino acids (MAAs) as UV-sunscreen compounds. These substances are typically extracted with a widely used standard protocol following quantification by various high performance liquid chromatography (HPLC) techniques. However, further preparation steps prior to HPLC analysis as well as different HPLC column types have not been systematically checked regarding separation quality and reproducibility. Therefore pure methanol, distilled water and HPLC eluent were evaluated as re-dissolution solvent for dried Prasiola and Porphyra extracts, which were subsequently analyzed on three reversed-phase C8 and C18 HPLC columns. The data indicate that distilled water and the HPLC eluent gave almost identical peak patterns and MAA contents on the C8 and C18 columns. In contrast, the application of the widely used methanol led to double peaks or even the loss of specific peaks as well as to a strong decline in total MAA amounts ranging from about 35% of the maximum in P. crispa to 80% of the maximum in P. umbilicalis. Consequently, methanol should be avoided as re-dissolution solvent for the HPLC sample preparation. An improved protocol for the MAA analysis in macroalgae in combination with a reliable C18 column is suggested.
Zou, Hong-Yan; Luo, Jun; Xu, De-Ran; Kong, Ling-Yi
2014-01-01
'Naoyanghua', composed of the flowers of Rhododendron molle G. Don, is a traditional Chinese medicine that is widely known for its toxicity. Grayanane-type diterpenoids are the main active ingredients in R. molle, as well as possibly their toxicity: they are, however, difficult to isolate and analyse using common chromatographic methods, due to their small amounts and absence of conjugated groups, such as phenyl and α, β-unsaturated ketone. To establish a highly sensitive, selective and reliable method for the qualitative evaluation of trace diterpenoids in the flowers of R. molle by using tandem solid-phase extraction followed by high-performance liquid chromatography with electrospray ionisation quadrupole-time-of-flight mass spectrometry (HPLC-ESI/QTOF/MS/MS). Tandem solid phase extraction (SPE) was undertaken using a polyamide cartridge and a C18E cartridge in succession to enrich the trace diterpenoids. HPLC-ESI/QTOF/MS/MS was used to determine the fragmentation patterns of diterpenoids and to tentatively characterise their fragmentation pathways. HPLC-ESI/QTOF/MS/MS detected a total of 14 diterpenoids, eight of which were identified by comparison with literature sources and six based on fragmentation analysis. Among the latter six, rhodojaponin VI-3-glucoside was tentatively identified as a new diterpenoid glycoside and rhodojaponin VII, rhodojaponin IV and rhodojaponin I were reported from R. molle for the first time. By qualitative research of diterpenoids in this plant by HPLC-ESI/QTOF/MS/MS, a reliable methodology for the analysis of these active constituents of R. molle was established for the first time. Copyright © 2014 John Wiley & Sons, Ltd.
Guohua, Xia; Pan, Ruirong; Bao, Rui; Ge, Yanru; Zhou, Cunshan; Shen, Yuping
2017-01-01
Sanghuang is one of mystical traditional Chinese medicines recorded earliest 2000 years ago, that included various fungi of Inonotus genus and was well-known for antitumor effect in modern medicine. Inonotus vaninii is grown in natural forest of Northeastern China merely and used as Sanghuang commercially, but it has no quality control specification until now. This study was to establish a rapid method of two-phase acid hydrolysis followed by reversed phase-high performance liquid chromatography-ultra violet (RP-HPLC-UV) to quantify naringenin in the fruit body of I. vaninii . Sample solution was prepared by pretreatment of raw material in two-phase acid hydrolysis and the hydrolysis technology was optimized. After reconstitution, analysis was performed using RP-HPLC-UV. The method validation was investigated and the naringenin content of sample and comparison were determined. The naringenin was obtained by two-phase acid hydrolysis method, namely, 10.0 g of raw material was hydrolyzed in 200 mL of 1% sulfuric acid aqueous solution (v/v) and 400 mL of chloroform in oil bath at 110°C for 2 h. Good linearity ( r = 0.9992) was achieved between concentration of analyte and peak area. The relative standard deviation (RSD) of precision was 2.47% and the RSD of naringenin contents for repeatability was 3.13%. The accuracy was supported with recoveries at 96.37%, 97.30%, and 99.31%. The sample solution prepared using the proposed method contained higher content of naringenin than conventional method and was stable for 8 h. Due to the high efficiency of sample preparation and high reliability of the HPLC method, it is feasible to use this method for routine analysis of naringenin in the fungus. A convenient two-phase acid hydrolysis was employed to produce naringenin from raw material, and then an efficient and reliable reversed phase-high performance liquid chromatography-ultra violet method was established to monitor naringenin in the fruit bodies of Inonotus vaninii . The newly established method could be used to control the quality of the herb. Abbreviations used: RP-HPLC-UV: Reversed Phase-High Performance Liquid Chromatography-Ultra Violet, RSD: Relative Standard Deviation, EtOAc: Ethyl acetate, ACN: Acetonitrile, MeOH: Methanol, RH: Relative Humility.
[HPLC fingerprint analysis of flavonoids of phyllanthi fructus from different habitats].
Wang, Fei; Wang, Shuai; Meng, Xian-sheng; Bao, Yong-rui; Zhu, Ying-huan
2014-11-01
To establish the HPLC fingerprint of flavonoids of Phyllanthi Fructus from different habitats. HPLC method was adopted. The flavonoids composition of Phyllanthi Fructus from 10 different habitats was determined on an Agilent C, chromatographic column with 0. 5% formic acid water (A)-acetonitrile (B) as the mobile phase in gradient elution under the wavelength of 254 nm. The HPLC fingerprints of flavonoids composition of Phyllanthi Fructus were established to evaluate the qualitiy of them. The HPLC fingerprints of flavonoids composition of Phyllanthi Fructus from 10 different habitats were established. 18 common peaks were found and the similarities of them were more than 0. 90 except the ones from Guangxi and Guangdong. The method is simple, accurate and repeatable. It can be used for research and quality control of the effective components in Phyllanthi Fructus.
Wang, Z; Hennion, B; Urruty, L; Montury, M
2000-11-01
Solid-phase microextraction coupled with high performance liquid chromatography has been studied for the analysis of methiocarb, napropamide, fenoxycarb and bupirimate in strawberries. The strawberries were blended and centrifuged. Then, an aliquot of the resulting extracting solution was subjected to solid-phase microextraction (SPME) on a 60 microns polydimethylsiloxane/divinylbenzene (PDMS/DVB) fibre for 45 min at room temperature. The extracted pesticides on the SPME fibre were desorbed into SPME/high performance liquid chromatography (HPLC) interface for HPLC analysis with diode-array detection (DAD). The method is organic solvent-free for the whole extraction process and is simple and easy to manipulate. The detection limits were shown to be at low microgram kg-1 level and the linear response covered the range from 0.05 to 2 mg kg-1 of pesticides in strawberries with a regression coefficient larger than 0.99. A good repeatability with RSDs between 2.92 and 9.25% was obtained, depending on compounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ovchinnikova, Olga S; Kertesz, Vilmos; Van Berkel, Gary J
This paper describes the coupling of ambient pressure transmission geometry laser ablation with a liquid phase sample collection method for surface sampling and ionization with subsequent mass spectral analysis. A commercially available autosampler was adapted to produce a liquid droplet at the end of the syringe injection needle while in close proximity to the surface to collect the sample plume produced by laser ablation. The sample collection was followed by either flow injection or a high performance liquid chromatography (HPLC) separation of the extracted components and detection with electrospray ionization mass spectrometry (ESI-MS). To illustrate the analytical utility of thismore » coupling, thin films of a commercial ink sample containing rhodamine 6G and of mixed isobaric rhodamine B and 6G dyes on glass microscope slides were analyzed. The flow injection and HPLC/ESI-MS analysis revealed successful laser ablation, capture and, with HPLC, the separation of the two compounds. The ablated circular area was about 70 m in diameter for these experiments. The spatial sampling resolution afforded by the laser ablation, as well as the ability to use sample processing methods like HPLC between the sample collection and ionization steps, makes this combined surface sampling/ionization technique a highly versatile analytical tool.« less
Ferrer, I.; Thurman, E.M.; Barcelo, D.
1997-01-01
Solid-phase extraction (SPE) was combined with high-performance liquid chromatography/high-flow pneumatically assisted electrospray mass spectrometry (HPLC/ESP/MS) for the trace analysis of oxanilic and sulfonic acids of acetochlor, alachlor, and metolachlor. The isolation procedure separated the chloroacetanilide metabolites from the parent herbicides during the elution from C18 cartridges using ethyl acetate for parent compounds, followed by methanol for the anionic metabolites. The metabolites were separated chromatographically using reversed-phase HPLC and analyzed by negative-ion MS using electrospray ionization in selected ion mode. Quantitation limits were 0.01 ??g/L for both the oxanilic and sulfonic acids based on a 100-mL water sample. This combination of methods represents an important advance in environmental analysis of chloroacetanilide-herbicide metabolites in surface water and groundwater for two reasons. First, anionic chloroacetanilide metabolites are a major class of degradation products that are readily leached to groundwater in agricultural areas. Second, anionic metabolites, which are not able to be analyzed by conventional methods such as liquid extraction and gas chromatography/mass spectrometry, are effectively analyzed by SPE and high-flow pneumatically assisted electrospray mass spectrometry. This paper reports the first HPLC/MS identification of these metabolites in surface water and groundwater.
Drzymala, Sarah S; Weiz, Stefan; Heinze, Julia; Marten, Silvia; Prinz, Carsten; Zimathies, Annett; Garbe, Leif-Alexander; Koch, Matthias
2015-05-01
Established maximum levels for the mycotoxin zearalenone (ZEN) in edible oil require monitoring by reliable analytical methods. Therefore, an automated SPE-HPLC online system based on dynamic covalent hydrazine chemistry has been developed. The SPE step comprises a reversible hydrazone formation by ZEN and a hydrazine moiety covalently attached to a solid phase. Seven hydrazine materials with different properties regarding the resin backbone, pore size, particle size, specific surface area, and loading have been evaluated. As a result, a hydrazine-functionalized silica gel was chosen. The final automated online method was validated and applied to the analysis of three maize germ oil samples including a provisionally certified reference material. Important performance criteria for the recovery (70-120 %) and precision (RSDr <25 %) as set by the Commission Regulation EC 401/2006 were fulfilled: The mean recovery was 78 % and RSDr did not exceed 8 %. The results of the SPE-HPLC online method were further compared to results obtained by liquid-liquid extraction with stable isotope dilution analysis LC-MS/MS and found to be in good agreement. The developed SPE-HPLC online system with fluorescence detection allows a reliable, accurate, and sensitive quantification (limit of quantification, 30 μg/kg) of ZEN in edible oils while significantly reducing the workload. To our knowledge, this is the first report on an automated SPE-HPLC method based on a covalent SPE approach.
Kim, Won Il; Zhao, Bing Tian; Zhang, Hai Yan; Lee, Je Hyun; Son, Jong Keun; Woo, Mi Hee
2014-01-01
Two rapid and simple HPLC methods with UV detector to determine three main compounds (magnoflorine, spinosin and 6'''-feruloyl spinosin) and evaporative light scattering detector (ELSD) to determine jujuboside A were developed for the chemical analyses of Zizyphi Semen. Magnoflorine, spinosin, and 6'''-feruloyl spinosin were separated with an YMC J'sphere ODS-H80 column (250 mm × 4.6 mm, 4 μm) by the gradient elution followed by the isocratic elution using methanol with 0.1 % formic acid and water with 0.1 % formic acid as the mobile phase. The flow rate was 1.0 mL/min. Jujuboside A was separated by HPLC-ELSD with YoungJinBioChrom Aegispak C18-L column (250 mm × 4.6 mm, 5 μm) column in a gradient elution using methanol with 0.1 % formic acid (A) and water with 0.1 % formic acid as the mobile phase. These two methods were fully validated with respect to linearity, precision, accuracy, stability, and robustness. These HPLC methods were applied successfully to quantify four compounds in a Zizyphi Semen extract. The HPLC analytical methods were validated for pattern recognition analysis by repeated analysis of 91 seed samples corresponding to 48 Zizyphus jujuba var. spinosa (J01-J48) and 43 Zizyphus mauritiana (M01-M43). The results indicate that these methods are suitable for a quality evaluation of Zizyphi Semen.
Lesniewska, Monika A; Dereziński, Paweł; Klupczyńska, Agnieszka; Kokot, Zenon J; Ostrowski, Tomasz; Zeidler, Joanna; Muszalska, Izabela
2015-01-01
The degradation behavior of a tricyclic analog of acyclovir [6-(4-MeOPh)-TACV] was determined in accordance with International Conference on Harmonization guidelines for good clinical practice under different stress conditions (neutral hydrolysis, strong acid/base degradation, oxidative decomposition, photodegradation, and thermal degradation). Accelerated [40±2°C/75%±5% relative humidity (RH)] and intermediate (30±2°C/65%±5% RH) stability tests were also performed. For observation of the degradation of the tested compound the RP-HPLC was used, whereas for the analysis of its degradation products HPLC/MS/MS was used. Degradation of the tested substance allowed its classification as unstable in neutral environment, acidic/alkaline medium, and in the presence of oxidizing agent. The tested compound was also light sensitive and was classified as photolabile both in solution and in the solid phase. However, the observed photodegradation in the solid phase was at a much lower level than in the case of photodegradation in solution. The study showed that both air temperature and RH had no significant effect on the stability of the tested substance during storage for 1 month at 100°C (dry heat) as well as during accelerated and intermediate tests. Based on the HPLC/MS/MS analysis, it can be concluded that acyclovir was formed as a degradation product of 6-(4-MeOPh)-TACV.
El-Yazbi, Amira F; El-Hawiet, Amr
2017-05-01
Two simple, direct and environment-friendly chromatographic methods, high-performance liquid chromatography (HPLC) and high-performance thin layer chromatographic (HPTLC), were developed for the determination of a binary mixture of fish oil (FO) and wheat germ oil (WGO), for the first time, in their pharmaceutical dosage forms with no need for any sample pretreatment. The HPLC separation was carried out using C-18 stationary phase with mobile phase of 15% formic acid (pH 6), methanol and acetonitrile through gradient-elution, 1.5 mL min-1 flow-rate and detection at 215 nm for FO and 280 nm for WGO. HPTLC separation was carried out on silica-coated plates using diethyl ether-petroleum ether (0.5:9.5, v/v) as mobile phase. Detection was at 215 nm for FO and 240 nm for WGO. Regression analysis showed good linear relationship with r > 0.999 in the concentration-ranges of 0.2-2 mg mL-1 and 2.5-20 μg band-1 for WGO by HPLC and HPTLC methods, respectively, and 0.4-10 mg mL-1 and 25-200 μg band-1 for FO by HPLC and HPTLC methods, respectively. The methods were validated, showed good analytical performance and were successfully applied for the analysis of pharmaceutical formulations and synthetic mixtures of the analytes with good recoveries. Therefore, the two methods could be conveniently adopted for routine analysis of similar products in quality control laboratories of pharmaceutical industries especially that simultaneous determination of FO-WGO mixture has not been reported previously. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Ahmad, Abdel Kader S; Kawy, M Abdel; Nebsen, M
2002-10-15
Three methods are presented for the determination of Nicergoline in presence of its hydrolysis-induced degradation product. The first method was based on measurement of the first derivative of ratio spectra amplitude of Nicergoline at 291 nm. The second method was based on separation of Nicergoline from its degradation product followed by densitometric measurement of the spots at 287 nm. The separation was carried out on HPTLC silica gel F(254) plates, using methanol-ethyl acetate-glacial acetic acid (5:7:3, v/v/v) as mobile phase. The third method was based on high performance liquid chromatographic (HPLC) separation and determination of Nicergoline from its degradation product on a reversed phase, nucloesil C(18) column using a mobile phase of methanol-water-glacial acetic acid (80:20:0.1, v/v/v) with UV detection at 280 nm. Chlorpromazine hydrochloride was used as internal standard. Laboratory prepared mixtures containing different percentages of the degradation product were analysed by the proposed methods and satisfactory results were obtained. These methods have been successfully applied to the analysis of Nicergoline in Sermion tablets. The validities of these methods were ascertained by applying standard addition technique, the mean percentage recovery +/- R.S.D.% was found to be 99.47 +/- 0.752, 100.01 +/- 0.940, 99.75 +/- 0.740 for the first derivative of ratio spectra method, the HPTLC method and the HPLC method, respectively. The proposed methods were statistically compared with the manufacturer's HPLC method of analysis of Nicergoline and no significant difference was found with respect to both precision and accuracy. They have the advantage of being stability indicating. Therefore, they can be used for routine analysis of the drug in quality control laboratories. Copyright 2002 Elsevier Science B.V.
Sayar, Esin; Sahin, Selma; Cevheroglu, Semsettin; Hincal, A Atilla
2010-09-01
The combination of trimethoprim (TMP) and sulfamethoxazole (SMX) is used in the treatment of many common infections such as urinary, respiratory and gastrointestinal tract infections. The aim of this study was to determine TMP and SMX simultaneously in human plasma samples by high performance liquid chromatography (HPLC) using antipyrine as the internal standard. Separation of the compounds was achieved on a reverse-phase C8 column packed with 5 microm dimethyl octadecylsilyl bonded amorphous silica (4.6 mm x 250 mm) column using a mobile phase consisted of potassium hydrogen phosphate, acetonitrile, methanol and water adjusted to pH 6.2. The mobile phase was delivered at a flow rate of 1 mL min- and the effluent was monitored using Max plot technique at 25 derees C. Retention times were 5 min for TMP, 7 min for antipyrine and 9 min for SMX. Quantitation limits were 10 ng mL(-1) for TMP and 50 ng mL(-1) for SMX. Our findings indicated that the developed HPLC method was precise, accurate, specific and sensitive for simultaneous determination of TMP and SMX. Proposed HPLC method was successfully applied for the analysis of TMP and SMX in human plasma after oral administration of a co-trimoxazole tablet to human volunteers.
Gallistl, Christoph; Vetter, Walter
2016-04-15
Polybrominated dibenzofurans (PBDFs) are a class of highly toxic environmental contaminants which comprises 135 structurally different congeners. While the gas chromatographic separation and analysis of the most polychlorinated dibenzofurans (PCDFs) are well-documented, comparably little data is currently available in the case of PBDFs. In this study dibenzofuran was brominated to give a mixture of ∼40 PBDFs with one to seven bromine atoms. This synthesis mixture was fractionated by both countercurrent chromatography (CCC) with the solvent system n-hexane/toluene/acetonitrile and non-aqueous reversed-phase high performance liquid chromatography (RP-HPLC) with acetonitrile as the mobile phase. All together 80 consecutive CCC fractions and 40 HPLC fractions were taken and analyzed for PBDFs by gas chromatography coupled to mass spectrometry (GC/MS). CCC and RP-HPLC offered orthogonal separation of the PBDF mixture. As a consequence, selected CCC fractions were further fractionated by RP-HPLC. In this way, eight PBDFs could be isolated and the structures of twelve PBDFs were elucidated by proton magnetic resonance spectroscopy ((1)H NMR). Copyright © 2016 Elsevier B.V. All rights reserved.
Cifuentes, A; Valencia, J; Sanz, E; Sánchez, M J; Rodríguez-Delgado, M A
1997-08-22
A comparative study on the use of reversed-phase high-performance liquid chromatography (RP-HPLC) and capillary electrophoresis (CE) for the determination of debrisoquine (D) and its metabolite, 4-hydroxydebrisoquine (4-HD), in human urine is presented. Four different urine pre-treatments are compared for purification of samples prior to their injection in HPLC and CE. The use of a solid-phase extraction with a C18 cartridge provides the best results for the urine sample treatment, with good recoveries, i.e., 94.5% for D and 93.4% for 4-HD, and high reproducibility, i.e., R.S.D. N = 10 values of 1.7% and 1.2%, respectively. Under our separation conditions it is shown that CE is twice as fast and provides slightly better analysis time reproducibility than HPLC for this type of sample. Both the sensitivity and peak area reproducibility are better when HPLC is used. The two techniques show good agreement when employed for determination of phenotypes for hydroxylation, which seems to corroborate the usefulness of CE for this type of study.
da Silva, Letícia Flores; Guerra, Celito Crivellaro; Klein, Diandra; Bergold, Ana Maria
2017-07-15
Bioactive phenols (BPs) are often targets in red wine analysis. However, other compounds interfere in the liquid chromatography methods used for this analysis. Here, purification procedures were tested to eliminate anthocyanin interference during the determination of 19 red-wine BPs. Liquid chromatography, coupled to a diode array detector (HPLC-DAD) and a mass spectrometer (UPLC-MS), was used to compare the direct injection of the samples with solid-phase extractions: reversed-phase (C18) and strong cation-exchange (SCX). The HPLC-DAD method revealed that, out of 13BPs, only six are selectively analyzed with or without C18 treatment, whereas SCX enabled the detection of all BPs. The recovery with SCX was above 86.6% for eight BPs. Moreover, UPLC-MS demonstrated the potential of SCX sample preparation for the determination of 19BPs. The developed procedure may be extended to the analysis of other red wine molecules or to other analytical methods where anthocyanins may interfere. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lee, Kang Choon; Chun, Young Goo; Kim, Insoo; Shin, Beom Soo; Park, Eun-Seok; Yoo, Sun Dong; Youn, Yu Seok
2009-07-15
A simple, specific and sensitive derivatization with monobromobimane (mBrB) and the corresponding HPLC-fluorescence quantitation method for the analysis of bucillamine in human plasma was developed and validated. The analytical procedure involves a simple protein precipitation, pre-column fluorescence derivatization, and separation by reversed-phase high performance liquid chromatography (RP-HPLC). The calibration curve showed good linearity over a wide concentration range (50 ng/mL to 10 microg/mL) in human plasma (r(2)=0.9998). The lower limit of quantitation (LLOQ) was 50 ng/mL. The average precision and accuracy at LLOQ were within 6.3% and 107.6%, respectively. This method was successfully applied to a pharmacokinetic study after oral administration of a dose (300 mg) of bucillamine to 20 healthy Korean volunteers.
López Monzón, A; Vega Moreno, D; Torres Padrón, M E; Sosa Ferrera, Z; Santana Rodríguez, J J
2007-03-01
Solid-phase microextraction (SPME) coupled with high-performance liquid chromatography (HPLC) with fluorescence detection was optimized for extraction and determination of four benzimidazole fungicides (benomyl, carbendazim, thiabendazole, and fuberidazole) in water. We studied extraction and desorption conditions, for example fiber type, extraction time, ionic strength, extraction temperature, and desorption time to achieve the maximum efficiency in the extraction. Results indicate that SPME using a Carboxen-polydimethylsiloxane 75 microm (CAR-PDMS) fiber is suitable for extraction of these types of compound. Final analysis of benzimidazole fungicides was performed by HPLC with fluorescence detection. Recoveries ranged from 80.6 to 119.6 with RSDs below 9% and limits of detection between 0.03 and 1.30 ng mL-1 for the different analytes. The optimized procedure was applied successfully to the determination of benzimidazole fungicides mixtures in environmental water samples (sea, sewage, and ground water).
Morais, Helena; Ramos, Cristina; Forgács, Esther; Cserháti, Tibor; Oliviera, José
2002-04-25
The effect of light, storage time and temperature on the decomposition rate of monomeric anthocyanin pigments extracted from skins of grape (Vitis vinifera var. Red globe) was determined by reversed-phase high-performance liquid chromatography (RP-HPLC). The impact of various storage conditions on the pigment stability was assessed by stepwise regression analysis. RP-HPLC separated well the five anthocyanins identified and proved the presence of other unidentified pigments at lower concentrations. Stepwise regression analysis confirmed that the overall decomposition rate of monomeric anthocyanins, peonidin-3-glucoside and malvidin-3-glucoside significantly depended on the time and temperature of storage, the effect of storage time being the most important. The presence or absence of light exerted a negligible impact on the decomposition rate.
Off-line real-time FTIR analysis of a process step in imipenem production
NASA Astrophysics Data System (ADS)
Boaz, Jhansi R.; Thomas, Scott M.; Meyerhoffer, Steven M.; Staskiewicz, Steven J.; Lynch, Joseph E.; Egan, Richard S.; Ellison, Dean K.
1992-08-01
We have developed an FT-IR method, using a Spectra-Tech Monit-IR 400 systems, to monitor off-line the completion of a reaction in real-time. The reaction is moisture-sensitive and analysis by more conventional methods (normal-phase HPLC) is difficult to reproduce. The FT-IR method is based on the shift of a diazo band when a conjugated beta-diketone is transformed into a silyl enol ether during the reaction. The reaction mixture is examined directly by IR and does not require sample workup. Data acquisition time is less than one minute. The method has been validated for specificity, precision and accuracy. The results obtained by the FT-IR method for known mixtures and in-process samples compare favorably with those from a normal-phase HPLC method.
Janiszewski, J; Schneider, P; Hoffmaster, K; Swyden, M; Wells, D; Fouda, H
1997-01-01
The development and application of membrane solid phase extraction (SPE) in 96-well microtiter plate format is described for the automated analysis of drugs in biological fluids. The small bed volume of the membrane allows elution of the analyte in a very small solvent volume, permitting direct HPLC injection and negating the need for the time consuming solvent evaporation step. A programmable liquid handling station (Quadra 96) was modified to automate all SPE steps. To avoid drying of the SPE bed and to enhance the analytical precision a novel protocol for performing the condition, load and wash steps in rapid succession was utilized. A block of 96 samples can now be extracted in 10 min., about 30 times faster than manual solvent extraction or single cartridge SPE methods. This processing speed complements the high-throughput speed of contemporary high performance liquid chromatography mass spectrometry (HPLC/MS) analysis. The quantitative analysis of a test analyte (Ziprasidone) in plasma demonstrates the utility and throughput of membrane SPE in combination with HPLC/MS. The results obtained with the current automated procedure compare favorably with those obtained using solvent and traditional solid phase extraction methods. The method has been used for the analysis of numerous drug prototypes in biological fluids to support drug discovery efforts.
Yang, Y; Kapalavavi, B; Gujjar, L; Hadrous, S; Marple, R; Gamsky, C
2012-10-01
Several high-temperature liquid chromatography (HTLC) and subcritical water chromatography (SBWC) methods have been successfully developed in this study for separation and analysis of preservatives contained in Olay skincare creams. Efficient separation and quantitative analysis of preservatives have been achieved on four commercially available ZirChrom and Waters XBridge columns at temperatures ranging from 100 to 200°C. The quantification results obtained by both HTLC and SBWC methods developed for preservatives analysis are accurate and reproducible. A large number of replicate HTLC and SBWC runs also indicate no significant system building-up or interference for skincare cream analysis. Compared with traditional HPLC separation carried out at ambient temperature, the HTLC methods can save up to 90% methanol required in the HPLC mobile phase. However, the SBWC methods developed in this project completely eliminated the use of toxic organic solvents required in the HPLC mobile phase, thus saving a significant amount of money and making the environment greener. Although both homemade and commercial systems can accomplish SBWC separations, the SBWC methods using the commercial system for preservative analysis are recommended for industrial applications because they can be directly applied in industrial plant settings. © 2012 The Authors ICS © 2012 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Gezici, Orhan; Kara, Hüseyin
2011-09-15
The stationary phase characteristics of the material obtained through immobilization of humic acid (HA) to aminopropyl silica (APS) via amide-bond formation were investigated. The material was characterized in terms of elemental analysis, FTIR, thermogravimetric analyses, pH point of zero charge measurements, potentiometric titrations, and contact angle measurements. Amount of HA bonded to APS was determined from the elemental analysis results, and found as 170 mgHA/gAPS. Stability of the material was studied in aqueous media at different pH values, and amount of HA released at pH=8 did not exceed 2% of the total immobilized HA. Stationary phase characteristics of the well-characterized material were investigated in an HPLC system by using some low-molecular weight polar compounds (i.e. some nucleosides and nucleobases) as test solutes. Effect of some experimental variables such as column conditioning, composition of mobile phase, and temperature on the chromatographic behavior of the studied compounds was studied. Role of ammonium solutions at different pH values on retentive properties of the species was also studied. Retention factors (k') versus volume percentage of organic modifier exhibited a U-curve, which was evaluated as an indication for RPLC/HILIC mixed-mode behavior of the stationary phase. Orthogonality between RPLC and HILIC modes was analyzed through geometric approach, and found as 48.5%. Base-line separation for the studied groups of compounds was achieved under each studied mode, and some differentiations were observed in elution order of the compounds depending on the HPLC mode applied. Chromatograms recorded under RPLC and HILIC modes were compared with those recorded on APS under similar conditions, and thus the influence/importance of HA immobilization process was evaluated in detail. In light of the obtained results, immobilized HA is represented as a useful stationary phase for HPLC separations. Copyright © 2011 Elsevier B.V. All rights reserved.
Nakamura, A; Watanabe, T
2001-04-01
Reversed-phase HPLC conditions for separation of chlorophyll (Chl) a, Chl a' (the C132-epimer of Chl a), pheophytin (Pheo) a (the primary electron acceptor of photosystem (PS) II), and phylloquinone (PhQ) (the secondary electron acceptor of PS 1), have been developed. Pigment extraction conditions were optimized in terms of pigment alteration and extraction efficiency. Pigment composition analysis of light-harvesting complex II, which would not contain Chl a' nor Pheo a, showed the Chl a'/Chl a ratio of 3-4 x 10(-4) and the Pheo a/Chl a ratio of 4-5 x 10(-4), showing that the conditions developed here were sufficiently inert for Chl analysis. Preliminary analysis of thylakoid membranes with this analytical system gave the PhQ/Chl a' ratio of 0.58 +/- 0.03 (n = 4), in line with the stoichiometry of one molecule of Chl a' per PS I.
Naveen, P.; Lingaraju, H. B.; Prasad, K. Shyam
2017-01-01
Mangiferin, a polyphenolic xanthone glycoside from Mangifera indica, is used as traditional medicine for the treatment of numerous diseases. The present study was aimed to develop and validate a reversed-phase high-performance liquid chromatography (RP-HPLC) method for the quantification of mangiferin from the bark extract of M. indica. RP-HPLC analysis was performed by isocratic elution with a low-pressure gradient using 0.1% formic acid: acetonitrile (87:13) as a mobile phase with a flow rate of 1.5 ml/min. The separation was done at 26°C using a Kinetex XB-C18 column as stationary phase and the detection wavelength at 256 nm. The proposed method was validated for linearity, precision, accuracy, limit of detection, limit of quantification, and robustness by the International Conference on Harmonisation guidelines. In linearity, the excellent correlation coefficient more than 0.999 indicated good fitting of the curve and also good linearity. The intra- and inter-day precision showed < 1% of relative standard deviation of peak area indicated high reliability and reproducibility of the method. The recovery values at three different levels (50%, 100%, and 150%) of spiked samples were found to be 100.47, 100.89, and 100.99, respectively, and low standard deviation value < 1% shows high accuracy of the method. In robustness, the results remain unaffected by small variation in the analytical parameters, which shows the robustness of the method. Liquid chromatography–mass spectrometry analysis confirmed the presence of mangiferin with M/Z value of 421. The assay developed by HPLC method is a simple, rapid, and reliable for the determination of mangiferin from M. indica. SUMMARY The present study was intended to develop and validate an RP-HPLC method for the quantification of mangiferin from the bark extract of M. indica. The developed method was validated for linearity, precision, accuracy, limit of detection, limit of quantification and robustness by International Conference on Harmonization guidelines. This study proved that the developed assay by HPLC method is a simple, rapid and reliable for the quantification of the mangiferin from M. indica. Abbreviations Used: M. indica: Mangifera indica, RP-HPLC: Reversed-phase high-performance liquid chromatography, M/Z: Mass to charge ratio, ICH: International conference on harmonization, % RSD: Percentage of relative standard deviation, ppm: Parts per million, LOD: Limit of detection, LOQ: Limit of quantification. PMID:28539748
Naveen, P; Lingaraju, H B; Prasad, K Shyam
2017-01-01
Mangiferin, a polyphenolic xanthone glycoside from Mangifera indica , is used as traditional medicine for the treatment of numerous diseases. The present study was aimed to develop and validate a reversed-phase high-performance liquid chromatography (RP-HPLC) method for the quantification of mangiferin from the bark extract of M. indica . RP-HPLC analysis was performed by isocratic elution with a low-pressure gradient using 0.1% formic acid: acetonitrile (87:13) as a mobile phase with a flow rate of 1.5 ml/min. The separation was done at 26°C using a Kinetex XB-C18 column as stationary phase and the detection wavelength at 256 nm. The proposed method was validated for linearity, precision, accuracy, limit of detection, limit of quantification, and robustness by the International Conference on Harmonisation guidelines. In linearity, the excellent correlation coefficient more than 0.999 indicated good fitting of the curve and also good linearity. The intra- and inter-day precision showed < 1% of relative standard deviation of peak area indicated high reliability and reproducibility of the method. The recovery values at three different levels (50%, 100%, and 150%) of spiked samples were found to be 100.47, 100.89, and 100.99, respectively, and low standard deviation value < 1% shows high accuracy of the method. In robustness, the results remain unaffected by small variation in the analytical parameters, which shows the robustness of the method. Liquid chromatography-mass spectrometry analysis confirmed the presence of mangiferin with M/Z value of 421. The assay developed by HPLC method is a simple, rapid, and reliable for the determination of mangiferin from M. indica . The present study was intended to develop and validate an RP-HPLC method for the quantification of mangiferin from the bark extract of M. indica . The developed method was validated for linearity, precision, accuracy, limit of detection, limit of quantification and robustness by International Conference on Harmonization guidelines. This study proved that the developed assay by HPLC method is a simple, rapid and reliable for the quantification of the mangiferin from M. indica . Abbreviations Used: M. indica : Mangifera indica , RP-HPLC: Reversed-phase high-performance liquid chromatography, M/Z: Mass to charge ratio, ICH: International conference on harmonization, % RSD: Percentage of relative standard deviation, ppm: Parts per million, LOD: Limit of detection, LOQ: Limit of quantification.
Comparison of analytical methods for the determination of histamine in reference canned fish samples
NASA Astrophysics Data System (ADS)
Jakšić, S.; Baloš, M. Ž.; Mihaljev, Ž.; Prodanov Radulović, J.; Nešić, K.
2017-09-01
Two screening methods for histamine in canned fish, an enzymatic test and a competitive direct enzyme-linked immunosorbent assay (CD-ELISA), were compared with the reversed-phase liquid chromatography (RP-HPLC) standard method. For enzymatic and CD-ELISA methods, determination was conducted according to producers’ manuals. For RP-HPLC, histamine was derivatized with dansyl-chloride, followed by RP-HPLC and diode array detection. Results of analysis of canned fish, supplied as reference samples for proficiency testing, showed good agreement when histamine was present at higher concentrations (above 100 mg kg-1). At a lower level (16.95 mg kg-1), the enzymatic test produced some higher results. Generally, analysis of four reference samples according to CD-ELISA and RP-HPLC showed good agreement for histamine determination (r=0.977 in concentration range 16.95-216 mg kg-1) The results show that the applied enzymatic test and CD-ELISA appeared to be suitable screening methods for the determination of histamine in canned fish.
Xie, Li; Chen, Liqin; Gu, Pan; Wei, Lanlan; Kang, Xuejun
2018-03-01
The extraction and analysis of catecholamine neurotransmitters in biological fluids is of great importance in assessing nervous system function and related diseases, but their precise measurement is still a challenge. Many protocols have been described for neurotransmitter measurement by a variety of instruments, including high-pressure liquid chromatography (HPLC). However, there are shortcomings, such as complicated operation or hard-to-detect multiple targets, which cannot be avoided, and presently, the dominant analysis technique is still HPLC coupled with sensitive electrochemical or fluorimetric detection, due to its high sensitivity and good selectivity. Here, a detailed protocol is described for the pretreatment and detection of catecholamines with high pressure liquid chromatography with electrochemical detection (HPLC-ECD) in real urine samples of infants, using electrospun composite nanofibers composed of polymeric crown ether with polystyrene as adsorbent, also known as the packed-fiber solid phase extraction (PFSPE) method. We show how urine samples can be easily precleaned by a nanofiber-packed solid phase column, and how the analytes in the sample can be rapidly enriched, desorbed, and detected on an ECD system. PFSPE greatly simplifies the pretreatment procedures for biological samples, allowing for decreased time, expense, and reduction of the loss of targets. Overall, this work illustrates a simple and convenient protocol for solid-phase extraction coupled to an HPLC-ECD system for simultaneous determination of three monoamine neurotransmitters (norepinephrine (NE), epinephrine (E), dopamine (DA)) and two of their metabolites (3-methoxy-4-hydroxyphenylglycol (MHPG) and 3,4-dihydroxy-phenylacetic acid (DOPAC)) in infants' urine. The established protocol was applied to assess the differences of urinary catecholamines and their metabolites between high-risk infants with perinatal brain damage and healthy controls. Comparative analysis revealed a significant difference in urinary MHPG between the two groups, indicating that the catecholamine metabolites may be an important candidate marker for early diagnosis of cases at risk for brain damage in infants.
Volpi, Nicola; Linhardt, Robert J
2012-01-01
Glycosaminoglycans (GAGs) have proven to be very difficult to analyze and characterize because of their high negative charge density, polydispersity and sequence heterogeneity. As the specificity of the interactions between GAGs and proteins results from the structure of these polysaccharides, an understanding of GAG structure is essential for developing a structure–activity relationship. Electrospray ionization (ESI) mass spectrometry (MS) is particularly promising for the analysis of oligosaccharides chemically or enzymatically generated by GAGs because of its relatively soft ionization capacity. Furthermore, on-line high-performance liquid chromatography (HPLC)-MS greatly enhances the characterization of complex mixtures of GAG-derived oligosaccharides, providing important structural information and affording their disaccharide composition. A detailed protocol for producing oligosaccharides from various GAGs, using controlled, specific enzymatic or chemical depolymerization, is presented, together with their HPLC separation, using volatile reversed-phase ion-pairing reagents and on-line ESI-MS structural identification. This analysis provides an oligosaccharide map together with sequence information from a reading frame beginning at the nonreducing end of the GAG chains. The preparation of oligosaccharides can be carried out in 10 h, with subsequent HPLC analysis in 1–2 h and HPLC-MS analysis taking another 2 h. PMID:20448545
Dönmez, Ozlem Aksu; Aşçi, Bürge; Bozdoğan, Abdürrezzak; Sungur, Sidika
2011-02-15
A simple and rapid analytical procedure was proposed for the determination of chromatographic peaks by means of partial least squares multivariate calibration (PLS) of high-performance liquid chromatography with diode array detection (HPLC-DAD). The method is exemplified with analysis of quaternary mixtures of potassium guaiacolsulfonate (PG), guaifenesin (GU), diphenhydramine HCI (DP) and carbetapentane citrate (CP) in syrup preparations. In this method, the area does not need to be directly measured and predictions are more accurate. Though the chromatographic and spectral peaks of the analytes were heavily overlapped and interferents coeluted with the compounds studied, good recoveries of analytes could be obtained with HPLC-DAD coupled with PLS calibration. This method was tested by analyzing the synthetic mixture of PG, GU, DP and CP. As a comparison method, a classsical HPLC method was used. The proposed methods were applied to syrups samples containing four drugs and the obtained results were statistically compared with each other. Finally, the main advantage of HPLC-PLS method over the classical HPLC method tried to emphasized as the using of simple mobile phase, shorter analysis time and no use of internal standard and gradient elution. Copyright © 2010 Elsevier B.V. All rights reserved.
Elom, Aglago Kouassivi; Imane, El Menchawy; Kaoutar, Benjeddou; Khalid, El Kari; Asmaa, El Hamdouchi; Mehdi, Azlaf; Noureddine, El Haloui; Hassan, Aguenaou
2015-06-01
Although high-performance liquid chromatography (HPLC) is the commonly used method for the analysis of retinol in biological samples, simple and rapid test kits are available. This study compared a rapid test kit (ICHECK Fluoro®) to HPLC for the assessment of serum retinol concentrations. For the analysis by HPLC, sample preparation included standard deproteinization and extraction phases. The analysis by ICHECK was performed by injecting serum into IEX reagent vials (n=89) and mixing manually for separation. After precipitation of the proteins, the vial was introduced into the chamber of the ICHECK Fluoro and analysed at 0 min (ICHECK0min) and 15 min later (ICHECK15min). Bland and Altman approach was applied to test the agreement between HPLC and ICHECK. Mean HPLC, ICHECK0min and ICHECK15min values were 421.2±106.0 µg/L, 423.1±118.3 µg/L and 413.2±107.6 µg/L, respectively. Retinol concentrations significantly decreased in the IEX solution over time (p<0.001). No significant proportional bias was observed between HPLC and ICHECK0min (r-0.038, p=0.73) and ICHECK15min (r=-0.024, p=0.82). Fixed biases (HPLC minus ICHECK) for ICHECK0min and ICHECK15min were respectively -1.9±23.1 µg/l (p=0.45) and 8.0±22.7 µg/l (p=0.002). ICHECK Fluoro may offer a reliable mean for assessing serum retinol for measurements performed with no significant time delay.
Gonzalo-Lumbreras, R; Izquierdo-Hornillos, R
2000-05-26
An HPLC separation of a complex mixture containing 13 urinary anabolics and corticoids, and boldenone and bolasterone (synthetic anabolics) has been carried out. The applied optimization method involved the use of binary, ternary and quaternary mobile phases containing acetonitrile, methanol or tetrahydrofuran as organic modifiers. The effect of different reversed-phase packings and temperature on the separation was studied. The optimum separation was achieved by using a water-acetonitrile (60:40, v/v) mobile phase in reversed-phase HPLC at 30 degrees C, allowing the separation of all the analytes in about 24 min. Calibration graphs were obtained using bolasterone or methyltestosterone as internal standards. Detection limits were in the range 0.012-0.107 microg ml(-1). The optimized separation was applied to the analysis, after liquid-liquid extraction, of human urine samples spiked with steroids.
Rodriguez-Nogales, J M; Garcia, M C; Marina, M L
2006-02-03
A perfusion reversed-phase high performance liquid chromatography (RP-HPLC) method has been designed to allow rapid (3.4 min) separations of maize proteins with high resolution. Several factors, such as extraction conditions, temperature, detection wavelength and type and concentration of ion-pairing agent were optimised. A fine optimisation of the gradient elution was also performed by applying experimental design. Commercial maize products for human consumption (flours, precocked flours, fried snacks and extruded snacks) were characterised for the first time by perfusion RP-HPLC and their chromatographic profiles allowed a differentiation among products relating the different technological process used for their preparation. Furthermore, applying discriminant analysis makes it possible to group the samples according with the technological process suffered by maize products, obtaining a good prediction in 92% of the samples.
Ferreira, Magda R. A.; Fernandes, Mônica T. M.; da Silva, Wliana A. V.; Bezerra, Isabelle C. F.; de Souza, Tatiane P.; Pimentel, Maria F.; Soares, Luiz A. L.
2016-01-01
Background: Libidibia ferrea (Mart. ex Tul.) L.P. Queiroz (Fabaceae) is a tree which is native to Brazil, widely known as “Jucá,” where its herbal derivatives are used in folk medicine with several therapeutic properties. The constituents, which have already been described in the fruit, are mainly hydrolysable tannins (gallic acid [GA] and ellagic acid [EA]). Objective: The aim of this study was to investigate the phenolic variability in the fruit of L. ferrea by ultraviolet/visible (UV/VIS) and chromatographic methods (high-performance liquid chromatography [HPLC]/high-performance thin layer chromatography [HPTLC]). Materials and Methods: Several samples were collected from different regions of Brazil and the qualitative (fingerprints by HPTLC and HPLC) and quantitative analysis (UV/VIS and HPLC) of polyphenols were performed. Results: The HPTLC and HPLC profiles allowed separation and identification of both major analytical markers: EA and GA. The chemical profiles were similar in a number of spots or peaks for the samples, but some differences could be observed in the intensity or area of the analytical markers for HPTLC or HPLC, respectively. Regarding the quantitative analysis, the polyphenolic content by UV/VIS ranged from 13.99 to 37.86 g% expressed as GA or from 10.75 to 29.09 g% expressed as EA. The contents of EA and GA by liquid chromatography-reversed phase (LC-RP) method ranged from 0.57 to 2.68 g% and from 0.54 to 3.23 g%, respectively. Conclusion: The chemical profiles obtained by HPTLC or HPLC, as well as the quantitative analysis by spectrophotometry or LC-RP method, were suitable for discrimination of each herbal sample and can be used as tools for the comparative analysis of the fruits from L. ferrea. SUMMARY The polyphenols of fruits of Libidibia ferrea can be quantified by UV/VIS and HPLCThe HPLC method was able to detect the gallic and ellagic acids in several samples of fruits of Libidibia ferreaThe phenolic profiles of fruits from Libidibia ferrea by HPTLC and HPLC were reproductible. Abbreviations used: HPTLC: high performance thin layer chromatography, HPLC: high performance liquid chromatography, UV-Vis: spectrophotometry PMID:27279721
Solid-phase microextraction and chiral HPLC analysis of ibuprofen in urine.
de Oliveira, Anderson Rodrigo Moraes; Cesarino, Evandro José; Bonato, Pierina Sueli
2005-04-25
A simple and rapid solid-phase microextraction method was developed for the enantioselective analysis of ibuprofen in urine. The sampling was made with a polydimethylsiloxane-divinylbenzene coated fiber immersed in the liquid sample. After desorptioning from the fiber, ibuprofen enantiomers were analyzed by HPLC using a Chiralpak AD-RH column and UV detection. The mobile phase was made of methanol-pH 3.0 phosphoric acid solution (75:25, v/v), at a flow rate of 0.45 mL/min. The mean recoveries of SPME were 19.8 and 19.1% for (-)-R-ibuprofen and (+)-(S)-ibuprofen, respectively. The method was linear at the range of 0.25-25 microg/mL. Within-day and between-day assay precision and accuracy were below 15% for both ibuprofen enantiomers at concentrations of 0.75, 7.5 and 20 microg/mL. The method was tested with urine quality control samples and human urine fractions after administration of 200 mg rac-ibuprofen.
Brighenti, Virginia; Pellati, Federica; Steinbach, Marleen; Maran, Davide; Benvenuti, Stefania
2017-09-05
The present work was aimed at the development and validation of a new, efficient and reliable technique for the analysis of the main non-psychoactive cannabinoids in fibre-type Cannabis sativa L. (hemp) inflorescences belonging to different varieties. This study was designed to identify samples with a high content of bioactive compounds, with a view to underscoring the importance of quality control in derived products as well. Different extraction methods, including dynamic maceration (DM), ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE) and supercritical-fluid extraction (SFE) were applied and compared in order to obtain a high yield of the target analytes from hemp. Dynamic maceration for 45min with ethanol (EtOH) at room temperature proved to be the most suitable technique for the extraction of cannabinoids in hemp samples. The analysis of the target analytes in hemp extracts was carried out by developing a new reversed-phase high-performance liquid chromatography (HPLC) method coupled with diode array (UV/DAD) and electrospray ionization-mass spectrometry (ESI-MS) detection, by using an ion trap mass analyser. An Ascentis Express C 18 column (150mm×3.0mm I.D., 2.7μm) was selected for the HPLC analysis, with a mobile phase composed of 0.1% formic acid in both water and acetonitrile, under gradient elution. The application of the fused-core technology allowed us to obtain a significant improvement of the HPLC performance compared with that of conventional particulate stationary phases, with a shorter analysis time and a remarkable reduction of solvent usage. The analytical method optimized in this study was fully validated to show compliance with international requirements. Furthermore, it was applied to the characterization of nine hemp samples and six hemp-based pharmaceutical products. As such, it was demonstrated to be a very useful tool for the analysis of cannabinoids in both the plant material and its derivatives for pharmaceutical and nutraceutical applications. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szabo, G.; Bulman, R.A.
The determination of soil adsorption coefficients (K[sub oc]) via HPLC capacity factors (k[prime]) has been studied, including the effect of column type and mobile phase composition on the correlation between log K[sub oc] and log k[prime]. K[sub oc] values obtained by procedures other than HPLC correlate well with HPLC capacity factors determined on a chemically immobilized humic acid stationary phase, and it is suggested that this phase is a better model for the sorption onto soil or sediment than the octadecyl-, phenyl- and ethylsilica phases. By using log k[prime][sub w] a theoretical capacity factor has been obtained by extrapolation ofmore » the retention data in a binary solvent system to pure aqueous eluent. There is a better correlation between log K[sub oc] and log k[prime][sub w] than the correlation between log K[sub oc] and log k[prime].« less
Determination of tocopheryl acetate and ascorbyl tetraisopalmitate in cosmetic formulations by HPLC.
Almeida, M M; Alves, J M P; Patto, D C S; Lima, C R R C; Quenca-Guillen, J S; Santoro, M I R M; Kedor-Hackmann, E R M
2009-12-01
A rapid HPLC method was developed for the assay of tocopheryl acetate and ascorbyl tetraisopalmitate in cosmetic formulations. The validated method was applied for quantitative determination of these vitamins in simulated emulsion formulation. Samples were analysed directly on a RP-18 reverse phase column with UV detection at 222 nm. A mixture of methanol and isopropanol (25 : 75 v/v) was used as mobile phase. The retention time of tocopheryl acetate and ascorbyl tetraisopalmitate were 3.0 min and 5.9 min, respectively. Recovery was between 95% and 104%. In addition, the excipients did not interfere in the analysis. The method is simple, reproducible, selective and is suitable for routine analyses of commercial products.
Hu, Yanxue; Yang, Xiumin; Wang, Chun; Zhao, Jin; Li, Weining; Wang, Zhi
2008-03-01
A new analytical method for the determination of carbendazim (MBC) and thiabendazole (TBZ) in apples is reported, based on solid-phase microextraction (SPME) coupling HPLC with fluorescence detection. The main SPME and HPLC experimental conditions were optimized. The apples were first blended and centrifuged. Then, an aliquot of the resulting solution was subjected to SPME on a 60 microm polydimethylsiloxane/divinylbenzene (PDMS/DVB) fibre for 35 min at room temperature with the solution being stirred at 1100 rev min(-1). The extracted pesticides on the SPME fibre were desorbed in the mobile phase into the SPME/HPLC interface for HPLC analysis. The method was linear over the range 0.01-1 mg kg(-1) in apples for both MBC and TBZ, with detection limits of 0.005 and 0.003 mg kg(-1) and correlation coefficients of 0.9995 and 0.9998, respectively. The average recoveries for MBC and TBZ were 91.5 and 92.3% with the relative standard deviations (RSD) of 4.7 and 4.1% at the 0.1 mg kg(-1) level, and 94.6 and 96.1% with RSD of 3.3 and 3.8% at the 0.5 mg kg(-1) level, respectively. The method is simple, sensitive, organic solvent-free and is suitable for the determination of MBC and TBZ in apples.
Shi, Xiangyang; Bi, Xiangdong; Ganser, T Rose; Hong, Seungpyo; Myc, Lukasz A; Desai, Ankur; Holl, Mark M Banaszak; Baker, James R
2006-07-01
Poly(amidoamine) (PAMAM) dendrimers of different generations with carboxyl, acetyl, and hydroxyl terminal groups and a folic acid (FA)-dendrimer conjugate were separated and analyzed using reverse-phase high performance liquid chromatography (HPLC). Analysis of both the individual PAMAM derivatives and the separation of mixed generations can be achieved using a linear gradient 0-50% acetonitrile (ACN) (balance water) within 40 min. We also show that PAMAMs with defined acetylation and carboxylation degrees can be analyzed using HPLC. Furthermore, a generation 5 dendrimer-FA conjugate (G5.75Ac-FA4; Ac denotes acetyl) was analyzed and its specific binding with a bovine folic acid binding protein (FBP) was monitored. The HPLC and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) results indicate the formation of three complexes after the binding of G5.75Ac-FA4 with FBP. Dendrimers with FA moieties show much higher specific binding capability with FBP than those without FA moieties. Findings from this study indicate that HPLC is an effective technique not only for characterization and separation of functionalized PAMAM dendrimers and conjugates but also for investigation of the interaction between dendrimers and biomolecules.
Lacker, T; Strohschein, S; Albert, K
1999-08-27
In this paper the application of on-line HPLC-UV-APCI (atmospheric pressure chemical ionization) mass spectrometry (MS) coupling for the separation and determination of different carotenoids as well as cis/trans isomers of beta-carotene is reported. All HPLC separations were carried out under RP conditions on self-synthesized polymeric C30 phases. The analysis of a carotenoid mixture containing astaxanthin, canthaxanthin, zeaxanthin, echinenone and beta-carotene by HPLC-APCI-MS was achieved by scanning the mass range from m/z 200 to 700. For the characterization of a sample containing cis/trans isomers of beta-carotene as well as their oxidation products, a photodiode-array UV-visible absorbance detector was used in addition between the column and the mass spectrometer for structural elucidation of the geometrical isomers. The detection limit for beta-carotene in positive-ion APCI-MS was determined to be 1 pmol. In addition, an extract of non-polar substances in vegetable juice has been analyzed by HPLC-APCI-MS. The included carotenoids could be identified by their masses and their retention times.
On-line MSPD-SPE-HPLC/FLD analysis of polycyclic aromatic hydrocarbons in bovine tissues.
Gutiérrez-Valencia, Tania M; García de Llasera, Martha P
2017-05-15
A fast method was optimized and validated for simultaneous trace determination of four polycyclic aromatic hydrocarbons: benzo[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene and benzo[a]pyrene in bovine tissues. The determination was performed by matrix solid-phase dispersion (MSPD) coupled on-line to solid phase extraction (SPE) and high performance liquid chromatography (HPLC) with fluorescence detection (FLD). The sample was dispersed on C 18 silica sorbent and then the on-line MSPD-SPE-HPLC/FLD method was applied. Several parameters were optimized: cleaning and elution sequences applied to the MSPD cartridge, the flow rate and dilution of extract used for SPE loading. The on-line method was validated over a concentration range of 0.1-0.6ngg -1 obtaining good linearity (r⩾0.998) and precision (RSD)⩽10%. Recovery ranged from 96 to 99% and the limits of detection were 0.012ngg -1 . This methodology was applied to liver samples from unhealthy animals. The results demonstrate that MSDP-SPE-HPLC/FLD method provides reliable, sensitive, accurate and fast data to the food control. Copyright © 2016 Elsevier Ltd. All rights reserved.
HPLC analysis of 6-mercaptopurine and metabolites in extracellular body fluids.
Rudy, J L; Argyle, J C; Winick, N; Van Dreal, P
1988-09-01
A convenient HPLC assay, which allows for the simultaneous measurement in extracellular fluids of 6-mercaptopurine and four of its metabolites, 6-thioguanine, 6-mercaptopurine riboside, 6-thioxanthine and 6-thiouric acid is described. Solid phase extraction allows for the clean isolation of analytes from plasma, urine or cerebrospinal fluid. The simultaneous determination of 6-mercaptopurine and some of its major metabolites in extracellular fluids may contribute to the monitoring of patient compliance, bioavailability, and individual variation in metabolism and absorption.
Agnolet, Sara; Wiese, Stefanie; Verpoorte, Robert; Staerk, Dan
2012-11-02
Here, proof-of-concept of a new analytical platform used for the comprehensive analysis of a small set of commercial willow bark products is presented, and compared with a traditional standardization solely based on analysis of salicin and salicin derivatives. The platform combines principal component analysis (PCA) of two chemical fingerprints, i.e., HPLC and (1)H NMR data, and a pharmacological fingerprint, i.e., high-resolution 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) radical cation (ABTS(+)) reduction profile, with targeted identification of constituents of interest by hyphenated HPLC-solid-phase extraction-tube transfer NMR, i.e., HPLC-SPE-ttNMR. Score plots from PCA of HPLC and (1)H NMR fingerprints showed the same distinct grouping of preparations formulated as capsules of Salix alba bark and separation of S. alba cortex. Loading plots revealed this to be due to high amount of salicin in capsules and ampelopsin, taxifolin, 7-O-methyltaxifolin-3'-O-glucoside, and 7-O-methyltaxifolin in S. alba cortex, respectively. PCA of high-resolution radical scavenging profiles revealed clear separation of preparations along principal component 1 due to the major radical scavengers (+)-catechin and ampelopsin. The new analytical platform allowed identification of 16 compounds in commercial willow bark extracts, and identification of ampelopsin, taxifolin, 7-O-methyltaxifolin-3'-O-glucoside, and 7-O-methyltaxifolin in S. alba bark extract is reported for the first time. The detection of the novel compound, ethyl 1-hydroxy-6-oxocyclohex-2-enecarboxylate, is also described. Copyright © 2012 Elsevier B.V. All rights reserved.
Xiang, Xiaowei; Shang, Bing; Wang, Xiaozheng; Chen, Qinhua
2017-04-01
Yohimbine is a novel compound for the treatment of erectile dysfunction derived from natural products, and pharmacokinetic study is important for its further development as a new medicine. In this work, we developed a novel PEEK tube-based solid-phase microextraction (SPME)-HPLC method for analysis of yohimbine in plasma and further for pharmacokinetic study. Poly (AA-EGDMA) was synthesized inside a PEEK tube as the sorbent for microextraction of yohimbine, and parameters that could influence extraction efficiency were systematically investigated. Under optimum conditions, the PEEK tube-based SPME method exhibits excellent enrichment efficiency towards yohimbine. By using berberine as internal standard, an online SPME-HPLC method was developed for analysis of yohimbine in human plasma sample. The method has wide linear range (2-1000 ng/mL) with an R 2 of 0.9962; the limit of detection was determined and was as low as 0.1 ng/mL using UV detection. Finally, a pharmacokinetic study of yohimbine was carried out by the online SPME-HPLC method and the results have been compared with those of reported methods. Copyright © 2016 John Wiley & Sons, Ltd.
Kovács, Béla; Kántor, Lajos Kristóf; Croitoru, Mircea Dumitru; Kelemen, Éva Katalin; Obreja, Mona; Nagy, Előd Ernő; Székely-Szentmiklósi, Blanka; Gyéresi, Árpád
2018-06-01
A reverse-phase HPLC (RP-HPLC) method was developed for strontium ranelate using a full factorial, screening experimental design. The analytical procedure was validated according to international guidelines for linearity, selectivity, sensitivity, accuracy and precision. A separate experimental design was used to demonstrate the robustness of the method. Strontium ranelate was eluted at 4.4 minutes and showed no interference with the excipients used in the formulation, at 321 nm. The method is linear in the range of 20-320 μg mL-1 (R2 = 0.99998). Recovery, tested in the range of 40-120 μg mL-1, was found to be 96.1-102.1 %. Intra-day and intermediate precision RSDs ranged from 1.0-1.4 and 1.2-1.4 %, resp. The limit of detection and limit of quantitation were 0.06 and 0.20 μg mL-1, resp. The proposed technique is fast, cost-effective, reliable and reproducible, and is proposed for the routine analysis of strontium ranelate.
Behnoush, Behnam; Sheikhazadi, Ardeshir; Bazmi, Elham; Fattahi, Akbar; Sheikhazadi, Elham; Saberi Anary, Seyed Hossein
2015-04-01
The aim of this study was to compare system efficiency and analysis duration regarding the solvent consumption and system maintenance in high-pressure liquid chromatography (HPLC) and ultra high-pressure liquid chromatography (UHPLC). In a case-control study, standard solutions of 7 benzodiazepines (BZs) and 73 biological samples such as urine, tissue, stomach content, and bile that screened positive for BZs were analyzed by HPLC and UHPLC in laboratory of forensic toxicology during 2012 to 2013. HPLC analysis was performed using a Knauer by 100-5 C-18 column (250 mm × 4.6 mm) and Knauer photodiode array detector (PAD). UHPLC analysis was performed using Knauer PAD detector with cooling autosampler and Eurospher II 100-3 C-18 column (100 mm × 3 mm) and also 2 pumps. The mean retention time, standard deviation, flow rate, and repeatability of analytical results were compared by using 2 methods. Routine runtimes in HPLC and UHPLC took 40 and 15 minutes, respectively. Changes in mobile phase composition of the 2 methods were not required. Flow rate and solvent consumption in UHPLC decreased. Diazepam and flurazepam were detected more frequently in biological samples. In UHPLC, small particle size and short length of column cause effective separation of BZs in a very short time. Reduced flow rate, solvent consumption, and injection volume cause more efficiency and less analysis costs. Thus, in the detection of BZs, UHPLC is an accurate, sensitive, and fast method with less cost of analysis.
Comparison of UHPLC and HPLC in Benzodiazepines Analysis of Postmortem Samples
Behnoush, Behnam; Sheikhazadi, Ardeshir; Bazmi, Elham; Fattahi, Akbar; Sheikhazadi, Elham; Saberi Anary, Seyed Hossein
2015-01-01
Abstract The aim of this study was to compare system efficiency and analysis duration regarding the solvent consumption and system maintenance in high-pressure liquid chromatography (HPLC) and ultra high-pressure liquid chromatography (UHPLC). In a case–control study, standard solutions of 7 benzodiazepines (BZs) and 73 biological samples such as urine, tissue, stomach content, and bile that screened positive for BZs were analyzed by HPLC and UHPLC in laboratory of forensic toxicology during 2012 to 2013. HPLC analysis was performed using a Knauer by 100-5 C-18 column (250 mm × 4.6 mm) and Knauer photodiode array detector (PAD). UHPLC analysis was performed using Knauer PAD detector with cooling autosampler and Eurospher II 100-3 C-18 column (100 mm × 3 mm) and also 2 pumps. The mean retention time, standard deviation, flow rate, and repeatability of analytical results were compared by using 2 methods. Routine runtimes in HPLC and UHPLC took 40 and 15 minutes, respectively. Changes in mobile phase composition of the 2 methods were not required. Flow rate and solvent consumption in UHPLC decreased. Diazepam and flurazepam were detected more frequently in biological samples. In UHPLC, small particle size and short length of column cause effective separation of BZs in a very short time. Reduced flow rate, solvent consumption, and injection volume cause more efficiency and less analysis costs. Thus, in the detection of BZs, UHPLC is an accurate, sensitive, and fast method with less cost of analysis. PMID:25860209
Separation and structural analysis of saponins in a bark extract from Quillaja saponaria Molina.
Nord, L I; Kenne, L
1999-07-20
Six major saponins were isolated from a bark extract from Quillaja saponaria Molina. Solid-phase extraction, followed by a two-step reversed-phase HPLC separation procedure with phosphate and ammonium acetate buffers of different pH values, was used. The compounds were characterised using NMR spectroscopy, mass spectrometry and chemical methods.
Analysis of munitions constituents in IMX formulations by HPLC and HPLC-MS.
Russell, A L; Seiter, J M; Coleman, J G; Winstead, B; Bednar, A J
2014-10-01
The use of Insensitive Munitions eXplosives (IMX) is increasing as the Army seeks to replace certain conventional munitions constituents, such as 2,4,6-trinitrotolene (TNT), for improved safety. The IMX formulations are more stable and therefore less prone to accidental detonation while designed to match the performance of legacy materials. Two formulations, IMX 101 and 104 are being investigated as a replacement for TNT in artillery rounds and composition B Army mortars, respectively. The chemical formulations of IMX-101 and 104 are comprised of four constituents;2,4-dinitroanisole (DNAN), 3-nitro-1,2,4-triazol-5-one (NTO), 1-nitroguanidine (NQ), and Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) which are mixed in various ratios to achieve the desired performance. The current work details the analysis of the IMX constituents by single column HPLC-UV-ESI-MS. Detection limits determined are in agreement with similar HPLC analysis of compounds, ranging from 7 to 9μg/L. Gradient mobile phases are used to allow separation of the 4 target compounds in more complex mixture of other concomitant compounds. Mass spectra are used to confirm analyte identity with chromatographic retention time. Published by Elsevier B.V.
Hammerstone, J F; Lazarus, S A; Mitchell, A E; Rucker, R; Schmitz, H H
1999-02-01
Monomeric and oligomeric procyanidins present in cocoa and chocolate were separated and identified using a modified normal-phase high-performance liquid chromatography (HPLC) method coupled with on-line mass spectrometry (MS) analysis using an atmospheric pressure ionization electrospray chamber. The chromatographic separation was achieved using a silica stationary phase in combination with a gradient ascending in polarity. This qualitative report confirms the presence of a complex series of procyanidins in raw cocoa and certain chocolates using HPLC/MS techniques. Although both cocoa and chocolate contained monomeric and oligomeric procyanidin units 2-10, only use of negative mode provided MS data for the higher oligomers (i.e., >pentamer). Application of this method for qualitative analysis of proanthocyanidins in other food products and confirmation of this method as a reliable quantitative tool for determining levels of procyanidins in cocoa, chocolate, and other food products are currently being investigated.
Manassra, Adnan; Khamis, Mustafa; El-Dakiky, Magdy; Abdel-Qader, Zuhair; Al-Rimawi, Fuad
2010-03-11
An HPLC method using UV detection is proposed for the simultaneous determination of pseudophedrine hydrochloride, codeine phosphate, and triprolidine hydrochloride in liquid formulation. C18 column (250mmx4.0mm) is used as the stationary phase with a mixture of methanol:acetate buffer:acetonitrile (85:5:10, v/v) as the mobile phase. The factors affecting column separation of the analytes were studied. The calibration graphs exhibited a linear concentration range of 0.06-1.0mg/ml for pseudophedrine hydrochloride, 0.02-1.0mg/ml for codeine phosphate, and 0.0025-1.0mg/ml for triprolidine hydrochloride for a sample size of 5microl with correlation coefficients of better than 0.999 for all active ingredients studied. The results demonstrate that this method is reliable, reproducible and suitable for routine use with analysis time of less than 4min. Copyright 2009 Elsevier B.V. All rights reserved.
Temova-Rakuša, Žane; Srečnik, Eva; Roškar, Robert
2017-09-01
A precise, accurate and rapid HPLC-UV method for simultaneous determination of fat-soluble vitamins (vitamin D3, E-acetate, K1, β-carotene, A-palmitate) and coenzyme Q10 was developed and validated according to ICH guidelines. Optimal chromatographic separation of the analytes in minimal analysis time (8 min) was achieved on a Luna C18 150 × 4.6 mm column using a mixture of acetonitrile, tetrahydrofuran and water (50:45:5, v/v/v). The described reversed phase HPLC method is the first published for quantification of these five fat-soluble vitamins and coenzyme Q10 within a single chromatographic run. The method was further applied for quantification of the analytes in selected liquid and solid dosage forms, registered as nutritional supplements and prescription medicines, which confirmed its suitability for routine analysis.
Zhao, Bing Tian; Kim, Eun Jung; Son, Kun Ho; Son, Jong Keun; Min, Byung Sun; Woo, Mi Hee
2015-08-01
To establish a standard of quality control and to identify different origins for the Rutaceae family [Citri Unshiu Peel (CU), Citri Unshiu Immature Peel (CI), Ponciri Immature Fructus (PI), Aurantii Immature Fructus (AI), and Aurantii Fructus (AU)], 13 standards including rutin (1), narirutin (2), naringin (3), hesperidin (4), neohesperidin (5), neoponcirin (6), poncirin (7), naringenin (8), isosinensetin (9), sinensetin (10), nobiletin (11), heptamethoxyflavone (12), and tangeretin (13) were determined by high performance liquid chromatography (HPLC)/photo-diode array (PDA) analysis. A YMC ODS C18 (250 × 4.6 mm, 5 µm) column was used and the ratio of mobile phases of water (A) and acetonitrile (B) delivered to the column for gradient elution was applied. This method was fully validated with respect to linearity, accuracy, precision, stability, and robustness. The HPLC/PDA method was applied successfully to quantify 13 major compounds in the extracts of CU, CI, PI, AI, and AU. The pattern recognition analysis combined with LC chromatographic data was performed by repeated analysis of 27 reference samples in the above five Rutaceae oriental medicinal drugs. The established HPLC method was rapid and reliable for quantitative analysis and quality control of multiple components in five Rutaceae species with different origins.
High performance liquid chromatography used for quality control of Achyranthis Radix.
Zhao, Bing Tian; Jeong, Su Yang; Moon, Dong Cheul; Son, Kun Ho; Son, Jong Keun; Woo, Mi Hee
2012-08-01
To establish a standard of quality control and to identify reliable Achyranthis Radix, three phytoecdysones including ecdysterone (1), 25R-inokosterone (2) and 25S-inokosterone (3) were determined by quantitative HPLC/UV analysis. Three phytoecdysones were separated with an YMC J'sphere ODS C(18) column (250 mm × 4.6 mm, 4 μm) by isocratic elution using 0.1% formic acid in water and acetonitrile (85:15, v/v%) as the mobile phase. The flow rate was 1.0 mL/min and the UV detector wavelength was set at 245 nm. The standards were quantified by HPLC/UV from Achyranthes bidentata Blume and Achyranthes japonica Nakai, as well as Cyathula capitata Moq. and Cyathula officinalis Kuan, which are of a different genus but are comparative herbs. The method was successfully used in the analysis of Achyranthis Radix of different geographical origin or genera with relatively simple conditions and procedures, and the assay results were satisfactory for linearity, recovery, precision, accuracy, stability and robustness. The HPLC analytical method for pattern recognition analysis was validated by repeated analysis of eighteen A. bidentata Blume samples and ten A. japonica Nakai samples. The results indicate that the established HPLC/UV method is suitable for quantitation and pattern recognition analyses for quality evaluation of Achyranthis Radix.
Bai, Cheng; Reilly, Charles C.; Wood, Bruce W.
2007-01-01
High-performance liquid chromatography (HPLC) analysis was used for identification of two problematic ureides, asparagine and citrulline. We report here a technique that takes advantage of the predictable delay in retention time of the co-asparagine/citrulline peak to enable both qualitative and quantitative analysis of asparagine and citrulline using the Platinum EPS reverse-phase C18 column (Alltech Associates). Asparagine alone is eluted earlier than citrulline alone, but when both of them are present in biological samples they may co-elute. HPLC retention times for asparagine and citrulline were influenced by other ureides in the mixture. We found that at various asparagines and citrulline ratios [= 3:1, 1:1, and 1:3; corresponding to 75:25, 50:50, and 25:75 (μMol ml−1/μMol ml−1)], the resulting peak exhibited different retention times. Adjustment of ureide ratios as internal standards enables peak identification and quantification. Both chemicals were quantified in xylem sap samples of pecan [Carya illinoinensis (Wangenh.) K. Koch] trees. Analysis revealed that tree nickel nutrition status affects relative concentrations of Urea Cycle intermediates, asparagine and citrulline, present in sap. Consequently, we concluded that the HPLC methods are presented to enable qualitative and quantitative analysis of these metabolically important ureides. PMID:19662174
Bai, Cheng; Reilly, Charles C; Wood, Bruce W
2007-03-28
High-performance liquid chromatography (HPLC) analysis was used for identification of two problematic ureides, asparagine and citrulline. We report here a technique that takes advantage of the predictable delay in retention time of the co-asparagine/citrulline peak to enable both qualitative and quantitative analysis of asparagine and citrulline using the Platinum EPS reverse-phase C18 column (Alltech Associates). Asparagine alone is eluted earlier than citrulline alone, but when both of them are present in biological samples they may co-elute. HPLC retention times for asparagine and citrulline were influenced by other ureides in the mixture. We found that at various asparagines and citrulline ratios [= 3:1, 1:1, and 1:3; corresponding to 75:25, 50:50, and 25:75 (microMol ml(-1)/microMol ml(-1))], the resulting peak exhibited different retention times. Adjustment of ureide ratios as internal standards enables peak identification and quantification. Both chemicals were quantified in xylem sap samples of pecan [Carya illinoinensis (Wangenh.) K. Koch] trees. Analysis revealed that tree nickel nutrition status affects relative concentrations of Urea Cycle intermediates, asparagine and citrulline, present in sap. Consequently, we concluded that the HPLC methods are presented to enable qualitative and quantitative analysis of these metabolically important ureides.
Arakawa, K; Kawai, Y; Ito, Y; Nakamura, K; Chujo, T; Nishimura, J; Kitazawa, H; Saito, T
2010-04-01
The study aimed for the complete purification and recharacterization of the highly hydrophobic circular bacteriocins, gassericin A and reutericin 6. Gassericin A and reutericin 6 were purified to homogeneity using previously described method and reverse-phase HPLC with an octyl column and eluents of aqueous acetonitrile and 2-propanol. Mass analysis, N-terminal sequencing and bacteriocin assay of the HPLC-purified bacteriocins showed the two bacteriocins had identical seamless circular structures with the same m/z value (5651) of [M + H](+) and both had the same specific activity. D/L-amino acid composition analysis using two distinct methods with the chiral fluorescent derivatization reagents (+)-1-(9-fluorenyl)ethyl chloroformate and O-phthalaldehyde/N-acetyl-L-cystein revealed neither gassericin A nor reutericin 6 contained D-alanine residues contrary to our previous results. Purified gassericin A and reutericin 6 are chemically identical circular molecules containing no D-alanine residues. The HPLC conditions developed in this study will facilitate advanced purification and correct characterization of other highly hydrophobic bacteriocins.
Xie, Xianchuan; Gong, Shu; Wang, Xiaorong; Wu, Yinxing; Zhao, Li
2011-01-01
A rapid, reliable and sensitive reverse-phase high-performance liquid chromatography method with fluorescence detection (RP-FLD-HPLC) was developed and validated for simultaneous analysis of the abamectin (ABA), emamectin (EMA) benzoate and ivermectin (IVM) residues in rice. After extraction with acetonitrile/water (2 : 1) with sonication, the avermectin (AVMs) residues were directly derivatised by N-methylimidazole (N-NMIM) and trifluoroacetic anhydride (TFAA) and then analysed on RP-FLD-HPLC. A good linear relationship (r(2 )> 0.99) was obtained for three AVMs ranging from 0.01 to 5 microg ml(-1), i.e. 0.01-5.0 microg g(-1) in rice matrix. The limit of detection (LOD) and the limit of quantification (LOQ) were between 0.001 and 0.002 microg g(-1) and between 0.004 and 0.006 microg g(-1), respectively. Recoveries were from 81.9% to 105.4% and precision less than 12.4%. The proposed method was successfully applied to routine analysis of the AVMs residues in rice.
Aral, Hayriye; Aral, Tarık; Ziyadanoğulları, Berrin; Ziyadanoğulları, Recep
2013-11-15
A novel amide-bonded silica stationary phase was prepared starting from N-Boc-phenylalanine, cyclohexylamine and spherical silica gel (4 µm, 60 Å). The amide ligand was synthesised with high yield. The resulting amide bonded stationary phase was characterised by SEM, IR and elemental analysis. The resulting selector bearing a polar amide group is used for the reversed-phase chromatography separation of different classes of thirteen phytohormones (plant hormones). The chromatographic behaviours of these analytes on the amide-silica stationary phase were compared with those of RP-C18 column under same conditions. The effects of different separation conditions, such as mobile phase, pH value, flow rate and temperature, on the separation and retention behaviours of the 13 phytohormones in this system were studied. The optimum separation was achieved using reversed-phase HPLC gradient elution with an aqueous mobile phase containing pH=6.85 potassium phosphate buffer (20 mM) and acetonitrile with a 22 °C column temperature. Under these experimental conditions, the 12 phytohormones could be separated and detected at 230 or 270 nm within 26 min. Copyright © 2013 Elsevier B.V. All rights reserved.
Bellon, L; Maloney, L; Zinnen, S P; Sandberg, J A; Johnson, K E
2000-08-01
Versatile bioanalytical assays to detect chemically stabilized hammerhead ribozyme and putative ribozyme metabolites from plasma are described. The extraction protocols presented are based on serial solid-phase extractions performed on a 96-well plate format and are compatible with either IEX-HPLC or CGE back-end analysis. A validation of both assays confirmed that both the HPLC and the CGE methods possess the required linearity, accuracy, and precision to accurately measure concentrations of hammerhead ribozyme extracted from plasma. These methods should be of general use to detect and quantitate ribozymes from other biological fluids such as serum and urine. Copyright 2000 Academic Press.
Dabre, Romain; Azad, Nazanin; Schwämmle, Achim; Lämmerhofer, Michael; Lindner, Wolfgang
2011-04-01
Several methods for the separation of vitamins on HPLC columns were already validated in the last 20 years. However, most of the techniques focus on separating either fat- or water-soluble vitamins and only few methods are intended to separate lipophilic and hydrophilic vitamins simultaneously. A mixed-mode reversed-phase weak anion exchange (RP-WAX) stationary phase was developed in our laboratory in order to address such mixture of analytes with different chemical characteristics, which are difficult to separate on standard columns. The high versatility in usage of the RP-WAX chromatographic material allowed a baseline separation of ten vitamins within a single run, seven water-soluble and three fat-soluble, using three different chromatographic modes: some positively charged vitamins are eluted in ion exclusion and ion repulsion modes whereas the negatively charged molecules are eluted in the ion exchange mechanism. The non-charged molecules are eluted in a classical reversed-phase mode, regarding their polarities. The method was validated for the vitamin analysis in tablets, evaluating selectivity, robustness, linearity, accuracy, and precision. The validated method was finally employed for the analysis of the vitamin content of some commercially available supplement tablets. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
HPLC SEPARATION OF CHIRAL ORGANOPHOSPHORUS PESTICIDES ON POLYSACCHARIDE CHIRAL STATIONARY PHASES
High-performance liquid chromatographic separation of the individual enantiomers of 12 organophosphorus pesticides (OPs) were obtained on polysaccharide chiral HPLC columns using an alkane-alcohol mobile phase. The OP pesticides were crotoxyphos, dialifor, dyfonate, fenamiphos, ...
[Determination of azoxystrobin in tea by HPLC].
Chonan, T
2001-08-01
A determination method has been developed for azoxystrobin in tea by HPLC. Azoxystrobin was extracted from a sample with acetone, and the extract was passed through an alumina column to remove tannin. The eluate was concentrated to ca. 25 mL and passed through a Sep-Pak Vac tC18 to remove pigments. The eluate was cleaned-up by using liquid-liquid partition, and Florisil and silica-gel columns. The HPLC analysis for azoxystrobin was carried out on a C18 column with acetonitrile-water (9:11) as the mobile phase, with ultraviolet detection at 260 nm. The recovery of azoxystrobin fortified at the level of 0.4 microgram/g was 90.2% and the limit of determination was 0.2 microgram/g.
Furusawa, Naoto
2006-09-01
A technique is presented for the economical, routine, and quantitative analysis of contamination by dichloro-diphenyl-trichloroethanes (DDTs) [pp'-DDT, pp'-dichlorodiphenyl dichloroethylene, and pp'-dichlorodiphenyl dichloreothane in beef tallow and chicken fat samples, based on their separation using matrix solid-phase dispersion (MSPD) extraction with Toyobo-KF, an activated carbon fiber. Toyobo-KF is a newly applied MSPD sorbent, and it is followed by reversed-phase high-performance liquid chromatography (HPLC) with a photodiode array detector. The resulting analytical performance parameters [recoveries of spiked DDTs (0.1, 0.2, and 0.4 microg/g) > or = 81%, with relative standard deviations of < or = 8% (n = 5), and quantitation limits < or = 0.03 microg/g], with minimal handling and cost-efficiency, indicate that the present MSPD-HPLC method may be a useful tool for routine monitoring of DDT contamination in meat.
Quintana, José Benito; Miró, Manuel; Estela, José Manuel; Cerdà, Víctor
2006-04-15
In this paper, the third generation of flow injection analysis, also named the lab-on-valve (LOV) approach, is proposed for the first time as a front end to high-performance liquid chromatography (HPLC) for on-line solid-phase extraction (SPE) sample processing by exploiting the bead injection (BI) concept. The proposed microanalytical system based on discontinuous programmable flow features automated packing (and withdrawal after single use) of a small amount of sorbent (<5 mg) into the microconduits of the flow network and quantitative elution of sorbed species into a narrow band (150 microL of 95% MeOH). The hyphenation of multisyringe flow injection analysis (MSFIA) with BI-LOV prior to HPLC analysis is utilized for on-line postextraction treatment to ensure chemical compatibility between the eluate medium and the initial HPLC gradient conditions. This circumvents the band-broadening effect commonly observed in conventional on-line SPE-based sample processors due to the low eluting strength of the mobile phase. The potential of the novel MSFI-BI-LOV hyphenation for on-line handling of complex environmental and biological samples prior to reversed-phase chromatographic separations was assessed for the expeditious determination of five acidic pharmaceutical residues (viz., ketoprofen, naproxen, bezafibrate, diclofenac, and ibuprofen) and one metabolite (viz., salicylic acid) in surface water, urban wastewater, and urine. To this end, the copolymeric divinylbenzene-co-n-vinylpyrrolidone beads (Oasis HLB) were utilized as renewable sorptive entities in the micromachined unit. The automated analytical method features relative recovery percentages of >88%, limits of detection within the range 0.02-0.67 ng mL(-1), and coefficients of variation <11% for the column renewable mode and gives rise to a drastic reduction in operation costs ( approximately 25-fold) as compared to on-line column switching systems.
Lefebvre, P; Agadir, A; Cornic, M; Gourmel, B; Hue, B; Dreux, C; Degos, L; Chomienne, C
1995-04-07
All-trans retinoic acid (all-trans RA), the active metabolite of vitamin A, has been demonstrated to be an efficient alternative to chemotherapy in the treatment of acute promyelocytic leukemia (APL), the AML3 subtype of the FAB cytological classification. Complete remission is obtained by inducing terminal granulocytic differentiation of the leukemic cells. To study all-trans RA pharmacokinetics in patients with APL, a rapid, precise and selective high-performance liquid chromatographic (HPLC) assay was developed. This method is easy and shows good repeatability (C.V. = 8.41-12.44%), reproducibility (C.V. = 9.19-14.73%), accuracy (C.V. = 3.5-11%) and sensitivity with a detection limit of 5 pmol/ml. The analysis is performed using normal-phase HPLC in an isocratic mode with UV detection after solid-phase extraction on octadecyl (C18) columns. The mobile phase is hexane-dichloromethane-dioxane (78:18:4, v/v) containing 1% acetic acid.
Terol, Amanda; Marcinkowska, Monika; Ardini, Francisco; Grotti, Marco
2016-01-01
A new method for the speciation analysis of arsenic in food using narrow-bore high-performance liquid-chromatography inductively coupled plasma mass spectrometry (HPLC-ICP-MS) has been developed. Fast separation of arsenite, arsenate, monomethylarsonic acid and dimethylarsinic acid was carried out in 7 min using an anion-exchange narrow-bore Nucleosil 100 SB column and 12 mM ammonium dihydrogen phosphate of pH 5.2 as the mobile phase, at a flow rate of 0.3 mL min(-1). A PFA-ST micronebulizer jointed to a cyclonic spray chamber was used for HPLC-ICP-MS coupling. Compared with standard-bore HPLC-ICP-MS, the new method has provided higher sensitivity, reduced mobile-phase consumption, a lower matrix plasma load and a shorter analysis time. The achieved instrumental limits of detection were in the 0.3 - 0.4 ng As mL(-1) range, and the precision was better than 3%. The arsenic compounds were efficiently (>80%) extracted from various food samples using a 1:5 methanol/water solution, with additional ultrasonic treatment for rice products. The applicability of this method was demonstrated by the analysis of several samples, such as seafood (fish, mussels, shrimps, edible algae) and rice-based products (Jasmine and Arborio rice, spaghetti, flour, crackers), including three certified reference materials.
HPLC determination of caffeine in coffee beverage
NASA Astrophysics Data System (ADS)
Fajara, B. E. P.; Susanti, H.
2017-11-01
Coffee is the second largest beverage which is consumed by people in the world, besides the water. One of the compounds which contained in coffee is caffeine. Caffeine has the pharmacological effect such as stimulating the central nervous system. The purpose of this study is to determine the level of caffeine in coffee beverages with HPLC method. Three branded coffee beverages which include in 3 of Top Brand Index 2016 Phase 2 were used as samples. Qualitative analysis was performed by Parry method, Dragendorff reagent, and comparing the retention time between sample and caffeine standard. Quantitative analysis was done by HPLC method with methanol-water (95:5v/v) as mobile phase and ODS as stationary phasewith flow rate 1 mL/min and UV 272 nm as the detector. The level of caffeine data was statistically analyzed using Anova at 95% confidence level. The Qualitative analysis showed that the three samples contained caffeine. The average of caffeine level in coffee bottles of X, Y, and Z were 138.048 mg/bottle, 109.699 mg/bottle, and 147.669 mg/bottle, respectively. The caffeine content of the three coffee beverage samples are statistically different (p<0.05). The levels of caffeine contained in X, Y, and Z coffee beverage samples were not meet the requirements set by the Indonesian Standard Agency of 50 mg/serving.
Godejohann, Markus; Heintz, Lea; Daolio, Cristina; Berset, Jean-Daniel; Muff, Daniel
2009-09-15
The aim of the present study was to explore the capabilities of the combination of 1H NMR (proton nuclear magnetic resonance) mixture analysis and HPLC-SPE-NMR/TOF-MS (high-performance liquid chromatography coupled to solid-phase extraction and nuclear magnetic resonance and time-of-flight mass spectrometry) for the characterization of xenobiotic contaminants in groundwater samples. As an example, solid-phase extracts of two groundwater samples taken from a former ammunition destruction site in Switzerland were investigated. 1H NMR spectra of postcolumn SPE enriched compounds, together with accurate mass measurements, allowed the structural elucidation of unknowns. This untargeted approach allowed us to identify expected residues of explosives such as 2,4,6-trinitrotoluene (2,4,6-TNT), Hexogen (RDX) and Octogen (HMX), degradation products of TNT (1,3,5-trinitrobenzene (1,3,5-TNB), 2-amino-4,6-dinitrotoluene (2-A-4,6-DNT), 3,5-dinitrophenol (3,5-DNP), 3,5-dinitroaniline (3,5-DNA), 2,6-dinitroanthranite, and 2-Hydroxy-4,6-dinitrobenzonitrile), benzoic acid, Bisphenol A (a known endocrine disruptor compound), and some toxicologically relevant additives for propelling charges: Centralite I (1,3-diethyl-1,3-diphenylurea), DPU (N,N-diphenylurethane), N,N-diphenylcarbamate (Acardite II), and N-methyl-N-phenylurethane. To our knowledge, this is the first report of the presence of these additives in environmental samples. Extraction recoveries for Centralite I and DPU have been determined. Contaminants identified by our techniques were quantified based on HPLC-UV (HPLC-ultraviolet detection) and 1H NMR mixture analysis. The concentrations of the contaminants ranged between 0.1 and 48 microg/L assuming 100% recovery for the SPE step.
Stanley, Todd H; Smithson, Andrew T; Neilson, Andrew P; Anantheswaran, Ramaswamy C; Lambert, Joshua D
2015-07-01
Flavan-3-ols and proanthocyanidins play a key role in the health beneficial effects of cocoa. Here, we developed a new reversed phased high-performance liquid chromatography-electrochemical detection (HPLC-ECD) method for the analysis of flavan-3-ols and proanthocyanidins of degree of polymerization (DP) 2-7. We used this method to examine the effect of alkalization on polyphenol composition of cocoa powder. Treatment of cocoa powder with NaOH (final pH 8.0) at 92 °C for up to 1 h increased catechin content by 40%, but reduced epicatechin and proanthocyanidins by 23-66%. Proanthocyanidin loss could be modeled using a two-phase exponential decay model (R(2) > 0.7 for epicatchin and proanthocyanidins of odd DP). Alkalization resulted in a significant color change and 20% loss of total polyphenols. The present work demonstrates the first use of HPLC-ECD for the detection of proanthocyanidins up to DP 7 and provides an initial predictive model for the effect of alkali treatment on cocoa polyphenols.
ERIC Educational Resources Information Center
Quin~ones, Rosalynn; Bayline, Jennifer Logan; Polvani, Deborah A.; Neff, David; Westfall, Tamara D.; Hijazi, Abdullah
2016-01-01
A series of undergraduate laboratory experiments that utilize reversed-phase HPLC separation, inductively coupled plasma spectroscopy (ICP), and scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS) are described for the analysis of commercial sunscreens. The active ingredients of many sunscreen brands include zinc or titanium…
Yi, Ling; Qi, Lian-Wen; Li, Ping; Ma, Yi-Han; Luo, Yong-Jing; Li, Hai-Yun
2007-09-01
Danggui Buxue Tang (DBT), a classical traditional Chinese formula comprising Radix Angelicae Sinensis (RAS) and Radix Astragali (RA), has been widely used to treat menopausal irregularity in Chinese women for nearly 800 years. In this study, a comprehensive analytical method of simultaneously determining the main types of bioactive constituents, eighteen in all from the formula, involving flavonoids, saponins, organic acid and some volatile compounds, was developed. This method was based on HPLC coupled to a diode array and evaporative light scattering detectors (HPLC-DAD-ELSD) on a common reverse-phase C(18) column. Liquid chromatography coupled with on-line electrospray ionization mass spectrometry (LC-ESI-MS) was also used to further validate and analyze the constituents. It was found that 0.3% aqueous formic acid and acetonitrile was the optimum mobile phase for gradient elution. This method, which showed good precision and accuracy, was successfully used to quantify the bioactive constituents in six products. As a result, the validated HPLC method, together with the LC-ESI-MS analysis, provided a new basis for assessing the quality of traditional Chinese medicinal compound preparations (TCMCPs) consisting of many bioactive components.
Liu, Xi; Yu, Jingjing; Li, Shen; Wang, Hong; Liu, Jiaxin
2013-08-01
We used blood as leaching medium, simulating clinical operation under maximum condition, to develop Liquid-phase extraction- High Performance Liquid Chromatography (HPLC) method for determination of plasticizer Di-(2-ethylhexyl)phthalate (DEHP) released from Disposable Extracorporeal Circulation Tube in order to lay the foundation of risk analysis of this product. The characteristic wavelength of DEHP in methanol was detected. Acetonitrile was added to the leaching blood in proportion and extracted DEHP from blood. The methodology for HPLC to quantify DEHP was established and the DEHP amount released from this disposable extracorporeal circulation tube was measured. The experiments showed good results as follows. The characteristic wavelength of DEHP was 272nm. The concentration of DEHP (5-250 microg/mL) kept good linear relationship with peak area (r=0.9999). Method sensitivity was 1 microg/mL. Precisions showed RSD<5%. The adding standard extraction Recovery Rates of 25, 100 and 250 microg DEHP standard were 61.91 +/- 3.32)%, (69.38 +/- 0.55)% and (68.47 +/- 1.15)%. The DEHP maximum amounts released from 3 sets of this disposable extracorporeal circulation tube were 204.14, 106.30 and 165.34 mg/set. Our Liquid-phase Extraction-HPLC method showed high accuracy and precision, and relatively stable recovery rate. Its operation was also convenient.
Yang, Yuan; Luo, Li; Li, Hai-Pu; Wang, Qiang; Yang, Zhao-Guang; Qu, Zhi-Peng; Ding, Ru
2018-05-15
Developing quantification and characterization methodology for metallic nanoparticles (MNPs) and their ionic component in complex matrix are crucial for the evaluation of their environmental behavior and health risks to humans. In this study, reversed phase high performance liquid chromatography combined ICP-MS was established for the characterization of MNPs in complex matrix. The ionic component could be separated from NPs with the optimized parameters of aqueous mobile phase. Good linear relationship between average diameter and retention time of NPs was obtained using HPLC-ICP-MS and the size smaller than 40 nm could be determined with this method, the detected results were in accordance with TEM results. The low detection limit of AuNPs and Au(Ⅲ) (both in sub-μg/L level) showed that this method was promising for the characterization of AuNPs and Au(Ⅲ) in environmental water. The mass concentration of ionic Au(Ⅲ) in environmental water could be detected using the proposed HPLC-ICP-MS and the concentration of AuNPs was obtained by subtracting the Au(Ⅲ) concentration from the total Au (The concentration of total Au was detected by ICP-MS after microwave digestion). Furthermore this proposed HPLC-ICP-MS method and single particle-ICPMS (SP-ICP-MS) was used for the analysis of the Ag speciation in commercial antibacterial products. Copyright © 2018 Elsevier B.V. All rights reserved.
Akhlaghi, Yousef; Ghaffari, Solmaz; Attar, Hossein; Alamir Hoor, Amir
2015-11-01
Octreotide as a synthetic cyclic octapeptide is a somatostatin analog with longer half-life and more selectivity for inhibition of the growth hormone. The acetate salt of octreotide is currently used for medical treatment of somatostatin-related disorders such as endocrine and carcinoid tumors, acromegaly, and gigantism. Octreotide contains both cysteine and tryptophan residues which make the hydrolysis part of its amino acid analysis procedure very challenging. The current paper introduces a fast and additive-free method which preserves tryptophan and cysteine residues during the hydrolysis. Using only 6 M HCl, this hydrolysis process is completed in 30 min at 150 °C. This fast hydrolysis method followed by pre-column derivatization of the released amino acids with 4-N,N-dimethylaminoazobenzene-4'-sulfonyl chloride (DABS-Cl) which takes only 20 min, makes it possible to do the complete amino acid analysis of an octreotide sample in a few hours. The highly stable-colored DABS-Cl derivatives can be detected in 436 nm in a reversed phase chromatographic system, which eliminates spectral interferences to a great extent. The amino acid analysis of octreotide acetate including hydrolysis, derivatization, and reversed phase HPLC determination was validated according to International Conference of Harmonization (ICH) guidelines.
Code of Federal Regulations, 2013 CFR
2013-07-01
... detection for the HPLC analyzer. Sampling systems for all phases shall be identical. (iii) The methanol and... detection for the HPLC analyzer. Sampling systems for all phases shall be identical. (iii) The methanol and...
Code of Federal Regulations, 2012 CFR
2012-07-01
... detection for the HPLC analyzer. Sampling systems for all phases shall be identical. (iii) The methanol and... detection for the HPLC analyzer. Sampling systems for all phases shall be identical. (iii) The methanol and...
Code of Federal Regulations, 2014 CFR
2014-07-01
... detection for the HPLC analyzer. Sampling systems for all phases shall be identical. (iii) The methanol and... detection for the HPLC analyzer. Sampling systems for all phases shall be identical. (iii) The methanol and...
Oro, Nicole E; Whittal, Randy M; Lucy, Charles A
2012-09-05
Normal phase high performance liquid chromatography (HPLC) is used to separate a gas oil petroleum sample, and the fractions are collected offline and analyzed on a high resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (FT-ICR MS). The separation prior to MS analysis dilutes the sample significantly; therefore the fractions need to be prepared properly to achieve the best signal possible. The methods used to prepare the HPLC fractions for MS analysis are described, with emphasis placed on increasing the concentration of analyte species. The dilution effect also means that contamination in the MS spectra needs to be minimized. The contamination from molecular sieves, plastics, soap, etc. and interferences encountered during the offline fraction collection process are described and eliminated. A previously unreported MS contamination of iron formate clusters with a 0.8 mass defect in positive mode electrospray is also described. This interference resulted from the stainless steel tubing in the HPLC system. Contamination resulting from what has tentatively been assigned as palmitoylglycerol and stearoylglycerol was also observed; these compounds have not previously been reported as contaminant peaks. Copyright © 2012 Elsevier B.V. All rights reserved.
Rosero-Moreano, Milton; Canellas, Elena; Nerín, Cristina
2014-02-01
The present study deals with the development of a liquid microextraction procedure for enhancing the sensitivity of the determination of 2-methyl-4-isothiazolin-3-one and 5-chloro-2-methyl-4-isothiazolin-3-one in adhesives. The procedure involves a three-phase hollow-fiber liquid-phase microextraction using a semipermeable polypropylene membrane, which contained 1-octanol as the organic phase in the pores of the membrane. The donor and acceptor phases are aqueous acidic and alkaline media, respectively, and the final liquid phase (acceptor) is analyzed by HPLC coupled with diode array detection. The most appropriate conditions were extraction time 20 min, stirring speed 1400 rpm, extraction temperature 50°C. The quantification limits of the method were 0.123 and 0.490 μg/g for 2-methyl-4-isothiazolin-3-one and 5-chloro-2-methyl-4-isothiazolin-3-one, respectively. Three different adhesive samples were successfully analyzed. The procedure was compared to direct analysis using ultra high pressure liquid chromatography coupled with TOF-MS, where the identification of the compounds and the quantification values were confirmed. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Janssen, Hans-Gerd; Swindells, Chris; Gunning, Philip; Wang, Weijun; Grün, Christian; Mahabir, Krishna; Maharaj, Vinesh J; Apps, Peter J
2008-06-09
High-performance liquid chromatography (HPLC)-UV and HPLC-Mass Spectrometry (MS) methods were developed for the quantitative analysis of the family of Hoodia gordonii steroid glycosides with appetite suppressing properties in dried plant material, in purified and enriched extracts and in various prototype food-products fortified with H. gordonii extracts. For solid materials, e.g. dried plants or for non-fatty foods, extraction of the steroid glycosides is performed using methanol. For products where the steroid glycosides are present in an oil matrix, direct injection of the oil after dilution in tetrahydrofuran is applied. The HPLC separation is performed on an octyl-modified reversed-phase column in the gradient mode with UV detection at lambda = 220 nm. Quantification is performed against an external calibration line prepared using either one of the pure steroid glycosides or geranyl-tiglate. Short- and long-term repeatabilities of the methods are better than 3 and 6%, respectively. Recoveries are better than 85%, even in the analysis of the least abundant steroid glycosides in a complex yoghurt drink. Linearity is better than 3-4 orders of magnitude and the detection limits are below approximately 2 microg g(-1) for the individual steroid glycosides in dried plant material and food products. HPLC-MS is used to confirm that the steroid glycosides contain the characteristic steroid core, the carbohydrate chain and the tigloyl group.
[Study on HPLC fingerprint of Oldenlandia diffusa].
Chen, Yan; Yao, Zhi-Hong; Dai, Yi; Cheng, Hong; Wen, Li-Rong; Zhou, Guang-Xiong; Yao, Xin-Sheng
2012-06-01
To establish the HPLC fingerprint chromatogram of Oldenlandia diffusa coupled with chemometrics means for the quality control of multi-batches of medicinal material. The separation was developed on C18 column(4.6 mm x 250 mm, 5 microm) by gradient elution with acetonitrile-water(both containing 0.1 per thousand (V/V) ocetic acid) as mobile phase at a flow rate of 0.8 mL/min, the detection wavelength at 238 nm and column temperature at 30 degrees C. The HPLC fingerprint chromatogram of Oldenlandia diffusa was set up and the main characteristic peaks were identified by comparing with chemical reference substance. The quality of 22 batches of medicinal material was evaluated by similarity assay as well as principal component analysis (PCA) and cluster analysis. The established HPLC fingerprint chromatogram of Oldenlandia diffusa was specific, precise, reproducible and stable. 11 peaks were chemically identified. The similarity of 17 batches of Oldenlandia diffusa was obviously higher than 5 batches of adulterants. PCA showed that 17 batches of Oldenlandia diffusa were in a domain and 5 batches of adulterants were far apart from the domain. The cluster analysis of the 22 batches of medicinal material showed that 17 batches of Oldenlandia diffusa were in a cluster while 5 batches of adulterants were excluded. Further cluster analysis was carried out for the quality consistency of 17 batches of Oldenlandia diffusa and accordingly they were devided into 4 clusters. With the combination of chemometrics means, the HPLC fingerprint chromatogram provides a method for evaluation of authenticity and quality control of Oldenlandia diffusa, which is favorable to improve overall quality control of Oldenlandia diffusa.
Needham, Shane R; Ye, Binying; Smith, J Richard; Korte, William D
2003-11-05
An HPLC/MS/MS method was validated for the low level analysis of pyridostigmine bromide (PB) from guinea pig plasma. An advantage of this strong-cation exchange HPLC/MS/MS method was the enhancement of the ESI-MS signal by providing good retention and good peak shape of PB with a mobile phase of 70% acetonitrile. In addition, the use of 70% acetonitrile in the mobile phase allowed the direct injection of the supernant from the protein precipitated extracted sample. The assay was linear from the range of 0.1 to 50 ng/ml using only 25 microl of sample. The precision and accuracy of the assay was better than 9.1 and 113%, respectively.
Rapid method for measuring rotenone in water at piscicidal concentrations
Dawson, V.K.; Harman, P.D.; Schultz, D.P.; Allen, J.L.
1983-01-01
A high-performance liquid chromatography (HPLC) procedure that is rapid, specific, and sensitive (limit of detection <0.005 mg/liter) was developed for monitoring application and degradation rates of rotenone. For analysis, a water sample is buffered to pH 5 and injected through a Sep Pak(R) C18 disposable cartridge. The cartridge adsorbs and retains the rotenone which then can be eluted quantitatively from the cartridge with a small volume of methanol. This step effectively concentrates the sample and provides sample cleanup. The methanol extract is analyzed directly by HPLC on an MCH 10 reverse-phase column; methanol: water (75:25, volume : volume) is the mobile phase and flow rate is 1.5 ml/minute. The rotenone is detected by ultraviolet spectrophotometry at a wavelength of 295 nm.
Natsume, M; Osakabe, N; Yamagishi, M; Takizawa, T; Nakamura, T; Miyatake, H; Hatano, T; Yoshida, T
2000-12-01
The antioxidant polyphenols in cacao liquor, a major ingredient of chocolate and cocoa, have been characterized as flavan-3-ols and proanthocyanidin oligomers. In this study, various cacao products were analyzed by normal-phase HPLC, and the profiles and quantities of the polyphenols present, grouped by molecular size (monomers to approximately oligomers), were compared. Individual cacao polyphenols, flavan-3-ols (catechin and epicatechin), and dimeric (procyanidin B2), trimeric (procyanidin C1), and tetrameric (cinnamtannin A2) proanthocyanidins, and galactopyranosyl-ent-(-)-epicatechin (2alpha-->7, 4alpha-->8)-(-)-epicatechin (Gal-EC-EC), were analyzed by reversed-phase HPLC and/or HPLC/MS. The profile of monomers (catechins) and proanthocyanidin in dark chocolate was similar to that of cacao liquor, while the ratio of flavan-3-ols to the total amount of monomeric and oligomeric polyphenols in the case of pure cocoa powder was higher than that in the case of cacao liquor or chocolate.
Direct HPLC separation of beta-aminoester enantiomers on totally synthetic chiral stationary phases.
Gasparrini, F; D'Acquarica, I; Villani, C; Cimarelli, C; Palmieri, G
1997-01-01
The direct separation of beta-aminoester enantiomers by HPLC on synthetic chiral stationary phases based on a pi-acidic derivative of trans 1,2-diaminocyclohexane as selector is described. The application of different columns containing the stationary phase with opposite configurations and in the racemic form to the determination of enantiomeric excess in chemically impure samples is demonstrated.
[HPLC Fingerprint of QingGuangAn and Determination of the Main Components].
Wang, Min; Shen, Bing-bing; Luo, Juan; Chen, Yang; Yang, Yu-pei; Chen, Sheng-huang
2015-10-01
To establish an HPLC fingerprint of ethanol extract of QingGuangAn, and to determine the contents of paeoniflorin and calycosin-7-glucosid. HPLC analysis was performed on an Agilent 1260 Infinity LC system and carried out at 35 degrees C on a column of GRACE Alltima C18 (250 mm x 4.6 mm, 5 μm). A binary gradient elution system was composed of acetonitrile (phase A) and water solution (phase B). Detection was performed at the wavelength of 254 nm, the mobile flow rate was 0.8 mL/min. A matrix including 20 variations (characteristic peaks area) and 10 samples was constructed for similarity evaluation. The results showed that the collected samples had a good similarity. A specificity fingerprint was produced and 20 characteristic peaks were designated. The content of paeoniflorin and calycosin-7-glucosid was 0.368 and 0.049 mg/g, respectively. It is a reliable, available and quick method for quality control of QingGuangAn,which provides some reference for the comparison of different extracting methods of QingGuangAn and the differences of pharmacodynamic.
Composition and Molecular Weight Distribution of Carob Germ Proteins Fractions
USDA-ARS?s Scientific Manuscript database
Biochemical properties of carob germ proteins were analyzed using a combination of selective extraction, reversed-phase high performance liquid chromatography (RP-HPLC), size exclusion chromatography coupled with multi-angle laser light scattering (SEC-MALS) and electrophoretic analysis. Using a mo...
Douša, Michal; Doubský, Jan; Srbek, Jan
2016-07-01
An analytical reversed-phase high-performance liquid chromatography (HPLC) method for the detection and quantitative determination of two genotoxic impurities at ppm level present in the vortioxetine manufacturing process is described. Applying the concept of threshold of toxicological concern, a limit of 75 ppm each for both genotoxic impurities was calculated based on the maximum daily dose of active pharmaceutical ingredients. The novel reversed-phase HPLC method with photochemically induced fluorescence detection was developed on XSELECT Charged Surface Hybrid Phenyl-Hexyl column using the mobile phase consisted a mixture of 10 mM ammonium formate pH 3.0 and acetonitrile. The elution was performed using an isocratic composition of 48:52 (v/v) at a flow rate of 1.0 mL/min. The photochemically induced fluorescence detection is based on the use of UV irradiation at 254 nm through measuring the fluorescence intensity at 300 nm and an excitation wavelength of 272 nm to produce fluorescent derivatives of both genotoxic impurities. The online photochemical conversion and detection is easily accomplished for two expected genotoxic impurities and provides a sufficiently low limit detection and quantification for the target analysis. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Tulasi, Delali; Adotey, Dennis; Affum, Andrews; Carboo, Derick; Serfor-Armah, Yaw
2013-10-01
Total As content and the As species distribution in water and sediments from the Kwabrafo stream, a major water body draining the Obuasi gold mining community in southwestern Ghana, have been investigated. Total As content was determined by instrumental neutron activation analysis (INAA). Ion-pair reverse phase high-performance liquid chromatography-neutron activation analysis (HPLC-NAA) was used for speciation of As species. Solid phase extraction with phosphate buffer was used to extract soluble As species from lyophilized sediment. The mass balance after phosphate extraction of soluble As species in sediment varied from 89 to 96 %. Compositionally appropriate reference material International Atomic Energy Agency (IAEA)-Lake Sediment (SL)-1 was used to check the validity of INAA method for total As determination. The measured values are in good agreement with the IAEA recommended value and also within the 95 % confidence interval. The accuracy of the measurement in terms of relative deviation from the IAEA recommended value was ±0.83 %. "In-house" prepared As(III) and As(V) standards were used to validate the HPLC-INAA method used for the As species determination. Total As concentration in the water samples ranged from 1.15 to 9.20 mg/L. As(III) species in water varied from 0.13 to 0.7 mg/L, while As(V) species varied from 0.79 to 3.85 mg/L. Total As content in sediment ranged from 2,134 to 3,596 mg/kg dry mass. The levels of As(III) and As(V) species in the sediment ranges from 138 to 506 mg/kg dry mass and 156 to 385 mg/kg dry mass, respectively.
Zhang, Kai; Cai, Song-Liang; Yan, Yi-Lun; He, Zi-Hao; Lin, Hui-Mei; Huang, Xiao-Ling; Zheng, Sheng-Run; Fan, Jun; Zhang, Wei-Guang
2017-10-13
Covalent organic frameworks (COFs), as an emerging class of crystalline porous organic polymers, have great potential for applications in chromatographic separation owning to their fascinating crystalline structures and outstanding properties. However, development of COF materials as novel stationary phases in high performance liquid chromatography (HPLC) is just in its infancy. Herein, we report the design and construction of a new hydrazone-linked chiral COF, termed BtaMth COF, from a chiral hydrazide building block (Mth) and present a one-pot synthetic method for the fabrication of BtaMth@SiO 2 composite for HPLC separation of isomers. The as-synthesized BtaMth chiral COF displays good crystallinity, high porosity, as well as excellent chemical stability. Meanwhile, the fabricated HPLC column by using BtaMth@SiO 2 composite as the new stationary phase exhibits high resolution performances for the separation of positional isomers including nitrotoluene and nitrochlorobenzene, as well as cis-trans isomers including beta-cypermethrin and metconazole. Additionally, some effects such as the composition of the mobile phase and column temperature for HPLC separations on the BtaMth@SiO 2 packed column also have been studied in detail. The successful applications indicate the great potentials of hydrazone-linked chiral COF-silica composite as novel stationary phase for the efficient HPLC separation. Copyright © 2017 Elsevier B.V. All rights reserved.
Bottoli, Carla B G; Chaudhry, Zahra F; Fonseca, Dania A; Collins, Kenneth E; Collins, Carol H
2002-03-01
Poly(methyloctylsiloxane) (PMOS) and poly(methyloctadecylsiloxane) (PMODS) were sorbed onto porous HPLC silica and thermally immobilized, in the absence of radical initiators, at temperatures in the range of 80 to 180 degrees C. Following extraction of non-immobilized polymer the materials were packed into columns and their chromatographic properties evaluated. The shorter chain (PMOS) stationary phase showed good HPLC characteristics after thermal immobilizations up to 120 degrees C while the longer chain (PMODS) phase gave satisfactory HPLC phases following thermal immobilizations at 80 and 100 degrees C. Stability evaluation for the PMOS and PMODS columns immobilized at 100 degrees C required 250 ml of pH 8.5 mobile phase at 60 degrees C to significantly decrease efficiency, suggesting a long useful life time at neutral pH and ambient temperature.
Paramasivam, M; Banerjee, Hemanta
2011-10-01
A sensitive and simple method for simultaneous analysis of flubendiamide and its metabolite desiodo flubendiamide in cabbage, tomato and pigeon pea has been developed. The residues were extracted with QuEChERS method followed by dispersive solid-phase extraction with primary secondary amine sorbent to remove co extractives, prior to analysis by HPLC coupled with UV-Vis detector. The recoveries of flubendiamide and desiodo flubendiamide were ranged from 85.1 to 98.5% and 85.9 to 97.1% respectively with relative standard deviations (RSD) less than 5% and sensitivity of 0.01 μg g(-1). The method offers a less expensive and safer alternative to the existing residue analysis methods for vegetables. © Springer Science+Business Media, LLC 2011
[Identification of chemical constituents in Sinopodophylli Fructus by HPLC-DAD-ESI-IT-TOF-MSn].
Wang, Ai-Hua; Ma, Li-Man; Fan, Shan-Shan; Liu, Guang-Xue; Xu, Feng; Shang, Ming-Ying; Cai, Shao-Qing
2018-01-01
This experiment was performed to analyze and identify the chemical constituents of Sinopodophylli Fructus by HPLC-DAD-ESI-IT-TOF-MSn. The analysis was performed on an Agilent Zorbax SB-C₁₈ (4.6 mm×250 mm, 5 μm) column.The mobile phase consisted of 0.1% formic acid was used for gradient at a flow rate of 1.0 mL·min⁻¹. Electrospray ionization ion trap time-of-flight multistage mass spectrometry was applied for qualitative analysis under positive and negative ion modes. The results indicated that 54 compounds consisted of 18 lignans and 36 flavonoids from Xiaoyelian had been detected by their HRMS data, the information of literature and reference substance. Among them, 27 compounds were reported in Sinopodophylli Fructus for the first time. In conclusion, an HPLC-DAD-ESI-IT-TOF-MSn method was established to qualitative analysis of Xiaoyelian in this study, which will provide the evidence for evaluating the quality of Xiaoyelian herbs, clarifying the mechanism, and guiding the development of pharmacological active ingredients. Copyright© by the Chinese Pharmaceutical Association.
Karageorgou, Eftychia; Christoforidou, Sofia; Ioannidou, Maria; Psomas, Evdoxios; Samouris, Georgios
2018-06-01
The present study was carried out to assess the detection sensitivity of four microbial inhibition assays (MIAs) in comparison with the results obtained by the High Performance Liquid Chromatography with Diode-Array Detection (HPLC-DAD) method for antibiotics of the β-lactam group and chloramphenicol in fortified raw milk samples. MIAs presented fairly good results when detecting β-lactams, whereas none were able to detect chloramphenicol at or above the permissible limits. HPLC analysis revealed high recoveries of examined compounds, whereas all detection limits observed were lower than their respective maximum residue limits (MRL) values. The extraction and clean-up procedure of antibiotics was performed by a modified matrix solid phase dispersion procedure using a mixture of Plexa by Agilent and QuEChERS as a sorbent. The HPLC method developed was validated, determining the accuracy, precision, linearity, decision limit, and detection capability. Both methods were used to monitor raw milk samples of several cows and sheep, obtained from producers in different regions of Greece, for the presence of examined antibiotic residues. Results obtained showed that MIAs could be used effectively and routinely to detect antibiotic residues in several milk types. However, in some cases, spoilage of milk samples revealed that the kits' sensitivity could be strongly affected, whereas this fact does not affect the effectiveness of HPLC-DAD analysis.
Fang, Xinsheng; Wang, Jianhua; Zhou, Hongying; Jiang, Xingkai; Zhu, Lixiang; Gao, Xin
2009-07-01
An optimized microwave-assisted extraction method using water (MAE-W) as the extractant and an efficient HPLC analysis method were first developed for the fast extraction and simultaneous determination of D(+)-(3,4-dihydroxyphenyl) lactic acid (Dla), salvianolic acid B (SaB), and lithospermic acid (La) in radix Salviae Miltiorrhizae. The key parameters of MAE-W were optimized. It was found that the degradation of SaB was inhibited when using the optimized MAE-W and the stable content of Dla, La, and SaB in danshen was obtained. Furthermore, compared to the conventional extraction methods, the proposed MAE-W is a more rapid method with higher yield and lower solvent consumption with a reproducibility (RSD <6%). In addition, using water as extractant is safe and helpful for environment protection, which could be referred to as green extraction. The separation and quantitative determination of the three compounds was carried out by a developed reverse-phase high-performance liquid chromatographic (RP-HPLC) method with UV detection. Highly efficient separation was obtained using gradient solvent system. The optimized HPLC analysis method was validated to have specificity, linearity, precision, and accuracy. The results indicated that MAE-W followed by HPLC-UV determination is an appropriate alternative to previously proposed method for quality control of radix Salviae Miltiorrhizae.
Reversed Phase Column HPLC-ICP-MS Conditions for Arsenic Speciation Analysis of Rice Flour.
Narukawa, Tomohiro; Matsumoto, Eri; Nishimura, Tsutomu; Hioki, Akiharu
2015-01-01
New measurement conditions for arsenic speciation analysis of rice flour were developed using HPLC-ICP-MS equipped with a reversed phase ODS column. Eight arsenic species, namely, arsenite [As(III)], arsenate [As(V)], monomethylarsonic acid (MMAA), dimethylarsinic acid (DMAA), trimethylarsine oxide (TMAO), tetramethylarsonium (TeMA), arsenobetaine (AsB) and arsenocholine (AsC), were separated and determined under the proposed conditions. In particular, As(III) and MMAA and DMAA and AsB were completely separated using a newly proposed eluent containing ammonium dihydrogen phosphate. Importantly, the sensitivity changes, in particular those of As(V) and As(III) caused by coexisting elements and by complex matrix composition, which had been problematical in previously reported methods, were eliminated. The new eluent can be applied to C8, C18 and C30 ODS columns with the same effectiveness and with excellent repeatability. The proposed analytical method was successfully applied to extracts of rice flour certified reference materials.
Li, Qin; Lynen, Frédéric; Wang, Jian; Li, Hanlin; Xu, Guowang; Sandra, Pat
2012-09-14
A comprehensive two-dimensional HPLC approach with a high degree of orthogonality was developed for analysis of di- to deca-oligonucleotides (ONs). Hydrophilic interaction liquid chromatography (HILIC) was used in the first dimension, and ion-pair reversed-phase liquid chromatography (IP-RPLC) was employed in the second dimension. The two dimensions were connected via a ten-port valve interface equipped with octadecyl silica (ODS) traps to immobilize and focus the ONs eluting from the first dimension prior to IP-RPLC separation. An aqueous make-up flow was used for effective trapping. The comprehensive two-dimensional HPLC system was optimized with a mixture consisting of 27 oligonucleotide standards. An overall chromatographic peak capacity of 500 was obtained. The use of the volatile buffer triethylamine acetate in the second dimension allowed straightforward coupling to electrospray ionization mass spectrometry (ESI-MS) and detection of each ON in the negative ionization mode. Copyright © 2011 Elsevier B.V. All rights reserved.
2012-05-01
with HPLC and PCBs with GC-ECD. Details of the chemical analysis are not included in this description but standard methods are referenced. Other...5 4.4 Analysis of samples to get the accumulated uptake in the fiber ...................................... 8 4.5 Determination of pore water...13 5.5 QC samples for chemical analysis
Hauff, Simone; Vetter, Walter
2010-12-24
Vernix caseosa is a greasy biofilm formed on the skin of the human fetus in the last period of pregnancy. This matrix is known to contain a range of uncommon branched chain fatty acids. In this study, we studied the fatty acid composition of vernix caseosa by non-aqueous reversed phase high performance liquid chromatography (RP-HPLC) fractionation followed by gas chromatography-electron ionization mass spectrometry (GC/EI-MS) of the fractions. For this purpose the fatty acids from vernix caseosa were converted into the corresponding methyl esters. These were fractionated by non-aqueous RP-HPLC using three serially connected C(18)-columns and pure methanol as the eluent. Aliquots of the HPLC fractions were directly analyzed by GC/EI-MS in the selected ion monitoring mode. Data analysis and visualization were performed by the creation of a two dimensional (2D) contour plot, in which GC retention times were plotted against the HPLC fractions. Inspection of the plot resulted in the detection of 133 different fatty acids but only 16 of them contributed more than 1% to the total fatty acids detected. Identification was based on HPLC and GC retention data, GC/MS-SIM and full scan data, as well as plotting the logarithmic retention times against the longest straight carbon chain. In selected cases, aliquots of the HPLC fractions were hydrogenated or studied by means of the picolinyl esters. Using these techniques, the number of double bonds could be unequivocally assigned to all fatty acids. Moreover, the number of methyl branches, and in many cases the positions of methyl branches could be determined. The enantioselective analysis of chiral anteiso-fatty acids resulted in the dominance of the S-enantiomers. However, high proportions of R-a13:0, R-a15:0, and R-a17:1 were also detected while a17:0 was virtually S-enantiopure. Copyright © 2010 Elsevier B.V. All rights reserved.
Sutton, Adam T; Fraige, Karina; Leme, Gabriel Mazzi; da Silva Bolzani, Vanderlan; Hilder, Emily F; Cavalheiro, Alberto J; Arrua, R Dario; Funari, Cristiano Soleo
2018-06-01
Over the past six decades, acetonitrile (ACN) has been the most employed organic modifier in reversed-phase high-performance liquid chromatography (RP-HPLC), followed by methanol (MeOH). However, from the growing environmental awareness that leads to the emergence of "green analytical chemistry," new research has emerged that includes finding replacements to problematic ACN because of its low sustainability. Deep eutectic solvents (DES) can be produced from an almost infinite possible combinations of compounds, while being a "greener" alternative to organic solvents in HPLC, especially those prepared from natural compounds called natural DES (NADES). In this work, the use of three NADES as the main organic component in RP-HPLC, rather than simply an additive, was explored and compared to the common organic solvents ACN and MeOH but additionally to the greener ethanol for separating two different mixtures of compounds, one demonstrating the elution of compounds with increasing hydrophobicity and the other comparing molecules of different functionality and molar mass. To utilize NADES as an organic modifier and overcome their high viscosity monolithic columns, temperatures at 50 °C and 5% ethanol in the mobile phase were used. NADES are shown to give chromatographic performances in between those observed for ACN and MeOH when eluotropic strength, resolution, and peak capacity were taken into consideration, while being less environmentally impactful as shown by the HPLC-Environmental Assessment Tool (HPLC-EAT) metric. With the development of proper technologies, DES could open a new class of mobile phases increasing the possibilities of new separation selectivities while reducing the environmental impact of HPLC analyses. Graphical abstract Natural deep eutectic solvents versus traditional solvents in HPLC.
Behboudi, S; Morein, B; Rönnberg, B
1995-12-01
In the iscom, multiple copies of antigen are attached by hydrophobic interaction to a matrix which is built up by Quillaja triterpenoid saponins and lipids. Thus, the iscom presents antigen in multimeric form in a small particle with a built-in adjuvant resulting in a highly immunogenic antigen formulation. We have designed a chloroform-methanol-water extraction procedure to isolate the triterpenoid saponins and lipids incorporated into iscom-matrix and iscoms. The triterpenoids in the triterpenoid phase were quantitated using orcinol sulfuric acid detecting their carbohydrate chains and by HPLC. The cholesterol and phosphatidylcholine in the lipid phase were quantitated by HPLC and a commercial colorimetric method for the cholesterol. The quantitative methods showed an almost total separation and recovery of triterpenoids and lipids in their respective phases, while protein was detected in all phases after extraction. The protein content was determined by the method of Lowry and by amino acid analysis. Amino acid analysis was shown to be the reliable method of the two to quantitate proteins in iscoms. In conclusion, simple, reproducible and efficient procedures have been designed to isolate and quantitate the triterpenoids and lipids added for preparation of iscom-matrix and iscoms. The procedures described should also be useful to adequately define constituents in prospective vaccines.
Retinoid quantification by HPLC/MS(n)
NASA Technical Reports Server (NTRS)
McCaffery, Peter; Evans, James; Koul, Omanand; Volpert, Amy; Reid, Kevin; Ullman, M. David
2002-01-01
Retinoic acid (RA) mediates most of the biological effects of vitamin A that are essential for vertebrate survival. It acts through binding to receptors that belong to the nuclear receptor transcription factor superfamily (Mangelsdorf et al. 1994). It is also a highly potent vertebrate teratogen. To determine the function and effects of endogenous and exogenous RA, it is important to have a highly specific, sensitive, accurate, and precise analytical procedure. Current analyses of RA and other retinoids are labor intensive, of poor sensitivity, have limited specificity, or require compatibility with RA reporter cell lines (Chen et al. 1995. BIOCHEM: Pharmacol. 50: 1257-1264; Creech Kraft et al. 1994. BIOCHEM: J. 301: 111-119; Lanvers et al. 1996. J. Chromatogr. B Biomed. Appl. 685: 233-240; Maden et al. 1998. DEVELOPMENT: 125: 4133-4144; Wagner et al. 1992. DEVELOPMENT: 116: 55-66). This paper describes an HPLC/mass spectrometry/mass spectrometry product ion scan (HPLC/MS(n)) procedure for the analysis of retinoids that employs atmospheric pressure chemical ionization MS. The retinoids are separated by normal-phase column chromatography with a linear hexane-isopropanol-dioxane gradient. Each retinoid is detected by a unique series of MS(n) functions set at optimal collision-induced dissociation energy (30% to 32%) for all MS(n) steps. The scan events are divided into three segments, based on HPLC elution order, to maximize the mass spectrometer duty cycle. The all-trans, 9-cis, and 13-cis RA isomers are separated, if desired, by an isocratic hexane-dioxane-isopropanol mobile phase. This paper describes an HPLC/MS(n) procedure possessing high sensitivity and specificity for retinoids.
Esmaeilzadeh, Sara; Valizadeh, Hadi; Zakeri-Milani, Parvin
2016-06-01
The main goal of this study was development of a reverse phase high performance liquid chromatography (RP-HPLC) method for flutamide quantitation which is applicable to protein binding studies. Ultrafilteration method was used for protein binding study of flutamide. For sample analysis, flutamide was extracted by a simple and low cost extraction method using diethyl ether and then was determined by HPLC/UV. Acetanilide was used as an internal standard. The chromatographic system consisted of a reversed-phase C8 column with C8 pre-column, and the mobile phase of a mixture of 29% (v/v) methanol, 38% (v/v) acetonitrile and 33% (v/v) potassium dihydrogen phosphate buffer (50 mM) with pH adjusted to 3.2. Acetanilide and flutamide were eluted at 1.8 and 2.9 min, respectively. The linearity of method was confirmed in the range of 62.5-16000 ng/ml (r(2) > 0.99). The limit of quantification was shown to be 62.5 ng/ml. Precision and accuracy ranges found to be (0.2-1.4%, 90-105%) and (0.2-5.3 %, 86.7-98.5 %) respectively. Acetanilide and flutamide capacity factor values of 1.35 and 2.87, tailing factor values of 1.24 and 1.07 and resolution values of 1.8 and 3.22 were obtained in accordance with ICH guidelines. Based on the obtained results a rapid, precise, accurate, sensitive and cost-effective analysis procedure was proposed for quantitative determination of flutamide.
Esmaeilzadeh, Sara; Valizadeh, Hadi; Zakeri-Milani, Parvin
2016-01-01
Purpose: The main goal of this study was development of a reverse phase high performance liquid chromatography (RP-HPLC) method for flutamide quantitation which is applicable to protein binding studies. Methods: Ultrafilteration method was used for protein binding study of flutamide. For sample analysis, flutamide was extracted by a simple and low cost extraction method using diethyl ether and then was determined by HPLC/UV. Acetanilide was used as an internal standard. The chromatographic system consisted of a reversed-phase C8 column with C8 pre-column, and the mobile phase of a mixture of 29% (v/v) methanol, 38% (v/v) acetonitrile and 33% (v/v) potassium dihydrogen phosphate buffer (50 mM) with pH adjusted to 3.2. Results: Acetanilide and flutamide were eluted at 1.8 and 2.9 min, respectively. The linearity of method was confirmed in the range of 62.5-16000 ng/ml (r2 > 0.99). The limit of quantification was shown to be 62.5 ng/ml. Precision and accuracy ranges found to be (0.2-1.4%, 90-105%) and (0.2-5.3 %, 86.7-98.5 %) respectively. Acetanilide and flutamide capacity factor values of 1.35 and 2.87, tailing factor values of 1.24 and 1.07 and resolution values of 1.8 and 3.22 were obtained in accordance with ICH guidelines. Conclusion: Based on the obtained results a rapid, precise, accurate, sensitive and cost-effective analysis procedure was proposed for quantitative determination of flutamide. PMID:27478788
Zhang, Y; Cedergren, R A; Nieuwenhuis, T J; Hollingsworth, R I
1993-02-01
A simple, sensitive method for the structural characterization of oligosaccharides by fast atom bombardment-mass spectrometry (FAB-MS) has been designed. Oligosaccharides are labeled with a uv chromophore (which also serves as a charge stabilizing group) and with a hydrophobic alkyl tail. The chromophore, a 2,4-dinitrophenyl group, aids uv detection during HPLC and stabilizes negative ion species formed during analysis by FAB-MS. The hydrophobic tail, provided by an octyl group, enhances the surface activity of the analytes and makes them amenable to separation by reverse-phase chromatography using a C18 bonded phase. This method was applied to the structural analysis of the components of a mixture of starch maltodextrins with a degree of polymerization 1-16, to the analysis of the structure of pure maltohexaose, and to a previously characterized oligosaccharide from a Rhizobium capsular polysaccharide. The method gave a good yield of [M-H]- anions for the derivatized compounds, which in most cases were detectable at a level of about 1 pmol. In the case of maltohexaose, four series of sequence anions corresponding to sequential loss of glycosyl residues from the reducing and nonreducing end by different mechanisms were observed. The mixture of derivatized malto-oligosaccharides could easily be separated by HPLC. Based on the relative proportions of the individual oligomers in the mixture calculated from HPLC analysis, even though the higher oligomers were present in amounts of about 0.1%, they could still be easily detected in mass spectra of the entire mixture.(ABSTRACT TRUNCATED AT 250 WORDS)
Bahrani, Sonia; Ghaedi, Mehrorang; Dashtian, Kheibar; Ostovan, Abbas; Mansoorkhani, Mohammad Javad Khoshnood; Salehi, Amin
2017-11-01
In present work, facile method is developed for determination of colchicine in human plasma sample, autumn and spring root of colchicium extracts by ultrasound assisted dispersive magnetic solid phase microextraction followed by HPLC-UV method (UAD-MSPME-HPLC-UV). Magnetic (Fe 2 O 4 -nanoparticles) metal organic framework-5, (MOF-5(Zn)-Fe 2 O 4 NPs) was synthesized by dispersing MOF-5 and Fe(NO 3 ) 3 .9H 2 O in ethylene glycol (as capping agent) and NaOH (pH adjustment agent) by hydrothermal method. The prepared sorbent was characterized via XRD and SEM analysis and applied as magnetic solid phase in UAD-MSPME-HPLC-UV method. In this method, colchicine molecules were sorbed on MOF-5(Zn)-Fe 2 O 4 NPs sorbent by various mechanisms like ion exchange, hydrogen bonding and electrostatic, ᴨ-ᴨ, hard-hard and dipole-ion interaction followed by exposing sonication waves as incremental mass transfer agent and then the sorbent was separated from the sample matrix by an external magnetic fields. Subsequently, accumulated colchicine were eluted by small volume of desorption organic solvent. Influence of operational variables such as MOF-5(Zn)-Fe 2 O 4 NPs mass, volume of extracting solvent and sonication time on response property (recovery) were studied and optimized by central composite design (CCD) combined with desirability function (DF) approach. Under optimum condition, the method has wide linear calibration rang (0.5-1700ngmL -1 ) with reasonable detection limit (0.13ngmL -1 ) and R 2 =0.9971. Finally, the UAD-MSPME-HPLC-UV method was successfully applied for determination of colchicine autumn and spring root of colchicium extracts and plasma samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Aqueous Reversed-Phase HPLC/FT-IR Using Diffuse Reflectance Detections
NASA Astrophysics Data System (ADS)
Kalasinsky, Victor F.; Pai, T. H.; Kenton, R. C.; Kalasinsky, Kathryn S.
1989-12-01
Solvent-elimination HPLC/FT-IR has become a viable combination of two important techniques, and we have been developing a system which is adaptable to both normal and reversed-phase liquid chromatography. The interface involves the deposition of HPLC eluites onto a KCI-laden train with subsequent analysis via diffuse reflectance spectroscopy, and with minor modifications, the system can be used with microbore and analytical columns. With aqueous solvents, the water is converted to methanol and acetone in a post-column reaction with 2,2-dimethoxypropane before the eluites are deposited. A number of different samples have been used to demonstrate the interface and its flexibility. Steroids, analgesics, and other pharmaceutical preparations have been separated with reverse-phase solvents and identified by their infrared spectra. For some of the compounds studied, different infrared spectra of a given compound have been found to exhibit intensity variations, which arise from different crystalline states. The differences can be concentration dependent and may be useful in obtaining semi-quantitative information from the infrared spectra. Applications involving both gradient elution and isocratic separations have been successful. The former provides the same advantages for HPLC/FT-IR as one finds in conventional HPLC. More recent work has been applied to the use of buffers such as those frequently used in bioanalytical separations. In trying to simplify the post-column reaction with water, we have immobilized dehydration reagents onto silica particles and packed these materials into a column which is inserted in-line after the analytical column. Of the reagents utilized to date, 3,3-dimethoxypropyltrimethoxysilane has been found to perform most efficiently. It has advantages over the simpler reagents because it can be regenerated in the reaction column. Results and the efficiency of the dehydration process and its relation to the type of reagent and its coverage will be discussed.
Sturm, Sonja; Seger, Christoph; Godejohann, Markus; Spraul, Manfred; Stuppner, Hermann
2007-09-07
Identification of putative biomarker molecules within the genus Corydalis (Papaveraceae) was pursued by combining conventional off-line sample enrichment with high-performance liquid chromatography-solid phase extraction-nuclear magnetic resonance (HPLC-SPE-NMR) based structure elucidation. Off-line reversed phase solid phase extraction (SPE) was used to enrich the desired analytes from a methanolic extract (93 mg dry weight) of a miniscule single tuber (233 mg dry weight) of C. solida. An aliquot of the SPE fraction (2.1 mg) was subjected to separation in the HPLC-SPE-NMR hyphenation. Chromatographic peaks bearing the metabolites under investigation were trapped in the SPE device in a single experiment and transferred to a 600 MHz NMR spectrometer equipped with a 30 microl cryofit insert fed into a 3 mm cryoprobe. Recorded homo- and heteronuclear 1D and 2D NMR data allowed the identification of the three analytes under investigation as protopine, allocryptopine, and N-methyl-laudanidinium acetate. The latter is a rare alkaloid, which has been isolated only once before.
1999-06-01
cpdP, from the marine symbiotic bacterium Vibrio fische ri 160 Table of abbreviations 30C6-HSL AI-1 AI-2 C8-HSL CHAPS CNP EDTA FMN GFP HPLC ...using a Zorbax C18 1.0 mm by 150 mm reverse-phase column on a Hewlett-Packard 1090 HPLC /1040 diode array detector at the Harvard Microchemistry...separated by reversed-phase HPLC , and sequenced (Table 2; 10-PK12, 10-PK39, and 10-PK51). From two of the three peptide sequences (Materials and
Kumar, Ashwini; Singh, Baldev; Malik, Ashok Kumar; Tiwary, Dhananjay K
2007-01-01
A new approach has been developed for the extraction and determination of aldehydes such as veratraldehyde, m-nitrobenzaldehyde, cinnamaldehyde, benzaldehyde, and p-chlorobenzaldehyde by using solid-phase microextraction (SPME) and high-performance liquid chromatography with UV detection (HPLC/UV). The method involves adsorption of the aldehydes on polydimethylsiloxane/divinylbenzene-coated fiber, followed by desorption in the desorption chamber of the SPME-HPLC interface, using acetonitrile-water (70 + 30) as the mobile phase; UV detection was at 254 nm. A good separation of 5 aldehydes was obtained on a C18 column. The detection limits of veratraldehyde, m-nitrobenzaldehyde, cinnamaldehyde, benzaldehyde, and p-chlorobenzaldehyde are 25, 41, 13, 12, and 11 pg/mL, respectively, which are about 100 times better than the detection limits for other SPME methods using gas chromatography. The proposed method was validated by determining benzaldehyde in bitter almonds and cinnamaldehyde in cinnamon bark. The recoveries of the 5 analytes were determined by analysis of spiked drinking water.
Liu, Shiming; Chen, Kaoshan; Schliemann, Willibald; Strack, Dieter
2005-01-01
A simple method involving polyamide column chromatography in combination with HPLC-PAD and HPLC-ESI/MS for isolating and identifying two kinds of lignans, arctiin and arctigenin, in the leaves of burdock (Arctium lappa L.) has been established. After extraction of burdock leaves with 80% methanol, the aqueous phase of crude extracts was partitioned between water and chloroform and the aqueous phase was fractionated on a polyamide glass column. The fraction, eluting with 100% methanol, was concentrated and gave a white precipitate at 4 degrees C from which two main compounds were purified by semi-preparative HPLC. In comparison with the UV and ESI-MS spectra and the HPLC retention time of authentic standards, the compounds were determined to be arctiin and arctigenin. The extraction/separation technique was validated using an internal standard method.
Płocharz, Paweł; Klimek-Turek, Anna; Dzido, Tadeusz H
2010-07-16
Kinetic performance, measured by plate height, of High-Performance Thin-Layer Chromatography (HPTLC), High-Performance Liquid Chromatography (HPLC) and Pressurized Planar Electrochromatography (PPEC) was compared for the systems with adsorbent of the HPTLC RP18W plate from Merck as the stationary phase and the mobile phase composed of acetonitrile and buffer solution. The HPLC column was packed with the adsorbent, which was scrapped from the chromatographic plate mentioned. An additional HPLC column was also packed with adsorbent of 5 microm particle diameter, C18 type silica based (LiChrosorb RP-18 from Merck). The dependence of plate height of both HPLC and PPEC separating systems on flow velocity of the mobile phase and on migration distance of the mobile phase in TLC system was presented applying test solute (prednisolone succinate). The highest performance, amongst systems investigated, was obtained for the PPEC system. The separation efficiency of the systems investigated in the paper was additionally confirmed by the separation of test component mixture composed of six hormones. 2010 Elsevier B.V. All rights reserved.
Wang, Hsiaoling; Levi, Mark S; Del Grosso, Alfred V; McCormick, William M; Bhattacharyya, Lokesh
2017-05-10
Size exclusion (SE) high performance liquid chromatography (HPLC) is widely used for the molecular size distribution (MSD) analyses of various therapeutic proteins. We report development and validation of a SE-HPLC method for MSD analyses of immunoglobulin G (IgG) in products using a TSKgel SuperSW3000 column and eluting it with 0.4M NaClO 4 , a chaotropic salt, in 40mM phosphate buffer, pH 6.8. The chromatograms show distinct peaks of aggregates, tetramer, and two dimers, as well as the monomer and fragment peaks. In addition, the method offers about half the run time (12min), better peak resolution, improved peak shape and more stable base-line compared to HPLC methods reported in the literature, including that in the European Pharmacopeia (EP). A comparison of MSD analysis results between our method and the EP method shows interactions between the protein and the stationary phase and partial adsorption of aggregates and tetramer on the stationary phase, when the latter method is used. Thus, the EP method shows lower percent of aggregates and tetramer than are actually present in the products. In view of the fact that aggregates have been attributed to playing a critical role in adverse reactions due to IgG products, our observation raises a major concern regarding the actual aggregate content in these products since the EP method is widely used for MSD analyses of IgG products. Our method eliminates (or substantially reduces) the interactions between the proteins and stationary phase as well as the adsorption of proteins onto the column. Our results also show that NaClO 4 in the eluent is more effective in overcoming the protein/column interactions compared to Arg-HCl, another chaotropic salt. NaClO 4 is shown not to affect the molecular size and relative distribution of different molecular forms of IgG. The method validated as per ICH Q2(R1) guideline using IgG products, shows good specificity, accuracy, precision and a linear concentration dependence of peak areas for different molecular forms. In summary, our method gives more reliable results than the SE-HPLC methods for MSD analyses of IgG reported in the literature, including the EP, particularly for aggregates and tetramer. The results are interpreted in terms of ionic (polar) and hydrophobic interactions between the stationary phase and the IgG protein. Published by Elsevier B.V.
Weber, Roland W S; Anke, Heidrun; Davoli, Paolo
2007-03-23
A simple method for the extraction of carotenoid pigments from frozen wet cells of red yeasts (Basidiomycota) and their analysis by reversed-phase HPLC using a C(18) column and a water/acetone solvent system is described. Typical red yeast carotenoids belonging to an oxidative series from the monocyclic gamma-carotene to 2-hydroxytorularhodin and from the bicyclic beta-carotene to astaxanthin were separated. Pigment identity was confirmed by LC-atmospheric pressure chemical ionisation (APCI) mass spectrometry using similar chromatographic conditions.
[Study on HPLC fingerprint of Alpinia officinarum].
Deng, Yi-Feng; Feng, Li-Na; Luo, Hui
2011-09-01
To establish the chromatography fingerprint of Alpinia officinarum by HPLC. An optimum HPLC conditions which were obtained under the assessment of LC-MS were as follows: Shim-pack VP-ODS column (2.0 mm x 250 mm, 5 microm), 0.1% HAc aqueous solution as phase A, 15% Acetonitrile: 40% Methanol: 45% Tetrafuran as phase B, the flow rate was 0.20 mL/min, column temperature was 35 degrees C and UV detector was set at 280 nm. The HPLC fingerprint of Alpinia officinarum was established, the consensus 10 peaks and their relative retention times along with the ranges of relative area were determined. The method is reliable and stable and can be used for the quality control and identification of Alpinia officinarum.
Elkins, Phyllis; Coleman, Donna; Burgess, Jason; Gardner, Michael; Hines, John; Scott, Brendan; Kroenke, Michelle; Larson, Jami; Lightner, Melissa; Turner, Gregory; White, Jonathan; Liu, Paul
2014-01-01
(Z)-Endoxifen (4-hydroxy-N-desmethyltamoxifen), an active metabolite generated via actions of CYP3A4/5 and CYP2D6, is a more potent selective estrogen receptor modulator (SERM) than tamoxifen. In the MCF-7 human mammary tumor xenograft model with female athymic mice, (Z)-endoxifen, at an oral dose of 4⬜8 mg/kg, significantly inhibits tumor growth. (Z)-Endoxifen's potential as an alternative therapeutic agent independent of CYP2D6 activities, which can vary widely in ER+ breast cancer patients, is being actively evaluated. This paper describes confirmation of the configuration of the active (Z)-isomer through 2D NMR experiments, including NOE (ROESY) to establish spatial proton⬜proton correlations, and identification of the major impurity as the (E)-isomer in endoxifen drug substance by HPLC/HRMS (HPLC/MS-TOF). Stability of NMR solutions was confirmed by HPLC/UV analysis. For pre-clinical studies, a reverse-phase HPLC⬜UV method, with methanol/water mobile phases containing 10 mM ammonium formate at pH 4.3, was developed and validated for the accurate quantitation and impurity profiling of drug substance and drug product. Validation included demonstration of linearity, method precision, accuracy, and specificity in the presence of impurities, excipients (for the drug product), and degradation products. Ruggedness and reproducibility of the method were confirmed by collaborative studies between two independent laboratories. The method is being applied for quality control of the API and oral drug product. Kinetic parameters of Z- to E-isomerization were also delineated in drug substance and in aqueous formulation, showing conversion at temperatures above 25 °C. Copyright © 2014 Elsevier B.V. All rights reserved.
Wen, Fangfang; Cheng, Xuemei; Liu, Wei; Xuan, Min; Zhang, Lei; Zhao, Xin; Shan, Meng; Li, Yan; Teng, Liang; Wang, Zhengtao; Wang, Changhong
2014-12-01
The aerial parts of genus Peganum are officially used in traditional Chinese medicine. The paper aims to establish a high-performance liquid chromatography (HPLC) method for fingerprint analysis and simultaneous determination of three alkaloids and two flavonoids in aerial parts of genus Peganum, and to analyze accumulative difference of secondary metabolites in inter-species, individuals of plants, inter-/intra-population and from different growing seasons. HPLC analysis was performed on a C18 column with gradient elution using 0.1% trifloroacetic acid and acetonitrile as mobile phase and detected at 265 nm, by conventional methodology validation. For fingerprint analysis, the RSDs of relative retention time and relative peak area of the characteristic peaks were within 0.07-0.78 and 0.94-9.09%, respectively. For simultaneous determination of vasicine, harmaline, harmine, deacetylpeganetin and peganetin, all calibration curves showed good linearity (r > 0.9990) within the test range. The relative standard deviations of precision, repeatability and stability test did not exceed 2.37, 2.68 and 2.67%, respectively. The average recoveries for the five analytes were between 96.47 and 101.20%. HPLC fingerprints play a minor role in authenticating and differentiating the herbs of different species of genus Peganum. However, the secondary metabolites levels of alkaloids and flavonoids in aerial parts of genus Peganum rely on species-, habitat-, and growth season-dependent accumulation. Copyright © 2014 John Wiley & Sons, Ltd.
USDA-ARS?s Scientific Manuscript database
Capillary electrophoresis (CE) and reversed-phase high performance liquid chromatography (RP-HPLC) analysis were utilized to detect differences in the sarcoplasmic protein profiles of beef strip loins subjected to aging and hydrodynamic pressure processing (HDP) treatments. At 48 h postmortem, stri...
Shah, Umang; Patel, Shraddha; Raval, Manan
2018-01-01
High performance liquid chromatography is an integral analytical tool in assessing drug product stability. HPLC methods should be able to separate, detect, and quantify the various drug-related degradants that can form on storage or manufacturing, plus detect any drug-related impurities that may be introduced during synthesis. A simple, economic, selective, precise, and stability-indicating HPLC method has been developed and validated for analysis of Rifampicin (RIFA) and Piperine (PIPE) in bulk drug and in the formulation. Reversed-phase chromatography was performed on a C18 column with Buffer (Potassium Dihydrogen Orthophosphate) pH 6.5 and Acetonitrile, 30:70), (%, v/v), as mobile phase at a flow rate of 1 mL min-1. The detection was performed at 341 nm and sharp peaks were obtained for RIFA and PIPE at retention time of 3.3 ± 0.01 min and 5.9 ± 0.01 min, respectively. The detection limits were found to be 2.385 ng/ml and 0.107 ng/ml and quantification limits were found to be 7.228ng/ml and 0.325ng/ml for RIFA and PIPE, respectively. The method was validated for accuracy, precision, reproducibility, specificity, robustness, and detection and quantification limits, in accordance with ICH guidelines. Stress study was performed on RIFA and PIPE and it was found that these degraded sufficiently in all applied chemical and physical conditions. Thus, the developed RP-HPLC method was found to be suitable for the determination of both the drugs in bulk as well as stability samples of capsule containing various excipients. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Taraji, Maryam; Talebpour, Zahra; Adib, Nuoshin; Karimi, Shima; Haghighi, Farideh; Aboul-Enein, Hassan Y
2015-09-01
A sensitive, selective and simple method for the simultaneous determination of carvedilol enantiomers in aqueous solution has been developed using stir bar sorptive extraction (SBSE) followed by high-performance liquid chromatography (HPLC) with ultraviolet (UV) detection. This method is based on the reaction of carvedilol enantiomers with (-)-menthyl chloroformate (MCF) after extraction by the SBSE method to produce diastereomeric derivatives. The separation was achieved by use of a C18 analytical column and the influence of mobile phase composition on the enantioseparation of carvedilol was studied. The applicability of two sorptive phases, poly(methyl methacrylate/ethyleneglycol dimethacrylate) (PA-EG) and polydimethylsiloxane, were tested for extraction of carvedilol enantiomers from aqueous samples. The obtained results showed excellent linear dynamic ranges and precisions for each of them. The least limit of detection for (S)- and (R)-carvedilol obtained 8 and 11 µg L(-1), respectively, using the PA-EG sorptive phase. Inter- and intra-mean recoveries were also satisfactory, ranging from 98 to 103%, with coefficient of variation in the range of 1-5% at three fortified levels using a PA-EG coated stir bar. The proposed SBSE (PA-EG)-MCF derivatization-HPLC-UV method was successfully applied to enantioselective analysis of carvedilol in water and pharmaceutical dosages, confirming the application of this method. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Nekrasova, N. A.; Kurbatova, S. V.; Zemtsova, M. N.
2016-12-01
Regularities of the sorption of 1,2,3,4-tetrahydroquinoline derivatives on octadecylsilyl silica gel and porous graphitic carbon from aqueous acetonitrile solutions were investigated. The effect the molecular structure and physicochemical parameters of the sorbates have on their retention characteristics under conditions of reversed phase HPLC are analyzed.
Li, Hui; Chen, Bo; Zhang, Zhaohui; Yao, Shouzhuo
2004-06-17
A new focused microwave-assisted solvent extraction method using water as solvent has been developed for leaching geniposidic and chlorogenic acids from Eucommia ulmodies Oliv. The extraction procedures were optimized using a two indexes orthogonal experimental design and graphical analysis, by varying irradiation time, solvent volume, solvent composition and microwave power. The optimum extraction conditions were obtained: for geniposidic acid, 50% micorwave power, 40s irradiation, and 80% (v/v) aqueous methanol as extraction solvent (20mlg(-1) sample); and for chlorogenic acid, 50% micorwave power, 30s irradiation, and 20% aqueous methanol (20mlg(-1) sample). The composition of the extraction solvent was optimized and can be directly used as the mobile phase in the HPLC separation. Quantification of organic acids was done by HPLC at room temperature using Spherigel C(18) chromatographic column (250 mm x4.6 mm , i.d. 5mum), the methanol:water:acetic acid (20:80:1.0, v/v) mobile phase and UV detection at 240nm. The R.S.D. of the extraction process for geniposidic and chlorogenic acid were 3.8 and 4.1%, respectively.
Wang, Yan-Hong; Avonto, Cristina; Avula, Bharathi; Wang, Mei; Rua, Diego; Khan, Ikhlas A
2015-01-01
An HPLC-UV method was developed for the quantitative analysis of nine skin whitening agents in a single injection. These compounds are α-arbutin, β-arbutin, kojic acid, nicotinamide, resorcinol, ascorbic acid, hydroquinone, 4-methoxyphenol, and 4-ethoxyphenol. The separation was achieved on a reversed-phase C18 column within 30 min. The mobile phase was composed of water and methanol, both containing 0.1% acetic acid (v/v). The stability of the analytes was evaluated at different pH values between 2.3 and 7.6, and the extraction procedure was validated for different types of skin whitening product matrixes, which included two creams, a soap bar, and a capsule. The best solvent system for sample preparation was 20 mM NaH2PO4 containing 10% methanol at pH 2.3. The analytical method was validated for accuracy, precision, LOD, and LOQ. The developed HPLC-UV method was applied for the quantitation of the nine analytes in 59 skin whitening products including creams, lotions, sera, foams, gels, mask sheets, soap bars, tablets, and capsules.
HPLC-DAD-MS identification of bioactive secondary metabolites from Ferula communis roots.
Arnoldi, Lolita; Ballero, Mauro; Fuzzati, Nicola; Maxia, Andrea; Mercalli, Enrico; Pagni, Luca
2004-06-01
A simple HPLC method was developed to distinguish between 'poisonous' and 'non-poisonous' chemotypes of Ferula communis. The method was performed on a C8 reverse phase analytical column using a binary eluent (aqueous TFA 0.01%-TFA 0.01% in acetonitrile) under gradient condition. The two chemotypes showed different fingerprints. The identification of five coumarins and eleven daucane derivatives by HPLC-diode array detection (HPLC-DAD) and HPLC-MS is described. A coumarin, not yet described, was detected. Copyright 2004 Elsevier B.V.
Elkhoudary, Mahmoud M; Abdel Salam, Randa A; Hadad, Ghada M
2016-11-01
A new simple, sensitive, rapid and accurate gradient reversed-phase high-performance liquid chromatography with photodiode array detector (RP-HPLC-DAD) was developed and validated for simultaneous analysis of Metronidazole (MNZ), Spiramycin (SPY), Diloxanidefuroate (DIX) and Cliquinol (CLQ) using statistical experimental design. Initially, a resolution V fractional factorial design was used in order to screen five independent factors: the column temperature (°C), pH, phosphate buffer concentration (mM), flow rate (ml/min) and the initial fraction of mobile phase B (%). pH, flow rate and initial fraction of mobile phase B were identified as significant, using analysis of variance. The optimum conditions of separation determined with the aid of central composite design were: (1) initial mobile phase concentration: phosphate buffer/methanol (50/50, v/v), (2) phosphate buffer concentration (50 mM), (3) pH (4.72), (4) column temperature 30°C and (5) mobile phase flow rate (0.8 ml min -1 ). Excellent linearity was observed for all of the standard calibration curves, and the correlation coefficients were above 0.9999. Limits of detection for all of the analyzed compounds ranged between 0.02 and 0.11 μg ml -1 ; limits of quantitation ranged between 0.06 and 0.33 μg ml -1 The proposed method showed good prediction ability. The optimized method was validated according to ICH guidelines. Three commercially available tablets were analyzed showing good % recovery and %RSD. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Shumow, Laura; Bodor, Alison
2011-07-05
This manuscript describes the results of an HPLC study for the determination of the flavan-3-ol monomers, (±)-catechin and (±)-epicatechin, in cocoa and plain dark and milk chocolate products. The study was performed under the auspices of the National Confectioners Association (NCA) and involved the analysis of a series of samples by laboratories of five member companies using a common method. The method reported in this paper uses reversed phase HPLC with fluorescence detection to analyze (±)-epicatechin and (±)-catechin extracted with an acidic solvent from defatted cocoa and chocolate. In addition to a variety of cocoa and chocolate products, the sample set included a blind duplicate used to assess method reproducibility. All data were subjected to statistical analysis with outliers eliminated from the data set. The percent coefficient of variation (%CV) of the sample set ranged from approximately 7 to 15%. Further experimental details are described in the body of the manuscript and the results indicate the method is suitable for the determination of (±)-catechin and (±)-epicatechin in cocoa and chocolate products and represents the first collaborative study of this HPLC method for these compounds in these matrices.
Advances in HPLC-ICP-MS interface techniques for metal speciation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, S.J.
The relentless demand for lower detection limits is increasingly coupled to the requirement for elemental speciation. This is particularly true in environmental and clinical fields where total levels are often insufficient for mobility and toxicity studies. This demand for both qualitative and quantitative data on the individual species present in complex samples has led to the development of various interfaces to couple some form of chromatography, usually gas chromatography (GC) or high performance liquid chromatography (HPLC) to an element specific detector. Today inductively coupled plasma-mass spectrometry is often employed since it offers excellent detection limits, element specific information (including isotopicmore » data) and the potential for multi-element studies. Ms presentation will concentrate on HPLC couplings although the advantages and disadvantages of both GC and HPLC couplings to ICP-MS will be discussed. Particular attention will be given to the optimization of both the chromatography and detection systems. Details will be presented of several successful HPLC interface designs and ways of facilitating high levels of a range of organic solvents (e.g. methanol and THF) in the HPLC mobile phase will be highlighted. The advantages of using a sheath gas and practical ways of achieving this will also be discussed. Finally the use of isotope dilution analysis in conjunction with HPLC-ICP-MS will be outlined. In all cases the impact of using the most appropriate approach will be demonstrated using both environmental and clinical samples.« less
Lopes, Nilva P; Collins, Kenneth E; Jardim, Isabel C S F
2003-02-14
Polybutadiene (PBD) has been immobilized on HPLC silica by gamma radiation doses in the range from 5 to 180 kGy. Columns prepared from these reversed-phase materials, as well as from similar non-irradiated materials, were tested with standard sample mixtures and characterized by elemental analysis (% C) and infrared spectroscopy. A low dose of 5 kGy is sufficient to produce a layer of immobilized PBD which functions as an efficient and stable stationary phase. Higher doses give thicker immobilized layers having less favorable chromatographic properties.
Khater, Syame; Lozac'h, Marie-Anne; Adam, Isabelle; Francotte, Eric; West, Caroline
2016-10-07
Analysis and production of enantiomerically pure compounds is a major topic of interest when active pharmaceutical ingredients are concerned. Enantioselective chromatography has become a favourite both at the analytical and preparative scales. High-performance liquid chromatography (HPLC) and supercritical fluid chromatography (SFC) are dominating the scene and are often seen as complementary techniques. Nowadays, for economic and ecologic reasons, SFC may be preferred over normal-phase HPLC (NPLC) as it allows significant reductions in solvent consumption. However, the transfer of NPLC methods to SFC is not always straightforward. In this study, we compare the retention of achiral molecules and separation of enantiomers under supercritical fluid (carbon dioxide with ethanol or isopropanol) and liquid normal-phase (heptane with ethanol or isopropanol) elution modes with polysaccharide stationary phases in order to explore the differences between the retention and enantioseparation properties between the two modes. Chemometric methods (namely quantitative structure-retention relationships and discriminant analysis) are employed to compare the results obtained on a large set of analytes (171 achiral probes and 97 racemates) and gain some understanding on the retention and separation mechanisms. The results indicate that, contrary to popular belief, carbon dioxide - solvent SFC mobile phases are often weaker eluents than liquid mobile phases. It appears that SFC and NPLC elution modes provide different retention mechanisms. While some enantioseparations are unaffected, facilitating the transfer between the two elution modes, other enantioseparations may be drastically different due to different types and strength of interactions contributing to enantioselectivity. Copyright © 2016 Elsevier B.V. All rights reserved.
Reversed-phase high-performance liquid chromatography of unsubstituted aminobenzoic acids
Abidi, S.L.
1989-01-01
High-performance liquid chromatographic (HPLC) characteristics of three position isomers of aminobenzoic acids (potential metabolites of important anesthetic drugs), were delineated with respect to their interactions with various mobile phases and stationary phases. HPLC with five hydrocarbonaceous phase, I?-cyclodextrin silica (CDS), macrophase MP-1 polymer (MP), macroporous polystyrene/divinylbenzene (MPD), octadecylsilica (ODS), and propylphenylsilica (PPS), yielded results explicable in terms of substituent effects derived from the bifunctional amino- and carboxy groups. For cases where mobile phases contained sulfonates or quaternary ammonium salts both having longer chain alkyls, retention of analytes on all but CDS appeared to proceed predominantly via an ion-pairing mechanism. The extent of the corresponding counter-ion effects decreased in the order: MPD > ODS > PPS > MP, while the analyte retention order paralleled thier pH2 values. On the other hand, an inverse relationship between the magnitude of capacity factors (k') and pK1 values of the title compounds was observed in experiments that produced retention data incompatible with ion-pair interaction rationales. The unique HPLC results obtained with the CDS phase are compared with those obtained with other phases.
Zhu, Zaifang; Chen, Huang; Ren, Jiangtao; Lu, Juan J; Gu, Congying; Lynch, Kyle B; Wu, Si; Wang, Zhe; Cao, Chengxi; Liu, Shaorong
2018-03-01
We develop a new two-dimensional (2D) high performance liquid chromatography (HPLC) approach for intact protein analysis. Development of 2D HPLC has a bottleneck problem - limited second-dimension (second-D) separation speed. We solve this problem by incorporating multiple second-D columns to allow several second-D separations to be proceeded in parallel. To demonstrate the feasibility of using this approach for comprehensive protein analysis, we select ion-exchange chromatography as the first-dimension and reverse-phase chromatography as the second-D. We incorporate three second-D columns in an innovative way so that three reverse-phase separations can be performed simultaneously. We test this system for separating both standard proteins and E. coli lysates and achieve baseline resolutions for eleven standard proteins and obtain more than 500 peaks for E. coli lysates. This is an indication that the sample complexities are greatly reduced. We see less than 10 bands when each fraction of the second-D effluents are analyzed by sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE), compared to hundreds of SDS-PAGE bands as the original sample is analyzed. This approach could potentially be an excellent and general tool for protein analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
Da, Xu; Qian, Ling-Jia
2005-08-01
To establish a method for detection of plasma total homocysteine with HPLC. The chromatography analysis was carried out using a Symmetry Shield RP18. The mobile phase was sodium acetate (0.08 mol/L) and methanol (1%) and we utilized a HPLC system with fluorescence detection of plasma homocysteine derivatized from reaction with 7-fluorobenzo-2-oxa-1,3-diazole-4-sulphonate (SBD-F). The average recoveries were 95.8 - 100.8% and the relative standard deviations were 1.2-2.0%. The results showed it to be a rapid and accurate method for the determination of homocysteine level in plasma.
Shen, Xinggui; Chakraborty, Sourav; Dugas, Tammy R; Kevil, Christopher G
2015-01-01
Accurate measurement of hydrogen sulfide bioavailability remains a technical challenge due to numerous issues involving sample processing, detection methods used, and actual biochemical products measured. Our group and others have reported that reverse phase HPLC detection of sulfide dibimane (SDB) product from the reaction of H2S/HS− with monobromobimane allows for analytical detection of hydrogen sulfide bioavailability in free and other biochemical forms. However, it remains unclear whether possible interfering contaminants may contribute to HPLC SDB peak readings that may result in inaccurate measurements of bioavailable sulfide. In this study, we critically compared hydrogen sulfide dependent SDB detection using reverse phase HPLC (RP-HPLC) versus quantitative SRM electrospray ionization mass spectrometry (ESI/MS) to obtain greater clarity into the validity of the reverse phase HPLC method for analytical measurement of hydrogen sulfide. Using an LCQ-deca ion-trap mass spectrometer, SDB was identified by ESI/MS positive ion mode, and quantified by selected reaction monitoring (SRM) using hydrocortisone as an internal standard. Collision induced dissociation (CID) parameters were optimized at MS2 level for SDB and hydrocortisone. ESI/MS detection of SDB standard was found to be a log order more sensitive than RP-HPLC with a lower limit of 0.25 nM. Direct comparison of tissue and plasma SDB levels using RP-HPLC and ESI/MS methods revealed comparable sulfide levels in plasma, aorta, heart, lung and brain. Together, these data confirm the use of SDB as valid indicator of H2S bioavailability and highlights differences between analytical detection methods. PMID:24932544
A new thermally immobilized fluorinated stationary phase for RP-HPLC.
Maldaner, Liane; Jardim, Isabel C S F
2010-02-01
A new fluorinated stationary phase was prepared through thermal immobilization of poly(methyl-3,3,3-trifluoropropylsiloxane) onto 5 microm Kromasil silica particles. The best conditions of immobilization time and temperature were determined through a central composite design and response surface methodologies. Physical-chemical characterization using solid-state (29)Si NMR measurements, infrared spectroscopy and elemental analysis showed that the immobilization process was effective to promote a coating of the support that corresponds to a monolayer of polymer. The stationary phase presents selectivity for positional isomers and good peak shape for basic compounds.
Retention behavior of long chain quaternary ammonium homologues and related nitroso-alkymethylamines
Abidi, S.L.
1985-01-01
Several chromatographic methods have been utilized to study the retentionbehavior of a homologous series of n-alkylbenzyldimethylammonium chlorides (ABDAC) and the corresponding nitroso-n-alkylmethylamines (NAMA). Linear correlation of the logarithmic capacity factor (k') with the number of carbons in the alkyl chain provides useful information on both gas chromatographic (GC) and high-performance liquid chromatographich (HPLC) retention parameters of unknown components. Under all conditions empolyed, GC methodology has proved effective in achieving complete resolution of the homologous mixture of NMA despite its obvious inadequacy in the separation of E-Z configurational isomers. Conversely, normal-phase HPLC on silica demonstrates that the selectivity (a) value for an E-Z pair is much higher than that for an adjacent homologous pair. In the reversed-phase HPLC study, three different silica-based column systems were examined under various mobile phase conditions. The extent of variation in k' was found to be a function of the organic modifier, counter-ion concentration, eluent pH, nature of counter-ion, and the polarity and type of stationary phase. The k'—[NaClO4] profiles showed similar trends between the ABDAC and the NAMA series, supporting the dipolar electronic structures of the latter compounds. Mobile phase and stationary phase effects on component separation are described. The methodology presented establishes the utility of HPLC separation techniques as versatile analytical tools for practical application.
Millán, S; Sampedro, M C; Unceta, N; Goicolea, M A; Rodríguez, E; Barrio, R J
2003-05-02
A solid-phase microextraction (SPME) method coupled to high-performance liquid chromatography with diode array detection (HPLC-DAD) for the analysis of six organochlorine fungicides (nuarimol, triadimenol, triadimefon, folpet, vinclozolin and penconazole) in wine was developed. For this purpose, polydimethylsiloxane-divinylbenzene-coated fibers were utilized and all factors affecting throughput, precision, and accuracy of the SPME method were investigated and optimized. These factors include: matrix influence, extraction and desorption time, percentage of ethanol, pH, salt effect and desorption mode. The performed analytical procedure showed detectability ranging from 4 to 27 microg l(-1) and precision from 2.4 to 14.2% (as intra-day relative standard deviation, RSD) and 4.7-25.7% (as inter-day RSD) depending on the fungicide. The results demonstrate the suitability of the SPME-HPLC-DAD method to analyze these organochlorine fungicides in red wine.
Kurdi, Said El; Muaileq, Dina Abu; Alhazmi, Hassan A; Bratty, Mohammed Al; Deeb, Sami El
2017-06-27
HPLC stationary phases of monolithic and fused core type can be used to achieve fast chromatographic separation as an alternative to UPLC. In this study, monolithic and fused core stationary phases are compared for fast separation of four fat-soluble vitamins. Three new methods on the first and second generation monolithic silica RP-18e columns and a fused core pentafluoro-phenyl propyl column were developed. Application of three fused core columns offered comparable separations of retinyl palmitate, DL-α-tocopheryl acetate, cholecalciferol and menadione in terms of elution speed and separation efficiency. Separation was achieved in approx. 5 min with good resolution (Rs > 5) and precision (RSD ≤ 0.6 %). Monolithic columns showed, however, a higher number of theoretical plates, better precision and lower column backpressure than the fused core column. The three developed methods were successfully applied to separate and quantitate fat-soluble vitamins in commercial products.
Fu, Yu; Qiao, Liping; Cao, Yuming; Zhou, Xiaozhou; Liu, Yu; Ye, Xingqian
2014-01-01
Proanthocyanidins in Chinese bayberry leaves (PCBLs) were qualitatively analyzed. NMR data suggest that PCBLs are mostly composed of (epi)gallocatechin gallate units. Matrix-assisted laser desorption time-of-flight MS data indicate 95 possible prodelphinidin structures, ranging from dimers to tridecamers. Preparative normal-phase HPLC and further analysis by reverse-phase HPLC together with electrospray ionization MS enabled detection of 20 compounds, including seven newly identified compounds in Chinese bayberry leaves. The antioxidant capacity of PCBLs was evaluated by (1,1-diphenyl-2-picryl-hydrazyl), ferric-reducing antioxidant power, and oxygen radical absorption capacity assays. The EC50 of DPPH radical scavenging activities (as 50% decrease in the initial DPPH concentration) were 7.60 µg. The FRAP and ORAC values were 8859.33±978.39 and 12991.61±1553.34 µmol Trolox equivalents per gram, respectively. The results indicate the high antioxidant potency of PCBLs. PMID:24805126
Germann, M W; Pon, R T; van de Sande, J H
1987-09-01
Synthetic 5'-dimethoxytritylated oligodeoxyribonucleotides, which contained strong secondary structure, were satisfactorily denatured and purified by reversed-phase HPLC on PRP-1 columns when strongly alkaline conditions (0.05 M NaOH) were employed. This procedure was suitable for the purification of hairpin structures, e.g., d(CG)nT4(CG)n (n = 4, 5, 6), and oligo(dG) sequences, e.g., d(G)24, as well as oligodeoxyribonucleotide probes which contained degenerate base sites. Oligodeoxyribonucleotides as long as 50 bases in length were purified. Recovery of injected oligonucleotides was typically 90% or better. The high capacity of the PRP-1 resin also allowed purification to be performed on a preparative scale (2-8 mg per injection). Enzymatic degradation and HPLC analysis indicated that no modification of the heterocyclic bases occurred under the alkaline conditions described.
Quantitative estimation of itopride hydrochloride and rabeprazole sodium from capsule formulation.
Pillai, S; Singhvi, I
2008-09-01
Two simple, accurate, economical and reproducible UV spectrophotometric methods and one HPLC method for simultaneous estimation of two component drug mixture of itopride hydrochloride and rabeprazole sodium from combined capsule dosage form have been developed. First developed method involves formation and solving of simultaneous equations using 265.2 nm and 290.8 nm as two wavelengths. Second method is based on two wavelength calculation, wavelengths selected for estimation of itopride hydrochloride was 278.0 nm and 298.8 nm and for rabeprazole sodium 253.6 nm and 275.2 nm. Developed HPLC method is a reverse phase chromatographic method using phenomenex C(18) column and acetonitrile: phosphate buffer (35:65 v/v) pH 7.0 as mobile phase. All developed methods obey Beer's law in concentration range employed for respective methods. Results of analysis were validated statistically and by recovery studies.
Quantitative Estimation of Itopride Hydrochloride and Rabeprazole Sodium from Capsule Formulation
Pillai, S.; Singhvi, I.
2008-01-01
Two simple, accurate, economical and reproducible UV spectrophotometric methods and one HPLC method for simultaneous estimation of two component drug mixture of itopride hydrochloride and rabeprazole sodium from combined capsule dosage form have been developed. First developed method involves formation and solving of simultaneous equations using 265.2 nm and 290.8 nm as two wavelengths. Second method is based on two wavelength calculation, wavelengths selected for estimation of itopride hydrochloride was 278.0 nm and 298.8 nm and for rabeprazole sodium 253.6 nm and 275.2 nm. Developed HPLC method is a reverse phase chromatographic method using phenomenex C18 column and acetonitrile: phosphate buffer (35:65 v/v) pH 7.0 as mobile phase. All developed methods obey Beer's law in concentration range employed for respective methods. Results of analysis were validated statistically and by recovery studies. PMID:21394269
Grotzkyj Giorgi, Margherita; Howland, Kevin; Martin, Colin; Bonner, Adrian B.
2012-01-01
An HPLC method was developed and validated for the concurrent detection and quantitation of seven water-soluble vitamins (C, B1, B2, B5, B6, B9, B12) in biological matrices (plasma and urine). Separation was achieved at 30°C on a reversed-phase C18-A column using combined isocratic and linear gradient elution with a mobile phase consisting of 0.01% TFA aqueous and 100% methanol. Total run time was 35 minutes. Detection was performed with diode array set at 280 nm. Each vitamin was quantitatively determined at its maximum wavelength. Spectral comparison was used for peak identification in real samples (24 plasma and urine samples from abstinent alcohol-dependent males). Interday and intraday precision were <4% and <7%, respectively, for all vitamins. Recovery percentages ranged from 93% to 100%. PMID:22536136
Giorgi, Margherita Grotzkyj; Howland, Kevin; Martin, Colin; Bonner, Adrian B
2012-01-01
An HPLC method was developed and validated for the concurrent detection and quantitation of seven water-soluble vitamins (C, B(1), B(2), B(5), B(6), B(9), B(12)) in biological matrices (plasma and urine). Separation was achieved at 30°C on a reversed-phase C18-A column using combined isocratic and linear gradient elution with a mobile phase consisting of 0.01% TFA aqueous and 100% methanol. Total run time was 35 minutes. Detection was performed with diode array set at 280 nm. Each vitamin was quantitatively determined at its maximum wavelength. Spectral comparison was used for peak identification in real samples (24 plasma and urine samples from abstinent alcohol-dependent males). Interday and intraday precision were <4% and <7%, respectively, for all vitamins. Recovery percentages ranged from 93% to 100%.
Analysis of a spacecraft instrument ball bearing assembly lubricated by a perfluoroalkylether
NASA Technical Reports Server (NTRS)
Morales, W.; Jones, W. R., Jr.; Buckley, D. H.
1986-01-01
An analysis of a spacecraft instrument ball bearing assembly, subjected to a scanning life test, was performed to determine the possible case of rotational problems involving these units aboard several satellites. The analysis indicated an ineffective transfer of a fluorinated liquid lubricant from a phenolic retainer to the bearing balls. Part of the analysis led to a novel HPLC separation method employing a fluorinated mobile phase in conjunction with silica based size exclusion columns.
Baharfar, Mahroo; Yamini, Yadollah; Seidi, Shahram; Arain, Muhammad Balal
2018-05-30
A new design of electromembrane extraction (EME) as a lab on-a-chip device was proposed for the extraction and determination of phenazopyridine as the model analyte. The extraction procedure was accomplished by coupling of EME and the packing of a sorbent. The analyte was extracted under the applied electrical field across a membrane sheet impregnated by nitrophenyl octylether (NPOE) into an acceptor phase. It was followed by the absorption of the analyte on strong cation exchanger as a sorbent. The designed chip contained separate spiral channels for donor and acceptor phases featuring embedded platinum electrodes to enhance extraction efficiency. The selected donor and acceptor phases were 0 mM HCl and 100 mM HCl, respectively. The on-chip electromembrane extraction was carried out under the voltage level of 70 V for 50 min. The analysis was carried out by two modes of a simple Red-Green-Blue (RGB) image analysis tool and a conventional HPLC-UV system. After the absorption of the analyte on the solid phase, its color changed and a digital picture of the sorbent was taken for the RGB analysis. The effective parameters on the performance of the chip device, comprising the EME and solid phase microextraction steps, were distinguished and optimized. The accumulation of the analyte on the solid phase showed excellent sensitivity and a limit of detection (LOD) lower than 1.0 μg L-1 achieved by an image analysis using a smartphone. This device also offered acceptable intra- and inter-assay RSD% (<10%). The calibration curves were linear within the range of 10-1000 μg L-1 and 30-1000 μg L-1 (r2 > 0.9969) for HPLC-UV and RGB analysis, respectively. To investigate the applicability of the method in complicated matrices, urine samples of patients being treated with phenazopyridine were analyzed.
Park, Ah Yeon; Park, So-Young; Lee, Jaehyun; Jung, Mihye; Kim, Jinwoong; Kang, Sam Sik; Youm, Jeong-Rok; Han, Sang Beom
2009-10-01
Rapid, simple and reliable HPLC/UV and LC-ESI-MS/MS methods for the simultaneous determination of five active coumarins of Angelicae dahuricae Radix, byakangelicol (1), oxypeucedanin (2), imperatorin (3), phellopterin (4) and isoimperatorin (5) were developed and validated. The separation condition for HPLC/UV was optimized using a Develosil RPAQUEOUS C(30) column using 70% acetonitrile in water as the mobile phase. This HPLC/UV method was successful for providing the baseline separation of the five coumarins with no interfering peaks detected in the 70% ethanol extract of Angelicae dahuricae Radix. The specific determination of the five coumarins was also accomplished by a triple quadrupole tandem mass spectrometer equipped with an electrospray ionization source (LC-ESI-MS/MS). Multiple reaction monitoring (MRM) in the positive mode was used to enhance the selectivity of detection. The LC-ESI-MS/MS methods were successfully applied for the determination of the five major coumarins in Angelicae dahuricae Radix. These HPLC/UV and LC-ESI-MS/MS methods were validated in terms of recovery, linearity, accuracy and precision (intra- and inter-day validation). Taken together, the shorter analysis time involved makes these HPLC/UV and LC-ESI-MS/MS methods valuable for the commercial quality control of Angelicae dahuricae Radix extracts and its pharmaceutical preparations. Copyright (c) 2009 John Wiley & Sons, Ltd.
Higashi, Kyohei; Shibasaki, Mana; Kuni, Kyoshiro; Uemura, Takeshi; Waragai, Masaaki; Uemura, Kenichi; Igarashi, Kazuei; Toida, Toshihiko
2017-09-29
A three column-switching high-performance liquid chromatography (HPLC) using an electrochemical detector (ECD) equipped with a diamond electrode was established to determine 3-hydroxypropylmercapturic acid (3-HPMA) in urine. An extracted urine sample was consecutively fractionated using a strong anion-exchange column (first column) and a C8 column (second column) via a switching valve before application on an Octa Decyl Silyl (ODS) column (third column), followed by ECD analysis. The% recovery of 3-HPMA standard throughout the three-column process and limit of detection (LOD) were 94±1% and 0.1pmol, respectively. A solid phase extraction step is required for the sensitive analysis of 3-HPMA in urine by column-switching HPLC-ECD despite a decreased% recovery (55%) of urine sample spiked with 100pmol of 3-HPMA. To test the utility of our column-switching HPLC-ECD method, 3-HPMA levels of 27 urine samples were determined, and the correlation between HPLC-ECD and LC-Electrospray ionization (ESI)-MS/MS method was examined. As a result, the median values of μmol 3-HPMA/g Creatinine (Cre) in urine obtained by column-switching HPLC-ECD and LC-MS/MS were 2.19±2.12μmol/g Cre and 2.13±3.38μmol/g Cre, respectively, and the calibration curve (y=1.5171x-1.007) exhibited good linearity within a defined range (r 2 =0.907). These results indicate that the combination of column-switching HPLC and ECD is a powerful tool for the specific, reliable detection of 3-HPMA in urine. Copyright © 2017 Elsevier B.V. All rights reserved.
Mortera, Pablo; Zuljan, Federico A; Magni, Christian; Bortolato, Santiago A; Alarcón, Sergio H
2018-02-01
Multivariate calibration coupled to RP-HPLC with diode array detection (HPLC-DAD) was applied to the identification and the quantitative evaluation of the short chain organic acids (malic, oxalic, formic, lactic, acetic, citric, pyruvic, succinic, tartaric, propionic and α-cetoglutaric) in fermented food. The goal of the present study was to get the successful resolution of a system in the combined occurrence of strongly coeluting peaks, of distortions in the time sensors among chromatograms, and of the presence of unexpected compounds not included in the calibration step. Second-order HPLC-DAD data matrices were obtained in a short time (10min) on a C18 column with a chromatographic system operating in isocratic mode (mobile phase was 20mmolL -1 phosphate buffer at pH 2.20) and a flow-rate of 1.0mLmin -1 at room temperature. Parallel factor analysis (PARAFAC) and unfolded partial least-squares combined with residual bilinearization (U-PLS/RBL) were the second-order calibration algorithms select for data processing. The performance of the analytical parameters was good with an outstanding limit of detection (LODs) for acids ranging from 0.15 to 10.0mmolL -1 in the validation samples. The improved method was applied to the analysis of many dairy products (yoghurt, cultured milk and cheese) and wine. The method was shown as an effective means for determining and following acid contents in fermented food and was characterized by reducibility with simple, high resolution and rapid procedure without derivatization of analytes. Copyright © 2017 Elsevier B.V. All rights reserved.
Floridi, A; Trizza, V; Paolotti, P; Lucarelli, C
1999-06-18
We propose a newly integrated procedure for the analysis of furosine (early glycation product) and pentosidine (glycoxidation end-product) in plasma proteins and the simultaneous assessment of advanced glycation end-product (AGE) peptides and free pentosidine in plasma. In order to determine furosine and protein-linked pentosidine, plasma proteins were hydrolyzed in 8 M HCl and each analyte was purified by solid-phase extraction. Furosine was determined by ion-pair RP-HPLC methodology with isocratic elution and spectrophotometric detection at 280 nm and pentosidine by ion-pair RP-HPLC by using gradient elution and fluorimetric detection at 335/385 nm. To assess free pentosidine concentration and simultaneously evaluate the AGE peptides, an aliquot of plasma sample was diluted and ultrafiltered by using Centricon 10 M(r) < or = 10,000) ultrafiltration membranes. Free pentosidine and AGE peptides were analysed by ion-pair RP-HPLC, by using gradient elution and fluorimetric detection at 385 nm upon excitation at 335 nm. The HPLC methodology has been successfully used for the determination of glycation and glycoxidation protein status in uremic patients.
Gradient Scouting in Reversed-Phase HPLC Revisited
ERIC Educational Resources Information Center
Alcazar, A.; Jurado, J. M.; Gonzalez, A. G.
2011-01-01
Gradient scouting is the best way to decide the most suitable elution mode in reversed-phase high-performance liquid chromatography (RP-HPLC). A simple rule for this decision involves the evaluation of the ratio [delta]t/t[subscript G] (where [delta]t is the difference in the retention time between the last and the first peak and t[subscript G] is…
HPLC-DAD and HPLC-ESI-MS/MS methods for metabolite profiling of propolis extracts.
Pellati, Federica; Orlandini, Giulia; Pinetti, Diego; Benvenuti, Stefania
2011-07-15
In this study, the composition of polyphenols (phenolic acids and flavonoids) in propolis extracts was investigated by HPLC-DAD and HPLC-ESI-MS/MS by comparing the performance of ion trap and triple quadrupole mass analyzers. The analyses were carried out on an Ascentis C(18) column (250mm×4.6mm I.D., 5μm), with a mobile phase composed by 0.1% formic acid in water and acetonitrile. Overall, the UV spectra, the MS and MS/MS data allowed the identification of 40 compounds. In the case of flavonoids, the triple quadrupole mass analyzer provided more collision energy if compared with the ion trap, originating product ions at best sensitivity. The HPLC method was validated in agreement with ICH guidelines: the correlation coefficients were >0.998; the limit of detection was in the range 1.6-4.6μg/ml; the recovery range was 96-105%; the intra- and inter-day %RSD values for retention times and peak areas were found to be <0.3 and 1.9%, respectively. The developed technique was applied to the analysis of hydroalcoholic extracts of propolis available on the Italian market. Although the chromatographic profile of the analyzed samples was similar, the quantitative analysis indicated that there is a great variability in the amount of the active compounds: the content of total phenolic acids ranged from 0.17 to 16.67mg/ml and the level of total flavonoids from 2.48 to 41.10mg/ml. The proposed method can be considered suitable for the phytochemical analysis of propolis extracts used in phytotherapy. Copyright © 2011 Elsevier B.V. All rights reserved.
Validation of AN Hplc-Dad Method for the Classification of Green Teas
NASA Astrophysics Data System (ADS)
Yu, Jingbo; Ye, Nengsheng; Gu, Xuexin; Liu, Ni
A reversed phase high performance liquid chromatography (RP-HPLC) separation coupled with diode array detection (DAD) and electrospray ionization mass spectrometer (ESI/MS) was developed and optimized for the classification of green teas. Five catechins [epigallocatechin (EGC), epigallocatechin gallate (EGCG), epicatechin (EC), gallocatechin gallate (GCG), epicatechin gallate (ECG)] had been identified and quantified by the HPLC-DAD-ESI/MS/MS method. The limit of detection (LOD) of five catechins was within the range of 1.25-15 ng. All the analytes exhibited good linearity up to 2500 ng. These compounds were considered as chemical descriptors to define groups of green teas. Chemometric methods including principal component analysis (PCA) and hierarchical cluster analysis (HCA) were applied for the purpose. Twelve green tea samples originating from different regions were subjected to reveal the natural groups. The results showed that the analyzed green teas were differentiated mainly by provenance; HCA afforded an excellent performance in terms of recognition and prediction abilities. This method was accurate and reproducible, providing a potential approach for authentication of green teas.
Extraction and Determination of Cyproheptadine in Human Urine by DLLME-HPLC Method.
Maham, Mehdi; Kiarostami, Vahid; Waqif-Husain, Syed; Abroomand-Azar, Parviz; Tehrani, Mohammad Saber; Khoeini Sharifabadi, Malihe; Afrouzi, Hossein; Shapouri, Mahmoudreza; Karami-Osboo, Rouhollah
2013-01-01
Novel dispersive liquid-liquid microextraction (DLLME), coupled with high performance liquid chromatography with photodiode array detection (HPLC-DAD) has been applied for the extraction and determination of cyproheptadine (CPH), an antihistamine, in human urine samples. In this method, 0.6 mL of acetonitrile (disperser solvent) containing 30 μL of carbon tetrachloride (extraction solvent) was rapidly injected by a syringe into 5 mL urine sample. After centrifugation, the sedimented phase containing enriched analyte was dissolved in acetonitrile and an aliquot of this solution injected into the HPLC system for analysis. Development of DLLME procedure includes optimization of some important parameters such as kind and volume of extraction and disperser solvent, pH and salt addition. The proposed method has good linearity in the range of 0.02-4.5 μg mL(-1) and low detection limit (13.1 ng mL(-1)). The repeatability of the method, expressed as relative standard deviation was 4.9% (n = 3). This method has also been applied to the analysis of real urine samples with satisfactory relative recoveries in the range of 91.6-101.0%.
Quantitative high-performance liquid chromatography of nucleosides in biological materials.
Gehrke, C W; Kuo, K C; Davis, G E; Suits, R D; Waalkes, T P; Borek, E
1978-03-21
A rigorous, comprehensive, and reliable reversed-phase high-performance liquid chromatographic (HPLC) method has been developed for the analysis of ribonucleosides in urine (psi, m1A, m1I, m2G, A, m2(2)G). An initial isolation of ribonucleosides with an affinity gel containing an immobilized phenylboronic acid was used to improve selectivity and sensitivity. Response for all nucleosides was linear from 0.1 to 50 nmoles injected and good quantitation was obtained for 25 microliter or less of sample placed on the HPLC column. Excellent precision of analysis for urinary nucleosides was achieved on matrix dependent and independent samples, and the high resolution of the reversed-phase column allowed the complete separation of 9 nucleosides from other unidentified UV absorbing components at the 1-ng level. Supporting experimental data are presented on precision, recovery, chromatographic methods, minimum detection limit, retention time, relative molar response, sample clean-up, stability of nucleosides, boronate gel capacity, and application to analysis of urine from patients with leukemia and breast cancer. This method is now being used routinely for the determination of the concentration and ratios of nucleosides in urine from patients with different types of cancer and in chemotherapy response studies.
Yang, Xiu-Min; Wang, Ou; Wang, Ming-Zhao; Hu, Yan-Xue; Li, Wei-Ning; Wang, Zhi
2008-09-01
A method for the determination of metolcarb and diethofencarb in apples and apple juice is developed using solid-phase microextraction (SPME) coupled with high-performance liquid chromatography (HPLC). The experimental conditions of SPME, such as the kind of extraction fiber, extraction time, stirring rate, pH of the extracting solution, and desorption conditions are optimized. The SPME is performed on a 60 microm polydimethylsiloxane/divinylbenzene fiber for 40 min at room temperature with the solution being stirred at 1100 rpm. The extracted pesticides on the SPME fiber are desorbed in the mobile phase into SPME-HPLC interface for HPLC analysis. Separations are carried out on a Baseline C18 column (4.6 i.d. x 250 mm, 5.0 microm) with acetonitrile-water (55/45, v/v) as the mobile phase at a flow rate of 1.0 mL/min, and photodiode-array detection at 210 nm. For apple samples, the method is linear for both metolcarb and diethofencarb in the range of 0.05-1.0 mg/kg (r > 0.99), with a detection limit (S/N = 3 ) of 15 and 5 microg/kg, respectively. For apple juice, the method is linear for both metholcarb and diethofencarb over the range of 0.05-1.0 mg/L (r > 0.99) with the detection limit (S/N = 3 ) of 15 and 3 microg/L, respectively. Excellent recovery and reproducibility values are achieved. The proposed method is shown to be simple, sensitive, and organic solvent-free, and is suitable for the determination of the two pesticides in apples and apple juice.
We used chromatography modeling software to assist in HPLC method development, with the goal
of enhancing separations through the exclusive use of gradient time and column temperature. We
surveyed nine stationary phases for their utility in pigment purification and natur...
Recent arsenic speciation studies have indicated that the sulfur analogs of the more common arsenic oxides are present in environmental and biological systems. This discovery was previously impeded due to the strong affinity of these arsenic-sulfides for the stationary phases typ...
High Performance Liquid Chromatographic Analysis of Phytoplankton Pigments Using a C16-Amide Column
A reverse-phase high performance liquid chromatographic (RP-HPLC) method was developed to analyze in a single run, most polar and non-polar chlorophylls and carotenoids from marine phytoplankton. The method is based on a RP-C16-Amide column and a ternary gradient system consistin...
NASA Astrophysics Data System (ADS)
Malejko, Julita; Świerżewska, Natalia; Bajguz, Andrzej; Godlewska-Żyłkiewicz, Beata
2018-04-01
A new method based on coupling high performance liquid chromatography (HPLC) to inductively coupled plasma mass spectrometry (ICP MS) has been developed for the speciation analysis of gold nanoparticles (AuNPs) and dissolved gold species (Au(III)) in biological samples. The column type, the composition and the flow rate of the mobile phase were carefully investigated in order to optimize the separation conditions. The usefulness of two polymeric reversed phase columns (PLRP-S with 100 nm and 400 nm pore size) to separate gold species were investigated for the first time. Under the optimal conditions (PLRP-S400 column, 10 mmol L-1 SDS and 5% methanol as the mobile phase, 0.5 mL min-1 flow rate), detection limits of 2.2 ng L-1 for Au(III), 2.8 ng L-1 for 10 nm AuNPs and 3.7 ng L-1 for 40 nm AuNPs were achieved. The accuracy of the method was proved by analysis of reference material RM 8011 (NIST) of gold nanoparticles of nominal diameter of 10 nm. The HPLC-ICP MS method has been successfully applied to the detection and size characterization of gold species in lysates of green algae Acutodesmus obliquus, typical representative of phytoplankton flora, incubated with 10 nm AuNPs or Au(III).
Musile, Giacomo; Cenci, Lucia; Piletska, Elena; Gottardo, Rossella; Bossi, Alessandra M; Bortolotti, Federica
2018-07-27
The aim of the present work was to develop a novel in-house mixed-mode SPE sorbent to be used for the HPLC-Ion TrapMS determination of 16 basic drugs in urine. By using a computational modelling, a virtual monomer library was screened identifying three suitable functional monomers, methacrylic acid (MAA), itaconic acid (IA) and 2-acrylamide-2-methylpropane sulfonic acid (AMPSA), respectively. Three different sorbents were then synthetized based on these monomers, and using as cross-linker trimethylolpropane trimethacrylate (TMPTMA). The sorbent characterization analyses brought to the selection of the AMPSA based phase. Using this novel in-house sorbent, a SPE-HPLC-Ion TrapMS method for drug analysis in urine was validated proving to be selective and accurate and showing a sensitivity adequate for toxicological urine analysis. The comparison of the in-house mixed-mode SPE sorbent with two analogous commercial mixed-mode SPE phases showed that the first one was better not only in terms of process efficiency, but also in terms of quality-price rate. To the best of our knowledge, this is the first time in which an in-house SPE procedure has been applied to the toxicological analysis of a complex matrix, such as urine. Copyright © 2018 Elsevier B.V. All rights reserved.
Quantitative analysis of the major constituents of St John's wort with HPLC-ESI-MS.
Chandrasekera, Dhammitha H; Welham, Kevin J; Ashton, David; Middleton, Richard; Heinrich, Michael
2005-12-01
A method was developed to profile the major constituents of St John's wort extracts using high-performance liquid chromatography-electrospray mass spectrometry (HPLC-ESI-MS). The objective was to simultaneously separate, identify and quantify hyperforin, hypericin, pseudohypericin, rutin, hyperoside, isoquercetrin, quercitrin and chlorogenic acid using HPLC-MS. Quantification was performed using an external standardisation method with reference standards. The method consisted of two protocols: one for the analysis of flavonoids and glycosides and the other for the analysis of the more lipophilic hypericins and hyperforin. Both protocols used a reverse phase Luna phenyl hexyl column. The separation of the flavonoids and glycosides was achieved within 35 min and that of the hypericins and hyperforin within 9 min. The linear response range in ESI-MS was established for each compound and all had linear regression coefficient values greater than 0.97. Both protocols proved to be very specific for the constituents analysed. MS analysis showed no other signals within the analyte peaks. The method was robust and applicable to alcoholic tinctures, tablet/capsule extracts in various solvents and herb extracts. The method was applied to evaluate the phytopharmaceutical quality of St John's wort preparations available in the UK in order to test the method and investigate if they contain at least the main constituents and at what concentrations.
Bittová, Miroslava; Hladůkova, Dita; Roblová, Vendula; Krácmar, Stanislav; Kubán, Petr; Kubán, Vlastimil
2015-11-01
Organic acids, deacetyl asperulosidic acid (DAA) and polyphenolic compounds in various noni (Morinda citrifolia L.) products (4 juices, 4 dry fruit powders and 2 capsules with dry fruit powder) were analyzed. Reversed-phase high-performance liquid chromatography (RP-HPLC) coupled with a variable wavelength detector (VWD) and electrospray ionization time-of-flight mass spectrometer (ESI-TOF MS) was applied for simultaneous analysis of organic acids (malic, lactic, citric and succinic acid) and DAA. An RP-HPLC method with diode-array detector (DAD) was developed for the analysis of polyphenolic compound content (rutin, catechin, quercitrin, kaempferol, gallic acid, caffeic acid and p-coumaric acid). The developed methods can contribute to better characterization of available noni products that is required from the consumers. In our study, we discovered significant dissimilarities in the content of DAA, citric acid and several phenolic compounds in some samples.
Dotterer, Sally K; Forbes, Robert A; Hammill, Cynthia L
2011-04-05
Case studies are presented demonstrating how exposure to traces of transition metals such as copper and/or iron during sample preparation or analysis can impact the accuracy of purity analysis of pharmaceuticals. Some compounds, such as phenols and indoles, react with metals in the presence of oxygen to produce metal-induced oxidative decomposition products. Compounds susceptible to metal-induced decomposition can degrade following preparation for purity analysis leading to falsely high impurity results. Our work has shown even metals at levels below 0.1 ppm can negatively impact susceptible compounds. Falsely low results are also possible when the impurities themselves react with metals and degrade prior to analysis. Traces of metals in the HPLC mobile phase can lead to chromatographic artifacts, affecting the reproducibility of purity results. To understand and mitigate the impact of metal induced decomposition, a proactive strategy is presented. The pharmaceutical would first be tested for reactivity with specific transition metals in the sample solvent/diluents and in the HPLC mobile phase. If found to be reactive, alternative sample diluents and/or mobile phases with less reactive solvents or addition of a metal chelator would be explored. If unsuccessful, glassware cleaning or sample solution refrigeration could be investigated. By employing this strategy during method development, robust purity methods would be delivered to the quality control laboratories, preventing future problems from potential sporadic contamination of glassware with metals. Copyright © 2010 Elsevier B.V. All rights reserved.
Choi, Suk-Hyun; Suh, Bong-Soon; Kozukue, Etsuko; Kozukue, Nobuyuki; Levin, Carol E; Friedman, Mendel
2006-11-29
An HPLC method has been developed for the analysis of extracts of fresh peppers containing capsaicinoids and of both capsaicinoids and piperines in pepper-containing foods produced and sold in Korea. The HPLC method was optimized by defining how composition of the mobile phase affected retention times. Both identification and quantification were based on retention times and the following criteria: linearity of the UV response at 280 nm in HPLC, recoveries from spiked samples, and observed individual molecular ions in the mass spectra of the extracts determined by liquid chromatography-mass spectrometry. This method, with a limit of detection of approximately 15-30 ng, was used to quantify the distribution of capsaicinoids in 11 Korean whole peppers and in 12 commercial pepper-containing foods. Total capsaicinoid levels of whole peppers ranged from 1.21 microg/g for the PR Gang ja variety to 121.1 microg/g for the Chung yang variety. The levels in food extracts, four of which also included two piperines, ranged from 11.0 microg/g for radish kimuchi to 3752 microg/g for capsaicin sauce. The results demonstrate (a) the usefulness of the HPLC method for the simultaneous analysis of capsaicinoids derived from red peppers and piperines derived from black and white peppers extracted from complex food matrices and (b) the wide-ranging spread of levels of pungent pepper compounds in fresh peppers and in pepper-containing foods consumed in Korea.
Applications of HPLC/MS in the analysis of traditional Chinese medicines
Li, Miao; Hou, Xiao-Fang; Zhang, Jie; Wang, Si-Cen; Fu, Qiang; He, Lang-Chong
2012-01-01
In China, traditional Chinese medicines (TCMs) have been used in clinical applications for thousands of years. The successful hyphenation of high-Performance liquid chromatography (HPLC) and mass spectrometry (MS) has been applied widely in TCMs and biological samples analysis. Undoubtedly, HPLC/MS technique has facilitated the understanding of the treatment mechanism of TCMs. We reviewed more than 350 published papers within the last 5 years on HPLC/MS in the analysis of TCMs. The present review focused on the applications of HPLC/MS in the component analysis, metabolites analysis, and pharmacokinetics of TCMs etc. 50% of the literature is related to the component analysis of TCMs, which show that this field is the most populär type of research. In the metabolites analysis, HPLC coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry has been demonstrated to be the powerful tool for the characterization of structural features and fragmentation behavior patterns. This paper presented a brief overview of the applications of HPLC/MS in the analysis of TCMs. HPLC/MS in the fingerprint analysis is reviewed elsewhere. PMID:29403684
Zeng, Aiguo; Xing, Jianfeng; Wang, Changhe; Song, Jie; Li, Cong; Yang, Xin; Yang, Guangde
2012-01-27
In order to differentiate two species of Radix Puerariae (Radix Puerariae lobatae and Radix Puerariae thomsonii) and to determine major isoflavonoids (puerarin, daidzin, daidzein and genistein) in the samples, a simple high performance liquid chromatography (HPLC) method with isocratic elution employing cyclodextrins (CDs) as mobile phase additives was developed. Various factors affecting the retention of isoflavonoids in the C(18) reversed-phase column, such as the nature of CDs, the concentration of hydroxypropyl-β-cyclodextrin (HP-β-CD) and the methanol percentage in the mobile phase, were studied. Experimental results confirmed that HP-β-CD, as a very effective mobile phase additive, could markedly reduce the retention of isoflavonoids, especially daidzein and genistein. The elution of four isoflavonoids could be achieved on a Kromasil(®) C(18) column within 56 min by using the methanol-water contained 5 mM HP-β-CD (25/75, v/v) mixture as the mobile phase. The formation of the inclusion complexes between isoflavonoids and HP-β-CD explained the modification of the retention of analytes. The apparent formation constants determined by HPLC confirmed that the stoichiometry of HP-β-CD-isoflavonoid complexes was 1:1, and the stability of the complexes depended on the size and property of isoflavonoids. The optimized method was successfully applied for the simultaneous determination of major isoflavonoids in P. lobatae and P. thomsonii samples. This work provides a useful method for the analysis of traditional Chinese herbs. Copyright © 2011 Elsevier B.V. All rights reserved.
Chemometrics-based Approach in Analysis of Arnicae flos
Zheleva-Dimitrova, Dimitrina Zh.; Balabanova, Vessela; Gevrenova, Reneta; Doichinova, Irini; Vitkova, Antonina
2015-01-01
Introduction: Arnica montana flowers have a long history as herbal medicines for external use on injuries and rheumatic complaints. Objective: To investigate Arnicae flos of cultivated accessions from Bulgaria, Poland, Germany, Finland, and Pharmacy store for phenolic derivatives and sesquiterpene lactones (STLs). Materials and Methods: Samples of Arnica from nine origins were prepared by ultrasound-assisted extraction with 80% methanol for phenolic compounds analysis. Subsequent reverse-phase high-performance liquid chromatography (HPLC) separation of the analytes was performed using gradient elution and ultraviolet detection at 280 and 310 nm (phenolic acids), and 360 nm (flavonoids). Total STLs were determined in chloroform extracts by solid-phase extraction-HPLC at 225 nm. The HPLC generated chromatographic data were analyzed using principal component analysis (PCA) and hierarchical clustering (HC). Results: The highest total amount of phenolic acids was found in the sample from Botanical Garden at Joensuu University, Finland (2.36 mg/g dw). Astragalin, isoquercitrin, and isorhamnetin 3-glucoside were the main flavonol glycosides being present up to 3.37 mg/g (astragalin). Three well-defined clusters were distinguished by PCA and HC. Cluster C1 comprised of the German and Finnish accessions characterized by the highest content of flavonols. Cluster C2 included the Bulgarian and Polish samples presenting a low content of flavonoids. Cluster C3 consisted only of one sample from a pharmacy store. Conclusion: A validated HPLC method for simultaneous determination of phenolic acids, flavonoid glycosides, and aglycones in A. montana flowers was developed. The PCA loading plot showed that quercetin, kaempferol, and isorhamnetin can be used to distinguish different Arnica accessions. SUMMARY A principal component analysis (PCA) on 13 phenolic compounds and total amount of sesquiterpene lactones in Arnicae flos collection tended to cluster the studied 9 accessions into three main groups. The profiles obtained demonstrated that the samples from Germany and Finland are characterized by greater amounts of phenolic derivatives than the Bulgarian and Polish ones. The PCA loading plot showed that quercetin, kaemferol and isorhamnetin can be used to distinguish different arnica accessions. PMID:27013791
Babu, Sainath; Uppu, Sannihith N; Martin, Brittany; Agu, Ogad A; Uppu, Rao M
2015-01-01
We have developed a simple, reversed-phase high-performance liquid chromatography (RP-HPLC) method for the determination of bisphenol A (BPA) in thermal paper cash register receipts (CRs). The method is suitable for analysis of other types of bisphenols and it involves an overnight extraction of CRs with acetonitrile (AN) at 50 °C followed by the HPLC analysis on a Supelcosil LC18 column (150 × 4.6 mm, particle size: 5 μ) using 50% AN in water as the mobile phase (5 min, isocratic). The composition of AN in the mobile phase changed to 100% over a 10 min period (linear gradient) and then held at 100% AN for 10 min (isocratic). The flow rate was set at 1 mL/min (injection volume: 20 μL) and the eluent was monitored at 234 nm. The authentic BPA eluted with a retention time of 5.9 min and gave a linear detector response in the concentration range of 0.23-50 mg/L. BPA in the CR extracts also eluted with the same retention and had identical absorbance properties as the standard. When CR extracts were co-injected with authentic BPA, they were resolved as a single peak. Further, GC/MS/EI analysis of authentic BPA and the HPLC-purified CR extracts have identical ion chromatograms and fragmentation of the molecular ion (m/z = 228). We have analyzed 170 CRs collected from 62 different vendors including supermarkets, fast food restaurants, gas stations and banking outlets. Almost all cash receipts (n = 168) showed the presence of BPA in the concentration range of 0.45-4.26% (M ± SD, 1.54 ± 0.73%).
Raees Ahmad, Sufiyan Ahmad; Patil, Lalit; Mohammed Usman, Mohammed Rageeb; Imran, Mohammad; Akhtar, Rashid
2018-01-01
A simple rapid, accurate, precise, and reproducible validated reverse phase high performance liquid chromatography (HPLC) method was developed for the determination of Abacavir (ABAC) and Lamivudine (LAMI) in bulk and tablet dosage forms. The quantification was carried out using Symmetry Premsil C18 (250 mm × 4.6 mm, 5 μm) column run in isocratic way using mobile phase comprising methanol: water (0.05% orthophosphoric acid with pH 3) 83:17 v/v and a detection wavelength of 245 nm and injection volume of 20 μl, with a flow rate of 1 ml/min. In the developed method, the retention times of ABAC and LAMI were found to be 3.5 min and 7.4 min, respectively. The method was validated in terms of linearity, precision, accuracy, limits of detection, limits of quantitation, and robustness in accordance with the International Conference on Harmonization guidelines. The assay of the proposed method was found to be 99% - 101%. The recovery studies were also carried out and mean % recovery was found to be 99% - 101%. The % relative standard deviation from reproducibility was found to be <2%. The proposed method was statistically evaluated and can be applied for routine quality control analysis of ABAC and LAMI in bulk and in tablet dosage form. Attempts were made to develop RP-HPLC method for simultaneous estimation of Abacavir and Lamivudine for the RP-HPLC method. The developed method was validated according to the ICH guidelines. The linearity, precision, range, robustness were within the limits as specified by the ICH guidelines. Hence the method was found to be simple, accurate, precise, economic and reproducible. So the proposed methods can be used for the routine quality control analysis of Abacavir and Lamivudine in bulk drug as well as in formulations. Abbreviations Used: HPLC: High-performance liquid chromatography, UV: Ultraviolet, ICH: International Conference on Harmonization, ABAC: Abacavir, LAMI: Lamivudine, HIV: Human immunodeficiency virus, AIDS: Acquired immunodeficiency syndrome, NRTI: Nucleoside reverse transcriptase inhibitors, ARV: Antiretroviral, RSD: Relative standard deviation, RT: Retention time, SD: Standard deviation.
Wang, Jincheng; Xiong, Li; Zhang, Haijun; Chen, Jiping
2011-12-01
A simple method based on solid phase extraction (SPE) coupled with high performance liquid chromatography-mass spectrometry (HPLC-MS) was developed for the determination of octylphenol (OP), nonylphenol (NP), octylphenol ethoxylates (OPEOs) and nonylphenol ethoxylates (NPEOs) in brine. The extraction and cleanup of brine samples were performed on C18 solid-phase extraction cartridges. The complete separation among OP, NP, OPEOs and NPEOs was achieved on a Hypersil GOLD analytical column with methanol-water as the mobile phase. The determination was achieved using HPLC-MS with electrospray ionization (ESI) in selected ion monitoring mode. The results showed that the average recoveries of target compounds were 59.6% - 104.4% and the corresponding relative standard deviations (RSDs, n = 3) were 1.0% - 13.5%. The instrumental limits of detection for the compounds were 0.08 - 3 microg/L. This method was applied to the analysis of the samples of seawater near Dalian coast. The results showed that both NP and NPEOs were detected in all samples and their concentrations in seaport and oil port were much higher than those in other sampling sites.
Aral, Tarık; Aral, Hayriye; Ziyadanoğulları, Berrin; Ziyadanoğulları, Recep
2015-01-01
A novel mixed-mode stationary phase was synthesised starting from N-Boc-glutamine, aniline and spherical silica gel (4 µm, 60 Å). The prepared stationary phase was characterized by IR and elemental analysis. The new stationary phase bears an embedded amide group into phenyl ring, highly polar a terminal amide group and non-polar groups (phenyl and alkyl groups). At first, this new mixed-mode stationary phase was used for HILIC separation of four nucleotides and five nucleosides. The effects of different separation conditions, such as pH value, mobile phase and temperature, on the separation process were investigated. The optimum separation for nucleotides was achieved using HILIC isocratic elution with aqueous mobile phase and acetonitrile with 20°C column temperature. Under these conditions, the four nucleotides could be separated and detected at 265 nm within 14 min. Five nucleosides were separated under HILIC isocratic elution with aqueous mobile phase containing pH=3.25 phosphate buffer (10mM) and acetonitrile with 20°C column temperature and detected at 265 nm within 14 min. Chromatographic parameters as retention factor, selectivity, theoretical plate number and peak asymmetry factor were calculated for the effect of temperature and water content in mobile phase on the separation process. The new column was also tested for nucleotides and nucleosides mixture and six analytes were separated in 10min. The chromatographic behaviours of these polar analytes on the new mixed-model stationary phase were compared with those of HILIC columns under similar conditions. Further, phytohormones and phenolic compounds were separated in order to see influence of the new stationary phase in reverse phase conditions. Eleven plant phytohormones were separated within 13 min using RP-HPLC gradient elution with aqueous mobile phase containing pH=2.5 phosphate buffer (10mM) and acetonitrile with 20°C column temperature and detected at 230 or 278 nm. The best separation conditions for seven phenolic compounds was also achieved using reversed-phase HPLC gradient elution with aqueous mobile phase containing pH=2.5 phosphate buffer (10mM) and acetonitrile with 20°C column temperature and seven phenolic compounds could be separated and detected at 230 nm within 16 min. Copyright © 2014 Elsevier B.V. All rights reserved.
Abdelaziz, Ahmed A; Elbanna, Tarek E; Gamaleldeen, Noha M
2012-10-01
The article presents a comparison between microbiological and high performance liquid chromatographic (HPLC) assays for quantification of moxifloxacin in tablets, ophthalmic solutions and human plasma. The microbiological method employed a cylinder-plate agar diffusion assay using a strain of Esherichia coli ATCC 25922 as the test organism and phosphate buffer (pH8) as the diluent. The calibration curves were linear (R(2) > 0.98) over a concentration range of 0.125 to 16 µgml(-1). The within day and between days precisions were ≤ 4.47% and ≤ 6.39% respectively. Recovery values were between 89.4 and 110.2%. The HPLC assay used Hypersil(®) BDS C18 reversed phase column (250×4.6 mm, 5µm) with a mobile phase comprising 20 mM ammonium dihydrogen orthophosphate (pH3) and acetonitrile (75:25) and flowing at 1.5 ml/min. The detection was at 295nm. The calibration curves were linear (R(2) > 0.999) over the range of 0.125 to 16 µg ml(-1). The within day and between days precisions were ≤ 4.07% and ≤ 5.09% respectively. Recovery values were between 97.7 and 107.6%. Similar potencies were obtained after the analysis of moxifloxacin tablets and ophthalmic solutions by both methods. Also pharmacokinetic parameters were calculated after the analysis of plasma samples of six male healthhy volunteers by both validated methods.
Wheelan, P; Zirrolli, J A; Clay, K L
1992-01-01
A method has been developed for the analysis of derivatized diradylglycerols obtained from glycerophosphocholine (GPC) of transformed murine bone marrow-derived mast cells that provided high performance liquid chromatography (HPLC) separation of GPC subclasses and molecular species separation with on-line quantitation using UV detection. In addition, the derivatized diradylglycerol species were unequivocably identified by continuous flow fast-atom bombardment mass spectrometry. GPC was initially isolated by thin-layer chromatography (TLC), the phosphocholine group was hydrolyzed, and the resultant diradylglycerol was derivatized with 7-[(chlorocarbonyl)-methoxy]-4-methylcoumarin (CMMC). After separation of the derivatized subclasses by normal phase HPLC, the individual molecular species of the alkylacyl and diacyl subclasses were quantitated and collected during a subsequent reverse phase HPLC step. With an extinction coefficient of 14,700 l mol-1 cm-1 at a wavelength detection of 320 nm, the CMMC derivatives afforded sensitive UV detection (100 pmol) and quantitation of the molecular species. Continuous flow fast-atom bombardment mass spectrometry of the alkylacyl CMMC derivatives yielded abundant [MH]+ ions and a single fragment ion formed by loss of alkylketene from the sn-2 acyl group, [MH-(R = C = O)]+. No fragmentation of the sn-1 alkyl chain was observed. Diacyl derivatives also produced abundant [MH]+ ions plus two fragment ions arising from loss of RCOOH from each of the acyl substituents and two fragment ions from the loss of alkyketene from each acyl group. Individual molecular species substituents were assigned from these ions.
Kertesz, Vilmos; Van Berkel, Gary J
2010-07-15
In this work, a commercially available autosampler was adapted to perform direct liquid microjunction (LMJ) surface sampling followed by a high-pressure liquid chromatography (HPLC) separation of the extract components and detection with electrospray ionization mass spectrometry (ESI-MS). To illustrate the utility of coupling a separation with this direct liquid extraction based surface sampling approach, four different organs (brain, lung, kidney, and liver) from whole-body thin tissue sections of propranolol dosed and control mice were examined. The parent drug was observed in the chromatograms of the surface sampling extracts from all the organs of the dosed mouse examined. In addition, two isomeric phase II metabolites of propranolol (an aliphatic and an aromatic hydroxypropranolol glucuronide) were observed in the chromatograms of the extracts from lung, kidney, and liver. Confirming the presence of one or the other or both of these glucuronides in the extract from the various organs was not possible without the separation. These drug and metabolite data obtained using the LMJ surface sampling/HPLC-MS method and the results achieved by analyzing similar samples by conventional extraction of the tissues and subsequent HPLC-MS analysis were consistent. The ability to directly and efficiently sample from thin tissue sections via a liquid extraction and then perform a subsequent liquid phase separation increases the utility of this liquid extraction surface sampling approach.
Quantification of astaxanthin in shrimp waste hydrolysate by HPLC.
López-Cervantes, J; Sánchez-Machado, D I; Gutiérrez-Coronado, M A; Ríos-Vázquez, N J
2006-10-01
In the present study, a simple and rapid reversed-phase HPLC method for the determination of astaxanthin in shrimp waste hydrolysate has been developed and validated. The analytical procedure involves the direct extraction of astaxanthin from the lipid fraction with methanol. The analytical column, SS Exil ODS, was operated at 25C. The mobile phase consisted of a mixture of water:methanol:dichloromethane:acetonitrile (4.5:28:22:45.5 v/v/v/v) at a flow rate of 1.0 mL/min. Detection and identification were performed using a photodiode array detector (lambda(detection) = 476 nm). The proposed HPLC method showed adequate linearity, repeatability and accuracy.
Dias, M Graça; Oliveira, Luísa; Camões, M Filomena G F C; Nunes, Baltazar; Versloot, Pieter; Hulshof, Paul J M
2010-05-21
Three sets of extraction/saponification/HPLC conditions for food carotenoid quantification were technically and economically compared. Samples were analysed for carotenoids alpha-carotene, beta-carotene, beta-cryptoxanthin, lutein, lycopene, and zeaxanthin. All methods demonstrated good performance in the analysis of a composite food standard reference material for the analytes they are applicable to. Methods using two serial connected C(18) columns and a mobile phase based on acetonitrile, achieved a better carotenoid separation than the method using a mobile phase based on methanol and one C(18)-column. Carotenoids from leafy green vegetable matrices appeared to be better extracted with a mixture of methanol and tetrahydrofuran than with tetrahydrofuran alone. Costs of carotenoid determination in foods were lower for the method with mobile phase based on methanol. However for some food matrices and in the case of E-Z isomer separations, this was not technically satisfactory. Food extraction with methanol and tetrahydrofuran with direct evaporation of these solvents, and saponification (when needed) using pyrogallol as antioxidant, combined with a HPLC system using a slight gradient mobile phase based on acetonitrile and a stationary phase composed by two serial connected C(18) columns was the most technically and economically favourable method. 2010. Published by Elsevier B.V.
Distribution or adsorption: the major dilemma in reversed-phase HPLC
NASA Astrophysics Data System (ADS)
Deineka, V. I.
2008-06-01
A method is suggested for analyzing the dependences obtained for different compositions of mobile eluent system phases, their slopes and intercepts, log k( i, B) = a + b log k ( i, A), where a is the intercept for the A and B stationary phases and b is the proportionality factor. An analysis requires parallel investigation of sorbate retention on at least three stationary phases with different lengths of grafted hydrocarbon radicals. The dependence of correlation parameters on the sorbate retention mechanism is discussed. It is shown that the hypothetical dependences coincide with the experimental dependences for surface sorption of resveratrol and volume distribution of triglycerides.
Wan, Jun-Hui; Tian, Pei-Ling; Luo, Wei-Hao; Wu, Bing-Yi; Xiong, Fu; Zhou, Wan-Jun; Wei, Xiang-Cai; Xu, Xiang-Min
2012-07-15
Reversed-phase high-performance liquid chromatography (RP-HPLC) of human globin chains is an important tool for detecting thalassemias and hemoglobin variants. The challenges of this method that limit its clinical application are a long analytical time and complex sample preparation. The aim of this study was to establish a simple, rapid and high-resolution RP-HPLC method for the separation of globin chains in human blood. Red blood cells from newborns and adults were diluted in deionized water and injected directly onto a micro-jupiter C18 reversed-phase column (250 mm × 4.6 mm) with UV detection at 280 nm. Under the conditions of varying pH or the HPLC gradient, the globin chains (pre-β, β, δ, α, (G)γ and (A)γ) were denatured and separated from the heme groups in 12 min with a retention time coefficient of variation (CV) ranging from 0.11 to 1.29% and a peak area CV between 0.32% and 4.86%. Significant differences (P<0.05) among three groups (normal, Hb H and β thalassemia) were found in the area ratio of α/pre-β+β applying the rapid elution procedure, while P≥0.05 was obtained between the normal and α thalassemia silent/trait group. Based on the ANOVA results, receiver operating characteristic (ROC) curve analysis of the δ/β and α/pre-β+β area ratios showed a sensitivity of 100.0%, and a specificity of 100.0% for indicating β thalassemia carriers, and a sensitivity of 96.6% and a specificity of 89.6% for the prediction of hemoglobin H (Hb H) disease. The proposed cut-off was 0.026 of δ/β for β thalassemia carriers and 0.626 of α/pre-β+β for Hb H disease. In addition, abnormal hemoglobin hemoglobin E (Hb E) and Hb Westmead (Hb WS) were successfully identified using this RP-HPLC method. Our experience in developing this RP-HPLC method for the rapid separation of human globin chains could be of use for similar work. Copyright © 2012 Elsevier B.V. All rights reserved.
Raju, Thummala Veera Raghava; Seshadri, Raja Kumar; Arutla, Srinivas; Mohan, Tharlapu Satya Sankarsana Jagan; Rao, Ivaturi Mrutyunjaya; Nittala, Someswara Rao
2013-01-01
A novel, sensitive, stability-indicating HPLC method has been developed for the quantitative estimation of Tolperisone-related impurities in both bulk drugs and pharmaceutical dosage forms. Effective chromatographic separation was achieved on a C18 stationary phase with a simple mobile phase combination delivered in a simple gradient programme, and quantitation was by ultraviolet detection at 254 nm. The mobile phase consisted of a buffer and acetonitrile delivered at a flow rate 1.0 ml/min. The buffer consisted of 0.01 M potassium dihydrogen phosphate with the pH adjusted to 8.0 by using diethylamine. In the developed HPLC method, the resolution between Tolperisone and its four potential impurities was found to be greater than 2.0. Regression analysis showed an R value (correlation coefficient) of greater than 0.999 for the Tolperisone impurities. This method was capable of detecting all four impurities of Tolperisone at a level of 0.19 μg/mL with respect to the test concentration of 1000 μg/mL for a 10 µl injection volume. The tablets were subjected to the stress conditions of hydrolysis, oxidation, photolysis, and thermal degradation. Considerable degradation was found to occur in base hydrolysis, water hydrolysis, and oxidation. The stress samples were assayed against a qualified reference standard and the mass balance was found to be close to 100%. The established method was validated and found to be linear, accurate, precise, specific, robust, and rugged.
Hau Fung Cheung, Rodney; Morrison, Paul D; Small, Darryl M; Marriott, Philip J
2008-12-05
A single enzyme treatment with alpha-amylase, prior to the quantification of added folic acid (FA) in fortified instant fried Asian noodles with analysis performed by capillary zone electrophoresis (CZE) and reversed-phase high performance liquid chromatography (RP-HPLC) with UV detection, is described. The method was validated and optimized for capillary electrophoresis (CE) with separation achieved using a 8 mM phosphate-12 mM borate run buffer with 5% MeOH at pH 9.5. FA was well separated from matrix components with nicotinic acid (NA) employed as an internal standard. In a comparative study, separation of FA was performed using HPLC with a mobile phase consisting of 27% MeOH (v/v) in aqueous potassium phosphate buffer (3.5 mM KH(2)PO(4) and 3.2 mM K(2)HPO(4)), pH 8.5, and containing 5 mM tetrabutylammonium dihydrogen phosphate as an ion-pairing agent. For both methods, excellent results were obtained for various analytical parameters including linearity, accuracy and precision. The limit of detection was calculated to be 2.2 mg/L for CE without sample stacking and 0.10 mg/L with high performance liquid chromatography (HPLC). Sample extraction involved homogenization and enzymatic extraction with alpha-amylase. Results indicated that FA was stable during four main stages of instant fried noodle manufacturing (dough crumbs, cut sheets, steaming and frying).
Chromatographic determination of itopride hydrochloride in the presence of its degradation products.
Kaul, Neeraj; Agrawal, Himani; Maske, Pravin; Rao, Janhavi Ramchandra; Mahadik, Kakasaheb Ramoo; Kadam, Shivajirao S
2005-08-01
Two sensitive and reproducible methods are described for the quantitative determination of itopride hydrochloride (IH) in the presence of its degradation products. The first method is based on HPLC separation on a reversed phase Kromasil column [C18 (5-microm, 25 cm x 4.6 mm, ID)] at ambient temperature using a mobile phase consisting of methanol and water (70:30, v/v) adjusted to pH 4.0 with orthophosphoric acid with UV detection at 258 nm. The flow rate was 1.0 mL per min with an average operating pressure of 180 kg/cm2. The second method is based on HPTLC separation on silica gel 60 F254 using toluene:methanol:chloroform:10% ammonia (5.0:3.0:6.0:0.1, v/v/v/v) as mobile phase at 270 nm. The analysis of variance (ANOVA) and Student's t-test were applied to correlate the results of IH determination in dosage form by means of HPLC and HPTLC methods. The drug was subjected to acid and alkali hydrolysis, oxidation, dry heat, wet heat treatment, UV, and photodegradation. The proposed HPLC method was utilized to investigate the kinetics of the acidic, alkaline, and oxidative degradation processes at different temperatures and the apparent pseudo-first-order rate constant, half-life, and activation energy were calculated. In addition the pH-rate profile of degradation of IH in constant ionic strength buffer solutions in the pH range 2-11 was studied.
Kośliński, Piotr; Jarzemski, Piotr; Markuszewski, Michał J; Kaliszan, Roman
2014-03-01
Pterins are a class of potential cancer biomarkers. New methods involving hydrophilic interaction liquid chromatography (HILIC) and reversed phase (RP) high-performance liquid chromatography have been developed for analysis of eight pterin compounds: 6,7-dimethylpterin, pterin, 6-OH-methylpterin, biopterin, isoxanthopterin, neopterin, xanthopterin, and pterin-6-carboxylic acid. The effect of mobile phase composition, buffer type, pH and concentration on retention using HILIC, C8 and C18 RP stationary phases were examined. Separation of pterins on RP and HILIC stationary phase was performed and optimized. Eight pterins were successfully separated on HILIC Luna diol-bonded phases, Aquasil C18 RP column and LiChrospher C8 RP column. Determination and separation of the pterins from urine samples were performed on HILIC Luna and LiChrospher C8 RP columns which were chosen as the most appropriate ones. Finally, LiChrospher C8 RP column with fluorescence detection was selected for further validation of the method. The optimum chromatographic condition was mobile phase methanol (A)/phosphoric buffer pH 7, 10mM (B), isocratic elution 0-15min 5% A flow=0.5ml/min 15-17min. 5% A, flow=0.5-1ml/min the linearity (R(2)>0.997) and retention time repeatability (RSD%<1) were at satisfactory level. The precision of peak areas expressed as RSD in % was between 0.55 and 14. Pterins detection limits varied from 0.041ng/ml to 2.9ng/ml. Finally, HPLC method was used for the analysis of pterins in urine samples with two different oxidation procedures. Concentration levels of pterin compounds in bladder cancer patients and healthy subjects were compared. Copyright © 2013 Elsevier B.V. All rights reserved.
Al-Alam, Josephine; Bom, Laura; Chbani, Asma; Fajloun, Ziad; Millet, Maurice
2017-04-01
A simple method combining ion-pair methylation, high-performance liquid chromatography (HPLC) analysis with detection at 272 nm and atomic absorption spectrometry was developed in order to determine 10 dithiocarbamate fungicides (Dazomet, Metam-sodium, Ferbam, Ziram, Zineb, Maneb, Mancozeb, Metiram, Nabam and Propineb) and distinguish ethylenbisdithiocarbamates (EBDTCs) Zineb, Maneb and Mancozeb in diverse matrices. This method associates reverse phase analysis by HPLC analysis with detection at 272 nm, with atomic absorption spectrometry in order to distinguish, with the same extraction protocol, Maneb, Mancozeb and Zineb. The limits of detection (0.4, 0.8, 0.5, 1.25 and 1.97) and quantification (1.18, 2.5, 1.52, 4.2 and 6.52) calculated in injected nanogram, respectively, for Dazomet, Metam-Na, dimethyldithiocarbamates (DMDTCs), EBDTCs and propylenebisdithiocarbamates (PBDTCs) justify the sensitivity of the method used. The coefficients of determination R2 were 0.9985, 0.9978, 0.9949, 0.988 and 0.9794, respectively, for Dazomet, Metam-Na, DMDTCs, EBDTCs and PBDTCs, and the recovery from fortified apple and leek samples was above 90%. Results obtained with the atomic absorption method in comparison with spectrophotometric analysis focus on the importance of the atomic absorption as a complementary specific method for the distinction between different EBDTCs fungicides. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Troncoso, N; Sierra, H; Carvajal, L; Delpiano, P; Günther, G
2005-12-23
An improved HPLC method is reported for the determination of rosemary's principal phenolic antioxidants, rosmarinic and carnosic acids, providing a fast and simultaneous determination for both of them by using a solid phase column. The analysis was performed with fresh methanolic extractions of Rosmarinus officinalis. To quantify the amount of antioxidants in a fast and reproducible way by means of UV-vis absorption measurements, a spectrophotometric multi-wavelength calibration curve was constructed based on the antioxidant contents obtained with the recently developed HPLC method. This UV-vis methodology can be extended to the determination of other compounds and herbs if the restrictions mentioned in the text are respected.
Quantitative analysis of PMR-15 polyimide resin by HPLC
NASA Technical Reports Server (NTRS)
Roberts, Gary D.; Lauver, Richard W.
1987-01-01
The concentration of individual components and of total solids of 50 wt pct PMR-15 resin solutions was determined using reverse-phase HPLC to within + or - 8 percent accuracy. Acid impurities, the major source of impurities in 3,3', 4,4'-benzophenonetetracarboxylic acid (BTDE), were eliminated by recrystallizing the BTDE prior to esterification. Triester formation was not a problem because of the high rate of esterification of the anhydride relative to that of the carboxylic acid. Aging of PMR-15 resin solutions resulted in gradual formation of the mononadimide and bisnadimide of 4,4'-methylenedianiline, with the BTDE concentration remaining constant. Similar chemical reactions occurred at a reduced rate in dried films of PMR-15 resin.
Simultaneous Estimation of Withaferin A and Z-Guggulsterone in Marketed Formulation by RP-HPLC.
Agrawal, Poonam; Vegda, Rashmi; Laddha, Kirti
2015-07-01
A simple, rapid, precise and accurate high-performance liquid chromatography (HPLC) method was developed for simultaneous estimation of withaferin A and Z-guggulsterone in a polyherbal formulation containing Withania somnifera and Commiphora wightii. The chromatographic separation was achieved on a Purosphere RP-18 column (particle size 5 µm) with a mobile phase consisting of Solvent A (acetonitrile) and Solvent B (water) with the following gradients: 0-7 min, 50% A in B; 7-9 min, 50-80% A in B; 9-20 min, 80% A in B at a flow rate of 1 mL/min and detection at 235 nm. The marker compounds were well separated on the chromatogram within 20 min. The results obtained indicate accuracy and reliability of the developed simultaneous HPLC method for the quantification of withaferin A and Z-guggulsterone. The proposed method was found to be reproducible, specific, precise and accurate for simultaneous estimation of these marker compounds in a combined dosage form. The HPLC method was appropriate and the two markers are well resolved, enabling efficient quantitative analysis of withaferin A and Z-guggulsterone. The method can be successively used for quantitative analysis of these two marker constituents in combination of marketed polyherbal formulation. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Kand'ár, Roman; Záková, Pavla; Jirosová, Jana; Sladká, Michaela
2009-01-01
The determination of branched chain amino acids [BCAA; valine (Val), leucine (Leu), isoleucine (Ile)], alpha-keto acids derived from BCAA [BCKA; alpha-ketoisovaleric acid (KIV), alpha-ketoisocaproic acid (KIC), alpha-ketomethylvaleric acid (KMV)], methionine (Met), phenylalanine (Phe) and tyrosine (Tyr) is currently the most reliable approach for the diagnosis of maple syrup urine disease (MSUD), hypermethioninemia, phenylketonuria (PKU) and tyrosinemia. The aim of this study was to develop rapid and simple HPLC methods for measurement of BCAA, Met, Phe, Tyr and BCKA in plasma and dried blood samples. Samples of peripheral venous blood with EDTA as anticoagulant were obtained from a group of healthy blood donors (n=70, 35 females, 27-41 years of age and 35 males, 28-43 years of age). Blood-spot samples from a group of newborns (n=80, 40 girls and 40 boys 3-5 days of age) were collected onto #903 Specimen Collection Paper and allowed to dry for at least 24 h before analysis. Prior to separation, the amino acids (AA) were derivatized with o-phthaldialdehyde (OPA) and BCKA with o-phenylenediamine (OPD). Reverse phase column chromatography (LiChroCart 125-4 Purospher RP-18e, 5 microm) was used for separation and fluorescence detection used to monitoring of effluent. For AA analysis, 25 mmol/L sodium hydrogenphosphate-methanol (90:10, v/v), pH 6.5+/-0.1 was used as mobile phase A and 100% methanol was used as mobile phase B. Measurement of BCKA used a mixture of methanol and deionized water (55:45, v/v) as mobile phase A and mobile phase B consisted of 100% methanol. Analytical performance of these methods was satisfactory for the determination of all AA and BCKA. The intra-assay and inter-assay coefficients of variation were below 10% and recovery ranged from 90%-110%. We have developed simple, rapid and selective HPLC methods with fluorescence detection for the determination of BCAA, Met, Phe, Tyr and BCKA in plasma and dried blood samples.
Introduction
Membrane proteins play crucial role in many cellular processes and are promising candidates for biomarker discovery but are under-represented in the field of proteomics due to their hydrophobic nature. Although standard reversed-phase LC methods often exhibit ...
LIQUID CHROMATOGRAPHY DETERMINATION OF ANTI-ANDROGEN VINCLOZOLIN AND ITS METABOLITES IN RAT SERUM
The objective of this study was to develop a chromatographic method for the analysis of the anti-androgen vinclozolin (V) and its butenoic acid (M1) and enanilide (M2) metabolites in rat serum. V, M1, M2 and M3 were resolved using an HPLC gradient program with a mobile phase con...
USDA-ARS?s Scientific Manuscript database
In this study, a multi-residue analytical method using QuEChERS extraction and dispersive solid-phase extraction (d-SPE) cleanup followed by high-performance liquid chromatography–tandem mass spectrometry (HPLC-MS/MS) was developed for rapid determination of 60 pesticide residues in whole crayfish a...
Reverse Phase HPLC Method for Analysis of TNT, RDX, HMX and 2,4-DNT in Munitions Wastewater,
1984-12-01
Materials Agency (USATHAMA), Capt. P. Rissell (USATHAMA) and Dr. R. Westerdahl (LCWSL). project monitors. The authors ac- knowledge the support given by...Capt. Rissell and Dr. Westerdahl throughout this effort, and their technical review of the report. The contents of this report are not to be used for
Islam, Johirul; Zaman, Kamaruz; Chakrabarti, Srijita; Sharma Bora, Nilutpal; Mandal, Santa; Pratim Pathak, Manash; Srinivas Raju, Pakalapati; Chattopadhyay, Pronobesh
2017-07-01
A simple, accurate and sensitive reversed-phase high-performance liquid chromatographic (RP-HPLC) method has been developed for the estimation of ethyl 2-aminobenzoate (EAB) in a matrix type monolithic polymeric device and validated as per the International Conference on Harmonization guidelines. The analysis was performed isocratically on a ZORBAX Eclipse plus C18 analytical column (250 × 4.4 mm, 5 μm) and a diode array detector (DAD) using acetonitrile and water (75:25 v/v) as the mobile phase by keeping the flow-rate constant at 1.0 mL/min. Determination of EAB was not interfered in the presence of excipients. Inter- and intra-day relative standard deviations were not higher than 2%. Mean recovery was between 98.7 and 101.3%. Calibration curve was linear in the concentration range of 0.5-10 µg/mL. Limits of detection and quantification were 0.19 and 0.60 µg/mL, respectively. Thus, the present report put forward a novel method for the estimation of EAB, an emerging insect repellent, by using RP-HPLC technique. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Isolation and characterization of (15Z)-lycopene thermally generated from a natural source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takehara, Munenori, E-mail: takehara@mat.usp.ac.jp; Kuwa, Takahiro; Inoue, Yoshinori
(15Z)-Lycopene was prepared by thermal isomerization of (all-E)-lycopene derived from tomatoes, and isolated by using a series of chromatographies. The fine red crystalline powder of (15Z)-lycopene was obtained from 556 mg of (all-E)-lycopene with a yield of 0.6 mg (purity: reversed-phase HPLC, 97.2%; normal-phase HPLC, ≥99.9%), and {sup 1}H and {sup 13}C NMR spectra of the isomer were fully assigned. More refined computational analyses that considered differences in the energy levels of the conformers involved in isomerization have also determined the stabilities of (15Z)-lycopene and other geometric isomers, along with the activation energies during isomerization from the all-E form. The fine controlmore » of conditions for HPLC separation and an advanced theoretical insight into geometric isomerization have led to the discovery of the 15Z-isomer generated from a natural source. - Highlights: • (15Z)-lycopene, isomerized from the all-E form of a natural source, was purified. • The obtained (15Z)-lycopene was structurally identified by an NMR analysis. • A modified theoretical study accounted for the generation of the 15Z-isomer. • This study demonstrated the occurrence of the isomer from a natural origin.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slater, Michael; Snauko, Marian; Svec, Frantisek
With the use of the copper(I)-catalyzed (3 + 2) azide-alkynecycloaddition, an element of "click chemistry," stationary phasescarrying long alkyl chains or soybean trypsin inhibitor have beenprepared for use in HPLC separations in the reversed-phase and affinitymodes, respectively. The ligands were attached via a triazole ring tosize monodisperse porous beads containing either alkyne or azide pendantfunctionalities. Alkyne-containing beads prepared by directcopolymerization of propargyl acrylate with ethylene dimethacrylate wereallowed to react with azidooctadecane to give a reversed-phase sorbent.Azide-functionalized beads were prepared by chemical modification ofglycidyl methacrylate particles. Subsequent reaction with a terminalaliphatic alkyne produced a reversed-phase sorbent similar to thatobtained from themore » alkyne beads. Soybean trypsin inhibitor wasfunctionalized with N-(4-pentynoyloxy) succinimide to carry alkyne groupsand then allowed to react with the azide-containing beads to produce anaffinity sorbent for trypsin. The performance of these stationary phaseswas demonstrated with the HPLC separations of a variety of peptides andproteins.« less
Carmo, Ana Paula Barbosa do; Borborema, Manoella; Ribeiro, Stephan; De-Oliveira, Ana Cecilia Xavier; Paumgartten, Francisco Jose Roma; Moreira, Davyson de Lima
2017-01-01
Primaquine (PQ) diphosphate is an 8-aminoquinoline antimalarial drug with unique therapeutic properties. It is the only drug that prevents relapses of Plasmodium vivax or Plasmodium ovale infections. In this study, a fast, sensitive, cost-effective, and robust method for the extraction and high-performance liquid chromatography with diode array ultraviolet detection (HPLC-DAD-UV ) analysis of PQ in the blood plasma was developed and validated. After plasma protein precipitation, PQ was obtained by liquid-liquid extraction and analyzed by HPLC-DAD-UV with a modified-silica cyanopropyl column (250mm × 4.6mm i.d. × 5μm) as the stationary phase and a mixture of acetonitrile and 10mM ammonium acetate buffer (pH = 3.80) (45:55) as the mobile phase. The flow rate was 1.0mL·min-1, the oven temperature was 50OC, and absorbance was measured at 264nm. The method was validated for linearity, intra-day and inter-day precision, accuracy, recovery, and robustness. The detection (LOD) and quantification (LOQ) limits were 1.0 and 3.5ng·mL-1, respectively. The method was used to analyze the plasma of female DBA-2 mice treated with 20mg.kg-1 (oral) PQ diphosphate. By combining a simple, low-cost extraction procedure with a sensitive, precise, accurate, and robust method, it was possible to analyze PQ in small volumes of plasma. The new method presents lower LOD and LOQ limits and requires a shorter analysis time and smaller plasma volumes than those of previously reported HPLC methods with DAD-UV detection. The new validated method is suitable for kinetic studies of PQ in small rodents, including mouse models for the study of malaria.
Dhole, Seema M; Khedekar, Pramod B; Amnerkar, Nikhil D
2012-07-01
Repaglinide is a miglitinide class of antidiabetic drug used for the treatment of type 2 diabetes mellitus. A fast and reliable method for the determination of repaglinide was highly desirable to support formulation screening and quality control. UV spectrophotometric and reversed-phase high performance liquid chromatography (RP-HPLC) methods were developed for determination of repaglinide in the tablet dosage form. The UV spectrum recorded between 200 400 nm using methanol as solvent and the wavelength 241 nm was selected for the determination of repaglinide. RP-HPLC analysis was carried out using Agilent TC-C18 (2) column and mobile phase composed of methanol and water (80:20 v/v, pH adjusted to 3.5 with orthophosphoric acid) at a flow rate of 1.0 ml/min. Parameters such as linearity, precision, accuracy, recovery, specificity and ruggedness are studied as reported in the International Conference on Harmonization (ICH) guidelines. The developed methods illustrated excellent linearity (r(2) > 0.999) in the concentration range of 5-30 μg/ml and 5-50 μg/ml for UV spectrophotometric and HPLC methods, respectively. Precision (%R.S.D < 1.50) and mean recoveries were found in the range of 99.63-100.45% for UV spectrophotometric method and 99.71-100.25% for HPLC method which shows accuracy of the methods. The developed methods were found to be reliable, simple, fast, accurate and successfully used for the quality control of repaglinide as a bulk drug and in pharmaceutical formulations.
Dhole, Seema M.; Khedekar, Pramod B.; Amnerkar, Nikhil D.
2012-01-01
Background: Repaglinide is a miglitinide class of antidiabetic drug used for the treatment of type 2 diabetes mellitus. A fast and reliable method for the determination of repaglinide was highly desirable to support formulation screening and quality control. Objective: UV spectrophotometric and reversed-phase high performance liquid chromatography (RP-HPLC) methods were developed for determination of repaglinide in the tablet dosage form. Materials and Methods: The UV spectrum recorded between 200 400 nm using methanol as solvent and the wavelength 241 nm was selected for the determination of repaglinide. RP-HPLC analysis was carried out using Agilent TC-C18 (2) column and mobile phase composed of methanol and water (80:20 v/v, pH adjusted to 3.5 with orthophosphoric acid) at a flow rate of 1.0 ml/min. Parameters such as linearity, precision, accuracy, recovery, specificity and ruggedness are studied as reported in the International Conference on Harmonization (ICH) guidelines. Results: The developed methods illustrated excellent linearity (r2 > 0.999) in the concentration range of 5-30 μg/ml and 5-50 μg/ml for UV spectrophotometric and HPLC methods, respectively. Precision (%R.S.D < 1.50) and mean recoveries were found in the range of 99.63-100.45% for UV spectrophotometric method and 99.71-100.25% for HPLC method which shows accuracy of the methods. Conclusion: The developed methods were found to be reliable, simple, fast, accurate and successfully used for the quality control of repaglinide as a bulk drug and in pharmaceutical formulations. PMID:23781481
Wu, Yi; Zhang, Xiaohui; Wei, Juan; Xue, Yunyun; Bahatibieke, Marjan; Wang, Yan; Yan, Chao
2009-09-01
Capillary electrochromatography (CEC), in which electroosmotic flow (EOF) created from the electrical double layer is made to act as a pump to drive the mobile phase in a capillary column packed with micro-particulates or coated with stationary phase. Both neutral and charged species can be resolved by CEC. It has been demonstrated that the efficiency of a separation obtained by electroosmotic propulsion is superior to that obtained by pressure-driven flow (as is the case in HPLC). CEC combines the best features of CE and versatile selectivity and large sample capacity of HPLC, promising high efficiency, high resolution, high selectivity and high peak capacity. However, in practice, when CEC is used without pressure, often used on a commercial CE instrument, there are problems and difficulties associated with bubbles formation and column dry-out. These difficulties can be overcome by a pressurized CEC (pCEC) system, in which a supplementary pressure is applied to the column in addition to the EOF. In such a system, a pressure can be applied to the capillary column to suppress bubbles formation. Quantitative sample introduction in pCEC can be easily achieved through a rotary-type injector. Most importantly, it is amenable for a solvent gradient mode, similar to that in HPLC, by programming the composition of mobile phase. The article brings a comprehensive survey of recent development of CEC and pCEC, including the development of instrumentation, capillary columns and stationary phase as well as CEC and pCEC applications in life science, biotechnology, pharmaceutical analysis, food safety and environmental security. Prospects for CEC and pCEC development and application are also discussed.
Fernandez-Torres, R; Consentino, M Olías; Lopez, M A Bello; Mochon, M Callejon
2010-05-15
A new, accurate and sensitive reversed-phase high-performance liquid chromatography (RP-HPLC) as analytical method for the quantitative determination of 11 antibiotics (drugs) and the main metabolites of five of them present in human urine has been worked out, optimized and validated. The analytes belong to four different groups of antibiotics (sulfonamides, tetracyclines, penicillins and anphenicols). The analyzed compounds were sulfadiazine (SDI) and its N(4)-acetylsulfadiazine (NDI) metabolite, sulfamethazine (SMZ) and its N(4)-acetylsulfamethazine (NMZ), sulfamerazine (SMR) and its N(4)-acetylsulfamerazine (NMR), sulfamethoxazole (SMX), trimetroprim (TMP), amoxicillin (AMX) and its main metabolite amoxicilloic acid (AMA), ampicillin (AMP) and its main metabolite ampicilloic acid (APA), chloramphenicol (CLF), thiamphenicol (TIF), oxytetracycline (OXT) and chlortetracycline (CLT). For HPLC analysis, diode array (DAD) and fluorescence (FLD) detectors were used. The separation of the analyzed compounds was conducted by means of a Phenomenex Gemini C(18) (150mm x 4.6mm I.D., particle size 5microm) analytical column with LiChroCART LiChrospher C(18) (4mm x 4mm, particle size 5microm) guard column. Analyzed drugs were determined within 34min using formic acid 0.1% in water and acetonitrile in gradient elution mode as mobile phase. A linear response was observed for all compounds in the range of concentration studied. Two procedures were optimized for sample preparation: a direct treatment with methanol and acetonitrile and a solid phase extraction procedure using Bond Elut Plexa columns. The method was applied to the determination of the analytes in human urine from volunteers under treatment with different pharmaceutical formulations. This method can be successfully applied to routine determination of all these drugs in human urine samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, L.C.; Gallagher, J.E.; Lewtas, J.
The {sup 32}P-postlabeling assay, thin-layer chromatography, and reverse-phase high-pressure liquid chromatography (HPLC) were used to separate DNA adducts formed from 10 polycyclic aromatic hydrocarbons (PAHs) and 6 nitrated polycyclic aromatic hydrocarbons (NO{sub 2}-PAHs). The PAHs included benzo[j]fluoranthene, benzo[k]fluoranthene, indeno[1,2,3-cd]pyrene, benzo[a]pyrene, chrysene, 6-methylchrysene, 5-methylchrysene, and benz[a]anthracene. The NO{sub 2}-PAHs included 1-nitropyrene, 2-nitrofluoranthene, 3-nitrofluoranthene, 1,6-dinitropyrene, 1,3-dinitropyrene, and 1,8-dinitropyrene. Separation of seven of the major PAH-DNA adducts was achieved by an initial PAH HPLC gradient system. The major NO{sub 2}-PAH-DNA adducts were not all separated from each other using the initial PAH HPLC gradient but were clearly separated from the PAH-DNA adducts. Amore » second NO{sub 2}-PAH HPLC gradient system was developed to separate NO{sub 2}-PAH-DNA adducts following one-dimensional TLC and HPLC analysis. HPLC profiles of NO{sub 2}-PAH-DNA adducts were compared using both adduct enhancement versions of the {sup 32}P-postlabeling assay to evaluate the use of this technique on HPLC to screen for the presence of NO{sub 2}-PAH-DNA adducts. To demonstrate the application of these separation methods to a complex mixture of DNA adducts, the chromatographic mobilities of the {sup 32}P-postlabeled DNA adduct standards (PAHs and NO{sub 2}-PAHs) were compared with those produced by a complex mixture of polycyclic organic matter (POM) extracted from diesel emission particles. The diesel-derived adducts did not elute with the identical retention time of any of the PAH or NO{sub 2}-PAH standards used in this study. HPLC analyses of the NO{sub 2}-PAH-derived adducts (butanol extracted) revealed the presence of multiple DNA adducts.« less
Kolářová, L.; Nobilis, M.
2008-01-01
Applications of tandem mass spectrometry (MS/MS) techniques coupled with high-performance liquid chromatography (HPLC) in the identification and determination of phase I and phase II drug metabolites are reviewed with an emphasis on recent papers published predominantly within the last 6 years (2002–2007) reporting the employment of atmospheric pressure ionization techniques as the most promising approach for a sensitive detection, positive identification and quantitation of metabolites in complex biological matrices. This review is devoted to in vitro and in vivo drug biotransformation in humans and animals. The first step preceding an HPLC-MS bioanalysis consists in the choice of suitable sample preparation procedures (biomatrix sampling, homogenization, internal standard addition, deproteination, centrifugation, extraction). The subsequent step is the right optimization of chromatographic conditions providing the required separation selectivity, analysis time and also good compatibility with the MS detection. This is usually not accessible without the employment of the parent drug and synthesized or isolated chemical standards of expected phase I and sometimes also phase II metabolites. The incorporation of additional detectors (photodiode-array UV, fluorescence, polarimetric and others) between the HPLC and MS instruments can result in valuable analytical information supplementing MS results. The relation among the structural changes caused by metabolic reactions and corresponding shifts in the retention behavior in reversed-phase systems is discussed as supporting information for identification of the metabolite. The first and basic step in the interpretation of mass spectra is always the molecular weight (MW) determination based on the presence of protonated molecules [M+H]+ and sometimes adducts with ammonium or alkali-metal ions, observed in the positive-ion full-scan mass spectra. The MW determination can be confirmed by the [M-H]- ion for metabolites providing a signal in negative-ion mass spectra. MS/MS is a worthy tool for further structural characterization because of the occurrence of characteristic fragment ions, either MSn analysis for studying the fragmentation patterns using trap-based analyzers or high mass accuracy measurements for elemental composition determination using time of flight based or Fourier transform mass analyzers. The correlation between typical functional groups found in phase I and phase II drug metabolites and corresponding neutral losses is generalized and illustrated for selected examples. The choice of a suitable ionization technique and polarity mode in relation to the metabolite structure is discussed as well. PMID:18345532
El-Shahawi, M S; Hamza, A; Bahaffi, S O; Al-Sibaai, A A; Abduljabbar, T N
2012-10-15
Green tea seems to have a positive impact on health due to the catechins-found as flavanols. Thus, the present study was aimed to develop a low cost reversed phase high performance liquid chromatographic (HPLC) method for simultaneous determination of flavanol contents, namely catechin (C), epicatechin (EC), epigallocatechin (EGC), epicatechin 3-gallate (ECG) and epigallocatechin 3-gallate (EGCG) and caffeine in 29 commercial green tea samples available in a Saudi Arabian local market. A C-18 reversed-phase column, acetonitrile-trifluoroacetic acid as a mobile phase, coupled with UV detector at 205 nm, was successfully used for precise analysis of the tested analytes in boiled water of digested tea leaves. The average values of N (No. of theoretical plates), HETP (height equivalent of theoretical plates) and R(s) (separation factor) (at 10 μg ml(-1) of the catechins EC, EGC, EGCG and ECG) were 2.6×10(3)±1.2×10(3), 1.7×10(-3)±4.7×10(-4) cm and 1.7±5.53×10(-2), respectively. The developed HPLC method demonstrated excellent performance, with low limits of detection (LOD) and quantification (LOQ) of the tested catechins of 0.004-0.05 μg ml(-1) and 0.01-0.17 μg ml(-1), respectively, and recovery percentages of 96-101%. The influence of infusion time (5-30 min) and temperature on the content of the flavanols was investigated by HPLC. After a 5 min infusion of the tea leaves, the average concentrations of caffeine, catechin, EC, EGC, ECG and EGCG were found to be in the ranges 0.086-2.23, 0.113-2.94, 0.58-10.22, 0.19-24.9, 0.22-13.9 and 1.01-43.3 mg g(-1), respectively. The contents of caffeine and catechins followed the sequence: EGCG>EGC>ECG>EC>C>caffeine. The method was applied satisfactorily for the analysis of (+)-catechin, even at trace and ultra trace concentrations of catechins. The method was rapid, accurate, reproducible and ideal for routine analysis. Copyright © 2012 Elsevier Ltd. All rights reserved.
Carvalho, Melina G.; Aragão, Cícero F. S; Raffin, Fernanda N.; de L. Moura, Túlio F. A.
2017-01-01
Topical gels containing extracts of Schinus terebinthifolius have been used to treat bacterial vaginosis. It has been reported that this species has antimicrobial, anti-inflammatory and anti-ulcerogenic properties, which can be attributed to the presence of phenolic compounds. In this work, a sensitive and selective reversed-phase HPLC-UV/DAD method for the simultaneous assay of six polyphenols that could be present in S. terebinthifolius was developed. The method was shown to be accurate and precise. Peak purity and similarity index both exceeded 0.99. Calibration curves were linear over the concentration range studied, with correlation coefficients between 0.9931 and 0.9974. This method was used to determine the polyphenol content of a hydroalcoholic extract and pharmacy-compounded vaginal gel. Although the method is useful to assess the 6 phenolic compounds, some compounds could not be detected in the products. SUMMARY A sensitive, selective, accurate and precise reversed-phase HPLC-UV/DAD method for the simultaneous assay of six polyphenols in S. terebinthifolius Raddi Abbreviations used: RP-HPLC-UV/DAD: Reverse Phase High Performance Liquid Chromatograph with Ultraviolet and Diode Array Detector, HPLC: High Performance Liquid Chromatograph, HPLC-UV: High Performance Liquid Chromatograph with Ultraviolet Detector, ANVISA: Brazilian National Health Surveillance Agency, LOD: Limit of detection, LOQ: Limit of quantitation PMID:28539726
Ying, Xixiang; Meng, Xiansheng; Wang, Siyuan; Wang, Dong; Li, Haibo; Wang, Bing; Du, Yang; Liu, Xun; Zhang, Wenjie; Kang, Tingguo
2012-01-01
A simple and sensitive HPLC method was developed to simultaneously determine three active compounds, vitexin-4″-O-glucoside (VG), vitexin-2″-O-rhamnoside (VR) and hyperoside (HP), in rat plasma after administering the hawthorn leaves extract (HLE). An HPLC assay with baicalin as the internal standard was carried out using a Phenomsil C₁₈ analytical column with UV detection at 332 nm. The mobile phase consisted of methanol-acetonitrile-tetrahydrofuran-1% glacial acetic acid (6 : 1.5 : 18.5 : 74, v/v/v/v). The calibration curves were linear over the range of 2.5-500, 0.2-25 and 0.25-12.5 µg mL⁻¹ for VG, VR and HP, respectively. The method was reproducible and reliable, with relative standard deviations of the intra- and inter-day precision between 1.2% and 13.2% for the analysis of the three analytes. The validated HPLC method herein described was successfully applied to the pharmacokinetic study of VG, VR and HP after oral administration of HLE to rats over the dose range of 2.5-10 mL kg⁻¹.
Natal, Fabio Luis Nogueira; Ribela, Maria Teresa Carvalho Pinto; de Almeida, Beatriz Elane; de Oliveira, João Ezequiel; Bartolini, Paolo
2016-01-01
Ovarian stimulation with commercial preparations of equine chorionic gonadotropin (eCG) produces extremely variable responses in domestic animals, ranging from excessive stimulation to practically no stimulation, when applied on the basis of their declared unitage. This study was conducted to analyze four commercial preparations from different manufacturers via reversed-phase HPLC (RP-HPLC) in comparison with a reference preparation and an official International Standard from the World Health Organization. The peaks obtained by this qualitative and quantitative physical–chemical analysis were compared using an in vivo bioassay based on the ovarian weight gain of prepubertal female rats. The RP-HPLC data showed one or two peaks close to a main peak (tR = 27.9 min), which were related to the in vivo bioactivity. Commercial preparations that have this altered peak showed very little or no in vivo activity, as demonstrated by rat ovarian weight and in peripubertal gilts induced to ovulate. Overall, these findings indicate that RP-HPLC can be a rapid and reliable tool to reveal changes in the physicochemical profile of commercial eCG that is apparently related to decreased biological activity of this hormone. PMID:27297410
Virtual Cross-Linking of the Active Nemorubicin Metabolite PNU-159682 to Double-Stranded DNA.
Scalabrin, Matteo; Quintieri, Luigi; Palumbo, Manlio; Riccardi Sirtori, Federico; Gatto, Barbara
2017-02-20
The DNA alkylating mechanism of PNU-159682 (PNU), a highly potent metabolite of the anthracycline nemorubicin, was investigated by gel-electrophoretic, HPLC-UV, and micro-HPLC/mass spectrometry (MS) measurements. PNU quickly reacted with double-stranded oligonucleotides, but not with single-stranded sequences, to form covalent adducts which were detectable by denaturing polyacrylamide gel electrophoresis (DPAGE). Ion-pair reverse-phase HPLC-UV analysis on CG rich duplex sequences having a 5'-CCCGGG-3' central core showed the formation of two types of adducts with PNU, which were stable and could be characterized by micro-HPLC/MS. The first type contained one alkylated species (and possibly one reversibly bound species), and the second contained two alkylated species per duplex DNA. The covalent adducts were found to produce effective bridging of DNA complementary strands through the formation of virtual cross-links reminiscent of those produced by classical anthracyclines in the presence of formaldehyde. Furthermore, the absence of reactivity of PNU with CG-rich sequence containing a TA core (CGTACG), and the minor reactivity between PNU and CGC sequences (TACGCG·CGCGTA) pointed out the importance of guanine sequence context in modulating DNA alkylation.
Identification of a Panax ginseng fruit fingerprint by HPLC-ESI-MS.
Zhao, H F; Xu, F F; Guo, Y T; Mi, H
2016-03-11
Over many years, parts of Panax ginseng (root and rhizome) have been identified and applied for medical purposes as traditional Chinese herbal medicine. Recently, research has indicated that ginseng fruit also contains similar compounds and is as rich as the other parts of the ginseng. This discovery may dramatically improve the efficient of outputs derived from ginseng products. Here, a new technique combining high-performance liquid chromatography (HPLC) with electrospray ionization tandem mass spectrometry (ESI-MS) was employed to identify the fingerprint of P. ginseng fruit. Using HPLC, compounds that are important for medical purposes were extracted and purified. Combined with ESI-MS, the characteristic peaks (nine common peaks) of those compounds were identified, and the accuracy was confirmed by analysis using the Chromatographic Fingerprint Similarity Evaluation System (2004A edition). Overall, 15 batches of ginseng fruit had a similarity of more than 0.80, 13 batches of samples had a similarity between 0.97 and 0.99, and two batches had a similarity less than 0.90. The test solution and mobile phase selection was discussed. The HPLC-ESI-MS method can produce repeatable and reliable results and can be applied in the quality control of P. ginseng fruit.
Oshima, Ryusei; Kotani, Akira; Kuroda, Minpei; Yamamoto, Kazuhiro; Mimaki, Yoshihiro; Hakamata, Hideki
2018-03-01
High-performance liquid chromatography with ultraviolet detection (HPLC-UV) using 20 mM phosphate mobile phase and an octadecylsilyl column (Triart C18, 150 × 3.0 mm i.d., 3 μm) has been developed for the analysis of hydrophilic compounds in the water extract of Schisandrae Fructus samples. The present HPLC-UV method permits the accurate and precise determination of malic, citric, and protocatechuic acids in the Japanese Pharmacopoeia (JP) Schisandrae Fructus, Schisandrae Chinensis Fructus and Schisandrae Sphenantherae Fructus. The JP Schisandrae Fructus studied contains 27.98 mg/g malic, 107.08 mg/g citric, and 0.42 mg/g protocatechuic acids, with a relative standard deviation (RSD) of repeatability of <0.9% (n = 6). The content of malic acids in Schisandrae Chinensis Fructus is approximately ten times that in Schisandrae Sphenantherae Fructus. To examine whether the HPLC-UV method is applicable to the fingerprint-based discrimination of Schisandrae Fructus samples obtained from Chinese markets, principal component analysis (PCA) was performed using the determined contents of organic acids and the ratio of six characteristic unknown peaks derived from hydrophilic components to internal standard peak areas. On the score plots, Schisandrae Chinensis Fructus and Schisandrae Sphenantherae Fructus samples are clearly discriminated. Therefore, the HPLC-UV method for the analysis of hydrophilic components coupled with PCA has been shown to be practical and useful in the quality control of Schisandrae Fructus.
Kori, Shivpoojan; Parmar, Ankush; Goyal, Jony; Sharma, Shweta
2018-02-01
A procedure for the determination of Eszopiclone (ESZ) from complex matrices i.e. in vitro (spiked matrices), as well as in vivo (mice model) was developed using cloud point extraction coupled with microwave-assisted back-extraction (CPE-MABE). Analytical measurements have been carried using UV-Visible, HPLC and MS techniques. The proposed method has been validated according to ICH guidelines and legitimate reproducible and reliability of protocol is assessed through intraday and inter-day precision <3.61% and <4.70%, respectively. Limit of detection has been obtained as 0.083μg/mL and 0.472μg/mL respectively, for HPLC and UV-Visible techniques, corresponding to assessed linearity range. The coaservate phase in CPE was back extracted under microwaves exposure, with isooctane at pre-concentration factor ~50 when 5mL of sample solution was pre-concentrated to 0.1mL. Under optimized conditions i.e. Aqueous-Triton X-114 4% (w/v), pH4.0, NaCl 4% (w/v) and equilibrium temperature of 45°C for 20min, average extraction recovery has been obtained between 89.8 and 99.2% and 84.0-99.2% from UV-Visible and HPLC analysis, respectively. The method has been successfully applied to the pharmacokinetic estimation (post intraperitoneal administration) of ESZ in mice. MS analysis precisely depicted the presence of active N‑desmethyl zopiclone in impales as well as in mice plasma. Copyright © 2018 Elsevier B.V. All rights reserved.
Characterization of biliary conjugates of 4,4'-methylenedianiline in male versus female rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Kan; Cole, Richard B.; Santa Cruz, Vicente
2008-10-15
4,4'-Methylenedianiline (4,4'-diaminodiphenylmethane; DAPM) is an aromatic diamine used in the production of numerous polyurethane foams and epoxy resins. Previous studies in rats revealed that DAPM initially injures biliary epithelial cells of the liver, that the toxicity is greater in female than in male rats, and that the toxic metabolites of DAPM are excreted into bile. Since male and female rats exhibit differences in the expression of both phase I and phase II enzymes, our hypothesis was that female rats either metabolize DAPM to more toxic metabolites or have a decreased capacity to conjugate metabolites to less toxic intermediates. Our objectivemore » was thus to isolate, characterize, and quantify DAPM metabolites excreted into bile in both male and female bile duct-cannulated Sprague Dawley rats. The rats were gavaged with [{sup 14}C]-DAPM, and the collected bile was subjected to reversed-phase HPLC with radioisotope detection. Peaks eluting from HPLC were collected and analyzed using electrospray MS and NMR spectroscopy. HPLC analysis indicated numerous metabolites in both sexes, but male rats excreted greater amounts of glutathione and glucuronide conjugates than females. Electrospray MS and NMR spectra of HPLC fractions revealed that the most prominent metabolite found in bile of both sexes was a glutathione conjugate of an imine metabolite of a 4'-nitroso-DAPM. Seven other metabolites were identified, including acetylated, cysteinyl-glycine, glutamyl-cysteine, glycine, and glucuronide conjugates. While our prior studies demonstrated increased covalent binding of DAPM in the liver and bile of female compared to male rats, in these studies, SDS-PAGE with autoradiography revealed 4-5 radiolabeled protein bands in the bile of rats treated with [{sup 14}C]-DAPM. In addition, these bands were much more prominent in female than in male rats. These studies thus suggest that a plausible mechanism for the increased sensitivity of female rats to DAPM toxicity may be decreased conjugation of reactive DAPM metabolites, leading to greater levels of protein adduct formation.« less
Extraction and Determination of Cyproheptadine in Human Urine by DLLME-HPLC Method
Maham, Mehdi; Kiarostami, Vahid; Waqif-Husain, Syed; Abroomand-Azar, Parviz; Tehrani, Mohammad Saber; Khoeini Sharifabadi, Malihe; Afrouzi, Hossein; Shapouri, MahmoudReza; Karami-Osboo, Rouhollah
2013-01-01
Novel dispersive liquid-liquid microextraction (DLLME), coupled with high performance liquid chromatography with photodiode array detection (HPLC-DAD) has been applied for the extraction and determination of cyproheptadine (CPH), an antihistamine, in human urine samples. In this method, 0.6 mL of acetonitrile (disperser solvent) containing 30 μL of carbon tetrachloride (extraction solvent) was rapidly injected by a syringe into 5 mL urine sample. After centrifugation, the sedimented phase containing enriched analyte was dissolved in acetonitrile and an aliquot of this solution injected into the HPLC system for analysis. Development of DLLME procedure includes optimization of some important parameters such as kind and volume of extraction and disperser solvent, pH and salt addition. The proposed method has good linearity in the range of 0.02-4.5 μg mL-1 and low detection limit (13.1 ng mL-1). The repeatability of the method, expressed as relative standard deviation was 4.9% (n = 3). This method has also been applied to the analysis of real urine samples with satisfactory relative recoveries in the range of 91.6-101.0%. PMID:24250605
Åsberg, Dennis; Leśko, Marek; Samuelsson, Jörgen; Kaczmarski, Krzysztof; Fornstedt, Torgny
2014-10-03
This is the first investigation in a series that aims to enhance the scientific knowledge needed for reliable analytical method transfer between HPLC and UHPLC using the quality by design (QbD) framework. Here, we investigated the differences and similarities from a thermodynamic point of view between RP-LC separations conducted with 3.5μm (HPLC) and 1.7μm (UHPLC) C18 particles. Three different model solutes and one pharmaceutical compound were used: the uncharged cycloheptanone, the cationic benzyltriethylammonium chloride, the anionic sodium 2-naphatlene sulfonate and the pharmaceutical compound omeprazole, which was anionic at the studied pH. Adsorption data were determined for the four solutes at varying fractions of organic modifier and in gradient elution in both the HPLC and UHPLC system, respectively. From the adsorption data, the adsorption energy distribution of each compound was calculated and the adsorption isotherm model was estimated. We found that the adsorption energy distribution was similar, with only minor differences in degree of homogeneity, for HPLC and UHPLC stationary phases. The adsorption isotherm model did not change between HPLC and UHPLC, but the parameter values changed considerably especially for the ionic compounds. The dependence of the organic modifier followed the same trend in HPLC as in UHPLC. These results indicates that the adsorption mechanism of a solute is the same on HPLC and UHPLC stationary phases which simplifies design of a single analytical method applicable to both HPLC and UHPLC conditions within the QbD framework. Copyright © 2014. Published by Elsevier B.V.
Huang, Lili; Lu, Juan; Di, Bin; Feng, Fang; Su, Mengxiang; Yan, Fang
2011-09-01
Monodisperse spherical periodic mesoporous organosilicas (PMOs) with ethane integrated in the framework were synthesized and their application as stationary phase for chromatographic separation is demonstrated. The ethane-PMOs were prepared by condensation of 1,2-bis(triethoxysilyl)ethane (BTSE) in basic condition using octadecyltrimethylammonium chloride (C(18)TMACl) as template and ethanol as co-solvent. The morphology and mesoporous structure of ethane-PMOs were controlled under different concentrations of sodium hydroxide (NaOH) and EtOH. The results of scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (XRD), nitrogen sorption measurement, Fourier transform infrared spectroscopy (FT-IR) and elemental analysis showed that ethane-PMOs have spherical morphology, uniform particle distribution, highly ordered pore structure, high surface area and narrow pore-size distribution. The column packed with these materials exhibits good permeability, high chemical stability and good selectivity of mixtures of aromatic hydrocarbons in normal phase high-performance liquid chromatography (HPLC). Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ramesh, A; Balasubramanian, M
1999-01-01
A simple and rapid method involving solid phase extraction and liquid chromatography for the determination of azadirachtin-A and -B, nimbin and salannin at nanogram levels in neem oil samples is presented. The neem oil samples are defatted and the compounds of interest extracted by mixing the sample with hexane and passing the hexane solution through a graphitised carbon black column. After washing the column with 2 ml of hexane, azadirachtin-A and -B, nimbin and salannin are eluted with 5 ml of acetonitrile and quantified using HPLC with UV detection. The recoveries of azadirachtin-A and -B, nimbin and salannin in fortified oil samples were 97.4-104.7%. The upper limit of quantification is up to 100 micrograms ml-1 without any additional clean-up and with little interference from lipids during the analysis by HPLC. The method was successfully applied to various neem oil samples collected from different locations in India.
Kasichayanula, Sreeneeranj; House, James D; Wang, Tao; Gu, Xiaochen
2005-08-05
N,N-Diethyl-m-toluamide (DEET) and oxybenzone are two essential active ingredients in insect repellent and sunscreen preparations. We developed and validated a simple, sensitive, and selective HPLC assay to simultaneously measure DEET, oxybenzone and five primary metabolites of DEET and oxybenzone in biological samples including plasma, urine and skin strips. The compounds were separated on a reversed-phase C18 column using three-stage gradient steps with methanol and water. DEET and two relevant metabolites were detected at 254 nm, while oxybenzone and three relevant metabolites were detected at 289 nm. The limit of detection was 0.6 ng for DEET and 0.5 ng for oxybenzone, respectively. The developed method was further applied to analyze various biological samples from an in vivo animal study that evaluated concurrent use of commercially available insect repellent and sunscreen preparations.
Zeric Stosic, Marina Z; Jaksic, Sandra M; Stojanov, Igor M; Apic, Jelena B; Ratajac, Radomir D
2016-11-01
High-performance liquid chromatography (HPLC) method with diode array detection (DAD) were optimized and validated for separation and determination of tetramethrin in an antiparasitic human shampoo. In order to optimize separation conditions, two different columns, different column oven temperatures, as well as mobile phase composition and ratio, were tested. Best separation was achieved on the Supelcosil TM LC-18- DB column (4.6 x 250 mm), particle size 5 jim, with mobile phase methanol : water (78 : 22, v/v) at a flow rate of 0.8 mL/min and at temperature of 30⁰C. The detection wavelength of the detector was set at 220 nm. Under the optimum chromatographic conditions, standard calibration curve was measured with good linearity [r2 = 0.9997]. Accuracy of the method defined as a mean recovery of tetramethrin from shampoo matrix was 100.09%. The advantages of this method are that it can easily be used for the routine analysis of drug tetramethrin in pharmaceutical formulas and in all pharmaceutical researches involving tetramethrin.
Bendif, Hamdi; Miara, Mohamed Djamel; Peron, Gregorio; Sut, Stefania; Dall'Acqua, Stefano; Flamini, Guido; Maggi, Filippo
2017-10-01
In this work, a comprehensive study on the chemical constituents of the aerial parts of Rosmarinus eriocalyx (Lamiaceae), an aromatic shrub traditionally consumed as a food and herbal remedy in Algeria, is presented. The aroma profile was analysed by headspace solid phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC/MS), whereas the crude extract constituents were analyzed by 1 H-NMR and by high performance liquid chromatography coupled with mass spectrometry (HPLC/MS n ). Thirty-nine volatile compounds, most of them being monoterpenes, have been identified, with camphor, camphene, and α-pinene as the most abundant constituents. 1 H-NMR analysis revealed the presence of phenolic compounds and betulinic acid while HPLC/MS n allowed the identification of glycosilated and aglyconic flavonoids as well as phenylpropanoid derivatives. Some of these constituents, namely as betulinic acid, rosmanol, and cirsimaritin were reported for the first time in R. eriocalyx. © 2017 Wiley-VHCA AG, Zurich, Switzerland.
Wang, Xiao-juan; Jiang, Lin
2014-12-01
To explore the spectrum-effect relationship between the HPLC fingerprint of Arctium lappa root methanol extract and the total antioxidant activity. The experiment was carried out with Gemini C18 110A (250 mm x 4.6 mm, 5 µm) column using methanol-0.04% phosphoric acid as gradient mobile phase at the flow rate of 1.0 mL/min, detection wavelength of 320 nm. The total antioxidant activity was determined by measuring the absorbance of each sample after being reacted with ammonium molybdate reagent. The spectrum-effect relationship was investigated using canonical correlation analysis (CCA). The spectrum-effect relationship between the HPLC fingerprint of Arctium lappa root methanol extract and the total antioxidant activity were established, the similarity of fingerprint of all samples was above 0.9. Peaks 1, 6, 9, 12 and 14 were principle components of Arctium lappa root for the total antioxidant activity. This method contributes to the fast comprehensive evaluation of quality of Arctium lappa root.
Retention properties of novel beta-CD bonded stationary phases in reversed-phase HPLC mode.
Zhao, Yanyan; Guo, Zhimou; Zhang, Yongping; Xue, Xingya; Xu, Qing; Li, Xiuling; Liang, Xinmiao; Zhang, Yukui
2009-05-15
With the given special structures, the CD bonded stationary phases are expected to have complementary retention properties with conventional C18 stationary phase, which will be helpful to enhance the polar selectivity in RP mode separation. In this work, two beta-cyclodextrin (beta-CD) bonded stationary phases for reversed-phase HPLC, including 1, 12-dodecyldiol linked beta-CD stationary phase (CD1) and olio (ethylene glycol) (OEG) linked beta-CD stationary phase (CD2), have been synthesized via click chemistry. The resulting materials were characterized with FT-IR and elemental analysis, which proved the successful immobilization of ligands. The similarities and differences in retention characteristics between the CD and C18 stationary phases have been elucidated by using comparative linear solvation energy relationships (LSERs). The force related to solute McGowan volume has no significant difference, while the hydrogen bonding and dipolar interactions between solutes and CD stationary phases are stronger than between solutes and C18, which is attributed to the special structures (CD and triazole groups) of CD stationary phases. Chemical origins are interpreted by comparison between CD1 and CD2. Similar dispersive interactions of CD1 and CD2 are attributed to their similar length of spacer arms. CD2 which contains OEG spacer arm has relative weaker HBD acidity but stronger HBA basicity. CD stationary phases display no serious different methylene selectivity and higher polar selectivity than in the case of C18. Higher acid selectivity and lower basic selectivity are observed on CD2 than on CD1. Distinctive retention properties and good complementary separation selectivity to C18 make the novel CD bonded stationary phases available for more application in RPLC.
Damm, Markus; Kappe, C Oliver
2011-11-30
A high-throughput platform for performing parallel solvent extractions in sealed HPLC/GC vials inside a microwave reactor is described. The system consist of a strongly microwave-absorbing silicon carbide plate with 20 cylindrical wells of appropriate dimensions to be fitted with standard HPLC/GC autosampler vials serving as extraction vessels. Due to the possibility of heating up to four heating platforms simultaneously (80 vials), efficient parallel analytical-scale solvent extractions can be performed using volumes of 0.5-1.5 mL at a maximum temperature/pressure limit of 200°C/20 bar. Since the extraction and subsequent analysis by either gas chromatography or liquid chromatography coupled with mass detection (GC-MS or LC-MS) is performed directly from the autosampler vial, errors caused by sample transfer can be minimized. The platform was evaluated for the extraction and quantification of caffeine from commercial coffee powders assessing different solvent types, extraction temperatures and times. For example, 141±11 μg caffeine (5 mg coffee powder) were extracted during a single extraction cycle using methanol as extraction solvent, whereas only 90±11 were obtained performing the extraction in methylene chloride, applying the same reaction conditions (90°C, 10 min). In multiple extraction experiments a total of ~150 μg caffeine was extracted from 5 mg commercial coffee powder. In addition to the quantitative caffeine determination, a comparative qualitative analysis of the liquid phase coffee extracts and the headspace volatiles was performed, placing special emphasis on headspace analysis using solid-phase microextraction (SPME) techniques. The miniaturized parallel extraction technique introduced herein allows solvent extractions to be performed at significantly expanded temperature/pressure limits and shortened extraction times, using standard HPLC autosampler vials as reaction vessels. Remarkable differences regarding peak pattern and main peaks were observed when low-temperature extraction (60°C) and high-temperature extraction (160°C) are compared prior to headspace-SPME-GC-MS performed in the same HPLC/GC vials. Copyright © 2011 Elsevier B.V. All rights reserved.
Yuan, Zhenting; Xu, Haiyan; Wang, Ke; Zhao, Zhonghua; Hu, Ming
2012-01-01
A straightforward and sensitive reversed-phase high-performance liquid chromatography (HPLC) assay was developed and validated for the analysis of osthol and its phase I metabolites (internal standard: umbelliferone). The method was validated for the determination of osthol with respect to selectivity, precision, linearity, limit of detection, recovery, and stability. The linear response range was 0.47 ~ 60 μM, and the average recoveries ranged from 98 to 101%. The inter-day and intra-day relative standard deviations were both less than 5%. Using this method, we showed that more than 80% of osthol was metabolized in 20 min in a phase I metabolic reaction system. Transport experiments in the Caco-2 cell culture model indicated that osthol was easily absorbed with high absorptive permeability (>10×10-6 cm/sec). The permeability did not display concentration-dependence or vectorial-dependence and is mildly temperature sensitive (activation energy less than 10 Kcal/mole), indicating passive mechanism of transport. When analyzed by LC-MS/MS, five metabolites were detected in a phase I reaction system and in the receiver side of a modified Caco-2 cell model, which was supplemented with the phase I reaction system. The major metabolites appeared to be desmethyl-osthol and multiple isomers of dehydro-osthol. In conclusion, a likely cause of poor osthol bioavailability is rapid phase I metabolism via the cytochrome P-450 pathways. PMID:19304430
Dinçer, Zafer; Basan, Hasan; Göger, Nilgün Günden
2003-04-01
A derivative UV spectrophotometric method for the determination of ambroxol in tablets was developed. Determination of ambroxol in tablets was conducted by using first-order derivative UV spectrophotometric method at 255 nm (n = 5). Standards for the calibration graph ranging from 5.0 to 35.0 microg/ml were prepared from stock solution. The proposed method was accurate with 98.6+/-0.4% recovery value and precise with coefficient of variation (CV) of 1.22. These results were compared with those obtained by reference methods, zero-order UV spectrophotometric method and reversed-phase high-performance liquid chromatography (HPLC) method. A reversed-phase C(18) column with aqueous phosphate (0.01 M)-acetonitrile-glacial acetic acid (59:40:1, v/v/v) (pH 3.12) mobile phase was used and UV detector was set to 252 nm. Calibration solutions used in HPLC were ranging from 5.0 to 20.0 microg/ml. Results obtained by derivative UV spectrophotometric method was comparable to those obtained by reference methods, zero-order UV spectrophotometric method and HPLC, as far as ANOVA test, F(calculated) = 0.762 and F(theoretical) = 3.89, was concerned. Copyright 2003 Elsevier Science B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurtubise, R.J.; Allen, T.W.; Hussain, A.
1981-03-29
Dry-column chromatography with an aluminum oxide stationary phase and a n-hexane-ether (19:1) mobile phase was used to separate polycyclic aromatic hydrocarbons (PAH) by ring size. Prior to the dry-column chromatography step, the coal derived solvents were added to an acid treated silica gel column and eluted with chloroform. This step removed pyridine-type nitrogen heterocycles. After separation of the individual ring fractions, the fractions were further separated by either thin layer chromatography (TLC) or high performance liquid chromatography (HPLC). If TLC was used, then after separation fluorescence profiles of each PAH ring fraction distributed on 30%-acetylated cellulose chromatoplates were obtained withmore » a spectrodensitometer. Measurement of fluorescence peak heights gave an approximate measure of the amount of the 3-, 4-, 5-, and 6- ring PAH. For HPLC separation, the 3- and 4- ring PAH fractions obtained from the dry-column chromatography step were separated with a ..mu..-Bondapak C/sub 18/ column and methanol:water (65:35) mobile phase. The HPLC separated PAH were characterized by chromatographic correlation factors and corrected fluorescence excitation spectra. Alkylphenols were identified in coal recycle solvent sample following separation by HPLC.« less
Cheng, Heyong; Chen, Xiaopan; Shen, Lihuan; Wang, Yuanchao; Xu, Zigang; Liu, Jinhua
2018-01-05
Most of analytical community is focused on reversed phase high performance liquid chromatography (RP-HPLC) for mercury speciation by employing mobile phases comprising of high salts and moderate amounts of organic solvents. This study aims at rapid mercury speciation analysis by ion-pairing RP-HPLC with inductively coupled plasma mass spectrometry (ICP-MS) detection only using low salts for the sake of green analytical chemistry. Two ion-pairing HPLC methods were developed on individual usage of positively and negatively charged ion-pairing reagents (tetrabutylammonium hydroxide -TBAH and sodium dodecylbenzene sulfonate -SDBS), where sodium 3-mercapto-1-propysulfonate (MPS) and l-cysteine (Cys) were individually added in mobile phases to transform mercury species into negative and positive Hg-complexes for good resolution. Addition of phenylalanine was also utilized for rapid baseline separation in combination of short C 18 guard columns. Optimum mobile phases of 2.0mM SDBS+2.0mM Cys+1.0mM Phe (pH 3.0) and 4.0mM TBAH+2.0mM MPS+2.0mM Phe (pH 6.0) both achieved baseline separation of inorganic mercury (Hg 2+ ), methylmercury (MeHg), ethylmercury (EtHg) and phenylmercury (PhHg) on two consecutive 12.5-mm C 18 columns. The former mobile phase was selected for mercury speciation in freshwater fish because of short separation time (3.0min). Detection limits of 0.015 for Hg 2+ , 0.014 for MeHg, 0.028 for EtHg and 0.042μgL -1 for PhHg were obtained along with satisfactory precisions of peak height and area (1.0-2.8% for 5.0μgL -1 Hg-mixture standard). Good accordance of determined values of MeHg and total mercury in certified reference materials of fish tissue (GBW 10029) and tuna fish (BCR-463) with certified values as well as good recoveries (91-106%) proved good accuracy of the proposed method. An example application to freshwater fish indicated its potential in routine analysis, where MeHg was presented at 3.7-20.3μgkg -1 as the dominate species. Copyright © 2017 Elsevier B.V. All rights reserved.
Dubois, M; Fluchard, D; Sior, E; Delahaut, P
2001-04-05
We present an electrospray high-performance liquid chromatographic tandem mass spectrometric (HPLC-MS-MS) method capable of determining in several tissues (muscle, kidney, liver), eggs and milk the following five macrolides: tylosin, tilmicosin, spiramycin, josamycin, erythromycin. Roxithromycin was used as an internal standard. The method uses extraction in a Tris buffer at pH 10.5, followed by protein precipitation with sodium tungstate and clean-up on an Oasis solid-phase extraction column. The HPLC separation was performed on a Purospher C18 column (125 x 3 mm I.D.) protected by a guard column, with a gradient of aqueous 0.1 M ammonium acetate-acetonitrile as the mobile phase at a flow-rate of 0.7 ml min(-1). Protonated molecules served as precursor ions for electrospray ionisation in the positive ion mode and four product ions were chosen for each analyte for multiple reaction monitoring (MRM). A validation study was conducted to confirm the five macrolides by MRM HPLC-MS-MS analysis of a negative control and fortified samples. All of the samples analysed were confirmed with four ions. The ion ratio reproducibility limit ranged from 2.4 to 15%. All compounds could be detected and quantified at half-maximum residue limits (MRLs). The method is specific, quantitative and reproducible enough to conform to European Union recommendations within the concentration range 0.5 MRL-2 MRL (accuracy: 80 to 110%, relative standard deviation: 2 to 13%). This whole method allows extraction and analysis of up to 50 samples per day.
Kamal, Atif; Gulfraz, Mohammad; Anwar, Mohammad Asad; Malik, Riffat Naseem
2015-01-01
1-hydroxypyrene is an important biomarker of exposure to polycyclic aromatic hydrocarbons (PAHs), which appears in the urine of exposed human subjects. In developing countries, where advanced instruments are not available, the importance of this biomarker demands convenient and sensitive methods for determination purposes. This study aimed at developing a methodology to quantify 1-hydroxypyrene (a biomarker of PAHs exposure) based on the UV-visible detector in the reverse phase high pressure liquid chromatography (HPLC). A 20 μl injection of sample was used for manual injection into the HPLC Shimadzu, equipped with the SPD-20 A UV-visible detector, the LC-20AT pump and the DGU-20A5 degasser. The C-18 column was used for the purpose of the analysis. The method showed a good linearity (the range: R2 = 0.979-0.989), and high detectability up to the nmol level. The average retention was 6.37, with the accuracy of 2%, and the percentage of recovery remained 108%. The overall performance of this method was comparable (in terms of detection sensitivity) and relatively better than previously reported studies using the HPLC system equipped with the UV-detector. This method is suitable and reliable for the detection/quantification of the 1-OHP in human urine samples, using the UV-detector, however, it is less sensitive as compared to the results of a florescence detector. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
Leite, Tonny Cley Campos; de Sena, Amanda Reges; Dos Santos Silva, Tânia Regina; Dos Santos, Andrea Karla Almeida; Uetanabaro, Ana Paula Trovatti; Branco, Alexsandro
2012-07-01
Marcetia genera currently comprises 29 species, with approximately 90% inhabiting Bahia (Brazil), and most are endemic to the highlands of the Chapada Diamantina (Bahia). Among the species, only M. taxifolia (A.St.-Hil.) DC. populates Brazil (state of Roraima to Paraná) and also Venezuela, Colombia, and Guyana. This work evaluated the antimicrobial activity of hexane, ethyl acetate, and methanol extracts of three species of Marcetia (Marcetia canescens Naud., M. macrophylla Wurdack, and M. taxifolia A.StHil) against several microorganism. In addition, the flavonoids were analyzed in extracts by HPLC-DAD. The tests were made using Gram-positive (three strains of Staphylococcus aureus) and Gram-negative (two strains of Escherichia coli, a strain of Pseudomonas aeruginosa and another of Salmonella choleraesius) bacteria resistant and nonresistant to antibiotics and yeasts (two strains of Candida albicans and one of C. parapsilosis) by the disk diffusion method. Solid-phase extraction (SPE) was performed on the above extracts to isolate flavonoids, which were subsequently analyzed by high performance liquid chromatography coupled diode array detector (HPLC-DAD). Results showed that extracts inhibited the Gram-positive bacteria and yeast. The hexane extracts possessed the lowest activity, while the ethyl acetate and methanolic extracts were more active. Marcetia taxifolia was more effective (active against 10 microorganisms studied), and only its methanol extract inhibited Gram-negative bacteria (P. aeruginosa and S. choleraesius). SPE and HPLC-DAD analysis showed that M. canescens and M. macrophylla contain glycosylated flavonoids, while the majority of extracts from M. taxifolia were aglycone flavonoids.
Paleologos, E K; Kontominas, M G
2005-06-10
A method using normal phase high performance liquid chromatography (NP-HPLC) with UV detection was developed for the analysis of acrylamide and methacrylamide. The method relies on the chromatographic separation of these analytes on a polar HPLC column designed for the separation of organic acids. Identification of acrylamide and methacrylamide is approached dually, that is directly in their protonated forms and as their hydrolysis products acrylic and methacrylic acid respectively, for confirmation. Detection and quantification is performed at 200 nm. The method is simple allowing for clear resolution of the target peaks from any interfering substances. Detection limits of 10 microg L(-1) were obtained for both analytes with the inter- and intra-day RSD for standard analysis lying below 1.0%. Use of acetonitrile in the elution solvent lowers detection limits and retention times, without impairing resolution of peaks. The method was applied for the determination of acrylamide and methacrylamide in spiked food samples without native acrylamide yielding recoveries between 95 and 103%. Finally, commercial samples of french and roasted fries, cookies, cocoa and coffee were analyzed to assess applicability of the method towards acrylamide, giving results similar with those reported in the literature.
Hiki, Asako; Yamajima, Yukiko; Uematsu, Yoko
2016-01-01
A method for nicotinic acid (NA) and nicotinamide (NAA) analysis in meats was developed. NA and NAA were extracted from meats or meat products with metaphosphate aqueous solution. The extract was cleaned up with an Oasis MCX cartridge. The cartridge was washed with 2% acetic acid (v/v) and acetic acid-methanol solution. NA and NAA were eluted with ammonia-methanol solution. NA and NAA in the eluate were chromatographed on a Scherzo SM-C18 (3.0×150 mm, 3.0 μm) column with 20 mmol/L ammonium acetate containing 0.1% acetic acid-acetonitrile (97 : 3) as a mobile phase and were monitored at 261 nm. Quantification was performed by LC and LC-MS/MS. Calibration curves showed high linearity (correlation coefficient>0.998) between 1-25 μg/mL for LC and LC-MS/MS. Recoveries were 84-108% (CV≦5.8%) by HPLC and 79-105% (CV≦9.0%) by LC-MS/MS. The limit of quantitation for NA was 0.005-0.01 g/kg and that for NAA was 0.01-0.02 g/kg.
Zhang, Liang Liang; Lin, Yi Ming
2008-12-04
Using acid-catalyzed degradation in the presence of cysteamine, the condensed tannins from Lithocarpus glaber leaves were characterized, following thiolysis, by means of reversed-phase HPLC, 13C-NMR and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) analyses. The thiolysis reaction products showed the presence of the procyanidin (PC) and prodelphinidin (PD) structures. The 13C-NMR spectrum revealed that the condensed tannins were comprised of PD (72.4%) and PC (27.6%), and with a greater content of cis configuration rather than the trans configuration of C2-C3. The MALDI-TOF MS analysis proved the presence of PD units, and the maximum degree of polymerization (DP) was an undecamer. The antioxidant activity of condensed tannins from L. glaber leaves was evaluated by using a free radical scavenging activity assay.
Stolarczyk, Mariusz; Hubicka, Urszula; Żuromska-Witek, Barbara; Krzek, Jan
2015-01-01
A new sensitive, simple, rapid, and precise HPLC method with diode array detection has been developed for separation and simultaneous determination of hydrochlorothiazide, furosemide, torasemide, losartane, quinapril, valsartan, spironolactone, and canrenone in combined pharmaceutical dosage forms. The chromatographic analysis of the tested drugs was performed on an ACE C18, 100 Å, 250×4.6 mm, 5 μm particle size column with 0.0.05 M phosphate buffer (pH=3.00)-acetonitrile-methanol (30+20+50 v/v/v) mobile phase at a flow rate of 1.0 mL/min. The column was thermostatted at 25°C. UV detection was performed at 230 nm. Analysis time was 10 min. The elaborated method meets the acceptance criteria for specificity, linearity, sensitivity, accuracy, and precision. The proposed method was successfully applied for the determination of the studied drugs in the selected combined dosage forms.
De Melo Abreu, Susana; Correia, Manuela; Herbert, Paulo; Santos, Lúcia; Alves, Arminda
2005-06-01
The Quinone outside Inhibitors (QoI) are one of the most important and recent fungicide groups used in viticulture and also allowed by Integrated Pest Management. Azoxystrobin, kresoxim-methyl and trifloxystrobin are the main active ingredients for treating downy and powdery mildews that can be present in grapes and wines. In this paper, a method is reported for the analysis of these three QoI-fungicides in grapes and wine. After liquid-liquid extraction and a clean-up on commercial silica cartridges, analysis was by isocratic HPLC with diode array detection (DAD) with a run time of 13 min. Confirmation was by solid-phase micro-extraction (SPME), followed by GC/MS determination. The main validation parameters for the three compounds in grapes and wine were a limit of detection up to 0.073 mg kg(-1), a precision not exceeding 10.0% and an average recovery of 93% +/- 38.
Song, Qingqing; Li, Jun; Liu, Xiao; Zhang, Yuan; Guo, Liping; Jiang, Yong; Song, Yuelin; Tu, Pengfei
2016-03-18
Incompatibility between the conventional pressurized liquid extraction (PLE) devices and high performance liquid chromatography (HPLC) extensively hinders direct and green chemical analysis of herbal materials. Herein, a facile PLE module was configured, and then it was online hyphenated with HPLC via a turbulent flow chromatography (TFC) column. Regarding PLE module, a long PEEK tube (0.13 × 1000 mm) was employed to generate desired pressure (approximately 13.0 MPa) when warm acidic water (70 °C) was delivered as extraction solvent at a high flow rate (2.5 mL/min), and a hollow guard column (3.0 × 4.0 mm) was implemented to hold crude materials. Effluent was collected from the outlet of PEEK tube, concentrated, and subjected onto HPLC coupled with hybrid ion trap-time of flight mass spectrometer to assess the extraction efficiency and also to profile the chemical composition of Cistanche deserticola (CD) that is honored as "Ginseng of the desert". Afterwards, a TFC column was introduced to accomplish online transmission of low molecule weight components from PLE module to HPLC coupled with diode array detection, and two electronic 6-port/2-channel valves were in charge of alternating the whole system between extraction (0-3.0 min) and elution (3.0-35.0 min) phases. Quantitative method was developed and validated for simultaneous determination of eight primary phenylethanoid glycosides in CD using online PLE-TFC-HPLC. All findings demonstrated that the home-made platform is advantageous at direct chemical analysis, as well as time-, solvent-, and material-savings, suggesting a robust tool for chemical fingerprinting of herbs. Copyright © 2016 Elsevier B.V. All rights reserved.
Kang, Kyo Bin; Ryu, Jayoung; Cho, Youngwoong; Choi, Sang-Zin; Son, Miwon; Sung, Sang Hyun
2017-05-01
DA-9801, a standardised 50% aqueous ethanolic extract of a mixture of Dioscorea japonica and D. nipponica, is a botanical drug candidate for the treatment of diabetic neuropathy, which finished its US phase II clinical trials recently. An advanced quality control method is needed for further development of DA-9801, considering its high contents of both primary and secondary metabolites. Development of a quality assessment strategy for DA-9801, based on the combination of UHPLC-QTOF/MS, HPLC-ELSD, and 1 H-NMR spectroscopy. The method was developed and tested with 15 batch products of DA-9801. The steroidal saponins of DA-9801 were tentatively identified by UHPLC-QTOF/MS and were quantified with the validated HPLC-ELSD method. Primary metabolites of DA-9801 were identified and profiled using 1 H-NMR spectrometry. The batch-to-batch equivalence of DA-9801 was tested with the 1 H-NMR spectra using spectral binning, correlation analysis, and principal component analysis. Six major saponins of DA-9801 were tentatively identified by UHPLC-QTOF/MS. Among them, protodioscin and dioscin were quantified by the validated HPLC-ELSD method. Twenty-six metabolites were identified in 1 H-NMR spectra. The similarity between DA-9801 batches could be evaluated with the NMR spectra of DA-9801. The 1 H-NMR method also revealed that two Dioscorea species contributed distinct amino acids to the contents of DA-9801. This study validates the effectiveness of UHPLC-QTOF/MS, HPLC-ELSD, and 1 H NMR-combined method for quality control of DA-9801 and its crude materials. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Madej, Katarzyna; Persona, Karolina; Wandas, Monika; Gomółka, Ewa
2013-10-18
A complex extraction system with the use of cloud-point extraction technique (CPE) was developed for sequential isolation of basic and acidic/neutral medicaments from human plasma/serum, screened by HPLC/DAD method. Eight model drugs (paracetamol, promazine, chlorpromazine, amitriptyline, salicyclic acid, opipramol, alprazolam and carbamazepine) were chosen for the study of optimal CPE conditions. The CPE technique consists in partition of an aqueous sample with addition of a surfactant into two phases: micelle-rich phase with the isolated compounds and water phase containing a surfactant below the critical micellar concentration, mainly under influence of temperature change. The proposed extraction system consists of two chief steps: isolation of basic compounds (from pH 12) and then isolation of acidic/neutral compounds (from pH 6) using surfactant Triton X-114 as the extraction medium. Extraction recovery varied from 25.2 to 107.9% with intra-day and inter-day precision (RSD %) ranged 0.88-1087 and 5.32-17.96, respectively. The limits of detection for the studied medicaments at λ 254nm corresponded to therapeutic or low toxic plasma concentration levels. Usefulness of the proposed CPE-HPLC/DAD method for toxicological drug screening was tested via its application to analysis of two serum samples taken from patients suspected of drug overdosing. Published by Elsevier B.V.
Abdelaleem, Eglal Adelhamid; Abdelwahab, Nada Sayed
2013-01-01
This work is concerned with development and validation of chromatographic and spectrophotometric methods for analysis of mebeverine HCl (MEH), diloxanide furoate (DF) and metronidazole (MET) in Dimetrol® tablets - spectrophotometric and RP-HPLC methods using UV detection. The developed spectrophotometric methods depend on determination of MEH and DF in the combined dosage form using the successive derivative ratio spectra method which depends on derivatization of the obtained ratio spectra in two steps using methanol as a solvent and measuring MEH at 226.4-232.2 nm (peak to peak) and DF at 260.6-264.8 nm (peak to peak). While MET concentrations were determined using first derivative (1D) at λ = 327 nm using the same solvent. The chromatographic method depends on HPLC separation on ODS column and elution with a mobile phase consisting water: methanol: triethylamine (25: 75: 0.5, by volume, orthophosphoric acid to pH =4). Pumping the mobile phase at 0.7 ml min-1 with UV at 230 nm. Factors affecting the developed methods were studied and optimized, moreover, they have been validated as per ICH guideline and the results demonstrated that the suggested methods are reproducible, reliable and can be applied for routine use with short time of analysis. Statistical analysis of the two developed methods with each other using F and student's-t tests showed no significant difference.
Extraction and identification of flavonoids from parsley extracts by HPLC analysis
NASA Astrophysics Data System (ADS)
Stan, M.; Soran, M. L.; Varodi, C.; Lung, I.
2012-02-01
Flavonoids are phenolic compounds isolated from a wide variety of plants, and are valuable for their multiple properties, including antioxidant and antimicrobial activities. In the present work, parsley (Petroselinum crispum L.) extracts were obtained by three different extraction techniques: maceration, ultrasonic-assisted and microwave-assisted solvent extractions. The extractions were performed with ethanol-water mixtures in various ratios. From these extracts, flavonoids like the flavones apigenin and luteolin, and the flavonols quercetin and kaempferol were identified using an HPLC Shimadzu apparatus equipped with PDA and MS detectors. The separation method involved a gradient step. The mobile phase consisted of two solvents: acetonitrile and distilled water with 0.1% formic acid. The separation was performed on a RP-C18 column.
Characterization of nutraceuticals and functional foods by innovative HPLC methods.
Corradini, Claudio; Galanti, Roberta; Nicoletti, Isabella
2002-04-01
In recent years there is a growing interest in food and food ingredient which may provide health benefits. Food as well as food ingredients containing health-preserving components, are not considered conventional food, but can be defined as functional food. To characterise such foods, as well as nutraceuticals specific, high sensitive and reproducible analytical methodologies are needed. In light of this importance we set out to develop innovative HPLC methods employing reversed phase narrow bore column and high-performance anion-exchange chromatographic methods coupled with pulsed amperometric detection (HPAEC-PAD), which are specific for carbohydrate analysis. The developed methods were applied for the separation and quantification of citrus flavonoids and to characterize fructooligosaccharide (FOS) and fructans added to functional foods and nutraceuticals.
Hauck, M; Köbler, H
1990-01-01
A method for the analysis of cyclamate in complex foodstuffs has been developed. This method is applicable in strongly coloured and protein-rich foodstuffs. The quantitative determination depends on oxidation of cyclamate to cyclohexylamine and derivatisation with 4-fluoro-7-nitrobenzofuran (NBD-F). The derivatives are analysed by HPLC on a C18: reversed-phase column, their minimal stability being 12 h. There are two possible methods of detection: (a) absorbance at 485 nm and (b) fluorescence with excitation at 485 nm and emission at 530 nm. The detection limit of cyclamate is 5 mg/kg foodstuff, with fluorescence detection 0.4 mg/kg. The recoveries are in the range of 88% to 104%.
Sinha, Arun Kumar; Verma, Subash Chandra; Sharma, Upendra Kumar
2007-01-01
A simple and fast method was developed using RP-HPLC for separation and quantitative determination of vanillin and related phenolic compounds in ethanolic extract of pods of Vanilla planifolia. Ten phenolic compounds, namely 4-hydroxybenzyl alcohol, vanillyl alcohol, 3,4-dihydroxybenzaldehyde, 4-hydroxybenzoic acid, vanillic acid, 4-hydroxybenzaldehyde, vanillin, p-coumaric acid, ferulic acid, and piperonal were quantitatively determined using ACN, methanol, and 0.2% acetic acid in water as a mobile phase with a gradient elution mode. The method showed good linearity, high precision, and good recovery of compounds of interest. The present method would be useful for analytical research and for routine analysis of vanilla extracts for their quality control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chenna, Ahmed; Gupta, Ramesh C.; Bonala, Radha R.
N2-(4-Hydroxyphenyl)-2'-deoxyguanosine-5'-O-DMT-3'-phosphoramidite has been synthesized and used to incorporate the N2-(4-hydroxyphenyl)-2'-dG (N2-4-HOPh-dG) into DNA, using solid-state synthesis technology. The key step to obtaining the xenonucleoside is a palladium (Xantphos-chelated) catalyzed N2-arylation (Buchwald-Hartwig reaction) of a fully protected 2'-deoxyguanosine derivative by 4-isobutyryloxybromobenzene. The reaction proceeded in good yield and the adduct was converted to the required 5'-O-DMT-3'-O-phosphoramidite by standard methods. The latter was used to synthesize oligodeoxynucleotides in which the N2-4-HOPh-dG adduct was incorporated site-specifically. The oligomers were purified by reverse-phase HPLC. Enzymatic hydrolysis and HPLC analysis confirmed the presence of this adduct in the oligomers.
[Determination of protopine in Corydalis racemose by HPLC].
Jiang, Xiazhi; Ye, Jinxia; Zeng, Jianwei; Zou, Xiuhong; Wu, Jinzhong
2010-09-01
To develop a HPLC method for determining the content of protopine in Corydalis racemose. Analysis was performed on a Gemini C18 column (4.6 mm x 250 mm, 5 microm) eluted with acetonitrile-water containing 0.8% triethylamine and 3% acetic acid acetum (20:80) as the mobile phase. The flow rate was 1.0 mL x min(-1). The detection wavelength was 289 nm. The average content of protopine in Herb of Racemose Corydalis was 0.905%. The calibration curve of protopine was linear between 0.124-1.36 microg (r = 0.9999). The average recovery was 98.49% with RSD 1.9%. This method is simple, reproducible and can be used to determine the content of protopine in C. racemose.
Han, Shu-ying; Liang, Chao; Zou, Kuan; Qiao, Jun-qin; Lian, Hong-zhen; Ge, Xin
2012-11-15
The variation in mobile phase pH and ionizable solute dissociation constant (pK(a)) with the change of organic modifier fraction in hydroorganic mobile phase has seemingly been a troublesome problem in studies and applications of reversed phase high performance liquid chromatography (RP-HPLC). Most of the early studies regarding the RP-HPLC of acid-base compounds have to measure the actual pH of the mixed mobile phase rigorously, sometimes bringing difficulties in the practices of liquid chromatographic separation. In this paper, the effect of this variation on the apparent n-octanol/water partition coefficient (K(ow)″) and the related quantitative structure-retention relationship (QSRR) of logK(ow)″ vs. logk(w), the logarithm of retention factor of analytes in neat aqueous mobile phases, was investigated for weakly acidic compounds. This QSRR is commonly used as a classical method for K(ow) measurement by RP-HPLC. The theoretical and experimental derivation revealed that the variation in mobile phase pH and solute pK(a) will not affect the QSRRs of acidic compounds. This conclusion is proved to be suitable for various types of ion-suppressors, i.e., strong acid (perchloric acid), weak acid (acetic acid) and buffer salt (potassium dihydrogen phosphate/phosphoric acid, PBS). The QSRRs of logK(ow)″ vs. logk(w) were modeled by 11 substituted benzoic acids using different types of ion-suppressors in a binary methanol-water mobile phase to confirm our deduction. Although different types of ion-suppressor all can be used as mobile phase pH modifiers, the QSRR model obtained by using perchloric acid as the ion-suppressor was found to have the best result, and the slightly inferior QSRRs were obtained by using acetic acid or PBS as the ion-suppressor. Copyright © 2012 Elsevier B.V. All rights reserved.
Reverse phase HPLC method for detection and quantification of lupin seed γ-conglutin.
Mane, Sharmilee; Bringans, Scott; Johnson, Stuart; Pareek, Vishnu; Utikar, Ranjeet
2017-09-15
A simple, selective and accurate reverse phase HPLC method was developed for detection and quantitation of γ-conglutin from lupin seed extract. A linear gradient of water and acetonitrile containing trifluoroacetic acid (TFA) on a reverse phase column (Agilent Zorbax 300SB C-18), with a flow rate of 0.8ml/min was able to produce a sharp and symmetric peak of γ-conglutin with a retention time at 29.16min. The identity of γ-conglutin in the peak was confirmed by mass spectrometry (MS/MS identification) and sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) analysis. The data obtained from MS/MS analysis was matched against the specified database to obtain the exact match for the protein of interest. The proposed method was validated in terms of specificity, linearity, sensitivity, precision, recovery and accuracy. The analytical parameters revealed that the validated method was capable of selectively performing a good chromatographic separation of γ-conglutin from the lupin seed extract with no interference of the matrix. The detection and quantitation limit of γ-conglutin were found to be 2.68μg/ml and 8.12μg/ml respectively. The accuracy (precision and recovery) analysis of the method was conducted under repeatable conditions on different days. Intra-day and inter-day precision values less than 0.5% and recovery greater than 97% indicated high precision and accuracy of the method for analysis of γ-conglutin. The method validation findings were reproducible and can be successfully applied for routine analysis of γ-conglutin from lupin seed extract. Copyright © 2017 Elsevier B.V. All rights reserved.
Wang, P; Wang, J; Cong, R; Dong, B
1997-05-01
A bonded phase for high performance liquid chromatography (HPLC) has been prepared by the new reaction between silica and silicon ether. The ether was synthesized from alkylchlorosilane and pentane-2,4-dione in the presence of imidazole under inert conditions by using anhydrous tetrahydrofuran as solvent. The bonded phase thus obtained was characterized by elemental analysis, diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy and HPLC evaluation. The carbon content was 9.4% and the surface coverage almost attained 3.0micromol/m2 without end-capping. The silanol absorption peaks of the product cannot be observed from the DRIFT spectrum, which revealed that the silanization reaction proceeded thoroughly. The basic solutes, such as aniline, o-toluidine, p-toluidine, N,N-dimethylaniline and pyridine were used as the probe solutes to examine their interaction with the residual silanols on the surface of the products. No buffer or salt was used in the mobile phase for these experiments. In comparison with an acidic solute, such as, phenol, basic aniline eluted in front of phenol, and the ratio of asymmetry of aniline peak to that of the phenol peak was 1.1. Furthermore the relative k' value of p-toluidine to that of o-toluidine was also 1.1. All the results showed that the stationary phase has better quality and reproducibility and can be used for the separation of basic solutes efficiently.
Bazylak, Grzegorz; Malak, Anna; Ali, Imran; Borowiak, Teresa; Dutkiewicz, Grzegorz
2008-06-01
Retention profiles in series of the neutral and highly hydrophobic 1,3,4-oxadiazoles containing chlorophenylurea and halogenobenzamide moiety and indicating analgesic activity were determined in the isocratic standard- and narrow-bore HPLC systems employing, respectively, various octadecylsilica and different calixarene bonded stationary phases. When acetonitrile - 2.65 mM phosphoric acid (55 : 45, %, v/v), pH* 3.25, mobile phase was applied retention of these compounds increased with decline of their overall hydrophobicity according to the general preference of more polar compounds by calixarene cavity in time of its non-specific host-guest supramolecular interactions with halogenated substances. The size of calixarene nanocavity and its upper-rim substitution did not change the observed retention order, resolution and selectivity of separation for oxadiazoles. Compared to the retention on the non-end-capped and the highly-end-capped octadecylsilica HPLC column a most improved separation of some regioisomers of halogenated 1,3,4-oxadiazoles were observed on both used calixarene-type HPLC supports. In addition, preliminary data on the self-assembled supramolecular crystal structure of exemplary 1,3,4-oxadiazolchlorophenylurea with cis-elongated conformation was reported and formation of the monovalent inclusion host-guest complexes between 1,3,4-oxadiazoles and each calixarene-type stationary phase was studied with molecular modelling MM+ and AM1 methods. The structural, isomeric and energetic factors leading to the hydrogen bond stabilized inclusion complexes between these species were considered and used for explanation of observed retention sequence and selectivity of 1,3,4-oxadiazoles separation in applied calixarene-based HPLC systems. All these data would be useful in future development of optimized procedures enabling encapsulation of 1,3,4-oxadiazolurea-type drugs with calixarenes.
Dai, Sheng-Yun; Xu, Bing; Zhang, Yi; Li, Jian-Yu; Sun, Fei; Shi, Xin-Yuan; Qiao, Yan-Jiang
2016-09-01
Coptis chinensis (Huanglian) is a commonly used traditional Chinese medicine (TCM) herb and alkaloids are the most important chemical constituents in it. In the present study, an isocratic reverse phase high performance liquid chromatography (RP-HPLC) method allowing the separation of six alkaloids in Huanglian was for the first time developed under the quality by design (QbD) principles. First, five chromatographic parameters were identified to construct a Plackett-Burman experimental design. The critical resolution, analysis time, and peak width were responses modeled by multivariate linear regression. The results showed that the percentage of acetonitrile, concentration of sodium dodecyl sulfate, and concentration of potassium phosphate monobasic were statistically significant parameters (P < 0.05). Then, the Box-Behnken experimental design was applied to further evaluate the interactions between the three parameters on selected responses. Full quadratic models were built and used to establish the analytical design space. Moreover, the reliability of design space was estimated by the Bayesian posterior predictive distribution. The optimal separation was predicted at 40% acetonitrile, 1.7 g·mL(-1) of sodium dodecyl sulfate and 0.03 mol·mL(-1) of potassium phosphate monobasic. Finally, the accuracy profile methodology was used to validate the established HPLC method. The results demonstrated that the QbD concept could be efficiently used to develop a robust RP-HPLC analytical method for Huanglian. Copyright © 2016 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
Pecher, Daniel; Dokupilová, Svetlana; Zelinková, Zuzana; Peppelenbosch, Maikel; Mikušová, Veronika; Mikuš, Peter
2017-08-05
Thiopurine S-methyltransferase (TPMT) plays an important role in the metabolism of thiopurines used in the therapy of inflammatory bowel diseases (IBD). In this work a new progressive method for the determination of TPMT activity in red blood cells lysates was developed. Analysis was carried out by means of hydrophilic interaction liquid chromatography (HILIC) hyphenated with mass spectrometry (MS). In comparison with reversed-phase high-performance liquid chromatography (RP-HPLC), that has been typically applied in determination of TPMT activity, the HILIC significantly improved the analytical signal provided by MS, shortened analysis time, and improved chromatographic resolution. The HILIC-HPLC-MS method was optimized and validated, providing favorable parameters of detection and quantitation limits (5.5 and 16.5pmol/mL, respectively), linearity (coefficient of determination 0.9999 in the range of 0.01-1.0nmol/mL), recovery and precision (93.25-100.37% with RSD 1.06-1.32% in the whole concentration range of QC samples). Moreover, in contrast to the conventional RP-HPLC-UV approach, the complex phenotype TPMT profiles can be reliably and without interferences monitored using the HILIC-HPLC-MS method. Such advanced monitoring can provide valuable detail information on the thiopurines (e.g. evaluating ratio of methylated and non-methylated 6-mercaptopurine) and, by that, TPMT action in biological systems before and during the therapy of IBD. Copyright © 2017 Elsevier B.V. All rights reserved.
A unified classification of stationary phases for packed column supercritical fluid chromatography.
West, C; Lesellier, E
2008-05-16
The use of supercritical fluids as chromatographic mobile phases allows to obtain rapid separations with high efficiency on packed columns, which could favour the replacement of numerous HPLC methods by supercritical fluid chromatography (SFC) ones. Moreover, despite some unexpected chromatographic behaviours, general retention rules are now well understood, and mainly depend on the nature of the stationary phase. The use of polar stationary phases improves the retention of polar compounds, when C18-bonded silica favours the retention of hydrocarbonaceous compounds. In this sense, reversed-phase and normal-phase chromatography can be achieved in SFC, as in HPLC. However, these two domains are clearly separated in HPLC due to the opposite polarity of the mobile phases used for each method. In SFC, the same mobile phase can be used with both polar and non-polar stationary phases. Consequently, the need for a novel classification of stationary phases in SFC appears, allowing a unification of the classical reversed- and normal-phase domains. In this objective, the paper presents the development of a five-dimensional classification based on retention data for 94-111 solutes, using 28 commercially available columns representative of three major types of stationary phases. This classification diagram is based on a linear solvation energy relationship, on the use of solvation vectors and the calculation of similarity factors between the different chromatographic systems. This classification will be of great help in the choice of the well-suited stationary phase, either in regards of a particular separation or to improve the coupling of columns with complementary properties.
Baranowska, Irena; Adolf, Weronika; Magiera, Sylwia
2015-11-01
A sensitive, stereoselective assay using solid phase extraction and high-performance liquid chromatography (HPLC) with fluorescence detection (FLD) was developed and validated for the analysis of enantiomers of metoprolol and its metabolites (α-hydroxymetoprolol, O-desmethylmetoprolol). Chiral separation was achieved using a CHIRALCEL OD-RH column, packed with cellulose tris-(3,5-dimethylphenyl-carbamate) stationary phase, employing a mobile phase composed by a mixture of 0.2% diethylamine in water and acetonitrile in gradient elution mode. Linear calibration curves were obtained over the range of 0.025-2.0μg/mL (R(2)>0.994) in urine for both enantiomers of metoprolol and its metabolites with quantitation limit of 0.025μg/mL. Intra and inter-day precision and accuracy were below 15% for both metoprolol and metabolites enantiomers. The recovery of enantiomer of metoprolol and its metabolite was greater than 68.0%, utilizing a SPE procedure. The method was tested with urine quality control samples and human urine fractions after administration of 50mg rac-metoprolol. Copyright © 2015 Elsevier B.V. All rights reserved.
Saeidi, Iman; Barfi, Behruz; Payrovi, Moazameh; Feizy, Javid; Sheibani, Hojat A; Miri, Mina; Ghollasi Moud, Farahnaz
2015-01-01
With polyamide (PA) as an efficient sorbent for solid phase extraction (SPE) of Sudan dyes II, III and Red 7B from saffron and urine, their determination by HPLC was performed. The optimum conditions for SPE were achieved using 7 mL methanol/water (1:9, v/v, pH 7) as the washing solvent and 3 mL tetrahydrofuran for elution. Good clean-up and high (above 90%) recoveries were observed for all the analytes. The optimized mobile phase composition for HPLC analysis of these compounds was methanol-water (70:30, v/v). The SPE parameters, such as the maximum loading capacity and breakthrough volume, were also determined for each analyte. The limits of detection (LODs), limits of quantification (LOQs), linear ranges and recoveries for the analytes were 4.6-6.6 microg/L, 13.0-19.8 microg/L, 13.0-5000 microg/L (r2>0.99) and 92.5%-113.4%, respectively. The precisions (RSDs) of the overall analytical procedure, estimated by five replicate measurements for Sudan II, III and Red 7B in saffron and urine samples were 2.3%, 1.8% and 3.6%, respectively. The developed method is simple and successful in the application to the determination of Sudan dyes in saffron and urine samples with HPLC coupled with UV detection.
Matysova, Ludmila; Zahalkova, Oxana; Klovrzova, Sylva; Sklubalova, Zdenka; Solich, Petr; Zahalka, Lukas
2015-01-01
A selective and sensitive gradient HPLC-UV method for quantification of sotalol hydrochloride and potassium sorbate in five types of oral liquid preparations was developed and fully validated. The separation of an active substance sotalol hydrochloride, potassium sorbate (antimicrobial agent), and other substances (for taste and smell correction, etc.) was performed using an Ascentis Express C18 (100 × 4.6 mm, particles 2.7 μm) solid core HPLC column. Linear gradient elution mode with a flow rate of 1.3 mL min(-1) was used, and the injection volume was 5 µL. The UV/Vis absorbance detector was set to a wavelength of 237 nm, and the column oven was conditioned at 25°C. A sodium dihydrogen phosphate dihydrate solution (pH 2.5; 17.7 mM) was used as the mobile phase buffer. The total analysis time was 4.5 min (+2.5 min for reequilibration). The method was successfully employed in a stability evaluation of the developed formulations, which are now already being used in the therapy of arrhythmias in pediatric patients; the method is also suitable for general quality control, that is, not only just for extemporaneous preparations containing the mentioned substances.
2015-01-01
A selective and sensitive gradient HPLC-UV method for quantification of sotalol hydrochloride and potassium sorbate in five types of oral liquid preparations was developed and fully validated. The separation of an active substance sotalol hydrochloride, potassium sorbate (antimicrobial agent), and other substances (for taste and smell correction, etc.) was performed using an Ascentis Express C18 (100 × 4.6 mm, particles 2.7 μm) solid core HPLC column. Linear gradient elution mode with a flow rate of 1.3 mL min−1 was used, and the injection volume was 5 µL. The UV/Vis absorbance detector was set to a wavelength of 237 nm, and the column oven was conditioned at 25°C. A sodium dihydrogen phosphate dihydrate solution (pH 2.5; 17.7 mM) was used as the mobile phase buffer. The total analysis time was 4.5 min (+2.5 min for reequilibration). The method was successfully employed in a stability evaluation of the developed formulations, which are now already being used in the therapy of arrhythmias in pediatric patients; the method is also suitable for general quality control, that is, not only just for extemporaneous preparations containing the mentioned substances. PMID:25878920
Kim, Ki-Hyun; Szulejko, Jan E.; Kim, Yong-Hyun; Lee, Min-Hee
2014-01-01
The relative performance figure of merits was investigated for the two most common analytical methods employed for carbonyl compounds (CC), for example, between high performance liquid chromatography (HPLC)-UV detector (with 2,4-dinitrophenylhydrazine (DNPH) derivatization) and thermal desorption (TD)-gas chromatography (GC)-mass spectrometry (MS) (without derivatization). To this end, the suitability of each method is assessed by computing the relative recovery (RR) between the gas- and liquid-phase standards containing a suite of CC such as formaldehyde (FA), acetaldehyde (AA), propionaldehyde (PA), butyraldehyde (BA), isovaleraldehyde (IA), and valeraldehyde (VA) along with benzene (B) as a recovery reference for the GC method. The results confirm that a TD-GC-MS is advantageous to attain the maximum recovery for the heavier CCs (i.e., with molecular weights (MW) above BA−MW ≥ 74). On the other hand, the HPLC-UV is favorable for the lighter CCs (like FA and AA) with the least bias. Such compound-specific responses for each platform are validated by relative ordering of CCs as a function of response factor (RF), method detection limit (MDL), and recovery pattern. It is thus desirable to understand the advantages and limitations of each method to attain the CC data with the least experimental bias. PMID:24719571
Newman, J; Egan, T; Harbourne, N; O'Riordan, D; Jacquier, J C; O'Sullivan, M
2014-08-01
Sensory evaluation can be problematic for ingredients with a bitter taste during research and development phase of new food products. In this study, 19 dairy protein hydrolysates (DPH) were analysed by an electronic tongue and their physicochemical characteristics, the data obtained from these methods were correlated with their bitterness intensity as scored by a trained sensory panel and each model was also assessed by its predictive capabilities. The physiochemical characteristics of the DPHs investigated were degree of hydrolysis (DH%), and data relating to peptide size and relative hydrophobicity from size exclusion chromatography (SEC) and reverse phase (RP) HPLC. Partial least square regression (PLS) was used to construct the prediction models. All PLS regressions had good correlations (0.78 to 0.93) with the strongest being the combination of data obtained from SEC and RP HPLC. However, the PLS with the strongest predictive power was based on the e-tongue which had the PLS regression with the lowest root mean predicted residual error sum of squares (PRESS) in the study. The results show that the PLS models constructed with the e-tongue and the combination of SEC and RP-HPLC has potential to be used for prediction of bitterness and thus reducing the reliance on sensory analysis in DPHs for future food research. Copyright © 2014 Elsevier B.V. All rights reserved.
Lesellier, Eric; Tchapla, Alain
2005-12-23
This paper describes a new test designed in subcritical fluid chromatography (SFC) to compare the commercial C18 stationary phase properties. This test provides, from a single analysis of carotenoid pigments, the absolute hydrophobicity, the silanol activity and the steric separation factor of the ODS stationary phases. Both the choice of the analytical conditions and the validation of the information obtained from the chromatographic measurements are detailed. Correlations of the carotenoid test results with results obtained from other tests (Tanaka, Engelhard, Sander and Wise) performed both in SFC and HPLC are discussed. Two separation factors, calculated from the retention of carotenoid pigments used as probe, allowed to draw a first classification diagram. Columns, which present identical chromatographic behaviors are located in the same area on this diagram. This location can be related to the stationary phase properties: endcapping treatments, bonding density, linkage functionality, specific area or silica pore diameter. From the first classification, eight groups of columns are distinguished. One group of polymer coated silica, three groups of polymeric octadecyl phases, depending on the pore size and the endcapping treatment, and four groups of monomeric stationary phases. An additional classification of the four monomeric groups allows the comparison of these stationary phases inside each group by using the total hydrophobicity. One hundred and twenty-nine columns were analysed by this simple and rapid test, which allows a comparison of columns with the aim of helping along their choice in HPLC.
HPLC separation of triacylglycerol positional isomers on a polymeric ODS column.
Kuroda, Ikuma; Nagai, Toshiharu; Mizobe, Hoyo; Yoshimura, Nobuhito; Gotoh, Naohiro; Wada, Shun
2008-07-01
A polymeric ODS column was applied to the resolution of triacylglycerol positional isomers (TAG-PI), i.e. 1,3-dioleoyl-2-palmitoyl-glycerol (OPO) and 1,2-dioleoyl-3-palmitoyl-rac-glycerol (OOP), with a recycle HPLC system. To investigate the ODS column species and the column temperatures for the resolution of a TAG-PI pair, a mixture of OPO and OOP was subjected to an HPLC system equipped with a non-endcapped polymeric, endcapped monomeric, endcapped intermediate, or non-endcapped monomeric ODS column at three different column temperatures (40, 25, or 10 degrees C). Only the non-endcapped polymeric ODS column achieved the separation of OPO and OOP, and the lowest column temperature (10 degrees C) showed the best resolution for them. The other pair of TAG-PI, a mixture of 1,3-dipalmitoyl-2-oleoyl-glycerol (POP) and 1,2-dipalmitoyl-3-oleoyl-rac-glycerol (PPO) was also subjected to the system equipped with a non-endcapped polymeric or monomeric ODS column at five different column temperatures (40, 32, 25, 17, and 10 degrees C). Thus, POP and PPO were also separated on only the non-endcapped polymeric ODS column at 25 degrees C. However, no clear peak appeared at 10 degrees C. These results would indicate that the polymeric ODS stationary phase has an ability to recognize the structural differences between TAG-PI pairs. Also, the column temperature is a very important factor for separating the TAG-PI pair, and the optimal temperature would relate to the solubility of TAG-PI in the mobile phase. Furthermore, the recycle HPLC system provided measurements for the separation and analysis of TAG-PI pairs.
Smittenberg, Rienk H; Hopmans, Ellen C; Schouten, Stefan; Sinninghe Damsté, Jaap S
2002-11-29
Repeated semi-preparative normal-phase HPLC was performed to isolate selected biomarkers from sediment extracts for radiocarbon analysis. Flow injection analysis-mass spectrometry was used for rapid analysis of collected fractions to evaluate the separation procedure, taking only 1 min per fraction. In this way 100-1000 microg of glycerol dialkyl glycerol tetraethers, sterol fractions and chlorophyll-derived phytol were isolated from typically 100 g of marine sediment, i.e., in sufficient quantities for radiocarbon analysis, without significant carbon isotopic fractionation or contamination.
Measurement of Menadione in urine by HPLC
USDA-ARS?s Scientific Manuscript database
Menadione may be an important metabolite of vitamin K that is excreted in urine. A high performance liquid chromatography (HPLC) method with a C30 column, fluorescence detection and post-column zinc reduction was developed to measure menadione in urine. The mobile phase was composed of 95% methanol...
Brabcová, Ivana; Hlaváčková, Markéta; Satínský, Dalibor; Solich, Petr
2013-11-15
A simple and automated HPLC column-switching method with rapid sample pretreatment has been developed for quantitative determination of β-carotene in food supplements. Commercially samples of food supplements were dissolved in chloroform with help of saponification with 1M solution of sodium hydroxide in ultrasound bath. A 20-min sample dissolution/extraction step was necessary before chromatography analysis to transfer β-carotene from solid state of food supplements preparations (capsules,tablets) to chloroform solution. Sample volume - 3μL of chloroform phase was directly injected into the HPLC system. Next on-line sample clean-up was achieved on the pretreatment precolumn Chromolith Guard Cartridge RP-18e (Merck), 10×4.6mm, with a washing mobile phase (methanol:water, 92:8, (v/v)) at a flow rate of 1.5mL/min. Valve switch to analytical column was set at 2.5min in a back-flush mode. After column switching to the analytical column Ascentis Express C-18, 30×4.6mm, particle size 2.7μm (Sigma Aldrich), the separation and determination of β-carotene in food supplements was performed using a mobile phase consisting of 100% methanol, column temperature at 60°C and flow rate 1.5mL/min. The detector was set at 450nm. Under the optimum chromatographic conditions standard calibration curve was measured with good linearity - correlation coefficient for β-carotene (r(2)=0.999014; n=6) between the peak areas and concentration of β-carotene 20-200μg/mL. Accuracy of the method defined as a mean recovery was in the range 96.66-102.40%. The intraday method precision was satisfactory at three concentration levels 20, 125 and 200μg/mL and relative standard deviations were in the range 0.90-1.02%. The chromatography method has shown high sample throughput during column-switching pretreatment process and analysis in one step in short time (6min) of the whole chromatographic analysis. Copyright © 2013 Elsevier Ltd. All rights reserved.
Yu, Huan; Tao, Yanfei; Chen, Dongmei; Wang, Yulian; Huang, Lingli; Peng, Dapeng; Dai, Menghong; Liu, Zhenli; Wang, Xu; Yuan, Zonghui
2011-09-01
The residues of sulfonamides (SAs) in the foods of animal origin are of the major concern because they are harmful to the consumer's health and could induce pathogens to develop resistance. Rapid and efficient determination methods are urgently in need. A quantitative high performance liquid chromatography method (HPLC) and a confirmative liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the simultaneous determination of 18 sulfonamides such as sulfamidinum, sulfanilamide, sulfisomidine, sulfadiazine, sulfapyridine, sulfathiazole, sulfamerazine, sulfadimidine, sulfamethoxypyridazine, sulfamethoxydiazine, sulfisoxazole, sulfachloropyridazine, sulfamethoxazole, sulfamonomethoxine, sulfadoxine, sulfaclozine, sulfadimethoxine, sulfaquinoxaline in the muscles, livers and kidneys of swine, bovine and chicken were developed and validated. The sample preparation procedures included a pressurized liquid extraction (PLE) with acetonitrile conducted at elevated temperature (70°C) and pressure (1400 psi). After clean-up with hydrophilic-lipophilic balance cartridge, the extraction solution was concentrated and analyzed by HPLC and LC-MS/MS analysis. 18 SAs were separated by the HPLC with a Zorbax SB-Aq-C18 column and the mobile phase of methanol/acetonitrile/1% acetic acid with a gradient system. The wavelength of UV for the HPLC detection was set at 285 nm. The LC-MS/MS analysis was achieved with a Hypersil Golden column and the mobile phase of acetonitrile and 0.1% formic acid aqueous solution with two gradient systems. The Limits of detection (LOD) and the limits of quantitation (LOQ) were 3 μg/kg and 10 μg/kg, respectively, for both of the HPLC and LC-MS/MS. Linearity was obtained with an average coefficient of determination (R) higher than 0.9980 over a dynamic range from the LOQ value up to 5000 μg/kg. The recoveries of the methods range from 71.1% to 118.3% with the relative standard derivation less than 13%. The peaks of interest with no interferences were observed throughout the chromatographic run. The sample pretreatment provided efficient extraction and cleanup that enables a sensitive and rugged determination of 18 SAs, the obtained results revealed that PLE, in comparison with other sample preparation methods applied, has significantly higher efficacy for SAs isolation from animal tissues. Copyright © 2011 Elsevier B.V. All rights reserved.
Quantitative study of flavonoids in leaves of citrus plants.
Kawaii, S; Tomono, Y; Katase, E; Ogawa, K; Yano, M; Koizumi, M; Ito, C; Furukawa, H
2000-09-01
Leaf flavonoids were quantitatively determined in 68 representative or economically important Citrus species, cultivars, and near-Citrus relatives. Contents of 23 flavonoids including 6 polymethoxylated flavones were analyzed by means of reversed phase HPLC analysis. Principal component analysis revealed that the 7 associations according to Tanaka's classification were observed, but some do overlap each other. Group VII species could be divided into two different subgroups, namely, the first-10-species class and the last-19-species class according to Tanaka's classification numbers.
Reversed-phase thin-layer chromatography of homologs of Antimycin-A and related derivatives
Abidi, Sharon L.
1989-01-01
Using a reversed-phase high-performance liquid chromatographic (HPLC) technique, a mixture of antimycins A was separated into eight hitherto unreported subcomponents, Ala, Alb, A2a, A2b, A3a, A3b, A4a, and A4b. Although a base-line resolution of the known four major antimycins Al, A2, A3, and A4 was readily achieved with mobile phases containing acetate buffers, the separation of the new antibiotic subcomponents was highly sensitive to variation in mobile phase conditions. The type and composition of organic modifiers, the nature of buffer salts, and the concentration of added electrolytes had profound effects on capacity factors, separation factors, and peak resolution values. Of the numerous chromatographic systems examined, a mobile phase consisting of methanol-water (70:30) and 0.005 M tetrabutylammonium phosphate at pH 3.0 yielded the most satisfactory results for the separation of the subcomponents. Reversed-phase gradient HPLC separation of the dansylated or methylated antibiotic compounds produced superior chromatographic characteristics and the presence of added electrolytes was not a critical factor for achieving separation. Differences in the chromatographic outcome between homologous and structural isomers were interpretated based on a differential solvophobic interaction rationale. Preparative reversed-phase HPLC under optimal conditions enabled isolation of pure samples of the methylated antimycin subcomponents for use in structural studies.
Legaz, M E; Acitores, E; Valverde, F
1992-12-01
A high performance liquid chromatography (HPLC) method has been developed for measuring salicylic acid in the plasma and saliva of children with juvenile chronic arthritis (JCA). Samples were extracted with diethyl ether and, after drying, redissolved in methanol to be chromatographed. Quantitation of salicylic acid was performed by reverse phase HPLC on a spherisorb ODS-2 column, using methanol: water: acetic acid as mobile phase. Phenolic was monitored by absorbance at 237 nm. Linearity between the amount of mass injected and the response in the detector was determined. This method was applied to compare concentrations of salivary and plasma salicylic acid. The method also permitted the quantitation of salivary salicylate as a non-invasive, indirect method for monitoring the concentration of plasma salicylate in patients with JCA.
Pascale, Michelangelo; De Girolamo, Annalisa; Visconti, Angelo; Magan, Naresh; Chianella, Iva; Piletska, Elena V; Piletsky, Sergey A
2008-02-25
Molecular modelling and computational design were used to identify itaconic acid (IA) as a functional monomer with high affinity towards deoxynivalenol (DON), a Fusarium-toxin frequently occurring in cereals. IA-based polymers were photochemically synthesised in dimethyl formamide (porogen) using ethylenglycol dimethacrylate as cross-linker and 1,1'-azo-bis(cyclohexane carbonitrile) as initiator, and the relevant binding interactions with DON in solvents with different polarity were investigated. The performances of the non-imprinted IA-based polymer (blank polymer, BP) and the corresponding molecularly imprinted polymer (MIP) were compared using DON as a template. Both BP and MIP were able to bind about 90% DON either in toluene, water or water containing 5% polyethylene glycol. Non-imprinted polymers with different molar ratios of IA to cross-linker were evaluated as adsorbents for solid-phase extraction (SPE) clean-up and pre-concentration of DON from wheat and pasta samples prior to HPLC analysis. Samples were extracted with PBS/0.1M EDTA solution and cleaned up through a cartridge containing blank IA-based polymer. The column was washed with PBS (pH 9.2) and the toxin was eluted with methanol and quantified by reversed-phase HPLC with UV detector (lambda=220nm), using methanol:water:acetic acid (15:85:0.1, v/v/v) as the mobile phase. Effective removal of matrix interferences was observed only for pasta with DON recoveries higher than 70% (RSD<7%, n=3) at levels close to or higher than EU regulatory limit.
Zhao, Yong-Gang; Chen, Xiao-Hong; Yao, Shan-Shan; Pan, Sheng-Dong; Li, Xiao-Ping; Jin, Mi-Cong
2012-01-01
A reversed-phase high-performance liquid chromatography (RP-HPLC) method was developed for the simultaneous determination of nine food additives, i.e., acesulfame, saccharin, caffeine, aspartame, benzoic acid, sorbic acid, stevioside, dehydroacetic acid and neotame in red wine. The effects of ion-suppressors, i.e., trifluoroacetic acid (TFA) and ammonium acetate (AmAc) on retention behavior of nine food additives in RP-HPLC separation were discussed in detail. The relationships between retention factors of solutes and volume percent of ion-suppressors in the mobile-phase systems of acetonitrile-TFA aqueous solution and acetonitrile-TFA-AmAc aqueous solution were quantitatively established, respectively. The results showed that the ion suppressors had not only an ion suppression effect, but also an organic modification effect on the acidic analytes. The baseline separation of nine food additives was completed by a gradient elution with acetonitrile-TFA(0.01%, v/v)-AmAc(2.5 mmol L(-1)) aqueous solution as the mobile phase. The recoveries were between 80.2 - 99.5% for all analytes with RSDs in the range of 1.5 - 8.9%. The linearities were in the range of 0.2 - 100.0 mg L(-1) with determination coefficients (r(2)) higher than 0.9991 for all analytes. The limits of quantification (LOQs) were between 0.53 - 0.99 mg L(-1). The applicability of the proposed method to detect and quantify food additives has been demonstrated in the analysis of 30 real samples.
Collier, J W; Shah, R B; Bryant, A R; Habib, M J; Khan, M A; Faustino, P J
2011-02-20
A rapid, selective, and sensitive gradient HPLC method was developed for the analysis of dissolution samples of levothyroxine sodium tablets. Current USP methodology for levothyroxine (L-T(4)) was not adequate to resolve co-elutants from a variety of levothyroxine drug product formulations. The USP method for analyzing dissolution samples of the drug product has shown significant intra- and inter-day variability. The sources of method variability include chromatographic interferences introduced by the dissolution media and the formulation excipients. In the present work, chromatographic separation of levothyroxine was achieved on an Agilent 1100 Series HPLC with a Waters Nova-pak column (250 mm × 3.9 mm) using a 0.01 M phosphate buffer (pH 3.0)-methanol (55:45, v/v) in a gradient elution mobile phase at a flow rate of 1.0 mL/min and detection UV wavelength of 225 nm. The injection volume was 800 μL and the column temperature was maintained at 28°C. The method was validated according to USP Category I requirements. The validation characteristics included accuracy, precision, specificity, linearity, and analytical range. The standard curve was found to have a linear relationship (r(2)>0.99) over the analytical range of 0.08-0.8 μg/mL. Accuracy ranged from 90 to 110% for low quality control (QC) standards and 95 to 105% for medium and high QC standards. Precision was <2% at all QC levels. The method was found to be accurate, precise, selective, and linear for L-T(4) over the analytical range. The HPLC method was successfully applied to the analysis of dissolution samples of marketed levothyroxine sodium tablets. Published by Elsevier B.V.
Collier, J.W.; Shah, R.B.; Bryant, A.R.; Habib, M.J.; Khan, M.A.; Faustino, P.J.
2011-01-01
A rapid, selective, and sensitive gradient HPLC method was developed for the analysis of dissolution samples of levothyroxine sodium tablets. Current USP methodology for levothyroxine (l-T4) was not adequate to resolve co-elutants from a variety of levothyroxine drug product formulations. The USP method for analyzing dissolution samples of the drug product has shown significant intra- and inter-day variability. The sources of method variability include chromatographic interferences introduced by the dissolution media and the formulation excipients. In the present work, chromatographic separation of levothyroxine was achieved on an Agilent 1100 Series HPLC with a Waters Nova-pak column (250mm × 3.9mm) using a 0.01 M phosphate buffer (pH 3.0)–methanol (55:45, v/v) in a gradient elution mobile phase at a flow rate of 1.0 mL/min and detection UV wavelength of 225 nm. The injection volume was 800 µL and the column temperature was maintained at 28 °C. The method was validated according to USP Category I requirements. The validation characteristics included accuracy, precision, specificity, linearity, and analytical range. The standard curve was found to have a linear relationship (r2 > 0.99) over the analytical range of 0.08–0.8 µg/mL. Accuracy ranged from 90 to 110% for low quality control (QC) standards and 95 to 105% for medium and high QC standards. Precision was <2% at all QC levels. The method was found to be accurate, precise, selective, and linear for l-T4 over the analytical range. The HPLC method was successfully applied to the analysis of dissolution samples of marketed levothyroxine sodium tablets. PMID:20947276
Buchanan, D.H.; Coombs, K.J.; Murphy, P.M.; Chaven, C.
1993-01-01
A convenient method for the quantitative determination of elemental sulfur in coal is described. Elemental sulfur is extracted from the coal with hot perchloroethylene (PCE) (tetrachloroethene, C2Cl4) and quantitatively determined by HPLC analysis on a C18 reverse-phase column using UV detection. Calibration solutions were prepared from sublimed sulfur. Results of quantitative HPLC analyses agreed with those of a chemical/spectroscopic analysis. The HPLC method was found to be linear over the concentration range of 6 ?? 10-4 to 2 ?? 10-2 g/L. The lower detection limit was 4 ?? 10-4 g/L, which for a coal sample of 20 g is equivalent to 0.0006% by weight of coal. Since elemental sulfur is known to react slowly with hydrocarbons at the temperature of boiling PCE, standard solutions of sulfur in PCE were heated with coals from the Argonne Premium Coal Sample program. Pseudo-first-order uptake of sulfur by the coals was observed over several weeks of heating. For the Illinois No. 6 premium coal, the rate constant for sulfur uptake was 9.7 ?? 10-7 s-1, too small for retrograde reactions between solubilized sulfur and coal to cause a significant loss in elemental sulfur isolated during the analytical extraction. No elemental sulfur was produced when the following pure compounds were heated to reflux in PCE for up to 1 week: benzyl sulfide, octyl sulfide, thiane, thiophene, benzothiophene, dibenzothiophene, sulfuric acid, or ferrous sulfate. A sluury of mineral pyrite in PCE contained elemental sulfur which increased in concentration with heating time. ?? 1993 American Chemical Society.
Wang, Lu; Qu, Haibin
2016-03-01
A method combining solid phase extraction, high performance liquid chromatography, and ultraviolet/evaporative light scattering detection (SPE-HPLC-UV/ELSD) was developed according to Quality by Design (QbD) principles and used to assay nine bioactive compounds within a botanical drug, Shenqi Fuzheng Injection. Risk assessment and a Plackett-Burman design were utilized to evaluate the impact of 11 factors on the resolutions and signal-to-noise of chromatographic peaks. Multiple regression and Pareto ranking analysis indicated that the sorbent mass, sample volume, flow rate, column temperature, evaporator temperature, and gas flow rate were statistically significant (p < 0.05) in this procedure. Furthermore, a Box-Behnken design combined with response surface analysis was employed to study the relationships between the quality of SPE-HPLC-UV/ELSD analysis and four significant factors, i.e., flow rate, column temperature, evaporator temperature, and gas flow rate. An analytical design space of SPE-HPLC-UV/ELSD was then constructed by calculated Monte Carlo probability. In the presented approach, the operating parameters of sample preparation, chromatographic separation, and compound detection were investigated simultaneously. Eight terms of method validation, i.e., system-suitability tests, method robustness/ruggedness, sensitivity, precision, repeatability, linearity, accuracy, and stability, were accomplished at a selected working point. These results revealed that the QbD principles were suitable in the development of analytical procedures for samples in complex matrices. Meanwhile, the analytical quality and method robustness were validated by the analytical design space. The presented strategy provides a tutorial on the development of a robust QbD-compliant quantitative method for samples in complex matrices.
Goto, Tomomi; Mikami, Eiichi; Ohno, Tsutomu; Matsumoto, Hiroshi
2002-04-01
A high-performance liquid chromatographic (HPLC) method for the simultaneous analysis of triamterene, trichlormethiazide, furosemide and spironolactone is presented for application in the examination of health food supplements advertising weight reduction and in the analysis of pharmaceuticals. The HPLC assay was performed under gradient conditions using a Wakosil ODS 5C18 column (5 microns, 150 x 4.6 mm i.d.). The mobile phase consisted of a gradient program with a mixture of water and acetonitrile containing 0.1% triethylamine adjusted with phosphoric acid to pH 3.0: from 0 to 6 min, 15% acetonitrile; from 6 to 20 min, linear gradient from 15 to 50% acetonitrile; and from 20 to 40 min, 50% acetonitrile. The column effluent was monitored from 0 to 20 min at 260 nm and from 20 to 40 min at 235 nm. The calibration curves of the four drugs showed good linearity and the correlation coefficients were better than 0.999 in all cases. The lower limits of detection were approximately 40 ng for each drug. Commercially available health food supplements and pharmaceuticals were analyzed after extraction with a mixture of methanol and acetic acid (99:1). The procedure described here is suitable for the screening of four diuretic drugs in adulterated supplements and for the quality control of pharmaceuticals with minimal sample preparation.
Jarmusch, Alan K; Musso, Ashleigh M; Shymanovich, Tatsiana; Jarmusch, Scott A; Weavil, Miranda J; Lovin, Mary E; Ehrmann, Brandie M; Saari, Susanna; Nichols, David E; Faeth, Stanley H; Cech, Nadja B
2016-01-05
Ergot alkaloids are mycotoxins with an array of biological effects. With this study, we investigated for the first time the application of atmospheric pressure photoionization (APPI) as an ionization method for LC-MS analysis of ergot alkaloids, and compared its performance to that of the more established technique of electrospray ionization (ESI). Samples of the grass Achnatherum robustum infected with the ergot producing Epichloë fungus were extracted using cold methanol and subjected to reserved-phase HPLC-ESI-MS and HPLC-APPI-MS analysis. The ergot alkaloids ergonovine and lysergic acid amide were detected in these samples, and quantified via external calibration. Validation parameters were recorded in accordance with ICH guidelines. A triple quadrupole MS operated in multiple reaction monitoring yielded the lowest detection limits. The performance of APPI and ESI methods was comparable. Both methods were subject to very little matrix interference, with percent recoveries ranging from 82% to 100%. As determined with HPLC-APPI-MS quantification, lysergic acid amide and ergonovine were extracted from an A. robustum sample infected with the Epichloë fungus at concentrations of 1.143±0.051 ppm and 0.2822±0.0071 ppm, respectively. There was no statistically significant difference between these concentrations and those determined using ESI for the same samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Shao, Jingyuan; Cao, Wen; Qu, Haibin; Pan, Jianyang; Gong, Xingchu
2018-01-01
The aim of this study was to present a novel analytical quality by design (AQbD) approach for developing an HPLC method to analyze herbal extracts. In this approach, critical method attributes (CMAs) and critical method parameters (CMPs) of the analytical method were determined using the same data collected from screening experiments. The HPLC-ELSD method for separation and quantification of sugars in Codonopsis Radix extract (CRE) samples and Astragali Radix extract (ARE) samples was developed as an example method with a novel AQbD approach. Potential CMAs and potential CMPs were found with Analytical Target Profile. After the screening experiments, the retention time of the D-glucose peak of CRE samples, the signal-to-noise ratio of the D-glucose peak of CRE samples, and retention time of the sucrose peak in ARE samples were considered CMAs. The initial and final composition of the mobile phase, flow rate, and column temperature were found to be CMPs using a standard partial regression coefficient method. The probability-based design space was calculated using a Monte-Carlo simulation method and verified by experiments. The optimized method was validated to be accurate and precise, and then it was applied in the analysis of CRE and ARE samples. The present AQbD approach is efficient and suitable for analysis objects with complex compositions.
Kamberi, Marika; Tran, Thu-Ngoc
2012-11-01
High-throughput 96-well solid phase extraction (SPE) plate with C-18 reversed phase sorbent followed by UV-visible (UV-Vis) microplate reader was applied to the analysis of hydrophobic drugs in surfactant-containing dissolution media, which are often used to evaluate the in-vitro drug release of drug eluting stents (DES). Everolimus and dissolution medium containing Triton X-405 were selected as representatives, and the appropriate SPE conditions (adsorption, washing and elution) were investigated to obtain a practical and reliable sample clean-up. It was shown that the developed SPE procedure was capable of removing interfering components (Triton X-405 and its impurities), allowing for an accurate automated spectrophotometric analysis to be performed. The proposed UV-Vis spectrophotometric method yielded equivalent results compared to a classical LC analysis method. Linear regression analysis indicated that both methods have the ability to obtain test results that are directly proportional to the concentration of analyte in the sample within the selected range of 1.0-10 μg/ml for everolimus, with a coefficient of correlation (r(2)) value of >0.998 and standard deviation of the residuals (Syx) of <2%. The individual recoveries of everolimus ranged from 97 to 104% for the UV-Vis spectrophotometric method and from 98 to 102 for the HPLC method, respectively. The 95% CI of the mean recovery for the UV-Vis spectrophotometric method was 99-102% and for the HPLC method was 99-101%. No statistical difference was found between the mean recoveries of the methods (p=0.42). Hence the methods are free from interference due to Triton and other chemicals present in the dissolution medium. The variation in the amount of everolimus estimated by UV-Vis spectrophotometric and HPLC methods was ≤3.5%, and the drug release profiles obtained by both methods were found to be equivalent by evaluation with two-one-sided t-test (two-tailed, p=0.62; mean of differences, 0.17; 95% CI, 0.62-0.96) and similarity factor f2 (f2 value, 87). The excellent conformity of the results makes UV-Vis spectrophotometer an ideal tool for analyzing the drugs in the media containing surfactants, after SPE. The 96-well SPE plates in combination with UV-Vis microplate reader provide a high throughput method for the determination of in-vitro drug release profile of DES. Switching from HPLC to UV-Vis spectrophotometer microplate reader assay reduces the solvent consumption and labor required for the sample analyses. This directly impacts the profitability of the laboratory. Copyright © 2012 Elsevier B.V. All rights reserved.
Isolation and purification of Cu-free methanobactin from Methylosinus trichosporium OB3b
2011-01-01
Background The isolation of highly pure copper-free methanobactin is a prerequisite for the investigation of the biogeochemical functions of this chalkophore molecule produced by methane oxidizing bacteria. Here, we report a purification method for methanobactin from Methylosinus trichosporium OB3b cultures based on reversed-phase HPLC fractionation used in combination with a previously reported resin extraction. HPLC eluent fractions of the resin extracted product were collected and characterized with UV-vis, FT-IR, and C-1s NEXAFS spectroscopy, as well as with elemental analysis and ESI-MS. Results The results showed that numerous compounds other than methanobactin were present in the isolate obtained with resin extraction. Molar C/N ratios, mass spectrometry measurements, and UV-vis spectra indicated that methanobactin was only present in one of the HPLC fractions. On a mass basis, methanobactin carbon contributed only 32% to the total organic carbon isolated with resin extraction. Our spectroscopic results implied that besides methanobactin, the organic compounds in the resin extract comprised breakdown products of methanobactin as well as polysaccharide-like substances. Conclusion Our results demonstrate that a purification step is indispensable in addition to resin extraction in order to obtain pure methanobactin. The proposed HPLC purification procedure is suitable for semi-preparative work and provides copper-free methanobactin. PMID:21299876
Wei, Mei; Du, Lan-zhe; Li, Hui; Zhang, Guang-da; Chen, Xiang-dong
2015-05-01
To study the correlation of characteristic spectra of Vinegar Corydalis Rhizoma decoction pieces, water decoction and formula granules by HPLC, and to investigate the transfer of the main chemical constituents between three different forms. The analysis was carried out by a Phenomenex Gemini C18 column (250 mm x 4.6 mm,5 μm) with acetonitrile-1% acetic acid and ammonium acetate buffer solution (pH 6.0) as the mobile phase in a gradient elution mode. The detection wavelength was 280 nm with a flow rate of 0.8 mL /min. The column temperature was 30 degrees C. The characteristic spectra from 11 batches of Vinegar Corydalis Rhizoma decoction pieces, 11 batches of water decoction and 11 batches of formula granules were established respectively. Ten peaks in the HPLC characteristic spectra from 11 batches of formula granules could be tracked in the water decoction, nine peaks in the HPLC characteristic spectra could be tracked in the decoction pieces. In the ten common peaks, four components such as protopine, palnatine chloride, berberine hydrochloride and tetrahydropalmatine were verified. The main chemical components of Vinegar Corydalis Rhizoma decoction pieces, water decoction and formula granules are basically the same, the common component contents have similar proportion.
Isolation and Purification of Cu-free Methanobactin from Methylosinus trichosporium OB3b
DOE Office of Scientific and Technical Information (OSTI.GOV)
M Pesch; I Christl; K Barmettler
The isolation of highly pure copper-free methanobactin is a prerequisite for the investigation of the biogeochemical functions of this chalkophore molecule produced by methane oxidizing bacteria. Here, we report a purification method for methanobactin from Methylosinus trichosporium OB3b cultures based on reversed-phase HPLC fractionation used in combination with a previously reported resin extraction. HPLC eluent fractions of the resin extracted product were collected and characterized with UV-vis, FT-IR, and C-1s NEXAFS spectroscopy, as well as with elemental analysis and ESI-MS. The results showed that numerous compounds other than methanobactin were present in the isolate obtained with resin extraction. Molar C/Nmore » ratios, mass spectrometry measurements, and UV-vis spectra indicated that methanobactin was only present in one of the HPLC fractions. On a mass basis, methanobactin carbon contributed only 32% to the total organic carbon isolated with resin extraction. Our spectroscopic results implied that besides methanobactin, the organic compounds in the resin extract comprised breakdown products of methanobactin as well as polysaccharide-like substances. Our results demonstrate that a purification step is indispensable in addition to resin extraction in order to obtain pure methanobactin. The proposed HPLC purification procedure is suitable for semi-preparative work and provides copper-free methanobactin.« less
Green analytical method development for statin analysis.
Assassi, Amira Louiza; Roy, Claude-Eric; Perovitch, Philippe; Auzerie, Jack; Hamon, Tiphaine; Gaudin, Karen
2015-02-06
Green analytical chemistry method was developed for pravastatin, fluvastatin and atorvastatin analysis. HPLC/DAD method using ethanol-based mobile phase with octadecyl-grafted silica with various grafting and related-column parameters such as particle sizes, core-shell and monolith was studied. Retention, efficiency and detector linearity were optimized. Even for column with particle size under 2 μm, the benefit of keeping efficiency within a large range of flow rate was not obtained with ethanol based mobile phase compared to acetonitrile one. Therefore the strategy to shorten analysis by increasing the flow rate induced decrease of efficiency with ethanol based mobile phase. An ODS-AQ YMC column, 50 mm × 4.6 mm, 3 μm was selected which showed the best compromise between analysis time, statin separation, and efficiency. HPLC conditions were at 1 mL/min, ethanol/formic acid (pH 2.5, 25 mM) (50:50, v/v) and thermostated at 40°C. To reduce solvent consumption for sample preparation, 0.5mg/mL concentration of each statin was found the highest which respected detector linearity. These conditions were validated for each statin for content determination in high concentrated hydro-alcoholic solutions. Solubility higher than 100mg/mL was found for pravastatin and fluvastatin, whereas for atorvastatin calcium salt the maximum concentration was 2mg/mL for hydro-alcoholic binary mixtures between 35% and 55% of ethanol in water. Using atorvastatin instead of its calcium salt, solubility was improved. Highly concentrated solution of statins offered potential fluid for per Buccal Per-Mucous(®) administration with the advantages of rapid and easy passage of drugs. Copyright © 2014 Elsevier B.V. All rights reserved.
Tong, Chaoying; Peng, Mijun; Tong, Runna; Ma, Ruyi; Guo, Keke; Shi, Shuyun
2018-01-19
Chemical profiling of natural products by high performance liquid chromatography (HPLC) was critical for understanding of their clinical bioactivities, and sample pretreatment steps have been considered as a bottleneck for analysis. Currently, concerted efforts have been made to develop sample pretreatment methods with high efficiency, low solvent and time consumptions. Here, a simple and efficient online extraction (OLE) strategy coupled with HPLC-diode array detector-quadrupole time-of-flight tandem mass spectrometry (HPLC-DAD-QTOF-MS/MS) was developed for rapid chemical profiling. For OLE strategy, guard column inserted with ground sample (2 mg) instead of sample loop was connected with manual injection valve, in which components were directly extracted and transferred to HPLC-DAD-QTOF-MS/MS system only by mobile phase without any extra time, solvent, instrument and operation. By comparison with offline heat-reflux extraction of Citrus paradisi cv. Changshanhuyu (Changshanhuyu) peel, OLE strategy presented higher extraction efficiency perhaps because of the high pressure and gradient elution mode. A total of twenty-two secondary metabolites were detected according to their retention times, UV spectra, exact mass, and fragmentation ions in MS/MS spectra, and nine of them were discovered in Changshanhuyu peel for the first time to our knowledge. It is concluded that the developed OLE-HPLC-DAD-QTOF-MS/MS system offers new perspectives for rapid chemical profiling of natural products. Copyright © 2017 Elsevier B.V. All rights reserved.
Tong, Runna; Peng, Mijun; Tong, Chaoying; Guo, Keke; Shi, Shuyun
2018-03-01
Chemical profiling of natural products by high performance liquid chromatography (HPLC) was critical for understanding of their clinical bioactivities, and sample pretreatment steps have been considered as a bottleneck for analysis. Currently, concerted efforts have been made to develop sample pretreatment methods with high efficiency, low solvent and time consumptions. Here, a simple and efficient online extraction (OLE) strategy coupled with HPLC-diode array detector-quadrupole time-of-flight tandem mass spectrometry (HPLC-DAD-QTOF-MS/MS) was developed for rapid chemical profiling. For OLE strategy, guard column inserted with ground sample (2 mg) instead of sample loop was connected with manual injection valve, in which components were directly extracted and transferred to HPLC-DAD-QTOF-MS/MS system only by mobile phase without any extra time, solvent, instrument and operation. By comparison with offline heat-reflux extraction for Fructus aurantii immaturus (Zhishi), OLE strategy presented higher extraction efficiency perhaps because of the high pressure and gradient elution mode. A total of eighteen flavonoids were detected according to their retention times, UV spectra, exact mass, and fragmentation ions in MS/MS spectra, and compound 9, natsudaidain-3-O-glucoside, was discovered in Zhishi for the first time. It is concluded that the developed OLE-HPLC-DAD-QTOF-MS/MS system offers new perspectives for rapid chemical profiling of natural products. Copyright © 2018. Published by Elsevier B.V.
Prencipe, Francesco Pio; Brighenti, Virginia; Rodolfi, Margherita; Mongelli, Andrea; dall'Asta, Chiara; Ganino, Tommaso; Bruni, Renato; Pellati, Federica
2014-07-04
The study was aimed at developing a new analytical method for the metabolite fingerprinting of bioactive compounds in Humulus lupulus L. (hop), together with a simple extraction procedure. Different extraction techniques, including maceration, heat reflux extraction (HRE), ultrasound-assisted extraction (UAE) and microwave-assisted extraction (MAE), were compared in order to obtain a high yield of the target analytes. Dynamic maceration for 30min with MeOH-HCOOH (99:1, v/v) as the extraction solvent provided the best result in terms of recovery of secondary metabolites. The analysis of hop constituents, including prenylflavonoids and prenylphloroglucinols (bitter acids), was carried out by means of HPLC-UV/DAD, HPLC-ESI-MS and MS(2), using an ion trap mass analyzer. An Ascentis Express C18 column (150mm×3.0mm I.D., 2.7μm) was used for the HPLC analysis, with a mobile phase composed of 0.25% formic acid in both water and acetonitrile, under gradient elution. The method validation was performed to show compliance with ICH guidelines. The validated technique was successfully applied to the phytochemical analysis of ten commercial cultivars and twenty-three wild Italian hop genotypes, thus demonstrating to be a reliable and useful tool for the comprehensive multi-component analysis of hop secondary metabolites. Copyright © 2014 Elsevier B.V. All rights reserved.
Jezová, Vera; Skládal, Jan; Eisner, Ales; Bajerová, Petra; Ventura, Karel
2007-12-07
This paper deals with comparison of efficiency of extraction techniques (solid-phase extraction, SPE and solid-phase microextraction, SPME) used for extraction of nitrate esters (ethyleneglycoldinitrate, EGDN and nitroglycerin, NG), representing the first step of the method of quantitative determination of trace concentrations of nitrate esters in water samples. EGDN and NG are subsequently determined by means of high-performance liquid chromatography with ultraviolet detection (HPLC-UV). Optimization of SPE and SPME conditions was carried out using model water samples. Seven SPE cartridges were tested and the conditions were optimized (type of sorbent, type and volume of solvent to be used as eluent). For both nitrate esters the limit of detection (LOD) and the limit of quantification (LOQ) obtained using SPE/HPLC-UV were 0.23 microg mL(-1) and 0.70 microg mL(-1), respectively. Optimization of SPME conditions: type of SPME fibre (four fibres were tested), type and time of sorption/desorption, temperature of sorption. PDMS/DVB (polydimethylsiloxane/divinylbenzene) fibre coating proved to be suitable for extraction of EGDN and NG. For this fibre the LOD and the LOQ for both nitrate esters were 0.16 microg mL(-1) and 0.50 microg mL(-1), respectively. Optimized methods SPE/HPLC-UV and SPME/HPLC-UV were then used for quantitative determination of nitrate esters content in real water samples from the production of EGDN and NG.
Leite, Tonny Cley Campos; de Sena, Amanda Reges; dos Santos Silva, Tânia Regina; dos Santos, Andrea Karla Almeida; Uetanabaro, Ana Paula Trovatti; Branco, Alexsandro
2012-01-01
Background: Marcetia genera currently comprises 29 species, with approximately 90% inhabiting Bahia (Brazil), and most are endemic to the highlands of the Chapada Diamantina (Bahia). Among the species, only M. taxifolia (A.St.-Hil.) DC. populates Brazil (state of Roraima to Paraná) and also Venezuela, Colombia, and Guyana. Objective: This work evaluated the antimicrobial activity of hexane, ethyl acetate, and methanol extracts of three species of Marcetia (Marcetia canescens Naud., M. macrophylla Wurdack, and M. taxifolia A.StHil) against several microorganism. In addition, the flavonoids were analyzed in extracts by HPLC-DAD. Materials and methods: The tests were made using Gram-positive (three strains of Staphylococcus aureus) and Gram-negative (two strains of Escherichia coli, a strain of Pseudomonas aeruginosa and another of Salmonella choleraesius) bacteria resistant and nonresistant to antibiotics and yeasts (two strains of Candida albicans and one of C. parapsilosis) by the disk diffusion method. Solid-phase extraction (SPE) was performed on the above extracts to isolate flavonoids, which were subsequently analyzed by high performance liquid chromatography coupled diode array detector (HPLC-DAD). Results: Results showed that extracts inhibited the Gram-positive bacteria and yeast. The hexane extracts possessed the lowest activity, while the ethyl acetate and methanolic extracts were more active. Conclusion: Marcetia taxifolia was more effective (active against 10 microorganisms studied), and only its methanol extract inhibited Gram-negative bacteria (P. aeruginosa and S. choleraesius). SPE and HPLC-DAD analysis showed that M. canescens and M. macrophylla contain glycosylated flavonoids, while the majority of extracts from M. taxifolia were aglycone flavonoids. PMID:23060695
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kertesz, Vilmos; Van Berkel, Gary J
2010-01-01
In this work, a commercially available autosampler was adapted to perform direct liquid microjunction (LMJ) surface sampling followed by a high-pressure liquid chromatography (HPLC) separation of the extract components and detection with electrospray ionization mass spectrometry (ESI-MS). To illustrate the utility of coupling a separation with this direct liquid extraction based surface sampling approach, four different organs (brain, lung, kidney, and liver) from whole-body thin tissue sections of propranolol dosed and control mice were examined. The parent drug was observed in the chromatograms of the surface sampling extracts from all the organs of the dosed mouse examined. In addition, twomore » isomeric phase II metabolites of propranolol (an aliphatic and an aromatic hydroxypropranolol glucuronide) were observed in the chromatograms of the extracts from lung, kidney, and liver. Confirming the presence of one or the other or both of these glucuronides in the extract from the various organs was not possible without the separation. These drug and metabolite data obtained using the LMJ surface sampling/HPLC-MS method and the results achieved by analyzing similar samples by conventional extraction of the tissues and subsequent HPLC-MS analysis were consistent.« less
Qi, Jin; Sun, Li-Qiong; Qian, Steven Y; Yu, Bo-Yang
2017-09-01
Natural products, such as rosmarinic acid and apigenin, can act as xanthine oxidase inhibitors (XOIs) as well as superoxide anion scavengers, and have potential for treatment of diseases associated with high uric acid levels and oxidative stress. However, efficient simultaneous screening of these two bioactivities in natural products has been challenging. We have developed a novel method by assembling a multi-hyphenated high performance liquid chromatography (HPLC) system that combines a photo-diode array, chemiluminescence detector and a HPLC system with a variable wavelength detector, to simultaneously detect components that act as both XOIs and superoxide anion scavengers in natural products. Superoxide anion scavenging activity in the analyte was measured by on-line chemiluminescence chromatography based on pyrogallol-luminol oxidation, while xanthine oxidase inhibitory activity was determined by semi-on-line HPLC analysis. After optimizing multiple elements, including chromatographic conditions (e.g., organic solvent concentration and mobile phase pH), concentrations of xanthine/xanthine oxidase and reaction temperature, our validated analytical method was capable of mixed sample analysis. The final results from our method are presented in an easily understood visual format including comprehensive bioactivity data of natural products. Copyright © 2017. Published by Elsevier B.V.
Stashenko, Elena E; Andrés Ordóñez, Sergio; Marín, Néstor Armando; Martínez, Jairo René
2009-10-01
Volatile and semi-volatile secondary metabolites, as well as aristolochic acids (AA), present in leaves, stems, and flowers of Aristolochia ringens were determined by gas chromatography (GC)-mass spectrometry (MS) and high-performance liquid chromatography (HPLC) methods, respectively. Metabolite isolation was performed using different extraction techniques: microwave-assisted hydrodistillation (MWHD), supercritical fluid extraction, and headspace solid-phase microextraction (HS-SPME). The chemical composition of the extracts and oils was established by GC-MS. The determinations of AAI and AAII were conducted by methanolic extraction of different plant parts followed by HPLC analysis. Essential oil yields from leaves and stems were 0.008 +/- 0.0022% and 0.047 +/- 0.0026%, respectively. Aristolochia ringens flowers did not yield essential oil under MWHD. Sesquiterpene hydrocarbons (66%) were the main compounds in the essential oil isolated from leaves whereas monoterpene hydrocarbons (73%) predominated in the stems essential oil. Yields of extracts isolated by SFE from leaves, stems, and flowers were 4 +/- 1.8%, 1.2 +/- 0.25%, and 4 +/- 1.8%, respectively. In vivo HS-SPME of flowers isolated compounds with known unpleasant smells such as volatile aldehydes and short-chain carboxylic acids. HPLC analysis detected the presence of AAII in the flowers of Aristolochia ringens at a concentration of 610 +/- 47 mg/kg of dried flower.
Expanding the term "Design Space" in high performance liquid chromatography (I).
Monks, K E; Rieger, H-J; Molnár, I
2011-12-15
The current article presents a novel approach to applying Quality by Design (QbD) principles to the development of high pressure reversed phase liquid chromatography (HPLC) methods. Four common critical parameters in HPLC--gradient time, temperature, pH of the aqueous eluent, and stationary phase--are evaluated within the Quality by Design framework by the means of computer modeling software and a column database, to a satisfactory degree. This work proposes the establishment of two mutually complimentary Design Spaces to fully depict a chromatographic method; one Column Design Space (CDS) and one Eluent Design Space (EDS) to describe the influence of the stationary phase and of the mobile phase on the separation selectivity, respectively. The merge of both Design Spaces into one is founded on the continuous nature of the mobile phase influence on retention and the great variety of the stationary phases available. Copyright © 2011 Elsevier B.V. All rights reserved.
Turiel, E; Tadeo, J L; Cormack, P A G; Martin-Esteban, A
2005-12-01
A molecularly imprinted polymer (MIP) tailored for the HPLC determination of the fungicide thiabendazole (TBZ) has been synthesised in one single preparative step by precipitation polymerisation in an acetonitrile/toluene co-solvent, using TBZ as template molecule, methacrylic acid as functional monomer and divinylbenzene-80 as crosslinker. The imprinted polymer particulates obtained were characterised by scanning electron microscopy and nitrogen sorption porosimetry. These analyses showed clearly that spherical polymer particulates (polymer microspheres) with narrow size distributions (average particle diameter approximately 3.5 microm) and well-developed pore structures had been produced. The imprinted microspheres were packed into a stainless steel HPLC column (50 x 4.6 mm id) and evaluated as an imprinted stationary phase. The imprinting effect was demonstrated clearly, i.e., the column was observed to bind TBZ selectively, and the effect of different chromatographic parameters (e.g., temperature, flow-rate and elution solvents) on TBZ retention/elution studied. Under optimised conditions, the TBZ-imprinted column was used for the HPLC-fluorescence (HPLC-F) determination of TBZ directly from orange (both whole fruit and juice), lemon, grape and strawberry extracts at low concentration levels in less than 15 min, without any need for a clean-up step in the analytical protocol.
Khalil, M W; Lawson, V
1983-04-01
Steroids in porcine follicular fluid have been concentrated by reverse phase chromatography in SEP-PAK C18 and purified further on the cation exchanger SP-Sephadex C-25. Fractionation into unconjugated neutral and phenolic steroids, glucuronides and sulfates was carried out on triethylaminohydroxypropyl Sephadex LH-20 (TEAP-LH-20). The unconjugated neutral fraction was analysed by high pressure liquid chromatography (HPLC) on a C18 radial cartridge 5 mm I.D.; 10 mu, or on a C18 5 mu RESOLVE column, and by capillary gas chromatography (GC) on a 12 M OV-1 cross linked fused silica column. Testosterone, progesterone and androstenedione were the major steroids detected by HPLC monitored at 254 nm, although 17- hydroxy-, 20 alpha-dihydro- and 20 beta-dihydroprogesterone were also present. Pregnenolone, pregnanediol, dehydroepiandrosterone, 17-hydroxypregnenolone and androsterone were detected by capillary CG as their 0-methyloxime trimethylsilyether derivatives. Further confirmation of structure was provided by complete mass spectral data or by selective ion monitoring (SIM).
Allen, Samuel J; Ott, Lisa S
2012-07-01
There are a wide and growing variety of feedstocks for biodiesel fuel. Most commonly, these feedstocks contain triglycerides which are transesterified into the fatty acid alkyl esters (FAAEs) which comprise biodiesel fuel. While the tranesterification reaction itself is simple, monitoring the reaction progress and reaction products is not. Gas chromatography-mass spectrometry is useful for assessing the FAAE products, but does not directly address either the tri-, di-, or monoglycerides present from incomplete transesterification or the free fatty acids which may also be present. Analysis of the biodiesel reaction mixture is complicated by the solubility and physical property differences among the components of the tranesterification reaction mixture. In this contribution, we present a simple, rapid HPLC method which allows for monitoring all of the main components in a biodiesel fuel transesterification reaction, with specific emphasis on the ability to monitor the reaction as a function of time. The utilization of a relatively new, core-shell stationary phase for the HPLC column allows for efficient separation of peaks with short elution times, saving both time and solvent.
Uchiyama, Kazuhisa; Kondo, Mari; Yokochi, Rika; Takeuchi, Yuri; Yamamoto, Atsushi; Inoue, Yoshinori
2011-07-01
A simple, selective and rapid analytical method for determination of trimethoprim (TMP) in honey samples was developed and validated. This method is based on a SPE technique followed by HPLC with photodiode array detection. After dilution and filtration, aliquots of 500 μL honey samples were directly injected to an on-line SPE HPLC system. TMP was extracted on an RP SPE column, and separated on a hydrophilic interaction chromatography column during HPLC analysis. At the first detection step, the noise level of the photodiode array data was reduced with two-dimensional equalizer filtering, and then the smoothed data were subjected to derivative spectrum chromatography. On the second-derivative chromatogram at 254 nm, the limit of detection and the limit of quantification of TMP in a honey sample were 5 and 10 ng/g, respectively. The proposed method showed high accuracy (60-103%) with adequate sensitivity for TMP monitoring in honey samples. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rapid purification of staphylococcal enterotoxin B by high-pressure liquid chromatography.
Strickler, M P; Neill, R J; Stone, M J; Hunt, R E; Brinkley, W; Gemski, P
1989-01-01
The Staphylococcus aureus enterotoxins represent a group of proteins that cause emesis and diarrhea in humans and other primates. We have developed a rapid two-step high-pressure liquid chromatography (HPLC) procedure for purification of staphylococcal enterotoxin B (SEB). Sterile filtrates (2.5 liters) of strain 10-275 were adsorbed directly onto a reversed-phase column (50 mm by 30 cm Delta Pak; 300 A [30 nm], 15 microns, C18). SEB was obtained by using a unique sequential gradient system. First, an aqueous ammonium acetate to acetonitrile gradient followed by an aqueous trifluoroacetic acid (TFA) wash was used to remove contaminants. A subsequent TFA to acetonitrile-TFA gradient eluted the bound SEB. Further purification was obtained by rechromatography on a cation-exchange column. From 35 to 45% of the SEB in starting filtrates was recovered. Analysis by immunoblotting of samples separated on sodium dodecyl sulfate-polyacrylamide gels indicated that HPLC-purified SEB exhibited immunological and biochemical properties similar to those of the SEB standard. Induction of an emetic response in rhesus monkeys showed that the HPLC-purified toxin also retained biological activity. Images PMID:2745678
A cytocidal tissue kallikrein isolated from mouse submandibular glands.
Murakami, K; Ikigai, H; Nagumo, N; Tomita, M; Shimamura, T
1989-11-06
A cytocidal factor against mouse thymocytes was purified from the submandibular glands of female BALB/c mice using Sephadex G-50 gel filtration chromatography and reverse-phase HPLC. SDS-PAGE and amino acid sequence analysis revealed that the cytocidal factor was mouse glandular kallikrein (mGK)-6. mGK-6 showed an optimal enzyme activity at pH 10 and a cytocidal activity against thymocytes in a dose-dependent manner.
1986-11-01
Uppsala, Sweden. Ovalbumin, bovine albumin fractio n V, soybean lecithin , sodium cnolate, gramicidin D and Dowex 50 x 8 (50-100 mesh) were obtained from...A-,.ino acid analysis 50 ug duplIcate samples of PXI and PXII, from reverse phase HPLC, were dissolved in 0.4 ml of 6 N HCI and hydrolyzed ocr 24 hr
Brega, A; Prandini, P; Amaglio, C; Pafumi, E
1990-12-28
A method for the biological monitoring of human exposure to aromatic hydrocarbons, nitrocompounds, amines and phenols has been developed. Phenol, cresols, p-aminophenol, p-nitrophenol and their glucorono- or sulpho-conjugates, were quantified by HPLC; 4-chlorphenol was added as internal standard. After enzymatic hydrolysis, the free compounds were extracted with an organic solvent and analyzed by an isocratic HPLC Perkin Elmer system at ambient temperature and at a flow-rate of 1 ml/min. The column was a reversed-phase Pecosphere 3 x 3 C18 Perkin Elmer; the mobile phase was a 30:70:0.1 (v/v/v) methanol-water-orthophosphoric acid mixture and the chromatogram was monitored at 215 nm. Identification was based on retention time and quantification was performed by automatic peak height determination, corrected for the internal standard. The recovery was ca. 95% for phenol and cresols; 90% for p-nitrophenol; 85% for p-aminophenol; the coefficients of variance were less than 6% within analysis (n = 20) and less than 10% between analysis (n = 20). The detection limits, at a signal/noise ratio of 2, were 0.5 mg/l for phenol and cresols and 1 mg/l for p-aminophenol and p-nitrophenol.
Moein, Mohammad Mahdi; Javanbakht, Mehran; Akbari-Adergani, Behrouz
2011-04-01
In this paper, a novel method is described for automated determination of dextromethorphan in biological fluids using molecularly imprinted solid-phase extraction (MISPE) as a sample clean-up technique combined with high performance liquid chromatography (HPLC). The water-compatible molecularly imprinted polymers (MIPs) were prepared using methacrylic acid as functional monomer, ethylene glycol dimethacrylate as cross-linker, chloroform as porogen and dextromethorphan as template molecule. These imprinted polymers were used as solid-phase extraction sorbent for the extraction of dextromethorphan from human plasma samples. Various parameters affecting the extraction efficiency of the MIP cartridges were evaluated. The high selectivity of the sorbent coupled to the high performance liquid chromatographic system permitted a simple and rapid analysis of this drug in plasma samples with limits of detection (LOD) and quantification (LOQ) of 0.12 ng/mL and 0.35 ng/mL, respectively. The MIP selectivity was evaluated by analyzing of the dextromethorphan in presence of several substances with similar molecular structures and properties. Results from the HPLC analyses showed that the recoveries of dextromethorphan using MIP cartridges from human plasma samples in the range of 1-50 ng/mL were higher than 87%. Copyright © 2011 Elsevier B.V. All rights reserved.
High-pressure liquid chromatography analysis of antibiotic susceptibility disks.
Hagel, R B; Waysek, E H; Cort, W M
1979-01-01
The analysis of antibiotic susceptibility disks by high-pressure liquid chromatography (HPLC) was investigated. Methods are presented for the potency determination of mecillinam, ampicillin, carbenicillin, and cephalothin alone and in various combinations. Good agreement between HPLC and microbiological data is observed for potency determinations with recoveries of greater than 95%. Relative standard deviations of lower than 2% are recorded for each HPLC method. HPLC methods offer improved accuracy and greater precision when compared to the standard microbiological methods of analysis for susceptibility disks. PMID:507793
How High Pressure Unifies Solvation Processes in Liquid Chromatography.
Bocian, Szymon; Škrinjar, Tea; Bolanca, Tomislav; Buszewski, Bogusław
2017-11-01
A series of core-shell-based stationary phases of varying surface chemistry were subjected to solvent adsorption investigation under ultra-HPLC conditions. Acetonitrile and water excess isotherms were measured using a minor disturbance method. It was observed that adsorption of organic solvent is unified under high pressure. Preferential solvation due to specific interactions between the stationary phases and solvent molecules was limited. The obtained results showed that the solvation process is almost independent of surface chemistry, in contrast to HPLC conditions in which specific interactions differentiate solvation processes.
Liu, Yongling; Chen, Tao; Chen, Chen; Zou, Denglang; Li, Yulin
2014-05-01
Aconitum pendulum Busch is rich C19 diterpenoid alkaloids, but there is no report of imidazole alkaloid in Aconitum pendulum Busch. In this study, an imidazole alkaloid named 1H-imidazole-2-carboxylic acid, butyl ester (ICABE) was successfully separated from Aconitum pendulum Busch with semi-preparative high-speed counter-current chromatography (HSCCC). The partition coefficient was measured by HPLC to select the solvent systems for ICABE separation by HSCCC. The separation was performed with a two-phase solvent system composed of n-hexane-chloroform-ethanol-water (10:1 : 13:2, v/v/v/v). The upper phase was used as the stationary phase and the lower phase as the mobile phase. It was operated at a flow rate of 1.8 mL/min. The apparatus was rotated at 850 r/min, and the detection wavelength was set at 230 nm. Under the selected conditions, a high efficiency separation of HSCCC was achieved, and 7.5 mg of ICABE was obtained from 100 mg of the crude sample of Aconitum pendulum in one-step separation within 350 min. The HPLC analysis showed that the purity of the compound was over 98%. The chemical structure was confirmed by UV, 1H-NMR and 13C-NMR. The established method is simple, highly efficient and suitable for large scale separation of ICABE from radix of Aconitum pendulum Busch.
Phiroonsoontorn, Nattaphorn; Sansuk, Sira; Santaladchaiyakit, Yanawath; Srijaranai, Supalax
2017-10-13
This research presents a simple and green in situ solid phase extraction (is-SPE) combined with high-performance liquid chromatography (HPLC) for the simultaneous analysis of tetracyclines (TCs) including tetracycline, oxytetracycline, and chlortetracycline. In is-SPE, TCs were efficiently extracted through the precipitation formation of dissolvable layered double hydroxides (LDHs) by mixing the LDH components such as magnesium and aluminum ions (both in metal chloride salts) thoroughly in an alkaline sample solution. After the centrifugation, the precipitate was completely dissolved with trifluoroacetic acid to release the enriched TCs, and then analyzed by HPLC. Under optimized conditions, this method gave good enrichment factors (EFs) of 41-93 with low limits of detection (LODs) of 0.7-6μg/L and limits of quantitation (LOQs) of 3-15μg/L. Also, the proposed method was successfully applied for the determination of TCs in water and milk samples with the recoveries ranging from 81.7-108.1% for water and 55.7-88.7% for milk. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hadad, Ghada M.; El-Gindy, Alaa; Mahmoud, Waleed M. M.
2008-08-01
High-performance liquid chromatography (HPLC) and multivariate spectrophotometric methods are described for the simultaneous determination of ambroxol hydrochloride (AM) and doxycycline (DX) in combined pharmaceutical capsules. The chromatographic separation was achieved on reversed-phase C 18 analytical column with a mobile phase consisting of a mixture of 20 mM potassium dihydrogen phosphate, pH 6-acetonitrile in ratio of (1:1, v/v) and UV detection at 245 nm. Also, the resolution has been accomplished by using numerical spectrophotometric methods as classical least squares (CLS), principal component regression (PCR) and partial least squares (PLS-1) applied to the UV spectra of the mixture and graphical spectrophotometric method as first derivative of the ratio spectra ( 1DD) method. Analytical figures of merit (FOM), such as sensitivity, selectivity, analytical sensitivity, limit of quantitation and limit of detection were determined for CLS, PLS-1 and PCR methods. The proposed methods were validated and successfully applied for the analysis of pharmaceutical formulation and laboratory-prepared mixtures containing the two component combination.
Tang, Wenfu; Wan, Meihua; Zhu, Zhengyan; Chen, Guanyuan; Huang, Xi
2008-04-29
Dachengqi Tang (DT) is a common traditional Chinese medicine formula for expelling neire ('internal heat') in the stomach and intestines. There was no reliable analytical method available for the quality control of DT. A high-performance liquid chromatography (HPLC) method with a reverse phase C18 column (150 x 4.6 mm) was developed. The mobile phase was methanol with 0.2% acetic acid. Eight markers including naringin, hesperidin, aloe emodin, rhein, honokiol, magnolol, emodin and chrysophanol were determined. Regression analysis revealed a linear relationship between the concentrations of the markers and the peak area ratio of the standards and internal standard. The limit of detection (S/N = 3) and the limit of qualification (RSD < 20%) ranged from 0.21 to 0.43 ng/microl and 0.76 to 1.74 ng/microl respectively. The recovery was between 95.6% and 103.4%. The tests on the samples from three batches of DT showed that the profiles of the markers did not vary significantly among batches. A reliable HPLC method for simultaneous determination of the eight markers in DT was developed.
Reddy, G V Ram; Kumar, A Praveen; Reddy, B Venkateswara; Sreeramulu, J
2009-10-01
Anhydro-simvastatin and simvastatin dimer are the two main impurities in the fermentation broth as well as in the final product of simvastatin, which is a hypolipidemic drug. An unknown impurity with m/z 451 for [(M + H)(+)] was detected in the analysis of final simvastatin drug sample. By using reverse phase high performance liquid chromatography (HPLC)-mass spectrometry (MS) and MS/MS spectra, the unknown impurity was detected and identified. Separation was achieved on ACE-5 C18 (150 x 4.6 mm, 3 microm column) at the flow rate of 1.2 ml min(-1) applying gradient elution of mobile phase A consisting of Milli-Q water of pH 3.0 with formic acid and B consisting of acetonitrile. MS/MS spectrum of the unknown impurity was obtained using HPLC-MS equipped with positive electrosoray ionization (ESI). The unknown impurity is named as 7-[7-(2,2-dimethyl-butyryloxy)-2,6-dimethyl-1,2,6,7,8,8a-hexahydro-naphthalen-1 -yl]-3-hydroxy-5-hydroxymethyl-heptanoic acid.
Hadad, Ghada M; El-Gindy, Alaa; Mahmoud, Waleed M M
2008-08-01
High-performance liquid chromatography (HPLC) and multivariate spectrophotometric methods are described for the simultaneous determination of ambroxol hydrochloride (AM) and doxycycline (DX) in combined pharmaceutical capsules. The chromatographic separation was achieved on reversed-phase C(18) analytical column with a mobile phase consisting of a mixture of 20mM potassium dihydrogen phosphate, pH 6-acetonitrile in ratio of (1:1, v/v) and UV detection at 245 nm. Also, the resolution has been accomplished by using numerical spectrophotometric methods as classical least squares (CLS), principal component regression (PCR) and partial least squares (PLS-1) applied to the UV spectra of the mixture and graphical spectrophotometric method as first derivative of the ratio spectra ((1)DD) method. Analytical figures of merit (FOM), such as sensitivity, selectivity, analytical sensitivity, limit of quantitation and limit of detection were determined for CLS, PLS-1 and PCR methods. The proposed methods were validated and successfully applied for the analysis of pharmaceutical formulation and laboratory-prepared mixtures containing the two component combination.
NASA Astrophysics Data System (ADS)
Yugatama, A.; Rohmani, S.; Dewangga, A.
2018-03-01
Atorvastatin is the primary choice for dyslipidemia treatment. Due to patent expiration of atorvastatin, the pharmaceutical industry makes copy of the drug. Therefore, the development methods for tablet quality tests involving atorvastatin concentration on tablets needs to be performed. The purpose of this research was to develop and validate the simple atorvastatin tablet analytical method by HPLC. HPLC system used in this experiment consisted of column Cosmosil C18 (150 x 4,6 mm, 5 µm) as the stationary reverse phase chomatography, a mixture of methanol-water at pH 3 (80:20 v/v) as the mobile phase, flow rate of 1 mL/min, and UV detector at wavelength of 245 nm. Validation methods were including: selectivity, linearity, accuracy, precision, limit of detection (LOD), and limit of quantitation (LOQ). The results of this study indicate that the developed method had good validation including selectivity, linearity, accuracy, precision, LOD, and LOQ for analysis of atorvastatin tablet content. LOD and LOQ were 0.2 and 0.7 ng/mL, and the linearity range were 20 - 120 ng/mL.
Roosta, Mostafa; Ghaedi, Mehrorang; Daneshfar, Ali
2014-10-15
A novel approach, ultrasound-assisted reverse micelles dispersive liquid-liquid microextraction (USA-RM-DLLME) followed by high performance liquid chromatography (HPLC) was developed for selective determination of acetoin in butter. The melted butter sample was diluted and homogenised by n-hexane and Triton X-100, respectively. Subsequently, 400μL of distilled water was added and the microextraction was accelerated by 4min sonication. After 8.5min of centrifugation, sedimented phase (surfactant-rich phase) was withdrawn by microsyringe and injected into the HPLC system for analysis. The influence of effective variables was optimised using Box-Behnken design (BBD) combined with desirability function (DF). Under optimised experimental conditions, the calibration graph was linear over the range of 0.6-200mgL(-1). The detection limit of method was 0.2mgL(-1) and coefficient of determination was 0.9992. The relative standard deviations (RSDs) were less than 5% (n=5) while the recoveries were in the range of 93.9-107.8%. Copyright © 2014. Published by Elsevier Ltd.
Mekonnen, Tessema F; Panne, Ulrich; Koch, Matthias
2017-05-01
An automated method is presented for fast simulation of (bio)transformation products (TPs) of the organophosphate insecticide chlorpyrifos (CPF) based on electrochemistry coupled online to liquid chromatography-mass spectrometry (EC-LC-MS). Oxidative TPs were produced by a boron doped diamond (BDD) electrode, separated by reversed phase HPLC and online detected by electrospray ionization-mass spectrometry (ESI-MS). Furthermore, EC oxidative TPs were investigated by HPLC-tandem mass spectrometry (LC-MS/MS) and FT-ICR high resolution mass spectrometry (HRMS) and compared to in vitro assay metabolites (rat and human liver microsomes). Main phase I metabolites of CPF: chlorpyrifos oxon (CPF oxon), trichloropyridinol (TCP), diethylthiophosphate (DETP), diethylphosphate (DEP), desethyl chlorpyrifos (De-CPF), and desethyl chlorpyrifos oxon (De-CPF oxon), were successfully identified by the developed EC-LC-MS method. The EC-LC-MS method showed similar metabolites compared to the in vitro assay with possibilities of determining reactive species. Our results reveal that online EC-(LC)-MS brings an advantage on time of analysis by eliminating sample preparation steps and matrix complexity compared to conventional in vivo or in vitro methods.
Sim, Arum; Cho, Yunju; Kim, Daae; Witt, Matthias; Birdwell, Justin E.; Kim, Byung Ju; Kim, Sunghwan
2014-01-01
A reversed-phase separation technique was developed in a previous study (Loegel et al., 2012) and successfully applied to the de-asphalted fraction of crude oil. However, to the best of our knowledge, the molecular-level characterization of oil fractions obtained by reversed-phase high-performance liquid chromatography (HPLC) coupled with high-resolution mass spectrometry (MS) has not yet been reported. A detailed characterization of the oil fractions prepared by reversed-phase HPLC was performed in this study. HPLC fractionation was carried out on conventional crude oil and an oil shale pyrolysate. The analyses of the fractions showed that the carbon number of alkyl chains and the double bond equivalent (DBE) value were the major factors determining elution order. The compounds with larger DBE (presumably more condensed aromatic structures) and smaller carbon number (presumably compounds with short side chains) were eluted earlier but those compounds with lower DBE values (presumably less aromatic structures) and higher carbon number (presumably compounds with longer alkyl chains) eluted later in the chromatograms. This separation behavior is in good agreement with that expected from the principles of reversed-phase separation. The data presented in this study show that reversed-phase chromatography is effective in separating crude oil compounds and can be combined with ultrahigh-resolution MS data to better understand natural oils and oil shale pyrolysates.
High-performance liquid-chromatographic separation of subcomponents of antimycin-A
Abidi, S.L.
1988-01-01
Using a reversed-phase high-performance liquid chromatographic (HPLC) technique, a mixture of antimycins A was separated into eight hitherto unreported subcomponents, Ala, Alb, A2a, A2b, A3a, A3b, A4a, and A4b. Although a base-line resolution of the known four major antimycins Al, A2, A3, and A4 was readily achieved with mobile phases containing acetate buffers, the separation of the new antibiotic subcomponents was highly sensitive to variation in mobile phase conditions. The type and composition of organic modifiers, the nature of buffer salts, and the concentration of added electrolytes had profound effects on capacity factors, separation factors, and peak resolution values. Of the numerous chromatographic systems examined, a mobile phase consisting of methanol-water (70:30) and 0.005 M tetrabutylammonium phosphate at pH 3.0 yielded the most satisfactory results for the separation of the subcomponents. Reversed-phase gradient HPLC separation of the dansylated or methylated antibiotic compounds produced superior chromatographic characteristics and the presence of added electrolytes was not a critical factor for achieving separation. Differences in the chromatographic outcome between homologous and structural isomers were interpretated based on a differential solvophobic interaction rationale. Preparative reversed-phase HPLC under optimal conditions enabled isolation of pure samples of the methylated antimycin subcomponents for use in structural studies.
Ko, Kyung Yuk; Lee, Chae A; Choi, Jae Chon; Kim, Meehye
2014-01-01
To date there have been no reports of methods to determine Tinopal CBS-X. We developed a rapid and simple method to determine the Tinopal CBS-X content in rice noodles and rice papers using HPLC equipped with fluorescence detection. Heating the rice noodles and rice papers to 80°C after adding 75% methanol solution induced the release of Tinopal CBS-X from processed rice products. Tinopal CBS-X was separated using an isocratic mobile phase comprising 50% acetonitrile/water containing 0.4% tetrabutyl ammonium hydrogen sulphate at pH 8.0. The samples suspected to be positive by HPLC analysis were then confirmed by LC-MS/MS analysis. This study also investigated the Tinopal CBS-X content of three rice noodle products and two rice papers. The limits of quantification for rice papers and rice noodles were 1.58 and 1.51 µg kg(-1), respectively, and their correlation curves showed good linearity with r(2) ≥ 0.9997 and ≥ 0.9998, respectively. Moreover, rice papers had recoveries of 70.3-83.3% with precision ranging from 5.0% to 7.9%, whereas rice noodles had slightly lower recoveries of 63.4-78.7% and precisions of 8.5-11.5%. Only one rice noodle product contained Tinopal CBS-X, at around 2.1 mg kg(-1), whereas it was not detected in four other samples. Consequently, Tinopal CBS-X from rice noodles and rice papers can be successfully detected using the developed pre-treatment and ion-pairing HPLC system coupled with fluorescence detection.
ERIC Educational Resources Information Center
Bindis, Michael P.; Bretz, Stacey Lowery; Danielson, Neil D.
2011-01-01
The high-performance liquid chromatography (HPLC) experiment, most often done in the undergraduate analytical instrumentation laboratory course, generally illustrates reversed-phase chromatography using a commercial C[subscript]18 silica column. To avoid the expense of periodic column replacement and introduce a choice of columns with different…
A NEW HPLC METHOD FOR SEPARATION OF PHYTOPLANKTON PIGMENTS IN NATURAL SAMPLES
A new high-performance liquid chromatographic (HPLC) method was developed to analyze, in a single run, most polar and non-polar chlorophylls and carotenoids from marine phytoplankton. The method is based on a reverse-phase amide C16 (RP-amide C16) column and an elution gradient o...
USDA-ARS?s Scientific Manuscript database
An HPLC method permitting the simultaneous determination of fourteen compounds (phenylalkanoids and monoterpenoids) from the roots of Rhodiola rosea was developed. A separation was achieved within 35 minutes by using C-18 column material, a water/acetonitrile mobile phase, both containing 0.05% phos...
Wahab, M Farooq; Ibrahim, Mohammed E A; Lucy, Charles A
2013-06-18
Stationary phases for hydrophilic interaction liquid chromatography (HILIC) are predominantly based on silica and polymer supports. We present porous graphitic carbon particles with covalently attached carboxylic acid groups (carboxylate-PGC) as a new HILIC stationary phase. PGC particles were modified by adsorbing the diazonium salt of 4-aminobenzoic acid onto the PGC, followed by reduction of the adsorbed salt with sodium borohydride. The newly developed carboxylate-PGC phase exhibits different selectivity than that of 35 HPLC columns, including bare silica, zwitterionic, amine, reversed, and unmodified PGC phases. Carboxylate-PGC is stable from pH 2.0 to 12.6, yielding reproducible retention even at pH 12.6. Characterization of the new phase is presented by X-ray photoelectron spectroscopy, thermogravimetry, zeta potentials, and elemental analysis. The chromatographic performance of carboxylate-PGC as a HILIC phase is illustrated by separations of carboxylic acids, nucleotides, phenols, and amino acids.
Li, Xiaobing; Zhou, Man; Turson, Mamat; Lin, Shen; Jiang, Ping; Dong, Xiangchao
2013-05-21
A novel imprinted monolithic material with the ability of protein exclusion was developed for the selective extraction of clenbuterol (CLE) from biological samples by direct injection in the HPLC analysis. The material has an imprinted inner structure and hydrophilic outer layer. The reversible addition-fragmentation chain transfer (RAFT) polymerization was employed in the material preparation by a two-step procedure. In the first step, clenbuterol imprinted monolithic polymer was synthesized by combining the molecular imprinting and the RAFT polymerization techniques. The resulting monolithic polymer has a RAFT chain transfer agent (trithioester groups) in its structure, which was used to graft poly(glycerol mono-methacrylate) [pGMMA] in the second step by post-RAFT polymerization. The hydrophilic pGMMA layers grafted on the surface of the imprinted monolith created barriers for protein diffusion. More than 90% of bovine serum albumin can be excluded from the pGMMA coated monolithic column. Meanwhile the clenbuterol was retained selectively with a large retention factor. The result indicated that the column, denoted as RA-MIM, has both the merits of a molecularly imprinted polymer and restricted access material. By using RA-MIM as the solid-phase extraction pre-column, an on-line column-switching HPLC method for the determination of clenbuterol in human serum has been established and validated. The recoveries of clenbuterol from the serum were 87.3-96.9% in the spiked level 2-1000 ng mL(-1). Both good linearity (R = 0.999) and acceptable reproducibility (RSD < 7.0%) were obtained. The limit of detection and the limit of quantitation were 0.7 ng mL(-1) and 2.0 ng mL(-1) respectively, which is sensitive in terms of UV detection. The results have demonstrated that the RAFT polymerization can be used to synthesize bi-functional monolithic columns by using its living reaction property. The resulting RA-MIM in this research can be used for efficient clenbuterol determination by HPLC from biological samples.
Li, Hui; Lu, Dingqiang; Liu, Weimin
2004-05-01
A method for determining glycyrrhizinic acid in the biotransformation system by reversed-phase high performance liquid chromatography (RP-HPLC) was developed. The HPLC conditions were as follows: Hypersil C18 column (4.6 mm i.d. x 250 mm, 5 microm) with a mixture of methanol-water-acetic acid (70:30:1, v/v) as the mobile phase; flow rate at 1.0 mL/min; and UV detection at 254 nm. The linear range of glycyrrhizinic acid was 0.2-20 microg. The recoveries were 98%-103% with relative standard deviations between 0.16% and 1.58% (n = 3). The method is simple, rapid and accurate for determining glycyrrhizinic acid.
Tong, Shengqiang; Shen, Mangmang; Cheng, Dongping; Ito, Yoichiro; Yan, Jizhong
2014-01-01
This work concentrates on the separation mechanism and application of chiral ligand exchange high-speed countercurrent chromatography (HSCCC) in enantioseparations, and comparison with traditional chiral ligand exchange high performance liquid chromatography (HPLC). The enantioseparation of ten aromatic α-hydroxyl acids were performed by these two chromatographic methods. Results showed that five of the racemates were successfully enantioseparated by HSCCC while only three of the racemates could be enantioseparated by HPLC using a suitable chiral ligand mobile phase additive. For HSCCC, the two-phase solvent system was composed of butanol-water (1:1, v/v), to which N-n-dodecyl-L-proline was added in the organic phase as chiral ligand and cupric acetate was added in the aqueous phase as a transition metal ion. Various operation parameters in HSCCC were optimized by enantioselective liquid-liquid extraction. Based on the results of the present studies the separation mechanism for HSCCC was proposed. For HPLC, the optimized mobile phase composed of aqueous solution containing 6 mmol L−1 L-phenylalanine and 3 mmol L−1 cupric sulfate and methanol was used for enantioseparation. Among three ligands tested on a conventional reverse stationary phase column, only one was found to be effective. In the present studies HSCCC presented unique advantages due to its high versatility of two-phase solvent systems and it could be used as an alternative method for enantioseparations. PMID:25087742
Karr, Dale B.; Waters, James K.; Emerich, David W.
1983-01-01
Ion-exclusion high-pressure liquid chromatography (HPLC) was used to measure poly-β-hydroxybutyrate (PHB) in Rhizobium japonicum bacteroids. The products in the acid digest of PHB-containing material were fractionated by HPLC on Aminex HPX-87H ion-exclusion resin for organic acid analysis. Crotonic acid formed from PHB during acid digestion was detected by its intense absorbance at 210 nm. The Aminex-HPLC method provides a rapid and simple chromatographic technique for routine analysis of organic acids. Results of PHB analysis by Aminex-HPLC were confirmed by gas chromatography and spectrophotometric analysis. PMID:16346443
NASA Astrophysics Data System (ADS)
Gouda, Ayman A.; Hashem, Hisham; Jira, Thomas
2014-09-01
Simple, rapid and accurate high performance liquid chromatographic (HPLC) and spectrophotometric methods are described for determination of antihistaminic acrivastine in capsules. The first method (method A) is based on accurate, sensitive and stability indicating chromatographic separation method. Chromolith® Performance RP-18e column, a relatively new packing material consisting of monolithic rods of highly porous silica, was used as stationary phase applying isocratic binary mobile phase of ACN and 25 mM NaH2PO4 pH 4.0 in the ratio of 22.5:77.5 at flow rate of 5.0 mL/min and 40 °C. A diode array detector was used at 254 nm for detection. The elution time of acrivastine was found to be 2.080 ± 0.032. The second and third methods (methods B and C) are based on the oxidation of acrivastine with excess N-bromosuccinimide (NBS) and determination of the unconsumed NBS with, metol-sulphanilic acid (λmax: 520 nm) or amaranth dye (λmax: 530 nm). The reacted oxidant corresponds to the drug content. Beer’s law is obeyed over the concentration range 1.563-50, 2.0-20 and 1.0-10 μg mL-1 for methods A, B and C, respectively. The limits of detection and quantitation were 0.40, 0.292 and 0.113 μg mL-1 and 0.782, 0.973 and 0.376 μg mL-1 for methods A, B and C, respectively. The HPLC method was validated for system suitability, linearity, precision, limits of detection and quantitation, specificity, stability and robustness. Stability tests were done through exposure of the analyte solution for four different stress conditions and the results indicate no interference of degradants with HPLC-method. The proposed methods was favorably applied for determination of acrivastine in capsules formulation. Statistical comparison of the obtained results from the analysis of the studied drug to those of the reported method using t- and F-tests showed no significant difference between them.
Bierla, Katarzyna; Flis-Borsuk, Anna; Suchocki, Piotr; Szpunar, Joanna; Lobinski, Ryszard
2016-06-22
The reaction of sunflower oil with selenite produces a complex mixture of selenitriglycerides with antioxidant and anticancer properties. To obtain insight into the identity and characteristics of the species formed, an analytical approach based on the combination of high-performance liquid chromatography (HPLC) with (78)Se-specific selenium detection by inductively coupled plasma mass spectrometry (ICP MS) and high-resolution (100 000), high mass accuracy (<1 ppm) molecule-specific detection by electrospray-Orbitrap MS(3) was developed. For the first time, a non-aqueous mobile phase gradient was used in reversed-phase HPLC-ICP MS for the separation of a complex mixture of selenospecies and a mathematical correction of the background signal was developed. The identical chromatographic conditions served for the sample introduction into electrospray MS. Two types of samples were analyzed: sunflower oil dissolved in isopropanol and methanol extract of the oil containing 65% selenium. HPLC-ICP MS showed 14 peaks, 11 of which could also be detected in the methanol extract. Isotopic patterns corresponding to molecules with one or two selenium atoms could be attributed by Orbitrap MS at the retention times corresponding to the HPLC-ICP MS peak apexes. Structural data for these species were acquired by MS(2) and MS(3) fragmentation of protonated or sodiated ions using high-energy collisional dissociation (HCD). A total of 11 selenium-containing triglycerol derivatives resulting from the oxidation of one or two double bonds of linoleic acid and analogous derivatives of glycerol-mixed linoleate(s)/oleinate(s) have been identified for the first time. The presence of these species was confirmed by the targeted analysis in the total oil isopropanol solution. Their identification corroborated the predicted elution order in reversed-phase chromatography: LLL (glycerol trilinoleate), LLO (glycerol dilinoleate-oleinate), LOO (glycerol linoleate-dioleinate), OOO (glycerol trioleinate), of which the extrapolation allowed for the prediction of the identity [glycerol dioleinate-stearate (OOS) and glycerol oleinate-distearate (OSS)] of the nonpolar species detected by ICP MS in the oil but not detected by electrospray MS.
Can, Nafiz O; Arli, Goksel
2010-01-01
Development and validation of an RP-HPLC method for determination of levetiracetam in pharmaceutical tablets is described. The separation and quantification of levetiracetam and caffeine (internal standard) were performed using a single analytical procedure with two different types of stationary phases, conventional Phenomenex Gemini C18 (100 x 4.6 mm, 5 microm) and Merck Chromolith Performance RP18e (100 x 4.6 mm, macropore size 2 mm, micropore size 13 nm) monolithic silica. Five-microliter aliquots of samples were injected into the system and eluted using water-acetonitrile (90 + 10, v/v) mobile phase pumped at the rate of 1 mL/min. The analyte peaks were detected at 200 nm using a diode array detector with adequate resolution. Validation studies were performed using the method recommended by the International Conference on Harmonization, the U.S. Pharmacopeia, and AOAC INTERNATIONAL, which includes accuracy, precision, range, limits, robustness, and system suitability parameters. Levetiracetam and caffeine were detected in about 7 min using the conventional column, whereas less than 5 min was required when the monolithic column was used. Calibration plots had r values close to unity in the range of 0.8-8.0 microg/mL. Assay of levetiracetam in a tablet formulation was demonstrated as an application to real samples.
Zhang, Yuping; Nie, Mingkun; Shi, Shuyun; You, Qingping; Guo, Junfang; Liu, Liangliang
2014-03-01
Radix Astragali is one of the most popular traditional medicinal herb and healthy dietary supplement. Isoflavonoids and astragalosides are the main bioactive ingredients. However, the systematic bioactive component analysis is inadequate so far. Then a facile method based on Fe3O4@SiO2-human serum albumin (Fe3O4@SiO2-HSA) magnetic solid phase fishing integrated with two-dimensional high-performance liquid chromatography-diode array detector-mass spectrometry (2D HPLC-DAD-MS(n)) was developed to fish out and identify HSA binders from Radix Astragali. The immobilized HSA displayed a high stability with 96.2% retained after ten consecutive cycles. 2D HPLC system (size exclusion chromatography×reversed phase chromatography, SEC×RP) were developed and optimised. Forty-seven bioactive compounds including thirty-four isoflavonoids and thirteen astragalosides were screened and identified or tentatively deduced based on their retention time, ultraviolet (UV), accurate molecular weight and diagnostic fragment ions. The results indicated that the integrated method could be widely applied for systematical fishing and identification of bioactive compounds, especially for low-abundance and overlapped compounds, from complex mixtures. Copyright © 2013 Elsevier Ltd. All rights reserved.
Michael, Claudia; Rizzi, Andreas M
2015-02-27
Glycan reductive isotope labeling (GRIL) using (12)C6-/(13)C6-aniline as labeling reagent is reported with the aim of quantitative N-glycan fingerprinting. Porous graphitized carbon (PGC) as stationary phase in capillary scale HPLC coupled to electrospray mass spectrometry with time of flight analyzer was applied for the determination of labeled N-glycans released from glycoproteins. The main benefit of using stable isotope-coding in the context of comparative glycomics lies in the improved accuracy and precision of the quantitative analysis in combined samples and in the potential of correcting for structure-dependent incomplete enzymatic release of oligosaccharides when comparing identical target proteins. The method was validated with respect to mobile phase parameters, reproducibility, accuracy, linearity and limit of detection/quantification (LOD/LOQ) using test glycoproteins. It is shown that the developed method is capable of determining relative amounts of N-glycans (including isomers) comparing two samples in one single HPLC-MS run. The analytical potential and usefulness of GRIL in combination with PGC-ESI-TOF-MS is demonstrated comparing glycosylation in human monoclonal antibodies produced in Chinese hamster ovary cells (CHO) and hybridoma cell lines. Copyright © 2015 Elsevier B.V. All rights reserved.
Carradori, Simone; Cirilli, Roberto; Dei Cicchi, Simona; Ferretti, Rosella; Menta, Sergio; Pierini, Marco; Secci, Daniela
2012-12-21
Here, we report on the simultaneous direct HPLC diastereo- and enantioseparation of 3-methylcyclohexanone thiosemicarbazone (3-MCET) on a polysaccharide-based chiral stationary phase under normal-phase conditions. The optimized chromatographic system was employed in dynamic HPLC experiments (DHPLC), as well as detection technique in a batch wise approach to determine the rate constants and the corresponding free energy activation barriers of the spontaneous, base- and acid-promoted E/Z diastereomerization of 3-MCET. The stereochemical characterization of four stereoisomers of 3-MCET was fully accomplished by integrating the results obtained by chemical correlation method with those derived by theoretical calculations and experimental investigations of circular dichroism (CD). As a final goal, a deepened analysis of the perturbing effect exercised by the stationary phase on rate constant values measured through DHPLC determinations as a function of the chromatographic separation factor α of the interconverting species was successfully accomplished. This revealed quite small deviations from the equivalent kinetic values obtained by off-column batch wise procedure, and suggested a possible effective correction of rate constants measured by DHPLC approach. Copyright © 2012 Elsevier B.V. All rights reserved.
Thurman, E.M.; Ferrer, I.; Barcelo, D.
2001-01-01
An evaluation of over 75 pesticides by high-performance liquid chromatography/mass spectrometry (HPLC/MS) clearly shows that different classes of pesticides are more sensitive using either atmospheric pressure chemical ionization (APCI) or electrospray ionization (ESI). For example, neutral and basic pesticides (phenylureas, triazines) are more sensitive using APCI (especially positive ion). While cationic and anionic herbicides (bipyridylium ions, sulfonic acids) are more sensitive using ESI (especially negative ion). These data are expressed graphically in a figure called an ionization-continuum diagram, which shows that protonation in the gas phase (proton affinity) and polarity in solution, expressed as proton addition or subtraction (pKa), is useful in selecting APCI or ESI. Furthermore, sodium adduct formation commonly occurs using positive ion ESI but not using positive ion APCI, which reflects the different mechanisms of ionization and strengthens the usefulness of the ionization-continuum diagram. The data also show that the concept of "wrong-way around" ESI (the sensitivity of acidic pesticides in an acidic mobile phase) is a useful modification of simple pKa theory for mobile-phase selection. Finally, this finding is used to enhance the chromatographic separation of oxanilic and sulfonic acid herbicides while maintaining good sensitivity in LC/MS using ESI negative.
Vrkoslav, Vladimír; Urbanová, Klára; Háková, Matina; Cvačka, Josef
2013-08-09
Wax esters (WEs), esters of long-chain fatty acids and long-chain alcohols, were analysed by Ag-HPLC/APCI-MS/MS. Two ChromSpher Lipids columns connected in series (a total length of 50cm) and hexane-2-propanol-acetonitrile mobile phases were used to achieve good separation of the molecular species. The chromatographic behaviour of WEs was studied under optimised conditions: retention increased with the number of double bonds and with the temperature (15-35°C); retention times were affected by the double-bond position, trans isomers eluted earlier than cis isomers, and the WEs were partially separated depending on the aliphatic-chain length. The WEs provided simple APCI spectra with [M+H](+) ions, the MS/MS spectra showed fragments, which allowed their identification. The method was applied for an analysis of the WE mixtures from jojoba oil and human hair and the results were compared with analogous data from an optimised RP-HPLC system. Copyright © 2013 Elsevier B.V. All rights reserved.
Qi, Ping; Lin, Zhihao; Li, Jiaxu; Wang, ChengLong; Meng, WeiWei; Hong, Hong; Zhang, Xuewu
2014-12-01
In this work, a simple, rapid and sensitive analytical method for the determination of rhodamine B in chili-containing foodstuffs is described. The dye is extracted from samples with methanol and analysed without further cleanup procedure by high-performance liquid chromatography (HPLC) coupled to fluorescence detection (FLD). The influence of matrix fluorescent compounds (capsaicin and dihydrocapsaicin) on the analysis was overcome by the optimisation of mobile-phase composition. The limit of determination (LOD) and limit of quantification (LOQ) were 3.7 and 10 μg/kg, respectively. Validation data show a good repeatability and within-lab reproducibility with relative standard deviations <10%. The overall recoveries are in the range of 98-103% in chili powder and in the range of 87-100% in chili oil depending on the concentration of rhodamine B in foodstuffs. This method is suitable for the routine analysis of rhodamine B due to its sensitivity, simplicity, reasonable time and cost. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Marsella, Adam M.; Huang, Jiping; Ellis, David A.; Mabury, Scott A.
1999-12-01
An undergraduate field experiment is described for the measurement of nicotine and various carbonyl compounds arising from environmental tobacco smoke. Students are introduced to practical techniques in HPLC-UV and GC-NPD. Also introduced are current methods in personal air sampling using small and portable field sampling pumps. Carbonyls (formaldehyde, acetaldehyde, acrolein, and acetone) are sampled with silica solid-phase extraction cartridges impregnated with 2,4-dinitrophenylhydrazine, eluted, and analyzed by HPLC-UV (360-380 nm). Nicotine is sampled using XAD-2 cartridges, extracted, and analyzed by GC-NPD. Students gain an appreciation for the problems associated with measuring ubiquitous pollutants such as formaldehyde, as well as the issue of chromatographic peak resolution when trying to resolve closely eluting peaks. By allowing the students to formulate their own hypothesis and sampling scheme, critical thinking and problem solving are developed in addition to analysis skills. As an experiment in analytical environmental chemistry, this laboratory introduces the application of field sampling and analysis techniques to the undergraduate lab.
Ji, Xiaohu; Hu, Guixin; Zhang, Qiongyan; Wang, Fengshan; Liu, Chunhui
2016-11-05
Uncovering the biological roles of heparosan oligosaccharides requires a simple and robust method for their separation and identification. We reported on systematic investigations of the retention behaviors of synthetic heparosan oligosaccharides on porous graphitic carbon (PGC) column by HPLC with charged aerosol detection. Oligosaccharides were strongly retained by PGC material in water-acetonitrile mobile phase, and eluted by trifluoroacetic acid occurring as narrow peaks. Addition of small fraction of methanol led to better selectivity of PGC to oligosaccharides than acetonitrile modifier alone, presumably, resulting from displacement of methanol to give different chemical environment at the PGC surface. Van't-Hoff plots demonstrated that retention behaviors highly depended on the column temperature and oligosaccharide moieties. By implementing the optimal MeOH content and temperature, a novel isocratic elution method was successfully developed for baseline resolution and identification of seven heparosan oligosaccharides using PGC-HPLC-CAD/MS. This approach allows for rapid analysis of heparosan oligosaccharides from various sources. Copyright © 2016 Elsevier Ltd. All rights reserved.
Arabi, Maryam; Ghaedi, Mehrorang; Ostovan, Abbas; Tashkhourian, Javad; Asadallahzadeh, Hamideh
2016-11-01
In this work molecular imprinted nanoparticles (MINPs) was synthesized and applied for ultrasonic assisted solid phase extraction of celecoxib (CEL) from human plasma sample following its combination by HPLC-UV. The MINPs were prepared in a non-covalent approach using methacrylic acid as monomer, CEL as template, ethylene glycol dimethacrylate as cross-linker, and 2,2-azobisisobutyronitrile (AIBN) as the initiator of polymerization. pH, volume of rinsing and eluent solvent and amount of sorbent influence on response were investigated using factorial experimental design, while optimum point was achieved and set as 250mg sorbent, pH 7.0, 1.5mL washing solvent and 2mL eluent by analysis of results according to design expert (DX) software. At above specified conditions, CEL in human plasma with complicated matrices with acceptable high recoveries (96%) and RSD% lower than 10% was quantified and estimated. The proposed MISPE-HPLC-UV method has linear responses among peak area and concentrations of CEL in the range of 0.2-2000μgL(-1), with regression coefficient of 0.98. The limit of detection (LOD) and quantification (LOQ) based on three and ten times of the noise of HPLC peaks correspond to blank solution were 0.08 and 0.18μgL(-1), respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
Sun, Min; Feng, Juanjuan; Bu, Yanan; Luo, Chuannan
2015-08-21
A fiber-in-tube solid-phase microextraction (SPME) device was developed with copper wire and copper tube, which was served as both the substrate and sorbent with high physical strength and good flexibility. Its morphology and surface properties were characterized by scanning electron microscopy and energy dispersive X-ray spectrometry. It was coupled with high performance liquid chromatography (HPLC) equipment by replacing the sample loop of six-port injection valve, building the online SPME-HPLC system conveniently. Using ten polycyclic aromatic hydrocarbons (PAHs) as model analytes, extraction conditions including sampling rate, extraction time, organic content and desorption time were investigated and optimized. The copper fiber-in-tube exhibits excellent extraction efficiency toward PAHs, with enrichment factors from 268 to 2497. The established online SPME-HPLC method provides good linearity (0.05-100μgL(-1)) and low detection limits (0.001-0.01μgL(-1)) for PAHs. It has been used to determine PAHs in water samples, with recoveries in the range of 86.2-115%. Repeatability on the same extraction tube is in the range of 0.6-3.6%, and repeatability among three tubes is in the range of 5.6-20.1%. Compared with phthalates, anilines and phenols, the copper fiber-in-tube possesses good extraction selectivity for PAHs. The extraction mechanism is probably related to hydrophobic interaction and π-electron-metal interaction. Copyright © 2015 Elsevier B.V. All rights reserved.
Ford, Michael J; Deibel, Michael A; Tomkins, Bruce A; Van Berkel, Gary J
2005-07-15
Quantitative determination of caffeine on reversed-phase C8 thin-layer chromatography plates using a surface sampling electrospray ionization system with tandem mass spectrometry detection is reported. The thin-layer chromatography/electrospray tandem mass spectrometry method employed a deuterium-labeled caffeine internal standard and selected reaction monitoring detection. Up to nine parallel caffeine bands on a single plate were sampled in a single surface scanning experiment requiring 35 min at a surface scan rate of 44 mum/s. A reversed-phase HPLC/UV caffeine assay was developed in parallel to assess the mass spectrometry method performance. Limits of detection for the HPLC/UV and thin-layer chromatography/electrospray tandem mass spectrometry methods determined from the calibration curve statistics were 0.20 ng injected (0.50 muL) and 1.0 ng spotted on the plate, respectively. Spike recoveries with standards and real samples ranged between 97 and 106% for both methods. The caffeine content of three diet soft drinks (Diet Coke, Diet Cherry Coke, Diet Pepsi) and three diet sport drinks (Diet Turbo Tea, Speed Stack Grape, Speed Stack Fruit Punch) was measured. The HPLC/UV and mass spectrometry determinations were in general agreement, and these values were consistent with the quoted values for two of the three diet colas. In the case of Diet Cherry Coke and the diet sports drinks, the determined caffeine amounts using both methods were consistently higher (by approximately 8% or more) than the literature values.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ford, Michael J; Deibel, Michael A.; Tomkins, Bruce A
Quantitative determination of caffeine on reversed-phase C8 thin-layer chromatography plates using a surface sampling electrospray ionization system with tandem mass spectrometry detection is reported. The thin-layer chromatography/electrospray tandem mass spectrometry method employed a deuterium-labeled caffeine internal standard and selected reaction monitoring detection. Up to nine parallel caffeine bands on a single plate were sampled in a single surface scanning experiment requiring 35 min at a surface scan rate of 44 {mu}m/s. A reversed-phase HPLC/UV caffeine assay was developed in parallel to assess the mass spectrometry method performance. Limits of detection for the HPLC/UV and thin-layer chromatography/electrospray tandem mass spectrometry methodsmore » determined from the calibration curve statistics were 0.20 ng injected (0.50 {mu}L) and 1.0 ng spotted on the plate, respectively. Spike recoveries with standards and real samples ranged between 97 and 106% for both methods. The caffeine content of three diet soft drinks (Diet Coke, Diet Cherry Coke, Diet Pepsi) and three diet sport drinks (Diet Turbo Tea, Speed Stack Grape, Speed Stack Fruit Punch) was measured. The HPLC/UV and mass spectrometry determinations were in general agreement, and these values were consistent with the quoted values for two of the three diet colas. In the case of Diet Cherry Coke and the diet sports drinks, the determined caffeine amounts using both methods were consistently higher (by 8% or more) than the literature values.« less
González-Toledo, E; Prat, M D; Alpendurada, M F
2001-07-20
Solid-phase microextraction (SPME) coupled to high-performance liquid chromatography (HPLC) has been applied to the analysis of priority pollutant phenolic compounds in water samples. Two types of polar fibers [50 microm Carbowax-templated resin (CW-TPR) and 60 microm polydimethylsiloxane-divinylbenzene (PDMS-DVB)] were evaluated. The effects of equilibration time and ionic strength of samples on the adsorption step were studied. The parameters affecting the desorption process, such as desorption mode, solvent composition and desorption time, were optimized. The developed method was used to determine the phenols in spiked river water samples collected in the Douro River, Portugal. Detection limits of 1-10 microg l(-1) were achieved under the optimized conditions.
Cooke, Darren N; Thomasset, Sarah; Boocock, David J; Schwarz, Michael; Winterhalter, Peter; Steward, William P; Gescher, Andreas J; Marczylo, Timothy H
2006-09-20
Anthocyanins are potent antioxidants that may possess chronic disease preventive properties. Here, rapid, reliable, and reproducible solid-phase extraction, high-performance liquid chromatography (HPLC), and mass spectrometry techniques are described for the isolation, separation, and identification of anthocyanins in human plasma and urine. Recoveries of cyanidin-3-glucoside (C3G) were 91% from water, 71% from plasma, and 81% from urine. Intra- and interday variations for C3G extraction were 9 and 9.1% in plasma and 7.1 and 9.1% in urine and were less than 15% for all anthocyanins from a standardized bilberry extract (mirtoselect). Analysis of mirtoselect by HPLC with UV detection produced spectra with 15 peaks compatible with anthocyanin components found in mirtoselect within a total run time of 15 min. Chromatographic analysis of human urine obtained after an oral dose of mirtoselect yielded 19 anthocyanin peaks. Mass spectrometric analysis employing multiple reaction monitoring suggests the presence of unchanged anthocyanins and anthocyanidin glucuronide metabolites.
Gong, Xiaoqing; Liu, Ji-Hong
2017-01-01
High-performance liquid chromatography (HPLC) is a sensitive, rapid, and accurate technique to detect and characterize various metabolites from plants. The metabolites are extracted with different solvents and eluted with appropriate mobile phases in a designed HPLC program. Polyamines are known to accumulate under abiotic stress conditions in various plant species and thought to provide protection against oxidative stress by scavenging reactive oxygen species. Here, we describe a common method to detect the free polyamines in plant tissues both qualitatively and quantitatively.
Moriya, Hyuga; Tanaka, Sohei; Iida, Yukari; Kitagawa, Satomi; Aizawa, Sen-Ichi; Taga, Atsushi; Terashima, Hiroyuki; Yamamoto, Atsushi; Kodama, Shuji
2018-05-16
Xanthohumol, isoxanthohumol, and 8-prenylnaringenin in beer, hop, and hop pellet samples were analyzed by HPLC using InertSustain phenyl column and the mobile phase containing 40% methanol and 12% 2-propanol. Fractions of isoxanthohumol and 8-prenylnaringenin obtained by the above HPLC were separately collected. Isoxanthohumol and 8-prenylnaringenin were enantioseparated by HPLC using Chiralcel OD-H column with a mobile phase composed of hexane/ethanol (90/10, v/v) and Chiralpak AD-RH column with a mobile phase composed of methanol/2-propanol/water (40/20/40, v/v/v), respectively. Both of isoxanthohumol and 8-prenylnaringenin from beer, hop, and hop pellet samples were found to be a racemic mixture. This can be explained that the two analytes were produced by non-enzymatic process. The effects of boiling conditions on the conversion of xanthohumol into isoxanthohumol were also studied. A higher concentration of ethanol in heating solvent resulted in a decrease in the conversion ratio and the conversion was stopped by addition of ethanol more than 50% (v/v). The isomerization was significantly affected pH (2-10) and the boiling medium at pH 5 was minimum for the conversion. Therefore, it was suggested that xanthohumol was relatively difficult to convert to isoxanthohumol in wort (pH 5-5.5) during boiling. This article is protected by copyright. All rights reserved.
Liu, Li-Hua; Yang, Cheng-Xiong; Yan, Xiu-Ping
2017-01-06
Covalent-organic frameworks (COFs) are a newfangled class of intriguing microporous materials. Considering their unique properties, COFs should be promising as packing materials for high performance liquid chromatography (HPLC). However, the irregular shape and sub-micrometer size of COFs synthesized via the traditional methods render the main obstacles for the application of COFs in HPLC. Herein, we report the preparation of methacrylate-bonded COF monolithic columns for HPLC to overcome the above obstacles. The prepared COF bonded monolithic columns not only show good homogeneity and permeability, but also give high column efficiency, good resolution and precision for HPLC separation of small molecules including polycyclic aromatic hydrocarbons, phenols, anilines, nonsteroidal anti-inflammatory drugs and benzothiophenes. Compared with the bare polymer monolithic column, the COF bonded monolithic columns show enhanced hydrophobic, π-π and hydrogen bond interactions in reverse phase HPLC. The results reveal the great potential of COF bonded monoliths for HPLC and COFs in separation sciences. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhang, Mingliang; Mallik, Abul K; Takafuji, Makoto; Ihara, Hirotaka; Qiu, Hongdeng
2015-08-05
Ionic liquids (ILs), a class of unique substances composed purely by cation and anions, are renowned for their fascinating physical and chemical properties, such as negligible volatility, high dissolution power, high thermal stability, tunable structure and miscibility. They are enjoying ever-growing applications in a great diversity of disciplines. IL-modified silica, transforming the merits of ILs into chromatographic advantages, has endowed the development of high-performance liquid chromatography (HPLC) stationary phase with considerable vitality. In the last decade, IL-functionalized silica stationary phases have evolved into a series of branches to accommodate to different HPLC modes. An up-to-date overview of IL-immobilized stationary phases is presented in this review, and divided into five parts according to application mode, i.e., ion-exchange, normal-phase, reversed-phase, hydrophilic interaction and chiral recognition. Specific attention is channeled to synthetic strategies, chromatographic behavior and separation performance of IL-functionalized silica stationary phases. Copyright © 2015 Elsevier B.V. All rights reserved.
Chromatographic analysis of salicylic compounds in different species of the genus Salix.
Pobłocka-Olech, Loretta; van Nederkassel, Anne-Marie; Vander Heyden, Yvan; Krauze-Baranowska, Mirosława; Glód, Daniel; Baczek, Tomasz
2007-11-01
The separation of nine phenol glycosides--salicin, salicortin, 2'-acetylsalicortin, populin, tremulacin, salidroside, triandrin, picein and helicin--by normal phase (NP), reversed phase (RP) HPLC techniques and a coupling of NP and RP monolithic silica columns was studied. Among the above nine compounds only five--salicin, populin, tremulacin, salidroside and triandrin--were resolved in an NP system with a mobile phase comprising hexane/isopropanol/methanol (87:12:1, v/v/v). Optimized separation was performed with two coupled monolithic silica columns of different polarity (bare silica and RP-18). The method was applied to verify the presence of salicylic compounds and other phenolic derivatives in the bark of six species from the genus Salix, namely S. purpurea, S. daphnoides clone 1095, S. alba clone 1100, S. triandra, S. viminalis, and S. herbacea. Gradient elution with a mobile phase composed of acetonitrile and water containing 0.05% of trifluoroacetic acid, with increasing acetonitrile concentration from 3% to 48%, was chosen as optimal. For the selective detection of the salicylic compounds, an evaporative light scattering detector was employed along with a UV detector. The differences in the composition of phenols in the different plant materials were confirmed. Additionally, it must be emphasized that for the first time the presence of 2'-acetylsalicortin was revealed in S. alba clone 1100. Furthermore, an SPE-HPLC method was developed for the rapid analysis of the salicin content, analyzed as free and total fraction, in willow barks. The determined concentrations of total salicin varied from 25.4 mg/g in S. alba clone 1100 to 96.47 mg/g in S. daphnoides clone 1095.
Malik, Ashok Kumar; Rai, Parmod Kumar
2008-07-01
A simple and sensitive method has been developed using preconcentration technique solid phase microextraction (SPME) and analytical technique HPLC-UV for the determination of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) from the environmental samples. Aqueous solution of anionic surfactant SDS was used for the extraction of both nitramine high explosives, viz., HMX and RDX from soil samples which were subsequently sorbed on SPME fiber. The static desorption was carried out in the desorption chamber of the SPME-HPLC interface in the presence of mobile phase ACN/methanol/water (30:35:35) and the subsequent chromatographic analysis at a flow rate of 0.5 mL/min and detection at 230 nm. For this purpose, a C(18), 5 microm RP analytical column was used as a separation medium in this method. Several parameters relating to SPME, e.g., adsorption/desorption time, concentration of salt, stirring rate, etc., were optimized. The method was linear over the range of 20-400 ng/mL for HMX and RDX standards in the presence of surfactant in aqueous phase, respectively. The correlation coefficient (R(2)) for HMX and RDX are 0.9998 and 0.9982, respectively. With SPME, the detection limits (S/N = 3) in ng/mL are 0.05 and 0.1 for HMX and RDX, respectively in the presence of the SDS surfactant. The developed method has been applied successfully to the analysis of real environmental samples like bore well water, river water, and ground alluvial soil.
Tarasova, Irina A; Goloborodko, Anton A; Perlova, Tatyana Y; Pridatchenko, Marina L; Gorshkov, Alexander V; Evreinov, Victor V; Ivanov, Alexander R; Gorshkov, Mikhail V
2015-07-07
The theory of critical chromatography for biomacromolecules (BioLCCC) describes polypeptide retention in reversed-phase HPLC using the basic principles of statistical thermodynamics. However, whether this theory correctly depicts a variety of empirical observations and laws introduced for peptide chromatography over the last decades remains to be determined. In this study, by comparing theoretical results with experimental data, we demonstrate that the BioLCCC: (1) fits the empirical dependence of the polypeptide retention on the amino acid sequence length with R(2) > 0.99 and allows in silico determination of the linear regression coefficients of the log-length correction in the additive model for arbitrary sequences and lengths and (2) predicts the distribution coefficients of polypeptides with an accuracy from 0.98 to 0.99 R(2). The latter enables direct calculation of the retention factors for given solvent compositions and modeling of the migration dynamics of polypeptides separated under isocratic or gradient conditions. The obtained results demonstrate that the suggested theory correctly relates the main aspects of polypeptide separation in reversed-phase HPLC.
Pungency Quantitation of Hot Pepper Sauces Using HPLC
NASA Astrophysics Data System (ADS)
Betts, Thomas A.
1999-02-01
A class of compounds known as capsaicinoids are responsible for the "heat" of hot peppers. To determine the pungency of a particular pepper or pepper product, one may quantify the capsaicinoids and relate those concentrations to the perceived heat. The format of the laboratory described here allows students to collectively develop an HPLC method for the quantitation of the two predominant capsaicinoids (capsaicin and dihydrocapsaicin) in hot-pepper products. Each small group of students investigated one of the following aspects of the method: detector wavelength, mobile-phase composition, extraction of capsaicinoids, calibration, and quantitation. The format of the lab forced students to communicate and cooperate to develop this method. The resulting HPLC method involves extraction with acetonitrile followed by solid-phase extraction clean-up, an isocratic 80:20 methanol-water mobile phase, a 4.6 mm by 25 cm C-18 column, and UV absorbance detection at 284 nm. The method developed by the students was then applied to the quantitation of capsaicinoids in a variety of hot pepper sauces. Editor's Note on Hazards in our April 2000 issue addresses the above.
Kawaii, S; Tomono, Y; Katase, E; Ogawa, K; Nonomura-Nakano, M; Nesumi, H; Yoshida, T; Sugiura, M; Yano, M
2001-08-01
Twenty-four Citrus hybrids of King (C. nobilis) and Mukaku Kishu (C. kinokuni) were examined for their flavonoid profiles of the edible part by reversed-phase HPLC analysis. Two hybrids (G-155 and G-156) contained higher amounts of natsudaidain than their parents, whereas the remainder of the hybrids had a character intermediate between those of King and Mukaku Kishu on the basis of polymethoxylated flavone composition. Principal component analysis revealed the distribution of the hybrids by quantifying 23 flavonoid contents.
Villar-Navarro, Mercedes; Ramos-Payán, María; Fernández-Torres, Rut; Callejón-Mochón, Manuel; Bello-López, Miguel Ángel
2013-01-15
This work proposes for the first time the use of a three phase hollow fiber liquid phase microextraction (HF-LPME) procedure for the extraction, and the later HPLC determination using fluorescence detection, of two much known endocrine disrupting compounds (EDCs): n-octylphenol (OP) and n-nonylphenol (NP). The extraction was carried out through a dihexyl ether liquid membrane supported on an Accurel® Q3/2 polypropylene hollow fiber. Optimum pH for donor and acceptor phases and extraction time were established. Enrichment (preconcentration) factors of 50 were obtained that allows detection limits of 0.54 and 0.52 ng mL(-1) for OP and NP, respectively. The method was successfully applied to the determination of these EDCs in environmental water samples, including urban wastewaters. Copyright © 2012 Elsevier B.V. All rights reserved.
Charehsaz, Mohammad; Gürbay, Aylin; Aydin, Ahmet; Sahin, Gönül
2014-01-01
In this study, a high-performance liquid chromatographic method (HPLC) and UV spectrophotometric method were developed, validated and applied for the determination of theophylline in biological fluids. Liquid- liquid extraction is performed for isolation of the drug and elimination of plasma and saliva interferences. Urine samples were applied without any extraction. The chromatographic separation was achieved on a C18 column by using 60:40 methanol:water as mobile phase under isocratic conditions at a flow rate of 0.75 mL/min with UV detection at 280 nm in HPLC method. UV spectrophotometric analysis was performed at 275 nm. the limit of quantification: 1.1 µg/mL for urine, 1.9 µg/mL for saliva, 3.1 µg/mL for plasma; recovery: 94.85% for plasma, 100.45% for saliva, 101.39% for urine; intra-day precision: 0.22-2.33%, inter-day precision: 3.17-13.12%. Spectrophotometric analysis results were as follows: the limit of quantitation: 5.23 µg/mL for plasma, 8.7 µg/mL for urine; recovery: 98.27% for plasma, 95.25% for urine; intra-day precision: 2.37 - 3.00%, inter-day precision: 5.43-7.91%. It can be concluded that this validated HPLC method is easy, precise, accurate, sensitive and selective for determination of theophylline in biological samples. Also spectrophotometric analysis can be used where it can be applicable.
Lv, Jin-Li; Yang, Biao; Li, Meng-Xuan; Meng, Zhao-Qing; Ma, Shi-Ping; Wang, Zhen-Zhong; Ding, Gang; Huang, Wen-Zhe; Xiao, Wei
2017-03-01
To study Ginkgo biloba leaves in different producing area, we establish an HPLC method for the simultaneously determination of seven flavonoids glycosides and four biflavonoids in G. biloba leaves. The analysis was performed on an Agilent ZORBAX SB-C₁₈ column(4.6 mm×250 mm, 5 μm) wich acetonitrile, and 0.4% phosphoric acid as mobile phase at flow rate of 1 mL•min⁻¹ in a gradient edution, and the detection was carried out at 254 nm.The calibration curves of the seven flavonoids glycosides and four biflavonoids had a good linearitiy with good recoveries. The established HPLC method is simple, rapid, accurate, reliable, and sensitive, and can be applied to the identification and quality control of G. biloba leaves. Copyright© by the Chinese Pharmaceutical Association.
On-site comprehensive analysis of explosives using HPLC-UV-PAED
NASA Astrophysics Data System (ADS)
Marple, Ronita L.; LaCourse, William R.
2004-03-01
High-performance liquid chromatography with ultra violet and photo-assisted electrochemical detection (HPLC-UV-PAED) has been developed for the sensitive and selective detection of explosives in ground water and soil extracts. Fractionation and preconcentration of explosives is accomplished with on-line solid phase extraction (SPE), which minimizes sample pretreatment and enables faster and more accurate on-site assessment of a contaminated site. Detection limits are equivalent or superior (i.e., <1 part-per-trillion for HMX) to those achieved using the Environmental Protection Agency (EPA) Method 8330. This approach is more broadly applicable, as it is capable of determining a wider range of organic nitro compounds. Soil samples are extracted using pressurized fluid extraction (PFE), and this technique is automatable, field-compatible, and environmentally friendly, adding to the overall efficiency of the methodology.
Kotoni, Dorina; Ciogli, Alessia; D'Acquarica, Ilaria; Kocergin, Jelena; Szczerba, Ted; Ritchie, Harald; Villani, Claudio; Gasparrini, Francesco
2012-12-21
This paper reports on the thermodynamic and kinetic evaluation of a new ultra-high performance liquid chromatography broad-spectrum Pirkle-type chiral stationary phase (CSP) for enantioselective applications (eUHPLC). The well-known Whelk-O1 selector was covalently immobilized onto 1.7-μm high-surface-area, porous spherical silica particles to produce a totally synthetic, covalently bonded CSP that was packed into 150 mm, 100mm, 75 mm and 50mm columns, either 4.6 or 3.0mm ID. A 100 mm × 4.6 mm ID column was fully characterized from a kinetic and thermodynamic point of view, using as reference a conventional HPLC Whelk-O1 column, 250 mm×4.6mm ID, based on 5-μm porous silica particles. On the eUHPLC column, van Deemter plots generated H(min) values of 3.53 μm for 1,3-dinitrobenzene, at an interstitial mobile phase linear velocity (μ(inter)) of 5.07 mm/s, and H(min) of 4.26 and 4.17 μm for the two enantiomers of acenaphthenol, at μ(inter) of 4.85 mm/s and 4.24 mm/s, respectively. Resolution of 21 enantiomeric pairs including alcohols, epoxides, sulfoxides, phosphine oxides, benzodiazepines and 2-aryloxyproprionic esters used as herbicides, were obtained with significant advantages in terms of efficiency and analysis time. Speed gain factors were calculated for the different column geometries (150 mm, 100mm, 75 mm and 50mm, either 4.6 or 3.0mm ID), with respect to the standard HPLC column (250 mm ×4.6 mm ID), and were as high as 13, in the case of the 50-mm-long column, affording sub-minute separations of enantiomers with excellent resolution factors. In particular, trans-stilbene oxide was resolved in only 10s, while a 50 mm×3.0 mm ID column was used as a compromise between reduced mobile phase consumption (less than 1 mL per analysis) and smaller extra-column band-broadening effect. Given the relatively low viscosity in NP mode, and the excellent permeability of these eUHPLC columns, with backpressure values under 600 bar for a wide range of flow rates, the use of standard HPLC hardware is possible. In this case, however, a significant loss in resolution is observed, compared to the UHPLC instrumentation, if no modifications are introduced in the HPLC apparatus to reduce extra-column variance. The excellent efficiency and selectivity, conjugated with the very high-throughput and the ultra-fast analysis time, prove the potentials of the eUHPLC Whelk-O1 columns in the development of enantioselective UHPLC methods. Copyright © 2012 Elsevier B.V. All rights reserved.
Kema, I P; Meijer, W G; Meiborg, G; Ooms, B; Willemse, P H; de Vries, E G
2001-10-01
Profiling of the plasma indoles tryptophan, 5-hydroxytryptophan (5-HTP), serotonin, and 5-hydroxyindoleacetic acid (5-HIAA) is useful in the diagnosis and follow-up of patients with carcinoid tumors. We describe an automated method for the profiling of these indoles in protein-containing matrices as well as the plasma indole concentrations in healthy controls and patients with carcinoid tumors. Plasma, cerebrospinal fluid, and tissue homogenates were prepurified by automated on-line solid-phase extraction (SPE) in Hysphere Resin SH SPE cartridges containing strong hydrophobic polystyrene resin. Analytes were eluted from the SPE cartridge by column switching. Subsequent separation and detection were performed by reversed-phase HPLC combined with fluorometric detection in a total cycle time of 20 min. We obtained samples from 14 healthy controls and 17 patients with metastasized midgut carcinoid tumors for plasma indole analysis. In the patient group, urinary excretion of 5-HIAA and serotonin was compared with concentrations of plasma indoles. Within- and between-series CVs for indoles in platelet-rich plasma were 0.6-6.2% and 3.7-12%, respectively. Results for platelet-rich plasma serotonin compared favorably with those obtained by single-component analysis. Plasma 5-HIAA, but not 5-HTP was detectable in 8 of 17 patients with carcinoid tumors. In the patient group, platelet-rich plasma total tryptophan correlated negatively with platelet-rich plasma serotonin (P = 0.021; r = -0.56), urinary 5-HIAA (P = 0.003; r = -0.68), and urinary serotonin (P <0.0001; r = -0.80). The present chromatographic approach reduces analytical variation and time needed for analysis and gives more detailed information about metabolic deviations in indole metabolism than do manual, single-component analyses.
Youssof, Abdullah M E; Salem-Bekhit, Mounir M; Shakeel, Faiyaz; Alanazi, Fars K; Haq, Nazrul
2016-07-01
The objective of the present investigation was to develop and validate a 'green' reversed phase high-performance liquid chromatography (RP-HPLC) method for rapid analysis of a cytotoxic drug 5-fluorouracil (5-FU) in bulk drug, marketed injection, water-in-oil (w/o) nanoemulsion, double water-in-oil-in-water (w/o/w) nanoemulsion and bacterial ghost (BG) matrix. The chromatography study was carried out at room temperature (25±1°C) using an HPLC system with the help of ultraviolet (UV)-visible detector. The chromatographic performance was achieved with a Nucleodur 150mm×4.6mm RP C8 column filled with 5µm filler as a static phase. The mobile phase consisted of ethyl acetate: methanol (7:3% v/v) which was delivered at a flow rate of 1.0mLmin(-1) and the drug was detected in UV mode at 254nm. The developed method was validated in terms of linearity (r(2)=0.998), accuracy (98.19-102.09%), precision (% RSD=0.58-1.17), robustness (% RSD=0.12-0.53) and sensitivity with satisfactory results. The efficiency of the method was demonstrated by the assay of the drug in marketed injection, w/o nanoemulsion, w/o/w nanoemulsion and BG with satisfactory results. The successful resolution of the drug along with its degradation products clearly established the stability-indicating nature of the proposed method. Overall, these results suggested that the proposed analytical method could be effectively applied to the routine analysis of 5-FU in bulk drug, various pharmaceutical dosage forms and BG. Copyright © 2016 Elsevier B.V. All rights reserved.
2017-01-03
chromatography ( HPLC ) with photodiode array detection at 240 nm. Results: Flarex® had a mean concentration of 93.7% of the declared concentration when shaken...59 60 Journal of Ocular Pharmacology and Therapeutics Charlton E Stevens Rockville, MD. Methanol, ( HPLC grade), was obtained from Sigma-Aldrich...ST. Louis, MO. HPLC analysis of fluorometholone acetate and loteprednol etabonate HPLC analysis of fluorometholone acetate and loteprednol
Selected retinoids: determination by isocratic normal-phase HPLC.
Klvanova, J; Brtko, J
2002-09-01
Retinol (ROL), retinal (RAL) and retinoic acid (RA) are physiologically active forms of vitamin A. All-trans retinoic acid (ATRA) can be formed by oxidation from all-trans retinal (ATRAL). Isomerization of RA is considered to be an important metabolic pathway of retinoids. RA isomers transactivate various response pathways via their cognate nuclear receptors that act as ligand inducible transcription factors. The aim of this study was to establish a rapid and simple method for determination of ATRA, 13-cis retinoic acid (13CRA) and ATRAL by HPLC. In our laboratory, we slightly modified the method of Miyagi et al. (2001) and separated ATRA, 13CRA and ATRAL by simple isocratic normal phase HPLC. Both retinoic acid isomers and ATRAL were eluted within 13 min and all components were well resolved. The coefficients of variation (C.V.) for RAs and RAL were from 3.0 to 5.4 %.
Wilson, Walter B; Campiglia, Andres D
2011-09-28
We present an accurate method for the determination of isomers of high-molecular weight polycyclic aromatic hydrocarbons co-eluted in HPLC fractions. The feasibility of this approach is demonstrated with two isomers of molecular weight 302 with identical mass fragmentation patterns, namely dibenzo[a,i]pyrene and naphtho[2,3-a]pyrene. Qualitative and quantitative analysis is carried out via laser-excited time-resolved Shpol'skii spectroscopy at liquid helium temperature. Unambiguous identification of co-eluted isomers is based on their characteristic 4.2 K line-narrowed spectra in n-octane as well as their fluorescence lifetimes. Pre-concentration of HPLC fractions prior to spectroscopic analysis is performed with the aid of gold nanoparticles via an environmentally friendly procedure. In addition to the two co-eluted isomers, the analytical figures of merit of the entire procedure were evaluated with dibenzo[a,l]pyrene, dibenzo[a,h]pyrene and dibenzo[a,e]pyrene. The analytical recoveries from drinking water samples varied between 98.2±5.5 (dibenzo[a,l]pyrene) and 102.7±3.2% (dibenzo[a,i]pyrene). The limits of detection ranged from 51.1 ng L(-1) (naphtho[2,3-a]pyrene) to 154 ng L(-1) (dibenzo[a,e]pyrene). The excellent analytical figures of merit associated to its HPLC compatibility makes this approach an attractive alternative for the analysis of co-eluted isomers with identical mass spectra. Copyright © 2011 Elsevier B.V. All rights reserved.
Cao, Xueli; Wang, Qiaoe; Li, Yan; Bai, Ge; Ren, Hong; Xu, Chunming; Ito, Yoichiro
2011-03-01
Counter-current chromatography (CCC) combined with pre-separation by ultrasonic solvent extraction was successively used for the separation of series bioactive compounds from the crude extract of Hypericum perforatum L. The petroleum ether extract was separated by the solvent system of n-heptane-methanol-acetonitrile (1.5:0.5:0.5, v/v) and n-heptane-methanol (1.5:1, v/v) in gradient elution, yielding a phloroglucinol compound, hyperforin with HPLC purity over 98%. The ethyl acetate extract was separated by using the solvent system composed of hexane-ethyl acetate-methanol-water (1:1:1:1 and 1:3:1:3, v/v) in gradient through both reverse phase and normal phase elution mode, yielding a naphthodianthrone compound, hypericin with HPLC purity about 95%. The n-butanol extract was separated with the solvent system composed of n-butanol-ethyl acetate-water (1:4:5 and 1.5:3.5:5, v/v) in elution and back-extrusion mode, yielding two of flavones, rutin and hyperoside, with HPLC purity over 95%. HPLC-MS, reference sample and UV spectrum were selectively used in separation to search for target compounds from HPLC-DAD profiles of different sub-extracts. The structures of isolated compounds were further identified by ESI-MS, ¹HNMR and ¹³CNMR. Copyright © 2011 Elsevier B.V. All rights reserved.
Cao, Xueli; Wang, Qiaoe; Li, Yan; Bai, Ge; Ren, Hong; Ito, Yiochiro
2011-01-01
High-speed counter-current chromatography (HSCCC) combined with pre-separation by ultrasonic solvent extraction was successively used for the separation of series bioactive compounds from the crude extract of Hypericum perforatum L. The petroleum ether extract was separated by the solvent system of n-heptane-methanol-acetonitrile (1.5:0.5:0.5, v/v) and n-heptane-methanol (1.5:1, v/v) in gradient elution, yielding a phloroglucinol compound, hyperforin with HPLC purity over 98%. The ethyl acetate extract was separated by using the solvent system composed of hexane-ethyl acetate-methanol-water (1:1:1:1 and 1:3:1:3, v/v) in gradient through both reverse phase and normal phase elution mode, yielding a naphthodianthrone compound, hypericin with HPLC purity about 95%. The n-butanol extract was separated with the solvent system composed of n-butanol-ethyl acetate–water (1:4:5 and 1.5:3.5:5, v/v) in elution and back-extrusion mode, yielding two of flavones, rutin and hyperoside, with HPLC purity over 95%. HPLC-MS, reference sample and UV spectrum were selectively used in separation to search for target compounds from HPLC-DAD profiles of different sub-extracts. The structures of isolated compounds were further identified by ESI-MS, 1HNMR and 13CNMR. PMID:21306961
Zhang, Xiaona; Niu, Jiahua; Zhang, Xiaoting; Xiao, Rui; Lu, Minghua; Cai, Zongwei
2017-03-01
In this research, a modified Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) method based on graphene oxide@SiO 2 (SiO 2 @GO) nanocomposite as adsorbent of dispersive solid-phase extraction (dSPE) combined with high performance liquid chromatography (HPLC) for the analysis of four plant hormones in different plants was established. The as-prepared SiO 2 @GO was characterized by scanning electron microscopy, transmission electron microscopy and infrared spectroscopy. The experimental conditions for dSPE, including the ratio of material to liquid, pH of sample, adsorption and desorption time, desorption temperature as well as desorption solution, were investigated. The detection limits for the analysis of indole-3-acetic acid, indole-3-butyric acid, 1-naphthylacetic acid and abscisic acid were achieved below 0.05μgmL -1 . The established method was applied to the analysis of the plant hormones in fruits, vegetables and other food samples. The obtained results indicated that the method was sensitive, accurate, convenient and quick, which provided an alternative analytical approach for plant hormones in complex matrices. Copyright © 2017 Elsevier B.V. All rights reserved.
Lue, Bena-Marie; Guo, Zheng; Xu, Xuebing
2008-07-11
Methods using reversed-phase high-performance liquid chromatography (RP-HPLC) with ELSD were investigated to quantify enzymatic reactions of flavonoids with fatty acids in the presence of diverse room temperature ionic liquids (RTILs). A buffered salt (preferably triethylamine-acetate) was found essential for separation of flavonoids from strongly polar RTILs, whereby RTILs were generally visible as two major peaks identified based on an ion-pairing/exchanging hypothesis. C8 and C12 stationary phases were optimal while mobile phase pH (3-7) had only a minor influence on separation. The method developed was successfully applied for primary screening of RTILs (>20), with in depth evaluation of substrates in 10 RTILs, for their evaluation as reaction media.
Mnatsakanyan, Mariam; Stevenson, Paul G; Shock, David; Conlan, Xavier A; Goodie, Tiffany A; Spencer, Kylie N; Barnett, Neil W; Francis, Paul S; Shalliker, R Andrew
2010-09-15
Differences between alkyl, dipole-dipole, hydrogen bonding, and pi-pi selective surfaces represented by non-resonance and resonance pi-stationary phases have been assessed for the separation of 'Ristretto' café espresso by employing 2DHPLC techniques with C18 phase selectivity detection. Geometric approach to factor analysis (GAFA) was used to measure the detected peaks (N), spreading angle (beta), correlation, practical peak capacity (n(p)) and percentage usage of the separations space, as an assessment of selectivity differences between regional quadrants of the two-dimensional separation plane. Although all tested systems were correlated to some degree to the C18 dimension, regional measurement of separation divergence revealed that performance of specific systems was better for certain sample components. The results illustrate that because of the complexity of the 'real' sample obtaining a truly orthogonal two-dimensional system for complex samples of natural origin may be practically impossible. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Dai, Xingping; Wang, Dongsheng; Li, Hui; Chen, Yanyi; Gong, Zhicheng; Xiang, Haiyan; Shi, Shuyun; Chen, Xiaoqing
2017-02-10
Polar and hydrophilic properties of hydroxybenzoic acids usually made them coelute with interferences in high performance liquid chromatography (HPLC) analysis. Then selective analysis of them was necessary. Herein, hollow porous ionic liquids composite polymers (PILs) based solid phase extraction (SPE) was firstly fabricated and coupled online with HPLC for selective analysis of hydroxybenzoic acids from complex matrices. Hollow porous PILs were firstly synthesized using Mobil Composition of Matter No. 48 (MCM-48) spheres as sacrificial support, 1-vinyl-3-methylimidazolium chloride (VMIM + Cl - ) as monomer, and ethylene glycol dimethacrylate (EGDMA) as cross-linker. Various parameters affecting synthesis, adsorption and desorption behaviors were investigated and optimized. Steady-state adsorption studies showed the resulting hollow porous PILs exhibited high adsorption capacity, fast adsorption kinetics, and excellent specific adsorption. Subsequently, the application of online SPE system was studied by selective analysis of protocatechuic acid (PCA), 4-hydroxybenzoic acid (4-HBA), and vanillic acid (VA) from Pollen Typha angustifolia. The obtained limit of detection (LOD) varied from 0.002 to 0.01μg/mL, the linear range (0.05-5.0μg/mL) was wide with correlation coefficient (R) from 0.9982 to 0.9994, and the average recoveries at three spiking levels ranged from 82.7 to 102.4%, with column-to-column relative standard deviation (RSD) below 8.1%. The proposed online method showed good accuracy, precision, specificity and convenience, which opened up a universal and efficient route for selective analysis of hydroxybenzoic acids from complex samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhang, Ya-Wen; Fan, Wei-Wei; Li, Hui; Ni, He; Han, Han-Bing; Li, Hai-Hang
2015-10-01
Abscisic acid (ABA), a universal signaling molecule, plays important roles in regulating plant growth, development and stress responses. The low contents and complex components in plants make it difficult to be accurately analyzed. A novel one-step sample preparation method for ABA in plants was developed. Fresh peanut (Arachis hypogaea) plant materials were fixed by oven-drying, microwave drying, boiling or Carnoy's fixative, and loaded onto a mini-preparing column. After washed the impurities, ABA was eluted with a small amount of solvent. ABA in plant materials was completely extracted and purified in 2mL solution and directly analyzed by HPLC, with a 99.3% recovery rate. Multiple samples can be simultaneously prepared. Analyses using this method indicated that the endogenous ABA in oven-dried peanut leaves increased 20.2-fold from 1.01 to 20.37μgg(-1) dry weight within 12h and then decreased in 30% polyethylene glycol 6000 treated plants, and increased 3.34-fold from 0.85 to 2.84μgg(-1) dry weight in 5 days and then decreased in soil drought treated plants. The method combined the column chromatographic extraction and solid-phase separation technologies in one step and can completely extracted plant endogenous ABA in a purified and highly concentrated form for direct HPLC analysis. Copyright © 2015 Elsevier B.V. All rights reserved.
Liu, E-Hu; Liu, Qun; Chu, Chu; Li, Ping
2011-10-01
A fast high-performance liquid chromatography (HPLC) method with diode-array detection (DAD) and time-of-flight mass spectrometry (TOF/MS) has been developed for the analysis of multi-constituent in Yinhuang granules, a well-known combined herbal remedy prepared from the extract mixtures of Flos Lonicerae and Radix Scutellariae. The fast HPLC analysis was performed on an Agilent ZorBax SB-C(18) column (4.6×50 mm, 1.8 μm) and 0.2% aqueous formic acid and acetonitrile was the optimum mobile phase for gradient elution in 17 min, which is five times faster than the performance of conventional columns packed with 5.0 μm particles. With various fragmentor voltages in TOF/MS, accurate mass measurements (<5 ppm error) for molecular ions and characteristic fragment ions represented reliable identification criteria for different constituents. A total of 28 compounds, including nine phenolic acids, three iridoid glycosides and nine saponins from Flos Lonicerae and seven flavonoids from Radix Scutellariae, were identified or tentatively characterized in the extract of Yinhuang granules. The established fast HPLC-DAD-TOF/MS method turns out to be useful and efficient for quality control of this commonly used Chinese herbal preparation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Ferguson, Glenda K.
1998-12-01
A quantitative high-performance liquid chromatography (HPLC) laboratory experiment which entails the isocratic separation and simultaneous determination of the two active components of a commercial antipsychotic tablet has been developed. The prescription formulation used in this experiment contains amitriptyline hydrochloride (a tricyclic antidepressant) and perphenazine (a tranquilizer). Our experiment makes use of a straightforward HPLC separation on a cyanopropyl-packed column with an acetonitrile:methanol:aqueous monopotassium phosphate mobile phase pumped at a flow rate of 2.0 mL/min. Analytes are detected by UV absorbance at 215 nm. These conditions yield highly symmetrical and well-resolved peaks in less than 5 min after the injection of a mixture. In the experiment, students are given amitriptyline hydrochloride-perphenazine tablets without the manufacturer's labeled composition claim and a stock solution mixture with known concentrations of amitriptyline hydrochloride and perphenazine. They prepare four standards and a pharmaceutical sample of unknown concentration, assay each solution in quadruplicate, and plot average peak areas of the concentrations of the known solutions in the construction of a standard curve. From the mathematical relationships that result, the average masses of amitriptyline hydrochloride and perphenazine in the prescription tablet are determined. Finally, the standard deviations of the mean masses are calculated. The entire laboratory procedure and statistical data analysis can be completed in a single 3-hour period.
Wolrab, Denise; Frühauf, Peter; Gerner, Christopher; Kohout, Michal; Lindner, Wolfgang
2017-09-29
Major differences in the chromatographic performance of a zwitterion ion-exchange type (ZWIX) chiral stationary phase (CSP) in supercritical fluid chromatography (SFC) and high-performance liquid chromatography (HPLC) have been observed. To explain these differences, transition from HPLC to SFC conditions has been performed. The amount of a protic organic modifier in supercritical carbon dioxide (scCO 2 ) was stepwise increased and the effect of this change studied using acidic, basic and ampholytic analytes. At the same time, the effect of various basic additives to the mobile phase and transient acidic buffer species, formed by the reaction of scCO 2 with the organic modifier and additives, was assessed. Evidence is provided that a transient acid together with the intrinsic counter-ions present in the ZWIX selector structure drive the elution of analytes even when no buffer is employed. We show that the tested analytes can be enantioseparated under both SFC and HPLC conditions; the best conditions for the resolution of ampholytes are in the so-called enhanced-fluidity mobile phase region. As a consequence, subcritical fluid and enhanced-fluidity mobile phase regions seem to be chromatographic modes with a high potential for operating ZWIX CSPs. Copyright © 2017 Elsevier B.V. All rights reserved.
Determination of Nitroaromatic, Nitramine, and Nitrate Ester Explosives in Soils Using GC-ECD
1999-08-01
for supplying soils from minefields; and Dr. Paul H. Miyares, CRREL, for HPLC analysis of Fort Leonard Wood soil extracts. ii CONTENTS P reface...42 ILLUSTRATIONS Figure 1. Correlation analysis of GC-ECD concentration (mg/kg) estimates with those from HPLC -UV...kg) estimates with those from HPLC -UV analysis using splits of the same acetonitrile extract from archived soils
Es'haghi, Zarrin; Mohtaji, Maryam; Hasanzade-Meidani, Mahin; Masrournia, Mahboubeh
2010-04-01
New pre-concentration technique, triple phase suspended droplet microextraction (SD-LPME) and liquid chromatography-photodiode array detection was applied to determine ecstasy, MDMA (3,4-methylendioxy-N-methylamphetamine) in hair samples. In this research MDMA in hair was digested and after treatment extracted. The effective parameters were investigated and method was evaluated. Under the optimal conditions, the MDMA was enriched by factor 98.11. Linearity (r=0.9921), was obtained in the range of 10-15,000 ng mL(-1) and detection limit was 0.1 ng mL(-1). 2010 Elsevier B.V. All rights reserved.
[Determination of genkwanin in flos Genkwa by HPLC].
Zhang, B; Yuan, S; Xia, K
1996-04-01
In this paper, the method for determining genkwanin in Flos Genkwa was established by HPLC. Detected at 332nm on a Lichrosorb 5 RP-18 column with a mobile phase of methanol-water-acetic acid (65:35:5), the content of genkwanin in Flos Genkwa was determined to be 0.16%. The recovery rate was 95.46% and RSD 1.15%.
NASA Astrophysics Data System (ADS)
Vojtylová, T.; Kašpar, M.; Hamplová, V.; Novotná, V.; Sýkora, D.
2014-08-01
New liquid crystalline (LC) materials were prepared by derivatization of lactic acid. First compound possesses the lactic acid unit as the only chiral center and the second group of LC materials contains two chiral centers. Mesomorphic properties of both the newly synthesized LC materials were studied and the presence of the SmA*-SmC* or exhibit the twist grain boundary (TGB) phases, namely TGBA and TGBC, in a wide range of temperatures down to the room temperature was established. The potential of high-performance liquid chromatography (HPLC) applying chiral stationary phases to separate enantiomers or diastereoisomers of the synthesized LC compounds was evaluated. Two different brands of commercial chiral sorbents, Lux Amylose-2 and Chiralpak AD-3, both based on modified silica with derivatized polysaccharide, were employed in the development of separation procedures. The optimized chiral HPLC method provided a baseline separation of the individual enantiomers for the LC material containing one chiral center. In the case of the more complex compound with two asymmetric carbon atoms, where four isomers exist, partial separation was reached only using the current chiral HPLC.
Leung, Elvis M K; Chan, Wan
2014-02-01
Creatinine is an important biomarker for renal function diagnosis and normalizing variations in urinary drug/metabolites concentration. Quantification of creatinine in biological fluids such as urine and plasma is important for clinical diagnosis as well as in biomonitoring programs and urinary metabolomics/metabonomics research. Current methods for creatinine determination either are nonselective or involve the use of expensive mass spectrometers. In this paper, a novel reversed-phase high-performance liquid chromatographic (HPLC) method for the determination of creatinine of high hydrophilicity by pre-column derivatization with ethyl chloroformate is presented. N-Ethyloxycarbonylation of creatinine significantly enhanced the hydrophobicity of creatinine, facilitating its chromatographic retention as well as quantification by HPLC. Factors governing the derivatization reaction were studied and optimized. The developed method was validated and applied for the determination of creatinine in rat urine samples. Comparative studies with isotope-dilution mass spectrometric method revealed that the two methods do not yield systematic differences in creatinine concentrations, indicating the HPLC method is suitable for the determination of creatinine in urine samples.
Okada, Makiko; Yamamoto, Atsushi; Aizawa, Sen-Ichi; Taga, Atsushi; Terashima, Hiroyuki; Kodama, Shuji
2017-01-11
Racemic sulforaphane, which was derivatized with (S)-leucine (l-leucine), was resolved by reversed phase HPLC with UV detection. The optimum mobile phase conditions were found to be 10 mM citric acid (pH 2.8) containing 22% methanol at 35 °C using detection at 254 nm. Sulforaphane enantiomers in florets and stems of five brands of broccoli and leaves and stems of three brands of broccoli sprouts were analyzed by the proposed HPLC method. Both sulforaphane enantiomers were detected in all of the samples. The S/R ratios of sulforaphane in broccoli samples were 1.5-2.6/97.4-98.5% for florets and 5.0-12.1/87.9-95.0% for stems. The S/R ratios in broccoli sprout samples were higher than those in broccoli samples and were found to be 8.3-19.7/80.3-91.7% for leaves and 37.0-41.8/58.2-63.0% for stems. (S)-Sulforaphane detected in the broccoli and its sprout samples was positively identified by separately using an HPLC with a chiral column (Chiralpak AD-RH) and mass spectrometry.
Zhang, Min; Chen, Apeng; Lu, Joann J; Cao, Chengxi; Liu, Shaorong
2016-08-19
In micro- or nano-flow high performance liquid chromatography (HPLC), flow-splitters and gradient elutions are commonly used for reverse phase HPLC separations. When a flow splitter was used at a high split-ratio (e.g., 1000:1 or higher), the actual gradient may deviate away from the programmed gradient. Sometimes, mobile phase concentrations can deviate by as much as 5%. In this work, we noticed that the conductivity (σ) of a gradient decreased with the increasing organic-solvent fraction (φ). Based on the relationship between σ and φ, a method was developed for monitoring gradient profile on-line to record any deviations in these HPLC systems. The conductivity could be measured by a traditional conductivity detector or a capacitively coupled contactless conductivity detector (C(4)D). The method was applied for assessing the performance of an electroosmotic pump (EOP) based nano-HPLC. We also observed that σ value of the gradient changed with system pressure; a=0.0175ΔP (R(2)=0.964), where a is the percentage of the conductivity increase and ΔP is the system pressure in bar. This effect was also investigated. Copyright © 2016. Published by Elsevier B.V.
Lauber, Christian L.; Czarnecki-Maulden, Gail; Pan, Yuanlong; Hannah, Steven S.
2017-01-01
ABSTRACT Obesity has become a health epidemic in both humans and pets. A dysbiotic gut microbiota has been associated with obesity and other metabolic disorders. High-protein, low-carbohydrate (HPLC) diets have been recommended for body weight loss, but little is known about their effects on the canine gut microbiome. Sixty-three obese and lean Labrador retrievers and Beagles (mean age, 5.72 years) were fed a common baseline diet for 4 weeks in phase 1, followed by 4 weeks of a treatment diet, specifically, the HPLC diet (49.4% protein, 10.9% carbohydrate) or a low-protein, high-carbohydrate (LPHC) diet (25.5% protein, 38.8% carbohydrate) in phase 2. 16S rRNA gene profiling revealed that dietary protein and carbohydrate ratios have significant impacts on gut microbial compositions. This effect appeared to be more evident in obese dogs than in lean dogs but was independent of breed. Consumption of either diet increased the bacterial evenness, but not the richness, of the gut compared to that after consumption of the baseline diet. Macronutrient composition affected taxon abundances, mainly within the predominant phyla, Firmicutes and Bacteroidetes. The LPHC diet appeared to favor the growth of Bacteroides uniformis and Clostridium butyricum, while the HPLC diet increased the abundances of Clostridium hiranonis, Clostridium perfringens, and Ruminococcus gnavus and enriched microbial gene networks associated with weight maintenance. In addition, we observed a decrease in the Bacteroidetes to Firmicutes ratio and an increase in the Bacteroides to Prevotella ratio in the HPLC diet-fed dogs compared to these ratios in dogs fed other diets. Finally, analysis of the effect of diet on the predicted microbial gene network was performed using phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt). PMID:28119466
Ren, Tiankun; Wang, Yanan; Wang, Caihong; Zhang, Mengtian; Huang, Wang; Jiang, Jiandong; Li, Wenbin; Zhang, Jinlan
2017-12-01
A novel anti-tumor candidate drug, 5-chlorogenic acid (5-CQA) injection, was used for the treatment of malignant glioma in clinical trial (phase I) in China. The isolation and identification of the metabolites of 5-CQA injection in humans were investigated in the present study. Urine and feces samples obtained after intramuscular administration of 5-CQA injection to healthy adults have been analyzed by high-performance liquid chromatography coupled with high-resolution mass and multiple-stage mass spectrometry (HPLC-HRMS/MS n ). No metabolite was detected in human feces; however, in human urine, a total of six metabolites were identified including isomerized 5-CQA (P1 and P2), hydrolyzed 5-CQA (M1and M2), and methylated 5-CQA (M3 and M4). Among them, M3 and M4 were the main metabolites and target analytes for human mass balance study. Additionally, the structure of M3 and M4 was characterized by high-performance liquid chromatography-solid phase extraction-nuclear magnetic resonance (HPLC-SPE-NMR), and the results demonstrated that the methoxy group of M3 and M4 was exclusively attributed to C-3' and C-4', respectively. Due to the unavailability of commercial reference, the pure products of M3 and M4 were synthesized by 5-CQA methylation and followed by isolation and purification. Moreover, the potential activity of M3 and M4 on malignant glioma was predicted using a reverse molecular docking analysis on eight malignant glioma-related pathways. The results showed that M3 and M4 had various interactions against malignant glioma-related targets. Our study provides an insight into the metabolism of 5-CQA injection in humans and supports the clinical human mass balance study. Graphical abstract ᅟ.
Thomson, C E; Gray, M R; Baxter, M P
1997-05-01
Capillary electrophoresis (CE) has been used as part of a validation experiment designed to prove the specificity of high performance liquid chromatography (HPLC) methods used for analysis of mitoguazone dihydrochloride drug substance. Data regarding accuracy, precision and sensitivity of the CE methods are presented as well as a comparison of results obtained from CE, HPLC and thin-layer chromatography (TLC) analysis of samples stressed under a variety of conditions. It was concluded that, not only were the HPLC methods being investigated specific, but that CE could potentially be used to replace HPLC for the routine assay of mitoguazone dihydrochloride.
Mohammadpour, Amir Hooshang; Ramezani, Mohammad; Tavakoli Anaraki, Nasim; Malaekeh-Nikouei, Bizhan; Amel Farzad, Sara; Hosseinzadeh, Hossein
2013-01-01
The present study reports the development and validation of a sensitive and rapid extraction method beside high performance liquid chromatographic method for the determination of crocetin in human serum. The HPLC method was carried out by using a C18 reversed-phase column and a mobile phase composed of methanol/water/acetic acid (85:14.5:0.5 v/v/v) at the flow rate of 0.8 ml/min. The UV detector was set at 423 nm and 13-cis retinoic acid was used as the internal standard. Serum samples were pretreated with solid-phase extraction using Bond Elut C18 (200mg) cartridges or with direct precipitation using acetonitrile. The calibration curves were linear over the range of 0.05-1.25 µg/ml for direct precipitation method and 0.5-5 µg/ml for solid-phase extraction. The mean recoveries of crocetin over a concentration range of 0.05-5 µg/ml serum for direct precipitation method and 0.5-5 µg/ml for solid-phase extraction were above 70 % and 60 %, respectively. The intraday coefficients of variation were 0.37- 2.6% for direct precipitation method and 0.64 - 5.43% for solid-phase extraction. The inter day coefficients of variation were 1.69 - 6.03% for direct precipitation method and 5.13-12.74% for solid-phase extraction, respectively. The lower limit of quantification for crocetin was 0.05 µg/ml for direct precipitation method and 0.5 µg/ml for solid-phase extraction. The validated direct precipitation method for HPLC satisfied all of the criteria that were necessary for a bioanalytical method and could reliably quantitate crocetin in human serum for future clinical pharmacokinetic study.
Mohammadpour, Amir Hooshang; Ramezani, Mohammad; Tavakoli Anaraki, Nasim; Malaekeh-Nikouei, Bizhan; Amel Farzad, Sara; Hosseinzadeh, Hossein
2013-01-01
Objective(s): The present study reports the development and validation of a sensitive and rapid extraction method beside high performance liquid chromatographic method for the determination of crocetin in human serum. Materials and Methods: The HPLC method was carried out by using a C18 reversed-phase column and a mobile phase composed of methanol/water/acetic acid (85:14.5:0.5 v/v/v) at the flow rate of 0.8 ml/min. The UV detector was set at 423 nm and 13-cis retinoic acid was used as the internal standard. Serum samples were pretreated with solid-phase extraction using Bond Elut C18 (200mg) cartridges or with direct precipitation using acetonitrile. Results: The calibration curves were linear over the range of 0.05-1.25 µg/ml for direct precipitation method and 0.5-5 µg/ml for solid-phase extraction. The mean recoveries of crocetin over a concentration range of 0.05-5 µg/ml serum for direct precipitation method and 0.5-5 µg/ml for solid-phase extraction were above 70 % and 60 %, respectively. The intraday coefficients of variation were 0.37- 2.6% for direct precipitation method and 0.64 - 5.43% for solid-phase extraction. The inter day coefficients of variation were 1.69 – 6.03% for direct precipitation method and 5.13-12.74% for solid-phase extraction, respectively. The lower limit of quantification for crocetin was 0.05 µg/ml for direct precipitation method and 0.5 µg/ml for solid-phase extraction. Conclusion: The validated direct precipitation method for HPLC satisfied all of the criteria that were necessary for a bioanalytical method and could reliably quantitate crocetin in human serum for future clinical pharmacokinetic study. PMID:23638292
Herath, H M D R; Shaw, P N; Cabot, P; Hewavitharana, A K
2010-06-15
The high-performance liquid chromatography (HPLC) column is capable of enrichment/pre-concentration of trace impurities in the mobile phase during the column equilibration, prior to sample injection and elution. These impurities elute during gradient elution and result in significant chromatographic peaks. Three types of purified water were tested for their impurity levels, and hence their performances as mobile phase, in HPLC followed by total ion current (TIC) mode of MS. Two types of HPLC-grade water produced 3-4 significant peaks in solvent blanks while LC/MS-grade water produced no peaks (although peaks were produced by LC/MS-grade water also after a few days of standing). None of the three waters produced peaks in HPLC followed by UV-Vis detection. These peaks, if co-eluted with analyte, are capable of suppressing or enhancing the analyte signal in a MS detector. As it is not common practice to run solvent blanks in TIC mode, when quantification is commonly carried out using single ion monitoring (SIM) or single or multiple reaction monitoring (SRM or MRM), the effect of co-eluting impurities on the analyte signal and hence on the accuracy of the results is often unknown to the analyst. Running solvent blanks in TIC mode, regardless of the MS mode used for quantification, is essential in order to detect this problem and to take subsequent precautions. Copyright (c) 2010 John Wiley & Sons, Ltd.
Liquid chromatographic separation of terpenoid pigments in foods and food products.
Cserháti, T; Forgács, E
2001-11-30
The newest achievements in the use of various liquid chromatographic techniques such as adsorption and reversed-phase thin-layer chromatography and HPLC employed for the separation and quantitative determination of terpenoid-based color substances in foods and food products are reviewed. The techniques applied for the analysis of individual pigments and pigments classes are surveyed and critically evaluated. Future trends in the separation and identification of pigments in foods and food products are delineated.
G Archana; Dhodapkar, Rita; Kumar, Anupama
2016-09-01
The present study reports a precise and simple offline solid-phase extraction (SPE) coupled with reversed-phase high-performance liquid chromatography (RP-HPLC) method for the simultaneous determination of five representative and commonly present pharmaceuticals and personal care products (PPCPs), a new class of emerging pollutants in the aquatic environment. The target list of analytes including ciprofloxacin, acetaminophen, caffeine benzophenone and irgasan were separated by a simple HPLC method. The column used was a reversed-phase C18 column, and the mobile phase was 1 % acetic acid and methanol (20:80 v/v) under isocratic conditions, at a flow rate of 1 mL min(-1). The analytes were separated and detected within 15 min using the photodiode array detector (PDA). The linearity of the calibration curves were obtained with correlation coefficients 0.98-0.99.The limit of detection (LOD), limit of quantification (LOQ), precision, accuracy and ruggedness demonstrated the reproducibility, specificity and sensitivity of the developed method. Prior to the analysis, the SPE was performed using a C18 cartridge to preconcentrate the targeted analytes from the environmental water samples. The developed method was applied to evaluate and fingerprint PPCPs in sewage collected from a residential engineering college campus, polluted water bodies such as Nag river and Pili river and the influent and effluent samples from a sewage treatment plant (STP) situated at Nagpur city, in the peak summer season. This method is useful for estimation of pollutants present in microquantities in the surface water bodies and treated sewage as compared to nanolevel pollutants detected by mass spectrometry (MS) detectors.
Feng, Juanjuan; Wang, Xiuqin; Tian, Yu; Bu, Yanan; Luo, Chuannan; Sun, Min
2017-09-29
Carbon fibers (CFs) were functionalized with graphene oxide (GO) by an electrophoretic deposition (EPD) method for in-tube solid-phase microextraction (SPME). GO-CFs were filled into a poly(ether ether ketone) (PEEK) tube to obtain a fibers-in-tube SPME device, which was connected with high performance liquid chromatography (HPLC) equipment to build online SPME-HPLC system. Compared with CFs, GO-CFs presented obviously better extraction performance, due to excellent adsorption property and large surface area of GO. Using ten polycyclic aromatic hydrocarbons (PAHs) as model analytes, the important extraction conditions were optimized, such as sample flow rate, extraction time, organic solvent content and desorption time. An online analysis method was established with wide linear range (0.01-50μgL -1 ) and low detection limits (0.001-0.004μgL -1 ). Good sensitivity resulted from high enrichment factors (1133-3840) of GO-CFs in-tube device towards PAHs. The analysis method was used to online determination of PAHs in wastewater samples. Some target analytes were detected and relative recoveries were in the range of 90.2-112%. It is obvious that the proposed GO-CFs in-tube device was an efficient extraction device, and EPD could be used to develop nanomaterials functionalized sorbents for sample preparation. Copyright © 2017 Elsevier B.V. All rights reserved.
Liu, Junguo; Song, Jiuxue; Huang, Karen; Michel, Deborah; Fang, Jim
2018-05-01
A high-performance liquid chromatography tandem-mass spectrometry (HPLC-MS/MS) method has been developed to analyze anthocyanins in urine and plasma to further understand their absorption, distribution, metabolism and excretion. The method employed a Synergi RP-Max column (250 × 4.6 mm, 4 μm) and an API 4000 mass spectrometer. A gradient elution system consisted of mobile phase A (water-1% formic acid) and mobile phase B (acetonitrile) with a flow rate of 0.60 mL/min. The gradient was initiated at 5% B, increased to 21% B at 20 min, and then increased to 40% B at 35 min. The analysis of anthocyanins presents a challenge because of the poor stability of anthocyanins during sample preparation, especially during solvent evaporation. In this method, the degradation of anthocyanins was minimized using protein precipitation and dilute-and-shoot and sample preparation methods for plasma and urine, respectively. No interferences were observed from endogenous compounds. The method has been used to analyze anthocyanin concentrations in urine and plasma samples from volunteers administered saskatoon berries. Cyanidin-3-galactoside, cyanidin-3-glucoside, cyanidin-3-arabinoside, cyanidin-3-xyloside and quercetin-3-galactoside, the five major flavonoid components in saskatoon berries, were identified in plasma and urine samples. Copyright © 2017 John Wiley & Sons, Ltd.
Pujeri, Sudhakar S.; Khader, Addagadde M. A.; Seetharamappa, Jaldappagari
2012-01-01
A simple, rapid and stability-indicating reversed-phase liquid chromatographic method was developed for the assay of varenicline tartrate (VRT) in the presence of its degradation products generated from forced decomposition studies. The HPLC separation was achieved on a C18 Inertsil column (250 mm × 4.6 mm i.d. particle size is 5 μm) employing a mobile phase consisting of ammonium acetate buffer containing trifluoroacetic acid (0.02M; pH 4) and acetonitrile in gradient program mode with a flow rate of 1.0 mL min−1. The UV detector was operated at 237 nm while column temperature was maintained at 40 °C. The developed method was validated as per ICH guidelines with respect to specificity, linearity, precision, accuracy, robustness and limit of quantification. The method was found to be simple, specific, precise and accurate. Selectivity of the proposed method was validated by subjecting the stock solution of VRT to acidic, basic, photolysis, oxidative and thermal degradation. The calibration curve was found to be linear in the concentration range of 0.1–192 μg mL−1 (R2 = 0.9994). The peaks of degradation products did not interfere with that of pure VRT. The utility of the developed method was examined by analyzing the tablets containing VRT. The results of analysis were subjected to statistical analysis. PMID:22396908
Kochanowski, N; Blanchard, F; Cacan, R; Chirat, F; Guedon, E; Marc, A; Goergen, J-L
2006-01-15
Analysis of intracellular nucleotide and nucleotide sugar contents is essential in studying protein glycosylation of mammalian cells. Nucleotides and nucleotide sugars are the donor substrates of glycosyltransferases, and nucleotides are involved in cellular energy metabolism and its regulation. A sensitive and reproducible ion-pair reverse-phase high-performance liquid chromatography (RP-HPLC) method has been developed, allowing the direct and simultaneous detection and quantification of some essential nucleotides and nucleotide sugars. After a perchloric acid extraction, 13 molecules (8 nucleotides and 5 nucleotide sugars) were separated, including activated sugars such as UDP-glucose, UDP-galactose, GDP-mannose, UDP-N-acetylglucosamine, and UDP-N-acetylgalactosamine. To validate the analytical parameters, the reproducibility, linearity of calibration curves, detection limits, and recovery were evaluated for standard mixtures and cell extracts. The developed method is capable of resolving picomolar quantities of nucleotides and nucleotide sugars in a single chromatographic run. The HPLC method was then applied to quantify intracellular levels of nucleotides and nucleotide sugars of Chinese hamster ovary (CHO) cells cultivated in a bioreactor batch process. Evolutions of the titers of nucleotides and nucleotide sugars during the batch process are discussed.
Zan, Ke; Huang, Li-Li; Guo, Li-Nong; Liu, Jie; Zheng, Jian; Ma, Shuang-Cheng; Qian, Zheng-Ming; Li, Wen-Jia
2017-10-01
This study is to establish the HPLC specific chromatogram and determine four main nucleosides of wild and cultivated Cordyceps sinensis. Uridine, inosine, guanosine and adenosine were selected as reference substance. HPLC analysis was performed on a Waters XSelect HSS T3 C₁₈ (4.6 mm×250 mm, 5 μm), with a mobile phase consisting of water(A)-acetonitrile (B) at a flow rate of 0.6 mL•min⁻¹ (0-5 min,0% B;5-15 min,0%-10% B, 15-30 min,10%-20% B, 30-33 min, 20%-50% B, 33-35 min, 50%-0% B, 35-40 min, 0% B). The detection wavelength was 260 nm and the column temperature was controlled at 30 ℃, and the injection volume was 5 μL. HPLC specific chromatogram of wild and cultivated C. sinensis was established and four main nucleosides were simultaneously determined by the above method. Specific chromatograms and contents of four main nucleosides showed no significant differences between cultivated and wild C. sinensis. These results can provide scientific evidences for further development and utilization of cultivated C. sinensis. Copyright© by the Chinese Pharmaceutical Association.
Cao, Jiliang; Kong, Weijun; Zhou, Shujun; Yin, Lihui; Wan, Li; Yang, Meihua
2013-04-01
A simple, reliable, and low-cost method based on molecularly imprinted polymer as a selective sorbent of SPE was proposed for the determination of ochratoxin A (OTA) in beer, red wine, and grape juice by HPLC coupled with fluorescence detection (HPLC-FLD). Samples were diluted with water and cleaned up with an AFFINIMIP® SPE OTA column. After washing and eluting, the analyte was analyzed by HPLC-FLD. Under the optimized conditions, LOD and LOQ for OTA were 0.025 and 0.08 ng/mL, respectively. The recoveries of OTA from beer, red wine, and grape spiked at 0.1, 2, and 5 ng/mL ranged from 91.6 to 101.7%. Furthermore, after a simple regenerated procedure, the molecularly imprinted polymer based SPE column could be reused at least 14 times to achieve more than 80% recoveries of OTA in real samples. The developed method was applied to the detection of 30 beer, red wine, and grape juice samples and only four samples were contaminated by OTA with levels below the legal limits. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Distinct Iron-binding Ligands in the Upper Water Column at Station ALOHA
NASA Astrophysics Data System (ADS)
Bundy, R.; Boiteau, R.; Repeta, D.
2016-02-01
The distribution and chemical properties of iron-binding organic ligands at station ALOHA were examined using a combination of solid phase extraction (SPE) followed by high pressure liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICPMS). HPLC-ICPMS ligand measurements were complemented by competitive ligand exchange adsorptive cathodic stripping voltammetry (CLE-ACSV) analysis using salicylaldoxime as the added ligand. By HPLC-ICPMS, we find enhanced concentrations of distinct naturally-occurring polar iron-binding ligands present at the surface and in the chlorophyll maximum. Lower concentrations were found in the subsurface, where a suite of non-polar ligands was detected. Siderophores were present at the deepest depths sampled at station ALOHA, down to 400m. Incubation studies provided evidence for the production of iron-binding ligands associated with nutrient amended phytoplankton growth in surface waters, and as a result of microbial particle remineralization in the subsurface water column. Ligands classes identified via SPE were then compared to CLE-ACSV ligand measurements, as well as the conditional stability constants measured from model polar and non-polar siderophores, yielding insight to the sources of iron-binding ligands throughout the water column at station ALOHA.
Xie, Ying; Zhou, Hua; Wong, Yuen Fan; Liu, Zhongqiu; Xu, Hongxi; Jiang, Zhihong; Liu, Liang
2008-01-01
Background Benzoylmesaconine (BMA) is the main Aconitum alkaloid in Radix Aconiti Lateralis Preparata (Fuzi, aconite roots) with potent pharmacological activities, such as analgesia and anti-inflammation. The present study developed a simple and reliable method using BMA as a marker compound for the quality control of processed aconite roots and their products. Methods After extraction, a high-performance liquid chromatography (HPLC) determination of BMA was conducted on a RP-C18 column by gradient elution with acetonitrile and aqueous phase, containing 0.1% phosphoric acid adjusted with triethylamine to pH 3.0. Results A distinct peak profile was obtained and separation of BMA was achieved. Method validation showed that the relative standard deviations (RSDs) of the precision of BMA in all intra-day and inter-day assays were less than 1.36%, and that the average recovery rate was 96.95%. Quantitative analysis of BMA showed that the content of BMA varied significantly in processed aconite roots and their products. Conclusion This HPLC method using BMA as a marker compound is applicable to the quality control of processed aconite roots and their products. PMID:18513409
Conjugated linoleic acid-rich soy oil triacylglycerol identification.
Lall, Rahul K; Proctor, Andrew; Jain, Vishal P; Lay, Jackson O
2009-03-11
Conjugated linoleic acid (CLA)-rich soy oil has been produced by soy oil linoleic acid (LA) photoisomerization, but CLA-rich oil triacylglycerol (TAG) characterization was not described. Therefore, the objectives were to identify and quantify new TAG fractions in CLA-rich oil by nonaqueous reversed-phase high-performance liquid chromatography (NARP-HPLC). Analytical NARP-HPLC with an acetonitrile/dichloromethane (ACN/DCM) gradient and an evaporating light scattering detector/ultraviolet (ELSD/UV) detector was used. New TAG peaks from LA-containing TAGs were observed. The LnLL, LLL, LLO, and LLP (Ln, linolenic; L, linoleic; O, oleic; and P, palmitic) peaks reduced after isomerization with an increase in adjacent peaks that coeluted with LnLnO, LnLO, LnOO, and LnPP. The newly formed peaks were wider than those of the original oil and absorbed at 233 nm, suggesting the possibility of various CLA containing TAGs. The HPLC profile showed five fractions of mixed TAGs, and fatty acid analysis showed that CLA isomers were found predominately in fractions 2 and 3, which originally contained most LA. The CLA isomers were 70-80% trans,trans and 20-30% cis,trans and trans,cis.
Zhao, Ying-Yong; Zhao, Ye; Zhang, Yong-Min; Lin, Rui-Chao; Sun, Wen-Ji
2009-06-01
Polyporus umbellatus is a widely used anti-aldosteronic diuretic in Traditional Chinese medicine (TCM). A new, sensitive and selective high-performance liquid chromatography-fluorescence detector (HPLC-FLD) and high-performance liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry (HPLC-APCI-MS/MS) method for quantitative and qualitative determination of ergosta-4,6,8(14),22-tetraen-3-one(ergone), which is the main diuretic component, was provided for quality control of P. umbellatus crude drug. The ergone in the ethanolic extract of P. umbellatus was unambiguously characterized by HPLC-APCI, and further confirmed by comparing with a standard compound. The trace ergone was detected by the sensitive and selective HPLC-FLD. Linearity (r2 > 0.9998) and recoveries of low, medium and high concentration (100.5%, 100.2% and 100.4%) were consistent with the experimental criteria. The limit of detection (LOD) of ergone was around 0.2 microg/mL. Our results indicated that the content of ergone in P. umbellatus varied significantly from habitat to habitat with contents ranging from 2.13 +/- 0.02 to 59.17 +/- 0.05 microg/g. Comparison among HPLC-FLD and HPLC-UV or HPLC-APCI-MS/MS demonstrated that the HPLC-FLD and HPLC-APCI-MS/MS methods gave similar quantitative results for the selected herb samples, the HPLC-UV methods gave lower quantitative results than HPLC-FLD and HPLC-APCI-MS/MS methods. The established new HPLC-FLD method has the advantages of being rapid, simple, selective and sensitive, and could be used for the routine analysis of P. umbellatus crude drug.
Wu, Yunli; Hu, Bin
2009-11-06
A simple, selective, sensitive and inexpensive method of hollow fiber-based liquid-liquid-liquid microextraction (HF-LLLME) combined with high performance liquid chromatography (HPLC)-ultraviolet (UV) detection was developed for the determination of four acidic phytohormones (salicylic acid (SA), indole-3-acetic acid (IAA), (+/-) abscisic acid (ABA) and (+/-) jasmonic acid (JA)) in natural coconut juice. To the best of our knowledge, this is the first report on the use of liquid phase microextraction (LPME) as a sample pretreatment technique for the simultaneous analysis of several phytohormones. Using phenetole to fill the pores of hollow fiber as the organic phase, 0.1molL(-1) NaOH solution in the lumen of hollow fiber as the acceptor phase and 1molL(-1) HCl as the donor phase, a simultaneous preconcentration of four target phytohormones was realized. The acceptor phase was finally withdrawn into the microsyringe and directly injected into HPLC for the separation and quantification of the target phytohormones. The factors affecting the extraction efficiency of four phytohormones by HF-LLLME were optimized with orthogonal design experiment, and the data was analyzed by Statistical Product and Service Solutions (SPSS) software. Under the optimized conditions, the enrichment factors for SA, IAA, ABA and JA were 243, 215, 52 and 48, with the detection limits (S/N=3) of 4.6, 1.3, 0.9ngmL(-1) and 8.8 microg mL(-1), respectively. The relative standard deviations (RSDs, n=7) were 7.9, 4.9, 6.8% at 50ngmL(-1) level for SA, IAA, ABA and 8.4% at 500 microg mL(-1) for JA, respectively. To evaluate the accuracy of the method, the developed method was applied for the simultaneous analysis of several phytohormones in five natural coconut juice samples, and the recoveries for the spiked samples were in the range of 88.3-119.1%.
Sowa, Ireneusz; Wójciak-Kosior, Magdalena; Strzemski, Maciej; Sawicki, Jan; Staniak, Michał; Dresler, Sławomir; Szwerc, Wojciech; Mołdoch, Jarosław; Latalski, Michał
2018-01-01
Polyaniline (PANI) is one of the best known conductive polymers with multiple applications. Recently, it was also used in separation techniques, mostly as a component of composites for solid-phase microextraction (SPME). In the present paper, sorbent obtained by in situ polymerization of aniline directly on silica gel particles (Si-PANI) was used for dispersive solid phase extraction (d-SPE) and matrix solid–phase extraction (MSPD). The efficiency of both techniques was evaluated with the use of high performance liquid chromatography with diode array detection (HPLC-DAD) quantitative analysis. The quality of the sorbent was verified by Raman spectroscopy and microscopy combined with automated procedure using computer image analysis. For extraction experiments, triterpenes were chosen as model compounds. The optimal conditions were as follows: protonated Si-PANI impregnated with water, 160/1 sorbent/analyte ratio, 3 min of extraction time, 4 min of desorption time and methanolic solution of ammonia for elution of analytes. The proposed procedure was successfully used for pretreatment of plant samples. PMID:29565297
Satínský, Dalibor; Havlíková, Lucie; Solich, Petr
2013-08-01
A new and fast high-performance liquid chromatography (HPLC) column-switching method using fused-core columns in both dimensions for sample preconcentration and determination of propranolol in human urine has been developed. On-line sample pretreatment and propranolol preconcentration were performed on an Ascentis Express RP-C-18 guard column (5 × 4.6 mm), particle size, 2.7 μm, with mobile phase acetonitrile/water (5:95, v/v) at a flow rate of 2.0 mL min(-1) and at a temperature of 50 °C. Valve switch from pretreatment column to analytical column was set at 4.0 min in a back-flush mode. Separation of propranolol from other endogenous urine compounds was achieved on the fused-core column Ascentis Express RP-Amide (100 × 4.6 mm), particle size, 2.7 μm, with mobile phase acetonitrile/water solution of 0.5% triethylamine, pH adjusted to 4.5 by means of glacial acetic acid (25:75, v/v), at a flow rate of 1.0 mL min(-1) and at a temperature of 50 °C. Fluorescence excitation/emission detection wavelengths were set at 229/338 nm. A volume of 1,500 μL of filtered urine sample solution was injected directly into the column-switching HPLC system. The total analysis time including on-line sample pretreatment was less than 8 min. The experimentally determined limit of detection of the method was found to be 0.015 ng mL(-1).
Tandel, Devang; Shah, Purvi; Patel, Kalpana; Thakkar, Vaishali; Patel, Kirti; Gandhi, Tejal
2016-11-01
A rapid and sensitive reversed-phase high-performance liquid chromatography (HPLC) method using novel salting-out assisted liquid-liquid extraction technique has been developed for the quantitative determination of febuxostat (FEB), used for the treatment of gout, in rat plasma. The method was validated according to US FDA guideline. Separation was achieved using a Phenomenex Luna-C 18 (250 × 4.60 mm, 5 µm) column and mobile phase composed of potassium dihydrogen orthophosphate buffer 25 mM, adjusted to pH 6.8 with triethylamine:methanol in a ratio of 35:65 (v/v) showing retention time 5.56 and 8.86 min for FEB and internal standard, respectively. The optimal salting-out parameters; 1 mL of acetonitrile and 200 µL of 2 M ammonium acetate salt showed extraction recovery >90% for FEB from plasma. This extraction procedure afforded clear samples resulting in convenient and cost-saving procedure and showed good linear relationship (r > 0.9997) between peak area ratio and concentration from 0.3 to 20 µg/mL. The results of pharmacokinetic study showed that absorption profile of spherical agglomerate of FEB compared to marketed formulation was higher indicating greater systemic absorption. In conclusion, the developed SALLE-HPLC method with simple ultraviolet detection offered a number of advantages including good quantitative ability, wide linear range, high recovery, short analysis time as well as low cost. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Fujita, Kazuma; Miura, Masatomo; Shibata, Hiroyuki
2016-10-01
A simple, highly sensitive and specific high-performance liquid chromatography (HPLC) method was developed for the simultaneous quantitation of regorafenib, N-oxidemetabolite (M-2) and the desmethyl N-oxide metabolite (M-5) in human plasma. Regorafenib, M-2, M-5 and the internal standard sorafenib were separated using a mobile phase of 0.5% KH2 PO4 (pH 3.5)-acetonitrile (30:70, v/v), on a Capcell PAK MG II column at a flow rate of 0.5 mL/min and measurement at UV 260 nm. The lower limits of quantification for regorafenib, M-2 and M-5 were 10 ng/mL for each analyte. A procedure using solid-phase extraction required only a small amount of plasma (100 μL) for one analysis while providing high extraction recovery (>81% for all compounds) and good selectivity. Coefficients of variation for intra- and inter-day assays were <12.2% for regorafenib, <12.3% for M-2 and <15.1% for M-5. Accuracies for intra- and inter-day assays were <9.4% for regorafenib, <8.0% for M-2 and <12.8% for M-5 over a linear range from 10 to 10,000 ng/mL. This HPLC assay is suitable for clinical pharmacokinetic studies of regorafenib. The present HPLC method is currently in use for our observational studies of patients under treatment. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Ma, Jiping; Wu, Gege; Li, Shuang; Tan, Weiqiang; Wang, Xiaoyan; Li, Jinhua; Chen, Lingxin
2018-06-08
A simple method of magnetic solid-phase extraction (MSPE) coupled to high performance liquid chromatography (HPLC) was developed for the simultaneous extraction and determination of four kinds of heterocyclic pesticides (carbendazim, triadimefon, chlorfenapyr and fenpyroximate) in environmental water samples. Magnetic metal-organic frameworks (MOFs) of type MOF-5 were prepared and used as adsorbents of MSPE. Several main parameters influencing MSPE efficiency were investigated, including amount of magnetic MOF-5, sample solution pH, extraction time, salt concentration, type and volume of desorption solvents and desorption time. Under optimal conditions, the MSPE-HPLC method presented fast simple separation and analysis, and excellent linearity in the range of 0.3-500.0 μg/L for carbendazim and triadimefon, and 0.1-500.0 μg/L for chlorfenapyr and fenpyroximate, with correlation coefficients (r) higher than 0.9992. High sensitivity with limits of detection and quantification ranging from 0.04-0.11 μg/L and 0.13-0.35 μg/L, respectively, were achieved, as well as good precision with relative standard deviations of 2.98-7.11% (intra-day) and 3.31-7.12% (inter-day). Furthermore, the method was successfully applied to reservoir and Yellow River water samples, and satisfactory recoveries at three spiked concentration levels were between 80.20% and 108.33%.The magnetic MOF-5 composites based MSPE followed by HPLC proved promising for convenient and efficient determination of heterocyclic pesticides in environmental water samples. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ford, Michael J; Deibel, Michael A.; Tomkins, Bruce A
Quantitative determination of caffeine on reversed-phase C8 thin-layer chromatography plates using a surface sampling electrospray ionization system with tandem mass spectrometry detection is reported. The thin-layer chromatography/electrospray tandem mass spectrometry method employed a deuterium-labeled caffeine internal standard and selected reaction monitoring detection. Up to nine parallel caffeine bands on a single plate were sampled in a single surface scanning experiment requiring 35 min at a surface scan rate of 44 {mu}m/s. A reversed-phase HPLC/UV caffeine assay was developed in parallel to assess the mass spectrometry method performance. Limits of detection for the HPLC/UV and thin-layer chromatography/electrospray tandem mass spectrometry methodsmore » determined from the calibration curve statistics were 0.20 ng injected (0.50 {mu}L) and 1.0 ng spotted on the plate, respectively. Spike recoveries with standards and real samples ranged between 97 and 106% for both methods. The caffeine content of three diet soft drinks (Diet Coke, Diet Cherry Coke, Diet Pepsi) and three diet sport drinks (Diet Turbo Tea, Speed Stack Grape, Speed Stack Fruit Punch) was measured. The HPLC/UV and mass spectrometry determinations were in general agreement, and these values were consistent with the quoted values for two of the three diet colas. In the case of Diet Cherry Coke and the diet sports drinks, the determined caffeine amounts using both methods were consistently higher (by 8% or more) than the literature values.« less
Feng, Qin-Zhong; Zhao, Li-Xia; Yan, Wei; Lin, Jin-Ming; Zheng, Zhi-Xia
2009-08-15
The molecularly imprinted bulk polymer with 2,4,6-trichlorophenol (2,4,6-TCP) as the template molecule and methylacrylic acid (MAA), ethylene glycol dimethacrylate (EGDMA) as functional monomer and the crosslinker, respectively, has been prepared and applied to the molecularly imprinted solid-phase extraction (MISPE) procedure for selective preconcentration of phenolic compounds from environmental water samples. Various parameters affecting the extraction efficiency of the polymer have been evaluated to optimize the selective preconcentration of the phenolic compounds from aqueous samples. The characteristics of the MISPE method were validated by HPLC. The recoveries ranged between 90% and 98% (RSD: 0.9-2.3%, n=3) for tap water, between 85% and 105% (RSD: 2.6-4.9%, n=3) for river water, between 78% and 98% (RSD: 2.6-5.4%, n=3) for sewage water fortified with 0.4 mg L(-1) of phenol, 4-chlorophenol (4-CP), 2,4-dichlorophenol (2,4-DCP), pentachlorophenol (PCP). It was demonstrated that this MISPE-HPLC method could be applied to direct preconcentration and determination of phenolic compounds in environmental water samples.
Yari, Abdollah; Rashnoo, Saba
2017-11-01
Here, we are reporting a sensitive, simple and rapid method for the analysis of cyanidin chloride and pelargonidin chloride anthocyanins in cherry, sour cherry, pomegranate and barberry produced in Iran. The analytes were extracted with acetonitrile-hydrochloric acid (1% v/v) mixture under optimized pretreatment conditions. Clean-up of the extract from fruits was conducted by magnetic solid phase extraction using salicylic acid functionalized silica-coated magnetite nanoparticles (SCMNPs) as the adsorbent. The optimized conditions searched with central composite design. Working under optimum conditions specified as: SCMNPs modified with salicylic acid, sorbent contact time and sample 10min, mechanical stirring time 57.3min. HPLC with UV-detection was used for determination of the analytes. The limit of detection, LOD, obtained for the two anthocyanins were 0.02 and 0.03μgg -1 , respectively. The ranges of the spiked recoveries were 80.0-97.6 and 72.9-97.2%, with the relative standard deviations (RSD) of 2.1 and 2.5%, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.
Vane, F M; Stoltenborg, J K; Buggé, C J
1982-02-12
A high-performance liquid chromatography (HPLC) method for the quantitation of 13-cis-retinoic acid (13-cis-RA) and its major metabolite, 4-oxo-13-cis-RA, in human blood has been developed. The method includes extraction of 1 ml of blood with diethyl ether at pH 6 and the analysis of the extract by reversed-phase HPLC with solvent programming and detection at 365 nm. The quantitation ranges for 13-cis-RA and 4-oxo-13-cis-RA are 10--2000 and 50--2000 ng/ml of blood, respectively. The method also provides estimates of the concentrations of all-trans-RA and 4-oxo-all-trans-RA. The mean intra- and inter-assay variabilities for all four compounds were 6% or less. The method separates 13-cis-RA and 4-oxo-13-cis-RA from 9-cis-RA, all-trans-RA, 4-oxo-all-trans-RA, and some other possible metabolites, such as hydroxy and epoxy retinoic acids. The method has been successfully applied to the analyses of over 1200 blood samples from four 13-cis-RA clinical studies.
Tang, Wenfu; Wan, Meihua; Zhu, Zhengyan; Chen, Guanyuan; Huang, Xi
2008-01-01
Background Dachengqi Tang (DT) is a common traditional Chinese medicine formula for expelling neire ('internal heat') in the stomach and intestines. There was no reliable analytical method available for the quality control of DT. Methods A high-performance liquid chromatography (HPLC) method with a reverse phase C18 column (150 × 4.6 mm) was developed. The mobile phase was methanol with 0.2% acetic acid. Eight markers including naringin, hesperidin, aloe emodin, rhein, honokiol, magnolol, emodin and chrysophanol were determined. Results Regression analysis revealed a linear relationship between the concentrations of the markers and the peak area ratio of the standards and internal standard. The limit of detection (S/N = 3) and the limit of qualification (RSD < 20%) ranged from 0.21 to 0.43 ng/μl and 0.76 to 1.74 ng/μl respectively. The recovery was between 95.6% and 103.4%. The tests on the samples from three batches of DT showed that the profiles of the markers did not vary significantly among batches. Conclusion A reliable HPLC method for simultaneous determination of the eight markers in DT was developed. PMID:18445276
Smith, Lori L; Francis, Kyle A; Johnson, Joseph T; Gaskill, Cynthia L
2017-11-01
Pre-column derivatization with 9-fluorenylmethyl chloroformate (FMOC-Cl) was determined to be effective for quantitation of fumonisins B 1 and B 2 in feed. Liquid-solid extraction, clean-up using immunoaffinity solid phase extraction chromatography, and FMOC-derivatization preceded analysis by reverse phase HPLC with fluorescence. Instrument response was unchanged in the presence of matrix, indicating no need to use matrix-matched calibrants. Furthermore, high method recoveries indicated calibrants do not need to undergo clean-up to account for analyte loss. Established method features include linear instrument response from 0.04-2.5µg/mL and stable derivatized calibrants over 7days. Fortified cornmeal method recoveries from 0.1-30.0μg/g were determined for FB 1 (75.1%-109%) and FB 2 (96.0%-115.2%). Inter-assay precision ranged from 1.0%-16.7%. Method accuracy was further confirmed using certified reference material. Inter-laboratory comparison with naturally-contaminated field corn demonstrated equivalent results with conventional derivatization. These results indicate FMOC derivatization is a suitable alternative for fumonisins B 1 and B 2 quantitation in corn-based feeds. Copyright © 2017 Elsevier Ltd. All rights reserved.
High-performance liquid chromatographic assay for the determination of Aloe Emodin in mouse plasma.
Zaffaroni, M; Mucignat, C; Pecere, T; Zagotto, G; Frapolli, R; D'Incalci, M; Zucchetti, M
2003-10-25
An isocratic high-performance liquid chromatography (HPLC) method was developed and validated to determine Aloe Emodin (AE) in mouse plasma. The analysis required 0.3 ml of plasma and involves extraction with dichloromethane. The HPLC separation was carried out on Symmetry Shield RP18, a mobile phase of methanol-water-acetic acid (65:35:0.2) and fluorescence detection at lambda(ex)=410 nm and lambda(em)=510 nm. The retention time of AE was 11.7 min. The assay was linear from 10 to 1,000 ng/ml (r2 > or = 0.999), showed intra- and inter-day precision within 7.8 and 4.7%, and accuracy of 87.3-105.7%. Detection limit (LOD) and quantification limit (LOQ) were 4.5 and 5 ng/ml, respectively. The method was applied to determine for the first time the pharmacokinetic of AE in mice.
Shafaei, Armaghan; Halim, Nor Hidayah Ab; Zakaria, Norhidayah; Ismail, Zhari
2017-10-01
Orthosiphon stamineus (OS) Benth is a medicinal plant and native in Southeast Asia. Previous studies have shown that OS leaves possess antioxidant, cytotoxic, diuretic, antihypertensive, and uricosuric effects. These beneficial effects have been attributed to the presence of primary and secondary metabolites such as polyphenols, amino acids, and flavonoids. To develop and validate an high-performance liquid chromatography (HPLC)-diode array detector (DAD) method combined with solid-phase extraction that involves precolumn derivatization with O -phthaladehyde for simultaneous analysis of free amino acids in OS leaves extracts. OS leaves were extracted with water (OS-W), ethanol (OS-E), methanol (OS-M), 50% ethanol (OS-EW), and 50% methanol (OS-MW). The extracts were treated by C18 cartridge before derivatization, resulting in great improvement of separation by Zorbox Eclipse XDB-C 18 column. The HPLC-DAD method was successfully developed and validated for analyzing the contents of free amino acids in OS extracts. The results showed that l-aspartic acid with 0.93 ± 0.01 nmol/mg was the major free amino acid in OS-W extract. However, in OS-E, OS-M, OS-EW, and OS-MW, l-glutamic acid with 3.53 ± 0.16, 2.17 ± 0.10, 4.01 ± 0.12, and 2.49 ± 0.12 nmol/mg, respectively, was the major free amino acid. Subsequently, l-serine, which was detected in OS-W, OS-E, and OS-M, was the minor free amino acid with 0.33 ± 0.02, 0.12 ± 0.01, and 0.06 ± 0.01 nmol/mg, respectively. However, l-threonine with 0.26 ± 0.02 and 0.19 ± 0.08 nmol/mL in OS-EW and OS-MW, respectively, had the lowest concentration compared with other amino acid components. All validation parameters of the developed method indicate that the method is reliable and efficient to simultaneously determine the free amino acids content for routine analysis of OS extracts. The HPLC-DAD method combined with solid phase extraction was successfully developed and validated for simultaneous determination and quantification of 17 free amino acids in Orthosiphon stamineus (OS) Benth extractsOS extracts were found to be rich in free amino acid contentL-aspartic acid was the major free amino acid in OS water extract while, in OS ethanol, methanol, 50% ethanol and 50% methanol extracts, L-glutamic acid was the major free amino acidL-serine was the minor free amino acid in OS water, ethanol and methanol extracts while, in OS 50% ethanol and 50% methanol extracts, L-threonine had the lowest concentration compared to other amino acid components. Abbreviations used: HPLC-DAD: High-Performance Liquid Chromatography with Diode-Array Detection, OS: Orthosiphon stamineus , OS-W: Orthosiphon stamineus water extract, OS-E: Orthosiphon stamineus ethanol extract, OS-M: Orthosiphon stamineus methanol extract, OS-EW: Orthosiphon stamineus 50% ethanol extract, OS-MW: Orthosiphon stamineus 50% methanol extract, OPA: O-phthaladehyde , SPE: Solid Phase Extraction, UV: Ultraviolet, LOD: Limit of Detection, LOQ: Limit of Quantification, RSD: Relative Standard Deviation.
Chen, Zhi; Zhang, Wei; Tang, Xunyou; Fan, Huajun; Xie, Xiujuan; Wan, Qiang; Wu, Xuehao; Tang, James Z
2016-06-25
A novel and rapid method for simultaneous extraction and separation of the different polysaccharides from Semen Cassiae (SC) was developed by microwave-assisted aqueous two-phase extraction (MAATPE) in a one-step procedure. Using ethanol/ammonium sulfate system as a multiphase solvent, the effects of MAATPE on the extraction of polysaccharides from SC such as the composition of the ATPS, extraction time, temperature and solvent-to-material ratio were investigated by UV-vis analysis. Under the optimum conditions, the yields of polysaccharides were 4.49% for the top phase, 8.80% for the bottom phase and 13.29% for total polysaccharides, respectively. Compared with heating solvent extraction and ultrasonic assisted extraction, MAATPE exhibited the higher extraction yields in shorter time. Fourier-transform infrared spectra showed that two polysaccharides extracted from SC to the top and bottom phases by MAATPE were different from each other in their chemical structures. Through acid hydrolysis and PMP derivatization prior to HPLC, analytical results by indicated that a polysaccharide of the top phases was a relatively homogeneous homepolysaccharide composed of dominant gucose glucose while that of the bottom phase was a water-soluble heteropolysaccharide with multiple components of glucose, xylose, arabinose, galactose, mannose and glucuronic acid. Molar ratios of monosaccharides were 95.13:4.27:0.60 of glucose: arabinose: galactose for the polysaccharide from the top phase and 62.96:14.07:6.67: 6.67:5.19:4.44 of glucose: xylose: arabinose: galactose: mannose: glucuronic acid for that from the bottom phase, respectively. The mechanism for MAATPE process was also discussed in detail. MAATPE with the aid of microwave and the selectivity of the ATPS not only improved yields of the extraction, but also obtained a variety of polysaccharides. Hence, it was proved as a green, efficient and promising alternative to simultaneous extraction of polysaccharides from SC. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhong, Hongmin; Zhang, Hua; Wan, Huihui
2013-04-01
Silica has been widely used as HPLC column packing material. However, the fact that base can attack the silanol and dissolve the silica embarrasses the utilization of silica stationary phase in high pH mobile phases (pH >8). In our previous research, the use of porous spherical silicon oxynitride (sph-SiON) material from high temperature nitridation of silica microspheres as stationary phase for HPLC has been explored, and the sph-SiON is stable to alkaline mobile phases and demonstrates excellent separation of a variety of polar compounds in hydrophilic interaction liquid chromatography (HILIC) mode. Herein, the degree of nitridation was studied as a function of temperature of nitridation at 750-1 050 degrees C, yielding the silicon oxynitride with 0.40%-12.0% (mass fraction) nitrogen from elemental analysis. At the temperature of 1 050 degrees C, the nitrogen content increased from 12.0% to 24.5% with the nitridation time increasing from 20 h to 120 h. The sph-SiON is stable when disposed in different pH aqueous solutions for one week. The sph-SiON material can be modified to give hydrophobic surface through the reaction of surface Si-NHx with dimethyloctadecylchlorosilane. Elemental analysis and 13C cross-polarization magic-angle spinning (CP/MAS) NMR spectrum of C18-sph-SiON prove the integration of C18 alkyl groups attached onto the sph-SiON surface. The chromatographic evaluation of C18-sph-SiON in reversed-phase separation mode was performed with alkylbenzenes as hydrophobic probes. Three alkylbenzene compounds can be separated and retained well on C18-sph-SiON even in the mobile phase of methanol/H2O (70/30, v/v) with 78 507 plates/m, and an excellent tailing factor (0.95) can be obtained for ethylbenzene. In comparison with C18-SiO2, C18-sph-SiON shows distinct differences with respect to different classes of analytes, i. e. neutral analyte naphthalene, acidic analyte ibuprofen, and basic analyte amitriptyline.
Schies, Christine; Alemayehu, Abraham B; Vazquez-Lima, Hugo; Thomas, Kolle E; Bruhn, Torsten; Bringmann, Gerhard; Ghosh, Abhik
2017-06-01
An inherently chiral metallocorrole has been resolved for the first time by means of HPLC on a chiral stationary phase. For the compound in question, a homoleptic tungsten biscorrole, the absolute configurations of the enantiomers were assigned using online HPLC-ECD measurements in conjunction with time-dependent CAM-B3LYP calculations, which provided accurate simulations of the ECD spectra.
Zheng, Dong; Qu, Deyu; Yang, Xiao-Qing; ...
2015-01-29
The polysulfide species dissolved in aprotic solvents can be separated and analyzed by reverse phase (RP) high performance liquid chromatography (HPLC) in tandem with electrospray-mass spectroscopy. The relative distribution of polysulfide species in the electrolyte recovered from Li-S batteries is quantitatively and reliably determined for the first time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Dong; Qu, Deyu; Yang, Xiao-Qing
The polysulfide species dissolved in aprotic solvents can be separated and analyzed by reverse phase (RP) high performance liquid chromatography (HPLC) in tandem with electrospray-mass spectroscopy. The relative distribution of polysulfide species in the electrolyte recovered from Li-S batteries is quantitatively and reliably determined for the first time.
Song, Zhixin; Xie, Baoyuan; Ma, Huaian; Zhang, Rui; Li, Pengfei; Liu, Lihong; Yue, Yuhong; Zhang, Jianping; Tong, Qing; Wang, Qingtao
2016-09-01
The level of glycated hemoglobin (HbA1c ) has been recognized as an important indicator of long-term glycemic control. However, the HbA1c measurement is not currently included as a diagnostic determinant in China. Current study aims to assess a candidate modified International Federation of Clinical Chemistry reference method for the forthcoming standardization of HbA1c measurements in China. The HbA1c concentration was measured using a modified high-performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS) method. The modified method replaces the propylcyanide column with a C18 reversed-phase column, which has a lower cost and is more commonly used in China, and uses 0.1% (26.5 mmol/l) formic acid instead of trifluoroacetic acid. Moreover, in order to minimize matrix interference and reduce the running time, a solid-phase extraction was employed. The discrepancies between HbA1c measurements using conventional methods and the HPLC-ESI-MS method were clarified in clinical samples from healthy people and diabetic patients. Corresponding samples were distributed to 89 hospitals in Beijing for external quality assessment. The linearity, reliability, and accuracy of the modified HPLC-ESI-MS method with a shortened running time of 6 min were successfully validated. Out of 89 hospitals evaluated, the relative biases of HbA1c concentrations were < 8% for 74 hospitals and < 5% for 60 hospitals. Compared with other conventional methods, HbA1c concentrations determined by HPLC methods were similar to the values obtained from the current HPLC-ESI-MS method. The HPLC-ESI-MS method represents an improvement over existing methods and provides a simple, stable, and rapid HbA1c measurement with strong signal intensities and reduced ion suppression. © 2015 Wiley Periodicals, Inc.
Search for fullerenes in stone meteorites
NASA Astrophysics Data System (ADS)
Oester, M. Y.; Kuechl, D.; Sipiera, P. P.; Welch, C. J.
1994-07-01
The possibility of identifying fullerenes in stony meteorites became apparent from a paper given by Radicati de Brozolo. In this paper it was reported that fullerenes were present in the debris resulting from a collision between a micrometeoroid and an orbiting satellite. This fact generated sufficient curiosity to initiate a search for the presence of fullerenes in various stone meteorites. In the present study seven ordinary chondrites (al-Ghanim L6 (find), Dimmitt H4 (find), Lazbuddie LL5 (find), New Concord H5 (fall), Silverton H4 (find), Springlake L6 (find), and Umbarger L3/6 (find)). Four carbonaceous chondrites (ALH 83100 C2 (find), ALH 83108 C30 (find), Allende CV3 (fall), and Murchison CM2 (fall), and one achondrite (Monticello How (find)) were analyzed for the presence of fullerenes. The analytical procedure employed was as follows: 100 mg of meteorite was ground up with a mortar and pestle; 10 mL of toluene was then added and the mixture was refluxed for 90 min; this mixture was then filtered through a short column of silica; a 50 microliter sample was then analyzed by high pressure liquid chromatography (HPLC) using a Buckyclutcher I column with a mobile phase consisting of equal volumes of toluene and hexane at a flow rate of 1.00 mg per minute, with detection at 330 and 600 nm. Three of the meteorites, Allende, Murchison, and al-Ghanim, gave HPLC traces containing peaks with similar retention times to the HPLC trace of an authentic fullerene C60. However, further analysis using an HPLC instrument equipped with a diode-array detector failed to confirm any of the substances detected in the three meteorites as C60. Additional analyses will be conducted to identify what the HPLC traces actually represent.
Human and porcine immunoreactive gastric inhibitory polypeptides (IR-GIP) are not identical.
Bacarese-Hamilton, A J; Adrian, T E; Bloom, S R
1984-03-12
Immunoreactive gastric inhibitory polypeptide (IR-GIP) from human and porcine intestine was quantified by radioimmunoassay and the molecular forms characterised by gel permeation and reverse-phase high pressure liquid chromatography (HPLC). Gel filtration revealed two major immunoreactive peaks corresponding to the previously described 5-kDa and 8-kDa molecular forms, which appeared similar in both species. Isocratic reverse-phase HPLC revealed that the major immunoreactive GIP peak (5-kDa) in the human tissue eluted earlier than the corresponding porcine molecular form, indicating the latter to be less hydrophobic. These findings suggest significant species differences between human and porcine GIP.
Yan, Zengguang; Li, Jianrong; Xie, Yabo; Bai, Liping; Jiang, Lin; Li, Fasheng
2017-01-01
UiO-66 analogues are good candidates as stationary phase in HPLC because of their chemical/thermal stability, large surface area, and two cage structures. Here, two UiO-66 analogues, UiO-66-NH2 and UiO-67, were synthesized and used as stationary phase in HPLC to evaluate their performance in the separation of substituted benzenes (SBs) and polycyclic aromatic hydrocarbons (PAHs). The results showed that SBs could be well separated on UiO-66-NH2 column but not on UiO-67 column. Nonetheless, PAHs could be well separated on UiO-67 column. The separation mechanisms of SBs and PAHs on UiO-66 analogues may be involved in the pore size and functional group in the frameworks of UiO-66 analogues. Introduction of the–NH2 into UiO-66 significantly reduced its adsorption capacity for SB congeners, which resulted in less separation of SBs on UiO-66-NH2. As for the separation of PAHs on UiO-67 column, the π-π stacking effect was supposed to play a vital role. PMID:28582453
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franco-Bourland, R.E.; Fernstrom, J.D.
1981-01-01
L(/sup 35/S)Cys-arginine vasopressin, -oxytocin, and -somatostatin were purified from hypothalami and neurohypophyses 4 h after rats received L(/sup 35/S)Cys via the third ventricle. After acetic acid extraction, Sephadex G-25 filtration, and chemoadsorption to C18-silica (Sep-Pak cartridges), the labeled peptides were rapidly separated by gradient elution, reversed phase, high pressure liquid chromatography (HPLC). The identity and isotopic purity of the labeled peptides were determined by several reversed phase HPLC procedures in conjunction with chemical modification. The labeled peptide fractions were at least 50% radiochemically pure. Using this HPLC isolation procedure, incorporation of L-(/sup 35/S)Cys into each peptide was determined in hydratedmore » and dehydrated rats. Label incorporation into arginine vasopressin and oxytocin in the hypothalamus and the neurohypophysis of dehydrated rats was 2-3 times greater than that in hydrated rats. Incorporation of label into hypothalamic and neurohypophyseal somatostatin was unaffected by the hydration state of the animal. This procedure thus provides a very rapid, but sensitive, set of techniques for studying the control of small peptide biosynthesis in the brain.« less
Zhao, Weiwei; Zhang, Chaoyan; Yan, Zengguang; Zhou, Youya; Li, Jianrong; Xie, Yabo; Bai, Liping; Jiang, Lin; Li, Fasheng
2017-01-01
UiO-66 analogues are good candidates as stationary phase in HPLC because of their chemical/thermal stability, large surface area, and two cage structures. Here, two UiO-66 analogues, UiO-66-NH2 and UiO-67, were synthesized and used as stationary phase in HPLC to evaluate their performance in the separation of substituted benzenes (SBs) and polycyclic aromatic hydrocarbons (PAHs). The results showed that SBs could be well separated on UiO-66-NH2 column but not on UiO-67 column. Nonetheless, PAHs could be well separated on UiO-67 column. The separation mechanisms of SBs and PAHs on UiO-66 analogues may be involved in the pore size and functional group in the frameworks of UiO-66 analogues. Introduction of the-NH2 into UiO-66 significantly reduced its adsorption capacity for SB congeners, which resulted in less separation of SBs on UiO-66-NH2. As for the separation of PAHs on UiO-67 column, the π-π stacking effect was supposed to play a vital role.
Abidi, S.L.
1983-01-01
A series of eleven p-aminotriphenylmethane dyes have been studied by high-performance liquid chromatography (HPLC). The combined use of HPLC and spectrophotometry permits specific detection of these compounds in the visible range around 600 nm. As the high affinity of the imminium cations for the active sites of the hydrocarbonaceous stationary phase has presented difficulties for reversed-phase HPLC with pure solvents, organic electrolytes were added to the mobile phase to facilitate the elution of the components with improved selectivity, sensitivity (minimum detection limit, 0.1 μg/ml), and peak symmetry. The effects of chromatographic variables on the component retentivity were investigated. Retention times of the dye analytes decreased with increasing concentration of the added ionic reagent and with decreasing number of the hydrophobic alkyl substituents on the nitrogen atom. The influence of pH on the retention parameters appears to parallel that observed previously for cationic quaternary ammonium compounds. Among the acidic reagents employed, naphthalenesulfonic acid yielded the most satisfactory results. The use of binary electrolyte systems invariably improved the chromatographic behavior of the imminium solutes analyzed. Results obtained with two different octadecylsilica columns have been compared.
Jia, Dong-Xu; Ai, Zheng-Gui; Xue, Ya-Ping; Zheng, Yu-Guo
2014-11-01
L-3, 4-dimethoxy-α-methylphenylalanine (L-DMMD) is an important intermediate for the synthesis of 3-hydroxy-α-methyl-L-tyrosine (L-methyldopa). This paper describes an efficient, accurate, and low-priced method of high-performance liquid chromatography (HPLC) using chiral mobile phase and conventional C18 column to separate L-DMMD from its enantiomers. The effects of ligands, copper salts, organic modifiers, pHs of mobile phase, and temperatures on the retention factors (k') and selectivity (α) were evaluated to achieve optimal separation performance. Then, thermal analysis of the optimal separation conditions was investigated as well. It was confirmed that the optimal mobile phase was composed of 20 % (v/v) methanol, 8 mM L-phenylalanine (L-Phe), and 4 mM cupric sulfate in water of pH 3.2, and the column temperature was set at 20 °C. Baseline separation of two enantiomers could be obtained through the conventional C18 column with a resolution (R) of 3.18 in less than 18 min. Thermodynamic data (∆∆H and ∆∆S) obtained by Van't Hoff plots revealed the chiral separation was an enthalpy-controlled process. To the best of our knowledge, this is the first report regarding the enantioseparation of DMMD by chiral ligand-exchange HPLC.
Fostinelli, Jacopo; Madeo, Egidio; Toraldo, Emanuele; Sarnico, Michela; Luzzana, Giorgio; Tomasi, Cesare; De Palma, Giuseppe
2018-06-09
We performed a cross-sectional study with the main aim of evaluating occupational exposure to polycyclic aromatic hydrocarbons (PAHs) in workers involved in the pavement construction of a new highway in Northern Italy, where modified bitumen was used as binder for Hot Mix Asphalt. We applied a combined approach of air and biological monitoring. Both the aerosol and vapour phases of bitumen were collected applying the NIOSH 5506 method. The 16 PAHs listed as high priority by EPA were determined by HPLC-UV. End-of-shift urine samples were collected from 144 workers to determine 1-hydroxypyrene (1-OHP) and 2-naphthol (2-NAP) concentrations after enzyme digestion and HPLC-UV analysis. Socio-demographic and lifestyle information was collected by a questionnaire. Paving workers were actually exposed to PAHs, including carcinogenic compounds, that were measurable only in the aerosol phase. Higher exposure as well as dose levels were measured for the paver group. Biological monitoring confirmed that 1-OHP was less affected by smoking habits as compared to 2-NAP and showed a higher association with occupational exposure. Carcinogenic PAH compounds were detectable only in the aerosol phase and this must be taken into account in the adoption of preventive measures. Biomonitoring supported the superiority of 1-OHP as compared to 2-NAP in assessing the internal dose in such workers. Copyright © 2018. Published by Elsevier B.V.
Mustafa, Ahmed M; Caprioli, Giovanni; Ricciutelli, Massimo; Maggi, Filippo; Marín, Rosa; Vittori, Sauro; Sagratini, Gianni
2015-05-01
The root of Gentiana lutea L., famous for its bitter properties, is often used in alcoholic bitter beverages, food products and traditional medicine to stimulate the appetite and improve digestion. This study presents a new, fast, and accurate HPLC method using HPLC/ESI-MS and HPLC/DAD for simultaneous analysis of iridoids (loganic acid), secoiridoids (gentiopicroside, sweroside, swertiamarin, amarogentin) and xanthones (isogentisin) in different populations of G.lutea L., cultivated in the Monti Sibillini National Park, obtained wild there, or purchased commercially. Comparison of HPLC/ESI-MS and HPLC/DAD indicated that HPLC/ESI-MS is more sensitive, reliable and selective. Analysis of twenty samples showed that gentiopicroside is the most dominant compound (1.85-3.97%), followed by loganic acid (0.11-1.30%), isogentisin (0.03-0.48%), sweroside (0.05-0.35%), swertiamarin (0.08-0.30%), and amarogentin (0.01-0.07%). The results confirmed the high quality of the G.lutea cultivated in the Monti Sibillini National Park. Copyright © 2014 Elsevier Ltd. All rights reserved.
Avula, Bharathi; Wang, Yan-Hong; Smillie, Troy J; Mabusela, Wilfred; Vincent, Leszek; Weitz, Frans; Khan, Ikhlas A
2009-01-01
A simple and specific analytical method for the quantitative determination of flavonoids from the aerial parts of the Artemisia afra plant samples was developed. By column high-performance liquid chromatography (HPLC) with UV absorption and mass spectrometry (MS) detection, separation was achieved on a reversed-phase octadecylsilyl (C18) column with water, methanol, and acetonitrile, all containing 0.1% acetic acid, as the mobile phase. These methods were used to analyze various species of Artemisia plant samples. The wavelength used for quantification of flavonoids with the diode array detector was 335 nm. The limits of detection (LOD) by HPLC/MS were found to be 7.5, 7.5, 10, 2.0, and 2.0 ng/mL; and by LC-UV the LODs were 500, 500, 500, 300, and 300 ng/mL for apigenin, chrysoeriol, tamarixetin, acacetin, and genkwanin, respectively. The HPLC/MS method was found to be 50-150 times more sensitive than the HPLC-UV method. HPLC/MS coupled with an electrospray ionization interface is described for the identification and quantification of flavonoids in various plant samples. This method involved the use of the [M+H]+ ions of the compounds at mass-to-charge ratio of 1.0606, 301.0712, 317.0661, 285.0763, and 285.0763 (calculated mass), respectively, in the positive ion mode with extractive ion monitoring.
Nestola, Marco; Thellmann, Andrea
2015-01-01
An online normal-phase liquid chromatography-gas chromatography-mass spectrometry (HPLC-GC-MS) method was developed for the determination of vitamins D2 and D3 in selected food matrices. Transfer of the sample from HPLC to GC was realized by large volume on-column injection; detection was performed with a time-of-flight mass spectrometer (TOF-MS). Typical GC problems in the determination of vitamin D such as sample degradation or sensitivity issues, previously reported in the literature, were not observed. Determination of total vitamin D content was done by quantitation of its pyro isomer based on an isotopically labelled internal standard (ISTD). Extracted ion traces of analyte and ISTD showed cross-contribution, but non-linearity of the calibration curve was not determined inside the chosen calibration range by selection of appropriate quantifier ions. Absolute limits of detection (LOD) and quantitation (LOQ) for vitamins D2 and D3 were calculated as approximately 50 and 150 pg, respectively. Repeatability with internal standard correction was below 2 %. Good agreement between quantitative results of an established high-performance liquid chromatography with UV detection (HPLC-UV) method and HPLC-GC-MS was found. Sterol-enriched margarine was subjected to HPLC-GC-MS and HPLC-MS/MS for comparison, because HPLC-UV showed strong matrix interferences. HPLC-GC-MS produced comparable results with less manual sample cleanup. In summary, online hyphenation of HPLC and GC allowed a minimization in manual sample preparation with an increase of sample throughput.
Miranda, Tiago A; Silva, Pedro H R; Pianetti, Gerson A; César, Isabela C
2015-01-28
Chloroquine and primaquine are the first-line treatment recommended by World Health Organization for malaria caused by Plasmodium vivax. Since the problem of counterfeit or substandard anti-malarials is well established all over the world, the development of rapid and reliable methods for quality control analysis of these drugs is essential. Thus, the aim of this study was to develop and validate a novel UPLC-DAD method for simultaneously quantifying chloroquine and primaquine in tablet formulations. The UPLC separation was carried out using a Hypersil C18 column (50 × 2.1 mm id; 1.9 μm particle size) and a mobile phase composed of acetonitrile (A) and 0.1% aqueous triethylamine, pH 3.0 adjusted with phosphoric acid (B), at a flow rate 0.6 mL/min. Gradient elution was employed. UV detection was performed at 260 nm. UPLC method was fully validated and the results were compared to a conventional HPLC-DAD method for the analysis of chloroquine and primaquine in tablet formulations. UPLC method was shown to be linear (r2 > 0.99), precise (CV < 2.0%), accurate (recovery rates from 98.11 to 99.83%), specific, and robust. No significant differences were observed between the chloroquine and primaquine contents obtained by UPLC and HPLC methods. However, UPLC method promoted faster analyses, better chromatographic performance and lower solvent consumption. The developed UPLC method was shown to be a rapid and suitable technique to quantify chloroquine and primaquine in pharmaceutical preparations and may be successfully employed for quality control analysis.
Krull, I S; Sebag, A; Stevenson, R
2000-07-28
Separation of biopolymers is an obvious application of capillary electrochromatography (CEC) technology, since speed and resolution should increase significantly over high-performance liquid chromatography (HPLC). All too often, HPLC chromatograms of polymers show poorly resolved envelopes of overlapping peaks from oligomers. The practical limitation of column length and pressure drop has hindered development of high resolution separations of many polymers in HPLC. However, this generally applies only to packed beds of small particles, and not to continuous (or monolithic) beds, as introduced by Hjerten et al. [S. Hjerten, Ind. Eng. Chem. Res. 38 (1999) 1205; S. Hjerten, C. Ericson, Y.-M. Li, R. Zhang, Biomed. Chromatogr. 12 (1998) 120; C. Ericson, S. Hjerten, Anal. Chem. 71 (1999) 1621; J.-L. Liao, N. Chen, C. Ericson, S. Hjerten, Anal. Chem. 68 (1996) 3468; S. Hjerten, A. Vegvari, T. Srichaiyo, H.-X. Zhang, C. Ericson, D. Eaker, J. Capillary. Elec. 5 (1998) 13; C. Ericson, J.-L. Liao, K. Nakazato, S. Hjerten, J. Chromatogr. A 767 (1997) 33; S. Hjerten, D. Eaker, K. Elenbring, C. Ericson, K. Kubo, J.-L. Liao, C.-M. Zeng, P.-A. Lidstrom, C. Lindh, A. Palm, T. Srichiayo, L. Valtcheva, R. Zhang, Jpn. J. Electroph. 39 (1995) 1]. Throughout this review we will refer to such packings as monolithic or continuous beds, but they are identical type packings, formed by the in situ polymerization in the capillary or column. CEC capillaries can be much longer, and contain smaller particles than is practical for HPLC. This improves resolution significantly. CEC is able to capitalize on existing mobile phase technology developed over 30 years to improve separations. The requirement that the mobile phase simultaneously promote the separation and mobile phase mobility needs to be considered. In RPLC, this dual role is not much of a problem. It may be much more important in other modes, particularly ion-exchange (IEC). As the field develops, it is becoming clear that CEC is not just a simple extension of HPLC. Instruments, column technology and operating optima are clearly different than HPLC. CEC will develop into its own unique field. Open tubular HPLC is almost precluded by the high pressures required for forcing liquids through 10 microm or smaller capillaries. Electroosmotic pumping (EOF) avoids the pressure constraints and provides better flow profiles. Compared to HPCE, the ability to interact with the stationary phase may enable separations that would be difficult with electrophoresis alone. Since the mobile phase can be less complex than micellar electrokinetic chromatography (MEKC), CEC also avoids the problem of high background signals from the micelle forming compounds. Thus CEC-MS (mass spectrometry) is expected to be even more powerful than HPCE-MS. The fortuitous, simultaneous development of matrix assisted laser desorption-time of flight MS (MALDI-TOF-MS) technology will enable extension of the mass range to above 100 000 Da. Lack of familiarity is the perhaps the largest liability of CEC compared to other techniques. This paper critically compares the state-of-the-art of CEC with HPLC and HPCE, with a particular emphasis on separation of biopolymers. The goal is to help the reader overcome the fear of the unknown, in this case, CEC.