Yang, Yanqin; Chu, Guohai; Zhou, Guojun; Jiang, Jian; Yuan, Kailong; Pan, Yuanjiang; Song, Zhiyu; Li, Zuguang; Xia, Qian; Lu, Xinbo; Xiao, Weiqiang
2016-03-01
An ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction was first employed to determine the volatile components in tobacco samples. The method combined the advantages of ultrasound, microwave, and headspace solid-phase microextraction. The extraction, separation, and enrichment were performed in a single step, which could greatly simplify the operation and reduce the whole pretreatment time. In the developed method, several experimental parameters, such as fiber type, ultrasound power, and irradiation time, were optimized to improve sampling efficiency. Under the optimal conditions, there were 37, 36, 34, and 36 components identified in tobacco from Guizhou, Hunan, Yunnan, and Zimbabwe, respectively, including esters, heterocycles, alkanes, ketones, terpenoids, acids, phenols, and alcohols. The compound types were roughly the same while the contents were varied from different origins due to the disparity of their growing conditions, such as soil, water, and climate. In addition, the ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction method was compared with the microwave-assisted extraction coupled to headspace solid-phase microextraction and headspace solid-phase microextraction methods. More types of volatile components were obtained by using the ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction method, moreover, the contents were high. The results indicated that the ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction technique was a simple, time-saving and highly efficient approach, which was especially suitable for analysis of the volatile components in tobacco. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Application of ionic liquid in liquid phase microextraction technology.
Han, Dandan; Tang, Baokun; Lee, Yu Ri; Row, Kyung Ho
2012-11-01
Ionic liquids (ILs) are novel nonmolecular solvents. Their unique properties, such as high thermal stability, tunable viscosity, negligible vapor pressure, nonflammability, and good solubility for inorganic and organic compounds, make them excellent candidates as extraction media for a range of microextraction techniques. Many physical properties of ILs can be varied, and the structural design can be tuned to impart the desired functionality and enhance the analyte extraction selectivity, efficiency, and sensitivity. This paper provides an overview of the applications of ILs in liquid phase microextraction technology, such as single-drop microextraction, hollow fiber based liquid phase microextraction, and dispersive liquid-liquid microextraction. The sensitivity, linear calibration range, and detection limits for a range of target analytes in the methods were analyzed to determine the advantages of ILs in liquid phase microextraction. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2006-01-01
ENVIRONMENTAL ANALYSIS Analysis of Explosives in Soil Using Solid Phase Microextraction and Gas Chromatography Howard T. Mayfield Air Force Research...Abstract: Current methods for the analysis of explosives in soils utilize time consuming sample preparation workups and extractions. The method detection...chromatography/mass spectrometry to provide a con- venient and sensitive analysis method for explosives in soil. Keywords: Explosives, TNT, solid phase
A new method is described for determining total gasoline-range organics
(TGRO) in water that combines solid-phase microextraction (SPME) and infrared
(IR) spectroscopy. In this method, the organic compounds are extracted from
250-mL of water into a small square (3....
A new method is described for determining nitroaromatic compounds in water
that combines solid-phase microextraction (SPME) and infrared (IR) spectroscopy. In this method, the compounds are extracted from a 250-mL volume of water into a small square (3.2 cm ? 3.2 cm ? 61.2...
A rapid method for estimating polychlorinated biphenyl (PCB) concentrations in contaminated soils and sediments has been developed by coupling static subcritical water extraction with solid-phase microextraction (SPME). Soil, water, and internal standards are placed in a seale...
USDA-ARS?s Scientific Manuscript database
Headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography–mass spectrometry (GC-MS) is commonly used in analyzing insect volatiles. In order to improve the detection of volatiles in insects, a freeze-thaw method was applied to insect samples before the HS-SPME-GC-MS analysis. ...
SOLID PHASE MICROEXTRACTION FOR TRACE LEVEL ANALYSIS OF DISINFECTION BY-PRODUCTS
This presentation focuses on the development of a solid-phase microextraction (SPME)-gas chromatography (GC)/ion trap mass spectrometry (MS) method for the analysis of semivolatile disinfection by-products (DBPs) in drinking water in the low ug/L range. These DBPs were selected ...
ERIC Educational Resources Information Center
Rosu, Cornelia; Cueto, Rafael; Veillion, Lucas; David, Connie; Laine, Roger A.; Russo, Paul S.
2017-01-01
Volatile compounds from polymeric materials such as weatherstripping were identified by solid-phase microextraction (SPME), a solvent-free analytical method, coupled to gas chromatography-mass spectrometry (GC-MS). These compounds, originating from additives and fillers used in weatherstripping processing, were mostly polycyclic aromatic…
USDA-ARS?s Scientific Manuscript database
Analysis of biological fluids and waste material is difficult and tedious given the sample matrix. A rapid automated method for the determination of volatile fatty acids and phenolic and indole compounds was developed using a multipurpose sampler (MPS) with solid phase microextraction (SPME) and GC-...
Zhang, Yi; Guo, Wen; Yue, Zhenfeng; Lin, Li; Zhao, Fengjuan; Chen, Peijin; Wu, Weidong; Zhu, Hong; Yang, Bo; Kuang, Yanyun; Wang, Jiong
2017-04-15
In this paper, a simple, rapid, solvent-less and environmental friendliness microextraction method, microwave-assisted extraction-hollow fiber-liquid/solid phase microextraction (MAE-HF-L/SME), was developed for simultaneous extraction and enrichment of 54 trace hydrophilic/lipophilic pharmaceutical and personal care products (PPCPs) from fish samples. A solid-phase extraction material, solid-phase microextraction (SPME) fiber, was synthesized. The SPME fiber had a homogeneous, loose structure and good mechanical properties, and they exhibited a good adsorption capacity for most PPCPs selected. The material formed the basis for the method of MAE-HF-L/SME. A method of liquid chromatography-high resolution mass spectroscopy (LC-HRMS) for analysis of 54 PPCPs. Under optimal synthesis and extraction conditions, the limits of detection (LODs, n=3) and the limits of quantitation (LOQs, n=10) for the 54 PPCPs were between 0.01-0.50μg·kg -1 and 0.052.00μg·kg -1 , respectively. Percent recoveries and the relative standard deviations (RSDs) in spiked fish samples (n=6) were between 56.3%-119.9% and 0.3%-17.1%, respectively. The microextraction process of 54 PPCPs in MAE-HF-L/SME took approximately 12min. The method has a low matrix interference and high enrichment factor and may be applicable for determination of 54 different PPCPs in fish samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Green aspects, developments and perspectives of liquid phase microextraction techniques.
Spietelun, Agata; Marcinkowski, Łukasz; de la Guardia, Miguel; Namieśnik, Jacek
2014-02-01
Determination of analytes at trace levels in complex samples (e.g. biological or contaminated water or soils) are often required for the environmental assessment and monitoring as well as for scientific research in the field of environmental pollution. A limited number of analytical techniques are sensitive enough for the direct determination of trace components in samples and, because of that, a preliminary step of the analyte isolation/enrichment prior to analysis is required in many cases. In this work the newest trends and innovations in liquid phase microextraction, like: single-drop microextraction (SDME), hollow fiber liquid-phase microextraction (HF-LPME), and dispersive liquid-liquid microextraction (DLLME) have been discussed, including their critical evaluation and possible application in analytical practice. The described modifications of extraction techniques deal with system miniaturization and/or automation, the use of ultrasound and physical agitation, and electrochemical methods. Particular attention was given to pro-ecological aspects therefore the possible use of novel, non-toxic extracting agents, inter alia, ionic liquids, coacervates, surfactant solutions and reverse micelles in the liquid phase microextraction techniques has been evaluated in depth. Also, new methodological solutions and the related instruments and devices for the efficient liquid phase micoextraction of analytes, which have found application at the stage of procedure prior to chromatographic determination, are presented. © 2013 Published by Elsevier B.V.
Oliveira, Éder Costa; Echegoyen, Yolanda; Cruz, Sandra Andrea; Nerin, Cristina
2014-09-01
Hollow fiber liquid phase microextraction (HFLPME) and solid phase microextraction (SPME) methods for pre-concentration of contaminants (toluene, benzophenone, tetracosane and chloroform) in food simulants were investigated. For HFLPME 1-heptanol, 2-octanone and dibutyl-ether were studied as extracting solvents. Analysis by gas chromatography coupled to mass spectrometry (GC-MS), flame ionization (GC-FID) and electron capture detectors (GC-ECD) were carried out. In addition, the methods were employed to evaluate the safety in use of a PET material after the recycling process (comprising washing, extrusion and solid state polymerization (SSP)) through extractability studies of the contaminants using 10% (v/v) ethanol in deionized water and 3% (w/v) acetic acid in deionized water as food simulants in different conditions: 10 days at 40°C and 2h at 70°C. The HFLPME preconcentration method provided increased sensitivity when compared to the SPME method and allowed to analyze concentration levels below 10 µg surrogate per kg food simulant. The results of the extractability studies showed considerable reductions after the extrusion and SSP processes and indicated the compliance with regulations for using recycled PET in contact with food. Copyright © 2014 Elsevier B.V. All rights reserved.
Non-conventional solvents in liquid phase microextraction and aqueous biphasic systems.
An, Jiwoo; Trujillo-Rodríguez, María J; Pino, Verónica; Anderson, Jared L
2017-06-02
The development of rapid, convenient, and high throughput sample preparation approaches such as liquid phase microextraction techniques have been continuously developed over the last decade. More recently, significant attention has been given to the replacement of conventional organic solvents used in liquid phase microextraction techniques in order to reduce toxic waste and to improve selectivity and/or extraction efficiency. With these objectives, non-conventional solvents have been explored in liquid phase microextraction and aqueous biphasic systems. The utilized non-conventional solvents include ionic liquids, magnetic ionic liquids, and deep eutectic solvents. They have been widely used as extraction solvents or additives in various liquid phase microextraction modes including dispersive liquid-liquid microextraction, single-drop microextraction, hollow fiber-liquid phase microextraction, as well as in aqueous biphasic systems. This review provides an overview into the use of non-conventional solvents in these microextraction techniques in the past 5 years (2012-2016). Analytical applications of the techniques are also discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
2003-01-01
PHASE MICROEXTRACTION COUPLED WITH GAS CHROMATOGRAPHY/MASS SPECTROMETRY AS A RAPID METHOD FOR FIELD SAMPLING AND ANALYSIS OF CHEMICAL WARFARE AGENTS...SAMPLING AND ANALYSIS OF CHEMICAL WARFARE AGENTS AND TOXIC INDUSTRIAL CHEMICALS 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...GAS CHROMATOGRAPHY/MASS SPECTROMETRY AS A RAPID METHOD FOR FIELD SAMPLING AND ANALYSIS OF CHEMICAL WARFARE AGENTS AND TOXIC INDUSTRIAL CHEMICALS
The current role of on-line extraction approaches in clinical and forensic toxicology.
Mueller, Daniel M
2014-08-01
In today's clinical and forensic toxicological laboratories, automation is of interest because of its ability to optimize processes, to reduce manual workload and handling errors and to minimize exposition to potentially infectious samples. Extraction is usually the most time-consuming step; therefore, automation of this step is reasonable. Currently, from the field of clinical and forensic toxicology, methods using the following on-line extraction techniques have been published: on-line solid-phase extraction, turbulent flow chromatography, solid-phase microextraction, microextraction by packed sorbent, single-drop microextraction and on-line desorption of dried blood spots. Most of these published methods are either single-analyte or multicomponent procedures; methods intended for systematic toxicological analysis are relatively scarce. However, the use of on-line extraction will certainly increase in the near future.
Farhadi, Khalil; Maleki, Ramin; Tahmasebi, Raheleh
2010-01-01
A new fiber based on titania-chitin sol-gel coated on a silver wire for the headspace solid phase microextraction of aliphatic alcohols from apple juice samples was developed. The influences of fiber coating composition and microextraction conditions (extraction temperature, extraction time, and ionic strength of the sample matrix) on the fiber performance were investigated. Also, the influence of temperature and time on desorption of analytes from fiber were studied. Under the optimized conditions, a porous fiber with a high extraction capacity and good thermal stability (up to 250 degrees C) was obtained. The proposed headspace solid-phase microextraction-GC method was successfully used for the analysis of aliphatic alcohols in apple juice and concentrate samples. The recovery values were from 92.8 to 98.6%. The RSD (n=5) for all analytes were below 7.8%.
Kapsimali, D C; Zachariadis, G A
2009-10-01
Two solid phase microextraction modes were investigated and compared for their performance on the determination of selenites in various biological liquids like human urine and saliva and various types of milk. Using sodium tetraethylborate (NaBEt(4)) as ethylating reagent, selenites are converted in situ to volatile diethylselenides (DESe) in aqueous medium. The derivative is collected in situ by solid phase microextraction (SPME) using a silica fiber coated with poly(dimethylsiloxane) (PDMS) either from the headspace (HS-SPME) or directly from the liquid phase (LP-SPME) and finally determined by capillary GC/MS. Under optimum conditions of SPME, the GC separation was also optimized. Between the two examined microextraction techniques, direct immersion of the PDMS fiber in the liquid phase was proved less satisfactory. In contrast, the headspace procedure appears to be more efficient. The quantification of selenites was achieved in SIM mode with good analytical performance. A non-fat milk powder certified reference material was analyzed to evaluate the accuracy of the method. The overall precision of the method was ranged between 6.2% and 9.7%. Detection limits achieved were 0.05microgL(-1) for human urine, 0.08microgL(-1) for saliva and 0.03-0.06microgL(-1) in various milk matrices.
Jia, Jin-ping; Feng, Xue; Fang, Neng-hu; Huang, Jia-liang
2002-01-01
The methods of direct injection, carbon disulfide extraction and activated carbon fiber solid-phase microextraction/GC-MS, usually used in the determination of BTEX in water matrix, are compared and discussed. Experimental data of linearity, precision and limit of detection illustrate that the last one is better than the two other methods. This method was tested by the practical sample experiments and expected to be a simple and sensitive new method for the analysis of BTEX in water.
Liu, Min; Peng, Qing-Qing; Chen, Yu-Feng; Tang, Qian; Feng, Qing
2015-06-01
A novel space-resolved solid phase microextraction (SR-SPME) technique was developed to facilitate simultaneously analyte monitoring within heterogeneous samples. Graphene (G) and graphene oxide (GO) were coated separately to the segmented fibers which were successfully used for the solid-phase microextraction of two contaminants with dramatically different volatility: 2,4,6-trichloroanisole (TCA) and dibutyl phthalate (DBP). The space-resolved fiber showed good precision (5.4%, 6.8%), low detection limits (0.3ng/L, 0.3ng/L), and wide linearity (1.0-250.0ng/L, 1.0-250.0ng/L) under the optimized conditions for TCA and DBP, respectively. The method was applied to simultaneous analysis of the two contaminates with satisfactory recoveries, which were 96.96% and 98.20% for wine samples. Copyright © 2014 Elsevier Ltd. All rights reserved.
Silicon carbide nanomaterial as a coating for solid-phase microextraction.
Tian, Yu; Feng, Juanjuan; Wang, Xiuqin; Sun, Min; Luo, Chuannan
2018-01-26
Silicon carbide has excellent properties, such as corrosion resistance, high strength, oxidation resistance, high temperature, and so on. Based on these properties, silicon carbide was coated on stainless-steel wire and used as a solid-phase microextraction coating, and polycyclic aromatic hydrocarbons were employed as model analytes. Using gas chromatography, some important factors that affect the extraction efficiency were optimized one by one, and an analytical method was established. The analytical method showed wide linear ranges (0.1-30, 0.03-30, and 0.01-30 μg/L) with satisfactory correlation coefficients (0.9922-0.9966) and low detection limits (0.003-0.03 μg/L). To investigate the practical application of the method, rainwater and cigarette ash aqueous solution were collected as real samples for extraction and detection. The results indicate that silicon carbide has excellent application in the field of solid-phase microextraction. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Memarian, Elham; Hosseiny Davarani, Saied Saeed; Nojavan, Saeed; Movahed, Siyavash Kazemi
2016-09-07
In this work, a new solid-phase microextraction fiber was prepared based on nitrogen-doped graphene (N-doped G). Moreover, a new strategy was proposed to solve problems dealt in direct coating of N-doped G. For this purpose, first, Graphene oxide (GO) was coated on Pt wire by electrophoretic deposition method. Then, chemical reduction of coated GO to N-doped G was accomplished by hydrazine and NH3. The prepared fiber showed good mechanical and thermal stabilities. The obtained fiber was used in two different modes (conventional headspace solid-phase microextraction and cold-fiber headspace solid-phase microextraction (CF-HS-SPME)). Both modes were optimized and applied for the extraction of benzene and xylenes from different aqueous samples. All effective parameters including extraction time, salt content, stirring rate, and desorption time were optimized. The optimized CF-HS-SPME combined with GC-FID showed good limit of detections (LODs) (0.3-2.3 μg/L), limit of quantifications (LOQs) (1.0-7.0 μg/L) and linear ranges (1.0-5000 μg/L). The developed method was applied for the analysis of benzene and xylenes in rainwater and some wastewater samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Nazaripour, Ali; Yamini, Yadollah; Ebrahimpour, Behnam; Fasihi, Javad
2016-07-01
In this study, two-phase hollow-fiber liquid-phase microextraction and three-phase hollow-fiber liquid-phase microextraction based on two immiscible organic solvents were compared for extraction of oxazepam and Lorazepam. Separations were performed on a liquid chromatography with mass spectrometry instrument. Under optimal conditions, three-phase hollow-fiber liquid-phase microextraction based on two immiscible organic solvents has a better extraction efficiency. In a urine sample, for three-phase hollow fiber liquid-phase microextraction based on two immiscible organic solvents, the calibration curves were found to be linear in the range of 0.6-200 and 0.9-200 μg L(-1) and the limits of detection were 0.2 and 0.3 μg L(-1) for oxazepam and lorazepam, respectively. For two-phase hollow fiber liquid-phase microextraction, the calibration curves were found to be linear in the range of 1-200 and 1.5-200 μg L(-1) and the limits of detection were 0.3 and 0.5 μg L(-1) for oxazepam and lorazepam, respectively. In a urine sample, for three-phase hollow-fiber-based liquid-phase microextraction based on two immiscible organic solvents, relative standard deviations in the range of 4.2-4.5% and preconcentration factors in the range of 70-180 were obtained for oxazepam and lorazepam, respectively. Also for the two-phase hollow-fiber liquid-phase microextraction, preconcentration factors in the range of 101-257 were obtained for oxazepam and lorazepam, respectively. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Development and Efficacy Testing of Next Generation Cyanide Antidotes
2013-10-01
Preparation of mDMTS A-2.2. HPLC method for DMTS determination in Micelles A-2.3. Head-space solid phase micro-extraction- gas chromatography -mass...Simultaneous determination of cyanide and thiocyanate in plasma by chemical ionization gas chromatography mass-spectrometry (CI-GC-MS). Analytical and...min. Peak integration was performed using Star Chromatography Workstation Version 6.20. A-2.3. Head-space solid phase micro-extraction- gas
Hatami, Mehdi; Farhadi, Khalil
2012-07-01
A hollow fiber liquid-phase microextraction technique coupled with high-performance liquid chromatography with fluorescence detection was employed for determination and evaluation of the binding characteristics of drugs to bovine serum albumin (BSA). Enantiomers of guaifenesin (an expectorant drug) were investigated as a model system. After optimization of some influencing parameters on microextraction, the proposed method was used for calculation of the target drug distribution coefficient between n-octanol and the buffer solution as well as study of drug-BSA binding in physiological conditions. The developed method shows a new, improved and simple procedure for determination of free drug concentration in biological fluids and the extent of drug-protein binding. Copyright © 2011 John Wiley & Sons, Ltd.
Solid Phase Microextraction and Related Techniques for Drugs in Biological Samples
Moein, Mohammad Mahdi; Said, Rana; Bassyouni, Fatma
2014-01-01
In drug discovery and development, the quantification of drugs in biological samples is an important task for the determination of the physiological performance of the investigated drugs. After sampling, the next step in the analytical process is sample preparation. Because of the low concentration levels of drug in plasma and the variety of the metabolites, the selected extraction technique should be virtually exhaustive. Recent developments of sample handling techniques are directed, from one side, toward automatization and online coupling of sample preparation units. The primary objective of this review is to present the recent developments in microextraction sample preparation methods for analysis of drugs in biological fluids. Microextraction techniques allow for less consumption of solvent, reagents, and packing materials, and small sample volumes can be used. In this review the use of solid phase microextraction (SPME), microextraction in packed sorbent (MEPS), and stir-bar sorbtive extraction (SBSE) in drug analysis will be discussed. In addition, the use of new sorbents such as monoliths and molecularly imprinted polymers will be presented. PMID:24688797
Wang, Z; Hennion, B; Urruty, L; Montury, M
2000-11-01
Solid-phase microextraction coupled with high performance liquid chromatography has been studied for the analysis of methiocarb, napropamide, fenoxycarb and bupirimate in strawberries. The strawberries were blended and centrifuged. Then, an aliquot of the resulting extracting solution was subjected to solid-phase microextraction (SPME) on a 60 microns polydimethylsiloxane/divinylbenzene (PDMS/DVB) fibre for 45 min at room temperature. The extracted pesticides on the SPME fibre were desorbed into SPME/high performance liquid chromatography (HPLC) interface for HPLC analysis with diode-array detection (DAD). The method is organic solvent-free for the whole extraction process and is simple and easy to manipulate. The detection limits were shown to be at low microgram kg-1 level and the linear response covered the range from 0.05 to 2 mg kg-1 of pesticides in strawberries with a regression coefficient larger than 0.99. A good repeatability with RSDs between 2.92 and 9.25% was obtained, depending on compounds.
Liu, Xiaoyan; Zhang, Xiaoyun; Zhang, Haixia; Liu, Mancang
2008-08-01
A sensitive method for the analysis of bisphenol A and 4-nonylphenol is developed by means of the optimization of solid-phase microextraction using Uniform Experimental Design methodology followed by high-performance liquid chromatographic analysis with fluorescence detection. The optimal extraction conditions are determined based on the relationship between parameters and the peak area. The curve calibration plots are linear (r2>or=0.9980) over the concentration range of 1.25-125 ng/mL for bisphenol A and 2.59-202.96 ng/mL for 4-nonylphenol, respectively. The detection limits, based on a signal-to-noise ratio of 3, are 0.097 ng/mL for bisphenol A and 0.27 ng/mL for 4-nonylphenol, respectively. The validity of the proposed method is demonstrated by the analysis of the investigated analytes in real water samples and sensitivity of the optimized method is verified by comparing results with those obtained by previous methods using the same commercial solid-phase microextraction fiber.
Ghorbani, Mahdi; Chamsaz, Mahmoud; Rounaghi, Gholam Hossein
2016-03-01
A simple, rapid, and sensitive method for the determination of naproxen and ibuprofen in complex biological and water matrices (cow milk, human urine, river, and well water samples) has been developed using ultrasound-assisted magnetic dispersive solid-phase microextraction. Magnetic ethylendiamine-functionalized graphene oxide nanocomposite was synthesized and used as a novel adsorbent for the microextraction process and showed great adsorptive ability toward these analytes. Different parameters affecting the microextraction were optimized with the aid of the experimental design approach. A Plackett-Burman screening design was used to study the main variables affecting the microextraction process, and the Box-Behnken optimization design was used to optimize the previously selected variables for extraction of naproxen and ibuprofen. The optimized technique provides good repeatability (relative standard deviations of the intraday precision 3.1 and 3.3, interday precision of 5.6 and 6.1%), linearity (0.1-500 and 0.3-650 ng/mL), low limits of detection (0.03 and 0.1 ng/mL), and a high enrichment factor (168 and 146) for naproxen and ibuprofen, respectively. The proposed method can be successfully applied in routine analysis for determination of naproxen and ibuprofen in cow milk, human urine, and real water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Ying; Yi, Fan; Zheng, Yiliang; Wang, Yu; Ye, Jiannong; Chu, Qingcui
2015-08-01
An environmentally friendly method for the trace analysis of four aliphatic aldehydes as water disinfection byproducts has been developed based on hollow-fiber liquid-phase microextraction followed by miniature capillary electrophoresis with amperometric detection. After derivatization with 2-thiobarbituric acid, four aliphatic aldehydes (formaldehyde, acetaldehyde, propylaldehyde, and butyraldehyde) became detectable by the amperometric detector. Under the optimum conditions, four aliphatic aldehydes can be well separated from the coexisting interferents as well as their homologs (pentanal, glyoxal, and methyl-glyoxal), and the limits of detection (S/N = 3) could reach sub-nanogram-per-milliliter level based on hollow-fiber liquid-phase microextraction. The proposed method has been applied for the analyses of above four aliphatic aldehydes in different water samples such as drinking water, tap water, and river water, and the average recoveries were in the range of 90-113%, providing an alternative to conventional and microchip capillary electrophoresis approaches. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fiorini, Dennis; Boarelli, Maria Chiara; Gabbianelli, Rosita; Ballini, Roberto; Pacetti, Deborah
2016-09-01
This study sought to develop and validate a quantitative method to analyze short chain free fatty acids (SCFAs) in rat feces by solid-phase microextraction and gas chromatography (SPME-GC) using the salt mixture ammonium sulfate and sodium dihydrogen phosphate as salting out agent. Conditioning and extraction time, linearity, limits of detection and quantification, repeatability, and recovery were evaluated. The proposed method allows quantification with improved sensitivity as compared with other methods exploiting SPME-GC. The method has been applied to analyze rat fecal samples, quantifying acetic, propionic, isobutyric, butyric, isopentanoic, pentanoic, and hexanoic acids. Copyright © 2016 Elsevier Inc. All rights reserved.
Zeeb, Mohsen; Mirza, Behrooz
2015-04-30
Carvedilol belongs to a group of medicines termed non-selective beta-adrenergic blocking agents. In the presented approach, a practical and environmentally friendly microextraction method based on the application of ionic liquids (ILs) was followed by fluorescence spectrometry for trace determination of carvedilol in pharmaceutical and biological media. A rapid and simple ionic liquid phase microextraction was utilized for preconcentration and extraction of carvedilol. A hydrophobic ionic liquid (IL) was applied as a microextraction solvent. In order to disperse the IL through the aqueous media and extract the analyte of interest, IL was injected into the sample solution and a proper temperature was applied and then for aggregating the IL-phase, the sample was cooled in an ice water-bath. The aqueous media was centrifuged and IL-phase collected at the bottom of the test tube was introduced to the micro-cell of spectrofluorimeter, in order to determine the concentration of the enriched analyte. Main parameters affecting the accuracy and precision of the proposed approach were investigated and optimized values were obtained. A linear response range of 10-250 μg I(-1) and a limit of detection (LOD) of 1.7 μg I(-1) were obtained. Finally, the presented method was utilized for trace determination of carvedilol in commercial pharmaceutical preparations and biological media.
Zhang, Mengliang; Jackson, Glen P; Kruse, Natalie A; Bowman, Jennifer R; Harrington, Peter de B
2014-10-01
A novel fast screening method was developed for the determination of polychlorinated biphenyls that are constituents of the commercial mixture, Aroclor 1260, in soil matrices by gas chromatography with mass spectrometry combined with solid-phase microextraction. Nonequilibrium headspace solid-phase microextraction with a 100 μm polydimethylsiloxane fiber was used to extract polychlorinated biphenyls from 0.5 g of soil matrix. The use of 2 mL of saturated potassium dichromate in 6 M sulfuric acid solution improved the reproducibility of the extractions and the mass transfer of the polychlorinated biphenyls from the soil matrix to the microextraction fiber via the headspace. The extraction time was 30 min at 100°C. The percent recoveries, which were evaluated using an Aroclor 1260 standard and liquid injection, were within the range of 54.9-65.7%. Two-way extracted ion chromatogram data were used to construct calibration curves. The relative error was <±15% and the relative standard deviation was <15%, which are respective measures of the accuracy and precision. The method was validated with certified soil samples and the predicted concentrations for Aroclor 1260 agreed with the certified values. The method was demonstrated to be linear from 10 to 1000 ng/g for Aroclor 1260 in dry soil. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Tyburska, Anna; Jankowski, Krzysztof; Rodzik, Agnieszka
2011-07-01
A hydride generation headspace solid phase microextraction technique has been developed in combination with optical emission spectrometry for determination of total arsenic and selenium. Hydrides were generated in a 10 mL volume septum-sealed vial and subsequently collected onto a polydimethylsiloxane/Carboxen solid phase microextraction fiber from the headspace of sample solution. After completion of the sorption, the fiber was transferred into a thermal desorption unit and the analytes were vaporized and directly introduced into argon inductively coupled plasma or helium microwave induced plasma radiation source. Experimental conditions of hydride formation reaction as well as sorption and desorption of analytes have been optimized showing the significant effect of the type of the solid phase microextraction fiber coating, the sorption time and hydrochloric acid concentration of the sample solution on analytical characteristics of the method developed. The limits of detection of arsenic and selenium were 0.1 and 0.8 ng mL - 1 , respectively. The limit of detection of selenium could be improved further using biosorption with baker's yeast Saccharomyces cerevisiae for analyte preconcentration. The technique was applied for the determination of total As and Se in real samples.
Bandforuzi, Samereh Ranjbar; Hadjmohammadi, Mohammad Reza
2018-08-03
The extraction of phthalate esters (PEs) from aqueous matrices using two-phase solvent bar microextraction by organic micellar phase was investigated. A short hollow fiber immobilized with reverse micelles of Brij 35 surfactant in 1-octanol was served as the solvent bar for microextraction. Experimental results show that the extraction efficiency were much higher using two-phase solvent bar microextraction based on non-ionic surfactant than conventional two-phase solvent bar microextraction because of a positive effect of surfactant-containing extraction phase in promoting the partition process by non-ionic intermolecular forces such as polar and hydrophobicity interactions. The nature of the extraction solvent, type and concentration of non-ionic surfactant, extraction time, sample pH, temperature, stirring rate and ionic strength were the effecting parameters which optimized to obtain the highest extraction recovery. Analysis of recovered analytes was carried out with high performance liquid chromatography coupled with ultraviolet detection (HPLC-UV). Under the optimum conditions, linearity was observed in the range of 1-800 ng mL -1 for dimethylphthalate (DMP) and 0.5-800 ng mL -1 for diethylphthalate (DEP) and di-n-butyl phthalate (DBP) with correlation determination values above 0.99 for them. The limits of detection and quantification were ranged from 0.012 to 0.03 ng mL -1 and 0.04-0.1 ng mL -1 , respectively. The ranges of intra-day and inter-day RSD (n = 3) at 20 ng mL -1 of PEs were 1.8-2.1% and 2.1-2.6%, respectively. Results showed that developed method can be a very powerful, innovative and promising sample preparation technique in PEs analysis from environmental and drinking water samples. Copyright © 2018. Published by Elsevier B.V.
Torres-González, Ahira; López-Rivera, Paulina; Duarte-Lisci, Georgina; López-Ramírez, Ángel; Correa-Benítez, Adriana; Rivero-Cruz, J Fausto
2016-01-01
A head space solid-phase microextraction method combined with gas chromatography-mass spectrometry was developed and optimised to extract and analyse volatile compounds of Melipona beecheii geopropolis. Seventy-three constituents were identified using this technique in the sample of geopropolis collected. The main compounds detected include β-fenchene (14.53-15.45%), styrene (8.72-9.98%), benzaldehyde (7.44-7.82%) and the most relevant volatile components presents at high level in the geopropolis were terpenoids (58.17%).
Huang, Zhoubing; Liu, Shuqin; Xu, Jianqiao; Yin, Li; Zheng, Juan; Zhou, Ningbo; Ouyang, Gangfeng
2017-10-09
Adsorption capacity is the major sensitivity-limited factor in solid-phase microextraction. Due to its light-weight properties, large specific surface area and high porosity, especially tunable pore structures, the utilization of porous organic polymers as solid-phase microextraction adsorbents has attracting researchers' attentions. However, these works mostly concentrated on the utilization of specific porous organic polymers for preparing high-performance solid-phase microextraction coatings. The relationship between pore structures and adsorption performance of the porous organic polymers still remain unclear. Herein, three porous organic polymers with similar properties but different pore distributions were prepared by condensation polymerization reaction of phloroglucinol and terephthalaldehyde, which were fabricated as solid-phase microextraction coatings subsequently. The adsorption capacity of the porous organic polymers-coated fibers were evaluated by using benzene and its derivatives (i.e.,benzene, toluene, ethylbenzene and m-xylene) and polycyclic aromatic hydrocarbons as the target analytes. The results showed that the different adsorption performance of these porous organic polymers was mainly caused by their different pore volumes instead of their surface areas or pore sizes. Finally, the proposed method by using the mesoporous organic polymer coating was successfully applied to the determination of benzene and its derivatives in environmental water samples. As for analytical performance, high pre-concentration factors (74-2984), satisfactory relative recoveries (94.5 ± 18.5-116.9 ± 12.5%), intraday precision (2.44-5.34%), inter-day precision (4.62-7.02%), low limit of detections (LODs, 0.10-0.29 ng L -1 ) and limit of quantifications (LOQs, 0.33-0.96 ng L -1 ) were achieved under the optimal conditions. This study provides an important idea in the rational design of porous organic polymers for solid-phase microextraction or other adsorption applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Ghazaghi, Mehri; Mousavi, Hassan Zavvar; Shirkhanloo, Hamid; Rashidi, Alimorad
2017-01-25
A specific technique is introduced to overcome limitations of classical solidification of floating organic drop microextraction, such as tedious and time-consuming centrifuge step and using disperser solvent, by facile and efficient participation of solid and liquid phases. In this proposed method of stirring-controlled solidified floating solid-liquid drop microextraction (SC-SF-SLDME), magnetic carbon nanotube-nickel hybrid (MNi-CNT) as a solid part of the extractors are dispersed ultrasonically in sample solution, and the procedure followed by dispersion of liquid phase (1-undecanol) through high-rate stirring and easily recollection of MNi-CNT in organic solvent droplets through hydrophobic force. With the reduction in speed of stirring, one solid-liquid drop is formed on top of the solution. MNi-CNT acts as both extractor and the coalescence helper between organic droplets for a facile recollection. MNi-CNT was prepared by spray pyrolysis of nickel oleate/toluene mixture at 1000 °C. Four tyrosine kinase inhibitors were selected as model analytes and the effecting parameters were investigated. The results confirmed that magnetic nanoadsorbent has an important role in the procedure and complete collection of dispersed solvent is not achieved in the absence of the solid phase. Also, short extraction time exhibited success of the proposed method and effect of dispersed solid/liquid phases. The limits of quantification (LOQs) for imatinib, sunitinib, erlotinib, and nilotinib were determined to be as low as 0.7, 1.7, 0.6, and 1.0 μg L -1 , respectively. The intra-day precisions (RSDs) were lower than 4.5%. Method performance was investigated by determination of mentioned tyrosine kinase inhibitors (TKIs) in human serum and cerebrospinal fluid samples with good recoveries in the range of 93-98%. Copyright © 2016 Elsevier B.V. All rights reserved.
Lee, Maw-Rong; Chiu, Tzu-Chun; Dou, Jianpeng
2007-05-22
This study proposes a method for identifying 1,3-dichloro-2-propanol and 3-chloro-1,2-propandiol in aqueous matrices by using headspace on-fiber derivatization following solid-phase microextraction combined with gas chromatography-mass spectrometry. The optimized SPME experimental procedures for extracting 1,3-dichloro-2-propanol and 3-chloro-1,2-propandiol in aqueous solutions involved a 85 microm polyacrylate-coated fiber at pH 6, a sodium chloride concentration of 0.36 g mL(-1), extraction at 50 degrees C for 15 min and desorption of analytes at 260 degrees C for 3 min. Headspace derivatization was conducted in a laboratory-made design with N-methyl-N-(trimethylsilyl)-trifluoroacetamide vapor following solid-phase microextraction by using 3 microL N-methyl-N-(trimethylsilyl)-trifluoroacetamide at an oil bath temperature of 230 degrees C for 40 s. This method had good repeatability (R.S.D.s < or = 19%, n = 8) and good linearity (r2 > or = 0.9972) for ultrapure water and soy sauce samples that were spiked with two analytes. Detection limits were obtained at the ng mL(-1). The result demonstrated that headspace on-fiber derivatization following solid-phase microextraction was a simple, fast and accurate technique for identifying trace 1,3-dichloro-2-propanol and 3-chloro-1,2-propandiol in soy sauce.
Chao, Yu-Ying; Jian, Zhi-Xuan; Tu, Yi-Ming; Wang, Hsaio-Wen; Huang, Yeou-Lih
2013-06-07
In this study, we employed a novel on-line method, push/pull perfusion hollow-fiber liquid-phase microextraction (PPP-HF-LPME), to extract 4-tert-butylphenol, 2,4-di-tert-butylphenol, 4-n-nonylphenol, and 4-n-octylphenol from river and tap water samples; we then separated and quantified the extracted analytes through high-performance liquid chromatography (HPLC). Using this approach, we overcame the problem of fluid loss across the porous HF membrane to the donor phase, permitting on-line coupling of HF-LPME to HPLC. In our PPP-HF-LPME system, we used a push/pull syringe pump as the driving source to perfuse the acceptor phase, while employing a heating mantle and an ultrasonic probe to accelerate mass transfer. We optimized the experimental conditions such as the nature of the HF supported intermediary phase and the acceptor phase, the composition of the donor and acceptor phases, the sample temperature, and the sonication conditions. Our proposed method provided relative standard deviations of 3.1-6.2%, coefficients of determination (r(2)) of 0.9989-0.9998, and limits of detection of 0.03-0.2 ng mL(-1) for the analytes under the optimized conditions. When we applied this method to analyses of river and tap water samples, our results confirmed that this microextraction technique allows reliable monitoring of alkylphenols in water samples.
Lattuati-Derieux, Agnès; Bonnassies-Termes, Sylvette; Lavédrine, Bertrand
2004-02-13
Solid-phase microextraction (SPME) coupled to gas chromatography/mass spectrometry (GC/MS) has been applied to the analysis of volatile organic compounds emitted from a naturally aged groundwood pulp paper originating from an old book in order to access the products produced through the decomposition reactions occurring in paper upon ageing. Two different extraction methods were developed and compared: headspace SPME and contact SPME. The influence of few extraction parameters were tested in order to define the best extraction conditions. An optimised non-destructive contact SPME method was elaborated and allowed the characterisation of more than 50 individual constituents.
Cabrera-Peralta, Jerónimo; Peña-Alvarez, Araceli
2018-05-01
A simple method for the simultaneous determination of personal care product ingredients: galaxolide, tonalide, oxybenzone, 4-methylbenzyliden camphor, padimate-o, 2-ethylhexyl methoxycinnamate, octocrylene, triclosan, and methyl triclosan in lettuce by ultrasound-assisted extraction combined with solid-phase microextraction followed by gas chromatography with mass spectrometry was developed. Lettuce was directly extracted by ultrasound-assisted extraction with methanol, this extract was combined with water, extracted by solid-phase microextraction in immersion mode, and analyzed by gas chromatography with mass spectrometry. Good linear relationships (25-250 ng/g, R 2 > 0.9702) and low detection limits (1.0-25 ng/g) were obtained for analytes along with acceptable precision for almost all analytes (RSDs < 20%). The validated method was applied for the determination of personal care product ingredients in commercial lettuce and lettuces grown in soil and irrigated with the analytes, identifying the target analytes in leaves and roots of the latter. This procedure is a miniaturized and environmentally friendly proposal which can be a useful tool for quality analysis in lettuce. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zheng, Juan; Liang, Yeru; Liu, Shuqin; Jiang, Ruifen; Zhu, Fang; Wu, Dingcai; Ouyang, Gangfeng
2016-01-04
A combination of nitrogen-doped ordered mesoporous polymer (NOMP) and stainless steel wires led to highly sensitive, selective, and stable solid phase microextraction (SPME) fibers by in situ polymerization for the first time. The ordered structure of synthesized NOMP coating was illustrated by transmission electron microscopy (TEM) and X-ray diffraction (XRD), and microscopy analysis by scanning electron microscopy (SEM) confirmed a homogenous morphology of the NOMP-coated fiber. The NOMP-coated fiber was further applied for the extraction of organochlorine pesticides (OCPs) with direct-immersion solid-phase microextraction (DI-SPME) method followed by gas chromatography-mass spectrometry (GC-MS) quantification. Under the optimized conditions, low detection limits (0.023-0.77 ng L(-1)), a wide linear range (9-1500 ng L(-1)), good repeatability (3.5-8.1%, n=6) and excellent reproducibility (1.5-8.3%, n=3) were achieved. Moreover, the practical feasibility of the proposed method was evaluated by determining OCPs in environmental water samples with satisfactory recoveries. Copyright © 2015 Elsevier B.V. All rights reserved.
Xu, Hui; Ding, Zongqing; Lv, Lili; Song, Dandan; Feng, Yu-Qi
2009-03-16
A new dispersive liquid-liquid microextraction based on solidification of floating organic droplet method (DLLME-SFO) was developed for the determination of five kinds of polycyclic aromatic hydrocarbons (PAHs) in environmental water samples. In this method, no specific holder, such as the needle tip of microsyringe and the hollow fiber, is required for supporting the organic microdrop due to the using of organic solvent with low density and proper melting point. Furthermore, the extractant droplet can be collected easily by solidifying it in the lower temperature. 1-Dodecanol was chosen as extraction solvent in this work. A series of parameters that influence extraction were investigated systematically. Under optimal conditions, enrichment factors (EFs) for PAHs were in the range of 88-118. The limit of detections (LODs) for naphthalene, diphenyl, acenaphthene, anthracene and fluoranthene were 0.045, 0.86, 0.071, 1.1 and 0.66ngmL(-1), respectively. Good reproducibility and recovery of the method were also obtained. Compared with the traditional liquid-phase microextraction (LPME) and dispersive liquid-liquid microextraction (DLLME) methods, the proposed method obtained about 2 times higher enrichment factor than those in LPME. Moreover, the solidification of floating organic solvent facilitated the phase transfer. And most importantly, it avoided using high-density and toxic solvent in the traditional DLLME method. The proposed method was successfully applied to determinate PAHs in the environmental water samples. The simple and low-cost method provides an alternative method for the analysis of non-polar compounds in complex environmental water.
Masoum, Saeed; Gholami, Ali; Ghaheri, Salehe; Bouveresse, Delphine Jouan-Rimbaud; Cordella, Christophe B Y; Rutledge, Douglas N
2016-07-01
A new composite coating of polypyrrole and sodium lauryl ether sulfate was electrochemically prepared on a stainless-steel wire using cyclic voltammetry. The application and performance of the fiber was evaluated for the headspace solid-phase microextraction of a fragrance in aqueous bleach samples followed by gas chromatography combined with mass spectrometry to assess the fragrance stability in this kind of household cleaning product. To obtain a stable and efficient composite coating, parameters related to the coating process such as scan rate and numbers of cycles were optimized using a central composite design. In addition, the effects of various parameters on the extraction efficiency of the headspace solid-phase microextraction process such as extraction temperature and time, ionic strength, sample volume, and stirring rate were investigated by experimental design methods using Plackett-Burman and Doehlert designs. The optimum values of 53°C and 28 min for sample temperature and time, respectively, were found through response surface methodology. Results show that the combination of polypyrrole and sodium lauryl ether sulfate in a composite form presents desirable opportunities to produce new materials to study fragrance stability by headspace solid-phase microextraction. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Huili; Gao, Ming; Gao, Jiajia; Yu, Nana; Huang, Hong; Yu, Qing; Wang, Xuedong
2016-09-01
In conventional microextraction procedures, the disperser (organic solvent or ionic liquid) is left in the aqueous phase and discarded after finishing the microextraction process. Because the disperser is water-soluble, it results in low extraction recovery for polar compounds. In this investigation, an ionic-liquid-based microextraction (ILBME) was integrated with salting-out assisted liquid-liquid microextraction (SALLME) to build an ionic-liquid-based, salt-induced, dual microextraction (ILSDME) for isolation of five fluoroquinolone antibiotics (FQs) with high polarity (log P, -1.0 to 1.0). The proposed ILSDME method incorporates a dual microextraction by converting the disperser in the ILBME to the extractor in the SALLME. Optimization of key factors was conducted by integrating single-factor experiments and central composite design. The optimized experimental parameters were 80 μL [C8MIM][PF6] as extractor, 505 μL acetone as disperser, pH = 2.0, 4.1 min extraction time, and 4.2 g of Na2SO4. Under optimized conditions, high ERs (90.6-103.2 %) and low LODs (0.07-0.61 μg kg(-1)) were determined for five FQs in swine feed. Experimental precision based on RSDs was 1.4-5.2 % for intra-day and 2.4-6.9 % for inter-day analyses. The combination of ILBME with SALLME increased FQ recoveries by 15-20 % as compared with SALLME, demonstrating that the ILSDME method can enhance extraction efficiency for polar compounds compared to single-step microextraction. Therefore, the ILSDME method developed in this study has wide application for pretreatment of moderately to highly polar pollutants in complex matrices. Graphical Abstract A dual microextraction was developed by integrating ionic-liquid-based microextraction with salting-out assisted liquid-liquid microextraction for isolation of five fluoroquinolone antibiotics (FQs) with high polarity (log P = -1.0 to 1.0). The principle of dual microextraction is based on converting the remaining disperser from the first microextraction into an extractor in the second microextraction. Single-factor experiment and central composite design were applied for optimizing operational parameters using 3D response surfaces and contour lines. Under optimized conditions, the method provided high extraction recoveries and low LODs for five FQs in swine feed. The prominent advantage of the dual microextraction is rapid and highly efficient extraction of moderately to highly polar fluoroquinolones from complex matrices.
Xiang, Xiaowei; Shang, Bing; Wang, Xiaozheng; Chen, Qinhua
2017-04-01
Yohimbine is a novel compound for the treatment of erectile dysfunction derived from natural products, and pharmacokinetic study is important for its further development as a new medicine. In this work, we developed a novel PEEK tube-based solid-phase microextraction (SPME)-HPLC method for analysis of yohimbine in plasma and further for pharmacokinetic study. Poly (AA-EGDMA) was synthesized inside a PEEK tube as the sorbent for microextraction of yohimbine, and parameters that could influence extraction efficiency were systematically investigated. Under optimum conditions, the PEEK tube-based SPME method exhibits excellent enrichment efficiency towards yohimbine. By using berberine as internal standard, an online SPME-HPLC method was developed for analysis of yohimbine in human plasma sample. The method has wide linear range (2-1000 ng/mL) with an R 2 of 0.9962; the limit of detection was determined and was as low as 0.1 ng/mL using UV detection. Finally, a pharmacokinetic study of yohimbine was carried out by the online SPME-HPLC method and the results have been compared with those of reported methods. Copyright © 2016 John Wiley & Sons, Ltd.
Chai, Xiaolan; Jia, Jinping; Sun, Tonghua; Wang, Yalin; Liao, Liyan
2007-08-01
A novel and simple analytical procedure using cold activated carbon fiber-solid phase microextraction (CACF-SPME) was applied to determine organochlorine pesticides (OCs) in soil samples. The pesticides in this study consist of alpha -, beta -, gamma -, and delta -hexachlorocyclohexane (HCH). By heating the sample while cooling the fiber, the developed method not only provides better performance in terms of sensitivity, linearity and recovery but also offers shorter adsorption procedure than that of traditional headspace-solid phase microextraction (HS-SPME). The experimental conditions such as the amount of water, adsorption time and adsorption temperature were optimized. Matrix effects were investigated with different types of soils. We concluded that using the standard addition method was required for quantification purposes. The limits of detection obtained using the proposed method range from 0.01 to 0.05 ng/g, and the recoveries for CACF-SPME are in the range of 80.01% to 89.68% with relative standard deviation (RSDs) better than 8.60%. The proposed method was further applied to determine OCs in real agricultural soil. The results are in good agreement with those obtained using traditional ultrasonic extraction. The research demonstrates the suitability of the CACF-SPME for the analysis of OCs in soil.
Physically incorporated extraction phase of solid-phase microextraction by sol-gel technology.
Liu, Wenmin; Hu, Yuan; Zhao, Jinghong; Xu, Yuan; Guan, Yafeng
2006-01-13
A sol-gel method for the preparation of solid-phase microextraction (SPME) fiber was described and evaluated. The extraction phase of poly(dimethysiloxane) (PDMS) containing 3% vinyl group was physically incorporated into the sol-gel network without chemical bonding. The extraction phase itself is then partly crosslinked at 320 degrees C, forming an independent polymer network and can withstand desorption temperature of 290 degrees C. The headspace extraction of BTX by the fiber SPME was evaluated and the detection limit of o-xylene was down to 0.26 ng/l. Extraction and determination of organophosphorus pesticides (OPPs) in water, orange juice and red wine by the SPME-GC thermionic specified detector (TSD) was validated. Limits of detection of the method for OPPs were below 10 ng/l except methidathion. Relative standard deviations (RSDs) were in the range of 1-20% for pesticides being tested.
Rosero-Moreano, Milton; Canellas, Elena; Nerín, Cristina
2014-02-01
The present study deals with the development of a liquid microextraction procedure for enhancing the sensitivity of the determination of 2-methyl-4-isothiazolin-3-one and 5-chloro-2-methyl-4-isothiazolin-3-one in adhesives. The procedure involves a three-phase hollow-fiber liquid-phase microextraction using a semipermeable polypropylene membrane, which contained 1-octanol as the organic phase in the pores of the membrane. The donor and acceptor phases are aqueous acidic and alkaline media, respectively, and the final liquid phase (acceptor) is analyzed by HPLC coupled with diode array detection. The most appropriate conditions were extraction time 20 min, stirring speed 1400 rpm, extraction temperature 50°C. The quantification limits of the method were 0.123 and 0.490 μg/g for 2-methyl-4-isothiazolin-3-one and 5-chloro-2-methyl-4-isothiazolin-3-one, respectively. Three different adhesive samples were successfully analyzed. The procedure was compared to direct analysis using ultra high pressure liquid chromatography coupled with TOF-MS, where the identification of the compounds and the quantification values were confirmed. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lin, Che-Yi; Fuh, Ming-Ren; Huang, Shang-Da
2011-02-01
A method termed liquid-liquid-liquid microextraction (LLLME) was utilized to extract 4-t-butylphenol, 4-t-octylphenol, 4-n-nonylphenol, and bisphenol-A from water. The extracted target analytes were separated and quantified by high-performance liquid chromatography using a fluorescence detector. In LLLME, the donor phase (i.e. water sample) was made weakly acidic by adding monobasic potassium phosphate (KH(2) PO(4)); the organic phase adopted was 4-chlorotoluene; the acceptor phase (i.e. enriched extract) was 0.2 M tetraethylammonium hydroxide dissolved in ethylene glycol. This study solves a problem associated with the surface activity of long-chain alkylphenolate ions, permitting LLLME to extract long-chain alkylphenols. Experimental conditions such as acceptor phase composition, organic phase identity, acceptor phase volume, sample agitation, extraction time, and salt addition were optimized. The relative standard deviation (RSD, 2.0-5.8%), coefficient of determination (r(2) 0.9977-0.9999), and detection limit (0.017-0.0048 ng/mL) of the proposed method were achieved under the selected optimized conditions. The method was successfully applied to analyses of lake and tap water samples, and the relative recoveries of target analytes from the spiked lake and tap water samples were 92.8-106.3 and 93.6-105.6%, respectively. The results obtained with the proposed method confirm this microextraction technique to be reliable for the monitoring of alkylphenols and bisphenol-A in water samples. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2005-03-01
in hair samples with analysis by GC-MS [41,42]. The research discussed here examined a polydimethylsiloxane polymer with 10% activated charcoal (PDMS...Field Sampling and Analysis of Chemical Warfare Agent Precursors” Name of Candidate: LT Douglas Parrish Doctor of Philosophy, Environmental...Microextraction with Gas Chromatography-Mass Spectrometry as a Rapid, Reliable, and Safe Method for Field Sampling and Analysis of Chemical Warfare
Krogh, M; Grefslie, H; Rasmussen, K E
1997-02-21
This paper describes microextraction and gas chromatographic analysis of diazepam from human plasma. The method was based on immobilisation of 1.5 microliters of 1-octanol on a polyacrylate-coated fiber designed for solid-phase microextraction. The solvent-modified fibre was used to extract diazepam from the samples. The plasma sample was pre-treated to release diazepam from the protein binding. The fibre was inserted into the modified plasma sample, adjusted to pH 5.5 an internal standard was added and the mixture was carefully stirred for 4 min. The fibre with the immobilised solvent and the enriched analytes was injected into the capillary gas chromatograph. The solvent and the extracted analytes were evaporated at 300 degrees C in the split-splitless injection port of the gas chromatograph, separated on a methylsilicon capillary column and detected with a nitrogen-phosphorus detector. The method was shown to be reproducible with a detection limit of 0.10 nmol/ml in human plasma.
Xu, Hui; Liao, Ying; Yao, Jinrong
2007-10-05
A new sample pretreatment technique, ultrasound-assisted headspace liquid-phase microextraction was developed as mentioned in this paper. In the technique, the volatile analytes were headspace extracted into a small drop of solvent, which suspended on the bottom of a cone-shaped PCR tube instead of the needle tip of a microsyringe. More solvent could be suspended in the PCR tube than microsyringe due to the larger interfacial tension, thus the analysis sensitivity was significantly improved with the increase of the extractant volume. Moreover, ultrasound-assisted extraction and independent controlling temperature of the extractant and the sample were performed to enhance the extraction efficiency. Following the extraction, the solvent-loaded sample was analyzed by high-performance liquid chromatography. Chlorophenols (2-chlorophenol, 2,4-dichlorophenol and 2,6-dichlorophenol) were chosen as model analytes to investigate the feasibility of the method. The experimental conditions related to the extraction efficiency were systematically studied. Under the optimum experimental conditions, the detection limit (S/N=3), intra- and inter-day RSD were 6 ng mL(-1), 4.6%, 3.9% for 2-chlorophenol, 12 ng mL(-1), 2.4%, 8.8% for 2,4-dichlorophenol and 23 ng mL(-1), 3.3%, 5.3% for 2,6-dichlorophenol, respectively. The proposed method was successfully applied to determine chlorophenols in real aqueous samples. Good recoveries ranging from 84.6% to 100.7% were obtained. In addition, the extraction efficiency of our method and the conventional headspace liquid-phase microextraction were compared; the extraction efficiency of the former was about 21 times higher than that of the latter. The results demonstrated that the proposed method is a promising sample pretreatment approach, its advantages over the conventional headspace liquid-phase microextraction include simple setup, ease of operation, rapidness, sensitivity, precision and no cross-contamination. The method is very suitable for the analysis of trace volatile and semivolatile pollutants in real aqueous sample.
NASA Technical Reports Server (NTRS)
Allen, John
2001-01-01
Solid phase microextraction (SPME) will be used to develop a method for detecting monomethyl hydrazine (MMH) and hydrazine (Hz). A derivatizing agent, pentafluorobenzoyl chloride (PFBCI), is known to react readily with MMH and Hz. The SPME fiber can either be coated with PFBCl and introduced into a gaseous stream containing MMH, or PFBCl and MMH can react first in a syringe barrel and after a short equilibration period a SPME is used to sample the resulting solution. These methods were optimized and compared. Because Hz and MMH can degrade the SPME, letting the reaction occur first gave better results. Only MMH could be detected using either of these methods. Future research will concentrate on constructing calibration curves and determining the detection limit.
Werner, Justyna
2016-04-01
Task-specific ionic liquid-based ultrasound-assisted dispersive liquid-liquid microextraction was used for the preconcentration of cadmium(II), cobalt(II), and lead(II) ions in tea samples, which were subsequently analyzed by liquid chromatography with UV detection. The proposed method of preconcentration is free of volatile organic compounds, which are often used as extractants and dispersing solvents in classic techniques of microextraction. A task-specific ionic liquid trioctylmethylammonium thiosalicylate was used as an extractant and a chelating agent. Ultrasound was used to disperse the ionic liquid. After microextraction, the phases were separated by centrifugation, and the ionic liquid phase was solubilized in methanol and directly injected into the liquid chromatograph. Selected microextraction parameters, such as the volume of ionic liquid, the pH of the sample, the duration of ultrasound treatment, the speed and time of centrifugation, and the effect of ionic strength, were optimized. Under optimal conditions an enrichment factor of 200 was obtained for each analyte. The limits of detection were 0.002 mg/kg for Cd(II), 0.009 mg/kg for Co(II), and 0.013 mg/kg for Pb(II). The accuracy of the proposed method was evaluated by an analysis of the Certified Reference Materials (INCT-TL-1, INCT-MPH-2) with the recovery values in the range of 90-104%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mohammadnezhad, Nasim; Matin, Amir Abbas; Samadi, Naser; Shomali, Ashkan; Valizadeh, Hassan
2017-01-01
Linear ionic liquid bonded to fused silica and its application as a solid-phase microextraction fiber for the extraction of bisphenol A (BPA) from water samples were studied. After optimization of microextraction conditions (15 mL sample volume, extraction time of 40 min, extraction temperature of 30 ± 1°C, 300 μL acetonitrile as the desorption solvent, and desorption time of 7 min), the fiber was used to extract BPA from packed mineral water, followed by HPLC-UV on an XDB-C18 column (150 × 4.6 mm id, 3.5 μm particle) with a mobile phase of acetonitrile-water (45 + 55%, v/v) and flow rate of 1 mL . min-1). A low LOD (0.20 μg . L-1) and good linearity (0.9977) in the calibration graph indicated that the proposed method was suitable for the determination of BPA.
Farajzadeh, Mir Ali; Dehghani, Hamideh; Yadeghari, Adeleh; Khoshmaram, Leila
2017-02-01
The present study describes a microextraction and determination method for analyzing residual solvents in pharmaceutical products using dynamic headspace-liquid phase microextraction technique followed by gas chromatography-flame ionization detection. In this method dimethyl sulfoxide (μL level) placed into a GC liner-shaped extraction vessel is used as a collection/extraction solvent. Then the liner is exposed to the headspace of a vial containing the sample solution. The effect of different parameters influencing the microextraction procedure including collection/extraction solvent type and its volume, ionic strength, extraction time, extraction temperature and concentration of NaOH solution used in dissolving the studied pharmaceuticals are investigated and optimized. Under the optimum extraction conditions, the method showed wide linear ranges between 0.5 and 5000 mg L -1 . The other analytical parameters were obtained in the following ranges: enrichment factors 240-327, extraction recoveries 72-98% and limits of detection 0.1-0.8 mg L -1 in solution and 0.6-3.2 μg g -1 in solid. Relative standard deviations for the extraction of 100 mg L -1 of each analyte were obtained in the ranges of 4-7 and 5-8% for intra-day (n = 6) and inter-day (n = 4) respectively. Finally the target analytes were determined in different samples such as erythromycin, azithromycin, cefalexin, amoxicillin and co-amoxiclav by the proposed method. Copyright © 2016 John Wiley & Sons, Ltd.
Ahmadkhaniha, Reza; Samadi, Nasrin; Salimi, Mona; Sarkhail, Parisa; Rastkari, Noushin
2012-01-01
A reliable and sensitive headspace solid-phase microextraction gas chromatography-mass spectrometry method for simultaneous determination of different organophosphorus pesticides in dried medicinal plant samples is described. The analytes were extracted by single-walled carbon nanotubes as a new solid-phase microextraction adsorbent. The developed method showed good performance. For diazinon and pirimiphos methyl calibration, curves were linear (r 2 ≥ 0.993) over the concentration ranges from 1.5 to 300 ng g−1, and the limit of detection at signal-to-noise ratio of 3 was 0.3 ng g−1. For parathion and malathion, the linear range and limit of detection were 2.5–300 (r 2 ≥ 0.991) and 0.5 ng g−1, respectively. In addition, a comparative study between the single-walled carbon nanotubes and a commercial polydimethylsiloxane fibre for the determination of target analytes was carried out. Single-walled carbon nanotubes fibre showed higher extraction capacity, better thermal stability (over 350°C), and longer lifespan (over 250 times) than the commercial polydimethylsiloxane fibre. The developed method was successfully applied to determine target organophosphorus pesticides in real samples. PMID:22645439
Alothman, Zeid A; Habila, Mohamed; Yilmaz, Erkan; Soylak, Mustafa
2013-01-01
A simple, environmentally friendly, and efficient dispersive liquid-liquid microextraction method combined with microsample injection flame atomic absorption spectrometry was developed for the separation and preconcentration of Cu(II). 2-(5-Bromo-2-pyridylazo)-5-(diethylamino)phenol (5-Br-PADAP) was used to form a hydrophobic complex of Cu(II) ions in the aqueous phase before extraction. To extract the Cu(II)-5-Br-PADAP complex from the aqueous phase to the organic phase, 2.0 mL of acetone as a disperser solvent and 200 microL of chloroform as an extraction solvent were used. The influences of important analytical parameters, such as the pH, types and volumes of the extraction and disperser solvents, amount of chelating agent, sample volume, and matrix effects, on the microextraction procedure were evaluated and optimized. Using the optimal conditions, the LOD, LOQ, preconcentration factor, and RSD were determined to be 1.4 microg/L, 4.7 microg/L, 120, and 6.5%, respectively. The accuracy of the proposed method was investigated using standard addition/recovery tests. The analysis of certified reference materials produced satisfactory analytical results. The developed method was applied for the determination of Cu in real samples.
Farhadi, Khalil; Bochani, Shayesteh; Hatami, Mehdi; Molaei, Rahim; Pirkharrati, Hossein
2014-07-01
In this research, a new solid-phase microextraction fiber based on carbon ceramic composites with copper nanoparticles followed by gas chromatography with flame ionization detection was applied for the extraction and determination of some nitro explosive compounds in soil samples. The proposed method provides an overview of trends related to synthesis of solid-phase microextraction sorbents and their applications in preconcentration and determination of nitro explosives. The sorbents were prepared by mixing of copper nanoparticles with a ceramic composite produced by mixture of methyltrimethoxysilane, graphite, methanol, and hydrochloric acid. The prepared sorbents were coated on copper wires by dip-coating method. The prepared nanocomposites were evaluated statistically and provided better limits of detection than the pure carbon ceramic. The limit of detection of the proposed method was 0.6 μg/g with a linear response over the concentration range of 2-160 μg/g and square of correlation coefficient >0.992. The new proposed fiber has been demonstrated to be a suitable, inexpensive, and sensitive candidate for extraction of nitro explosive compounds in contaminated soil samples. The constructed fiber can be used more than 100 times without the need for surface generation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Es'haghi, Zarrin; Sorayaei, Hoda; Samadi, Fateme; Masrournia, Mahboubeh; Bakherad, Zohreh
2011-10-15
The new pre-concentration technique, hollow fiber-solid phase microextraction based on carbon nanotube reinforced sol-gel and liquid chromatography-photodiode array detection was applied to determination of aflatoxins B(1), B(2) (AFB(1), AFB(2)) in rice, peanut and wheat samples. This research provides an overview of trends related to synthesis of solid phase microextraction (SPME) sorbnents that improves the assay of aflatoxins as the semi-polar compounds in several real samples. It mainly includes summary and a list of the results for a simple carbon nanotube reinforced sol-gel in-fiber device. This device was used for extraction, pre-concentration and determination of aflatoxins B1, B2 in real samples. In this technique carbon nanotube reinforced sol was prepared by the sol-gel method via the reaction of phenyl trimethoxysilane (PTMS) with a basic catalyst (tris hydroxymethyl aminomethan). The influences of microextraction parameters such as pH, ageing time, carbon nanotube contents, desorption conditions, desorption solvent and agitation speed were investigated. Optimal HPLC conditions were: C(18) reversed phase column for separation, water-acetonitril-methanol (35:10:55) as the mobile phase and maximum wavelength for detection was 370 nm. The method was evaluated statistically and under optimized conditions, the detection limits for the analytes were 0.074 and 0.061 ng/mL for B1 and B2 respectively. Limit of quantification for B1 and B2 was 0.1 ng/mL too (n=7). The precisions were in the range of 2.829-2.976% (n=3), and linear ranges were within 0.1 and 400 ng/mL. The method was successfully applied to the analysis of cereals (peanut, wheat, rice) with the relative recoveries from 47.43% to 106.83%. Copyright © 2011 Elsevier B.V. All rights reserved.
Yarazavi, Mina; Noroozian, Ebrahim
2018-02-13
A novel sol-gel coating on a stainless-steel fiber was developed for the first time for the headspace solid-phase microextraction and determination of α-bisabolol with gas chromatography and flame ionization detection. The parameters influencing the efficiency of solid-phase microextraction process, such as extraction time and temperature, pH, and ionic strength, were optimized by the experimental design method. Under optimized conditions, the linear range was between 0.0027 and 100 μg/mL. The relative standard deviations determined at 0.01 and 1.0 μg/mL concentration levels (n = 3), respectively, were as follows: intraday relative standard deviations 3.4 and 3.3%; interday relative standard deviations 5.0 and 4.3%; and fiber-to-fiber relative standard deviations 6.0 and 3.5%. The relative recovery values were 90.3 and 101.4% at 0.01 and 1.0 μg/mL spiking levels, respectively. The proposed method was successfully applied to various real samples containing α-bisabolol. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Abdulra'uf, Lukman Bola; Tan, Guan Huat
2013-12-15
Solid-phase microextraction (SPME) is a solvent-less sample preparation method which combines sample preparation, isolation, concentration and enrichment into one step. In this study, multivariate strategy was used to determine the significance of the factors affecting the solid phase microextraction of pesticide residues (fenobucarb, diazinon, chlorothalonil and chlorpyrifos) using a randomised factorial design. The interactions and effects of temperature, time and salt addition on the efficiency of the extraction of the pesticide residues were evaluated using 2(3) factorial designs. The analytes were extracted with 100 μm PDMS fibres according to the factorial design matrix and desorbed into a gas chromatography-mass spectrometry detector. The developed method was applied for the analysis of apple samples and the limits of detection were between 0.01 and 0.2 μg kg(-)(1), which were lower than the MRLs for apples. The relative standard deviations (RSD) were between 0.1% and 13.37% with average recovery of 80-105%. The linearity ranges from 0.5-50 μg kg(-)(1) with correlation coefficient greater than 0.99. Copyright © 2013 Elsevier Ltd. All rights reserved.
Cancho, B; Ventur, F; Galceran, M
2000-11-03
A headspace solid-phase microextraction (HS-SPME) procedure has been developed and applied for the determination of cyanogen halides in treated water samples at microg/L concentrations. Several SPME coatings were tested, the divinylbenzene-Carboxen-polydimethylsiloxane fiber being the most appropriate coating. GC-electron-capture detection was used for separation and quantitation. Experimental parameters such as sample volume, addition of a salt, extraction time and desorption conditions were studied. The optimized method has an acceptable linearity, good precision, with RSD values <10% for both compounds, and it is sufficiently sensitive to detect ng/L levels. HS-SPME was compared with liquid-liquid microextraction (US Environmental Protection Agency Method 551.1) for the analysis of spiked ultrapure and granular activated carbon filtered water samples. There was good agreement between the results from both methods. Finally, the optimized procedure was applied to determine both compounds at the Barcelona water treatment plant (N.E. Spain). Cyanogen chloride in treated water was <1.0 microg/L and cyanogen bromide ranged from 3.2 to 6.4 microg/L.
Liu, Jianmin; Wang, Baoyu; Tai, Chao; Wu, Li; Zhao, Han; Guan, Jiadong; Chen, Linyong
2016-01-01
Bioconversion of coal to methane has gained increased attention in recent decades because of its economic and environmental advantages. However, the mechanism of this process is difficult to study in depth, partly because of difficulties associated with the analysis of intermediates generated in coal bioconversion. In this investigation, we report on an effective method to analyze volatile intermediates generated in the bioconversion of coal under strict anaerobic conditions. We conduct in-situ extraction of intermediates using headspace solid-phase micro-extraction followed by detection by gas chromatography-mass spectrometry. Bioconversion simulation equipment was modified and combined with a solid-phase micro-extraction device. In-situ extraction could be achieved by using the combined units, to avoid a breakdown in anaerobic conditions and to maintain the experiment continuity. More than 30 intermediates were identified qualitatively in the conversion process, and the variation in trends of some typical intermediates has been discussed. Volatile organic acids (C2-C7) were chosen for a quantitative study of the intermediates because of their importance during coal bioconversion to methane. Fiber coating, extraction time, and solution acidity were optimized in the solid-phase micro-extraction procedure. The pressure was enhanced during the bioconversion process to investigate the influence of headspace pressure on analyte extraction. The detection limits of the method ranged from 0.0006 to 0.02 mmol/L for the volatile organic acids and the relative standard deviations were between 4.6% and 11.5%. The volatile organic acids (C2-C7) generated in the bioconversion process were 0.01-1.15 mmol/L with a recovery range from 80% to 105%. The developed method is useful for further in-depth research on the bioconversion of coal to methane.
Liu, Jianmin; Wang, Baoyu; Tai, Chao; Wu, Li; Zhao, Han; Guan, Jiadong; Chen, Linyong
2016-01-01
Bioconversion of coal to methane has gained increased attention in recent decades because of its economic and environmental advantages. However, the mechanism of this process is difficult to study in depth, partly because of difficulties associated with the analysis of intermediates generated in coal bioconversion. In this investigation, we report on an effective method to analyze volatile intermediates generated in the bioconversion of coal under strict anaerobic conditions. We conduct in-situ extraction of intermediates using headspace solid-phase micro-extraction followed by detection by gas chromatography-mass spectrometry. Bioconversion simulation equipment was modified and combined with a solid-phase micro-extraction device. In-situ extraction could be achieved by using the combined units, to avoid a breakdown in anaerobic conditions and to maintain the experiment continuity. More than 30 intermediates were identified qualitatively in the conversion process, and the variation in trends of some typical intermediates has been discussed. Volatile organic acids (C2–C7) were chosen for a quantitative study of the intermediates because of their importance during coal bioconversion to methane. Fiber coating, extraction time, and solution acidity were optimized in the solid-phase micro-extraction procedure. The pressure was enhanced during the bioconversion process to investigate the influence of headspace pressure on analyte extraction. The detection limits of the method ranged from 0.0006 to 0.02 mmol/L for the volatile organic acids and the relative standard deviations were between 4.6% and 11.5%. The volatile organic acids (C2–C7) generated in the bioconversion process were 0.01–1.15 mmol/L with a recovery range from 80% to 105%. The developed method is useful for further in-depth research on the bioconversion of coal to methane. PMID:27695055
Arghavani-Beydokhti, Somayeh; Rajabi, Maryam; Asghari, Alireza
2017-07-01
A novel, efficient, rapid, simple, sensitive, selective, and environmentally friendly method termed magnetic dispersive micro solid-phase extraction combined with supramolecular solvent-based microextraction (Mdμ-SPE-SSME) followed by high-performance liquid chromatography (HPLC) with UV detection is introduced for the simultaneous microextraction of cholesterol-lowering drugs in complicated matrices. In the first microextraction procedure, using layered double hydroxide (LDH)-coated Fe 3 O 4 magnetic nanoparticles, an efficient sample cleanup is simply and rapidly provided without the need for time-consuming centrifugation and elution steps. In the first step, desorption of the target analytes is easily performed through dissolution of the LDH-coated magnetic nanoparticles containing the target analytes in an acidic solution. In the next step, an emulsification microextraction method based on a supramolecular solvent is used for excellent preconcentration, ultimately resulting in an appropriate determination of the target analytes in real samples. Under the optimal experimental conditions, the Mdμ-SPE-SSME-HPLC-UV detection procedure provides good linearity in the ranges of 1.0-1500 ng mL -1 , 1.5-2000 ng mL -1 , and 2.0-2000 ng mL -1 with coefficients of determination of 0.995 or less, low limits of detection (0.3, 0.5, and 0.5 ng mL -1 ), and good extraction repeatabilities (relative standard deviations below 7.8%, n = 5) in deionized water for rosuvastatin, atorvastatin, and gemfibrozil, respectively. Finally, the proposed method is successfully applied for the determination of the target analytes in complicated matrices. Graphical Abstract Mdμ-SPE-SSME procedure.
Zhao, Jiao; Zhu, Yan; Jiao, Yang; Ning, Jinyan; Yang, Yaling
2016-10-01
A novel two-step extraction technique combining ionic-liquid-based dispersive liquid-liquid microextraction with magnetic solid-phase extraction was developed for the preconcentration and separation of aflatoxins in animal feedstuffs before high-performance liquid chromatography coupled with fluorescence detection. In this work, ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate was used as the extractant in dispersive liquid-liquid microextraction, and hydrophobic pelargonic acid modified Fe 3 O 4 magnetic nanoparticles as an efficient adsorbent were applied to retrieve the aflatoxins-containing ionic liquid. Notably, the target of magnetic nanoparticles was the ionic liquid rather than the aflatoxins. Because of the rapid mass transfer associated with the dispersive liquid-liquid microextraction and magnetic solid phase steps, fast extraction could be achieved. The main parameters affecting the extraction recoveries of aflatoxins were investigated and optimized. Under the optimum conditions, vortexing at 2500 rpm for 1 min in the dispersive liquid-liquid microextraction and magnetic solid-phase extraction and then desorption by sonication for 2 min with acetonitrile as eluent. The recoveries were 90.3-103.7% with relative standard deviations of 3.2-6.4%. Good linearity was observed with correlation coefficients ranged from 0.9986 to 0.9995. The detection limits were 0.632, 0.087, 0.422 and 0.146 ng/mL for aflatoxins B 1 , B2, G1, and G2, respectively. The results were also compared with the pretreatment method carried out by conventional immunoaffinity columns. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jefimova, J; Irha, N; Mägi, R; Kirso, U
2012-10-01
The solid-phase microextraction (SPME) method was developed to determine PAH free dissolved concentration (C(free)) in field leachates from hazardous waste disposal. SPME technique, involving a 100-μm polydimethylsiloxane (PDMS) fiber coupled to GC-MS was optimized for determination of C(free). The following PAH were found in bioavailable form: acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, with C(free) varying between 2.38 and 62.35 ng/L. Conventional solvent extraction was used for measurement of total concentration (C(total)) in the same samples, and ranging from 1.26 to 77.56 μg/L. Determining C(free) of the hydrophobic toxic pollutants could give useful information for risk assessment of the hazardous waste.
Yang, Cui; Wang, Juan; Li, Donghao
2013-10-17
Vegetables and fruits are necessary for human health, and traditional Chinese medicine that uses plant materials can cure diseases. Thus, understanding the composition of plant matrix has gained increased attention in recent years. Since plant matrix is very complex, the extraction, separation and quantitation of these chemicals are challenging. In this review we focus on the microextraction techniques used in the determination of volatile and semivolatile organic compounds (such as esters, alcohols, aldehydes, hydrocarbons, ketones, terpenes, sesquiterpene, phenols, acids, plant secondary metabolites and pesticides) from plants (e.g., fruits, vegetables, medicinal plants, tree leaves, etc.). These microextraction techniques include: solid phase microextraction (SPME), stir-bar sorptive extraction (SBSE), single drop microextraction (SDME), hollow fiber liquid phase microextraction (HF-LPME), dispersive liquid liquid microextraction (DLLME), and gas purge microsyringe extraction (GP-MSE). We have taken into consideration papers published from 2008 to the end of January 2013, and provided critical and interpretative review on these techniques, and formulated future trends in microextraction for the determination of volatile and semivolatile compounds from plants. Copyright © 2013 Elsevier B.V. All rights reserved.
Zhan, Yanwei; Musteata, Florin M; Basset, Fabien A; Pawliszyn, Janusz
2011-01-01
A thin sheet of polydimethylsilosane membrane was used as an extraction phase for solid-phase microextraction. Compared with fiber or rod solid-phase microextraction geometries, the thin film exhibited much higher extraction capacity without sacrificing extraction time due to its higher area-to-volume ratio. The analytical method involved direct extraction of unconjugated testosterone (T) and epitestosterone (ET) followed by separation on a C18 column and detection by selected reaction monitoring in positive ionization mode. The limit of detection was 1 ng/l for both T and ET. After method validation, free (unconjugated) T and ET were extracted and quantified in real samples. Since T and ET are extensively metabolized, the proposed method was also applied to extract the steroids after enzymatic deconjugation of urinary-excreted steroid glucuronides. The proposed method allows quantification of both conjugated and unconjugated steroids, and revealed that there was a change in the ratio of T to ET after enzymatic deconjugation, indicating different rates of metabolism.
Matin, Amir Abbas; Biparva, Pourya; Gheshlaghi, Mohammad
2014-12-29
A novel solid-phase microextraction fiber was prepared based on multiwalled carbon nanotubes (MWCNTs) loaded on hollow fiber membrane pores. Stainless steel wire was used as unbreakable support. The major advantages of the proposed fiber are its (a) high reproducibility due to the uniform structure of the hollow fiber membranes, (b) high extraction capacity related to the porous structure of the hollow fiber and outstanding adsorptive characteristics of MWCNTs. The proposed fiber was applied for the microextraction of five representative polycyclic aromatic hydrocarbons (PAHs) from aqueous media (river and hubble-bubble water) and smoked rice samples followed by gas chromatographic determination. Analytical merits of the method, including high correlation coefficients [(0.9963-0.9992) and (0.9982-0.9999)] and low detection limits [(9.0-13.0ngL(-1)) and (40.0-150.0ngkg(-1))] for water and rice samples, respectively, made the proposed method suitable for the ultra-trace determination of PAHs. Copyright © 2014 Elsevier B.V. All rights reserved.
Senra-Ferreiro, Sonia; Pena-Pereira, Francisco; Costas-Mora, Isabel; Romero, Vanesa; Lavilla, Isela; Bendicho, Carlos
2011-09-15
A miniaturized method based on liquid-phase microextraction (LPME) in combination with microvolume UV-vis spectrophotometry for monitoring ammonia in waters is proposed. The methodology is based on the extraction of the ion pair formed between the blue indophenol obtained according to the Berthelot reaction and a quaternary ammonium salt into a microvolume of organic solvent. Experimental parameters affecting the LPME performance such as type and concentration of the quaternary ammonium ion salt required to form the ion pair, type and volume of extractant solvent, effect of disperser solvent, ionic strength and extraction time, were optimized. A detection limit of 5.0 μg L(-1) ammonia and an enrichment factor of 30 can be attained after a microextraction time of 4 min. The repeatability, expressed as relative standard deviation, was 7.6% (n=7). The proposed method can be successfully applied to the determination of trace amounts of ammonia in several environmental water samples. Copyright © 2011 Elsevier B.V. All rights reserved.
Saraji, Mohammad; Ghani, Milad; Rezaei, Behzad; Mokhtarianpour, Maryam
2016-10-21
A new headspace liquid-phase microextraction technique based on using a copper foam nanostructure substrate followed by gas chromatography-flame ionization detection was developed for the determination of volatile organic compounds in water and wastewater samples. The copper foam with highly porous nanostructured walls was fabricated on the surface of a copper wire by a rapid and facile electrochemical process and used as the extractant solvent holder. Propyl benzoate was immobilized in the pores of the copper foam coating and used for the microextraction of benzene, toluene, ethylbenzene and xylenes. The experimental parameters such as the type of organic solvent, desorption temperature, desorption time, salt concentration, sample temperature, equilibrium time and extraction time, were investigated and optimized. Under the optimum conditions, the method detection limit was between 0.06 and 0.25μgL -1 . The relative standard deviation of the method for the analytes at 4-8μgL -1 concentration level ranged from 7.9 to 11%. The fiber-to-fiber reproducibility for three fibers prepared under the same condition was 9.3-12%. The enrichment factor was in the range of 615-744. Different water samples were analyzed for the evaluation of the method in real sample analysis. Relative recoveries for spiked tap, river and wastewater samples were in the range of 85-94%. Finally, the extraction efficiency of the method was compared with those of headspace single drop microextraction and headspace SPME with the commercial fibers. Copyright © 2016 Elsevier B.V. All rights reserved.
2004-06-10
Microextraction and Analysis using Field-Portable Gas Chromatography-Mass Spectrometry Name of Candidate: CPT Michael J. Nack...and Analysis using Field-Portable Gas Chromatography-Mass Spectrometry Beyond brief excerpts is with the permission of the copyright owner, and...Pesticides in Environmental Waters with Solid Phase Microextraction and Analysis using Field-Portable Gas Chromatography-Mass Spectrometry
Gas flow headspace liquid phase microextraction.
Yang, Cui; Qiu, Jinxue; Ren, Chunyan; Piao, Xiangfan; Li, Xifeng; Wu, Xue; Li, Donghao
2009-11-06
There is a trend towards the use of enrichment techniques such as microextraction in the analysis of trace chemicals. Based on the theory of ideal gases, theory of gas chromatography and the original headspace liquid phase microextraction (HS-LPME) technique, a simple gas flow headspace liquid phase microextraction (GF-HS-LPME) technique has been developed, where the extracting gas phase volume is increased using a gas flow. The system is an open system, where an inert gas containing the target compounds flows continuously through a special gas outlet channel (D=1.8mm), and the target compounds are trapped on a solvent microdrop (2.4 microL) hanging on the microsyringe tip, as a result, a high enrichment factor is obtained. The parameters affecting the enrichment factor, such as the gas flow rate, the position of the microdrop, the diameter of the gas outlet channel, the temperatures of the extracting solvent and of the sample, and the extraction time, were systematically optimized for four types of polycyclic aromatic hydrocarbons. The results were compared with results obtained from HS-LPME. Under the optimized conditions (where the extraction time and the volume of the extracting sample vial were fixed at 20min and 10mL, respectively), detection limits (S/N=3) were approximately a factor of 4 lower than those for the original HS-LPME technique. The method was validated by comparison of the GF-HS-LPME and HS-LPME techniques using data for PAHs from environmental sediment samples.
Es'haghi, Zarrin; Mohtaji, Maryam; Hasanzade-Meidani, Mahin; Masrournia, Mahboubeh
2010-04-01
New pre-concentration technique, triple phase suspended droplet microextraction (SD-LPME) and liquid chromatography-photodiode array detection was applied to determine ecstasy, MDMA (3,4-methylendioxy-N-methylamphetamine) in hair samples. In this research MDMA in hair was digested and after treatment extracted. The effective parameters were investigated and method was evaluated. Under the optimal conditions, the MDMA was enriched by factor 98.11. Linearity (r=0.9921), was obtained in the range of 10-15,000 ng mL(-1) and detection limit was 0.1 ng mL(-1). 2010 Elsevier B.V. All rights reserved.
Yang, Yanqin; Pan, Yuanjiang; Zhou, Guojun; Chu, Guohai; Jiang, Jian; Yuan, Kailong; Xia, Qian; Cheng, Changhe
2016-11-01
A novel infrared-assisted extraction coupled to headspace solid-phase microextraction followed by gas chromatography with mass spectrometry method has been developed for the rapid determination of the volatile components in tobacco. The optimal extraction conditions for maximizing the extraction efficiency were as follows: 65 μm polydimethylsiloxane-divinylbenzene fiber, extraction time of 20 min, infrared power of 175 W, and distance between the infrared lamp and the headspace vial of 2 cm. Under the optimum conditions, 50 components were found to exist in all ten tobacco samples from different geographical origins. Compared with conventional water-bath heating and nonheating extraction methods, the extraction efficiency of infrared-assisted extraction was greatly improved. Furthermore, multivariate analysis including principal component analysis, hierarchical cluster analysis, and similarity analysis were performed to evaluate the chemical information of these samples and divided them into three classifications, including rich, moderate, and fresh flavors. The above-mentioned classification results were consistent with the sensory evaluation, which was pivotal and meaningful for tobacco discrimination. As a simple, fast, cost-effective, and highly efficient method, the infrared-assisted extraction coupled to headspace solid-phase microextraction technique is powerful and promising for distinguishing the geographical origins of the tobacco samples coupled to suitable chemometrics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Xiaozhong; Li, Xuwen; Li, Lanjie; Li, Min; Liu, Ying; Wu, Qian; Li, Peng; Jin, Yongri
2016-05-01
A simple and sensitive method for determination of three aconitum alkaloids and their metabolites in human plasma was developed using matrix solid-phase dispersion combined with vortex-assisted dispersive liquid-liquid microextraction and high-performance liquid chromatography with diode array detection. The plasma sample was directly purified by matrix solid-phase dispersion and the eluate obtained was concentrated and further clarified by vortex-assisted dispersive liquid-liquid microextraction. Some important parameters affecting the extraction efficiency, such as type and amount of dispersing sorbent, type and volume of elution solvent, type and volume of extraction solvent, salt concentration as well as sample solution pH, were investigated in detail. Under optimal conditions, the proposed method has good repeatability and reproducibility with intraday and interday relative standard deviations lower than 5.44 and 5.75%, respectively. The recoveries of the aconitum alkaloids ranged from 73.81 to 101.82%, and the detection limits were achieved within the range of 1.6-2.1 ng/mL. The proposed method offered the advantages of good applicability, sensitivity, simplicity, and feasibility, which makes it suitable for the determination of trace amounts of aconitum alkaloids in human plasma samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Abolghasemi, Mir Mahdi; Arsalani, Naser; Yousefi, Vahid; Arsalani, Mahmood; Piryaei, Marzieh
2016-03-01
We have synthesized an organic-inorganic polyaniline-halloysite nanotube composite by an in situ polymerization method. This nanocomposite is immobilized on a stainless-steel wire and can be used as a fiber coating for solid-phase microextraction. It was found that our new solid-phase microextraction fiber is an excellent adsorbent for the extraction of some volatile organic compounds in aqueous samples in combination with gas chromatography and mass spectrometry. The coating can be prepared easily, is mechanically stable, and exhibits relatively high thermal stability. It is capable of extracting phenolic compounds from water samples. Following thermal desorption, the phenols were quantified by gas chromatography with mass spectrometry. The effects of extraction temperature, extraction time, sample ionic strength, stirring rate, pH, desorption temperature and desorption time were studied. Under optimal conditions, the repeatability for one fiber (n = 5), expressed as the relative standard deviation, is between 6.2 and 9.1%. The detection limits range from 0.005 to 4 ng/mL. The method offers the advantage of being simple to use, with a shorter analysis time, lower cost of equipment and higher thermal stability of the fiber in comparison to conventional methods of analysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Letseka, Thabiso
2017-01-01
We report the application of the dispersive liquid-liquid microextraction coupled to hollow-fibre membrane-assisted liquid-phase microextraction and its application for extraction of atrazine and triclosan. Under optimum conditions, namely, 25 μL of a 1 : 4 chlorobenzene : ethyl acetate mixture dispersed in 1 mL of aqueous sample, 10% (m/v) NaCl, a magnetic stirrer speed at 600 rpm, and 10 minutes' extraction time with toluene-filled fibre as the acceptor phase, the method demonstrates sufficient figures of merit. These include linearity (R2 ≥ 0.9975), intravial precision (%RSD ≤ 7.6), enrichment factors (127 and 142), limits of detection (0.0081 and 0.0169 µg/mL), and recovery from river water and sewerage (96–101%). The relatively high detection limits are attributed to the flame ionization detector which is less preferred than a mass spectrometer in trace analyses. This is the first report of a homogenous mixture of the dispersed organic solvent in aqueous solutions and its employment in extraction of organic compounds from aqueous solutions. It therefore adds yet another candidate in the pool of miniaturised solvent microextraction techniques. PMID:29158736
Abolghasemi, Mir Mahdi; Habibiyan, Rahim; Jaymand, Mehdi; Piryaei, Marzieh
2018-02-14
A nanostructured star-shaped polythiophene dendrimer was prepared and used as a fiber coating for headspace solid phase microextraction of selected triazolic pesticides (tebuconazole, hexaconazole, penconazole, diniconazole, difenoconazole, triticonazole) from water samples. The dendrimer with its large surface area was characterized by thermogravimetric analysis, UV-Vis spectroscopy and field emission scanning electron microscopy. It was placed on a stainless steel wire for use in SPME. The experimental conditions for fiber coating, extraction, stirring rate, ionic strength, pH value, desorption temperature and time were optimized. Following thermal desorption, the pesticides were quantified by GC-MS. Under optimum conditions, the repeatability (RSD) for one fiber (for n = 3) ranges from 4.3 to 5.6%. The detection limits are between 8 and 12 pg mL -1 . The method is fast, inexpensive (in terms of equipment), and the fiber has high thermal stability. Graphical abstract Schematic presentation of a nanostructured star-shaped polythiophene dendrimer for use in headspace solid phase microextraction of the triazolic pesticides (tebuconazole, hexaconazole, penconazole, diniconazole, difenoconazole, triticonazole). They were then quantified by gas chromatography-mass spectrometry.
Oertel, Peter; Bergmann, Andreas; Fischer, Sina; Trefz, Phillip; Küntzel, Anne; Reinhold, Petra; Köhler, Heike; Schubert, Jochen K; Miekisch, Wolfram
2018-05-14
Volatile organic compounds (VOCs) emitted from in vitro cultures may reveal information on species and metabolism. Owing to low nmol L -1 concentration ranges, pre-concentration techniques are required for gas chromatography-mass spectrometry (GC-MS) based analyses. This study was intended to compare the efficiency of established micro-extraction techniques - solid-phase micro-extraction (SPME) and needle-trap micro-extraction (NTME) - for the analysis of complex VOC patterns. For SPME, a 75 μm Carboxen®/polydimethylsiloxane fiber was used. The NTME needle was packed with divinylbenzene, Carbopack X and Carboxen 1000. The headspace was sampled bi-directionally. Seventy-two VOCs were calibrated by reference standard mixtures in the range of 0.041-62.24 nmol L -1 by means of GC-MS. Both pre-concentration methods were applied to profile VOCs from cultures of Mycobacterium avium ssp. paratuberculosis. Limits of detection ranged from 0.004 to 3.93 nmol L -1 (median = 0.030 nmol L -1 ) for NTME and from 0.001 to 5.684 nmol L -1 (median = 0.043 nmol L -1 ) for SPME. NTME showed advantages in assessing polar compounds such as alcohols. SPME showed advantages in reproducibility but disadvantages in sensitivity for N-containing compounds. Micro-extraction techniques such as SPME and NTME are well suited for trace VOC profiling over cultures if the limitations of each technique is taken into account. Copyright © 2018 John Wiley & Sons, Ltd.
Zhang, Wei-Ya; Sun, Yin; Wang, Cheng-Ming; Wu, Cai-Ying
2011-09-01
Based on polyethylene glycol modified single-walled carbon nanotubes, a novel sol-gel fiber coating was prepared and applied to the headspace microextraction of chlorinated organic carriers (COCs) in textiles by gas chromatography-electron capture detection. The preparation of polyethylene glycol modified single-walled carbon nanotubes and the sol-gel fiber coating process was stated and confirmed by infrared spectra, Raman spectroscopy, and scanning electron microscopy. Several parameters affecting headspace microextraction, including extraction temperature, extraction time, salting-out effect, and desorption time, were optimized by detecting 11 COCs in simulative sweat samples. Compared with the commercial solid-phase microextraction fibers, the sol-gel polyethylene glycol modified single-walled carbon nanotubes fiber showed higher extraction efficiency, better thermal stability, and longer life span. The method detection limits for COCs were in the range from 0.02 to 7.5 ng L(-1) (S/N = 3). The linearity of the developed method varied from 0.001 to 50 μg L(-1) for all analytes, with coefficients of correlation greater than 0.974. The developed method was successfully applied to the analysis of trace COCs in textiles, the recoveries of the analytes indicated that the developed method was considerably useful for the determination of COCs in ecological textile samples.
EVALUATION OF SOLID PHASE MICROEXTRACTION FOR THE ANALYSIS OF HYDROPHILIC COMPOUNDS
Two commercially available solid phase microextractions (SPME) fibers, polyacrylate and carboxem/polydimethylsiloxane (PDMS), were evaluated for their ability to extract hydrophilic compounds from drinking water. Conditions, such as desorption time, desorption temperature, sample...
Silva, Catarina; Cavaco, Carina; Perestrelo, Rosa; Pereira, Jorge; Câmara, José S.
2014-01-01
For a long time, sample preparation was unrecognized as a critical issue in the analytical methodology, thus limiting the performance that could be achieved. However, the improvement of microextraction techniques, particularly microextraction by packed sorbent (MEPS) and solid-phase microextraction (SPME), completely modified this scenario by introducing unprecedented control over this process. Urine is a biological fluid that is very interesting for metabolomics studies, allowing human health and disease characterization in a minimally invasive form. In this manuscript, we will critically review the most relevant and promising works in this field, highlighting how the metabolomic profiling of urine can be an extremely valuable tool for the early diagnosis of highly prevalent diseases, such as cardiovascular, oncologic and neurodegenerative ones. PMID:24958388
Worawit, Chanatda; Cocovi-Solberg, David J; Varanusupakul, Pakorn; Miró, Manuel
2018-08-01
A novel concept for automation of nanostructured hollow-fiber supported microextraction, combining the principles of liquid-phase microextraction (LPME) and sorbent microextraction synergically, using mesofluidic platforms is proposed herein for the first time, and demonstrated with the determination of acidic drugs (namely, ketoprofen, ibuprofen, diclofenac and naproxen) in urine as a proof-of-concept applicability. Dispersed carbon nanofibers (CNF) are immobilized in the pores of a single-stranded polypropylene hollow fiber (CNF@HF) membrane, which is thereafter accommodated in a stereolithographic 3D-printed extraction chamber without glued components for ease of assembly. The analytical method involves continuous-flow extraction of the acidic drugs from a flowing stream donor (pH 1.7) into an alkaline stagnant acceptor (20 mmol L -1 NaOH) containing 10% MeOH (v/v) across a dihexyl ether impregnated CNF@HF membrane. The flow setup features entire automation of the microextraction process including regeneration of the organic film and on-line injection of the analyte-laden acceptor phase after downstream neutralization into a liquid chromatograph (LC) for reversed-phase core-shell column-based separation. Using a 12-cm long CNF@HF and a sample volume of 6.4 mL, linear dynamic ranges of ketoprofen, naproxen, diclofenac and ibuprofen, taken as models of non-steroidal anti-inflammatory drugs, spanned from ca. 5-15 µg L -1 to 500 µg L -1 with enhancement factors of 43-97 (against a direct injection of 10 µL standards into LC), and limits of detection from 1.6 to 4.3 µg L -1 . Relative recoveries in real urine samples ranged from 97% to 105%, thus demonstrating the reliability of the automatic CNF@HF-LPME method for in-line matrix clean-up and determination of drugs in urine at therapeutically relevant concentrations. Copyright © 2018 Elsevier B.V. All rights reserved.
Yılmazcan, Ö; Kanakaki, C; Izgi, B; Rosenberg, E
2015-07-01
A fast gas chromatography/mass spectrometry method was developed and validated for the analysis of the potential endocrine disrupters octinoxate and oxybenzone in swimming pool water samples based on the solvent-free solid-phase microextraction technique. The low-pressure gas chromatography/mass spectrometry method used for the fast identification of UV filter substances was compared to a conventional method in terms of sensitivity and speed. The fast method proposed resulted in 2 min runs, leading to an eightfold decrease in the total analysis time and a sevenfold improvement in detection limits. The main parameters affecting the solid-phase microextraction process were also studied in detail and the optimized conditions were as follows: fiber coating, polyacrylate; extraction mode, direct immersion; extraction temperature, 25°C; sample volume, 5 mL; extraction time 45 min; pH 6.5. Under the optimized conditions, a linear response was obtained in the concentration range of 0.5-25 μg/L with correlation coefficients in the range 0.990-0.999. The limits of detection were 0.17-0.29 μg/L, and the recoveries were 80-83%. Combined method uncertainty was assessed and found to be less than 7% for both analytes for concentrations equal to or higher than 5 μg/L. Pool water samples were analyzed to demonstrate the applicability of the proposed method. Neither octinoxate nor oxybenzone were detected in the swimming pool water samples at concentrations above the respective limits of detection. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Farajzadeh, Mir Ali; Mogaddam, Mohammad Reza Afshar; Ghorbanpour, Houshang
2014-06-20
In the present study, a rapid, highly efficient, and reliable sample preparation method named "elevated temperature dispersive liquid-liquid microextraction" followed by gas chromatography-nitrogen-phosphorus detection was developed for the extraction, preconcentration, and determination of five triazole pesticides (penconazole, hexaconazole, diniconazole, tebuconazole, and difenoconazole) in honey samples. In this method the temperature of high-volume aqueous phase was adjusted at an elevated temperature and then a disperser solvent containing an extraction solvent was rapidly injected into the aqueous phase. After cooling to room temperature, the phase separation was accelerated by centrifugation. Various parameters affecting the extraction efficiency such as type and volume of the extraction and disperser solvents, temperature, salt addition, and pH were evaluated. Under the optimum extraction conditions, the method resulted in low limits of detection and quantification within the range 0.05-0.21ngg(-1) in honey (15-70ngL(-1) in solution) and 0.15-1.1ngg(-1) in honey (45-210ngL(-1) in solution), respectively. Enrichment factors and extraction recoveries were in the ranges of 1943-1994 and 97-100%, respectively. The method precision was evaluated at 1.5ngg(-1) of each analyte, and the relative standard deviations were found to be less than 4% for intra-day (n=6) and less than 6% for inter-days. The method was successfully applied to the analysis of honey samples and difenoconazole was determined at ngg(-1) levels. Copyright © 2014 Elsevier B.V. All rights reserved.
Solid-phase microextraction and chiral HPLC analysis of ibuprofen in urine.
de Oliveira, Anderson Rodrigo Moraes; Cesarino, Evandro José; Bonato, Pierina Sueli
2005-04-25
A simple and rapid solid-phase microextraction method was developed for the enantioselective analysis of ibuprofen in urine. The sampling was made with a polydimethylsiloxane-divinylbenzene coated fiber immersed in the liquid sample. After desorptioning from the fiber, ibuprofen enantiomers were analyzed by HPLC using a Chiralpak AD-RH column and UV detection. The mobile phase was made of methanol-pH 3.0 phosphoric acid solution (75:25, v/v), at a flow rate of 0.45 mL/min. The mean recoveries of SPME were 19.8 and 19.1% for (-)-R-ibuprofen and (+)-(S)-ibuprofen, respectively. The method was linear at the range of 0.25-25 microg/mL. Within-day and between-day assay precision and accuracy were below 15% for both ibuprofen enantiomers at concentrations of 0.75, 7.5 and 20 microg/mL. The method was tested with urine quality control samples and human urine fractions after administration of 200 mg rac-ibuprofen.
Kumar, Ashwini; Singh, Baldev; Malik, Ashok Kumar; Tiwary, Dhananjay K
2007-01-01
A new approach has been developed for the extraction and determination of aldehydes such as veratraldehyde, m-nitrobenzaldehyde, cinnamaldehyde, benzaldehyde, and p-chlorobenzaldehyde by using solid-phase microextraction (SPME) and high-performance liquid chromatography with UV detection (HPLC/UV). The method involves adsorption of the aldehydes on polydimethylsiloxane/divinylbenzene-coated fiber, followed by desorption in the desorption chamber of the SPME-HPLC interface, using acetonitrile-water (70 + 30) as the mobile phase; UV detection was at 254 nm. A good separation of 5 aldehydes was obtained on a C18 column. The detection limits of veratraldehyde, m-nitrobenzaldehyde, cinnamaldehyde, benzaldehyde, and p-chlorobenzaldehyde are 25, 41, 13, 12, and 11 pg/mL, respectively, which are about 100 times better than the detection limits for other SPME methods using gas chromatography. The proposed method was validated by determining benzaldehyde in bitter almonds and cinnamaldehyde in cinnamon bark. The recoveries of the 5 analytes were determined by analysis of spiked drinking water.
Ghanbarian, Maryam; Afzali, Daryoush; Mostafavi, Ali; Fathirad, Fariba
2013-01-01
A new displacement-dispersive liquid-liquid microextraction method based on the solidification of floating organic drop was developed for separation and preconcentration of Pd(ll) in road dust and aqueous samples. This method involves two steps of dispersive liquid-liquid microextraction based on solidification. In Step 1, Cu ions react with diethyldithiocarbamate (DDTC) to form Cu-DDTC complex, which is extracted by dispersive liquid-liquid microextraction based on a solidification procedure using 1-undecanol (extraction solvent) and ethanol (dispersive solvent). In Step 2, the extracted complex is first dispersed using ethanol in a sample solution containing Pd ions, then a dispersive liquid-liquid microextraction based on a solidification procedure is performed creating an organic drop. In this step, Pd(ll) replaces Cu(ll) from the pre-extracted Cu-DDTC complex and goes into the extraction solvent phase. Finally, the Pd(ll)-containing drop is introduced into a graphite furnace using a microsyringe, and Pd(ll) is determined using atomic absorption spectrometry. Several factors that influence the extraction efficiency of Pd and its subsequent determination, such as extraction and dispersive solvent type and volume, pH of sample solution, centrifugation time, and concentration of DDTC, are optimized.
Solid phase microextraction of macrolide, trimethoprim, and sulfonamide antibiotics in wastewaters.
McClure, Evelyn L; Wong, Charles S
2007-10-26
In this work, we optimize a solid phase microextraction (SPME) method for the simultaneous collection of antibiotics (sulfonamides, macrolides, and trimethoprim) present in wastewaters. The performance of the SPME method is compared to a solid phase extraction (SPE) method. Analytes in both cases were quantified by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS-MS) with electrospray ionization. The advantages offered by SPME in this application are: decreased sample volume requirements, ease of sample processing and extraction, decreased cost, and most importantly, elimination of electrospray matrix effects. Despite having higher limits of quantification (16-1380 ng/L in influent and 35-260 ng/L in effluent), nearly all of the compounds found to be present in Edmonton Gold Bar wastewater by SPE were measurable by SPME (i.e., sulfamethoxazole, trimethoprim, erythromycin, and clarithromycin), with values similar to those obtained using the former method. Limits of quantification for the SPE method for the measured compounds were 4.7-15 ng/L and 0.86-6.1 ng/L for influent and effluent, respectively.
Villar-Navarro, Mercedes; Ramos-Payán, María; Fernández-Torres, Rut; Callejón-Mochón, Manuel; Bello-López, Miguel Ángel
2013-01-15
This work proposes for the first time the use of a three phase hollow fiber liquid phase microextraction (HF-LPME) procedure for the extraction, and the later HPLC determination using fluorescence detection, of two much known endocrine disrupting compounds (EDCs): n-octylphenol (OP) and n-nonylphenol (NP). The extraction was carried out through a dihexyl ether liquid membrane supported on an Accurel® Q3/2 polypropylene hollow fiber. Optimum pH for donor and acceptor phases and extraction time were established. Enrichment (preconcentration) factors of 50 were obtained that allows detection limits of 0.54 and 0.52 ng mL(-1) for OP and NP, respectively. The method was successfully applied to the determination of these EDCs in environmental water samples, including urban wastewaters. Copyright © 2012 Elsevier B.V. All rights reserved.
Naeemullah; Kazi, Tasneem Gul; Tuzen, Mustafa
2015-04-01
A new dispersive liquid-liquid microextraction, magnetic stirrer induced dispersive ionic-liquid microextraction (MS-IL-DLLME) was developed to quantify the trace level of vanadium in real water and food samples by graphite furnace atomic absorption spectrometry (GFAAS). In this extraction method magnetic stirrer was applied to obtained a dispersive medium of 1-butyl-3-methylimidazolium hexafluorophosphate [C4MIM][PF6] in aqueous solution of (real water samples and digested food samples) to increase phase transfer ratio, which significantly enhance the recovery of vanadium - 4-(2-pyridylazo) resorcinol (PAR) chelate. Variables having vital role on desired microextraction methods were optimised to obtain the maximum recovery of study analyte. Under the optimised experimental variables, enhancement factor (EF) and limit of detection (LOD) were achieved to be 125 and 18 ng L(-1), respectively. Validity and accuracy of the desired method was checked by analysis of certified reference materials (SLRS-4 Riverine water and NIST SRM 1515 Apple leaves). The relative standard deviation (RSD) for 10 replicate determinations at 0.5 μg L(-1) of vanadium level was found to be <5.0%. This method was successfully applied to real water and acid digested food samples. Copyright © 2014 Elsevier Ltd. All rights reserved.
Williams, D Bradley G; George, Mosotho J; Meyer, Riaan; Marjanovic, Ljiljana
2011-09-01
Significant improvements to microdrop extractions of triazine pesticides are realized by the intentional incorporation of an air bubble into the solvent microdroplet used in this microextraction technique. The increase is attributed partly to greater droplet surface area resulting from the air bubble being incorporated into the solvent droplet as opposed to it sitting thereon and partly to thin film phenomena. The method is useful at nanogram/liter levels (LOD 0.002-0.012 μg/L, LOQ 0.007-0.039 μg/L), is precise (7-12% at 10 μg/L concentration level), and is validated against certified reference materials containing 0.5 and 5.0 μg/L analyte. It tolerates water and fruit juice as matrixes without serious matrix effects. This new development brings a simple, inexpensive, and efficient preconcentration technique to bear which rivals solid phase microextraction methods.
Cagliero, Cecilia; Ho, Tien D; Zhang, Cheng; Bicchi, Carlo; Anderson, Jared L
2016-06-03
This study describes a simple and rapid sampling method employing a polymeric ionic liquid (PIL) sorbent coating in direct immersion solid-phase microextraction (SPME) for the trace-level analysis of acrylamide in brewed coffee and coffee powder. The crosslinked PIL sorbent coating demonstrated superior sensitivity in the extraction of acrylamide compared to all commercially available SPME coatings. A spin coating method was developed to evenly distribute the PIL coating on the SPME support and reproducibly produce fibers with a large film thickness. Ninhydrin was employed as a quenching reagent during extraction to inhibit the production of interfering acrylamide. The PIL fiber produced a limit of quantitation for acrylamide of 10μgL(-1) and achieved comparable results to the ISO method in the analysis of six coffee powder samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Millán, S; Sampedro, M C; Unceta, N; Goicolea, M A; Rodríguez, E; Barrio, R J
2003-05-02
A solid-phase microextraction (SPME) method coupled to high-performance liquid chromatography with diode array detection (HPLC-DAD) for the analysis of six organochlorine fungicides (nuarimol, triadimenol, triadimefon, folpet, vinclozolin and penconazole) in wine was developed. For this purpose, polydimethylsiloxane-divinylbenzene-coated fibers were utilized and all factors affecting throughput, precision, and accuracy of the SPME method were investigated and optimized. These factors include: matrix influence, extraction and desorption time, percentage of ethanol, pH, salt effect and desorption mode. The performed analytical procedure showed detectability ranging from 4 to 27 microg l(-1) and precision from 2.4 to 14.2% (as intra-day relative standard deviation, RSD) and 4.7-25.7% (as inter-day RSD) depending on the fungicide. The results demonstrate the suitability of the SPME-HPLC-DAD method to analyze these organochlorine fungicides in red wine.
Solid phase microextraction applied to the analysis of organophosphorus insecticides in fruits.
Fytianos, K; Raikos, N; Theodoridis, G; Velinova, Z; Tsoukali, H
2006-12-01
Trace amounts of organophosphorus pesticides (OPs) were determined in various fruits by headspace solid phase microextraction (HS-SPME) and gas chromatography-nitrogen phosphorous detection (GC-NPD). Sampling from the headspace enhanced method selectivity, whereas at the same time improved fiber life time and method sensitivity. Diazinon, parathion, methyl parathion, malathion and fenithrothion were determined in various fruits: more than 150 samples of 21 types of fruits were studied. SPME-GC-NPD provided a useful and very efficient analytical tool: method linearity ranged from 1.2 to 700 ng/ml. Limits of detection (LODs) and quantitation (LOQs) ranged from 0.03 to 3 ng/ml and 0.12 to 10 ng/ml respectively, values well below the residue limits set by the EU. Less than 2% of the samples were found positive containing amounts higher than the EU limits. The effect of fruit peeling and washing was also investigated.
de Toledo, Fernanda Crossi Pereira; Yonamine, Mauricio; de Moraes Moreau, Regina Lucia; Silva, Ovandir Alves
2003-12-25
The present work describes a highly precise and sensitive method developed to detect cocaine (COC), benzoylecgonine (BE, its main metabolite) and cocaethylene (CE, transesterification product of the coingestion of COC with ethanol) in human head hair samples. The method was based on an alkylchloroformate derivatization of benzoylecgonine and the extraction of the analytes by solid-phase microextraction (SPME). Gas chromatography-mass spectrometry (GC-MS) was used to identify and quantify the analytes in selected ion monitoring mode (SIM). The limits of quantification and detection (LOQ and LOD) were: 0.1 ng/mg for COC and CE, and 0.5 ng/mg for BE. Good inter- and intra-assay precision was observed. The dynamic range of the assay was 0.1-50 ng/mg. The method is not time consuming and was shown to be easy to perform.
Bonadio, Federica; Margot, Pierre; Delémont, Olivier; Esseiva, Pierre
2008-11-20
Headspace solid-phase microextraction (HS-SPME) is assessed as an alternative to liquid-liquid extraction (LLE) currently used for 3,4-methylenedioxymethampethamine (MDMA) profiling. Both methods were compared evaluating their performance in discriminating and classifying samples. For this purpose 62 different seizures were analysed using both extraction techniques followed by gas chromatography-mass spectroscopy (GC-MS). A previously validated method provided data for HS-SPME, whereas LLE data were collected applying a harmonized methodology developed and used in the European project CHAMP. After suitable pre-treatment, similarities between sample pairs were studied using the Pearson correlation. Both methods enable to distinguish between samples coming from the same pre-tabletting batches and samples coming from different pre-tabletting batches. This finding emphasizes the use of HS-SPME as an effective alternative to LLE, with additional advantages such as sample preparation and a solvent-free process.
Akbarzade, Samaneh; Chamsaz, Mahmoud; Rounaghi, Gholam Hossein; Ghorbani, Mahdi
2018-01-01
A selective and sensitive magnetic dispersive solid-phase microextraction (MDSPME) coupled with gas chromatography-mass spectrometry was developed for extraction and determination of organophosphorus pesticides (Sevin, Fenitrothion, Malathion, Parathion, and Diazinon) in fruit juice and real water samples. Zero valent Fe-reduced graphene oxide quantum dots (rGOQDs@ Fe) as a new and effective sorbent were prepared and applied for extraction of organophosphorus pesticides using MDSPME method. In order to study the performance of this new sorbent, the ability of rGOQDs@ Fe was compared with graphene oxide and magnetic graphene oxide nanocomposite by recovery experiments of the organophosphorus pesticides. Several affecting parameters in the microextraction procedure, including pH of donor phase, donor phase volume, stirring rate, extraction time, and desorption conditions such as the type and volume of solvents and desorption time were thoroughly investigated and optimized. Under the optimal conditions, the method showed a wide linear dynamic range with R-square between 0.9959 and 0.9991. The limit of detections, the intraday and interday relative standard deviations (n = 5) were less than 0.07 ngmL -1 , 4.7, and 8.6%, respectively. The method was successfully applied for extraction and determination of organophosphorus pesticides in real water samples (well, river and tap water) and fruit juice samples (apple and grape juice). The obtained relative recoveries were in the range of 82.9%-113.2% with RSD percentages of less than 5.8% for all the real samples.
Kumar, Ashwini; Gaurav; Malik, Ashok Kumar; Tewary, Dhananjay Kumar; Singh, Baldev
2008-03-03
Solid phase microextraction (SPME) is an innovative, solvent free technology that is fast, economical and versatile. SPME is a fiber coated with a liquid (polymer), a solid (sorbent) or a combination of both. The fiber coating takes up the compounds from the sample by absorption in the case of liquid coatings or adsorption in the case of solid coatings. The SPME fiber is then transferred with the help of a syringe like device into the analytical instrument for desorption and analysis of the target analytes. The sol-gel process provides a versatile method to prepare size, shape and charge selective materials of high purity and homogeneity by means of preparation techniques different from the traditional ones, for the chemical analysis. This review is on the current state of the art and future trends in the developments of solid phase microextraction (SPME) fibers using sol-gel method. To achieve more selective determination of different compound classes, the variety of different coating material for SPME fibers has increased. Further developments in SPME as a highly efficient extraction technique, will greatly depend on new breakthroughs in the area of new coating material developments for the SPME fibers. In sol-gel approach, appropriate sol-gel precursors and other building blocks can be selected to create a stationary phase with desired structural and surface properties. This approach is efficient in integrating the advantageous properties of organic and inorganic material systems and thereby increasing and improving the extraction selectivity of the produced amalgam organic-inorganic stationary phases. This review is mainly focused on recent advanced developments in the design, synthesis, characterisation, properties and application of sol-gel in preparation of coatings for the SPME fibers.
Sobhi, Hamid Reza; Yamini, Yadollah; Esrafili, Ali; Abadi, Reza Haji Hosseini Baghdad
2008-07-04
A simple, rapid and efficient microextraction method for the extraction and determination of some fat-soluble vitamins (A, D2, D3) in aqueous samples was developed. For the first time orthogonal array designs (OADs) were employed to screen the liquid-phase microextraction (LPME) method in which few microliters of 1-undecanol were delivered to the surface of the aqueous sample and it was agitated for a selected time. Then sample vial was cooled by inserting it into an ice bath for 5 min. The solidified solvent was transferred into a suitable vial and immediately melted. Then, the extract was directly injected into a high-performance liquid chromatography (HPLC) for analysis. Several factors affecting the microextraction efficiency such as sample solution temperature, stirring speed, volume of the organic solvent, ionic strength and extraction time were investigated and screened using an OA16 (4(5)) matrix. Under the best conditions (temperature, 55 degrees C; stirring speed, 1000 rpm; the volume of extracting solvent, 15.0 microL; no salt addition and extraction time, 60 min), detection limits of the method were in the range of 1.0-3.5 microgL(-1). The relative standard deviations (RSDs) to determine the vitamins at microg L(-1) levels by applying the proposed method varied in the range of 5.1-10.7%. Dynamic linear ranges of 5-500 mugL(-1) with good correlation coefficients (0.9984
Hu, Shuang; Yang, Xiao; Xue, Jiao; Chen, Xuan; Bai, Xiao-Hong; Yu, Zhi-Hui
2017-07-01
A novel graphene/dodecanol floating solidification microextraction followed by HPLC with diode-array detection has been developed to extract trace levels of four cinnamic acid derivatives in traditional Chinese medicines. Several parameters affecting the performance were investigated and optimized. Also, possible microextraction mechanism was analyzed and discussed. Under the optimum conditions (amount of graphene in dodecanol: 0.25 mg/mL; volume of extraction phase: 70 μL; pH of sample phase: 3; extraction time: 30 min; stirring rate: 1000 rpm; salt amount: 26.5% NaCl; volume of sample phase: 10 mL, and without dispersant addition), the enrichment factors of four cinnamic acid derivatives ranged from 26 to 112, the linear ranges were 1.0 × 10 -2 -10.0 μg/mL for caffeic acid, 1.3 × 10 -3 -1.9 μg/mL for p-hydroxycinnamic acid, 2.8 × 10 -3 -4.1 μg/mL for ferulic acid, and 2.7 × 10 -3 -4.1 μg/mL for cinnamic acid, with r 2 ≥ 0.9993. The detection limits were found to be in the range of 0.1-1.0 ng/mL, and satisfactory recoveries (92.5-111.2%) and precisions (RSDs 1.1-9.5%) were also achieved. The results showed that the approach is simple, effective and sensitive for the preconcentration and determination of trace levels of cinnamic acid derivatives in Chinese medicines. The proposed method was compared with conventional dodecanol floating solidification microextraction and other extraction methods. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Asadi, Mohammad; Haji Shabani, Ali Mohammad; Dadfarnia, Shayessteh
2016-06-01
A novel, simple, and rapid vortex-assisted hollow-fiber liquid-phase microextraction method was developed for the simultaneous extraction of albendazole and triclabendazole from various matrices before their determination by high-performance liquid chromatography with fluorescence detection. Several factors influencing the microextraction efficiency including sample pH, nature and volume of extraction solvent, ionic strength, vortex time, and sample volume were investigated and optimized. Under the optimal conditions, the limits of detection were 0.08 and 0.12 μg/L for albendazole and triclabendazole, respectively. The calibration curves were linear in the concentration ranges of 0.3-50.0 and 0.4-50.0 μg/L with the coefficients of determination of 0.9999 and 0.9995 for albendazole and triclabendazole, respectively. The interday and intraday relative standard deviations for albendazole and triclabendazole at three concentration levels (1.0, 10.0, and 30.0 μg/L) were in the range of 6.0-11.0 and 5.0-7.9%, respectively. The developed method was successfully applied to determine albendazole and triclabendazole in water, milk, honey, and urine samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Farajzadeh, Mir Ali; Bamorowat, Mahdi; Mogaddam, Mohammad Reza Afshar
2016-11-01
An efficient, reliable, sensitive, rapid, and green analytical method for the extraction and determination of neonicotinoid insecticides in aqueous samples has been developed using ionic liquid phase microextraction coupled with high performance liquid chromatography-diode array detector. In this method, a few microliters of 1-hexyl-3-methylimidazolium hexafluorophosphate (as an extractant) is added onto a ringer tablet and it is transferred into a conical test tube containing aqueous phase of the analytes. By manually shaking, the ringer tablet is dissolved and the extractant is released into the aqueous phase as very tiny droplets to provide a cloudy solution. After centrifuging the extracted analytes into ionic liquid are collected at the bottom of a conical test tube. Under the optimum extraction conditions, the method showed low limits of detection and quantification between 0.12 and 0.33 and 0.41 and 1.11ngmL(-1), respectively. Extraction recoveries and enrichment factors were from 66% to 84% and 655% to 843%, respectively. Finally different aqueous samples were successfully analyzed using the proposed method. Copyright © 2016 Elsevier B.V. All rights reserved.
Espina-Benitez, Maria; Araujo, Lilia; Prieto, Avismelsi; Navalón, Alberto; Vílchez, José Luis; Valera, Paola; Zambrano, Ana; Dugas, Vincent
2017-07-07
A new analytical method coupling a (off-line) solid-phase microextraction with an on-line capillary electrophoresis (CE) sample enrichment technique was developed for the analysis of ketoprofen, naproxen and clofibric acid from water samples, which are known as contaminants of emerging concern in aquatic environments. New solid-phase microextraction fibers based on physical coupling of chromatographic supports onto epoxy glue coated needle were studied for the off-line preconcentration of these micropollutants. Identification and quantification of such acidic drugs were done by capillary zone electrophoresis (CZE) using ultraviolet diode array detection (DAD). Further enhancement of concentration sensitivity detection was achieved by on-line CE "acetonitrile stacking" preconcentration technique. Among the eight chromatographic supports investigated, Porapak Q sorbent showed higher extraction and preconcentration capacities. The screening of parameters that influence the microextraction process was carried out using a two-level fractional factorial. Optimization of the most relevant parameters was then done through a surface response three-factor Box-Behnken design. The limits of detection and limits of quantification for the three drugs ranged between 0.96 and 1.27 µg∙L -1 and 2.91 and 3.86 µg∙L -1 , respectively. Recovery yields of approximately 95 to 104% were measured. The developed method is simple, precise, accurate, and allows quantification of residues of these micropollutants in Genil River water samples using inexpensive fibers.
Araujo, Lilia; Prieto, Avismelsi; Navalón, Alberto; Vílchez, José Luis; Valera, Paola; Zambrano, Ana; Dugas, Vincent
2017-01-01
A new analytical method coupling a (off-line) solid-phase microextraction with an on-line capillary electrophoresis (CE) sample enrichment technique was developed for the analysis of ketoprofen, naproxen and clofibric acid from water samples, which are known as contaminants of emerging concern in aquatic environments. New solid-phase microextraction fibers based on physical coupling of chromatographic supports onto epoxy glue coated needle were studied for the off-line preconcentration of these micropollutants. Identification and quantification of such acidic drugs were done by capillary zone electrophoresis (CZE) using ultraviolet diode array detection (DAD). Further enhancement of concentration sensitivity detection was achieved by on-line CE “acetonitrile stacking” preconcentration technique. Among the eight chromatographic supports investigated, Porapak Q sorbent showed higher extraction and preconcentration capacities. The screening of parameters that influence the microextraction process was carried out using a two-level fractional factorial. Optimization of the most relevant parameters was then done through a surface response three-factor Box-Behnken design. The limits of detection and limits of quantification for the three drugs ranged between 0.96 and 1.27 µg∙L−1 and 2.91 and 3.86 µg∙L−1, respectively. Recovery yields of approximately 95 to 104% were measured. The developed method is simple, precise, accurate, and allows quantification of residues of these micropollutants in Genil River water samples using inexpensive fibers. PMID:28686186
Manso, J; García-Barrera, T; Gómez-Ariza, J L; González, A G
2014-02-01
The present paper describes a method based on the extraction of analytes by multiple hollow fibre liquid-phase microextraction and detection by ion-trap mass spectrometry and electron capture detectors after gas chromatographic separation. The limits of detection are in the range of 0.13-0.67 μg kg(-1), five orders of magnitude lower than those reached with the European Commission Official method of analysis, with three orders of magnitude of linear range (from the quantification limits to 400 μg kg(-1) for all the analytes) and recoveries in fortified olive oils in the range of 78-104 %. The main advantages of the analytical method are the absence of sample carryover (due to the disposable nature of the membranes), high enrichment factors in the range of 79-488, high throughput and low cost. The repeatability of the analytical method ranged from 8 to 15 % for all the analytes, showing a good performance.
Shariati, Shahab; Yamini, Yadollah; Esrafili, Ali
2009-02-01
In the present study, a simple and efficient preconcentration method was developed using carrier mediated three phase liquid phase microextraction prior to HPLC-UV for simultaneous extraction and determination of trace amounts of highly hydrophilic tetracycline antibiotics including tetracycline (TCN), oxytetracycline (OTCN) and doxycycline (DCN) in bovine milk, human plasma and water samples. For extraction, 11.0 mL of the aqueous sample containing TCNs and 0.05 M Na(2)HPO(4) (9.1
Wang, Zhibing; He, Mengyu; Jiang, Chunzhu; Zhang, Fengqing; Du, Shanshan; Feng, Wennan; Zhang, Hanqi
2015-12-01
Matrix solid-phase dispersion coupled with homogeneous ionic liquid microextraction was developed and applied to the extraction of some sulfonamides, including sulfamerazine, sulfamethazine, sulfathiazole, sulfachloropyridazine, sulfadoxine, sulfisoxazole, and sulfaphenazole, in animal tissues. High-performance liquid chromatography was applied to the separation and determination of the target analytes. The solid sample was directly treated by matrix solid-phase dispersion and the eluate obtained was treated by homogeneous ionic liquid microextraction. The ionic liquid was used as the extraction solvent in this method, which may result in the improvement of the recoveries of the target analytes. To avoid using organic solvent and reduce environmental pollution, water was used as the elution solvent of matrix solid-phase dispersion. The effects of the experimental parameters on recoveries, including the type and volume of ionic liquid, type of dispersant, ratio of sample to dispersant, pH value of elution solvent, volume of elution solvent, amount of salt in eluate, amount of ion-pairing agent (NH4 PF6 ), and centrifuging time, were evaluated. When the present method was applied to the analysis of animal tissues, the recoveries of the analytes ranged from 85.4 to 118.0%, and the relative standard deviations were lower than 9.30%. The detection limits for the analytes were 4.3-13.4 μg/kg. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fang, R; Zhang, W; Wang, J; Zhang, K; Nai, Z
1999-09-01
The parameters governing solid-phase microextraction have been investigated, and the development of carbonaceous adsorbent for SPME is presented because it is durable and inexpensive. The time profile curves were determined for several organic pesticides having a wide range of water solubilities and the effect of salt was also investigated. The method of SPME-GC-ECD to analyse trace level of the organic pesticide in water is established by the determination of optimum parameters. The comparison with commercial SPME device shows that the carbonaceous adsorbent having been treated with physical or chemical method for SPME can get lower limits of detection than polyacrylate and polydimethylsiloxane, although there are still some work to be done to improve its precision. The results shows that this new SPME device has great application potential.
NASA Astrophysics Data System (ADS)
Schmutzer, G.; Avram, V.; Feher, I.; David, L.; Moldovan, Z.
2012-02-01
The volatile composition of alcoholic beverage was studied by headspace solid-phase microextraction (HSSPME) method and gas chromatography - mass spectrometry (GC-MS). Some volatile compounds, such as alcohols, esters, terpenes and other are mainly responsible for the flavor of fortified wines and their amounts specify the quality of the alcoholic beverages. From this perspective it is interesting to develop a rapid, selective and sensitive analytical method suitable for simultaneous quantification of the main molecules being responsible for the organoleptic characteristic of alcoholic beverages. Vermouth fortified drink was analyzed in order to characterize the volatile profile. Using the HS-SPME/GC-MS a number of twenty-six volatile compounds from a commercial market alcoholic beverage were identified. The most abundant compounds were m-thymol, o-thymol and eugenol, alongside of the ethyl ester compounds.
Pastorelli, S; Valzacchi, S; Rodriguez, A; Simoneau, C
2006-11-01
Fatty foods are susceptible to lipid oxidation resulting in deterioration of product quality due to the generation of off-flavours. Hexanal is a good indicator of rancidity. Therefore, a method based on solid-phase microextraction (SPME) coupled to gas chromatograph with flame ionization detection was developed to determine hexanal formation in hazelnuts during storage. Optimum conditions were as follows: carboxen-polydimethylsiloxane 75 microm fibre, extraction time 10 min, equilibrium time 10 min and equilibrium temperature 60 degrees C. The effect of oxygen scavengers on the oxidation process was also evaluated by measuring hexanal formation in hazelnuts stored with/without oxygen absorber sachets. Oxygen scavengers were shown to reduce oxidation; however, analysis of the sachet revealed that other volatile compounds from the headspace were also absorbed.
Wang, ShuLing; Xu, Hui
2016-12-01
An inorganic-organic hybrid nanocomposite (zinc oxide/polypyrrole) that represents a novel kind of coating for in-tube solid-phase microextraction is reported. The composite coating was prepared by a facile electrochemical polymerization strategy on the inner surface of a stainless-steel tube. Based on the coated tube, a novel online in-tube solid-phase microextraction with liquid chromatography and mass spectrometry method was developed and applied for the extraction of three monohydroxy polycyclic aromatic hydrocarbons in human urine. The coating displayed good extraction ability toward monohydroxy polycyclic aromatic hydrocarbons. In addition, long lifespan, excellent stability, and good compression resistance were also obtained for the coating. The experimental conditions affecting the extraction were optimized systematically. Under the optimal conditions, the limits of detection and quantification were in the range of 0.039-0.050 and 0.130-0.167 ng/mL, respectively. Good linearity (0.2-100 ng/mL) was obtained with correlation coefficients larger than 0.9967. The repeatability, expressed as relative standard deviation, ranged between 2.5% and 9.4%. The method offered the advantage of process simplicity, rapidity, automation, and sensitivity in the analysis of human urinary monohydroxy polycyclic aromatic hydrocarbons in two different cities of Hubei province. An acceptable recovery of monohydroxy polycyclic aromatic hydrocarbons (64-122%) represented the additional attractive features of the method in real urine analysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jitaru, Petru; Adams, Freddy C
2004-11-05
This paper reports the development of an analytical approach for speciation analysis of mercury at ultra-trace levels on the basis of solid-phase microextraction and multicapillary gas chromatography hyphenated to inductively coupled plasma-time-of-flight mass spectrometry. Headspace solid-phase microextraction with a carboxen/polydimethylsyloxane fiber is used for extraction/preconcentration of mercury species after derivatization with sodium tetraethylborate and subsequent volatilization. Isothermal separation of methylmercury (MeHg), inorganic mercury (Hg2+) and propylmercury (PrHg) used as internal standard is achieved within a chromatographic run below 45 s without the introduction of spectral skew. Method detection limits (3 x standard deviation criteria) calculated for 10 successive injections of the analytical reagent blank are 0.027 pg g(-1) (as metal) for MeHg and 0.27 pg g(-1) for Hg2+. The repeatability (R.S.D., %) is 3.3% for MeHg and 3.8% for Hg2+ for 10 successive injections of a standard mixture of 10pg. The method accuracy for MeHg and total mercury is validated through the analysis of marine and estuarine sediment reference materials. A comparison of the sediment data with those obtained by a purge-and-trap injection (PTI) method is also addressed. The analytical procedure is illustrated with some results for the ultra-trace level analysis of ice from Antarctica for which the accuracy is assessed by spike recovery experiments.
Ma, Shuping; Yuan, Xucan; Zhao, Pengfei; Sun, Hong; Ye, Xiu; Liang, Ning; Zhao, Longshan
2017-08-01
A novel and reliable method for determination of five triazole fungicide residues (triadimenol, tebuconazole, diniconazole, flutriafol, and hexaconazol) in traditional Chinese medicine samples was developed using dispersive solid-phase extraction combined with ultrasound-assisted dispersive liquid-liquid microextraction before ultra-high performance liquid chromatography with tandem mass spectrometry. The clean up of the extract was conducted using dispersive solid-phase extraction by directly adding sorbents into the extraction solution, followed by shaking and centrifugation. After that, a mixture of 400 μL trichloromethane (extraction solvent) and 0.5 mL of the above supernatant was injected rapidly into water for the dispersive liquid-liquid microextraction procedure. The factors affecting the extraction efficiency were optimized. Under the optimum conditions, the calibration curves showed good linearity in the range of 2.0-400 (tebuconazole, diniconazole, and hexaconazole) and 4.0-800 ng/g (triadimenol and flutriafol) with the regression coefficients higher than 0.9958. The limit of detection and limit of quantification for the present method were 0.5-1.1 and 1.8-4.0 ng/g, respectively. The recoveries of the target analytes ranged from 80.2 to 103.2%. The proposed method has been successfully applied to the analysis of five triazole fungicides in traditional Chinese medicine samples, and satisfactory results were obtained. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Vatani, Hossein; Yazdi, Ali Sarafraz
2014-01-01
A headspace solid-phase microextraction method was developed for the preconcentration and extraction of methyl tert-butyl ether. An ionic-liquid-mediated multiwalled carbon nanotube-poly(dimethylsiloxane) hybrid coating, which was prepared by covalent functionalization of multiwalled carbon nanotubes with hydroxyl-terminated poly(dimethylsiloxane) using the sol-gel technique, was used as solid-phase microextraction adsorbent. This innovative fiber exhibited a highly porous surface structure, high thermal stability (at least 320°C) and long lifespan (over 210 uses). Potential factors affecting the extraction efficiency were optimized. Under the optimum conditions, the method LOD (S/N = 3) was 0.007 ng/mL and the LOQ (S/N = 10) was 0.03 ng/mL. The calibration curve was linear in the range of 0.03-200 ng/mL. The RSDs for one fiber (repeatability, n = 5) at three different concentrations (0.05, 1, and 150 ng/mL) were 5.1, 4.2, and 4.6% and for the fibers obtained from different batches (reproducibility, n = 3) were 6.5, 5.9, and 6.3%, respectively. The developed method was successfully applied to the determination of methyl tert-butyl ether in different real water samples on three consecutive days. The relative recoveries for the spiked samples with 0.05, 1, and 150 ng/mL were between 94-104%. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jiménez-Díaz, I; Vela-Soria, F; Rodríguez-Gómez, R; Zafra-Gómez, A; Ballesteros, O; Navalón, A
2015-09-10
In the present work, a review of the analytical methods developed in the last 15 years for the determination of endocrine disrupting chemicals (EDCs) in human samples related with children, including placenta, cord blood, amniotic fluid, maternal blood, maternal urine and breast milk, is proposed. Children are highly vulnerable to toxic chemicals in the environment. Among these environmental contaminants to which children are at risk of exposure are EDCs -substances able to alter the normal hormone function of wildlife and humans-. The work focuses mainly on sample preparation and instrumental techniques used for the detection and quantification of the analytes. The sample preparation techniques include, not only liquid-liquid extraction (LLE) and solid-phase extraction (SPE), but also modern microextraction techniques such as extraction with molecular imprinted polymers (MIPs), stir-bar sorptive extraction (SBSE), hollow-fiber liquid-phase microextraction (HF-LPME), dispersive liquid-liquid microextraction (DLLME), matrix solid phase dispersion (MSPD) or ultrasound-assisted extraction (UAE), which are becoming alternatives in the analysis of human samples. Most studies focus on minimizing the number of steps and using the lowest solvent amounts in the sample treatment. The usual instrumental techniques employed include liquid chromatography (LC), gas chromatography (GC) mainly coupled to tandem mass spectrometry. Multiresidue methods are being developed for the determination of several families of EDCs with one extraction step and limited sample preparation. Copyright © 2015 Elsevier B.V. All rights reserved.
Jonker, Michiel T O
2016-06-01
Octanol-water partition coefficients (KOW ) are widely used in fate and effects modeling of chemicals. Still, high-quality experimental KOW data are scarce, in particular for very hydrophobic chemicals. This hampers reliable assessments of several fate and effect parameters and the development and validation of new models. One reason for the limited availability of experimental values may relate to the challenging nature of KOW measurements. In the present study, KOW values for 13 polycyclic aromatic hydrocarbons were determined with the gold standard "slow-stirring" method (log KOW 4.6-7.2). These values were then used as reference data for the development of an alternative method for measuring KOW . This approach combined slow stirring and equilibrium sampling of the extremely low aqueous concentrations with polydimethylsiloxane-coated solid-phase microextraction fibers, applying experimentally determined fiber-water partition coefficients. It resulted in KOW values matching the slow-stirring data very well. Therefore, the method was subsequently applied to a series of 17 moderately to extremely hydrophobic petrochemical compounds. The obtained KOW values spanned almost 6 orders of magnitude, with the highest value measuring 10(10.6) . The present study demonstrates that the hydrophobicity domain within which experimental KOW measurements are possible can be extended with the help of solid-phase microextraction and that experimentally determined KOW values can exceed the proposed upper limit of 10(9) . Environ Toxicol Chem 2016;35:1371-1377. © 2015 SETAC. © 2015 SETAC.
Solid phase microextraction (SPME) has revolutionized the way samples are extracted, enabling rapid, automated, and solventless extraction of many different sample types, including air, water, soil, and biological samples. As such, SPME is widely used for environmental, food, fo...
Davarani, Saied Saeed Hosseiny; Nojavan, Saeed; Asadi, Roghayeh; Banitaba, Mohammad Hossein
2013-07-01
In this study, a platinum wire coated with poly(3,4-ethylenedioxythiophen) was used as an electro-assisted solid-phase microextraction fiber for the quantification of tricyclic antidepressant drugs in biological samples by coupling to GC employing a flame ionization detector. In this study, an electric field increased the extraction rate and recovery. The fiber used as a solid phase was synthesized by the electropolymerization of 3,4-ethylenedioxythiophen monomers onto a platinum wire. The ability of this fiber to extract imipramine, desipramine, and clomipramine by using the electro-assisted solid-phase microextraction technique was evaluated. The effect of various parameters that influence the extraction efficiency, which include solution temperature, extraction time, stirring rate, ionic strength, time and temperature of desorption, and thickness of the fiber, was optimized. Under optimized conditions, the linear ranges and regression coefficients of calibration curves were in the range of 0.5-250 and 0.990-0.998 ng/mL, respectively. Detection limits were in the range of 0.15-0.45 ng/mL. Finally, this method was applied to the determination of drugs in urine and wastewater samples and recoveries were 4.8-108.9%. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tankiewicz, Maciej; Fenik, Jolanta; Biziuk, Marek
2011-10-30
The intensification of agriculture means that increasing amounts of toxic organic and inorganic compounds are entering the environment. The pesticides generally applied nowadays are regarded as some of the most dangerous contaminants of the environment. Their presence in the environment, especially in water, is hazardous because they cause human beings to become more susceptible to disease. For these reasons, it is essential to monitor pesticide residues in the environment with the aid of all accessible analytical methods. The analysis of samples for the presence of pesticides is problematic, because of the laborious and time-consuming operations involved in preparing samples for analysis, which themselves may be a source of additional contaminations and errors. To date, it has been standard practice to use large quantities of organic solvents in the sample preparation process; but as these solvents are themselves hazardous, solventless and solvent-minimized techniques are coming into use. This paper discusses the most commonly used over the last 15 years sample preparation techniques for monitoring organophosphorus and organonitrogen pesticides residue in water samples. Furthermore, a significant trend in sample preparation, in accordance with the principles of 'Green Chemistry' is the simplification, miniaturization and automation of analytical techniques. In view of this aspect, several novel techniques are being developed in order to reduce the analysis step, increase the sample throughput and to improve the quality and the sensitivity of analytical methods. The paper describes extraction techniques requiring the use of solvents - liquid-liquid extraction (LLE) and its modifications, membrane extraction techniques, hollow fibre-protected two-phase solvent microextraction, liquid phase microextraction based on the solidification of a floating organic drop (LPME-SFO), solid-phase extraction (SPE) and single-drop microextraction (SDME) - as well as solvent-free techniques - solid phase microextraction (SPME) and stir bar sorptive extraction (SBSE). The advantages and drawbacks of these techniques are also discussed, and some solutions to their limitations are proposed. Copyright © 2011 Elsevier B.V. All rights reserved.
Farajmand, Bahman; Esteki, Mahnaz; Koohpour, Elham; Salmani, Vahid
2017-04-01
The reversed-phase mode of single drop microextraction has been used as a preparation method for the extraction of some phenolic antioxidants from edible oil samples. Butylated hydroxyl anisole, tert-butylhydroquinone and butylated hydroxytoluene were employed as target compounds for this study. High-performance liquid chromatography followed by fluorescence detection was applied for final determination of target compounds. The most interesting feature of this study is the application of a disposable insulin syringe with some modification for microextraction procedure that efficiently improved the volume and stability of the solvent microdrop. Different parameters such as the type and volume of solvent, sample stirring rate, extraction temperature, and time were investigated and optimized. Analytical performances of the method were evaluated under optimized conditions. Under the optimal conditions, relative standard deviations were between 4.4 and 10.2%. Linear dynamic ranges were 20-10 000 to 2-1000 μg/g (depending on the analytes). Detection limits were 5-670 ng/g. Finally, the proposed method was successfully used for quantification of the antioxidants in some edible oil samples prepared from market. Relative recoveries were achieved from 88 to 111%. The proposed method had a simplicity of operation, low cost, and successful application for real samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Habibi-Khorasani, Monireh; Mohammadpour, Amir Hooshang; Mohajeri, Seyed Ahmad
2017-02-01
In this work, performance of a molecularly imprinted polymer (MIP) as a selective solid-phase microextraction sorbent for the extraction and enrichment of tramadol in aqueous solution and rabbit brain tissue, is described. Binding properties of MIPs were studied in comparison with their nonimprinted polymer (NIP). Ten milligrams of the optimized MIP was then evaluated as a sorbent, for preconcentration, in molecularly imprinted solid-phase microextraction (MISPME) of tramadol from aqueous solution and rabbit brain tissue. The analytical method was calibrated in the range of 0.004 ppm (4 ng mL -1 ) and 10 ppm (10 μg mL -1 ) in aqueous media and in the ranges of 0.01 and 10 ppm in rabbit brain tissue, respectively. The results indicated significantly higher binding affinity of MIPs to tramadol, in comparison with NIP. The MISPME procedure was developed and optimized with a recovery of 81.12-107.54% in aqueous solution and 76.16-91.20% in rabbit brain tissue. The inter- and intra-day variation values were <8.24 and 5.06%, respectively. Finally the calibrated method was applied for determination of tramadol in real rabbit brain tissue samples after administration of a lethal dose. Our data demonstrated the potential of MISPME for rapid, sensitive and cost-effective sample analysis. Copyright © 2016 John Wiley & Sons, Ltd.
Yazdi, Mahnaz Nozohour; Yamini, Yadollah; Asiabi, Hamid
2018-06-15
The purpose of this study was to evaluate the application of hollow fiber solid-phase microextraction (HF-SPME) followed by HPLC-UV to determine the ultra-trace amounts of polycyclic aromatic hydrocarbons (PAHs) as model analytes in complex coffee and tea samples. HF-SPME can be effectively used as an alternative to the direct immersion SPME (DI-SPME) method in complex matrices. The DI-SPME method suffers from serious limitation in dirty and complicated matrices with low sample clean-up, while the HF-SPME method has high clean-up and selectivity due to the high porosity of hollow fiber that can pick out analyte from complicated matrices. As a hollow fiber sorbent, a novel multiwall carbon nanotube/zirconium oxide nanocomposite (MWCNT/ZrO 2 ) was fabricated. The excellent adsorption of PAHs on the sorbent was attributed to the dominant roles of π-π stacking interaction and hydrophobic interaction. Under the optimized extraction conditions, the wide linear range of 0.1-200 μg L -1 with coefficients of determination better than 0.998 and low detection limits of 0.033-0.16 μg L -1 with satisfactory precision (RSD < 6.6%) were obtained. The relative recoveries obtained by spiking the PAHs in water, coffee and tea samples were in the range of 92.0-106.0%. Compared to other methods, MWCNT/ZrO 2 hollow fiber solid phase microextraction demonstrated a good capability for determination of PAHs in complex coffee and tea samples. Copyright © 2018 Elsevier B.V. All rights reserved.
Nojavan, Saeed; Moharami, Arezoo; Fakhari, Ali Reza
2012-08-01
In this work, two-step hollow fiber-based liquid-phase microextraction procedure was evaluated for extraction of the zwitterionic cetirizine (CTZ) and basic hydroxyzine (HZ) in human plasma. In the first step of extraction, the pH of sample was adjusted at 5.0 in order to promote liquid-phase microextraction of the zwitterionic CTZ. In the second step, the pH of sample was increased up to 11.0 for extraction of basic HZ. In this procedure, the extraction times for the first and the second steps were 30 and 20 min, respectively. Owing to the high ratio between the volumes of donor phase and acceptor phase, CTZ and HZ were enriched by factors of 280 and 355, respectively. The linearity of the analytical method was investigated for both compounds in the range of 10-500 ng mL(-1) (R(2) > 0.999). Limit of quantification (S/N = 10) for CTZ and HZ was 10 ng mL(-1) , while the limit of detection was 3 ng mL(-1) for both compounds at a signal to noise ratio of 3:1. Intraday and interday relative standard deviations (RSDs, n = 6) were in the range of 6.5-16.2%. This procedure enabled CTZ and HZ to be analyzed simultaneously by capillary electrophoresis. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shu, Bin; Yang, Zhaoguang; Lee, Hsiaowan; Qiu, Bo; Li, Haipu
2016-02-01
An ultrasound-assisted emulsification microextraction based on the solidification of a floating organic droplet followed by gas chromatography with electron capture detection was developed for the simultaneous determination of 13 organochlorine pesticides in water samples. In the proposed method, ultrasound was applied to achieve the emulsification without addition of any dispersive solvent. In consequence, the volume of extraction phase remained unaffected by the ion strength of aqueous phase and high extraction recoveries were obtained. It was also found that dilution of the floating phase with acetone was necessary for preventing peak splitting in chromatogram. Under optimal conditions, the proposed method provided good sensitivity (the detection limits of organochlorine pesticides ranged from 1.3 to 3.9 ng/L) and good repeatability of extraction (below 6.5%, n = 5). The recoveries in reservoir and river water samples were between 75.8% and 96.9%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
[Developments in preparation and experimental method of solid phase microextraction fibers].
Yi, Xu; Fu, Yujie
2004-09-01
Solid phase microextraction (SPME) is a simple and effective adsorption and desorption technique, which concentrates volatile or nonvolatile compounds from liquid samples or headspace of samples. SPME is compatible with analyte separation and detection by gas chromatography, high performance liquid chromatography, and other instrumental methods. It can provide many advantages, such as wide linear scale, low solvent and sample consumption, short analytical times, low detection limits, simple apparatus, and so on. The theory of SPME is introduced, which includes equilibrium theory and non-equilibrium theory. The novel development of fiber preparation methods and relative experimental techniques are discussed. In addition to commercial fiber preparation, different newly developed fabrication techniques, such as sol-gel, electronic deposition, carbon-base adsorption, high-temperature epoxy immobilization, are presented. Effects of extraction modes, selection of fiber coating, optimization of operating conditions, method sensitivity and precision, and systematical automation, are taken into considerations in the analytical process of SPME. A simple perspective of SPME is proposed at last.
Xing, Rongrong; Hu, Shuang; Chen, Xuan; Bai, Xiaohong
2014-09-01
A novel graphene-sensitized microporous membrane/solvent microextraction method named microporous membrane/graphene/solvent synergistic microextraction, coupled with high-performance liquid chromatography and UV detection, was developed and introduced for the extraction and determination of three cinnamic acid derivatives in Rhizoma Typhonii. Several factors affecting performance were investigated and optimized, including the types of graphene and extraction solvent, concentration of graphene dispersed in octanol, sample phase pH, ionic strength, stirring rate, extraction time, extraction temperature, and sample volume. Under optimized conditions, the enrichment factors of cinnamic acid derivatives ranged from 75 to 269. Good linearities were obtained from 0.01 to 10 μg/mL for all analytes with regression coefficients between 0.9927 and 0.9994. The limits of quantification were <1 ng/mL, and satisfactory recoveries (99-104%) and precision (1.1-10.8%) were also achieved. The synergistic microextraction mechanism based on graphene sensitization was analyzed and described. The experimental results showed that the method was simple, sensitive, practical, and effective for the preconcentration and determination of cinnamic acid derivatives in Rhizoma Typhonii. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bağda, Esra; Tüzen, Mustafa
2017-10-01
In the present study, a novel and eco-friendly vortex-assisted ionic liquid-based microextraction method was developed for the determination of selenium in food. The microextraction method is based on the liberation of iodine in the presence of selenium; the liberated iodine reacts with I - to form I 3 - . Anionic I 3 - reacts with cationic crystal violet dye, and the product is extracted into 1-hexyl-3-methylimidazolium hexafluorophosphate phase in the presence of Triton X-114. The proposed method is linear in the range of 2.0-70µgL -1 and has a detection limit of 9.8×10 -2 µgL -1 . Relative standard deviations were 3.67% and 2.89% for the five replicate measurements of 14 and 35µgL -1 Se(IV), respectively. The proposed method was successfully applied to different food samples (NIST SRM 2976 mussel tissue, pepper, ginger, wheat flour, red lentil, traditional soup, cornflour, cornstarch, and garlic) after microwave digestion. Copyright © 2017 Elsevier Ltd. All rights reserved.
Xia, Zhining; Gan, Tingting; Chen, Hua; Lv, Rui; Wei, Weili; Yang, Fengqing
2010-10-01
A sample pre-concentration method based on the in-line coupling of in-tube solid-phase microextraction and electrophoretic sweeping was developed for the analysis of hydrophobic compounds. The sample pre-concentration and electrophoretic separation processes were simply and sequentially carried out with a (35%-phenyl)-methylpolysiloxane-coated capillary. The developed method was validated and applied to enrich and separate several pharmaceuticals including loratadine, indomethacin, ibuprofen and doxazosin. Several parameters of microextration were investigated such as temperature, pH and eluant. And the concentration of microemulsion that influences separation efficiency and microextraction efficiency were also studied. Central composite design was applied for the optimization of sampling flow rate and sampling time that interact in a very complex way with each other. The precision, sensitivity and recovery of the method were investigated. Under the optimal conditions, the maximum enrichment factors for loratadine, indomethacin, ibuprofen and doxazosin in aqueous solutions are 1355, 571, 523 and 318, respectively. In addition, the developed method was applied to determine loratadine in rabbit blood sample.
Determination of Plant Volatiles Using Solid Phase Microextraction GC-MS
ERIC Educational Resources Information Center
Van Bramer, Scott; Goodrich, Katherine R.
2015-01-01
This experiment combines analytical techniques of solid phase microextraction and gas chromatography-mass spectrometry with easily relatable and accessible plant volatile chemistry (floral and vegetative scents of local/available plants). The biosynthesis and structure of these chemicals are of interest in the areas of organic chemistry,…
Musteata, Florin Marcel; Sandoval, Manuel; Ruiz-Macedo, Juan C; Harrison, Kathleen; McKenna, Dennis; Millington, William
2016-08-24
Although solid phase microextraction (SPME) has been used extensively for fingerprinting volatile compounds emitted by plants, there are very few such reports for direct insertion SPME. In this research, direct contact of SPME probes with the interstitial fluid of plants was investigated as a method for phytochemical analysis. Medicinal plants from the Amazon have been the source of numerous drugs used in western medicine. However, a large number of species used in traditional medicine have not been characterized chemically, partly due to the difficulty of field work. In this project, the phytochemical composition of plants from several genera was fingerprinted by combining convenient field sampling by solid phase microextraction (SPME) with laboratory analysis by LC-MS. The new method was compared with classical sampling followed by liquid extraction (LE). SPME probes were prepared by coating stainless steel wires with a mixture of polyacrylonitrile and either RP-amide or HS-F5 silica particles. Sampling was performed by inserting the microextraction probes into various tissues of living plants in their natural environment. After in vivo extraction, the probes were sealed under vacuum and refrigerated until analyzed. The probes were desorbed in mobile phase and analyzed on a Waters Acquity UPLC with triple quadrupole mass spectrometer in positive ion mode. Twenty Amazonian plant species were sampled and unique metabolomic fingerprints were obtained. In addition, quantitative analysis was performed for previously identified compounds in three species. Comparison of the fingerprints obtained by in vivo SPME with those obtained by LE showed that 27% of the chromatographic features were unique to SPME, 57% were unique to LE, and 16% were common to both methods. In vivo SPME caused minimal damage to the plants, was much faster than traditional liquid extraction, and provided unique fingerprints for all investigated plants. SPME revealed unique chromatographic features, undetected by traditional extraction, although it produced only half as many peaks as ethanol extraction. Copyright © 2016 Elsevier B.V. All rights reserved.
Kwon, Sun-Myung; Shin, Ho-Sang
2015-08-14
A simple and convenient method to detect fluoride in biological samples was developed. This method was based on derivatization with 2-(bromomethyl)naphthalene, headspace solid phase microextraction (HS-SPME) in a vial, and gas chromatography-tandem mass spectrometric detection. The HS-SPME parameters were optimized as follows: selection of CAR/PDMS fiber, 0.5% 2-(bromomethyl)naphthalene, 250 mg/L 15-crown-5-ether as a phase transfer catalyst, extraction and derivatization temperature of 95 °C, heating time of 20 min and pH of 7.0. Under the established conditions, the lowest limits of detection were 9 and 11 μg/L in 1.0 ml of plasma and urine, respectively, and the intra- and inter-day relative standard deviation was less than 7.7% at concentrations of 0.1 and 1.0 mg/L. The calibration curve showed good linearity of plasma and urine with r=0.9990 and r=0.9992, respectively. This method is simple, amenable to automation and environmentally friendly. Copyright © 2015 Elsevier B.V. All rights reserved.
Kahe, Hadi; Chamsaz, Mahmoud
2016-11-01
A simple and reliable supramolecule-aggregated liquid solid microextraction method is described for preconcentration and determination of trace amounts of bismuth in water as well as human blood serum and hair samples. Catanionic microstructures of cetyltrimethylammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) surfactants, dissolved in deionized water/propanol, are used as a green solvent to extract bismuth (III)-diethyldithiocarbamate complexes by dispersive microextraction methodology. The extracted solid phase is easily removed and dissolved in 50 μL propanol for subsequent measurement by electrothermal atomic absorption spectrometry (ET-AAS). The procedure benefits the merits of supramolecule aggregates' properties and dispersive microextraction technique using water as the main component of disperser solvent, leading to direct interaction with analyte. Phase separation behavior of extraction solvent and different parameters influencing the extraction efficiency of bismuth ion such as salt concentration, pH, centrifugation time, amount of chelating agent, SDS:CTAB mole ratio, and solvent amounts were thoroughly optimized. Under the optimal experimental conditions, the calibration curve was linear in the range of 0.3-6 μg L -1 Bi (III) with a limit of detection (LOD) of 0.16 μg L -1 (S/N = 3). The relative standard deviations (RSD) of determination were obtained to be 5.1 and 6.2 % for 1 and 3 μg L -1 of Bi (III), respectively. The developed method was successfully applied as a sensitive and accurate technique for determination of bismuth ion in human blood serum, hair samples, and a certified reference material.
González-Toledo, E; Prat, M D; Alpendurada, M F
2001-07-20
Solid-phase microextraction (SPME) coupled to high-performance liquid chromatography (HPLC) has been applied to the analysis of priority pollutant phenolic compounds in water samples. Two types of polar fibers [50 microm Carbowax-templated resin (CW-TPR) and 60 microm polydimethylsiloxane-divinylbenzene (PDMS-DVB)] were evaluated. The effects of equilibration time and ionic strength of samples on the adsorption step were studied. The parameters affecting the desorption process, such as desorption mode, solvent composition and desorption time, were optimized. The developed method was used to determine the phenols in spiked river water samples collected in the Douro River, Portugal. Detection limits of 1-10 microg l(-1) were achieved under the optimized conditions.
Tillner, Jocelyn; Hollard, Caroline; Bach, Cristina; Rosin, Christophe; Munoz, Jean-François; Dauchy, Xavier
2013-11-08
In this study, an automated method for the simultaneous determination of polycyclic aromatic hydrocarbons (PAHs) and their chlorination by-products in drinking water was developed based on online solid-phase microextraction-gas chromatography-mass spectrometry. The main focus was the optimisation of the solid-phase microextraction step. The influence of the agitation rate, type of fibre, desorption time, extraction time, extraction temperature, desorption temperature, and solvent addition was examined. The method was developed and validated using a mixture of 17 PAHs, 11 potential chlorination by-products (chlorinated and oxidised PAHs) and 6 deuterated standards. The limit of quantification was 10 ng/L for all target compounds. The validated method was used to analyse drinking water samples from three different drinking water distribution networks and the presumably coal tar-based pipe coatings of two pipe sections. A number of PAHs were detected in all three networks although individual compositions varied. Several PAH chlorination by-products (anthraquinone, fluorenone, cyclopenta[d,e,f]phenanthrenone, 3-chlorofluoranthene, and 1-chloropyrene) were also found, their presence correlating closely with that of their respective parent compounds. Their concentrations were always below 100 ng/L. In the coatings, all PAHs targeted were detected although concentrations varied between the two coatings (76-12,635 mg/kg and 12-6295 mg/kg, respectively). A number of chlorination by-products (anthraquinone, fluorenone, cyclopenta[d,e,f]phenanthrenone, 3-chlorofluoranthene, and 1-chloropyrene) were also detected (from 40 to 985 mg/kg), suggesting that the reaction of PAHs with disinfectant agents takes place in the coatings and not in the water phase after migration. Copyright © 2013 Elsevier B.V. All rights reserved.
Wang, Jin; Liu, Laping; Shi, Ludi; Yi, Tingquan; Wen, Yuxia; Wang, Juanli; Liu, Shuhui
2017-01-01
For the analysis of edible oils, saponification is well known as a useful method for eliminating oil matrices. The conventional approach is conducted with alcoholic alkali; it consumes a large volume of organic solvents and impedes the retrieval of analytes by microextraction. In this study, a low-organic-solvent-consuming method has been developed for the analysis of benzo[a]pyrene in edible oils by high-performance liquid chromatography with fluorescence detection. Sample treatment involves aqueous alkaline saponification, assisted by a phase-transfer catalyst, and selective in situ extraction of the analyte with a supramolecular solvent. Comparison of the chromatograms of the oil extracts obtained by different microextraction methods showed that the supramolecular solvent has a better clean-up effect for the unsaponifiable matter from oil matrices. The method offered excellent linearity over a range of 0.03- 5.0 ng mL -1 (r > 0.999). Recovery rates varied from 94 to 102% (RSDs <5.0%). The detection limit and quantification limit were 0.06 and 0.19 μg kg -1 , respectively. The proposed method was applied for the analysis of 52 edible oils collected online in China; the analyte contents of 23 tested oil samples exceeded the maximum limit of 2 μg kg -1 for benzo[a]pyrene set by the Commission Regulation of the European Union. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lavine, B K; Brzozowski, D M; Ritter, J; Moores, A J; Mayfield, H T
2001-12-01
The water-soluble fraction of aviation jet fuels is examined using solid-phase extraction and solid-phase microextraction. Gas chromatographic profiles of solid-phase extracts and solid-phase microextracts of the water-soluble fraction of kerosene- and nonkerosene-based jet fuels reveal that each jet fuel possesses a unique profile. Pattern recognition analysis reveals fingerprint patterns within the data characteristic of fuel type. By using a novel genetic algorithm (GA) that emulates human pattern recognition through machine learning, it is possible to identify features characteristic of the chromatographic profile of each fuel class. The pattern recognition GA identifies a set of features that optimize the separation of the fuel classes in a plot of the two largest principal components of the data. Because principal components maximize variance, the bulk of the information encoded by the selected features is primarily about the differences between the fuel classes.
Chen, Hsiu-Liang; Chang, Shuo-Kai; Lee, Chia-Ying; Chuang, Li-Lin; Wei, Guor-Tzo
2012-09-12
In this study, we employed the room-temperature ionic liquid [bmim][PF(6)] as both ion-pair agent and an extractant in the phase-transfer liquid-phase microextraction (PTLPME) of aqueous dyes. In the PTLPME method, a dye solution was added to the extraction solution, comprising a small amount of [bmim][PF(6)] in a relatively large amount of CH(2)Cl(2), which serves as the disperser solvent to an extraction solution. Following extraction, CH(2)Cl(2) was evaporated from the extractant, resulting in the extracted dyes being concentrated in a small volume of the ionic liquid phase to increase the enrichment factor. The enrichment factors of for the dye Methylene Blue, Neutral Red, and Methyl Red were approximately 500, 550 and 400, respectively; their detection limits were 0.014, 0.43, and 0.02 μg L(-1), respectively, with relative standard deviations of 4.72%, 4.20%, and 6.10%, respectively. Copyright © 2012 Elsevier B.V. All rights reserved.
Kueseng, Pamornrat; Pawliszyn, Janusz
2013-11-22
A new thin-film, carboxylated multiwalled carbon nanotubes/polydimethylsiloxane (MWCNTs-COOH/PDMS) coating was developed for 96-blade solid-phase microextraction (SPME) system followed by high performance liquid chromatography with ultraviolet detection (HPLC-UV). The method provided good extraction efficiency (64-90%) for three spiked levels, with relative standard deviations (RSD)≤6%, and detection limits between 1 and 2 μg/L for three phenolic compounds. The MWCNTs-COOH/PDMS 96-blade SPME system presents advantages over traditional methods due to its simplicity of use, easy coating preparation, low cost and high sample throughput (2.1 min per sample). The developed coating is reusable for a minimum of 110 extractions with good extraction efficiency. The coating provided higher extraction efficiency (3-8 times greater) than pure PDMS coatings. Copyright © 2013 Elsevier B.V. All rights reserved.
Sterckx, Femke L; Saison, Daan; Delvaux, Freddy R
2010-08-31
Monophenols are widely spread compounds contributing to the flavour of many foods and beverages. They are most likely present in beer, but so far, little is known about their influence on beer flavour. To quantify these monophenols in beer, we optimised a headspace solid-phase microextraction method coupled to gas chromatography-mass spectrometry. To improve their isolation from the beer matrix and their chromatographic properties, the monophenols were acetylated using acetic anhydride and KHCO(3) as derivatising agent and base catalyst, respectively. Derivatisation conditions were optimised with attention for the pH of the reaction medium. Additionally, different parameters affecting extraction efficiency were optimised, including fibre coating, extraction time and temperature and salt addition. Afterwards, we calibrated and validated the method successfully and applied it for the analysis of monophenols in beer samples. 2010 Elsevier B.V. All rights reserved.
Roosta, Mostafa; Ghaedi, Mehrorang; Daneshfar, Ali
2014-10-15
A novel approach, ultrasound-assisted reverse micelles dispersive liquid-liquid microextraction (USA-RM-DLLME) followed by high performance liquid chromatography (HPLC) was developed for selective determination of acetoin in butter. The melted butter sample was diluted and homogenised by n-hexane and Triton X-100, respectively. Subsequently, 400μL of distilled water was added and the microextraction was accelerated by 4min sonication. After 8.5min of centrifugation, sedimented phase (surfactant-rich phase) was withdrawn by microsyringe and injected into the HPLC system for analysis. The influence of effective variables was optimised using Box-Behnken design (BBD) combined with desirability function (DF). Under optimised experimental conditions, the calibration graph was linear over the range of 0.6-200mgL(-1). The detection limit of method was 0.2mgL(-1) and coefficient of determination was 0.9992. The relative standard deviations (RSDs) were less than 5% (n=5) while the recoveries were in the range of 93.9-107.8%. Copyright © 2014. Published by Elsevier Ltd.
Sobhi, Hamid Reza; Azadikhah, Efat; Behbahani, Mohammad; Esrafili, Ali; Ghambarian, Mahnaz
2018-05-09
A fast, simple, low cost surfactant-assisted dispersive liquid-liquid microextraction method along with central composite design for the determination of low level of Cr(VI) ions in several aquatic samples has been developed. Initially, Cr(VI) ions present in the aqueous sample were readily reacted with 1,5‑diphenylcarbazide (DPC) in acidic medium through complexation. Sodium dodecyl sulfate (SDS), as an anionic surfactant, was then employed as an ion-pair agent to convert the cationic complex into the neutral one. Following on, the whole aqueous phase underwent a dispersive liquid-liquid microextraction (DLLME) leading to the transfer of the neutral complex into the fine droplet of organic extraction phase. A micro-volume spectrophotometer was used to determine Cr(VI) concentrations. Under the optimized conditions predicted by the statistical design, the limit of quantification (LOQ) obtained was reported to be 5.0 μg/L, and the calibration curve was linear over the concentration range of 5-100 μg/L. Finally, the method was successfully implemented for the determination of low levels of Cr(VI) ions in various real aquatic samples and the accuracies fell within the range of 83-102%, while the precision varied in the span of 1.7-5.2%. Copyright © 2018. Published by Elsevier B.V.
One-calibrant kinetic calibration for on-site water sampling with solid-phase microextraction.
Ouyang, Gangfeng; Cui, Shufen; Qin, Zhipei; Pawliszyn, Janusz
2009-07-15
The existing solid-phase microextraction (SPME) kinetic calibration technique, using the desorption of the preloaded standards to calibrate the extraction of the analytes, requires that the physicochemical properties of the standard should be similar to those of the analyte, which limited the application of the technique. In this study, a new method, termed the one-calibrant kinetic calibration technique, which can use the desorption of a single standard to calibrate all extracted analytes, was proposed. The theoretical considerations were validated by passive water sampling in laboratory and rapid water sampling in the field. To mimic the variety of the environment, such as temperature, turbulence, and the concentration of the analytes, the flow-through system for the generation of standard aqueous polycyclic aromatic hydrocarbons (PAHs) solution was modified. The experimental results of the passive samplings in the flow-through system illustrated that the effect of the environmental variables was successfully compensated with the kinetic calibration technique, and all extracted analytes can be calibrated through the desorption of a single calibrant. On-site water sampling with rotated SPME fibers also illustrated the feasibility of the new technique for rapid on-site sampling of hydrophobic organic pollutants in water. This technique will accelerate the application of the kinetic calibration method and also will be useful for other microextraction techniques.
Prasad, Bhim Bali; Srivastava, Amrita; Tiwari, Mahavir Prasad
2013-03-29
The present work is related to combination of molecularly imprinted solid-phase microextraction and complementary molecularly imprinted polymer-sensor. The molecularly imprinted polymer grafted on titanium dioxide modified silica fiber was used for microextraction, while the same polymer immobilized on multiwalled carbon nanotubes/titanium dioxide modified pencil graphite electrode served as a detection tool. In both cases, the surface initiated polymerization was found to be advantageous to obtain a nanometer thin imprinted film. The modified silica fiber exhibited high adsorption capacity and enantioselective diffusion of aspartic acid isomers into respective molecular cavities. This combination enabled double preconcentrations of d- and l-aspartic acid that helped sensing both isomers in real samples, without any cross-selectivity and matrix complications. Taking into account 6×10(4)-fold dilution of serum and 2×10(3)-fold dilution of cerebrospinal fluid required by the proposed method, the limit of detection for l-aspartic acid is 0.031ngmL(-1). Also, taking into account 50-fold dilution required by the proposed method, the limit of detection for d-aspartic acid is 0.031ngmL(-1) in cerebrospinal fluid. Copyright © 2013 Elsevier B.V. All rights reserved.
Giordano, Lucia; Calabrese, Roberto; Davoli, Enrico; Rotilio, Domenico
2003-10-31
A new method was developed for the determination of 2-furfural (2-F) and 5-methylfurfural (5-MF), two products of Maillard reaction in vinegar, with head-space solid-phase microextraction (HS-SPME) coupled to gas chromatography-mass spectrometry (GC-MS). A divinylbenzene (DVB)/carboxen (CAR)/polydimethylsiloxane (PDMS) fibre was used and SPME conditions were optimised, studying ionic strength effect, temperature effect and adsorption time. Both analytes were determined by calibration established on 2-furfural-d4 (2-F-d4). The method showed good linearity in the range studied (from 16 to 0.12 mg/l), with a regression coefficient r2 of 0.9999. Inter-batch precision and accuracy were found between 14.9 and 6.0% and between -11.7 and 0.2%, respectively. Detection limit was 15 microg/l. The method is simple and accurate and it has been applied to a series of balsamic and non-balsamic vinegars.
Yan, Chih-Hao; Wu, Hui-Fen
2004-01-01
A liquid-phase microextraction (LPME) method has been demonstrated for the extraction and determination of organochlorine pesticides (OCPs) in aqueous solution. The method combines a dual gauge microsyringe with a hollow fiber membrane (LPME/DGM-HF) followed by detection by gas chromatography/ion trap mass spectrometry (GC/ITMS). The advantages include speed, low solvent and sample consumption, simplicity and ease of use. The extraction time, solvent selection, salt concentration and sample stirring rate have been investigated in order to optimize extraction efficiency. The viability is evaluated by measuring the linearity and detection limit of the five OCPs in aqueous solution. Detection linearity for the OCPs has been achieved over a range of concentrations between 1 and 500 microg/L (r2 > 0.930), with a detection limit of 0.1 microg/L for each OCP. Copyright 2004 John Wiley & Sons, Ltd.
Pérez-Olivero, S. J.; Pérez-Pont, M. L.; Conde, J. E.; Pérez-Trujillo, J. P.
2014-01-01
Application of headspace solid-phase microextraction (HS-SPME) coupled with high-resolution gas chromatographic (HRGC) analysis was studied for determining lactones in wines. Six different SPME fibers were tested, and the influence of different factors such as temperature and time of desorption, ionic strength, time of extraction, content of sugar, ethanol, tannins and anthocyanins, and pH and influence of SO2 were studied. The proposed HS-SPME-GC method is an appropriate technique for the quantitative analysis of γ-butyrolactone, γ-hexalactone, trans-whiskey lactone, γ-octalactone, cis-whiskey lactone, γ-nonalactone, γ-decalactone, δ-decalactone, and γ-undecalactone in wines. Method reproducibility and repeatability ranged between 0.6 and 5.2% for all compounds. Detection limit for γ-butyrolactone was 0.17 mg/L and a few μg/L for the rest of the compounds. The optimized method has been applied to several wine samples. PMID:24782943
Fettig, Ina; Krüger, Simone; Deubel, Jan H; Werrel, Martin; Raspe, Tina; Piechotta, Christian
2014-05-01
The chemical analysis of fire debris represents a crucial part in fire investigations to determine the cause of a fire. A headspace solid-phase microextraction (HS-SPME) procedure for the detection of ignitable liquids in fire debris using a fiber coated with a mixture of three different sorbent materials (Divinylbenzene/Carboxen/Polydimethylsiloxane, DVB/CAR/PDMS) is described. Gasoline and diesel fuel were spiked upon a preburnt matrix (wood charcoal), extracted and concentrated with HS-SPME and then analyzed with gas chromatography/mass spectrometry (GC/MS). The experimental conditions--extraction temperature, incubation and exposure time--were optimized. To assess the applicability of the method, fire debris samples were prepared in the smoke density chamber (SDC) and a controlled-atmosphere cone calorimeter. The developed methods were successfully applied to burnt particleboard and carpet samples. The results demonstrate that the procedure that has been developed here is suitable for detecting these ignitable liquids in highly burnt debris. © 2013 American Academy of Forensic Sciences.
NASA Astrophysics Data System (ADS)
Zawadowicz, M. A.; Del Negro, L. A.
2010-12-01
Hazardous air pollutants (HAPs) are usually present in the atmosphere at pptv-level, requiring measurements with high sensitivity and minimal contamination. Commonly used evacuated canister methods require an overhead in space, money and time that often is prohibitive to primarily-undergraduate institutions. This study optimized an analytical method based on solid-phase microextraction (SPME) of ambient gaseous matrix, which is a cost-effective technique of selective VOC extraction, accessible to an unskilled undergraduate. Several approaches to SPME extraction and sample analysis were characterized and several extraction parameters optimized. Extraction time, temperature and laminar air flow velocity around the fiber were optimized to give highest signal and efficiency. Direct, dynamic extraction of benzene from a moving air stream produced better precision (±10%) than sampling of stagnant air collected in a polymeric bag (±24%). Using a low-polarity chromatographic column in place of a standard (5%-Phenyl)-methylpolysiloxane phase decreased the benzene detection limit from 2 ppbv to 100 pptv. The developed method is simple and fast, requiring 15-20 minutes per extraction and analysis. It will be field-validated and used as a field laboratory component of various undergraduate Chemistry and Environmental Studies courses.
Liang, Ning; Huang, Peiting; Hou, Xiaohong; Li, Zhen; Tao, Lei; Zhao, Longshan
2016-02-01
A novel method, solid-phase extraction combined with dispersive liquid-liquid microextraction (SPE-DLLME), was developed for ultra-preconcentration of 10 antibiotics in different environmental water samples prior to ultra-high performance liquid chromatography-tandem mass spectrometry detection. The optimized results were obtained as follows: after being adjusted to pH 4.0, the water sample was firstly passed through PEP-2 column at 10 mL min(-1), and then methanol was used to elute the target analytes for the following steps. Dichloromethane was selected as extraction solvent, and methanol/acetonitrile (1:1, v/v) as dispersive solvent. Under optimal conditions, the calibration curves were linear in the range of 1-1000 ng mL(-1) (sulfamethoxazole, cefuroxime axetil), 5-1000 ng mL(-1) (tinidazole), 10-1000 ng mL(-1) (chloramphenicol), 2-1000 ng mL(-1) (levofloxacin oxytetracycline, doxycycline, tetracycline, and ciprofloxacin) and 1-400 ng mL(-1) (sulfadiazine) with a good precision. The LOD and LOQ of the method were at very low levels, below 1.67 and 5.57 ng mL(-1), respectively. The relative recoveries of the target analytes were in the range from 64.16% to 99.80% with relative standard deviations between 0.7 and 8.4%. The matrix effect of this method showed a great decrease compared with solid-phase extraction and a significant value of enrichment factor (EF) compared with dispersive liquid-liquid microextraction. The developed method was successfully applied to the extraction and analysis of antibiotics in different water samples with satisfactory results.
Zeeb, Mohsen; Farahani, Hadi; Papan, Mohammad Kazem
2016-06-01
An efficient analytical method called ionic-liquid-based ultrasound-assisted in situ solvent formation microextraction followed by high-performance liquid chromatography was developed for the determination of atenolol in human plasma. A hydrophobic ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate) was formed by the addition of a hydrophilic ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate) to a sample solution containing an ion-pairing agent during microextraction. The analyte was extracted into the ionic liquid phase while the microextraction solvent was dispersed throughout the sample by utilizing ultrasound. The sample was then centrifuged, and the extracting phase retracted into the microsyringe and injected to liquid chromatography. After optimization, the calibration curve showed linearity in the range of 2-750 ng/mL with the regression coefficient corresponding to 0.998. The limits of detection (S/N = 3) and quantification (S/N = 10) were 0.5 and 2 ng/mL, respectively. A reasonable relative recovery range of 90-96.7% and satisfactory intra-assay (4.8-5.1%, n = 6) and interassay (5.0-5.6%, n = 9) precision along with a substantial sample clean-up demonstrated good performance of the procedure. It was applied for the determination of atenolol in human plasma after oral administration and some pharmacokinetic data were obtained. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A novel hybrid metal-organic framework-polymeric monolith for solid-phase microextraction.
Lin, Chen-Lan; Lirio, Stephen; Chen, Ya-Ting; Lin, Chia-Her; Huang, Hsi-Ya
2014-03-17
This study describes the fabrication of a novel hybrid metal-organic framework- organic polymer (MOF-polymer) for use as a stationary phase in fritless solid-phase microextraction (SPME) for validating analytical methods. The MOF-polymer was prepared by using ethylene dimethacrylate (EDMA), butyl methacrylate (BMA), and an imidazolium-based ionic liquid as porogenic solvent followed by microwave-assisted polymerization with the addition of 25 % MOF. This novel hybrid MOF-polymer was used to extract penicillin (penicillin G, penicillin V, oxacillin, cloxacillin, nafcillin, dicloxacillin) under different conditions. Quantitative analysis of the extracted penicillin samples using the MOF-organic polymer for SPME was conducted by using capillary electrochromatography (CEC) coupled with UV analysis. The penicillin recovery was 63-96.2 % with high reproducibility, sensitivity, and reusability. The extraction time with the proposed fabricated SPME was only 34 min. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Rui; Wang, Chuanliu; Yue, Qiaohong; Zhou, Tiecheng; Li, Na; Zhang, Hanqi; Hao, Xiaoke
2014-11-01
An ionic liquid foam floatation coupled with ionic liquid dispersive liquid-liquid microextraction method was proposed for the extraction and concentration of 17-α-estradiol, 17-β-estradiol-benzoate, and quinestrol in environmental water samples by high-performance liquid chromatography with fluorescence detection. 1-Hexyl-3-methylimidazolium tetrafluoroborate was applied as foaming agent in the foam flotation process and dispersive solvent in microextraction. The introduction of the ion-pairing and salting-out agent NH4 PF6 was beneficial to the improvement of recoveries for the hydrophobic ionic liquid phase and analytes. Parameters of the proposed method including concentration of 1-hexyl-3-methylimidazolium tetrafluoroborate, flow rate of carrier gas, floatation time, types and concentration of ionic liquids, salt concentration in samples, extraction time, and centrifugation time were evaluated. The recoveries were between 98 and 105% with relative standard deviations lower than 7% for lake water and well water samples. The isolation of the target compounds from the water was found to be efficient, and the enrichment factors ranged from 4445 to 4632. This developing method is free of volatile organic solvents compared with regular extraction. Based on the unique properties of ionic liquids, the application of foam floatation, and dispersive liquid-liquid microextraction was widened. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Recently, two papers reported the use of solid-phase microextraction (SPME) with polydimethylsiloxane(PDMS)/Carboxen fibers to determine trace levels of methyl tertiary butyl ether (MTBE) and tertiary butyl alcohol (tBA) in water. Attempts were made to apply this technique to th...
Liu, Jingke; Zhao, Wei; Li, Shaohui; Zhang, Aixia; Zhang, Yuzong; Liu, Songyan
2018-02-20
The volatile compounds in proso millet wine were extracted by headspace solid-phase microextraction (85 μm polyacrylate (PA), 100 μm polydimethylsiloxane (PDMS), 75 μm Carboxen (CAR)/PDMS, and 50/30 μm divinylbenzene (DVB)/CAR/PDMS fibers), and analyzed using gas chromatography-mass spectrometry; the odor characteristics and intensities were analyzed by the odor activity value (OAV). Different sample preparation factors were used to optimize this method: sample amount, extraction time, extraction temperature, and content of NaCl. A total of 64 volatile compounds were identified from the wine sample, including 14 esters, seven alcohols, five aldehydes, five ketones, 12 benzene derivatives, 12 hydrocarbons, two terpenes, three phenols, two acids, and two heterocycles. Ethyl benzeneacetate, phenylethyl alcohol, and benzaldehyde were the main volatile compounds found in the samples. According to their OAVs, 14 volatile compounds were determined to be odor-active compounds (OAV > 1), and benzaldehyde, benzeneacetaldehyde, 1-methyl-naphthalene, 2-methyl-naphthalene, and biphenyl were the prominent odor-active compounds (OAV > 50), having a high OAV. Principal component analysis (PCA) showed the difference of distribution of the 64 volatile compounds and 14 odor-active compounds with four solid-phase microextraction (SPME) fibers.
Pelit, Levent; Dizdaş, Tuğberk Nail
2013-10-01
A robust solid-phase microextraction fiber was fabricated by electropolymerization of thiophene on a stainless steel wire. This fiber was applied for the determination of endocrine-disruptor pesticides, namely, chlorpyrifos, penconazole, procymidone, bromopropylate, and λ-cyhalothrin in well waters by a headspace solid-phase microextraction procedure. Operational parameters, namely, pH, sample volume, adsorption temperature and time, desorption temperature, stirring rate, and salt amount were optimized as 7.0, 8 mL, 70°C and 20 min, 250°C, 600 rpm, and 0.3 g/mL, respectively. The separation power of GC was coupled with the excellent sensitivity of the developed fiber enabling us to determine pesticide mixtures simultaneously in a ng/mL range. The LOD was in the range of 0.02-0.64 ng/mL. The method was successfully applied for the selective and sensitive determination of target pesticides in well water samples with acceptable recovery values (92-110%). The polythiophene fiber gives satisfactory results compared with commercial fibers. Commonly used pesticides with different polarities were chosen as representative compounds to search the applicability of the fiber for well water analysis collected from vineyards. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wu, Mian; Zhang, Haibo; Zhao, Faqiong; Zeng, Baizhao
2014-11-19
A novel poly(3,4-ethylenedioxythiophene)-ionic liquid (i.e., 1-hydroxyethyl-3-methyl imidazolium-bis[(trifluoromethyl)sulfonyl]imide) composite film was electrodeposited on a Pt wire for headspace solid-phase microextraction. The film showed nodular structure and had large specific surface. In addition, it displayed high thermal stability (up to 300°C) and durable property (could be used for more than 200 times). Coupled with gas chromatography-flame ionization detection, the resulting fiber was applied to the headspace solid-phase microextraction and determination of several alcohols (i.e., linalool, nonanol, terpineol, geraniol, decanol and dodecanol). It presented higher extraction capability in comparison with the poly(3,4-ethylenedioxythiophene) and commercial polydimethylsiloxane/divinylbenzene fiber. Under the optimized conditions, the linear ranges exceeded three magnitudes with correlation coefficients above 0.9952 and the low limits of detection were 34.2-81.3ng L(-1). For different alcohols the repeatabilities (defined as RSD) were <5.8% and <7.8% for single fiber (n=5) and fiber-to-fiber (n=4), respectively. The proposed method was applied to the determination of these alcohols in real samples with acceptable recoveries from 81.1% to 106.6%. Copyright © 2014 Elsevier B.V. All rights reserved.
Wang, Licheng; Hou, Xiudan; Li, Jubai; Liu, Shujuan; Guo, Yong
2015-07-01
A novel graphene oxide decorated with silver nanoparticles coating on a stainless-steel fiber for solid-phase microextraction was prepared. Scanning electron microscopy and X-ray photoelectron spectroscopy were used to characterize the coating surface and showed that silver nanoparticles were dispersed on the wrinkled graphene oxide surface. Coupled to gas chromatography with flame ionization detection, the extraction abilities of the fiber for polycyclic aromatic hydrocarbons were examined in the headspace solid-phase microextraction mode. The extraction parameters including adsorption time, adsorption temperature, salt concentration, desorption time and desorption temperature were investigated. Under the optimized condition, wide linearity with low limits of detection from 2 to 10 ng/L was obtained. The relative standard deviations for single-fiber repeatability and fiber-to-fiber reproducibility were less than 10.6 and 17.5%, respectively. The enrichment factors were from 1712.5 to 4503.7, showing the fiber has good extraction abilities. Moreover, the fiber exhibited a good stability and could be reused for more than 120 times. The established method was also applied for determination of polycyclic aromatic hydrocarbons in two real water samples and the recoveries of analytes ranged from 84.4-116.3% with relative standard deviations less than 16.2%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nechaeva, Daria; Shishov, Andrey; Ermakov, Sergey; Bulatov, Andrey
2018-06-01
An easily performed miniaturized, cheap, selective and sensitive procedure for the determination of H 2 S in fuel oil samples based on a headspace liquid-phase microextraction followed by a cyclic voltammetry detection using a paper-based analytical device (PAD) was developed. A modified wax dipping method was applied to fabricate the PAD. The PAD included hydrophobic zones of sample and supporting electrolyte connecting by hydrophilic channel. The zones of sample and supporting electrolyte were connected with nickel working, platinum auxiliary and Ag/AgCl reference electrodes. The analytical procedure included separation of H 2 S from fuel oil sample based on the headspace liquid-phase microextraction in alkaline solution. Then, sulfide ions solution obtained and supporting electrolyte were dropped on the zones followed by analyte detection at + 0.45 V. Under the optimized conditions, H 2 S concentration in the range from 2 to 20 mg kg -1 had a good linear relation with the peak current. The limit of detection (3σ) was 0.6 mg kg -1 . The procedure was successfully applied to the analysis of fuel oil samples. Copyright © 2018 Elsevier B.V. All rights reserved.
Wu, Y C; Huang, S D
1999-03-12
Solid-phase microextraction (SPME) coupled with high-performance liquid chromatography (HPLC) for the analysis of hydroxyaromatic compounds is described. Three kinds of fibers [50 microns carbowax-templated resin (CW-TPR), 60 microns polydimethylsiloxane-divinylbenzene (PDMS-DVB) and 85 microns polyacrylate (PA) fibers] were evaluated. CW-TPR and PDMS-DVB were selected for further study. The parameters of the desorption procedure (such as desorption mode, the composition of the solvent for desorption and the duration of fiber soaking) were studied and optimized. The effect of the structure and physical properties of analytes, carryover, duration of absorption, temperature of absorption, pH and ionic strength of samples were also investigated. The method was applied to environmental samples (lake water) using a simple calibration curve.
Wu, Yunli; Hu, Bin
2009-11-06
A simple, selective, sensitive and inexpensive method of hollow fiber-based liquid-liquid-liquid microextraction (HF-LLLME) combined with high performance liquid chromatography (HPLC)-ultraviolet (UV) detection was developed for the determination of four acidic phytohormones (salicylic acid (SA), indole-3-acetic acid (IAA), (+/-) abscisic acid (ABA) and (+/-) jasmonic acid (JA)) in natural coconut juice. To the best of our knowledge, this is the first report on the use of liquid phase microextraction (LPME) as a sample pretreatment technique for the simultaneous analysis of several phytohormones. Using phenetole to fill the pores of hollow fiber as the organic phase, 0.1molL(-1) NaOH solution in the lumen of hollow fiber as the acceptor phase and 1molL(-1) HCl as the donor phase, a simultaneous preconcentration of four target phytohormones was realized. The acceptor phase was finally withdrawn into the microsyringe and directly injected into HPLC for the separation and quantification of the target phytohormones. The factors affecting the extraction efficiency of four phytohormones by HF-LLLME were optimized with orthogonal design experiment, and the data was analyzed by Statistical Product and Service Solutions (SPSS) software. Under the optimized conditions, the enrichment factors for SA, IAA, ABA and JA were 243, 215, 52 and 48, with the detection limits (S/N=3) of 4.6, 1.3, 0.9ngmL(-1) and 8.8 microg mL(-1), respectively. The relative standard deviations (RSDs, n=7) were 7.9, 4.9, 6.8% at 50ngmL(-1) level for SA, IAA, ABA and 8.4% at 500 microg mL(-1) for JA, respectively. To evaluate the accuracy of the method, the developed method was applied for the simultaneous analysis of several phytohormones in five natural coconut juice samples, and the recoveries for the spiked samples were in the range of 88.3-119.1%.
Taheri, Salman; Jalali, Fahimeh; Fattahi, Nazir; Jalili, Ronak; Bahrami, Gholamreza
2015-10-01
Dispersive liquid-liquid microextraction based on solidification of floating organic droplet was developed for the extraction of methadone and determination by high-performance liquid chromatography with UV detection. In this method, no microsyringe or fiber is required to support the organic microdrop due to the usage of an organic solvent with a low density and appropriate melting point. Furthermore, the extractant droplet can be collected easily by solidifying it at low temperature. 1-Undecanol and methanol were chosen as extraction and disperser solvents, respectively. Parameters that influence extraction efficiency, i.e. volumes of extracting and dispersing solvents, pH, and salt effect, were optimized by using response surface methodology. Under optimal conditions, enrichment factor for methadone was 134 and 160 in serum and urine samples, respectively. The limit of detection was 3.34 ng/mmL in serum and 1.67 ng/mL in urine samples. Compared with the traditional dispersive liquid-liquid microextraction, the proposed method obtained lower limit of detection. Moreover, the solidification of floating organic solvent facilitated the phase transfer. And most importantly, it avoided using high-density and toxic solvents of traditional dispersive liquid-liquid microextraction method. The proposed method was successfully applied to the determination of methadone in serum and urine samples of an addicted individual under methadone therapy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Khezeli, Tahere; Daneshfar, Ali; Sahraei, Reza
2016-04-01
A simple, inexpensive and sensitive ultrasonic-assisted liquid-liquid microextraction method based on deep eutectic solvent (UALLME-DES) was used for the extraction of three phenolic acids (ferulic, caffeic and cinnamic) from vegetable oils. In a typical experiment, deep eutectic solvent as green extraction solvent was added to n-hexane (as a typical oil medium) containing target analytes. Subsequently, the extraction was accelerated by sonication. After the extraction, phase separation (DES rich phase/n-hexane phase) was performed by centrifugation. DES rich phase (lower phase) was withdrawn by a micro-syringe and submitted to isocratic reverse-phase HPLC with UV detection. Under optimum conditions obtained by response surface methodology (RSM) and desirability function (DF), the method has good linear calibration ranges (between 1.30 and 1000 µg L(-1)), coefficients of determination (r(2)>0.9949) and low limits of detection (between 0.39 and 0.63 µg L(-1)). This procedure was successfully applied to the determination of target analytes in olive, almond, sesame and cinnamon oil samples. The relative mean recoveries ranged from 94.7% to 104.6%. Copyright © 2015 Elsevier B.V. All rights reserved.
Fernández, Elena; Vidal, Lorena; Iniesta, Jesús; Metters, Jonathan P; Banks, Craig E; Canals, Antonio
2014-03-01
A novel method is reported, whereby screen-printed electrodes (SPELs) are combined with dispersive liquid-liquid microextraction. In-situ ionic liquid (IL) formation was used as an extractant phase in the microextraction technique and proved to be a simple, fast and inexpensive analytical method. This approach uses miniaturized systems both in sample preparation and in the detection stage, helping to develop environmentally friendly analytical methods and portable devices to enable rapid and onsite measurement. The microextraction method is based on a simple metathesis reaction, in which a water-immiscible IL (1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, [Hmim][NTf2]) is formed from a water-miscible IL (1-hexyl-3-methylimidazolium chloride, [Hmim][Cl]) and an ion-exchange reagent (lithium bis[(trifluoromethyl)sulfonyl]imide, LiNTf2) in sample solutions. The explosive 2,4,6-trinitrotoluene (TNT) was used as a model analyte to develop the method. The electrochemical behavior of TNT in [Hmim][NTf2] has been studied in SPELs. The extraction method was first optimized by use of a two-step multivariate optimization strategy, using Plackett-Burman and central composite designs. The method was then evaluated under optimum conditions and a good level of linearity was obtained, with a correlation coefficient of 0.9990. Limits of detection and quantification were 7 μg L(-1) and 9 μg L(-1), respectively. The repeatability of the proposed method was evaluated at two different spiking levels (20 and 50 μg L(-1)), and coefficients of variation of 7 % and 5 % (n = 5) were obtained. Tap water and industrial wastewater were selected as real-world water samples to assess the applicability of the method.
Ghamari, Farhad; Bahrami, Abdulrahman; Yamini, Yadollah; Shahna, Farshid Ghorbani; Moghimbeigi, Abbas
2016-01-01
For the first time, hollow-fiber liquid-phase microextraction combined with high-performance liquid chromatography–ultraviolet was used to extract trans,trans-muconic acid, in urine samples of workers who had been exposed to benzene. The parameters affecting the metabolite extraction were optimized as follows: the volume of sample solution was 11 mL with pH 2, liquid membrane containing dihexyl ether as the supporter, 15% (w/v) of trioctylphosphine oxide as the carrier, the time of extraction was 120 minutes, and stirring rate was 500 rpm. Organic phase impregnated in the pores of a hollow fiber was extracted into 24 µL solution of 0.05 mol L−1 Na2CO3 located inside the lumen of the fiber. Under optimized conditions, a high enrichment factor of 153–182 folds, relative recovery of 83%–92%, and detection limit of 0.001 µg mL−1 were obtained. The method was successfully applied to the analysis of ttMA in real urine samples. PMID:27660405
Pebdani, Arezou Amiri; Shabani, Ali Mohammad Haji; Dadfarnia, Shayessteh; Khodadoust, Saeid
2015-08-05
A simple solid phase microextraction method based on molecularly imprinted polymer sorbent in the hollow fiber (MIP-HF-SPME) combined with fiber optic-linear array spectrophotometer has been applied for the extraction and determination of diclofenac in environmental and biological samples. The effects of different parameters such as pH, times of extraction, type and volume of the organic solvent, stirring rate and donor phase volume on the extraction efficiency of the diclofenac were investigated and optimized. Under the optimal conditions, the calibration graph was linear (r(2)=0.998) in the range of 3.0-85.0 μg L(-1) with a detection limit of 0.7 μg L(-1) for preconcentration of 25.0 mL of the sample and the relative standard deviation (n=6) less than 5%. This method was applied successfully for the extraction and determination of diclofenac in different matrices (water, urine and plasma) and accuracy was examined through the recovery experiments. Copyright © 2015 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Stir bar sorptive extraction (SBSE) is a technique for extraction and analysis of organic compounds in aqueous matrices, similar in theory to solid phase microextraction (SPME). SBSE has been successfully used to analyze several organic compounds, including food matrices. When compared with SPME, ...
2009-10-01
of chemical warfare agents in natural water samples by solid-phase microextraction. Anal. Chem., 69, 1866-72. [36] Sng , M.T. and Ng ,W.F. (1999). In...liquid phase microextraction of alkylphosphonic acids from water. J. Chromatogr. A., 1141, 151-157. [43] Lee, H.S.N., Sng , M.T., Basheer, C., and Lee
Li, Jing; Roh, Si Hun; Shaodong, Jia; Hong, Ji Yeon; Lee, Dong-Kyu; Shin, Byong-Kyu; Park, Jeong Hill; Lee, Jeongmi; Kwon, Sung Won
2017-08-01
A novel analytical method for the simultaneous determination of the concentration of sildenafil and its five analogues in dietary supplements using solid-phase extraction assisted reversed-phase dispersive liquid-liquid microextraction based on solidification of floating organic droplet combined with ion-pairing liquid chromatography with an ultraviolet detector was developed. Parameters that affect extraction efficiency were systematically investigated, including the type of solid-phase extraction cartridge, pH of the extraction environment, and the type and volume of extraction and dispersive solvent. The method linearity was in the range of 5.0-100 ng/mL for sildenafil, homosildenafil, udenafil, benzylsildenafil, and thiosildenafil and 10-100 ng/mL for acetildenafil. The coefficients of determination were ≥0.996 for all regression curves. The sensitivity values expressed as limit of detection were between 2.5 and 7.5 ng/mL. Furthermore, intraday and interday precisions expressed as relative standard deviations were less than 5.7 and 9.9%, respectively. The proposed method was successfully applied to the analysis of sildenafil and its five analogues in complex dietary supplements. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Simões, Rodrigo Almeida; Bonato, Pierina Sueli; Mirnaghi, Fatemeh S; Bojko, Barbara; Pawliszyn, Janusz
2015-01-01
A high-throughput bioanalytical method using 96-blade thin film microextraction (TFME) and LC-MS/MS for the analysis of repaglinide (RPG) and two of its main metabolites was developed and used for an in vitro metabolism study. The target analytes were extracted from human microsomal medium by a 96-blade-TFME system employing the low-cost prototype 'SPME multi-sampler' using C18 coating. Method validation showed recoveries around 90% for all analytes and was linear over the concentration range of 2-1000 ng ml(-1) for RPG and of 2-500 ng ml(-1) for each RPG metabolite. The method was applied to an in vitro metabolism study of RPG employing human liver microsomes and proved to be very useful for this purpose.
Sha, Ou; Zhu, Xiashi; Feng, Yanli; Ma, Weixing
2015-05-01
A rapid and effective method of aqueous two-phase systems based on ionic liquid microextraction for the simultaneous determination of five synthetic food colourants (tartrazine, sunset yellow, amaranth, ponceau 4R and brilliant blue) in food samples was established. High-performance liquid chromatography coupled with an ultraviolet detector of variable wavelength was used for the determinations. 1-alkyl-3-methylimidazolium bromide was selected as the extraction reagent. The extraction efficiency of the five colourants in the proposed system is influenced by the types of salts, concentrations of salt and [CnMIM]Br, as well as the extracting time. Under the optimal conditions, the extraction efficiencies for these five colourants were above 95%. The phase behaviours of aqueous two-phase system and extraction mechanism were investigated by UV-vis spectroscopy. This method was applied to the analysis of the five colourants in real food samples with the detection limit of 0.051-0.074 ng/mL. Good spiked recoveries from 93.2% to 98.9% were obtained. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hemmati, Maryam; Asghari, Alireza; Bazregar, Mohammad; Rajabi, Maryam
2016-11-01
In this research work, an efficient tandem dispersive liquid-liquid microextraction (TDLLME) procedure coupled with high performance liquid chromatography-ultraviolet detection (HPLC-UV) was successfully applied for the determination of beta-blockers in human plasma and pharmaceutical wastewater samples. High clean-up and preconcentration factor are easily and rapidly feasible via this novel, cheap, and safe microextraction method, leading to high quality experimental data. It consists of two sequential dispersive liquid-liquid microextraction methods, accomplished via air/ultrasonic agitation and air agitation, respectively. In order to enrich the optimal values for the mentioned procedures, the Box-Behnken design (BBD) combined with the desirability function (DF) was used. The optimum values were found to be 11.0 % (w/v) of the salt amount, an initial pH value of 12.0, 103 μL of organic extractant phase, and 45 μL of aqueous extractant phase with pH value of 2.0, resulted in reasonable recovery percentages with a logical desirability. Under optimal experimental conditions, good linear ranges (3-2000 ng mL -1 for metoprolol and 2.5-2500 ng mL -1 for propranolol with the correlation of determinations (R 2 s) higher than 0.99) and low limits of detection (0.8 and 1.0 ng mL -1 for propranolol and metoprolol, respectively) were obtainable. Also, TDLLME-HPLC-UV provided good proper repeatabilities (relative standard deviations (RSDs) below 5.7 %, n = 3) and high enrichment factors (EFs) of 75-100. Graphical abstract TDLLME of beta-blockers from complicated matrices.
Faraji, Hakim; Helalizadeh, Masoumeh; Kordi, Mohammad Reza
2018-01-01
A rapid, simple, and sensitive approach to the analysis of trihalomethanes (THMs) in swimming pool water samples has been developed. The main goal of this study was to overcome or to improve the shortcomings of conventional dispersive liquid-liquid microextraction (DLLME) and to maximize the realization of green analytical chemistry principles. The method involves a simple vortex-assisted microextraction step, in the absence of the dispersive solvent, followed by salting-out effect for the elimination of the centrifugation step. A bell-shaped device and a solidifiable solvent were used to simplify the extraction solvent collection after phase separation. Optimization of the independent variables was performed by using chemometric methods in three steps. The method was statistically validated based on authentic guidance documents. The completion time for extraction was less than 8 min, and the limits of detection were in the range between 4 and 72 ng L -1 . Using this method, good linearity and precision were achieved. The results of THMs determination in different real samples showed that in some cases the concentration of total THMs was more than threshold values of THMs determined by accredited healthcare organizations. This method indicated satisfactory analytical figures of merit. Graphical Abstract A novel green microextraction technique for overcoming the challenges of conventional DLLME. The proposed procedure complies with the principles of green/sustainable analytical chemistry, comprising decreasing the sample size, making easy automation of the process, reducing organic waste, diminishing energy consumption, replacing toxic reagents with safer reagents, and enhancing operator safety.
Rezazadeh, Maryam; Yamini, Yadollah; Seidi, Shahram; Tahmasebi, Elham; Rezaei, Fatemeh
2014-04-09
Electromembrane surrounded solid phase microextraction (EM-SPME) of acidic herbicides was studied for the first time. In order to investigate the capability of this new microextraction technique to analyze acidic targets, chlorophenoxy acid (CPA) herbicides were quantified in plant tissue. 1-Octanol, was sustained in the pores of the wall of a hollow fiber and served as supported liquid membrane (SLM). Other EM-SPME related parameters, including extraction time, applied voltage, and pHs of the sample solution and the acceptor phase, were optimized using experimental design. A 20 min time frame was needed to reach the highest extraction efficiency of the analytes from a 24 mL alkaline sample solution across the organic liquid membrane and into the aqueous acceptor phase through a 50 V electrical field, and to their final adsorption on a carbonaceous anode. In addition to high sample cleanup, which made the proposed method appropriate for analysis of acidic compounds in a complicated media (plant tissue), 4.8% of 2-methyl-4-chlorophenoxyacetic acid (MCPA) and 0.6% of 2,4-dichlorophenoxyacetic acid (2,4-D) were adsorbed on the anode, resulting in suitable detection limits (less than 5 ng mL -1 ), and admissible repeatability and reproducibility (intra- and interassay precision were in the ranges of 5.2-8.5% and 8.8-12.0%, respectively). Linearity of the method was scrutinized within the ranges of 1.0-500.0 and 10.0-500.0 ng mL -1 for MCPA and 2,4-D, respectively, and coefficients of determination greater than 0.9958 were obtained. Optimal conditions of EM-SPME of the herbicides were employed for analysis of CPAs in whole wheat tissue.
Kranz, William; Carroll, Clinton; Dixon, Darren; Picard, Christine; Goodpaster, John
2017-11-01
A new method has been developed for the determination of fatty acids, sterols, and other lipids which naturally occur within pupae of the blow fly Phormia regina. The method relies upon liquid extraction in non-polar solvent, followed by derivatization using N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) w/ 1% trimethylchlorsilane (TMCS) carried out inside the sample vial. The analysis is facilitated by total vaporization solid-phase microextraction (TV-SPME), with gas chromatography-mass spectrometry (GC-MS) serving as the instrumentation for analysis. The TV-SPME delivery technique is approximately a factor of five more sensitive than traditional liquid injection, which may alleviate the need for rotary evaporation, reconstitution, collection of high performance liquid chromatography fractions, and many of the other pre-concentration steps that are commonplace in the current literature. Furthermore, the ability to derivatize the liquid extract in a single easy step while increasing sensitivity represents an improvement over current derivatization methods. The most common lipids identified in fly pupae were various saturated and unsaturated fatty acids ranging from lauric acid (12:0) to arachinoic acid (20:4), as well as cholesterol. The concentrations of myristic acid (14:0), palmitelaidic acid (16:2), and palmitoleic acid (16:1) were the most reliable indicators of the age of the pupae. Graphical abstract Blow fly pupae were extracted prior to emerging as adults. The extracts were analyzed via total vaporization solid-phase microextraction (TV-SPME), revealing a complex mixture of lipids that could be associated with the age of the insect. This information may assist in determining a post-mortum interval (PMI) in a death investigation.
Ghasemi, Ensieh; Najafi, Nahid Mashkouri; Raofie, Farhad; Ghassempour, Alireza
2010-09-15
A simple and effective speciation and preconcentration method based on hollow fiber liquid phase microextraction (HF-LPME) was developed for simultaneous separation of trace inorganic tellurium and selenium in environmental samples prior to electrothermal atomic absorption spectroscopy (ETAAS) determination. The method involves the selective extraction of the Te (IV) and Se (IV) species by HF-LPME with the use of ammonium pyrrolidinecarbodithioate (APDC) as the chelating agent. The complex compounds were extracted into 10 microL of toluene and the solutions were injected into a graphite furnace for the determination of Te (IV) and Se (IV). To determine the total tellurium and selenium in the samples, first Te (VI) and Se (VI) were reduced to Te (IV) and Se (IV), and then the microextraction method was performed. The experimental parameters of HF-LPME were optimized using a central composite design after a 2(n-1) fractional factorial experimental design. Under optimum conditions, enrichment factors of up to 520 and 480 were achieved for Te (IV) and Se (IV), respectively. The detection limits were 4 ng L(-1) with 3.5% RSD (n=5, c=2.0 microg L(-1)) for Te (IV) and 5 ng L(-1) with 3.1% RSD for Se (IV). The applicability of the developed technique was evaluated by application to spiked, environmental water and soil samples. Copyright 2010 Elsevier B.V. All rights reserved.
Dadfarnia, Shayessteh; Shabani, Ali Mohammad Haji; Shakerian, Farid; Shiralian Esfahani, Golnaz
2013-12-15
A simple and sensitive method for the separation and preconcentration of the ultra trace amounts of uranium and its determination by spectrophotometry was developed. The method is based on the combination of solid phase extraction and dispersive liquid-liquid microextraction. Thus, by passing the sample through the basic alumina column, the uranyl ion and some cations are separated from the sample matrix. The retained uranyl ion along with the cations are eluted with 5 mL of nitric acid (2 mol L(-1)) and after neutralization of the eluent, the extracted uranyl ion is converted to its anionic benzoate complex and is separated from other cations by extraction of its ion pair with malachite green into small volume of chloroform using dispersive liquid-liquid microextraction. The amount of uranium is then determined by the absorption measurement of the extracted ion pair at 621 nm using flow injection spectrophotometry. Under the optimum conditions, with 500 mL of the sample, a preconcentration factor of 1980, a detection limit of 40 ng L(-1), and a relative standard deviation of 4.1% (n=6) at 400 ng L(-1) were obtained. The method was successfully applied to the determination of uranium in mineral water, river water, well water, spring water and sea water samples. Copyright © 2013 Elsevier B.V. All rights reserved.
Khan, Sumaira; Kazi, Tasneem Gul; Soylak, Mustafa
2014-04-05
A rapid and innovative microextraction technique named as, ionic liquid-based ultrasound-assisted dual magnetic microextraction (IL-UA-DMME) was developed for the preconcentration and extraction of trace cadmium from environmental and biological samples, prior to analyzed by flame atomic absorption spectrometry (FAAS). The proposed method has many obvious advantages, including evading the use of organic solvents and achieved high extraction yields by the combination of dispersive liquid-liquid microextraction (DLLME) and magnetic mediated-solid phase extraction (MM-SPE). In this approach ionic liquid (IL) 1-butyl-3-methylimidazolium hexafluorophosphate [C4mim][PF6] play an important role to extract the cadmium-4-(2-thiazolylazo)-resorcinol (Cd-TAR) complex from acid digested sample solutions and ultrasonic irradiation was applied to assist emulsification. After then, dispersed small amount of Fe3O4 magnetic nanoparticles (MNPs) in sample solutions to salvaged the IL and complete phase separation was attained. Some analytical parameters that influencing the efficiency of proposed (IL-UA-DMME) method, such as pH, volume of IL, ligand concentration, ultra-sonication time, amount of Fe3O4 MNPs, sample volume and matrix effect were optimized. Limit of detection (LOD) and enrichment factor (EF) of the method under optimal experimental conditions were found to be 0.40μgL(-1) and 100, respectively. The relative standard deviation (RSD) of 50μgL(-1) Cd was 4.29%. The validity and accuracy of proposed method, was assessed to analyzed certified reference materials of fortified lake water TMDA-54.4, SPS-WW2 waste water, spinach leaves 1570a and also checked by standard addition method. The obtained values showed good agreement with the certified values and sufficiently high recovery were found in the range of 98.1-101% for Cd. The proposed method was facile, rapid and successfully applied for the determination of Cd in environmental and different biological samples. Copyright © 2013 Elsevier B.V. All rights reserved.
Peng, Xiaojun; Pang, Jinshan; Deng, Aihua
2011-12-01
A novel method for the simultaneous determination of seven phenoxyacid herbicides such as dicamba, fluroxypyr, 4-chlorophenoxyacetic acid (4-CPA), 2-methyl-4-chlorophenoxyacetic acid (MCPA), 2, 4-dichlorophenoxyacetic acid (2,4-D), 2,4-dichlorophenoxybutyric acid (2,4-DB) and 4-(2-methyl-4-chlorophenoxy) butyric acid (MCPB) in environmental water by three phase hollow fiber liquid phase microextraction (HF-LPME) coupled with high performance liquid chromatography (HPLC) was developed. In order to optimize the experimental conditions, the orthogonal test has been used. The effects of extraction solvent, pH of the donor phase and acceptor phase, extraction time, stirring speed and salt concentration on the detection were investigated. The optimal experimental conditions were as follows: octanol as organic solvent, pH 3 of donor phase, pH 12 of acceptor phase, extraction time of 30 min, stirring speed of 400 r/min. The results showed that the proposed method provided a wide linear range for 7 phenoxyacid herbicides with correlation coefficients of 0.995 3 - 0.998 8. The detection limits ranged from 0.2 to 1.0 microg/L. The enrichment factors were in the range of 76.7 - 121. The recoveries were in the range of 68% - 104% and the relative standard deviations (RSDs) were less than 8.1% for the environmental water samples. The method has the advantages of sensitivity, simplicity, fastness and the use of very small amounts of organic solvent. The method can meet the requirements of the determination of trace phenoxyacid herbicides in the environmental water samples, and the study provided a useful method for the analysis of trace substances in water samples.
Wang, Xiaoyu; Wang, Yuan; Qin, Yaqiong; Ding, Li; Chen, Yi; Xie, Fuwei
2015-08-01
A simple method has been developed for the simultaneous determination of 16 polycyclic aromatic hydrocarbons (PAHs) in mainstream cigarette smoke. The procedure is based on employing a homemade graphene-coated solid-phase microextraction (SPME) fiber for extraction prior to GC/MS. In comparison to commercial 100-μm poly(dimethyl siloxane) (PDMS) fiber, the graphene-coated SPME fiber exhibits advantageous cleanup and preconcentration efficiencies. By collecting the particulate phase 5 cigarettes, the LODs and LOQs of 16 target PAHs were 0.02-0.07 and 0.07-0.22 ng/cigarette, respectively, and all of the linear correlation efficiencies were larger than 0.995. The validation results also indicate that the method has good repeatability (RSD between 4.2% and 9.5%) and accuracy (spiked recoveries between 80% and 110%). The developed method was applied to analyze two Kentucky reference cigarettes (1R5F and 3R4F) and six Chinese brands of cigarettes. In addition, the PAH concentrations in the particulate phase of the smoke from the 1R5F Kentucky cigarettes were in good agreement with recently reported results. Due to easy operation and good validation results, this SPME-GC/MS method may be an excellent alternative for trace analysis of PAHs in cigarette smoke. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zou, Xiaojun; Shang, Fang; Wang, Sui
2017-02-01
In this paper, a novel electrochemiluminescence (ECL) sensor of sol-gel@graphene luminescent composite film modified electrode for hyperin determination was prepared using graphene (G) as solid-phase microextraction (SPME) material, based on selective preconcentration of target onto an electrode and followed by luminol ECL detection. Hyperin was firstly extracted from aqueous solution through the modified GCE. Hydrogel, electrogenerated chemiluminescence reagents, pH of working solution, extraction time and temperature and scan rate were discussed. Under the optimum conditions, the change of ECL intensity was in proportion to the concentration of hyperin in the range of 0.02-0.24 μg/mL with a detection limit of 0.01 μg/mL. This method showed good performance in stability, reproducibility and precision for the determination of hyperin.
Solid-phase microextraction technology for in vitro and in vivo metabolite analysis
Zhang, Qihui; Zhou, Liandi; Chen, Hua; Wang, Chong-Zhi; Xia, Zhining; Yuan, Chun-Su
2016-01-01
Analysis of endogenous metabolites in biological samples may lead to the identification of biomarkers in metabolomics studies. To achieve accurate sample analysis, a combined method of continuous quick sampling and extraction is required for online compound detection. Solid-phase microextraction (SPME) integrates sampling, extraction and concentration into a single solvent-free step for chemical analysis. SPME has a number of advantages, including simplicity, high sensitivity and a relatively non-invasive nature. In this article, we reviewed SPME technology in in vitro and in vivo analyses of metabolites after the ingestion of herbal medicines, foods and pharmaceutical agents. The metabolites of microorganisms in dietary supplements and in the gastrointestinal tract will also be examined. As a promising technology in biomedical and pharmaceutical research, SPME and its future applications will depend on advances in analytical technologies and material science. PMID:27695152
ERIC Educational Resources Information Center
Johnson, Bettie Obi; Burke, Fernanda M.; Harrison, Rebecca; Burdette, Samantha
2012-01-01
The measurement of trace levels of bisphenol A (BPA) leached out of household plastics using solid-phase microextraction (SPME) with gas chromatography-mass spectrometry (GC-MS) is reported here. BPA is an endocrine-disrupting compound used in the industrial manufacture of polycarbonate plastic bottles and epoxy resin can liners. This experiment…
Solid-phase microextraction of hydrocarbons from water in a centrifuge
NASA Astrophysics Data System (ADS)
Ryabov, A. Yu.; Chuikin, A. V.; Velikov, A. A.
2016-06-01
The results of our study of solid-phase microextraction of substances using a centrifuge for determining the microquantities of hydrocarbon impurities in water are presented. The cartridge diameter, sorbent mass, and solvent volume were shown to affect the percent extraction of substances and the analytical signal intensity. The relationship between the cartridge geometry, the sorbent mass, and the solvent volume was considered.
Carpinteiro, J; Rodríguez, I; Cela, R
2004-11-01
The performance of solid-phase microextraction (SPME) applied to the determination of butyltin compounds in sediment samples is systematically evaluated. Matrix effects and influence of blank signals on the detection limits of the method are studied in detail. The interval of linear response is also evaluated in order to assess the applicability of the method to sediments polluted with butyltin compounds over a large range of concentrations. Advantages and drawbacks of including an SPME step, instead of the classic liquid-liquid extraction of the derivatized analytes, in the determination of butyltin compounds in sediment samples are considered in terms of achieved detection limits and experimental effort. Analytes were extracted from the samples by sonication using glacial acetic acid. An aliquot of the centrifuged extract was placed on a vial where compounds were ethylated and concentrated on a PDMS fiber using the headspace mode. Determinations were carried out using GC-MIP AED.
[The progress in speciation analysis of trace elements by atomic spectrometry].
Wang, Zeng-Huan; Wang, Xu-Nuo; Ke, Chang-Liang; Lin, Qin
2013-12-01
The main purpose of the present work is to review the different non-chromatographic methods for the speciation analysis of trace elements in geological, environmental, biological and medical areas. In this paper, the sample processing methods in speciation analysis were summarized, and the main strategies for non-chromatographic technique were evaluated. The basic principles of the liquid extractions proposed in the published literatures recently and their advantages and disadvantages were discussed, such as conventional solvent extraction, cloud point extraction, single droplet microextraction, and dispersive liquid-liquid microextraction. Solid phase extraction, as a non-chromatographic technique for speciation analysis, can be used in batch or in flow detection, and especially suitable for the online connection to atomic spectrometric detector. The developments and applications of sorbent materials filled in the columns of solid phase extraction were reviewed. The sorbents include chelating resins, nanometer materials, molecular and ion imprinted materials, and bio-sorbents. Other techniques, e. g. hydride generation technique and coprecipitation, were also reviewed together with their main applications.
Adjusted active carbon fibers for solid phase microextraction.
Jia, Jinping; Feng, Xue; Fang, Nenghu; Wang, Yalin; Chen, Hongjin; Dan, Wu
2002-01-01
Adjusted active carbon fiber (AACF) was evaluated for Solid Phase Microextraction (SPME), which showed higher sensitivity and stability than traditional coating fibers. The characteristics of AACF result from two different activation methods (chemical and water vapor) and from variable activation conditions (temperature and time). The fiber treated by water vapor appears to have stronger affinity to polar compounds, while that treated by chemical activation appears to have stronger affinity to non-polar compounds. For different target compounds ranged from non-polar to polar, AACF design could be effective with specific selections and sensitivities. As applications in this paper, benzoic acid in soy sauce was extracted onto water-vapor-activated-fiber, then analyzed using gas chromatograph-mass spectrometer (GC-MS). The chemical-activated-fiber SPME was applied in the analysis of benzene series compounds (BTEX) in water matrix. Compared with standard carbon disulfide extraction method, chemical-activated-fiber SPME is more convenient due to its simple process and turns to be of relative low detection limits.
Zhao, Qin; Wei, Fang; Xiao, Neng; Yu, Qiong-Wei; Yuan, Bi-Feng; Feng, Yu-Qi
2012-06-01
In the present work, we developed a novel dispersive microextraction technique by combining the advantages of liquid-phase microextraction (LPME) and magnetic solid-phase extraction (MSPE). In this method, trace amount of water directly absorbed on bare Fe₃O₄ to form water-coated Fe₃O₄ (W-Fe₃O₄) and rapid extraction can be achieved while W-Fe₃O₄ dispersed in the sample solution. The analyte adsorbed W-Fe₃O₄ can be easily collected and isolated from sample solution by application of a magnet. It was worth noting that in the proposed method water was used as extractant and Fe₃O₄ served as the supporter and retriever of water. The performance of the method was evaluated by extraction of 3-monochloropropane-1,2-diol (3-MCPD) from edible oils. The extracted 3-MCPD was then derived by a silylanization reagent (1-trimethylsilylimidazole) before gas chromatography-mass spectrometry (GC-MS) analysis. Several parameters that affected the extraction and derivatization efficiency were investigated. Our results showed that the limit of detection for 3-MCPD was 1.1 ng/g. The recoveries in spiked oil samples were in the range of 70.0-104.9% with the RSDs less than 5.6% (intra-day) and 6.4% (inter-day). Taken together, the simple, rapid and cost-effective method developed in current study, offers a potential application for the extraction and preconcentration of hydrophilic analytes from complex fatty samples. Copyright © 2012 Elsevier B.V. All rights reserved.
Liao, Keren; Mei, Meng; Li, Haonan; Huang, Xiaojia; Wu, Cuiqin
2016-02-01
The development of a simple and sensitive analytical approach that combines multiple monolithic fiber solid-phase microextraction with liquid desorption followed by high-performance liquid chromatography with diode array detection is proposed for the determination of trace levels of seven steroid sex hormones (estriol, 17β-estradiol, testosterone, ethinylestradiol, estrone, progesterone and mestranol) in water and urine matrices. To extract the target analytes effectively, multiple monolithic fiber solid-phase microextraction based on a polymeric ionic liquid was used to concentrate hormones. Several key extraction parameters including desorption solvent, extraction and desorption time, pH value and ionic strength in sample matrix were investigated in detail. Under the optimal experimental conditions, the limits of detection were found to be in the range of 0.027-0.12 μg/L. The linear range was 0.10-200 μg/L for 17β-estradiol, 0.25-200 μg/L estriol, ethinylestradiol and estrone, and 0.50-200 μg/L for the other hormones. Satisfactory linearities were achieved for analytes with the correlation coefficients above 0.99. Acceptable method reproducibility was achieved by evaluating the repeatability and intermediate precision with relative standard deviations of both less than 8%. The enrichment factors ranged from 54- to 74-fold. Finally, the proposed method was successfully applied to the analysis of steroid sex hormones in environmental water samples and human urines with spiking recoveries ranged from 75.6 to 116%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hamedi, Raheleh; Hadjmohammadi, Mohammad Reza
2017-09-01
A novel design of hollow-fiber liquid-phase microextraction containing multiwalled carbon nanotubes as a solid sorbent, which is immobilized in the pore and lumen of hollow fiber by the sol-gel technique, was developed for the pre-concentration and determination of polycyclic aromatic hydrocarbons in environmental water samples. The proposed method utilized both solid- and liquid-phase microextraction media. Parameters that affect the extraction of polycyclic aromatic hydrocarbons were optimized in two successive steps as follows. Firstly, a methodology based on a quarter factorial design was used to choose the significant variables. Then, these significant factors were optimized utilizing central composite design. Under the optimized condition (extraction time = 25 min, amount of multiwalled carbon nanotubes = 78 mg, sample volume = 8 mL, and desorption time = 5 min), the calibration curves showed high linearity (R 2 = 0.99) in the range of 0.01-500 ng/mL and the limits of detection were in the range of 0.007-1.47 ng/mL. The obtained extraction recoveries for 10 ng/mL of polycyclic aromatic hydrocarbons standard solution were in the range of 85-92%. Replicating the experiment under these conditions five times gave relative standard deviations lower than 6%. Finally, the method was successfully applied for pre-concentration and determination of polycyclic aromatic hydrocarbons in environmental water samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Deng, Chunhui; Li, Ning; Ji, Jie; Yang, Bei; Duan, Gengli; Zhang, Xiangmin
2006-01-01
In this study, a simple, rapid, and sensitive method was developed and validated for the quantification of valproic acid (VPA), an antiepileptic drug, in human plasma, which was based on water-phase derivatization followed by headspace solid-phase microextraction (HS-SPME) and gas chromatography/mass spectrometry (GC/MS). In the proposed method, VPA in plasma was rapidly derivatized with a mixture of isobutyl chloroformate, ethanol and pyridine under mild conditions (room temperature, aqueous medium), and the VPA ethyl ester formed was headspace-extracted and simultaneously concentrated using the SPME technique. Finally, the analyte extracted on SPME fiber was analyzed by GC/MS. The experimental parameters and method validations were studied. The optimal conditions were obtained: PDMS fiber, stirring rate of 1100 rpm, sample temperature of 80 degrees C, extraction time of 20 min, NaCl concentration of 30%. The proposed method had a limit of quantification (0.3 microg/mL), good recovery (89-97%) and precision (RSD value less than 10%). Because the proposed method combined a rapid water-phase derivatization with a fast, simple and solvent-free sample extraction and concentration technique of SPME, the sample preparation time was less than 25 min. This much shortens the whole analysis time of VPA in plasma. The validated method has been successfully used to analyze VPA in human plasma samples for application in pharmacokinetic studies. All these results show that water-phase derivatization followed by HS-SPME and GC/MS is an alternative and powerful method for fast determination of VPA in biological fluids. Copyright 2006 John Wiley & Sons, Ltd.
Novel strategies for sample preparation in forensic toxicology.
Samanidou, Victoria; Kovatsi, Leda; Fragou, Domniki; Rentifis, Konstantinos
2011-09-01
This paper provides a review of novel strategies for sample preparation in forensic toxicology. The review initially outlines the principle of each technique, followed by sections addressing each class of abused drugs separately. The novel strategies currently reviewed focus on the preparation of various biological samples for the subsequent determination of opiates, benzodiazepines, amphetamines, cocaine, hallucinogens, tricyclic antidepressants, antipsychotics and cannabinoids. According to our experience, these analytes are the most frequently responsible for intoxications in Greece. The applications of techniques such as disposable pipette extraction, microextraction by packed sorbent, matrix solid-phase dispersion, solid-phase microextraction, polymer monolith microextraction, stir bar sorptive extraction and others, which are rapidly gaining acceptance in the field of toxicology, are currently reviewed.
Bahar, Shahriyar; Es'haghi, Zarrin; Nezhadali, Azizollah; Banaei, Alireza; Bohlooli, Shahab
2017-04-15
In the present study, nano-sized titanium oxides were applied for preconcentration and determination of Pb(II) in aqueous samples using hollow fiber based solid-liquid phase microextraction (HF-SLPME) combined with flame atomic absorption spectrometry (FAAS). In this work, the nanoparticles dispersed in caprylic acid as an extraction solvent was placed into a polypropylene porous hollow fiber segment supported by capillary forces and sonification. This membrane was in direct contact with solutions containing Pb (II). The effect of experimental conditions on the extraction, such as pH, stirring rate, sample volume, and extraction time were optimized. Under the optimal conditions, the performance of the proposed method was investigated for the determination of Pb (II) in food and water samples. The method was linear in the range of 0.6-3000μgmL -1 . The relative standard deviations and relative recovery of Pb (II) was 4.9% and 99.3%, respectively (n=5). Copyright © 2016 Elsevier Ltd. All rights reserved.
Salgado-Petinal, Carmen; Lamas, J Pablo; Garcia-Jares, Carmen; Llompart, Maria; Cela, Rafael
2005-07-01
In this paper a solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) method is proposed for a rapid analysis of some frequently prescribed selective serotonin re-uptake inhibitors (SSRI)-venlafaxine, fluvoxamine, mirtazapine, fluoxetine, citalopram, and sertraline-in urine samples. The SPME-based method enables simultaneous determination of the target SSRI after simple in-situ derivatization of some of the target compounds. Calibration curves in water and in urine were validated and statistically compared. This revealed the absence of matrix effect and, in consequence, the possibility of quantifying SSRI in urine samples by external water calibration. Intra-day and inter-day precision was satisfactory for all the target compounds (relative standard deviation, RSD, <14%) and the detection limits achieved were <0.4 ng mL(-1) urine. The time required for the SPME step and for GC analysis (30 min each) enables high throughput. The method was applied to real urine samples from different patients being treated with some of these pharmaceuticals. Some SSRI metabolites were also detected and tentatively identified.
Kamalabadi, Mahdie; Ghaemi, Elham; Mohammadi, Abdorreza; Alizadeh, Naader
2015-08-15
Furfural (Fu) and hydroxymethylfurfural (HMFu) are extracted using a dodecylbenzenesulfonate-doped polypyrrole coating as a fiber for headspace solid phase microextraction (HS-SPME) method in baby formula samples and detected using ion mobility spectrometry (IMS). Sample pH, salt effect, extraction time and temperature were investigated and optimized as effective parameters in HS-SPME. The calibration curves were linear in the range of 20-300 ng g(-1) (R(2)>0.99). Limits of detection for Fu and HMFu were 6 ng g(-1) and 5 ng g(-1), respectively. The RSD% of Fu and HMFu for five analyses was 4.4 and 4.9, respectively. The proposed method was successfully applied to determine of Fu and HMFu in the different baby formula samples with satisfactory result. The results were in agreement with those obtained using HPLC analysis. The HS-SPME-IMS is precise, selective and sensitive analytical method for determination of Fu and HMFu in baby formula samples, without any derivatization process. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cardellicchio, N; Giandomenico, S; Decataldo, A; Di Leo, A
2001-03-01
A method for the determination of organotin compounds (monobutyl = MBT, dibutyl = DBT, and tributyltin = TBT) in marine sediments by headspace Solid Phase Microextraction (SPME) has been developed. The analytical procedure involved 1) extraction of TBT, DBT and MBT from sediments with HCl and methanol mixture, 2) in situ derivatization with sodium tetraethylborate and 3) headspace SPME extraction using a fiber coated with poly(dimethylsiloxane). The derivatized organotin compounds were desorbed into the splitless injector and simultaneously analyzed by gas chromatography - mass spectrometry. The analytical method was optimized with respect to derivatization reaction and extraction conditions. The detection limits obtained for MBT, DBT and TBT ranged from 730 to 969 pg/g as Sn dry weight. Linear calibration curves were obtained for all analytes in the range of 30-1000 ng/L as Sn. Analysis of a standard reference sediment (CRM 462) demonstrates the suitability of this method for the determination of butyltin compounds in marine sediments. The application to the determination of TBT, DBT and MBT in a coastal marine sediment is shown.
Campillo, Natalia; Iniesta, María Jesús; Viñas, Pilar; Hernández-Córdoba, Manuel
2015-01-01
Seven strobilurin fungicides were pre-concentrated from soya-based drinks using dispersive liquid-liquid micro-extraction (DLLME) with a prior protein precipitation step in acid medium. The enriched phase was analysed by liquid chromatography (LC) with dual detection, using diode array detection (DAD) and electrospray-ion trap tandem mass spectrometry (ESI-IT-MS/MS). After selecting 1-undecanol and methanol as the extractant and disperser solvents, respectively, for DLLME, the Taguchi experimental method, an orthogonal array design, was applied to select the optimal solvent volumes and salt concentration in the aqueous phase. The matrix effect was evaluated and quantification was carried out using external aqueous calibration for DAD and matrix-matched calibration method for MS/MS. Detection limits in the 4-130 and 0.8-4.5 ng g(-1) ranges were obtained for DAD and MS/MS, respectively. The DLLME-LC-DAD-MS method was applied to the analysis of 10 different samples, none of which was found to contain residues of the studied fungicides.
Gong, Sheng-Xiang; Wang, Xia; Li, Lei; Wang, Ming-Lin; Zhao, Ru-Song
2015-11-01
In this paper, a novel and simple method for the sensitive determination of endocrine disrupter compounds octylphenol (OP) and nonylphenol (NP) in environmental water samples has been developed using solid-phase microextraction (SPME) coupled with gas chromatography-mass spectrometry. Carboxylated carbon nano-spheres (CNSs-COOH) are used as a novel SPME coating via physical adhesion. The CNSs-COOH fiber possessed higher adsorption efficiency than 100 μm polydimethysiloxane (PDMS) fiber and was similar to 85 μm polyacrylate (PA) fiber for the two analytes. Important parameters, such as extraction time, pH, agitation speed, ionic strength, and desorption temperature and time, were investigated and optimized in detail. Under the optimal parameters, the developed method achieved low limits of detection of 0.13~0.14 ng·L(-1) and a wide linear range of 1~1000 ng·(-1) for OP and NP. The novel method was validated with several real environmental water samples, and satisfactory results were obtained.
Huang, Zhongping; Zhang, Jie; Zhang, Peipei; Wang, Hong; Pan, Zaifa; Wang, Lili
2016-07-01
Headspace solid-phase microextraction coupled with cryotrap gas chromatography and mass spectrometry was applied to the analysis of volatile organic compounds in pleural effusions. The highly volatile organic compounds were separated successfully with high sensitivity by the employment of a cryotrap device, with the construction of a cold column head by freezing a segment of metal capillary with liquid nitrogen. A total of 76 volatile organic compounds were identified in 50 pleural effusion samples (20 malignant effusions and 30 benign effusions). Among them, 34 more volatile organic compounds were detected with the retention time less than 8 min, by comparing with the normal headspace solid-phase microextraction coupled with gas chromatography and mass spectrometry method. Furthermore, 24 volatile organic compounds with high occurrence frequency in pleural effusion samples, 18 of which with the retention time less than 8 min, were selected for the comparative analysis. The results of average peak area comparison and box-plot analysis showed that except for cyclohexanone, 2-ethyl-1-hexanol, and tetramethylbenzene, which have been reported as potential cancer biomarkers, cyclohexanol, dichloromethane, ethyl acetate, n-heptane, ethylbenzene, and xylene also had differential expression between malignant and benign effusions. Therefore, the proposed approach was valuable for the comprehensive characterization of volatile organic compounds in pleural effusions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sawoszczuk, Tomasz; Syguła-Cholewińska, Justyna; Del Hoyo-Meléndez, Julio M
2017-02-01
The goal of this work was to determine the microbial volatile organic compounds emitted by moulds growing on wool in search of particular volatiles mentioned in the literature as indicators of active mould growth. The keratinolytically active fungi were inoculated on two types of media: (1) samples of wool placed on broths, and (2) on broths containing amino acids that are elements of the structure of keratin. All samples were prepared inside 20 mL vials (closed system). In the first case (1) the broths did not contain any sources of organic carbon, nitrogen, or sulfur, i.e. wool was the only nutrient for the moulds. A third type of sample was historical wool prepared in a Petri dish without a broth and inoculated with a keratinolytically active mould (open system). The microbial volatiles emitted by moulds were sampled with the headspace solid-phase microextraction method. Volatiles extracted on solid-phase microextraction fibers were analyzed in a gas chromatography with mass spectrometry system. Qualitative and quantitative analyses of chromatograms were carried out in search of indicators of metabolic activity. The results showed that there are three groups of volatiles that can be used for the detection of active forms of moulds on woollen objects. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ye, Diru; Wu, Susu; Xu, Jianqiao; Jiang, Ruifen; Zhu, Fang; Ouyang, Gangfeng
2016-02-01
Direct immersion solid-phase microextraction (DI-SPME) coupled with gas chromatography-mass spectrometry (GC-MS) was developed for rapid analysis of clenbuterol in pork for the first time. In this work, a low-cost homemade 44 µm polydimethylsiloxane (PDMS) SPME fiber was employed to extract clenbuterol in pork. After extraction, derivatization was performed by suspending the fiber in the headspace of the 2 mL sample vial saturated with a vapor of 100 µL hexamethyldisilazane. Lastly, the fiber was directly introduced to GC-MS for analysis. All parameters that influenced absorption (extraction time), derivatization (derivatization reagent, time and temperature) and desorption (desorption time) were optimized. Under optimized conditions, the method offered a wide linear range (10-1000 ng g(-1)) and a low detection limit (3.6 ng g(-1)). Finally, the method was successfully applied in the analysis of pork from the market, and recoveries of the method for spiked pork were 97.4-105.7%. Compared with the traditional solvent extraction method, the proposed method was much cheaper and fast. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Comparison of methods for determining volatile compounds in cheese, milk, and whey powder
USDA-ARS?s Scientific Manuscript database
Solid phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS) are commonly used for qualitative and quantitative analysis of volatile compounds in various dairy products, but selecting the proper procedures presents challenges. Heat is applied to drive volatiles from the samp...
Wang, Hui; Gao, Jiajia; Yu, Nana; Qu, Jingang; Fang, Fang; Wang, Huili; Wang, Mei; Wang, Xuedong
2016-07-01
In traditional ionic liquids (ILs)-based microextraction, the hydrophobic and hydrophilic ILs are often used as extractant and disperser, respectively. However, the functional effects of ILs are not utilized in microextraction procedures. Herein, we introduced 1-naphthoic acid into imidazolium ring to synthesize a novel ionic liquid 1-butyl-3-methylimidazolium naphthoic acid salt ([C4MIM][NPA]), and its structure was characterized by IR, (1)H NMR and MS. On the basis of its acidic property and lower solubility than common [CnMIM][BF4], it was used as a mixing dispersive solvent with [C4MIM][BF4] in "functionalized ionic liquid-based no organic solvent microextraction (FIL-NOSM)". Utilization of [C4MIM][NPA] in FIL-NOSM procedures has two obvious advantages: (1) it promoted the non-polar environment, increased volume of the sedimented phase, and thus could enhance the extraction recoveries of triclosan (TCS) and methyltriclosan (MTCS) by more than 10%; and (2) because of the acidic property, it can act as a pH modifier, avoiding extra pH adjustment step. By combining single factor optimization and central composite design, the main factors in the FIL-NOSM method were optimized. Under the optimal conditions, the relative recoveries of TCS and MTCS reached up to 98.60-106.09%, and the LODs of them were as low as 0.12-0.15µgL(-1) in plasma and urine samples. In total, this [C4MIM][NPA]-based FIL-NOSM method provided high extraction efficiency, and required less pretreatment time and unutilized any organic solvent. To the best of our knowledge, this is the first application of [C4mim][NPA]-based microextraction method for the simultaneous quantification of trace TCS and MTCS in human fluids. Copyright © 2016 Elsevier B.V. All rights reserved.
Development of an Alternative Mixed Odor Delivery Device (MODD) for Canine Training
2017-05-10
solid phase microextraction (SPME) and analysis by gas chromatography / mass spectrometry (GC/MS). Like the computational modeling, the laboratory...outlet was extracted by solid phase microextraction (SPME) and analyzed by gas chromatography with mass spectrometry (GC/MS). A polydimethylsiloxane...Menning and H. Ostmark, "Detection of liquid and homemade explosives: What do we need to know about their properties?," in Detection of Liquid
Kim, Dalho; Han, Jungho; Choi, Yongwook
2013-01-01
A method using on-line solid-phase microextraction (SPME) on a carbowax-templated fiber followed by liquid chromatography (LC) with ultraviolet (UV) detection was developed for the determination of triclosan in environmental water samples. Along with triclosan, other selected phenolic compounds, bisphenol A, and acidic pharmaceuticals were studied. Previous SPME/LC or stir-bar sorptive extraction/LC-UV for polar analytes showed lack of sensitivity. In this study, the calculated octanol-water distribution coefficient (log D) values of the target analytes at different pH values were used to estimate polarity of the analytes. The lack of sensitivity observed in earlier studies is identified as a lack of desorption by strong polar-polar interactions between analyte and solid-phase. Calculated log D values were useful to understand or predict the interaction between analyte and solid phase. Under the optimized conditions, the method detection limit of selected analytes by using on-line SPME-LC-UV method ranged from 5 to 33 ng L(-1), except for very polar 3-chlorophenol and 2,4-dichlorophenol which was obscured in wastewater samples by an interfering substance. This level of detection represented a remarkable improvement over the conventional existing methods. The on-line SPME-LC-UV method, which did not require derivatization of analytes, was applied to the determination of TCS including phenolic compounds and acidic pharmaceuticals in tap water and river water and municipal wastewater samples.
Liang, Pei; Kang, Caiyan; Mo, Yajun
2016-01-01
A novel method for the selective determination of methylmercury (MeHg) was developed by one-step displacement dispersive liquid-liquid microextraction (D-DLLME) coupled with graphite furnace atomic absorption spectrometry. In the proposed method, Cu(II) reacted with diethyldithiocarbamate (DDTC) to form Cu-DDTC complex, which was used as the chelating agent instead of DDTC for the dispersive liquid-liquid microextraction (DLLME) of MeHg. Because the stability of MeHg-DDTC is higher than that of Cu-DDTC, MeHg can displace Cu from the Cu-DDTC complex and be preconcentrated in a single DLLME procedure. MeHg could be extracted into the extraction solvent phase at pH 6 while Hg(II) remained in the sample solution. Potential interference from co-existing metal ions with lower DDTC complex stability was largely eliminated without the need of any masking reagent. Under the optimal conditions, the limit of detection of this method was 13.6ngL(-1) (as Hg), and an enhancement factor of 81 was achieved with a sample volume of 5.0mL. The proposed method was successfully applied for the determination of trace MeHg in some environmental samples with satisfactory results. Copyright © 2015 Elsevier B.V. All rights reserved.
Gao, Leihong; Zou, Jing; Liu, Haihong; Zeng, Jingbin; Wang, Yiru; Chen, Xi
2013-04-01
A method for the quantitative determination of bisphenol A in thermal printing paper was developed and validated. Bisphenol A was extracted from the paper samples using 2% NaOH solution, then the extracted analyte was enriched using single-drop microextraction followed by HPLC analysis. Several parameters relating to the single-drop microextraction efficiency including extraction solvent, extraction temperature and time, stirring rate, and pH of donor phase were studied and optimized. Spiked recovery of bisphenol A at 20 and 5 mg/g was found to be 95.8 and 108%, and the method detection limit and method quantification limit was 0.03 and 0.01 mg/g, respectively. Under the optimized conditions, the proposed method was applied to the determination of bisphenol A in seven types of thermal printing paper samples, and the concentration of bisphenol A was found in the range of 0.53-20.9 mg/g. The considerably minimum usage of organic solvents (5 μL 1-octanol) and high enrichment factor (189-197) in the sample preparation are the two highlighted advantages in comparison with previously published works. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Karimi, Mehdi; Dadfarnia, Shayessteh; Shabani, Ali Mohammad Haji; Tamaddon, Fatemeh; Azadi, Davood
2015-11-01
Deep eutectic liquid organic salt was used as the solvent and a liquid phase microextraction (DES-LPME) combined with electrothermal atomic absorption spectrometry (ETAAS) was developed for separation, preconcentration and determination of lead and cadmium in edible oils. A 4:1 mixture of deep eutectic solvent and 2% nitric acid (200 µL) was added to an oil sample. The mixture was vortexed and transferred into a water bath at 50 °C and stirred for 5 minutes. After the extraction was completed, the phases were separated by centrifugation, and the enriched analytes in the deep eutectic solvent phase were determined by ETAAS. Under optimized extraction conditions and for an oil sample of 28 g, enhancement factors of 198 and 195 and limits of detection (defined as 3 Sb/m) of 8 and 0. 2 ng kg(-1) were achieved for lead and cadmium respectively. The method was successfully applied to the determination of lead and cadmium in various edible oils. Copyright © 2015. Published by Elsevier B.V.
Comparison of methods for determining volatile compounds in milk, cheese, and whey powder
USDA-ARS?s Scientific Manuscript database
Solid phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS) are commonly used for qualitative and quantitative analysis of volatile compounds in various dairy products, but conditions have to be adjusted for optimal SPME release while not generating new compounds that are abs...
The U.S. Environmental Protection Agency has given high priority to research aimed at developing methods to extract hydrophilic disinfection by-products (DBPs) from drinking water. Public water supplies are treated with a variety of chemicals aimed at reducing or eliminating inf...
Asiabi, Hamid; Yamini, Yadollah; Seidi, Shahram; Esrafili, Ali; Rezaei, Fatemeh
2015-06-05
In this work, a novel and efficient on-line in-tube solid phase microextraction method followed by high performance liquid chromatography was developed for preconcentration and determination of trace amounts of parabens. A nanostructured polyaniline-polypyrrole composite was electrochemically deposited on the inner surface of a stainless steel tube and used as the extraction phase. Several important factors that influence the extraction efficiency, including type of solid-phase coating, extraction and desorption times, flow rates of the sample solution and eluent, pH, and ionic strength of the sample solution were investigated and optimized. Under the optimal conditions, the limits of detection were in the range of 0.02-0.04 μg L(-1). This method showed good linearity for parabens in the range of 0.07-50 μg L(-1), with coefficients of determination better than 0.998. The intra- and inter-assay precisions (RSD%, n=3) were in the range of 5.9-7.0% and 4.4-5.7% at three concentration levels of 2, 10, and 20 μg L(-1), respectively. The extraction recovery values for the spiked samples were in the acceptable range of 80.3-90.2%. The validated method was successfully applied for analysis of methyl-, ethyl-, and propyl parabens in some water, milk, and juice samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Method for preparing a solid phase microextraction device using aerogel
Miller, Fred S [Bethel Island, CA; Andresen, Brian D [Livermore, CA
2006-10-24
A sample collection substrate of aerogel and/or xerogel materials bound to a support structure is used as a solid phase microextraction (SPME) device. The xerogels and aerogels may be organic or inorganic and doped with metals or other compounds to target specific chemical analytes. The support structure is typically formed of a glass fiber or a metal wire (stainless steel or kovar). The devices are made by applying gel solution to the support structures and drying the solution to form aerogel or xerogel. Aerogel particles may be attached to the wet layer before drying to increase sample collection surface area. These devices are robust, stable in fields of high radiation, and highly effective at collecting gas and liquid samples while maintaining superior mechanical and thermal stability during routine use. Aerogel SPME devices are advantageous for use in GC/MS analyses due to their lack of interfering background and tolerance of GC thermal cycling.
Lin, Hsin-Hang; Sung, Yu-Hsiang; Huang, Shang-Da
2003-09-12
Solid-phase microextraction coupled with high-performance liquid chromatography was successfully applied to the analysis of nine phenylurea herbicides (metoxuron, monuron, chlorotoluron, isoproturon, monolinuron, metobromuron, buturon, linuron, and chlorbromuron). Polydimethylsiloxane-divinylbenzene (PDMS-DVB, 60 microm) and Carbowax-templated resin (CW-TPR, 50 microm) fibers were selected from four commercial fibers for further study because of their better extraction efficiencies. The parameters of the desorption procedure were studied and optimized. The effects of the properties of analytes and fiber coatings, carryover, duration and temperature of absorption, pH, organic solvent and ionic strength of samples were also investigated. External calibration with an aqueous standard can be used for the analysis of environmental samples (lake water) using either PDMS-DVB or CW-TPR fibers. Good precisions (1.0-5.9%) are achieved for this method, and the detection limits are at the level of 0.5-5.1 ng/ml.
Yang, Liu; Han, Qiang; Cao, Shuya; Yang, Jie; Yang, Junchao; Ding, Mingyu
2014-01-01
On-site analysis is an efficient approach to facilitate analysis at the location of the system under investigation as it can result in more accurate, more precise and quickly available analytical data. In our work, a novel self-made thermal desorption based interface was fabricated to couple solid-phase microextraction with ion mobility spectrometry for on-site water analysis. The portable interface can be connected with the front-end of an ion mobility spectrometer directly without other modifications. The analytical performance was evaluated via the extraction of chemical warfare agents and simulants in water samples. Several parameters including ionic strength and extraction time have been investigated in detail. The application of the developed method afforded satisfactory recoveries ranging from 72.9% to 114.4% when applied to the analysis of real water samples. PMID:25384006
Steinhaus, Martin; Fritsch, Helge T; Schieberle, Peter
2003-11-19
A stable isotope dilution assay (SIDA) was developed for the quantitation of both linalool enantiomers using synthesized [2H(2)]R/S-linalool as the internal standard. For enrichment of the target compound from beer, a solid phase microextraction method (SPME) was developed. In comparison to the more time-consuming extraction/distillation cleanup of the beer samples, the results obtained by SPME/SIDA were very similar, even under nonequilibration conditions. Analysis of five different types of beer showed significant differences in the linalool concentrations, which were clearly correlated with the intensity of the hoppy aroma note as evaluated by a sensory panel. In addition, significant differences in the R/S ratios were measured in the beers. The SPME/SIDA yielded exact data independently from headspace sampling parameters, such as exposure time or ionic strength of the solution.
Silk fiber for in-tube solid-phase microextraction to detect aldehydes by chemical derivatization.
Wang, Xiuqin; Pan, Lei; Feng, Juanjuan; Tian, Yu; Luo, Chuannan; Sun, Min
2017-11-03
Aldehydes are the potentially damaging pollutants in the environment, but it is difficult to be determined due to the low concentration level. Therefore, to accurate analysis of aldehydes, it is important for efficient sample preparation with selective enrichment and rapid separation. Environmentally friendly silk fiber as adsorbent material was directly applied to develop in-tube solid-phase microextraction for analyzing aqueous samples combined with high performance liquid chromatography. 2,4-Dinitrophenylhydrazine as a derivative reagent was used for chemical derivatization of aldehydes before extraction. Under optimum conditions, an online analysis method was built with the limits of detection in the range of 0.005-0.01μgL -1 and the linearity in the range of 0.03-10μgL -1 . Three aldehydes were determined in two real samples, and the relative recoveries were in the range of 95-102%. Copyright © 2017 Elsevier B.V. All rights reserved.
Kraujalytė, Vilma; Leitner, Erich; Venskutonis, Petras Rimantas
2013-05-22
The profiles of volatile constituents of berry fruit of two Aronia melanocarpa genotypes were evaluated by headspace-solid-phase microextraction (HS-SPME), simultaneous distillation and extraction (SDE), and gas chromatography-olfactometry (GC-O). In total, 74 volatile compounds were identified in chokeberry juice, 3-penten-2-one, 3,9-epoxy-p-menth-1-ene, and benzaldehyde being the most abundant constituents; however, their percentage concentrations were remarkably different in the HS-SPME and SDE profiles. Twenty two aroma-active compounds were detected and characterized by the trained panelists in HS-SPME using GC-O detection frequency analysis. Olfactometry revealed that ethyl-2-methyl butanoate, ethyl-3-methyl butanoate, ethyl decanoate ("fruity" aroma notes), nonanal ("green" notes), unidentified compound possessing "moldy" odor, and some other volatiles may be very important constituents in formation of chokeberry aroma of both analyzed plant cultivars.
Althoff, Marc André; Bertsch, Andreas; Metzulat, Manfred; Klapötke, Thomas M; Karaghiosoff, Konstantin L
2017-11-01
The successful application of headspace (HS) and direct immersion (DI) solid phase microextraction (SPME) for the unambiguous identification and characterization of a series of toxic thiophosphate esters, such as Amiton (I), from aqueous phases and complex matrices (e.g. grass and foliage) has been demonstrated. A Thermo Scientific gas chromatograph (GC) - tandem mass spectrometer (MS/MS) system with a TriPlus RSH® autosampler and a SPME tool was used to investigate the effect of different parameters that influence the extraction efficiency: e.g. pH of the sample matrix and extraction temperature. The developed methods were employed for the detection of several Amiton derivatives (Schedule II of the CWC) that are structurally closely related to each other; some of which are new and have not been reported in literature previously. In addition, a novel DI SPME method from complex matrices for the analysis of organophosphates related to the CWC was developed. The studies clearly show that DI SPME for complex matrices is superior to HS extraction and can potentially be applied to other related compounds controlled under the CWC. Copyright © 2017. Published by Elsevier B.V.
Pang, Long; Yang, Peijie; Pang, Rong; Li, Shunyi
2017-08-01
1-Hexadecyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide is a solid-phase ionic organic material under ambient temperature and is considered as a kind of "frozen" ionic liquid. Because of their solid-state and ultra-hydrophobicity, "frozen" ionic liquids are able to be confined in the pores of hollow fiber, based on which a simple method was developed for the hollow-fiber solid-phase microextraction of dichlorodiphenyltrichloroethane and its main metabolites. Under optimized conditions, the proposed method results in good linearity (R 2 > 0.9965) over the range of 0.5-50 μg/L, with low limits of detection and quantification in the range of 0.33-0.38 and 1.00-1.25 μg/L, respectively. Intra- and interday precisions evaluated by relative standard deviation were 3-6 and 1-6%, respectively. The spiked recoveries of dichlorodiphenyltrichloroethane and its main metabolites from real water samples were in the range of 64-113 and 79-112%, respectively, at two different concentration levels. The results suggest that "frozen" ionic liquids are promising for use as a class of novel sorbents. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Burman, Lina; Albertsson, Ann-Christine; Höglund, Anders
2005-07-08
Low molecular weight aromatic substances may migrate out from plastic packaging to their contents, especially if they consist of organic aqueous solutions or oils. It is, therefore, extremely important to be able to identify and quantify any migrated substances in such solutions, even at very low concentrations. We have in this work investigated and evaluated the use of solid-phase microextraction for the specific task of extraction from an organic aqueous solution such as a simulated pharmaceutical solution consisting of 10 vol.% ethanol in water. The goal was furthermore to investigate the possibility of simultaneously identifying and quantifying the substances in spite of differences in their chemical structures. Methods were developed and evaluated for extraction both with direct sampling and with headspace sampling. Difficulties appeared due to the ethanol in the solution and the minute amounts of substances present. We have shown that a simultaneous quantification of migrated low molecular weight degradation products of antioxidants using only one fibre is possible if the extraction method and temperature are adjusted in relation to the concentration levels of the analytes. Comparions were made with solid-phase extraction.
Szultka-Mlynska, Malgorzata; Pomastowski, Pawel; Buszewski, Boguslaw
2018-06-01
A sensitive, rapid and specific analytical method using high performance liquid chromatography coupled with mass spectrometry (HPLC-QqQ-MS) was developed to determine selected antibiotic drugs and their metabolites (amoxicillin, cefotaxime, ciprofloxacin, clindamycin and metronidazole; amoxycilloic acid, 4-hydroxyphenyl glycyl amoxicillin, desacetyl cefotaxime, 3-desacetyl cefotaxime lactone, ciprofloxacin N-oxide, N-demethylclindamycin, clindamycin sulfoxide, and hydroxy metronidazole) in human whole blood and vascularized tissue after single oral administration. The samples were prepared by solid phase microextraction with C18 fibers (SPME C18 ) and determined on a GRACE analytical C18 column, Vision HT (50 × 2 mm, 1.5 μm) at the flow rate of 0.4 mL min -1 using water and acetonitrile (containing 0.1% formic acid) as the mobile phase. The proposed method was successfully applied in a pharmacokinetic study of the selected antibiotic drugs and their metabolites in real human samples. Additionally, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI/TOF-MS) was used for identification and qualification analysis of the target compounds. Copyright © 2018 Elsevier B.V. All rights reserved.
Ullrich, Sebastian; Neef, Sylvia K; Schmarr, Hans-Georg
2018-02-01
Low-molecular-weight volatile sulfur compounds such as thiols, sulfides, disulfides as well as thioacetates cause a sulfidic off-flavor in wines even at low concentration levels. The proposed analytical method for quantification of these compounds in wine is based on headspace solid-phase microextraction, followed by gas chromatographic analysis with sulfur-specific detection using a pulsed flame photometric detector. Robust quantification was achieved via a stable isotope dilution assay using commercial and synthesized deuterated isotopic standards. The necessary chromatographic separation of analytes and isotopic standards benefits from the inverse isotope effect realized on an apolar polydimethylsiloxane stationary phase of increased film thickness. Interferences with sulfur-specific detection in wine caused by sulfur dioxide were minimized by addition of propanal. The method provides adequate validation data, with good repeatability and limits of detection and quantification. It suits the requirements of wine quality management, allowing the control of oenological treatments to counteract an eventual formation of excessively high concentration of such malodorous compounds. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
He, Huan; Zhuang, Yuan; Peng, Ying; Gao, Zhanqi; Yang, Shaogui; Sun, Cheng
2014-02-01
A porous and highly efficient polyaniline-based solid-phase microextraction (SPME) coating was successfully prepared by the electrochemical deposition method. A method based on headspace SPME followed by HPLC was established to rapidly determine trace chlorophenols in water samples. Influential parameters for the SPME, including extraction mode, extraction temperature and time, pH and ionic strength procedures, were investigated intensively. Under the optimized conditions, the proposed method was linear in the range of 0.5-200 μg/L for 4-chlorophenol and 2,4,6-trichlorophenol, 0.2-200 μg/L for 2,4-dichlorophenol and 2-200 μg/L for 2,3,4,6-tetrachlorophenol and pentachlorophenol, with satisfactory correlation coefficients (>0.99). RSDs were <15% (n = 5) and LODs were relatively low (0.10-0.50 μg/L). Compared to commercial 85 μm polyacrylate and 60 μm polydimethylsiloxane/divinylbenzene fibers, the homemade polyaniline fiber showed a higher extraction efficiency. The proposed method has been successfully applied to the determination of chlorophenols in water samples with satisfactory recoveries. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cabarcos, Pamela; Herbello-Hermelo, Paloma; Álvarez-Freire, Iván; Moreda-Piñeiro, Antonio; Tabernero, María Jesús; Bermejo, Ana María; Bermejo-Barrera, Pilar
2016-09-01
A simple sample pre-treatment method based on solid phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS) has been optimized and validated for the assessment of 15 residual solvents (2-propanol, 2-methylpentane, 3-methylpentane, acetone, ethyl acetate, benzene, hexane, methylcyclohexane, methylcyclopentane, m-xylene, propyl acetate, toluene, 1,2,4-trimethylbenzene, dichloromethane, and ethylbenzene) in seized illicit cocaine and heroin. DMSO and DMF as sample diluents were found to offer the best residual solvent transference to the head space for further adsorption onto the SPME fiber, and the developed method therefore showed high sensitivity and analytical recovery. Variables affecting SPME were fully evaluated by applying an experimental design approach. Best conditions were found when using an equilibration time of 5 min at 70 °C and headspace sampling of residual solvents at the same temperature for 15 min. Method validation, performed within the requirements of international guidelines, showed excellent sensitivity, as well as intra- and inter-day precision and accuracy. The proposed methodology was applied to 96 cocaine samples and 14 heroin samples seized in Galicia (northwestern Spain) within 2013 and 2014.
Saraji, Mohammad; Mehrafza, Narges; Bidgoli, Ali Akbar Hajialiakbari; Jafari, Mohammad Taghi
2012-10-01
A method was established for the determination of desipramine in biological samples using liquid-liquid-liquid microextraction followed by in-syringe derivatization and gas chromatography-nitrogen phosphorus detection. The extraction method was based on the use of two immiscible organic solvents. n-Dodecane was impregnated in the pores of the hollow fiber and methanol was placed inside the lumen of the fiber as the acceptor phase. Acetic anhydride was used as the reagent for the derivatization of the analyte inside the syringe barrel. Parameters that affect the extraction efficiency (composition of donor and acceptor phase, ionic strength, sample temperature, and extraction time) as well as derivatization efficiency (amount of acetic anhydride and reaction time and temperature) were investigated. The limit of detection was 0.02 μg/L with intra and interday RSDs of 2.6 and 7.7%, respectively. The linearity of the method was in the range of 0.2-20 μg/L (r(2) = 0.9986). The method was successfully applied to determine desipramine in human plasma and urine. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Haijing; Geppert, Helmut; Fischer, Thomas; Wieprecht, Wolfgang; Möller, Detlev
2015-10-01
A new method for the determination of sucrose in honey with derivatization solid-phase microextraction and gas chromatography/mass spectrometry (D-SPME-GC/MS) was developed. The method incorporates a sample derivatization with acetic anhydride using N-methylimidazole as the catalyst and the subsequent enrichment of the analyte in a Polyacrylate-SPME fiber. Results show that 100 µL N-methylimidazole and 800 µL acetic anhydride were sufficient to complete the acetylation for sucrose in 100 µL aqueous sample at room temperature. For SPME, an enrichment time of 30 min was sufficient. SPME was performed by immersing the fiber into the solution with additional vibration. Then, the analyte was desorbed for 5 min at 280°C in the GC/MS injection port with splitless mode. The present method exhibits good linearity at a concentration range of 0.3-8% of sucrose in honey with excellent regression (R = 0.9993). The method has been successfully applied to the control of sucrose adulteration in honey. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Aresta, Antonella; Cioffi, Nicola; Palmisano, Francesco; Zambonin, Carlo G
2003-08-27
A solid-phase microextraction (SPME) method, coupled to liquid chromatography with diode array UV detection (LC-UV/DAD), for the simultaneous determination of cyclopiazonic acid, mycophenolic acid, tenuazonic acid, and ochratoxin A is described. Chromatographic separation was achieved on a propylamino-bonded silica gel stationary phase using acetonitrile/methanol/ammonium acetate buffer mixture (78:2:20, v/v/v) as mobile phase. SPME adsorption and desorption conditions were optimized using a silica fiber coated with a 60 microm thick polydimethylsiloxane/divinylbenzene film. Estimated limits of detection and limits of quantitation ranged from 3 to 12 ng/mL and from 7 to 29 ng/mL, respectively. The method has been applied to cornflake samples. Samples were subjected to a preliminary short sonication in MeOH/2% KHCO(3) (70:30, v/v); the mixture was evaporated to near dryness and reconstituted in 1.5 mL of 5 mM phosphate buffer (pH 3) for SPME followed by LC-UV/DAD. The overall procedure had recoveries (evaluated on samples spiked at 200 ng/g level) ranging from 74 +/- 4 to 103 +/- 9%. Samples naturally contaminated with cyclopiazonic and tenuazonic acids were found; estimated concentrations were 72 +/- 9 and 25 +/- 6 ng/g, respectively.
De Toffoli, Ana L; Fumes, Bruno H; Lanças, Fernando M
2018-02-22
On-line in-tube solid phase microextraction (in-tube SPME) coupled to high performance liquid chromatography and tandem mass spectrometry (HPLC-MS/MS) was successfully applied to the determination of selected triazines in water samples. The method based on the employment of a packed column containing graphene oxide (GO) supported on aminopropyl silica (Si) showed that the extraction phase has a high potential for triazines extraction aiming to its physical-chemical properties including ultrahigh specific surface area, good mechanical and thermal stability and high fracture strength. Injection volume and loading time were both investigated and optimized. The method validation using Si-GO to extract and concentrate the analytes showed satisfactory results, good sensitivity, good linearity (0.2-4.0 µg L -1 ) and low detection limits (1.1-2.9 ng L -1 ). The high extraction efficiency was determined with enrichment factors ranging from 1.2-2.9 for the lowest level, 1.3-4.9 intermediate level and 1.2-3.0 highest level (n = 3). Although the analytes were not detected in the real samples evaluated, the method has demonstrated to be efficient through its application in the analysis of spiked triazines in ground and mineral water samples.
Wang, Huili; Gao, Ming; Wang, Mei; Zhang, Rongbo; Wang, Wenwei; Dahlgren, Randy A; Wang, Xuedong
2015-03-15
Herein, we developed a novel integrated device to perform phase separation based on ultrasound-assisted salt-induced liquid-liquid microextraction for determination of five fluoroquinones (FQs) in human body fluids. The integrated device consisted of three simple HDPE components used to separate the extraction solvent from the aqueous phase prior to retrieving the extractant. A series of extraction parameters were optimized using the response surface method based on central composite design. Optimal conditions consisted of 945μL acetone extraction solvent, pH 2.1, 4.1min stir time, 5.9g Na2SO4, and 4.0min centrifugation. Under optimized conditions, the limits of detection (at S/N=3) were 0.12-0.66μgL(-1), the linear range was 0.5-500μgL(-1) and recoveries were 92.6-110.9% for the five FQs extracted from plasma and urine. The proposed method has several advantages, such as easy construction from inexpensive materials, high extraction efficiency, short extraction time, and compatibility with HPLC analysis. Thus, this method shows excellent prospects for sample pretreatment and analysis of FQs in human body fluids. Copyright © 2015 Elsevier B.V. All rights reserved.
Alshishani, Anas; Makahleh, Ahmad; Yap, Hui Fang; Gubartallah, Elbaleeq Adam; Salhimi, Salizawati Muhamad; Saad, Bahruddin
2016-12-01
A new sample preparation method, ion-pair vortex assisted liquid-liquid microextraction (VALLME-BE), for the determination of a highly polar anti-diabetic drug (metformin) in plasma sample was developed. The VALLME-BE was performed by diluting the plasma in borate buffer and extracted to 150µL 1-octanol containing 0.2M di-(2-ethylhexyl)phosphoric acid as intermediate phase. The drug was next back-extracted into 20µL of 0.075M HCl solution. The effects of pH, ion-pair concentration, type of organic solvent, volume of extraction phases, ionic strength, vortexing and centrifugation times on the extraction efficiency were investigated. The optimum conditions were at pH 9.3, 60s vortexing and 2min centrifugation. The microextract, contained metformin and buformin (internal standard), was directly injected into a HPLC unit using C1 column (250mm×4.6mm×10µm) and detected at 235nm. The method was validated and calibration curve was linear with r 2 >0.99 over the range of 20-2000µgL -1 . The limits of detection and quantitation were 1.4 and 4.1µgL -1 , respectively. The accuracy was within 94.8-108% of the nominal concentration. The relative standard deviation for inter- and intra-day precision was less than 10.8%. The method was conveniently applied for the determination of metformin in plasma samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Baktash, Mohammad Yahya; Bagheri, Habib
2017-06-02
In this research, an attempt was made toward synthesizing a sol-gel-based silica aerogel and its subsequent coating on a copper wire by phase separation of polystyrene. Adaption of this new approach enabled us to coat the metallic wire with powder materials. The use of this method for coating, led to the formation of a porous and thick structure of silica aerogel. The coated wire was placed in a needle and used as the sorbent for in-tube solid phase microextraction of chlorobenzenes (CBs). The superhydrophobicity of sorbent on extraction efficiency was investigated by using different ratios of tetraethylorthosilicate/methyltrimethoxysilane. The surface coated with the prepared silica aerogel by the phase separation of polystyrene showed high contact angle, approving the desired superhydrophobic properties. Effects of major parameters influencing the extraction efficiency including the extraction temperature, extraction time, ionic strength, desorption time were investigated and optimized. The limits of detection and quantification of the method under the optimized condition were 0.1-1.2 and 0.4-4.1ngL -1 , respectively. The relative standard deviations (RSD%) at a concentration level of 10ngL -1 were between 4 and 10% (n=3). The calibration curves of CBs showed linearity from 1 to100ngL -1 . Eventually, the method was successfully applied to the extraction of model compounds from real water samples and relative recoveries varied from 88 to 115%. Copyright © 2017 Elsevier B.V. All rights reserved.
Farajzadeh, Mir Ali; Khorram, Parisa; Pazhohan, Azar
2016-04-01
A simple, sensitive, and efficient method has been developed for simultaneous estimation of valsartan and atorvastatin in human plasma by combination of solid-based dispersive liquid-liquid microextraction and high performance liquid chromatography-diode array detection. In the proposed method, 1,2-dibromoethane (extraction solvent) is added on a sugar cube (as a solid disperser) and it is introduced into plasma sample containing the analytes. After manual shaking and centrifugation, the resultant sedimented phase is subjected to back extraction into a small volume of sodium hydrogen carbonate solution using air-assisted liquid-liquid microextraction. Then the cloudy solution is centrifuged and the obtained aqueous phase is transferred into a microtube and analyzed by the separation system. Under the optimal conditions, extraction recoveries are obtained in the range of 81-90%. Calibration curves plotted in drug-free plasma sample are linear in the ranges of 5-5000μgL(-1) for valsartan and 10-5000μgL(-1) for atorvastatin with the coefficients of determination higher than 0.997. Limits of detection and quantification of the studied analytes in plasma sample are 0.30-2.6 and 1.0-8.2μgL(-1), respectively. Intra-day (n=6) and inter-days (n=4) precisions of the method are satisfactory with relative standard deviations less than 7.4% (at three levels of 10, 500, and 2000μgL(-1), each analyte). These data suggest that the method can be successfully applied to determine trace amounts of valsartan and atorvastatin in human plasma samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Alvarez-Rivera, Gerardo; Vila, Marlene; Lores, Marta; Garcia-Jares, Carmen; Llompart, Maria
2014-04-25
A simple methodology based on solid-phase microextraction (SPME) followed by gas chromatography-tandem mass spectrometry (GC-MS/MS) has been developed for the simultaneous analysis of different classes of preservatives including benzoates, bronidox, 2-phenoxyethanol, parabens, BHA, BHT and triclosan in cosmetic products. In situ acetylation and subsequent organic modifier addition have been successfully implemented in the SPME process as an effective extractive strategy for matrix effect compensation and chromatographic performance improvement. Main factors affecting SPME procedure such as fiber coating, sampling mode, extraction temperature and salt addition (NaCl) were evaluated by means of a 3×2(3-1) factorial experimental design. The optimal experimental conditions were established as follows: direct solid-phase microextraction (SPME) at 40°C and addition of NaCl (20%, w/v), using a DVB/CAR/PDMS fiber coating. Due to the complexity of the studied matrices, method performance was evaluated in a representative variety of both rinse-off and leave-on samples, demonstrating to have a broad linear range (R(2)>0.9964). In general, quantitative recoveries (>85% in most cases) and satisfactory precision (RSD<13% for most of compounds) were obtained, with limits of detection (LODs) well below the maximum authorized concentrations established by the European legislation. One of the most important achievements of this work was the use of external calibration with cosmetic-matched standards to accurately quantify the target analytes. The validated methodology was successfully applied to the analysis of different types of cosmetic formulations including body milks, moisturizing creams, deodorants, sunscreen, bath gel, dental cream and make-up products amongst others, demonstrating to be a reliable multi-preservative methododology for routine control. Copyright © 2014 Elsevier B.V. All rights reserved.
Yang, Ting-ting; Zhou, Lin-feng; Qiao, Jun-qin; Lian, Hong-zhen; Ge, Xin; Chen, Hong-yuan
2013-05-24
A capillary poly(trimethyl-2-methacroyloxyethylammonium chloride-co-ethylene glycol dimethacrylate) monolith was in situ synthesized by thermally initiated free radical co-polymerization using trimethyl-2-methacroyloxyethylammonium chloride (MATE) and ethylene glycol dimethacrylate (EGDMA) as functional monomer and cross-linker, respectively. N,N-dimethylformamide and polyethylene glycol 6000 were used as solvent and porogen, respectively. The morphology and porous structure of the resulting monoliths were assessed by scanning electron microscope. In order to prepare practically useful poly(MATE-co-EGDMA) monoliths with low flow resistance and good mechanical strength, some parameters such as PEG-6000 to DMF ratio, total monomer to porogen ratio, and crosslinker to monomer ratio were optimized systematically. Moreover, the extraction mechanism was evaluated using two series of compounds, alkylbenzenes and weak acids, as model compounds on poly(MATE-co-EGDMA) monoliths as liquid chromatographic stationary phase. Finally, the monoliths were applied as the solid phase microextraction medium, and a simple off-line method for simultaneous determination of three brominated flame retardants, 2,4,6-tribromophenol (TBP), tetrabromobisphenol A (TBBPA) and 4,4'-dibrominated diphenyl ether (DBDPE), in environmental waters was developed by coupling the polymer monolith microextraction to HPLC with UV detection. The regression equations for these three brominated flame retardants showed good linearity from their limit of quantification to 5000ng/mL. The limits of detection were 0.20, 0.15 and 0.10ng/mL for TBP, TBBPA and DBDPE, respectively. The recovery of the proposed method was 78.7-106.1% with intra-day relative standard deviation of 1.3-4.4%. Copyright © 2013 Elsevier B.V. All rights reserved.
Frazey, P A; Barkley, R M; Sievers, R E
1998-02-01
An analytical approach for the determination of chlorination and iodination disinfection byproducts based on solid-phase microextraction (SPME) was developed. Solid-phase microextraction presents a simple, rapid, sensitive, and solvent-free approach to sample preparation in which analytes in either air or water matrixes are extracted into the polymeric coating of an optical fiber. Analytes are subsequently thermally desorbed in the injection port of a gas chromatograph for separation, detection, and quantitation. Thermal degradation of iodoform was observed during desorption from a polyacrylate fiber in initial GC/MS and GC/ECD experiments. Experiments were designed to determine SPME conditions that would allow quantification without significant degradation of analytes. Isothermal and temperature-programmed thermal desorptions were evaluated for efficacy in transferring analytes with wide-ranging volatilities and thermal stabilities into chromatographic analysis columns. A temperature-programmed desorption (TPD) (120-200 degrees C at 5 degrees C/min with an on-column injection port or 150-200 degrees C at 25 degrees C/min with a split/splitless injection port) was able to efficiently remove analytes with wide-ranging volatilities without causing thermal degradation. The SPME-TPD method was linear over 2-3 orders of magnitude with an electron capture detector and detection limits were in the submicrogram per liter range. Precision and detection limits for selected trihalomethanes were comparable to those of EPA method 551. Extraction efficiencies were not affected by the presence of 10 mg/L soap, 15 mg/L sodium iodide, and 6000 mg/L sodium thiosulfate. The SPME-TPD technique was applied to the determination of iodination disinfection byproducts from individual precursor compounds using GC/MS and to the quantitation of iodoform at trace levels in a water recycle system using GC/ECD.
Ardini, Francisco; Carro, Marina Di; Abelmoschi, Maria Luisa; Grotti, Marco; Magi, Emanuele
2014-07-01
A simple and sensitive procedure based on headspace solid-phase microextraction and gas chromatography with mass spectrometry was developed for the determination of five terpenes (α-pinene, limonene, linalool, α-terpineol, and geraniol) in the leaves of Nicotiana langsdorffii. The microextraction conditions (extraction temperature, equilibration time, and extraction time) were optimized by means of a Doehlert design. The experimental design showed that, for α-pinene and limonene, a low temperature and a long extraction time were needed for optimal extraction, while linalool, α-terpineol, and geraniol required a high temperature and a long extraction time. The chosen compromise conditions were temperature 60°C, equilibration time 15 min and extraction time 50 min. The main analytical figures of the optimized method were evaluated; LODs ranged from 0.07 ng/g (α-pinene) to 8.0 ng/g (geraniol), while intraday and interday repeatability were in the range 10-17% and 9-13%, respectively. Finally, the procedure was applied to in vitro wild-type and transgenic specimens of N. langsdorffii subjected to abiotic stresses (chemical and heat stress). With the exception of geraniol (75-374 ng/g), low concentration levels of terpenes were measured (ng/g level or lower); some interesting variations in terpene concentration induced by abiotic stress were observed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Amlashi, Nadiya Ekbatani; Hadjmohammadi, Mohammad Reza; Nazari, Seyed Saman Seyed Jafar
2014-09-26
For the first time, a novel water-contained surfactant-based vortex-assisted microextraction method (WSVAME) was developed for the extraction of two synthetic antioxidants (t-butyl hydroquinone (TBHQ) and butylated hydroxyanisole (BHA)) from edible oil samples. The novel microextraction method is based on the injection of an aqueous solution of non-ionic surfactant, Brij-35, into the oil sample in a conical bottom glass tube to form a cloudy solution. Vortex mixing was applied to accelerate the dispersion process. After extraction and phase separation by centrifugation, the lower sediment phase was directly analyzed by HPLC. The effects of the four experimental parameters including volume and concentration of extraction solvent (aqueous solution of Brij-35), percentage of acetic acid added to the oil sample and vortex time on the extraction efficiency were studied with a full factorial design. The central composite design and multiple linear regression method were applied for the construction of the best polynomial model based on experimental recoveries. The proposed method showed good linearity within the range of 0.200-200 μg mL(-1), the square of correlation coefficient higher than 0.999 and appropriate limit of detection (0.026 and 0.020 μg mL(-1) for TBHQ and BHA, respectively), while the precision for inner-day was ≤ 3.0 (n=5) and it was ≤ 3.80 (n=5) for inter-day assay. Under the optimal condition (30 μL of 0.10 mol L(-1) Brij-35 solution as extraction solvent and vortex time 1 min), the method was successfully applied for determination of TBHQ and BHA in different commercial edible oil samples. The recoveries in all cases were above 95%, with relative standard deviations below 5%. This approach is considered as a simple, sensitive and environmentally friendly method because of biodegradability of the extraction phase and no use of organic solvent in the extraction procedure. Copyright © 2014 Elsevier B.V. All rights reserved.
Liu, Feng-Jie; Liu, Chuan-Ting; Li, Wei; Tang, An-Na
2015-01-01
In this work, a new method for the determination of food colorants in beverage samples is developed, using diamino moiety functionalized silica nanoparticles (dASNPs) as both adsorbents in dispersive solid-phase microextraction (dSPME) and pseudostationary phases (PSPs) in capillary electrophoresis (CE) separation. dASNPs were firstly used as adsorbents for the preconcentration of four colorants by the dSPME process. After that, colorants were efficiently separated by CE using 30 mM phosphate buffer (pH 6.0) containing 2 mM β-CD and 0.9 mg/mL dASNPs as additives. All factors influencing dSPME and CE separations were optimized in detail. The investigated analytes showed good linearities with correlation coefficients (R(2)) higher than 0.9932. The limits of detection for the four food colorants were between 0.030 and 0.36 mg/L, which are lower than those reported previously. The established method was also used to analyze four colorants in beverage samples with recoveries ranging from 82.7% to 114.6%. To the best of our knowledge, this is the first time to use NPs both as extractants in dSPME and pseudostationary phases in CE for the analytical purpose. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhang, Cheng; Cagliero, Cecilia; Pierson, Stephen A; Anderson, Jared L
2017-01-20
A simple and rapid ionic liquid (IL)-based in situ dispersive liquid-liquid microextraction (DLLME) method was developed and coupled to headspace gas chromatography (HS-GC) employing electron capture (ECD) and mass spectrometry (MS) detection for the analysis of polychlorinated biphenyls (PCBs) and acrylamide at trace levels from milk and coffee samples. The chemical structures of the halide-based ILs were tailored by introducing various functional groups to the cations to evaluate the effect of different structural features on the extraction efficiency of the target analytes. Extraction parameters including the molar ratio of IL to metathesis reagent and IL mass were optimized. The effects of HS oven temperature and the HS sample vial volume on the analyte response were also evaluated. The optimized in situ DLLME method exhibited good analytical precision, good linearity, and provided detection limits down to the low ppt level for PCBs and the low ppb level for acrylamide in aqueous samples. The matrix-compatibility of the developed method was also established by quantifying acrylamide in brewed coffee samples. This method is much simpler and faster compared to previously reported GC-MS methods using solid-phase microextraction (SPME) for the extraction/preconcentration of PCBs and acrylamide from complex food samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Raffo, Antonio; Carcea, Marina; Castagna, Claudia; Magrì, Andrea
2015-08-07
An improved method based on headspace solid phase microextraction combined with gas chromatography-mass spectrometry (HS-SPME/GC-MS) was proposed for the semi-quantitative determination of wheat bread volatile compounds isolated from both whole slice and crust samples. A DVB/CAR/PDMS fibre was used to extract volatiles from the headspace of a bread powdered sample dispersed in a sodium chloride (20%) aqueous solution and kept for 60min at 50°C under controlled stirring. Thirty-nine out of all the extracted volatiles were fully identified, whereas for 95 other volatiles a tentative identification was proposed, to give a complete as possible profile of wheat bread volatile compounds. The use of an array of ten structurally and physicochemically similar internal standards allowed to markedly improve method precision with respect to previous HS-SPME/GC-MS methods for bread volatiles. Good linearity of the method was verified for a selection of volatiles from several chemical groups by calibration with matrix-matched extraction solutions. This simple, rapid, precise and sensitive method could represent a valuable tool to obtain semi-quantitative information when investigating the influence of technological factors on volatiles formation in wheat bread and other bakery products. Copyright © 2015 Elsevier B.V. All rights reserved.
Deng, Chunhui; Li, Ning; Zhang, Xiangmin
2004-01-01
The purpose of this study was to develop a simple, rapid and sensitive analytical method for determination of amino acids in neonatal blood samples. The developed method involves the employment of derivatization and a solid-phase microextraction (SPME) technique together with gas chromatography/mass spectrometry (GC/MS). Amino acids in blood samples were derivatized by a mixture of isobutyl chloroformate, methanol and pyridine, and the N(O,S)-alkoxycarbonyl alkyl esters thus formed were headspace extracted by a SPME fiber. Finally, the extracted analytes on the fiber were desorbed and detected by GC/MS in electron impact (EI) mode. L-Valine, L-leucine, L-isoleucine, L-phenylanaline and L-tyrosine in blood samples were quantitatively analyzed by measurement of the corresponding N(O,S)-alkoxycarbonyl alkyl esters using an external standard method. SPME conditions were optimized, and the method was validated. The method was applied to diagnosis of neonatal phenylkenuria (PKU) and maple syrup urine disease (MSUD) by the analyses of five amino acids in blood samples. The results showed that the proposed method is a potentially powerful tool for simultaneous screening for neonatal PKU and MSUD. Copyright (c) 2004 John Wiley & Sons, Ltd.
Hu, Yanxue; Yang, Xiumin; Wang, Chun; Zhao, Jin; Li, Weining; Wang, Zhi
2008-03-01
A new analytical method for the determination of carbendazim (MBC) and thiabendazole (TBZ) in apples is reported, based on solid-phase microextraction (SPME) coupling HPLC with fluorescence detection. The main SPME and HPLC experimental conditions were optimized. The apples were first blended and centrifuged. Then, an aliquot of the resulting solution was subjected to SPME on a 60 microm polydimethylsiloxane/divinylbenzene (PDMS/DVB) fibre for 35 min at room temperature with the solution being stirred at 1100 rev min(-1). The extracted pesticides on the SPME fibre were desorbed in the mobile phase into the SPME/HPLC interface for HPLC analysis. The method was linear over the range 0.01-1 mg kg(-1) in apples for both MBC and TBZ, with detection limits of 0.005 and 0.003 mg kg(-1) and correlation coefficients of 0.9995 and 0.9998, respectively. The average recoveries for MBC and TBZ were 91.5 and 92.3% with the relative standard deviations (RSD) of 4.7 and 4.1% at the 0.1 mg kg(-1) level, and 94.6 and 96.1% with RSD of 3.3 and 3.8% at the 0.5 mg kg(-1) level, respectively. The method is simple, sensitive, organic solvent-free and is suitable for the determination of MBC and TBZ in apples.
Han, Xiao-Fei; Chen, Juan; Shi, Yan-Ping
2018-08-01
A N-doped carbon nanotubes-reinforced hollow fiber solid-phase microextraction (N-doped CNTs-HF-SPME) method was developed for determination of two naphthalene-derived phytohormones, 1-naphthalene acetic acid (NAA) and 2-naphthoxyacetic acid (2-NOA), at trace levels in tomatoes. N-doped CNTs were dispersed in ultrapure water with the assistance of surfactant, and then immobilized into the pores of hollow fiber by capillary forces and sonification. The resultant N-doped CNTs-HF was wetted with 1-octanol, subsequently immersed into the tomato samples to extract the target analytes under a magnetic stirring, and then desorbed with methanol by sonication prior to chromatographic analysis. Compared with CNTs, the surface hydrophilicity of N-doped CNTs was improved owing to the doping of nitrogen atoms, and a uniform dispersion was formed, thus greatly simplifying the preparation process and reducing waste of materials. In addition, N-doped CNTs-HF exhibits a more effective extraction performance for NAA and 2-NOA on account of the introduction of Lewis-basic nitrogen. It is worth to mention that owing to the clean-up function of HF, there are not any complicated sample pretreatment procedures prior to the microextraction. To achieve the highest extraction efficiency, important microextraction parameters including the length and the concentration level of N-doped CNTs in surfactant solution, extraction time, desorption conditions such as the type and volume of solvents, pH value, stirring rate and volume of the donor phase were thoroughly investigated and optimized. Under the optimal conditions, the method showed 165- and 123-fold enrichment factors of NAA and 2-NOA, good inter-fiber repeatability and batch-to-batch reproducibility, good linearity with correlation coefficients higher than 0.9990, low limits of detection and quantification (at ng g -1 levels), and satisfactory recoveries in the range of 83.10-108.32% at three spiked levels. The proposed method taking advantages of both excellent adsorption performance of N-doped CNTs and the clean-up function of HF, was a simple, green, efficient and cost-effective enrichment procedure for the determination of trace NAA and 2-NOA in tomatoes. Copyright © 2018 Elsevier B.V. All rights reserved.
Abu-Bakar, Nur-Bahiyah; Makahleh, Ahmad; Saad, Bahruddin
2016-03-01
A novel microextraction method based on vortex- and CO2 -assisted liquid-liquid microextraction with salt addition for the isolation of furanic compounds (5-hydroxymethyl-2-furaldehyde, 5-methyl-2-furaldehyde, 2-furaldehyde, 3-furaldehyde, 2-furoic and 3-furoic acids) was developed. Purging the sample with CO2 was applied after vortexing to enhance the phase separation and mass transfer of the analytes. The optimum extraction conditions were: extraction solvent (volume), propyl acetate (125 μL); sample pH, 2.4; vortexing time, 45 s; salt concentration, 25% w/v and purging time, 5 min. The analytes were separated using an ODS Hypersil C18 column (250×4.6 mm i.d, 5 μm) under gradient flow. The proposed method showed good linearities (r(2) >0.999), low detection limits (0.08-1.9 μg/L) and good recoveries (80.7-122%). The validated method was successfully applied for the determination of the furanic compounds in concentrated juice (mango, date, orange, pomegranate, roselle, mangosteen and soursop) and dried fruit (prune, date and apricot paste) samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fiorentini, Emiliano F; Escudero, Leticia B; Wuilloud, Rodolfo G
2018-04-19
A simple, highly efficient, batch, and centrifuge-less dispersive liquid-liquid microextraction method based on a magnetic ionic liquid (MIL-DLLME) and electrothermal atomic absorption spectrometry (ETAAS) detection was developed for ultra-trace Cd determination in honey. Initially, Cd(II) was chelated with ammonium diethyldithiophosphate (DDTP) at pH 0.5 followed by its extraction with the MIL trihexyl(tetradecyl)phosphonium tetrachloroferrate(III) ([P 6,6,6,14 ]FeCl 4 ) and acetonitrile as dispersant. The MIL phase containing the analyte was separated from the aqueous phase using only a magnet. A back-extraction procedure was applied to recover Cd from the MIL phase using diluted HNO 3 and this solution was directly injected into the graphite furnace of ETAAS instrument. An extraction efficiency of 93% and a sensitivity enhancement factor of 112 were obtained under optimal experimental conditions. The detection limit (LOD) was 0.4 ng L -1 Cd, while the relative standard deviation (RSD) was 3.8% (at 2 μg L -1 Cd and n = 10), calculated from the peak height of absorbance signals. This work reports the first application of the MIL [P 6,6,6,14 ]FeCl 4 along with the DLLME technique for the successful determination of Cd at trace levels in different honey samples. Graphical abstract Preconcentration of ultratraces of Cd in honey using a magnetic ionic liquid and dispersive liquid-liquid microextraction technique.
Peng, Guilong; He, Qiang; Mmereki, Daniel; Lu, Ying; Zhong, Zhihui; Liu, Hanyang; Pan, Weiliang; Zhou, Guangming; Chen, Junhua
2016-04-01
A novel dispersive solid-phase extraction combined with vortex-assisted dispersive liquid-liquid microextraction based on solidification of floating organic droplet was developed for the determination of eight benzoylurea insecticides in soil and sewage sludge samples before high-performance liquid chromatography with ultraviolet detection. The analytes were first extracted from the soil and sludge samples into acetone under optimized pretreatment conditions. Clean-up of the extract was conducted by dispersive solid-phase extraction using activated carbon as the sorbent. The vortex-assisted dispersive liquid-liquid microextraction based on solidification of floating organic droplet procedure was performed by using 1-undecanol with lower density than water as the extraction solvent, and the acetone contained in the solution also acted as dispersive solvent. Under the optimum conditions, the linearity of the method was in the range 2-500 ng/g with correlation coefficients (r) of 0.9993-0.9999. The limits of detection were in the range of 0.08-0.56 ng/g. The relative standard deviations varied from 2.16 to 6.26% (n = 5). The enrichment factors ranged from 104 to 118. The extraction recoveries ranged from 81.05 to 97.82% for all of the analytes. The good performance has demonstrated that the proposed methodology has a strong potential for application in the multiresidue analysis of complex matrices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhen, Qi; Zhang, Min; Song, Wenlan; Wang, Huiju; Wang, Xuemei; Du, Xinzhen
2016-10-01
An oriented titanium-nickel oxide composite nanotubes coating was in situ grown on a nitinol wire by direct electrochemical anodization in ethylene glycol with ammonium fluoride and water for the first time. The morphology and composition of the resulting coating showed that the anodized nitinol wire provided a titania-rich coating. The titanium-nickel oxide composite nanotubes coated fiber was used for solid-phase microextraction of different aromatic compounds coupled to high-performance liquid chromatography with UV detection. The titanium-nickel oxide composite nanotubes coating exhibited high extraction capability, good selectivity, and rapid mass transfer for weakly polar UV filters. Thereafter the important parameters affecting extraction efficiency were investigated for solid-phase microextraction of UV filters. Under the optimized conditions, the calibration curves were linear in the range of 0.1-300 μg/L for target UV filters with limits of detection of 0.019-0.082 μg/L. The intraday and interday precision of the proposed method with the single fiber were 5.3-7.2 and 5.9-7.9%, respectively, and the fiber-to-fiber reproducibility ranged from 6.3 to 8.9% for four fibers fabricated in different batches. Finally, its applicability was evaluated by the extraction and determination of target UV filters in environmental water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Behzadi, Mansoureh; Noroozian, Ebrahim; Mirzaei, Mohammad
2013-11-01
A novel nanocomposite coating of poly(o-toluidine) and oxidized multiwalled CNTs (MWCNTs, where CNTs is carbon nanotubes) was electrochemically prepared on a stainless-steel wire. The applicability of the fiber was assessed for the headspace solid-phase microextraction of benzene, toluene, ethylbenzene, and xylenes in aqueous samples followed by GC with flame ionization detection. In order to obtain an adherent and stable composite coating, several experimental parameters related to the coating process, such as polymerization potential and time, and the concentration of o-toluidine and oxidized MWCNTs were optimized. The combination of MWCNTs and polymer in a nanocomposite form presents desirable opportunities to produce materials for new applications. The effects of various parameters on the efficiency of the headspace solid-phase microextraction process, such as desorption temperature and time, extraction temperature and time, and ionic strength were also investigated. At the optimum conditions, LODs were 0.03-0.06 μg/L. The method showed linearity in the range of 0.5-300 μg/L with coefficients of determination >0.99. The intraday and interday RSDs obtained at a 5 μg/L concentration level (n = 5) using a single fiber were 1.2-5.2 and 3.2-7.5%, respectively. The fiber-to-fiber RSD (%; n = 3) at 5 μg/L was 6.1-9.2%. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yilmaz, Erkan; Soylak, Mustafa
2015-07-30
A switchable polarity solvent was synthesized from triethylamine (TEA)/water/CO2 (Dry ice) via proton transfer reaction has been used for the microextraction of cadmium(II) as pyrrolidinedithiocarbamate (APDC) chelate. Cd(II)-APDC chelate was extracted into the switchable polarity solvent drops by adding 2 mL 10 M sodium hydroxide solution. Analytical parameters affecting the complex formation and microextraction efficiency such as pH, amount of ligand, volume of switchable polarity solvent and NaOH, sample volume were optimized. The effects of foreign ions were found tolerably. Under optimum conditions, the detection limit was 0.16 μg L(-1) (3Sb/m, n = 7) and the relative standard deviation was 5.4% (n = 7). The method was validated by the analysis of certified reference materials (TMDA-51.3 fortified water, TMDA-53.3 fortified water and SPS-WW2 waste water, 1573a Tomato Leaves and Oriental Basma Tobacco Leaves (INCT-OBTL-5)) and addition/recovery tests. The method was successfully applied to determination of cadmium contents of water, vegetable, fruit and cigarette samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Formaldehyde (HCHO) has been of special concern as an indoor air pollutant because of its existence in a wide range of products and its adverse health effects. The air-water partitioning behavior of volatile organic compounds (VOCs) such as formaldehyde is an important process th...
Mohammadi, Ali; Mohammadi, Somayeh; Bayandori Moghaddam, Abdolmajid; Masoumi, Vahideh; Walker, Roderick B
2014-10-01
In this study, a simple method was developed and validated to detect trace levels of benzaldehyde in injectable pharmaceutical formulations by solid-phase microextraction coupled with gas chromatography-flame ionization detector. Polyaniline was electrodeposited on a platinum wire in trifluoroacetic acid solvent by cyclic voltammetry technique. This fiber shows high thermal and mechanical stability and high performance in extraction of benzaldehyde. Extraction and desorption time and temperature, salt effect and gas chromatography parameters were optimized as key parameters. At the optimum conditions, the fiber shows good linearity between peak area ratio of benzaldehyde/3-chlorobenzaldehyde and benzaldehyde concentration in the range of 50-800 ng/mL with percent relative standard deviation values ranging from 0.75 to 8.64% (n = 3). The limits of quantitation and detection were 50 and 16 ng/mL, respectively. The method has the requisite selectivity, sensitivity, accuracy and precision to assay benzaldehyde in injectable pharmaceutical dosage forms. © The Author [2013]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Li, Xiang; Zhong, Ming; Chen, Jianmin
2008-08-01
The study on the performance of polyaniline as a fiber coating for solid-phase microextraction (SPME) purposes has been reported. Polyaniline coatings were directly electrodeposited on the surface of a stainless steel wire and applied for the extraction of some organochlorine pesticides (OCPs) from water samples. Analyses were performed using GC-electron capture detection (GC-ECD). The results obtained show that polyaniline fiber coating is suitable for the successful extraction of organochlorine compounds. This behavior is most probably due to the porous surface structure of polyaniline film, which provides large surface areas and allowed for high extraction efficiency. Experimental parameters such as adsorption and desorption conditions were studied and optimized. The optimized method has an acceptable linearity, with a concentration range of 1-5000 ng/L. Single fiber repeatability and fiber-to-fiber reproducibility were less than 12 and 17%, respectively. High environmental resistance and lower cost are among the advantages of polyaniline fibers over commercially available SPME fibers. The developed method was applied to the analysis of real water samples from Yangtse River and Tianmu Lake.
Dai, Liping; Cheng, Jing; Matsadiq, Guzalnur; Liu, Lu; Li, Jun-Kai
2010-08-03
In the proposed method, an extraction solvent with a lower toxicity and density than the solvents typically used in dispersive liquid-liquid microextraction was used to extract seven polychlorinated biphenyls (PCBs) from aqueous samples. Due to the density and melting point of the extraction solvent, the extract which forms a layer on top of aqueous sample can be collected by solidifying it at low temperatures, which form a layer on top of the aqueous sample. Furthermore, the solidified phase can be easily removed from the aqueous phase. Based on preliminary studies, 1-undecanol was selected as the extraction solvent, and a series of parameters that affect the extraction efficiency were systematically investigated. Under the optimized conditions, enrichment factors for PCBs ranged between 494 and 606. Based on a signal-to-noise ratio of 3, the limit of detection for the method ranged between 3.3 and 5.4 ng L(-1). Good linearity, reproducibility and recovery were also obtained. 2010 Elsevier B.V. All rights reserved.
Deng, Dong-Li; Zhang, Ji-You; Chen, Chen; Hou, Xiao-Ling; Su, Ying-Ying; Wu, Lan
2012-01-06
A novel capillary electrophoresis (CE) method coupled with monolithic molecular imprinted polymer (MIP) fiber based solid phase microextraction (SPME) was developed for selective and sensitive determination of ephedrine (E) and pseudoephedrine (PE). With in situ polymerization in a silica capillary mold and E as template, the MIP fibers could be produced in batch reproducibly and each fiber was available for 50 extraction cycles without significant decrease in extraction ability. Using the MIP fiber under optimized extraction conditions, CE detection limits of E and PE were greatly lowered from 0.20 to 0.00096 μg/mL and 0.12 to 0.0011 μg/mL, respectively. Analysis of urine and serum samples by the MIP-SPME-CE method was also performed, with results indicating that E and PE could be selectively extracted. The recoveries and relative standard deviations (RSDs) for sample analysis were found in the range of 91-104% and 3.8-9.1%, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Solid-phase microextraction (SPME) in conjunction with GC/MS was used to distinguish non-aromatic rice (Oryza sativa, L.) kernels from aromatic rice kernels. In this method, single kernels along with 10 µl of 0.1 ng 2,4,6-Trimethylpyridine (TMP) were placed in sealed vials and heated to 80oC for 18...
Song, Young Soo; Choi, Young Hoon; Kim, Do Hyun
2007-08-31
Microextraction of methyl orange in the aqueous two-phase system (ATPS) formed by dissolving tetrabutylammonium bromide (TBAB) and ammonium sulfate (AS) is reported. Methyl orange was transported from the AS-rich phase to TBAB-rich phase across the interface of the two immiscible phases. The electrohydrodynamic effect on the shape of the interface of two immiscible flows was also observed by applying dc voltage at the T-junction of the microchannel and the generation of a droplet of AS-rich phase was observed when the potential difference between positive and negative electrodes exceeds a threshold voltage. The minimum voltage necessary for the droplet generation depends on pH due to the degree of dissociation and charge accumulation.
Wang, Lingling; Zhang, Zhenzhen; Xu, Xu; Zhang, Danfeng; Wang, Fang; Zhang, Lei
2015-09-01
A simple, rapid, sensitive and effective method for the simultaneous determination of four endocrine disrupting compounds (EDCs) (bisphenol A (BPA), bisphenol F (BPF), bisphenol AF (BPAF) and bisphenol AP (BPAP)) in environment water samples based on solid-phase microextraction (SPME) coupled with high performance liquid chromatography (HPLC) was developed. Multi-wall carbon nanotubes (MWCNTs) adsorbents showed a good affinity to the target analytes. These compounds were rapidly extracted within 10 min. Various experimental parameters that could affect the extraction efficiencies had been investigated in detail. Under the optimum conditions, the enrichment factors of the method for the target EDCs were found to be 500. Satisfactory precision and accuracy of the method were obtained in a low concentration range of 2.0-500.0 ng mL(-1). The method detection limits were in the range of 0.10-0.30 ng mL(-1). The high pre-concentration rate and efficiency of the method ensure its successful application in extraction of trace EDCs from large volumes of environmental water samples. The extraction recoveries in real samples ranged from 85.3% to 102.5% with the relative standard deviations (n=5) less than 3.74%. Copyright © 2015 Elsevier B.V. All rights reserved.
Flynt, Elizabeth; Dupuy, Aubry; Kennedy, Charles; Bennett, Shanda
2006-09-01
The rapid detection of contaminants in our nation's drinking water has become a top homeland security priority in this time of increased national vigilance. Real-time monitoring of drinking water for deliberate or accidental contamination is key to national security. One method that can be employed for the rapid screening of pollutants in water is solid-phase microextraction (SPME). SPME is a rapid, sensitive, solvent-free system that can be used to screen for contaminants that have been accidentally or intentionally introduced into a water system. A method using SPME has been developed and optimized for the detection of seven organophosphate pesticides in drinking water treatment facility source waters. The method is tested in source waters for drinking water treatment facilities in Mississippi and Alabama. Water is collected from a deepwater well at Stennis Space Center (SSC), MS, the drinking water source for SSC, and from the Converse Reservoir, the main drinking water supply for Mobile, AL. Also tested are samples of water collected from the Mobile Alabama Water and Sewer System drinking water treatment plant prior to chlorination. The method limits of detection for the seven organophosphates were comparable to those described in several Environmental Protection Agency standard methods. They range from 0.25 to 0.94 microg/L.
Attari, Seyed Ghavameddin; Bahrami, Abdolrahman; Shahna, Farshid Ghorbani; Heidari, Mahmoud
2014-01-01
A green, environmental friendly and sensitive method for determination of volatile organohalogen compounds was described in this paper. The method is based on a homemade sol-gel single-walled carbon nanotube/silica composite coated solid-phase microextraction to develop for sampling and analysis of Carbon tetrachloride, Benzotrichloride, Chloromethyl methyl ether and Trichloroethylene in air. Application of this method was investigated under different laboratory conditions. Predetermined concentrations of each analytes were prepared in a home-made standard chamber and the influences of experimental parameters such as temperature, humidity, extraction time, storage time, desorption temperature, desorption time and the sorbent performance were investigated. Under optimal conditions, the use of single-walled carbon nanotube/silica composite fiber showed good performance, high sensitive and fast sampling of volatile organohalogen compounds from air. For linearity test the regression correlation coefficient was more than 98% for analyte of interest and linear dynamic range for the proposed fiber and the applied Gas Chromatography-Flame Ionization Detector technique was from 1 to 100 ngmL(-1). Method detection limits ranged between 0.09 to 0.2 ngmL(-1) and method quantification limits were between 0.25 and 0.7 ngmL(-1). Single-walled carbon nanotube/silica composite fiber was highly reproducible, relative standard deviations were between 4.3 to 11.7 percent.
Kleeberg, K K; Liu, Y; Jans, M; Schlegelmilch, M; Streese, J; Stegmann, R
2005-01-01
A solid-phase microextraction (SPME) method has been developed for the extraction of odorous compounds from waste gas. The enriched compounds were characterized by gas chromatography-mass spectrometry (GC-MS) and gas chromatography followed by simultaneous flame ionization detection and olfactometry (GC-FID/O). Five different SPME fiber coatings were tested, and the carboxen/polydimethylsiloxane (CAR/PDMS) fiber showed the highest ability to extract odorous compounds from the waste gas. Furthermore, parameters such as exposure time, desorption temperature, and desorption time have been optimized. The SPME method was successfully used to characterize an odorous waste gas from a fat refinery prior to and after waste gas treatment in order to describe the treatment efficiency of the used laboratory scale plant which consisted of a bioscrubber/biofilter combination and an activated carbon adsorber. The developed method is a valuable approach to provide detailed information of waste gas composition and complements existing methods for the determination of odors. However, caution should be exercised if CAR/PDMS fibers are used for the quantification of odorous compounds in multi-component matrices like waste gas emissions since the relative affinity of each analyte was shown to differ according to the total amount of analytes present in the sample.
Biata, N Raphael; Nyaba, Luthando; Ramontja, James; Mketo, Nomvano; Nomngongo, Philiswa N
2017-12-15
The aim of this study was to develop a simple and fast ultrasound-assisted ionic liquid dispersive liquid-liquid phase microextraction (UA-IL-DLLME) method for preconcetration of trace antimony and tin in beverage samples. The novelty of this study was based on the application of ligandless UA-IL-DLLME using low-density ionic liquid and organic solvents for preconcentration of Sb and Sn. The concentration of Sb and Sn were quantified using ICP-OES. Under the optimum conditions, the calibration graph was found to be LOQ-250µgL -1 (r 2 =0.9987) for Sb and LOQ-350µgL -1 for Sn. The LOD and LOQ of Sb and Sn ranged from 1.2to 2.5ngL -1 and 4.0 to 8.3ngL -1 , respectively, with high preconcentration factors. The precisions (%RSD) of the proposed method ranged from 2.1% to 2.5% and 3.9% to 4.7% for Sb and Sn, respectively. The proposed method was successfully applied for determination of Sb and Sn in beverages. Copyright © 2017 Elsevier Ltd. All rights reserved.
Naccarato, Attilio; Gionfriddo, Emanuela; Elliani, Rosangela; Sindona, Giovanni; Tagarelli, Antonio
2014-10-30
The analysis of characteristic urinary acidic markers such as glutaric, 3-hydroxyglutaric, 2-hydroxyglutaric, adipic, suberic, sebacic, ethylmalonic, 3-hydroxyisovaleric and isobutyric acid constitutes the recommended follow-up testing procedure for glutaric acidemia type 1 (GA-1) and type 2 (GA-2). The goal of the work herein presented is the development of a fast and simple method for the quantification of these biomarkers in human urine. The proposed analytical approach is based on the use of solid phase microextraction (SPME) combined with gas chromatography-triple quadrupole mass spectrometry (GC-QqQ-MS) afterward a rapid derivatization of acidic moieties by propyl chloroformate, propanol and pyridine. Trueness and precision of the proposed protocol, tested at 5, 30 and 80mgl -1 , provided satisfactory values: recoveries were in the range between 72% and 116% and the relative standard deviations (RSD%) were between 0.9% and 18% (except for isobutyric acid at 5mgl -1 ). The LOD values achieved by the proposed method ranged between 1.0 and 473μgl -1 . Copyright © 2014 Elsevier B.V. All rights reserved.
Costa, Rosaria; De Grazia, Selenia; Grasso, Elisa; Trozzi, Alessandra
2015-01-01
Mushrooms are sources of food, medicines, and agricultural means. Not much is reported in the literature about wild species of the Mediterranean flora, although many of them are traditionally collected for human consumption. The knowledge of their chemical constituents could represent a valid tool for both taxonomic and physiological characterizations. In this work, a headspace-solid-phase microextraction (HS-SPME) method coupled with GC-MS and GC-FID was developed to evaluate the volatile profiles of ten wild mushroom species collected in South Italy. In addition, in order to evaluate the potential of this analytical methodology for true quantitation of volatiles, samples of the cultivated species Agaricus bisporus were analyzed. The choice of this mushroom was dictated by its ease of availability in the food market, due to the consistent amounts required for SPME method development. For calibration of the main volatile compounds, the standard addition method was chosen. Finally, the assessed volatile composition of A. bisporus was monitored in order to evaluate compositional changes occurring during storage, which represents a relevant issue for such a wide consumption edible product. PMID:25945282
Feng, Juanjuan; Sun, Min; Bu, Yanan; Luo, Chuannan
2015-01-01
A novel nanostructured copper-based solid-phase microextraction fiber was developed and applied for determining the two most common types of phthalate environmental estrogens (dibutyl phthalate and diethylhexyl phthalate) in aqueous samples, coupled to gas chromatography with flame ionization detection. The copper film was coated onto a stainless-steel wire via an electroless plating process, which involved a surface activation process to improve the surface properties of the fiber. Several parameters affecting extraction efficiency such as extraction time, extraction temperature, ionic strength, desorption temperature, and desorption time were optimized by a factor-by-factor procedure to obtain the highest extraction efficiency. The as-established method showed wide linear ranges (0.05-250 μg/L). Precision of single fiber repeatability was <7.0%, and fiber-to-fiber repeatability was <10%. Limits of detection were 0.01 μg/L. The proposed method exhibited better or comparable extraction performance compared with commercial and other lab-made fibers, and excellent thermal stability and durability. The proposed method was applied successfully for the determination of model analytes in plastic soaking water. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Casas, Vanessa; Llompart, Maria; García-Jares, Carmen; Cela, Rafael; Dagnac, Thierry
2006-08-18
A method based on solid-phase microextraction (SPME) and gas chromatography with micro-electron capture detection (GC-microECD) has been optimized for the analysis of pyrethroids in water samples. The influence of parameters such as temperature, fibre coating, salting-out effect and sampling mode on the extraction efficiency has been studied by means of a mix-level factorial design, which allowed the study of main effects as well as two factor interactions. Finally, a method based on direct SPME at 50 degrees C, using polydimethylsiloxane fibre is proposed. The method showed good linearity (R2>0.995) and repeatability (RSD
Choleva, Tatiana G; Kappi, Foteini A; Tsogas, George Z; Vlessidis, Athanasios G; Giokas, Dimosthenis L
2016-05-01
This work describes a new method for the extraction and determination of gold nanoparticles in environmental samples by means of in-situ suspended aggregate microextraction and electrothermal atomic absorption spectrometry. The method relies on the in-situ formation of a supramolecular aggregate phase through ion-association between a cationic surfactant and a benzene sulfonic acid derivative. Gold nanoparticles are physically entrapped into the aggregate phase which is separated from the bulk aqueous solution by vacuum filtration on the surface of a cellulose filter in the form of a thin film. The film is removed from the filter surface and is dissociated into an acidified methanolic solution which is used for analysis. Under the optimized experimental conditions, gold nanoparticles can be efficiently extracted from water samples with recovery rates between 81.0-93.3%, precision 5.4-12.0% and detection limits as low as 75femtomolL(-1) using only 20mL of sample volume. The satisfactory analytical features of the method along with the simplicity indicate the efficiency of this new approach to adequately collect and extract gold nanoparticle species from water samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Lubrano, Adam L; Andrews, Benjamin; Hammond, Mark; Collins, Greg E; Rose-Pehrsson, Susan
2016-01-15
A novel analytical method has been developed for the quantitation of trace levels of ammonia in the headspace of ammonium nitrate (AN) using derivatized solid phase microextraction (SPME) fibers with gas chromatography mass spectrometry (GC-MS). Ammonia is difficult to detect via direct injection into a GC-MS because of its low molecular weight and extreme polarity. To circumvent this issue, ammonia was derivatized directly onto a SPME fiber by the reaction of butyl chloroformate coated fibers with the ammonia to form butyl carbamate. A derivatized externally sampled internal standard (dESIS) method based upon the reactivity of diethylamine with unreacted butyl chloroformate on the SPME fiber to form butyl diethylcarbamate was established for the reproducible quantification of ammonia concentration. Both of these compounds are easily detectable and separable via GC-MS. The optimized method was then used to quantitate the vapor concentration of ammonia in the headspace of two commonly used improvised explosive device (IED) materials, ammonium nitrate fuel oil (ANFO) and ammonium nitrate aluminum powder (Ammonal), as well as identify the presence of additional fuel components within the headspace. Published by Elsevier B.V.
Wu, Jingming; Ee, Kim Huey; Lee, Hian Kee
2005-08-05
Automated dynamic liquid-liquid-liquid microextraction (D-LLLME) controlled by a programmable syringe pump and combined with HPLC-UV was investigated for the extraction and determination of 5 phenoxy acid herbicides in aqueous samples. In the extraction procedure, the acceptor phase was repeatedly withdrawn into and discharged from the hollow fiber by the syringe pump. The repetitive movement of acceptor phase into and out of the hollow fiber channel facilitated the transfer of analytes into donor phase, from the organic phase held in the pore of the fiber. Parameters such as the organic solvent, concentrations of the donor and acceptor phases, plunger movement pattern, speed of agitation and ionic strength of donor phase were evaluated. Good linearity of analytes was achieved in the range of 0.5-500 ng/ml with coefficients of determination, r2 > 0.9994. Good repeatabilities of extraction performance were obtained with relative standard deviations lower than 7.5%. The method provided up-to 490-fold enrichment within 13 min. In addition, the limits of detection (LODs) ranged from 0.1 to 0.4 ng/mL (S/N = 3). D-LLLME was successfully applied for the analysis of phenoxy acid herbicides from real environmental water samples.
USDA-ARS?s Scientific Manuscript database
A rapid, effective technique applying vortex-assisted liquid–liquid microextraction (VALLME) prior to ultra high performance liquid chromatography-evaporating light scattering detectection/ mass spectroscopy (UHPLC-ELSD/MS) determination was developed for the analysis of four cucurbitane triterpenoi...
Liu, Hongjiao; Lei, Ming; Liang, Xiao; Jiang, Zhen; Guo, Xingjie
2014-02-01
In this paper, a three-phase hollow fiber liquid-phase microextraction (HF-LPME) method combined with high-performance liquid chromatography (HPLC) was developed for the determination of hypoxanthine (HX), xanthine (Xan) and adenine (A) and then for the first time successfully applied to the analysis of HX, Xan and A in Alysicarpus vaginalis (L.) DC. medicinal materials. Different factors affecting the HF-LPME procedure were investigated and optimized. Under optimal extraction conditions (1-octanol as organic solvent, pH of the donor and acceptor phase 10.0 and 3.5, respectively, extraction time 40 min, stirring rate 800 rpm and salt addition 10%, w/v), HX, Xan and A could be determined within the test ranges with a good correlation coefficient (r(2) > 0.9992). The limit of detection for HX, Xan and A was 153, 173 and 97 ng/mL, respectively, and the intra- and inter-day relative standard deviations were no more than 9.8%. The content of HX, Xan and A in Alysicarpus vaginalis (L.) DC. medicinal materials was 120.40, 18.37 and 62.75 µg/g, respectively. This procedure afforded a convenient, sensitive, accurate and inexpensive method with a high extraction efficiency for determination of HX, Xan and A. Copyright © 2013 John Wiley & Sons, Ltd.
Konieczna, Lucyna; Roszkowska, Anna; Niedźwiecki, Maciej; Bączek, Tomasz
2016-01-29
A simple and sensitive method using dispersive liquid-liquid microextraction (DLLME) followed by liquid chromatography coupled to mass spectrometry (LC-MS) with a hydrophilic interaction chromatography (HILIC) column was developed for the simultaneous determination of 13 compounds of different polarities, comprising monoamine neurotransmitters (dopamine, norepinephrine, epinephrine and serotonin) along with their respective precursors and metabolites, in human urine samples. The microextraction procedure was based on the fast injection of a mixture of ethanol (disperser solvent) and dichloromethane (extraction solvent) into a human urine sample, forming a cloudy solution in the Eppendorf tube. After centrifugation, the sedimented phase was collected and subsequently analyzed by LC-HILIC-MS in about 12min without a derivatization step. The separation was performed on an XBridge Amide™ BEH column 3.0×100mm, 3.5mm and the mobile phase consisted of phase A: 10mM ammonium formate buffer in water pH 3.0 and phase B: 10 mM ammonium formate buffer in acetonitrile, under gradient program elution. Tyrosine, tryptophan, 5-hydroxytryptophan, dopamine, epinephrine, norepinephrine, serotonin, 3-methoxytyramine, 5-hydroxyindole-3-acetic acid, 3,4-dihydroxy-l-phenylalanine and norvaline (internal standard) were detected in the positive ionization mode. While vanillylmandelic acid, homovanillic acid, 3,4-dihydroxyphenylacetic acid and 3,4-dihydroxybenzylamine (internal standard) were detected in the negative ionization mode. Parameters influencing DLLME and LC-HILIC-MS were investigated. Under the optimum conditions, the proposed method exhibited a low detection limit (5-10ngmL(-1)), and good linearity with R between 0.9991 and 0.9998. The recoveries in human urine samples were 99.0%±3.6%. for the 13 studied biogenic amines with intra- and inter-day RSDs of 0.24-9.55% and 0.31-10.0%, respectively. The developed DLLME-LC-MS method could be successfully applied for the determination of trace amounts of polar endogenous compounds, such as neurotransmitters, in human urine samples, including samples with a reduced volume obtained from pediatric patients. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhao, Pengfei; Lei, Shuo; Xing, Mingming; Xiong, Shihang; Guo, Xingjie
2018-03-01
A robust and sensitive method was developed for the enantiomeric analysis of six chiral pesticides (including metalaxyl, epoxiconazole, myclobutanil, hexaconazole, napropamide, and isocarbophos) in aquatic environmental samples. The optimized chromatographic conditions for the quantification of all the 12 enantiomers were performed with Chiralcel OD-RH column using mobile phase consisting of 0.1% aqueous formic acid and acetonitrile operated under reversed-phase conditions and then analyzed using liquid chromatography with tandem mass spectrometry. Twelve enantiomers were detected in multiple reaction monitoring mode. Solid-phase extraction and dispersive liquid-liquid microextraction were employed in this study. Response surface methodology was applied to assist in the dispersive liquid-liquid microextraction optimization. Under the optimum conditions, recoveries of pesticides enantiomers varied from 83.0 to 103.2% at two spiked levels with relative standard deviation less than 11.5%. The concentration factors were up to 1000 times. Method detection and quantification limits varied from 0.11 to 0.48 ng/L and from 0.46 to 1.49 ng/L, respectively. Finally, this method was used to determination of the enantiomers composition of the six pesticides in environmental aqueous matrices, which will help better understand the behavior of individual enantiomer and make accurate risk assessment to ecosystems. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Xiao, Qin; Hu, Bin; Duan, Jiankun; He, Man; Zu, Wanqing
2007-10-01
A novel method for the analysis of four polybrominated diphenyl ethers (PBDEs) in environmental and human serum samples based on hollow fiber-liquid phase microextraction (HF-LPME) followed by gas chromatography-inductively coupled plasma mass spectrometric (GC-ICP-MS) detection has been developed. The organic solvent in the porous hollow fiber was first dipped into the sample for extraction at a given time, and the retracted organic phase was introduced into the GC-ICP-MS for analysis. The addition of methanol has a strong effect on the HF-LPME extraction efficiency. Other significant parameters affecting the extraction efficiency of HF-LPME were also studied. HF-LPME was effective to isolate the analytes from the complex matrix. Under the optimized conditions, the detection limits of the proposed method varied from 15.2 to 40.5 ng/L. In general, the relative standard deviations (RSDs) were less than 10%. Good linearity was obtained with the correlation coefficients all better than 0.999. The proposed method is simple, quick, few microliters of organic solvent required, and is especially suitable for the analysis of the real sample with small amount available. The overall process of HF-LPME with GC-ICP-MS was applied successfully for the determination of polybrominated diphenyl ethers (PBDEs) in environmental and spiked human serum samples, and the results were satisfactory.
Farajzadeh, Mir Ali; Sattari Dabbagh, Masoumeh; Yadeghari, Adeleh
2017-05-01
In this study, a gas-assisted dispersive liquid-phase microextraction method using a deep eutectic solvent as the extraction solvent combined with gas chromatography and flame ionization detection was developed for the extraction and determination of some pesticide residues in vegetable and fruit juice samples. In this method, choline chloride and 4-chlorophenol at a molar ratio of 1:2 were mixed. By heating and vortexing, a clear, water-immiscible, and homogeneous liquid was formed. The obtained deep eutectic solvent was added to an aqueous solution of the analytes in a conical test tube. Air was bubbled into the aqueous solution and a cloudy solution was obtained. During this step, the analytes were extracted into the fine droplets of the extraction solvent. After centrifugation, an aliquot of the settled phase was injected into the separation system. Under the optimum extraction conditions, enrichment factors, and extraction recoveries were obtained in the ranges of 247-355 and 49-71%, respectively. The obtained values for the limits of detection and quantification were in the ranges of 0.24-1.4 and 0.71-4.2 μg/L, respectively. The proposed method is simple, fast, efficient, and inexpensive. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kiarostami, Vahid; Rouini, Mohamad-Reza; Mohammadian, Razieh; Lavasani, Hoda; Ghazaghi, Mehri
2014-02-03
Tramadol is an opioid, synthetic analog of codeine and has been used for the treatment of acute or chronic pain may be abused. In this work, a developed Dispersive liquid liquid microextraction (DLLME) as binary solvents-based dispersive liquid-liquid microextraction (BS-DLLME) combined with high performance liquid chromatography (HPLC) with fluorescence detection (FD) was employed for determination of tramadol in the urine samples. This procedure involves the use of an appropriate mixture of binary extraction solvents (70 μL CHCl3 and 30 μL ethyl acetate) and disperser solvent (600 μL acetone) for the formation of cloudy solution in 5 ml urine sample comprising tramadol and NaCl (7.5%, w/v). After centrifuging, the small droplets of extraction solvents were precipitated. In the final step, the HPLC with fluorescence detection was used for determination of tramadol in the precipitated phase. Various factors on the efficiency of the proposed procedure were investigated and optimized. The detection limit (S/N = 3) and quantification limit (S/N = 10) were found 0.2 and 0.9 μg/L, respectively. The relative standard deviations (RSD) for the extraction of 30 μg L of tramadol was found 4.1% (n = 6). The relative recoveries of tramadol from urine samples at spiking levels of 10, 30 and 60 μg/L were in the range of 95.6 - 99.6%. Compared with other methods, this method provides good figures of merit such as good repeatability, high extraction efficiency, short analysis time, simple procedure and can be used as microextraction technique for routine analysis in clinical laboratories.
2014-01-01
Background Tramadol is an opioid, synthetic analog of codeine and has been used for the treatment of acute or chronic pain may be abused. In this work, a developed Dispersive liquid liquid microextraction (DLLME) as binary solvents-based dispersive liquid-liquid microextraction (BS-DLLME) combined with high performance liquid chromatography (HPLC) with fluorescence detection (FD) was employed for determination of tramadol in the urine samples. This procedure involves the use of an appropriate mixture of binary extraction solvents (70 μL CHCl3 and 30 μL ethyl acetate) and disperser solvent (600 μL acetone) for the formation of cloudy solution in 5 ml urine sample comprising tramadol and NaCl (7.5%, w/v). After centrifuging, the small droplets of extraction solvents were precipitated. In the final step, the HPLC with fluorescence detection was used for determination of tramadol in the precipitated phase. Results Various factors on the efficiency of the proposed procedure were investigated and optimized. The detection limit (S/N = 3) and quantification limit (S/N = 10) were found 0.2 and 0.9 μg/L, respectively. The relative standard deviations (RSD) for the extraction of 30 μg L of tramadol was found 4.1% (n = 6). The relative recoveries of tramadol from urine samples at spiking levels of 10, 30 and 60 μg/L were in the range of 95.6 – 99.6%. Conclusions Compared with other methods, this method provides good figures of merit such as good repeatability, high extraction efficiency, short analysis time, simple procedure and can be used as microextraction technique for routine analysis in clinical laboratories. PMID:24495475
Wrona, Magdalena; Vera, Paula; Pezo, Davinson; Nerín, Cristina
2017-09-01
Recently oxobiodegradable polyethylene gained popularity as food packaging material due to its potential to reduce polymer waste. However, this type of material can release after its oxidation off-odour compounds that affect the organoleptic properties of packaged food. Odour compounds released from both polyethylene and oxobiodegradable polyethylene before and after oxidation under a free radicals flow were investigated after 1 day, 2 days and 3 days of oxidation. The samples were analysed using headspace solid phase microextraction followed by gas chromatography-mass spectrometry and headspace solid phase microextraction coupled to gas chromatography-olfactometry-mass spectrometry. Sixty-two different odorous compounds were identified. 4-methylthio-2-butanone (fruit), nonanal (fat) and 3,6-nonadienal (fat) were present in different materials before oxidation. Multiple headspace-solid phase microextraction has been used to quantify all analytes. The most abundant compound was (Z)-3-hexenyl hexanoate with a concentration range between 1.5791±0.1387µg/g and 4.8181±0.3123µg/g. Compounds such as 2-dodecenal, 2-octenal, 2-pentanol, 3-nonenal, 3,6-nonadienal, ethyl 3-methylbutanoate, ethyl octenoate, hexanone, isopropyl hexanoate, octanal were below their LOD evaluated using MS detector; however, they were detected by gas chromatography-olfactometry. The minimum LOD and LOQ were 0.011µg/g and 0.036µg/g, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.
Device and method for enhanced collection and assay of chemicals with high surface area ceramic
Addleman, Raymond S.; Li, Xiaohong Shari; Chouyyok, Wilaiwan; Cinson, Anthony D.; Bays, John T.; Wallace, Krys
2016-02-16
A method and device for enhanced capture of target analytes is disclosed. This invention relates to collection of chemicals for separations and analysis. More specifically, this invention relates to a solid phase microextraction (SPME) device having better capability for chemical collection and analysis. This includes better physical stability, capacity for chemical collection, flexible surface chemistry and high affinity for target analyte.
Shamsipur, Mojtaba; Yazdanfar, Najmeh; Ghambarian, Mahnaz
2016-08-01
In this work, an effective preconcentration method for the extraction and determination of traces of multi-residue pesticides was developed using solid-phase extraction (SPE) coupled with dispersive liquid-liquid microextraction and gas chromatography-mass spectrometry (GC-MS). Variables affecting the performance of both extraction steps such as type and volume of elution and extraction solvents, breakthrough volume, salt addition, extraction time were thoroughly investigated. The proposed method resulted in good linearities (R(2)>0.9915) over the ranges of 1-10,000ngkg(-1), limits of detection (LODs) in the range of 0.5-1.0ngkg(-1) at S/N=3, and precision of RSD% of ⩽11.8. Under optimal conditions, the preconcentration factors were obtained in the range of 2362-10,593 for 100mL sample solutions. Comparison of the proposed method with other ones demonstrated that SPE-DLLME method provides higher extraction efficiency and larger preconcentration factor for determination of pesticides residues. Further, it is simple, inexpensive, highly sensitive, and can be successfully applied to separation, preconcentration and determination of the pesticides (and other noxious materials) in different real food samples. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duff, M; S Crump, S; Robert02 Ray, R
2007-04-13
The Federal Bureau of Investigation (FBI) Laboratory currently does not have on site facilities for handling radioactive evidentiary materials and there are no established FBI methods or procedures for decontaminating high explosive (HE) evidence while maintaining evidentiary value. One experimental method for the isolation of HE residue involves using solid phase microextraction or SPME fibers to remove residue of interest. Due to their high affinity for organics, SPME fibers should have little affinity for most metals. However, no studies have measured the affinity of radionuclides for SPME fibers. The focus of this research was to examine the affinity of dissolvedmore » radionuclide ({sup 239/240}Pu, {sup 238}U, {sup 237}Np, {sup 85}Sr, {sup 133}Ba, {sup 137}Cs, {sup 60}Co and {sup 226}Ra) and stable radionuclide surrogate metals (Sr, Co, Ir, Re, Ni, Ba, Cs, Nb, Zr, Ru, and Nd) for SPME fibers at the exposure conditions that favor the uptake of HE residues. Our results from radiochemical and mass spectrometric analyses indicate these metals have little measurable affinity for these SPME fibers during conditions that are conducive to HE residue uptake with subsequent analysis by liquid or gas phase chromatography with mass spectrometric detection.« less
de la Calle, Inmaculada; Pena-Pereira, Francisco; Lavilla, Isela; Bendicho, Carlos
2016-09-14
An overview of the combination of liquid-phase microextraction (LPME) techniques with graphite furnace atomic absorption spectrometry (GFAAS) is reported herein. The high sensitivity of GFAAS is significantly enhanced by its association with a variety of miniaturized solvent extraction approaches. LPME-GFAAS thus represents a powerful combination for determination of metals, metalloids and organometallic compounds at (ultra)trace level. Different LPME modes used with GFAAS are briefly described, and the experimental parameters that show an impact in those microextraction processes are discussed. Special attention is paid to those parameters affecting GFAAS analysis. Main issues found when coupling LPME and GFAAS, as well as those strategies reported in the literature to solve them, are summarized. Relevant applications published on the topic so far are included. Copyright © 2016 Elsevier B.V. All rights reserved.
Yang, Xiu-Min; Wang, Ou; Wang, Ming-Zhao; Hu, Yan-Xue; Li, Wei-Ning; Wang, Zhi
2008-09-01
A method for the determination of metolcarb and diethofencarb in apples and apple juice is developed using solid-phase microextraction (SPME) coupled with high-performance liquid chromatography (HPLC). The experimental conditions of SPME, such as the kind of extraction fiber, extraction time, stirring rate, pH of the extracting solution, and desorption conditions are optimized. The SPME is performed on a 60 microm polydimethylsiloxane/divinylbenzene fiber for 40 min at room temperature with the solution being stirred at 1100 rpm. The extracted pesticides on the SPME fiber are desorbed in the mobile phase into SPME-HPLC interface for HPLC analysis. Separations are carried out on a Baseline C18 column (4.6 i.d. x 250 mm, 5.0 microm) with acetonitrile-water (55/45, v/v) as the mobile phase at a flow rate of 1.0 mL/min, and photodiode-array detection at 210 nm. For apple samples, the method is linear for both metolcarb and diethofencarb in the range of 0.05-1.0 mg/kg (r > 0.99), with a detection limit (S/N = 3 ) of 15 and 5 microg/kg, respectively. For apple juice, the method is linear for both metholcarb and diethofencarb over the range of 0.05-1.0 mg/L (r > 0.99) with the detection limit (S/N = 3 ) of 15 and 3 microg/L, respectively. Excellent recovery and reproducibility values are achieved. The proposed method is shown to be simple, sensitive, and organic solvent-free, and is suitable for the determination of the two pesticides in apples and apple juice.
USDA-ARS?s Scientific Manuscript database
A nontargeted, comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GCxGC-TOFMS) method was developed for the analysis of fermented cucumber volatiles before and after anaerobic spoilage. Volatiles extracted by solid-phase microextraction were separated on a polyethyle...
Luo, Mai; Liu, Donghui; Zhou, Zhiqiang; Wang, Peng
2013-09-01
A rapid, simple, reliable, and environment-friendly method for the residue analysis of the enantiomers of four chiral fungicides including hexaconazole, triadimefon, tebuconazole, and penconazole in water samples was developed by dispersive liquid-liquid microextraction (DLLME) pretreatment followed by chiral high-performance liquid chromatography (HPLC)-DAD detection. The enantiomers were separated on a Chiralpak IC column by HPLC applying n-hexane or petroleum ether as mobile phase and ethanol or isopropanol as modifier. The influences of mobile phase composition and temperature on the resolution were investigated and most of the enantiomers could be completely separated in 20 min under optimized conditions. The thermodynamic parameters indicated that the separation was enthalpy-driven. The elution orders were detected by both circular dichroism detector (CD) and optical rotatory dispersion detector (ORD). Parameters affecting the DLLME performance for pretreatment of the chiral fungicides residue in water samples, such as the extraction and dispersive solvents and their volume, were studied and optimized. Under the optimum microextraction condition the enrichment factors were over 121 and the linearities were 30-1500 µg L(-1) with the correlation coefficients (R(2)) over 0.9988 and the recoveries were between 88.7% and 103.7% at the spiking levels of 0.5, 0.25, and 0.05 mg L(-1) (for each enantiomer) with relative standard deviations varying from 1.38% to 6.70% (n = 6) The limits of detection (LODs) ranged from 8.5 to 29.0 µg L(-1) (S/N = 3). © 2013 Wiley Periodicals, Inc.
Negreira, N; Rodríguez, I; Rubí, E; Cela, R
2010-06-30
A novel, single step method for the determination of seven ink photo-initiators in carton packed milk samples is described. Solid-phase microextraction (SPME) and gas chromatography (GC), combined with mass spectrometry (MS), were used as sample preparation and determination techniques, respectively. Parameters affecting the performance of the microextraction process were thoroughly evaluated using uni- and multivariate optimization strategies, based on the use of experimental factorial designs. The coating of the SPME fibre, together with the sampling mode and the temperature were the factors playing a major influence on the efficiency of the extraction. Under final conditions, 1.5 mL of milk and 8.5 mL of ultrapure water were poured in a glass vessel, which was closed and immersed in a water boiling bath. A poly(dimethylsiloxane)-divinylbenzene (PDMS-DVB) coated fibre was exposed directly to the diluted sample for 40 min. After that, the fibre was desorbed in the injector of the GC-MS system for 3 min. The optimized method provided limits of quantification (LOQs) between 0.2 and 1 microg L(-1) and a good linearity in the range between 1 and 250 microg L(-1). The inter-day precision remained below 15% for all compounds in spiked whole milk. The efficiency of the extraction changed for whole, semi-skimmed and skimmed milk; however, no differences were noticed among the relative recoveries achieved for milk samples, from different brands, with the same fat content. Copyright 2010 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Owens, Janel E.; Zimmerman, Laura B.; Gardner, Michael A.; Lowe, Luis E.
2016-01-01
Analysis of whiskey samples prepared by a green microextraction technique, dispersive liquid-liquid microextraction (DLLME), before analysis by a qualitative gas chromatography-mass spectrometry (GC/MS) method, is described as a laboratory experiment for an upper division instrumental methods of analysis laboratory course. Here, aroma compounds in…
Mohammadiazar, Sirwan; Hasanli, Fateme; Maham, Mehdi; Payami Samarin, Somayeh
2017-08-01
Electrochemically co-deposited sol-gel/Cu nanocomposites have been introduced as a novel, simple and single-step technique for preparation of solid-phase microextraction (SPME) coating to extract methadone (MDN) (a synthetic opioid) in urine samples. The porous surface structure of the sol-gel/Cu nanocomposite coating was revealed by scanning electron microscopy. Direct immersion SPME followed by HPLC-UV determination was employed. The factors influencing the SPME procedure, such as the salt content, desorption solvent type, pH and equilibration time, were optimized. The best conditions were obtained with no salt content, acetonitrile as desorption solvent type, pH 9 and 10 min equilibration time. The calibration graphs for urine samples showed good linearity. The detection limit was about 0.2 ng mL -1 . Also, the novel method for preparation of nanocomposite fiber was compared with previously reported techniques for MDN determination. The results show that the novel nanocomposite fiber has relatively high extraction efficiency. Copyright © 2016 John Wiley & Sons, Ltd.
Theodoridis, Georgios
2006-01-18
Protein-drug interactions of seven common pharmaceuticals were studied using solid-phase microextraction (SPME). SPME can be used in such investigations on the condition that no analyte depletion occurs. In multi-compartment systems (e.g. a proteinaceous matrix) only the free portion of the analyte is able to partition into the SPME fiber. In addition if no sample depletion occurs, the bound drug-free drug equilibria are not disturbed. In the present study seven pharmaceuticals (quinine, quinidine, naproxen, ciprofloxacin, haloperidol, paclitaxel and nortriptyline) were assayed by SPME. For quantitative purposes SPME was validated first in the absence of proteins. Calibration curves were constructed for each drug by HPLC-fluorescence and HPLC-UV analysis. SPME was combined to HPLC off-line, desorption occurring in HPLC inserts filled with 200 microL methanol. Binding of each drug to human serum albumin was studied independently. Experimental results were in agreement with literature data and ultrafiltration experiments, indicating the feasibility of the method for such bioanalytical purposes.
Xu, Hui; Jia, Li
2009-01-01
A capillary liquid chromatography (CLC) system with UV/vis detection was coupled with an in-tube solid-phase microextraction (SPME) device for the analysis of fat-soluble vitamins and beta-carotene. A monolithic silica-ODS column was used as the extraction medium. An optical-fiber flow cell with a long light path in the UV/vis detector was utilized to further enhance the detection sensitivity. In the in-tube SPME/CLC system, the pre-condition of the extraction column and the effect of the injection volume were investigated. The detection limits (LOD) for the fat-soluble vitamins and beta-carotene were in the range from 1.9 to 173 ng/mL based on the signal-to-noise ratio of 3 (S/N=3). The relative standard deviations of migration time and peak area for each analyte were less than 5.0%. The method was applied to the analysis of fat-soluble vitamins and beta-carotene contents in corns.
Chaichi, Maryam; Ghasemzadeh-Mohammadi, Vahid; Hashemi, Maryam; Mohammadi, Abdorreza
2015-01-01
In this study, the levels of furan, 2-methylfuran, 2,5-dimethylfuran, vinyl furan, 2-methoxymethyl-furan and furfural in different coffee products were evaluated. Simultaneous determination of these six furanic compounds was performed by a head space liquid-phase micro-extraction (HS-LPME) method. A total of 67 coffee powder samples were analysed. The effects of boiling and espresso-making procedures on the levels of furanic compounds were investigated. The results showed that different types of coffee samples contained different concentrations of furanic compounds, due to the various processing conditions such as temperature, degree of roasting and fineness of grind. Among the different coffee samples, the highest level of furan (6320 µg kg⁻¹) was detected in ground coffee, while coffee-mix samples showed the lowest furan concentration (10 µg kg⁻¹). Levels in brewed coffees indicated that, except for furfural, brewing by an espresso machine caused significant loss of furanic compounds.
Wang, Shutao; Wang, Yan; You, Hong; Liang, Zhihua
2004-09-01
A novel activated carbon coating fiber used for solid phase micro-extraction (SPME) was prepared using activated carbon powder and silica resin adhesive. The extraction properties of the novel activated carbon coating fiber were investigated. The results indicate that this coating fiber has high concentration ability, with enrichment factors for chloroform, carbon tetrachloride, trichloroethylene and tetrachloroethylene in the range of 13.8 to 18.7. The fiber is stable at temperature as high as 290 degrees C and it can be used for over 140 times at 250 degrees C. The activated carbon coating fiber was then applied to the analysis of the four halocarbon compounds mentioned above. A linear correlation with correlation coefficients between 0.995 2 and 0.999 4 and the detection limits between 0.008 and 0.05 microg/L were observed. The method was also applied to a real water sample analysis and the recoveries of these halocarbon compounds were from 95.5% to 104.6%.
Pérez, Rosa Ana; Rojo, Maria Dolores; González, Gema; De Lorenzo, Cristina
2008-01-01
A method using solid-phase microextraction (SPME) and gas chromatography/mass spectrometry was developed and applied to the determination of volatile compounds generated in meat, at different times, from ground beef stored under refrigeration. Selection of the extractive fiber, extraction time, and headspace (HS) or direct extraction was optimized for the determination of volatile compounds from ground meat. Various fibers were investigated, and carboxen/polydimethylsiloxane was selected for these analyses. The HS analysis of the solid sample by HS-SPME produced a higher volatile signal than did direct-SPME. The meat samples were stored under refrigeration and analyzed after 0, 3, and 6 days of storage. These analyses at different times showed important changes in the volatile profile of the evaluated samples. The ketones 3-hydroxy-2-butanone and 2,3-butanedione, and the alcohol 3-methyl-1-butanol were the most representative compounds generated during the meat storage. In general, compounds associated with a butter off-flavor were detected during the storage of raw ground beef.
Román, Iván P; Mastromichali, Anna; Tyrovola, Konstantina; Canals, Antonio; Psillakis, Elefteria
2014-02-21
Vortex-assisted liquid-liquid microextraction (VALLME) coupled with high-performance liquid chromatography (HPLC) is proposed here for the rapid determination of octanol-water partitioning coefficients (Kow). VALLME uses vortex agitation, a mild emulsification procedure, to disperse microvolumes of octanol in the aqueous phase thus increasing the interfacial contact area and ensuring faster partitioning rates. With VALLME, 2min were enough to achieve equilibrium conditions between the octanolic and aqueous phases. Upon equilibration, separation was achieved using centrifugation and the octanolic microdrop was collected and analyzed in a HPLC system. Six model compounds with logKow values ranging between ∼0.5 and 3.5 were used during the present investigations. The proposed method produced logKow values that were consistent with previously published values and the recorded uncertainty was well within the acceptable log unit range. Overall, the key features of the proposed Kow determination procedure comprised speed, reliability, simplicity, low cost and minimal solvent consumption. Copyright © 2014 Elsevier B.V. All rights reserved.
Tao, Yong; Liu, Jing-Fu; Hu, Xia-Lin; Li, Hong-Cheng; Wang, Thanh; Jiang, Gui-Bin
2009-08-28
By using ionic liquid as membrane liquid and tri-n-octylphosphine oxide (TOPO) as additive, hollow fiber supported liquid phase microextraction (HF-LPME) was developed for the determination of five sulfonamides in environmental water samples by high-performance liquid chromatography with ultraviolet detection The extraction solvent and the parameters affecting the extraction enrichment factor such as the type and amount of carrier, pH and volume ratio of donor phase and acceptor phase, extraction time, salt-out effect and matrix effect were optimized. Under the optimal extraction conditions (organic liquid membrane phase: [C(8)MIM][PF(6)] with 14% TOPO (w/v); donor phase: 4mL, pH 4.5 KH(2)PO(4) with 2M Na(2)SO(4); acceptor phase: 25microL, pH 13 NaOH; extraction time: 8 h), low detection limits (0.1-0.4microg/L, RSD
Prieto-Blanco, M C; Moliner-Martínez, Y; López-Mahía, P; Campíns-Falcó, P
2012-07-27
A quick, miniaturized and on-line method has been developed for the determination in water of the predominant homologue of benzalkonium chloride, dodecyl dimethyl benzyl ammonium chloride or lauralkonium chloride (C(12)-BAK). The method is based on the formation of an ion-pair in both in-tube solid-phase microextraction (IT-SPME) and capillary liquid chromatography. The IT-SPME optimization required the study of the length and nature of the stationary phase of capillary and the processed sample volume. Because to the surfactant character of the analyte both, the extracting and replacing solvents, have played a decisive role in the IT-SPME optimized procedure. Conditioning the capillary with the mobile phase which contains the counter ion (acetate), using an organic additive (tetrabutylammonium chloride) added to the sample and a mixture water/methanol as replacing solvent (processed just before the valve is switched to the inject position), allowed to obtain good precision of the retention time and a narrow peak for C(12)-BAK. A reversed-phase capillary based TiO(2) column and a mobile phase containing ammonium acetate at pH 5.0 for controlling the interactions of cationic surfactant with titania surface were proposed. The optimized procedure provided adequate linearity, accuracy and precision at the concentrations interval of 1.5-300 μg L(-1) .The limit of detection (LOD) was 0.5 μg L(-1) using diode array detection (DAD). The applicability of proposed IT-SPME-capillary LC method has been assessed in several water samples. Copyright © 2012 Elsevier B.V. All rights reserved.
Zimmerman, L.R.; Ziegler, A.C.; Thurman, E.M.
2002-01-01
A method for the determination of two common odor-causing compounds in water, geosmin and 2-methylisoborneol, was modified and verified by the U.S. Geological Survey's Organic Geochemistry Research Group in Lawrence, Kansas. The optimized method involves the extraction of odor-causing compounds from filtered water samples using a divinylbenzene-carboxen-polydimethylsiloxane cross-link coated solid-phase microextraction (SPME) fiber. Detection of the compounds is accomplished using capillary-column gas chromatography/mass spectrometry (GC/MS). Precision and accuracy were demonstrated using reagent-water, surface-water, and ground-water samples. The mean accuracies as percentages of the true compound concentrations from water samples spiked at 10 and 35 nanograms per liter ranged from 60 to 123 percent for geosmin and from 90 to 96 percent for 2-methylisoborneol. Method detection limits were 1.9 nanograms per liter for geosmin and 2.0 nanograms per liter for 2-methylisoborneol in 45-milliliter samples. Typically, concentrations of 30 and 10 nanograms per liter of geosmin and 2-methylisoborneol, respectively, can be detected by the general public. The calibration range for the method is equivalent to concentrations from 5 to 100 nanograms per liter without dilution. The method is valuable for acquiring information about the production and fate of these odor-causing compounds in water.
Haftka, Joris J-H; Scherpenisse, Peter; Oetter, Günter; Hodges, Geoff; Eadsforth, Charles V; Kotthoff, Matthias; Hermens, Joop L M
2016-09-01
The amphiphilic nature of surfactants drives the formation of micelles at the critical micelle concentration (CMC). Solid-phase microextraction (SPME) fibers were used in the present study to measure CMC values of 12 nonionic, anionic, cationic, and zwitterionic surfactants. The SPME-derived CMC values were compared to values determined using a traditional surface tension method. At the CMC of a surfactant, a break in the relationship between the concentration in SPME fibers and the concentration in water is observed. The CMC values determined with SPME fibers deviated by less than a factor of 3 from values determined with a surface tension method for 7 out of 12 compounds. In addition, the fiber-water sorption isotherms gave information about the sorption mechanism to polyacrylate-coated SPME fibers. A limitation of the SPME method is that CMCs for very hydrophobic cationic surfactants cannot be determined when the cation exchange capacity of the SPME fibers is lower than the CMC value. The advantage of the SPME method over other methods is that CMC values of individual compounds in a mixture can be determined with this method. However, CMC values may be affected by the presence of compounds with other chain lengths in the mixture because of possible mixed micelle formation. Environ Toxicol Chem 2016;35:2173-2181. © 2016 SETAC. © 2016 SETAC.
Cerkowniak, Magdalena; Boguś, Mieczysława I; Włóka, Emilia; Stepnowski, Piotr; Gołębiowski, Marek
2018-02-01
A constant problem in veterinary medicine, human healthcare, agriculture, forestry and horticulture is the large number of pests, and the lack of effective methods to combat them which cause no harm to the rest of the environment. It is recommended and desired to reduce the use of chemicals and increase the use of agents based on knowledge acquired in the fields of biology, chemistry and agrochemicals. To learn the defense mechanisms of insects we should consider not only the site of their physiological ability to protect against external factors (cuticle), but also the possibility of chemical protection, formed by all compounds on the surface and in the body of insects. In this study, a procedure was developed to determine the esters of carboxylic acids in insect lipids. Headspace solid-phase microextraction was followed by gas chromatography coupled with gas spectrometry. First, the best conditions were selected for the analysis to obtain the best chromatographic separation. An RTx-5 column was used for this purpose. Polydimethylsiloxane/divinylbenzene (PDMS/DVB) and polyacrylate fibers were used to isolate acid esters. PDMS/DVB fiber achieved the best conditions for the extraction; the extraction time was 50 min, the extraction temperature was 105°C and the desorption time was 10 min at 230°C. These solid-phase microextraction conditions were used to analyze volatile compounds extracted from insects belonging to the Dermestidae family. Copyright © 2017 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Furton, Kenneth G.; Almirall, Jose R.; Wang, Jing
1999-02-01
In this paper, we present data comparing a variety of different conditions for extracting ignitable liquid residues from simulated fire debris samples in order to optimize the conditions for using Solid Phase Microextraction. A simulated accelerant mixture containing 30 components, including those from light petroleum distillates, medium petroleum distillates and heavy petroleum distillates were used to study the important variables controlling Solid Phase Microextraction (SPME) recoveries. SPME is an inexpensive, rapid and sensitive method for the analysis of volatile residues from the headspace over solid debris samples in a container or directly from aqueous samples followed by GC. The relative effects of controllable variables, including fiber chemistry, adsorption and desorption temperature, extraction time, and desorption time, have been optimized. The addition of water and ethanol to simulated debris samples in a can was shown to increase the sensitivity when using headspace SPME extraction. The relative enhancement of sensitivity has been compared as a function of the hydrocarbon chain length, sample temperature, time, and added ethanol concentrations. The technique has also been optimized to the extraction of accelerants directly from water added to the fire debris samples. The optimum adsorption time for the low molecular weight components was found to be approximately 25 minutes. The high molecular weight components were found at a higher concentration the longer the fiber was exposed to the headspace (up to 1 hr). The higher molecular weight components were also found in higher concentrations in the headspace when water and/or ethanol was added to the debris.
Alizadeh, Reza; Salami, Maryam; Seidi, Shahram
2018-06-02
A novel ZnO-graphene oxide nanocomposite was prepared and is shown to be a viable coating on fused silica fibers for use in solid phase microextraction (SPME) of diazepam and oxazepam from urine, this followed by thermal desorption and gas chromatographic quantitation using a flame ionization detector. A central composite design was used to optimize extraction time, salt percentage, sample pH and desorption time. Limits of detection are 0.5 μg·L -1 for diazepam and 1.0 μg·L -1 for oxazepam. Repeatability and reproducibility for one fiber (n = 4), expressed as the relative standard deviation at a concentration of 50 μg·L -1 , are 8.3 and 11.3% for diazepam, and 6.7 and 10.1% for oxazepam. The fiber-to-fiber reproducibility is <17.6%. The calibration plots are linear in the 5.0-1000 μg·L -1 diazepam concentration range, and from 1.0-1000 μg·L -1 in case of oxazepam. The fiber for SPME has high chemical and thermal stability (even at 280 °C) after 50 extractions, and does not suffer from a reduction in the sorption capacity. Graphical abstract A hydrothermal method was introduced for preparation of ZnO- GO nano composite on a fused silica fiber as solid phase microextraction with high mechanical, chemical stability and long service life.
Ramirez, Daniela Andrea; Locatelli, Daniela Ana; Torres-Palazzolo, Carolina Andrea; Altamirano, Jorgelina Cecilia; Camargo, Alejandra Beatriz
2017-01-15
Organosulphur compounds (OSCs) present in garlic (Allium sativum L.) are responsible of several biological properties. Functional foods researches indicate the importance of quantifying these compounds in food matrices and biological fluids. For this purpose, this paper introduces a novel methodology based on dispersive liquid-liquid microextraction (DLLME) coupled to high performance liquid chromatography with ultraviolet detector (HPLC-UV) for the extraction and determination of organosulphur compounds in different matrices. The target analytes were allicin, (E)- and (Z)-ajoene, 2-vinyl-4H-1,2-dithiin (2-VD), diallyl sulphide (DAS) and diallyl disulphide (DADS). The microextraction technique was optimized using an experimental design, and the analytical performance was evaluated under optimum conditions. The desirability function presented an optimal value for 600μL of chloroform as extraction solvent using acetonitrile as dispersant. The method proved to be reliable, precise and accurate. It was successfully applied to determine OSCs in cooked garlic samples as well as blood plasma and digestive fluids. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ge, Dandan; Zhang, Yi; Dai, Yixiu; Yang, Shumin
2018-04-01
Deep eutectic solvents are considered as new and green solvents that can be widely used in analytical chemistry such as microextraction. In the present work, a new dl-menthol-based hydrophobic deep eutectic solvent was synthesized and used as extraction solvents in an air-assisted dispersive liquid-liquid microextraction method for preconcentration and extraction of benzophenone-type UV filters from aqueous samples followed by high-performance liquid chromatography with diode array detection. In an experiment, the deep eutectic solvent formed by dl-menthol and decanoic acid was added to an aqueous solution containing the UV filters, and then the mixture was sucked up and injected five times by using a glass syringe, and a cloudy state was achieved. After extraction, the solution was centrifuged and the upper phase was subjected to high-performance liquid chromatography for analysis. Various parameters such as the type and volume of the deep eutectic solvent, number of pulling, and pushing cycles, solution pH and salt concentration were investigated and optimized. Under the optimum conditions, the developed method exhibited low limits of detection and limits of quantitation, good linearity, and precision. Finally, the proposed method was successfully applied to determine the benzophenone-type filters in environmental water samples with relative recoveries of 88.8-105.9%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mashile, Geaneth Pertunia; Nomngongo, Philiswa N
2017-03-04
Cyanotoxins are toxic and are found in eutrophic, municipal, and residential water supplies. For this reason, their occurrence in drinking water systems has become a global concern. Therefore, monitoring, control, risk assessment, and prevention of these contaminants in the environmental bodies are important subjects associated with public health. Thus, rapid, sensitive, selective, simple, and accurate analytical methods for the identification and determination of cyanotoxins are required. In this paper, the sampling methodologies and applications of solid phase-based sample preparation methods for the determination of cyanotoxins in environmental matrices are reviewed. The sample preparation techniques mainly include solid phase micro-extraction (SPME), solid phase extraction (SPE), and solid phase adsorption toxin tracking technology (SPATT). In addition, advantages and disadvantages and future prospects of these methods have been discussed.
Goudarzi, Nasser
2009-02-11
A simple, low cost and highly sensitive method based on solvent microextraction (SME) for separation/preconcentration and flame atomic absorption spectrometry (FAAS) was proposed for the determination of ultratrace amounts of cadmium in meat and fish samples. The analytical procedure involved the formation of a hydrophobic complex by mixing the analyte solution with an ammonium pyrrolidinedithiocarbamate (APDC) solution. In suitable conditions, the complex of cadmium-APDC entered the micro organic phase, and thus, separation of the analyte from the matrix was achieved. Under optimal chemical and instrumental conditions, a detection limit (3 sigma) of 0.8 ng L(-1) and an enrichment factor of 93 were achieved. The relative standard deviation for the method was found to be 2.2% for Cd. The interference effects of some anions and cations were also investigated. The developed method has been applied to the determination of trace Cd in meat and fish samples.
Quigley, Andrew; Walsh, Siobhán W; Hayes, Eva; Connolly, Damian; Cummins, Wayne
2018-06-07
A dispersive liquid-liquid microextraction (DLLME) method, combined with HPLC-UV detection, was developed for the extraction and preconcentration of δ-tocopherol from bovine milk. This method was used to study the effect of supplementing cow feed with the seaweed Ascophyllum nodosum on vitamin content in milk. The optimal experimental conditions were determined: 200 μL of chloroform (extraction solvent), 1.0 mL of ethanol (dispersive solvent), 5 mL of water (aqueous phase). Under these optimal conditions the DLLME method provided linearity in the range 0.01 μg/mL to 8 μg/mL with R 2 values of 0.998. Limit of detection (LOD) was 0.01 μg/mL, while the enrichment factor was 89. Cow feed that was supplemented with Ascophyllum nodosum was shown to increase δ-tocopherol levels from 3.82 μg/mL to 5.96 μg/mL. Copyright © 2018. Published by Elsevier B.V.
Sanagi, Mohd Marsin; Miskam, Mazidatulakmam; Wan Ibrahim, Wan Aini; Hermawan, Dadan; Aboul-Enein, Hassan Y
2010-07-01
A three-phase hollow fiber liquid-phase microextraction method coupled with CE was developed and used for the determination of partition coefficients and analysis of selected nitrophenols in water samples. The selected nitrophenols were extracted from 14 mL of aqueous solution (donor solution) with the pH adjusted to pH 3 into an organic phase (1-octanol) immobilized in the pores of the hollow fiber and finally backextracted into 40.0 microL of the acceptor phase (NaOH) at pH 12.0 located inside the lumen of the hollow fiber. The extractions were carried out under the following optimum conditions: donor solution, 0.05 M H(3)PO(4), pH 3.0; organic solvent, 1-octanol; acceptor solution, 40 microL of 0.1 M NaOH, pH 12.0; agitation rate, 1050 rpm; extraction time, 15 min. Under optimized conditions, the calibration curves for the analytes were linear in the range of 0.05-0.30 mg/L with r(2)>0.9900 and LODs were in the range of 0.01-0.04 mg/L with RSDs of 1.25-2.32%. Excellent enrichment factors of up to 398-folds were obtained. It was found that the partition coefficient (K(a/d)) values were high for 2-nitrophenol, 3-nitrophenol, 4-nitrophenol, 2,4-dinitrophenol and 2,6-dinitrophenol and that the individual partition coefficients (K(org/d) and K(a/org)) promoted efficient simultaneous extraction from the donor through the organic phase and further into the acceptor phase. The developed method was successfully applied for the analysis of water samples.
ERIC Educational Resources Information Center
Huang, Shu Rong; Palmer, Peter T.
2017-01-01
This paper describes a method for determination of trihalomethanes (THMs) in drinking water via solid-phase microextraction (SPME) GC/MS as a means to develop and improve student understanding of the use of GC/MS for qualitative and quantitative analysis. In the classroom, students are introduced to SPME, GC/MS instrumentation, and the use of MS…
Yang, Miyi; Xi, Xuefei; Wu, Xiaoling; Lu, Runhua; Zhou, Wenfeng; Zhang, Sanbing; Gao, Haixiang
2015-02-13
A novel microextraction technique combining magnetic solid-phase microextraction (MSPME) with ionic liquid dispersive liquid-liquid microextraction (IL-DLLME) to determine four fungicides is presented in this work for the first time. The main factors affecting the extraction efficiency were optimized by the one-factor-at-a-time approach and the impacts of these factors were studied by an orthogonal design. Without tedious clean-up procedure, analytes were extracted from the sample to the adsorbent and organic solvent and then desorbed in acetonitrile prior to chromatographic analysis. Under the optimum conditions, good linearity and high enrichment factors were obtained for all analytes, with correlation coefficients ranging from 0.9998 to 1.0000 and enrichment factors ranging 135 and 159 folds. The recoveries for proposed approach were between 98% and 115%, the limits of detection were between 0.02 and 0.04 μg L(-1) and the RSDs changed from 2.96 to 4.16. The method was successfully applied in the analysis of four fungicides (azoxystrobin, chlorothalonil, cyprodinil and trifloxystrobin) in environmental water samples. The recoveries for the real water samples ranged between 81% and 109%. The procedure proved to be a time-saving, environmentally friendly, and efficient analytical technique. Copyright © 2015 Elsevier B.V. All rights reserved.
Fucci, Nadia; Gambelunghe, Cristiana; Aroni, Kyriaki; Rossi, Riccardo
2014-12-01
Because levamisole has been increasingly found as a component of illicit drugs, a robust method to detect its presence in hair samples is needed. However, no systematic research on the detection of levamisole in hair samples has been published. The method presented here uses direct immersion solid-phase microextraction coupled with gas chromatography and mass spectrometry (DI-SPME-GC/MS) to detect levamisole and minor cocaine congeners in hair samples using a single-extraction method. Fifty hair samples taken in the last 4 years were obtained from cocaine abusers, along with controls taken from drug-free volunteers. Sampling was performed using direct immersion with a 30-μm polydimethylsiloxane fused silica/stainless steel fiber. Calibration curves were prepared by adding known amounts of analytes and deuterated internal standards to the hair samples taken from drug-free volunteers. This study focused on the adulterant levamisole and some minor cocaine congeners (tropococaine, norcocaine, and cocaethylene). Levamisole was detected in 38% of the hair samples analyzed; its concentration ranged from 0.2 to 0.8 ng/mg. The limit of quantification and limit of detection for levamisole, tropococaine, norcocaine, and cocaine were 0.2 and 0.1 ng/mg, respectively. DI-SPME-GC/MS is a sensitive and specific method to detect the presence of levamisole and cocaine congeners in hair samples.
Kamalabadi, Mahdie; Mohammadi, Abdorreza; Alizadeh, Naader
2016-08-15
A polypyrrole nanowire coated fiber was prepared and used in head-space solid phase microextraction coupled with ion mobility spectrometry (HS-SPME-IMS) to the analysis of bisphenol A (BPA) in canned food samples, for the first time. This fiber was synthesized by electrochemical oxidation of the monomer in aqueous solution. The fiber characterization by scanning electron microscopy (SEM) revealed that the new fiber exhibited two-dimensional structures with a nanowire morphology. The effects of important extraction parameters on the efficiency of HS-SPME were investigated and optimized. Under the optimum conditions, the linearity of 10-150ngg(-1) and limit of detection (based on S/N=3) of 1ngg(-1) were obtained in BPA analysis. The repeatability (n=5) expressed as the relative standard deviation (RSD%) was 5.8%. At the end, the proposed method was successfully applied to determine BPA in various canned food samples (peas, corns, beans). Relative recoveries were obtained 93-96%. Method validation was conducted by comparing our results with those obtained through HPLC with fluorescence detection (FLD). Compatible results indicate that the proposed method can be successfully used in BPA analysis. This method is simple and cheaper than chromatographic methods, with no need of extra organic solvent consumption and derivatization prior to sample introduction. Copyright © 2016 Elsevier B.V. All rights reserved.
Pizarro, C; Pérez-del-Notario, N; González-Sáiz, J M
2010-09-24
A simple, accurate and sensitive method based on headspace solid-phase microextraction (HS-SPME) coupled to gas chromatography-tandem mass spectrometry (GC-MS/MS) was developed for the analysis of 4-ethylguaiacol, 4-ethylphenol, 4-vinylguaiacol and 4-vinylphenol in beer. The effect of the presence of CO2 in the sample on the extraction of analytes was examined. The influence on extraction efficiency of different fibre coatings, of salt addition and stirring was also evaluated. Divinylbenzene/carboxen/polydimethylsiloxane was selected as extraction fibre and was used to evaluate the influence of exposure time, extraction temperature and sample volume/total volume ratio (Vs/Vt) by means of a central composite design (CCD). The optimal conditions identified were 80 degrees C for extraction temperature, 55 min for extraction time and 6 mL of beer (Vs/Vt 0.30). Under optimal conditions, the proposed method showed satisfactory linearity (correlation coefficients between 0.993 and 0.999), precision (between 6.3% and 9.7%) and detection limits (lower than those previously reported for volatile phenols in beers). The method was applied successfully to the analysis of beer samples. To our knowledge, this is the first time that a HS-SPME based method has been developed to determine simultaneously these four volatile phenols in beers. Copyright 2010 Elsevier B.V. All rights reserved.
Bergkvist, Jonas; Ekström, Simon; Wallman, Lars; Löfgren, Mikael; Marko-Varga, György; Nilsson, Johan; Laurell, Thomas
2002-04-01
A recently introduced silicon microextraction chip (SMEC), used for on-line proteomic sample preparation, has proved to facilitate the process of protein identification by sample clean up and enrichment of peptides. It is demonstrated that a novel grid-SMEC design improves the operating characteristics for solid-phase microextraction, by reducing dispersion effects and thereby improving the sample preparation conditions. The structures investigated in this paper are treated both numerically and experimentally. The numerical approach is based on finite element analysis of the microfluidic flow in the microchip. The analysis is accomplished by use of the computational fluid dynamics-module FLOTRAN in the ANSYS software package. The modeling and analysis of the previously reported weir-SMEC design indicates some severe drawbacks, that can be reduced by changing the microextraction chip geometry to the grid-SMEC design. The overall analytical performance was thereby improved and also verified by experimental work. Matrix-assisted laser desorption/ionization mass spectra of model peptides extracted from both the weir-SMEC and the new grid-SMEC support the numerical analysis results. Further use of numerical modeling and analysis of the SMEC structures is also discussed and suggested in this work.
D'Agostino, M F; Sanz, J; Sanz, M L; Giuffrè, A M; Sicari, V; Soria, A C
2015-07-01
A Solid-Phase Microextraction method for the Gas Chromatography-Mass Spectrometry analysis of blackberry (Rubus sp.) volatiles has been fully optimized by means of a Box-Behnken experimental design. The optimized operating conditions (Carboxen/Polydimethylsiloxane fiber coating, 66°C, 20 min equilibrium time and 16 min extraction time) have been applied to the characterization for the first time of the volatile composition of Rubus ulmifolius Schott blackberries collected in Italy and Spain. A total of 74 volatiles of different functionality were identified; esters and aliphatic alcohols were the predominant classes in both sample types. Methylbutanal (2.02-25.70%), ethanol (9.84-68.21%), 2,3-butanedione (2.31-14.71%), trans-2-hexenal (0.49-17.49%), 3-hydroxy-2-butanone (0.08-7.39%), 1-hexanol (0.56-16.39%), 1-octanol (0.49-10.86%) and methylbutanoic acid (0.53-21.48%) were the major compounds in most blackberries analyzed. Stepwise multiple regression analysis of semiquantitative data showed that only two variables (ethyl decanoate and ethyl acetate) were necessary for a successful differentiation of blackberries according to their harvest location. Copyright © 2015 Elsevier Ltd. All rights reserved.
Yu, Xiaoxiao; Chen, Beibei; He, Man; Wang, Han; Hu, Bin
2018-03-01
The quantification of trace Cd and Se in cells incubated with CdSe quantum dots (QDs) is critical to investigate the cytotoxicity of CdSe QDs. In this work, a miniaturized platform, namely chip-based magnetic solid phase microextraction (MSPME) packing with sulfhydryl group functionalized magnetic nanoparticles, was fabricated and combined with inductively coupled plasma mass spectrometry (ICP-MS) for the determination of trace Cd and Se in cells. Under the optimized conditions, the limits of detection (LOD) of the developed chip-based MSPME-ICP-MS system are 2.2 and 21ngL -1 for Cd and Se, respectively. The proposed method is applied successfully to the analysis of total and released small molecular fraction of Cd and Se in Human hepatocellular carcinoma cells (HepG2 cells) incubated with CdSe QDs, and the recoveries for the spiked samples are in the range of 86.0-109%. This method shows great promise to analyze cell samples and the obtained results are instructive to explore the cytotoxicity mechanism of CdSe QDs in cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Hu, Gaofei; Zhu, Yan; Hernandez, Marta; Koutchma, Tatiana; Shao, Suqin
2016-02-01
A headspace solid phase microextraction (HS-SPME) procedure followed by gas chromatography-flame ionisation detector (GC-FID) analysis was developed and validated for the simultaneous analysis of furan, 2-methylfuran and 2-pentylfuran from juice samples. Extraction at 32 °C for 20 min with stirring at 600 rpm and NaCl concentration 15% (W/V) was the optimal HS-SPME condition for all the three compounds by using a carboxen/polydimethylsiloxane fused silica fibre (75 μm). The extracted compounds were base line separated on a SPB-1 GC column within 12 min. The relative standard deviations of all analytes were less than 6.7%. The recovery rates were between 90.2% and 110.1%. The limits of detection and limits of quantification were 0.056-0.23 ng/mL and 0.14-0.76 ng/mL, respectively. The results showed that the developed method was sensitive, precise, accurate and robust for the determination of furan, 2-methylfuran and 2-pentylfuran in complex matrices without interferences from other components. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
González-Sálamo, Javier; González-Curbelo, Miguel Ángel; Socas-Rodríguez, Bárbara; Hernández-Borges, Javier; Rodríguez-Delgado, Miguel Ángel
2018-06-01
A new hollow fiber liquid-phase microextraction (HF-LPME) method has been developed for the extraction of a group of phthalic acid esters (PAEs) of interest from different water samples prior to gas chromatography tandem mass spectrometry analysis. HF-LPME was carried out using 1-octanol as extraction solvent followed by a back extraction step with cyclohexane. The different parameters that affect HF-LPME such as sample pH, ionic strength, extraction time, stirring rate, extraction temperature and back extraction conditions were investigated. The optimized conditions involved the extraction of 10 mL of sample without pH adjustment or addition of salt during 75 min under a stirring of 850 rpm at 60 °C and subsequent desorption with 200 μL of cyclohexane for 10 min in an ultrasonic bath. The method was validated in terms of calibration and recovery studies using dibutyl phthalate-d 4 as internal standard. The developed procedure gave satisfactory recovery (74-120%) and relative standard deviation values (<20%) for the studied PAEs in mineral, tap, pond and waste water samples. Copyright © 2018 Elsevier Ltd. All rights reserved.
An organically modified silica aerogel for online in-tube solid-phase microextraction.
Bu, Yanan; Feng, Juanjuan; Tian, Yu; Wang, Xiuqin; Sun, Min; Luo, Chuannan
2017-09-29
Aerogels have received considerable attentions because of its porous, high specific surface, unique properties and environmental friendliness. In this work, an organically modified silica aerogel was functionalized on the basalt fibers (BFs) and filled into a poly(ether ether ketone) (PEEK) tube, which was coupled with high performance liquid chromatography (HPLC) for in-tube solid-phase microextraction (IT-SPME). The aerogel was characterized by scanning electron microscopy (SEM) and fourier transform infrared spectrometry (FT-IR). The extraction efficiency of the tube was systematically investigated and shown enrichment factors from 2346 to 3132. An automated, sensitive and selective method was developed for the determination of five estrogens. The linear range was from 0.03 to 100μgL -1 with correlation coefficients (r) higher than 0.9989, and low detection limits (LODs) were 0.01-0.05μgL -1 . The relative standard deviations (RSDs) for intra-day and inter-day were less than 4.5% and 6.7% (n=6), respectively. Finally, the analysis method was successfully applied to detect estrogens in sewage and emollient water samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Wang, Meng; Cheng, Chunsheng; Liu, Chunbo; Yang, Yaling
2018-01-01
A rapid, simple, reliable and efficient hollow fiber supported ionic liquids liquid-phase micro-extraction method (IL-HF-LPME) followed by high-performance liquid chromatography was successfully applied to the determination of four kinds of polycyclic aromatic hydrocarbons (PAHs) in milk samples. In the IL-HF-LPME method, a mixture of [OMIM]PF6 and lauric acid, in a ratio of 3:1, was immobilized in the pores of a polypropylene hollow fiber used as extraction solvent. A series of essential parameters influencing the extraction efficiency were investigated and optimized. Under the optimal conditions, the extraction equilibrium is achieved within 3 min, the good linearity was >0.9990, the limits of detection varied from 0.14 to 0.71 ng/mL, the limit of quantification values were between 0.4 and 1.8 ng/mL, and the relative standard deviations were in the range of 1.24-3.27% (n = 5). The proposed method was applied to analyze four PAHs in milk samples and recoveries were between 93.6 and 102.8%. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Hu, Yanxue; Yang, Xiumin; Wang, Zhi; Wang, Chun; Zhao, Jin
2005-11-01
A novel method for the determination of carbendazim (MBC) and thiabendazole (TBZ) in tomatoes by solid-phase microextraction (SPME) coupled with high performance liquid chromatography (HPLC) and fluorescence detection was developed. The experimental conditions of SPME, including extraction fiber, extraction time, extraction temperature, desorption time, desorption solvent, desorption mode, pH value, organic solvent and ionic strength, and HPLC conditions were optimized. The SPME for MBC and TBZ was performed on a 65 microm polydimethylsiloxane/divinylbenzene (PDMS/DVB) fibre for 50 min at room temperature with the solution being stirred at 1 100 r/min. The florescence detection was made at 315 nm with excitation wavelength at 280 nm. The method is linear for MBC and TBZ over the range assayed from 0.01 to 1.0 mg/kg tomatoes with the detection limits of 0.003 mg/kg and 0. 001 mg/kg and the correlation coefficients of 0.995 8 and 0.996 7, respectively. The average recoveries for MBC and TBZ were 83.5% and 85.6% with the relative standard deviations (RSDs) of 6.5% and 3.8%, respectively. The method is fast, simple, sensitive, solvent-free and suitable for the determination of MBC and TBZ in tomatoes.
Rossi, Serena; Sileoni, Valeria; Perretti, Giuseppe; Marconi, Ombretta
2014-03-30
The objective of this study was a multivariate characterization of the volatile profile of beers. Such a characterization is timely considering the increasing worldwide consumption of beer, the continuous growth of microbreweries and the importance of volatile compounds to beer flavour. A method employing solid-phase microextraction and gas chromatography-mass spectrometry (SPME-GC-MS) was optimized and then applied to a sample set of 36 industrial and craft beers of various styles and fermentation types. The volatile profiles of different beer styles is described, with particular attention paid to the volatile compounds characteristic of a spontaneously fermented lambic raspberry framboise beer. Furthermore, it was also possible to identify which specific volatile compounds are principally responsible for the differences in the volatile profiles of top- and bottom-fermented beers. Moreover, a volatile fingerprint of the craft top-fermented Italian beers was defined, as they show a very similar volatile profile. Finally, the volatile compounds that are characteristic of the bock-style beers are described. The SPME-GC-MS analytical method optimized in this study is suitable for characterizing the volatile fingerprint of different beers, especially on the basis of the kind of fermentation (top, bottom or spontaneous), the method of production and the style of the beer. © 2013 Society of Chemical Industry.
Godayol, Anna; Alonso, Mònica; Sanchez, Juan M; Anticó, Enriqueta
2013-03-01
A quantification method based on solid-phase microextraction followed by GC coupled to MS was developed for the determination of gas-liquid partition coefficients and for the air monitoring of a group of odour-causing compounds that had previously been found in wastewater samples including dimethyl disulphide, phenol, indole, skatole, octanal, nonanal, benzothiazole and some terpenes. Using a divinylbenzene/carboxen/polydimethylsiloxane fibre, adsorption kinetics have been studied to define an extraction time that would avoid coating saturation. It was found that for an extraction time of 10 min, external calibration could be performed in the range of 0.4-100 μg/m(3), with detection limits between 0.1 and 20 μg/m(3). Inter-day precision of the developed method was evaluated (n = 5) and RSD values between 12 and 24% were obtained for all compounds. The proposed method has been applied to the analysis of air samples surrounding a wastewater treatment plant in Catalonia (Spain). In all air samples evaluated, dimethyl disulphide, limonene and phenol were detected, and the first two were the compounds that showed the highest partition coefficients. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Solid-phase microextraction method development for headspace analysis of volatile flavor compounds.
Roberts, D D; Pollien, P; Milo, C
2000-06-01
Solid-phase microextraction (SPME) fibers were evaluated for their ability to adsorb volatile flavor compounds under various conditions with coffee and aqueous flavored solutions. Experiments comparing different fibers showed that poly(dimethylsiloxane)/divinylbenzene had the highest overall sensitivity. Carboxen/poly(dimethylsiloxane) was the most sensitive to small molecules and acids. As the concentrations of compounds increased, the quantitative linear range was exceeded as shown by competition effects with 2-isobutyl-3-methoxypyrazine at concentrations above 1 ppm. A method based on a short-time sampling of the headspace (1 min) was shown to better represent the equilibrium headspace concentration. Analysis of coffee brew with a 1-min headspace adsorption time was verified to be within the linear range for most compounds and thus appropriate for relative headspace quantification. Absolute quantification of volatiles, using isotope dilution assays (IDA), is not subject to biases caused by excess compound concentrations or complex matrices. The degradation of coffee aroma volatiles during storage was followed by relative headspace measurements and absolute quantifications. Both methods gave similar values for 3-methylbutanal, 4-ethylguaiacol, and 2,3-pentanedione. Acetic acid, however, gave higher values during storage upon relative headspace measurements due to concurrent pH decreases that were not seen with IDA.
Zhang, Yong; Huang, Xiaojia; Yuan, Dongxing
2015-01-01
A porous poly(methacrylic acid-co-ethylene dimethacrylate) monolithic fiber (MEMF) for solid-phase microextraction (SPME) of five benzimidazole anthelmintics was prepared by in-situ polymerization. The effect of polymerization conditions on SPME of the target analytes was studied thoroughly. The physicochemical properties of the monolith were characterized by infrared spectroscopy, elemental analysis, scanning electron microscopy, and mercury intrusion porosimetry. Several conditions affecting the extraction efficiency were investigated and, under the optimized conditions, a simple and sensitive method for the determination of trace benzimidazoles residues in milk and honey was established by coupling MEMF-SPME with high-performance liquid chromatography-diode array detection (MEMF-SPME-HPLC-DAD). Under the optimum experimental conditions, the limits of detection (S/N = 3) of the method were 0.11-0.30 μg L(-1) for milk and 0.086-0.28 μg L(-1) for honey. Evaluation of intra-day and inter-day precision showed reproducibility was satisfactory-relative standard deviations (RSD) for both were <10 %. Finally, the method was successfully used for determination of benzimidazole residues in milk and honey. Recoveries obtained for determination of benzimidazole anthelmintics in spiked samples ranged from 72.3 to 121 %, with RSD always <11 %.
Quantitative Determination of Caffeine in Beverages Using a Combined SPME-GC/MS Method
NASA Astrophysics Data System (ADS)
Pawliszyn, Janusz; Yang, Min J.; Orton, Maureen L.
1997-09-01
Solid-phase microextraction (SPME) combined with gas chromatography/mass spectrometry (GC/MS) has been applied to the analysis of various caffeinated beverages. Unlike the current methods, this technique is solvent free and requires no pH adjustments. The simplicity of the SPME-GC/MS method lends itself to a good undergraduate laboratory practice. This publication describes the analytical conditions and presents the data for determination of caffeine in coffee, tea, and coke. Quantitation by isotopic dilution is also illustrated.
Alipanahpour Dil, Ebrahim; Ghaedi, Mehrorang; Asfaram, Arash; Zare, Fahimeh; Mehrabi, Fatemeh; Sadeghfar, Fardin
2017-11-01
The ultrasound-assisted dispersive solid-phase microextraction (USA-DSPME) and the ultrasound-assisted dispersive liquid-liquid microextraction (USA-DLLME) developed for as an ultra preconcentration and/or technique for the determination of malachite green (MG) in water samples. Central composite design based on analysis of variance and desirability function guide finding best operational conditions and represent dependency of response to variables viz. volume of extraction, eluent and disperser solvent, pH, adsorbent mass and ultrasonication time has significant influence on methods efficiency. Optimum conditions was set for USA-DSPME as: 1mg CNTs/Zn:ZnO@Ni 2 P-NCs; 4min sonication time and 130μL eluent at pH 6.0. Meanwhile optimum point for USA-DLLME conditions were fixed at pH 6.0; 4min sonication time and 130, 650μL and 10mL of extraction solvent (CHCl 3 ), disperser solvent (ethanol) and sample volume, respectively. Under the above specified best operational conditions, the enrichment factors for the USA-DSPME and USA-DLLME were 88.89 and 147.30, respectively. The methods has linear response in the range of 20.0 to 4000.0ngmL -1 with the correlation coefficients (r) between 0.9980 to 0.9995, while its reasonable detection limits viz. 1.386 to 2.348ngmL -1 and good relative standard deviations varied from 1.1% to 2.8% (n=10) candidate this method for successful monitoring of analyte from various media. The relative recoveries of the MG dye from water samples at spiking level of 500ngmL -1 were in the range between 94.50% and 98.86%. The proposed methods has been successfully applied to the analysis of the MG dye in water samples, and a satisfactory result was obtained. Copyright © 2017. Published by Elsevier B.V.
Sample preparation techniques for the determination of trace residues and contaminants in foods.
Ridgway, Kathy; Lalljie, Sam P D; Smith, Roger M
2007-06-15
The determination of trace residues and contaminants in complex matrices, such as food, often requires extensive sample extraction and preparation prior to instrumental analysis. Sample preparation is often the bottleneck in analysis and there is a need to minimise the number of steps to reduce both time and sources of error. There is also a move towards more environmentally friendly techniques, which use less solvent and smaller sample sizes. Smaller sample size becomes important when dealing with real life problems, such as consumer complaints and alleged chemical contamination. Optimal sample preparation can reduce analysis time, sources of error, enhance sensitivity and enable unequivocal identification, confirmation and quantification. This review considers all aspects of sample preparation, covering general extraction techniques, such as Soxhlet and pressurised liquid extraction, microextraction techniques such as liquid phase microextraction (LPME) and more selective techniques, such as solid phase extraction (SPE), solid phase microextraction (SPME) and stir bar sorptive extraction (SBSE). The applicability of each technique in food analysis, particularly for the determination of trace organic contaminants in foods is discussed.
Savareear, Benjamin; Lizak, Radoslaw; Brokl, Michał; Wright, Chris; Liu, Chuan; Focant, Jean-Francois
2017-10-20
A method involving headspace solid-phase microextraction (HS-SPME) and comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC-TOFMS) was developed and optimised to elucidate the volatile composition of the particulate phase fraction of aerosol produced by tobacco heating products (THPs). Three SPME fiber types were studied in terms of extraction capacity and precision measurements. Divinylbenzene polydimethylsiloxane appeared as the most efficient coating for these measurements. A central composite design of experiment was utilised for the optimization of the extraction conditions. Qualitative and semi-quantitative analysis of the headspace above THP aerosol condensate was carried out using optimised extraction conditions. Semi-quantitative analyses of detected constituents were performed by assuming that their relative response factors to the closest internal standard ( i t R ) were equal to 1. Using deconvoluted mass spectral data (library similarity and reverse match >750) and linear retention indices (match window of ±15 index units), 205 peaks were assigned to individual compounds, 82 of which (including 43 substances previously reported to be present in tobacco) have not been reported previously in tobacco aerosol. The major volatile fraction of the headspace contained ketones, alcohols, aldehydes, alicyclic hydrocarbons alkenes, and alkanes. The method was further applied to compare the volatiles from the particulate phase of aerosol composition of THP with that of reference cigarette smoke and showed that the THP produced a less complex chemical mixture. This new method showed good efficiency and precision for the peak areas and peak numbers from the volatile fraction of aerosol particulate phase for both THP and reference cigarettes. Copyright © 2017 Elsevier B.V. All rights reserved.
Spietelun, Agata; Marcinkowski, Łukasz; de la Guardia, Miguel; Namieśnik, Jacek
2013-12-20
Solid phase microextraction find increasing applications in the sample preparation step before chromatographic determination of analytes in samples with a complex composition. These techniques allow for integrating several operations, such as sample collection, extraction, analyte enrichment above the detection limit of a given measuring instrument and the isolation of analytes from sample matrix. In this work the information about novel methodological and instrumental solutions in relation to different variants of solid phase extraction techniques, solid-phase microextraction (SPME), stir bar sorptive extraction (SBSE) and magnetic solid phase extraction (MSPE) is presented, including practical applications of these techniques and a critical discussion about their advantages and disadvantages. The proposed solutions fulfill the requirements resulting from the concept of sustainable development, and specifically from the implementation of green chemistry principles in analytical laboratories. Therefore, particular attention was paid to the description of possible uses of novel, selective stationary phases in extraction techniques, inter alia, polymeric ionic liquids, carbon nanotubes, and silica- and carbon-based sorbents. The methodological solutions, together with properly matched sampling devices for collecting analytes from samples with varying matrix composition, enable us to reduce the number of errors during the sample preparation prior to chromatographic analysis as well as to limit the negative impact of this analytical step on the natural environment and the health of laboratory employees. Copyright © 2013 Elsevier B.V. All rights reserved.
Using Single Drop Microextraction for Headspace Analysis with Gas Chromatography
NASA Astrophysics Data System (ADS)
Riccio, Daniel; Wood, Derrick C.; Miller, James M.
2008-07-01
Headspace (HS) gas chromatography (GC) is commonly used to analyze samples that contain non-volatiles. In 1996, a new sampling technique called single drop microextraction, SDME, was introduced, and in 2001 it was applied to HS analysis. It is a simple technique that uses equipment normally found in the undergraduate laboratory, making it ideal for instructional use, especially to illustrate HS analysis or as an alternative to solid-phase microextraction (SPME) to which it is very similar. The basic principles and practice of HS-GC using SDME are described, including a complete review of the literature. Some possible experiments are suggested using water and N -methylpyrrolidone (NMP) as solvents.
Goryński, Krzysztof; Kiedrowicz, Alicja; Bojko, Barbara
2016-08-05
The current work describes the development and validation of a simple, efficient, and fast method using solid phase microextraction coupled to liquid chromatography-tandem mass spectrometry (SPME-LC-MS/MS) for the concomitant measurement of eight beta-blockers and bronchodilators in plasma and urine. The presented assay enables quantitative determination of acebutolol, atenolol, fenoterol, nadolol, pindolol, procaterol, sotalol, and timolol. In this work, samples were prepared on a high-throughput platform using the 96-well plate format of the thin film solid phase microextraction (TFME) system, and a biocompatible extraction phase made of hydrophilic-lipophilic balance particles. Analytes were separated on a pentafluorophenyl column (100mm×2.1mm, 3μm) by gradient elution using an UPLC Nexera coupled with an LCMS-8060 mass spectrometer. The mobile phase consisted of water-acetonitrile (0.1% formic acid) at a flow rate of 0.4mLmin(-1). The linearity of the method was checked within therapeutic blood-plasma concentrations, and shown to adequately reflect typically expected concentrations of future study samples. Post-extraction addition experiments showed that the matrix effect ranged in plasma from 98% for procaterol to 115% for nadolol, and in urine, from 85% for nadolol and pindolol to 119% for atenolol. The method was successfully validated using Food and Drug Administration (FDA) guidelines, and met all acceptance criteria for bioanalytical assays at five concentration levels for all selected drugs. The final protocol can be successfully applied for monitoring concentrations of the selected drugs in both plasma and urine matrices obtained from patients or athletes. Copyright © 2016 Elsevier B.V. All rights reserved.
Malik, Ashok Kumar; Rai, Parmod Kumar
2008-07-01
A simple and sensitive method has been developed using preconcentration technique solid phase microextraction (SPME) and analytical technique HPLC-UV for the determination of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) from the environmental samples. Aqueous solution of anionic surfactant SDS was used for the extraction of both nitramine high explosives, viz., HMX and RDX from soil samples which were subsequently sorbed on SPME fiber. The static desorption was carried out in the desorption chamber of the SPME-HPLC interface in the presence of mobile phase ACN/methanol/water (30:35:35) and the subsequent chromatographic analysis at a flow rate of 0.5 mL/min and detection at 230 nm. For this purpose, a C(18), 5 microm RP analytical column was used as a separation medium in this method. Several parameters relating to SPME, e.g., adsorption/desorption time, concentration of salt, stirring rate, etc., were optimized. The method was linear over the range of 20-400 ng/mL for HMX and RDX standards in the presence of surfactant in aqueous phase, respectively. The correlation coefficient (R(2)) for HMX and RDX are 0.9998 and 0.9982, respectively. With SPME, the detection limits (S/N = 3) in ng/mL are 0.05 and 0.1 for HMX and RDX, respectively in the presence of the SDS surfactant. The developed method has been applied successfully to the analysis of real environmental samples like bore well water, river water, and ground alluvial soil.
Zhang, Liuyang; Luo, Jinju; Shen, Xinyu; Li, Chunya; Wang, Xian; Nie, Bei; Fang, Huaifang
2018-05-10
Direct detecting of trace amount Al(III) in aqueous solution by stripping voltammetry is often frustrated by its irreversible reduction, resided at −1.75 V (vs. Ag/AgCl reference), which is in a proximal potential of proton reduction. Here, we described an electroanalytical approach, combined with liquid phase microextraction (LPME) using ionic liquid (IL), to quantitatively assess trace amount aluminum in environmental samples. The Al(III) was caged by 8-hydroxyquinoline, forming a superb hydrophobic metal⁻chelate, which sequentially transfers and concentrates in the bottom layer of IL-phase during LPME. The preconcentrated Al(III) was further analyzed by a square-wave anodic stripping voltammetry (SW-ASV). The resulting Al-deposited electrodes were characterized by scanning electron microscopy and powder X-ray diffraction, showing the intriguing amorphous nanostructures. The method developed provides a linear calibration ranging from 0.1 to 1.2 ng L −1 with a correlation coefficient of 0.9978. The LOD attains as low as 1 pmol L −1 , which reaches the lowest report for Al(III) detection using electroanalytical techniques. The applicable methodology was implemented for monitoring Al(III) in commercial distilled water.
Jezová, Vera; Skládal, Jan; Eisner, Ales; Bajerová, Petra; Ventura, Karel
2007-12-07
This paper deals with comparison of efficiency of extraction techniques (solid-phase extraction, SPE and solid-phase microextraction, SPME) used for extraction of nitrate esters (ethyleneglycoldinitrate, EGDN and nitroglycerin, NG), representing the first step of the method of quantitative determination of trace concentrations of nitrate esters in water samples. EGDN and NG are subsequently determined by means of high-performance liquid chromatography with ultraviolet detection (HPLC-UV). Optimization of SPE and SPME conditions was carried out using model water samples. Seven SPE cartridges were tested and the conditions were optimized (type of sorbent, type and volume of solvent to be used as eluent). For both nitrate esters the limit of detection (LOD) and the limit of quantification (LOQ) obtained using SPE/HPLC-UV were 0.23 microg mL(-1) and 0.70 microg mL(-1), respectively. Optimization of SPME conditions: type of SPME fibre (four fibres were tested), type and time of sorption/desorption, temperature of sorption. PDMS/DVB (polydimethylsiloxane/divinylbenzene) fibre coating proved to be suitable for extraction of EGDN and NG. For this fibre the LOD and the LOQ for both nitrate esters were 0.16 microg mL(-1) and 0.50 microg mL(-1), respectively. Optimized methods SPE/HPLC-UV and SPME/HPLC-UV were then used for quantitative determination of nitrate esters content in real water samples from the production of EGDN and NG.
NASA Astrophysics Data System (ADS)
Liu, Kailin; Xu, Shiji; Zhang, Minghuan; Kou, Yahong; Zhou, Xiaomao; Luo, Kun; Hu, Lifeng; Liu, Xiangying; Liu, Min; Bai, Lianyang
2016-12-01
The toxicity of ionizable organic compounds to organisms depends on the pH, which therefore affects risk assessments of these compounds. However, there is not a direct chemical method to predict the toxicity of ionizable organic compounds. To determine whether hollow-fiber liquid-phase microextraction (HF-LPME) is applicable for this purpose, a three-phase HF-LPME was used to measure sulfadiazine and estimate its toxicity to Daphnia magna in solutions of different pH. The result indicated that the sulfadiazine concentrations measured by HF-LPME decreased with increasing pH, which is consistent with the decreased toxicity. The concentration immobilize 50% of the daphnids (EC50) in 48 h calculated from nominal concentrations increased from 11.93 to 273.5 mg L-1 as the pH increased from 6.0 to 8.5, and the coefficient of variation (CV) of the EC50 values reached 104.6%. When calculated from the concentrations measured by HF-LPME (pH 12 acceptor phase), the EC50 ranged from 223.4 to 394.6 mg L-1, and the CV decreased to 27.60%, suggesting that the concentrations measured by HF-LPME can be used to estimate the toxicity of sulfadiazine irrespective of the solution pH.
Alves, Claudete; Santos-Neto, Alvaro J; Fernandes, Christian; Rodrigues, José C; Lanças, Fernando M
2007-10-01
Solid-phase microextraction coupled to liquid chromatography and mass spectrometry (SPME-LC-MS) was used to analyze tricyclic antidepressant drugs desipramine, imipramine, nortriptyline, amitriptyline, and clomipramine (internal standard) in plasma samples. SPME was performed by direct extraction on a PDMS/DVB (60 microm) coated fiber, employing a stirring rate of 1200 rpm for 30 min, pH 11.0, and temperature of 30 degrees C. Drug desorption was carried out by exposing the fiber to the liquid chromatography mobile phase for 20 min, using a labmade SPME-LC interface at 50 degrees C. The main variables experimentally influencing LC-MS response were evaluated and mathematically modeled. A rational optimization with fewer experiments was achieved using a factorial design approach. The constructed empirical models were adjusted with 96-98% of explained deviation allowing an adequate data set comprehension. The chromatographic separation was realized using an RP-18 column (150 mm x 2.1 mm, 5 microm particles) and ammonium acetate buffer (0.01 mol/l, pH 5.50) : acetonitrile (50 : 50 v/v) as mobile phase. Low detection levels were achieved with electrospray interface (0.1 ng/ml). The developed method showed specificity, linearity, precision, and limit of quantification adequate to assay tricyclic antidepressant drugs in plasma.
Al-Saidi, H M; Al-Harbi, Sami A; Aljuhani, E H; El-Shahawi, M S
2016-10-01
A simple, low cost and efficient headspace sorptive solid phase microextraction (HS-SPME) method for determination of cyanide has been developed. The system comprises of a glass tube with two valves and a moveable glass slide fixed at its centre. It includes an acceptor phase polyurethane foam treated mercury (II) dithizonate [Hg(HDz)2-PUF] complex fixed inside by a septum cap in a cylindrical configuration (5.0cm length and 1.0cm diameter). The extraction is based upon the contact of the acceptor phase to the headspace and subsequently measuring the absorbance of the recovered mercury (II) dithizonate from PUFs sorbent. Unlike other HSSE, extraction and back - extractions was carried out in a closed system, thereby improving the analytical performance by preventing the analyte loss. Under the optimized conditions, a linear calibration plot in the range of 1.0-50.0µmolL(-1) was achieved with limits of detection (LOD) and quantification (LOQ) of 0.34, 1.2µmolL(-1) CN(-), respectively. Simultaneous analysis of cyanide and thiocyanate in saliva was also performed with satisfactory recoveries. Copyright © 2016. Published by Elsevier B.V.
Bahrami, Abdulrahman; Ghamari, Farhad; Yamini, Yadollah; Ghorbani Shahna, Farshid; Moghimbeigi, Abbas
2017-01-01
This work describes a new extraction method with hollow-fiber liquid-phase microextraction based on facilitated pH gradient transport for analyzing hippuric acid and mandelic acid in aqueous samples. The factors affecting the metabolites extraction were optimized as follows: the volume of sample solution was 10 mL with pH 2 containing 0.5 mol·L−1 sodium chloride, liquid membrane containing 1-octanol with 20% (w/v) tributyl phosphate as the carrier, the time of extraction was 150 min, and stirring rate was 500 rpm. The organic phase immobilized in the pores of a hollow fiber was back-extracted into 24 µL of a solution containing sodium carbonate with pH 11, which was placed inside the lumen of the fiber. Under optimized conditions, the high enrichment factors of 172 and 195 folds, detection limit of 0.007 and 0.009 µg·mL−1 were obtained. The relative standard deviation (RSD) (%) values for intra- and inter-day precisions were calculated at 2.5%–8.2% and 4.1%–10.7%, respectively. The proposed method was successfully applied to the analysis of these metabolites in real urine samples. The results indicated that hollow-fiber liquid-phase microextraction (HF-LPME) based on facilitated pH gradient transport can be used as a sensitive and effective method for the determination of mandelic acid and hippuric acid in urine specimens. PMID:28208685
Chen, Xiaochu; Bian, Yanli; Liu, Fengmao; Teng, Peipei; Sun, Pan
2017-10-06
Two simple sample pretreatment for the determination of difenoconazole in cowpea was developed including micellar extraction combined with ionic liquid based vortex-assisted liquid-liquid microextraction (ME-IL-VALLME) prior to high performance liquid chromatography (HPLC), and modified quick, easy, cheap, effective, rugged, and safe method (QuEChERS) coupled with HPLC-MS/MS. In ME-IL-VALLME method, the target analyte was extracted by surfactant Tween 20 micellar solution, then the supernatant was diluted with 3mL water to decrease the solubility of micellar solution. Subsequently, the vortex-assisted liquid-liquid microextraction (VALLME) procedure was performed in the diluted extraction solution by using the ionic liquid of 1-hexyl-3-methylimidazolium hexafluorophosphate ([HMIM]PF 6 ) as the extraction solvent and Tween 20 as an emulsifier to enhance the dispersion of the water-immiscible ionic liquid into the aqueous phase. Parameters that affect the extraction have been investigated in both methods Under the optimum conditions, the limits of quantitation were 0.10 and 0.05mgkg -1 , respectively. And good linearity was achieved with the correlation coefficient higher than 0.9941. The relative recoveries ranged from 78.6 to 94.8% and 92.0 to 118.0% with the relative standard deviations (RSD) of 7.9-9.6% and 1.2-3.2%, respectively. Both methods were quick, simple and inexpensive. However, the ME-IL-VALLME method provides higher enrichment factor compared with conventional QuEChERS method. The ME-IL-VALLME method has a strong potential for the determination of difenoconazole in complex vegetable matrices with HPLC. Copyright © 2017 Elsevier B.V. All rights reserved.
Peña-Alvarez, Araceli; Díaz, Laura; Medina, Alejandra; Labastida, Carmen; Capella, Santiago; Vera, Luz Elena
2004-02-20
Steam distillation (SD) extraction-solid-phase microextraction coupled to GC-MS was developed for the determination of terpenes and Bligh-Dyer extraction-derivatization coupled with GC for the determination of fatty acids such as ethyl esters were used. It was found that the three different Agave species have the same profile of fatty acids; the quantity of these compounds is different in each Agave variety. On the other hand, different terpenes were identified in the three Agave plants studied: nine in A. salmiana, eight in A. angustifolia and 32 in A. tequilana Weber var. azul.
Preparation and application of in-fibre internal standardization solid-phase microextraction.
Zhao, Wennan; Ouyang, Gangfeng; Pawliszyn, Janusz
2007-03-01
The in-fibre standardization method is a novel approach that has been developed for field sampling/sample preparation, in which an internal standard is pre-loaded onto a solid-phase microextraction (SPME) fibre for calibration of the extraction of target analytes in field samples. The same method can also be used for in-vial sample analysis. In this study, different techniques to load the standard to a non-porous SPME fibre were investigated. It was found that the appropriateness of the technique depends on the physical properties of the standards that are used for the analysis. Headspace extraction of the standard dissolved in pumping oil works well for volatile compounds. Conversely, headspace extraction of the pure standard is an effective approach for semi-volatile compounds. For compounds with low volatility, a syringe-fibre transfer method and direct extraction of the standard dissolved in a solvent exhibited a good reproducibility (<5% RSD). The main advantage of the approaches investigated in this study is that the standard generation vials can be reused for hundreds of analyses without exhibiting significant loss. Moreover, most of the standard loading processes studied can be performed automatically, which is efficient and precise. Finally, the standard loading technique and in-fibre standardization method were applied to a complex matrix (milk) and the results illustrated that the matrix effect can be effectively compensated for with this approach.
Medina, Giselle S; Reta, Mario
2016-11-01
A dispersive liquid-liquid microextraction method using a lighter-than-water phosphonium-based ionic liquid for the extraction of 16 polycyclic aromatic hydrocarbons from water samples has been developed. The extracted compounds were analyzed by liquid chromatography coupled to fluorescence/diode array detectors. The effects of several experimental parameters on the extraction efficiency, such as type and volume of ionic liquid and disperser solvent, type and concentration of salt in the aqueous phase and extraction time, were investigated and optimized. Three phosphonium-based ionic liquids were assayed, obtaining larger extraction efficiencies when trihexyl-(tetradecyl)phosphonium bromide was used. The optimized methodology requires a few microliters of a lighter-than-water phosphonium-based ionic liquid, which allows an easy separation of the extraction solvent phase. The obtained limits of detection were between 0.02 and 0.56 μg/L, enrichment factors between 109 and 228, recoveries between 60 and 108%, trueness between 0.4 and 9.9% and reproducibility values between 3 and 12% were obtained. These figures of merit combined with the simplicity, rapidity and low cost of the analytical methodology indicate that this is a viable and convenient alternative to the methods reported in the literature. The developed method was used to analyze polycyclic aromatic hydrocarbons in river water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Polo, Maria; Garcia-Jares, Carmen; Llompart, Maria; Cela, Rafael
2007-08-01
A solid-phase microextraction method (SPME) followed by gas chromatography with micro electron capture detection for determining trace levels of nitro musk fragrances in residual waters was optimized. Four nitro musks, musk xylene, musk moskene, musk tibetene and musk ketone, were selected for the optimization of the method. Factors affecting the extraction process were studied using a multivariate approach. Two extraction modes (direct SPME and headspace SPME) were tried at different extraction temperatures using two fiber coatings [Carboxen-polydimethylsiloxane (CAR/PDMS) and polydimethylsiloxane-divinylbenzene (PDMS/DVB)] selected among five commercial tested fibers. Sample agitation and the salting-out effect were also factors studied. The main effects and interactions between the factors were studied for all the target compounds. An extraction temperature of 100 degrees C and sampling the headspace over the sample, using either CAR/PDMS or PDMS/DVB as fiber coatings, were found to be the experimental conditions that led to a more effective extraction. High sensitivity, with detection limits in the low nanogram per liter range, and good linearity and repeatability were achieved for all nitro musks. Since the method proposed performed well for real samples, it was applied to different water samples, including wastewater and sewage, in which some of the target compounds (musk xylene and musk ketone) were detected and quantified.
Li, Miao; Wang, Sicen; He, Langchong
2015-01-01
Natural products (NPs) are important sources of lead compounds in modern drug discovery. To facilitate the screening of volatile active compounds in NPs, we have developed a new biochromatography method that uses rat vascular smooth muscle cells (VSMC), which are rich in L-type calcium channels (LCC), to prepare the stationary phase. This integrated method, which couples cell membrane chromatography (CMC) with gas chromatography-mass spectrometry (GC-MS) via microextraction by packed sorbent (MEPS) technology, has been termed VSMC/CMC-MEPS-GC-MS. Methodological validation confirmed its specificity, reliability and convenience. Screening results for Radix Angelicae Dahuricae and Fructus Cnidii obtained using VSMC/CMC-MEPS-GC-MS were consistent with those obtained using VSMC/CMC-offline-GC-MS. MEPS connection plays as simplified solid-phase extraction and replaces the uncontrollable evaporation operation in reported offline connections, so our new method is supposed to be more efficient and reliable than the offline ones, especially for compounds that are volatile, thermally unstable or difficult to purify. In application, senkyunolide A and ligustilide were preliminary identified as the volatile active components in Rhizoma Chuanxiong. We have thus confirmed the suitability of VSMC/CMC-MEPS-GC-MS for volatile active compounds screening in NP. Copyright © 2014 Elsevier B.V. All rights reserved.
Martínez, C; Ramírez, N; Gómez, V; Pocurull, E; Borrull, F
2013-11-15
This study focuses on the development of an analytical method based on headspace solid phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS) for the simultaneous determination of 76 micropollutants in water samples. The selected micropollutants include volatile organic compounds (VOCs) (e.g. chlorobenzenes, chloroalkanes), endocrine disrupting compounds (EDCs) (e.g. bisphenol A and tributyl phosphate), odour compounds (e.g. limonene, phenol), fragrance allergens (e.g. geraniol, eugenol) and some pesticides (e.g. heptachlor, terbutryn). The experimental conditions affecting their extraction, such as the type of fibre, temperature and time of extraction, sample volume and ionic strength of the samples were optimized using HS-SPME. The method showed good linear range, reproducibility between days, repeatability and low detection limits (at ng L(-1) levels). The validated method has been applied to determine the target organic micropollutants in aqueous samples from different experimental research units of surface water, sea water, waste water and those effluents of advance membrane treatments. The optimized method showed good performance in the different types of samples studied. The analysis revealed the presence of several micropollutants at concentrations between 20 and 5000 μg L(-1), such as ethylbenzene, o-xylene, p-isopropilbenzene, D-limonene, citral and isoeugenol, due to the fact that these species are commonly used in domestic and industrial applications. © 2013 Elsevier B.V. All rights reserved.
Viñas, Pilar; Pastor-Belda, Marta; Campillo, Natalia; Bravo-Bravo, María; Hernández-Córdoba, Manuel
2014-06-01
Capillary liquid chromatography (LC) is used for the determination of tocopherols and tocotrienols in cosmetic products. Dispersive liquid-liquid microextraction (DLLME) allows the analytes to be preconcentrated into a very small volume of organic solvent which is then injected into the chromatograph running at a very low flow rate. Pressurized liquid extraction (PLE) at a high temperature and pressure was used to isolate vitamin E forms from cosmetics. The Taguchi experimental method was used to optimize the factors affecting DLLME. The parameters selected were 2mL of acetonitrile (disperser solvent), 100μL carbon tetrachloride (extraction solvent) and 10mL aqueous solution. A volume of 5μL of the organic phase was injected into the reversed-phase capillary LC system equipped with a diode array detector and using an isocratic mobile phase composed of an 95:5 (v/v) methanol:water mixture at a flow-rate of 20μLmin(-1). Quantification was carried out using aqueous standards and detection limits were in the range 0.1-0.5ngmL(-1), corresponding to 3-15ngg(-1) in the cosmetic sample. The recoveries were in the 87-105% range, with RSDs lower than 7.8%. The method was validated according to international guidelines and using a certified reference material. Copyright © 2014 Elsevier B.V. All rights reserved.
Werner, Justyna
2018-05-15
Ionic liquid ultrasound-assisted dispersive liquid-liquid microextraction based on solidification of the aqueous phase was used for preconcentration of Ni 2+ , Co 2+ , Cd 2+ , Cu 2+ , Pb 2+ in natural water samples prior to liquid chromatography with UV detection. In the proposed method, the ammonium pyrrolidinedithiocarbamate was used as a complexing agent and the phosphonium ionic liquid trihexyl(tetradecyl)phosphonium bis[(2,4,4-trimethyl)pentyl]phosphinate (Cyphos IL 104) was used as an extractant. Ultrasound energy was used to disperse the extractant in the aqueous phase. After microextraction, the ionic liquid and aqueous phases were separated by centrifugation. Then the aqueous phase was frozen and the lighter than water ionic liquid phase containing metal ions complexes with pyrrolidinedithiocarbamate was separated and dissolved in a small volume of methanol prior to injection into the liquid chromatograph. Several parameters including the volume of extractant, the pH of the sample, the concentration of complexing agent, the time of ultrasound energy treatment, the time and speed of centrifugation and the effect of ionic strength were optimized. Under the optimized conditions (10 µL of Cyphos IL 104, pH = 5, 0.3% w/v ammonium pyrrolidinedithiocarbamate, 60 s of ultrasound use, 5 min/5000 rpm (2516×g) of centrifugation, 2.0 mg of NaCl), preconcentration factors were 211, 210, 209, 207 and 211 for Ni 2+ , Co 2+ , Cd 2+ , Cu 2+ and Pb 2+ respectively. Linearity was observed in the ranges 0.2-75.0 µg L -1 for Pb 2+ , Cd 2+ , Co 2+ and 0.5-100.0 µg L -1 for Cu 2+ , Ni 2+ . The limits of detection were 0.03 µg L -1 for Ni 2+ , 0.03 µg L -1 for Co 2+ , 0.03 µg L -1 for Cd 2+ , 0.02 µg L -1 for Cu 2+ , 0.02 µg L -1 for Pb 2+ , respectively. The accuracy of this method was evaluated by preconcentration and determination of Ni 2+ , Co 2+ , Cd 2+ , Cu 2+ , Pb 2+ in certified reference materials (TMRAIN-04 and NIST 1643e) with the recovery values in the range of 97-102%. The presented method has been successfully applied for the determination of analytes in natural water samples (river and lake waters). Copyright © 2018 Elsevier B.V. All rights reserved.
Shamsayei, Maryam; Yamini, Yadollah; Asiabi, Hamid; Safari, Meysam
2018-02-22
The authors describe a 3-component nanoparticle system composed of a silica-coated magnetite (Fe 3 O 4 ) core and a layered double (Cu-Cr) hydroxide nanoplatelet shell. The sorbent has a high anion exchange capacity for extraction anionic species. A simple online system, referred to as "on-line packed magnetic-in-tube solid phase microextraction" was designed. The nanoparticles were placed in a stainless steel cartridge via dry packing. The cartridge was then applied to the preconcentration acidic drugs including naproxen and indomethacin from urine and plasma. Extraction and desorption times, pH values of the sample solution and flow rates of sample solution and eluent were optimized. Analytes were then quantified by HPLC with UV detection. Under optimal conditions, the limits of detection range from 70 to 800 ng L -1 , with linear responses from 0.1-500 μg L -1 (water samples), 0.6-500 μg L -1 (spiked urine), and 0.9-500 μg L -1 (spiked plasma). The inter- and intra-assay precisions (RSDs, for n = 5) are in the range of 2.2-5.4%, 2.8-4.9%, and 2.0-5.2% at concentration levels of 5, 25 and 50 μg L -1 , respectively. The method was applied to the analysis of the drugs in spiked human urine and plasma, and good results were achieved. Graphical abstract Fe 3 O 4 @SiO 2 @CuCr-LDH magnetic nanoparticles were synthesized and packed in to a stainless steel column. The column was applied to solid phase microextraction of acidic drugs from biological samples.
Lin, Yao; Yang, Yuan; Li, Yuxuan; Yang, Lu; Hou, Xiandeng; Feng, Xinbin; Zheng, Chengbin
2016-03-01
Rice consumption is a primary pathway for human methylmercury (MeHg) exposure in inland mercury mining areas of Asia. In addition, the use of iodomethane, a common fumigant that significantly accelerates the methylation of mercury in soil under sunlight, could increase the MeHg exposure from rice. Conventional hyphenated techniques used for mercury speciation analysis are usually too costly for most developing countries. Consequently, there is an increased interest in the development of sensitive and inexpensive methods for the speciation of mercury in rice. In this work, gas chromatography (GC) coupled to dielectric barrier discharge optical emission spectrometry (DBD-OES) was developed for the speciation analysis of mercury in rice. Prior to GC-DBD-OES analysis, mercury species were derivatized to their volatile species with NaBPh4 and preconcentrated by headspace solid phase microextraction using porous carbons. Limits of detection of 0.5 μg kg(-1) (0.16 ng), 0.75 μg kg(-1) (0.24 ng), and 1.0 μg kg(-1) (0.34 ng) were obtained for Hg(2+), CH3Hg(+), and CH3CH2Hg(+), respectively, with relative standard deviations (RSDs) better than 5.2% and 6.8% for one fiber or fiber-to-fiber mode, respectively. Recoveries of 90-105% were obtained for the rice samples, demonstrating the applicability of the proposed technique. Owing to the small size, low power, and low gas consumption of DBD-OES as well as efficient extraction of mercury species by porous carbons headspace solid phase micro-extraction, the proposed technique provides several advantages including compactness, cost-effectiveness, and potential to couple with miniature GC to accomplish the field speciation of mercury in rice compared to conventional hyphenated techniques.
Haeri, Seyed Ammar; Abbasi, Shahryar; Sajjadifar, Sami
2017-09-15
In the present investigation, extraction and preconcentration of methamphetamine in human urine samples was carried out using a novel bio-dispersive liquid liquid microextraction (Bio-DLLME) technique coupled with magnetic solid phase extraction (MSPE). Bio-DLLME is a kind of microextraction technique based nano-materials which have potential capabilities in many application fields. Bio-DLLME is based on the use of a binary part system consisting of methanol and nano rhaminolipid biosurfactant. Use of this binary mixture is ecologically accepted due to their specificity, biocompatibility and biodegradable nature. The potential of nano rhaminolipid biosurfactant as a biological agent in the extraction of organic compounds has been investigated in recent years. They are able to partition at the oil/water interfaces and reduce the interfacial tension in order to increase solubility of hydrocarbons. The properties of the prepared Fe 3 O 4 @PPy magnetic nanoparticles were characterized using Fourier transform infrared spectroscopy and X-ray diffraction methods The influences of the experimental parameters on the quantitative recovery of analyte were investigated. Under optimized conditions, the enrichment factor was 310, the calibration graph was linear in the methamphetamine concentration range from 1 to 60μgL -1 , with a correlation coefficient of 0.9998. The relative standard deviations for six replicate measurements was 5.2%. Copyright © 2017 Elsevier B.V. All rights reserved.
Asadi, Mohammad; Dadfarnia, Shayessteh; Haji Shabani, Ali Mohammad
2016-08-17
A syringe to syringe dispersive liquid phase microextraction-solidified floating organic drop was introduced and used for the simultaneous extraction of trace amounts of albendazole and triclabendazole from different matrices. The extracted analytes were determined by high performance liquid chromatography along with fluorescence detection. The analytical parameters affecting the microextraction efficiency including the nature and volume of the extraction solvent, sample volume, sample pH, ionic strength and the cycles of extraction were optimized. The calibration curves were linear in the range of 0.1-30.0 μg L(-1) and 0.2-30.0 μg L(-1) with determination coefficients of 0.9999 and 0.9998 for albendazole and triclabendazole respectively. The detection limits defined as three folds of the signal to noise ratio were found to be 0.02 μg L(-1) for albendazole and 0.06 μg L(-1) for triclabendazole. The inter-day and intra-day precision (RSD%) for both analytes at three concentration levels (0.5, 2.0 and 10.0 μg L(-1)) were in the range of 6.3-10.1% and 5.0-7.5% respectively. The developed method was successfully applied to determine albendazole and triclabendazole in water, cow milk, honey, and urine samples. Copyright © 2016. Published by Elsevier B.V.
Fontana, Ariel; Rodríguez, Isaac; Cela, Rafael
2017-09-15
A new reliable method for the determination 3-alkyl-2-methoxypyrazines (MPs) in wine samples based on the sequential combination of solid-phase extraction (SPE), dispersive liquid-liquid microextraction (DLLME) and gas chromatography (GC) quadrupole time-of-flight accurate tandem mass spectrometry (QTOF-MS/MS) is presented. Primary extraction of target analytes was carried out by using a reversed-phase Oasis HLB (200mg) SPE cartridge combined with acetonitrile as elution solvent. Afterwards, the SPE extract was submitted to DLLME concentration using 0.06mL carbon tetrachloride (CCl 4 ) as extractant. Under final working conditions, sample concentration factors above 379 times and limits of quantification (LOQs) between 0.3 and 2.1ngL -1 were achieved. Moreover, the overall extraction efficiency of the method was unaffected by the particular characteristics of each wine; thus, accurate results (relative recoveries from 84 to 108% for samples spiked at concentrations from 5 to 25ngL -1 ) were obtained using matrix-matched standards, without using standard additions over every sample. Highly selective chromatographic records were achieved considering a mass window of 5mDa, centered in the quantification product ion corresponding to each compound. Twelve commercial wines, elaborated with grapes from different varieties and geographical origins, were processed with the optimized method. The 2-isobutyl-3-methoxypyrazine (IBMP) was determined at levels above the LOQs of the method in half of the samples. Copyright © 2017 Elsevier B.V. All rights reserved.
2012-05-01
with HPLC and PCBs with GC-ECD. Details of the chemical analysis are not included in this description but standard methods are referenced. Other...5 4.4 Analysis of samples to get the accumulated uptake in the fiber ...................................... 8 4.5 Determination of pore water...13 5.5 QC samples for chemical analysis
Fernandez-Alvarez, Maria; Lamas, J Pablo; Sanchez-Prado, Lucia; Llompart, Maria; Garcia-Jares, Carmen; Lores, Marta
2010-10-22
5-Bromo-5-nitro-1,3-dioxane (bronidox) is a bromine-containing preservative often used in rinse-off cosmetics but also subjected to several restrictions according to the European Cosmetic Products Regulation. Thus, as a part of a quality control procedure, analytical methods for the determination of this compound in different types of cosmetics are required. In the present work, a solvent-free and simple methodology based on solid-phase microextraction (SPME) followed by gas chromatography with microelectron capture detection (GC-μECD) has been developed and validated for the determination of bronidox in cosmetic samples such as shampoos, body cleansers or facial exfoliants. As far as we know, this is the first application of SPME to this preservative. Negative matrix effects due to the complexity of the studied samples were reduced by dilution with ultrapure water. The influence of several factors on the SPME procedure such as fiber coating, extraction temperature, salt addition (NaCl) and sampling mode has been assessed by performing a 2(4)-factorial design. After optimization, the recommended procedure was established as follows: direct solid-phase microextraction (DSPME), using a PDMS/DVB coating, of 10 mL of diluted cosmetic with 20% NaCl, at room temperature, under stirring for 30 min. Using these suggested extraction conditions, linear calibration could be achieved, with limits of detection (LOD) and quantification (LOQ) well below the maximum authorized concentration (0.1%) established by the European legislation. Relative standard deviations (RSD) lower than 10% were obtained for both within a day and among days precision. The method was applied to diverse types of formulations spiked with bronidox at different concentration levels (0.008-0.10%); these samples were quantified by external calibration and satisfactory recoveries (≥ 70%) were obtained in all cases. Finally, the SPME-GC-μECD methodology was applied to the analysis of several cosmetics labeled or not as containing bronidox. The presence of this preservative in some of these samples was confirmed by GC-MS. Copyright © 2010 Elsevier B.V. All rights reserved.
Application of solid phase microextraction on dental composite resin analysis.
Wang, Ven-Shing; Chang, Ta-Yuan; Lai, Chien-Chen; Chen, San-Yue; Huang, Long-Chen; Chao, Keh-Ping
2012-08-15
A direct immersion solid phase microextraction (DI-SPME) method was developed for the analysis of dentin monomers in saliva. Dentine monomers, such as triethylene glycol dimethacrylate (TEGDMA), urethane dimethacrylate (UDMA) and 2,2-bis-[4-(2-hydroxy-3-methacryloyloxypropoxy) phenyl]-propane (Bis-GMA), have a high molecular weight and a low vapor pressure. The polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber with a medium polarity was employed for DI-SPME, and 215 nm of detection wavelength was found to be optimum in the chromatogram of HPLC measurement. The calibration range for DI-SPME was 0.30-300 μg/mL with correlation coefficients (r) greater than 0.998 for each analyte. The DI-SPME method achieved good accuracy (recovery 96.1-101.2%) and precision (2.30-8.15% CV) for both intra- and inter-day assays of quality control samples for three target compounds. Method validation was performed on standards dissolved in blank saliva, and there was no significant difference (p>0.2) between the DI-SPME method and the liquid injection method. However, the detection limit of DI-SPME was as low as 0.03, 0.27 and 0.06 μg/mL for TEGDMA, UDMA and Bis-GMA, respectively. Real sample analyses were performed on commercial dentin products after curing for the leaching measurement. In summary, DI-SPME is a more sensitive method that requires less sample pretreatment procedures to measure the resin materials leached in saliva. Copyright © 2012 Elsevier B.V. All rights reserved.
Wu, Hui-Fen; Ku, Hsin-Yi; Yen, Jyh-Hao
2008-07-01
A liquid-phase microextraction (LPME) method using a micropipette with disposable tips was demonstrated for coupling to atmospheric pressure MALDI-MS (AP-MALDI/MS) as a concentrating probe for rapid analysis and quantitative determination of nortriptyline drug from biological matrices including human urine and human plasma. This technique was named as micropipette extraction (MPE). The best optimized parameters of MPE coupled to AP-MALDI/MS experiments were extraction solvent, toluene; extraction time, 5 min; sample agitation rate, 480 rpm; sample pH, 7; salt concentration, 30%; hole size of micropipette tips, 0.61 mm (id); and matrix concentration, 1000 ppm using alpha-cyano-4-hydroxycinnamic acid (CHCA) as a matrix. Three detection modes of AP-MALDI/MS analysis including full scan, selective ion monitor (SIM), and selective reaction monitor (SRM) of MS/MS were also compared for the MPE performance. The results clearly demonstrated that the MS/MS method provides a wider linear range and lower LODs but poor RSDs than the full scan and SIM methods. The LOD values for the MPE under SIM and MS/MS modes in water, urine, and plasma were 6.26, 47.5, and 94.9 nM, respectively. The enrichment factors (EFs) of this current approach were 36.5-43.0 fold in water. In addition, compared to single drop microextraction (SDME) and LPME using a dual gauge microsyringe with a hollow fiber (LPME-HF) technique, the LODs acquired by the MPE method under MS/MS modes were comparable to those of LPME-HF and SDME but it is more convenient than both methods. The advantages of this novel method are simple, easy to use, low cost, and no contamination between experiments since disposable tips were used for the micropipettes. The MPE has the potential to be widely used in the future because it only requires a simple micropipette to perform all extraction processes. We believe that this technique can be a powerful tool for MALDI/MS analysis of biological samples and clinical applications.
Llompart, M; Pazos, M; Landin, P; Cela, R
2001-12-15
A saponification-HSSPME procedure has been developed for the extraction of PCBs from milk samples. Saponification of the samples improves the PCB extraction efficiency and allows attaining lower background. A mixed-level fractional design has been used to optimize the sample preparation process. Five variables have been considered: extraction time, agitation, kind of microextraction fiber, concentration, and volume of NaOH aqueous solution. Also the kinetic of the process has been studied with the two fibers (100-microm PDMS and 65-microm PDMS-DVB) included in this study. Analyses were performed on a gas chromatograph equipped with an electron capture detector and a gas chromatograph coupled to a mass selective detector working in MS-MS mode. The proposed method is simple and rapid, and yields high sensitivity, with detection limits below 1 ng/mL, good linearity, and reproducibility. The method has been applied to liquid milk samples with different fat content covering the whole commercial range, and it has been validated with powdered milk certified reference material.
Sheu, Hong-Li; Sung, Yu-Hsiang; Melwanki, Mahaveer B; Huang, Shang-Da
2006-11-01
Solid-phase microextraction (SPME) coupled to LC for the analysis of five diphenylether herbicides (aclonifen, bifenox, fluoroglycofen-ethyl, oxyfluorfen, and lactofen) is described. Various parameters of extraction of analytes onto the fiber (such as type of fiber, extraction time and temperature, pH, impact of salt and organic solute) and desorption from the fiber in the desorption chamber prior to separation (such as type and composition of desorption solvent, desorption mode, soaking time, and flush-out time) were studied and optimized. Four commercially available SPME fibers were studied. PDMS/divinylbenzene (PDMS/DVB, 60 microm) and carbowax/ templated resin (CW/TPR, 50 microm) fibers were selected due to better extraction efficiencies. Repeatability (RSD, < 7%), correlation coefficient (> 0.994), and detection limit (0.33-1.74 and 0.22-1.94 ng/mL, respectively, for PDMS/DVB and CW/TPR) were investigated. Relative recovery (81-104% for PDMS/DVB and 83-100% for CW/TPR fiber) values have also been calculated. The developed method was successfully applied to the analysis of river water and water collected from a vegetable garden.
Boyle, Rebecca R; McLean, Stuart; Brandon, Sue; Pass, Georgia J; Davies, Noel W
2002-11-25
We have developed two solid-phase microextraction (SPME) methods, coupled with gas chromatography, for quantitatively analysing the major Eucalyptus leaf terpene, 1,8-cineole, in both expired air and blood from the common brushtail possum (Trichosurus vulpecula). In-line SPME sampling (5 min at 20 degrees C room temperature) of excurrent air from an expiratory chamber containing a possum dosed orally with 1,8-cineole (50 mg/kg) allowed real-time semi-quantitative measurements reflecting 1,8-cineole blood concentrations. Headspace SPME using 50 microl whole blood collected from possums dosed orally with 1,8-cineole (30 mg/kg) resulted in excellent sensitivity (quantitation limit 1 ng/ml) and reproducibility. Blood concentrations ranged between 1 and 1380 ng/ml. Calibration curves were prepared for two concentration ranges (0.05-10 and 10-400 ng/50 microl) for the analysis of blood concentrations. Both calibration curves were linear (r(2)=0.999 and 0.994, respectively) and the equations for the two concentration ranges were consistent. Copyright 2002 Elsevier Science B.V.
Lu, Yao; Harrington, Peter B
2010-08-01
Direct methylation and solid-phase microextraction (SPME) were used as a sample preparation technique for classification of bacteria based on fatty acid methyl ester (FAME) profiles. Methanolic tetramethylammonium hydroxide was applied as a dual-function reagent to saponify and derivatize whole-cell bacterial fatty acids into FAMEs in one step, and SPME was used to extract the bacterial FAMEs from the headspace. Compared with traditional alkaline saponification and sample preparation using liquid-liquid extraction, the method presented in this work avoids using comparatively large amounts of inorganic and organic solvents and greatly decreases the sample preparation time as well. Characteristic gas chromatography/mass spectrometry (GC/MS) of FAME profiles was achieved for six bacterial species. The difference between Gram-positive and Gram-negative bacteria was clearly visualized with the application of principal component analysis of the GC/MS data of bacterial FAMEs. A cross-validation study using ten bootstrap Latin partitions and the fuzzy rule building expert system demonstrated 87 +/- 3% correct classification efficiency.
Joshi, Manishkumar D; Ho, Tien D; Cole, William T S; Anderson, Jared L
2014-01-01
Crosslinked polymeric ionic liquid (PIL)-based sorbent coatings were employed in the extraction of 21 polychlorinated biphenyls (PCBs) from ocean water and bovine milk using solid-phase microextraction (SPME). The extraction temperature, time, and concentration of sodium chloride added to the matrix were optimized in order to determine the best extraction conditions for the extraction of PCBs. The analytical performance of the crosslinked PIL-based SPME fibers was compared with a commercial 7 µm polydimethylsiloxane (PDMS) fiber using gas chromatography (GC) employing an electron capture detector (ECD) and mass spectrometric detection (MS). Higher sensitivities for PCBs were achieved using PIL-based fibers when compared to PDMS fiber due to the incorporation of benzyl moieties into the PIL structures. The limits of detection (LOD) for all PCBs were determined to be in the low ng L(-1) range using the three studied coatings. Recovery studies were performed for PCBs in ocean water and bovine milk to validate the applicability of the current SPME method. © 2013 Published by Elsevier B.V.
Rellán, Sandra; Gago-Martínez, Ana
2007-10-01
Solid phase microextraction coupled with high performance liquid chromatography with fluorescence detection has been optimized and evaluated for a simple, rapid, and selective analysis of anatoxin-a. Four kinds of fiber (100 microm polydimethylsiloxane, 60 microm polydimethylsiloxane/divinylbenzene, 50 microm Carbowax/templated resin-100, and 85 microm polyacrylate) were evaluated for an efficient extraction of the toxin. Parameters relating to the desorption step, such as desorption mode, solvent composition, time for both static and dynamic desorption, as well as carryover, have been studied and optimized. The derivatization process was investigated using NBD-F as derivatizing reagent. Anatoxin-a derivative was formed when the anatoxin-a-loaded fiber was inserted in a vial containing 5 microL of NBD-F. Variables affecting extraction such us ionic strength, temperature, and time have been also optimized. The results obtained showed linearity in the range of 10-2000 ng and a limit of detection of 0.29 ng/mL in river water. The presented method has been applied to different environmental samples.
Lin, Ling; Chen, Hui; Wei, Huibin; Wang, Feng; Lin, Jin-Ming
2011-10-21
A porous polymer monolithic column for solid-phase microextraction and chemiluminescence detection was integrated into a simple microfluidic chip for the extraction and determination of catechins in green tea. The porous polymer was prepared by poly(glycidyl methacrylate-co-ethylene dimethacrylate) and modified with ethylenediamine. Catechins can be concentrated in the porous polymer monolithic column and react with potassium permanganate to give chemiluminescence. The microfluidic chip is reusable with high sensitivity and very low reagent consumption. The on-line preconcentration and detection can be realized without an elution step. The enrichment factor was calculated to be about 20 for catechins. The relative chemiluminescence intensity increased linearly with concentration of catechin from 5.0 × 10(-9) to 1.0 × 10(-6) M and the limit of detection was 1.0 × 10(-9) M. The proposed method was applied to determine catechin in green tea. The recoveries are from 90% to 110% which benefits the actual application for green tea samples.
Zhou, Simon Ningsun; Oakes, Ken D; Servos, Mark R; Pawliszyn, Janusz
2008-08-15
Previous field studies utilizing solid-phase microextraction (SPME) predominantly focused on volatile and semivolatile compounds in air or water. Earlier in vivo sampling studies utilizing SPME were limited to the liquid matrix (blood). The present study has expanded the SPME technique to semisolid tissues under laboratory and field conditions through the investigation of both theoretical and applied experimental approaches. Pre-equilibrium extraction and desorption were performed in vivo in two separate animals. Excellent linearity was found between the amounts extracted by SPME from the muscle of living fish and the waterborne concentrations of pharmaceuticals. A simple SPME method is also described to simultaneously determine free and total analyte concentrations in living tissue. The utility of in vivo SPME sampling was evaluated in wild fish collected from a number of different river locations under varying degrees of influence from municipal wastewater effluents. Diphenhydramine and diltiazem were detected in the muscle of fish downstream of a local wastewater treatment plant. Based on this study, SPME demonstrated several important advantages such as simplicity, sensitivity, and robustness under laboratory and in vivo field sampling conditions.
Fu, Meizhen; Xing, Hanzhu; Chen, Xiangfeng; Zhao, Rusong; Zhi, Chunyi; Wu, Chiman Lawrence
2014-09-01
Boron nitride nanotube (BNNT) is a novel material that shows potential ability in capturing organic pollutants. In this study, BNNTs fixed on a stainless steel fiber by a sol-gel technique were used as sorbent for solid-phase microextraction. Five polycyclic aromatic hydrocarbons with different numbers of aromatic rings were selected as target analysts. Gas chromatography coupled with tandem mass spectrometry was used for detection and quantitative determination. Under optimized conditions, the experimental results show a wide range of linearity (1 to 1,000 ng L(-1)), less than 10.1 % repeatability of relative standard deviation, and low detection limits (0.08 to 0.39 ng L(-1)). In addition, the fabricated fiber offered good thermal and chemical stability. The proposed method was successfully applied for the analysis of real water samples, and satisfactory results were obtained with relative recoveries ranging from 80.2 to 116.8 %. The results demonstrated that BNNTs could be used as sorbent for the analysis of environmental pollutants at trace levels.
Mariani, Maurizio Boccacci; Giannetti, Vanessa; Testani, Elena; Ceccarelli, Valentina
2013-01-01
The use of pesticides in agriculture has grown dramatically over the last decades. Environmental exposure of humans to agrochemicals is common and results in both acute and chronic health effects. In this study, direct immersion-solid phase microextraction (SPME) was coupled with electron capture detection for trace determination of 19 chlorinated pesticides in tomato samples, using a 100 pm polydimethylsiloxane fiber. The experimental parameters extraction time, extraction temperature, stirring, and salting out were evaluated and optimized. The LODs ranged from 0.5 to 8 microg/kg, and the LOQs from 5 to 30 microg/kg. A linear response was confirmed by correlation coefficients ranging from 0.97 to 0.9985. The developed method was tested by analyzing real samples purchased within the network of Italian distribution. The samples were found to be free from detectable residues of the studied pesticides. SPME has been shown to be a fast extraction technique that has several advantages such as solvent-free extraction, simplicity, and compatibility with the chromatographic analytical system.
Shamaeli, Ehsan; Alizadeh, Naader
2012-01-01
A nanostructure fiber based on conducting polypyrrole synthesized by an electrochemical method has been developed, and used for electrochemically switching solid-phase microextraction (ES-SPME). The ES-SPME was prepared by the doping of eriochrome blue in polypyrrole (PPy-ECB) and used for selectively extracting the Ni(II) cation in the presence of some transition and heavy metal ions. The cation-exchange behavior of electrochemically prepared polypyrrole on stainless-steel with and without eriochrome blue (ECB) dye was characterized using ICP-OES analysis. The effects of the scan rate for electrochemical synthesis, uptake and the release potential on the extraction behavior of the PPy-ECB conductive fiber were studied. Uptake and release time profiles show that the process of electrically switched cation exchange could be completed within 250 s. The results of the present study point concerning the possibility of developing a selective extraction process for Ni(II) from waste water was explored using such a nanostructured PPy-ECB film through an electrically switched cation exchange. 2012 © The Japan Society for Analytical Chemistry
Roosta, Mostafa; Ghaedi, Mehrorang; Daneshfar, Ali; Sahraei, Reza
2015-01-15
In the present study, for the first time, a new extraction method based on "ultrasound assisted microextraction-nanomaterial solid phase dispersion (UAME-NMSPD)" was developed to preconcentrate the low quantity of thymol and carvacrol in pharmaceutical samples prior to their HPLC-UV separation/determination. The analytes were accumulated on nickel sulfide nanomaterial loaded on activated carbon (NiS-NP-AC) that with more detail identified by XRD, FESEM and UV-vis technique. Central composite design (CCD) combined with desirability function (DF) was used to search for optimum operational conditions. Working under optimum conditions specified as: 10 min ultrasonic time, pH 3, 0.011 g of adsorbent and 600 μL extraction solvent) permit achievement of high and reasonable linear range over 0.005-2.0 μg mL(-1) (r(2)>0.9993) with LOD of thymol and carvacrol as 0.23 and 0.21 μg L(-1), respectively. The relative standard deviations (RSDs) were less than 4.93% (n=3). Copyright © 2014 Elsevier B.V. All rights reserved.
Jafari, Mostafa; Ebrahimzadeh, Homeira; Banitaba, Mohammad Hossein; Davarani, Saied Saeed Hosseiny
2014-11-01
A novel polypyrole/graphene oxide coating was made by the electrochemical polymerization of pyrrole in the presence of sodium dodecyl sulfate and graphene oxide on a platinum wire. The prepared fiber has shown a good thermal stability up to 300°C. The fiber was applied to the direct solid-phase microextraction and gas chromatographic analysis of four phthalate esters. The effect of four parameters on gas chromatography peak area including extraction temperature, extraction time, injection temperature, and ionic strength were investigated. Under the optimized conditions, the detection limits were between 0.042 and 0.26 μg/L. The intraday and interday relative standard deviations obtained at 55 μg/L, using a single fiber, were 8.2-16% and 17.3-25.6%, respectively. The method was successfully applied to the analysis of phthalate esters in two real samples of boiling water in cheap disposable clear plastic drinking cups showing recoveries from 83 to 120%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Polymeric ionic liquid bucky gels as sorbent coatings for solid-phase microextraction.
Zhang, Cheng; Anderson, Jared L
2014-05-30
Novel cross-linked polymeric ionic liquid (PIL) bucky gels were formed by free-radical polymerization of polymerizable ionic liquids gelled with multi-walled carbon nanotubes (MWCNT) and used as sorbent coatings for solid-phase microextraction (SPME). The combination of PIL with MWCNTs significantly enhanced the π-π interaction between the sorbent coatings and the aromatic analytes. Compared to the neat PIL-based sorbent coating, the PIL bucky gel sorbent coatings demonstrated higher extraction efficiency for the extraction of polycyclic aromatic hydrocarbons (PAHs). A partitioning extraction mechanism was observed for the PIL/MWCNT-based sorbent coatings indicating that the addition of MWCNTs did not seem to affect the extraction mechanism of the sorbent coating. The analyte-to-coating partition coefficients (logKfs) were estimated and the limits of detection (LOD) for selected PIL bucky gel sorbent coating were determined to be in the range of 1-2.5 ng L(-1). Recovery studies were also performed for PAHs in river and tap water to validate the applicability of the developed method. Copyright © 2014 Elsevier B.V. All rights reserved.
Pastor-Belda, Marta; Garrido, Isabel; Campillo, Natalia; Viñas, Pilar; Hellín, Pilar; Flores, Pilar; Fenoll, José
2016-07-01
Dispersive liquid-liquid microextraction was used to preconcentrate three spirocyclic tetronic/tetramic acid derivatives (spirotetramat, spiromesifen and spirodiclofen) and five neonicotinoid (thiamethoxam, chlotianidin, imidacloprid, acetamiprid and thiacloprid) insecticides previously extracted from fruit and vegetable matrices with acetonitrile. The organic enriched phase was evaporated, reconstituted in 25μL acetonitrile and analyzed by reversed-phase liquid chromatography with tandem mass spectrometry using a triple quadrupole in selected reaction monitoring mode. Enrichment factors in the 15-100 range were obtained. A matrix effect was observed, the detection limits varying between 0.025 and 0.5ngg(-1), depending on the compound and the sample matrix. The developed method was applied to the analysis of 25 samples corresponding to five different fruit and vegetable matrices. Only thiamethoxam was detected in a lemon sample at a concentration close to the quantification limit, and spiromesifen and spirotetramat at concentrations between 11.6 and 54.5ngg(-1). Copyright © 2016 Elsevier Ltd. All rights reserved.
Ionic liquids in solid-phase microextraction: a review.
Ho, Tien D; Canestraro, Anthony J; Anderson, Jared L
2011-06-10
Solid-phase microextraction (SPME) has undergone a surge in popularity within the field of analytical chemistry in the past two decades since its introduction. Owing to its nature of extraction, SPME has become widely known as a quick and cost-effective sample preparation technique. Although SPME has demonstrated extraordinary versatility in sampling capabilities, the technique continues to experience a tremendous growth in innovation. Presently, increasing efforts have been directed towards the engineering of novel sorbent material in order to expand the applicability of SPME for a wider range of analytes and matrices. This review highlights the application of ionic liquids (ILs) and polymeric ionic liquids (PILs) as innovative sorbent materials for SPME. Characterized by their unique physico-chemical properties, these compounds can be structurally-designed to selectively extract target analytes based on unique molecular interactions. To examine the advantages of IL and PIL-based sorbent coatings in SPME, the field is reviewed by gathering available experimental data and exploring the sensitivity, linear calibration range, as well as detection limits for a variety of target analytes in the methods that have been developed. Copyright © 2011 Elsevier B.V. All rights reserved.
Valenzuela, Aníbal; Lespes, Gaëtane; Quiroz, Waldo; Aguilar, Luis F; Bravo, Manuel A
2014-07-01
A new headspace solid-phase micro-extraction (HS-SPME) method followed by gas chromatography with pulsed flame photometric detection (GC-PFPD) analysis has been developed for the simultaneous determination of 11 organotin compounds, including methyl-, butyl-, phenyl- and octyltin derivates, in human urine. The methodology has been validated by the analysis of urine samples fortified with all analytes at different concentration levels, and recovery rates above 87% and relative precisions between 2% and 7% were obtained. Additionally, an experimental-design approach has been used to model the storage stability of organotin compounds in human urine, demonstrating that organotins are highly degraded in this medium, although their stability is satisfactory during the first 4 days of storage at 4 °C and pH=4. Finally, this methodology was applied to urine samples collected from harbor workers exposed to antifouling paints; methyl- and butyltins were detected, confirming human exposure in this type of work environment. Copyright © 2014 Elsevier B.V. All rights reserved.
Costa, Rosaria; Tedone, Laura; De Grazia, Selenia; Dugo, Paola; Mondello, Luigi
2013-04-03
Multiple headspace-solid phase microextraction (MHS-SPME) followed by gas chromatography/mass spectrometry (GC-MS) and flame ionization detection (GC-FID) was applied to the identification and quantification of volatiles released by the mushroom Agaricus bisporus, also known as champignon. MHS-SPME allows to perform quantitative analysis of volatiles from solid matrices, free of matrix interferences. Samples analyzed were fresh mushrooms (chopped and homogenized) and mushroom-containing food dressings. 1-Octen-3-ol, 3-octanol, 3-octanone, 1-octen-3-one and benzaldehyde were common constituents of the samples analyzed. Method performance has been tested through the evaluation of limit of detection (LoD, range 0.033-0.078 ng), limit of quantification (LoQ, range 0.111-0.259 ng) and analyte recovery (92.3-108.5%). The results obtained showed quantitative differences among the samples, which can be attributed to critical factors, such as the degree of cell damage upon sample preparation, that are here discussed. Considerations on the mushrooms biochemistry and on the basic principles of MHS analysis are also presented. Copyright © 2013 Elsevier B.V. All rights reserved.
Montesdeoca-Esponda, Sarah; Mahugo-Santana, Cristina; Sosa-Ferrera, Zoraida; Santana-Rodríguez, José Juan
2015-03-01
A dispersive liquid-liquid micellar microextraction (DLLMME) method coupled with ultra-high-performance liquid chromatography (UHPLC) using Diode Array Detector (DAD) detector was developed for the analysis of five pharmaceutical compounds of different nature in wastewaters. A micellar solution of a surfactant, polidocanol, as extraction solvent (100 μL) and chloroform as dispersive solvent (200 μL) were used to extract and preconcentrate the target analytes. Samples were heated above critical temperature and the cloudy solution was centrifuged. After removing the chloroform, the reduced volume of surfactant was then injected in the UHPLC system. In order to obtain high extraction efficiency, the parameters affecting the liquid-phase microextraction, such as time and temperature extraction, ionic strength and surfactant and organic solvent volume, were optimized using an experimental design. Under the optimized conditions, this procedure allows enrichment factors of up to 47-fold. The detection limit of the method ranged from 0.1 to 2.0 µg/L for the different pharmaceuticals. Relative standard deviations were <26% for all compounds. The procedure was applied to samples from final effluent collected from wastewater treatment plants in Las Palmas de Gran Canaria (Spain), and two compounds were measured at 67 and 113 µg/L in one of them. Copyright © 2014 John Wiley & Sons, Ltd.
Rani, Susheela; Malik, Ashok K; Singh, Baldev
2012-02-01
A method for the simultaneous determination of the antiepileptic drugs, phenobarbital (PHB), phenytoin (PTN), carbamazepine (CBZ), primidone (PRM) and oxcarbazepine (OXC) in human plasma and urine samples by using micro-extraction in a packed syringe as the sample preparation method connected with LC/UV (MEPS/LC/UV) is described. Micro-extraction in a packed syringe (MEPS) is a new miniaturized, solid-phase extraction technique that can be connected online to gas or liquid chromatography without any modifications. In MEPS approximately 1 mg of the solid packing material is inserted into a syringe (100-250 μL) as a plug. Sample preparation takes place on the packed bed. The bed can be coated to provide selective and suitable sampling conditions. The new method is very promising, easy to use, fully automated, inexpensive and quick. The standard curves were obtained within the concentration range 1-500 ng/mL in both plasma and urine samples. The results showed high correlation coefficients (R(2) >0.988) for all of the analytes within the calibration range. The extraction recovery was found to be between 88.56 and 99.38%. The limit of quantification was found to be between 0.132 and 1.956 ng/mL. The precision (RSD) values of quality control samples (QC) had a maximum deviation of 4.9%. A comparison of the detection limits with similar methods indicates high sensitivity of the present method. The method is applied for the analysis of these drugs in real urine and plasma samples of epileptic patients. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Chun; Wu, Qiuhua; Wu, Chunxia; Wang, Zhi
2011-11-01
A novel method based on simultaneous liquid-liquid microextraction and carbon nanotube reinforced hollow fiber microporous membrane solid-liquid phase microextraction has been developed for the determination of six organophosphorus pesticides, i.e. isocarbophos, phosmet, parathion-methyl, triazophos, fonofos and phoxim, in water and watermelon samples prior to high-performance liquid chromatography (HPLC). Under the optimum conditions, the method shows a good linearity within a range of 1-200 ng/mL for water samples and 5-200 ng/g for watermelon samples, with the correlation coefficients (r) varying from 0.9990 to 0.9997 and 0.9986 to 0.9995, respectively. The limits of detection (LODs) were in the range between 0.1 and 0.3 ng/mL for water samples and between 1.0 and 1.5 ng/g for watermelon samples. The recoveries of the method at spiking levels of 5.0 and 50.0 ng/mL for water samples were between 85.4 and 100.8%, and at spiking levels of 5.0 and 50.0 ng/g for watermelon samples, they were between 82.6 and 92.4%, with the relative standard deviations (RSDs) varying from 4.5-6.9% and 5.2-7.4%, respectively. The results suggested that the developed method represents a simple, low-cost, high analytes preconcentration and excellent sample cleanup procedure for the determination of organophosphorus pesticides in water and watermelon samples. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Su, Rui; Li, Dan; Wu, Lijie; Han, Jing; Lian, Wenhui; Wang, Keren; Yang, Hongmei
2017-07-01
A novel microextraction method, termed microwave-assisted ionic liquid/ionic liquid dispersive liquid-liquid microextraction, has been developed for the rapid enrichment and analysis of triazine herbicides in fruit juice samples by high-performance liquid chromatography. Instead of using hazardous organic solvents, two kinds of ionic liquids, a hydrophobic ionic liquid (1-hexyl-3-methylimidazolium hexafluorophosphate) and a hydrophilic ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate), were used as the extraction solvent and dispersion agent, respectively, in this method. The extraction procedure was induced by the formation of cloudy solution, which was composed of fine drops of 1-hexyl-3-methylimidazolium hexafluorophosphate dispersed entirely into sample solution with the help of 1-butyl-3-methylimidazolium tetrafluoroborate. In addition, an ion-pairing agent (NH 4 PF 6 ) was introduced to improve recoveries of the ionic liquid phase. Several experimental parameters that might affect the extraction efficiency were investigated. Under the optimum experimental conditions, the linearity for determining the analytes was in the range of 5.00-250.00 μg/L, with the correlation coefficients of 0.9982-0.9997. The practical application of this effective and green method is demonstrated by the successful analysis of triazine herbicides in four juice samples, with satisfactory recoveries (76.7-105.7%) and relative standard deviations (lower than 6.6%). In general, this method is fast, effective, and robust to determine triazine herbicides in juice samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Yifan; Li, Haiyan; Yang, Zhen; Zhang, Weijie; Hua, Jia
2017-12-01
To explore why the use of furfural as a transformer oil-paper insulation aging characteristic is problematic in real world application, we developed a method for the simultaneous determination of furfural, furoic acid, and maleic acid in transformer oil by reversed-phase vortex-assisted liquid-liquid microextraction combined with high-performance liquid chromatography. The conditions for the proposed method were optimized, and the obtained extract can be directly analyzed by high-performance liquid chromatography. The detection limits (signal-to-noise ratio = 3) of the method ranged from 1.0 to 4.6 μg/L, the enrichment factors for furfural, furoic acid, maleic acid, and fumaric acid were 4.6, 25.1, 15.6, and 17.5, respectively, and the recovery rates for three analytes (fumaric acid was undetected) range from 82.1 to 106.2%. The contents of furfural, furoic acid, and maleic acid resulted from accelerated aging of transformer insulation oil-paper were measured using the present method for the first time, and the aging samples were analyzed by liquid chromatography with mass spectrometry for the identification of furoic acid and maleic acid in the aging transformer oil samples. Using the optimal method, the target products of samples at different aging time were tracked and measured. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sampson, Maureen M.; Chambers, David M.; Pazo, Daniel Y.; Moliere, Fallon; Blount, Benjamin C.; Watson, Clifford H.
2015-01-01
Quantifying volatile organic compounds (VOCs) in cigarette smoke is necessary to establish smoke-related exposure estimates and evaluate emerging products and potential reduced-exposure products. In response to this need, we developed an automated, multi-VOC quantification method for machine-generated, mainstream cigarette smoke using solidphase microextraction gas chromatography–mass spectrometry (SPME-GC–MS). This method was developed to simultaneously quantify a broad range of smoke VOCs (i.e., carbonyls and volatiles, which historically have been measured by separate assays) for large exposure assessment studies. Our approach collects and maintains vapor-phase smoke in a gas sampling bag, where it is homogenized with isotopically labeled analogue internal standards and sampled using gas-phase SPME. High throughput is achieved by SPME automation using a CTC Analytics platform and custom bag tray. This method has successfully quantified 22 structurally diverse VOCs (e.g., benzene and associated monoaromatics, aldehydes and ketones, furans, acrylonitrile, 1,3-butadiene, vinyl chloride, and nitromethane) in the microgram range in mainstream smoke from 1R5F and 3R4F research cigarettes smoked under ISO (Cambridge Filter or FTC) and Intense (Health Canada or Canadian Intense) conditions. Our results are comparable to previous studies with few exceptions. Method accuracy was evaluated with third-party reference samples (≤15% error). Short-term diffusion losses from the gas sampling bag were minimal, with a 10% decrease in absolute response after 24 h. For most analytes, research cigarette inter- and intrarun precisions were ≤20% relative standard deviation (RSD). This method provides an accurate and robust means to quantify VOCs in cigarette smoke spanning a range of yields that is sufficient to characterize smoke exposure estimates. PMID:24933649
Chen, Xuan; Bai, Xiaohong; Wang, Xiao; Wang, Jing; Bu, Wei
2010-12-01
The preferred conformations of the ephedrine and pseudoephedrine in Ephedra sinica Stapf and rat urine were analyzed by the hollow fiber liquid-phase microextraction (HF-LPME) and their extraction mechanisms were illuminated. The method of the separation of the ephedrine and pseudoephedrine and the determination of their concentrations with high performance liquid chromatography (HPLC) were established. The optimal experimental conditions were as follows: the organic phase carrier was the hollow fiber of polyvinylidene fluoride (MOF-503), organic solvent was n-hexanol, the extraction time was 35 min, the stirring rate was 1200 r/min, the sample phase was the NaOH solution (5 mol/L) of the analyte, the acceptor was 0.01 mol/L H2SO4 solution. The extracts were analyzed by HPLC. Under the optimal conditions, the method is convenient and highly sensitive. In Ephedra sinica Stapf, the linear ranges of ephedrine and pseudoephedrine were 5-100 microg/L, the detection limits were 1.9 microg/L and 1.2 microg/L and the enrichment factors were 38 and 61, respectively. The average recoveries of ephedrine and pseudoephedrine were 100.6% +/- 1.2% and 103.2% +/- 3.5%, respectively. In rat urine, their linear ranges were 100 - 5 x 10(4) microg/L, the detection limits were 30 microg/L and 42 microg/L and the enrichment factors were 20 and 17, respectively. In rat urine, their average recoveries were 108.4% +/- 4.4% and 106. 1% +/- 5.4%, respectively. The obtained results indicated that the method can be successfully applied for the extraction and determination of the ephedrine and pseudoephedrine in Ephedra sinica Stapf and rat urine.
Verplanken, Kaat; Wauters, Jella; Van Durme, Jim; Claus, Dirk; Vercammen, Joeri; De Saeger, Sarah; Vanhaecke, Lynn
2016-09-02
Because of animal welfare issues, the voluntary ban on surgical castration of male piglets, starting January 2018 was announced in a European Treaty. One viable alternative is the fattening of entire male pigs. However, this can cause negative consumer reactions due to the occurrence of boar taint and possibly lead to severe economic losses in pig husbandry. In this study, headspace solid phase microextraction (HS-SPME) coupled to GC-MS was used in the development and optimization of a candidate method for fast and accurate detection of the boar taint compounds. Remarkably fast extraction (45s) of the boar taint compounds from adipose tissue was achieved by singeing the fat with a soldering iron while released volatiles were extracted in-situ using HS-SPME. The obtained method showed good performance characteristics after validation according to CD 2002/657/EC and ISO/IEC 17025 guidelines. Moreover, cross-validation with an in-house UHPLC-HR-Orbitrap-MS method showed good agreement between an in-laboratory method and the new candidate method for the fast extraction and detection of skatole and androstenone, which emphasizes the accuracy of this new SPME-GC-MS method. Threshold detection of the boar taint compounds on a portable GC-MS could not be achieved. However, despite the lack of sensitivity obtained on the latter instrument, a very fast method with run-to-run time of 3.5min for the detection of the boar taint compounds was developed. Copyright © 2016 Elsevier B.V. All rights reserved.
Cai, Pei-Shan; Li, Dan; Chen, Jing; Xiong, Chao-Mei; Ruan, Jin-Lan
2015-04-15
Two thin-film microextractions (TFME), octadecylsilane (ODS)-polyacrylonitrile (PAN)-TFME and polar enhanced phase (PEP)-PAN-TFME have been proposed for the analysis of bisphenol-A, diethylstilbestrol and 17β-estradiol in aqueous tea extract and environmental water samples followed by high performance liquid chromatography-ultraviolet detection. Both thin-films were prepared by spraying. The influencing factors including pH, extraction time, desorption solvent, desorption volume, desorption time, ion strength and reusability were investigated. Under the optimal conditions, the two TFME methods are similar in terms of the analytical performance evaluated by standard addition method. The limits of detection for three estrogens in environmental water and aqueous tea extract matrix ranged from 1.3 to 1.6 and 2.8 to 7.1 ng mL(-1) by the two TFME methods, respectively. Both approaches were applied for the analysis of analytes in real aqueous tea extract and environmental water samples, presenting satisfactory recoveries ranged from 87.3% to 109.4% for the spiked samples. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bazregar, Mohammad; Rajabi, Maryam; Yamini, Yadollah; Arghavani-Beydokhti, Somayeh; Asghari, Alireza
2018-04-01
In this work, a novel method, namely centrifugeless dispersive liquid-liquid microextraction, is introduced for the efficient extraction of banned Sudan dyes from foodstuff and water samples. In this method, which is based upon the salting-out phenomenon, in order to accelerate the extraction process, the extraction solvent (1-undecanol, 75 μL) is dispersed into the sample solution. Then the mixture is passed through a small column filled with 5 g sodium chloride, used as a separating reagent. In this condition, fine droplets of the extraction solvent are floated on the mixture, and the phase separation is simply achieved. This method is environmentally friendly, simple, and very fast, so that the overall extraction time is only 7 min. Under the optimal experimental conditions, the preconcentration factors in the range of 90-121 were obtained for the analytes. Also good linearities were obtained in the range of 2.5-1200 ng mL -1 (r 2 ≥ 0.993). Copyright © 2017 Elsevier Ltd. All rights reserved.
Solid phase microextraction field kit
Nunes, Peter J.; Andresen, Brian D.
2005-08-16
A field kit for the collection, isolation and concentration of trace amounts of high explosives (HE), biological weapons (BW) and chemical weapons (CW) residues in air, soil, vegetation, swipe, and liquid samples. The field kit includes a number of Solid Phase Microextraction (SPME) fiber and syringe assemblies in a hermetically sealed transportation container or tubes which includes a sampling port, a number of extra SPME fiber and syringe assemblies, the fiber and syringe assemblies including a protective cap for the fiber, and an extractor for the protective cap, along with other items including spare parts, protective glove, and an instruction manual, all located in an airtight container.
Feng, Yuanyuan; Zhao, Faqiong; Zeng, Baizhao
2015-05-01
A polycarbazole film was electrodeposited on a stainless-steel wire from a solution of N,N-dimethylformamide/propylene carbonate (1:9 v/v) containing 0.10 M carbazole and 0.10 M tetrabutylammonium perchlorate. The obtained polycarbazole fiber was immersed into an ionic liquid (1-hydroxyethyl-3-methyl imidazolium bis[(trifluoromethyl)sulfonyl]imide) solution (in dimethylsulfoxide) for 30 min, followed by drying under an infrared lamp. The resulting polycarbazole/ionic liquid fiber was applied to the headspace solid-phase microextraction and determination of aromatic esters by coupling with gas chromatography and flame ionization detection. Under the optimized conditions, the limits of detection were below 61 ng/L (S/N = 3) and the linear ranges were 0.061-500 μg/L with correlation coefficients above 0.9876. The relative standard deviations were below 4.8% (n = 5) for a single fiber, and below 9.9% for multi-fiber (n = 4). This fiber also exhibited good stability. It could be used for more than 160 times of headspace solid-phase microextraction and could withstand a high temperature up to 350°C. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chao, Yu-Ying; Lee, Chien-Hung; Chien, Tzu-Yang; Shih, Yu-Hsuan; Lu, Yin-An; Kuo, Ting-Hsuan; Huang, Yeou-Lih
2013-08-28
In previous studies, we developed a process, on-line ultrasound-assisted push/pull perfusion hollow-fiber liquid-phase microextraction (UA-PPP-HF-LPME), combining the techniques of push/pull perfusion (PPP) and ultrasonication with hollow-fiber liquid-phase microextraction (HF-LPME), to achieve rapid extraction of acidic phenols from water samples. In this present study, we further evaluated three more-advanced and novel effects of PPP and ultrasonication on the extraction efficiencies of neutral high-molecular-weight phthalate esters (HPAEs) in sports drinks. First, we found that inner-fiber fluid leakage occurs only in push-only perfusion-based and pull-only perfusion-based HF-LPME, but not in the PPP mode. Second, we identified a significant negative interaction between ultrasonication and temperature. Third, we found that the extraction time of the newly proposed system could be shortened by more than 93%. From an investigation of the factors affecting UA-PPP-HF-LPME, we established optimal extraction conditions and achieved acceptable on-line enrichment factors of 92-146 for HPAEs with a sampling time of just 2 min.
An, Jiwoo; Rahn, Kira L; Anderson, Jared L
2017-05-15
A headspace single drop microextraction (HS-SDME) method and a dispersive liquid-liquid microextraction (DLLME) method were developed using two tetrachloromanganate ([MnCl 4 2- ])-based magnetic ionic liquids (MIL) as extraction solvents for the determination of twelve aromatic compounds, including four polyaromatic hydrocarbons, by reversed phase high-performance liquid chromatography (HPLC). The analytical performance of the developed HS-SDME method was compared to the DLLME approach employing the same MILs. In the HS-SDME approach, the magnetic field generated by the magnet was exploited to suspend the MIL solvent from the tip of a rod magnet. The utilization of MILs in HS-SDME resulted in a highly stable microdroplet under elevated temperatures and long extraction times, overcoming a common challenge encountered in traditional SDME approaches of droplet instability. The low UV absorbance of the [MnCl 4 2- ]-based MILs permitted direct analysis of the analyte enriched extraction solvent by HPLC. In HS-SDME, the effects of ionic strength of the sample solution, temperature of the extraction system, extraction time, stir rate, and headspace volume on extraction efficiencies were examined. Coefficients of determination (R 2 ) ranged from 0.994 to 0.999 and limits of detection (LODs) varied from 0.04 to 1.0μgL -1 with relative recoveries from lake water ranging from 70.2% to 109.6%. For the DLLME method, parameters including disperser solvent type and volume, ionic strength of the sample solution, mass of extraction solvent, and extraction time were studied and optimized. Coefficients of determination for the DLLME method varied from 0.997 to 0.999 with LODs ranging from 0.05 to 1.0μgL -1 . Relative recoveries from lake water samples ranged from 68.7% to 104.5%. Overall, the DLLME approach permitted faster extraction times and higher enrichment factors for analytes with low vapor pressure whereas the HS-SDME approach exhibited better extraction efficiencies for analytes with relatively higher vapor pressure. Copyright © 2017 Elsevier B.V. All rights reserved.
Kazemi, Elahe; Dadfarnia, Shayessteh; Haji Shabani, Ali Mohammad
2015-08-15
A selective, simple and rapid dispersive solid phase microextraction was developed using magnetic graphene oxide (MGO) as an efficient sorbent for the separation and preconcentration of gold ions. The MGO was synthesized by means of the simple one step chemical coprecipitation method, characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). Gold ions retained by the sorbent were eluted using 0.5mol L(-)(1) thiourea in 0.1mol L(-1) HCl solution and determined by the flow injection flame atomic absorption spectrometry (FI-FAAS). The factors affecting the separation and preconcentration of gold were investigated and optimized. Under the optimized conditions, the method exhibited a linear dynamic range of 0.02-100.0µg L(-)(1) with a detection limit of 4ng L(-1) and an enrichment factor of 500. The relative standard deviations of 3.2% and 4.7% (n=6) were obtained at 20µg L(-1) level of gold ions for the intra and the inter day analysis, respectively. The method was successfully applied to the determination of gold ions in water and waste water samples as well as a certified reference material (CCU-1b, copper flotation concentrate). Copyright © 2015 Elsevier B.V. All rights reserved.
Pereira, Ana; Silva, Emília; Cerejeira, Maria J
2014-01-01
A solid-phase microextraction (SPME) method has been applied for the simultaneous analysis of six pesticides in water, with polar to moderately polar range, by gas chromatography-mass spectrometry (GC-MS). Two types of fiber coatings [60 µm polyethylene glycol (PEG) and 65 µm polydimethylsiloxane/divinylbenzene (PDMS/DVB)] and the effect of salt (addition of 10 and 25% of NaCl) were compared. The extraction efficiency was higher with PEG than with the PDMS/DVB fiber for all pesticides, with the exception of terbuthylazine and phosmet, and with addition of 25% NaCl. The optimized SPME-GC-MS method, adopting the PEG fiber and the addition of 25% NaCl, in addition to other conditions [60 min of direct dipping of the fiber into the water sample (10 mL) under agitation (250 rpm) at ambient temperature; desorption period of 5 min at 240°C] allowed the determination of all studied pesticides and showed good linearity for concentrations ranging from 0.05 to 5 µg/L. Limits of detection varied between 0.003 and 0.145 µg/L, with values below 0.025 µg/L for most of the analytes. Precision ranged from 4.2 to 12%. The proposed method is fast and simple, and was proven to be reliable for the routine analysis of pesticides in water, primarily for environmental monitoring.
Wu, Lijie; Song, Ying; Hu, Mingzhu; Xu, Xu; Zhang, Hanqi; Yu, Aimin; Ma, Qiang; Wang, Ziming
2015-01-01
A novel, simple, and environmentally friendly pretreatment method, ionic liquid magnetic bar liquid-phase microextraction, was developed for the determination of sulfonamides in butter samples by high-performance liquid chromatography. The ionic liquid magnetic bar was prepared by inserting a stainless steel wire into the hollow of a hollow fiber and immobilizing ionic liquid in the micropores of the hollow fiber. In the extraction process, the ionic liquid magnetic bars were used to stir the mixture of sample and extraction solvent and enrich the sulfonamides in the mixture. After extraction, the analyte-adsorbed ionic liquid magnetic bars were readily isolated with a magnet from the extraction system. It is notable that the present method was environmentally friendly since water and only several microliters of ionic liquid were used in the whole extraction process. Several parameters affecting the extraction efficiency were investigated and optimized, including the type of ionic liquid, sample-to-extraction solvent ratio, the number of ionic liquid magnetic bars, extraction temperature, extraction time, salt concentration, stirring speed, pH of the extraction solvent, and desorption conditions. The recoveries were in the range of 73.25-103.85 % and the relative standard deviations were lower than 6.84 %. The experiment results indicated that the present method was effective for the extraction of sulfonamides in high-fat content samples.
Lamas, J Pablo; Salgado-Petinal, Carmen; García-Jares, Carmen; Llompart, María; Cela, Rafael; Gómez, Mariano
2004-08-13
The continuous contamination of surface waters by pharmaceuticals is of most environmental concern. Selective serotonin reuptake inhibitors (SSRIs) are drugs currently prescribed for the treatment of depressions and other psychiatric disorders and then, they are among the pharmaceuticals that can occur in environmental waters. Solid-phase microextraction (SPME) coupled to gas chromatography-mass spectrometry has been applied to the extraction of five SSRIs--venlafaxine, fluvoxamine, fluoxetine, citalopram and sertraline--from water samples. Some of the analytes were not efficiently extracted as underivatized compounds and so, an in situ acetylation step was introduced in the sample preparation procedure. Different parameters affecting extraction efficiency such as extraction mode, fiber coating and temperature were studied. A mixed-level fractional factorial design was also performed to simultaneously study the influence of other five experimental factors. Finally, a method based on direct SPME at 100 degrees C using polydimethylsiloxane-divinylbenzene fibers is proposed. The performance of the method was evaluated, showing good linearity and precision. The detection limits were in the sub-ng/mL level. Practical applicability was demonstrated through the analysis of real samples. Recoveries obtained for river water and wastewater samples were satisfactory in all cases. An important aspect of the proposed method is that no matrix effects were observed. Two of the target compounds, venlafaxine and citalopram, were detected and quantified in a sewage water sample.
Kaykhaii, Massoud; Mirbaloochzahi, Mohammad Reza
2008-12-01
The applicability of the headspace liquid phase microextraction and gas chromatography (HS-LPME/GC) for the expeditious and reliable screening of 68 well water samples for selected fuel oxygenates compounds, viz. methyl tertiary-butyl ether (MTBE), tertiary-amyl methyl ether (TAME), ethyl tertiary-butyl ether (ETBE) and n-butyl ethyl ether (n-BEE) has been evaluated. The method used 3 microl of 1:1 benzyl alcohol/1-octanol as extraction solvent, 20 min extraction time with stirring at 1,250 rpm, at 20 degrees C and salt addition of a mixture of 0.3 g ml(-1) sodium sulphate/0.1 g ml(-1) sodium chloride. The enrichment factors of this method were from 171 to 571. Limits of detection were in the range of 77-110 ng l(-1). The relative standard deviations (RSDs) at 0.05, 0.50 and 10.0 mg l(-1) of spiking levels were in the range of 1.28-6.80% with recoveries between 96.2 and 106.0%. Sixty-eight groundwater wells that were located near different gasoline reservoirs in eight largest cities of the Sistan and Balouchestan province were screened by the method. Eight contaminated wells were identified contained MTBE at levels between 0.3 and 1.7 mg l(-1). In all cases, other target analytes were at low concentrations or not detected.
Liang, Weiqian; Wang, Juntao; Zang, Xiaohuan; Dong, Wenhuan; Wang, Chun; Wang, Zhi
2017-03-31
In this work, a barley husk biomaterial was successfully carbonized by hydrothermal method. The carbon had a high specific surface area and good stability. It was coated onto a stainless steel wire through sol-gel technique to prepare a solid-phase microextraction fiber for the extraction of trace levels of twelve pesticides (tsumacide, fenobucarb, indoxacarb, diethofencarb, thimet, terbufos, malathion, thiamethoxam, imidacloprid, buprofezin, acetamiprid, thiamethoxam) from vegetable samples prior to gas chromatography-mass spectrometric (GC-MS) detection. The main experimental parameters that could influence the extraction efficiency such as extraction time, extraction temperature, sample pH, sample salinity, stirring rate, desorption temperature and desorption time, were investigated. Under the optimized conditions, the linearity was observed in the range of 0.2-75.0μgkg -1 for tomato samples, and 0.3-60.0μgkg -1 for cucumber samples, with the correlation coefficients (r) ranging from 0.9959 to 0.9983. The limits of detection of the method were 0.01-0.05μgkg -1 for tomato samples, and 0.03-0.10μgkg -1 for cucumber samples. The recoveries of the analytes for the method from spiked samples were in the range of 76%-104%, and the precision, expressed as the relative standard deviations, was less than 12%. Copyright © 2017 Elsevier B.V. All rights reserved.
Shammugasamy, Balakrishnan; Ramakrishnan, Yogeshini; Ghazali, Hasanah M; Muhammad, Kharidah
2013-07-26
A simple sample preparation technique coupled with reversed-phase high-performance liquid chromatography was developed for the determination of tocopherols and tocotrienols in cereals. The sample preparation procedure involved a small-scale hydrolysis of 0.5g cereal sample by saponification, followed by the extraction and concentration of tocopherols and tocotrienols from saponified extract using dispersive liquid-liquid microextraction (DLLME). Parameters affecting the DLLME performance were optimized to achieve the highest extraction efficiency and the performance of the developed DLLME method was evaluated. Good linearity was observed over the range assayed (0.031-4.0μg/mL) with regression coefficients greater than 0.9989 for all tocopherols and tocotrienols. Limits of detection and enrichment factors ranged from 0.01 to 0.11μg/mL and 50 to 73, respectively. Intra- and inter-day precision were lower than 8.9% and the recoveries were around 85.5-116.6% for all tocopherols and tocotrienols. The developed DLLME method was successfully applied to cereals: rice, barley, oat, wheat, corn and millet. This new sample preparation approach represents an inexpensive, rapid, simple and precise sample cleanup and concentration method for the determination of tocopherols and tocotrienols in cereals. Copyright © 2013 Elsevier B.V. All rights reserved.
Fidalgo-Used, Natalia; Montes-Bayón, Maria; Blanco-González, Elisa; Sanz-Medel, Alfredo
2008-05-15
A method for enantioselective determination of bromocyclen enantiomers in fish tissue has been developed. The enantiomers were resolved by capillary gas chromatography (GC) using a commercial chiral column (CP-Chirasil-Dex CB) and a temperature program from 50 degrees C (held for 1 min), raised to 140 degrees C at 40 degrees C min(-1) and then raised at 0.2 degrees C min(-1) to 155 degrees C. This enantioselective gas chromatographic separation was combined with a clean-up/enrichment procedure based on solid-phase microextraction (SPME). Under SPME optimized conditions, precision, linearity range and detection limits of the developed SPME-enantioselective GC procedure were evaluated and compared using two different detection systems: a classical electron-capture detection (ECD) and an element specific detection using inductively coupled plasma mass spectrometry (ICP-MS). The SPME-GC-ECD method exhibited an excellent sensitivity, with detection limits of 0.2 ng L(-1) for each enantiomer of bromocyclen. Although ICP-MS offered poorer detection limits (7 ng L(-1) as Br, equivalent to 36 ng L(-1) of each enantiomer) than conventional ECD detector, it proved to be clearly superior in terms of selectivity. The relative potential and performance of the two compared methods for real-life analysis has been illustrated by the determination of enantiomers of bromocyclen in spiked tissue extracts of trout.
Feng, Juanjuan; Wang, Xiuqin; Tian, Yu; Bu, Yanan; Luo, Chuannan; Sun, Min
2017-09-29
Carbon fibers (CFs) were functionalized with graphene oxide (GO) by an electrophoretic deposition (EPD) method for in-tube solid-phase microextraction (SPME). GO-CFs were filled into a poly(ether ether ketone) (PEEK) tube to obtain a fibers-in-tube SPME device, which was connected with high performance liquid chromatography (HPLC) equipment to build online SPME-HPLC system. Compared with CFs, GO-CFs presented obviously better extraction performance, due to excellent adsorption property and large surface area of GO. Using ten polycyclic aromatic hydrocarbons (PAHs) as model analytes, the important extraction conditions were optimized, such as sample flow rate, extraction time, organic solvent content and desorption time. An online analysis method was established with wide linear range (0.01-50μgL -1 ) and low detection limits (0.001-0.004μgL -1 ). Good sensitivity resulted from high enrichment factors (1133-3840) of GO-CFs in-tube device towards PAHs. The analysis method was used to online determination of PAHs in wastewater samples. Some target analytes were detected and relative recoveries were in the range of 90.2-112%. It is obvious that the proposed GO-CFs in-tube device was an efficient extraction device, and EPD could be used to develop nanomaterials functionalized sorbents for sample preparation. Copyright © 2017 Elsevier B.V. All rights reserved.
Cheng, Wen-Hsi; Huang, Hsiao-Lin; Chen, Kang-Shin; Chang, Yu-Jen
2017-10-15
The objective of this study was to measure the emission of, and personal exposure to workers, volatile organic compound (VOC) during paint spraying on a construction site. Needle trap samplers (NTSs), which are a green solid phase microextraction sampling technology, were used to obtain air samples at a large music exhibition center. The standard active sampling method using charcoal tubes and a personal air pump, Method 1501, was simultaneously utilized at the sampling sites to assess the workers' VOC exposures. Analysis of the data thus obtained showed that benzene, toluene, ethylenebenzene, and xylenes (BTEXs) were the main emission compounds. Acetone and isobutyl alcohol, which are used as thinning solvents, were detected as minor emission compounds. The emitted concentrations of most compounds were lower than the legal emission limits in Taiwan except that of benzene, for which the 2-ppm time weighted average short-term exposure limit was exceeded. The packed divinylbenzene (DVB) in the NTS was observed under an environmental scanning electron microscope, and many fine aerosols were found to be deposited on the surface of the DVB adsorbents, causing VOC extraction efficiencies after the fifth sampling in the field to decline. Workers on construction sites should be protected from emissions of VOC and fine particulates to preserve their occupational health.
Hu, Xiaogang; Hu, Yuling; Li, Gongke
2007-04-13
A novel molecularly imprinted polymer (MIP) coated solid-phase microextraction (SPME) fiber that could be coupled directly to high-performance liquid chromatography (HPLC) was prepared with prometryn as the template molecule. The characteristics and application of this fiber were investigated. Electron microscope photographs indicated that the MIP coating with average thickness of 25.0 microm was homogeneous and porous. The extraction yield of prometryn with the MIP-coated fibers was 10 times as much as that with the non-imprinted polymer (NIP) coated fibers. And special selectivity to other triazines which have similar structure to prometryn was discovered with the MIP-coated fibers. A method for the determination of triazines by the MIP-coated SPME coupled with HPLC was developed. The optimized extraction conditions were studied. Detection limits for the triazines studied were within the range of 0.012-0.090 microg/L. The method was applied to five triazines determination in the spiked soybean, corn, lettuce, and soil samples with the recoveries of 78.0-103.5%, 82.4-113.4%, 75.5-83.4%, and 81.0-106.1%, respectively. The MIP-coated fibers are suitable for the selective extraction of trace triazines in complicated samples.
Kang, Hye-In; Shin, Ho-Sang
2016-05-27
A simple and convenient headspace solid-phase microextraction (HS-SPME) gas chromatography mass spectrometry (GC-MS) method was described for the determination of glutaraldehyde in water. Glutaraldehyde in water reacted with 2,2,2-trifluoroethylhydrazine (TFEH) in a headspace vial and the formed TFEH derivatives were vaporized and adsorbed onto a fiber. The optimal HS-SPME conditions were achieved with a 50/30μm-divinylbenzene-carboxen-polydimethylsiloxane fiber, 0.06% 2,2,2-TFEH, 25% salt, an extraction/derivatization temperature of 80°C, a heating time of 30min, and a pH of 6.5. The desorption was performed for 1min at 240°C. Under the established conditions, the lowest limits of detection were 0.3μg/L and 0.1μg/L in 6.0mL of surface water and drinking water, respectively, and the intra- and inter-day relative standard deviation was less than 9.1% at concentrations of 50, 100 and 500μg/L. The calibration curve showed good linearity with R=0.9995 and R=0.9993 in surface water and drinking water, respectively. This method is simple, amenable to automation and environmentally friendly. Copyright © 2016 Elsevier B.V. All rights reserved.
Sun, Shi-Hao; Xie, Jian-Ping; Xie, Fu-Wei; Zong, Yong-Li
2008-02-01
A method coupling needle-based derivatization headspace liquid-phase microextraction with gas chromatography-mass spectrometry (HS-LPME/GC-MS) was developed to determine volatile organic acids in tobacco. The mixture of N,O-bis(trimethylsilyl)trifluoroacetamide and decane was utilized as the solvent for HS-LPME, resulting that extraction and derivatization were simultaneously completed in one step. The solvent served two purposes. First, it pre-concentrated volatile organic acids in the headspace of tobacco sample. Second, the volatile organic acids extracted were derivatized to form silyl derivatives in the drop. The main parameters affecting needle-based derivatization HS-LPME procedure such as extraction and derivatization reagent, microdrop volume, extraction and derivatization time, and preheating temperature and preheating time were optimized. The standard addition approach was essential to obtain accurate measurements by minimizing matrix effects. Good linearity (R(2)> or =0.9804) and good repeatability (RSDs< or =15.3%, n=5) for 16 analytes in spiked standard analytes sample were achieved. The method has the additional advantages that at the same time it is simple, fast, effective, sensitive, selective, and provides an overall profile of volatile organic acids in the oriental tobacco. This paper does offer an alternative approach to determine volatile organic acids in tobacco.
Bravo, Manuel; Lespes, Gaëtane; De Gregori, Ida; Pinochet, Hugo; Gautier, Martine Potin
2005-12-01
A method based on Headspace solid-phase microextraction (HS-SPME, with a 100 mum PDMS-fiber) in combination with gas-chromatography and pulsed flame-photometric detection (GC-PFPD) has been investigated for simultaneous determination of eight organotin compounds. Monobutyltin (MBT), dibutyltin (DBT), tributyltin (TBT), monophenyltin (MPhT), and the semi-volatile diphenyltin (DPhT), triphenyltin (TPhT), monooctyltin (MOcT), and dioctyltin (DOcT) were determined after derivatization with sodium tetraethylborate. The conditions used for the extraction and preconcentration step were optimised by experimental design methodology. Tripropyltin (TPrT) and diheptyltin (DHepT) were used as internal standards for quantification of volatile and semi-volatile organotin compounds, respectively. The analytical precision (RSD) for ten successive injections of a standard mixture containing all the organic tin compounds ranged between 2 and 11%. The limits of detection for all the organotin compounds were sub ng (Sn) L(-1) in water and close to ng (Sn) kg(-1) in sediments. The accuracy of the method was evaluated by analysis of two certified reference material (CRM) sediment samples. The HS-SPME-GC-PFPD was then applied to the analysis of three harbour sediment samples. The results showed that headspace SPME is an attractive tool for analysis of organotin compounds in solid environmental matrices.
Zhang, Shuaihua; Yang, Qian; Li, Zhi; Wang, Wenjin; Zang, Xiaohuan; Wang, Chun; Wang, Zhi
2018-10-15
A hybrid composite featuring an iron-based metal-organic framework Material of Institute Lavoisier-88(Fe) and graphene oxide (MIL-88(Fe)/GO) was synthesized and used as the solid-phase microextraction (SPME) coating. The SPME fiber was prepared by covalent bonding of the MIL-88(Fe)/GO composite onto the stainless steel substrate. The fiber had a good durability and allowed >100 replicate extractions. The developed method, which combined the MIL-88(Fe)/GO coated fiber based SPME with gas chromatography-flame ionization detection (GC-FID), achieved low limits of detection (0.5-2.0 ng g -1 , S/N = 3) and good linearity (r 2 > 0.994) for the phthalic acid esters (PAEs) from various vegetable oil samples. The repeatability and fiber-to-fiber reproducibility were in the range of 4.0-9.1% and 5.7-11.4%, respectively. The method was successfully applied to the analysis of PAEs from vegetable oil samples with good recoveries (83.1-104.1%) and satisfactory precisions (RSDs < 10.5%), indicating that the MIL-88(Fe)/GO hybrid composite is a good coating material for the SPME of PAEs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ma, Hanna; Zhu, Mengya; Wang, Yalin; Sun, Tonghua; Jia, Jinping
2009-05-01
A gas chromatography (GC) coupled with solid-phase micro-extraction using a special activated carbon fiber (ACF) was developed for the analysis of 6 nitroaromatics and cyclic ketones, nitrobenzene (NB), 1,3-dinitrobenzene (1,3-DNB), 2,4-dinitrotoluene (2,4-DNT), 2,6-dinitrotoluene (2,6-DNT), isophorone, 1,4-naphthaquinone (1,4-NPQ), in sea water samples. The sample was extracted for 30 min under saturation of NaCl at 1,500 r/min and 60 degrees C in head space. The desorption was performance at 280 degrees C for 2 min. The linear ranges were from 0.01 to 400 microg/L. The limits of detection (LODs) were 1.4 - 3.2 ng/L. This method has been successfully applied to the determination of nitroaromatics and cyclic ketones in the sea water samples obtained from East China Sea. The concentrations of nitrobenzene, 1,3-dinitrobenzene and 2,6-dinitrotoluene in the sea water sample were 0.756, 0.944, 0.890 microg/L, respectively. The recoveries were 86.3% - 101.8% with the relative standard deviations (RSDs) of 3.7% -7.8%. The method is suitable for analyzing nitroaromatics and cyclic ketones at low concentration levels in sea water samples.
NASA Astrophysics Data System (ADS)
Yassaa, Noureddine; Williams, Jonathan
A portable dynamic air sampler (PDAS) using a porous polymer solid-phase microextraction (SPME) fibre has been validated for the determination of biogenic enantiomeric and non-enantiomeric monoterpenes in air. These compounds were adsorbed in the field, and then thermally desorbed at 250 °C in a gas chromatograph injector port connected via a β-cyclodextrin capillary separating column to a mass spectrometer. The optimized method has been applied for investigating the emissions of enantiomeric monoterpenes from Pseudotsuga menziesii (Douglas-fir), Rosmarinus officinalis (Rosemary) and Lavandula lanata (Lavender) which were selected as representative of coniferous trees and aromatic plants, respectively. The enantiomers of α-pinene, sabinene, camphene, δ-3-carene, β-pinene, limonene, β-phellandrene, 4-carene and camphor were successfully determined in the emissions from the three plants. While Douglas-fir showed a strong predominance toward (-)-enantiomers, Rosemary and Lavender demonstrated a large variation in enantiomeric distribution of monoterpenes. The simplicity, rapidity and sensitivity of dynamic sampling with porous polymer coated SPME fibres coupled to chiral capillary gas chromatography/mass spectrometry (GC/MS) makes this method potentially useful for in-field investigations of atmosphere-biosphere interactions and studies of optically explicit atmospheric chemistry.
Jin, Tingting; Cheng, Jing; Cai, Cuicui; Cheng, Min; Wu, Shiju; Zhou, Hongbin
2016-07-29
In this paper, graphene oxide was coated onto a stainless steel wire through sol-gel technique and it was used as a solid phase microextraction (SPME) fiber. The prepared fiber was characterized by scanning electron microscopy (SEM), which displayed that the fiber had crinkled surface and porous structure The application of the fiber was evaluated through the headspace SPME of nine organophosphate ester flame retardants (OPFRs) with different characteristics in water samples followed by gas chromatography and nitrogen-phosphorous detector (GC/NPD). The major factors influencing the extraction efficiency, including the extraction and desorption conditions, were studied and optimized. Under the optimum conditions, the proposed method was evaluated, and applied to the analysis of organophosphate ester flame retardants in real environmental water samples. The results demonstrated the HS-SPME method based on GO sol-gel fiber had good linearity (R>0.9928), and limits of detection (1.4-135.6ngL(-1)), high repeatability (RSD<9.8%) and good recovery (76.4-112.4%). The GO based sol-gel fiber displayed bigger extraction capability than the commercial PDMS fiber and the pure sol-gel fiber for both polar and apolar organophosphate esters, especially for the OPFRs containing benzene rings. Copyright © 2016 Elsevier B.V. All rights reserved.
Feng, Juanjuan; Sun, Min; Xu, Lili; Wang, Shuai; Liu, Xia; Jiang, Shengxiang
2012-12-14
Because of the occurrence of ion exchange between high-ionic-strength solution and anions of polymeric ionic liquids (PILs), PILs based solid-phase microextraction (SPME) fibers were rarely used in direct immersion mode to high-salt-added samples. In this work, a novel double-confined PIL sorbent was prepared by co-polymerization of cation and anion of 1-vinyl-3-octylimidzaolium p-styrenesulfonate (VOIm(+)SS(-)). The poly(VOIm(+)-SS(-)) was chemically bonded onto functionalized stainless steel wire via surface radical chain-transfer reaction. Stability of poly(VOIm(+)-SS(-)) in high-ionic-strength solution was investigated and compared with that of poly(1-vinyl-3-octylimidzaolium benzenesulfonate) (poly(VOIm(+)BS(-))) by elemental analysis of sulfur element, and results turned out that the poly(VOIm(+)-SS(-)) was more stable. Coupled to gas chromatography (GC), the poly(VOIm(+)-SS(-)) fiber was used to extract three sorts of compounds including anilines, phenols and phthalate esters in aqueous solution. The as-established method showed good linearity, low detection limits, and acceptable repeatability. The direct immersion SPME-GC method was applied to determine the model phthalate esters in bottled mineral water. The determination results were satisfactory. Copyright © 2012 Elsevier B.V. All rights reserved.
Bao, James J; Liu, Xiaojing; Zhang, Yong; Li, Youxin
2014-09-15
This paper describes the development of a novel high-throughput hollow fiber membrane solvent microextraction technique for the simultaneous measurement of the octanol/water distribution coefficient (logD) for organic compounds such as drugs. The method is based on a designed system, which consists of a 96-well plate modified with 96 hollow fiber membrane tubes and a matching lid with 96 center holes and 96 side holes distributing in 96 grids. Each center hole was glued with a sealed on one end hollow fiber membrane tube, which is used to separate the aqueous phase from the octanol phase. A needle, such as microsyringe or automatic sampler, can be directly inserted into the membrane tube to deposit octanol as the accepted phase or take out the mixture of the octanol and the drug. Each side hole is filled with aqueous phase and could freely take in/out solvent as the donor phase from the outside of the hollow fiber membranes. The logD can be calculated by measuring the drug concentration in each phase after extraction equilibrium. After a comprehensive comparison, the polytetrafluoroethylene hollow fiber with the thickness of 210 μm, an extraction time of 300 min, a temperature of 25 °C and atmospheric pressure without stirring are selected for the high throughput measurement. The correlation coefficient of the linear fit of the logD values of five drugs determined by our system to reference values is 0.9954, showed a nice accurate. The -8.9% intra-day and -4.4% inter-day precision of logD for metronidazole indicates a good precision. In addition, the logD values of eight drugs were simultaneously and successfully measured, which indicated that the 96 throughput measure method of logD value was accurate, precise, reliable and useful for high throughput screening. Copyright © 2014 Elsevier B.V. All rights reserved.
You, Xiangwei; Wang, Suli; Liu, Fengmao; Shi, Kaiwei
2013-07-26
A novel ultrasound-assisted surfactant-enhanced emulsification microextraction technique based on the solidification of a floating organic droplet followed by high performance liquid chromatography with diode array detection was developed for simultaneous determination of six fungicide residues in juices and red wine samples. The low-toxicity solvent, 1-dodecanol, was used as an extraction solvent. For its low density and proper melting point near room temperature, the extractant droplet was collected easily by solidifying it at a low temperature. The surfactant, Tween 80, was used as an emulsifier to enhance the dispersion of the water-immiscible extraction solvent into an aqueous phase, which hastened the mass-transfer of the analytes. Organic dispersive solvent typically required in common dispersive liquid-liquid microextraction methods was not used in the proposed method. Some parameters (e.g., the type and volume of extraction solvent, the type and concentration of surfactant, ultrasound extraction time, salt addition, and volume of samples) that affect the extraction efficiency were optimized. The proposed method showed a good linearity within the range of 5μgL(-1)-1000μgL(-1), with the correlation coefficients (γ) higher than 0.9969. The limits of detection for the method ranged from 0.4μgL(-1) to 1.4μgL(-1). Further, this simple, practical, sensitive, and environmentally friendly method was successfully applied to determine the target fungicides in juice and red wine samples. The recoveries of the target fungicides in red wine and fruit juice samples were 79.5%-113.4%, with relative standard deviations that ranged from 0.4% to 12.3%. Copyright © 2013 Elsevier B.V. All rights reserved.
González-Fuenzalida, R. A.; Moliner-Martínez, Y.; Prima-Garcia, Helena; Ribera, Antonio; Campins-Falcó, P.; Zaragozá, Ramon J.
2014-01-01
The use of magnetic nanomaterials for analytical applications has increased in the recent years. In particular, magnetic nanomaterials have shown great potential as adsorbent phase in several extraction procedures due to the significant advantages over the conventional methods. In the present work, the influence of magnetic forces over the extraction efficiency of triazines using superparamagnetic silica nanoparticles (NPs) in magnetic in tube solid phase microextraction (Magnetic-IT-SPME) coupled to CapLC has been evaluated. Atrazine, terbutylazine and simazine has been selected as target analytes. The superparamagnetic silica nanomaterial (SiO2-Fe3O4) deposited onto the surface of a capillary column gave rise to a magnetic extraction phase for IT-SPME that provided a enhancemment of the extraction efficiency for triazines. This improvement is based on two phenomena, the superparamegnetic behavior of Fe3O4 NPs and the diamagnetic repulsions that take place in a microfluidic device such a capillary column. A systematic study of analytes adsorption and desorption was conducted as function of the magnetic field and the relationship with triazines magnetic susceptibility. The positive influence of magnetism on the extraction procedure was demonstrated. The analytical characteristics of the optimized procedure were established and the method was applied to the determination of the target analytes in water samples with satisfactory results. When coupling Magnetic-IT-SPME with CapLC, improved adsorption efficiencies (60%–63%) were achieved compared with conventional adsorption materials (0.8%–3%). PMID:28344221
Liu; Wene
2000-09-01
An empirical model describing the relationship between the partition coefficients (K) of perfume materials in the solid-phase microextraction (SPME) fiber stationary phase and the Linearly Temperature Programmed Retention Index (LTPRI) is obtained. This is established using a mixture of eleven selected fragrance materials spiked in mineral oil at different concentration levels to simulate liquid laundry detergent matrices. Headspace concentrations of the materials are measured using both static headspace and SPME-gas chromatography analysis. The empirical model is tested by measuring the K values for fourteen perfume materials experimentally. Three of the calculated K values are within 2-19% of the measured K value, and the other eleven calculated K values are within 22-59%. This range of deviation is understandable because a diverse mixture was used to cover most chemical functionalities in order to make the model generally applicable. Better prediction accuracy is expected when a model is established using a specific category of compounds, such as hydrocarbons or aromatics. The use of this method to estimate distribution constants of fragrance materials in liquid matrices is demonstrated. The headspace SPME using the established relationship between the gas-liquid partition coefficient and the LTPRI is applied to measure the headspace concentration of fragrances. It is demonstrated that this approach can be used to monitor the headspace perfume profiles over consumer laundry and cleaning products. This method can provide high sample throughput, reproducibility, simplicity, and accuracy for many applications for screening major fragrance materials over consumer products. The approach demonstrated here can be used to translate headspace SPME results into true static headspace concentration profiles. This translation is critical for obtaining the gas-phase composition by correcting for the inherent differential partitioning of analytes into the fiber stationary phase.
Liu, Kailin; Xu, Shiji; Zhang, Minghuan; Kou, Yahong; Zhou, Xiaomao; Luo, Kun; Hu, Lifeng; Liu, Xiangying; Liu, Min; Bai, Lianyang
2016-01-01
The toxicity of ionizable organic compounds to organisms depends on the pH, which therefore affects risk assessments of these compounds. However, there is not a direct chemical method to predict the toxicity of ionizable organic compounds. To determine whether hollow-fiber liquid-phase microextraction (HF-LPME) is applicable for this purpose, a three-phase HF-LPME was used to measure sulfadiazine and estimate its toxicity to Daphnia magna in solutions of different pH. The result indicated that the sulfadiazine concentrations measured by HF-LPME decreased with increasing pH, which is consistent with the decreased toxicity. The concentration immobilize 50% of the daphnids (EC50) in 48 h calculated from nominal concentrations increased from 11.93 to 273.5 mg L−1 as the pH increased from 6.0 to 8.5, and the coefficient of variation (CV) of the EC50 values reached 104.6%. When calculated from the concentrations measured by HF-LPME (pH 12 acceptor phase), the EC50 ranged from 223.4 to 394.6 mg L−1, and the CV decreased to 27.60%, suggesting that the concentrations measured by HF-LPME can be used to estimate the toxicity of sulfadiazine irrespective of the solution pH. PMID:28004779
Current trends in sample preparation for cosmetic analysis.
Zhong, Zhixiong; Li, Gongke
2017-01-01
The widespread applications of cosmetics in modern life make their analysis particularly important from a safety point of view. There is a wide variety of restricted ingredients and prohibited substances that primarily influence the safety of cosmetics. Sample preparation for cosmetic analysis is a crucial step as the complex matrices may seriously interfere with the determination of target analytes. In this review, some new developments (2010-2016) in sample preparation techniques for cosmetic analysis, including liquid-phase microextraction, solid-phase microextraction, matrix solid-phase dispersion, pressurized liquid extraction, cloud point extraction, ultrasound-assisted extraction, and microwave digestion, are presented. Furthermore, the research and progress in sample preparation techniques and their applications in the separation and purification of allowed ingredients and prohibited substances are reviewed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nonaka, Y; Saito, K; Hanioka, N; Narimatsu, S; Kataoka, H
2009-05-15
A simple and sensitive automated method for determination of aflatoxins (B1, B2, G1, and G2) in nuts, cereals, dried fruits, and spices was developed consisting of in-tube solid-phase microextraction (SPME) coupled with liquid chromatography-mass spectrometry (LC-MS). Aflatoxins were separated within 8 min by high-performance liquid chromatography using a Zorbax Eclipse XDB-C8 column with methanol/acetonitrile (60/40, v/v): 5mM ammonium formate (45:55) as the mobile phase. Electrospray ionization conditions in the positive ion mode were optimized for MS detection of aflatoxins. The pseudo-molecular ions [M+H](+) were used to detect aflatoxins in selected ion monitoring (SIM) mode. The optimum in-tube SPME conditions were 25draw/eject cycles of 40 microL of sample using a Supel-Q PLOT capillary column as an extraction device. The extracted aflatoxins were readily desorbed from the capillary by passage of the mobile phase, and no carryover was observed. Using the in-tube SPME LC-MS with SIM method, good linearity of the calibration curve (r>0.9994) was obtained in the concentration range of 0.05-2.0 ng/mL using aflatoxin M1 as an internal standard, and the detection limits (S/N=3) of aflatoxins were 2.1-2.8 pg/mL. The in-tube SPME method showed >23-fold higher sensitivity than the direct injection method (10 microL injection volume). The within-day and between-day precision (relative standard deviations) at the concentration of 1 ng/mL aflatoxin mixture were below 3.3% and 7.7% (n=5), respectively. This method was applied successfully to analysis of food samples without interference peaks. The recoveries of aflatoxins spiked into nuts and cereals were >80%, and the relative standard deviations were <11.2%. Aflatoxins were detected at <10 ng/g in several commercial food samples.
Boyacı, Ezel; Pawliszyn, Janusz
2014-09-16
Determination of quaternary ammonium compounds (QACs) often is considered to be a challenging undertaking owing to secondary interactions of the analytes' permanently charged quaternary ammonium head or hydrophobic tail with the utilized labware. Here, for the first time, a micelle assisted thin-film solid phase microextraction (TF-SPME) using a zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) as a matrix modifier is introduced as a novel approach for in-laboratory sample preparation of the challenging compounds. The proposed micelle assisted TF-SPME method offers suppression/enhancement free electrospray ionization of analytes in mass spectrometric detection, minimal interaction of the micelles with the TF-SPME coating, and chromatographic stationary phase and analysis free of secondary interactions. Moreover, it was found that the matrix modifier has multiple functions; when its concentration is found below the critical micelle concentration (CMC), the matrix modifier primarily acts as a surface deactivator; above its CMC, it acts as a stabilizer for QACs. Additionally, shorter equilibrium extraction times in the presence of the modifier demonstrated that micelles also assist in the transfer of analytes from the bulk of the sample to the surface of the coating. The developed micelle assisted TF-SPME protocol using the 96-blade system requires only 30 min of extraction and 15 min of desorption. Together with a conditioning step (15 min), the entire method is 60 min; considering the advantage of using the 96-blade system, if all the blades in the brush are used, the sample preparation time per sample is 0.63 min. Moreover, the recoveries for all analytes with the developed method were found to range within 80.2-97.3%; as such, this method can be considered an open bed solid phase extraction. The proposed method was successfully validated using real samples.
Hu, Liang; Chen, Dong-ying
2009-01-01
Aim: To investigate noncovalent interactions between borneol and human serum albumin (HSA) under near-physiological conditions. Methods: A 65-μm polydimethylsiloxane (PDMS) fiber was selected for sampling. The extraction temperature was kept at 37 °C, and the extraction time was optimized at 10 min. Borneol solutions of different concentrations were equilibrated in 600 μmol/L HSA and 67 mmol/L phosphate buffer solution (pH 7.4, 37 °C) for 24 h prior to solid phase microextraction (SPME) using headspace mode. The binding properties were obtained based on the calculation of extracted borneol amount using gas chromatography (GC) determination. Results: The headspace SPME extraction method avoided disturbance from the HSA binding matrix. The recovery showed good linearity for the borneol concentrations over the range of 0.4–16.3 μmol/L with a regression coefficient (R2) of 0.9998. The limit of detection and lower limit of quantitation were determined to be 0.01 μmol/L and 0.4 μmol/L, respectively. The binding constant and the percentage binding rate were estimated to be 2.4×103(mol/L)-1 and 59.5%, respectively. Conclusion: Headspace SPME coupled to GC is a simple, sensitive and rapid method for the study of borneol binding to HSA. The method may be applied in the determination of other protein binding properties in human plasma. PMID:19890364
Cui, Chao; He, Man; Hu, Bin
2011-03-15
A novel alumina hollow fiber was synthesized by sol-gel template method and was characterized by scanning electron microscopy, N(2) adsorption technique and X-ray diffraction. With the use of prepared alumina hollow fiber as extraction membrane, a new method of flow injection (FI)-membrane solid phase microextraction (MSPME) on-line coupled to inductively coupled plasma-optical emission spectrometry (ICP-OES) was developed for simultaneous determination of trace metals (Cu, Mn and Ni) in environmental water samples. The adsorption capacities of the alumina hollow fiber for Cu, Mn and Ni were found to be 6.6, 8.7 and 13.3 mg g(-1), respectively. With a preconcentration factor of 10, the limits of detection (LODs) for Cu, Mn and Ni were found to be 0.88, 0.61 and 0.38 ng mL(-1), respectively, and the relative standard deviations (RSDs) were ranging from 6.2 to 7.9% (n = 7, c = 10 ng mL(-1)). To validate the accuracy, the proposed method was applied to the analysis of certified reference material GSBZ50009-88 environmental water and the determined values are in good agreement with the certified values. The developed method was also employed for the analysis of Yangtze River water and East Lake water, and the recoveries for the spiked samples were in the range of 87.4-110.2%. Copyright © 2011 Elsevier B.V. All rights reserved.
Neng, N R; Nogueira, J M F
2012-01-01
The combination of bar adsorptive micro-extraction using activated carbon (AC) and polystyrene-divinylbenzene copolymer (PS-DVB) sorbent phases, followed by liquid desorption and large-volume injection gas chromatography coupled to mass spectrometry, under selected ion monitoring mode acquisition, was developed for the first time to monitor pharmaceutical and personal care products (PPCPs) in environmental water matrices. Assays performed on 25 mL water samples spiked (100 ng L(-1)) with caffeine, gemfibrozil, triclosan, propranolol, carbamazepine and diazepam, selected as model compounds, yielded recoveries ranging from 74% to 99% under optimised experimental conditions (equilibrium time, 16 h (1,000 rpm); matrix characteristics: pH 5, 5% NaCl for AC phase; LD: methanol/acetonitrile (1:1), 45 min). The analytical performance showed good precision (RSD < 18%), convenient detection limits (5-20 ng L(-1)) and excellent linear dynamic range (20-800 ng L(-1)) with remarkable determination coefficients (r(2) > 0.99), where the PS-DVB sorbent phase showed a much better efficiency. By using the standard addition methodology, the application of the present analytical approach on tap, ground, sea, estuary and wastewater samples allowed very good performance at the trace level. The proposed method proved to be a suitable sorption-based micro-extraction alternative for the analysis of priority pollutants with medium-polar to polar characteristics, showing to be easy to implement, reliable, sensitive and requiring a low sample volume to monitor PPCPs in water matrices.
Jiang, Yuehuang; Tang, Tingting; Cao, Zhen; Shi, Guoyue; Zhou, Tianshu
2015-06-01
A hydroxyl-functionalized ionic liquid, 1-hydroxyethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, was employed in an improved dispersive liquid-phase microextraction method coupled with ultra high performance liquid chromatography for the enrichment and determination of three estrogens and bisphenol A in environmental water samples. The introduced hydroxyl group acted as the H-bond acceptor that dispersed the ionic liquid effectively in the aqueous phase without dispersive solvent or external force. Fourier transform infrared spectroscopy indicated that the hydroxyl group of the cation of the ionic liquid enhanced the combination of extractant and analytes through the formation of hydrogen bonds. The improvement of the extraction efficiency compared with that with the use of alkyl ionic liquid was proved by a comparison study. The main parameters including volume of extractant, temperature, pH, and extraction time were investigated. The calibration curves were linear in the range of 5.0-1000 μg/L for estrone, estradiol, and bisphenol A, and 10.0-1000 μg/L for estriol. The detection limits were in the range of 1.7-3.4 μg/L. The extraction efficiency was evaluated by enrichment factor that were between 85 and 129. The proposed method was proved to be simple, low cost, and environmentally friendly for the determination of the four endocrine disruptors in environmental water samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lakade, Sameer S; Borrull, Francesc; Furton, Kenneth G; Kabir, Abuzar; Marcé, Rosa Maria; Fontanals, Núria
2018-05-01
A novel sample preparation technique named capsule phase microextraction (CPME) is presented here. The technique utilizes a miniaturized microextraction capsule (MEC) as the extraction medium. The MEC consists of two conjoined porous tubular polypropylene membranes, one of which encapsulates the sorbent through sol-gel technology, while the other encapsulates a magnetic metal rod. As such, MEC integrates both the extraction and stirring mechanisms into a single device. The aim of this article is to demonstrate the application potential of CPME as sample preparation technique for the extraction of a group of personal care products (PCPs) from water matrices. Among the different sol-gel sorbent materials (UCON ® , poly(caprolactone-dimethylsiloxane-caprolactone) (PCAP-DMS-CAP) and Carbowax 20M (CW-20M)) evaluated, CW-20M MEC demonstrated the best extraction performance for the selected PCPs. The extraction conditions for sol-gel CW-20M MEC were optimized, including sample pH, stirring speed, addition of salt, extraction time, sample volume, liquid desorption solvent, and time. Under the optimal conditions, sol-gel CW-20M MEC provided recoveries, ranging between 47 and 90% for all analytes, except for ethylparaben, which showed a recovery of 26%. The method based on CPME with sol-gel CW-20M followed by liquid chromatography-tandem mass spectrometry was developed and validated for the extraction of PCPs from river water and effluent wastewater samples. When analyzing different environmental samples, some analytes such as 2,4-dihydroxybenzophenone, 2,2-dihydroxy-4-4 methoxybenzophenone and 3-benzophenone were found at low ng L -1 .
Agrawal, Kavita; Wu, Hui-Fen
2007-01-01
A simple and rapid method based on drop-to-drop solvent microextraction (DDSME) coupled with gas chromatography/mass spectrometry (GC/MS) has been successfully applied for the pharmacokinetic studies of trimeprazine in 8 microL of urine and blood samples of rats. Several factors that influenced the extraction efficiency of DDSME, such as selection of organic solvent, extraction time, exposure volume of organic phase, addition of salt and pH, were optimized. Linearity was obtained over the concentration ranges of 0.2-10, 0.25-7.0 and 0.5-6.0 microg/mL with correlation coefficients of 0.998, 0.996 and 0.993 in deionized water, urine and blood samples of rats, respectively. The limits of detection (LODs) of trimeprazine were 0.05, 0.06 and 0.1 microg/mL in deionized water, urine and blood samples. The concentrations of trimeprazine obtained in urine and blood samples of rats were 0.21-1.25 and 2.72-0.22 microg/mL, respectively, after a single intravenous administration of this drug. The enrichment factors and LOD values obtained by DDSME coupled to GC/MS were compared with those of hollow fiber liquid-phase microextraction (HF-LPME) combined with GC/MS. We believe that this novel approach can be very useful in clinical application since only one microdrop of biological samples was required to perform the pharmacokinetic studies from rats, so the sample pretreatments for animal experiments can be very easy too. Copyright (c) 2007 John Wiley & Sons, Ltd.
Escudero, Leticia B; Berton, Paula; Martinis, Estefanía M; Olsina, Roberto A; Wuilloud, Rodolfo G
2012-01-15
In the present work, a simple and highly sensitive analytical methodology for determination of Tl(+) and Tl(3+) species, based on the use of modern and non-volatile solvents, such as ionic liquids (ILs), was developed. Initially, Tl(+) was complexed by iodide ion at pH 1 in diluted sulfuric acid solution. Then, tetradecyl(trihexyl)phosphonium chloride ionic liquid (CYPHOS(®) IL 101) was used as ion-pairing reagent and a dispersive liquid-liquid microextraction (DLLME) procedure was developed by dispersing 60 mg of 1-hexyl-3-methylimidazolium hexafluorophosphate [C(6) mim][PF(6)] with 500 μL of ethanol in the aqueous solution. After the microextraction procedure was finished, the final IL phase was solubilized in methanol and directly injected into the graphite furnace of an electrothermal atomic absorption spectrometer (ETAAS). An extraction efficiency of 77% and a sensitivity enhancement factor of 100 were obtained with only 5.00 mL of sample. The limit of detection (LOD) was 3.3 ng L(-1) Tl while the relative standard deviation (RSD) was 5.3% (at 0.4 μg L(-1) Tl and n=10), calculated from the peak height of absorbance signals. The method was finally applied to determine Tl species in tap and river water samples after separation of Tl(3+) species. To the best of our knowledge, this work reports the first application of ILs for Tl extraction and separation in the analytical field. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Shizhong; Zhu, Shengping; Lu, Dengbo
2018-01-01
A method was developed for speciation analysis of antimony by electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) after preconcentration/separation using dispersive micro-solid phase extraction (DMSPE) and dispersive liquid-liquid micro-extraction (DLLME). In DMSPE, titanium dioxide nanofibers were used for preconcentration and separation of analytes. The upper aqueous phase and elution solution from DMSPE were used for further preconcentration and separation of Sb(III) and Sb(V) by DLLME without any pre-oxidation or pre-reduction operation, respectively. The extracts from DLLME were used for ETV-ICP-MS determination with APDC as a chemical modifier. Under optimal conditions, the detection limits of this method were 0.019 and 0.025 pg mL- 1 with relative standard deviations of 5.7% and 6.9% for Sb(III) and Sb(V) (c = 1.0 ng mL- 1, n = 9), respectively. This method was applied for speciation analysis of Sb and its distribution in the tea leaves and the tea infusion, including total, suspended, soluble, organic and inorganic Sb as well as Sb(III) and Sb(V). The results showed that the contents of Sb are 62.7, 12.9 and 47.3 ng g- 1 in the tea leaves, tea residue and tea soup, respectively; those of soluble, organic, inorganic, Sb(III) and Sb(V) are 0.41, 0.11, 0.29, 0.21 and 0.07 ng mL- 1 in the tea soup, respectively. A certified reference material of tea leaves (GBW 07605) was analyzed by this method with satisfactory results.
Anthemidis, Aristidis N; Ioannou, Kallirroy-Ioanna G
2012-08-01
A novel, automatic on-line sequential injection dispersive liquid-liquid microextraction (SI-DLLME) method, based on 1-hexyl-3-methylimidazolium hexafluorophosphate ([Hmim][PF(6)]) ionic liquid as an extractant solvent was developed and demonstrated for trace thallium determination by flame atomic absorption spectrometry. The ionic liquid was on-line fully dispersed into the aqueous solution in a continuous flow format while the TlBr(4)(-) complex was easily migrated into the fine droplets of the extractant due to the huge contact area of them with the aqueous phase. Furthermore, the extractant was simply retained onto the surface of polyurethane foam packed into a microcolumn. No specific conditions like low temperature are required for extractant isolation. All analytical parameters of the proposed method were investigated and optimized. For 15 mL of sample solution, an enhancement factor of 290, a detection limit of 0.86 μg L(-1) and a precision (RSD) of 2.7% at 20.0 μg L(-1) Tl(I) concentration level, was obtained. The developed method was evaluated by analyzing certified reference materials while good recoveries from environmental and biological samples proved that present method was competitive in practical applications.
Haji Shabani, Ali Mohammad; Dadfarnia, Shayessteh; Nozohor, Mahnaz
2013-12-01
A novel dispersive liquid-liquid microextraction-solidified floating organic drop (DLLME-SFOD) method combined with fiber optic-linear array detection spectrophotometry has been developed for the indirect determination of selenium. The method is based on the oxidation of the I(-) to iodine by inorganic Se(IV). The produced I2 reacts with the excess of I(-) ions in acidic media to give triiodide ions. The I3(-) is then extracted into 1-undecanol by DLLME-SFOD upon the formation of an ion pair with cetyltrimethylammonium cation. The extracted ion pair is determined by measuring its absorption at 360 nm. The absorbance signal is proportional to the selenium concentration in the aqueous phase. Under optimum conditions, the method provided an enrichment factor of 250 with a detection limit of 16.0 μg L(-1) and a linear dynamic range of 40.0-1000.0 μg L(-1). The relative standard deviation was found to be 2.1% (n=7) at 100.0 μg L(-1) concentration level. The method was successfully applied to th e determination of selenium in water samples and selenium plus tablet. Copyright © 2013 Elsevier B.V. All rights reserved.
Eom, In-Yong; Risticevic, Sanja; Pawliszyn, Janusz
2012-02-24
Air in a room infested by Cimex lectularius L. (Hemiptera: Cimicidae) was sampled simultaneously by three different sampling devices including solid phase microextraction (SPME) fiber coatings, thin film microextraction (TFME) devices, and needle trap devices (NTDs) and then analyzed by gas chromatography-mass spectrometry (GC-MS). The main focus of this study was to fully characterize indoor air by identifying compounds extracted by three different microextraction formats and, therefore, perform both the device comparison and more complete characterization of C. lectularius pheromone. The NTD technique was capable of extracting both (E)-2-hexenal and (E)-2-octenal, which were previously identified as alarm pheromones of bedbugs, and superior NTD recoveries for these two components allowed reliable identification based on mass spectral library searching and linear temperature programmed retention index (LTPRI) technique. While the use of DVB/CAR/PDMS SPME fiber coatings provided complementary sample fingerprinting and profiling results, TFME sampling devices provided discriminative extraction coverage toward highly volatile analytes. In addition to two alarm pheromones, relative abundances of all other analytes were recorded for all three devices and aligned across all examined samples, namely, highly infested area, less infested area, and control samples which were characterized by different bedbug populations. The results presented in the current study illustrate comprehensive characterization of infested indoor air samples through the use of three different non-invasive SPME formats and identification of novel components comprising C. lectularius pheromone, therefore, promising future alternatives for use of potential synthetic pheromones for detection of infestations. Copyright © 2011 Elsevier B.V. All rights reserved.
2012-05-01
methods demonstrated that desorption into solvents suitable for subsequent chemical analysis (into acetonitrile for HPLC analysis or hexane for GC...SPME. Analysis by HPLC with EPA 8310 with fluorescent detection. a) surface water quality criteria (NRWQC) are given for comparison to detection... analysis ) or hexane (for PCB analysis ) was added to the inserts. The vials were then analyzed directly by HPLC (PAHs) or GC-ECD (PCBs). Fiber achieved
Zhang, Ning; Huang, Chuanhui; Tong, Ping; Feng, Zunmei; Wu, Xiaoping; Zhang, Lan
2018-06-29
Volatile polycyclic aromatic hydrocarbons (PAHs) in water and soil are associated with status in the human body. Development of simple, efficient detection method is challenging due to the coating could be attacked by the abundance of water in the direct-immersion solid-phase microextraction. The stability of coating is essential to the analysis results. In this paper, a stable Ni-Zn MOF/g-C 3 N 4 (MG NFs) nanoflowers with cavity traps structure was firstly reported and acted as solid-phase microextraction (SPME) adsorbent for PAHs. Markedly enhanced moisture and acid stability of the MG NFs was obtained through the doping the hydrophobic graphitic carbon nitride (g-C 3 N 4 ) and metal ions into metal organic frameworks (MOFs). The aperture environment and ambient environment of MG NFs were changed by the doping of the Ni and the g-C 3 N 4, respectively. The moisture and acid stability of MG NFs were prominently increased under the dual protection. Compared to commonly used commercial coatings, the MG NFs own large surface area, unique nanoflowers structure and numerous open metal sites on the nanosheets, which demonstrated significant extraction superiority for PAHs. The MG NFs coated fiber was used for the SPME preconcentration of PAHs and couped with GC-MS for detecting PAHs. It presented low detection limits (0.1-3.0 ng L -1 ), wide linearity (0.3-5000.0 ng L -1 ) and good linearity (the correlation coefficient >0.9951). The inter-day and intra-day relative standard deviation (RSD) (n = 3) for three replicate extractions using one fiber was 3.8%-9.1%, and 3.5%-9.2%, respectively. The fiber-to-fiber reproducibility (n = 3) was 4.2-11.8%. The coupling method was successfully applied in the analysis of real water and soil samples with satisfactory recoveries of 82.9-109.2%, 84.2-106.4%, and the corresponding RSDs were 2.4-11.3%, 3.6-10.8%, respectively. The results indicated the effectiveness of NG NFs coated fiber in further practical application. Copyright © 2018 Elsevier B.V. All rights reserved.
Piergiovanni, Maurizio; Cappiello, Achille; Famiglini, Giorgio; Termopoli, Veronica; Palma, Pierangela
2018-05-30
Dispersive liquid-liquid microextraction with and without ultrasound assistance (DLLME, UA-DLLME) and microextraction with packed sorbent (MEPS) methods for the extraction and determination of eight different benzodiazepines (BDZ) (chlordiazepoxide, flurazepam, bromazepam, oxazepam, lorazepam, clobazam, clonazepam, and flunitrazepam) in three commercial non-alcoholic and light alcoholic beverages were optimized and compared. Benzodiazepines are frequently used for their extensive diffusion and strong numbing effect in drug-facilitated crimes (DFC). The tiny small amount of sample required for DLLME and MEPS extraction makes them very suitable for specimens collected at the crime scene of DFCs. Microextraction techniques are of increasing interest thanks to their accordance to green analytical chemistry (GAC) guidelines providing good recovery values. Ultrasound assistance (UA-DLLME) was used to investigate whether this type of energy can improve the recoveries of the analytes. Analyses of the extracts were performed with reverse-phase capillary high-performance liquid chromatography with UV detection (HPLC - UV), thanks to low environmental impact, robustness, diffusion, and affordability. Recovery percentages at three different concentrations in the three beverages were between 14.30% and 103.28% with intraday and interday RSD lower than ±2.78%. The same samples were extracted using a MEPS protocol, and the results were compared with those obtained with DLLME. MEPS gave recoveries between 20.90% and 101.88% for all matrices showing a better performance than DLLME at higher concentrations, though lower recoveries were observed with diluted samples. Copyright © 2018 Elsevier B.V. All rights reserved.
Analytical methodologies for broad metabolite coverage of exhaled breath condensate.
Aksenov, Alexander A; Zamuruyev, Konstantin O; Pasamontes, Alberto; Brown, Joshua F; Schivo, Michael; Foutouhi, Soraya; Weimer, Bart C; Kenyon, Nicholas J; Davis, Cristina E
2017-09-01
Breath analysis has been gaining popularity as a non-invasive technique that is amenable to a broad range of medical uses. One of the persistent problems hampering the wide application of the breath analysis method is measurement variability of metabolite abundances stemming from differences in both sampling and analysis methodologies used in various studies. Mass spectrometry has been a method of choice for comprehensive metabolomic analysis. For the first time in the present study, we juxtapose the most commonly employed mass spectrometry-based analysis methodologies and directly compare the resultant coverages of detected compounds in exhaled breath condensate in order to guide methodology choices for exhaled breath condensate analysis studies. Four methods were explored to broaden the range of measured compounds across both the volatile and non-volatile domain. Liquid phase sampling with polyacrylate Solid-Phase MicroExtraction fiber, liquid phase extraction with a polydimethylsiloxane patch, and headspace sampling using Carboxen/Polydimethylsiloxane Solid-Phase MicroExtraction (SPME) followed by gas chromatography mass spectrometry were tested for the analysis of volatile fraction. Hydrophilic interaction liquid chromatography and reversed-phase chromatography high performance liquid chromatography mass spectrometry were used for analysis of non-volatile fraction. We found that liquid phase breath condensate extraction was notably superior compared to headspace extraction and differences in employed sorbents manifested altered metabolite coverages. The most pronounced effect was substantially enhanced metabolite capture for larger, higher-boiling compounds using polyacrylate SPME liquid phase sampling. The analysis of the non-volatile fraction of breath condensate by hydrophilic and reverse phase high performance liquid chromatography mass spectrometry indicated orthogonal metabolite coverage by these chromatography modes. We found that the metabolite coverage could be enhanced significantly with the use of organic solvent as a device rinse after breath sampling to collect the non-aqueous fraction as opposed to neat breath condensate sample. Here, we show the detected ranges of compounds in each case and provide a practical guide for methodology selection for optimal detection of specific compounds. Copyright © 2017 Elsevier B.V. All rights reserved.
Farajzadeh, Mir Ali; Nouri, Nina; Alizadeh Nabil, Ali Akbar
2013-12-01
A one-step derivatization and microextraction technique for the determination of amantadine in the human plasma and urine samples is presented. An appropriate mixture of methanol (disperser solvent), 1,2-dibromoethane (extraction solvent), and butylchloroformate (derivatization agent) is rapidly injected into samples. After centrifuging, the sedimented phase is analyzed by gas chromatography-flame ionization detection (GC-FID). The kind of extraction and disperser solvents and their volumes, amount of derivatization agent and reaction/extraction time which are effective in derivatization/dispersive liquid-liquid microextraction (DLLME) procedure are optimized. Under the optimal conditions, the enrichment factor (EF) of the target analyte was obtained to be 408 and 420, and limit of detection (LOD) 4.2 and 2.7ngmL(-1), in plasma and urine respectively. The linear range is 14-5000 and 8.7-5000ng/mL for plasma and urine, respectively (squared correlation coefficient≥0.990). The relative recoveries obtained for the spiked plasma and urine samples are between 72% and 93%. Moreover, the inter- and intra-day precisions are acceptable at all spiked concentrations (relative standard deviation <7%). Finally the method was successfully applied to determine amantadine in biological samples. Copyright © 2013 Elsevier B.V. All rights reserved.
Njobeh, Patrick B.; Gbashi, Sefater; Adegoke, Gabriel O.; Dubery, Ian A.
2018-01-01
Volatile organic compounds (VOCs) derived from plants have been used in the fragrance industry since time immemorial. Herein we report on the rapid screening of VOCs from seeds of ripe Aframomum danielli (family, Zingiberaceae) using a polydimethylsiloxane fibre headspace solid phase microextraction coupled to a gas chromatography mass spectrometry (SPME-GC/MS) instrument. Portions of 0.25, 0.35, and 0.50 g of ground sample were weighed and extraction of volatile organic compounds (VOCs) was achieved using a 100 μm polydimethylsiloxane solid phase microextraction (PDMS SPME) fibre, with the equilibrium time of 40 minutes and extraction temperature of 50°C; the following compounds with their respective relative abundances were obtained as the top ten most abundant and annotated ones using NIST, Wiley, and Fragrances Libraries: eucalyptol (58%); β-pinene (22%); α-pinene (7.5%); α-terpineol (4%), α-terpinyl acetate (2%); α-bergamotene (1%); pinocarveol (0.39%); α-copaene (0.35%); caryophyllene (0.34); and β-bisabolene (0.31%). These compounds have been reported elsewhere in the literature and listed in the Fragrances Library, incorporated into the Saturn QP2020 GCMS Solution® software used for their analysis. PMID:29849643
Bahrani, Sonia; Ghaedi, Mehrorang; Dashtian, Kheibar; Ostovan, Abbas; Mansoorkhani, Mohammad Javad Khoshnood; Salehi, Amin
2017-11-01
In present work, facile method is developed for determination of colchicine in human plasma sample, autumn and spring root of colchicium extracts by ultrasound assisted dispersive magnetic solid phase microextraction followed by HPLC-UV method (UAD-MSPME-HPLC-UV). Magnetic (Fe 2 O 4 -nanoparticles) metal organic framework-5, (MOF-5(Zn)-Fe 2 O 4 NPs) was synthesized by dispersing MOF-5 and Fe(NO 3 ) 3 .9H 2 O in ethylene glycol (as capping agent) and NaOH (pH adjustment agent) by hydrothermal method. The prepared sorbent was characterized via XRD and SEM analysis and applied as magnetic solid phase in UAD-MSPME-HPLC-UV method. In this method, colchicine molecules were sorbed on MOF-5(Zn)-Fe 2 O 4 NPs sorbent by various mechanisms like ion exchange, hydrogen bonding and electrostatic, ᴨ-ᴨ, hard-hard and dipole-ion interaction followed by exposing sonication waves as incremental mass transfer agent and then the sorbent was separated from the sample matrix by an external magnetic fields. Subsequently, accumulated colchicine were eluted by small volume of desorption organic solvent. Influence of operational variables such as MOF-5(Zn)-Fe 2 O 4 NPs mass, volume of extracting solvent and sonication time on response property (recovery) were studied and optimized by central composite design (CCD) combined with desirability function (DF) approach. Under optimum condition, the method has wide linear calibration rang (0.5-1700ngmL -1 ) with reasonable detection limit (0.13ngmL -1 ) and R 2 =0.9971. Finally, the UAD-MSPME-HPLC-UV method was successfully applied for determination of colchicine autumn and spring root of colchicium extracts and plasma samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Diuzheva, Alina; Balogh, József; Jekő, József; Cziáky, Zoltán
2018-05-17
A dispersive liquid-liquid microextraction method for the simultaneous determination of 11 pharmaceuticals has been developed. The method is based on a microextraction procedure applied to wastewater samples from different regions of Hungary followed by high performance liquid chromatography with mass spectrometry. The effect of the nature of the extractant, dispersive solvent, different additives and extraction time were examined on the extraction efficiently of the dispersive liquid-liquid microextraction method. Under optimal conditions, the linearity for determining the pharmaceuticals was in the range of 1-500 ng mL -1 , with the correlation coefficients ranging from 0.9922 to 0.9995. The limits of detection and limits of quantification were in the range 0.31-6.65 and 0.93-22.18 ng mL -1 , respectively. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Li, Xiujuan; Zeng, Zhaorui; Zeng, Yi
2007-06-15
This paper investigates the detection of 2,3-dimethyl-2,3-dinitrobutane (DMNB), a marking agent in explosives, by gas chromatography (GC) with electron capture detection using solid-phase microextraction (SPME) as a sample preparation technique. The 25,27-dihydroxy-26,28-oxy (2',7'-dioxo-3',6'-diazaoctyl) oxy-p-tert-butylcalix[4]arene/hydroxy-terminated silicone oil coated fiber was highly sensitive to trap DMNB from ammonium nitrate matrix. The analysis was performed by extracting 2g of explosives for 30s at room temperature and then immediately introducing into the heated GC injector for 1min of thermal desorption. The method showed good linearity in the range from 0.01 to 1.0mug/g. The relative standard deviations for these extractions were <8%. The calculated limit of detection for DMNB (S/N=3) was 4.43x10(-4)mug/g, which illustrates that the proposed systems are suitable for explosive detection at trace level. This is the first report of an SPME-GC system shown to extract marking agent in explosives for subsequent detection in a simple, rapid, sensitive, and inexpensive manner.
Torres Padrón, M E; Sosa Ferrera, Z; Santana Rodríguez, J J
2006-09-01
A solid-phase microextraction (SPME) procedure using two commercial fibers coupled with high-performance liquid chromatography (HPLC) is presented for the extraction and determination of organochlorine pesticides in water samples. We have evaluated the extraction efficiency of this kind of compound using two different fibers: 60-mum polydimethylsiloxane-divinylbenzene (PDMS-DVB) and Carbowax/TPR-100 (CW/TPR). Parameters involved in the extraction and desorption procedures (e.g. extraction time, ionic strength, extraction temperature, desorption and soaking time) were studied and optimized to achieve the maximum efficiency. Results indicate that both PDMS-DVB and CW/TPR fibers are suitable for the extraction of this type of compound, and a simple calibration curve method based on simple aqueous standards can be used. All the correlation coefficients were better than 0.9950, and the RSDs ranged from 7% to 13% for 60-mum PDMS-DVB fiber and from 3% to 10% for CW/TPR fiber. Optimized procedures were applied to the determination of a mixture of six organochlorine pesticides in environmental liquid samples (sea, sewage and ground waters), employing HPLC with UV-diode array detector.
Sun, Min; Bu, Yanan; Feng, Juanjuan; Luo, Chuannan
2016-01-01
A graphene oxide reinforced polymeric ionic liquids monolith was obtained by copolymerization of graphene oxide doped 1-(3-aminopropyl)-3-(4-vinylbenzyl)imidazolium 4-styrenesulfonate monomer and 1,6-di-(3-vinylimidazolium) hexane bihexafluorophosphate cross-linking agent. Coupled to high-performance liquid chromatography, the monolith was used as a solid-phase microextraction sorbent to analyze several phenolic compounds in aqueous samples. Under the optimized extraction and desorption conditions, linear ranges were 5-400 μg/L for 3-nitrophenol, 2-nitrophenol, and 2,5-dichlorophenol and 2-400 μg/L for 4-chlorophenol, 2-methylphenol, and 2,4,6-trichlorophenol (R(2) = 0.9973-0.9988). The limits of detection were 0.5 μg/L for 3-nitrophenol and 2-nitrophenol and 0.2 μg/L for the rest of the analytes. The proposed method was used to determine target analytes in groundwater from an industrial park and river water. None of the analytes was detected. Relative recoveries were in the range of 75.5-113%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Carro, Antonia María; González, Paula; Fajar, Noelia; Lorenzo, Rosa Antonia; Cela, Rafael
2009-06-01
The headspace solid-phase micro-extraction technique with on-fibre derivatisation followed by gas chromatography-tandem mass spectrometry has been evaluated for the analysis of 1,3-dichloro-2-propanol in water. An asymmetric factorial design has been performed to study the influence of five experimental factors: extraction time and temperature, derivatisation time and temperature and pH. The best extraction performance is achieved in the headspace mode, with 5 mL stirred water samples (pH 4) containing 1.3 g of NaCl, equilibrated for 30 min at 25 degrees C, using divinylbenzene-carboxen-polydimethylsiloxane as the fibre coating. On-fibre derivatisation has been used for the first time with 50 microL of bis(trimethylsilyl)trifluoroacetamide at 25 degrees C during 15 min, leading to effective yields. The proposed method provides high sensitivity, good linearity and repeatability (relative standard deviation of 5.1% for 10 ng mL(-1) and n = 5). The limits of detection and quantification were 0.4 and 1.4 ng mL(-1), respectively. Analytical recoveries obtained for different water samples were approx. 100%.
Waidyanatha, Suramya; Zheng, Yuxin; Rappaport, Stephen M
2003-05-06
Polycyclic aromatic hydrocarbons (PAHs) represent a complex mixture of toxic compounds that are ubiquitous in the environment. We investigated the utility of head space-solid phase microextraction (HS-SPME) to measure the following surrogate PAHs in urine: naphthalene (NAP), phenanthrene (PHE), pyrene (PYR), and benzo(a)pyrene (BAP), representing classes of 2-, 3-, 4- and 5-ring compounds, respectively. We then applied the method to urine from 28 coke oven workers (median levels (microg/l) were: NAP=3.65, PHE=1.51, PYR=0.003, BAP not detected) and 22 controls (median (microg/l) NAP=0.859, PHE=0.062, PYR=0.001, BAP not detected). Urinary levels of NAP, PHE, and PYR were all associated with exposure category (controls, side- and bottom-workers, and top-workers) but not with smoking status. Strong correlations were observed between urinary levels of NAP, PHE, and PYR in coke-oven workers. Our results indicate that unmetabolized 2-, 3- and 4-ring PAHs can be measured in urine by HS-SPME. Such measurements can be used to investigate the uptake and metabolism of complex PAH mixtures in humans.
Chemically modified cellulose paper as a thin film microextraction phase.
Saraji, Mohammad; Farajmand, Bahman
2013-11-01
In this paper, chemically modified cellulose paper was introduced as a novel extracting phase for thin film microextraction (TFME). Different reagents (Octadecyltrichlorosilane, diphenyldichlorosilane, cyclohexyl isocyanate and phenyl isocyanate) were used to modify the cellulose papers. The modified papers were evaluated as a sorbent for the extraction of some synthetic and natural estrogenic hormones (17α-ethynylestradiol, estriol and estradiol) from aqueous samples. Liquid chromatography-fluorescence detection was used for the quantification of the extracted compounds. The cellulose paper modified with phenyl isocyanate showed the best affinity to the target compounds. TEME parameters such as desorption condition, shaking rate, sample ionic strength and extraction time were investigated and optimized. Limit of detections were between 0.05 and 0.23μgL(-1) and relative standard deviations were less than 11.1% under the optimized condition. The calibration curves were obtained in the range of 0.2-100μgL(-1) with a good linearity (r(2)>0.9935). Wastewater, human urine, pool and river water samples were studied as real samples for the evaluation of the method. Relative recoveries were found to be between 75% and 101%. Copyright © 2013 Elsevier B.V. All rights reserved.
Huang, Yuan; Zheng, Zhiqun; Huang, Liying; Yao, Hong; Wu, Xiao Shan; Li, Shaoguang; Lin, Dandan
2017-05-10
A rapid, simple, cost-effective dispersive liquid-phase microextraction based on solidified floating organic drop (SFOD-LPME) was developed in this study. Along with high-performance liquid chromatography, we used the developed approach to determine and enrich trace amounts of four glucocorticoids, namely, prednisone, betamethasone, dexamethasone, and cortisone acetate, in animal-derived food. We also investigated and optimized several important parameters that influenced the extraction efficiency of SFOD-LPME. These parameters include the extractant species, volumes of extraction and dispersant solvents, sodium chloride addition, sample pH, extraction time and temperature, and stirring rate. Under optimum experimental conditions, the calibration graph exhibited linearity over the range of 1.2-200.0ng/ml for the four analytes, with a reasonable linearity(r 2 : 0.9990-0.9999). The enrichment factor was 142-276, and the detection limits was 0.39-0.46ng/ml (0.078-0.23μg/kg). This method was successfully applied to analyze actual food samples, and good spiked recoveries of over 81.5%-114.3% were obtained. Copyright © 2017. Published by Elsevier B.V.
Song, Jun; Forney, Charles F; Jordan, Michael A
2014-10-01
Analysis of headspace concentrations of diphenylamine using solid phase micro-extraction (SPME) was examined for its suitability to detect DPA contamination and off-gassing in apple (Malus domestica) fruit, storage rooms and storage materials. Four SPME fibre coatings including polydimethylsiloxane (PDMS, 100 μm), PDMS/divinylbenzene (PDMS/DVB), Polyacrylate (PA) and PDMS 7 μm were evaluated. The average limits of detection and of quantification for head space DPA ranged from 0.13 to 0.72 μg L(-1) and 0.42 to 2.35 μg L(-1), respectively. Polyacrylate was identified to be the most suitable and compatible fibre for DPA analysis in apple samples, because of its high sensitivity to DPA and low fruit volatile interferences. SPME techniques were further applied to study contamination of DPA in apples, storage rooms and packaging materials. DPA was found in the air of storage rooms containing apples that were not treated with DPA. Wood and plastic bin material, bin liners, and foam insulation all adsorbed and off-gassed DPA and could be potential sources of contamination of untreated apples. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
Feng, Juanjuan; Wang, Xiuqin; Tian, Yu; Luo, Chuannan; Sun, Min
2017-12-01
An in-tube solid-phase microextraction device was developed by packing poly(ionic liquids)-coated stainless-steel wires into a polyether ether ketone tube. An anion-exchange process was performed to enhance the extraction performance. Surface properties of poly(ionic liquids)-coated stainless-steel wires were characterized by scanning electron microscopy and energy dispersive X-ray spectrometry. The extraction device was connected to high-performance liquid chromatography equipment to build an online enrichment and analysis system. Ten polycyclic aromatic hydrocarbons were used as model analytes, and important conditions including extraction time and desorption time were optimized. The enrichment factors from 268 to 2497, linear range of 0.03-20 μg/L, detection limits of 0.010-0.020 μg/L, extraction and preparation repeatability with relative standard deviation less than 1.8 and 19%, respectively were given by the established online analysis method. It has been used to detect polycyclic aromatic hydrocarbons in environmental samples, with the relative recovery (5, 10 μg/L) in the range of 85.1-118.9%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wu, Mian; Wang, Liying; Zeng, Baizhao; Zhao, Faqiong
2016-04-29
A poly(3,4-ethylenedioxythiophene)-ionic liquid polymer functionalized multiwalled carbon nanotubes (PEDOT-PIL/MWCNTs) composite solid-phase microextraction (SPME) coating was fabricated by electrodeposition. After being dipped in Nafion solution, a Nafion-modified coating was obtained. The outer layer Nafion played a crucial role in enhancing the durability and stability of the coating, thus it was robust enough for replicated extraction for at least 150 times without decrease of extraction performance. The Nafion-modified coating exhibited much higher sensitivity than commercial coatings for the direct extraction of carbamate pesticides in aqueous solutions, due to its strong hydrophobic effect and π-π affinity based enrichment. When it was used for the determination of carbamate pesticides in combination with gas chromatography-flame ionization detection, good linearity (correlation coefficients higher than 0.9981), low limits of detection (15.2-27.2 ng/L) and satisfactory precision (relative standard deviation <8.2%, n=5) were achieved. The developed method was applied to the analysis of four carbamate pesticides in apple and lettuce samples, and acceptable recoveries (i.e. 87.5-106.5%) were obtained for the standard addition. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhang, Chengjiang; Zhang, Zhuomin; Li, Gongke
2014-06-13
In this study, a novel sulfonated graphene/polypyrrole (SG/PPy) solid-phase microextraction (SPME) coating was prepared and fabricated on a stainless-steel wire by a one-step in situ electrochemical polymerization method. Crucial preparation conditions were optimized as polymerization time of 15min and SG doping amount of 1.5mg/mL. SG/PPy coating showed excellent thermal stability and mechanical durability with a long lifespan of more than 200 stable replicate extractions. SG/PPy coating demonstrated higher extraction selectivity and capacity to volatile terpenes than commonly-used commercial coatings. Finally, SG/PPy coating was practically applied for the analysis of volatile components from star anise and fennel samples. The majority of volatile components identified were terpenes, which suggested the ultra-high extraction selectivity of SG/PPy coating to terpenes during real analytical projects. Four typical volatile terpenes were further quantified to be 0.2-27.4μg/g from star anise samples with good recoveries of 76.4-97.8% and 0.1-1.6μg/g from fennel samples with good recoveries of 80.0-93.1%, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.
Najafi, Nahid Mashkouri; Tavakoli, Hamed; Alizadeh, Reza; Seidi, Shahram
2010-06-18
A simple and powerful method has been developed for the rapid and selective determination of Te(IV) and Te(VI), employing dispersive liquid-liquid microextraction combined with electrothermal atomic absorption spectrometry using palladium as permanent modifier. Under acidic conditions pH 1, only Te(IV) can form a complex with ammonium pyrrolidine dithiocarbamate (APDC) and therefore be extracted into fine droplets of carbon tetrachloride (extraction solvent) which are dispersed with ethanol into the water sample solution. After centrifugation, Te(IV) was determined in the sedimented organic phase while Te(VI) remained in the aqueous phase. Total inorganic tellurium was determined after the reduction of the Te(VI) to Te(IV). Te(VI) was calculated as the difference between the measured total inorganic tellurium and Te(IV) content. The effective parameters for improving the efficiency of microextraction process were investigated by using experimental and central composite designs. Under optimal conditions the enrichment factor was 125 and the calibration graph was linear in the range of 0.015-1 ng mL(-1) with detection limit and characteristic mass of 0.004 ng mL(-1) and 0.033 pg, respectively. The relative standard deviation for 0.5 ng mL(-1) of tellurium measurement was 3.6% (n=6) at ash and atomization temperature, 900 and 2600 degrees C, respectively. The recoveries of spiked Te(IV) and Te(VI) to the environmental water samples were 89.6-101.3% and 96.6-99.1%, respectively. The accuracy is also evaluated by applying the proposed method to certified reference material (NIST SRM 1643e), for which the result was in a good agreement with the certified values reported for this CRM (95% confidence level). 2010 Elsevier B.V. All rights reserved.
Wang, Lingling; Zhang, Danfeng; Xu, Xu; Zhang, Lei
2016-04-15
Ionic liquid (IL) dispersive liquid-liquid microextraction (DLLME) method was successfully developed for extracting three endocrine disrupting compounds (EDCs) (bisphenol A, bisphenol AF and bisphenol AP) from the food packaging. 1-Octyl-3-methylimidazoliumhexafluorophosphate ([C8MIM][PF6]) was selected as extraction solution. The extraction procedure did not require a dispersive solvent. Three EDCs extraction kinetics were found to be very fast and the equilibrium was attained within 3.0 min following the pseudo-first-order model. The H-bonding and hydrophobic interactions play an important role in the partitioning of EDCs into IL from aqueous solution. The recovered IL could be reused for three runs without significant loss of extraction efficiencies. The spiked recoveries of three targets in food packaging were in the range of 97.8-103.1%. The limits of detection ranged from 0.50 to 1.50 ng mL(-1) (S/N=3). As a result, this method has been successfully applied for the sensitive detection of three EDCs in real samples. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ling, Xu; Zou, Li; Chen, Zilin
2017-09-01
A polymeric column that contains multiwalled carbon nanotubes-β-cyclodextrin composite was developed. The composite was wrapped into the poly(butyl methacrylate-ethylene dimethacrylate) monolith column (0.76 mm id and 10 cm in length). The column was then applied for the online solid-phase microextraction of psoralen and isopsoralen from Fructus Psoraleae. Following microextraction, the coumarins were quantified by high-performance liquid chromatography with C 18 separation column and UV detection. The effects of sample flow rate, sample volume, and pH value were optimized. The method showed low limits of detection (20 pg/mL, S/N = 3) for both psoralen and isopsoralen. Finally the method was successfully applied to the determination of psoralen and isopsoralen in spiked herb extracts and rat plasma where it gave recoveries that ranged between 93.2 and 102.1%. The empty hydrophobic cavities of β-cyclodextrin and the hydrophobicity of multiwalled carbon nanotubes provided specific extraction capability for psoralen and isopsoralen. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Xing, Han-Zhu; Wang, Xia; Chen, Xiang-Feng; Wang, Ming-Lin; Zhao, Ru-Song
2015-05-01
A method combining accelerated solvent extraction with dispersive liquid-liquid microextraction was developed for the first time as a sample pretreatment for the rapid analysis of phenols (including phenol, m-cresol, 2,4-dichlorophenol, and 2,4,6-trichlorophenol) in soil samples. In the accelerated solvent extraction procedure, water was used as an extraction solvent, and phenols were extracted from soil samples into water. The dispersive liquid-liquid microextraction technique was then performed on the obtained aqueous solution. Important accelerated solvent extraction and dispersive liquid-liquid microextraction parameters were investigated and optimized. Under optimized conditions, the new method provided wide linearity (6.1-3080 ng/g), low limits of detection (0.06-1.83 ng/g), and excellent reproducibility (<10%) for phenols. Four real soil samples were analyzed by the proposed method to assess its applicability. Experimental results showed that the soil samples were free of our target compounds, and average recoveries were in the range of 87.9-110%. These findings indicate that accelerated solvent extraction with dispersive liquid-liquid microextraction as a sample pretreatment procedure coupled with gas chromatography and mass spectrometry is an excellent method for the rapid analysis of trace levels of phenols in environmental soil samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Filho, Adalberto M; dos Santos, Fábio N; Pereira, Pedro A de Paula
2011-11-01
A sensitive and efficient solid-phase microextraction method, based on liquid chromatography and UV-Vis detection, was developed and validated as an alternative method for sample screening prior to LC-MS analysis. It enables the simultaneous determination of ten pesticides in mango fruits. The fiber used was polydimethylsiloxane while optimum SPME conditions employed have been developed and optimized in a previous work. The desorption process was performed in static mode, using acetonitrile as a solvent. The results indicate that the DI-SPME/HPLC/UV-Vis procedure resulted in good linear range, accuracy, precision and sensibility and is adequate for analyzing pesticide residues in mango fruits. The limits of detection (0.6-3.3 μg/kg) and quantification (2.0-10.0 μg/kg) were achieved with values lower than the maximum residue levels (MRLs) established by Brazilian legislation for all pesticides in this study. The average recovery rates obtained for each pesticide ranged from 71.6 to 104.3% at three fortification levels, with the relative standard deviation ranging from 4.3 to 18.6%. The proposed method was applied for the determination of the aforementioned compounds in commercial mango samples and residues of azoxystrobin, fenthion, permethrin, abamectin and bifenthrin were detected in the mango samples, although below the MRLs established by Brazilian legislation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Abbasi, Vajihe; Sarafraz-Yazdi, Ali; Amiri, Amirhassan; Vatani, Hossein
2016-01-01
A headspace solid-phase microextraction (HS-SPME) method was developed for isolation of monocyclic aromatic amines from water samples followed by gas chromatography–flame ionization detector (GC–FID). In this work, the effect of the presence of ionic liquid (namely, 1-hexyl-3-methyl-imidazolium hexafluorophosphate [C6MIM][PF6]) was investigated in the sol–gel coating solutions on the morphology and extraction behavior of the resulting hybrid organic–inorganic sol–gel sorbents utilized in SPME. Hydroxy-terminated poly(dimethylsiloxane) (PDMS) was used as the sol–gel active organic component for sol–gel hybrid coatings. Two different coated fibers that were prepared are PDMS and PDMS-IL ([C6MIM][PF6]) fibers. Under the optimal conditions, the method detection limits (S/N = 3) with PDMS-IL were in the range of 0.001–0.1 ng/mL and the limits of quantification (S/N = 10) between 0.005 and 0.5 ng/mL. The relative standard deviations for one fiber (n = 5) were obtained from 3.1 up to 8.5% and between fibers or batch to batch (n = 3) in the range of 5.3–10.1%. The developed method was successfully applied to real water and juice fruits samples while the relative recovery percentages obtained for the spiked water samples at 0.1 ng/mL were from 83.3 to 95.0%. PMID:26759488
Chen, Shuang; Sha, Sha; Qian, Michael; Xu, Yan
2017-12-01
This study investigated the aroma contribution of volatile sulfur compounds (VSCs) in Moutai liquors. The VSCs were analyzed using headspace solid-phase microextraction-gas chromatography-pulsed flame photometric detection (HS-SPME-GC-PFPD). The influences of SPME fibers, ethanol content in the sample, pre-incubation time, and extraction temperature and time on the extraction of VSCs were optimized. The VSCs were optimally extracted using a divinylbenzene/carboxen/polydimethylsiloxane fiber, by incubating 10 mL diluted Chinese liquor (5% vol.) with 3 g NaCl at 30 °C for 15 min, followed by a subsequent extraction for 40 min at 30 °C. The optimized method was further validated. A total of 13 VSCs were identified and quantified in Moutai liquors. The aroma contribution of these VSCs were evaluated by their odor activity values (OAVs), with the result that 7 of 13 VSCs had OAVs > 1. In particular, 2-furfurylthiol, methanethiol, dimethyl trisulfide, ethanethiol, and methional had relatively high OAVs and could be the key aroma contributors to Moutai liquors. In this study, a method for analyzing volatile sulfur compounds in Chinese liquors has been developed. This method will allow an in-depth study the aroma contribution of volatile sulfur compounds in Chinese liquors. Seven volatile sulfur compounds were identified as potential key aroma contributors for Moutai liquors, which can help to the quality control of Moutai liquors. © 2017 Institute of Food Technologists®.
Ding, Zhen; Xia, Weiwen; Zheng, Hao; Xia, Yuting; Chen, Xiaodong
2013-01-01
Geosmin and 2-MIB are responsible for the majority of earthy and musty events related to the drinking water. These two odorants have extremely low odor threshold concentrations at ng L−1 level in the water, so a simple and sensitive method for the analysis of such trace levels was developed by headspace solid-phase microextraction coupled to gas chromatography/mass spectrometry. In this study, the orthogonal experiment design L32 (49) was applied to arrange and optimize experimental conditions. The optimum was the following: temperatures of extraction and desorption, 65°C and 260°C, respectively; times of extraction and desorption, 30 min and 5 min, respectively; ionic strength, 25% (w/v); rotate-speed, 600 rpm; solution pH, 5.0. Under the optimized conditions, limits of detection (S/N = 3) were 0.04 and 0.13 ng L−1 for geosmin and 2-MIB, respectively. Calculated calibration curves gave high levels of linearity with a correlation coefficient value of 0.9999 for them. Finally, the proposed method was applied to water samples, which were previously analyzed and confirmed to be free of target analytes. Besides, the proposal method was applied to test environmental water samples. The RSDs were 2.75%~3.80% and 4.35%~7.6% for geosmin and 2-MIB, respectively, and the recoveries were 91%~107% and 91%~104% for geosmin and 2-MIB, respectively. PMID:24000317
Lee, Changgook; Lee, Younghoon; Lee, Jae-Gon; Buglass, Alan J
2013-06-21
A simultaneous multiple solid-phase microextraction-single shot-gas chromatography mass spectrometry (smSPME-ss-GC/MS) method has been developed for headspace analysis. Up to four fibers (50/30 μm DVB/CAR/PDMS) were used simultaneously for the extraction of aroma components from the headspace of a single sample chamber in order to increase sensitivity of aroma extraction. To avoid peak broadening and to maximize resolution, a simple cryofocusing technique was adopted during sequential thermal desorption of multiple SPME fibers prior to a 'single shot' chromatographic run. The method was developed and validated on a model flavor mixture, containing 81 known pure components. With the conditions of 10 min of incubation and 30 min of extraction at 50 °C, single, dual, triple and quadruple SPME extractions were compared. The increase in total peak area with increase in the number of fibers showed good linearity (R(2)=0.9917) and the mean precision was 12.0% (RSD) for the total peak sum, with quadruple simultaneous SPME extraction. Using a real sample such as commercial coffee granules, aroma profile analysis was conducted using single, dual, triple and quadruple SPME fibers. The increase in total peak intensity again showed good linearity with increase in the number of SPME fibers used (R(2)=0.9992) and the precision of quadruple SPME extraction was 9.9% (RSD) for the total peak sum. Copyright © 2013 Elsevier B.V. All rights reserved.
Zhang, Mengliang; Harrington, Peter de B
2015-01-01
Multivariate partial least-squares (PLS) method was applied to the quantification of two complex polychlorinated biphenyls (PCBs) commercial mixtures, Aroclor 1254 and 1260, in a soil matrix. PCBs in soil samples were extracted by headspace solid phase microextraction (SPME) and determined by gas chromatography/mass spectrometry (GC/MS). Decachlorinated biphenyl (deca-CB) was used as internal standard. After the baseline correction was applied, four data representations including extracted ion chromatograms (EIC) for Aroclor 1254, EIC for Aroclor 1260, EIC for both Aroclors and two-way data sets were constructed for PLS-1 and PLS-2 calibrations and evaluated with respect to quantitative prediction accuracy. The PLS model was optimized with respect to the number of latent variables using cross validation of the calibration data set. The validation of the method was performed with certified soil samples and real field soil samples and the predicted concentrations for both Aroclors using EIC data sets agreed with the certified values. The linear range of the method was from 10μgkg(-1) to 1000μgkg(-1) for both Aroclor 1254 and 1260 in soil matrices and the detection limit was 4μgkg(-1) for Aroclor 1254 and 6μgkg(-1) for Aroclor 1260. This holistic approach for the determination of mixtures of complex samples has broad application to environmental forensics and modeling. Copyright © 2014 Elsevier Ltd. All rights reserved.
Monolithic graphene fibers for solid-phase microextraction.
Fan, Jing; Dong, Zelin; Qi, Meiling; Fu, Ruonong; Qu, Liangti
2013-12-13
Monolithic graphene fibers for solid-phase microextraction (SPME) were fabricated through a dimensionally confined hydrothermal strategy and their extraction performance was evaluated. For the fiber fabrication, a glass pipeline was innovatively used as a hydrothermal reactor instead of a Teflon-lined autoclave. Compared with conventional methods for SPME fibers, the proposed strategy can fabricate a uniform graphene fiber as long as several meters or more at a time. Coupled to capillary gas chromatography (GC), the monolithic graphene fibers in a direct-immersion (DI) mode achieved higher extraction efficiencies for aromatics than those for n-alkanes, especially for polycyclic aromatic hydrocarbons (PAHs), thanks to π-π stacking interaction and hydrophobic effect. Additionally, the fibers exhibited excellent durability and can be repetitively used more than 160 times without significant loss of extraction performance. As a result, an optimum extraction condition of 40°C for 50min with 20% NaCl (w/w) was finally used for SPME of PAHs in aqueous samples. For the determination of PAHs in water samples, the proposed DI-SPME-GC method exhibited linear range of 0.05-200μg/L, limits of detection (LOD) of 4.0-50ng/L, relative standard deviation (RSD) less than 9.4% and 12.1% for one fiber and different fibers, respectively, and recoveries of 78.9-115.9%. The proposed method can be used for analysis of PAHs in environmental water samples. Copyright © 2013 Elsevier B.V. All rights reserved.
Li, Siyan; Lu, Chengwei; Zhu, Fang; Jiang, Ruifen; Ouyang, Gangfeng
2015-05-11
In this work, a C18 composite solid-phase microextraction (SPME) fiber was prepared with a new method and applied to the analysis of organochlorine pesticides (OCPs) in water sample. A stainless steel wire (o.d. 127 μm) was used as the substrate, and a mixture of the C18 particle (3.5 μm) and the 184 silicone was used as the coating material. During the process of fiber preparation, a section of capillary column was used to fix the mixture onto the stainless steel wire and to ensure the constant of coating thickness. The prepared fiber showed excellent thermal stability and solvent resistance. By coupling with gas chromatography-mass spectrometry (GC-MS), the fiber exhibited wide linearity (2-500 ng L(-1)) and good sensitivity for the determination of six OCPs in water samples, the OCPs tested included hexachlorobezene, trans-chlordane, cis-chlordane, o,p-DDT, p,p-DDT and mirex. Not only the extraction performance of the newly prepared fiber was more than seven times higher than those of commercial fibers, the limits of detections (LODs) (0.059-0.151 ng L(-1)) for OCPs achieved under optimized conditions were also lower than those of reported SPME methods. The fiber was successfully applied to the determination of OCPs in real water samples by using developed SPME-GC-MS method. Copyright © 2015 Elsevier B.V. All rights reserved.
Yuan, Su-Fen; Liu, Ze-Hua; Lian, Hai-Xian; Yang, Chuangtao; Lin, Qing; Yin, Hua; Dang, Zhi
2016-10-01
A simple online headspace solid-phase microextraction (HS-SPME) coupled with the gas chromatography-mass spectrometry (GC-MS) method was developed for simultaneous determination of trace amounts of nine estrogenic odorant alkylphenols and chlorophenols and their derivatives in water samples. The extraction conditions of HS-SPME were optimized including fiber selection, extraction temperature, extraction time, and salt concentration. Results showed that divinylbenzene/Carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fiber was the most appropriate one among the three selected commercial fibers, and the optimal extraction temperature, time, and salt concentration were 70 °C, 30 min, and 0.25 g/mL, respectively. The developed method was validated and showed good linearity (R (2) > 0.989), low limit of detection (LOD, 0.002-0.5 μg/L), and excellent recoveries (76-126 %) with low relative standard deviation (RSD, 0.7-12.9 %). The developed method was finally applied to two surface water samples and some of these target compounds were detected. All these detected compounds were below their odor thresholds, except for 2,4,6-TCAS and 2,4,6-TBAS wherein their concentrations were near their odor thresholds. However, in the two surface water samples, these detected compounds contributed to a certain amount of estrogenicity, which seemed to suggest that more attention should be paid to the issue of estrogenicity rather than to the odor problem.
Li, Xianjiang; Wang, Xin; Ma, Wen; Ai, Wanpeng; Bai, Yu; Ding, Li; Liu, Huwei
2017-04-01
Glycosides are a kind of highly important natural aromatic precursors in tobacco leaves. In this study, a novel HKUST-1-coated monolith dip-it sampler was designed for the fast and sensitive analysis of trace glycosides using direct analysis in real-time mass spectrometry. This device was prepared in two steps: in situ polymerization of monolith in a glass capillary of dip-it and layer-by-layer growth of HKUST-1 on the surface of monolith. Sufficient extraction was realized by immersing the tip to solution and in situ desorption was carried out by plasma direct analysis in real time. Compared with traditional solid-phase microextraction protocols, sample desorption was not needed anymore, and only extraction conditions were needed to be optimized in this method, including the gas temperature of direct analysis in real time, extraction time, and CH 3 COONH 4 additive concentration. This method enabled the simultaneous detection of six kinds of glycosides with the limits of detection of 0.02-0.05 μg/mL and the linear ranges covering two orders of magnitude with the limits of quantitation of 0.05-0.1 μg/mL. Moreover, the developed method was applied for the glycosides analysis of three tobacco samples, which only took about 2 s for every sample. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ma, Chunhua; Ji, Jiaojiao; Tan, Connieal; Chen, Dongmei; Luo, Feng; Wang, Yiru; Chen, Xi
2014-03-01
Oxidation has important effects on the quality of edible oils. In particular, the generation of aldehydes produced by the oxidation of oils is one of the deteriorative factors to their quality. The aim of this study was to develop a method to determine the aldehydes as lipid oxidation markers in edible oils. Seven aldehydes generated from lipid oxidation were studied using headspace solid-phase microextraction coupled to gas chromatography with a flame ionization detector. The extraction efficiency of five commercial fibers was investigated and the influence of extraction temperature, extraction time, desorption temperature, and desorption time were optimized. The best result was obtained with 85 μm carboxen/polydimethylsiloxane, extraction at 50 °C for 15 min and desorption in the gas chromatography injector at 250 °C for 2 min. Under the optimized conditions, the content of hexanal was the highest of the seven aldehydes in all edible oils. The limits of detection for hexanal in the three oils were found to range from 4.6 to 10.2 ng L(-1). The reproducibility of the method was evaluated and the relative standard deviations were less than 8.9%. This developed approach was successfully applied to analyze hexanal in peanut oil, soy oil, and olive oil samples, and these results were compared with those obtained using the thiobarbituric acid-reactive substances (TBARs) method. © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Bousova, Katerina; Mittendorf, Klaus; Senyuva, Hamide
2011-01-01
A method was developed using automated headspace solid-phase microextraction coupled with GC/MS/MS to simultaneously determine the presence of seven biologically active flavoring substances whose levels of use in processed foods is controlled by statutory limits. The method can be applied to identify and quantify the presence of 1,2-benzopyrone (coumarin), beta-asarone, 1-allyl-4-methoxybenzene (estragole), menthofuran, 4-allyl-1 ,2-dimethoxybenzene (methyl eugenol), pulegone, and thujone at levels ranging from 0.5 to 3000 mg/kg. The method has been optimized and validated for three different generic food types categorized on the basis of composition and anticipated use levels of flavorings and food ingredients. The food categories are alcoholic and nonalcoholic beverages; semisolid processed foods (e.g., soups, sauces, confectionary, etc.); and solid foods (muesli, bakery products, etc.). The method is simple, inexpensive, and rapid, and eliminates the use of flammable and toxic solvents. There is no sample preparation, and using MSIMS, unequivocal confirmation of identification is achieved even in highly complex matrixes containing many potential interfering volatiles. The method precision for spiked samples ranged from 2 to 21%, with the greatest variability associated with solid matrixes. The LOD and LOQ values were well below 0.1 and 0.5 mg/kg, respectively, in all cases for individual substances, fulfilling requirements for enforcement purposes. The robustness of the method was demonstrated in a small survey of retail samples of four spirits, five flavored milks, three energy drinks, five liqueurs, five soups, 10 sauces, five herbal teas, and three breakfast cereals.
Sarafraz Yazdi, Ali; Raouf Yazdinezhad, Samaneh; Heidari, Tahereh
2014-01-01
Surfactant-enhanced hollow fiber liquid phase (SE-HF-LPME) microextraction was applied for the extraction of melamine in conjunction with high performance liquid chromatography with UV detection (HPLC–UV). Sodium dodecyl sulfate (SDS) was added firstly to the sample solution at pH 1.9 to form hydrophobic ion-pair with protonated melamine. Then the protonated melamine–dodecyl sulfate ion-pair (Mel–DS) was extracted from aqueous phase into organic phase immobilized in the pores and lumen of the hollow fiber. After extraction, the analyte-enriched 1-octanol was withdrawn into the syringe and injected into the HPLC. Preliminary, one variable at a time method was applied to select the type of extraction solvent. Then, in screening step, the other variables that may affect the extraction efficiency of the analyte were studied using a fractional factorial design. In the next step, a central composite design was applied for optimization of the significant factors having positive effects on extraction efficiency. The optimum operational conditions included: sample volume, 5 mL; surfactant concentration, 1.5 mM; pH 1.9; stirring rate, 1500 rpm and extraction time, 60 min. Using the optimum conditions, the method was analytically evaluated. The detection limit, relative standard deviation and linear range were 0.005 μg mL−1, 4.0% (3 μg mL−1, n = 5) and 0.01–8 μg mL−1, respectively. The performance of the procedure in extraction of melamine from the soil samples was good according to its relative recoveries in different spiking levels (95–109%). PMID:26644934
Nizamani, Sooraj; Kazi, Tasneem G; Afridi, Hassan I
2018-01-01
An efficient preconcentration technique based on ultrasonic-assisted ionic liquid-based dual microextraction (UA-ILDµE) method has been developed to preconcentrate the lead (Pb +2 ) in ground and stored rain water. In the current proposed method, Pb +2 was complexed with a chelating agent (dithizone), whereas an ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate) was used for extraction purpose. The ultrasonic irradiation and electrical shaking system were applied to enhance the dispersion and extraction of Pb +2 complex in aqueous samples. For second phase, dual microextraction (DµE phase), the enriched Pb +2 complex in ionic liquid, extracted back into the acidic aqueous solution and finally determined by flame atomic absorption spectrometry. Some major analytical parameters that influenced the extraction efficiency of developed method, such as pH, concentration of ligand, volume of ionic liquid and samples, time of shaking in thermostatic electrical shaker and ultrasonic bath, effect of back extracting HNO 3 volume, matrix effect, centrifugation time and rate were optimized. At the sample volume of 25mL, the calculated preconcentration factor was 62.2. The limit of detection of proposed procedure for Pb +2 ions was found to be 0.54μgL -1 . The validation of developed method was performed by the analysis of certified sample of water SRM 1643e and standard addition method in a real water sample. The extraction recovery of Pb +2 was enhanced≥2% with shaking time of 80s in ultrasonic bath as compared to used thermostatic electrical shaker, where for optimum recovery up to 10min was required. The developed procedure was successfully used for the enrichment of Pb +2 in ground and stored rain water (surface water) samples of an endemic region of Pakistan. The resulted data indicated that the ground water samples were highly contaminated with Pb +2 , while some of the surface water samples were also have higher values of Pb +2 than permissible limit of WHO. The concentration of Pb +2 in surface and ground water samples was found in the range of 17.5-24.5 and 25.6-99.1μgL - 1 respectively. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Larki, A.
2017-02-01
In this work, the intrinsic colorimetric property of carbon dots (CDs) was utilized for the determination of fenitrothion by applying dispersive liquid-liquid microextraction (DLLME) method. Label free CDs are extracted into carbon tetrachloride via assistance of trioctylmethylammonium chloride (Aliquat 336), which also acts as a disperser agent in this technique. The enriched CDs show an absorption signal at 365 nm, which increases in the presence of fenitrothion. The absorbance increase of CDs in organic phase was used as an analytical signal for the determination of fenitrothion. The synthesized CDs were characterized by UV-visible, fluorescence, Fourier transform infrared (FT-IR) and transmission electron microscopic (TEM). Under the optimized conditions, beer's law was obeyed in the range of 1.0-250.0 ng mL- 1 of fenitrothion with the limit of detection for fenitrothion was 0.2 ng mL- 1. The relative standard deviation for eight replicate measurements of fenitrothion at concentrations of 25 and 100 ng mL- 1 were calculated to be 1.5 and 3.7%, respectively. The proposed method was successfully applied in the determination of fenitrothion in water samples with satisfactory results.
Hultgren, Sofie; Larsson, Niklas; Nilsson, Bo F; Jönsson, Jan Ake
2009-02-01
A two-phase hollow-fiber (HF) liquid-phase microextraction (LPME) method was developed for determination of a quaternary ammonium compound surfactant, dicocodimethylammonium chloride, in aqueous samples. The porous HF was fixed on a metal rod support and was impregnated with approximately 6.6 microL of organic extractant, which was immobilized in the HF pores. Surfactant extraction was facilitated by addition of carboxylic acid to the sample forming neutral ion pairs with the quaternary ammonium compound. After extraction, the analyte was transferred from the organic extractant in the fiber pores by dissolving the 1-octanol into 100 microL methanol. The methanol extract was analyzed by liquid chromatography-mass spectrometry. The method was optimized (with optimized parameters in brackets) with regard to type of organic extractant (1-octanol), fiber length (2 cm), choice and concentration of anionic carrier (600 microg L(-1) octanoate), procedure of transfer to methanol (15-min sonication), sample volume (250 mL), extraction time (17 h), pH (10), and ionic strength (50 mM carbonate). Aspects influencing repeatability in LPME of (quaternary ammonium) surfactants are discussed. The enrichment factor achieved in 250-mL carbonate buffer was around 400. Due to matrix effects, the enrichment factors achieved when industrial process water was analyzed were 120 or about 30% of that in carbonate buffer. Detection limits of 0.3 microg L(-1) in carbonate buffer and 0.9 microg L(-1) in industrial process water were obtained. If the studied compound is seen as a model substance representing quaternary dialkylated dimethylated ammonium surfactants in general, the developed method may be applied to other quaternary ammonium surfactants.
Magiera, Sylwia; Gülmez, Şefika; Michalik, Aleksandra; Baranowska, Irena
2013-08-23
A new approach based on microextraction by packed sorbent (MEPS) and a reversed-phase ultra-high pressure liquid chromatography (UHPLC) method was developed and validated for the determination and quantification of nonsteroidal anti-inflammatory drugs (NSAIDs) (acetylsalicylic acid, ketoprofen, diclofenac, naproxen and ibuprofen) in human urine. The important factors that could influence the extraction were previously screened using the Plackett-Burman design approach. The optimal MEPS extraction conditions were obtained using C18 phase as a sorbent, small sample volume (20μL) and a short time period (approximately 5min) for the entire sample preparation step. The analytes were separated on a core-shell column (Poroshell 120 EC-C18; 100mm×3.0mm; 2.7μm) using a binary mobile phase composed of aqueous 0.1% trifluoroacetic acid and acetonitrile in the gradient elution mode (4.5min of analysis time). The analytical method was fully validated based on linearity, limits of detection (LOD), limits of quantification (LOQ), inter- and intra-day precision and accuracy, and extraction yield. Under optimised conditions, excellent linearity (R(2)>0.9991), limits of detection (1.07-16.2ngmL(-1)) and precision (0.503-9.15% RSD) were observed for the target drugs. The average absolute recoveries of the analysed compounds extracted from the urine samples were 89.4-107%. The proposed method was also applied to the analysis of NSAIDs in human urine. The new approach offers an attractive alternative for the analysis of selected drugs from urine samples, providing several advantages including fewer sample preparation steps, faster sample throughput and ease of performance compared to traditional methodologies. Copyright © 2013 Elsevier B.V. All rights reserved.
2012-08-01
subsequent chemical analysis (into acetonitrile for high-performance liquid chromatography [ HPLC ] analysis or hexane for gas chromatography [GC... analysis ) is rapid and complete. In this work, PAHs were analyzed by Waters 2795 HPLC with fluorescent detection (USEPA Method 8310) and PCBs were...detection limits by direct water injection versus SPME with PDMS and coefficient of variation and correlation coefficient for SPME. Analysis by HPLC
Gentili, Stefano; Mortali, Claudia; Mastrobattista, Luisa; Berretta, Paolo; Zaami, Simona
2016-09-10
A procedure based on headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography/mass spectrometry (GC/MS) has been developed for the determination of most commonly used drugs of abuse in sweat of drivers stopped during roadside controls. DrugWipe 5A sweat screening device was used to collect sweat by a specific pad rubbed gently over forehead skin surface. The procedure involved an acid hydrolysis, a HS-SPME extraction for drugs of abuse but Δ(9)-tetrahydrocannabinol, which was directly extracted in alkaline medium HS-SPME conditions, a GC separation of analytes by a capillary column and MS detection by electron impact ionisation. The method was linear from the limit of quantification (LOQ) to 50ng drug per pad (r(2)≥0.99), with an intra- and inter-assay precision and accuracy always less than 15% and an analytical recovery between 95.1% and 102.8%, depending on the considered analyte. Using the validated method, sweat from 60 apparently intoxicated drivers were found positive to one or more drugs of abuse, showing sweat patches testing as a viable economic and simple alternative to conventional (blood and/or urine) and non conventional (oral fluid) testing of drugs of abuse in drugged drivers. Copyright © 2016 Elsevier B.V. All rights reserved.
Ligor, Magdalena; Buszewski, Bogusław
2008-02-01
The objective of these investigations has been the determination of volatile organic compounds including residue solvents present in vegetable oil samples. Some olive oil, rape oil, sunflower oil, soy-bean oil, pumpkin oil, grape oil, rice oil as well as hazel-nut oil samples were analysed. Among residue solvents the following compounds have been mentioned: acetone, n-hexane, benzene, and toluene. Some experiments for the solid phase microextraction (SPME)-GC-flame ionisation detection (FID) were performed to examine extraction conditions such as fiber exposure time, temperature of extraction, and temperature of desorption. Various SPME fibers such as polydimethylsiloxane, Carboxen/polydimethylsiloxane and polydimethylsiloxane/divinylbenzene coatings were used for the isolation of tested compounds from vegetable oil samples. After optimisation of SPME, real vegetable oil samples were examined using SPME-GC/MS. Based on preliminary experiments the qualitative and quantitative analyses for the determination of acetone, n-hexane, benzene and toluene were performed by SPME-GC-FID and static head-space (SHS)-GC-FID methods. The regression coefficients for calibration curves for the examined compounds were R(2) > or = 0.992. This shows that the used method is linear in the examined concentration range (0.005-0.119 mg/kg for SPME-GC-FID and 0.003-0.728 mg/kg for SHS-GC-FID). Chemical properties of analysed vegetable oils have been characterised by chemometric procedure (cluster analysis).
Lin, Yao; Wu, Li; Xu, Kailai; Tian, Yunfei; Hou, Xiandeng; Zheng, Chengbin
2015-09-21
A one-step, template-free method is described to synthesize porous carbons (PCs) in situ on a metal surface by using a room-temperature, atmospheric-pressure dielectric barrier discharge (DBD) plasma. This method not only features high efficiency, environmentally friendliness, and low cost and simple equipment, but also can conveniently realize large-area synthesis of PCs by only changing the design of the DBD reactor. The synthesized PCs have a regulated nestlike morphology, and thus, provide a high specific surface area and high pore volume, which result in excellent adsorption properties. Its applicability was demonstrated by using a PC-coated stainless-steel fiber as a solid-phase microextraction (SPME) fiber to preconcentrate polycyclic aromatic hydrocarbons (PAHs) prior to analysis by gas chromatography with flame ionization detection (GC-FID). The results showed that the fiber exhibited excellent enrichment factors (4.1×10(4) to 3.1×10(5)) toward all tested PAHs. Thus, the PC-based SPME-GC-FID provides low limits of detection (2 to 20 ng L(-1)), good precision (<7.8%), and good recoveries (80-115%) for ultra-sensitive determination of PAHs in real water samples. In addition, the PC-coated fiber could be stable enough for more than 500 replicate extraction cycles. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Galipo, Randolph C.; Canhoto, Alfredo J.; Walla, Michael D.; Morgan, Stephen L.
1999-02-01
A senior-level undergraduate laboratory experiment that demonstrates the use of solid-phase microextraction (SPME) and capillary gas chromatography-mass spectrometry (GC-MS) was developed for the identification of volatile compounds in consumer products. SPME minimizes sample preparation and concentrates volatile analytes in a solvent-free manner. Volatile flavor and fragrance compounds were extracted by SPME from the headspace of vials containing shampoos, chewing gums, and perfumes and analyzed by GC-MS. Headspace SPME was shown to be more sensitive than conventional headspace analysis of similar samples performed with an airtight syringe. Analysis times were less than 30 min, allowing multiple analyses to be performed in a typical laboratory class period.
Barro, Ruth; Ares, Sergio; Garcia-Jares, Carmen; Llompart, Maria; Cela, Rafael
2004-08-06
In this study, a combination of solid-phase extraction (SPE) and solid-phase microextraction (SPME) has been used to determine chlorobenzenes in air. Analytes were sampled by pumping a known volume of air through a porous polymer (Tenax TA). Then, the adsorbent was transferred into a glass vial and SPME was performed. The quantification was carried out using gas chromatography (GC)-electron-capture detection or GC-MS. Several SPME coatings (100 microm poly(dimethylsiloxane) (PDMS), 75 microm Carboxen (CAR)-PDMS, 65 microm PDMS-divinylbenzene (DVB), 65 microm PDMS-DVB and 85 microm polyacrylate (PA) were evaluated, obtaining the highest responses with Carbowax (CW)- PDMS for the most volatile chlorobenzenes, and with PDMS-DVB or CW-DVB fibers for the semivolatile compounds. To optimize some other factors that could affect the SPME step, a factorial design was used. Kinetic studies of the SPME process were also performed. Concerning the SPE step, breakthrough was studied, showing that 2.5 m3 of air could be processed without losses of the most volatile compounds. The performance of the method was evaluated. External calibration, which does not require the complete sampling process, demonstrated to be suitable, obtaining good linearity (R2 > 0.99) for all chlorobenzenes. Recovery studies were performed at two concentration levels (4 and 40 ng/m3), obtaining quantitative recoveries (>80%). Limits of detection at the sub ng/m3 were achieved for all the target compounds.
Moein, Mohammad Mahdi; Javanbakht, Mehran; Karimi, Mohammad; Akbari-Adergani, Behrouz
2015-03-01
Sol-gel based molecularly imprinted polymer (MIP) nanofiber was successfully fabricated by electrospinning technique on the surface of a stainless steel bar. The manufactured tool was applied for on-line selective solid phase microextraction (SPME) and determination of acesulfame (ACF) as an artificial sweetener with high performance liquid chromatography (HPLC). The selective ability of method for the extraction of ACF was investigated in the presence of some selected sweeteners such as saccharine (SCH), aspartame (ASP) and caffeine (CAF). Electrospinning of MIP sol-gel solution on the stainless steel bar provided an unbreakable sorbent with high thermal, mechanical, and chemical stability. Moreover, application of the MIP-SPME tool revealed a unique approach for the selective microextraction of the analyte in beverage samples. In this work, 3-(triethoxysilyl)-propylamine (TMSPA) was chosen as a precursor due to its ability to imprint the analyte by hydrogen bonding, Van der Walls, and dipole-dipole interactions. Nylon 6 was also added as a backbone and support for the precursor in which sol could greatly growth during the sol-gel process and makes the solution electrospinable. Various effective parameters in the extraction efficiency of the MIP-SPME tool such as loading time, flow rate, desorption time, selectivity, and the sample volume were evaluated. The linearity for the ACF in beverage sample was in the range of 0.78-100.5 ng mL(-1). Limit of detection (LOD) and quantification (LOQ) were 0.23 and 0.78 ng mL(-1) respectively. The RSD values (n=5) were all below 3.5%at the 20 ng mL(-1) level. Copyright © 2014 Elsevier B.V. All rights reserved.
Shih, Yung-Han; Lirio, Stephen; Li, Chih-Keng; Liu, Wan-Ling; Huang, Hsi-Ya
2016-01-08
In this study, an effective method for the separation of imidazole derivatives 2-methylimidazole (2-MEI), 4- methylimidazole (4-MEI) and 2-acetyl-4-tetrahydroxybutylimidazole (THI) in caramel colors using cation-selective exhaustive injection and sweeping micellar electrokinetic chromatography (CSEI-sweeping-MEKC) was developed. The limits of detection (LOD) and quantitation (LOQ) for the CSEI-sweeping-MEKC method were in the range of 4.3-80μgL(-1) and 14-270μgL(-1), respectively. Meanwhile, a rapid fabrication activated carbon-polymer (AC-polymer) monolithic column as adsorbent for solid-phase microextraction (SPME) of imidazole colors was developed. Under the optimized SPME condition, the extraction recoveries for intra-day, inter-day and column-to-column were in the range of 84.5-95.1% (<6.3% RSDs), 85.6-96.1% (<4.9% RSDs), and 81.3-96.1% (<7.1% RSDs), respectively. The LODs and LOQs of AC-polymer monolithic column combined with CSEI-sweeping-MEKC method were in the range of 33.4-60.4μgL(-1) and 111.7-201.2μgL(-1), respectively. The use of AC-polymer as SPME adsorbent demonstrated the reduction of matrix effect in food samples such as soft drink and alcoholic beverage thereby benefiting successful determination of trace-level caramel colors residues using CSEI-sweeping-MEKC method. The developed AC-polymer monolithic column can be reused for more than 30 times without any significant loss in the extraction recovery for imidazole derivatives. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Naeemullah; Kazi, Tasneem Gul; Afridi, Hassan Imran; Shah, Faheem; Arain, Sadaf Sadia; Arain, Salma Aslam; Panhwar, Abdul Haleem; Arain, Mariam Shahzadi; Samoon, Muhammad Kashif
2016-02-01
An innovative and simple miniaturized solid phase microextraction (M-SPME) method, was developed for preconcentration and determination of silver(I) in the fresh and waste water samples. For M-SPME, a micropipette tip packed with activated carbon cloth (ACC) as sorbent, in a syringe system. The size, morphology and elemental composition of ACC before and after adsorption of analyte have been characterized by scanning electron microscopy and energy dispersive spectroscopy. The sample solution treated with a complexing reagent, ammonium pyrrolidine dithiocarbamate (APDC), was drawn into the syringe filled with ACC and dispensed manually for 2 to 10 aspirating/dispensing cycle. Then the Ag- complex sorbed on the ACC in micropipette was quantitatively eluted by drawing and dispensing of different concentrations of acids for 2 to 5 aspirating/dispensing cycles. The extracted Ag ions with modifier were injected directly into the electrothermal atomic absorption spectrometry for analysis. The influence of different variables on the extraction efficiency, including the concentration of ligand, pH, sample volume, eluent type, concentration and volume was investigated. Validity and accuracy of the developed method was checked by the standard addition method. Reliability of the proposed methodology was checked by the relative standard deviation (%RSD), which was found to be < 5%. Under the optimized experimental variables, the limits of detection (LOD) and enhancement factors (EF), were obtained to be 0.86 ng L- 1 and 120, respectively. The proposed method was successfully applied for the determination of trace levels of silver ions in fresh and waste water samples.
Fashi, Armin; Khanban, Fatemeh; Yaftian, Mohammad Reza; Zamani, Abbasali
2017-01-01
A new design of electromembrane microextraction coupled with high-performance liquid chromatography was developed for the determination of Pramipexole as a model analyte in urine samples. The presence of reduced graphene oxide in the membrane and Triton X-114 in the donor phase augments the extraction efficiency of Pramipexole by the proposed method. Dispersed reduced graphene oxide in the organic solvent was held in the pores of the fiber wall by capillary forces and sonication. It is possible that the immobilized reduced graphene oxide acts as a sorbent, affording an additional pathway for analyte transportation. Besides, the presence of Triton X-114 in the donor phase promotes effective migration of ionic analytes across the membrane. The parameters influencing the extraction procedure, such as type and concentration of surfactant, type of organic solvent, amount of reduced graphene oxide, sonication time, applied voltage, extraction time, ionic strength, pH of the donor and acceptor solutions, and stirring rate were optimized. The linear working ranges of the method for preconcentration- determination of Pramipexole in water and urine samples were found to be 0.13-1000 and 0.47-1000ngmL -1 with corresponding detection limits of 0.04 and 0.14ngmL -1 , respectively. The proposed method allows achieving enrichment factors of 301 and 265 for preconcentration of the analyte in water and urine samples, respectively. The method was successfully applied for the determination of Pramipexole in the urine samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhang, Wenpeng; Zhang, Zixin; Meng, Jiawei; Zhou, Wei; Chen, Zilin
2014-10-24
In this work, we interestingly happened to observe the adsorption of stainless steel sample loop of HPLC. The adsorptive behaviors of the stainless steel loop toward different kinds of compounds were studied, including polycyclic aromatic hydrocarbons (PAHs), halogeno benzenes, aniline derivatives, benzoic acid derivatives, phenols, benzoic acid ethyl ester, benzaldehyde, 1-phenyl-ethanone and phenethyl alcohol. The adsorptive mechanism was probably related to hydrophobic interaction, electron-rich element-metal interaction and hydrogen bond. Universal adsorption of stainless steels was also testified. Inspired by its strong adsorptive capability, bare stainless steel loop was developed as a modification-free in-tube device for solid-phase microextraction (SPME), which served as both the substrate and sorbent and possessed ultra-high strength and stability. Great extraction efficiency toward PAHs was obtained by stainless steel loop without any modification, with enrichment factors of 651-834. By connecting the stainless steel loop onto a six-port valve, an online SPME-HPLC system was set up and an SPME-HPLC method has been validated for determination of PAHs. The method has exceptionally low limits of detection of 0.2-2pg/mL, which is significantly lower than that of reported methods with different kinds of sorbents. Wide linear range (0.5-500 and 2-1000pg/mL), good linearity (R(2)≥0.9987) and good reproducibility (RSD≤2.9%) were also obtained. The proposed method has been applied to determine PAHs in environmental samples. Good recoveries were obtained, ranging from 88.5% to 93.8%. Copyright © 2014 Elsevier B.V. All rights reserved.
Hashemniaye-Torshizi, Reihaneh; Ashraf, Narges; Arbab-Zavar, Mohammad Hossein
2014-12-01
In this research, a microfunnel-assisted headspace liquid-phase microextraction technique has been used in combination with hydride generation to determine arsenic (As) by UV-Vis spectrophotometry. The method is based on the reduction of As to arsine (AsH3) in acidic media by sodium tetrahydroborate (NaBH4) followed by its subsequent reaction with silver diethyldithiocarbamate (AgDDC) to give an absorbing complex at 510 nm. The complexing reagent (AgDDC) has been dissolved in a 1:1 (by the volume ratio) mixture of chloroform/chlorobenzene microdroplet and exposed to the generated gaseous arsine via a reversed microfunnel in the headspace of the sample solution. Several operating parameters affecting the performance of the method have been examined and optimized. Acetonitrile solvent has been added to the working samples as a sensitivity enhancement agent. Under the optimized operating conditions, the detection limit has been measured to be 0.2 ng mL(-1) (based on 3sb/m criterion, n b = 8), and the calibration curve was linear in the range of 0.5-12 ng mL(-1). The relative standard deviation for eight replicate measurements was 1.9 %. Also, the effects of several potential interferences have been studied. The accuracy of the method was validated through the analysis of JR-1 geological standard reference material. The method has been successfully applied for the determination of arsenic in raw and spiked soft drink and water samples with the recoveries that ranged from 91 to 106 %.
Gao, Zhanqi; Deng, Yuehua; Yuan, Wenting; He, Huan; Yang, Shaogui; Sun, Cheng
2014-10-31
A novel method was developed for the determination of organophosphorus flame retardants (PFRs) in fish. The method consists of a combination of pressurized liquid extraction (PLE) using aqueous solutions and solid-phase microextraction (SPME), followed by gas chromatography-flame photometric detector (GC-FPD). The experimental parameters that influenced extraction efficiency were systematically evaluated. The optimal responses were observed by extracting 1g of fish meat with the solution of water:acetonitrile (90:10, v/v) at 150°C for 5min and acid-washed silica gel used as lipid sorbent. The obtained extract was then analyzed by SPME coupled with GC-FPD without any additional clean-up steps. Under the optimal conditions, the proposed procedure showed a wide linear range (0.90-5000ngg(-1)) obtained by analyzing the spiked fish samples with increasing concentrations of PFRs and correlation coefficient (R) ranged from 0.9900 to 0.9992. The detection limits (S/N=3) were in the range of 0.010-0.208ngg(-1) with standard deviations (RSDs) ranging from 2.0% to 9.0%. The intra-day and inter-day variations were less than 9.0% and 7.8%, respectively. The proposed method was successfully applied to the determination of PFRs in real fish samples with recoveries varying from 79.8% to 107.3%. The results demonstrate that the proposed method is highly effective for analyzing PFRs in fish samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Es'haghi, Zarrin; Ebrahimi, Mahmoud; Hosseini, Mohammad-Saeid
2011-05-27
A novel design of solid phase microextraction fiber containing carbon nanotube reinforced sol-gel which was protected by polypropylene hollow fiber (HF-SPME) was developed for pre-concentration and determination of BTEX in environmental waste water and human hair samples. The method validation was included and satisfying results with high pre-concentration factors were obtained. In the present study orthogonal array experimental design (OAD) procedure with OA(16) (4(4)) matrix was applied to study the effect of four factors influencing the HF-SPME method efficiency: stirring speed, volume of adsorption organic solvent, extraction and desorption time of the sample solution, by which the effect of each factor was estimated using individual contributions as response functions in the screening process. Analysis of variance (ANOVA) was employed for estimating the main significant factors and their percentage contributions in extraction. Calibration curves were plotted using ten spiking levels of BTEX in the concentration ranges of 0.02-30,000ng/mL with correlation coefficients (r) 0.989-0.9991 for analytes. Under the optimized extraction conditions, the method showed good linearity (0.3-20,000ng/L), repeatability, low limits of detections (0.49-0.7ng/L) and excellent pre-concentration factors (185-1872). The best conditions which were estimated then applied for the analysis of BTEX compounds in the real samples. Copyright © 2011 Elsevier B.V. All rights reserved.
Moein, Mohammad Mahdi; Javanbakht, Mehran; Karimi, Mohammad; Akbari-Adergani, Behrouz; Abdel-Rehim, Mohamed
2015-07-15
In the present study, the modification of a polysulfone hollow fiber membrane with in situ molecularly imprinted sol-gel process (as a novel and one-step method) was prepared and investigated. 3-(propylmethacrylate)trimethoxysilane (3PMTMOS) as an inorganic precursor was used for preparation of molecularly imprinted sol-gel. The modified molecularly imprinted sol-gel hollow fiber membrane (MSHM) was used for the liquid-phase microextraction (LPME) of hippuric acid (HA) in human plasma and urine samples. MSHM as a selective, robust, and durable tool was used for at least 50 extractions without significant decrease in the extraction efficiency. The non-molecularly imprinted sol-gel hollow fiber membrane (NSHM) as blank hollow fiber membrane was prepared by the same process, only without HA. To achieve the best condition, influential parameters on the extraction efficiency were thoroughly investigated. The capability of this robust, green, and simple method for extraction of HA was successfully accomplished with LC/MS/MS. The limits of detection (LOD) and quantification (LOQ) in human plasma and urine samples were 0.3 and 1.0nmolL(-1), respectively. The standard calibration curves were obtained within the concentration range 1-2000nmolL(-1) for HA in human plasma and urine. The coefficients of determination (r(2)) were ≥0.998. The obtained data exhibited recoveries were higher than 89% for the extraction of HA in human plasma and urine samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Neng, N R; Mestre, A S; Carvalho, A P; Nogueira, J M F
2011-02-15
Bar adsorptive micro-extraction using three powdered activated carbons (ACs) as adsorbent phases followed by liquid desorption and high performance liquid chromatography with diode array detection (BAμE(ACs)-LD/HPLC-DAD), was developed to monitor triazinic herbicides (atrazine, simazine and terbutylazine) in environmental water matrices. ACs used present apparent surface areas around 1000 m(2) g(-1) with an important mesoporous volume and distinct surface chemistry characteristics (pH(PZC) ranging from 6.5 to 10.4). The textural and surface chemistry properties of the ACs adsorbent phases were correlated with the analytical data for a better understanding of the overall enrichment process. Assays performed on 10 mL water samples spiked at the 10.0 μg L(-1) levels under optimized experimental conditions yielded recoveries around 100% for the three herbicides under study. The analytical performance showed good precision (RSD<15.0%), convenient detection limits (≈0.1 μg L(-1)) and suitable linearity (1.0-12.0 μg L(-1)) with good correlation coefficients (r(2)>0.9914). By using the standard addition method, the application of the present method on real water matrices, such as surface water and wastewater, allowed very good performances at the trace level. The proposed methodology proved to be a suitable sorptive extraction alternative for the analysis of priority pollutants with polar characteristics, showing to be easy to implement, reliable, sensitive and requiring a low sample volume to monitor triazinic compounds in water matrices. Copyright © 2010 Elsevier B.V. All rights reserved.
Ruiz-Delgado, Ana; Arrebola-Liébanas, Francisco Javier; Romero-González, Roberto; López-Ruiz, Rosalía; Garrido Frenich, Antonia
2016-10-01
A highly sensitive analytical method was developed to determine 2,4,6-trichloroanisole (TCA), 2,3,4,6-tetrachloroanisole (TeCA), 2,4,6-tribromoanisole (TBA) and 2,3,4,5,6-pentachloroanisole (PCA) in sparkling alcoholic beverages. The method was based on the use of headspace solid-phase microextraction (HS-SPME) using a polydimethylsiloxane (PDMS) fibre. It was coupled to gas chromatography-triple quadrupole tandem mass spectrometry (GC-QqQ-MS/MS) for the detection and quantification of the target haloanisoles. The method was fully automated and no sample preparation was needed. The method was validated for alcoholic beverages. The influence of CO 2 on the extraction efficiency was also evaluated for the studied sparkling drinks (cava and cider). All the calibration curves showed good linearity (R 2 > 0.98) within the tested range (1-50 ng l -1 ). Recoveries were evaluated at three different levels (1, 5 and 50 ng l -1 ) and were always between 71% and 119%. Precision was expressed as relative standard deviation (RSD), and was evaluated as intra- and inter-day precisions, with values ≤ 22% in both cases. Limits of quantitation (LOQs) were ≤ 0.91 ng l -1 , which are below the sensory threshold levels for such compounds in humans. The validated method was applied to commercial samples, 10 cavas and 10 ciders, but it was also used for the analysis of nine red wines and four white wines, demonstrating the further applicability of the proposed method to non-sparkling beverages. TCA was detected in most samples at up to 0.45 ng l -1 .
Sobhi, Hamid Reza; Ghambarian, Mahnaz; Behbahani, Mohammad; Esrafili, Ali
2017-03-03
Herein, a simple and sensitive method was successfully developed for the extraction and quantification of acrylamide in water samples. Initially, acrylamide was derivatized through a bromination process. Subsequently, a modified hollow-fiber liquid-phase microextraction was applied for the extraction of the brominated acrylamide from a 10-ml portion of an aqueous sample. Briefly, in this method, the derivatized acrylamide (2,3-dibromopropionamide) was extracted from the aqueous sample into a thin layer of an organic solvent sustained in pores of a porous hollow fiber. Then, it was back-extracted using a small volume of organic acceptor solution (acetonitril, 25μl) located inside the lumen of the hollow fiber followed by gas chromatography-electron capture detection (GC-ECD). The optimal conditions were examined for the extraction of the analyte such as: the organic solvent: dihexyl ether+10% tri-n-octyl phosphine oxide; stirring rate: 750rpm; no salt addition and 30min extraction time. These optimal extraction conditions allowed excellent enrichment factor values for the method. Enrichment factor, detection limit (S/N=3) and dynamic linear range of 60, 2ngL -1 and 50-1000ngL -1 to be determined for the analyte. The relative standard deviations (RSD%) representing precision of the method were in the range of 2.2-5.8 based on the average of three measurements. Accuracy of the method was tested by the relative recovery experiments on spiked samples, with results ranging from 93 to 108%. Finally, the method proved to be simple, rapid, and cost-effective for routine screen of acrylamide-contaminated highly-complicated untreated waste water samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Ghasemi, Ensieh; Farahani, Hadi
2012-10-05
A novel and efficient speciation method based on the nano-structured lead dioxide as stationary phase of head space solid phase microextraction combined with gas chromatography mass spectrometry (GC-MS) was developed for the determination of volatile organoselenium compounds (dimethylselenide (DMSe) and dimethyldiselenide (DMDSe)) in different biological and environmental samples. PbO(2) particles with a diameter in the range of 50-70 nm have been grown on platinum wire via elechtrochemical deposition. The effect of different variables on the extraction efficiency was studied simultaneously using an experimental design. The variables of interest in the HS-SPME were condition of coating preparation, desorption time, stirring rate, desorption temperature, ionic strength, time and temperature of extraction. A Plackett-Burman design was performed for screening in order to determine the significant variables affecting the extraction efficiency. Then, the significant factors were optimized by a Box-Behnken design (BBD) and the response surface equations were derived. The detection limit and relative standard deviation (RSD) (n=5, c=50 μgL(-1)) for DMSe were 16 ngL(-1) and 4.3%, respectively. They were also obtained for DMDSe as 11ngL(-1) and 4.6%, respectively. The developed technique was found to be applicable to spiked environmental and biological samples. Copyright © 2012 Elsevier B.V. All rights reserved.
Akhond, Morteza; Absalan, Ghodratollah; Pourshamsi, Tayebe; Ramezani, Amir M
2016-07-01
Gas-assisted dispersive liquid-phase microextraction (GA-DLPME) has been developed for preconcentration and spectrophotometric determination of copper ion in different water samples. The ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate and argon gas, respectively, were used as the extracting solvent and disperser. The procedure was based on direct reduction of Cu(II) to Cu(I) by hydroxylamine hydrochloride, followed by extracting Cu(I) into ionic liquid phase by using neocuproine as the chelating agent. Several experimental variables that affected the GA-DLPME efficiency were investigated and optimized. Under the optimum experimental conditions (IL volume, 50µL; pH, 6.0; acetate buffer, 1.5molL(-1); reducing agent concentration, 0.2molL(-1); NC concentration, 120µgmL(-1); Ar gas bubbling time, 6min; argon flow rate, 1Lmin(-1); NaCl concentration, 6% w/w; and centrifugation time, 3min), the calibration graph was linear over the concentration range of 0.30-2.00µgmL(-1) copper ion with a limit of detection of 0.07µgmL(-1). Relative standard deviation for five replicate determinations of 1.0µgmL(-1) copper ion was found to be 3.9%. The developed method was successfully applied to determination of both Cu(I) and Cu(II) species in water samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Liu, Ying; He, Man; Chen, Beibei; Hu, Bin
2015-09-01
A new method based on dispersive liquid liquid microextraction (DLLME) combined with electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) was developed for the simultaneous speciation of inorganic arsenic (As), selenium (Se) and tellurium (Te) with sodium diethyldithiocarbamate (DDTC) as both chelating reagent and chemical modifier. As(III), Se(IV) and Te(IV) were transformed into DDTC-chelates at pH 7 and extracted into the fine droplets formed by injecting the binary solution of bromobenzene (extraction solvent) and methanol (dispersive solvent) into the sample solution. After phase separation by centrifugation, As(III), Se(IV) and Te(IV) preconcentrated in the organic phase were determined by ETV-ICP-MS. Total inorganic As, Se and Te were obtained by reducing As(V), Se(VI) and Te(VI) to As(III), Se(IV) and Te(IV) with L-cysteine, which were then subjected to the same DLLME-ETV-ICP-MS process. The concentration of As(V), Se(VI), Te(VI) were calculated by subtracting the concentration of As(III), Se(IV) and Te(IV) from the total inorganic As, Se and Te, respectively. The main factors affecting the microextraction efficiency and the vaporization behavior of target species were investigated in detail. Under the optimal conditions, the limits of detection were 2.5, 8.6 and 0.56 ng L(-1) for As(III), Se(IV) and Te(IV), respectively, with the relative standard deviations (n=7) of 8.5-9.7%. The developed method was applied to the speciation of inorganic As, Se and Te in Certified Reference Materials of GSBZ50004-88, GBW(E)080395 and GBW(E)080548 environmental waters, and the determined values are in good agreement with the certified values. The method was also successfully applied to the simultaneous speciation of inorganic As, Se and Te in different environmental water samples with the recoveries in the range of 86.3-107% for the spiked samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Waseem, Rabia; Low, Kah Hin
2015-02-01
In recent years, essential oils have received a growing interest because of the positive health effects of their novel characteristics such as antibacterial, antifungal, and antioxidant activities. For the extraction of plant-derived essential oils, there is the need of advanced analytical techniques and innovative methodologies. An exhaustive study of hydrodistillation, supercritical fluid extraction, ultrasound- and microwave-assisted extraction, solid-phase microextraction, pressurized liquid extraction, pressurized hot water extraction, liquid-liquid extraction, liquid-phase microextraction, matrix solid-phase dispersion, and gas chromatography (one- and two-dimensional) hyphenated with mass spectrometry for the extraction through various plant species and analysis of essential oils has been provided in this review. Essential oils are composed of mainly terpenes and terpenoids with low-molecular-weight aromatic and aliphatic constituents that are particularly important for public health. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Saraji, Mohammad; Ghambari, Hoda
2018-06-21
In this work we seek clues to select the appropriate dispersive liquid-liquid microextraction mode for extracting three categories of compounds. For this purpose, three common dispersive liquid-liquid microextraction modes were compared under optimized conditions. Traditional dispersive liquid-liquid microextraction, in situ ionic liquid dispersive liquid-liquid microextraction and conventional ionic liquid dispersive liquid-liquid microextraction using chloroform, 1-butyl-3-methylimidazolium tetrafluoroborate, and 1-hexyl-3-methylimidazolium hexafluorophosphate as the extraction solvent, respectively, were considered in this work. Phenolic, neutral aromatic and amino compounds (each category included six members) were studied as analytes. The analytes in the extracts were determined by high-performance liquid chromatography with UV detection. For the analytes with polar functionalities, the in situ ionic liquid dispersive liquid-liquid microextraction mode mostly led to better results. In contrast, for neutral hydrocarbons without polar functionalities, traditional dispersive liquid-liquid microextraction using chloroform produced better results. In this case, where dispersion forces were the dominant interactions in the extraction, the refractive index of solvent and analyte predicted the extraction performance better than the octanol-water partition coefficient. It was also revealed that none of the methods were successful in extracting very hydrophilic analytes (compounds with the log octanol-water partition coefficient < 2). The results of this study could be helpful in selecting a dispersive liquid-liquid microextraction mode for the extraction of various groups of compounds. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Sarafraz-Yazdi, A; Mofazzeli, F; Es'haghi, Z
2009-07-15
A new and fast hollow fiber based liquid phase microextraction (HF-LPME) method using volatile organic solvents coupled with high-performance liquid chromatography (HPLC) was developed for determination of aromatic amines in the environmental water samples. Analytes including 3-nitroaniline, 3-chloroaniline and 4-bromoaniline were extracted from 6 mL basic aqueous sample solution (donor phase, NaOH 1 mol L(-1)) into the thin film of organic solvent that surrounded and impregnated the pores of the polypropylene hollow fiber wall (toluene, 20 microL), then back-extracted into the 6 mL acidified aqueous solution (acceptor phase, HCl 0.5 mol L(-1)) in the lumen of the two-end sealed hollow fiber. After the extraction, 5 microL of the acceptor phase was withdrawn into the syringe and injected directly into the HPLC system for the analysis. The parameters influencing the extraction efficiency including the kind of organic solvent and its volume, composition of donor and acceptor phases and the volume ratio between them, extraction time, stirring rate, salt addition and the effect of the analyte complexation with 18-crown-6 ether were investigated and optimized. Under the optimal conditions (donor phase: 6 mL of 1 mol L(-1) NaOH with 10% NaCl; organic phase: 20 microL of toluene; acceptor phase: 6 microL of 0.5 mol L(-1) HCl and 600 mmol L(-1) 18-crown-6 ether; pre-extraction and back-extraction times: 75 s and 10 min, respectively; stirring rate: 800 rpm), the obtained EFs were between 259 and 674, dynamic linear ranges were 0.1-1000 microg L(-1) (R>0.9991), and also the limits of detection were in the range of 0.01-0.1 micro gL(-1). The proposed procedure worked very well for real environmental water samples with microgram per liter level of the analytes, and good relative recoveries (91-102%) were obtained for the spiked sample solutions.
Shrivas, Kamlesh; Wu, Hui-Fen
2007-11-02
A simple and rapid sample cleanup and preconcentration method for the quantitative determination of caffeine in one drop of beverages and foods by gas chromatography/mass spectrometry (GC/MS) has been proposed using drop-to-drop solvent microextraction (DDSME). The best optimum experimental conditions for DDSME were: chloroform as the extraction solvent, 5 min extraction time, 0.5 microL exposure volume of the extraction phase and no salt addition at room temperature. The optimized methodology exhibited good linearity between 0.05 and 5.0 microg/mL with correlation coefficient of 0.980. The relative standard deviation (RSD) and limits of detection (LOD) of the DDSME/GC/MS method were 4.4% and 4.0 ng/mL, respectively. Relative recovery of caffeine in beverages and foods were found to be 96.6-101%, which showing good reliability of this method. This DDSME excludes the major disadvantages of conventional method of caffeine extraction, like large amount of organic solvent and sample consumption and long sample pre-treatment process. So, this approach proves that the DDSME/GC/MS technique can be applied as a simple, fast and feasible diagnosis tool for environmental, food and biological application for extremely small amount of real sample analysis.
Miralles, Pablo; Chisvert, Alberto; Alonso, M José; Hernandorena, Sandra; Salvador, Amparo
2018-03-30
An analytical method for the determination of traces of formaldehyde in cosmetic products containing formaldehyde-releasing preservatives has been developed. The method is based on reversed-phase dispersive liquid-liquid microextraction (RP-DLLME), that allows the extraction of highly polar compounds, followed by liquid chromatography-ultraviolet/visible (LC-UV/vis) determination with post-column derivatization. The variables involved in the RP-DLLME process were studied to provide the best enrichment factors. Under the selected conditions, a mixture of 500 μL of acetonitrile (disperser solvent) and 50 μL of water (extraction solvent) was rapidly injected into 5 mL of toluene sample solution. The extracts were injected into the LC-UV/vis system using phosphate buffer 6 mmol L -1 at pH 2 as mobile phase. After chromatographic separation, the eluate merged with a flow stream of pentane-2,4-dione in ammonium acetate solution as derivatizing reagent and passed throughout a post-column reactor at 85 °C in order to derivatize formaldehyde into 3,5-diacetyl-1,4-dihydrolutidine, according to Hantzsch reaction, which was finally measured spectrophotometrically at 407 nm. The method was successfully validated showing good linearity, an enrichment factor of 86 ± 2, limits of detection and quantification of 0.7 and 2.3 ng mL -1 , respectively, and good repeatability (RSD < 9.2%). Finally, the proposed analytical method was applied to the determination of formaldehyde in different commercial cosmetic samples containing formaldehyde-releasing preservatives, such as bronopol, diazolidinyl urea, imidazolidinyl urea, and DMDM hydantoin, with good relative recovery values (91-113%) thus showing that matrix effects were negligible. The good analytical features of the proposed method besides of its simplicity and affordability, make it useful to carry out the quality control of cosmetic products containing formaldehyde-releasing preservatives. Copyright © 2018 Elsevier B.V. All rights reserved.
Robles-Molina, José; Gilbert-López, Bienvenida; García-Reyes, Juan F; Molina-Díaz, Antonio
2013-12-15
The European Water Framework Directive (WFD) 2000/60/EC establishes guidelines to control the pollution of surface water by sorting out a list of priority substances that involves a significant risk to or via the aquatic systems. In this article, the analytical performance of three different sample preparation methodologies for the GC-MS/MS determination of multiclass organic contaminants-including priority comprounds from the WFD-in wastewater samples using gas chromatography-mass spectrometry was evaluated. The methodologies tested were: (a) liquid-liquid extraction (LLE) with n-hexane; (b) solid-phase extraction (SPE) with C18 cartridges and elution with ethyl acetate:dichloromethane (1:1 (v/v)), and (c) headspace solid-phase microextraction (HS-SPME) using two different fibers: polyacrylate and polydimethylsiloxane/carboxen/divinilbenzene. Identification and confirmation of the selected 57 compounds included in the study (comprising polycyclic aromatic hydrocarbons (PAHs), pesticides and other contaminants) were accomplished using gas chromatography tandem mass spectrometry (GC-MS/MS) with a triple quadrupole instrument operated in the multiple reaction monitoring (MRM) mode. Three MS/MS transitions were selected for unambiguous confirmation of the target chemicals. The different advantages and pitfalls of each method were discussed. In the case of both LLE and SPE procedures, the method was validated at two different concentration levels (15 and 150 ng L(-1)) obtaining recovery rates in the range 70-120% for most of the target compounds. In terms of analyte coverage, results with HS-SPME were not satisfactory, since 14 of the compounds tested were not properly recovered and the overall performance was worse than the other two methods tested. LLE, SPE and HS-SPME (using polyacrylate fiber) procedures also showed good linearity and precision. Using any of the three methodologies tested, limits of quantitation obtained for most of the detected compounds were in the low nanogram per liter range. © 2013 Elsevier B.V. All rights reserved.
2010-08-01
available). It is assumed after this method is formally published that various standard vendors will offer other sources than the current single standard... single isomer. D Alkyl PAHs used to determine the SPME-GC/MS relative response factors including alkyl naphthalenes (1-methyl-, 2-methyl-, 1,2...Flag all compound results in the sample which were estimated above the upper calibration level with an “E” qualifier. 15. Precision and Bias 15.1 Single
Farajzadeh, Mir Ali; Mohebbi, Ali; Feriduni, Behruz
2016-05-12
In this study, a rapid, simple, and efficient sample preparation method based on continuous dispersive liquid-liquid microextraction has been developed for the extraction and preconcentration of aryloxyphenoxy-propionate herbicides from aqueous samples prior to their analysis by gas chromatography-flame ionization detection. In this method, two parallel glass tubes with different diameters are connected with a teflon stopcock and used as an extraction device. A mixture of disperser and extraction solvents is transferred into one side (narrow tube) of the extraction device and an aqueous phase containing the analytes is filled into the other side (wide tube). Then the stopcock is opened and the mixture of disperser and extraction solvents mixes with the aqueous phase. By this action, the extraction solvent is dispersed continuously as fine droplets into the aqueous sample and the target analytes are extracted into the fine droplets of the extraction solvent. The fine droplets move up through the aqueous phase due to its low density compared to aqueous phase and collect on the surface of the aqueous phase as an organic layer. Finally an aliquot of the organic phase is removed and injected into the separation system for analysis. Several parameters that can affect extraction efficiency including type and volume of extraction and disperser solvents, sample pH, and ionic strength were investigated and optimized. Under the optimum extraction conditions, the extraction recoveries and enrichment factors ranged from 49 to 74% and 1633 to 2466, respectively. Relative standard deviations were in the ranges of 3-6% (n = 6, C = 30 μg L(-1)) for intra-day and 4-7% (n = 4, C = 30 μg L(-1)) for inter-day precisions. The limits of detection were in the range of 0.20-0.86 μg L(-1). Finally the proposed method was successfully applied to determine the target herbicides in fruit juice and vegetable samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Role of microextraction sampling procedures in forensic toxicology.
Barroso, Mário; Moreno, Ivo; da Fonseca, Beatriz; Queiroz, João António; Gallardo, Eugenia
2012-07-01
The last two decades have provided analysts with more sensitive technology, enabling scientists from all analytical fields to see what they were not able to see just a few years ago. This increased sensitivity has allowed drug detection at very low concentrations and testing in unconventional samples (e.g., hair, oral fluid and sweat), where despite having low analyte concentrations has also led to a reduction in sample size. Along with this reduction, and as a result of the use of excessive amounts of potentially toxic organic solvents (with the subsequent environmental pollution and costs associated with their proper disposal), there has been a growing tendency to use miniaturized sampling techniques. Those sampling procedures allow reducing organic solvent consumption to a minimum and at the same time provide a rapid, simple and cost-effective approach. In addition, it is possible to get at least some degree of automation when using these techniques, which will enhance sample throughput. Those miniaturized sample preparation techniques may be roughly categorized in solid-phase and liquid-phase microextraction, depending on the nature of the analyte. This paper reviews recently published literature on the use of microextraction sampling procedures, with a special focus on the field of forensic toxicology.