Sample records for phase mixture rule

  1. Evaluation of the grand-canonical partition function using expanded Wang-Landau simulations. III. Impact of combining rules on mixtures properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desgranges, Caroline; Delhommelle, Jerome

    2014-03-14

    Combining rules, such as the Lorentz-Berthelot rules, are routinely used to calculate the thermodynamic properties of mixtures using molecular simulations. Here we extend the expanded Wang-Landau simulation approach to determine the impact of the combining rules on the value of the partition function of binary systems, and, in turn, on the phase coexistence and thermodynamics of these mixtures. We study various types of mixtures, ranging from systems of rare gases to biologically and technologically relevant mixtures, such as water-urea and water-carbon dioxide. Comparing the simulation results to the experimental data on mixtures of rare gases allows us to rank themore » performance of combining rules. We find that the widely used Lorentz-Berthelot rules exhibit the largest deviations from the experimental data, both for the bulk and at coexistence, while the Kong and Waldman-Hagler provide much better alternatives. In particular, in the case of aqueous solutions of urea, we show that the use of the Lorentz-Berthelot rules has a strong impact on the Gibbs free energy of the solute, overshooting the value predicted by the Waldman-Hagler rules by 7%. This result emphasizes the importance of the combining rule for the determination of hydration free energies using molecular simulations.« less

  2. Molecular Dynamics Evaluation of Dielectric-Constant Mixing Rules for H2O-CO2 at Geologic Conditions

    PubMed Central

    Mountain, Raymond D.; Harvey, Allan H.

    2015-01-01

    Modeling of mineral reaction equilibria and aqueous-phase speciation of C-O-H fluids requires the dielectric constant of the fluid mixture, which is not known from experiment and is typically estimated by some rule for mixing pure-component values. In order to evaluate different proposed mixing rules, we use molecular dynamics simulation to calculate the dielectric constant of a model H2O–CO2 mixture at temperatures of 700 K and 1000 K at pressures up to 3 GPa. We find that theoretically based mixing rules that depend on combining the molar polarizations of the pure fluids systematically overestimate the dielectric constant of the mixture, as would be expected for mixtures of nonpolar and strongly polar components. The commonly used semiempirical mixing rule due to Looyenga works well for this system at the lower pressures studied, but somewhat underestimates the dielectric constant at higher pressures and densities, especially at the water-rich end of the composition range. PMID:26664009

  3. Molecular Dynamics Evaluation of Dielectric-Constant Mixing Rules for H2O-CO2 at Geologic Conditions.

    PubMed

    Mountain, Raymond D; Harvey, Allan H

    2015-10-01

    Modeling of mineral reaction equilibria and aqueous-phase speciation of C-O-H fluids requires the dielectric constant of the fluid mixture, which is not known from experiment and is typically estimated by some rule for mixing pure-component values. In order to evaluate different proposed mixing rules, we use molecular dynamics simulation to calculate the dielectric constant of a model H 2 O-CO 2 mixture at temperatures of 700 K and 1000 K at pressures up to 3 GPa. We find that theoretically based mixing rules that depend on combining the molar polarizations of the pure fluids systematically overestimate the dielectric constant of the mixture, as would be expected for mixtures of nonpolar and strongly polar components. The commonly used semiempirical mixing rule due to Looyenga works well for this system at the lower pressures studied, but somewhat underestimates the dielectric constant at higher pressures and densities, especially at the water-rich end of the composition range.

  4. Thermodynamics and structural transition of binary atomic Bose-Fermi mixtures in box or harmonic potentials: A path-integral study

    NASA Astrophysics Data System (ADS)

    Kim, Tom; Chien, Chih-Chun

    2018-03-01

    Experimental realizations of a variety of atomic binary Bose-Fermi mixtures have brought opportunities for studying composite quantum systems with different spin statistics. The binary atomic mixtures can exhibit a structural transition from a mixture into phase separation as the boson-fermion interaction increases. By using a path-integral formalism to evaluate the grand partition function and the thermodynamic grand potential, we obtain the effective potential of binary Bose-Fermi mixtures. Thermodynamic quantities in a broad range of temperatures and interactions are also derived. The structural transition can be identified as a loop of the effective potential curve, and the volume fraction of phase separation can be determined by the lever rule. For 6Li-7Li and 6Li-41K mixtures, we present the phase diagrams of the mixtures in a box potential at zero and finite temperatures. Due to the flexible densities of atomic gases, the construction of phase separation is more complicated when compared to conventional liquid or solid mixtures where the individual densities are fixed. For harmonically trapped mixtures, we use the local density approximation to map out the finite-temperature density profiles and present typical trap structures, including the mixture, partially separated phases, and fully separated phases.

  5. The amorphous state: first-principles derivation of the Gordon-Taylor equation for direct prediction of the glass transition temperature of mixtures; estimation of the crossover temperature of fragile glass formers; physical basis of the "Rule of 2/3".

    PubMed

    Skrdla, Peter J; Floyd, Philip D; Dell'Orco, Philip C

    2017-08-09

    Predicting the glass transition temperature (T g ) of mixtures has applications that span across industries and scientific disciplines. By plotting experimentally determined T g values as a function of the glass composition, one can usually apply the Gordon-Taylor (G-T) equation to determine the slope, k, which subsequently can be used in T g predictions. Traditionally viewed as a phenomenological/empirical model, this work proposes a physical basis for the G-T equation. The proposed equations allow for the calculation of k directly and, hence, they determine/predict the T g values of mixtures algebraically. Two derivations for k are provided, one for strong glass-formers and the other for fragile mixtures, with the modeled trehalose-water and naproxen-indomethacin systems serving as examples of each. Separately, a new equation is described for the first time that allows for the direct determination of the crossover temperature, T x , for fragile glass-formers. Lastly, the so-called "Rule of 2/3", which is commonly used to estimate the T g of a pure amorphous phase based solely on the fusion/melting temperature, T f , of the corresponding crystalline phase, is shown to be underpinned by the heat capacity ratio of the two phases referenced to a common temperature, as evidenced by the calculations put forth for indomethacin and felodipine.

  6. State relations for a two-phase mixture of reacting explosives and applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubota, Shiro; Saburi, Tei; Ogata, Yuji

    2007-10-15

    To assess the assumptions behind the two phase mixture rule for reacting explosives, the shock-to-detonation transition process was calculated for high explosives using a finite difference method. An ignition and growth model and the Jones-Wilkins-Lee (JWL) equations of state were employed. The simple mixture rule assumes that the reacting explosive is a simple mixture of the reactant and product components. Four different assumptions, such as that of thermal equilibrium and isotropy, were adopted to calculate the pressure. The main purpose of this paper is to present the answer to the question of why the numerical results of shock-initiation are insensitivemore » to the assumptions adopted. The equations of state for reactants and products were assessed by considering plots of the specific internal energy E and specific volume V. If the slopes of the constant-pressure lines for both components in the E-V plane are almost the same, it is demonstrated that the numerical results are insensitive to the assumptions adopted. We have found that the relation for the specific volumes of the two components can be approximately expressed by a single curve of the specific volume of the reactant vs that of the products. We discuss this relationship in terms of the results of the numerical simulation. (author)« less

  7. A Simplified Micromechanical Modeling Approach to Predict the Tensile Flow Curve Behavior of Dual-Phase Steels

    NASA Astrophysics Data System (ADS)

    Nanda, Tarun; Kumar, B. Ravi; Singh, Vishal

    2017-11-01

    Micromechanical modeling is used to predict material's tensile flow curve behavior based on microstructural characteristics. This research develops a simplified micromechanical modeling approach for predicting flow curve behavior of dual-phase steels. The existing literature reports on two broad approaches for determining tensile flow curve of these steels. The modeling approach developed in this work attempts to overcome specific limitations of the existing two approaches. This approach combines dislocation-based strain-hardening method with rule of mixtures. In the first step of modeling, `dislocation-based strain-hardening method' was employed to predict tensile behavior of individual phases of ferrite and martensite. In the second step, the individual flow curves were combined using `rule of mixtures,' to obtain the composite dual-phase flow behavior. To check accuracy of proposed model, four distinct dual-phase microstructures comprising of different ferrite grain size, martensite fraction, and carbon content in martensite were processed by annealing experiments. The true stress-strain curves for various microstructures were predicted with the newly developed micromechanical model. The results of micromechanical model matched closely with those of actual tensile tests. Thus, this micromechanical modeling approach can be used to predict and optimize the tensile flow behavior of dual-phase steels.

  8. New views of granular mass flows

    USGS Publications Warehouse

    Iverson, R.M.; Vallance, J.W.

    2001-01-01

    Concentrated grain-fluid mixtures in rock avalanches, debris flows, and pyroclastic flows do not behave as simple materials with fixed rheologies. Instead, rheology evolves as mixture agitation, grain concentration, and fluid-pressure change during flow initiation, transit, and deposition. Throughout a flow, however, normal forces on planes parallel to the free upper surface approximately balance the weight of the superincumbent mixture, and the Coulomb friction rule describes bulk intergranular shear stresses on such planes. Pore-fluid pressure can temporarily or locally enhance mixture mobility by reducing Coulomb friction and transferring shear stress to the fluid phase. Initial conditions, boundary conditions, and grain comminution and sorting can influence pore-fluid pressures and cause variations in flow dynamics and deposits.

  9. Heuristic rule for binary superlattice coassembly: mixed plastic mesophases of hard polyhedral nanoparticles.

    PubMed

    Khadilkar, Mihir R; Escobedo, Fernando A

    2014-10-17

    Sought-after ordered structures of mixtures of hard anisotropic nanoparticles can often be thermodynamically unfavorable due to the components' geometric incompatibility to densely pack into regular lattices. A simple compatibilization rule is identified wherein the particle sizes are chosen such that the order-disorder transition pressures of the pure components match (and the entropies of the ordered phases are similar). Using this rule with representative polyhedra from the truncated-cube family that form pure-component plastic crystals, Monte Carlo simulations show the formation of plastic-solid solutions for all compositions and for a wide range of volume fractions.

  10. Elimination of exemptions for chemical mixtures containing the list I chemicals ephedrine and/or pseudoephedrine. Final rule.

    PubMed

    2008-07-10

    The Drug Enforcement Administration (DEA) is finalizing, without change, the Interim Rule with Request for Comment published in the Federal Register on July 25, 2007 (72 FR 40738). The Interim Rule removed the Controlled Substances Act (CSA) exemptions for chemical mixtures containing ephedrine and/or pseudoephedrine with concentration limits at or below five percent. Upon the effective date of the Interim Rule, all ephedrine and pseudoephedrine chemical mixtures, regardless of concentration and form, became subject to the regulatory provisions of the CSA. DEA regulated the importation, exportation, manufacture, and distribution of these chemical mixtures by requiring persons who handle these chemical mixtures to register with DEA, maintain certain records common to business practice, and file certain reports, regarding these chemical mixtures. No comments to the Interim Rule were received. This Final Rule finalizes the Interim Rule without change.

  11. Modeling the phase behavior of H2S+n-alkane binary mixtures using the SAFT-VR+D approach.

    PubMed

    dos Ramos, M Carolina; Goff, Kimberly D; Zhao, Honggang; McCabe, Clare

    2008-08-07

    A statistical associating fluid theory for potential of variable range has been recently developed to model dipolar fluids (SAFT-VR+D) [Zhao and McCabe, J. Chem. Phys. 2006, 125, 104504]. The SAFT-VR+D equation explicitly accounts for dipolar interactions and their effect on the thermodynamics and structure of a fluid by using the generalized mean spherical approximation (GMSA) to describe a reference fluid of dipolar square-well segments. In this work, we apply the SAFT-VR+D approach to real mixtures of dipolar fluids. In particular, we examine the high-pressure phase diagram of hydrogen sulfide+n-alkane binary mixtures. Hydrogen sulfide is modeled as an associating spherical molecule with four off-center sites to mimic hydrogen bonding and an embedded dipole moment (micro) to describe the polarity of H2S. The n-alkane molecules are modeled as spherical segments tangentially bonded together to form chains of length m, as in the original SAFT-VR approach. By using simple Lorentz-Berthelot combining rules, the theoretical predictions from the SAFT-VR+D equation are found to be in excellent overall agreement with experimental data. In particular, the theory is able to accurately describe the different types of phase behavior observed for these mixtures as the molecular weight of the alkane is varied: type III phase behavior, according to the scheme of classification by Scott and Konynenburg, for the H2S+methane system, type IIA (with the presence of azeotropy) for the H2S+ethane and+propane mixtures; and type I phase behavior for mixtures of H2S and longer n-alkanes up to n-decane. The theory is also able to predict in a qualitative manner the solubility of hydrogen sulfide in heavy n-alkanes.

  12. Investigation of Ternary Mixtures Containing 1-Ethyl-3-methylimidazolium Bis(trifluoromethanesulfonyl)azanide, Ethylene Carbonate and Lithium Bis(trifluoromethanesulfonyl)azanide

    PubMed Central

    Hofmann, Andreas; Migeot, Matthias; Arens, Lukas; Hanemann, Thomas

    2016-01-01

    Temperature-dependent viscosity, conductivity and density data of ternary mixtures containing 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)azanide (EMIM-TFSA), ethylene carbonate (EC), and lithium bis(trifluoromethanesulfonyl)azanide (Li-TFSA) were determined at atmospheric pressure in the temperature range of 20 to 80 °C. Differential scanning calorimetry (DSC) measurements were performed to characterize phase conditions of the mixtures in a temperature range of −120 to +100 °C. The viscosity data were fitted according to the Vogel-Fulcher-Tammann-Hesse (VFTH) equation and analyzed with the help of the fractional Walden rule. In this study, fundamental physicochemical data about the mixtures are provided and discussed as a basis for structure-property relationship calculations and for potential use of those mixtures as electrolytes for various applications. PMID:27153066

  13. Phase selection during crystallization of undercooled liquid eutectic lead-tin alloys

    NASA Technical Reports Server (NTRS)

    Fecht, H. J.

    1991-01-01

    During rapid solidification substantial amounts of undercooling are in general required for formation of metastable phases. Crystallization at varying levels of undercooling and melting of metastable phases were studied during slow cooling and heating of emulsified PB-Sn alloys. Besides the experimental demonstration of the reversibility of metastable phase equilibra, two different principal solidification paths have been identified and compared with the established metastable phase diagram and predictions from classical nucleation theory. The results suggest that the most probable solidification path is described by the 'step rule' resulting in the formation of metastable phases at low undercooling, whereas the stable eutectic phase mixture crystallizes without metastable phase formation at high undercooling.

  14. A Variational Statistical-Field Theory for Polar Liquid Mixtures

    NASA Astrophysics Data System (ADS)

    Zhuang, Bilin; Wang, Zhen-Gang

    Using a variational field-theoretic approach, we derive a molecularly-based theory for polar liquid mixtures. The resulting theory consists of simple algebraic expressions for the free energy of mixing and the dielectric constant as functions of mixture composition. Using only the dielectric constants and the molar volumes of the pure liquid constituents, the theory evaluates the mixture dielectric constants in good agreement with the experimental values for a wide range of liquid mixtures, without using adjustable parameters. In addition, the theory predicts that liquids with similar dielectric constants and molar volumes dissolve well in each other, while sufficient disparity in these parameters result in phase separation. The calculated miscibility map on the dielectric constant-molar volume axes agrees well with known experimental observations for a large number of liquid pairs. Thus the theory provides a quantification for the well-known empirical ``like-dissolves-like'' rule. Bz acknowledges the A-STAR fellowship for the financial support.

  15. A dislocation-based, strain–gradient–plasticity strengthening model for deformation processed metal–metal composites

    DOE PAGES

    Tian, Liang; Russell, Alan; Anderson, Iver

    2014-01-03

    Deformation processed metal–metal composites (DMMCs) are high-strength, high-electrical conductivity composites developed by severe plastic deformation of two ductile metal phases. The extraordinarily high strength of DMMCs is underestimated using the rule of mixture (or volumetric weighted average) of conventionally work-hardened metals. A dislocation-density-based, strain–gradient–plasticity model is proposed to relate the strain-gradient effect with the geometrically necessary dislocations emanating from the interface to better predict the strength of DMMCs. The model prediction was compared with our experimental findings of Cu–Nb, Cu–Ta, and Al–Ti DMMC systems to verify the applicability of the new model. The results show that this model predicts themore » strength of DMMCs better than the rule-of-mixture model. The strain-gradient effect, responsible for the exceptionally high strength of heavily cold worked DMMCs, is dominant at large deformation strain since its characteristic microstructure length is comparable with the intrinsic material length.« less

  16. Piezoelectric and pyroelectric properties of PZT/P(VDF-TrFE) composites with constituent phases poled in parallel or antiparallel directions.

    PubMed

    Ng, K L; Chan, H L; Choy, C L

    2000-01-01

    Composites of lead zirconate titanate (PZT) powder dispersed in a vinylidene fluoride-trifluoroethylene copolymer [P(VDF-TrFE)] matrix have been prepared by compression molding. Three groups of polarized samples have been prepared by poling: only the ceramic phase, the ceramic and polymer phases in parallel directions, and the two phases in antiparallel directions. The measured permittivities of the unpoled composites are consistent with the predictions of the Bruggeman model. The changes in the pyroelectric and piezoelectric coefficients of the poled composites with increasing ceramic volume fraction can be described by modified linear mixture rules. When the ceramic and copolymer phases are poled in the same direction, their pyroelectric activities reinforce while their piezoelectric activities partially cancel. However, when the ceramic and copolymer phases are poled in opposite directions, their piezoelectric activities reinforce while their pyroelectric activities partially cancel.

  17. Modification of Gaussian mixture models for data classification in high energy physics

    NASA Astrophysics Data System (ADS)

    Štěpánek, Michal; Franc, Jiří; Kůs, Václav

    2015-01-01

    In high energy physics, we deal with demanding task of signal separation from background. The Model Based Clustering method involves the estimation of distribution mixture parameters via the Expectation-Maximization algorithm in the training phase and application of Bayes' rule in the testing phase. Modifications of the algorithm such as weighting, missing data processing, and overtraining avoidance will be discussed. Due to the strong dependence of the algorithm on initialization, genetic optimization techniques such as mutation, elitism, parasitism, and the rank selection of individuals will be mentioned. Data pre-processing plays a significant role for the subsequent combination of final discriminants in order to improve signal separation efficiency. Moreover, the results of the top quark separation from the Tevatron collider will be compared with those of standard multivariate techniques in high energy physics. Results from this study has been used in the measurement of the inclusive top pair production cross section employing DØ Tevatron full Runll data (9.7 fb-1).

  18. A Bayesian Hybrid Adaptive Randomisation Design for Clinical Trials with Survival Outcomes.

    PubMed

    Moatti, M; Chevret, S; Zohar, S; Rosenberger, W F

    2016-01-01

    Response-adaptive randomisation designs have been proposed to improve the efficiency of phase III randomised clinical trials and improve the outcomes of the clinical trial population. In the setting of failure time outcomes, Zhang and Rosenberger (2007) developed a response-adaptive randomisation approach that targets an optimal allocation, based on a fixed sample size. The aim of this research is to propose a response-adaptive randomisation procedure for survival trials with an interim monitoring plan, based on the following optimal criterion: for fixed variance of the estimated log hazard ratio, what allocation minimizes the expected hazard of failure? We demonstrate the utility of the design by redesigning a clinical trial on multiple myeloma. To handle continuous monitoring of data, we propose a Bayesian response-adaptive randomisation procedure, where the log hazard ratio is the effect measure of interest. Combining the prior with the normal likelihood, the mean posterior estimate of the log hazard ratio allows derivation of the optimal target allocation. We perform a simulation study to assess and compare the performance of this proposed Bayesian hybrid adaptive design to those of fixed, sequential or adaptive - either frequentist or fully Bayesian - designs. Non informative normal priors of the log hazard ratio were used, as well as mixture of enthusiastic and skeptical priors. Stopping rules based on the posterior distribution of the log hazard ratio were computed. The method is then illustrated by redesigning a phase III randomised clinical trial of chemotherapy in patients with multiple myeloma, with mixture of normal priors elicited from experts. As expected, there was a reduction in the proportion of observed deaths in the adaptive vs. non-adaptive designs; this reduction was maximized using a Bayes mixture prior, with no clear-cut improvement by using a fully Bayesian procedure. The use of stopping rules allows a slight decrease in the observed proportion of deaths under the alternate hypothesis compared with the adaptive designs with no stopping rules. Such Bayesian hybrid adaptive survival trials may be promising alternatives to traditional designs, reducing the duration of survival trials, as well as optimizing the ethical concerns for patients enrolled in the trial.

  19. Phase equilibria of CFC alternative refrigerant mixtures: Binary systems of isobutane + 1,1,1,2-tetrafluoroethane, + 1,1-difluoroethane, and + difluoromethane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, J.S.; Park, J.Y.; Lee, B.G.

    1999-12-01

    Isothermal vapor-liquid equilibria were measured in the binary systems 1,1,1,2-tetrafluoroethane + isobutane at 303.2 and 323.2 K, 1,1-difluoroethane + isobutane at 303.2, 313.2, 323.2, and 333.2 K, and difluoromethane + isobutane at 301.8 and 321.8 K in a circulation-type equilibrium apparatus. The experimental data were well correlated with the Peng-Robinson equation of state using the Wong and Sandler mixing rules.

  20. Load partitioning in Ai{sub 2}0{sub 3-}Al composites with three- dimensional periodic architecture.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, M. L.; Rao, R.; Almer, J. D.

    2009-05-01

    Interpenetrating composites are created by infiltration of liquid aluminum into three-dimensional (3-D) periodic Al{sub 2}O{sub 3} preforms with simple tetragonal symmetry produced by direct-write assembly. Volume-averaged lattice strains in the Al{sub 2}O{sub 3} phase of the composite are measured by synchrotron X-ray diffraction for various uniaxial compression stresses up to -350MPa. Load transfer, found by diffraction to occur from the metal phase to the ceramic phase, is in general agreement with simple rule-of-mixture models and in better agreement with more complex, 3-D finite-element models that account for metal plasticity and details of the geometry of both phases. Spatially resolved diffractionmore » measurements show variations in load transfer at two different positions within the composite.« less

  1. On thermal conductivity of gas mixtures containing hydrogen

    NASA Astrophysics Data System (ADS)

    Zhukov, Victor P.; Pätz, Markus

    2017-06-01

    A brief review of formulas used for the thermal conductivity of gas mixtures in CFD simulations of rocket combustion chambers is carried out in the present work. In most cases, the transport properties of mixtures are calculated from the properties of individual components using special mixing rules. The analysis of different mixing rules starts from basic equations and ends by very complex semi-empirical expressions. The formulas for the thermal conductivity are taken for the analysis from the works on modelling of rocket combustion chambers. \\hbox {H}_2{-}\\hbox {O}_2 mixtures are chosen for the evaluation of the accuracy of the considered mixing rules. The analysis shows that two of them, of Mathur et al. (Mol Phys 12(6):569-579, 1967), and of Mason and Saxena (Phys Fluids 1(5):361-369, 1958), have better agreement with the experimental data than other equations for the thermal conductivity of multicomponent gas mixtures.

  2. Critical point and phase behavior of the pure fluid and a Lennard-Jones mixture

    NASA Astrophysics Data System (ADS)

    Potoff, Jeffrey J.; Panagiotopoulos, Athanassios Z.

    1998-12-01

    Monte Carlo simulations in the grand canonical ensemble were used to obtain liquid-vapor coexistence curves and critical points of the pure fluid and a binary mixture of Lennard-Jones particles. Critical parameters were obtained from mixed-field finite-size scaling analysis and subcritical coexistence data from histogram reweighting methods. The critical parameters of the untruncated Lennard-Jones potential were obtained as Tc*=1.3120±0.0007, ρc*=0.316±0.001 and pc*=0.1279±0.0006. Our results for the critical temperature and pressure are not in agreement with the recent study of Caillol [J. Chem. Phys. 109, 4885 (1998)] on a four-dimensional hypersphere. Mixture parameters were ɛ1=2ɛ2 and σ1=σ2, with Lorentz-Berthelot combining rules for the unlike-pair interactions. We determined the critical point at T*=1.0 and pressure-composition diagrams at three temperatures. Our results have much smaller statistical uncertainties relative to comparable Gibbs ensemble simulations.

  3. Experimental validation of thermodynamic mixture rules at extreme pressures and densities

    NASA Astrophysics Data System (ADS)

    Bradley, P. A.; Loomis, E. N.; Merritt, E. C.; Guzik, J. A.; Denne, P. H.; Clark, T. T.

    2018-01-01

    Accurate modeling of a mixed material Equation of State (EOS) at high pressures (˜1 to 100 Mbar) is critical for simulating inertial confinement fusion and high energy density systems. This paper presents a comparison of two mixing rule models to the experiment to assess their applicability in this regime. The shock velocities of polystyrene, aluminum, and nickel aluminide (NiAl) were measured at a shock pressure of ˜3 TPa (˜30 Mbar) on the Omega EP laser facility (Laboratory for Laser Energetics, University of Rochester, New York). The resultant shock velocities were compared to those derived from the RAGE (Eulerian) hydrodynamics code to validate various mixing rules used to construct an EOS for NiAl. The simulated shock transit time through the sample (Al or NiAl) matched the measurements to within the ±45ps measurement uncertainty. The law of partial volume (Amagat) and the law of partial pressure (Dalton) mixture rules provided equally good matches to the NiAl shock data. Other studies showed that the Amagat mixing rule is superior, and we recommend it since our results also show a satisfactory match. The comparable quality of the simulation to data for the Al and NiAl samples implies that a mixture rule can supply an EOS for plasma mixtures with adequate fidelity for simulations where mixing takes place, such as advective mix in an Eulerian code or when two materials are mixed together via diffusion, turbulence, or other physical processes.

  4. Experimental validation of thermodynamic mixture rules at extreme pressures and densities

    DOE PAGES

    Bradley, Paul Andrew; Loomis, Eric Nicholas; Merritt, Elizabeth Catherine; ...

    2018-01-19

    Accurate modeling of a mixed material Equation of State (EOS) at high pressures (~1 to 100 Mbar) is critical for simulating inertial confinement fusion and high energy density systems. Here, this paper presents a comparison of two mixing rule models to the experiment to assess their applicability in this regime. The shock velocities of polystyrene, aluminum, and nickel aluminide (NiAl) were measured at a shock pressure of ~3 TPa (~30 Mbar) on the Omega EP laser facility (Laboratory for Laser Energetics, University of Rochester, New York). The resultant shock velocities were compared to those derived from the RAGE (Eulerian) hydrodynamicsmore » code to validate various mixing rules used to construct an EOS for NiAl. The simulated shock transit time through the sample (Al or NiAl) matched the measurements to within the ±45ps measurement uncertainty. The law of partial volume (Amagat) and the law of partial pressure (Dalton) mixture rules provided equally good matches to the NiAl shock data. Other studies showed that the Amagat mixing rule is superior, and we recommend it since our results also show a satisfactory match. In conclusion, the comparable quality of the simulation to data for the Al and NiAl samples implies that a mixture rule can supply an EOS for plasma mixtures with adequate fidelity for simulations where mixing takes place, such as advective mix in an Eulerian code or when two materials are mixed together via diffusion, turbulence, or other physical processes.« less

  5. Microstructure and Properties of Fe3Al-Fe3AlC x Composite Prepared by Reactive Liquid Processing

    NASA Astrophysics Data System (ADS)

    Verona, Maria Nalu; Setti, Dalmarino; Paredes, Ramón Sigifredo Cortés

    2018-04-01

    A Fe3Al-Fe3AlC x composite was prepared using reactive liquid processing (RLP) through controlled mixture of carbon steel and aluminum in the liquid state. The microstructure and phases of the composite were assessed using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, optical microscopy, and differential scanning calorimetry. In addition, the density, hardness, microhardness, and elastic modulus were evaluated. The Fe3Al-Fe3AlC x composite consisted of 65 vol pct Fe3Al and 35 vol pct Fe3AlC x ( κ). The κ phase contained 10.62 at. pct C, resulting in the stoichiometry Fe3AlC0.475. The elastic modulus of the Fe3Al-Fe3AlC0.475 composite followed the rule of mixtures. The RLP technique was shown to be capable of producing Fe3Al-Fe3AlC0.475 with a microstructure and properties similar to those achieved using other processing techniques reported in the literature.

  6. EPA releases hold on reformulated gas and CFC regulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Begley, R.; Kirschner, E.

    1993-02-03

    The Environmental Protection Agency has released the White House-instituted hold and review on the Bush Administration's last-minute rules and proposals. Of the 32 actions, EPA administrator Carol Browner has held back only one, which proposed a fee system for discharges to water. Any changes in the future were deemed to best be considered either in the comment period for proposals or with new proposed addendums for final rules, said Browner. Although a proposal concerning standards for reformulated gasoline was approved for publication, Browner emphasizes that the EPA can modify or drop provisions for ethanol mixtures and remains committed to negotiatedmore » rulemaking procedures. The proposed rule includes measures - set out by Bush last October - to grant ethanol a waiver from gasoline vapor pressure limits, resulting in a 30% market share for northern cities in violation of ozone limits. Ethanol could take a 20% share in southern cities. Under the ethanol waiver, refiners would have to offset the increased emissions from ethanol at a cost of at least $250 million, according to the American Petroleum Institute, API, state air pollution regulators, and environmentalists say the proposal violates a regulatory negotiation. Regarding the one-week delay, API says, The lengthy rule-making process already has drastically reduced the lead time available to refiners, who must begin selling this fuel on January 1, 1995'. Also released is the ozone-depleter phase-out proposal. In addition to chlorofluorocarbons, the Bush EPA slated methyl bromide for phase-outby the year 2000.« less

  7. On the hardness of high carbon ferrous martensite

    NASA Astrophysics Data System (ADS)

    Mola, J.; Ren, M.

    2018-06-01

    Due to the presence of retained austenite in martensitic steels, especially steels with high carbon concentrations, it is difficult to estimate the hardness of martensite independent of the hardness of the coexisting austenite. In the present work, the hardness of ferrous martensite with carbon concentrations in the range 0.23-1.46 mass-% was estimated by the regression analysis of hardnesses for hardened martensitic-austenitic steels containing various martensite fractions. For a given carbon concentration, the hardness of martensitic-austenitic steels was found to increase exponentially with an increase in the fraction of the martensitic constituent. The hardness of the martensitic constituent was subsequently estimated by the exponential extrapolation of the hardness of phase mixtures to 100 vol.% martensite. For martensite containing 1.46 mass-% carbon, the hardness was estimated to be 1791 HV. This estimate of martensite hardness is significantly higher than the experimental hardness of 822 HV for a phase mixture of 68 vol.% martensite and 32 vol.% austenite. The hardness obtained by exponential extrapolation is also much higher than the hardness of 1104 HV based on the rule of mixtures. The underestimated hardness of high carbon martensite in the presence of austenite is due to the non-linear dependence of hardness on the martensite fraction. The latter is also a common observation in composite materials with a soft matrix and hard reinforcing particles.

  8. Superfluid and Insulating Phases of Fermion Mixtures in Optical Lattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iskin, M.; Sa de Melo, C. A. R.

    2007-08-24

    The ground state phase diagram of fermion mixtures in optical lattices is analyzed as a function of interaction strength, fermion filling factor, and tunneling parameters. In addition to standard superfluid, phase-separated or coexisting superfluid-excess-fermion phases found in homogeneous or harmonically trapped systems, fermions in optical lattices have several insulating phases, including a molecular Bose-Mott insulator (BMI), a Fermi-Pauli (band) insulator (FPI), a phase-separated BMI-FPI mixture or a Bose-Fermi checkerboard (BFC). The molecular BMI phase is the fermion mixture counterpart of the atomic BMI found in atomic Bose systems, the BFC or BMI-FPI phases exist in Bose-Fermi mixtures, and lastly themore » FPI phase is particular to the Fermi nature of the constituent atoms of the mixture.« less

  9. Strengthening behavior of chopped multi-walled carbon nanotube reinforced aluminum matrix composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, S.E.; Bae, D.H., E-mail: donghyun@yonsei.ac.kr

    2013-09-15

    Strengthening behavior of the aluminum composites reinforced with chopped multi-walled carbon nanotubes (MWCNTs) or aluminum carbide formed during annealing at 500 °C has been investigated. The composites were fabricated by hot-rolling the powders which were ball-milled under various conditions. During the early annealing process, aluminum atoms can cluster inside the tube due to the diffusional flow of aluminum atoms into the tube, providing an increase of the strength of the composite. Further annealing induces the formation of the aluminum carbide phase, leading to an overall drop in the strength of the composites. While the strength of the composites can bemore » evaluated according to the rule of mixture, a particle spacing effect can be additionally imparted on the strength of the composites reinforced with the chopped MWCNTs or the corresponding carbides since the reinforcing agents are smaller than the submicron matrix grains. - Highlights: • Strengthening behavior of chopped CNT reinforced Al-based composites is investigated. • Chopped CNTs have influenced the strength and microstructures of the composites. • Chopped CNTs are created under Ar- 3% H2 atmosphere during mechanical milling. • Strength can be evaluated by the rule of the mixture and a particle spacing effect.« less

  10. Experimental study on thermal storage performance of binary mixtures of fatty acids

    NASA Astrophysics Data System (ADS)

    Yan, Quanying; Zhang, Jing; Liu, Chao; Liu, Sha; Sun, Xiangyu

    2018-02-01

    We selected five kinds of fatty acids including the capric acid, stearic acid, lauric acid, palmitic acid and myristic acid and mixed them to prepare10 kinds of binary mixtures of fatty acids according to the predetermined proportion,tested the phase change temperature and latent heat of mixtures by differential scanning calorimetry(DSC). In order to find the fatty acid mixture which has suitable phase change temperature, the larger phase change latent heat and can be used for phase change wall. The results showed that the phase change temperature and latent heats of the binary mixtures of fatty acids decreased compared with the single component;The phase change temperature of the binary mixtures of fatty acids containing capric acid were lower, the range was roughly 20∼30°C,and latent heat is large,which are ideal phase change materials for phase change wall energy storage;The phase change temperature of the binary mixtures consisting of other fatty acids were still high,didn’t meet the temperature requirements of the wall energy storage.

  11. Discovery of a Superconducting High-Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Koželj, P.; Vrtnik, S.; Jelen, A.; Jazbec, S.; Jagličić, Z.; Maiti, S.; Feuerbacher, M.; Steurer, W.; Dolinšek, J.

    2014-09-01

    High-entropy alloys (HEAs) are multicomponent mixtures of elements in similar concentrations, where the high entropy of mixing can stabilize disordered solid-solution phases with simple structures like a body-centered cubic or a face-centered cubic, in competition with ordered crystalline intermetallic phases. We have synthesized an HEA with the composition Ta34Nb33Hf8Zr14Ti11 (in at. %), which possesses an average body-centered cubic structure of lattice parameter a =3.36 Å. The measurements of the electrical resistivity, the magnetization and magnetic susceptibility, and the specific heat revealed that the Ta34Nb33Hf8Zr14Ti11 HEA is a type II superconductor with a transition temperature Tc≈7.3 K, an upper critical field μ0Hc2≈8.2 T, a lower critical field μ0Hc1≈32 mT, and an energy gap in the electronic density of states (DOS) at the Fermi level of 2Δ ≈2.2 meV. The investigated HEA is close to a BCS-type phonon-mediated superconductor in the weak electron-phonon coupling limit, classifying it as a "dirty" superconductor. We show that the lattice degrees of freedom obey Vegard's rule of mixtures, indicating completely random mixing of the elements on the HEA lattice, whereas the electronic degrees of freedom do not obey this rule even approximately so that the electronic properties of a HEA are not a "cocktail" of properties of the constituent elements. The formation of a superconducting gap contributes to the electronic stabilization of the HEA state at low temperatures, where the entropic stabilization is ineffective, but the electronic energy gain due to the superconducting transition is too small for the global stabilization of the disordered state, which remains metastable.

  12. The Effect of Cu:Ag Atomic Ratio on the Properties of Sputtered Cu–Ag Alloy Thin Films

    PubMed Central

    Hsieh, Janghsing; Hung, Shunyang

    2016-01-01

    Cu–Ag thin films with various atomic ratios were prepared using a co-sputtering technique, followed by rapid thermal annealing at various temperatures. The films’ structural, mechanical, and electrical properties were then characterized using X-ray diffractometry (XRD), atomic force microscopy (AFM), FESEM, nano-indentation, and TEM as functions of compositions and annealing conditions. In the as-deposited condition, the structure of these films transformed from a one-phase to a dual-phase state, and the resistivity shows a twin-peak pattern, which can be explained in part by Nordheim’s Rule and the miscibility gap of Cu–Ag alloy. After being annealed, the films’ resistivity followed the mixture rule in general, mainly due to the formation of a dual-phase structure containing Ag-rich and Cu-rich phases. The surface morphology and structure also varied as compositions and annealing conditions changed. The recrystallization of these films varied depending on Ag–Cu compositions. The annealed films composed of 40 at % to 60 at % Cu had higher hardness and lower roughness than those with other compositions. Particularly, the Cu50Ag50 film had the highest hardness after being annealed. From the dissolution testing, it was found that the Cu-ion concentration was about 40 times higher than that of Ag. The galvanic effect and over-saturated state could be the cause of the accelerated Cu dissolution and the reduced dissolution of the Ag. PMID:28774033

  13. Numerical Simulation of the Detonation of Condensed Explosives

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Ye, Ting; Ning, Jianguo

    Detonation process of a condensed explosive was simulated using a finite difference method. Euler equations were applied to describe the detonation flow field, an ignition and growth model for the chemical reaction and Jones-Wilkins-Lee (JWL) equations of state for the state of explosives and detonation products. Based on the simple mixture rule that assumes the reacting explosives to be a mixture of the reactant and product components, 1D and 2D codes were developed to simulate the detonation process of high explosive PBX9404. The numerical results are in good agreement with the experimental results, which demonstrates that the finite difference method, mixture rule and chemical reaction proposed in this paper are adequate and feasible.

  14. Induced smectic phase in binary mixtures of twist-bend nematogens.

    PubMed

    Knežević, Anamarija; Dokli, Irena; Sapunar, Marin; Šegota, Suzana; Baumeister, Ute; Lesac, Andreja

    2018-01-01

    The investigation of liquid crystal (LC) mixtures is of great interest in tailoring material properties for specific applications. The recent discovery of the twist-bend nematic phase (N TB ) has sparked great interest in the scientific community, not only from a fundamental viewpoint, but also due to its potential for innovative applications. Here we report on the unexpected phase behaviour of a binary mixture of twist-bend nematogens. A binary phase diagram for mixtures of imino-linked cyanobiphenyl (CBI) dimer and imino-linked benzoyloxy-benzylidene (BB) dimer shows two distinct domains. While mixtures containing less than 35 mol % of BB possess a wide temperature range twist-bend nematic phase, the mixtures containing 55-80 mol % of BB exhibit a smectic phase despite that both pure compounds display a Iso-N-N TB -Cr phase sequence. The phase diagram shows that the addition of BB of up to 30 mol % significantly extends the temperature range of the N TB phase, maintaining the temperature range of the nematic phase. The periodicity, obtained by atomic force microscopy (AFM) imaging, is in the range of 6-7 nm. The induction of the smectic phase in the mixtures containing 55-80 mol % of BB was confirmed using polarising optical microscopy (POM), differential scanning calorimetry (DSC) and X-ray diffraction. The origin of the intercalated smectic phase was unravelled by combined spectroscopic and computational methods and can be traced to conformational disorder of the terminal chains. These results show the importance of understanding the phase behaviour of binary mixtures, not only in targeting a wide temperature range but also in controlling the self-organizing processes.

  15. Composites from southern pine juvenile wood. Part 3. Juvenile and mature wood furnish mixtures

    Treesearch

    A.D. Pugel; E.W. Price; Chung-Yun Hse; T.F. Shupe

    2004-01-01

    Composite panelsmade from mixtures ofmature andjuvenile southern pine (Pinus taeda L.) were evaluated for initial mechanical properties and dimensional stability. The effect that the proportion of juvenile wood had on panel properties was analyzed by regression and rule-of-mixtures models. The mixed furnish data: 1) highlighted the degree to which...

  16. Nuclear fuel alloys or mixtures and method of making thereof

    DOEpatents

    Mariani, Robert Dominick; Porter, Douglas Lloyd

    2016-04-05

    Nuclear fuel alloys or mixtures and methods of making nuclear fuel mixtures are provided. Pseudo-binary actinide-M fuel mixtures form alloys and exhibit: body-centered cubic solid phases at low temperatures; high solidus temperatures; and/or minimal or no reaction or inter-diffusion with steel and other cladding materials. Methods described herein through metallurgical and thermodynamics advancements guide the selection of amounts of fuel mixture components by use of phase diagrams. Weight percentages for components of a metallic additive to an actinide fuel are selected in a solid phase region of an isothermal phase diagram taken at a temperature below an upper temperature limit for the resulting fuel mixture in reactor use. Fuel mixtures include uranium-molybdenum-tungsten, uranium-molybdenum-tantalum, molybdenum-titanium-zirconium, and uranium-molybdenum-titanium systems.

  17. Scalar mixtures in porous media

    NASA Astrophysics Data System (ADS)

    Kree, Mihkel; Villermaux, Emmanuel

    2017-10-01

    Using a technique allowing for in situ measurements of concentrations fields, the evolution of scalar mixtures flowing within a porous medium made of a three-dimensional random stack of solid spheres, is addressed. Two distinct fluorescent dyes are injected from separate sources. Their evolution as they disperse and mix through the medium is directly observed and quantified, which is made possible by matching the refractive indices of the spheres and the flowing interstitial liquid. We decipher the nature of the interaction rule between the scalar sources, explaining the phenomenon that alters the concentration distribution of the overall mixture as it decays toward uniformity. Any residual correlation of the initially merged sources is progressively hidden, leading to an effective fully random interaction rule of the two distinct subfields.

  18. Uniform phases in fluids of hard isosceles triangles: One-component fluid and binary mixtures

    NASA Astrophysics Data System (ADS)

    Martínez-Ratón, Yuri; Díaz-De Armas, Ariel; Velasco, Enrique

    2018-05-01

    We formulate the scaled particle theory for a general mixture of hard isosceles triangles and calculate different phase diagrams for the one-component fluid and for certain binary mixtures. The fluid of hard triangles exhibits a complex phase behavior: (i) the presence of a triatic phase with sixfold symmetry, (ii) the isotropic-uniaxial nematic transition is of first order for certain ranges of aspect ratios, and (iii) the one-component system exhibits nematic-nematic transitions ending in critical points. We found the triatic phase to be stable not only for equilateral triangles but also for triangles of similar aspect ratios. We focus the study of binary mixtures on the case of symmetric mixtures: equal particle areas with aspect ratios (κi) symmetric with respect to the equilateral one, κ1κ2=3 . For these mixtures we found, aside from first-order isotropic-nematic and nematic-nematic transitions (the latter ending in a critical point): (i) a region of triatic phase stability even for mixtures made of particles that do not form this phase at the one-component limit, and (ii) the presence of a Landau point at which two triatic-nematic first-order transitions and a nematic-nematic demixing transition coalesce. This phase behavior is analogous to that of a symmetric three-dimensional mixture of rods and plates.

  19. Lower critical solution temperature (LCST) phase separation of glycol ethers for forward osmotic control.

    PubMed

    Nakayama, Daichi; Mok, Yeongbong; Noh, Minwoo; Park, Jeongseon; Kang, Sunyoung; Lee, Yan

    2014-03-21

    Lower critical solution temperature (LCST) phase transition of glycol ether (GE)-water mixtures induces an abrupt change in osmotic pressure driven by a mild temperature change. The temperature-controlled osmotic change was applied for the forward osmosis (FO) desalination. Among three GEs evaluated, di(ethylene glycol) n-hexyl ether (DEH) was selected as a potential FO draw solute. A DEH-water mixture with a high osmotic pressure could draw fresh water from a high-salt feed solution such as seawater through a semipermeable membrane at around 10 °C. The water-drawn DEH-water mixture was phase-separated into a water-rich phase and a DEH-rich phase at around 30 °C. The water-rich phase with a much reduced osmotic pressure released water into a low-salt solution, and the DEH-rich phase was recovered into the initial DEH-water mixture. The phase separation behaviour, the residual GE concentration in the water-rich phase, the osmotic pressure of the DEH-water mixture, and the osmotic flux between the DEH-water mixture and salt solutions were carefully analysed for FO desalination. The liquid-liquid phase separation of the GE-water mixture driven by the mild temperature change between 10 °C and 30 °C is very attractive for the development of an ideal draw solute for future practical FO desalination.

  20. Floating liquid phase in sedimenting colloid-polymer mixtures.

    PubMed

    Schmidt, Matthias; Dijkstra, Marjolein; Hansen, Jean-Pierre

    2004-08-20

    Density functional theory and computer simulation are used to investigate sedimentation equilibria of colloid-polymer mixtures within the Asakura-Oosawa-Vrij model of hard sphere colloids and ideal polymers. When the ratio of buoyant masses of the two species is comparable to the ratio of differences in density of the coexisting bulk (colloid) gas and liquid phases, a stable "floating liquid" phase is found, i.e., a thin layer of liquid sandwiched between upper and lower gas phases. The full phase diagram of the mixture under gravity shows coexistence of this floating liquid phase with a single gas phase or a phase involving liquid-gas equilibrium; the phase coexistence lines meet at a triple point. This scenario remains valid for general asymmetric binary mixtures undergoing bulk phase separation.

  1. Mixing-Induced Anisotropic Correlations in Molecular Crystalline Systems: Rationalizing the Behavior of Organic Semiconductor Blends

    NASA Astrophysics Data System (ADS)

    Broch, Katharina; Aufderheide, Antje; Novak, Jiri; Hinderhofer, Alexander; Gerlach, Alexander; Banerjee, Rupak; Schreiber, Frank

    2013-03-01

    Binary mixtures of organic semiconductors (OSCs) have recently become an important field of research, as they find applications in opto-electronic devices. In these systems, the mixing (intermixing vs. phase separation) and ordering behavior is crucial, since it affects the optical and electronic properties. We present a comprehensive study of binary mixtures of the three prototypical OSCs pentacene (PEN), perfluoropentacene (PFP) and diindenoperlyene (DIP) in all possible combinations. Using X-ray reflectivity and grazing incidence X-ray diffraction we investigate the stuctural properties of the mixed films as well as their impact on the optical spectra obtained by spectroscopic ellipsometry. For PEN:DIP we find an anisotropic ordering behavior, comparable to that observed in some liquid crystals, which is fundamentally new for OSCs. The influence of sterical compatibility and the strength of the intermolecular interactions on the mixing and ordering behavior in the different blends will be discussed by extending a conventional mean-field model. Finally, we discuss general rules for the targeted preparation of blends of OSCs.

  2. Vapor-liquid equilibria for R-22, R-134a, R-125, and R-32/125 with a polyol ester lubricant: Measurements and departure from ideality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martz, W.L.; Burton, C.M.; Jacobi, A.M.

    1996-11-01

    The effect of a polyol ester lubricant on equilibrium pressure, liquid density, and viscosity is presented for R-22, R-125, and R-134a at varying temperatures and concentrations. Preliminary vapor-liquid equilibrium (VLE) data and miscibility observations are also presented for an R-32/R-125 blend (50%/50%) with the ISO 68 polyol ester (POE). Real-gas behavior is modeled using the vapor-phase fugacity, and vapor pressure effects on liquid fugacities are taken into account with the Poynting effect. Positive, negative, and mixed deviations form the Lewis-Randall rule are observed in the activity coefficient behavior. Departures from ideality are related to molecular size differences, intermolecular forces inmore » the mixture, and other factors. The data are discussed in the context of previous results for other refrigerants and thermodynamic modeling of refrigerant and oil mixtures.« less

  3. Dielectric Properties of Ca0.7Bi0.3Ti0.7Cr0.3O3 (CBTC)-CaCu3Ti4O12 (CCTO) Composite

    NASA Astrophysics Data System (ADS)

    Mallmann, E. J. J.; Silva, M. A. S.; Sombra, A. S. B.; Botelho, M. A.; Mazzetto, S. E.; de Menezes, A. S.; Almeida, A. F. L.; Fechine, P. B. A.

    2015-01-01

    The main object of this work is to study two materials with giant dielectric constants: CaCu3Ti4O12 (CCTO) and Ca0.7Bi0.3Ti0.7Cr0.3O3 (CBTC). CBTC1- x -CCTO x composites were also obtained to create a new dielectric material with dielectric properties between these two phases. Structural properties were studied by x-ray powder diffraction (XRPD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy and dielectric measurements. CCTO showed a cubic phase and CBTC an orthorhombic phase. An interesting result was that the dielectric constant ( K) did not follow the rule of the mixture of Lichtnecker, and this happened due to the presence of other phases of its crystalline structure, which decreases the value of K when compared to the predicted values of Lichtnecker. It was also found that the dielectric properties of the composite are very promising for use in microelectronics, according to the miniaturization factor, which is crucial for those applications.

  4. Isopycnic Phases and Structures in H2O/CO2/Ethoxylated Alcohol Surfactant Mixtures

    NASA Technical Reports Server (NTRS)

    Paulaitis, Michael E.; Zielinski, Richard G.; Kaler, Eric W.

    1996-01-01

    Ternary mixtures of H2O and CO2 with ethoxylated alcohol (C(i)E(j)) surfactants can form three coexisting liquid phases at conditions where two of the phases have the same density (isopycnic phases). Isopycnic phase behavior has been observed for mixtures containing the surfactants C8E5, C10E6, and C12E6, but not for those mixtures containing either C4E1 or CgE3. Pressure-temperature (PT) projections for this isopycnic three-phase equilibrium were determined for H2O/CO2/C8E5 and H2O/CO2/C10E6 mixtures at temperatures from approximately 25 to 33 C and pressures between 90 and 350 bar. As a preliminary to measuring the microstructure in isopycnic three component mixtures, phase behavior and small angle neutron scattering (SANS) experiments were performed on mixtures of D2O/CO2/ n-hexaethyleneglycol monododecyl ether (C12E6) as a function of temperature (25-31 C), pressure (63.1-90.7 bar), and CO2 composition (0-3.9 wt%). Parameters extracted from model fits of the SANS spectra indicate that, while micellar structure remains essentially unchanged, critical concentration fluctuations increase as the phase boundary and plait point are approached.

  5. Phase Separation Kinetics in Isopycnic Mixtures of H2O/CO2/Ethoxylated Alcohol Surfactants

    NASA Technical Reports Server (NTRS)

    Lesemann, Markus; Paulaitis, Michael E.; Kaler, Eric W.

    1999-01-01

    Ternary mixtures of H2O and CO2 with ethoxylated alcohol (C(sub i)E(sub j)) surfactants form three coexisting liquid phases at conditions where two of the phases have equal densities (isopycnic phases). Isopycnic phase behavior has been observed for mixtures containing C8E5, C10E6, and C12E6 surfactants, but not for those mixtures containing either C4E1 or C8E3 surfactants. Pressure-temperature (PT) projections for this three-phase equilibrium were determined for H2O/CO2/C8E5 and H2O/CO2/C10E6 mixtures at temperatures from approximately 25 to 33 C and pressures between 90 and 350 bar. Measurements of the microstructure in H2O/CO2/C12E6 mixtures as a function of temperature (25-31 C), pressure (63.1-90.7 bar), and CO2 composition (0-3.9 wt%) have also been carried out to show that while micellar structure remains essentially un-changed, critical concentration fluctuations increase as the phase boundary and plait point are approached. In this report, we present our first measurements of the kinetics of isopycnic phase separation for ternary mixtures of H2O/CO2/C8E5.

  6. Thermophysical Properties of Fluid Latent Heat Storage Material using Urea-Water Mixture

    NASA Astrophysics Data System (ADS)

    Hokamura, Taku; Ohkubo, Hidetoshi; Ashizawa, Kiyonori

    This study is concerned with the measurement of thermophysical properties of a urea-water mixture with the aim of adopting the mixture as a latent heat storage material for air-conditioning systems. The urea-water mixture is made of natural substances and has a good fluidity. The urea concentration in the mixture was controlled by measuring the refractive index of the mixture. Being a multi-component substance, a urea-water solution has a liquid-solid co-existent phase on a phase-diagram. Therefore, the liquidus temperature was measured to establish a relationship between the fraction of the solid-phase and temperature. Furthermore, apparent values of specific heat and coefficient of viscosity were measured in the two-phase region where the solid phase is ice. The apparent specific heat and coefficient of viscosity were measure by using an adiabatic calorimeter and a stirring torque meter respectively. The results revealed that the urea-water mixture can probably be used as a latent heat storage material of good fluidity.

  7. Refractive Index Mixing Rules and Excess Infrared Spectra of Binary Mixtures.

    PubMed

    Baranović, Goran

    2017-05-01

    Three refractive index mixing rules, Arago-Biot, Lorentz-Lorenz, and Newton, are generalized to complex refractive index and used to define infrared (IR) spectra of the corresponding ideal liquid mixtures. Using the measured optical constants n and k for acetonitrile-water mixtures (Bertie and Lan, 1997) the excess absorbances, A E  =  A obs  -  A ideal , are calculated. Relying upon the well-established properties of the acetonitrile-water mixtures, the interpretation of the excess absorbances is established that is essentially based on the understanding of a liquid as a set of oscillators. The set depends on the composition of the mixture and comprises oscillators as present in the pure components and oscillators perturbed by hydrogen bonding between unlike molecules. The main features of an excess spectrum can be established assuming chemical equilibria among various oscillators. The most informative parts of the spectrum of a yet unstudied binary system can well be observed and even qualitatively explained from the excess absorbance provided: first, a detailed vibrational study of the components has been done; and, second, it is well understood what actually is subtracted from A obs . As examples, the binary mixtures of ethynylbenzene and tetrachloroethylene and 2-ethynylpyridine and tetrachloroethylene are considered.

  8. Chromonic liquid crystalline nematic phase exhibited in binary mixture of two liquid crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Govindaiah, T. N., E-mail: tngovi.phy@gmail.com; Sreepad, H. R.; Sridhar, K. N.

    2015-06-24

    A binary mixture of abietic acid and orthophosphoric acid (H{sub 3}PO{sub 4}) exhibits co-existence of biphasic region of Nematic+Isotropic (N+I), lyotropic Nematic (ND) and Smectic-G (SmG) phases. The mixture exhibits N+I, N and SmG phases at different concentrations and at different temperatures. Mixtures with all concentrations of abietic acid exhibit I→N+I→N→SmG phases sequentially when the specimen is cooled from its isotropic melt. These phases have been characterized by using differential scanning calorimetric, X-ray diffraction, and optical texture studies.

  9. Predicting Deformation Limits of Dual-Phase Steels Under Complex Loading Paths

    DOE PAGES

    Cheng, G.; Choi, K. S.; Hu, X.; ...

    2017-04-05

    Here in this study, the deformation limits of various DP980 steels are examined with the deformation instability theory. Under uniaxial tension, overall stress–strain curves of the material are estimated based on a simple rule of mixture (ROM) with both iso-strain and iso-stress assumptions. Under complex loading paths, an actual microstructure-based finite element (FE) method is used to resolve the deformation compatibilities explicitly between the soft ferrite and hard martensite phases. The results show that, for uniaxial tension, the deformation instability theory with iso-strain-based ROM can be used to provide the lower bound estimate of the uniform elongation (UE) for themore » various DP980 considered. Under complex loading paths, the deformation instability theory with microstructure-based FE method can be used in examining the effects of various microstructural features on the deformation limits of DP980 steels.« less

  10. MoNbTaV Medium-Entropy Alloy

    DOE PAGES

    Yao, Hongwei; Qiao, Jun -Wei; Gao, Michael; ...

    2016-05-19

    Guided by CALPHAD (Calculation of Phase Diagrams) modeling, the refractory medium-entropy alloy MoNbTaV was synthesized by vacuum arc melting under a high-purity argon atmosphere. A body-centered cubic solid solution phase was experimentally confirmed in the as-cast ingot using X-ray diffraction and scanning electron microscopy. The measured lattice parameter of the alloy (3.208 Å) obeys the rule of mixtures (ROM), but the Vickers microhardness (4.95 GPa) and the yield strength (1.5 GPa) are about 4.5 and 4.6 times those estimated from the ROM, respectively. Using a simple model on solid solution strengthening predicts a yield strength of approximately 1.5 GPa. Inmore » conclusion, thermodynamic analysis shows that the total entropy of the alloy is more than three times the configurational entropy at room temperature, and the entropy of mixing exhibits a small negative departure from ideal mixing.« less

  11. Predicting Deformation Limits of Dual-Phase Steels Under Complex Loading Paths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, G.; Choi, K. S.; Hu, X.

    The deformation limits of various DP980 steels are examined in this study with deformation instability theory. Under uniaxial tension, overall stress-strain curves of the material are estimated based on simple rule of mixture (ROM) with both iso-strain and iso-stress assumptions. Under complex loading paths, actual microstructure-based finite element (FE) method is used to explicitly resolve the deformation incompatibilities between the soft ferrite and hard martensite phases. The results show that, for uniaxial tension, the deformation instability theory with iso-strain-based ROM can be used to provide the lower bound estimate of the uniform elongation (UE) for the various DP980 considered. Undermore » complex loading paths, the deformation instability theory with microstructure-based FE method can be used in examining the effects of various microstructural features on the deformation limits of DP980 steels.« less

  12. Predicting Deformation Limits of Dual-Phase Steels Under Complex Loading Paths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, G.; Choi, K. S.; Hu, X.

    Here in this study, the deformation limits of various DP980 steels are examined with the deformation instability theory. Under uniaxial tension, overall stress–strain curves of the material are estimated based on a simple rule of mixture (ROM) with both iso-strain and iso-stress assumptions. Under complex loading paths, an actual microstructure-based finite element (FE) method is used to resolve the deformation compatibilities explicitly between the soft ferrite and hard martensite phases. The results show that, for uniaxial tension, the deformation instability theory with iso-strain-based ROM can be used to provide the lower bound estimate of the uniform elongation (UE) for themore » various DP980 considered. Under complex loading paths, the deformation instability theory with microstructure-based FE method can be used in examining the effects of various microstructural features on the deformation limits of DP980 steels.« less

  13. Phase Behavior of Binary Mixture of Heptaethylene Glycol Decyl Ether and Water: Formation of Phase Compound in Solid Phase

    PubMed

    Nibu; Suemori; Inoue

    1997-07-01

    Differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FT-IR) were used to construct and characterize the phase diagram for a binary mixture of heptaethylene glycol decyl ether (C10 E7 ) and water in the temperature range from -60 to 80°C. Plots of the endothermic peak temperatures obtained by DSC measurements against compositions provided eutectic solid-liquid phase boundaries with a eutectic composition of 34 wt% of H2 O. On the other hand, heat of fusion per unit weight of the mixture changed discretely at the composition corresponding to the "eutectic" composition. Furthermore, the IR spectra obtained for the mixture in the solid phase were well reproduced as a superposition of those for the mixture of 34 wt% H2 O and pure components but were not reproduced by superimposing the spectra obtained for the solid surfactant and ice. These observations indicate that a solid phase compound is formed between C10 E7 and water with a stoichiometry of 1:14 and that the compound and pure components exist as separate phases, rather than the phases separating into surfactant and ice, which would be expected if the C10 E7 /water mixture formed a true eutectic mixture system. It is estimated from the composition corresponding to the phase compounds that two molecules of water per oxyethylene unit are bound to hydrophilic polyoxyethylene chain of C10 E7 to form a hydrated compound.

  14. Phase behavior, rheological characteristics and microstructure of sodium caseinate-Persian gum system.

    PubMed

    Sadeghi, Farzad; Kadkhodaee, Rassoul; Emadzadeh, Bahareh; Phillips, Glyn O

    2018-01-01

    In this study, the phase behavior of sodium caseinate-Persian gum mixtures was investigated. The effect of thermodynamic incompatibility on phase distribution of sodium caseinate fractions as well as the flow behavior and microstructure of the biopolymer mixtures were also studied. The phase diagram clearly demonstrated the dominant effect of Persian gum on the incompatibility of the two biopolymers. SDS-PAGE electrophoresis indicated no selective fractionation of sodium caseinate subunits between equilibrium phases upon de-mixing. The microstructure of mixtures significantly changed depending on their position within the phase diagram. Fitting viscometric data to Cross and Bingham models revealed that the apparent viscosity, relaxation time and shear thinning behavior of the mixtures is greatly influenced by the volume ratio and concentration of the equilibrium phases. There is a strong dependence of the flow behavior of sodium caseinate-Persian gum mixtures on the composition of the equilibrium phases and the corresponding microstructure of the system. Copyright © 2017. Published by Elsevier Ltd.

  15. Dipolar interactions and miscibility in binary Langmuir monolayers with opposite dipole moments of the hydrophilic heads.

    PubMed

    Petrov, Jordan G; Andreeva, Tonya D; Moehwald, Helmuth

    2009-04-09

    We investigate unusual binary Langmuir monolayers with the same long CH3(CH2)21 hydrocarbon chains and fluorinated -O-CH2CF3 (FEE) versus nonfluorinated -O-CH2CH3 (EE) hydrophilic heads, whose opposite dipoles assist miscibility, in contrast to the equally oriented polar head dipoles of almost all natural or synthetic amphiphiles that minister to phase separation. Although two-component bulk micelles, lipid bilayers, and monolayers with fluorinated and nonfluorinated chains, which also have opposite dipoles, often show phase separation, we find complete miscibility and nonideality of the FEE-EE mixtures demonstrated via deviation of the composition dependencies of the mean molecular area at fixed surface pressure from the additivity rule. The composition dependencies of the excess molecular areas exhibit minima and maxima which show specific structural changes at particular compositions. They originate from the dipolar and steric interactions between the polar heads, because the interactions between the same chains of FEE and EE do not vary. The pi/A isotherms and the pi/X(FEE) phase diagram reveal that mixtures with molar fractions X(FEE) > or = 0.3 exist in an upright solid phase even in uncompressed state. This result is confirmed by the compressibility values and via Brewster angle microscopy, which does not show optical anisotropy at X(FEE) > or = 0.3. Comparison of the collapse and phase-transition molecular areas with literature data suggests that the upright architecture corresponds to LS-phase or S-phase with more defects as the S-phase in the pure monolayers. The mixtures with X(FEE) < 0.3 exist in tilted L2' phase at low surface pressures. Their mean molecular areas are smaller than the corresponding values in the EE film, which manifests reduction of the tilt of the EE chains with increasing FEE content. We ascribe the chain erection to partial dehydration of the EE heads caused by dipolar attraction between the EE and FEE heads. The excess free energy of mixing deltaG(exc)pi is positive but much smaller than the negative total free energy of mixing AG mix(pi) showing a spontaneous miscibility at all compositions due to an entropy increase. The analysis of the conflict between the deltaG(mix)pi minimum at molar fraction X(FEE) = 0.5 and the minimum and negative value of the excess molecular area A(pi,exc) at X(FEE) = 0.8 shows that the A(pi,exc)/X(FEE) minimum has not an electrostatic but a short-range structural origin.

  16. Phase behaviour of the symmetric binary mixture from thermodynamic perturbation theory.

    PubMed

    Dorsaz, N; Foffi, G

    2010-03-17

    We study the phase behaviour of symmetric binary mixtures of hard core Yukawa (HCY) particles via thermodynamic perturbation theory (TPT). We show that all the topologies of phase diagram reported for the symmetric binary mixtures are correctly reproduced within the TPT approach. In a second step we use the capability of TPT to be straightforwardly extended to mixtures that are nonsymmetric in size. Starting from mixtures that belong to the different topologies of symmetric binary mixtures we investigate the effect on the phase behaviour when an asymmetry in the diameters of the two components is introduced. Interestingly, when the energy of interaction between unlike particles is weaker than the interaction between like particles, the propensity for the solution to demix is found to increase strongly with size asymmetry.

  17. Dissociable roles of medial and lateral PFC in rule learning.

    PubMed

    Cao, Bihua; Li, Wei; Li, Fuhong; Li, Hong

    2016-11-01

    Although the neural basis of rule learning is of great interest to cognitive neuroscientists, the pattern of transient brain activation during rule discovery remains to be investigated. In this study, we measured event-related functional magnetic resonance imaging (fMRI) during distinct phases of rule learning. Twenty-one healthy human volunteers were presented with a series of cards, each containing a clock-like display of 12 circles numbered sequentially. Participants were instructed that a fictitious animal would move from one circle to another either in a regular pattern (according to a rule hidden in consecutive trials) or randomly. Participants were then asked to judge whether a given step followed a rule. While the rule-search phase evoked more activation in the posterior lateral prefrontal cortex (LPFC), the rule-following phase caused stronger activation in the anterior medial prefrontal cortex (MPFC). Importantly, the intermediate phase, the rule-discovery phase evoked more activations in MPFC and dorsal anterior cingulate cortex (dACC) than rule search, and more activations in LPFC than rule following. Therefore, we can conclude that the medial and lateral PFC have dissociable contributions in rule learning.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, Paul Andrew; Loomis, Eric Nicholas; Merritt, Elizabeth Catherine

    Accurate modeling of a mixed material Equation of State (EOS) at high pressures (~1 to 100 Mbar) is critical for simulating inertial confinement fusion and high energy density systems. Here, this paper presents a comparison of two mixing rule models to the experiment to assess their applicability in this regime. The shock velocities of polystyrene, aluminum, and nickel aluminide (NiAl) were measured at a shock pressure of ~3 TPa (~30 Mbar) on the Omega EP laser facility (Laboratory for Laser Energetics, University of Rochester, New York). The resultant shock velocities were compared to those derived from the RAGE (Eulerian) hydrodynamicsmore » code to validate various mixing rules used to construct an EOS for NiAl. The simulated shock transit time through the sample (Al or NiAl) matched the measurements to within the ±45ps measurement uncertainty. The law of partial volume (Amagat) and the law of partial pressure (Dalton) mixture rules provided equally good matches to the NiAl shock data. Other studies showed that the Amagat mixing rule is superior, and we recommend it since our results also show a satisfactory match. In conclusion, the comparable quality of the simulation to data for the Al and NiAl samples implies that a mixture rule can supply an EOS for plasma mixtures with adequate fidelity for simulations where mixing takes place, such as advective mix in an Eulerian code or when two materials are mixed together via diffusion, turbulence, or other physical processes.« less

  19. One-, two- and three-phase viscosity treatments for basaltic lava flows

    PubMed Central

    Harris, Andrew J. L.; Allen, John S.

    2009-01-01

    Lava flows comprise three-phase mixtures of melt, crystals, and bubbles. While existing one-phase treatments allow melt phase viscosity to be assessed on the basis of composition, water content, and/or temperature, two-phase treatments constrain the effects of crystallinity or vesicularity on mixture viscosity. However, three-phase treatments, allowing for the effects of coexisting crystallinity and vesicularity, are not well understood. We investigate existing one- and two-phase treatments using lava flow case studies from Mauna Loa (Hawaii) and Mount Etna (Italy) and compare these with a three-phase treatment that has not been applied previously to basaltic mixtures. At Etna, melt viscosities of 425 ± 30 Pa s are expected for well-degassed (0.1 w. % H2O), and 135 ± 10 Pa s for less well-degassed (0.4 wt % H2O), melt at 1080°C. Application of a three-phase model yields mixture viscosities (45% crystals, 25–35% vesicles) in the range 5600–12,500 Pa s. This compares with a measured value for Etnean lava of 9400 ± 1500 Pa s. At Mauna Loa, the three-phase treatment provides a fit with the full range of field measured viscosities, giving three-phase mixture viscosities, upon eruption, of 110–140 Pa s (5% crystals, no bubble effect due to sheared vesicles) to 850–1400 Pa s (25–30% crystals, 40–60% spherical vesicles). The ability of the three-phase treatment to characterize the full range of melt-crystal-bubble mixture viscosities in both settings indicates the potential of this method in characterizing basaltic lava mixture viscosity. PMID:21691456

  20. Synthetic biological membrane with self organizing properties

    DOEpatents

    Firestone, Millicent A.; Tiede, David M.

    2003-01-01

    A mixture is provided which manifests a gel phase at a temperature higher than that in which the mixture manifests a liquid phase. The mixture is a combination of a lipid, a polymer-grafted phospholipid and a surfactant. It is biomimetic in nature and changes phases when subjected to one or a plurality of environmental stimuli.

  1. Phase behaviour of oat β-glucan/sodium caseinate mixtures varying in molecular weight.

    PubMed

    Agbenorhevi, Jacob K; Kontogiorgos, Vassilis; Kasapis, Stefan

    2013-05-01

    The isothermal phase behaviour at 5 °C of mixtures of sodium caseinate and oat β-glucan isolates varying in molecular weight (MW) was investigated by means of phase diagram construction, rheometry, fluorescence microscopy and electrophoresis. Phase diagrams indicated that the compatibility of the β-glucan/sodium caseinate system increases as β-glucan MW decreases. Images of mixtures taken at various biopolymer concentrations revealed phase separated domains. Results also revealed that at the state of thermodynamic equilibrium, lower MW samples yielded considerable viscosity in the mixture. At equivalent hydrodynamic volume of β-glucan in the mixtures, samples varying in molecular weight exhibited similar flow behaviour. A deviation dependent on the protein concentration was observed for the high MW sample in the concentrated regime due to the size of β-glucan aggregates formed. Results demonstrate that by controlling the structural features of β-glucan in mixtures with sodium caseinate, informed manipulation of rheological properties in these systems can be achieved. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Crystal plasticity analysis of stress partitioning mechanisms and their microstructural dependence in advanced steels

    DOE PAGES

    Pu, Chao; Gao, Yanfei

    2015-01-23

    Two-phase advanced steels contain an optimized combination of high yield strength and large elongation strain at failure, as a result of stress partitioning between a hard phase (martensite) and a ductile phase (ferrite or austenite). Provided with strong interfaces between the constituent phases, the failure in the brittle martensite phase will be delayed by the surrounding geometric constraints, while the rule of mixture will dictate a large strength of the composite. To this end, the microstructural design of these composites is imperative especially in terms of the stress partitioning mechanisms among the constituent phases. Based on the characteristic microstructures ofmore » dual phase and multilayered steels, two polycrystalline aggregate models are constructed to simulate the microscopic lattice strain evolution of these materials during uniaxial tensile tests. By comparing the lattice strain evolution from crystal plasticity finite element simulations with advanced in situ diffraction measurements in literature, this study investigates the correlations between the material microstructure and the micromechanical interactions on the intergranular and interphase levels. Finally, it is found that although the applied stress will be ultimately accommodated by the hard phase and hard grain families, the sequence of the stress partitioning on grain and phase levels can be altered by microstructural designs. Implications of these findings on delaying localized failure are also discussed.« less

  3. Method for separating mono- and di-octylphenyl phosphoric acid esters

    DOEpatents

    Arnold, Jr., Wesley D.

    1977-01-01

    A method for separating mono-octylphenyl phosphoric acid ester and di-octylphenyl phosphoric acid ester from a mixture thereof comprises reacting the ester mixture with a source of lithium or sodium ions to form a mixture of the phosphate salts; contacting the salt mixture with an organic solvent which causes the dioctylphenyl phosphate salt to be dissolved in the organic solvent phase and the mono-octylphenyl phosphate salt to exist in a solid phase; separating the phases; recovering the phosphate salts from their respective phases; and acidifying the recovered salts to form the original phosphoric acid esters.

  4. Two-phase turbine engines. [using gas-liquid mixture accelerated in nozzles

    NASA Technical Reports Server (NTRS)

    Elliott, D. G.; Hays, L. G.

    1976-01-01

    A description is given of a two-phase turbine which utilizes a uniform mixture of gas and liquid accelerated in nozzles of the types reported by Elliott and Weinberg (1968). The mixture acts directly on an axial flow or tangential impulse turbine or is separated into gas and liquid streams which operate separately on a gas turbine and a hydraulic turbine. The basic two-phase cycles are examined, taking into account working fluids, aspects of nozzle expansion, details of turbine cycle operation, and the effect of mixture ratio variation. Attention is also given to two-phase nozzle efficiency, two-phase turbine operating characteristics and efficiencies, separator turbines, and impulse turbine experiments.

  5. The morphology of blends of linear and branched polyethylenes by small-angle neutron and x-ray scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Londono, J.D.; Wignall, G.D.; Lin, J.S.

    1995-12-31

    The solid-state morphology and liquid-state homogeneity of blends of high-density polyethylene (HDPE) and low-density polyethylene (LDPE) were investigated by small-angle neutron and x-ray scattering (SANS and SAXS). The solid state morphology was investigated as a function of composition and cooling rate from the melt. After slow cooling, the evidence indicated that the mixtures were either completely (HDPE-rich blends) or almost completely (LDPE-rich blends) phase separated into separate HDPE and LDPE lamellae over the whole compositional range. In contrast, for rapidly quenched blends the components are extensively co-crystallized for all concentrations, though the SANS data indicated that the branched component hadmore » a tendency to be preferentially located in the inter-lamellar regions. In the liquid state, the blends were homogeneous at all compositions, showing that the solid state morphology is not determined by the melt structure, but is a function of the crystallization kinetics. Further evidence for blend homogeneity in the liquid is presented. In particular the authors examine the hypothesis that a phase separated mixture might give a scattering pattern similar to a homogeneous blend if the domain sizes were larger than the maximum spatial resolution of the SANS experiment (D > 2{pi}/Q{sub min} {approximately} 2,000 {angstrom}). In this scenario, the differential scattering cross section d{Sigma}/d{Omega}(Q) {approximately} Q{sup {minus}2}, though phase separation decreases the cross section in this Q-range with respect to the homogeneous blend. For HDPE/LDPE blends in the melt, this decrease in intensity was not observed, thus ruling out the possibility of phase separation.« less

  6. Discovery of a superconducting high-entropy alloy.

    PubMed

    Koželj, P; Vrtnik, S; Jelen, A; Jazbec, S; Jagličić, Z; Maiti, S; Feuerbacher, M; Steurer, W; Dolinšek, J

    2014-09-05

    High-entropy alloys (HEAs) are multicomponent mixtures of elements in similar concentrations, where the high entropy of mixing can stabilize disordered solid-solution phases with simple structures like a body-centered cubic or a face-centered cubic, in competition with ordered crystalline intermetallic phases. We have synthesized an HEA with the composition Ta34Nb33Hf8Zr14Ti11 (in at. %), which possesses an average body-centered cubic structure of lattice parameter a=3.36  Å. The measurements of the electrical resistivity, the magnetization and magnetic susceptibility, and the specific heat revealed that the Ta34Nb33Hf8Zr14Ti11 HEA is a type II superconductor with a transition temperature Tc≈7.3  K, an upper critical field μ0H_c2≈8.2  T, a lower critical field μ0Hc1≈32  mT, and an energy gap in the electronic density of states (DOS) at the Fermi level of 2Δ≈2.2  meV. The investigated HEA is close to a BCS-type phonon-mediated superconductor in the weak electron-phonon coupling limit, classifying it as a "dirty" superconductor. We show that the lattice degrees of freedom obey Vegard's rule of mixtures, indicating completely random mixing of the elements on the HEA lattice, whereas the electronic degrees of freedom do not obey this rule even approximately so that the electronic properties of a HEA are not a "cocktail" of properties of the constituent elements. The formation of a superconducting gap contributes to the electronic stabilization of the HEA state at low temperatures, where the entropic stabilization is ineffective, but the electronic energy gain due to the superconducting transition is too small for the global stabilization of the disordered state, which remains metastable.

  7. Nonequimolar Mixture of Organic Acids and Bases: An Exception to the Rule of Thumb for Salt or Cocrystal.

    PubMed

    Pratik, Saied Md; Datta, Ayan

    2016-08-04

    Formation of salt and/or cocrystal from organic acid-base mixtures has significant consequences in the pharmaceutical industry and its related intellectual property rights (IPR). On the basis of calculations using periodic dispersion corrected DFT (DFT-D2) on formic acid-pyridine adduct, we have demonstrated that an equimolar stoichiometric ratio (1:1) exists as a neutral cocrystal. On the other hand, the nonequimolar stoichiometry (4:1) readily forms an ionic salt. While the former result is in agreement with the ΔpKa rule between the base and the acid, the latter is not. Calculations reveal that, within the equimolar manifold (n:n; n = 1-4), the mixture exists as a hydrogen bonded complex in a cocrystal-like environment. However, the nonequimolar mixture in a ratio of 5:1 and above readily forms salt-like structures. Because of the cooperative nature of hydrogen bonding, the strength of the O-H···N hydrogen bond increases and eventually transforms into O(-)···H-N(+) (complete proton transfer) as the ratio of formic acid increases and forms salt as experimentally observed. Clearly, an enhanced polarization of formic acid on aggregation increases its acidity and, hence, facilitates its transfer to pyridine. Motion of the proton from formic acid to pyridine is shown to follow a relay mechanism wherein the proton that is far away from pyridine is ionized and is subsequently transferred to pyridine via hopping across the neutral formic acid molecules (Grotthuss type pathway). The dynamic nature of protons in the condensed phase is also evident for cocrystals as the barrier of intramolecular proton migration in formic acid (leading to tautomerism), ΔH(⧧)tautomer = 17.1 kcal/mol in the presence of pyridine is half of that in free formic acid (cf. ΔH(⧧)tautomer = 34.2 kcal/mol). We show that an acid-base reaction can be altered in the solid state to selectively form a cocrystal or salt depending on the strength and nature of aggregation.

  8. Investigation of thermal and optical properties of some quartet mixed hydrogen-bonded liquid crystals

    NASA Astrophysics Data System (ADS)

    Okumuş, Mustafa

    2017-11-01

    In this study, the thermal and optical properties of quartet mixtures formed at different weight ratios (1:1:1:1 and 1.5:1:1:1) from liquid crystals 4-octyloxy-4‧-cyanobiphenyl (8OCB), 4-hexylbenzoic acid, 4-(octyloxy)benzoic acid and 4-(decyloxy)benzoic acid were investigated by differential scanning calorimeter (DSC) and polarized optic microscopy (POM). The phase transition temperatures of the novel quartet mixtures measured in the DSC experiments are in line with the POM experiments. The experimental results clearly show that the novel liquid crystal mixtures have displayed pure liquid crystalline properties. According to the phase diagram drawn from DSC results, the nematic range of the novel mixture at the eutectic point is larger than the nematic ranges of the components. The mesomorphic structures of produced homolog complex mixtures are found to be smectic and nematic phases. But the smectic phase cannot be observed in the novel complex 1.5:1:1:1 mixture during continuous cooling. The nematic range of the novel complex 1.5:1:1:1 mixture is bigger than the nematic range of the novel complex 1:1:1:1 mixture with increasing 8OCB. Also, the nematic-to-isotropic phase transition temperature decreases with increasing the weight ratio of 8OCB in the complex quartet mixture. Another interesting result is that the produced mixtures are to be like a medical cream at room temperatures. Furthermore, order parameter and thermal stability factor of the transitions are also calculated.

  9. Phase change material for temperature control and material storage

    NASA Technical Reports Server (NTRS)

    Wessling, Jr., Francis C. (Inventor); Blackwood, James M. (Inventor)

    2011-01-01

    A phase change material comprising a mixture of water and deuterium oxide is described, wherein the mole fraction of deuterium oxide is selected so that the mixture has a selected phase change temperature within a range between 0.degree. C. and 4.degree. C. The mixture is placed in a container and used for passive storage and transport of biomaterials and other temperature sensitive materials. Gels, nucleating agents, freezing point depression materials and colorants may be added to enhance the characteristics of the mixture.

  10. An approach of characterizing the degree of spatial color mixture

    NASA Astrophysics Data System (ADS)

    Chu, Miao; Tian, Shaohui

    2017-07-01

    The digital camouflage technology arranges different color mosaics according to a certain rules, compared with traditional camouflage, it has more outstanding results deal with different distance reconnaissance. The better result of digital camouflage is mainly attributed to spatial color mixture, and is also a key factor to improve digital camouflage design. However, the research of space color mixture is relatively lack, cannot provide inadequate support for digital camouflage design. Therefore, according to the process of spatial color mixture, this paper proposes an effective parameter, spatial-color-mixture ratio, to characterize the degree of spatial color mixture. The experimental results show that spatial-color-mixture ratio is feasible and effective in practice, which could provide a new direction for further research on digital camouflage.

  11. Understanding and exploiting the phase behavior of mixtures of oppositely charged polymers and surfactants in water.

    PubMed

    Piculell, Lennart

    2013-08-20

    Complexes of oppositely charged polymers and surfactants (OCPS) in water come in many varieties, including liquid-crystalline materials, soluble complexes, structured nanoparticles, and water-insoluble surface layers. The range of available structures and properties increases even further with the addition of other amphiphilic substances that may enter, or even dissolve, the complexes, depending on the nature of the additive. Simple operations may change the properties of OCPS systems dramatically. For instance, dilution with water can induce a phase separation in an initially stable OCPS solution. More complicated processes, involving chemical reactions, can be used to either create or disintegrate OCPS particles or surface layers. The richness of their properties has made OCPS mixtures ubiquitous in everyday household products, such as shampoos and laundry detergents, and also attractive ingredients in the design of new types of responsive particles, surfaces, and delivery agents of potential use in future applications. A challenge for the rational design of an OCPS system is, however, to obtain a good fundamental understanding of how to select molecular shapes and sizes and how to tune the hydrophobic and electrostatic interactions such that the desired properties are obtained. Recent studies of OCPS phase equilibria, using a strategy where the minimum number of components is always used to address a particular question, have brought out general rules and trends that can be used for such a rational design. Those fundamental studies are reviewed here, together with more application-oriented studies where fundamental learning has been put to use.

  12. Evaluation of phases in Pu-C-O and (U, Pu)-C-O systems by X-ray diffractometry and chemical analysis

    NASA Astrophysics Data System (ADS)

    Jain, G. C.; Ganguly, C.

    1993-12-01

    Preparation and characterisation of the carbides of uranium, plutonium and mixed uranium and plutonium form a part of advanced fuel development programs for fast breeder reactors. In the present study, the compositions of the phases of Pu-C-O and (U.Pu)-C-O systems have been determined by chemical analysis and lattice parameter measurement. The carbide samples have been prepared by vacuum carbothermic synthesis of tabletted oxide-graphite powder mixture. Dependence of stoichiometry of Pu 2C 3 phase on the oxygen content of Pu(C,O) phase in Pu(C,O) + Pu 2C 3 phase mixture has been evaluated. Stoichiometry and oxygen solubility of (U 0.3Pu 0.7)(C,O) phase in multiple phase mixture have been determined. Segregation of plutonium in (U,Pu) 2C 3 phase of (U,Pu)(C,O) + (U,Pu) 2C 3 phase mixture and its dependence on the oxygen content of (U,Pu)(C,O) phase have also been determined from the measurement of the lattice parameter of (U,Pu) 2C 3 phase.

  13. TSCA Section 21 Petition Requesting EPA to Promulgate TSCA Section 4 and 8 Rules Concerning Oil and Gas Exploration and Production Chemicals and Mixtures

    EPA Pesticide Factsheets

    This petition requests EPA to promulgate regulations under TSCA Section 4 and 8 rules requiring toxicity testing and reporting of health and safety studies on oil and gas exploration and production chemicals.

  14. Hazardous Waste Management System - Definition of Hazardous Waste - Mixture and Derived- From Rules - Federal Register Notice, October 30, 1992

    EPA Pesticide Factsheets

    This action responds to public comment on two proposals (57 FR 7636, March 3, 1992, and 57 FR 21450, May 20, 1992) to modify EPA's hazardous waste identification rules under the Resource Conservation and Recovery Act (RCRA).

  15. Communication: Modeling electrolyte mixtures with concentration dependent dielectric permittivity

    NASA Astrophysics Data System (ADS)

    Chen, Hsieh; Panagiotopoulos, Athanassios Z.

    2018-01-01

    We report a new implicit-solvent simulation model for electrolyte mixtures based on the concept of concentration dependent dielectric permittivity. A combining rule is found to predict the dielectric permittivity of electrolyte mixtures based on the experimentally measured dielectric permittivity for pure electrolytes as well as the mole fractions of the electrolytes in mixtures. Using grand canonical Monte Carlo simulations, we demonstrate that this approach allows us to accurately reproduce the mean ionic activity coefficients of NaCl in NaCl-CaCl2 mixtures at ionic strengths up to I = 3M. These results are important for thermodynamic studies of geologically relevant brines and physiological fluids.

  16. METHOD OF SEPARATING URANIUM FROM ALLOYS

    DOEpatents

    Chiotti, P.; Shoemaker, H.E.

    1960-06-28

    Uranium can be recovered from metallic uraniumthorium mixtures containing uranium in comparatively small amounts. The method of recovery comprises adding a quantity of magnesium to a mass to obtain a content of from 48 to 85% by weight; melting and forming a magnesium-thorium alloy at a temperature of between 585 and 800 deg C; agitating the mixture, allowing the mixture to settle whereby two phases, a thorium-containing magnesium-rich liquid phase and a solid uranium-rich phase, are formed; and separating the two phases.

  17. Measuring the Densities of Aqueous Glasses at Cryogenic Temperatures.

    PubMed

    Shen, Chen; Julius, Ethan F; Tyree, Timothy J; Dan, Ritwik; Moreau, David W; Thorne, Robert

    2017-06-28

    We demonstrate a method for determining the vitreous phase cryogenic temperature densities of aqueous mixtures, and other samples that require rapid cooling, to prepare the desired cryogenic temperature phase. Microliter to picoliter size drops are cooled by projection into a liquid nitrogen-argon (N2-Ar) mixture. The cryogenic temperature phase of the drop is evaluated using a visual assay that correlates with X-ray diffraction measurements. The density of the liquid N2-Ar mixture is adjusted by adding N2 or Ar until the drop becomes neutrally buoyant. The density of this mixture and thus of the drop is determined using a test mass and Archimedes principle. With appropriate care in drop preparation, management of gas above the liquid cryogen mixture to minimize icing, and regular mixing of the cryogenic mixture to prevent density stratification and phase separation, densities accurate to <0.5% of drops as small as 50 pL can readily be determined. Measurements on aqueous cryoprotectant mixtures provide insight into cryoprotectant action, and provide quantitative data to facilitate thermal contraction matching in biological cryopreservation.

  18. Exploration of dielectric relaxations of a room temperature anti-ferroelectric liquid crystal mixture

    NASA Astrophysics Data System (ADS)

    Dwivedi, Aanchal; Verma, Rohit; Dhar, R.; Dabrowski, R.

    2018-05-01

    Dielectric characterization of a technologically important room temperature anti-ferroelectric liquid crystal (AFLC) mixture has been carried out as a function of temperature and frequency. The mixture has a phase sequence of I-SmA*-SmC*-SmCA* -SmIA* -Cr. Electrical study for the planar anchoring of the molecules demonstrates seven relaxation mechanisms in various mesophases of the mixture. Dielectric spectrum of paraelectric SmA* phase exhibits a relaxation mechanism due to the tilt fluctuation of the molecules. In ferroelectric SmC* phase, Goldstone mode has been observed due to the fluctuation in azimuthal angle. In antiferroelectric SmCA*and hexatic SmIA* phases two relaxation mechanisms are observed due to bond orientation order & anti-phase fluctuation and rotation around the short axes respectively.

  19. Equations of State for Mixtures: Results from DFT Simulations of Xenon/Ethane Mixtures Compared to High Accuracy Validation Experiments on Z

    NASA Astrophysics Data System (ADS)

    Magyar, Rudolph

    2013-06-01

    We report a computational and validation study of equation of state (EOS) properties of liquid / dense plasma mixtures of xenon and ethane to explore and to illustrate the physics of the molecular scale mixing of light elements with heavy elements. Accurate EOS models are crucial to achieve high-fidelity hydrodynamics simulations of many high-energy-density phenomena such as inertial confinement fusion and strong shock waves. While the EOS is often tabulated for separate species, the equation of state for arbitrary mixtures is generally not available, requiring properties of the mixture to be approximated by combining physical properties of the pure systems. The main goal of this study is to access how accurate this approximation is under shock conditions. Density functional theory molecular dynamics (DFT-MD) at elevated-temperature and pressure is used to assess the thermodynamics of the xenon-ethane mixture. The simulations are unbiased as to elemental species and therefore provide comparable accuracy when describing total energies, pressures, and other physical properties of mixtures as they do for pure systems. In addition, we have performed shock compression experiments using the Sandia Z-accelerator on pure xenon, ethane, and various mixture ratios thereof. The Hugoniot results are compared to the DFT-MD results and the predictions of different rules for combing EOS tables. The DFT-based simulation results compare well with the experimental points, and it is found that a mixing rule based on pressure equilibration performs reliably well for the mixtures considered. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  20. Composition inversion in mixtures of binary colloids and polymer

    NASA Astrophysics Data System (ADS)

    Zhang, Isla; Pinchaipat, Rattachai; Wilding, Nigel B.; Faers, Malcolm A.; Bartlett, Paul; Evans, Robert; Royall, C. Patrick

    2018-05-01

    Understanding the phase behaviour of mixtures continues to pose challenges, even for systems that might be considered "simple." Here, we consider a very simple mixture of two colloidal and one non-adsorbing polymer species, which can be simplified even further to a size-asymmetrical binary mixture, in which the effective colloid-colloid interactions depend on the polymer concentration. We show that this basic system exhibits surprisingly rich phase behaviour. In particular, we enquire whether such a system features only a liquid-vapor phase separation (as in one-component colloid-polymer mixtures) or whether, additionally, liquid-liquid demixing of two colloidal phases can occur. Particle-resolved experiments show demixing-like behaviour, but when combined with bespoke Monte Carlo simulations, this proves illusory, and we reveal that only a single liquid-vapor transition occurs. Progressive migration of the small particles to the liquid phase as the polymer concentration increases gives rise to composition inversion—a maximum in the large particle concentration in the liquid phase. Close to criticality, the density fluctuations are found to be dominated by the larger colloids.

  1. The Phase Behavior of γ-Oryzanol and β-Sitosterol in Edible Oil.

    PubMed

    Sawalha, Hassan; Venema, Paul; Bot, Arjen; Flöter, Eckhard; Adel, Ruud den; van der Linden, Erik

    The phase behavior of binary mixtures of γ-oryzanol and β-sitosterol and ternary mixtures of γ-oryzanol and β-sitosterol in sunflower oil was studied. Binary mixtures of γ-oryzanol and β-sitosterol show double-eutectic behavior. Complex phase behavior with two intermediate mixed solid phases was derived from differential scanning calorimetry (DSC) and small-angle X-ray scattering (SAXS) data, in which a compound that consists of γ-oryzanol and β-sitosterol molecules at a specific ratio can be formed. SAXS shows that the organization of γ-oryzanol and β-sitosterol in the mixed phases is different from the structure of tubules in ternary systems. Ternary mixtures including sunflower oil do not show a sudden structural transition from the compound to a tubule, but a gradual transition occurs as γ-oryzanol and β-sitosterol are diluted in edible oil. The same behavior is observed when melting binary mixtures of γ-oryzanol and β-sitosterol at higher temperatures. This indicates the feasibility of having an organogelling agent in dynamic exchange between solid and liquid phase, which is an essential feature of triglyceride networks.

  2. Thermal shock resistance ceramic insulator

    DOEpatents

    Morgan, Chester S.; Johnson, William R.

    1980-01-01

    Thermal shock resistant cermet insulators containing 0.1-20 volume % metal present as a dispersed phase. The insulators are prepared by a process comprising the steps of (a) providing a first solid phase mixture of a ceramic powder and a metal precursor; (b) heating the first solid phase mixture above the minimum decomposition temperature of the metal precursor for no longer than 30 minutes and to a temperature sufficiently above the decomposition temperature to cause the selective decomposition of the metal precursor to the metal to provide a second solid phase mixture comprising particles of ceramic having discrete metal particles adhering to their surfaces, said metal particles having a mean diameter no more than 1/2 the mean diameter of the ceramic particles, and (c) densifying the second solid phase mixture to provide a cermet insulator having 0.1-20 volume % metal present as a dispersed phase.

  3. Physical properties of new binary antiferroelectric liquid crystal mixtures

    NASA Astrophysics Data System (ADS)

    Fitas, Jakub; Jaworska-Gołąb, Teresa; Deptuch, Aleksandra; Tykarska, Marzena; Kurp, Katarzyna; Żurowska, Magdalena; Marzec, Monika

    2018-02-01

    Three newly prepared binary mixtures exhibiting chiral tilted smectic phases have been studied using differential scanning calorimetry, dielectric spectroscopy and electro-optic method, as well as X-ray diffraction. Broad temperature range of ferroelectric and antiferroelectric phases was detected in these mixtures and temperature dependence of spontaneous polarization, tilt angle and switching time were measured for all of them. It's occurred that all of the studied mixtures are orthoconic antiferroelectric liquid crystals. Based on the X-ray diffraction results, the temperature dependence of layer thickness in the paraelectric, ferroelectric and antiferroelectric phases was found. By using dielectric spectroscopy, Goldstone mode was identified in the ferroelectric phase, while antiphase fluctuations of azimuthal angle have been found in the antiferroelectric phase. Based on the results of the complementary methods, the transition temperatures were found as well as the order of the para-ferroelectric phase transition was determined as non-continuous one with critical parameter β equal to ca. 0.25.

  4. SGC Tests for Influence of Material Composition on Compaction Characteristic of Asphalt Mixtures

    PubMed Central

    Chen, Qun

    2013-01-01

    Compaction characteristic of the surface layer asphalt mixture (13-type gradation mixture) was studied using Superpave gyratory compactor (SGC) simulative compaction tests. Based on analysis of densification curve of gyratory compaction, influence rules of the contents of mineral aggregates of all sizes and asphalt on compaction characteristic of asphalt mixtures were obtained. SGC Tests show that, for the mixture with a bigger content of asphalt, its density increases faster, that there is an optimal amount of fine aggregates for optimal compaction and that an appropriate amount of mineral powder will improve workability of mixtures, but overmuch mineral powder will make mixtures dry and hard. Conclusions based on SGC tests can provide basis for how to adjust material composition for improving compaction performance of asphalt mixtures, and for the designed asphalt mixture, its compaction performance can be predicted through these conclusions, which also contributes to the choice of compaction schemes. PMID:23818830

  5. SGC tests for influence of material composition on compaction characteristic of asphalt mixtures.

    PubMed

    Chen, Qun; Li, Yuzhi

    2013-01-01

    Compaction characteristic of the surface layer asphalt mixture (13-type gradation mixture) was studied using Superpave gyratory compactor (SGC) simulative compaction tests. Based on analysis of densification curve of gyratory compaction, influence rules of the contents of mineral aggregates of all sizes and asphalt on compaction characteristic of asphalt mixtures were obtained. SGC Tests show that, for the mixture with a bigger content of asphalt, its density increases faster, that there is an optimal amount of fine aggregates for optimal compaction and that an appropriate amount of mineral powder will improve workability of mixtures, but overmuch mineral powder will make mixtures dry and hard. Conclusions based on SGC tests can provide basis for how to adjust material composition for improving compaction performance of asphalt mixtures, and for the designed asphalt mixture, its compaction performance can be predicted through these conclusions, which also contributes to the choice of compaction schemes.

  6. A poroplastic model of structural reorganisation in porous media of biomechanical interest

    NASA Astrophysics Data System (ADS)

    Grillo, Alfio; Prohl, Raphael; Wittum, Gabriel

    2016-03-01

    We present a poroplastic model of structural reorganisation in a binary mixture comprising a solid and a fluid phase. The solid phase is the macroscopic representation of a deformable porous medium, which exemplifies the matrix of a biological system (consisting e.g. of cells, extracellular matrix, collagen fibres). The fluid occupies the interstices of the porous medium and is allowed to move throughout it. The system reorganises its internal structure in response to mechanical stimuli. Such structural reorganisation, referred to as remodelling, is described in terms of "plastic" distortions, whose evolution is assumed to obey a phenomenological flow rule driven by stress. We study the influence of remodelling on the mechanical and hydraulic behaviour of the system, showing how the plastic distortions modulate the flow pattern of the fluid, and the distributions of pressure and stress inside it. To accomplish this task, we solve a highly nonlinear set of model equations by elaborating a previously developed numerical procedure, which is implemented in a non-commercial finite element solver.

  7. Computational thermo-hydro-mechanics for freezing and thawing multiphase geological media in the finite deformation range

    NASA Astrophysics Data System (ADS)

    Sun, W.; Na, S.

    2017-12-01

    A stabilized thermo-hydro-mechanical (THM) finite element model is introduced to investigate the freeze-thaw action of frozen porous media in the finite deformation range. By applying the mixture theory, frozen soil is idealized as a composite consisting of three phases, i.e., solid grain, unfrozen water and ice crystal. A generalized hardening rule at finite strain is adopted to replicate how the elasto-plastic responses and critical state evolve under the influence of phase transitions and heat transfer. The enhanced particle interlocking and ice strengthening during the freezing processes and the thawing-induced consolidation at the geometrical nonlinear regimes are both replicated in numerical examples. The numerical issues due to lack of two-fold inf-sup condition and ill-conditioning of the system of equations are addressed. Numerical examples for engineering applications at cold region are analyzed via the proposed model to predict the impacts of changing climate on infrastructure at cold regions.

  8. 40 CFR 2.306 - Special rules governing certain information obtained under the Toxic Substances Control Act.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Definitions. For the purposes of this section: (1) Act means the Toxic Substances Control Act, 15 U.S.C. 2601... distribution (including for test marketing purposes and for use in research and development), any chemical... mixture; and toxicological, clinical, and ecological studies of a chemical substance or mixture; (B) Any...

  9. Structure of phospholipid-cholesterol membranes: an x-ray diffraction study.

    PubMed

    Karmakar, Sanat; Raghunathan, V A

    2005-06-01

    We have studied the phase behavior of mixtures of cholesterol with dipalmitoyl phosphatidylcholine (DPPC), dimyristoyl phosphatidylcholine (DMPC), and dilauroyl phosphatidylethanolamine (DLPE), using x-ray diffraction techniques. Phosphatidylcholine (PC)-cholesterol mixtures are found to exhibit a modulated phase for cholesterol concentrations around 15 mol % at temperatures below the chain melting transition. Lowering the relative humidity from 98% to 75% increases the temperature range over which it exists. An electron density map of this phase in DPPC-cholesterol mixtures, calculated from the x-ray diffraction data, shows bilayers with a periodic height modulation, as in the ripple phase observed in many PCs in between the main- and pretransitions. However, these two phases differ in many aspects, such as the dependence of the modulation wavelength on the cholesterol content and thermodynamic stability at reduced humidities. This modulated phase is found to be absent in DLPE-cholesterol mixtures. At higher cholesterol contents the gel phase does not occur in any of these three systems, and the fluid lamellar phase is observed down to the lowest temperature studied (5 degrees C).

  10. Analysis of correlation between pediatric asthma exacerbation and exposure to pollutant mixtures with association rule mining.

    PubMed

    Toti, Giulia; Vilalta, Ricardo; Lindner, Peggy; Lefer, Barry; Macias, Charles; Price, Daniel

    2016-11-01

    Traditional studies on effects of outdoor pollution on asthma have been criticized for questionable statistical validity and inefficacy in exploring the effects of multiple air pollutants, alone and in combination. Association rule mining (ARM), a method easily interpretable and suitable for the analysis of the effects of multiple exposures, could be of use, but the traditional interest metrics of support and confidence need to be substituted with metrics that focus on risk variations caused by different exposures. We present an ARM-based methodology that produces rules associated with relevant odds ratios and limits the number of final rules even at very low support levels (0.5%), thanks to post-pruning criteria that limit rule redundancy and control for statistical significance. The methodology has been applied to a case-crossover study to explore the effects of multiple air pollutants on risk of asthma in pediatric subjects. We identified 27 rules with interesting odds ratio among more than 10,000 having the required support. The only rule including only one chemical is exposure to ozone on the previous day of the reported asthma attack (OR=1.14). 26 combinatory rules highlight the limitations of air quality policies based on single pollutant thresholds and suggest that exposure to mixtures of chemicals is more harmful, with odds ratio as high as 1.54 (associated with the combination day0 SO 2 , day0 NO, day0 NO 2 , day1 PM). The proposed method can be used to analyze risk variations caused by single and multiple exposures. The method is reliable and requires fewer assumptions on the data than parametric approaches. Rules including more than one pollutant highlight interactions that deserve further investigation, while helping to limit the search field. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Thermal vacancies and phase separation in bcc mixtures of helium-3 and helium-4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fraass, Benedick Andrew

    1980-01-01

    Thermal vacancy concentrations in crystals of 3He- 4He mixtures have been determined. A new x-ray diffractometer-position sensitive detector system is used to make measurements of the absolute lattice parameter of the helium crystals with an accuracy of 300 ppM, and measurements of changes in lattice parameters to better than 60 ppM. The phase separation of the concentrated 3He- 4He mixtures has been studied in detail with the x-ray measurements. Vacancy concentrations in crystals with 99%, 51%, 28%, 12%, and 0% 3He have been determined. Phase separation has been studied in mixed crystals with concentrations of 51%, 28%, and 12% 3Hemore » and melting pressures between 3.0 and 6.1 MPa. The phase separation temperatures determined in this work are in general agreement with previous work. The pressure dependence of T c, the phase separation temperature for a 50% mixture, is found to be linear: dT c/dP = -34 mdeg/MPa. The x-ray measurements are used to make several comments on the low temperature phase diagram of the helium mixtures.« less

  12. Synthesis of highly phase pure BSCCO superconductors

    DOEpatents

    Dorris, S.E.; Poeppel, R.B.; Prorok, B.C.; Lanagan, M.T.; Maroni, V.A.

    1995-11-21

    An article and method of manufacture (Bi, Pb)-Sr-Ca-Cu-O superconductor are disclosed. The superconductor is manufactured by preparing a first powdered mixture of bismuth oxide, lead oxide, strontium carbonate, calcium carbonate and copper oxide. A second powdered mixture is then prepared of strontium carbonate, calcium carbonate and copper oxide. The mixtures are calcined separately with the two mixtures then combined. The resulting combined mixture is then subjected to a powder in tube deformation and thermal processing to produce a substantially phase pure (Bi, Pb)-Sr-Ca-Cu-O superconductor. 5 figs.

  13. Synthesis of highly phase pure BSCCO superconductors

    DOEpatents

    Dorris, Stephen E.; Poeppel, Roger B.; Prorok, Barton C.; Lanagan, Michael T.; Maroni, Victor A.

    1995-01-01

    An article and method of manufacture of (Bi, Pb)-Sr-Ca-Cu-O superconductor. The superconductor is manufactured by preparing a first powdered mixture of bismuth oxide, lead oxide, strontium carbonate, calcium carbonate and copper oxide. A second powdered mixture is then prepared of strontium carbonate, calcium carbonate and copper oxide. The mixtures are calcined separately with the two mixtures then combined. The resulting combined mixture is then subjected to a powder in tube deformation and thermal processing to produce a substantially phase pure (Bi, Pb)-Sr-Ca-Cu-O superconductor.

  14. Synthesis of highly phase pure (Bi, Pb)-Sr-Ca-Cu-O superconductor

    DOEpatents

    Dorris, Stephen E.; Poeppel, Roger B.; Prorok, Barton C.; Lanagan, Michael T.; Maroni, Victor A.

    1994-01-01

    An article and method of manufacture of (Bi,Pb)-Sr-Ca-Cu-O superconductor. The superconductor is manufactured by preparing a first powdered mixture of bismuth oxide, lead oxide, strontium carbonate, calcium carbonate and copper oxide. A second powdered mixture is then prepared of strontium carbonate, calcium carbonate and copper oxide. The mixtures are calcined separately with the two mixtures then combined. The resulting combined mixture is then subjected to a powder in tube deformation and thermal processing to produce a substantially phase pure (Bi,Pb)-Sr-Ca-Cu-O superconductor.

  15. Investigating Stage-Sequential Growth Mixture Models with Multiphase Longitudinal Data

    ERIC Educational Resources Information Center

    Kim, Su-Young; Kim, Jee-Seon

    2012-01-01

    This article investigates three types of stage-sequential growth mixture models in the structural equation modeling framework for the analysis of multiple-phase longitudinal data. These models can be important tools for situations in which a single-phase growth mixture model produces distorted results and can allow researchers to better understand…

  16. Role of Oxidative Stress in Transformation Induced by Metal Mixture

    PubMed Central

    Martín, Silva-Aguilar; Emilio, Rojas; Mahara, Valverde

    2011-01-01

    Metals are ubiquitous pollutants present as mixtures. In particular, mixture of arsenic-cadmium-lead is among the leading toxic agents detected in the environment. These metals have carcinogenic and cell-transforming potential. In this study, we used a two step cell transformation model, to determine the role of oxidative stress in transformation induced by a mixture of arsenic-cadmium-lead. Oxidative damage and antioxidant response were determined. Metal mixture treatment induces the increase of damage markers and the antioxidant response. Loss of cell viability and increased transforming potential were observed during the promotion phase. This finding correlated significantly with generation of reactive oxygen species. Cotreatment with N-acetyl-cysteine induces effect on the transforming capacity; while a diminution was found in initiation, in promotion phase a total block of the transforming capacity was observed. Our results suggest that oxidative stress generated by metal mixture plays an important role only in promotion phase promoting transforming capacity. PMID:22191014

  17. Supramolecular Phase-Selective Gelation by Peptides Bearing Side-Chain Azobenzenes: Effect of Ultrasound and Potential for Dye Removal and Oil Spill Remediation

    PubMed Central

    Bachl, Jürgen; Oehm, Stefan; Mayr, Judith; Cativiela, Carlos; Marrero-Tellado, José Juan; Díaz Díaz, David

    2015-01-01

    Phase selective gelation (PSG) of organic phases from their non-miscible mixtures with water was achieved using tetrapeptides bearing a side-chain azobenzene moiety. The presence of the chromophore allowed PSG at the same concentration as the minimum gelation concentration (MGC) necessary to obtain the gels in pure organic phases. Remarkably, the presence of the water phase during PSG did not impact the thermal, mechanical, and morphological properties of the corresponding organogels. In the case of miscible oil/water mixtures, the entire mixture was gelled, resulting in the formation of quasi-hydrogels. Importantly, PSG could be triggered at room temperature by ultrasound treatment of the mixture or by adding ultrasound-aided concentrated solution of the peptide in an oil-phase to a mixture of the same oil and water. Moreover, the PSG was not affected by the presence of salts or impurities existing in water from natural sources. The process could be scaled-up, and the oil phases (e.g., aromatic solvents, gasoline, diesel fuel) recovered almost quantitatively after a simple distillation process, which also allowed the recovery and reuse of the gelator. Finally, these peptidic gelators could be used to quantitatively remove toxic dyes from aqueous solutions. PMID:26006247

  18. Apollo experience report: The role of flight mission rules in mission preparation and conduct

    NASA Technical Reports Server (NTRS)

    Keyser, L. W.

    1974-01-01

    The development of flight mission rules from the mission development phase through the detailed mission-planning phase and through the testing and training phase is analyzed. The procedure for review of the rules and the coordination requirements for mission-rule development are presented. The application of the rules to real-time decision making is outlined, and consideration is given to the benefit of training ground controllers and flightcrews in the methods of determining the best response to a nonnominal in-flight situation for which no action has been preplanned. The Flight Mission Rules document is discussed in terms of the purpose and objective thereof and in terms of the definition, the development, and the use of mission rules.

  19. Detection of a new 'nematic-like' phase in liquid crystal-amphiphile mixture by differential scanning calorimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dan, Kaustabh, E-mail: kaustabhdan@gmail.com; Roy, Madhusudan, E-mail: kaustabhdan@gmail.com; Datta, Alokmay, E-mail: kaustabhdan@gmail.com

    2014-04-24

    Differential Scanning Calorimetry (DSC) studies on phase transitions of the pure liquid crystalline material N-4-methoxybenzylidene-4-butylaniline (MBBA) and mixtures of MBBA and the amphiphile Stearic Acid (StA) show significant changes in the behavior of mixture from pure MBBA, as regards the nematic-isotropic (N-I) transition temperature (T{sub c}) and other thermodynamic parameters like enthalpy, specific heat and activation energy with concentration of StA. In particular, the convexity of the Arrhenius plot in pure MBBA vanishes with StA concentration pointing to the formation of a new, perhaps 'nematic-like', phase in the mixtures.

  20. Widom Lines in Binary Mixtures of Supercritical Fluids.

    PubMed

    Raju, Muralikrishna; Banuti, Daniel T; Ma, Peter C; Ihme, Matthias

    2017-06-08

    Recent experiments on pure fluids have identified distinct liquid-like and gas-like regimes even under supercritical conditions. The supercritical liquid-gas transition is marked by maxima in response functions that define a line emanating from the critical point, referred to as Widom line. However, the structure of analogous state transitions in mixtures of supercritical fluids has not been determined, and it is not clear whether a Widom line can be identified for binary mixtures. Here, we present first evidence for the existence of multiple Widom lines in binary mixtures from molecular dynamics simulations. By considering mixtures of noble gases, we show that, depending on the phase behavior, mixtures transition from a liquid-like to a gas-like regime via distinctly different pathways, leading to phase relationships of surprising complexity and variety. Specifically, we show that miscible binary mixtures have behavior analogous to a pure fluid and the supercritical state space is characterized by a single liquid-gas transition. In contrast, immiscible binary mixture undergo a phase separation in which the clusters transition separately at different temperatures, resulting in multiple distinct Widom lines. The presence of this unique transition behavior emphasizes the complexity of the supercritical state to be expected in high-order mixtures of practical relevance.

  1. Device for measuring the fluid density of a two-phase mixture

    DOEpatents

    Cole, Jack H.

    1980-01-01

    A device for measuring the fluid density of a two-phase mixture flowing through a tubular member. A rotor assembly is rotatively supported within the tubular member so that it can also move axially within the tubular member. The rotor assembly is balanced against a pair of springs which exert an axial force in the opposite direction upon the rotor assembly. As a two-phase mixture flows through the tubular member it contacts the rotor assembly causing it to rotate about its axis. The rotor assembly is forced against and partially compresses the springs. Means are provided to measure the rotational speed of the rotor assembly and the linear displacement of the rotor assembly. From these measurements the fluid density of the two-phase mixture is calculated.

  2. Metal-halide mixtures for latent heat energy storage

    NASA Astrophysics Data System (ADS)

    Chen, K.; Manvi, R.

    Some candidates for alkali metal and alkali halide mixtures suitable for thermal energy storage at temperatures 600 C are identified. A solar thermal system application which offer advantages such as precipitation of salt crystals away from heat transfer surfaces, increased thermal conductivity of phase change materials, corrosion inhibition, and a constant monotectic temperature, independent of mixture concentrations. By using the lighters, metal rich phase as a heat transfer medium and the denser, salt rich phase as a phase change material for latent heat storage, undesirable solidification on the heat transfer surface may be prevented, is presented.

  3. Metal-halide mixtures for latent heat energy storage

    NASA Technical Reports Server (NTRS)

    Chen, K.; Manvi, R.

    1981-01-01

    Some candidates for alkali metal and alkali halide mixtures suitable for thermal energy storage at temperatures 600 C are identified. A solar thermal system application which offer advantages such as precipitation of salt crystals away from heat transfer surfaces, increased thermal conductivity of phase change materials, corrosion inhibition, and a constant monotectic temperature, independent of mixture concentrations. By using the lighters, metal rich phase as a heat transfer medium and the denser, salt rich phase as a phase change material for latent heat storage, undesirable solidification on the heat transfer surface may be prevented, is presented.

  4. Motility versus fluctuations in mixtures of self-motile and passive agents.

    PubMed

    Hinz, Denis F; Panchenko, Alexander; Kim, Tae-Yeon; Fried, Eliot

    2014-12-07

    Many biological systems consist of self-motile and passive agents both of which contribute to overall functionality. However, little is known about the properties of such mixtures. Here we formulate a model for mixtures of self-motile and passive agents and show that the model gives rise to three different dynamical phases: a disordered mesoturbulent phase, a polar flocking phase, and a vortical phase characterized by large-scale counter rotating vortices. We use numerical simulations to construct a phase diagram and compare the statistical properties of the different phases with observed features of self-motile bacterial suspensions. Our findings afford specific insights regarding the interaction of microorganisms and passive particles and provide novel strategic guidance for efficient technological realizations of artificial active matter.

  5. Isochoric Burn, an Internally Consistent Method for the Reactant to Product Transformation in Reactive Flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reaugh, J E; Lee, E L

    2002-07-01

    Mixture rules for partially reacted explosives differ amongst various models. For instance, JWL++ uses a partial pressure addition to compute an average zonal pressure, Ignition and Growth requires pressure equilibration and thermal equilibration of temperature dependent JWL EOSs, CHEETAH In Line RF also assumes temperature and pressure equilibration. It has been suggested in the past that a more realistic equilibration scheme should comprise isentropic pressure equilibration of the separate reacted and unreacted phases. This turns out not to be a proper path for equilibration. Rather, we find that the only internally consistent method is the evaluation of the equilibrium pressuremore » that satisfies the particular conditions of reactant and product resulting from deflagration in a fixed volume.« less

  6. Wetting phenomenon in the liquid-vapor phase coexistence of a partially miscible Lennard-Jones binary mixture

    NASA Astrophysics Data System (ADS)

    Ramírez-Santiago, Guillermo; Díaz-Herrera, Enrique; Moreno Razo, José A.

    2004-03-01

    We have carried out extensive equilibrium MD simulations to study wetting phenomena in the liquid-vapor phase coexistence of a partially miscible binary LJ mixture. We find that in the temperature range 0.60 ≤ T^* < 0.80, the system separates forming a liquid A-liquid B interface in coexistence with the vapor phase. At higher temperatures, 0.80 ≤ T^* < 1.25 the liquid phases are wet by the vapor phase. By studying the behavior of the surface tension as a function of temperature we estimate the wetting transition temperature (WTT) to be T^*_w≃ 0.80. The adsorption of molecules at the liquid-liquid interface shows a discontinuity at about T^*≃ 0.79 suggesting that the wetting transition is a first order phase transition. These results are in agreement with some experiments carried out in fluid binary mixtures. In addition, we estimated the consolute temperature to be T^* _cons≃ 1.25. The calculated phase diagram of the mixture suggest the existence of a tricritical point.

  7. Stabilizing the hexagonal close packed structure of hard spheres with polymers: Phase diagram, structure, and dynamics

    NASA Astrophysics Data System (ADS)

    Edison, John R.; Dasgupta, Tonnishtha; Dijkstra, Marjolein

    2016-08-01

    We study the phase behaviour of a binary mixture of colloidal hard spheres and freely jointed chains of beads using Monte Carlo simulations. Recently Panagiotopoulos and co-workers predicted [Nat. Commun. 5, 4472 (2014)] that the hexagonal close packed (HCP) structure of hard spheres can be stabilized in such a mixture due to the interplay between polymer and the void structure in the crystal phase. Their predictions were based on estimates of the free-energy penalty for adding a single hard polymer chain in the HCP and the competing face centered cubic (FCC) phase. Here we calculate the phase diagram using free-energy calculations of the full binary mixture and find a broad fluid-solid coexistence region and a metastable gas-liquid coexistence region. For the colloid-monomer size ratio considered in this work, we find that the HCP phase is only stable in a small window at relatively high polymer reservoir packing fractions, where the coexisting HCP phase is nearly close packed. Additionally we investigate the structure and dynamic behaviour of these mixtures.

  8. Optical and Raman microspectroscopy of nitrogen and hydrogen mixtures at high pressures

    NASA Astrophysics Data System (ADS)

    Ciezak, Jennifer; Jenkins, T.; Hemley, R.

    2009-06-01

    Extended phases of molecular solids formed from simple molecules have led to polymeric materials under extreme conditions with advanced optical, mechanical and energetic properties. Although the existence of extended phases has been demonstrated in N2, CO and CO2, recovery of the materials to ambient conditions has posed considerable difficulty. Recent molecular dynamics simulations have predicted that the addition of hydrogen to nitrogen may increase the stability of the cubic-gauche nitrogen polymer and thereby offer the possibility of synthesis at lower pressures and temperatures. Here we present optical and Raman microspectroscopy measurements performed on nitrogen and hydrogen mixtures to 85 GPa. To pressures of 30 GPa, large deviations in the internal molecular stretching modes of the mixtures relative to those of the pure material reveal unusual phase behavior. After an unusual phase separation near 35 GPa, a phase assemblage of consisting of a phase rich in both nitrogen and hydrogen, a phase of relatively amorphous nitrogen and a mixture of the two is observed. Near this pressure, Raman bands attributed to the N-N single bonded stretch were observed.

  9. Spectral density of mixtures of random density matrices for qubits

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Wang, Jiamei; Chen, Zhihua

    2018-06-01

    We derive the spectral density of the equiprobable mixture of two random density matrices of a two-level quantum system. We also work out the spectral density of mixture under the so-called quantum addition rule. We use the spectral densities to calculate the average entropy of mixtures of random density matrices, and show that the average entropy of the arithmetic-mean-state of n qubit density matrices randomly chosen from the Hilbert-Schmidt ensemble is never decreasing with the number n. We also get the exact value of the average squared fidelity. Some conjectures and open problems related to von Neumann entropy are also proposed.

  10. Mixture models for detecting differentially expressed genes in microarrays.

    PubMed

    Jones, Liat Ben-Tovim; Bean, Richard; McLachlan, Geoffrey J; Zhu, Justin Xi

    2006-10-01

    An important and common problem in microarray experiments is the detection of genes that are differentially expressed in a given number of classes. As this problem concerns the selection of significant genes from a large pool of candidate genes, it needs to be carried out within the framework of multiple hypothesis testing. In this paper, we focus on the use of mixture models to handle the multiplicity issue. With this approach, a measure of the local FDR (false discovery rate) is provided for each gene. An attractive feature of the mixture model approach is that it provides a framework for the estimation of the prior probability that a gene is not differentially expressed, and this probability can subsequently be used in forming a decision rule. The rule can also be formed to take the false negative rate into account. We apply this approach to a well-known publicly available data set on breast cancer, and discuss our findings with reference to other approaches.

  11. Immobilization of organic radioactive and non-radioactive liquid waste in a composite matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galkin, Anatoliy; Gelis, Artem V.; Castiglioni, Andrew J.

    A method for immobilizing liquid radioactive waste is provided, the method having the steps of mixing waste with polymer to form a non-liquid waste; contacting the non-liquid waste with a solidifying agent to create a mixture, heating the mixture to cause the polymer, waste, and filler to irreversibly bind in a solid phase, and compressing the solid phase into a monolith. The invention also provides a method for immobilizing liquid radioactive waste containing tritium, the method having the steps of mixing liquid waste with polymer to convert the liquid waste to a non-liquid waste, contacting the non-liquid waste with amore » solidifying agent to create a mixture, heating the mixture to form homogeneous, chemically stable solid phase, and compressing the chemically stable solid phase into a final waste form, wherein the polymer comprises approximately a 9:1 weight ratio mixture of styrene block co-polymers and cross linked co-polymers of acrylamides.« less

  12. Synthesis of highly phase pure (Bi, Pb)-Sr-Ca-Cu-O superconductor

    DOEpatents

    Dorris, S.E.; Poeppel, R.B.; Prorok, B.C.; Lanagan, M.T.; Maroni, V.A.

    1994-10-11

    An article and method of manufacture of (Bi,Pb)-Sr-Ca-Cu-O superconductor are disclosed. The superconductor is manufactured by preparing a first powdered mixture of bismuth oxide, lead oxide, strontium carbonate, calcium carbonate and copper oxide. A second powdered mixture is then prepared of strontium carbonate, calcium carbonate and copper oxide. The mixtures are calcined separately with the two mixtures then combined. The resulting combined mixture is then subjected to a powder in tube deformation and thermal processing to produce a substantially phase pure (Bi,Pb)-Sr-Ca-Cu-O superconductor. 5 figs.

  13. 21 CFR 862.2270 - Thin-layer chromatography system for clinical use.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... a mixture. The mixture of compounds is absorbed onto a stationary phase or thin layer of inert material (e.g., cellulose, alumina, etc.) and eluted off by a moving solvent (moving phase) until equilibrium occurs between the two phases. (b) Classification. Class I (general controls). The device is...

  14. Miscibility, chain packing, and hydration of 1-palmitoyl-2-oleoyl phosphatidylcholine and other lipids in surface phases.

    PubMed

    Smaby, J M; Brockman, H L

    1985-11-01

    The miscibility of 1-palmitoyl-2-oleoyl phosphatidylcholine with triolein, 1,2-diolein, 1,3-diolein, 1(3)-monoolein, oleyl alcohol, methyl oleate, oleic acid, and oleyl cyanide (18:1 lipids) was studied at the argon-water interface. The isothermal phase diagrams for the mixtures at 24 degrees were characterized by two compositional regions. At the limit of miscibility with lower mol fractions of 18:1 lipid, the surface pressure was composition-independent, but above a mixture-specific stoichiometry, surface pressure at the limit of miscibility was composition-dependent. From the two-dimensional phase rule, it was determined that at low mol fractions of 18:1 lipids, the surface consisted of phospholipid and a preferred packing array or complex of phospholipid and 18:1 lipid, whereas, above the stoichiometry of the complex, the surface phase consisted of complex and excess 18:1 lipids. In both regions of the phase diagram, mixing along the phase boundary was apparently ideal allowing application of an equation of state described earlier (J. M. Smaby and H. L. Brockman, 1984, Biochemistry, 23:3312-3316). From such analysis, apparent partial molecular areas and hydrations for phospholipid, complex, and 18:1 lipid were obtained. Comparison of these calculated parameters for the complexed and uncomplexed states shows that the aliphatic moieties behave independently of polar head group. The transition of each 18:1 chain to the complexed state involves the loss of about one interfacial water molecule and its corresponding area. For 18:1 lipids with more than one chain another two water molecules per additional chain are present in both states but contribute little to molecular area. In contrast to 18:1 lipids, the phospholipid area and hydration change little upon complexation. The uniformity of chain packing and hydration behavior among 18:1 lipid species contrasts with complex stoichiometries that vary from 0.04 to 0.65. This suggests that the stoichiometry of the preferred packing array is determined by interactions involving the more polar moieties of the 18:1 lipids and the phospholipid.

  15. Prospects for using carbon-carbon composites for EMI shielding

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    1990-01-01

    Since pyrolyzed carbon has a higher electrical conductivity than most polymers, carbon-carbon composites would be expected to have higher electromagnetic interference (EMI) shielding ability than polymeric resin composites. A rule of mixtures model of composite conductivity was used to calculate the effect on EMI shielding of substituting a pyrolyzed carbon matrix for a polymeric matrix. It was found that the improvements were small, no more than about 2 percent for the lowest conductivity fibers (ex-rayon) and less than 0.2 percent for the highest conductivity fibers (vapor grown carbon fibers). The structure of the rule of mixtures is such that the matrix conductivity would only be important in those cases where it is much higher than the fiber conductivity, as in metal matrix composites.

  16. Phases, phase equilibria, and phase rules in low-dimensional systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frolov, T., E-mail: timfrol@berkeley.edu; Mishin, Y., E-mail: ymishin@gmu.edu

    2015-07-28

    We present a unified approach to thermodynamic description of one, two, and three dimensional phases and phase transformations among them. The approach is based on a rigorous definition of a phase applicable to thermodynamic systems of any dimensionality. Within this approach, the same thermodynamic formalism can be applied for the description of phase transformations in bulk systems, interfaces, and line defects separating interface phases. For both lines and interfaces, we rigorously derive an adsorption equation, the phase coexistence equations, and other thermodynamic relations expressed in terms of generalized line and interface excess quantities. As a generalization of the Gibbs phasemore » rule for bulk phases, we derive phase rules for lines and interfaces and predict the maximum number of phases than may coexist in systems of the respective dimensionality.« less

  17. Process for radioisotope recovery and system for implementing same

    DOEpatents

    Meikrantz, David H [Idaho Falls, ID; Todd, Terry A [Aberdeen, ID; Tranter, Troy J [Idaho Falls, ID; Horwitz, E Philip [Naperville, IL

    2009-10-06

    A method of recovering daughter isotopes from a radioisotope mixture. The method comprises providing a radioisotope mixture solution comprising at least one parent isotope. The at least one parent isotope is extracted into an organic phase, which comprises an extractant and a solvent. The organic phase is substantially continuously contacted with an aqueous phase to extract at least one daughter isotope into the aqueous phase. The aqueous phase is separated from the organic phase, such as by using an annular centrifugal contactor. The at least one daughter isotope is purified from the aqueous phase, such as by ion exchange chromatography or extraction chromatography. The at least one daughter isotope may include actinium-225, radium-225, bismuth-213, or mixtures thereof. A liquid-liquid extraction system for recovering at least one daughter isotope from a source material is also disclosed.

  18. Process for radioisotope recovery and system for implementing same

    DOEpatents

    Meikrantz, David H.; Todd, Terry A.; Tranter, Troy J.; Horwitz, E. Philip

    2007-01-02

    A method of recovering daughter isotopes from a radioisotope mixture. The method comprises providing a radioisotope mixture solution comprising at least one parent isotope. The at least one parent isotope is extracted into an organic phase, which comprises an extractant and a solvent. The organic phase is substantially continuously contacted with an aqueous phase to extract at least one daughter isotope into the aqueous phase. The aqueous phase is separated from the organic phase, such as by using an annular centrifugal contactor. The at least one daughter isotope is purified from the aqueous phase, such as by ion exchange chromatography or extraction chromatography. The at least one daughter isotope may include actinium-225, radium-225, bismuth-213, or mixtures thereof. A liquid-liquid extraction system for recovering at least one daughter isotope from a source material is also disclosed.

  19. Performance comparison of three types of high-speed counter-current chromatographs for the separation of components of hydrophilic and hydrophobic color additives.

    PubMed

    Weisz, Adrian; Ito, Yoichiro

    2011-09-09

    The performance of three types of high-speed counter-current chromatography (HSCCC) instruments was assessed for their use in separating components in hydrophilic and hydrophobic dye mixtures. The HSCCC instruments compared were: (i) a J-type coil planet centrifuge (CPC) system with a conventional multilayer-coil column, (ii) a J-type CPC system with a spiral-tube assembly-coil column, and (iii) a cross-axis CPC system with a multilayer-coil column. The hydrophilic dye mixture consisted of a sample of FD&C Blue No. 2 that contained mainly two isomeric components, 5,5'- and 5,7'-disulfonated indigo, in the ratio of ∼7:1. The hydrophobic dye mixture consisted of a sample of D&C Red No. 17 (mainly Sudan III) and Sudan II in the ratio of ∼4:1. The two-phase solvent systems used for these separations were 1-butanol/1.3M HCl and hexane/acetonitrile. Each of the three instruments was used in two experiments for the hydrophilic dye mixture and two for the hydrophobic dye mixture, for a total of 12 experiments. In one set of experiments, the lower phase was used as the mobile phase, and in the second set of experiments, the upper phase was used as the mobile phase. The results suggest that: (a) use of a J-type instrument with either a multilayer-coil column or a spiral-tube assembly column, applying the lower phase as the mobile phase, is preferable for separating the hydrophilic components of FD&C Blue No. 2; and (b) use of a J-type instrument with multilayer-coil column, while applying either the upper phase or the lower phase as the mobile phase, is preferable for separating the hydrophobic dye mixture of D&C Red No. 17 and Sudan II. Published by Elsevier B.V.

  20. Phase IV Land Disposal Restrictions Rule - Clarification of Effective Dates

    EPA Pesticide Factsheets

    Memo to clarify the effective dates for the major provisions of the Phase IV rule. It is supplemental to the final rule preamble at page 28556 (“Effective Dates”) and pages 28634-5 (“State Authority”).

  1. Mixtures of charged colloid and neutral polymer: Influence of electrostatic interactions on demixing and interfacial tension

    NASA Astrophysics Data System (ADS)

    Denton, Alan R.; Schmidt, Matthias

    2005-06-01

    The equilibrium phase behavior of a binary mixture of charged colloids and neutral, nonadsorbing polymers is studied within free-volume theory. A model mixture of charged hard-sphere macroions and ideal, coarse-grained, effective-sphere polymers is mapped first onto a binary hard-sphere mixture with nonadditive diameters and then onto an effective Asakura-Oosawa model [S. Asakura and F. Oosawa, J. Chem. Phys. 22, 1255 (1954)]. The effective model is defined by a single dimensionless parameter—the ratio of the polymer diameter to the effective colloid diameter. For high salt-to-counterion concentration ratios, a free-volume approximation for the free energy is used to compute the fluid phase diagram, which describes demixing into colloid-rich (liquid) and colloid-poor (vapor) phases. Increasing the range of electrostatic interactions shifts the demixing binodal toward higher polymer concentration, stabilizing the mixture. The enhanced stability is attributed to a weakening of polymer depletion-induced attraction between electrostatically repelling macroions. Comparison with predictions of density-functional theory reveals a corresponding increase in the liquid-vapor interfacial tension. The predicted trends in phase stability are consistent with observed behavior of protein-polysaccharide mixtures in food colloids.

  2. Thermal Characterization of Lauric-Stearic Acid/Expanded Graphite Eutectic Mixture as Phase Change Materials.

    PubMed

    Zhu, Hua; Zhang, Peng; Meng, Zhaonan; Li, Ming

    2015-04-01

    The eutectic mixture of lauric acid (LA) and stearic acid (SA) is a desirable phase change material (PCM) due to the constant melting temperature and large latent heat. However, its poor thermal conductivity has hampered its broad utilization. In the present study, pure LA, SA and the mixtures with various mass fractions of LA-SA were used as the basic PCMs, and 10 wt% expanded graphite (EG) was added to enhance the thermal conductivities. The phase change behaviors, microstructural analysis, thermal conductivities and thermal stabilities of the mixtures of PCMs were investigated by differential scanning calorimetry (DSC), scanning electronic microscope (SEM), transient plane source (TPS) and thermogravimetric analysis (TGA), respectively. The results show that the LA-SA binary mixture of mixture ratio of 76.3 wt%: 23.7 wt% forms an eutectic mixture, which melts at 38.99 °C and has a latent heat of 159.94 J/g. The melted fatty acids are well absorbed by the porous network of EG and they have a good thermal stability. Furthermore, poor thermal conductivities can be well enhanced by the addition of EG.

  3. Opposed-Flow Flame Spread Across Propanol Pools: Effect of Liquid Fuel Depth

    NASA Technical Reports Server (NTRS)

    Kim, Inchul; Sirignano, William A.

    1999-01-01

    This computational study examines the effect of liquid fuel depth on flame spread across propanol pools with and without forced, opposed air flow. The initial pool temperature is below its closed- cup flash point temperature T(sub cc); so the liquid fuel must be heated sufficiently to create a combustible mixture of fuel vapor before ignition and flame spread can occur. Furthermore, in order for the flame to spread, an approximate rule is that the liquid fuel surface temperature ahead of the flame must be heated above T(sub cc) so that a flammable mixture just above the lean limit exists ahead of the flame. The depth of a liquid fuel pool would affect the heating of the liquid fuel pool and thus the liquid fuel surface temperature ahead of the flame. It has been observed experimentally and numerically that, at normal gravity without forced gas-phase flow and with the initial pool temperature T(sub 0) in a range well below T(sub cc), the flame periodically accelerates and decelerates (pulsates) as it propagates. The depth of a liquid fuel pool would change this range of T(sub 0) since it would affect the heating of the pool.

  4. Quantifying the effects of tempering on individual phase properties of DP980 steel with nanoindentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, G.; Zhang, F.; Ruimi, A.

    2016-06-01

    We conduct a series of thermal and mechanical testing on a commercial dual phase (DP) 980 steel in order to quantify the effects of tempering on its individual phase properties. Tempering treatment is conducted at 250 °C and 400 °C for 60 minutes each. Ferrite and martensite grains are distinguished using electron backscatter diffraction (EBSD) and scanning probe microscopy (SPM), and the martensite volume fractions (MVF) are determined based on the image quality (IQ) map. Multi-scale indentation tests combined with a newly developed inverse method are used to obtain the individual phase flow properties in each tempered DP980 sample. Themore » results show that, i) tempering significantly reduces martensite yield strength, while it only slightly reduces the ferrite yield strength; ii) tempering temperature has a more significant influence on the work hardening exponent of ferrite than that of martensite; iii) the elastic modulus of martensite is consistently higher than that of ferrite. As a validation, a simple rule of mixtures is used to verify the above-predicted individual phase flow stresses with the experimentally obtained overall true stress vs. true strain curves. The methodology and the corresponding results shown in this study can help guide the selection of tempering parameters in optimizing the mechanical properties of DP steels for their intended applications.« less

  5. Radiolytic hydrogen generation at silicon carbide-water interfaces

    NASA Astrophysics Data System (ADS)

    Schofield, Jennifer; Reiff, Sarah C.; Pimblott, Simon M.; LaVerne, Jay A.

    2016-02-01

    While many of the proposed uses of SiC in the nuclear industry involve systems that are assumed to be dry, almost all materials have dissociated chemisorbed water associated with their surface, which can undergo chemistry in radiation fields. Silicon carbide α-phase and β-phase nanoparticles with water were irradiated with γ-rays and 5 MeV 4He ions followed by the determination of the production of molecular hydrogen, H2, and characterization of changes in the particle surface. The yields of H2 from SiC-water slurries were always greater than expected from a simple mixture rule indicating that the presence of SiC was influencing the production of H2 from water, probably through an energy transfer from the solid to liquid phase. Although the increase in H2 yields was modest, a decrease in the water mass percentage led to an increase in H2 yields, especially for very low amounts of water. Surface analysis techniques included diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), nitrogen absorption with the Brunauer - Emmett - Teller (BET) methodology for surface area determination, X-ray diffraction (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). Little change in the SiC surface was observed following radiolysis except for some conversion of β-phase SiC to the α-phase and the formation of SiO2 with He ion radiolysis.

  6. Mechanical and electro-optical properties of unconventional liquid crystal systems

    NASA Astrophysics Data System (ADS)

    Liao, Guangxun

    Four types of unconventional liquid crystal systems - amphotropic glycolipids; novel bent-core liquid crystals, bent-core liquid crystal and glycolipid mixtures, and colloidal crystal-liquid crystal systems - were studied and characterized by polarizing microscopy, electrical current, digital scanning calorimetry, and dielectric spectroscopy. Thermotropic properties of glycolipids show a number of unusual properties, most notably high (60-120) relative dielectric constants mainly proportional to the number of polar sugar heads. The relaxation of this dielectric mode is found to be governed by the hydrogen bonding between sugar heads. Studies on novel bent-core liquid crystals reveal a new optically isotropic ferroelectric phase, molecular chirality-induced polarity, and transitions between molecular chirality and polarity driven phases. Mixtures of several bent-core substances with nematic, polar SmA and SmC phases, and a simple amphiphilic sugar lipid with SmA mesophase found to obey the well known miscibility rules, i.e. the sugar lipid mixes best with the polar SmA bent-core material. In addition, the chiral sugar lipid was found to induce tilt to the non-tilted polar SmA phase, which represents a new direction among the chirality--polarity--tilt relations. The effects of the surface properties and electric fields were studied on various colloid particles--and liquid crystal systems. It is found that the surface properties (hydrophobicity, roughness, rubbing) of the substrates are important in determining the size and symmetry of colloidal crystals. The director field of the liquid crystal infiltrated in the colloid crystals can be rendered both random and uniform along one of the crystallographic axis. We present the first observations of DC electric-field-induced rotational and translational motion of finite particles in liquid crystals. The electrorotation is essentially identical to the well - known Quincke rotation, which in liquid crystals triggers an additional translational motion at higher fields. Analysis of the electro-rotation and translations provides new ways to probe local rheological properties of liquid crystals.

  7. Performance Evaluation and Improving Mechanisms of Diatomite-Modified Asphalt Mixture

    PubMed Central

    Yang, Chao; Xie, Jun; Zhou, Xiaojun; Liu, Quantao; Pang, Ling

    2018-01-01

    Diatomite is an inorganic natural resource in large reserve. This study consists of two phases to evaluate the effects of diatomite on asphalt mixtures. In the first phase, we characterized the diatomite in terms of mineralogical properties, chemical compositions, particle size distribution, mesoporous distribution, morphology, and IR spectra. In the second phase, road performances, referring to the permanent deformation, crack, fatigue, and moisture resistance, of asphalt mixtures with diatomite were investigated. The characterization of diatomite exhibits that it is a porous material with high SiO2 content and large specific surface area. It contributes to asphalt absorption and therefore leads to bonding enhancement between asphalt and aggregate. However, physical absorption instead of chemical reaction occurs according to the results of FTIR. The resistance of asphalt mixtures with diatomite to permanent deformation and moisture are superior to those of the control mixtures. But, the addition of diatomite does not help to improve the crack and fatigue resistance of asphalt mixture. PMID:29702579

  8. Performance Evaluation and Improving Mechanisms of Diatomite-Modified Asphalt Mixture.

    PubMed

    Yang, Chao; Xie, Jun; Zhou, Xiaojun; Liu, Quantao; Pang, Ling

    2018-04-27

    Diatomite is an inorganic natural resource in large reserve. This study consists of two phases to evaluate the effects of diatomite on asphalt mixtures. In the first phase, we characterized the diatomite in terms of mineralogical properties, chemical compositions, particle size distribution, mesoporous distribution, morphology, and IR spectra. In the second phase, road performances, referring to the permanent deformation, crack, fatigue, and moisture resistance, of asphalt mixtures with diatomite were investigated. The characterization of diatomite exhibits that it is a porous material with high SiO₂ content and large specific surface area. It contributes to asphalt absorption and therefore leads to bonding enhancement between asphalt and aggregate. However, physical absorption instead of chemical reaction occurs according to the results of FTIR. The resistance of asphalt mixtures with diatomite to permanent deformation and moisture are superior to those of the control mixtures. But, the addition of diatomite does not help to improve the crack and fatigue resistance of asphalt mixture.

  9. Pairing of one-dimensional Bose-Fermi mixtures with unequal masses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rizzi, Matteo; Max Planck Institut fuer QuantenOptik, Hans Kopfermann Strasse 1, D-85748 Garching; Imambekov, Adilet

    We have considered one-dimensional Bose-Fermi mixture with equal densities and unequal masses using numerical density matrix renormalization group. For the mass ratio of K-Rb mixture and attraction between bosons and fermions, we determined the phase diagram. For weak boson-boson interactions, there is a direct transition between two-component Luttinger liquid and collapsed phases as the boson-fermion attraction is increased. For strong enough boson-boson interactions, we find an intermediate 'paired' phase, which is a single-component Luttinger liquid of composite particles. We investigated correlation functions of such a 'paired' phase, studied the stability of 'paired' phase to density imbalance, and discussed various experimentalmore » techniques which can be used to detect it.« less

  10. Blue phase liquid crystal phase transition for cyano compound chiral nematic liquid crystal mixtures with three two-ring core structures and chiral dopant concentrations

    NASA Astrophysics Data System (ADS)

    Shin, Jaesun; Kim, Beomjong; Jung, Wansu; Fahad, Mateen; Park, SangJin; Hong, Sung-Kyu

    2017-05-01

    Blue phase (BP) temperature range of a chiral nematic liquid crystal (LC) mixture is dependent upon the host nematic LC chemical structure and chiral dopant concentration. In this study, we investigated BP phase transition behaviour and helical twisting power (HTP) using three chiral dopant concentrations of cyano compound chiral nematic LC mixtures incorporating three two-ring core structures in the host nematic LCs. The effect of the host nematic LC core structure, HTP and chiral dopant concentrations were considered on BP temperature ranges, for two types of complete BPI and BPII without isotropic phase (Iso) and two types of coexistence state of BPI+Iso and BPII+Iso.

  11. Separating Dust Mixtures and Other External Aerosol Mixtures Using Airborne High Spectral Resolution Lidar Data

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Ferrare, R. A.; Vaughan, M.; Hostetler, C. A.; Rogers, R. R.; Hair, J. W.; Cook, A. L.; Harper, D. B.

    2013-12-01

    Knowledge of aerosol type is important for source attribution and for determining the magnitude and assessing the consequences of aerosol radiative forcing. The NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL-1) has acquired considerable datasets of both aerosol extensive parameters (e.g. aerosol optical depth) and intensive parameters (e.g. aerosol depolarization ratio, lidar ratio) that can be used to infer aerosol type. An aerosol classification methodology has been used extensively to classify HSRL-1 aerosol measurements of different aerosol types including dust, smoke, urban pollution, and marine aerosol. However, atmospheric aerosol is frequently not a single pure type, but instead occurs as a mixture of types, and this mixing affects the optical and radiative properties of the aerosol. Here we present a comprehensive and unified set of rules for characterizing external mixtures using several key aerosol intensive parameters: extinction-to-backscatter ratio (i.e. lidar ratio), backscatter color ratio, and depolarization ratio. Our mixing rules apply not just to the scalar values of aerosol intensive parameters, but to multi-dimensional normal distributions with variance in each measurement dimension. We illustrate the applicability of the mixing rules using examples of HSRL-1 data where mixing occurred between different aerosol types, including advected Saharan dust mixed with the marine boundary layer in the Caribbean Sea and locally generated dust mixed with urban pollution in the Mexico City surroundings. For each of these cases we infer a time-height cross section of mixing ratio along the flight track and we partition aerosol extinction into portions attributed to the two pure types. Since multiple aerosol intensive parameters are measured and included in these calculations, the techniques can also be used for cases without significant depolarization (unlike similar work by earlier researchers), and so a third example of a mixture of smoke plus marine aerosol is also explored.

  12. Process for treating fission waste

    DOEpatents

    Rohrmann, Charles A.; Wick, Oswald J.

    1983-01-01

    A method is described for the treatment of fission waste. A glass forming agent, a metal oxide, and a reducing agent are mixed with the fission waste and the mixture is heated. After melting, the mixture separates into a glass phase and a metal phase. The glass phase may be used to safely store the fission waste, while the metal phase contains noble metals recovered from the fission waste.

  13. Concurrence and fidelity of a Bose-Fermi mixture in a one-dimensional optical lattice.

    PubMed

    Ning, Wen-Qiang; Gu, Shi-Jian; Chen, Yu-Guang; Wu, Chang-Qin; Lin, Hai-Qing

    2008-06-11

    We study the ground-state fidelity and entanglement of a Bose-Fermi mixture loaded in a one-dimensional optical lattice. It is found that the fidelity is able to signal quantum phase transitions between the Luttinger liquid phase, the density-wave phase, and the phase separation state of the system, and the concurrence, as a measure of the entanglement, can be used to signal the transition between the density-wave phase and the Ising phase.

  14. Differential Activity-Driven Instabilities in Biphasic Active Matter

    NASA Astrophysics Data System (ADS)

    Weber, Christoph A.; Rycroft, Chris H.; Mahadevan, L.

    2018-06-01

    Active stresses can cause instabilities in contractile gels and living tissues. Here we provide a generic hydrodynamic theory that treats these systems as a mixture of two phases of varying activity and different mechanical properties. We find that differential activity between the phases causes a uniform mixture to undergo a demixing instability. We follow the nonlinear evolution of the instability and characterize a phase diagram of the resulting patterns. Our study complements other instability mechanisms in mixtures driven by differential adhesion, differential diffusion, differential growth, and differential motion.

  15. Kinetics of Cr/Mo-rich precipitates formation for 25Cr-6.9Ni-3.8Mo-0.3N super duplex stainless steel

    NASA Astrophysics Data System (ADS)

    Byun, Sang-Ho; Kang, Namhyun; Lee, Tae-Ho; Ahn, Sang-Kon; Lee, Hae Woo; Chang, Woong-Seong; Cho, Kyung-Mox

    2012-04-01

    The amount and composition of Cr-rich (σ) and Mo-rich (χ) precipitates in super duplex stainless steels was analyzed. An isothermal heat treatment was conducted at temperatures ranging from 700 °C to 1000 °C for up to 10 days. A time-temperature transformation (TTT) diagram was constructed for the mixture of σ and χ phases. The mixture of the σ and χ phases exhibited the fastest rate of formation at approximately 900 °C. Minor phases, such as Cr2N, M23C6, and M7C3, were also detected using a transmission electron microscopy (TEM). Also, a continuous cooling transformation (CCT) diagram was constructed for the mixture of σ and χ phases using the Johnson-Mehl-Avrami equation. Compared with the known CCT diagram of the σ phase, this study revealed faster kinetics with an order of magnitude difference and a new CCT diagram was also developed for a mixture of σ and χ phases. The calculated fraction of σ and χ phases obtained at a cooling speed of 0.5 °C/s was in good agreement with the experimental data.

  16. The calculation of the phase equilibrium of the multicomponent hydrocarbon systems

    NASA Astrophysics Data System (ADS)

    Molchanov, D. A.

    2018-01-01

    Hydrocarbon mixtures filtration process simulation development has resulted in use of cubic equations of state of the van der Waals type to describe the thermodynamic properties of natural fluids under real thermobaric conditions. Binary hydrocarbon systems allow to simulate the fluids of different types of reservoirs qualitatively, what makes it possible to carry out the experimental study of their filtration features. Exploitation of gas-condensate reservoirs shows the possibility of existence of various two-phase filtration regimes, including self-oscillatory one, which occurs under certain values of mixture composition, temperature and pressure drop. Plotting of the phase diagram of the model mixture is required to determine these values. A software package to calculate the vapor-liquid equilibrium of binary systems using cubic equation of state of the van der Waals type has been created. Phase diagrams of gas-condensate model mixtures have been calculated.

  17. 45 CFR 162.1203 - Operating rules for eligibility for a health plan transaction.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... plan transaction: (1) Phase I CORE 152: Eligibility and Benefit Real Time Companion Guide Rule, version... § 162.920). (5) Phase I CORE 156: Eligibility and Benefits Real Time Response Rule, version 1.1.0, March... 45 Public Welfare 1 2011-10-01 2011-10-01 false Operating rules for eligibility for a health plan...

  18. 45 CFR 162.1203 - Operating rules for eligibility for a health plan transaction.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... plan transaction: (1) Phase I CORE 152: Eligibility and Benefit Real Time Companion Guide Rule, version... § 162.920). (5) Phase I CORE 156: Eligibility and Benefits Real Time Response Rule, version 1.1.0, March... 45 Public Welfare 1 2013-10-01 2013-10-01 false Operating rules for eligibility for a health plan...

  19. 45 CFR 162.1203 - Operating rules for eligibility for a health plan transaction.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... plan transaction: (1) Phase I CORE 152: Eligibility and Benefit Real Time Companion Guide Rule, version... § 162.920). (5) Phase I CORE 156: Eligibility and Benefits Real Time Response Rule, version 1.1.0, March... 45 Public Welfare 1 2014-10-01 2014-10-01 false Operating rules for eligibility for a health plan...

  20. 45 CFR 162.1203 - Operating rules for eligibility for a health plan transaction.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... plan transaction: (1) Phase I CORE 152: Eligibility and Benefit Real Time Companion Guide Rule, version... § 162.920). (5) Phase I CORE 156: Eligibility and Benefits Real Time Response Rule, version 1.1.0, March... 45 Public Welfare 1 2012-10-01 2012-10-01 false Operating rules for eligibility for a health plan...

  1. 77 FR 41837 - Self-Regulatory Organizations; National Securities Clearing Corporation; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-16

    ... rule change is to align the fees associated with NSCC's Mutual Fund Profile Service, Phases I and II... Substance of the Proposed Rule Change The proposed rule change aligns the fees associated with NSCC's Mutual Fund Profile Service, Phases I and II, as set forth in NSCC's fee schedule (Addendum A of NSCC's Rules...

  2. Communication: From close-packed to topologically close-packed: Formation of Laves phases in moderately polydisperse hard-sphere mixtures

    NASA Astrophysics Data System (ADS)

    Lindquist, Beth A.; Jadrich, Ryan B.; Truskett, Thomas M.

    2018-05-01

    Particle size polydispersity can help to inhibit crystallization of the hard-sphere fluid into close-packed structures at high packing fractions and thus is often employed to create model glass-forming systems. Nonetheless, it is known that hard-sphere mixtures with modest polydispersity still have ordered ground states. Here, we demonstrate by computer simulation that hard-sphere mixtures with increased polydispersity fractionate on the basis of particle size and a bimodal subpopulation favors the formation of topologically close-packed C14 and C15 Laves phases in coexistence with a disordered phase. The generality of this result is supported by simulations of hard-sphere mixtures with particle-size distributions of four different forms.

  3. Ionic liquid/water mixtures: from hostility to conciliation.

    PubMed

    Kohno, Yuki; Ohno, Hiroyuki

    2012-07-21

    Water was originally inimical to ionic liquids (ILs) especially in the analysis of their detailed properties. Various data on the properties of ILs indicate that there are two ways to design functions of ionic liquids. The first is to change the structure of component ions, to provide "task-specific ILs". The second is to mix ILs with other components, such as other ILs, organic solvents or water. Mixing makes it easy to control the properties of the solution. In this strategy, water is now a very important partner. Below, we summarise our recent results on the properties of IL/water mixtures. Stable phase separation is an effective method in some separation processes. Conversely, a dynamic phase change between a homogeneous mixture and separation of phases is important in many fields. Analysis of the relation between phase behaviour and the hydration state of the component ions indicates that the pattern of phase separation is governed by the hydrophilicity of the ions. Sufficiently hydrophilic ions yielded ILs that are miscible with water, and hydrophobic ions gave stable phase separation with water. ILs composed of hydrophobic but hydrated ions undergo a dynamic phase change between a homogeneous mixture and separate phases according to temperature. ILs having more than seven water molecules per ion pair undergo this phase transition. These dynamic phase changes are considered, with some examples, and application is made to the separation of water-soluble proteins.

  4. Stability of smectic phases in hard-rod mixtures

    NASA Astrophysics Data System (ADS)

    Martínez-Ratón, Yuri; Velasco, Enrique; Mederos, Luis

    2005-09-01

    Using density-functional theory, we have analyzed the phase behavior of binary mixtures of hard rods of different lengths and diameters. Previous studies have shown a strong tendency of smectic phases of these mixtures to segregate and, in some circumstances, to form microsegregated phases. Our focus in the present work is on the formation of columnar phases which some studies, under some approximations, have shown to become thermodynamically stable prior to crystallization. Specifically we focus on the relative stability between smectic and columnar phases, a question not fully addressed in previous work. Our analysis is based on two complementary perspectives: on the one hand, an extended Onsager theory, which includes the full orientational degrees of freedom but with spatial and orientational correlations being treated in an approximate manner; on the other hand, we formulate a Zwanzig approximation of fundamental-measure theory on hard parallelepipeds, whereby orientations are restricted to be only along three mutually orthogonal axes, but correlations are faithfully represented. In the latter case novel, complete phase diagrams containing regions of stability of liquid-crystalline phases are calculated. Our findings indicate that the restricted-orientation approximation enhances the stability of columnar phases so as to preempt smectic order completely while, in the framework of the extended Onsager model, with full orientational degrees of freedom taken into account, columnar phases may preempt a large region of smectic stability in some mixtures, but some smectic order still persists.

  5. Dependence on sphere size of the phase behavior of mixtures of rods and spheres

    NASA Astrophysics Data System (ADS)

    Urakami, Naohito; Imai, Masayuki

    2003-07-01

    By the addition of chondroitin sulfate (Chs) to the aqueous suspension of tobacco mosaic virus (TMV), the aggregation of TMV occurs at very dilute TMV concentration compared with the addition of polyethylene oxide (PEO). The difference of physical behavior between Chs and PEO is the chain conformation in solution. The Chs chain has a semirigid nature, whereas the PEO chain has a flexible nature. In this study, the Chs and PEO chains are simplified to spherical particles having different size, and we use the spherocylinder model for TMV particle. The effect of the sphere size on the phase behaviors in the mixtures of rods and spheres is investigated by Monte Carlo simulations. By the addition of small spheres, the system transforms from the miscible isotropic phase to the miscible nematic phase. On the other hand, by the addition of large spheres, the system changes from the miscible isotropic phase to the immiscible nematic phase through the immiscible isotropic phase. The different phase behaviors between the small and the large spheres originate from the difference of overlapping volume of the depletion zone. In addition, we perform the Monte Carlo simulations in the case that semirigid chains are used as the Chs chain models. The same phase behaviors are observed as the mixtures of rods and large spheres. Thus the sphere model captures the phase behaviors of rod and polymer mixture systems.

  6. Mechanisms of rule acquisition and rule following in inductive reasoning.

    PubMed

    Crescentini, Cristiano; Seyed-Allaei, Shima; De Pisapia, Nicola; Jovicich, Jorge; Amati, Daniele; Shallice, Tim

    2011-05-25

    Despite the recent interest in the neuroanatomy of inductive reasoning processes, the regional specificity within prefrontal cortex (PFC) for the different mechanisms involved in induction tasks remains to be determined. In this study, we used fMRI to investigate the contribution of PFC regions to rule acquisition (rule search and rule discovery) and rule following. Twenty-six healthy young adult participants were presented with a series of images of cards, each consisting of a set of circles numbered in sequence with one colored blue. Participants had to predict the position of the blue circle on the next card. The rules that had to be acquired pertained to the relationship among succeeding stimuli. Responses given by subjects were categorized in a series of phases either tapping rule acquisition (responses given up to and including rule discovery) or rule following (correct responses after rule acquisition). Mid-dorsolateral PFC (mid-DLPFC) was active during rule search and remained active until successful rule acquisition. By contrast, rule following was associated with activation in temporal, motor, and medial/anterior prefrontal cortex. Moreover, frontopolar cortex (FPC) was active throughout the rule acquisition and rule following phases before a rule became familiar. We attributed activation in mid-DLPFC to hypothesis generation and in FPC to integration of multiple separate inferences. The present study provides evidence that brain activation during inductive reasoning involves a complex network of frontal processes and that different subregions respond during rule acquisition and rule following phases.

  7. A theory for the phase behavior of mixtures of active particles.

    PubMed

    Takatori, Sho C; Brady, John F

    2015-10-28

    Systems at equilibrium like molecular or colloidal suspensions have a well-defined thermal energy kBT that quantifies the particles' kinetic energy and gauges how "hot" or "cold" the system is. For systems far from equilibrium, such as active matter, it is unclear whether the concept of a "temperature" exists and whether self-propelled entities are capable of thermally equilibrating like passive Brownian suspensions. Here we develop a simple mechanical theory to study the phase behavior and "temperature" of a mixture of self-propelled particles. A mixture of active swimmers and passive Brownian particles is an ideal system for discovery of the temperature of active matter and the quantities that get shared upon particle collisions. We derive an explicit equation of state for the active/passive mixture to compute a phase diagram and to generalize thermodynamic concepts like the chemical potential and free energy for a mixture of nonequilibrium species. We find that different stability criteria predict in general different phase boundaries, facilitating considerations in simulations and experiments about which ensemble of variables are held fixed and varied.

  8. Determination of the combustion behavior for pure components and mixtures using a 20-liter sphere

    NASA Astrophysics Data System (ADS)

    Mashuga, Chad Victor

    1999-11-01

    The safest method to prevent fires and explosions of flammable vapors is to prevent the existence of flammable mixtures in the first place. This methodology requires detailed knowledge of the flammability region as a function of the fuel, oxygen, and nitrogen concentrations. A triangular flammability diagram is the most useful tool to display the flammability region, and to determine if a flammable mixture is present during plant operations. An automated apparatus for assessing the flammability region and for determining the potential effect of confined fuel-air explosions is described. Data derived from the apparatus included the limits of combustion, maximum combustion pressure, and the deflagration index, or KG. Accurate measurement of these parameters can be influenced by numerous experimental conditions, including igniter energy, humidity and gas composition. Gas humidity had a substantial effect on the deflagration index, but had little effect on the maximum combustion pressure. Small changes in gas compositions had a greater effect on the deflagration index than the maximum combustion pressure. Both the deflagration indices and the maximum combustion pressure proved insensitive to the range of igniter energies examined. Estimation of flammability limits using a calculated adiabatic flame temperature (CAFT) method is demonstrated. The CAFT model is compared with the extensive experimental data from this work for methane, ethylene and a 50/50 mixture of methane and ethylene. The CAFT model compares well to methane and ethylene throughout the flammability zone when using a 1200K threshold temperature. Deviations between the method and the experimental data occurs in the fuel rich region. For the 50/50 fuel mixture the CAFT deviates only in the fuel rich region---the inclusion of carbonaceous soot as one of the equilibrium products improved the fit. Determination of burning velocities from a spherical flame model utilizing the extensive pressure---time data was also completed. The burning velocities determined compare well to other investigators using this method. The data collected for the methane/ethylene mixture was used to evaluate mixing rules for the flammability limits, maximum combustion pressure, deflagration index, and burning velocity. These rules attempt to predict the behavior of fuel mixtures from pure component data. Le Chatelier's law and averaging both work well for predicting the flammability boundary in the fuel lean region and for mixtures of inerted fuel and air. Both methods underestimate the flammability boundary in the fuel rich region. For a mixture of methane and ethylene, we were unable to identify mixing rules for estimating the maximum combustion pressure and the burning velocity from pure component data. Averaging the deflagration indices for fuel air mixtures did provide a adequate estimation of the mixture behavior. Le Chatelier's method overestimated the maximum deflagration index in air but provided a satisfactory estimation in the extreme fuel lean and rich regions.

  9. Statistics of wormlike chains. II. Phase transition of polymer liquid crystals and its mixture with low molecular weight liquid crystals

    NASA Astrophysics Data System (ADS)

    Zhang, W. X.; Zhao, S. R.; Sun, C. P.

    1997-02-01

    A general self-consistent field (SCF) for the mixture of polymer and low molecular weight (LMW) molecules has been derived by variation principle. Considering a Maier-Saupe type of interaction, the analytical expressions of the SCF for polymer liquid crystals (PLCs) and the mixture of PLCs and LMW liquid crystals are obtained, from which the phase behaviors of PLCs as well as the mixture are studied. The theoretical results are in agreement with experimental results by adjusting a parameter.

  10. Process for treating fission waste. [Patent application

    DOEpatents

    Rohrmann, C.A.; Wick, O.J.

    1981-11-17

    A method is described for the treatment of fission waste. A glass forming agent, a metal oxide, and a reducing agent are mixed with the fission waste and the mixture is heated. After melting, the mixture separates into a glass phase and a metal phase. The glass phase may be used to safely store the fission waste, while the metal phase contains noble metals recovered from the fission waste.

  11. A Review and Evaluation of the Phase Equilibria, Liquid-Phase Heats of Mixing and Excess Volumes, and Gas-Phase PVT Measurements for Nitrogen+Methane

    NASA Astrophysics Data System (ADS)

    Kidnay, A. J.; Miller, R. C.; Sloan, E. D.; Hiza, M. J.

    1985-07-01

    The available experimental data for vapor-liquid equilibria, heat of mixing, change in volume on mixing for liquid mixtures, and gas-phase PVT measurements for nitrogen+methane have been reviewed and where possible evaluated for consistency. The derived properties chosen for analysis and correlation were liquid mixture excess Gibbs free energies, and Henry's constants.

  12. Amide-induced phase separation of hexafluoroisopropanol-water mixtures depending on the hydrophobicity of amides.

    PubMed

    Takamuku, Toshiyuki; Wada, Hiroshi; Kawatoko, Chiemi; Shimomura, Takuya; Kanzaki, Ryo; Takeuchi, Munetaka

    2012-06-21

    Amide-induced phase separation of hexafluoro-2-propanol (HFIP)-water mixtures has been investigated to elucidate solvation properties of the mixtures by means of small-angle neutron scattering (SANS), (1)H and (13)C NMR, and molecular dynamics (MD) simulation. The amides included N-methylformamide (NMF), N-methylacetamide (NMA), and N-methylpropionamide (NMP). The phase diagrams of amide-HFIP-water ternary systems at 298 K showed that phase separation occurs in a closed-loop area of compositions as well as an N,N-dimethylformamide (DMF) system previously reported. The phase separation area becomes wider as the hydrophobicity of amides increases in the order of NMF < NMA < DMF < NMP. Thus, the evolution of HFIP clusters around amides due to the hydrophobic interaction gives rise to phase separation of the mixtures. In contrast, the disruption of HFIP clusters causes the recovery of the homogeneity of the ternary systems. The present results showed that HFIP clusters are evolved with increasing amide content to the lower phase separation concentration in the same mechanism among the four amide systems. However, the disruption of HFIP clusters in the NMP and DMF systems with further increasing amide content to the upper phase separation concentration occurs in a different way from those in the NMF and NMA systems.

  13. Microphase Separation in Oil-Water Mixtures Containing Hydrophilic and Hydrophobic Ions

    NASA Astrophysics Data System (ADS)

    Tasios, Nikos; Samin, Sela; van Roij, René; Dijkstra, Marjolein

    2017-11-01

    We develop a lattice-based Monte Carlo simulation method for charged mixtures capable of treating dielectric heterogeneities. Using this method, we study oil-water mixtures containing an antagonistic salt, with hydrophilic cations and hydrophobic anions. Our simulations reveal several phases with a spatially modulated solvent composition, in which the ions partition between water-rich and water-poor regions according to their affinity. In addition to the recently observed lamellar phase, we find tubular and droplet phases, reminiscent of those found in block copolymers and surfactant systems. Interestingly, these structures stem from ion-mediated interactions, which allows for tuning of the phase behavior via the concentrations, the ionic properties, and the temperature.

  14. Study of the physical properties of a mesogenic mixture showing induced smectic A(d) phase by refractive index, density and x-ray diffraction measurements.

    PubMed

    Roy, P D; Prasad, A; Das, M K

    2009-02-18

    The binary mixture of 4-n-pentyl phenyl 4-n'-hexyloxy benzoate (ME6O.5) and p-cyanophenyl trans-4-pentyl cyclohexane carboxylate (CPPCC) shows the presence of an induced smectic A(d) phase in a certain concentration range 0.030.33, whereas there is a discontinuity in these values for mixtures with x<0.33, consistent with the density and transition entropy measurements done on this system. The orientational order parameter, measured from x-ray diffraction studies, are somewhat smaller than those obtained from refractive index measurement in the induced smectic phase for all the mixtures. In the smectic phase, the OOP values initially increases with molar concentration up to x = 0.24 and then decreases showing a broad minima around x = 0.4. The variation of layer thickness in the induced smectic phase with composition has been explained by assuming the formation of homo- and heterodimers. We conclude that the possible packing of molecules in the induced smectic A(d) phase stabilizes the layers but increases the orientational free volume, consistent with the lower orientational order parameter.

  15. Microstructure of Mixed Surfactant Solutions by Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Naranjo, Edward

    1995-01-01

    Surfactant mixtures add a new dimension to the design of complex fluid microstructure. By combining different surfactants it is not only possible to modify aggregate morphology and control the macrascopic properties of colloidal dispersions but also to produce a variety of novel synergistic phases. Mixed systems produce new microstructures by altering the intermolecular and interaggregate forces in ways impossible for single component systems. In this dissertation, we report on the phase behavior and microstructure of several synthetic and biological surfactant mixtures as elucidated by freeze-fracture and cryo-transmission electron microscopy. We have discovered that stable, spontaneous unilamellar vesicles can be prepared from aqueous mixtures of commercially available single-tailed cationic and anionic surfactants. Vesicle stability is determined by the length and volume of the hydrocarbon chains of the "catanionic" pairs. Mixtures containing bulky or branched surfactant pairs (C _{16}/C_{12 -14}) in water produce defect-free fairly monodisperse equilibrium vesicles at high dilution. In contrast, mixtures of catanionic surfactants with highly asymmetric tails (C_{16}/C_8 ) form phases of porous vesicles, dilute lamellar L_{alpha}, and anomalous isotropic L_3 phases. Images of the microstructure by freeze-fracture microscopy show that the L_3 phase consists of multiconnected self-avoiding bilayers with saddle shaped curvature. The forces between bilayers of vesicle-forming cationic and anionic surfactant mixtures were also measured using the Surface Force Apparatus (SFA). We find that the vesicles are stabilized by a long range electrostatic repulsion at large separations (>20 A) and an additional salt-independent repulsive force below 20 A. The measured forces correlate very well with the ternary phase diagram and the vesicle microstructures observed by electron microscopy. In addition to studying ionic surfactants, we have also done original work with biological surfactants. We have found that subtle changes by surfactant additives to phosphatidylcholines (PC) produce dramatic changes in the microstructure of the composite that are impossible to determine from simple scattering experiments. Novel microstructures were observed at mole ratios from 4/1 to 9/1 long chain (Di-C_{16}PC)/short chain lipid (Di-C_7PC), including disc-like micelles and rippled bilayers at room temperature. We have also observed for the first time the formation of single layered ripple phase bilayer fragments. The formation of such fragments eliminates a number of theories of formation of this unique structure that depend on coupling between bilayers. In a similar system, dimyristoyl phosphatidylcholine (DMPC) mixed with the branched alcohol geraniol produces a bluish and extremely viscoelastic phase of giant multilamellar wormy vesicles. This phase shows the Weissenberg effect under flow due to the distortion of the entangled vesicles and may be related to fluid lamellar phases and L _3 phases often seen in surfactant-alcohol -water systems. Lysophosphatidylcholine, the single-chain counterpart of the diacyl phospholipids, can also form bilayer phases when combined with long-chain fatty acids in water. The phase transition characteristics and appearance of the bilayers in equimolar mixtures of lysolipid and fatty acid are similar to those of the diacyl-PC. Electron microscopy reveals large extended multilayers in mixtures with excess lysolipid and multilamellar vesicles in mixtures with excess fatty acid.

  16. The scent of mixtures: rules of odour processing in ants

    PubMed Central

    Perez, Margot; Giurfa, Martin; d'Ettorre, Patrizia

    2015-01-01

    Natural odours are complex blends of numerous components. Understanding how animals perceive odour mixtures is central to multiple disciplines. Here we focused on carpenter ants, which rely on odours in various behavioural contexts. We studied overshadowing, a phenomenon that occurs when animals having learnt a binary mixture respond less to one component than to the other, and less than when this component was learnt alone. Ants were trained individually with alcohols and aldehydes varying in carbon-chain length, either as single odours or binary mixtures. They were then tested with the mixture and the components. Overshadowing resulted from the interaction between chain length and functional group: alcohols overshadowed aldehydes, and longer chain lengths overshadowed shorter ones; yet, combinations of these factors could cancel each other and suppress overshadowing. Our results show how ants treat binary olfactory mixtures and set the basis for predictive analyses of odour perception in insects. PMID:25726692

  17. Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo drop.

    PubMed

    Tan, Huanshu; Diddens, Christian; Lv, Pengyu; Kuerten, J G M; Zhang, Xuehua; Lohse, Detlef

    2016-08-02

    Evaporating liquid droplets are omnipresent in nature and technology, such as in inkjet printing, coating, deposition of materials, medical diagnostics, agriculture, the food industry, cosmetics, or spills of liquids. Whereas the evaporation of pure liquids, liquids with dispersed particles, or even liquid mixtures has intensively been studied over the past two decades, the evaporation of ternary mixtures of liquids with different volatilities and mutual solubilities has not yet been explored. Here we show that the evaporation of such ternary mixtures can trigger a phase transition and the nucleation of microdroplets of one of the components of the mixture. As a model system, we pick a sessile Ouzo droplet (as known from daily life-a transparent mixture of water, ethanol, and anise oil) and reveal and theoretically explain its four life phases: In phase I, the spherical cap-shaped droplet remains transparent while the more volatile ethanol is evaporating, preferentially at the rim of the drop because of the singularity there. This leads to a local ethanol concentration reduction and correspondingly to oil droplet nucleation there. This is the beginning of phase II, in which oil microdroplets quickly nucleate in the whole drop, leading to its milky color that typifies the so-called "Ouzo effect." Once all ethanol has evaporated, the drop, which now has a characteristic nonspherical cap shape, has become clear again, with a water drop sitting on an oil ring (phase III), finalizing the phase inversion. Finally, in phase IV, all water has evaporated, leaving behind a tiny spherical cap-shaped oil drop.

  18. Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo drop

    NASA Astrophysics Data System (ADS)

    Tan, Huanshu; Diddens, Christian; Lv, Pengyu; Kuerten, J. G. M.; Zhang, Xuehua; Lohse, Detlef

    2016-08-01

    Evaporating liquid droplets are omnipresent in nature and technology, such as in inkjet printing, coating, deposition of materials, medical diagnostics, agriculture, the food industry, cosmetics, or spills of liquids. Whereas the evaporation of pure liquids, liquids with dispersed particles, or even liquid mixtures has intensively been studied over the past two decades, the evaporation of ternary mixtures of liquids with different volatilities and mutual solubilities has not yet been explored. Here we show that the evaporation of such ternary mixtures can trigger a phase transition and the nucleation of microdroplets of one of the components of the mixture. As a model system, we pick a sessile Ouzo droplet (as known from daily life—a transparent mixture of water, ethanol, and anise oil) and reveal and theoretically explain its four life phases: In phase I, the spherical cap-shaped droplet remains transparent while the more volatile ethanol is evaporating, preferentially at the rim of the drop because of the singularity there. This leads to a local ethanol concentration reduction and correspondingly to oil droplet nucleation there. This is the beginning of phase II, in which oil microdroplets quickly nucleate in the whole drop, leading to its milky color that typifies the so-called “Ouzo effect.” Once all ethanol has evaporated, the drop, which now has a characteristic nonspherical cap shape, has become clear again, with a water drop sitting on an oil ring (phase III), finalizing the phase inversion. Finally, in phase IV, all water has evaporated, leaving behind a tiny spherical cap-shaped oil drop.

  19. Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo drop

    PubMed Central

    Tan, Huanshu; Diddens, Christian; Lv, Pengyu; Kuerten, J. G. M.; Zhang, Xuehua; Lohse, Detlef

    2016-01-01

    Evaporating liquid droplets are omnipresent in nature and technology, such as in inkjet printing, coating, deposition of materials, medical diagnostics, agriculture, the food industry, cosmetics, or spills of liquids. Whereas the evaporation of pure liquids, liquids with dispersed particles, or even liquid mixtures has intensively been studied over the past two decades, the evaporation of ternary mixtures of liquids with different volatilities and mutual solubilities has not yet been explored. Here we show that the evaporation of such ternary mixtures can trigger a phase transition and the nucleation of microdroplets of one of the components of the mixture. As a model system, we pick a sessile Ouzo droplet (as known from daily life—a transparent mixture of water, ethanol, and anise oil) and reveal and theoretically explain its four life phases: In phase I, the spherical cap-shaped droplet remains transparent while the more volatile ethanol is evaporating, preferentially at the rim of the drop because of the singularity there. This leads to a local ethanol concentration reduction and correspondingly to oil droplet nucleation there. This is the beginning of phase II, in which oil microdroplets quickly nucleate in the whole drop, leading to its milky color that typifies the so-called “Ouzo effect.” Once all ethanol has evaporated, the drop, which now has a characteristic nonspherical cap shape, has become clear again, with a water drop sitting on an oil ring (phase III), finalizing the phase inversion. Finally, in phase IV, all water has evaporated, leaving behind a tiny spherical cap-shaped oil drop. PMID:27418601

  20. Identifying when tagged fishes have been consumed by piscivorous predators: application of multivariate mixture models to movement parameters of telemetered fishes

    USGS Publications Warehouse

    Romine, Jason G.; Perry, Russell W.; Johnston, Samuel V.; Fitzer, Christopher W.; Pagliughi, Stephen W.; Blake, Aaron R.

    2013-01-01

    Mixture models proved valuable as a means to differentiate between salmonid smolts and predators that consumed salmonid smolts. However, successful application of this method requires that telemetered fishes and their predators exhibit measurable differences in movement behavior. Our approach is flexible, allows inclusion of multiple track statistics and improves upon rule-based manual classification methods.

  1. Flavor Identification and Intensity: Effects of Stimulus Context

    PubMed Central

    Hallowell, Emily S.; Parikh, Roshan; Veldhuizen, Maria G.

    2016-01-01

    Two experiments presented oral mixtures containing different proportions of the gustatory flavorant sucrose and an olfactory flavorant, either citral (Experiment 1) or lemon (Experiment 2). In 4 different sessions of each experiment, subjects identified each mixture as “mostly sugar” or “mostly citrus/lemon” or rated the perceived intensities of the sweet and citrus components. Different sessions also presented the mixtures in different contexts, with mixtures containing relatively high concentrations of sucrose or citral/lemon presented more often (skew sucrose or skew citral/lemon). As expected, in both experiments, varying stimulus context affected both identification and perceived intensity: Skewing to sucrose versus citral/lemon decreased the probability of identifying the stimuli as “mostly sugar” and reduced the ratings of sweet intensity relative to citrus intensity. Across both contextual conditions of both experiments, flavor identification associated closely with the ratio of the perceived sweet and citrus intensities. The results accord with a model, extrapolated from signal-detection theory, in which sensory events are represented as multisensory–multidimensional distributions in perceptual space. Changing stimulus context can shift the locations of the distributions relative to response criteria, Decision rules guide judgments based on both sensory events and criteria, these rules not necessarily being identical in tasks of identification and intensity rating. PMID:26830499

  2. High-pressure phase relations and thermodynamic properties of CaAl 4Si 2O 11 CAS phase

    NASA Astrophysics Data System (ADS)

    Akaogi, M.; Haraguchi, M.; Yaguchi, M.; Kojitani, H.

    2009-03-01

    Phase relations in CaAl4Si2O11 were examined at 12-23 GPa and 1000-1800 °C by multianvil experiments. A three-phase mixture of grossular, kyanite and corundum is stable below about 13 GPa at 1000-1800 °C. At higher pressure and at temperature below about 1200 °C, a mixture of grossular, stishovite and corundum is stable, indicating the decomposition of kyanite. Above about 1200 °C, CaAl4Si2O11 CAS phase is stable at pressure higher than about 13 GPa. The triple point is placed at 14.7 GPa and 1280 °C. The equilibrium boundary of formation of CAS phase from the mixture of grossular, kyanite and corundum has a small negative slope, and that from the mixture of grossular, stishovite and corundum has a strongly negative slope, while the decomposition boundary of kyanite has a small positive slope. Enthalpies of the transitions were measured by high-temperature drop-solution calorimetry. The enthalpy of formation of CaAl4Si2O11 CAS phase from the mixture of grossular, kyanite and corundum was 139.5 ± 15.6 kJ/mol, and that from the mixture of grossular, stishovite and corundum was 94.2 ± 15.4 kJ/mol. The transition boundaries calculated using the measured enthalpy data were consistent with those determined by the high-pressure experiments. The boundaries in this study are placed about 3 GPa higher in pressure and about 200 °C lower in temperature than those by Zhai and Ito [Zhai, S., Ito, E., 2008. Phase relations of CaAl4Si2O11 at high-pressure and high-temperature with implications for subducted continental crust into the deep mantle. Phys. Earth Planet. Inter. 167, 161-167]. Combining the thermodynamic data measured in this study with those in the literature, dissociation boundary of CAS phase into a mixture of Ca-perovskite, corundum and stishovite and that of grossular into Ca-perovskite plus corundum were calculated to further constrain the stability field of CAS phase. The result suggests that the stability of CAS phase would be limited at the bottom of transition zone and top of the lower mantle, when sediments are subducted into the deep mantle. It is also suggested that CAS phase may be stable at the depth of the upper part of the lower mantle, when partial melting of basalt occurs at the depth.

  3. Processing of Alumina-Toughened Zirconia Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Choi, Sung R.

    2003-01-01

    Dense and crack-free 10-mol%-yttria-stabilized zirconia (10YSZ)-alumina composites, containing 0 to 30 mol% of alumina, have been fabricated by hot pressing. Release of pressure before onset of cooling was crucial in obtaining crack-free material. Hot pressing at 1600 C resulted in the formation of ZrC by reaction of zirconia with grafoil. However, no such reaction was observed at 1500 C. Cubic zirconia and -alumina were the only phases detected from x-ray diffraction indicating no chemical reaction between the composite constituents during hot pressing. Microstructure of the composites was analyzed by scanning electron microscopy and transmission electron microscopy. Density and elastic modulus of the composites followed the rule-of-mixtures. Addition of alumina to 10YSZ resulted in lighter, stronger, and stiffer composites by decreasing density and increasing strength and elastic modulus.

  4. Generalized Constitutive-Based Theoretical and Empirical Models for Hot Working Behavior of Functionally Graded Steels

    NASA Astrophysics Data System (ADS)

    Vanini, Seyed Ali Sadough; Abolghasemzadeh, Mohammad; Assadi, Abbas

    2013-07-01

    Functionally graded steels with graded ferritic and austenitic regions including bainite and martensite intermediate layers produced by electroslag remelting have attracted much attention in recent years. In this article, an empirical model based on the Zener-Hollomon (Z-H) constitutive equation with generalized material constants is presented to investigate the effects of temperature and strain rate on the hot working behavior of functionally graded steels. Next, a theoretical model, generalized by strain compensation, is developed for the flow stress estimation of functionally graded steels under hot compression based on the phase mixture rule and boundary layer characteristics. The model is used for different strains and grading configurations. Specifically, the results for αβγMγ steels from empirical and theoretical models showed excellent agreement with those of experiments of other references within acceptable error.

  5. Effects of Detergent β-Octylglucoside and Phosphate Salt Solutions on Phase Behavior of Monoolein Mesophases

    PubMed Central

    Khvostichenko, Daria S.; Ng, Johnathan J.D.; Perry, Sarah L.; Menon, Monisha; Kenis, Paul J.A.

    2013-01-01

    Using small-angle x-ray scattering (SAXS), we investigated the phase behavior of mesophases of monoolein (MO) mixed with additives commonly used for the crystallization of membrane proteins from lipidic mesophases. In particular, we examined the effect of sodium and potassium phosphate salts and the detergent β-octylglucoside (βOG) over a wide range of compositions relevant for the crystallization of membrane proteins in lipidic mesophases. We studied two types of systems: 1), ternary mixtures of MO with salt solutions above the hydration boundary; and 2), quaternary mixtures of MO with βOG and salt solutions over a wide range of hydration conditions. All quaternary mixtures showed highly regular lyotropic phase behavior with the same sequence of phases (Lα, Ia3d, and Pn3m) as MO/water mixtures at similar temperatures. The effects of additives in quaternary systems agreed qualitatively with those found in ternary mixtures in which only one additive is present. However, quantitative differences in the effects of additives on the lattice parameters of fully hydrated mesophases were found between ternary and quaternary mixtures. We discuss the implications of these findings for mechanistic investigations of membrane protein crystallization in lipidic mesophases and for studies of the suitability of precipitants for mesophase-based crystallization methods. PMID:24138861

  6. Detection of cocrystal formation based on binary phase diagrams using thermal analysis.

    PubMed

    Yamashita, Hiroyuki; Hirakura, Yutaka; Yuda, Masamichi; Teramura, Toshio; Terada, Katsuhide

    2013-01-01

    Although a number of studies have reported that cocrystals can form by heating a physical mixture of two components, details surrounding heat-induced cocrystal formation remain unclear. Here, we attempted to clarify the thermal behavior of a physical mixture and cocrystal formation in reference to a binary phase diagram. Physical mixtures prepared using an agate mortar were heated at rates of 2, 5, 10, and 30 °C/min using differential scanning calorimetry (DSC). Some mixtures were further analyzed using X-ray DSC and polarization microscopy. When a physical mixture consisting of two components which was capable of cocrystal formation was heated using DSC, an exothermic peak associated with cocrystal formation was detected immediately after an endothermic peak. In some combinations, several endothermic peaks were detected and associated with metastable eutectic melting, eutectic melting, and cocrystal melting. In contrast, when a physical mixture of two components which is incapable of cocrystal formation was heated using DSC, only a single endothermic peak associated with eutectic melting was detected. These experimental observations demonstrated how the thermal events were attributed to phase transitions occurring in a binary mixture and clarified the relationship between exothermic peaks and cocrystal formation.

  7. Computational modeling of high-entropy alloys: Structures, thermodynamics and elasticity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Michael C.; Gao, Pan; Hawk, Jeffrey A.

    This study provides a short review on computational modeling on the formation, thermodynamics, and elasticity of single-phase high-entropy alloys (HEAs). Hundreds of predicted single-phase HEAs were re-examined using various empirical thermo-physical parameters. Potential BCC HEAs (CrMoNbTaTiVW, CrMoNbReTaTiVW, and CrFeMoNbReRuTaVW) were suggested based on CALPHAD modeling. The calculated vibrational entropies of mixing are positive for FCC CoCrFeNi, negative for BCC MoNbTaW, and near-zero for HCP CoOsReRu. The total entropies of mixing were observed to trend in descending order: CoCrFeNi > CoOsReRu > MoNbTaW. Calculated lattice parameters agree extremely well with averaged values estimated from the rule of mixtures (ROM) if themore » same crystal structure is used for the elements and the alloy. The deviation in the calculated elastic properties from ROM for select alloys is small but is susceptible to the choice used for the structures of pure components.« less

  8. Computational modeling of high-entropy alloys: Structures, thermodynamics and elasticity

    DOE PAGES

    Gao, Michael C.; Gao, Pan; Hawk, Jeffrey A.; ...

    2017-10-12

    This study provides a short review on computational modeling on the formation, thermodynamics, and elasticity of single-phase high-entropy alloys (HEAs). Hundreds of predicted single-phase HEAs were re-examined using various empirical thermo-physical parameters. Potential BCC HEAs (CrMoNbTaTiVW, CrMoNbReTaTiVW, and CrFeMoNbReRuTaVW) were suggested based on CALPHAD modeling. The calculated vibrational entropies of mixing are positive for FCC CoCrFeNi, negative for BCC MoNbTaW, and near-zero for HCP CoOsReRu. The total entropies of mixing were observed to trend in descending order: CoCrFeNi > CoOsReRu > MoNbTaW. Calculated lattice parameters agree extremely well with averaged values estimated from the rule of mixtures (ROM) if themore » same crystal structure is used for the elements and the alloy. The deviation in the calculated elastic properties from ROM for select alloys is small but is susceptible to the choice used for the structures of pure components.« less

  9. Refractive index of liquid mixtures: theory and experiment.

    PubMed

    Reis, João Carlos R; Lampreia, Isabel M S; Santos, Angela F S; Moita, Maria Luísa C J; Douhéret, Gérard

    2010-12-03

    An innovative approach is presented to interpret the refractive index of binary liquid mixtures. The concept of refractive index "before mixing" is introduced and shown to be given by the volume-fraction mixing rule of the pure-component refractive indices (Arago-Biot formula). The refractive index of thermodynamically ideal liquid mixtures is demonstrated to be given by the volume-fraction mixing rule of the pure-component squared refractive indices (Newton formula). This theoretical formulation entails a positive change of refractive index upon ideal mixing, which is interpreted in terms of dissimilar London dispersion forces centred in the dissimilar molecules making up the mixture. For real liquid mixtures, the refractive index of mixing and the excess refractive index are introduced in a thermodynamic manner. Examples of mixtures are cited for which excess refractive indices and excess molar volumes show all of the four possible sign combinations, a fact that jeopardises the finding of a general equation linking these two excess properties. Refractive indices of 69 mixtures of water with the amphiphile (R,S)-1-propoxypropan-2-ol are reported at five temperatures in the range 283-303 K. The ideal and real refractive properties of this binary system are discussed. Pear-shaped plots of excess refractive indices against excess molar volumes show that extreme positive values of excess refractive index occur at a substantially lower mole fraction of the amphiphile than extreme negative values of excess molar volume. Analysis of these plots provides insights into the mixing schemes that occur in different composition segments. A nearly linear variation is found when Balankina's ratios between excess and ideal values of refractive indices are plotted against ratios between excess and ideal values of molar volumes. It is concluded that, when coupled with volumetric properties, the new thermodynamic functions defined for the analysis of refractive indices of liquid mixtures give important complementary information on the mixing process over the whole composition range.

  10. Control and measurement of the phase behavior of aqueous solutions using microfluidics

    PubMed Central

    Shim, Jung-uk; Cristobal, Galder; Link, Darren R.; Thorsen, Todd; Jia, Yanwei; Piattelli, Katie; Fraden, Seth

    2008-01-01

    A microfluidic device denoted the Phase Chip has been designed to measure and manipulate the phase diagram of multi-component fluid mixtures. The Phase Chip exploits the permeation of water through poly(dimethylsiloxane) (PDMS) in order to controllably vary the concentration of solutes in aqueous nanoliter volume microdrops stored in wells. The permeation of water in the Phase Chip is modeled using the diffusion equation and good agreement between experiment and theory is obtained. The Phase Chip operates by first creating drops of the water/solute mixture whose composition varies sequentially. Next, drops are transported down channels and guided into storage wells using surface tension forces. Finally, the solute concentration of each stored drop is simultaneously varied and measured. Two applications of the Phase Chip are presented. First, the phase diagram of a polymer/salt mixture is measured on-chip and validated off-chip and second, protein crystallization rates are enhanced through the manipulation of the kinetics of nucleation and growth. PMID:17580868

  11. Inert electrode containing metal oxides, copper and noble metal

    DOEpatents

    Ray, Siba P.; Woods, Robert W.; Dawless, Robert K.; Hosler, Robert B.

    2001-01-01

    A cermet composite material is made by treating at an elevated temperature a mixture comprising a compound of iron and a compound of at least one other metal, together with an alloy or mixture of copper and a noble metal. The alloy or mixture preferably comprises particles having an interior portion containing more copper than noble metal and an exterior portion containing more noble metal than copper. The noble metal is preferably silver. The cermet composite material preferably includes alloy phase portions and a ceramic phase portion. At least part of the ceramic phase portion preferably has a spinel structure.

  12. Inert electrode containing metal oxides, copper and noble metal

    DOEpatents

    Ray, Siba P.; Woods, Robert W.; Dawless, Robert K.; Hosler, Robert B.

    2000-01-01

    A cermet composite material is made by treating at an elevated temperature a mixture comprising a compound of iron and a compound of at least one other metal, together with an alloy or mixture of copper and a noble metal. The alloy or mixture preferably comprises particles having an interior portion containing more copper than noble metal and an exterior portion containing more noble metal than copper. The noble metal is preferably silver. The cermet composite material preferably includes alloy phase portions and a ceramic phase portion. At least part of the ceramic phase portion preferably has a spinel structure.

  13. Mixture-mixture design for the fingerprint optimization of chromatographic mobile phases and extraction solutions for Camellia sinensis.

    PubMed

    Borges, Cleber N; Bruns, Roy E; Almeida, Aline A; Scarminio, Ieda S

    2007-07-09

    A composite simplex centroid-simplex centroid mixture design is proposed for simultaneously optimizing two mixture systems. The complementary model is formed by multiplying special cubic models for the two systems. The design was applied to the simultaneous optimization of both mobile phase chromatographic mixtures and extraction mixtures for the Camellia sinensis Chinese tea plant. The extraction mixtures investigated contained varying proportions of ethyl acetate, ethanol and dichloromethane while the mobile phase was made up of varying proportions of methanol, acetonitrile and a methanol-acetonitrile-water (MAW) 15%:15%:70% mixture. The experiments were block randomized corresponding to a split-plot error structure to minimize laboratory work and reduce environmental impact. Coefficients of an initial saturated model were obtained using Scheffe-type equations. A cumulative probability graph was used to determine an approximate reduced model. The split-plot error structure was then introduced into the reduced model by applying generalized least square equations with variance components calculated using the restricted maximum likelihood approach. A model was developed to calculate the number of peaks observed with the chromatographic detector at 210 nm. A 20-term model contained essentially all the statistical information of the initial model and had a root mean square calibration error of 1.38. The model was used to predict the number of peaks eluted in chromatograms obtained from extraction solutions that correspond to axial points of the simplex centroid design. The significant model coefficients are interpreted in terms of interacting linear, quadratic and cubic effects of the mobile phase and extraction solution components.

  14. Larger than Life's Extremes: Rigorous Results for Simplified Rules and Speculation on the Phase Boundaries

    NASA Astrophysics Data System (ADS)

    Evans, Kellie Michele

    Larger than Life (LtL), is a four-parameter family of two-dimensional cellular automata that generalizes John Conway's Game of Life (Life) to large neighborhoods and general birth and survival thresholds. LtL was proposed by David Griffeath in the early 1990s to explore whether Life might be a clue to a critical phase point in the threshold-range scaling limit. The LtL family of rules includes Life as well as a rich set of two-dimensional rules, some of which exhibit dynamics vastly different from Life. In this chapter we present rigorous results and conjectures about the ergodic classifications of several sets of "simplified" LtL rules, each of which has a property that makes the rule easier to analyze. For example, these include symmetric rules such as the threshold voter automaton and the anti-voter automaton, monotone rules such as the threshold growth models, and others. We also provide qualitative results and speculation about LtL rules on various phase boundaries and summarize results and open questions about our favorite "Life-like" LtL rules.

  15. Superionic Phases of the 1:1 Water–Ammonia Mixture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bethkenhagen, Mandy; Cebulla, Daniel; Redmer, Ronald

    We report four structures for the 1:1 water–ammonia mixture showing superionic behavior at high temperature with the space groups P4/ nmm, Ima2, Pma2, and Pm, which have been identified from evolutionary random structure search calculations at 0 K. Analyzing the respective pair distribution functions and diffusive properties the superionic phase is found to be stable in a temperature range between 1000 and 6000 K for pressures up to 800 GPa. We propose a high-pressure phase diagram of the water–ammonia mixture for the first time and compare the self-diffusion coefficients in the mixture to the ones found in water and ammonia.more » Lastly, possible implications on the interior structure of the giant planets Uranus and Neptune are discussed.« less

  16. Superionic Phases of the 1:1 Water–Ammonia Mixture

    DOE PAGES

    Bethkenhagen, Mandy; Cebulla, Daniel; Redmer, Ronald; ...

    2015-09-21

    We report four structures for the 1:1 water–ammonia mixture showing superionic behavior at high temperature with the space groups P4/ nmm, Ima2, Pma2, and Pm, which have been identified from evolutionary random structure search calculations at 0 K. Analyzing the respective pair distribution functions and diffusive properties the superionic phase is found to be stable in a temperature range between 1000 and 6000 K for pressures up to 800 GPa. We propose a high-pressure phase diagram of the water–ammonia mixture for the first time and compare the self-diffusion coefficients in the mixture to the ones found in water and ammonia.more » Lastly, possible implications on the interior structure of the giant planets Uranus and Neptune are discussed.« less

  17. Kinetically driven self-assembly of a binary solute mixture with controlled phase separation via electro-hydrodynamic flow of corona discharge.

    PubMed

    Jung, Hee Joon; Huh, June; Park, Cheolmin

    2012-10-21

    This feature article describes a new and facile process to fabricate a variety of thin films of non-volatile binary solute mixtures suitable for high performance organic electronic devices via electro-hydrodynamic flow of conventional corona discharge. Both Corona Discharge Coating (CDC) and a modified version of CDC, Scanning Corona Discharge Coating (SCDC), are based on utilizing directional electric flow, known as corona wind, of the charged uni-polar particles generated by corona discharge between a metallic needle and a bottom plate under a high electric field (5-10 kV cm(-1)). The electric flow rapidly spreads out the binary mixture solution on the bottom plate and subsequently forms a smooth and flat thin film in a large area within a few seconds. In the case of SCDC, the static movement of the bottom electrode on which a binary mixture solution is placed provides further control of thin film formation, giving rise to a film highly uniform over a large area. Interesting phase separation behaviors were observed including nanometer scale phase separation of a polymer-polymer binary mixture and vertical phase separation of a polymer-organic semiconductor mixture. Core-shell type phase separation of either polymer-polymer or polymer-colloidal nanoparticle binary mixtures was also developed with a periodically patterned microstructure when the relative location of the corona wind was controlled to a binary solution droplet on a substrate. We also demonstrate potential applications of thin functional films with controlled microstructures by corona coating to various organic electronic devices such as electroluminescent diodes, field effect transistors and non-volatile polymer memories.

  18. A new tunable dispersive liquid-liquid micro extraction method developed for the simultaneous preconcentration of lead and cadmium from lakes water: a multivariate study

    NASA Astrophysics Data System (ADS)

    Bilal, Muhammad; Kazi, Tasneem Gul; Afridi, Hassan Imran; Ali, Jamshed; Baig, Jameel Ahmed; Arain, Mohammad Balal; Khan, Mustafa

    2017-08-01

    A green tunable dispersive liquid-liquid micro extraction (TDLLME) technique was established for the simultaneous enrichment of lead (Pb) and cadmium (Cd) from different lakes water before analysis by flame atomic absorption spectrometry (FAAS). A solvent known as tunable polarity solvent (TPS), mixture of 1,8-diazabicyclo-[5.4.0]-undec-7-ene (DBU) and 1-decanol, has been employed as extractant in aqueous medium. In first step this mixture can be made polar by slowly bubbling the antisolvent trigger (CO2) through the solution, which makes a monophasic solution. During this step hydrophobic complexes of the metals with 8-hydroxy quinoline (8-HQ) were extracted by TPS. Then the mixture was switched back to hydrophobic one by heating and/or bubbling nitrogen, turning the mixture into two phases again. In second phase the metals were leached out from the complexes entrapped in TPS, by treating with a solution of nitric acid and exposing the mixture to CO2, which switched the mixture into single phase. Then N2 purging and/or heating again turned the mixture into two phases. The acidic aqueous phase containing the metals was introduced to FAAS for analysis, whereas TPS was recycled for next experiment. Different parameters, affecting the efficiency the technique, were optimized by multivariate approach. The method was applied to certified reference material of water and to a real sample spiked with standards of known concentration, to confirm its validity and accuracy. LOD obtained for Pb and Cd were 0.560 and 0.056 μg L- 1 respectively. The developed method was applied successfully to the real water samples of two lakes of Sindh, Pakistan.

  19. Ratio

    NASA Astrophysics Data System (ADS)

    Webster, Nathan A. S.; Pownceby, Mark I.; Madsen, Ian C.; Studer, Andrew J.; Manuel, James R.; Kimpton, Justin A.

    2014-12-01

    Effects of basicity, B (CaO:SiO2 ratio) on the thermal range, concentration, and formation mechanisms of silico-ferrite of calcium and aluminum (SFCA) and SFCA-I iron ore sinter bonding phases have been investigated using an in situ synchrotron X-ray diffraction-based methodology with subsequent Rietveld refinement-based quantitative phase analysis. SFCA and SFCA-I phases are the key bonding materials in iron ore sinter, and improved understanding of the effects of processing parameters such as basicity on their formation and decomposition may assist in improving efficiency of industrial iron ore sintering operations. Increasing basicity significantly increased the thermal range of SFCA-I, from 1363 K to 1533 K (1090 °C to 1260 °C) for a mixture with B = 2.48, to ~1339 K to 1535 K (1066 °C to 1262 °C) for a mixture with B = 3.96, and to ~1323 K to 1593 K (1050 °C to 1320 °C) at B = 4.94. Increasing basicity also increased the amount of SFCA-I formed, from 18 wt pct for the mixture with B = 2.48 to 25 wt pct for the B = 4.94 mixture. Higher basicity of the starting sinter mixture will, therefore, increase the amount of SFCA-I, considered to be more desirable of the two phases. Basicity did not appear to significantly influence the formation mechanism of SFCA-I. It did, however, affect the formation mechanism of SFCA, with the decomposition of SFCA-I coinciding with the formation of a significant amount of additional SFCA in the B = 2.48 and 3.96 mixtures but only a minor amount in the highest basicity mixture. In situ neutron diffraction enabled characterization of the behavior of magnetite after melting of SFCA produced a magnetite plus melt phase assemblage.

  20. Kinetically driven self-assembly of a binary solute mixture with controlled phase separation via electro-hydrodynamic flow of corona discharge

    NASA Astrophysics Data System (ADS)

    Jung, Hee Joon; Huh, June; Park, Cheolmin

    2012-09-01

    This feature article describes a new and facile process to fabricate a variety of thin films of non-volatile binary solute mixtures suitable for high performance organic electronic devices via electro-hydrodynamic flow of conventional corona discharge. Both Corona Discharge Coating (CDC) and a modified version of CDC, Scanning Corona Discharge Coating (SCDC), are based on utilizing directional electric flow, known as corona wind, of the charged uni-polar particles generated by corona discharge between a metallic needle and a bottom plate under a high electric field (5-10 kV cm-1). The electric flow rapidly spreads out the binary mixture solution on the bottom plate and subsequently forms a smooth and flat thin film in a large area within a few seconds. In the case of SCDC, the static movement of the bottom electrode on which a binary mixture solution is placed provides further control of thin film formation, giving rise to a film highly uniform over a large area. Interesting phase separation behaviors were observed including nanometer scale phase separation of a polymer-polymer binary mixture and vertical phase separation of a polymer-organic semiconductor mixture. Core-shell type phase separation of either polymer-polymer or polymer-colloidal nanoparticle binary mixtures was also developed with a periodically patterned microstructure when the relative location of the corona wind was controlled to a binary solution droplet on a substrate. We also demonstrate potential applications of thin functional films with controlled microstructures by corona coating to various organic electronic devices such as electroluminescent diodes, field effect transistors and non-volatile polymer memories.

  1. Learning in the Absence of Experience-Dependent Regulation of NMDAR Composition

    ERIC Educational Resources Information Center

    Lebel, David; Sidhu, Nishchal; Barkai, Edi; Quinlan, Elizabeth M.

    2006-01-01

    Olfactory discrimination (OD) learning consists of two phases: an initial N-methyl-d-aspartate (NMDA) receptor--sensitive rule-learning phase, followed by an NMDA receptor (NMDAR)--insensitive pair-learning phase. The rule-learning phase is accompanied by changes in the composition and function of NMDARs at synapses in the piriform cortex,…

  2. FIELD IMPLEMENTATION OF A WINSOR TYPE I SURFACTANT/ALCOHOL MIXTURE FOR IN SITU SOLUBILIZATION OF A COMPLEX LNAPL AS A SINGLE-PHASE MICROEMULSION

    EPA Science Inventory

    A Winsor Type I surfactant/alcohol mixture was used as an in situ flushing agent to solubilize a muticomponent nonaqueous phase liquid (NAPL) as a single-phase microemulsion (SPME) in a hydraulically isolated test cell at Hill Air Force Base (AFB), Utah. The surfactant (polyoxye...

  3. Controllable phase transitions and novel selection rules in Josephson junctions with inherent orthogonality

    NASA Astrophysics Data System (ADS)

    Cheng, Qiang; Zhang, Kunhua; Ma, Hongyang

    2018-03-01

    We propose a new type of Josephson junction consisting of topologically nontrivial superconductors with inherent orthogonality and a ferromagnetic interface. It is found this type of junction can host rich ground states: 0 phase, π phase, 0 + π phase, φ0 phase and φ0 ± φ phase. Phase transitions can be controlled by changing the direction of the interfacial magnetization. Phase diagrams are presented in the orientation space. Novel selection rules for the lowest order current, sin ⁡ ϕ or cos ⁡ ϕ, of this kind of junction are derived. General conditions for the formation of various ground states are established, which possess guiding significance to the experimental design of required ground states for practical applications. We construct the succinct form of a Ginzburg-Landau type of free energy from the viewpoint of the interplay between topological superconductivity and ferromagnetism, which can immediately lead to the selection rules. The constructed terms are universally available to the topological Josephson junctions with or without inherent orthogonality reported recently. The spin supercurrent, its selection rules and their relations to the constructed energy are also investigated.

  4. Structure, rheology and shear alignment of Pluronic block copolymer mixtures.

    PubMed

    Newby, Gemma E; Hamley, Ian W; King, Stephen M; Martin, Christopher M; Terrill, Nicholas J

    2009-01-01

    The structure and flow behaviour of binary mixtures of Pluronic block copolymers P85 and P123 is investigated by small-angle scattering, rheometry and mobility tests. Micelle dimensions are probed by dynamic light scattering. The micelle hydrodynamic radius for the 50/50 mixture is larger than that for either P85 or P123 alone, due to the formation of mixed micelles with a higher association number. The phase diagram for 50/50 mixtures contains regions of cubic and hexagonal phases similar to those for the parent homopolymers, however the region of stability of the cubic phase is enhanced at low temperature and concentrations above 40 wt%. This is ascribed to favourable packing of the mixed micelles containing core blocks with two different chain lengths, but similar corona chain lengths. The shear flow alignment of face-centred cubic and hexagonal phases is probed by in situ small-angle X-ray or neutron scattering with simultaneous rheology. The hexagonal phase can be aligned using steady shear in a Couette geometry, however the high modulus cubic phase cannot be aligned well in this way. This requires the application of oscillatory shear or compression.

  5. Methods for deacidizing gaseous mixtures by phase enhanced absorption

    DOEpatents

    Hu, Liang

    2012-11-27

    An improved process for deacidizing a gaseous mixture using phase enhanced gas-liquid absorption is described. The process utilizes a multiphasic absorbent that absorbs an acid gas at increased rate and leads to reduced overall energy costs for the deacidizing operation.

  6. Solidification phenomena of binary organic mixtures

    NASA Technical Reports Server (NTRS)

    Chang, K.

    1982-01-01

    The coalescence rates and motion of liquid bubbles in binary organic mixtures were studied. Several factors such as temperature gradient, composition gradient, interfacial tension, and densities of the two phases play important roles in separation of phases of immiscible liquids. An attempt was made to study the effect of initial compositions on separation rates of well-dispersed organic mixtures at different temperatures and, ultimately, on the homogeneity of solidification of the immiscible binary organic liquids. These organic mixtures serve as models for metallic pseudo binary systems under study. Two specific systems were investigated: ethyl salicylate - diethyl glycol and succinonitrile - water.

  7. The effects of temperature on nitrous oxide and oxygen mixture homogeneity and stability.

    PubMed

    Litwin, Patrick D

    2010-10-15

    For many long standing practices, the rationale for them is often lost as time passes. This is the situation with respect to the storage and handling of equimolar 50% nitrous oxide and 50% oxygen volume/volume (v/v) mixtures. A review was undertaken of existing literature to examine the developmental history of nitrous oxide and oxygen mixtures for anesthesia and analgesia and to ascertain if sufficient bibliographic data was available to support the position that the contents of a cylinder of a 50%/50% volume/volume (v/v) mixture of nitrous oxide and oxygen is in a homogenous single gas phase in a filled cylinder under normal conditions of handling and storage and if justification could be found for the standard instructions given for handling before use. After ranking and removing duplicates, a total of fifteen articles were identified by the various search strategies and formed the basis of this literature review. Several studies were identified that confirmed that 50%/50% v/v mixture of nitrous oxide and oxygen is in a homogenous single gas phase in a filled cylinder under normal conditions of handling and storage. The effect of temperature on the change of phase of the nitrous oxide in this mixture was further examined by several authors. These studies demonstrated that although it is possible to cause condensation and phase separation by cooling the cylinder, by allowing the cylinder to rewarm to room temperature for at least 48 hours, preferably in a horizontal orientation, and inverting it three times before use, the cylinder consistently delivered the proper proportions of the component gases as a homogenous mixture. The contents of a cylinder of a 50%/50% volume/volume (v/v) mixture of nitrous oxide and oxygen is in a homogenous single gas phase in a filled cylinder under normal conditions of handling and storage. The standard instructions given for handling before are justified based on previously conducted studies.

  8. Recovery of anhydrous hydrogen iodide

    DOEpatents

    O'Keefe, Dennis R.; McCorkle, Jr., Kenneth H.; de Graaf, Johannes D.

    1982-01-01

    Relatively dry hydrogen iodide can be recovered from a mixture of HI, I.sub.2 and H.sub.2 O. After the composition of the mixture is adjusted so that the amounts of H.sub.2 O and I.sub.2 do not exceed certain maximum limits, subjection of the mixture to superatmospheric pressure in an amount equal to about the vapor pressure of HI at the temperature in question causes distinct liquid phases to appear. One of the liquid phases contains HI and not more than about 1 weight percent water. Often the adjustment in the composition will include the step of vaporization, and the distinct layers appear following the increase in pressure of the vapor mixture. Adjustment in the composition may also include the addition of an extraction agent, such as H.sub.3 PO.sub.4, and even though the adjusted composition mixture contains a significant amount of such an agent, the creation of the distinct liquid phases is not adversely affected.

  9. Mixtures of bosonic and fermionic atoms in optical lattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albus, Alexander; Dipartimento di Fisica, Universita di Salerno, Via S. Allende, I-84081 Baronissi; Illuminati, Fabrizio

    2003-08-01

    We discuss the theory of mixtures of bosonic and fermionic atoms in periodic potentials at zero temperature. We derive a general Bose-Fermi Hubbard Hamiltonian in a one-dimensional optical lattice with a superimposed harmonic trapping potential. We study the conditions for linear stability of the mixture and derive a mean-field criterion for the onset of a bosonic superfluid transition. We investigate the ground-state properties of the mixture in the Gutzwiller formulation of mean-field theory, and present numerical studies of finite systems. The bosonic and fermionic density distributions and the onset of quantum phase transitions to demixing and to a bosonic Mott-insulatormore » are studied as a function of the lattice potential strength. The existence is predicted of a disordered phase for mixtures loaded in very deep lattices. Such a disordered phase possessing many degenerate or quasidegenerate ground states is related to a breaking of the mirror symmetry in the lattice.« less

  10. Melting and solidification characteristics of a mixture of two types of latent heat storage material in a vessel

    NASA Astrophysics Data System (ADS)

    Yu, JikSu; Horibe, Akihiko; Haruki, Naoto; Machida, Akito; Kato, Masashi

    2016-11-01

    In this study, we investigated the fundamental melting and solidification characteristics of mannitol, erythritol, and their mixture (70 % by mass mannitol: 30 % by mass erythritol) as potential phase-change materials (PCMs) for latent heat thermal energy storage systems, specifically those pertaining to industrial waste heat, having temperatures in the range of 100-250 °C. The melting point of erythritol and mannitol, the melting peak temperature of their mixture, and latent heat were measured using differential scanning calorimetry. The thermal performance of the mannitol mixture was determined during melting and solidification processes, using a heat storage vessel with a pipe heat exchanger. Our results indicated phase-change (fusion) temperatures of 160 °C for mannitol and 113 and 150 °C for the mannitol mixture. Nondimensional correlation equations of the average heat transfer during the solidification process, as well as the temperature and velocity efficiencies of flowing silicon oil in the pipe and the phase-change material (PCM), were derived using several nondimensional parameters.

  11. Efficient capture of SO2 by a binary mixture of caprolactam tetrabutyl ammonium bromide ionic liquid and water.

    PubMed

    Duan, Erhong; Guo, Bin; Zhang, Miaomiao; Guan, Yanan; Sun, Hua; Han, Jing

    2011-10-30

    The solubility of SO(2) in a binary mixture of water and caprolactam tetrabutyl ammonium bromide ionic liquid (CPL-TBAB IL) was investigated. Though the ionic liquid and water were fully miscible, a phase separation occurred when SO(2) was introduced into the mixture. The SO(2) concentrated in the lower layer, and it could be released by heating the solution under reduced pressure (382.2K, 10.1 kPa). After desorption, the mixture could be reused to absorb SO(2). It was found that SO(2) acts as a switch to cause the water and CPL-TBAB IL to phase separate, and the mechanics of this phase separation process was studied by gas chromatography-mass spectrometry, fourier transform-infrared spectroscopy and Karl-Fisher titration. The absorption and desorption of SO(2) in the CPL-TBAB/water mixtures were reversible. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Separation of non-racemic mixtures of enantiomers: an essential part of optical resolution.

    PubMed

    Faigl, Ferenc; Fogassy, Elemér; Nógrádi, Mihály; Pálovics, Emese; Schindler, József

    2010-03-07

    Non-racemic enantiomeric mixtures form homochiral and heterochiral aggregates in melt or suspension, during adsorption or recrystallization, and these diastereomeric associations determine the distribution of the enantiomers between the solid and other (liquid or vapour) phases. That distribution depends on the stability order of the homo- and heterochiral aggregates (conglomerate or racemate formation). Therefore, there is a correlation between the binary melting point phase diagrams and the experimental ee(I)vs. ee(0) curves (ee(I) refers to the crystallized enantiomeric mixtures, ee(0) is the composition of the starting ones). Accordingly, distribution of the enantiomeric mixtures between two phases is characteristic and usually significant enrichment can be achieved. There are two exceptions: no enrichment could be observed under thermodynamically controlled conditions when the starting enantiomer composition corresponded to the eutectic composition, or when the method used was unsuitable for separation. In several cases, when kinetic control governed the crystallization, the character of the ee(0)-ee(I) curve did not correlate with the melting point binary phase diagram.

  13. Food-grade submicrometer particles from salts prepared using ethanol-in-oil mixtures.

    PubMed

    Paques, Jerome P; van der Linden, Erik; Sagis, Leonard M C; van Rijn, Cees J M

    2012-08-29

    A simple method for preparing food-grade particles in the submicrometer range of ethanol soluble salts using ethanol-in-oil (E/O) mixtures is described. Salts CaCl2·2H2O and MgCl2·6H2O were dissolved in ethanol that subsequently was mixed with a medium-chain triglyceride oil phase. It was found that type and concentration of salt have a significant influence on the miscibility of ethanol and oil phase and on the stability of E/O mixtures. The ethanol phase was evaporated from the mixture at elevated temperatures, and salt particles with dimensions in the submicrometer range (6-400 nm) remained suspended in the oil phase. It was found that the concentration of salt and volume fraction of ethanol in MCT oil have a significant influence on the size distribution of salt particles. The size of CaCl2 and MgCl2 submicrometer particles was ascertained by scanning electron microscopy and dynamic light scattering.

  14. [Evaluation of chromatographic performance of polymerized ionic liquid stationary phase for capillary gas chromatography].

    PubMed

    Chen, Xiaoyan; Lu, Kai; Qi, Meiling; Fu, Ruonong

    2009-11-01

    The selectivity and thermal stability of ionic liquids as the stationary phases for capillary gas chromatography (CGC) have attracted much attention of researchers in recent years. In this study, 1-vinyl-3-benzyl imidazolium-bis(trifluoromethane-sulphonyl)imidate (VBIm-NTf2) was synthesized and polymerized (PVBIm-NTf2) in a CGC column. In comparison with VBIm-NTf2, PVBIm-NTf2 exhibits much better thermal stability and chromatographic selectivity, and achieves satisfactory resolution for Grob test mixture, alcohols mixture, esters mixture and aromatics mixture with narrow and symmetric peak shapes. The satisfactory resolution and selectivity of the polymerized column still remain after conditioned at 250 degrees C for 6 h. Additionally, the Abraham solvation parameters of PVBIm-NTf2 were determined and the interactions between the stationary phase and solutes were elucidated. The present work demonstrates that the polymerization is an effective way to improve the selectivity and thermal stability of common ionic liquids as CGC stationary phases.

  15. Parallel machine architecture for production rule systems

    DOEpatents

    Allen, Jr., John D.; Butler, Philip L.

    1989-01-01

    A parallel processing system for production rule programs utilizes a host processor for storing production rule right hand sides (RHS) and a plurality of rule processors for storing left hand sides (LHS). The rule processors operate in parallel in the recognize phase of the system recognize -Act Cycle to match their respective LHS's against a stored list of working memory elements (WME) in order to find a self consistent set of WME's. The list of WME is dynamically varied during the Act phase of the system in which the host executes or fires rule RHS's for those rules for which a self-consistent set has been found by the rule processors. The host transmits instructions for creating or deleting working memory elements as dictated by the rule firings until the rule processors are unable to find any further self-consistent working memory element sets at which time the production rule system is halted.

  16. Practical implementation of the double linear damage rule and damage curve approach for treating cumulative fatigue damage

    NASA Technical Reports Server (NTRS)

    Manson, S. S.; Halford, G. R.

    1980-01-01

    Simple procedures are presented for treating cumulative fatigue damage under complex loading history using either the damage curve concept or the double linear damage rule. A single equation is provided for use with the damage curve approach; each loading event providing a fraction of damage until failure is presumed to occur when the damage sum becomes unity. For the double linear damage rule, analytical expressions are provided for determining the two phases of life. The procedure involves two steps, each similar to the conventional application of the commonly used linear damage rule. When the sum of cycle ratios based on phase 1 lives reaches unity, phase 1 is presumed complete, and further loadings are summed as cycle ratios on phase 2 lives. When the phase 2 sum reaches unity, failure is presumed to occur. No other physical properties or material constants than those normally used in a conventional linear damage rule analysis are required for application of either of the two cumulative damage methods described. Illustrations and comparisons of both methods are discussed.

  17. Practical implementation of the double linear damage rule and damage curve approach for treating cumulative fatigue damage

    NASA Technical Reports Server (NTRS)

    Manson, S. S.; Halford, G. R.

    1981-01-01

    Simple procedures are given for treating cumulative fatigue damage under complex loading history using either the damage curve concept or the double linear damage rule. A single equation is given for use with the damage curve approach; each loading event providing a fraction of damage until failure is presumed to occur when the damage sum becomes unity. For the double linear damage rule, analytical expressions are given for determining the two phases of life. The procedure comprises two steps, each similar to the conventional application of the commonly used linear damage rule. Once the sum of cycle ratios based on Phase I lives reaches unity, Phase I is presumed complete, and further loadings are summed as cycle ratios based on Phase II lives. When the Phase II sum attains unity, failure is presumed to occur. It is noted that no physical properties or material constants other than those normally used in a conventional linear damage rule analysis are required for application of either of the two cumulative damage methods described. Illustrations and comparisons are discussed for both methods.

  18. Experimental evidence for excess entropy discontinuities in glass-forming solutions.

    PubMed

    Lienhard, Daniel M; Zobrist, Bernhard; Zuend, Andreas; Krieger, Ulrich K; Peter, Thomas

    2012-02-21

    Glass transition temperatures T(g) are investigated in aqueous binary and multi-component solutions consisting of citric acid, calcium nitrate (Ca(NO(3))(2)), malonic acid, raffinose, and ammonium bisulfate (NH(4)HSO(4)) using a differential scanning calorimeter. Based on measured glass transition temperatures of binary aqueous mixtures and fitted binary coefficients, the T(g) of multi-component systems can be predicted using mixing rules. However, the experimentally observed T(g) in multi-component solutions show considerable deviations from two theoretical approaches considered. The deviations from these predictions are explained in terms of the molar excess mixing entropy difference between the supercooled liquid and glassy state at T(g). The multi-component mixtures involve contributions to these excess mixing entropies that the mixing rules do not take into account. © 2012 American Institute of Physics

  19. Boundary of Phase Co-existence in Docosahexaenoic Acid System

    NASA Astrophysics Data System (ADS)

    Lor, Chai; Hirst, Linda S.

    2011-11-01

    Docosahexaenoic acid (DHA) is a highly polyunsaturated fatty acid (PUFA) that exhibits six double bonds in the hydrocarbon tail. It induces phase separation of the membrane into liquid order and liquid disorder in mixtures containing other lipids with more saturation and cholesterol. With the utilization of atomic force microscopy, phase co-existence is observed in lipid mixtures containing DHA on a single supported lipid bilayer. The boundary of phase co-existence with decreasing DHA concentration is explored. The elastic force, thickness, and roughness of the different phases are investigated.

  20. Getting More Ecologically Relevant Information from Laboratory Tests: Recovery of Lemna minor After Exposure to Herbicides and Their Mixtures.

    PubMed

    Knežević, Varja; Tunić, Tanja; Gajić, Pero; Marjan, Patricija; Savić, Danko; Tenji, Dina; Teodorović, Ivana

    2016-11-01

    Recovery after exposure to herbicides-atrazine, isoproturon, and trifluralin-their binary and ternary mixtures, was studied under laboratory conditions using a slightly adapted standard protocol for Lemna minor. The objectives of the present study were (1) to compare empirical to predicted toxicity of selected herbicide mixtures; (2) to assess L. minor recovery potential after exposure to selected individual herbicides and their mixtures; and (3) to suggest an appropriate recovery potential assessment approach and endpoint in a modified laboratory growth inhibition test. The deviation of empirical from predicted toxicity was highest in binary mixtures of dissimilarly acting herbicides. The concentration addition model slightly underestimated mixture effects, indicating potential synergistic interactions between photosynthetic inhibitors (atrazine and isoproturon) and a cell mitosis inhibitor (trifluralin). Recovery after exposure to the binary mixture of atrazine and isoproturon was fast and concentration-independent: no significant differences between relative growth rates (RGRs) in any of the mixtures (IC10 Mix , 25 Mix , and 50 Mix ) versus control level were recorded in the last interval of the recovery phase. The recovery of the plants exposed to binary and ternary mixtures of dissimilarly acting herbicides was strictly concentration-dependent. Only plants exposed to IC10 Mix , regardless of the herbicides, recovered RGRs close to control level in the last interval of the recovery phase. The inhibition of the RGRs in the last interval of the recovery phase compared with the control level is a proposed endpoint that could inform on reversibility of the effects and indicate possible mixture effects on plant population recovery potential.

  1. Heat transfer degradation during condensation of non-azeotropic mixtures

    NASA Astrophysics Data System (ADS)

    Azzolin, M.; Berto, A.; Bortolin, S.; Del, D., Col

    2017-11-01

    International organizations call for a reduction of the HFCs production and utilizations in the next years. Binary or ternary blends of hydroflourocarbons (HFCs) and hydrofluoroolefins (HFOs) are emerging as possible substitutes for high Global Warming Potential (GWP) fluids currently employed in some refrigeration and air-conditioning applications. In some cases, these mixtures are non-azeotropic and thus, during phase-change at constant pressure, they present a temperature glide that, for some blends, can be higher than 10 K. Such temperature variation during phase change could lead to a better matching between the refrigerant and the water temperature profiles in a condenser, thus reducing the exergy losses associated with the heat transfer process. Nevertheless, the additional mass transfer resistance which occurs during the phase change of zeotropic mixtures leads to a heat transfer degradation. Therefore, the design of a condenser working with a zeotropic mixture poses the problem of how to extend the correlations developed for pure fluids to the case of condensation of mixtures. Experimental data taken are very helpful in the assessment of design procedures. In the present paper, heat transfer coefficients have been measured during condensation of zeotropic mixtures of HFC and HFO fluids. Tests have been carried out in the test rig available at the Two Phase Heat Transfer Lab of University of Padova. During the condensation tests, the heat is subtracted from the mixture by using cold water and the heat transfer coefficient is obtained from the measurement of the heat flux on the water side, the direct measurements of the wall temperature and saturation temperature. Tests have been performed at 40°C mean saturation temperature. The present experimental database is used to assess predictive correlations for condensation of mixtures, providing valuable information on the applicability of available models.

  2. Simple views on critical binary liquid mixtures in porous glass

    NASA Astrophysics Data System (ADS)

    Tremblay, L.; Socol, S. M.; Lacelle, S.

    2000-01-01

    A simple scenario, different from previous attempts, is proposed to resolve the problem of the slow phase separation dynamics of binary liquid mixtures confined in porous Vycor glass. We demonstrate that simply mutual diffusion, renormalized by critical composition fluctuations and geometrical hindrance of the porous glass, accounts for the slow phase separation kinetics. Capillary invasion studies of porous Vycor glass by the critical isobutyric acid-water mixture, close to the consolute solution temperature, corroborate our analysis.

  3. Role of amphiphilic molecule on liquid crystal phases

    NASA Astrophysics Data System (ADS)

    Dan, Kaustabh; Roy, Madhusudan; Datta, Alokmay

    2013-02-01

    We have studied the effect of an amphiphilic fatty acid, Stearic Acid (StA), on the phases, wetting and polarization properties of the liquid crystalline substance N-(4-Methoxybenzylidene)-4-butylaniline (MBBA), through Differential Scanning Calorimetry and Optical Polarization Microscopy. Metastable and mesophases disappear for a MBBA:StA = 1:5 mixture. This mixture wets Si(111) and dewets Si(100) surfaces while pure MBBA dewets both. Films of this mixture also show better polarization than the pure sample.

  4. Formation of pH-sensitive cationic liposomes from a binary mixture of monoalkylated primary amine and cholesterol.

    PubMed

    Cui, Zhong-Kai; Bouisse, Anne; Cottenye, Nicolas; Lafleur, Michel

    2012-09-25

    It has been shown that mixtures of monoalkylated amphiphiles and sterols can form liquid-ordered (lo) lamellar phases. These bilayers can be extruded using conventional methods to obtain large unilamellar vesicles (LUVs) that have very low permeability and a specific response to a given stimulus. For example, pH variations can trigger the release from LUVs formed with palmitic acid and sterols. In the present work, the possibility to form non phospholipid liposomes with mixtures of stearylamine (SA) and cholesterol (Chol) was investigated. The phase behavior of these mixtures was characterized by differential scanning calorimetry, infrared, and (2)H NMR spectroscopy. It is found that this particular mixture can form a lo lamellar phase that is pH-sensitive as the system undergoes a transition from a lo phase to a solid state when pH is increased from 5.5 to 12. LUVs have been successfully extruded from equimolar SA/Chol mixtures. Release experiments as a function of time revealed the relatively low permeability of these systems. The fact that the stability of these liposomes is pH dependent implies that these LUVs display an interesting potential as new cationic carriers for pH-triggered release. This is the first report of non phospholipid liposomes with high sterol content combining an overall positive charge and pH-sensitivity.

  5. Finite-deformation phase-field chemomechanics for multiphase, multicomponent solids

    NASA Astrophysics Data System (ADS)

    Svendsen, Bob; Shanthraj, Pratheek; Raabe, Dierk

    2018-03-01

    The purpose of this work is the development of a framework for the formulation of geometrically non-linear inelastic chemomechanical models for a mixture of multiple chemical components diffusing among multiple transforming solid phases. The focus here is on general model formulation. No specific model or application is pursued in this work. To this end, basic balance and constitutive relations from non-equilibrium thermodynamics and continuum mixture theory are combined with a phase-field-based description of multicomponent solid phases and their interfaces. Solid phase modeling is based in particular on a chemomechanical free energy and stress relaxation via the evolution of phase-specific concentration fields, order-parameter fields (e.g., related to chemical ordering, structural ordering, or defects), and local internal variables. At the mixture level, differences or contrasts in phase composition and phase local deformation in phase interface regions are treated as mixture internal variables. In this context, various phase interface models are considered. In the equilibrium limit, phase contrasts in composition and local deformation in the phase interface region are determined via bulk energy minimization. On the chemical side, the equilibrium limit of the current model formulation reduces to a multicomponent, multiphase, generalization of existing two-phase binary alloy interface equilibrium conditions (e.g., KKS). On the mechanical side, the equilibrium limit of one interface model considered represents a multiphase generalization of Reuss-Sachs conditions from mechanical homogenization theory. Analogously, other interface models considered represent generalizations of interface equilibrium conditions consistent with laminate and sharp-interface theory. In the last part of the work, selected existing models are formulated within the current framework as special cases and discussed in detail.

  6. Gradient enhanced-fluidity liquid hydrophilic interaction chromatography of ribonucleic acid nucleosides and nucleotides: A "green" technique.

    PubMed

    Beilke, Michael C; Beres, Martin J; Olesik, Susan V

    2016-03-04

    A "green" hydrophilic interaction liquid chromatography (HILIC) technique for separating the components of mixtures with a broad range of polarities is illustrated using enhanced-fluidity liquid mobile phases. Enhanced-fluidity liquid chromatography (EFLC) involves the addition of liquid CO2 to conventional liquid mobile phases. Decreased mobile phase viscosity and increased analyte diffusivity results when a liquefied gas is dissolved in common liquid mobile phases. The impact of CO2 addition to a methanol:water (MeOH:H2O) mobile phase was studied to optimize HILIC gradient conditions. For the first time a fast separation of 16 ribonucleic acid (RNA) nucleosides/nucleotides was achieved (16min) with greater than 1.3 resolution for all analyte pairs. By using a gradient, the analysis time was reduced by over 100% compared to similar separations conducted under isocratic conditions. The optimal separation using MeOH:H2O:CO2 mobile phases was compared to MeOH:H2O and acetonitrile:water (ACN:H2O) mobile phases. Based on chromatographic performance parameters (efficiency, resolution and speed of analysis) and an assessment of the environmental impact of the mobile phase mixtures, MeOH:H2O:CO2 mixtures are preferred over ACN:H2O or MeOH:H2O mobile phases for the separation of mixtures of RNA nucleosides and nucleotides. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Understanding the Phase Behavior of Tetrahydrofuran + Carbon Dioxide, + Methane, and + Water Binary Mixtures from the SAFT-VR Approach.

    PubMed

    Míguez, J M; Piñeiro, M M; Algaba, J; Mendiboure, B; Torré, J P; Blas, F J

    2015-11-05

    The high-pressure phase diagrams of the tetrahydrofuran(1) + carbon dioxide(2), + methane(2), and + water(2) mixtures are examined using the SAFT-VR approach. Carbon dioxide molecule is modeled as two spherical segments tangentially bonded, water is modeled as a spherical segment with four associating sites to represent the hydrogen bonding, methane is represented as an isolated sphere, and tetrahydrofuran is represented as a chain of m tangentially bonded spherical segments. Dispersive interactions are modeled using the square-well intermolecular potential. In addition, two different molecular model mixtures are developed to take into account the subtle balance between water-tetrahydrofuran hydrogen-bonding interactions. The polar and quadrupolar interactions present in water, tetrahydrofuran, and carbon dioxide are treated in an effective way via square-well potentials of variable range. The optimized intermolecular parameters are taken from the works of Giner et al. (Fluid Phase Equil. 2007, 255, 200), Galindo and Blas (J. Phys. Chem. B 2002, 106, 4503), Patel et al. (Ind. Eng. Chem. Res. 2003, 42, 3809), and Clark et al. (Mol. Phys. 2006, 104, 3561) for tetrahydrofuran, carbon dioxide, methane, and water, respectively. The phase diagrams of the binary mixtures exhibit different types of phase behavior according to the classification of van Konynenburg and Scott, ranging from types I, III, and VI phase behavior for the tetrahydrofuran(1) + carbon dioxide(2), + methane(2), and + water(2) binary mixtures, respectively. This last type is characterized by the presence of a Bancroft point, positive azeotropy, and the so-called closed-loop curves that represent regions of liquid-liquid immiscibility in the phase diagram. The system exhibits lower critical solution temperatures (LCSTs), which denote the lower limit of immiscibility together with upper critical solution temperatures (UCSTs). This behavior is explained in terms of competition between the incompatibility with the alkyl parts of the tetrahydrofuran ring chain and the hydrogen bonding between water and the ether group. A minimum number of unlike interaction parameters are fitted to give the optimal representation of the most representative features of the binary phase diagrams. In the particular case of tetrahydrofuran(1) + water(2), two sets of intermolecular potential model parameters are proposed to describe accurately either the hypercritical point associated with the closed-loop liquid-liquid immiscibility region or the location of the mixture lower- and upper-critical end-points. The theory is not only able to predict the type of phase behavior of each mixture, but also provides a reasonably good description of the global phase behavior whenever experimental data are available.

  8. Ribbon phase in a phase-separated lyotropic lamellar-sponge mixture under shear flow

    NASA Astrophysics Data System (ADS)

    Cristobal, G.; Rouch, J.; Panizza, P.; Narayanan, T.

    2001-07-01

    We report the effect of shear flow on a phase-separated system composed of lyotropic lamellar (Lα) and sponge (L3) phases in a mixture of brine, surfactant, and cosurfactant. Optical microscopy, small-angle light, and x-ray scattering measurements are consistent with the existence of a steady state made of multilamellar ribbonlike structures aligned in the flow direction. At high shear rates, these ribbonlike structures become unstable and break up into monodisperse droplets resulting in a shear-thickening transition.

  9. Predicting phase behavior of mixtures of reservoir fluids with carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigg, R.B.; Lingane, P.J.

    1983-01-01

    The use of an equation of state to predict phase behavior during carbon dioxide flooding is well established. The characterization of the C/sub 7/ fraction and the selection of interaction parameters are the most important variables. Single-contact phase behavior is presented for mixtures of Ford Geraldine (Delaware), Maljamar (Grayburg), West Sussex (Shannon), and Reservoir D reservoir fluids, and of a synthetic oil with carbon dioxide. The phase behavior of these mixtures can be reproduced using 3 to 5 pseudo components and common interaction parameters. The critical properties of the pseudo components are calculated from detailed oil characterizations. Because the parametersmore » are not further adjusted, this approach reduces the empiricism in fitting phase data and may result in a more accurate representation of the system as the composition of the oil changes during the approach to miscibility. 21 references.« less

  10. Influence of supercritical CO(2) pressurization on the phase behavior of mixed cholesteryl esters.

    PubMed

    Huang, Zhen; Feng, Mei; Su, Junfeng; Guo, Yuhua; Liu, Tie-Yan; Chiew, Yee C

    2010-09-15

    Evidences indicating the presence of phase transformations in the mixed cholesteryl benzoate (CBE) and cholesteryl butyrate (CBU) under the supercritical CO(2) pressurization, by means of differential scanning calorimetry (DSC) and X-ray diffraction (XRD), are presented in this work. These include (1) the DSC heating curve of pure CBU; (2) the DSC heating curves of CBU/CBE mixtures; (3) the XRD spectra of pure CBU; (4) the XRD spectra of CBU/CBE mixtures; (5) CBU and CBE are miscible in either solid phase or liquid phase over the whole composition range. As a result of the presence of these phase transformations induced by pressurization, it could be deduced that a solid solution of the CBU/CBE mixture might have formed at the interfaces under supercritical conditions, subsequently influencing their dissolving behaviors in supercritical CO(2). Copyright 2010 Elsevier B.V. All rights reserved.

  11. Processing of odor mixtures in the zebrafish olfactory bulb.

    PubMed

    Tabor, Rico; Yaksi, Emre; Weislogel, Jan-Marek; Friedrich, Rainer W

    2004-07-21

    Components of odor mixtures often are not perceived individually, suggesting that neural representations of mixtures are not simple combinations of the representations of the components. We studied odor responses to binary mixtures of amino acids and food extracts at different processing stages in the olfactory bulb (OB) of zebrafish. Odor-evoked input to the OB was measured by imaging Ca2+ signals in afferents to olfactory glomeruli. Activity patterns evoked by mixtures were predictable within narrow limits from the component patterns, indicating that mixture interactions in the peripheral olfactory system are weak. OB output neurons, the mitral cells (MCs), were recorded extra- and intracellularly and responded to odors with stimulus-dependent temporal firing rate modulations. Responses to mixtures of amino acids often were dominated by one of the component responses. Responses to mixtures of food extracts, in contrast, were more distinct from both component responses. These results show that mixture interactions can result from processing in the OB. Moreover, our data indicate that mixture interactions in the OB become more pronounced with increasing overlap of input activity patterns evoked by the components. Emerging from these results are rules of mixture interactions that may explain behavioral data and provide a basis for understanding the processing of natural odor stimuli in the OB.

  12. Low-temperature phase behavior of fatty acid methyl esters by differential scanning calorimetry (DSC)

    USDA-ARS?s Scientific Manuscript database

    Fatty acid methyl ester (FAME) mixtures have many uses including biodiesel, lubricants, metal-working fluids, surfactants, polymers, coatings, green solvents and phase-change materials. The physical properties of a FAME mixture depends on the fatty acid concentration (FAC) profile. Some products hav...

  13. Thermodynamics and Phase Behavior of Miscible Polymer Blends in the Presence of Supercritical Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Young, Nicholas Philip

    The design of environmentally-benign polymer processing techniques is an area of growing interest, motivated by the desire to reduce the emission of volatile organic compounds. Recently, supercritical carbon dioxide (scCO 2) has gained traction as a viable candidate to process polymers both as a solvent and diluent. The focus of this work was to elucidate the nature of the interactions between scCO2 and polymers in order to provide rational insight into the molecular interactions which result in the unexpected mixing thermodynamics in one such system. The work also provides insight into the nature of pairwise thermodynamic interactions in multicomponent polymer-polymer-diluent blends, and the effect of these interactions on the phase behavior of the mixture. In order to quantify the strength of interactions in the multicomponent system, the binary mixtures were characterized individually in addition to the ternary blend. Quantitative analysis of was made tractable through the use of a model miscible polymer blend containing styrene-acrylonitrile copolymer (SAN) and poly(methyl methacrylate) (dPMMA), a mixture which has been considered for a variety of practical applications. In the case of both individual polymers, scCO2 is known to behave as a diluent, wherein the extent of polymer swelling depends on both temperature and pressure. The solubility of scCO 2 in each polymer as a function of temperature and pressure was characterized elsewhere. The SAN-dPMMA blend clearly exhibited lower critical solution temperature behavior, forming homogeneous mixtures at low temperatures and phase separating at elevated temperature. These measurements allowed the determination of the Flory-Huggins interaction parameter chi23 for SAN (species 2) and dPMMA (species 3) as a function of temperature at ambient pressure, in the absence of scCO2 (species 1). Characterization of the phase behavior of the multicomponent (ternary) mixture was also carried out by SANS. An in situ SANS environment was developed to allow measurement of blend miscibility in the presence of scCO2. The pressure-temperature phase behavior of the system could be mapped by approaching the point of phase separation by spinodal decomposition through pressure increases at constant temperature. For a roughly symmetric mixture of SAN and dPMMA, the temperature at which phase separation occurred could be decreased by over 125 °C. The extent to which the phase behavior of the multicomponent system could be tuned motivated further investigation into the interactions present within the homogeneous mixtures. Analysis of the SANS results for homogeneous mixtures was undertaken using a new multicomponent formalism of the random phase approximation theory. The scattering profiles obtained from the scCO2-SAN-dPMMA system could be predicted with reasonable success. The success of the theoretical predictions was facilitated by directly employing the interactions found in the binary experiments. Exploitation of the condition of homogeneity with respect to chemical potential allowed determination of interaction parameters for scCO2-SAN and 2-dPMMA within the multicomponent mixture (chi12 and chi13, respectively). Studying this system over a large range of the supercritical regime yielded insight on the nature of interactions in the system. Near the critical point of scCO 2, chi12 and chi13 increase monotonically as a function of pressure. Conversely, at elevated temperature away from the critical point, the interaction parameters are found to go through a minimum as a pressure increases. Analysis of the critical phenomenon associated with scCO2 suggests that the observed dependence of chi12 and chi13 on pressure are related to the magnitude of scCO 2 density fluctuations and the proximity of the system to the so-called density fluctuation ridge. By tuning the system parameters of the multicomponent mixture, the phase behavior can be altered through the balance of pairwise interactions been the constituent species. The presence of scCO2 in the mixtures appears to eliminate the existence of the metastable state that epitomizes most polymer-polymer mixtures. Thus it is shown that knowledge of the individual pairwise interactions in such multicomponent mixtures can greatly influence the resulting phase behavior, and provide insight into the design of improved functional materials with decreased environmental impacts.

  14. Kinetic theory of pattern formation in mixtures of microtubules and molecular motors

    NASA Astrophysics Data System (ADS)

    Maryshev, Ivan; Marenduzzo, Davide; Goryachev, Andrew B.; Morozov, Alexander

    2018-02-01

    In this study we formulate a theoretical approach, based on a Boltzmann-like kinetic equation, to describe pattern formation in two-dimensional mixtures of microtubular filaments and molecular motors. Following the previous work by Aranson and Tsimring [Phys. Rev. E 74, 031915 (2006), 10.1103/PhysRevE.74.031915] we model the motor-induced reorientation of microtubules as collision rules, and devise a semianalytical method to calculate the corresponding interaction integrals. This procedure yields an infinite hierarchy of kinetic equations that we terminate by employing a well-established closure strategy, developed in the pattern-formation community and based on a power-counting argument. We thus arrive at a closed set of coupled equations for slowly varying local density and orientation of the microtubules, and study its behavior by performing a linear stability analysis and direct numerical simulations. By comparing our method with the work of Aranson and Tsimring, we assess the validity of the assumptions required to derive their and our theories. We demonstrate that our approximation-free evaluation of the interaction integrals and our choice of a systematic closure strategy result in a rather different dynamical behavior than was previously reported. Based on our theory, we discuss the ensuing phase diagram and the patterns observed.

  15. Hybrid Solution-Adaptive Unstructured Cartesian Method for Large-Eddy Simulation of Detonation in Multi-Phase Turbulent Reactive Mixtures

    DTIC Science & Technology

    2012-03-27

    pulse- detonation engines ( PDE ), stage separation, supersonic cav- ity oscillations, hypersonic aerodynamics, detonation induced structural...ADAPTIVE UNSTRUCTURED CARTESIAN METHOD FOR LARGE-EDDY SIMULATION OF DETONATION IN MULTI-PHASE TURBULENT REACTIVE MIXTURES 5b. GRANT NUMBER FA9550...CCL Report TR-2012-03-03 Hybrid Solution-Adaptive Unstructured Cartesian Method for Large-Eddy Simulation of Detonation in Multi-Phase Turbulent

  16. Improved Heat-of-Fusion Energy Storage

    NASA Technical Reports Server (NTRS)

    Chen, K. H.; Manvi, R.

    1982-01-01

    Alkali metal/alkali-halide mixtures proposed for preventing solid buildup during energy recovery. When mixture melts (by absorption of heat of fusion), it forms two immiscible liquids. Salt-rich phase is heavier and has higher melting/recrysallization temperature; so during energy recovery salt crystallizes in this phase first. Since heat exchanger for energy recovery is in lighter metal-rich phase, solids do not form and there is no reduction of heat-recovery efficiency.

  17. Analysis of Bose system in spin-orbit coupled Bose-Fermi mixture to induce a spin current of fermions

    NASA Astrophysics Data System (ADS)

    Sakamoto, R.; Ono, Y.; Hatsuda, R.; Shiina, K.; Arahata, E.; Mori, H.

    2018-03-01

    We found that a spin current of fermions could be induced in spin-orbit coupled Bose-Fermi mixture at zero temperature. Since spatial change of the spin structure of the bosons is necessary to induce the spin current of the fermions, we analyzed the ground state of the bosons in the mixture system, using a variational method. The obtained phase diagram indicated the presence of a bosonic phase that allowed the fermions to have a spin current.

  18. Mechanism of Phase Formation in the Batch Mixtures for Slag-Bearing Glass Ceramics - 12207

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stefanovsky, Sergey V.; Stefanovsky, Olga I.; Malinina, Galina A.

    2012-07-01

    Slag surrogate was produced from chemicals by heating to 900 deg. C and keeping at this temperature for 1 hr. The product obtained was intermixed with either sodium di-silicate (75 wt.% waste loading) or borax (85 wt.% slag loading). The mixtures were heat-treated within a temperature range of 25 to 1300 deg. C. The products were examined by X-ray diffraction and infrared spectroscopy. The products prepared at temperatures of up to 1000 deg. C contained both phase typical of the source slag and intermediate phases as well as phases typical of the materials melted at 1350 deg. C such asmore » nepheline, britholite, magnetite and matrix vitreous phase. Vitrification process in batch mixtures consisting of slag surrogate and either sodium di-silicate or sodium tetraborate runs through formation of intermediate phases mainly silico-phosphates capable to incorporate Sm as trivalent actinides surrogate. Reactions in the batch mixtures are in the whole completed by ∼1000 deg. C but higher temperatures are required to homogenize the products. If in the borate-based system the mechanism is close to simple dissolution of slag constituents in the low viscous borate melt, then in the silicate-based system the mechanism was found to be much complicated and includes re-crystallization during melting with segregation of newly-formed nepheline type phase. (authors)« less

  19. Thermodynamic study of (anthracene + benzo[a]pyrene) solid mixtures

    PubMed Central

    Rice, James W.; Suuberg, Eric M.

    2010-01-01

    To characterize better the thermodynamic behavior of a binary polycyclic aromatic hydrocarbon mixture, thermochemical and vapor pressure experiments were used to examine the phase behavior of the {anthracene (1) + benzo[a]pyrene (2)} system. A solid-liquid phase diagram was mapped for the mixture. A eutectic point occurs at x1 = 0.26. The eutectic mixture is an amorphous solid that lacks organized crystal structure and melts between T = (414 and 420) K. For mixtures that contain 0.10 < x1 < 0.90, the enthalpy of fusion is dominated by that of the eutectic. Solid-vapor equilibrium studies show that mixtures of anthracene and benzo[a]pyrene at x1 < 0.10 sublime at the vapor pressure of pure benzo[a]pyrene. These results suggest that the solid-vapor equilibrium of benzo[a]pyrene is not significantly influenced by moderate levels of anthracene in the crystal structure. PMID:20814451

  20. Enthalpy and phase behavior of coal derived liquid mixtures. Technical progress report, April-June 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yesavage, V.F.; Kidnay, A.J.

    Enthalpy measurements for the m-cresol/tetralin binary system, and the quinoline/tertralin binary system have been completed and are included. A calibration check on the calorimeter was performed and is presented in Appendix C. Vapor liquid equilibria measurements for the quinoline/tetralin system have been completed for four isotherms; 250, 275, 300, and 325/sup 0/C. These results and a summary of progress to date for the VLE apparatus are in the appendix at the end of this report. Also, preliminary work has begun on the quinoline/m-cresol/tetralin ternary system. Correlational work has consisted of the development of mathematical expressions for fugacity and enthalpy usingmore » various combinations of mixing rules and equations of state discussed in earlier reports. Also maximum likelihood routines has been written to determine the necessary parameters for binary data obtained in this investigation.« less

  1. Nonequilibrium boundary layer at a stagnation point for a hydrogen-helium stream over ablating graphite

    NASA Technical Reports Server (NTRS)

    Liu, T.-M.; Davy, W. C.

    1974-01-01

    The nonequilibrium axisymmetric stagnation point boundary layer over an ablating graphite surface is considered. The external stream is a high temperature mixture of hydrogen and helium. Variable thermodynamic and transport properties are assumed. Lennard-Jones potential model is used to calculate the transport coefficients of each species. Although the mixture rules for viscosity of the gas mixture are used, the weighting functions are more sophisticated than those commonly employed. For the conductivity of the mixture, generalized Wassiljewa coefficients are used. Seven species with 28 dissociation/recombination reactions are considered. Hansen's model for the dissociation rate constants is employed. The recombination rate constants are obtained by invoking detailed balance principles assisted by the JANAF thermodynamic data and the Hansen-Pearson thermodynamic data for C3.

  2. Probing the role of ceramide hydroxylation in skin barrier lipid models by 2H solid-state NMR spectroscopy and X-ray powder diffraction.

    PubMed

    Kováčik, Andrej; Vogel, Alexander; Adler, Juliane; Pullmannová, Petra; Vávrová, Kateřina; Huster, Daniel

    2018-05-01

    In this work, we studied model stratum corneum lipid mixtures composed of the hydroxylated skin ceramides N-lignoceroyl 6-hydroxysphingosine (Cer[NH]) and α-hydroxylignoceroyl phytosphingosine (Cer[AP]). Two model skin lipid mixtures of the composition Cer[NH] or Cer[AP], N-lignoceroyl sphingosine (Cer[NS]), lignoceric acid (C24:0) and cholesterol in a 0.5:0.5:1:1 molar ratio were compared. Model membranes were investigated by differential scanning calorimetry and 2 H solid-state NMR spectroscopy at temperatures from 25 °C to 80 °C. Each component of the model mixture was specifically deuterated for selective detection by 2 H NMR. Thus, the exact phase composition of the mixture at varying temperatures could be quantified. Moreover, using X-ray powder diffraction we investigated the lamellar phase formation. From the solid-state NMR and DSC studies, we found that both hydroxylated Cer[NH] and Cer[AP] exhibit a similar phase behavior. At physiological skin temperature of 32 °C, the lipids form a crystalline (orthorhombic) phase. With increasing temperature, most of the lipids become fluid and form a liquid-crystalline phase, which converts to the isotropic phase at higher temperatures (65-80 °C). Interestingly, lignoceric acid in the Cer[NH]-containing mixture has a tendency to form two types of fluid phases at 65 °C. This tendency was also observed in Cer[AP]-containing membranes at 80 °C. While Cer[AP]-containing lipid models formed a short periodicity phase featuring a repeat spacing of d = 5.4 nm, in the Cer[NH]-based model skin lipid membranes, the formation of unusual long periodicity phase with a repeat spacing of d = 10.7 nm was observed. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Dynamics of polymerization induced phase separation in reactive polymer blends

    NASA Astrophysics Data System (ADS)

    Lee, Jaehyung

    Mechanisms and dynamics of phase decomposition following polymerization induced phase separation (PIPS) of reactive polymer blends have been investigated experimentally and theoretically. The phenomenon of PIPS is a non-equilibrium and non-linear dynamic process. The mechanism of PIPS has been thought to be a nucleation and growth (NG) type originally, however, newer results indicate spinodal decomposition (SD). In PIPS, the coexistence curve generally passes through the reaction temperature at off-critical compositions, thus phase separation has to be initiated first in the metastable region where nucleation occurs. When the system farther drifts from the metastable to unstable region, the NG structure transforms to the SD bicontinuous morphology. The crossover behavior of PIPS may be called nucleation initiated spinodal decomposition (NISD). The formation of newer domains between the existing ones is responsible for the early stage of PIPS. Since PIPS is non- equilibrium kinetic process, it would not be surprising to discern either or both structures. The phase separation dynamics of DGEBA/CTBN mixtures having various kinds of curing agents from low reactivity to high reactivity and various amount of curing agents were examined at various reaction temperatures. The phase separation behavior was monitored by a quantity of scattered light intensity experimentally and by a quantity of collective structure factor numerically. Prior to the study of phase separation dynamics, a preliminary investigation on the isothermal cure behavior of the mixtures were executed in order to determine reaction kinetics parameters. The cure behavior followed the overall second order reaction kinetics. Next, based on the knowledge obtained from the phase separation dynamics study of DGEBA/CTBN mixtures, the phase separation dynamics of various composition of DGEBA/R45EPI mixtures having MDA as a curing agent were investigated. The phase separation behavior was quite dependent upon the composition variation. R45EPI itself can react with itself or with DGEBA without curing, therefore three-component system was considered in this mixture. For the numerical studies of this three- component mixture, a system that is composed of a reactive component-1 that is miscible with its growing molecules and another reactive component-2 that is not miscible with its growing molecules was considered with crosslinking reaction kinetics of the each component.

  4. Phase behavior and formation of o/w nano-emulsion in vegetable oil/ mixture of polyglycerol polyricinoleate and polyglycerin fatty acid ester/water systems.

    PubMed

    Wakisaka, Satoshi; Nakanishi, Masami; Gohtani, Shoichi

    2014-01-01

    It is reported that mixing polyglycerol polyricinoleate (PGPR) and polyglycerol laurilester has a great emulsifying capacity, and consequently fine oil-in-water (o/w) emulsions can be formed. However, the role of PGPR is not clear. The objective of this research is to investigate the phase behavior of vegetable oil/mixture of PGPR and polyglycerol fatty acid ester/water systems, and to clarify the role of PGPR in making a fine emulsion. Phase diagrams were constructed to elucidate the optimal process for preparing fine emulsions. In all the systems examined in this study, the phases, including the liquid crystal phase (L(c)) and sponge phase (L(3)), spread widely in the phase diagrams. We examined droplet size of the emulsions prepared from each phase and found that o/w nano-emulsions with droplet sizes as small as 50 nm were formed by emulsifying either from a single L(3) phase or a two-phase region, L(c) + L(3). These results indicate that a sponge phase L(3) or liquid crystal phase L(c) or both is necessary to form an o/w nano-emulsion whose average droplet diameter is less than 50 nm for PGPR and polyglycerin fatty acid ester mixtures used as surfactant.

  5. Rapid gas hydrate formation process

    DOEpatents

    Brown, Thomas D.; Taylor, Charles E.; Unione, Alfred J.

    2013-01-15

    The disclosure provides a method and apparatus for forming gas hydrates from a two-phase mixture of water and a hydrate forming gas. The two-phase mixture is created in a mixing zone which may be wholly included within the body of a spray nozzle. The two-phase mixture is subsequently sprayed into a reaction zone, where the reaction zone is under pressure and temperature conditions suitable for formation of the gas hydrate. The reaction zone pressure is less than the mixing zone pressure so that expansion of the hydrate-forming gas in the mixture provides a degree of cooling by the Joule-Thompson effect and provides more intimate mixing between the water and the hydrate-forming gas. The result of the process is the formation of gas hydrates continuously and with a greatly reduced induction time. An apparatus for conduct of the method is further provided.

  6. Formation of H2-He substellar bodies in cold conditions. Gravitational stability of binary mixtures in a phase transition

    NASA Astrophysics Data System (ADS)

    Füglistaler, A.; Pfenniger, D.

    2016-06-01

    Context. Molecular clouds typically consist of 3/4 H2, 1/4 He and traces of heavier elements. In an earlier work we showed that at very low temperatures and high densities, H2 can be in a phase transition leading to the formation of ice clumps as large as comets or even planets. However, He has very different chemical properties and no phase transition is expected before H2 in dense interstellar medium conditions. The gravitational stability of fluid mixtures has been studied before, but these studies did not include a phase transition. Aims: We study the gravitational stability of binary fluid mixtures with special emphasis on when one component is in a phase transition. The numerical results are aimed at applications in molecular cloud conditions, but the theoretical results are more general. Methods: First, we study the gravitational stability of van der Waals fluid mixtures using linearized analysis and examine virial equilibrium conditions using the Lennard-Jones intermolecular potential. Then, combining the Lennard-Jones and gravitational potentials, the non-linear dynamics of fluid mixtures are studied via computer simulations using the molecular dynamics code LAMMPS. Results: Along with the classical, ideal-gas Jeans instability criterion, a fluid mixture is always gravitationally unstable if it is in a phase transition because compression does not increase pressure. However, the condensed phase fraction increases. In unstable situations the species can separate: in some conditions He precipitates faster than H2, while in other conditions the converse occurs. Also, for an initial gas phase collapse the geometry is essential. Contrary to spherical or filamentary collapses, sheet-like collapses starting below 15 K easily reach H2 condensation conditions because then they are fastest and both the increase of heating and opacity are limited. Conclusions: Depending on density, temperature and mass, either rocky H2 planetoids, or gaseous He planetoids form. H2 planetoids are favoured by high density, low temperature and low mass, while He planetoids need more mass and can form at temperature well above the critical value.

  7. Prediction of U-Mo dispersion nuclear fuels with Al-Si alloy using artificial neural network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susmikanti, Mike, E-mail: mike@batan.go.id; Sulistyo, Jos, E-mail: soj@batan.go.id

    2014-09-30

    Dispersion nuclear fuels, consisting of U-Mo particles dispersed in an Al-Si matrix, are being developed as fuel for research reactors. The equilibrium relationship for a mixture component can be expressed in the phase diagram. It is important to analyze whether a mixture component is in equilibrium phase or another phase. The purpose of this research it is needed to built the model of the phase diagram, so the mixture component is in the stable or melting condition. Artificial neural network (ANN) is a modeling tool for processes involving multivariable non-linear relationships. The objective of the present work is to developmore » code based on artificial neural network models of system equilibrium relationship of U-Mo in Al-Si matrix. This model can be used for prediction of type of resulting mixture, and whether the point is on the equilibrium phase or in another phase region. The equilibrium model data for prediction and modeling generated from experimentally data. The artificial neural network with resilient backpropagation method was chosen to predict the dispersion of nuclear fuels U-Mo in Al-Si matrix. This developed code was built with some function in MATLAB. For simulations using ANN, the Levenberg-Marquardt method was also used for optimization. The artificial neural network is able to predict the equilibrium phase or in the phase region. The develop code based on artificial neural network models was built, for analyze equilibrium relationship of U-Mo in Al-Si matrix.« less

  8. Application of quality by design concept to develop a dual gradient elution stability-indicating method for cloxacillin forced degradation studies using combined mixture-process variable models.

    PubMed

    Zhang, Xia; Hu, Changqin

    2017-09-08

    Penicillins are typical of complex ionic samples which likely contain large number of degradation-related impurities (DRIs) with different polarities and charge properties. It is often a challenge to develop selective and robust high performance liquid chromatography (HPLC) methods for the efficient separation of all DRIs. In this study, an analytical quality by design (AQbD) approach was proposed for stability-indicating method development of cloxacillin. The structures, retention and UV characteristics rules of penicillins and their impurities were summarized and served as useful prior knowledge. Through quality risk assessment and screen design, 3 critical process parameters (CPPs) were defined, including 2 mixture variables (MVs) and 1 process variable (PV). A combined mixture-process variable (MPV) design was conducted to evaluate the 3 CPPs simultaneously and a response surface methodology (RSM) was used to achieve the optimal experiment parameters. A dual gradient elution was performed to change buffer pH, mobile-phase type and strength simultaneously. The design spaces (DSs) was evaluated using Monte Carlo simulation to give their possibility of meeting the specifications of CQAs. A Plackett-Burman design was performed to test the robustness around the working points and to decide the normal operating ranges (NORs). Finally, validation was performed following International Conference on Harmonisation (ICH) guidelines. To our knowledge, this is the first study of using MPV design and dual gradient elution to develop HPLC methods and improve separations for complex ionic samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Determination of Specific Heat Capacity on Composite Shape-Stabilized Phase Change Materials and Asphalt Mixtures by Heat Exchange System

    PubMed Central

    Ma, Biao; Zhou, Xue-yan; Liu, Jiang; You, Zhanping; Wei, Kun; Huang, Xiao-feng

    2016-01-01

    Previous research has shown that composite shape-stabilized phase change material (CPCM) has a remarkable capacity for thermal storage and stabilization, and it can be directly applied to highway construction without leakage. However, recent studies on temperature changing behaviors of CPCM and asphalt mixture cannot intuitively reflect the thermoregulation mechanism and efficiency of CPCM on asphalt mixture. The objective of this paper is to determine the specific heat capacity of CPCM and asphalt mixtures mixed with CPCM using the heat exchange system and the data acquisition system. Studies have shown that the temperature-rise curve of 5 °C CPCM has an obvious temperature plateau, while an asphalt mixture mixed with 5 °C CPCM does not; with increasing temperature, the specific heat capacities of both 5 °C CPCM and asphalt mixture first increase and then decrease, while the variation rate of 5 °C CPCM is larger than that of the asphalt mixture, and the maximum specific heat capacity of 5 °C CPCM appears around the initial phase change temperature. It is concluded that the temperature intervals of 5 °C CPCM are −18 °C–7 °C, 7 °C–25 °C and 25 °C–44 °C, respectively, and that of the asphalt mixture are −18 °C~10 °C, −10 °C~5 °C and 5 °C~28 °C. A low dosage of 5 °C CPCM has little influence on the specific heat capacity of asphalt mixture. Finally, the functions of specific heat capacities and temperature for CPCM and asphalt mixture mixed with CPCM were recommended by the sectional regression method. PMID:28773510

  10. Determination of Specific Heat Capacity on Composite Shape-Stabilized Phase Change Materials and Asphalt Mixtures by Heat Exchange System.

    PubMed

    Ma, Biao; Zhou, Xue-Yan; Liu, Jiang; You, Zhanping; Wei, Kun; Huang, Xiao-Feng

    2016-05-19

    Previous research has shown that composite shape-stabilized phase change material (CPCM) has a remarkable capacity for thermal storage and stabilization, and it can be directly applied to highway construction without leakage. However, recent studies on temperature changing behaviors of CPCM and asphalt mixture cannot intuitively reflect the thermoregulation mechanism and efficiency of CPCM on asphalt mixture. The objective of this paper is to determine the specific heat capacity of CPCM and asphalt mixtures mixed with CPCM using the heat exchange system and the data acquisition system. Studies have shown that the temperature-rise curve of 5 °C CPCM has an obvious temperature plateau, while an asphalt mixture mixed with 5 °C CPCM does not; with increasing temperature, the specific heat capacities of both 5 °C CPCM and asphalt mixture first increase and then decrease, while the variation rate of 5 °C CPCM is larger than that of the asphalt mixture, and the maximum specific heat capacity of 5 °C CPCM appears around the initial phase change temperature. It is concluded that the temperature intervals of 5 °C CPCM are -18 °C-7 °C, 7 °C-25 °C and 25 °C-44 °C, respectively, and that of the asphalt mixture are -18 °C~10 °C, -10 °C~5 °C and 5 °C~28 °C. A low dosage of 5 °C CPCM has little influence on the specific heat capacity of asphalt mixture. Finally, the functions of specific heat capacities and temperature for CPCM and asphalt mixture mixed with CPCM were recommended by the sectional regression method.

  11. Anthracene + Pyrene Solid Mixtures: Eutectic and Azeotropic Character

    PubMed Central

    Rice, James W.; Fu, Jinxia; Suuberg, Eric M.

    2010-01-01

    To better characterize the thermodynamic behavior of a binary polycyclic aromatic hydrocarbon mixture, thermochemical and vapor pressure experiments were used to examine the phase behavior of the anthracene (1) + pyrene (2) system. A solid-liquid phase diagram was mapped for the mixture. A eutectic point occurs at 404 K at x1 = 0.22. A model based on eutectic formation can be used to predict the enthalpy of fusion associated with the mixture. For mixtures that contain x1 < 0.90, the enthalpy of fusion is near that of pure pyrene. This and X-ray diffraction results indicate that mixtures of anthracene and pyrene have pyrene-like crystal structures and energetics until the composition nears that of pure anthracene. Solid-vapor equilibrium studies show that mixtures of anthracene and pyrene form solid azeotropes at x1 of 0.03 and 0.14. Additionally, mixtures at x1 = 0.99 sublime at the vapor pressure of pure anthracene, suggesting that anthracene behavior is not significantly influenced by x2 = 0.01 in the crystal structure. PMID:21116474

  12. Renormalization-group study of superfluidity and phase separation of helium mixtures immersed in a nonrandom aerogel

    NASA Astrophysics Data System (ADS)

    Lopatnikova, Anna; Nihat Berker, A.

    1997-02-01

    Superfluidity and phase separation in 3-4He mixtures immersed in a jungle-gym (nonrandom) aerogel are studied by renormalization-group theory. Phase diagrams are calculated for a variety of aerogel concentrations. Superfluidity at very low 4He concentrations and a depressed tricritical temperature are found at the onset of superfluidity. A superfluid-superfluid phase separation, terminating at an isolated critical point, is found entirely within the superfluid phase. These phenomena and trends with respect to aerogel concentration are explained by the connectivity and tenuousness of a jungle-gym aerogel.

  13. Boosting subsurface life: is subseafloor sediment a natural catalyst for radiolytic hydrogen production?

    NASA Astrophysics Data System (ADS)

    Sauvage, J.; Graham, D.; Spivack, A. J.; Dunlea, A. G.; Murray, R. W.; D'Hondt, S.

    2014-12-01

    Naturally occurring production of molecular hydrogen (H2) by water radiolysis may be a fundamentally important source of electron donors (energy) for life in subsurface environments where organic matter is scarce. Previous studies with very high gamma radiation rates and wet mineral phases have reported high H2 production relative to production from water radiolysis in the absence of solid phases. Numerical calculations by other previous studies have predicted enhanced H2 production from seawater radiolysis relative to pure water radiolysis, due to the interaction of anions with hydroxyl radicals. Given these reports, the potential catalytic influences of solid and dissolved chemical phases on radiolytic H2 production need to be carefully quantified in order to fully evaluate the role of radiolytic H2 as a microbial energy source. For such quantification, we undertook gamma-irradiation experiments with pure water, deep ocean water and mixtures (slurries, φ = 0.85) of seawater with: North Pacific abyssal clay and calcareous oozes, coastal sediment, zirconium dioxide, and zeolite. We carried out our experiments at the Rhode Island Nuclear Science Center using a 37Cesium source at low dose rates (up to 0.1 Gy/hr). Our results to date include the following. First, the per-dose radiolytic H2 yield of pure water at low dose rates is directly comparable to the per-dose yield at much higher dose rates (ca. 1 kGy/hr); this result indicates that H2 production rate is linearly related to radiation dose rate across four orders of magnitude. Second, there is no statistically significant difference (90% confidence limit) between the radiolytic H2 yield from pure water and that from seawater; this result rules out influence of abundant seawater salts on H2 yield from water radiolysis. Third, H2 production from a mixture of abyssal clay and seawater is 25% higher than the yield from pure water. This enhanced yield is consistent with catalysis of radiolytic H2 production by zeolite.

  14. 78 FR 34687 - Self-Regulatory Organizations; NYSE MKT LLC; Notice of Filing and Immediate Effectiveness of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ... To Amend Rule 1000-- Equities To Revise the Manner by Which the Exchange Will Phase Out the... Exchange will phase out the functionality associated with liquidity replenishment points (``LRPs'') in... Exchange filed to amend Rule 1000--Equities to provide that it would phase out the functionality associated...

  15. Synthesis and Properties of Nanoparticle Forms Saponite Clay, Cancrinite Zeolite and Phase Mixtures Thereof.

    PubMed

    Shao, Hua; Pinnavaia, Thomas J

    2010-09-01

    The low-temperature synthesis (90°C) of nanoparticle forms of a pure phase smectic clay (saponite) and zeolite (cancrinite) is reported, along with phase mixtures thereof. A synthesis gel corresponding to the Si:Al:Mg unit cell composition of saponite (3.6:0.40:3.0) and a NaOH/Si ratio of 1.39 affords the pure phase clay with disordered nanolayer stacking. Progressive increases in the NaOH/Si ratio up to a value of 8.33 results in the co-crystallization of first garronite and then cancrinite zeolites with nanolath morphology. The resulting phase mixtures exhibit a compound particulate structure of intertwined saponite nanolayers and cancrinite nanolaths that cannot be formed through physical mixing of the pure phase end members. Under magnesium-free conditions, pure phase cancrinite nanocrystals are formed. The Si/Al ratio of the reaction mixture affects the particle morphology as well as the chemical composition of the cancrinite zeolite. Ordinarily, cancrinite crystallizes with a Si/Al ratio of 1.0, but a silicon-rich form of the zeolite (Si/Al=1.25) is crystallized at low temperature from a silica rich synthesis gel, as evidenced by (29)Si NMR spectroscopy and XEDS-TEM. Owing to the exceptionally high external surface areas of the pure phase clay (875 m(2)/g) and zeolite end members (8.9 - 40 m(2)/g), as well as their unique mixed phase composites (124 - 329 m(2)/g), these synthetic derivatives are promising model nanoparticles for studies of the bioavailability of poly-aromatic hydrocarbons immobilized in silicate bearing sediments and soils.

  16. Characterization of Mixtures. Part 2: QSPR Models for Prediction of Excess Molar Volume and Liquid Density Using Neural Networks.

    PubMed

    Ajmani, Subhash; Rogers, Stephen C; Barley, Mark H; Burgess, Andrew N; Livingstone, David J

    2010-09-17

    In our earlier work, we have demonstrated that it is possible to characterize binary mixtures using single component descriptors by applying various mixing rules. We also showed that these methods were successful in building predictive QSPR models to study various mixture properties of interest. Here in, we developed a QSPR model of an excess thermodynamic property of binary mixtures i.e. excess molar volume (V(E) ). In the present study, we use a set of mixture descriptors which we earlier designed to specifically account for intermolecular interactions between the components of a mixture and applied successfully to the prediction of infinite-dilution activity coefficients using neural networks (part 1 of this series). We obtain a significant QSPR model for the prediction of excess molar volume (V(E) ) using consensus neural networks and five mixture descriptors. We find that hydrogen bond and thermodynamic descriptors are the most important in determining excess molar volume (V(E) ), which is in line with the theory of intermolecular forces governing excess mixture properties. The results also suggest that the mixture descriptors utilized herein may be sufficient to model a wide variety of properties of binary and possibly even more complex mixtures. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Closed-form solutions in stress-driven two-phase integral elasticity for bending of functionally graded nano-beams

    NASA Astrophysics Data System (ADS)

    Barretta, Raffaele; Fabbrocino, Francesco; Luciano, Raimondo; Sciarra, Francesco Marotti de

    2018-03-01

    Strain-driven and stress-driven integral elasticity models are formulated for the analysis of the structural behaviour of fuctionally graded nano-beams. An innovative stress-driven two-phases constitutive mixture defined by a convex combination of local and nonlocal phases is presented. The analysis reveals that the Eringen strain-driven fully nonlocal model cannot be used in Structural Mechanics since it is ill-posed and the local-nonlocal mixtures based on the Eringen integral model partially resolve the ill-posedeness of the model. In fact, a singular behaviour of continuous nano-structures appears if the local fraction tends to vanish so that the ill-posedness of the Eringen integral model is not eliminated. On the contrary, local-nonlocal mixtures based on the stress-driven theory are mathematically and mechanically appropriate for nanosystems. Exact solutions of inflected functionally graded nanobeams of technical interest are established by adopting the new local-nonlocal mixture stress-driven integral relation. Effectiveness of the new nonlocal approach is tested by comparing the contributed results with the ones corresponding to the mixture Eringen theory.

  18. A multilayer perceptron solution to the match phase problem in rule-based artificial intelligence systems

    NASA Technical Reports Server (NTRS)

    Sartori, Michael A.; Passino, Kevin M.; Antsaklis, Panos J.

    1992-01-01

    In rule-based AI planning, expert, and learning systems, it is often the case that the left-hand-sides of the rules must be repeatedly compared to the contents of some 'working memory'. The traditional approach to solve such a 'match phase problem' for production systems is to use the Rete Match Algorithm. Here, a new technique using a multilayer perceptron, a particular artificial neural network model, is presented to solve the match phase problem for rule-based AI systems. A syntax for premise formulas (i.e., the left-hand-sides of the rules) is defined, and working memory is specified. From this, it is shown how to construct a multilayer perceptron that finds all of the rules which can be executed for the current situation in working memory. The complexity of the constructed multilayer perceptron is derived in terms of the maximum number of nodes and the required number of layers. A method for reducing the number of layers to at most three is also presented.

  19. Transient Catalytic Combustor Model With Detailed Gas and Surface Chemistry

    NASA Technical Reports Server (NTRS)

    Struk, Peter M.; Dietrich, Daniel L.; Mellish, Benjamin P.; Miller, Fletcher J.; Tien, James S.

    2005-01-01

    In this work, we numerically investigate the transient combustion of a premixed gas mixture in a narrow, perfectly-insulated, catalytic channel which can represent an interior channel of a catalytic monolith. The model assumes a quasi-steady gas-phase and a transient, thermally thin solid phase. The gas phase is one-dimensional, but it does account for heat and mass transfer in a direction perpendicular to the flow via appropriate heat and mass transfer coefficients. The model neglects axial conduction in both the gas and in the solid. The model includes both detailed gas-phase reactions and catalytic surface reactions. The reactants modeled so far include lean mixtures of dry CO and CO/H2 mixtures, with pure oxygen as the oxidizer. The results include transient computations of light-off and system response to inlet condition variations. In some cases, the model predicts two different steady-state solutions depending on whether the channel is initially hot or cold. Additionally, the model suggests that the catalytic ignition of CO/O2 mixtures is extremely sensitive to small variations of inlet equivalence ratios and parts per million levels of H2.

  20. A possible four-phase coexistence in a single-component system

    NASA Astrophysics Data System (ADS)

    Akahane, Kenji; Russo, John; Tanaka, Hajime

    2016-08-01

    For different phases to coexist in equilibrium at constant temperature T and pressure P, the condition of equal chemical potential μ must be satisfied. This condition dictates that, for a single-component system, the maximum number of phases that can coexist is three. Historically this is known as the Gibbs phase rule, and is one of the oldest and venerable rules of thermodynamics. Here we make use of the fact that, by varying model parameters, the Gibbs phase rule can be generalized so that four phases can coexist even in single-component systems. To systematically search for the quadruple point, we use a monoatomic system interacting with a Stillinger-Weber potential with variable tetrahedrality. Our study indicates that the quadruple point provides flexibility in controlling multiple equilibrium phases and may be realized in systems with tunable interactions, which are nowadays feasible in several soft matter systems such as patchy colloids.

  1. A possible four-phase coexistence in a single-component system

    PubMed Central

    Akahane, Kenji; Russo, John; Tanaka, Hajime

    2016-01-01

    For different phases to coexist in equilibrium at constant temperature T and pressure P, the condition of equal chemical potential μ must be satisfied. This condition dictates that, for a single-component system, the maximum number of phases that can coexist is three. Historically this is known as the Gibbs phase rule, and is one of the oldest and venerable rules of thermodynamics. Here we make use of the fact that, by varying model parameters, the Gibbs phase rule can be generalized so that four phases can coexist even in single-component systems. To systematically search for the quadruple point, we use a monoatomic system interacting with a Stillinger–Weber potential with variable tetrahedrality. Our study indicates that the quadruple point provides flexibility in controlling multiple equilibrium phases and may be realized in systems with tunable interactions, which are nowadays feasible in several soft matter systems such as patchy colloids. PMID:27558452

  2. Multi-scale Rule-of-Mixtures Model of Carbon Nanotube/Carbon Fiber/Epoxy Lamina

    NASA Technical Reports Server (NTRS)

    Frankland, Sarah-Jane V.; Roddick, Jaret C.; Gates, Thomas S.

    2005-01-01

    A unidirectional carbon fiber/epoxy lamina in which the carbon fibers are coated with single-walled carbon nanotubes is modeled with a multi-scale method, the atomistically informed rule-of-mixtures. This multi-scale model is designed to include the effect of the carbon nanotubes on the constitutive properties of the lamina. It included concepts from the molecular dynamics/equivalent continuum methods, micromechanics, and the strength of materials. Within the model both the nanotube volume fraction and nanotube distribution were varied. It was found that for a lamina with 60% carbon fiber volume fraction, the Young's modulus in the fiber direction varied with changes in the nanotube distribution, from 138.8 to 140 GPa with nanotube volume fractions ranging from 0.0001 to 0.0125. The presence of nanotube near the surface of the carbon fiber is therefore expected to have a small, but positive, effect on the constitutive properties of the lamina.

  3. Demixing in simple dipolar mixtures: Integral equation versus density functional results

    NASA Astrophysics Data System (ADS)

    Range, Gabriel M.; Klapp, Sabine H. L.

    2004-09-01

    Using reference hypernetted chain (RHNC) integral equations and density functional theory in the modified mean-field (MMF) approximation we investigate the phase behavior of binary mixtures of dipolar hard spheres. The two species ( A and B ) differ only in their dipole moments mA and mB , and the central question investigated is under which conditions these asymmetric mixtures can exhibit demixing phase transitions in the fluid phase regime. Results from our two theoretical approaches turn out to strongly differ. Within the RHNC (which we apply to the isotropic high-temperature phase) demixing does indeed occur for dense systems with small interaction parameters Γ=mB2/mA2 . This result generalizes previously reported observations on demixing in mixtures of dipolar and neutral hard spheres (Γ=0) to the case of true dipolar hard sphere mixtures. The RHNC approach also indicates that these demixed fluid phases are isotropic at temperatures accessible by the theory, whereas isotropic-to-ferroelectric transitions occur only at larger Γ . The MMF theory, on the other hand, yields a different picture in which demixing occurs in combination with spontaneous ferroelectricity at all Γ considered. This discrepancy underlines the relevance of correlational effects for the existence of demixing transitions in dipolar systems without dispersive interactions. Indeed, supplementing the dipolar interactions by small, asymmetric amounts of van der Waals-like interactions (and thereby supporting the systems tendency to demix) one finally reaches good agreement between MMF and RHNC results.

  4. Soret motion in non-ionic binary molecular mixtures

    NASA Astrophysics Data System (ADS)

    Leroyer, Yves; Würger, Alois

    2011-08-01

    We study the Soret coefficient of binary molecular mixtures with dispersion forces. Relying on standard transport theory for liquids, we derive explicit expressions for the thermophoretic mobility and the Soret coefficient. Their sign depends on composition, the size ratio of the two species, and the ratio of Hamaker constants. Our results account for several features observed in experiment, such as a linear variation with the composition; they confirm the general rule that small molecules migrate to the warm, and large ones to the cold.

  5. Evidence for phase separation of ethanol-water mixtures at the hydrogen terminated nanocrystalline diamond surface.

    PubMed

    Janssens, Stoffel D; Drijkoningen, Sien; Saitner, Marc; Boyen, Hans-Gerd; Wagner, Patrick; Larsson, Karin; Haenen, Ken

    2012-07-28

    Interactions between ethanol-water mixtures and a hydrophobic hydrogen terminated nanocrystalline diamond surface, are investigated by sessile drop contact angle measurements. The surface free energy of the hydrophobic surface, obtained with pure liquids, differs strongly from values obtained by ethanol-water mixtures. Here, a model which explains this difference is presented. The model suggests that, due to a higher affinity of ethanol for the hydrophobic surface, when compared to water, a phase separation occurs when a mixture of both liquids is in contact with the H-terminated diamond surface. These results are supported by a computational study giving insight in the affinity and related interaction at the liquid-solid interface.

  6. Ground tire rubber (GTR) as a component material in concrete mixtures for paving concrete, phase 2 : [summary].

    DOT National Transportation Integrated Search

    2015-02-01

    Using ground tire rubber (GTR) in : concrete mixtures is a possible solution : to mitigating flexibility and thermal : expansion issues with high-strength : concrete pavements. Florida State : University researchers designed concrete : mixtures using...

  7. Combination Rules for Morse-Based van der Waals Force Fields.

    PubMed

    Yang, Li; Sun, Lei; Deng, Wei-Qiao

    2018-02-15

    In traditional force fields (FFs), van der Waals interactions have been usually described by the Lennard-Jones potentials. Conventional combination rules for the parameters of van der Waals (VDW) cross-termed interactions were developed for the Lennard-Jones based FFs. Here, we report that the Morse potentials were a better function to describe VDW interactions calculated by highly precise quantum mechanics methods. A new set of combination rules was developed for Morse-based FFs, in which VDW interactions were described by Morse potentials. The new set of combination rules has been verified by comparing the second virial coefficients of 11 noble gas mixtures. For all of the mixed binaries considered in this work, the combination rules work very well and are superior to all three other existing sets of combination rules reported in the literature. We further used the Morse-based FF by using the combination rules to simulate the adsorption isotherms of CH 4 at 298 K in four covalent-organic frameworks (COFs). The overall agreement is great, which supports the further applications of this new set of combination rules in more realistic simulation systems.

  8. The Electrical and Thermal Conductivity of Woven Pristine and Intercalated Graphite Fiber-Polymer Composites

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Vandenburg, Yvonne Yoder; Berkebile, Steven; Stueben, Heather; Balagadde, Frederick

    2002-01-01

    A series of woven fabric laminar composite plates and narrow strips were fabricated from a variety of pitch-based pristine and bromine intercalated graphite fibers in an attempt to determine the influence of the weave on the electrical and thermal conduction. It was found generally that these materials can be treated as if they are homogeneous plates. The rule of mixtures describes the resistivity of the composite fairly well if it is realized that only the component of the fibers normal to the equipotential surface will conduct current. When the composite is narrow with respect to the fiber weave, however, there is a marked angular dependence of the resistance which was well modeled by assuming that the current follows only along the fibers (and not across them in a transverse direction), and that the contact resistance among the fibers in the composite is negligible. The thermal conductivity of composites made from less conductive fibers more closely followed the rule of mixtures than that of the high conductivity fibers, though this is thought to be an artifact of the measurement technique. Electrical and thermal anisotropy could be induced in a particular region of the structure by weaving together high and low conductivity fibers in different directions, though this must be done throughout all of the layers of the structure as interlaminar conduction precludes having only the top layer carry the anisotropy. The anisotropy in the thermal conductivity is considerably less than either that predicted by the rule of mixtures or the electrical resistivity.

  9. Phases and structures of sunset yellow and disodium cromoglycate mixtures in water.

    PubMed

    Yamaguchi, Akihiro; Smith, Gregory P; Yi, Youngwoo; Xu, Charles; Biffi, Silvia; Serra, Francesca; Bellini, Tommaso; Zhu, Chenhui; Clark, Noel A

    2016-01-01

    We study phases and structures of mixtures of two representative chromonic liquid crystal materials, sunset yellow FCF (SSY) and disodium cromoglycate (DSCG), in water. A variety of combinations of isotropic, nematic (N), and columnar (also called M) phases are observed depending on their concentrations, and a phase diagram is made. We find a tendency for DSCG-rich regions to show higher-order phases while SSY-rich regions show lower-order ones. We observe uniform mesophases only when one of the materials is sparse in the N phases. Their miscibility in M phases is so low that essentially complete phase separation occurs. X-ray scattering and spectroscopy studies confirm that SSY and DSCG molecules do not mix when they form chromonic aggregates and neither do their aggregates when they form M phases.

  10. Binary Mixtures of Particles with Different Diffusivities Demix.

    PubMed

    Weber, Simon N; Weber, Christoph A; Frey, Erwin

    2016-02-05

    The influence of size differences, shape, mass, and persistent motion on phase separation in binary mixtures has been intensively studied. Here we focus on the exclusive role of diffusivity differences in binary mixtures of equal-sized particles. We find an effective attraction between the less diffusive particles, which are essentially caged in the surrounding species with the higher diffusion constant. This effect leads to phase separation for systems above a critical size: A single close-packed cluster made up of the less diffusive species emerges. Experiments for testing our predictions are outlined.

  11. SEPARATION OF POLONIUM, PROTACTINIUM OR MIXTURES THEREOF IN AQUEOUS SOLUTION FROM BISMUTH, LEAD, ZIRCONIUM AND/OR COLUMBIUM VALUES

    DOEpatents

    Van Winkle, Q.; Kraus, K.A.

    1959-10-27

    A process is presented for separating polonium, protactinium, or mixtures thereof in aqueous solution from bismuth, zirconium, lead, and niobium values contained in the solution. The method comprises providing hydrochloric acid in the solution in a concentration of at least 5N. contacting the aqueous solution with a substantially waterimmiscible organic solvent such as diisopropyl ketone, and separating the aqueous phase containing the bismuth, zirconium, lead, and niobium from the organic extract phase containing the polonium, protactinium, or mixture thereof.

  12. Theory and tests of two-phase turbines

    NASA Technical Reports Server (NTRS)

    Elliott, D. G.

    1982-01-01

    A theoretical model for two-phase turbines was developed. Apparatus was constructed for testing one- and two-stage turbines (using speed decrease from stage to stage). Turbines were tested with water and nitrogen mixtures and refrigerant 22. Nozzle efficiencies were 0.78 (measured) and 0.72 (theoretical) for water and nitrogen mixtures at a water/nitrogen mixture ratio of 68, by mass; and 0.89 (measured) and 0.84 (theoretical) for refrigerant 22 expanding from 0.02 quality to 0.28 quality. Blade efficiencies (shaft power before windage and bearing loss divided by nozzle jet power) were 0.63 (measured) and 0.71 (theoretical) for water and nitrogen mixtures and 0.62 (measured) and 0.63 (theoretical) for refrigerant 22 with a single stage turbine, and 0,70 (measured) and 0.85 (theoretical) for water and nitrogen mixtures with a two-stage turbine.

  13. Phase equillibria and solidification behaviour in the vanillin- p-anisidine system

    NASA Astrophysics Data System (ADS)

    Singh, N. B.; Das, S. S.; Gupta, Preeti; Dwivedi, M. K.

    2008-12-01

    Phase diagram of the vanillin- p-anisidine system has been studied by the thaw melt method. Congruent melting-type phase diagram exhibiting two eutectic points was obtained. Vanillin and p-anisidine react in 1:1 M ratio and form N-(4-methoxy phenyl)-4-hydroxy-3-methoxy phenyl methanimine (NHM) and water. Heats of fusion of pure components and the eutectic mixtures ( E1 and E2) were obtained from DSC studies. Jackson's roughness parameters ( α) were calculated. Excess Gibbs free energy ( GE), excess entropy ( SE) and excess enthalpy ( HE) of mixing of pre-, post- and eutectic mixtures were also calculated by using activity coefficient data. Linear velocities of solidification of components and eutectic mixtures were determined at different undercoolings. The values of excess thermodynamic functions and linear velocity data have indicated the non-ideal nature of the eutectic mixtures. Interaction energies in the gaseous state, calculated from computer simulation, have also indicated that the eutectics are non-ideal mixtures. Microstructural studies of vanillin, p-anisidine and NHM show the formation of broken lamellar type structures. However, for the eutectic E1, an irregular type and for the eutectic E2, a lamellar type structures were obtained. The effect of impurity on the microstructures of eutectic mixtures was also studied.

  14. Recovery of cesium

    DOEpatents

    Izatt, Reed M.; Christensen, James J.; Hawkins, Richard T.

    1984-01-01

    A process of recovering cesium ions from mixtures of ions containing them and other ions, e.g., a solution of nuclear waste materials, which comprises establishing a separate source phase containing such a mixture of ions, establishing a separate recipient phase, establishing a liquid membrane phase in interfacial contact with said source and recipient phases, said membrane phase containing a ligand, preferably a selected calixarene as depicted in the drawing, maintaining said interfacial contact for a period of time long enough to transport by said ligand a substantial portion of the cesium ion from the source phase to the recipient phase, and recovering the cesium ion from the recipient phase. The separation of the source and recipient phases may be by the membrane phase only, e.g., where these aqueous phases are emulsified as dispersed phases in a continuous membrane phase, or may include a physical barrier as well, e.g., an open-top outer container with an inner open-ended container of smaller cross-section mounted in the outer container with its open bottom end spaced from and above the closed bottom of the outer container so that the membrane phase may fill the outer container to a level above the bottom of the inner container and have floating on its upper surface a source phase and a recipient phase separated by the wall of the inner container as a physical barrier. A preferred solvent for the ligand is a mixture of methylene chloride and carbon tetrachloride.

  15. Analysis of Two-Phase Flow in Damper Seals for Cryogenic Turbopumps

    NASA Technical Reports Server (NTRS)

    Arauz, Grigory L.; SanAndres, Luis

    1996-01-01

    Cryogenic damper seals operating close to the liquid-vapor region (near the critical point or slightly su-cooled) are likely to present two-phase flow conditions. Under single phase flow conditions the mechanical energy conveyed to the fluid increases its temperature and causes a phase change when the fluid temperature reaches the saturation value. A bulk-flow analysis for the prediction of the dynamic force response of damper seals operating under two-phase conditions is presented as: all-liquid, liquid-vapor, and all-vapor, i.e. a 'continuous vaporization' model. The two phase region is considered as a homogeneous saturated mixture in thermodynamic equilibrium. Th flow in each region is described by continuity, momentum and energy transport equations. The interdependency of fluid temperatures and pressure in the two-phase region (saturated mixture) does not allow the use of an energy equation in terms of fluid temperature. Instead, the energy transport is expressed in terms of fluid enthalpy. Temperature in the single phase regions, or mixture composition in the two phase region are determined based on the fluid enthalpy. The flow is also regarded as adiabatic since the large axial velocities typical of the seal application determine small levels of heat conduction to the walls as compared to the heat carried by fluid advection. Static and dynamic force characteristics for the seal are obtained from a perturbation analysis of the governing equations. The solution expressed in terms of zeroth and first order fields provide the static (leakage, torque, velocity, pressure, temperature, and mixture composition fields) and dynamic (rotordynamic force coefficients) seal parameters. Theoretical predictions show good agreement with experimental leakage pressure profiles, available from a Nitrogen at cryogenic temperatures. Force coefficient predictions for two phase flow conditions show significant fluid compressibility effects, particularly for mixtures with low mass content of vapor. Under these conditions, an increase on direct stiffness and reduction of whirl frequency ratio are shown to occur. Prediction of such important effects will motivate experimental studies as well as a more judicious selection of the operating conditions for seals used in cryogenic turbomachinery.

  16. A computational investigation of the thermodynamics and structure in colloid and polymer mixtures

    NASA Astrophysics Data System (ADS)

    Mahynski, Nathan Alexander

    In this dissertation I use computational tools to study the structure and thermodynamics of colloid-polymer mixtures. I show that fluid-fluid phase separation in mixtures of colloids and linear polymers cannot be universally reduced using polymer-based scaling principles since these assume the binodals exist in a single scaling regime, whereas accurate simulations clearly demonstrate otherwise. I show that rethinking these solutions in terms of multiple length scales is necessary to properly explain the thermodynamic stability and structure of these fluid phases, and produce phase diagrams in nearly quantitative agreement with experimental results. I then extend this work to encompass more geometrically complex "star" polymers revealing how the phase behavior for many of these binary mixtures may be mapped onto that of mixtures containing only linear polymers. I further consider the depletion-driven crystallization of athermal colloidal hard spheres induced by polymers. I demonstrate how the partitioning of a finite amount of polymer into the colloidal crystal phase implies that the polymer's architecture can be tailored to interact with the internal void structure of different crystal polymorphs uniquely, thus providing a direct route to thermodynamically stabilizing one arbitrarily chosen structure over another, e.g., the hexagonal close-packed crystal over the face-centered cubic. I then begin to generalize this result by considering the consequences of thermal interactions and complex polymer architectures. These principles lay the groundwork for intelligently engineering co-solute additives in crystallizing colloidal suspensions that can be used to thermodynamically isolate single crystal morphologies. Finally, I examine the competition between self-assembly and phase separation in polymer-grafted nanoparticle systems by comparing and contrasting the validity of two different models for grafted nanoparticles: "nanoparticle amphiphiles" versus "patchy particles." The latter suggests these systems have some utility in forming novel "equilibrium gel" phases, however, I find that considering grafted nanoparticles as amphiphiles provides a qualitatively accurate description of their thermodynamics revealing either first-order phase separation into two isotropic phases or continuous self-assembly. I find no signs of empty liquid formation, suggesting that these nanoparticles do not provide a route to such phases.

  17. Method of analysis of polymerizable monomeric species in a complex mixture

    DOEpatents

    Hermes, Robert E

    2014-03-18

    Method of selective quantitation of a polymerizable monomeric species in a well spacer fluid, said method comprising the steps of adding at least one solvent having a refractive index of less than about 1.33 to a sample of the complex mixture to produce a solvent phase, and measuring the refractive index of the solvent phase.

  18. Methods for achieving the equilibrium number of phases in mixtures suitable for use in battery electrodes, e.g., for lithiating FeS.sub.2

    DOEpatents

    Guidotti, Ronald A.

    1988-01-01

    In a method for preparing lithiated, particulate FeS.sub.2 useful as a catholyte material in a lithium thermal battery, whereby the latter's voltage regulation properties are improved, comprising admixing FeS.sub.2 and an amount of a lithium-containing compound whereby the resultant total composition falls in an invariant region of the metallurgical phase diagram of its constituent components, an improvement comprises admixing said lithium-containing compound and FeS.sub.2 together with a solid electrolyte compatible with said catholyte, and heating the mixture at a temperature above the melting point of said electrolyte and at which said mixture reaches its thermodynamic equilibrium number of phases.

  19. Surfactant-based critical phenomena in microgravity

    NASA Technical Reports Server (NTRS)

    Kaler, Eric W.; Paulaitis, Michael E.

    1994-01-01

    The objective of this research project is to characterize by experiment and theoretically both the kinetics of phase separation and the metastable structures produced during phase separation in a microgravity environment. The particular systems we are currently studying are mixtures of water, nonionic surfactants, and compressible supercritical fluids at temperatures and pressures where the coexisting liquid phases have equal densities (isopycnic phases). In this report, we describe experiments to locate equilibrium isopycnic phases and to determine the 'local' phase behavior and critical phenomena at nearby conditions of temperature, pressure, and composition. In addition, we report the results of preliminary small angle neutron scattering (SANS) experiments to characterize microstructures that exist in these mixtures at different fluid densities.

  20. Sedimentation of a two-dimensional colloidal mixture exhibiting liquid-liquid and gas-liquid phase separation: a dynamical density functional theory study.

    PubMed

    Malijevský, Alexandr; Archer, Andrew J

    2013-10-14

    We present dynamical density functional theory results for the time evolution of the density distribution of a sedimenting model two-dimensional binary mixture of colloids. The interplay between the bulk phase behaviour of the mixture, its interfacial properties at the confining walls, and the gravitational field gives rise to a rich variety of equilibrium and non-equilibrium morphologies. In the fluid state, the system exhibits both liquid-liquid and gas-liquid phase separation. As the system sediments, the phase separation significantly affects the dynamics and we explore situations where the final state is a coexistence of up to three different phases. Solving the dynamical equations in two-dimensions, we find that in certain situations the final density profiles of the two species have a symmetry that is different from that of the external potentials, which is perhaps surprising, given the statistical mechanics origin of the theory. The paper concludes with a discussion on this.

  1. Tube radial distribution phenomenon with a two-phase separation solution of a fluorocarbon and hydrocarbon organic solvent mixture in a capillary tube and metal compounds separation.

    PubMed

    Kitaguchi, Koichi; Hanamura, Naoya; Murata, Masaharu; Hashimoto, Masahiko; Tsukagoshi, Kazuhiko

    2014-01-01

    A fluorocarbon and hydrocarbon organic solvent mixture is known as a temperature-induced phase-separation solution. When a mixed solution of tetradecafluorohexane as a fluorocarbon organic solvent and hexane as a hydrocarbon organic solvent (e.g., 71:29 volume ratio) was delivered in a capillary tube that was controlled at 10°C, the tube radial distribution phenomenon (TRDP) of the solvents was clearly observed through fluorescence images of the dye, perylene, dissolved in the mixed solution. The homogeneous mixed solution (single phase) changed to a heterogeneous solution (two phases) with inner tetradecafluorohexane and outer hexane phases in the tube under laminar flow conditions, generating the dynamic liquid-liquid interface. We also tried to apply TRDP to a separation technique for metal compounds. A model analyte mixture, copper(II) and hematin, was separated through the capillary tube, and detected with a chemiluminescence detector in this order within 4 min.

  2. Segregation in like-charged polyelectrolyte-surfactant mixtures can be precisely tuned via manipulation of the surfactant mass ratio.

    PubMed

    Wills, Peter W; Lopez, Sonia G; Burr, Jocelyn; Taboada, Pablo; Yeates, Stephen G

    2013-04-09

    In this study, we consider segregative phase separation in aqueous mixtures of quaternary ammonium surfactants didecyldimethylammonium chloride (DDQ) and alkyl (C12, 70%; C14 30%) dimethyl benzyl ammonium chloride (BAC) upon the addition of poly(diallyldimethylammonium) chloride (pDADMAC) as a function of both concentration and molecular weight. The nature of the surfactant type is dominant in determining the concentration at which separation into an upper essentially surfactant-rich phase and lower polyelectrolyte-rich phase is observed. However, for high-molecular-weight pDADMAC there is a clear indication of an additional depletion flocculation effect. When the BAC/DDQ ratio is tuned, the segregative phase separation point can be precisely controlled. We propose a phase separation mechanism for like-charged quaternary ammonium polyelectrolyte/surfactant/water mixtures induced by a reduction in the ionic atmosphere around the surfactant headgroup and possible ion pair formation. An additional polyelectrolyte-induced depletion flocculation effect was also observed.

  3. Real-Time PCR in faecal samples of Triatoma infestans obtained by xenodiagnosis: proposal for an exogenous internal control.

    PubMed

    Bravo, Nicolás; Muñoz, Catalina; Nazal, Nicolás; Saavedra, Miguel; Martínez, Gabriela; Araya, Eduardo; Apt, Werner; Zulantay, Inés

    2012-03-26

    The polymerase chain reaction (PCR) has proved to be a sensitive technique to detect Trypanosoma cruzi in the chronic phase of Chagas disease, which is characterized by low and fluctuating parasitemia. Another technique proposed for parasitological diagnosis in this phase of infection combines a microscopic search for motile trypomastigote forms in faecal samples (FS) obtained by xenodiagnosis (XD) with conventional PCR (XD-PCR). In this study we evaluate the use of human blood DNA as an exogenous internal control (EIC) for real time PCR (qPCR) combined with XD (XD-qPCR) using chromosome 12 (X12) detection. None of the FS-XD evaluated by qPCR amplified for X12. Nevertheless, all the EIC-FS-XD mixtures amplified for X12. We determined that X12 is useful as an EIC for XD-qPCR because we showed that the FS-XD does not contain human DNA after 30 or more days of XD incubation. This information is relevant for research on T. cruzi by XD-qPCR since it allows ruling out inhibition and false negative results due to DNA loss during the process of extraction and purification.

  4. Dielectric and varistor properties of rare-earth-doped ZnO and CaCu3Ti4O12 composite ceramics

    NASA Astrophysics Data System (ADS)

    Lu, Huafei; Lin, Yuanhua; Yuan, Jiancong; Nan, Cewen; Chen, Kexin

    2013-02-01

    To investigate the multi-functional ceramics with both high permittivity and large nonlinear coefficient, we have prepared rare-earth Tb-and-Co doped ZnO and TiO2-rich CaCu3Ti4O12 (TCCTO) powders by chemical co-precipitation and sol-gel methods respectively, and then obtained the TCCTO/ZnO composite ceramics, sintered at 1100°C for 3 h in air. Analyzing the composite ceramics of the microstructure and phase composition indicated that the composite ceramics were composed of the main phases of ZnO and CaCu3Ti4O12 (CCTO). Our results revealed that the TCCTO/ZnO composite ceramics showed both high dielectric and good nonlinear electrical behaviors. The composite ceramic of TCCTO: ZnO = 0.3 exhibited a high dielectric constant of 210(1 kHz) with a nonlinear coefficient of 11. The dielectric behavior of TCCTO/ZnO composite could be explained by the mixture rule. With the high dielectric permittivity and tunable varistor behaviors, the composite ceramics has a potential application for the higher voltage transportation devices.

  5. Progress toward a tungsten alloy wire/high temperature alloy composite turbine blade

    NASA Technical Reports Server (NTRS)

    Ritzert, F. J.; Dreshfield, R. L.

    1992-01-01

    A tungsten alloy wire reinforced high temperature alloy composite is being developed for potential application as a hollow turbine blade for advanced rocket engine turbopumps. The W-24Re-HfC alloy wire used for these composite blades provides an excellent balance of strength and wire ductility. Preliminary fabrication, specimen design, and characterization studies were conducted by using commercially available W218 tungsten wire in place of the W-24Re-Hfc wire. Subsequently, two-ply, 50 vol pct composite panels using the W-24Re-HfC wire were fabricated. Tensile tests and metallographic studies were performed to determine the material viability. Tensile strengths of a Waspaloy matrix composite at 870 C were 90 pct of the value expected from rule-of-mixtures calculations. During processing of this Waspaloy matrix composite, a brittle phase was formed at the wire/matrix interface. Circumferential wire cracks were found in this phase. Wire coating and process evaluation efforts were performed in an attempt to solve the reaction problem. Although problems were encountered in this study, wire reinforced high temperature alloy composites continue to show promise for turbopump turbine blade material improvement.

  6. RCRA, superfund and EPCRA hotline training module. Introduction to: Hazardous waste identification (40 cfr part 261) updated July 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-07-01

    The module introduces a specific hazardous waste identification process, which involves asking and analyzing a series of questions about any waste being evaluated. It analyzes in detail the Resource Conservation and Recovery Act (RCRA) definition of `hazardous waste.` It explains concepts that are essential to identifying a RCRA hazardous waste: hazardous waste listing, hazardous waste characteristics, the `mixture` and `derived-from` rules, the `contained-in` policy, and the hazardous waste identification rules (HWIR).

  7. Charged Particles on Surfaces: Coexistence of Dilute Phases and Periodic Structures at Interfaces

    NASA Astrophysics Data System (ADS)

    Loverde, Sharon M.; Solis, Francisco J.; Olvera de La Cruz, Monica

    2007-06-01

    We consider a mixture of two immiscible oppositely charged molecules strongly adsorbed to an interface, with a neutral nonselective molecular background. We determine the coexistence between a high density ionic periodic phase and a dilute isotropic ionic phase. We use a strong segregation approach for the periodic phase and determine the one-loop free energy for the dilute phase. Lamellar and hexagonal patterns are calculated for different charge stoichiometries of the mixture. Molecular dynamics simulations exhibit the predicted phase behavior. The periodic length scale of the solid phase is found to scale as ɛ/(lBψ3/2), where ψ is the effective charge density, lB is the Bjerrum length, and ɛ is the cohesive energy.

  8. Renormalization-Group Theory Study of Superfluidity and Phase Separation of Helium Mixtures Immersed in Jungle-Gym Aerogel

    NASA Astrophysics Data System (ADS)

    Lopatnikova, Anna; Berker, A. Nihat

    1997-03-01

    Superfluidity and phase separation in ^3He-^4He mixtures immersed in jungle-gym (non-random) aerogel are studied by renormalization-group theory.(Phys. Rev. B, in press (1996)) Phase diagrams are calculated for a variety of aerogel concentrations. Superfluidity at very low ^4He concentrations and a depressed tricritical temperature are found at the onset of superfluidity. A superfluid-superfluid phase separation, terminating at an isolated critical point, is found entirely within the superfluid phase. These phenomena, and trends with respect to aerogel concentration, are explained by the connectivity and tenuousness of jungle-gym aerogel.

  9. Renormalization-group study of superfluidity and phase separation of helium mixtures immersed in a nonrandom aerogel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopatnikova, A.; Berker, A.N.

    1997-02-01

    Superfluidity and phase separation in {sup 3}He-{sup 4}He mixtures immersed in a jungle-gym (nonrandom) aerogel are studied by renormalization-group theory. Phase diagrams are calculated for a variety of aerogel concentrations. Superfluidity at very low {sup 4}He concentrations and a depressed tricritical temperature are found at the onset of superfluidity. A superfluid-superfluid phase separation, terminating at an isolated critical point, is found entirely within the superfluid phase. These phenomena and trends with respect to aerogel concentration are explained by the connectivity and tenuousness of a jungle-gym aerogel. {copyright} {ital 1997} {ital The American Physical Society}

  10. Solvent extraction system for plutonium colloids and other oxide nano-particles

    DOEpatents

    Soderholm, Lynda; Wilson, Richard E; Chiarizia, Renato; Skanthakumar, Suntharalingam

    2014-06-03

    The invention provides a method for extracting plutonium from spent nuclear fuel, the method comprising supplying plutonium in a first aqueous phase; contacting the plutonium aqueous phase with a mixture of a dielectric and a moiety having a first acidity so as to allow the plutonium to substantially extract into the mixture; and contacting the extracted plutonium with second a aqueous phase, wherein the second aqueous phase has a second acidity higher than the first acidity, so as to allow the extracted plutonium to extract into the second aqueous phase. The invented method facilitates isolation of plutonium polymer without the formation of crud or unwanted emulsions.

  11. Stability and Oil Migration of Oil-in-Water Emulsions Emulsified by Phase-Separating Biopolymer Mixtures.

    PubMed

    Yang, Nan; Mao, Peng; Lv, Ruihe; Zhang, Ke; Fang, Yapeng; Nishinari, Katsuyoshi; Phillips, Glyn O

    2016-08-01

    Oil-in-water (O/W) emulsions with varying concentration of oil phase, medium-chain triglyceride (MCT), were prepared using phase-separating gum arabic (GA)/sugar beet pectin (SBP) mixture as an emulsifier. Stability of the emulsions including emulsion phase separation, droplet size change, and oil migration were investigated by means of visual observation, droplet size analysis, oil partition analysis, backscattering of light, and interfacial tension measurement. It was found that in the emulsions prepared with 4.0% GA/1.0% SBP, when the concentration of MCT was greater than 2.0%, emulsion phase separation was not observed and the emulsions were stable with droplet size unchanged during storage. This result proves the emulsification ability of phase-separating biopolymer mixtures and their potential usage as emulsifiers to prepare O/W emulsion. However, when the concentration of MCT was equal or less than 2.0%, emulsion phase separation occurred after preparation resulting in an upper SBP-rich phase and a lower GA-rich phase. The droplet size increased in the upper phase whereas decreased slightly in the lower phase with time, compared to the freshly prepared emulsions. During storage, the oil droplets exhibited a complex migration process: first moving to the SBP-rich phase, then to the GA-rich phase and finally gathering at the interface between the two phases. The mechanisms of the emulsion stability and oil migration in the phase-separated emulsions were discussed. © 2016 Institute of Food Technologists®

  12. Phase diagram of ammonium nitrate

    NASA Astrophysics Data System (ADS)

    Dunuwille, Mihindra; Yoo, Choong-Shik

    2013-12-01

    Ammonium Nitrate (AN) is a fertilizer, yet becomes an explosive upon a small addition of chemical impurities. The origin of enhanced chemical sensitivity in impure AN (or AN mixtures) is not well understood, posing significant safety issues in using AN even today. To remedy the situation, we have carried out an extensive study to investigate the phase stability of AN and its mixtures with hexane (ANFO-AN mixed with fuel oil) and Aluminum (Ammonal) at high pressures and temperatures, using diamond anvil cells (DAC) and micro-Raman spectroscopy. The results indicate that pure AN decomposes to N2, N2O, and H2O at the onset of the melt, whereas the mixtures, ANFO and Ammonal, decompose at substantially lower temperatures. The present results also confirm the recently proposed phase IV-IV' transition above 17 GPa and provide new constraints for the melting and phase diagram of AN to 40 GPa and 400°C.

  13. Binary Phase Behavior of Saturated-Unsaturated Mixed-Acid Triacylglycerols-A Review.

    PubMed

    Zhang, Lu; Ueno, Satoru; Sato, Kiyotaka

    2018-06-01

    Most natural lipids contain a complex mixture of individual triacylglycerols (TAGs). An in-depth knowledge of the mixing behavior of TAGs is necessary for the rational design and engineering of food materials. The binary phase diagram of TAGs is a simplified model that can be explored to help foster an understanding of the phase behavior of complex fats and oils. This article reviews recent research on the binary phase behavior of saturated-unsaturated mixed-acid TAGs, with special emphasis on the stearicunsaturated and palmitic-unsaturated diacid TAGs. The occurrence of polymorphic forms and mutual solubility of TAG mixtures are strongly related to the glycerol conformation of the saturated-oleic diacid TAGs; it appears to be most influenced by the chain-length mismatch in saturated-elaidic diacid TAGs. In addition, the polymorphism of pure enantiomers and racemic mixture of chiral TAGs was also reviewed, while the effect of chirality on mixing behavior was discussed.

  14. Pressure-temperature phase behavior of mixtures of natural sphingomyelin and ceramide extracts.

    PubMed

    Barriga, Hanna M G; Parsons, Edward S; McCarthy, Nicola L C; Ces, Oscar; Seddon, John M; Law, Robert V; Brooks, Nicholas J

    2015-03-31

    Ceramides are a group of sphingolipids that act as highly important signaling molecules in a variety of cellular processes including differentiation and apoptosis. The predominant in vivo synthetic pathway for ceramide formation is via sphingomyelinase catalyzed hydrolysis of sphingomyelin. The biochemistry of this essential pathway has been studied in detail; however, there is currently a lack of information on the structural behavior of sphingomyelin- and ceramide-rich model membrane systems, which is essential for developing a bottom-up understanding of ceramide signaling and platform formation. We have studied the lyotropic phase behavior of sphingomyelin-ceramide mixtures in excess water as a function of temperature (30-70 °C) and pressure (1-200 MPa) by small- and wide-angle X-ray scattering. At low ceramide concentrations the mixtures form the ripple gel phase (P(β)') below the gel transition temperature for sphingomyelin, and this observation has been confirmed by atomic force microscopy. Formation of the ripple gel phase can also be induced at higher temperatures via the application of hydrostatic pressure. At high ceramide concentration an inverse hexagonal phase (HII) is formed coexisting with a cubic phase.

  15. Lifshitz phase: the microscopic structure of aqueous and ethanol mixtures of 1,n-diols.

    PubMed

    Požar, Martina; Perera, Aurélien

    2017-06-14

    We study binary mixtures of ethylene glycol and 1,3-propandiol with water or ethanol using computer simulations. Despite strong hydrogen bonding tendencies between all these molecules, we find that these mixtures are surprisingly homogeneous, in contrast to the strong micro-heterogeneity found in aqueous ethanol mixtures. The aqueous diol mixtures are found to be close to ideal mixtures, with near-ideal Kirkwood-Buff integrals. Ethanol-diol mixtures show weak non-ideality. The origin of this unexpected randomness is due to the fact that the two hydrogen bonding hydroxyl groups of the 1,n-diol are bound by the neutral alkyl bond, which prevents the micro-segregation of the different types of hydroxyl groups. These findings suggest that random disorder can arise in the presence of strong interactions - in contrast to the usual picture of random disorder due to weak interactions between the components. They point to the important role of molecular topology in tuning concentration fluctuations in complex liquids. We propose and justify herein the name of Lifshitz phases to designate such types of disordered systems.

  16. Spectroscopic Analysis of 10MAG/LDAO Reverse Micelles to Determine Characteristic Properties and Behavioral Extrema

    NASA Astrophysics Data System (ADS)

    Berg, Joshua; Mawson, Cara; Norris, Zach; Nucci, Nathaniel

    Reverse micelles are spontaneously organizing complexes of surfactant that encapsulate a nanoscale pool of water in a bulk non-polar solvent. Reverse micelle (RM) mixtures have a wide range of applications, including biophysical investigation of protein systems. A new RM mixture composed of decyl-1-monoglycerol (10MAG) and lauryldimethylammonium-N-oxide (LDAO) was recently described. This mixture has the potential to prove more widely applicable for use of RMs in applications that involve encapsulation of macromolecules, yet little is known about the phase behavior or size of reverse micelles created by this mixture. Data describing such behaviors for this mixture are presented here. We have used dynamic light scattering (DLS) and fluorescence spectroscopy to investigate the size and partitioning behavior of RMs in varying mixtures of 10MAG, LDAO, water, pentane, and hexanol. These data demonstrate that the 10MAG/LDAO RM mixture exhibits markedly different phase and RM size behavior than that of commonly used RM surfactant mixtures. The implications of these findings for use of the 10MAG/LDAO mix for RM applications will also be addressed. Funding provided by Rowan University.

  17. Current good manufacturing practice regulation and investigational new drugs. Direct final rule.

    PubMed

    2006-01-17

    The Food and Drug Administration (FDA) is amending its current good manufacturing practice (CGMP) regulations for human drugs, including biological products, to exempt most investigational "Phase 1" drugs from complying with the requirements in FDA's regulations. FDA will instead exercise oversight of production of these drugs under the agency's general statutory CGMP authority and investigational new drug application (IND) authority. In addition, FDA is making available simultaneously with the publication of this direct final rule, a guidance document setting forth recommendations on approaches to CGMP compliance for the exempted Phase 1 drugs. Elsewhere in this issue of the Federal Register, FDA is publishing a companion proposed rule, under FDA's usual procedure for notice-and-comment rulemaking, to provide a procedural framework to finalize the rule in the event the agency receives any significant adverse comments and withdraws this direct final rule. The companion proposed rule and direct final rule are substantively identical. Elsewhere in this issue of the Federal Register, FDA is announcing the availability of a draft guidance for industry entitled "INDs--Approaches to Complying With CGMP During Phase 1" to provide further guidance on the subject.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohde, Brian J.; Le, Kim Mai; Krishnamoorti, Ramanan

    The mechanical properties of two chemically distinct and complementary thermoset polymers were manipulated through development of thermoset blends. The thermoset blend system was composed of an anhydride-cured diglycidyl ether of bisphenol A (DGEBA)-based epoxy resin, contributing high tensile strength and modulus, and polydicyclopentadiene (PDCPD), which has a higher toughness and impact strength as compared to other thermoset polymers. Ultra-small-angle and small-angle X-ray scattering analysis explored the morphology of concurrently cured thermoset blends, revealing a macroscopically phase separated system with a surface fractal structure across blended systems of varying composition. The epoxy resin rich and PDCPD rich phases exhibited distinct glassmore » transitions (Tg’s): the Tg observed at higher temperature was associated with the epoxy resin rich phase and was largely unaffected by the presence of PDCPD, whereas the PDCPD rich phase Tg systematically decreased with increasing epoxy resin content due to inhibition of dicyclopentadiene ring-opening metathesis polymerization. The mechanical properties of these phase-separated blends were in reasonable agreement with predictions by the rule of mixtures for the blend tensile strength, modulus, and fracture toughness. Scanning electron microscopy analysis of the tensile and fracture specimen fracture surfaces showed an increase in energy dissipation mechanisms, such as crazing, shear banding, and surface roughness, as the fraction of the more ductile component, PDPCD, increased. These results present a facile method to tune the mechanical properties of a toughened thermoset network, in which the high modulus and tensile strength of the epoxy resin can be largely retained at high epoxy resin content in the blend, while increasing the fracture toughness.« less

  19. 76 FR 2253 - TRICARE; Coverage of National Cancer Institute (NCI) Sponsored Phase I Studies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-13

    ... works. Phase II studies usually focus on a particular type of cancer. A Phase III trial tests a new drug... Secretary, DoD. ACTION: Final rule. SUMMARY: This final rule adds coverage of National Cancer Institute (NCI... evaluate how a new drug should be given (by mouth, injected into the blood, or injected into the muscle...

  20. Thermodynamically controlled crystallization of glucose pentaacetates from amorphous phase

    NASA Astrophysics Data System (ADS)

    Wlodarczyk, P.; Hawelek, L.; Hudecki, A.; Wlodarczyk, A.; Kolano-Burian, A.

    2016-08-01

    The α and β glucose pentaacetates are known sugar derivatives, which can be potentially used as stabilizers of amorphous phase of active ingredients of drugs (API). In the present work, crystallization behavior of equimolar mixture of α and β form in comparison to both pure anomers is revealed. It was shown that despite the same molecular interactions and similar molecular dynamics, crystallization from amorphous phase is significantly suppressed in equimolar mixture. Time dependent X-ray diffraction studies confirmed higher stability of the quenched amorphous equimolar mixture. Its tendency to crystallization is about 10 times lower than for pure anomers. Calorimetric studies revealed that the α and β anomers don't form solid solutions and have eutectic point for xα = 0.625. Suppressed crystallization tendency in the mixture is probably caused by the altered thermodynamics of the system. The factors such as difference of free energy between crystalline and amorphous state or altered configurational entropy are probably responsible for the inhibitory effect.

  1. Flow behaviour and structure of heterogeneous particles-water mixture in horizontal and inclined pipes

    NASA Astrophysics Data System (ADS)

    Vlasák, Pavel; Chára, Zdeněk; Konfršt, Jiří

    2018-06-01

    The effect of slurry velocity and mean concentration of heterogeneous particle-water mixture on flow behaviour and structure in the turbulent regime was studied in horizontal and inclined pipe sections of inner diameter D = 100 mm. The stratified flow pattern of heterogeneous particle-water mixture in the inclined pipe sections was revealed. The particles moved mostly near to the pipe invert. Concentration distribution in ascending and descending vertical pipe sections confirmed the effect of fall velocity on particle-carrier liquid slip velocity and increase of in situ concentration in the ascending pipe section. Slip velocity in two-phase flow, which is defined as the velocity difference between the solid and liquid phase, is one of mechanism of particle movement in two-phase flow. Due to the slip velocity, there is difference between transport and in situ concentrations, and the slip velocity can be determined from comparison of the in situ and transport concentration. For heterogeneous particle-water mixture flow the slip velocity depends on the flow structure.

  2. Thermodynamically controlled crystallization of glucose pentaacetates from amorphous phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wlodarczyk, P., E-mail: patrykw@imn.gliwice.pl; Hawelek, L.; Hudecki, A.

    The α and β glucose pentaacetates are known sugar derivatives, which can be potentially used as stabilizers of amorphous phase of active ingredients of drugs (API). In the present work, crystallization behavior of equimolar mixture of α and β form in comparison to both pure anomers is revealed. It was shown that despite the same molecular interactions and similar molecular dynamics, crystallization from amorphous phase is significantly suppressed in equimolar mixture. Time dependent X-ray diffraction studies confirmed higher stability of the quenched amorphous equimolar mixture. Its tendency to crystallization is about 10 times lower than for pure anomers. Calorimetric studiesmore » revealed that the α and β anomers don’t form solid solutions and have eutectic point for x{sub α} = 0.625. Suppressed crystallization tendency in the mixture is probably caused by the altered thermodynamics of the system. The factors such as difference of free energy between crystalline and amorphous state or altered configurational entropy are probably responsible for the inhibitory effect.« less

  3. Method of dehydrating natural gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wells, R. E.

    1985-01-01

    A method for dehydration of natural gas is provided wherein well head gas is supplied to a three-phase inlet separator, the vapor mixture of natural gas and water removed from that inlet separator means is supplied to a turboexpander, and the resulting refrigerated mixture of natural gas and condensed water vapor is supplied to a multi-phase outlet separator. The turboexpander may have integral means for subsequent compression of the refrigerated mixture and may be coupled through reduction gears to a means for generating electricity. A portion of the refrigerated mixture may be connected to a heat exchanger for cooling themore » well head natural gas prior to entry into the inlet separator. The flow of refrigerated mixture to this heat exchanger may be controlled by a temperature sensitive valve downstream of the heat exchanger. Methanol may be injected into the vapor mixture prior to entry into the turboexpander. The flow of methanol into the vapor mixture may be controlled by a valve sensitive to the flow rate of the vapor mixture and the water vapor content of the refrigerated mixture. Natural gas vapor from the outlet separator may be recirculated through the turboexpander if the output water vapor content of the natural gas vapor stream is too high.« less

  4. An easy-to-use calculating machine to simulate steady state and non-steady-state preparative separations by multiple dual mode counter-current chromatography with semi-continuous loading of feed mixtures.

    PubMed

    Kostanyan, Artak E; Shishilov, Oleg N

    2018-06-01

    Multiple dual mode counter-current chromatography (MDM CCC) separation processes with semi-continuous large sample loading consist of a succession of two counter-current steps: with "x" phase (first step) and "y" phase (second step) flow periods. A feed mixture dissolved in the "x" phase is continuously loaded into a CCC machine at the beginning of the first step of each cycle over a constant time with the volumetric rate equal to the flow rate of the pure "x" phase. An easy-to-use calculating machine is developed to simulate the chromatograms and the amounts of solutes eluted with the phases at each cycle for steady-state (the duration of the flow periods of the phases is kept constant for all the cycles) and non-steady-state (with variable duration of alternating phase elution steps) separations. Using the calculating machine, the separation of mixtures containing up to five components can be simulated and designed. Examples of the application of the calculating machine for the simulation of MDM CCC processes are discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Phase separations in mixtures of a liquid crystal and a nanocolloidal particle.

    PubMed

    Matsuyama, Akihiko

    2009-11-28

    We present a mean field theory to describe phase separations in mixtures of a liquid crystal and a nanocolloidal particle. By taking into account a nematic, a smectic A ordering of the liquid crystal, and a crystalline ordering of the nanoparticle, we calculate the phase diagrams on the temperature-concentration plane. We predict various phase separations, such as a smectic A-crystal phase separation and a smectic A-isotropic-crystal triple point, etc., depending on the interactions between the liquid crystal and the colloidal surface. Inside binodal curves, we find new unstable and metastable regions, which are important in the phase ordering dynamics. We also find a crystalline ordering of the nanoparticles dispersed in a smectic A phase and a nematic phase. The cooperative phenomena between liquid-crystalline ordering and crystalline ordering induce a variety of phase diagrams.

  6. Method for producing microcomposite powders using a soap solution

    DOEpatents

    Maginnis, Michael A.; Robinson, David A.

    1996-01-01

    A method for producing microcomposite powders for use in superconducting and non-superconducting applications. A particular method to produce microcomposite powders for use in superconducting applications includes the steps of: (a) preparing a solution including ammonium soap; (b) dissolving a preselected amount of a soluble metallic such as silver nitrate in the solution including ammonium soap to form a first solution; (c) adding a primary phase material such as a single phase YBC superconducting material in particle form to the first solution; (d) preparing a second solution formed from a mixture of a weak acid and an alkyl-mono-ether; (e) adding the second solution to the first solution to form a resultant mixture; (f) allowing the resultant mixture to set until the resultant mixture begins to cloud and thicken into a gel precipitating around individual particles of the primary phase material; (g) thereafter drying the resultant mixture to form a YBC superconducting material/silver nitrate precursor powder; and (h) calcining the YBC superconducting material/silver nitrate precursor powder to convert the silver nitrate to silver and thereby form a YBC/silver microcomposite powder wherein the silver is substantially uniformly dispersed in the matrix of the YBC material.

  7. Phase behaviour, interactions, and structural studies of (amines+ionic liquids) binary mixtures.

    PubMed

    Jacquemin, Johan; Bendová, Magdalena; Sedláková, Zuzana; Blesic, Marijana; Holbrey, John D; Mullan, Claire L; Youngs, Tristan G A; Pison, Laure; Wagner, Zdeněk; Aim, Karel; Costa Gomes, Margarida F; Hardacre, Christopher

    2012-05-14

    We present a study on the phase equilibrium behaviour of binary mixtures containing two 1-alkyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}imide-based ionic liquids, [C(n)mim] [NTf(2)] (n=2 and 4), mixed with diethylamine or triethylamine as a function of temperature and composition using different experimental techniques. Based on this work, two systems showing an LCST and one system with a possible hourglass shape are measured. Their phase behaviours are then correlated and predicted by using Flory-Huggins equations and the UNIQUAC method implemented in Aspen. The potential of the COSMO-RS methodology to predict the phase equilibria was also tested for the binary systems studied. However, this methodology is unable to predict the trends obtained experimentally, limiting its use for systems involving amines in ionic liquids. The liquid-state structure of the binary mixture ([C(2)mim] [NTf(2)]+diethylamine) is also investigated by molecular dynamics simulation and neutron diffraction. Finally, the absorption of gaseous ethane by the ([C(2)mim][NTf(2)]+diethylamine) binary mixture is determined and compared with that observed in the pure solvents. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Near infrared study of water-benzene mixtures at high temperatures and pressures.

    PubMed

    Jin, Yusuke; Ikawa, Shun-Ichi

    2004-08-08

    Near-infrared absorption of water-benzene mixtures has been measured at temperatures and pressures in the ranges of 473-673 K and 100-400 bar, respectively. Concentrations of water and benzene in the water-rich phase of the mixtures were obtained from the integrated absorption intensities of the OH stretching overtone transition of water and the CH stretching overtone transition of benzene, respectively. Using these concentrations, the densities of the water-rich phase were estimated and compared with the average densities before mixing, which were calculated from literature densities of neat water and neat benzene. It is found that anomalously large volume expansion on the mixing occurs in the region enclosed by an extended line of the three-phase equilibrium curve and the one-phase critical curve of the mixtures, and the gas-liquid equilibrium curve of water. Furthermore, magnitude of the relative volume change increases with decreasing molar fraction of benzene in the present experimental range. It is suggested that dissolving a small amount of benzene in water induces a change in the fluid density from a liquidlike condition to a gaslike condition in the vicinity of the critical region.

  9. A multiphysics and multiscale model for low frequency electromagnetic direct-chill casting

    NASA Astrophysics Data System (ADS)

    Košnik, N.; Guštin, A. Z.; Mavrič, B.; Šarler, B.

    2016-03-01

    Simulation and control of macrosegregation, deformation and grain size in low frequency electromagnetic (EM) direct-chill casting (LFEMC) is important for downstream processing. Respectively, a multiphysics and multiscale model is developed for solution of Lorentz force, temperature, velocity, concentration, deformation and grain structure of LFEMC processed aluminum alloys, with focus on axisymmetric billets. The mixture equations with lever rule, linearized phase diagram, and stationary thermoelastic solid phase are assumed, together with EM induction equation for the field imposed by the coil. Explicit diffuse approximate meshless solution procedure [1] is used for solving the EM field, and the explicit local radial basis function collocation method [2] is used for solving the coupled transport phenomena and thermomechanics fields. Pressure-velocity coupling is performed by the fractional step method [3]. The point automata method with modified KGT model is used to estimate the grain structure [4] in a post-processing mode. Thermal, mechanical, EM and grain structure outcomes of the model are demonstrated. A systematic study of the complicated influences of the process parameters can be investigated by the model, including intensity and frequency of the electromagnetic field. The meshless solution framework, with the implemented simplest physical models, will be further extended by including more sophisticated microsegregation and grain structure models, as well as a more realistic solid and solid-liquid phase rheology.

  10. Improved methods for achieving the equilibrium number of phases in mixtures suitable for use in battery electrodes e. g. , for lithiating FeS/sub 2/

    DOEpatents

    Guidotti, R.A.

    1986-06-10

    A method is disclosed for preparing lithiated, particulate FeS/sub 2/ useful as a catholyte material in a lithium thermal battery, whereby the latter's voltage regulation properties are improved. The method comprises admixing FeS/sub 2/ and an amount of a lithium-containing compound, whereby the resultant total composition falls in an invariant region of the metallurgical phase diagram of its constituent components. Said lithium-containing compound and FeS/sub 2/ are admixed together with a solid electrolyte compatible with said catholyte, and the mixture is heated at a temperature above the melting point of said electrolyte and at which said mixture reaches its thermodynamic equilibrium number of phases.

  11. The Phase Rule in a System Subject to a Pressure Gradient

    NASA Astrophysics Data System (ADS)

    Podladchikov, Yuri; Connolly, James; Powell, Roger; Aardvark, Alberto

    2015-04-01

    It can be shown by diligent application of Lagrange's method of undetermined multipliers that the phase rule in a system subject to a pressure gradient is: � + 赑 ≥ ρ. We explore the consequence of this important relationship for natural systems.

  12. Phase behavior of gemini surfactant hexylene-1,6-bis(dodecyldimethylammonium bromide) and polyelectrolyte NaPAA.

    PubMed

    Pi, Yingying; Shang, Yazhuo; Peng, Changjun; Liu, Honglai; Hu, Ying; Jiang, Jianwen

    2006-07-01

    The phase behavior of aqueous mixtures of gemini surfactant hexylene-1,6-bis(dodecyldimethylammonium bromide) (12-6-12) and oppositely charged polyelectrolyte sodium polyacrylate (NaPAA) has been studied experimentally. Compared to the mixtures of the traditional surfactant dodecyltrimethylammonium bromide (DTAB) and NaPAA, the gel phase region in the 12-6-12/NaPAA solution is larger. Element analysis reveals that NaPAA in the gel phase tends to replace the counterions of surfactant micelle and to release its own counterions. Spherical aggregates are observed in either top or bottom gel phase as detected by transmission electron microscopy. The addition of sodium bromide (NaBr) leads to a decrease in the gel phase region and the occurrence of a new cream phase.

  13. Buffer gas cooling and mixture analysis

    DOEpatents

    Patterson, David S.; Doyle, John M.

    2018-03-06

    An apparatus for spectroscopy of a gas mixture is described. Such an apparatus includes a gas mixing system configured to mix a hot analyte gas that includes at least one analyte species in a gas phase into a cold buffer gas, thereby forming a supersaturated mixture to be provided for spectroscopic analysis.

  14. Quantification of synthesized hydration products using synchrotron microtomography and spectral analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deboodt, Tyler; Ideker, Jason H.; Isgor, O. Burkan

    2017-12-01

    The use of x-ray computed tomography (CT) as a standalone method has primarily been used to characterize pore structure, cracking and mechanical damage in cementitious systems due to low contrast in the hydrated phases. These limitations have resulted in the inability to extract quantifiable information on such phases. The goal of this research was to address the limitations caused by low contrast and improving the ability to distinguish the four primary hydrated phases in portland cement; C-S-H, calcium hydroxide, monosulfate, and ettringite. X-ray CT on individual layers, binary mixtures of phases, and quaternary mixtures of phases to represent a hydratedmore » portland cement paste were imaged with synchrotron radiation. Known masses of each phase were converted to a volume and compared to the segmented image volumes. It was observed that adequate contrast in binary mixing of phases allowed for segmentation, and subsequent image analysis indicated quantifiable volumes could be extracted from the tomographic volume. However, low contrast was observed when C-S-H and monosulfate were paired together leading to difficulties segmenting in an unbiased manner. Quantification of phases in quaternary mixtures included larger errors than binary mixes due to histogram overlaps of monosulfate, C-S-H, and calcium hydroxide.« less

  15. Self assembly of oppositely charged latex particles at oil-water interface.

    PubMed

    Nallamilli, Trivikram; Ragothaman, Srikanth; Basavaraj, Madivala G

    2017-01-15

    In this study we explore the self assembly of oppositely charged latex particles at decane water interfaces. Two spreading protocols have been proposed in this context. In the first method oppositely charged particles are mixed prior to spreading at the interface, this is called "premixed-mixtures". In the second protocol negatively charged particles are first spread at the interface at known coverage followed by spreading positively charged particles at known coverage and this is called "sequential-mixtures". In premixed mixtures depending on particle mixing ratio (composition) and total surface coverage a number of 2d structures ranging from 2d crystals, aggregate-crystal coexistence and 2d-gels are observed. A detailed phase diagram of this system has been explored. In sequential-mixtures for the first time we observed a new phase in colloidal monolayers called 2d-bi crystalline domains. These structures consisted regions of two crystal phases of oppositely charged particles separated by a one dimensional chain of alternating positive and negative particles. Phase diagram of this system has also been explored at various combinations of first spread and second spread particles. A possible mechanism leading to formation of these 2d bi crystalline structures has been discussed. A direct visualization of breakage and reformation of particle barriers separating the crystal phases has been demonstrated through videos. Effect of salt in the water sub phase and particle hydrophobicity on domain formation is also investigated. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Explosive synchronization as a process of explosive percolation in dynamical phase space

    PubMed Central

    Zhang, Xiyun; Zou, Yong; Boccaletti, S.; Liu, Zonghua

    2014-01-01

    Explosive synchronization and explosive percolation are currently two independent phenomena occurring in complex networks, where the former takes place in dynamical phase space while the latter in configuration space. It has been revealed that the mechanism of EP can be explained by the Achlioptas process, where the formation of a giant component is controlled by a suppressive rule. We here introduce an equivalent suppressive rule for ES. Before the critical point of ES, the suppressive rule induces the presence of multiple, small sized, synchronized clusters, while inducing the abrupt formation of a giant cluster of synchronized oscillators at the critical coupling strength. We also show how the explosive character of ES degrades into a second-order phase transition when the suppressive rule is broken. These results suggest that our suppressive rule can be considered as a dynamical counterpart of the Achlioptas process, indicating that ES and EP can be unified into a same framework. PMID:24903808

  17. Nonparametric Fine Tuning of Mixtures: Application to Non-Life Insurance Claims Distribution Estimation

    NASA Astrophysics Data System (ADS)

    Sardet, Laure; Patilea, Valentin

    When pricing a specific insurance premium, actuary needs to evaluate the claims cost distribution for the warranty. Traditional actuarial methods use parametric specifications to model claims distribution, like lognormal, Weibull and Pareto laws. Mixtures of such distributions allow to improve the flexibility of the parametric approach and seem to be quite well-adapted to capture the skewness, the long tails as well as the unobserved heterogeneity among the claims. In this paper, instead of looking for a finely tuned mixture with many components, we choose a parsimonious mixture modeling, typically a two or three-component mixture. Next, we use the mixture cumulative distribution function (CDF) to transform data into the unit interval where we apply a beta-kernel smoothing procedure. A bandwidth rule adapted to our methodology is proposed. Finally, the beta-kernel density estimate is back-transformed to recover an estimate of the original claims density. The beta-kernel smoothing provides an automatic fine-tuning of the parsimonious mixture and thus avoids inference in more complex mixture models with many parameters. We investigate the empirical performance of the new method in the estimation of the quantiles with simulated nonnegative data and the quantiles of the individual claims distribution in a non-life insurance application.

  18. METHANE AND NITROGEN ABUNDANCES ON PLUTO AND ERIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tegler, S. C.; Cornelison, D. M.; Abernathy, M. R.

    We present spectra of Eris from the MMT 6.5 m Telescope and Red Channel Spectrograph (5700-9800 A, 5 A pixel{sup -1}) on Mt. Hopkins, AZ, and of Pluto from the Steward Observatory 2.3 m Telescope and Boller and Chivens Spectrograph (7100-9400 A, 2 A pixel{sup -1}) on Kitt Peak, AZ. In addition, we present laboratory transmission spectra of methane-nitrogen and methane-argon ice mixtures. By anchoring our analysis in methane and nitrogen solubilities in one another as expressed in the phase diagram of Prokhvatilov and Yantsevich, and comparing methane bands in our Eris and Pluto spectra and methane bands in ourmore » laboratory spectra of methane and nitrogen ice mixtures, we find Eris' bulk methane and nitrogen abundances are {approx}10% and {approx}90% and Pluto's bulk methane and nitrogen abundances are {approx}3% and {approx}97%. Such abundances for Pluto are consistent with values reported in the literature. It appears that the bulk volatile composition of Eris is similar to the bulk volatile composition of Pluto. Both objects appear to be dominated by nitrogen ice. Our analysis also suggests, unlike previous work reported in the literature, that the methane and nitrogen stoichiometry is constant with depth into the surface of Eris. Finally, we point out that our Eris spectrum is also consistent with a laboratory ice mixture consisting of 40% methane and 60% argon. Although we cannot rule out an argon-rich surface, it seems more likely that nitrogen is the dominant species on Eris because the nitrogen ice 2.15 {mu}m band is seen in spectra of Pluto and Triton.« less

  19. MARMOT Phase-Field Model for the U-Si System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aagesen, Larry Kenneth; Schwen, Daniel

    2016-09-01

    A phase-field model for the U-Si system has been implemented in MARMOT. The free energies for the phases relevant to accident-tolerant fuel applications (U 3Si 2, USi, U 3Si, and liquid) were implemented as free energy materials within MARMOT. A new three-phase phase-field model based on the concepts of the Kim-Kim-Suzuki two-phase model was developed and implemented in the MOOSE phase-field module. Key features of this model are that two-phase interfaces are stable with respect to formation of the third phase, and that arbitrary phase free energies can be used. The model was validated using a simplified three-phase system andmore » the U-Si system. In the U-Si system, the model correctly reproduced three-phase coexistence in a U 3Si 2-liquid-USi system at the eutectic temperature, solidification of a three-phase mixture below the eutectic temperature, and complete melting of a three-phase mixture above the eutectic temperature.« less

  20. [Intersection point rule for the retention value with mobile phase composition and boiling point of the homologues and chlorobenzenes in soil leaching column chromatography].

    PubMed

    Xu, F; Liang, X; Lin, B; Su, F

    1999-03-01

    Based on the linear retention equation of the logarithm of the capacity factor (logk') vs. the methanol volume fraction (psi) of aqueous binary mobile phase in soil leaching column chromatography, the intersection point rule for the logk' of homologues and weak polar chlorobenzenes, with psi, as well as with boiling point, has been derived due to existence of the similar interactions among solutes of the same series, stationary phase (soil) and eluent (methanol-water). These rules were testified by experimental data of homologues (n-alkylbenzenes, methylbenzenes) and weak polar chlorobenzenes.

  1. Controlled atmosphere stunning of broiler chickens. I. Effects on behaviour, physiology and meat quality in a pilot scale system at a processing plant.

    PubMed

    Abeyesinghe, S M; McKeegan, D E F; McLeman, M A; Lowe, J C; Demmers, T G M; White, R P; Kranen, R W; van Bemmel, H; Lankhaar, J A C; Wathes, C M

    2007-08-01

    1. The effects of controlled atmosphere stunning on the behaviour, physiology and carcase and meat quality of broiler chickens were studied experimentally in a pilot scale plant. 2. Gas mixtures tested were: single phase anoxic mixture (90% Ar in air, <2% O(2)); single phase hypercapnic anoxic mixture (60% Ar, 30% CO(2) in air, <2% O(2)); and biphasic hypercapnic hyperoxygenation mixture (anaesthetic phase, 40% CO(2), 30% O(2), 30% N(2); euthanasia phase, 80% CO(2), 5% O(2), 15% N(2)). 3. Anoxic stunning resulted in the least respiratory disruption, mandibulation and motionlessness, but most head shaking, leg paddling and twitching. Loss of posture occurred soonest with hypercapnic anoxia with the earliest and most twitching and wing flapping in individuals and earliest leg paddling. Biphasic birds were most alert, exhibited most respiratory disruption and mandibulation, and had the latest loss of posture and fewest, but longest bouts of wing flapping and least leg paddling and twitching. 4. Significant and sudden bradycardia and arrhythmia were evident with all gas mixtures and were not related solely to anoxia or hypercapnia. Birds stunned by Ar anoxia showed a slightly more gradual decline from baseline rates, compared with hypercapnic mixtures. 5. Few differences were found between gas mixes in terms of carcase and meat quality. Initial bleeding rate was slowest in biphasic-stunned birds, but total blood loss was not affected. Acceleration of post-mortem metabolism in anoxic-stunned birds was not sufficient to allow de-boning within 5 h without the risk of tough meat. 6. On welfare grounds and taking into account other laboratory and field studies, a biphasic method (using consecutive phases of anaesthesia and euthanasia) of controlled atmosphere stunning of broilers is potentially more humane than anoxic or hypercapnic anoxic methods using argon or nitrogen.

  2. Child personality facets and overreactive parenting as predictors of aggression and rule-breaking trajectories from childhood to adolescence.

    PubMed

    Becht, Andrik I; Prinzie, Peter; Deković, Maja; van den Akker, Alithe L; Shiner, Rebecca L

    2016-05-01

    This study examined trajectories of aggression and rule breaking during the transition from childhood to adolescence (ages 9-15), and determined whether these trajectories were predicted by lower order personality facets, overreactive parenting, and their interaction. At three time points separated by 2-year intervals, mothers and fathers reported on their children's aggression and rule breaking (N = 290, M age = 8.8 years at Time 1). At Time 1, parents reported on their children's personality traits and their own overreactivity. Growth mixture modeling identified three aggression trajectories (low decreasing, high decreasing, and high increasing) and two rule-breaking trajectories (low and high). Lower optimism and compliance and higher energy predicted trajectories for both aggression and rule breaking, whereas higher expressiveness and irritability and lower orderliness and perseverance were unique risk factors for increasing aggression into adolescence. Lower concentration was a unique risk factor for increasing rule breaking. Parental overreactivity predicted higher trajectories of aggression but not rule breaking. Only two Trait × Overreactivity interactions were found. Our results indicate that personality facets could differentiate children at risk for different developmental trajectories of aggression and rule breaking.

  3. Effect of fish gelatin-gum arabic interactions on structural and functional properties of concentrated emulsions.

    PubMed

    Anvari, Mohammad; Joyner Melito, Helen S

    2017-12-01

    Concentrated emulsions containing both proteins and polysaccharides are the basis for many commercial products; however, the effects of protein-polysaccharide interactions on the functional properties of these complex systems are often poorly understood from a fundamental standpoint. Hence, the objective of this study was to determine the effects of fish gelatin (FG)-gum arabic (GA) complexation at different aqueous phase pH (3.6, 5.0, and 9.0) on concentrated emulsion structure-function relationships. Concentrated emulsions were prepared using FG-GA mixtures and characterized by rheometry and confocal scanning laser microscopy (CSLM). CSLM images showed that all samples were O/W emulsions; emulsions with lower pH showed smaller oil droplets, greater homogeneity in size distribution, and higher stability. This was attributed to an increased number of FG-GA complexes in the emulsification. Electrostatic attractive interactions and charge neutralization created biopolymer associations with increased emulsification capacity. Samples with FG-GA mixtures at lower pH showed higher elastic moduli under small deformation and exhibited greater deviation between apparent and complex viscosities under the Cox-Merz rule, indicating increased gel network extension and greater intermolecular connectivity between adsorbed layers of adjacent oil droplets. These results can be used to incorporate protein-polysaccharide complexes as a suitable emulsifier in materials comprising concentrated emulsions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Rule-based programming paradigm: a formal basis for biological, chemical and physical computation.

    PubMed

    Krishnamurthy, V; Krishnamurthy, E V

    1999-03-01

    A rule-based programming paradigm is described as a formal basis for biological, chemical and physical computations. In this paradigm, the computations are interpreted as the outcome arising out of interaction of elements in an object space. The interactions can create new elements (or same elements with modified attributes) or annihilate old elements according to specific rules. Since the interaction rules are inherently parallel, any number of actions can be performed cooperatively or competitively among the subsets of elements, so that the elements evolve toward an equilibrium or unstable or chaotic state. Such an evolution may retain certain invariant properties of the attributes of the elements. The object space resembles Gibbsian ensemble that corresponds to a distribution of points in the space of positions and momenta (called phase space). It permits the introduction of probabilities in rule applications. As each element of the ensemble changes over time, its phase point is carried into a new phase point. The evolution of this probability cloud in phase space corresponds to a distributed probabilistic computation. Thus, this paradigm can handle tor deterministic exact computation when the initial conditions are exactly specified and the trajectory of evolution is deterministic. Also, it can handle probabilistic mode of computation if we want to derive macroscopic or bulk properties of matter. We also explain how to support this rule-based paradigm using relational-database like query processing and transactions.

  5. The use of zeta potential as a tool to study phase transitions in binary phosphatidylcholines mixtures.

    PubMed

    Sierra, M B; Pedroni, V I; Buffo, F E; Disalvo, E A; Morini, M A

    2016-06-01

    Temperature dependence of the zeta potential (ZP) is proposed as a tool to analyze the thermotropic behavior of unilamellar liposomes prepared from binary mixtures of phosphatidylcholines in the absence or presence of ions in aqueous suspensions. Since the lipid phase transition influences the surface potential of the liposome reflecting a sharp change in the ZP during the transition, it is proposed as a screening method for transition temperatures in complex systems, given its high sensitivity and small amount of sample required, that is, 70% less than that required in the use of conventional calorimeters. The sensitivity is also reflected in the pre-transition detection in the presence of ions. Plots of phase boundaries for these mixed-lipid vesicles were constructed by plotting the delimiting temperatures of both main phase transition and pre-transition vs. the lipid composition of the vesicle. Differential scanning calorimetry (DSC) studies, although subject to uncertainties in interpretation due to broad bands in lipid mixtures, allowed the validation of the temperature dependence of the ZP method for determining the phase transition and pre-transition temperatures. The system chosen was dipalmitoylphosphatidylcholine/dimyristoyl phosphatidylcholine (DMPC/DPPC), the most common combination in biological membranes. This work may be considered as a starting point for further research into more complex lipid mixtures with functional biological importance. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Evidence of Cholesterol Accumulated in High Curvature Regions: Implication ot the Curvature Elastic Energy for Lipid Mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang,W.; Yang, L.; Huang, H.

    2007-01-01

    Recent experiments suggested that cholesterol and other lipid components of high negative spontaneous curvature facilitate membrane fusion. This is taken as evidence supporting the stalk-pore model of membrane fusion in which the lipid bilayers go through intermediate structures of high curvature. How do the high-curvature lipid components lower the free energy of the curved structure? Do the high-curvature lipid components modify the average spontaneous curvature of the relevant monolayer, thereby facilitate its bending, or do the lipid components redistribute in the curved structure so as to lower the free energy? This question is fundamental to the curvature elastic energy formore » lipid mixtures. Here we investigate the lipid distribution in a monolayer of a binary lipid mixture before and after bending, or more precisely in the lamellar, hexagonal, and distorted hexagonal phases. The lipid mixture is composed of 2:1 ratio of brominated di18:0PC and cholesterol. Using a newly developed procedure for the multiwavelength anomalous diffraction method, we are able to isolate the bromine distribution and reconstruct the electron density distribution of the lipid mixture in the three phases. We found that the lipid distribution is homogenous and uniform in the lamellar and hexagonal phases. But in the distorted hexagonal phase, the lipid monolayer has nonuniform curvature, and cholesterol almost entirely concentrates in the high curvature region. This finding demonstrates that the association energies between lipid molecules vary with the curvature of membrane. Thus, lipid components in a mixture may redistribute under conditions of nonuniform curvature, such as in the stalk structure. In such cases, the spontaneous curvature depends on the local lipid composition and the free energy minimum is determined by lipid distribution as well as curvature.« less

  7. Understanding metastable phase transformation during crystallization of RDX, HMX and CL-20: experimental and DFT studies.

    PubMed

    Ghosh, Mrinal; Banerjee, Shaibal; Shafeeuulla Khan, Md Abdul; Sikder, Nirmala; Sikder, Arun Kanti

    2016-09-14

    Multiphase growth during crystallization severely affects deliverable output of explosive materials. Appearance and incomplete transformation of metastable phases are a major source of polymorphic impurities. This article presents a methodical and molecular level understanding of the metastable phase transformation mechanism during crystallization of cyclic nitramine explosives, viz. RDX, HMX and CL-20. Instantaneous reverse precipitation yielded metastable γ-HMX and β-CL-20 which undergo solution mediated transformation to the respective thermodynamic forms, β-HMX and ε-CL-20, following 'Ostwald's rule of stages'. However, no metastable phase, anticipated as β-RDX, was evidenced during precipitation of RDX, which rather directly yielded the thermodynamically stable α-phase. The γ→β-HMX and β→ε-CL-20 transformations took 20 and 60 minutes respectively, whereas formation of α-RDX was instantaneous. Density functional calculations were employed to identify the possible transition state conformations and to obtain activation barriers for transformations at wB97XD/6-311++G(d,p)(IEFPCM)//B3LYP/6-311G(d,p) level of theory. The computed activation barriers and lattice energies responsible for transformation of RDX, HMX and CL-20 metastable phases to thermodynamic ones conspicuously supported the experimentally observed order of phase stability. This precise result facilitated an understanding of the occurrence of a relatively more sensitive and less dense β-CL-20 phase in TNT based melt-cast explosive compositions, a persistent and critical problem unanswered in the literature. The crystalline material recovered from such compositions revealed a mixture of β- and ε-CL-20. However, similar compositions of RDX and HMX never showed any metastable phase. The relatively long stability with the highest activation barrier is believed to restrict complete β→ε-CL-20 transformation during processing. Therefore a method is suggested to overcome this issue.

  8. Predicting phase behavior of mixtures of reservoir fluids with carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigg, R.B.; Lingane, P.J.

    1983-10-01

    The use of an equation of state to predict phase behavior during carbon dioxide flooding is well established. There is consensus that the characterization of the C fraction, the grouping of this fraction into ''pseudo components'', and the selection of interaction parameters are the most important variables. However, the literature is vague as to how to best select the pseudo components, especially when aiming for a few-component representation as for a field scale compositional simulation. Single-contact phase behavior is presented for mixtures of Ford Geraldine (Delaware), Maljamar (Grayburg), West Sussex (Shannon), and Reservoir D reservoir fluids, and of a syntheticmore » oil C/C/C, with carbon dioxide. One can reproduce the phase behavior of these mixtures using 3-5 pseudo components and common interaction parameters. The critical properties of the pseudo components are calculated from detailed oil characterizations. Because the parameters are not further adjusted, this approach reduces the empiricism in fitting phase data and may result in a more accurate representation of the system as the composition of the oil changes during the approach to miscibility.« less

  9. Predicting mixture phase equilibria and critical behavior using the SAFT-VRX approach.

    PubMed

    Sun, Lixin; Zhao, Honggang; Kiselev, Sergei B; McCabe, Clare

    2005-05-12

    The SAFT-VRX equation of state combines the SAFT-VR equation with a crossover function that smoothly transforms the classical equation into a nonanalytical form close to the critical point. By a combinination of the accuracy of the SAFT-VR approach away from the critical region with the asymptotic scaling behavior seen at the critical point of real fluids, the SAFT-VRX equation can accurately describe the global fluid phase diagram. In previous work, we demonstrated that the SAFT-VRX equation very accurately describes the pvT and phase behavior of both nonassociating and associating pure fluids, with a minimum of fitting to experimental data. Here, we present a generalized SAFT-VRX equation of state for binary mixtures that is found to accurately predict the vapor-liquid equilibrium and pvT behavior of the systems studied. In particular, we examine binary mixtures of n-alkanes and carbon dioxide + n-alkanes. The SAFT-VRX equation accurately describes not only the gas-liquid critical locus for these systems but also the vapor-liquid equilibrium phase diagrams and thermal properties in single-phase regions.

  10. Phase equilibria and formation of vesicles of dioleoylphosphatidylcholine in glycerol/water mixtures.

    PubMed

    Johansson, L B; Kalman, B; Wikander, G; Fransson, A; Fontell, K; Bergenståhl, B; Lindblom, G

    1993-07-04

    The lipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) forms a lamellar liquid crystalline phase (L alpha) in arbitrary mixtures of glycerol and water. The phase has been characterized by means of X-ray diffraction, 31P-NMR spectroscopy and differential scanning calorimetry (DSC). In the L alpha state, and for DOPC concentrations greater than 50% (w/w), the thickness of the lipid bilayer decreases, while the area of the polar head group increases with increasing glycerol concentration. The phase transition from gel to L alpha state occurs in the range of 240 to 260 K. Contrary to a previous (McDaniel, R.V., McIntosh, T.J. and Simon, S.A. (1983) Biochim. Biophys. Acta 731, 97) study of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) we find that in the gel state, the thickness of the DOPC lipid bilayer is greater than that in the L alpha state. This suggests that in the gel state, the lipid acyl chains of DOPC are in extended configuration. The lamellar phase reaches its maximum swelling at about 50% (w/w) of DOPC. At lower DOPC concentrations a two-phase system is formed where the lamellar phase exists in equilibrium with excess of solvent. Unilamellar vesicles can be prepared from a diluted suspension of the lamellar phase either by using the sonicator or extruder technique. We show this by means of 31P-NMR, EPR and fluorescence spectroscopy. The mean radius of the vesicles, prepared by a sonicator, has been determined at different glycerol/water mixtures. It is found to decrease continuously from 100 A at 100% water to a minimum of 75 A at about 50% water in the solvent mixture. By further decreasing the water content in the solution, the radius rapidly increases, and a mean radius of 450 A is estimated at a water content of 10%. The rotational relaxation times of a fluorescent probe and two EPR spin probes, solubilized in DOPC vesicles, have been measured at different glycerol/water mixtures. It is found that the rotational rates are always much slower in the systems containing glycerol.

  11. Phase transition and chemical decomposition of hydrogen peroxide and its water mixtures under high pressures.

    PubMed

    Chen, Jing-Yin; Kim, Minseob; Yoo, Choong-Shik; Dattelbaum, Dana M; Sheffield, Stephen

    2010-06-07

    We have studied the pressure-induced phase transition and chemical decomposition of hydrogen peroxide and its mixtures with water to 50 GPa, using confocal micro-Raman and synchrotron x-ray diffractions. The x-ray results indicate that pure hydrogen peroxide crystallizes into a tetragonal structure (P4(1)2(1)2), the same structure previously found in 82.7% H(2)O(2) at high pressures and in pure H(2)O(2) at low temperatures. The tetragonal phase (H(2)O(2)-I) is stable to 15 GPa, above which transforms into an orthorhombic structure (H(2)O(2)-II) over a relatively large pressure range between 13 and 18 GPa. Inferring from the splitting of the nu(s)(O-O) stretching mode, the phase I-to-II transition pressure decreases in diluted H(2)O(2) to around 7 GPa for the 41.7% H(2)O(2) and 3 GPa for the 9.5%. Above 18 GPa H(2)O(2)-II gradually decomposes to a mixture of H(2)O and O(2), which completes at around 40 GPa for pure and 45 GPa for the 9.5% H(2)O(2). Upon pressure unloading, H(2)O(2) also decomposes to H(2)O and O(2) mixtures across the melts, occurring at 2.5 GPa for pure and 1.5 GPa for the 9.5% mixture. At H(2)O(2) concentrations below 20%, decomposed mixtures form oxygen hydrate clathrates at around 0.8 GPa--just after H(2)O melts. The compression data of pure H(2)O(2) and the stability data of the mixtures seem to indicate that the high-pressure decomposition is likely due to the pressure-induced densification, whereas the low-pressure decomposition is related to the heterogeneous nucleation process associated with H(2)O(2) melting.

  12. BCS to BEC evolution for mixtures of fermions with unequal masses

    NASA Astrophysics Data System (ADS)

    de Melo, Carlos A. R. Sa

    2009-03-01

    I discuss the zero and finite temperature phase diagrams of a mixture of fermions with unequal masses with and without population imbalance, which may correspond for example to mixtures of ^6Li and ^40K, ^6Li and ^87Sr, or ^40K and ^87Sr in the context of ultracold atoms. At zero temperature and when excess fermions are present, at least three phases may occur as the interaction parameter is changed from the BCS to the BEC regime. These phases correspond to normal, phase separation, or superfluid with coexistence between paired and excess fermions. The zero temperature phase diagram of population imbalance versus interaction parameter presents a remarkable asymmetry between the cases involving excess lighter or heavier fermions [1, 2], in sharp contrast with the symmetric phase diagram corresponding to the case of equal masses. At finite temperatures, the phase separation region of the phase diagram competes with superfluid regions possessing gapless elementary excitations [3] for certain ranges of the interaction parameter depending on the mass ratio. Furthermore, a phase transition may take place between two superfluid phases which are topologically distinct. The precise location of such transition is sensitive to the mass ratio between the two species of fermions. Signatures of this possible topological transition are present in the momentum distribution or structure factor, which may be measured experimentally in time-of-flight or through Bragg scattering, respectively. Lastly, throughout the evolution from BCS to BEC, I discuss the critical current and sound velocity for unequal mass systems as a function of interaction parameter and mass ratio. These quantities may also be measured via the same techniques already used in mixtures of fermions with equal masses. [1] M. Iskin, and C. A. R. Sa de Melo, Phys. Rev. Lett. 97, 100404 (2006). [2] M. Iskin and C. A. R. Sa de Melo, Phys. Rev. A 76, 013601 (2007). [3] Li Han, and C. A. R. Sa de Melo, arXiv:0812.xxxx

  13. Formation of an amorphous phase and its crystallization in the immiscible Nb-Zr system by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Al-Aqeeli, N.; Suryanarayana, C.; Hussein, M. A.

    2013-10-01

    Mechanical alloying of binary Nb-Zr powder mixtures was carried out to evaluate the formation of metastable phases in this immiscible system. The milled powders were characterized for their constitution and structure by X-ray diffraction and transmission electron microscopy methods. It was shown that an amorphous phase had formed on milling the binary powder mixture for about 10 h and that it had crystallized on subsequent milling up to 50-70 h, referred to as mechanical crystallization. Thermodynamic and structural arguments have been presented to explain the formation of the amorphous phase and its subsequent crystallization.

  14. Electrostatic control of phospholipid polymorphism.

    PubMed

    Tarahovsky, Y S; Arsenault, A L; MacDonald, R C; McIntosh, T J; Epand, R M

    2000-12-01

    A regular progression of polymorphic phase behavior was observed for mixtures of the anionic phospholipid, cardiolipin, and the cationic phospholipid derivative, 1, 2-dioleoyl-sn-glycero-3-ethylphosphocholine. As revealed by freeze-fracture electron microscopy and small-angle x-ray diffraction, whereas the two lipids separately assume only lamellar phases, their mixtures exhibit a symmetrical (depending on charge ratio and not polarity) sequence of nonlamellar phases. The inverted hexagonal phase, H(II,) formed from equimolar mixtures of the two lipids, i.e., at net charge neutrality (charge ratio (CR((+/-))) = 1:1). When one type of lipid was in significant excess (CR((+/-)) = 2:1 or CR((+/-)) = 1:2), a bicontinuous cubic structure was observed. These cubic phases were very similar to those sometimes present in cellular organelles that contain cardiolipin. Increasing the excess of cationic or anionic charge to CR((+/-)) = 4:1 or CR((+/-)) = 1:4 led to the appearance of membrane bilayers with numerous interlamellar contacts, i.e., sponge structures. It is evident that interactions between cationic and anionic moieties can influence the packing of polar heads and hence control polymorphic phase transitions. The facile isothermal, polymorphic interconversion of these lipids may have important biological and technical implications.

  15. Computer simulation of phase separation under a double temperature quench.

    PubMed

    Podariu, Iulia; Chakrabarti, Amitabha

    2007-04-21

    The authors numerically study a two-step quench process in an asymmetric binary mixture. The mixture is first quenched to an unstable state in the two-phase region. After a large phase-separated structure is formed, the authors again quench the system deeper. The second quench induces the formation of small secondary droplets inside the large domains created by the first quench. The authors characterize this secondary droplet growth in terms of the temperature of the first quench as well as the depth of the second one.

  16. A composite phase diagram of structure H hydrates using Schreinemakers' geometric approach

    USGS Publications Warehouse

    Mehta, A.P.; Makogon, T.Y.; Burruss, R.C.; Wendlandt, R.F.; Sloan, E.D.

    1996-01-01

    A composite phase diagram is presented for Structure H (sH) clathrate hydrates. In this work, we derived the reactions occurring among the various phases along each four-phase (Ice/Liquid water, liquid hydrocarbon, vapor, and hydrate) equilibrium line. A powerful method (though seldom used in chemical engineering) for multicomponent equilibria developed by Schreinemakers is applied to determine the relative location of all quadruple (four-phase) lines emanating from three quintuple (five-phase) points. Experimental evidence validating the approximate phase diagram is also provided. The use of Schreinemakers' rules for the development of the phase diagram is novel for hydrates, but these rules may be extended to resolve the phase space of other more complex systems commonly encountered in chemical engineering.

  17. Phase-field modeling of mixing/demixing of regular binary mixtures with a composition-dependent viscosity

    NASA Astrophysics Data System (ADS)

    Lamorgese, A.; Mauri, R.

    2017-04-01

    We simulate the mixing (demixing) process of a quiescent binary liquid mixture with a composition-dependent viscosity which is instantaneously brought from the two-phase (one-phase) to the one-phase (two-phase) region of its phase diagram. Our theoretical approach follows a standard diffuse-interface model of partially miscible regular binary mixtures wherein convection and diffusion are coupled via a nonequilibrium capillary force, expressing the tendency of the phase-separating system to minimize its free energy. Based on 2D simulation results, we discuss the influence of viscosity ratio on basic statistics of the mixing (segregation) process triggered by a rapid heating (quench), assuming that the ratio of capillary to viscous forces (a.k.a. the fluidity coefficient) is large. We show that, for a phase-separating system, at a fixed value of the fluidity coefficient (with the continuous phase viscosity taken as a reference), the separation depth and the characteristic length of single-phase microdomains decrease monotonically for increasing values of the viscosity of the dispersed phase. This variation, however, is quite small, in agreement with experimental results. On the other hand, as one might expect, at a fixed viscosity of the dispersed phase both of the above statistics increase monotonically as the viscosity of the continuous phase decreases. Finally, we show that for a mixing system the attainment of a single-phase equilibrium state by coalescence and diffusion is retarded by an increase in the viscosity ratio at a fixed fluidity for the dispersed phase. In fact, for large enough values of the viscosity ratio, a thin film of the continuous phase becomes apparent when two drops of the minority phase approach each other, which further retards coalescence.

  18. Development and validation of chemometrics-assisted spectrophotometric and liquid chromatographic methods for the simultaneous determination of two multicomponent mixtures containing bronchodilator drugs.

    PubMed

    El-Gindy, Alaa; Emara, Samy; Shaaban, Heba

    2007-02-19

    Three methods are developed for the determination of two multicomponent mixtures containing guaiphenesine (GU) with salbutamol sulfate (SL), methylparaben (MP) and propylparaben (PP) [mixture 1]; and acephylline piperazine (AC) with bromhexine hydrochloride (BX), methylparaben (MP) and propylparaben (PP) [mixture 2]. The resolution of the two multicomponent mixtures has been accomplished by using numerical spectrophotometric methods such as partial least squares (PLS-1) and principal component regression (PCR) applied to UV absorption spectra of the two mixtures. In addition HPLC method was developed using a RP 18 column at ambient temperature with mobile phase consisting of acetonitrile-0.05 M potassium dihydrogen phosphate, pH 4.3 (60:40, v/v), with UV detection at 243 nm for mixture 1, and mobile phase consisting of acetonitrile-0.05 M potassium dihydrogen phosphate, pH 3 (50:50, v/v), with UV detection at 245 nm for mixture 2. The methods were validated in terms of accuracy, specificity, precision and linearity in the range of 20-60 microg ml(-1) for GU, 1-3 microg ml(-1) for SL, 20-80 microg ml(-1) for AC, 0.2-1.8 microgml(-1) for PP and 1-5 microg ml(-1) for BX and MP. The proposed methods were successfully applied for the determination of the two multicomponent combinations in laboratory prepared mixtures and commercial syrups.

  19. Transport properties of mixtures by the soft-SAFT + free-volume theory: application to mixtures of n-alkanes and hydrofluorocarbons.

    PubMed

    Llovell, F; Marcos, R M; Vega, L F

    2013-05-02

    In a previous paper (Llovell et al. J. Phys. Chem. B, submitted for publication), the free-volume theory (FVT) was coupled with the soft-SAFT equation of state for the first time to extend the capabilities of the equation to the calculation of transport properties. The equation was tested with molecular simulations and applied to the family of n-alkanes. The capability of the soft-SAFT + FVT treatment is extended here to other chemical families and mixtures. The compositional rules of Wilke (Wilke, C. R. J. Chem. Phys. 1950, 18, 517-519) are used for the diluted term of the viscosity, while the dense term is evaluated using very simple mixing rules to calculate the viscosity parameters. The theory is then used to predict the vapor-liquid equilibrium and the viscosity of mixtures of nonassociating and associating compounds. The approach is applied to determine the viscosity of a selected group of hydrofluorocarbons, in a similar manner as previously done for n-alkanes. The soft-SAFT molecular parameters are taken from a previous work, fitted to vapor-liquid equilibria experimental data. The application of FVT requires three additional parameters related to the viscosity of the pure fluid. Using a transferable approach, the α parameter is taken from the equivalent n-alkane, while the remaining two parameters B and Lv are fitted to viscosity data of the pure fluid at several isobars. The effect of these parameters is then investigated and compared to those obtained for n-alkanes, in order to better understand their effect on the calculations. Once the pure fluids are well characterized, the vapor-liquid equilibrium and the viscosity of nonassociating and associating mixtures, including n-alkane + n-alkane, hydrofluorocarbon + hydrofluorocarbon, and n-alkane + hydrofluorocarbon mixtures, are calculated. One or two binary parameters are used to account for deviations in the vapor-liquid equilibrium diagram for nonideal mixtures; these parameters are used in a transferable manner to predict the viscosity of the mixtures. Very good agreement with available experimental data is found in all cases, with an average absolute deviation ranging between 1.0% and 5.5%, even when the system presents azeotropy, reinforcing the robustness of the approach.

  20. RCRA/UST, superfund and EPCRA hotline training module. Introduction to: Hazardous waste identification (40 CFR part 261) updated as of July 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-11-01

    This module introduces a specific hazardous waste identification process, which involves asking and analyzing a series of questions about any waste being evaluated. Analyzes in detail the Resource Conservation and Recovery Act (RCRA) definition of hazardous waste. It explains the following concepts that are essential to identifying a RCRA hazardous waste: hazardous waste listing, hazardous waste characteristics, the mixture and derived-from rules, the contained-in policy, and the Hazardous Waste Identification Rule (HWIR).

  1. Effect of Substrate Wetting on the Morphology and Dynamics of Phase Separating Multi-Component Mixture

    NASA Astrophysics Data System (ADS)

    Goyal, Abheeti; Toschi, Federico; van der Schoot, Paul

    2017-11-01

    We study the morphological evolution and dynamics of phase separation of multi-component mixture in thin film constrained by a substrate. Specifically, we have explored the surface-directed spinodal decomposition of multicomponent mixture numerically by Free Energy Lattice Boltzmann (LB) simulations. The distinguishing feature of this model over the Shan-Chen (SC) model is that we have explicit and independent control over the free energy functional and EoS of the system. This vastly expands the ambit of physical systems that can be realistically simulated by LB simulations. We investigate the effect of composition, film thickness and substrate wetting on the phase morphology and the mechanism of growth in the vicinity of the substrate. The phase morphology and averaged size in the vicinity of the substrate fluctuate greatly due to the wetting of the substrate in both the parallel and perpendicular directions. Additionally, we also describe how the model presented here can be extended to include an arbitrary number of fluid components.

  2. Separation and recycling of nanoparticles using cloud point extraction with non-ionic surfactant mixtures.

    PubMed

    Nazar, Muhammad Faizan; Shah, Syed Sakhawat; Eastoe, Julian; Khan, Asad Muhammad; Shah, Afzal

    2011-11-15

    A viable cost-effective approach employing mixtures of non-ionic surfactants Triton X-114/Triton X-100 (TX-114/TX-100), and subsequent cloud point extraction (CPE), has been utilized to concentrate and recycle inorganic nanoparticles (NPs) in aqueous media. Gold Au- and palladium Pd-NPs have been pre-synthesized in aqueous phases and stabilized by sodium 2-mercaptoethanesulfonate (MES) ligands, then dispersed in aqueous non-ionic surfactant mixtures. Heating the NP-micellar systems induced cloud point phase separations, resulting in concentration of the NPs in lower phases after the transition. For the Au-NPs UV/vis absorption has been used to quantify the recovery and recycle efficiency after five repeated CPE cycles. Transmission electron microscopy (TEM) was used to investigate NP size, shape, and stability. The results showed that NPs are preserved after the recovery processes, but highlight a potential limitation, in that further particle growth can occur in the condensed phases. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Regioselectivity of pyridine deprotonation in the gas phase.

    PubMed

    Schafman, Bonnie S; Wenthold, Paul G

    2007-03-02

    The regioselective deprotonation of pyridine in the gas phase has been investigated by using chemical reactivity studies. The mixture of regioisomers, trapped as carboxylates, formed in an equilibrium mixture is determined to result from 70-80% deprotonation in the 4-position, and 20-30% deprotonation at the 3-position. The ion formed by deprotonation in the 2-position is not measurably deprotonated at equilibrium because the ion is destabilized by lone-pair repulsion. From the composition of the mixture, the gas-phase acidities (DeltaH degrees acid) at the 4-, 3-, and 2-positions are determined to be 389.9 +/- 2.0, 391.2-391.5, and >391.5 kcal/mol, respectively. The relative acidities of the 4- and 3-positions are explained by using Hammett-Taft parameters, derived by using the measured gas-phase acidities of pyridine carboxylic acids. The values of sigmaF and sigmaR are -0.18 and 0.74, respectively, showing the infused nitrogen in pyridine to have a strong pi electron-withdrawing effect, but with little sigma-inductive effect.

  4. Heat storage system utilizing phase change materials government rights

    DOEpatents

    Salyer, Ival O.

    2000-09-12

    A thermal energy transport and storage system is provided which includes an evaporator containing a mixture of a first phase change material and a silica powder, and a condenser containing a second phase change material. The silica powder/PCM mixture absorbs heat energy from a source such as a solar collector such that the phase change material forms a vapor which is transported from the evaporator to the condenser, where the second phase change material melts and stores the heat energy, then releases the energy to an environmental space via a heat exchanger. The vapor is condensed to a liquid which is transported back to the evaporator. The system allows the repeated transfer of thermal energy using the heat of vaporization and condensation of the phase change material.

  5. Suppression of turbulent energy cascade due to phase separation in homogenous binary mixture fluid

    NASA Astrophysics Data System (ADS)

    Takagi, Youhei; Okamoto, Sachiya

    2015-11-01

    When a multi-component fluid mixture becomes themophysically unstable state by quenching from well-melting condition, phase separation due to spinodal decomposition occurs, and a self-organized structure is formed. During phase separation, free energy is consumed for the structure formation. In our previous report, the phase separation in homogenous turbulence was numerically simulated and the coarsening process of phase separation was discussed. In this study, we extended our numerical model to a high Schmidt number fluid corresponding to actual polymer solution. The governing equations were continuity, Navier-Stokes, and Chan-Hiliard equations as same as our previous report. The flow filed was an isotropic homogenous turbulence, and the dimensionless parameters in the Chan-Hilliard equation were estimated based on the thermophysical condition of binary mixture. From the numerical results, it was found that turbulent energy cascade was drastically suppressed in the inertial subrange by phase separation for the high Schmidt number flow. By using the identification of turbulent and phase separation structure, we discussed the relation between total energy balance and the structures formation processes. This study is financially supported by the Grand-in-Aid for Young Scientists (B) (No. T26820045) from the Ministry of Education, Cul-ture, Sports, Science and Technology of Japan.

  6. Vapor-Liquid Equilibrium in the Mixture 1,1-Difluoroethane C2H4F2 + C4H8 2-Methylpropene (EVLM1131, LB5730_E)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Vapor-Liquid Equilibrium in the Mixture 1,1-Difluoroethane C2H4F2 + C4H8 2-Methylpropene (EVLM1131, LB5730_E)' providing data from direct measurement of pressure and mole fraction in vapor phase at variable mole fraction in liquid phase and constant temperature.

  7. Metastable liquid lamellar structures in binary and ternary mixtures of Lennard-Jones fluids

    NASA Astrophysics Data System (ADS)

    Díaz-Herrera, Enrique; Ramírez-Santiago, Guillermo; Moreno Razo, José A.

    2004-03-01

    We have carried out extensive equilibrium MD simulations to investigate the Liquid-Vapor coexistence in partially miscible binary and ternary mixtures LJ fluids. We have studied in detail the time evolution of the density profiles and the interfacial properties in a temperature region of the phase diagram where the condensed phase is demixed. The composition of the mixtures are fixed, 50% for the binary mixture and 33.33% for the ternary mixture. The results of the simulations clearly indicate that in the range of temperatures 78 < T < 102 ^oK,--in the scale of argon-- the system evolves towards a metastable alternated liquid-liquid lamellar state in coexistence with its vapor phase. These states can be achieved if the initial configuration is fully disordered, that is, when the particles of the fluids are randomly placed on the sites of an FCC crystal or the system is completely mixed. As temperature decreases these states become very well defined and more stable in time. We find that below 90 ^oK, the alternated liquid-liquid lamellar state remains alive for 80 ns, in the scale of argon, the longest simulation we have carried out. Nonetheless, we believe that in this temperature region these states will be alive for even much longer times.

  8. Co-composting of two-phase olive-mill pomace and poultry manure with tomato harvest stalks.

    PubMed

    Sülük, Kemal; Tosun, İsmail; Ekinci, Kamil

    2017-04-01

    In this study, two-phase olive-mill pomace with poultry manure and chopped tomato harvest stalks were composted at different initial carbon/nitrogen (C/N) ratios with fixed free air space of 35%. Composting experiment was carried out in the 15 aerobic reactors made of stainless steel and was monitored for 28 days. During the composting process, temperature, moisture content, organic matter (OM), pH, electrical conductivity, oxygen and carbon dioxide concentrations, total carbon, total nitrogen, ammonium nitrogen ([Formula: see text]), nitrate nitrogen ([Formula: see text]), and total phosphorus were monitored. Compost mass and volume changes were determined at the beginning, during remixings, and at the end of composting. While the stabilization period took less time for the mixtures containing a high amount of poultry manure, the mixtures having the high portion of two-phase olive-mill pomace took a longer time due to the structure of olive stone and its lignin content. Dry matter loss (range: 18.1-34.0%.) in the mixtures increased with an increase in the share of poultry manure and tomato stalks in the initial mixture. OM loss (range: 21.7-46.1%) for tomato stalks (measured separately) during composting increased due to an increase in the ratio of poultry manure in the initial mixtures.

  9. Taste Mixture Interactions: Suppression, Additivity, and the Predominance of Sweetness

    PubMed Central

    Green, Barry G.; Lim, Juyun; Osterhoff, Floor; Blacher, Karen; Nachtigal, Danielle

    2010-01-01

    Most of what is known about taste interactions has come from studies of binary mixtures. The primary goal of this study was to determine whether asymmetries in suppression between stimuli in binary mixtures predict the perception of tastes in more complex mixtures (e.g., ternary, quaternary mixtures). Also of interest was the longstanding question of whether overall taste intensity derives from the sum of the tastes perceived within a mixture (perceptual additivity) or from the sum of the perceived intensities of the individual stimuli (stimulus additivity). Using the general Labeled Magnitude Scale together with a sip-and-spit procedure, we asked subjects to rate overall taste intensity and the sweetness, sourness, saltiness and bitterness of approximately equi- intense sucrose, NaCl, citric acid and QSO4 stimuli presented alone and in all possible binary, ternary and quaternary mixtures. The results showed a consistent pattern of mixture suppression in which sucrose sweetness tended to be both the least suppressed quality and the strongest suppressor of other tastes. The overall intensity of mixtures was found to be predicted best by perceptual additivity. A second experiment that was designed to rule out potentially confounding effects of the order of taste ratings and the temperature of taste solutions replicated the main findings of the first experiment. Overall, the results imply that mixture suppression favors perception of sweet carbohydrates in foods at the expense of other potentially harmful ingredients, such as high levels of sodium (saltiness) and potential poisons or spoilage (bitterness, sourness). PMID:20800076

  10. Demixing and nematic behaviour of oblate hard spherocylinders and hard spheres mixtures: Monte Carlo simulation and Parsons-Lee theory

    NASA Astrophysics Data System (ADS)

    Gámez, Francisco; Acemel, Rafael D.; Cuetos, Alejandro

    2013-10-01

    Parsons-Lee approach is formulated for the isotropic-nematic transition in a binary mixture of oblate hard spherocylinders and hard spheres. Results for the phase coexistence and for the equation of state in both phases for fluids with different relative size and composition ranges are presented. The predicted behaviour is in agreement with Monte Carlo simulations in a qualitative fashion. The study serves to provide a rational view of how to control key aspects of the behaviour of these binary nematogenic colloidal systems. This behaviour can be tuned with an appropriate choice of the relative size and molar fractions of the depleting particles. In general, the mixture of discotic and spherical particles is stable against demixing up to very high packing fractions. We explore in detail the narrow geometrical range where demixing is predicted to be possible in the isotropic phase. The influence of molecular crowding effects on the stability of the mixture when spherical molecules are added to a system of discotic colloids is also studied.

  11. A sub-grid, mixture-fraction-based thermodynamic equilibrium model for gas phase combustion in FIRETEC: development and results

    Treesearch

    M. M. Clark; T. H. Fletcher; R. R. Linn

    2010-01-01

    The chemical processes of gas phase combustion in wildland fires are complex and occur at length-scales that are not resolved in computational fluid dynamics (CFD) models of landscape-scale wildland fire. A new approach for modelling fire chemistry in HIGRAD/FIRETEC (a landscape-scale CFD wildfire model) applies a mixture– fraction model relying on thermodynamic...

  12. Assessment of two-phase flow on the chemical alteration and sealing of leakage pathways in cemented wellbores

    DOE PAGES

    Iyer, Jaisree; Walsh, Stuart D. C.; Hao, Yue; ...

    2018-01-08

    Wellbore leakage tops the list of perceived risks to the long-term geologic storage of CO 2, because wells provide a direct path between the CO 2 storage reservoir and the atmosphere. In this paper, we have coupled a two-phase flow model with our original framework that combined models for reactive transport of carbonated brine, geochemistry of reacting cement, and geomechanics to predict the permeability evolution of cement fractures. Additionally, this makes the framework suitable for field conditions in geological storage sites, permitting simulation of contact between cement and mixtures of brine and supercritical CO 2. Due to lack of conclusivemore » experimental data, we tried both linear and Corey relative permeability models to simulate flow of the two phases in cement fractures. The model also includes two options to account for the inconsistent experimental observations regarding cement reactivity with two-phase CO 2-brine mixtures. One option assumes that the reactive surface area is independent of the brine saturation and the second option assumes that the reactive surface area is proportional to the brine saturation. We have applied the model to predict the extent of cement alteration, the conditions under which fractures seal, the time it takes to seal a fracture, and the leakage rates of CO 2 and brine when damage zones in the wellbore are exposed to two-phase CO 2-brine mixtures. Initial brine residence time and the initial fracture aperture are critical parameters that affect the fracture sealing behavior. We also evaluated the importance of the model assumptions regarding relative permeability and cement reactivity. These results illustrate the need to understand how mixtures of carbon dioxide and brine flow through fractures and react with cement to make reasonable predictions regarding well integrity. For example, a reduction in the cement reactivity with two-phase CO 2-brine mixture can not only significantly increase the sealing time for fractures but may also prevent fracture sealing.« less

  13. Assessment of two-phase flow on the chemical alteration and sealing of leakage pathways in cemented wellbores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iyer, Jaisree; Walsh, Stuart D. C.; Hao, Yue

    Wellbore leakage tops the list of perceived risks to the long-term geologic storage of CO 2, because wells provide a direct path between the CO 2 storage reservoir and the atmosphere. In this paper, we have coupled a two-phase flow model with our original framework that combined models for reactive transport of carbonated brine, geochemistry of reacting cement, and geomechanics to predict the permeability evolution of cement fractures. Additionally, this makes the framework suitable for field conditions in geological storage sites, permitting simulation of contact between cement and mixtures of brine and supercritical CO 2. Due to lack of conclusivemore » experimental data, we tried both linear and Corey relative permeability models to simulate flow of the two phases in cement fractures. The model also includes two options to account for the inconsistent experimental observations regarding cement reactivity with two-phase CO 2-brine mixtures. One option assumes that the reactive surface area is independent of the brine saturation and the second option assumes that the reactive surface area is proportional to the brine saturation. We have applied the model to predict the extent of cement alteration, the conditions under which fractures seal, the time it takes to seal a fracture, and the leakage rates of CO 2 and brine when damage zones in the wellbore are exposed to two-phase CO 2-brine mixtures. Initial brine residence time and the initial fracture aperture are critical parameters that affect the fracture sealing behavior. We also evaluated the importance of the model assumptions regarding relative permeability and cement reactivity. These results illustrate the need to understand how mixtures of carbon dioxide and brine flow through fractures and react with cement to make reasonable predictions regarding well integrity. For example, a reduction in the cement reactivity with two-phase CO 2-brine mixture can not only significantly increase the sealing time for fractures but may also prevent fracture sealing.« less

  14. Thermodynamics of HMX Polymorphs and HMX/RDX Mixtures

    DOE PAGES

    Myint, Philip C.; Nichols, Albert L.

    2016-12-09

    In this paper, we present thermodynamic models for the five most commonly studied phases of the energetic material octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX): liquid HMX and four solid polymorphs (α-, β-, γ-, and δ-HMX). We show results for the density, heat capacity, bulk modulus, and sound speed, as well as a phase diagram that illustrates the temperature and pressure regions over which the various HMX phases are most thermodynamically stable. The models are based on the same equation of state presented in our recently published paper [Myint et al., Ind. Eng. Chem. Res., 2016, 55, 2252] on another energetic material, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Wemore » combine our HMX and RDX models together so that the equation of state can also be applied to liquid and solid mixtures of HMX/RDX. This allows us to generate an HMX/RDX phase diagram and calculate the enthalpy change associated with a few different kinds of phase transitions that these mixtures may undergo. Our paper is the first to present a single equation of state that is capable of modeling both pure HMX and HMX/RDX mixtures. A distinct feature of HMX is the strongly metastable nature of its polymorphs. This has caused some ambiguity in the literature regarding the thermodynamic stability of α-HMX. Finally, by examining possible arrangements for the relative order of the six different solid-solid transition (α–β, α–γ, α–δ, β–γ, β–δ, and γ–δ) temperatures, we conclude that α-HMX must be thermodynamically stable so that the HMX phase diagram must have an α phase region.« less

  15. Membrane permeation process for dehydration of organic liquid mixtures using sulfonated ion-exchange polyalkene membranes

    DOEpatents

    Cabasso, Israel; Korngold, Emmanuel

    1988-01-01

    A membrane permeation process for dehydrating a mixture of organic liquids, such as alcohols or close boiling, heat sensitive mixtures. The process comprises causing a component of the mixture to selectively sorb into one side of sulfonated ion-exchange polyalkene (e.g., polyethylene) membranes and selectively diffuse or flow therethrough, and then desorbing the component into a gas or liquid phase on the other side of the membranes.

  16. Transport Properties for Combustion Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, N.J.; Bastein, L.; Price, P.N.

    This review examines current approximations and approaches that underlie the evaluation of transport properties for combustion modeling applications. Discussed in the review are: the intermolecular potential and its descriptive molecular parameters; various approaches to evaluating collision integrals; supporting data required for the evaluation of transport properties; commonly used computer programs for predicting transport properties; the quality of experimental measurements and their importance for validating or rejecting approximations to property estimation; the interpretation of corresponding states; combination rules that yield pair molecular potential parameters for unlike species from like species parameters; and mixture approximations. The insensitivity of transport properties to intermolecularmore » forces is noted, especially the non-uniqueness of the supporting potential parameters. Viscosity experiments of pure substances and binary mixtures measured post 1970 are used to evaluate a number of approximations; the intermediate temperature range 1 < T* < 10, where T* is kT/{var_epsilon}, is emphasized since this is where rich data sets are available. When suitable potential parameters are used, errors in transport property predictions for pure substances and binary mixtures are less than 5 %, when they are calculated using the approaches of Kee et al.; Mason, Kestin, and Uribe; Paul and Warnatz; or Ern and Giovangigli. Recommendations stemming from the review include (1) revisiting the supporting data required by the various computational approaches, and updating the data sets with accurate potential parameters, dipole moments, and polarizabilities; (2) characterizing the range of parameter space over which the fit to experimental data is good, rather than the current practice of reporting only the parameter set that best fits the data; (3) looking for improved combining rules, since existing rules were found to under-predict the viscosity in most cases; (4) performing more transport property measurements for mixtures that include radical species, an important but neglected area; (5) using the TRANLIB approach for treating polar molecules and (6) performing more accurate measurements of the molecular parameters used to evaluate the molecular heat capacity, since it affects thermal conductivity, which is important in predicting flame development.« less

  17. Phase study of SiO2-ZrO2 composites prepared from polymorphic combination of starting powders via a ball-milling followed by calcination

    NASA Astrophysics Data System (ADS)

    Musyarofah; Nurlaila, R.; Muwwaqor, N. F.; Saukani, M.; Kuswoyo, A.; Triwikantoro; Pratapa, S.

    2017-04-01

    The effects of SiO2-ZrO2 polymorphic combinations as starting powders and calcination temperature on phase composition of the SiO2-ZrO2 composites were studied. Stoichiometric (1:1 mol%) mixtures of the SiO2-ZrO2 composites were mechanically activated using a ball-milling for 5 h followed by calcinations at 1000, 1100 and 1200 °C for 3 h. The composites used in the present study were a-SiO2+ a-ZrO2, a-SiO2+ t-ZrO2, c-SiO2+ a-ZrO2 and c-SiO2+ t-ZrO2 which were symbolized by AA, AT, CA and CT, respectively. Prefixes a, t and c denote amorphous, tetragonal and cristobalite, respectively. The phase composition was determined by Rietveld analysis of X-ray diffraction (XRD) data using Rietica software. The identified phases for all calcined samples were a combination among t-ZrO2, c-SiO2, m-ZrO2 and zircon (ZrSiO4). Amorphous zirconia formed a transient tetragonal zirconia phase during heating, which reacted with silica to form zircon. The zircon phase was not found to form even at 1200 °C in the AT and CT mixtures and at 1100 °C in the CA mixture. The AA mixture in particular crystallized to form zircon at a lower temperature with more composition fraction than the others, ca 82.9 (14) mol%.

  18. Interfacial tension and vapor-liquid equilibria in the critical region of mixtures

    NASA Technical Reports Server (NTRS)

    Moldover, Michael R.; Rainwater, James C.

    1988-01-01

    In the critical region, the concept of two-scale-factor universality can be used to accurately predict the surface tension between near-critical vapor and liquid phases from the singularity in the thermodynamic properties of the bulk fluid. In the present work, this idea is generalized to binary mixtures and is illustrated using the data of Hsu et al. (1985) for CO2 + n-butane. The pressure-temperature-composition-density data for coexisting, near-critical phases of the mixtures are fitted with a thermodynamic potential comprised of a sum of a singular term and nonsingular terms. The nonuniversal amplitudes characterizing the singular term for the mixtures are obtained from the amplitudes for the pure components by interpolation in a space of thermodynamic 'field' variables. The interfacial tensions predicted for the mixtures from the singular term are within 10 percent of the data on three isotherms in the pressure range (Pc - P)/Pc of less than 0.5. This difference is comparable to the combined experimental and model errors.

  19. Near-infrared spectral reflectance of mineral mixtures - Systematic combinations of pyroxenes, olivine, and iron oxides

    NASA Technical Reports Server (NTRS)

    Singer, R. B.

    1981-01-01

    Near-infrared spectral reflectance data are presented for systematic variations in weight percent of two component mixtures of ferromagnesium and iron oxide minerals used to study the dark materials on Mars. Olivine spectral features are greatly reduced in contrast by admixture of other phases but remain distinctive even for low olivine contents. Clinopyroxene and orthopyroxene mixtures show resolved pyroxene absorptions near 2 microns. Limonite greatly modifies pyroxene and olivine reflectance, but does not fully eliminate distinctive spectral characteristics. Using only spectral data in the 1 micron region, it is difficult to differentiate orthopyroxene and limonite in a mixture. All composite mineral absorptions were either weaker than or intermediate in strength to the end-member absorptions and have bandwidths greater than or equal to those for the end members. In general, spectral properties in an intimate mixture combine in a complex, nonadditive manner, with features demonstrating a regular but usually nonlinear variation as a function of end-member phase proportions.

  20. The phase behavior of cationic lipid-DNA complexes.

    PubMed Central

    May, S; Harries, D; Ben-Shaul, A

    2000-01-01

    We present a theoretical analysis of the phase behavior of solutions containing DNA, cationic lipids, and nonionic (helper) lipids. Our model allows for five possible structures, treated as incompressible macroscopic phases: two lipid-DNA composite (lipoplex) phases, namely, the lamellar (L(alpha)(C)) and hexagonal (H(II)(C)) complexes; two binary (cationic/neutral) lipid phases, that is, the bilayer (L(alpha)) and inverse-hexagonal (H(II)) structures, and uncomplexed DNA. The free energy of the four lipid-containing phases is expressed as a sum of composition-dependent electrostatic, elastic, and mixing terms. The electrostatic free energies of all phases are calculated based on Poisson-Boltzmann theory. The phase diagram of the system is evaluated by minimizing the total free energy of the three-component mixture with respect to all the compositional degrees of freedom. We show that the phase behavior, in particular the preferred lipid-DNA complex geometry, is governed by a subtle interplay between the electrostatic, elastic, and mixing terms, which depend, in turn, on the lipid composition and lipid/DNA ratio. Detailed calculations are presented for three prototypical systems, exhibiting markedly different phase behaviors. The simplest mixture corresponds to a rigid planar membrane as the lipid source, in which case, only lamellar complexes appear in solution. When the membranes are "soft" (i.e., low bending modulus) the system exhibits the formation of both lamellar and hexagonal complexes, sometimes coexisting with each other, and with pure lipid or DNA phases. The last system corresponds to a lipid mixture involving helper lipids with strong propensity toward the inverse-hexagonal phase. Here, again, the phase diagram is rather complex, revealing a multitude of phase transitions and coexistences. Lamellar and hexagonal complexes appear, sometimes together, in different regions of the phase diagram. PMID:10733951

  1. Effect of borojo (Borojoa patinoi Cuatrecasas) three-phase composition and gum arabic on the glass transition temperature.

    PubMed

    Rodríguez-Bernal, Jenny M; Tello, Edisson; Flores-Andrade, Enrique; Perea-Flores, Maria de Jesús; Vallejo-Cardona, Alba A; Gutiérrez-López, Gustavo F; Quintanilla-Carvajal, Maria X

    2016-02-01

    The search for natural, novel, high-quality, stable food ingredients is an ongoing practice in the food industry. Pulp of borojo (Borojoa patinoi Cuatrecasas), which is a fruit of the Colombian Pacific region, can be separated into three phases: liquid (LP), medium (MP) and solid (SP) phases. The objective of this work was to evaluate the effect of the three-phase composition and gum arabic on their glass transitions temperatures (T(g)). The best mixture, LP-MP, MP-SP and LP-SP and gum arabic (GA) was identified by response surface methodology. When adding GA to SP borojo phase in a 1:1 proportion, the resulting T(g) of the mixture was 132.27 °C whereas Tg for GA and SP-phase were 154.89 °C and 79.86 °C respectively, which supported this combination as attractive from a processing perspective and supports an industrial advantage of using borojo as food ingredient. Phases were characterized by high-performance liquid chromatography, Fourier transform infrared spectroscopy, confocal laser scanning microscopy and mass spectrometry. Low molecular weight compounds such as fructose for MP lowered T(g) whereas the presence of lignin increased T(g) of the mixtures as with the SP. The addition of GA significantly increased T(g) of borojo phases so leading to propose them as novel food processing materials. © 2015 Society of Chemical Industry.

  2. On a partial differential equation method for determining the free energies and coexisting phase compositions of ternary mixtures from light scattering data.

    PubMed

    Ross, David S; Thurston, George M; Lutzer, Carl V

    2008-08-14

    In this paper we present a method for determining the free energies of ternary mixtures from light scattering data. We use an approximation that is appropriate for liquid mixtures, which we formulate as a second-order nonlinear partial differential equation. This partial differential equation (PDE) relates the Hessian of the intensive free energy to the efficiency of light scattering in the forward direction. This basic equation applies in regions of the phase diagram in which the mixtures are thermodynamically stable. In regions in which the mixtures are unstable or metastable, the appropriate PDE is the nonlinear equation for the convex hull. We formulate this equation along with continuity conditions for the transition between the two equations at cloud point loci. We show how to discretize this problem to obtain a finite-difference approximation to it, and we present an iterative method for solving the discretized problem. We present the results of calculations that were done with a computer program that implements our method. These calculations show that our method is capable of reconstructing test free energy functions from simulated light scattering data. If the cloud point loci are known, the method also finds the tie lines and tie triangles that describe thermodynamic equilibrium between two or among three liquid phases. A robust method for solving this PDE problem, such as the one presented here, can be a basis for optical, noninvasive means of characterizing the thermodynamics of multicomponent mixtures.

  3. Growth kinetics of vertically aligned carbon nanotube arrays in clean oxygen-free conditions.

    PubMed

    In, Jung Bin; Grigoropoulos, Costas P; Chernov, Alexander A; Noy, Aleksandr

    2011-12-27

    Vertically aligned carbon nanotubes (CNTs) are an important technological system, as well as a fascinating system for studying basic principles of nanomaterials synthesis; yet despite continuing efforts for the past decade many important questions about this process remain largely unexplained. We present a series of parametric ethylene chemical vapor deposition growth studies in a "hot-wall" reactor using ultrapure process gases that reveal the fundamental kinetics of the CNT growth. Our data show that the growth rate is proportional to the concentration of the carbon feedstock and monotonically decreases with the concentration of hydrogen gas and that the most important parameter determining the rate of the CNT growth is the production rate of active carbon precursor in the gas phase reaction. The growth termination times obtained with the purified gas mixtures were strikingly insensitive to variations in both hydrogen and ethylene pressures ruling out the carbon encapsulation of the catalyst as the main process termination cause.

  4. High-Pressure Transport Properties Of Fluids: Theory And Data From Levitated Drops At Combustion-Relevant Temperatures

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth; Ohsaka, Kenichi

    2003-01-01

    Although the high pressure multicomponent fluid conservation equations have already been derived and approximately validated for binary mixtures by this PI, the validation of the multicomponent theory is hampered by the lack of existing mixing rules for property calculations. Classical gas dynamics theory can provide property mixing-rules at low pressures exclusively. While thermal conductivity and viscosity high-pressure mixing rules have been documented in the literature, there is no such equivalent for the diffusion coefficients and the thermal diffusion factors. The primary goal of this investigation is to extend the low pressure mixing rule theory to high pressures and validate the new theory with experimental data from levitated single drops. The two properties that will be addressed are the diffusion coefficients and the thermal diffusion factors. To validate/determine the property calculations, ground-based experiments from levitated drops are being conducted.

  5. Atomic clusters and atomic surfaces in icosahedral quasicrystals.

    PubMed

    Quiquandon, Marianne; Portier, Richard; Gratias, Denis

    2014-05-01

    This paper presents the basic tools commonly used to describe the atomic structures of quasicrystals with a specific focus on the icosahedral phases. After a brief recall of the main properties of quasiperiodic objects, two simple physical rules are discussed that lead one to eventually obtain a surprisingly small number of atomic structures as ideal quasiperiodic models for real quasicrystals. This is due to the fact that the atomic surfaces (ASs) used to describe all known icosahedral phases are located on high-symmetry special points in six-dimensional space. The first rule is maximizing the density using simple polyhedral ASs that leads to two possible sets of ASs according to the value of the six-dimensional lattice parameter A between 0.63 and 0.79 nm. The second rule is maximizing the number of complete orbits of high symmetry to construct as large as possible atomic clusters similar to those observed in complex intermetallic structures and approximant phases. The practical use of these two rules together is demonstrated on two typical examples of icosahedral phases, i-AlMnSi and i-CdRE (RE = Gd, Ho, Tm).

  6. Sandia National Laboratories Small-Scale Sensitivity Testing (SSST) Report: Calcium Nitrate Mixtures with Various Fuels.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Jason Joe

    Based upon the presented sensitivity data for the examined calcium nitrate mixtures using sugar and sawdust, contact handling/mixing of these materials does not present hazards greater than those occurring during handling of dry PETN powder. The aluminized calcium nitrate mixtures present a known ESD fire hazard due to the fine aluminum powder fuel. These mixtures may yet present an ESD explosion hazard, though this has not been investigated at this time. The detonability of these mixtures will be investigated during Phase III testing.

  7. Investigation of Deviations from Ideality in the Two Liquid Phase Region of Systems of Medium Molecular Weight Hydrocarbon Mixtures and Water.

    DTIC Science & Technology

    1986-02-01

    determined by refractometry using a Bausch and Lomb Refractometer (Abbe 3-L). Refractive index calibrations for the binary mixtures examined are given in...mixture sample was taken and analyzed by refractometry . b. Results The results of the vapor pressure experiments and the Redlich- Kister coefficients

  8. Application of a swarm-based approach for phase unwrapping

    NASA Astrophysics Data System (ADS)

    da S. Maciel, Lucas; Albertazzi G., Armando, Jr.

    2014-07-01

    An algorithm for phase unwrapping based on swarm intelligence is proposed. The novel approach is based on the emergent behavior of swarms. This behavior is the result of the interactions between independent agents following a simple set of rules and is regarded as fast, flexible and robust. The rules here were designed with two purposes. Firstly, the collective behavior must result in a reliable map of the unwrapped phase. The unwrapping reliability was evaluated by each agent during run-time, based on the quality of the neighboring pixels. In addition, the rule set must result in a behavior that focuses on wrapped regions. Stigmergy and communication rules were implemented in order to enable each agent to seek less worked areas of the image. The agents were modeled as Finite-State Machines. Based on the availability of unwrappable pixels, each agent assumed a different state in order to better adapt itself to the surroundings. The implemented rule set was able to fulfill the requirements on reliability and focused unwrapping. The unwrapped phase map was comparable to those from established methods as the agents were able to reliably evaluate each pixel quality. Also, the unwrapping behavior, being observed in real time, was able to focus on workable areas as the agents communicated in order to find less traveled regions. The results were very positive for such a new approach to the phase unwrapping problem. Finally, the authors see great potential for future developments concerning the flexibility, robustness and processing times of the swarm-based algorithm.

  9. A novel on-line spatial-temporal k-anonymity method for location privacy protection from sequence rules-based inference attacks.

    PubMed

    Zhang, Haitao; Wu, Chenxue; Chen, Zewei; Liu, Zhao; Zhu, Yunhong

    2017-01-01

    Analyzing large-scale spatial-temporal k-anonymity datasets recorded in location-based service (LBS) application servers can benefit some LBS applications. However, such analyses can allow adversaries to make inference attacks that cannot be handled by spatial-temporal k-anonymity methods or other methods for protecting sensitive knowledge. In response to this challenge, first we defined a destination location prediction attack model based on privacy-sensitive sequence rules mined from large scale anonymity datasets. Then we proposed a novel on-line spatial-temporal k-anonymity method that can resist such inference attacks. Our anti-attack technique generates new anonymity datasets with awareness of privacy-sensitive sequence rules. The new datasets extend the original sequence database of anonymity datasets to hide the privacy-sensitive rules progressively. The process includes two phases: off-line analysis and on-line application. In the off-line phase, sequence rules are mined from an original sequence database of anonymity datasets, and privacy-sensitive sequence rules are developed by correlating privacy-sensitive spatial regions with spatial grid cells among the sequence rules. In the on-line phase, new anonymity datasets are generated upon LBS requests by adopting specific generalization and avoidance principles to hide the privacy-sensitive sequence rules progressively from the extended sequence anonymity datasets database. We conducted extensive experiments to test the performance of the proposed method, and to explore the influence of the parameter K value. The results demonstrated that our proposed approach is faster and more effective for hiding privacy-sensitive sequence rules in terms of hiding sensitive rules ratios to eliminate inference attacks. Our method also had fewer side effects in terms of generating new sensitive rules ratios than the traditional spatial-temporal k-anonymity method, and had basically the same side effects in terms of non-sensitive rules variation ratios with the traditional spatial-temporal k-anonymity method. Furthermore, we also found the performance variation tendency from the parameter K value, which can help achieve the goal of hiding the maximum number of original sensitive rules while generating a minimum of new sensitive rules and affecting a minimum number of non-sensitive rules.

  10. A novel on-line spatial-temporal k-anonymity method for location privacy protection from sequence rules-based inference attacks

    PubMed Central

    Wu, Chenxue; Liu, Zhao; Zhu, Yunhong

    2017-01-01

    Analyzing large-scale spatial-temporal k-anonymity datasets recorded in location-based service (LBS) application servers can benefit some LBS applications. However, such analyses can allow adversaries to make inference attacks that cannot be handled by spatial-temporal k-anonymity methods or other methods for protecting sensitive knowledge. In response to this challenge, first we defined a destination location prediction attack model based on privacy-sensitive sequence rules mined from large scale anonymity datasets. Then we proposed a novel on-line spatial-temporal k-anonymity method that can resist such inference attacks. Our anti-attack technique generates new anonymity datasets with awareness of privacy-sensitive sequence rules. The new datasets extend the original sequence database of anonymity datasets to hide the privacy-sensitive rules progressively. The process includes two phases: off-line analysis and on-line application. In the off-line phase, sequence rules are mined from an original sequence database of anonymity datasets, and privacy-sensitive sequence rules are developed by correlating privacy-sensitive spatial regions with spatial grid cells among the sequence rules. In the on-line phase, new anonymity datasets are generated upon LBS requests by adopting specific generalization and avoidance principles to hide the privacy-sensitive sequence rules progressively from the extended sequence anonymity datasets database. We conducted extensive experiments to test the performance of the proposed method, and to explore the influence of the parameter K value. The results demonstrated that our proposed approach is faster and more effective for hiding privacy-sensitive sequence rules in terms of hiding sensitive rules ratios to eliminate inference attacks. Our method also had fewer side effects in terms of generating new sensitive rules ratios than the traditional spatial-temporal k-anonymity method, and had basically the same side effects in terms of non-sensitive rules variation ratios with the traditional spatial-temporal k-anonymity method. Furthermore, we also found the performance variation tendency from the parameter K value, which can help achieve the goal of hiding the maximum number of original sensitive rules while generating a minimum of new sensitive rules and affecting a minimum number of non-sensitive rules. PMID:28767687

  11. Robust Strategy for Rocket Engine Health Monitoring

    NASA Technical Reports Server (NTRS)

    Santi, L. Michael

    2001-01-01

    Monitoring the health of rocket engine systems is essentially a two-phase process. The acquisition phase involves sensing physical conditions at selected locations, converting physical inputs to electrical signals, conditioning the signals as appropriate to establish scale or filter interference, and recording results in a form that is easy to interpret. The inference phase involves analysis of results from the acquisition phase, comparison of analysis results to established health measures, and assessment of health indications. A variety of analytical tools may be employed in the inference phase of health monitoring. These tools can be separated into three broad categories: statistical, rule based, and model based. Statistical methods can provide excellent comparative measures of engine operating health. They require well-characterized data from an ensemble of "typical" engines, or "golden" data from a specific test assumed to define the operating norm in order to establish reliable comparative measures. Statistical methods are generally suitable for real-time health monitoring because they do not deal with the physical complexities of engine operation. The utility of statistical methods in rocket engine health monitoring is hindered by practical limits on the quantity and quality of available data. This is due to the difficulty and high cost of data acquisition, the limited number of available test engines, and the problem of simulating flight conditions in ground test facilities. In addition, statistical methods incur a penalty for disregarding flow complexity and are therefore limited in their ability to define performance shift causality. Rule based methods infer the health state of the engine system based on comparison of individual measurements or combinations of measurements with defined health norms or rules. This does not mean that rule based methods are necessarily simple. Although binary yes-no health assessment can sometimes be established by relatively simple rules, the causality assignment needed for refined health monitoring often requires an exceptionally complex rule base involving complicated logical maps. Structuring the rule system to be clear and unambiguous can be difficult, and the expert input required to maintain a large logic network and associated rule base can be prohibitive.

  12. Phase equilibrium measurements on nine binary mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilding, W.V.; Giles, N.F.; Wilson, L.C.

    1996-11-01

    Phase equilibrium measurements have been performed on nine binary mixtures. The PTx method was used to obtain vapor-liquid equilibrium data for the following systems at two temperatures each: (aminoethyl)piperazine + diethylenetriamine; 2-butoxyethyl acetate + 2-butoxyethanol; 2-methyl-2-propanol + 2-methylbutane; 2-methyl-2-propanol + 2-methyl-2-butene; methacrylonitrile + methanol; 1-chloro-1,1-difluoroethane + hydrogen chloride; 2-(hexyloxy)ethanol + ethylene glycol; butane + ammonia; propionaldehyde + butane. Equilibrium vapor and liquid phase compositions were derived form the PTx data using the Soave equation of state to represent the vapor phase and the Wilson or the NRTL activity coefficient model to represent the liquid phase. A large immiscibility region existsmore » in the butane + ammonia system at 0 C. Therefore, separate vapor-liquid-liquid equilibrium measurements were performed on this system to more precisely determine the miscibility limits and the composition of the vapor phase in equilibrium with the two liquid phases.« less

  13. Solid-phase extraction NMR studies of chromatographic fractions of saponins from Quillaja saponaria.

    PubMed

    Nyberg, Nils T; Baumann, Herbert; Kenne, Lennart

    2003-01-15

    The saponin mixture QH-B from the tree Quillaja saponaria var. Molina was fractionated by RP-HPLC in several steps. The fractions were analyzed by solid-phase extraction NMR (SPE-NMR), a technique combining the workup by solid-phase extraction with on-line coupling to an NMR flow probe. Together with MALDI-TOF mass spectrometry and comparison with chemical shifts of similar saponins, the structures of both major and minor components in QH-B could be obtained. The procedure described is a simple method to determine the structure of components in a complex mixture. The two major fractions of the mixture were found to contain at least 28 saponins, differing in the carbohydrate substructures. Eight of these have not previously been determined. The 28 saponins formed 14 equilibrium pairs by the migration of an O-acyl group between two adjacent positions on a fucosyl residue.

  14. Glass ceramic toughened with tetragonal zirconia

    DOEpatents

    Keefer, K.D.

    1984-02-10

    A phase transformation-toughened glass ceramic and a process for making it are disclosed. A mixture of particulate network-forming oxide, network-modifying oxide, and zirconium oxide is heated to yield a homogeneous melt, and this melt is then heat treated to precipitate an appreciable quantity of tetragonal zirconia, which is retained at ambient temperature to form a phase transformation-toughened glass ceramic. Nuclearing agents and stabilizing agents may be added to the mixture to facilitate processing and improve the ceramic's properties. Preferably, the mixture is first melted at a temperature from 1200 to 1700/sup 0/C and is then heat-treated at a temperature within the range of 800 to 1200/sup 0/C in order to precipitate tetragonal ZrO/sub 2/. The composition, as well as the length and temperature of the heat treatment, must be carefully controlled to prevent solution of the precipitated tetragonal zirconia and subsequent conversion to the monoclinic phase.

  15. Glass ceramic toughened with tetragonal zirconia

    DOEpatents

    Keefer, Keith D.; Michalske, Terry A.

    1986-01-01

    A phase transformation-toughened glass ceramic and a process for making it are disclosed. A mixture of particulate network-forming oxide, network-modifying oxide, and zirconium oxide is heated to yield a homogeneous melt, and this melt is then heat-treated to precipitate an appreciable quantity of tetragonal zirconia, which is retained at ambient temperature to form a phase transformation-toughened glass ceramic. Nucleating agents and stabilizing agents may be added to the mixture to facilitate processing and improve the ceramic's properties. Preferably, the mixture is first melted at a temperature from 1200.degree. to 1700.degree. C. and is then heat-treated at a temperature within the range of 800.degree. to 1200.degree. C. in order to precipitate tetragonal ZrO.sub.2. The composition, as well as the length and temperature of the heat-treatment, must be carefully controlled to prevent solution of the precipitated tetragonal zirconia and subsequent conversion to the monoclinic phase.

  16. A two phase Mach number description of the equilibrium flow of nitrogen in ducts

    NASA Technical Reports Server (NTRS)

    Bursik, J. W.; Hall, R. M.; Adcock, J. B.

    1979-01-01

    Some additional thermodynamic properties of the usual two-phase form which is linear in the moisture fraction are derived which are useful in the analysis of many kinds of duct flow. The method used is based on knowledge of the vapor pressure and Gibbs function as functions of temperature. With these, additional two-phase functions linear in moisture fraction are generated, which ultimately reveal that the squared ratio of mixture specific volume to mixture sound speed depends on liquid mass fraction and temperature in the same manner as do many weighted mean two-phase properties. This leads to a simple method of calculating two-phase Mach numbers for various duct flows. The matching of one- and two-phase flows at a saturated vapor point with discontinuous Mach number is also discussed.

  17. Phospholipid Chain Interactions with Cholesterol Drive Domain Formation in Lipid Membranes.

    PubMed

    Bennett, W F Drew; Shea, Joan-Emma; Tieleman, D Peter

    2018-06-05

    Cholesterol is a key component of eukaryotic membranes, but its role in cellular biology in general and in lipid rafts in particular remains controversial. Model membranes are used extensively to determine the phase behavior of ternary mixtures of cholesterol, a saturated lipid, and an unsaturated lipid with liquid-ordered and liquid-disordered phase coexistence. Despite many different experiments that determine lipid-phase diagrams, we lack an understanding of the molecular-level driving forces for liquid phase coexistence in bilayers with cholesterol. Here, we use atomistic molecular dynamics computer simulations to address the driving forces for phase coexistence in ternary lipid mixtures. Domain formation is directly observed in a long-timescale simulation of a mixture of 1,2-distearoyl-sn-glycero-3-phosphocholine, unsaturated 1,2-dilinoleoyl-sn-glycero-3-phosphocholine, and cholesterol. Free-energy calculations for the exchange of the saturated and unsaturated lipids between the ordered and disordered phases give insight into the mixing behavior. We show that a large energetic contribution to domain formation is favorable enthalpic interactions of the saturated lipid in the ordered phase. This favorable energy for forming an ordered, cholesterol-rich phase is opposed by a large unfavorable entropy. Martini coarse-grained simulations capture the unfavorable free energy of mixing but do not reproduce the entropic contribution because of the reduced representation of the phospholipid tails. Phospholipid tails and their degree of unsaturation are key energetic contributors to lipid phase separation. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Mixture experiment methods in the development and optimization of microemulsion formulations.

    PubMed

    Furlanetto, S; Cirri, M; Piepel, G; Mennini, N; Mura, P

    2011-06-25

    Microemulsion formulations represent an interesting delivery vehicle for lipophilic drugs, allowing for improving their solubility and dissolution properties. This work developed effective microemulsion formulations using glyburide (a very poorly-water-soluble hypoglycaemic agent) as a model drug. First, the area of stable microemulsion (ME) formations was identified using a new approach based on mixture experiment methods. A 13-run mixture design was carried out in an experimental region defined by constraints on three components: aqueous, oil and surfactant/cosurfactant. The transmittance percentage (at 550 nm) of ME formulations (indicative of their transparency and thus of their stability) was chosen as the response variable. The results obtained using the mixture experiment approach corresponded well with those obtained using the traditional approach based on pseudo-ternary phase diagrams. However, the mixture experiment approach required far less experimental effort than the traditional approach. A subsequent 13-run mixture experiment, in the region of stable MEs, was then performed to identify the optimal formulation (i.e., having the best glyburide dissolution properties). Percent drug dissolved and dissolution efficiency were selected as the responses to be maximized. The ME formulation optimized via the mixture experiment approach consisted of 78% surfactant/cosurfacant (a mixture of Tween 20 and Transcutol, 1:1, v/v), 5% oil (Labrafac Hydro) and 17% aqueous phase (water). The stable region of MEs was identified using mixture experiment methods for the first time. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Sunset dates of chemicals subject to final TSCA section 4: test requirements and related section 12(b) actions

    EPA Pesticide Factsheets

    This table lists all chemical substances and mixtures that are and/or have been the subject of final TSCA Section 4 test rules and/or TSCA Section 4 enforceable consent agreements/orders (ECAs) issued under the TSCA Existing Chemicals Testing Program.

  20. Sunset Dates of Chemicals Subject to Final TSCA Section 4 and Related 12(b) Actions

    EPA Pesticide Factsheets

    This Table lists, in ascending chemical Abstract Service (CAS) Registry number order, all chemical substances and mixtures that are and/or have been the subject of final TSCA Section 4 test rules and/or TSCA Section 4 enforceable consent agreements/orders.

  1. 40 CFR 799.10 - Test standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 32 2011-07-01 2011-07-01 false Test standards. 799.10 Section 799.10...) IDENTIFICATION OF SPECIFIC CHEMICAL SUBSTANCE AND MIXTURE TESTING REQUIREMENTS General Provisions § 799.10 Test... requirements of parts 790 and 792 of this chapter unless modified in specific chemical test rules in subpart B...

  2. 40 CFR 799.12 - Test results.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 32 2014-07-01 2014-07-01 false Test results. 799.12 Section 799.12...) IDENTIFICATION OF SPECIFIC CHEMICAL SUBSTANCE AND MIXTURE TESTING REQUIREMENTS General Provisions § 799.12 Test results. Except as set forth in specific chemical test rules in subpart B of this part, a positive or...

  3. 40 CFR 799.10 - Test standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 32 2014-07-01 2014-07-01 false Test standards. 799.10 Section 799.10...) IDENTIFICATION OF SPECIFIC CHEMICAL SUBSTANCE AND MIXTURE TESTING REQUIREMENTS General Provisions § 799.10 Test... requirements of parts 790 and 792 of this chapter unless modified in specific chemical test rules in subpart B...

  4. 40 CFR 799.12 - Test results.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 32 2011-07-01 2011-07-01 false Test results. 799.12 Section 799.12...) IDENTIFICATION OF SPECIFIC CHEMICAL SUBSTANCE AND MIXTURE TESTING REQUIREMENTS General Provisions § 799.12 Test results. Except as set forth in specific chemical test rules in subpart B of this part, a positive or...

  5. 40 CFR 799.2325 - Isopropanol.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... paragraphs (d)(5)(ii) and (d)(5)(iii) of § 798.5200, or a mouse biochemical specific locus test (MBSL) shall...) IDENTIFICATION OF SPECIFIC CHEMICAL SUBSTANCE AND MIXTURE TESTING REQUIREMENTS Specific Chemical Test Rules § 799.2325 Isopropanol. (a) Identification of test substance. (1) Isopropanol (CAS No. 67-63-0) shall be...

  6. 40 CFR 799.2325 - Isopropanol.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... paragraphs (d)(5)(ii) and (d)(5)(iii) of § 798.5200, or a mouse biochemical specific locus test (MBSL) shall...) IDENTIFICATION OF SPECIFIC CHEMICAL SUBSTANCE AND MIXTURE TESTING REQUIREMENTS Specific Chemical Test Rules § 799.2325 Isopropanol. (a) Identification of test substance. (1) Isopropanol (CAS No. 67-63-0) shall be...

  7. 40 CFR 799.2325 - Isopropanol.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... paragraphs (d)(5)(ii) and (d)(5)(iii) of § 798.5200, or a mouse biochemical specific locus test (MBSL) shall...) IDENTIFICATION OF SPECIFIC CHEMICAL SUBSTANCE AND MIXTURE TESTING REQUIREMENTS Specific Chemical Test Rules § 799.2325 Isopropanol. (a) Identification of test substance. (1) Isopropanol (CAS No. 67-63-0) shall be...

  8. 40 CFR 799.2325 - Isopropanol.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... paragraphs (d)(5)(ii) and (d)(5)(iii) of § 798.5200, or a mouse biochemical specific locus test (MBSL) shall...) IDENTIFICATION OF SPECIFIC CHEMICAL SUBSTANCE AND MIXTURE TESTING REQUIREMENTS Specific Chemical Test Rules § 799.2325 Isopropanol. (a) Identification of test substance. (1) Isopropanol (CAS No. 67-63-0) shall be...

  9. 40 CFR 799.2325 - Isopropanol.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... paragraphs (d)(5)(ii) and (d)(5)(iii) of § 798.5200, or a mouse biochemical specific locus test (MBSL) shall...) IDENTIFICATION OF SPECIFIC CHEMICAL SUBSTANCE AND MIXTURE TESTING REQUIREMENTS Specific Chemical Test Rules § 799.2325 Isopropanol. (a) Identification of test substance. (1) Isopropanol (CAS No. 67-63-0) shall be...

  10. 40 CFR 720.120 - Compliance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... manufactures or imports a new chemical substance before a notice is submitted and the notice review period... under § 720.22. (c) Using for commercial purposes a chemical substance or mixture which a person knew or... may seek to enjoin the manufacture or processing of a chemical substance in violation of this rule or...

  11. 40 CFR 720.120 - Compliance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... manufactures or imports a new chemical substance before a notice is submitted and the notice review period... under § 720.22. (c) Using for commercial purposes a chemical substance or mixture which a person knew or... may seek to enjoin the manufacture or processing of a chemical substance in violation of this rule or...

  12. 40 CFR 720.120 - Compliance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... manufactures or imports a new chemical substance before a notice is submitted and the notice review period... under § 720.22. (c) Using for commercial purposes a chemical substance or mixture which a person knew or... may seek to enjoin the manufacture or processing of a chemical substance in violation of this rule or...

  13. The photo-oxidation of automobile emissions: measurements of the transformation products and their mutagenic activity

    NASA Astrophysics Data System (ADS)

    Kleindienst, Tadeusz E.; Smith, David F.; Hudgens, Edward E.; Snow, Richard F.; Perry, Erica; Claxton, Larry D.; Bufalini, Joseph J.; Black, Francis M.; Cupitt, Larry T.

    Dilute mixtures of automobile emissions (comprising 50% exhaust and 50% surrogate evaporative emissions) were irradiated in a 22.7 m 3 smog chamber and tested for mutagenic activity by using a variant of the Ames test. The exhaust was taken from a single vehicle, a 1977 Ford Mustang equipped with a catalytic converter. Irradiated and nonirradiated gas-phase emissions were used in exposures of the bacteria, Salmonella typhimurium, strains TA100 and TA98. A single set of vehicular operating conditions was used to perform multiple exposures. The mutagenic activities of extracts from the particulate phase were also measured with the standard plate incorporation assay. (In most experiments only direct-acting mutagenic compounds were measured.) The gas-phase data for TA100 and TA98 showed increased activity for the irradiated emissions when compared to the nonirradiated mixture, which exhibited negligible activity with respect to the control values. The particulate phase for both the irradiated and nonirradiated mixtures showed negligible activity when results were compared to the control values for both strains. However, the experimental conditions limited the amount of extractable mass which could be collected in the particulate phase. The measured activities from the gas phase and particulate phase were converted to the number of revertants per cubic meter of effluent (i.e. the mutagenic density) to compare the contributions of each of these phases to the total mutagenic activity for each strain. Under the experimental conditions of this study, the mutagenic density of the gas-phase component of the irradiated mixture contributed approximately two orders of magnitude more of the total TA100 activity than did the particulate phase. For TA98 the gas-phase component contributed approximately one order of magnitude more. However, caution must be exercised in extrapolating these results to urban atmospheres heavily impacted by automotive emissions, because the bacterial mutagenicity assay was used as a screening method, and additional assays using mammalian systems have not yet been conducted. In addition, only limited number of conditions were able to be tested. The significance and limitations of the results are discussed.

  14. Microstructural Evolution of Dy2O3-TiO2 Powder Mixtures during Ball Milling and Post-Milled Annealing

    PubMed Central

    Huang, Jinhua; Ran, Guang; Lin, Jianxin; Shen, Qiang; Lei, Penghui; Wang, Xina; Li, Ning

    2016-01-01

    The microstructural evolution of Dy2O3-TiO2 powder mixtures during ball milling and post-milled annealing was investigated using XRD, SEM, TEM, and DSC. At high ball-milling rotation speeds, the mixtures were fined, homogenized, nanocrystallized, and later completely amorphized, and the transformation of Dy2O3 from the cubic to the monoclinic crystal structure was observed. The amorphous transformation resulted from monoclinic Dy2O3, not from cubic Dy2O3. However, at low ball-milling rotation speeds, the mixtures were only fined and homogenized. An intermediate phase with a similar crystal structure to that of cubic Dy2TiO5 was detected in the amorphous mixtures annealed from 800 to 1000 °C, which was a metastable phase that transformed to orthorhombic Dy2TiO5 when the annealing temperature was above 1050 °C. However, at the same annealing temperatures, pyrochlore Dy2Ti2O7 initially formed and subsequently reacted with the remaining Dy2O3 to form orthorhombic Dy2TiO5 in the homogenous mixtures. The evolutionary mechanism of powder mixtures during ball milling and subsequent annealing was analyzed. PMID:28772375

  15. Liquid-liquid phase separation in atmospheric aerosol particles: dependence on organic functionalities and mixture complexity

    NASA Astrophysics Data System (ADS)

    Song, M.; Marcolli, C.; Krieger, U. K.; Zuend, A.; Peter, T.

    2012-04-01

    In the troposphere, aerosol particles undergo phase transitions such as deliquescence and efflorescence during humidity cycles (Marcolli and Krieger, 2006). In addition, interactions between organic and inorganic compounds lead to liquid-liquid phase separation (LLPS) (Ciobanu et al., 2009). Recent studies on a limited number of model systems have shown that oxygen-to-carbon ratios (O:C) of the organic aerosol fraction might be a good predictor for LLPS in mixed organic/ammonium sulfate (AS) particles (Bertram et al., 2011; Song et al., 2011). However, in order to corroborate this hypothesis experiments with an organic fraction that consists of a higher number of components with different O:C ratios and functional groups are needed. In order to determine the influence of O:C ratio, the specific organic functionalities and the mixture complexity on LLPS, we subjected organic/AS particles deposited on a hydrophobically coated substrate to relative humidity (RH) cycles and observed phase changes using optical microscopy and micro-Raman spectroscopy. To determine the influence of mixture complexity, we mixed together up to 10 organic compounds. We also prepared mixtures that were rich in different types of functional groups like polyols, aromatics and dicarboxylic acids which were identified from field measurements. We screened for a miscibility gap by varying the organic-to-inorganic ratio from 2:1 to 1:6. AS in the investigated single particles effloresced at 27 - 50 %RH and deliquesced at 72 - 79 %RH during humidity cycles. The occurrence of LLPS is determined to a high degree by the O:C of the organics: there was no LLPS for mixtures with O:C > 0.8 and there was always LLPS for mixtures with O:C < 0.57. In the range in between, we observed a dependence on the specific functional groups: a high share of aromatic functionalities shifts the range of O:C for which LLPS occurs to lower values. A correlation was also found for the onset RH of LLPS as a function of O:C. We did not find any dependence of LLPS on the complexity of the mixture. Overall, the RH range of coexistence of two liquid phases depends in first place on the O:C ratio of the particles and in second place also on the specific organic functionalities.

  16. Gas-liquid chromatography with a volatile "stationary" liquid phase.

    PubMed

    Wells, P S; Zhou, S; Parcher, J F

    2002-05-01

    A unique type of gas-liquid chromatography is described in which both mobile and "stationary" phases are composed of synthetic mixtures of helium and carbon dioxide. At temperatures below the critical point of the binary mixture and pressures above the vapor pressure of pure liquid carbon dioxide, helium and carbon dioxide can form two immiscible phases over extended composition ranges. A binary vapor phase enriched in helium can act as the mobile phase for chromatographic separations, whereas a CO2-rich liquid in equilibrium with the vapor phase, but condensed on the column wall, can act as a pseudostationary phase. Several examples of chromatographic separations obtained in "empty" capillary columns with no ordinary stationary liquid phase illustrate the range of conditions that produce such separations. In addition, several experiments are reported that confirm the proposed two-phase hypothesis. The possible consequences of the observed chromatographic phenomenon in the field of supercritical fluid chromatography with helium headspace carbon dioxide are discussed.

  17. Investigation of the effect of pressure increasing in condensing heat-exchanger

    NASA Astrophysics Data System (ADS)

    Murmanskii, I. B.; Aronson, K. E.; Brodov, Yu M.; Galperin, L. G.; Ryabchikov, A. Yu.; Brezgin, D. V.

    2017-11-01

    The effect of pressure increase was observed in steam condensation in the intermediate coolers of multistage steam ejector. Steam pressure increase for ejector cooler amounts up to 1.5 kPa in the first ejector stage, 5 kPa in the second and 7 kPa in the third one. Pressure ratios are equal to 2.0, 1.3 and 1.1 respectively. As a rule steam velocities at the cooler inlets do not exceed 40…100 m/s and are subsonic in all regimes. The report presents a computational model that describes the effect of pressure increase in the cooler. The steam entering the heat exchanger tears the drops from the condensate film flowing down vertical tubes. At the inlet of heat exchanger the steam flow capturing condensate droplets forms a steam-water mixture in which the sound velocity is significantly reduced. If the flow rate of steam-water mixture in heat exchanger is greater than the sound velocity, there occurs a pressure shock in the wet steam. On the basis of the equations of mass, momentum and energy conservation the authors derived the expressions for calculation of steam flow dryness degree before and after the shock. The model assumes that droplet velocity is close to the velocity of the steam phase (slipping is absent); drops do not come into thermal interaction with the steam phase; liquid phase specific volume compared to the volume of steam is neglected; pressure shock is calculated taking into account the gas-dynamic flow resistance of the tube bundle. It is also assumed that the temperature of steam after the shock is equal to the saturation temperature. The calculations have shown that the rise of steam pressure and temperature in the shock results in dryness degree increase. For calculated flow parameters the velocity value before the shock is greater than the sound velocity. Thus, on the basis of generally accepted physics knowledge the computational model has been formulated for the effect of steam pressure rise in the condensing heat exchanger.

  18. Comparison of forcefields for molecular dynamics simulations of hydrocarbon phase diagrams

    NASA Astrophysics Data System (ADS)

    Pisarev, V. V.; Zakharov, S. A.

    2018-01-01

    Molecular dynamics calculations of vapor-liquid equilibrium of methane-n-butane mixture are performed. Three force-field models are tested: the TraPPE-UA united-atom forcefield, LOPLS-AA all-atom forcefield and a fully flexible version of the TraPPE-EH all-atom forcefield. All those forcefields reproduce well the composition of liquid phase in the mixture as a function of pressure at the 300 K isotherm, while significant discrepancies from experimental data are observed in the saturated vapor compositions with OPLS-AA and TraPPE-UA forcefields. The best agreement with the experimental phase diagram is found with TraPPE-EH forcefield which accurately reproduces compositions of both liquid and vapor phase. This forcefield can be recommended for simulation of two-phase hydrocarbon systems.

  19. Phase Diagram of Kob-Andersen-Type Binary Lennard-Jones Mixtures

    NASA Astrophysics Data System (ADS)

    Pedersen, Ulf R.; Schrøder, Thomas B.; Dyre, Jeppe C.

    2018-04-01

    The binary Kob-Andersen (KA) Lennard-Jones mixture is the standard model for computational studies of viscous liquids and the glass transition. For very long simulations, the viscous KA system crystallizes, however, by phase separating into a pure A particle phase forming a fcc crystal. We present the thermodynamic phase diagram for KA-type mixtures consisting of up to 50% small (B ) particles showing, in particular, that the melting temperature of the standard KA system at liquid density 1.2 is 1.028(3) in A particle Lennard-Jones units. At large B particle concentrations, the system crystallizes into the CsCl crystal structure. The eutectic corresponding to the fcc and CsCl structures is cutoff in a narrow interval of B particle concentrations around 26% at which the bipyramidal orthorhombic PuBr3 structure is the thermodynamically stable phase. The melting temperature's variation with B particle concentration at two constant pressures, as well as at the constant density 1.2, is estimated from simulations at pressure 10.19 using isomorph theory. Our data demonstrate approximate identity between the melting temperature and the onset temperature below which viscous dynamics appears. Finally, the nature of the solid-liquid interface is briefly discussed.

  20. Isolation of n-decyl-alpha(1-->6) isomaltoside from a technical APG mixture and its identification by the parallel use of LC-MS and NMR spectroscopy

    PubMed

    Billian; Hock; Doetzer; Stan; Dreher

    2000-10-15

    The identification of n-decyl alpha(1-->6)isomaltoside as a main component of technical alkyl polyglucoside (APG) mixtures by the parallel use of liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR) spectroscopy is described. Following enrichment on a styrene-divinylbenzene-based solid-phase extraction material, unknown components were separated by reversed-phase liquid chromatography (LC). Chemical characterization was achieved by both mass spectrometry and NMR spectroscopy. It is demonstrated that the combination of LC-MS with various NMR techniques is very suitable for stereochemical assignment of unknown components in technical APG mixtures.

  1. 77 FR 35862 - Approval and Promulgation of Implementation Plans; State of Florida: New Source; Review...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-15

    ... Resource Management, to EPA in two separate SIP revisions on October 19, 2007, and July 1, 2011. These SIP...) Implementation Rule NSR Update Phase II (hereafter referred to as the ``Ozone Implementation NSR Update'' or ``Phase II Rule'') recognizing nitrogen oxide (NO X ) as an ozone precursor, among other requirements. In...

  2. 45 CFR 162.1403 - Operating rules for health care claim status transaction.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the following: (a) Except as specified in paragraph (b) of this section, the following CAQH CORE Phase... II CORE 250: Claim Status Rule, version 2.1.0, March 2011, and CORE v5010 Master Companion Guide, 00510, 1.2, March 2011. (Incorporated by reference in § 162.920). (2) Phase II CORE 270: Connectivity...

  3. Limit of validity of Ostwald's rule of stages in a statistical mechanical model of crystallization.

    PubMed

    Hedges, Lester O; Whitelam, Stephen

    2011-10-28

    We have only rules of thumb with which to predict how a material will crystallize, chief among which is Ostwald's rule of stages. It states that the first phase to appear upon transformation of a parent phase is the one closest to it in free energy. Although sometimes upheld, the rule is without theoretical foundation and is not universally obeyed, highlighting the need for microscopic understanding of crystallization controls. Here we study in detail the crystallization pathways of a prototypical model of patchy particles. The range of crystallization pathways it exhibits is richer than can be predicted by Ostwald's rule, but a combination of simulation and analytic theory reveals clearly how these pathways are selected by microscopic parameters. Our results suggest strategies for controlling self-assembly pathways in simulation and experiment.

  4. Feasibility of correlating separation of ternary mixtures of neutral analytes via thin layer chromatography with supercritical fluid chromatography in support of green flash separations.

    PubMed

    Ashraf-Khorassani, M; Yan, Q; Akin, A; Riley, F; Aurigemma, C; Taylor, L T

    2015-10-30

    Method development for normal phase flash liquid chromatography traditionally employs preliminary screening using thin layer chromatography (TLC) with conventional solvents on bare silica. Extension to green flash chromatography via correlation of TLC migration results, with conventional polar/nonpolar liquid mixtures, and packed column supercritical fluid chromatography (SFC) retention times, via gradient elution on bare silica with a suite of carbon dioxide mobile phase modifiers, is reported. Feasibility of TLC/SFC correlation is individually described for eight ternary mixtures for a total of 24 neutral analytes. The experimental criteria for TLC/SFC correlation was assumed to be as follows: SFC/UV/MS retention (tR) increases among each of the three resolved mixture components; while, TLC migration (Rf) decreases among the same resolved mixture components. Successful correlation of TLC to SFC was observed for most of the polar organic solvents tested, with the best results observed via SFC on bare silica with methanol as the CO2 modifier and TLC on bare silica with a methanol/dichloromethane mixture. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Phase Diagram of Hydrogen and a Hydrogen-Helium Mixture at Planetary Conditions by Quantum Monte Carlo Simulations

    NASA Astrophysics Data System (ADS)

    Mazzola, Guglielmo; Helled, Ravit; Sorella, Sandro

    2018-01-01

    Understanding planetary interiors is directly linked to our ability of simulating exotic quantum mechanical systems such as hydrogen (H) and hydrogen-helium (H-He) mixtures at high pressures and temperatures. Equation of state (EOS) tables based on density functional theory are commonly used by planetary scientists, although this method allows only for a qualitative description of the phase diagram. Here we report quantum Monte Carlo (QMC) molecular dynamics simulations of pure H and H-He mixture. We calculate the first QMC EOS at 6000 K for a H-He mixture of a protosolar composition, and show the crucial influence of He on the H metallization pressure. Our results can be used to calibrate other EOS calculations and are very timely given the accurate determination of Jupiter's gravitational field from the NASA Juno mission and the effort to determine its structure.

  6. Analytical Phase Equilibrium Function for Mixtures Obeying Raoult's and Henry's Laws

    NASA Astrophysics Data System (ADS)

    Hayes, Robert

    When a mixture of two substances exists in both the liquid and gas phase at equilibrium, Raoults and Henry's laws (ideal solution and ideal dilute solution approximations) can be used to estimate the gas and liquid mole fractions at the extremes of either very little solute or solvent. By assuming that a cubic polynomial can reasonably approximate the intermediate values to these extremes as a function of mole fraction, the cubic polynomial is solved and presented. A closed form equation approximating the pressure dependence on mole fraction of the constituents is thereby obtained. As a first approximation, this is a very simple and potentially useful means to estimate gas and liquid mole fractions of equilibrium mixtures. Mixtures with an azeotrope require additional attention if this type of approach is to be utilized. This work supported in part by federal Grant NRC-HQ-84-14-G-0059.

  7. The puzzling first-order phase transition in water–glycerol mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popov, Ivan; Greenbaum; Sokolov, Alexei P.

    2015-06-05

    Over the last decade, discussions on a possible liquid-liquid transition (LLT) have strongly intensified. The LLT proposed by several authors focused mostly on explaining the anomalous properties of water in a deeply supercooled state. However, there have been no direct experimental observations yet of LLT in bulk water in the so-called 'no man's land', where water exists only in the crystalline states. Recently, a novel experimental strategy to detect LLT in water has been employed using water-glycerol (W-G) mixtures, because glycerol can generate a strong hindrance for water crystallization. As a result, the observed first-order phase transition at a concentrationmore » of glycerol around c(g) approximate to 20 mol% was ascribed to the LLT. Here we show unambiguously that the first order phase transition in W-G mixtures is caused by the ice formation. We provide additional dielectric measurements, applying specific annealing temperature protocols in order to reinforce this conclusion. We also provide an explanation, why such a phase transition occurs only in the narrow glycerol concentration range. These results clearly demonstrate the danger of analysis of phase-separating liquids to gain better insights into water dynamics. These liquids have complex phase behavior that is affected by temperature, phase stability and segregation, viscosity and nucleation, and finally by crystallization, that might lead to significant misinterpretations.« less

  8. Preparation of hydrophilic interaction/ion-exchange mixed-mode chromatographic stationary phase with adjustable selectivity by controlling different ratios of the co-monomers.

    PubMed

    Bo, Chunmiao; Wang, Xiaomeng; Wang, Chaozhan; Wei, Yinmao

    2017-03-03

    Development of mixed-mode chromatography (MMC) stationary phase with adjustable selectivity is beneficial to meet the needs of complex samples. In this work, surface-initiated atom transfer radical polymerization (SI-ATRP) using the mixture of two functional monomers was proposed as a new preparation strategy for MMC stationary phase with adjustable selectivity. The mixture of sodium 4-styrenesulfonate (NASS) and dimethylaminoethyl methacrylate (DMAEMA) underwent SI-ATRP to bond poly(NASS-co-DMAEMA) on the surface of silica to prepare hydrophilic interaction/ion-exchange mixed-mode stationary phase. Various analytes (neutral, acidic, basic analytes and strong polar nucleosides) were employed to investigate the retention behaviors. The influences of water content and pH of the mobile phase on the retention validated the mixed-mode retention mechanisms of HILIC and ion-exchange. The charge and polarity of stationary phase as well as the separation selectivity were conveniently manipulated by the ratio of NASS to DMAEMA monomer, and the use of DMAEMA in the mixture additionally endowed the column with the temperature-responsive characteristics. Moreover, the application of the developed column was demonstrated by the successful separation of nucleosides, β-agonists and safflower injection. In a word, the proposed strategy can be potentially applied in the controllable preparation of MMC stationary phase with adjustable selectivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Optimization of intermolecular potential parameters for the CO2/H2O mixture.

    PubMed

    Orozco, Gustavo A; Economou, Ioannis G; Panagiotopoulos, Athanassios Z

    2014-10-02

    Monte Carlo simulations in the Gibbs ensemble were used to obtain optimized intermolecular potential parameters to describe the phase behavior of the mixture CO2/H2O, over a range of temperatures and pressures relevant for carbon capture and sequestration processes. Commonly used fixed-point-charge force fields that include Lennard-Jones 12-6 (LJ) or exponential-6 (Exp-6) terms were used to describe CO2 and H2O intermolecular interactions. For force fields based on the LJ functional form, changes of the unlike interactions produced higher variations in the H2O-rich phase than in the CO2-rich phase. A major finding of the present study is that for these potentials, no combination of unlike interaction parameters is able to adequately represent properties of both phases. Changes to the partial charges of H2O were found to produce significant variations in both phases and are able to fit experimental data in both phases, at the cost of inaccuracies for the pure H2O properties. By contrast, for the Exp-6 case, optimization of a single parameter, the oxygen-oxygen unlike-pair interaction, was found sufficient to give accurate predictions of the solubilities in both phases while preserving accuracy in the pure component properties. These models are thus recommended for future molecular simulation studies of CO2/H2O mixtures.

  10. Study of liquid?liquid demixing from drug solution

    NASA Astrophysics Data System (ADS)

    Lafferrère, Laurent; Hoff, Christian; Veesler, Stéphane

    2004-09-01

    In pharmaceutical industry, a deep understanding of the phase diagram is required in design of crystallization processes. We have investigated the phase diagram of a pharmaceutical compound (C 35H 41Cl 2N 3O 2) in a mixture of ethanol/water. This phase diagram exhibits a solid-solid (polymorphism) and a liquid-liquid-phase separation (LLPS) as a function of temperature and drug substance concentration. This study focuses on the LLPS which is metastable with respect to the crystallization of the two polymorphs FI and FII of C 35H 41Cl 2N 3O 2 in an ethanol/water mixture. The LLPS is metastable towards the solubility curve on the whole solvent-solute concentrations and temperature range studied. The LLPS occurred within the metastable zone for crystallization. In our experiments the liquid-liquid-phase transition prevented the drug from crystallizing, while it changed the medium and the conditions of crystallization, which consequently affected the process. The coexistence curves for the liquid phases, also named TL-L boundary, and the spinodal line were measured for a ternary mixture of water-drug-ethanol at atmospheric pressure over a temperature range of 10-50°C. This temperature range corresponds to that used in the crystallization process. Static Light Scattering, HPLC measurements and Karl-Fischer titration were applied to investigate the drug-phase diagram. The isoplethe section of the phase diagram exhibits four regions: one homogeneous (one liquid) and three two-phases (two regions with one liquid+one solid and one region with two liquids), the two solids phases being two polymorphs.

  11. Microstructure based simulations for prediction of flow curves and selection of process parameters for inter-critical annealing in DP steel

    NASA Astrophysics Data System (ADS)

    Deepu, M. J.; Farivar, H.; Prahl, U.; Phanikumar, G.

    2017-04-01

    Dual phase steels are versatile advanced high strength steels that are being used for sheet metal applications in automotive industry. It also has the potential for application in bulk components like gear. The inter-critical annealing in dual phase steels is one of the crucial steps that determine the mechanical properties of the material. Selection of the process parameters for inter-critical annealing, in particular, the inter-critical annealing temperature and time is important as it plays a major role in determining the volume fractions of ferrite and martensite, which in turn determines the mechanical properties. Selection of these process parameters to obtain a particular required mechanical property requires large number of experimental trials. Simulation of microstructure evolution and virtual compression/tensile testing can help in reducing the number of such experimental trials. In the present work, phase field modeling implemented in the commercial software Micress® is used to predict the microstructure evolution during inter-critical annealing. Virtual compression tests are performed on the simulated microstructure using finite element method implemented in the commercial software, to obtain the effective flow curve of the macroscopic material. The flow curves obtained by simulation are experimentally validated with physical simulation in Gleeble® and compared with that obtained using linear rule of mixture. The methodology could be used in determining the inter-critical annealing process parameters required for achieving a particular flow curve.

  12. Computational material design for Q&P steels with plastic instability theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, G.; Choi, K. S.; Hu, X. H.

    In this paper, the deformation limits of Quenching and Partitioning (Q&P) steels are examined with the plastic instability theory. For this purpose, the constituent phase properties of various Q&P steels were first experimentally obtained, and used to estimate the overall tensile stress-strain curves based on the simple rule of mixture (ROM) with the iso-strain and iso-stress assumptions. Plastic instability theory was then applied to the obtained overall stress-strain curves in order to estimate the deformation limits of the Q&P steels. A parametric study was also performed to examine the effects of various material parameters on the deformation limits of Q&Pmore » steels. Computational material design was subsequently carried out based on the information obtained from the parametric study. The results show that the plastic instability theory with iso-stress-based stress-strain curve may be used to provide the lower bound estimate of the uniform elongation (UE) for the various Q&P steels considered. The results also indicate that higher austenite stability/volume fractions, less strength difference between the primary phases, higher hardening exponents of the constituent phases are generally beneficial for the performance improvement of Q&P steels, and that various material parameters may be concurrently adjusted in a cohesive way in order to improve the performance of Q&P steel. The information from this study may be used to devise new heat treatment parameters and alloying elements to produce Q&P steels with the improved performance.« less

  13. Temperature Dependence of Densities and Excess Molar Volumes of the Ternary Mixture (1-Butanol + Chloroform + Benzene) and its Binary Constituents (1-Butanol + Chloroform and 1-Butanol + Benzene)

    NASA Astrophysics Data System (ADS)

    Smiljanić, Jelena D.; Kijevčanin, Mirjana Lj.; Djordjević, Bojan D.; Grozdanić, Dušan K.; Šerbanović, Slobodan P.

    2008-04-01

    Densities ρ of the 1-butanol + chloroform + benzene ternary mixture and the 1-butanol + chloroform and 1-butanol + benzene binaries have been measured at six temperatures (288.15, 293.15, 298.15, 303.15, 308.15, and 313.15) K and atmospheric pressure, using an oscillating U-tube densimeter. From these densities, excess molar volumes ( V E) were calculated and fitted to the Redlich Kister equation for all binary mixtures and to the Nagata and Tamura equation for the ternary system. The Radojković et al. equation has been used to predict excess molar volumes of the ternary mixtures. Also, V E data of the binary systems were correlated by the van der Waals (vdW1) and Twu Coon Bluck Tilton (TCBT) mixing rules coupled with the Peng Robinson Stryjek Vera (PRSV) equation of state. The prediction and correlation of V E data for the ternary system were performed by the same models.

  14. Mixture-based gatekeeping procedures in adaptive clinical trials.

    PubMed

    Kordzakhia, George; Dmitrienko, Alex; Ishida, Eiji

    2018-01-01

    Clinical trials with data-driven decision rules often pursue multiple clinical objectives such as the evaluation of several endpoints or several doses of an experimental treatment. These complex analysis strategies give rise to "multivariate" multiplicity problems with several components or sources of multiplicity. A general framework for defining gatekeeping procedures in clinical trials with adaptive multistage designs is proposed in this paper. The mixture method is applied to build a gatekeeping procedure at each stage and inferences at each decision point (interim or final analysis) are performed using the combination function approach. An advantage of utilizing the mixture method is that it enables powerful gatekeeping procedures applicable to a broad class of settings with complex logical relationships among the hypotheses of interest. Further, the combination function approach supports flexible data-driven decisions such as a decision to increase the sample size or remove a treatment arm. The paper concludes with a clinical trial example that illustrates the methodology by applying it to develop an adaptive two-stage design with a mixture-based gatekeeping procedure.

  15. Thermal fluids for CSP systems: Alkaline nitrates/nitrites thermodynamics modelling method

    NASA Astrophysics Data System (ADS)

    Tizzoni, A. C.; Sau, S.; Corsaro, N.; Giaconia, A.; D'Ottavi, C.; Licoccia, S.

    2016-05-01

    Molten salt (MS) mixtures are used for the transport (HTF-heat transfer fluid) and storage of heat (HSM-heat storage material) in Concentration Solar Plants (CSP). In general, alkaline and earth-alkaline nitrate/nitrite mixtures are employed. Along with its upper stability temperature, the melting point (liquidus point) of a MS mixture is one of the main parameters which defines its usefulness as a HTF and HSM medium. As a result, we would like to develop a predictive model which will allow us to forecast freezing points for different MS mixture compositions; thus circumventing the need to determine experimentally the phase diagram for each MS mixture. To model ternary/quaternary phase diagram, parameters for the binary subsystems are to be determined, which is the purpose of the concerned work. In a binary system with components A and B, in phase equilibrium conditions (e.g. liquid and solid) the chemical potentials (partial molar Gibbs energy) for each component in each phase are equal. For an ideal solution it is possible to calculate the mixing (A+B) Gibbs energy:ΔG = ΔH - TΔS = RT(xAlnxA + xBlnxB) In case of non-ideal solid/liquid mixtures, such as the nitrates/nitrites compositions investigated in this work, the actual value will differ from the ideal one by an amount defined as the "mixing" (mix) Gibbs free energy. If the resulting mixtures is assumed, as indicated in the previous literature, to follow a "regular solution" model, where all the non-ideality is considered included in the enthalpy of mixing value and considering, for instance, the A component:Δ G ≡0 =(Δ HA-T Δ SA)+(ΔH¯ m i x AL-T ΔS¯ m i x AL)-(ΔH¯ m i x AS-T ΔS¯ m i x AS)where the molar partial amounts can be calculated from the total value by the Gibbs Duhem equation: (ΔH¯m i x AL=ΔHm i x-XB Ld/Δ Hm i x d XB L ) L;(ΔH¯m i x AS=ΔHm i x-XB Sd/Δ Hm i x d XB S ) S and, in general, it is possible to express the mixing enthalpy for solids and liquids as a function of the mol fraction: Δ HL m i x=XA LXB L(a1+b1XA L+c1XA LXB L),Δ HS m i x=XA SXB S(a2+b2XA S+c2XA SXB S) From the latter expressions it can be possible to modelize the phase diagram of a binary mixtures by using the a,b and c couples of parameters. To calculate those coefficients a method commonly employed in literature is to measure the mixing enthalpies, or to use one reported of the enthalpy of mixing (for instance for the liquid state) and calculate the other one using the phase diagram points. A direct ΔHmix (in solid or liquid phase) measurement can be difficult to carry out using common DSC equipment generally present in research laboratories. In fact, such determinations can be, in principle, performed, but the obtained data will be affected by large experimental errors. On the other hand, it is possible to obtain values with great precision regarding the algebraic sum of mixing enthalpies and the phase diagram trend. For this reason, only the phase diagrams are proposed to be used to calculate a, b, c parameters, and, subsequently, the total (liquid-solid algebraic sum) enthalpy of mixing will be employed to verify their validity. At this aim, a C++ code was assessed and used. Three binary mixtures were considered by combining NaNO3, KNO3 and NaNO2.

  16. Miscibility as a factor for component crystallization in multisolute frozen solutions.

    PubMed

    Izutsu, Ken-Ichi; Shibata, Hiroko; Yoshida, Hiroyuki; Goda, Yukihiro

    2014-07-01

    The relationship between the miscibility of formulation ingredients and their crystallization during the freezing segment of the lyophilization process was studied. The thermal properties of frozen solutions containing myo-inositol and cosolutes were obtained by performing heating scans from -70 °C before and after heat treatment at -20 °C to -5 °C. Addition of dextran 40,000 reduced and prevented crystallization of myo-inositol. In the first scan, some frozen solutions containing an inositol-rich mixture with dextran showed single broad transitions (Tg's: transition temperatures of maximally freeze-concentrated solutes) that indicated incomplete mixing of the concentrated amorphous solutes. Heat treatment of these frozen solutions induced separation of the solutes into inositol-dominant and solute mixture phases (Tg' splitting) following crystallization of myo-inositol (Tg' shifting). The crystal growth involved myo-inositol molecules in the solute mixture phase. The amorphous-amorphous phase separation and resulting loss of the heteromolecular interaction in the freeze-concentrated inositol-dominant phase should allow ordered assembly of the solute molecules required for nucleation. Some dextran-rich and intermediate concentration ratio frozen solutions retained single Tg's of the amorphous solute mixture, both before and after heat treatments. The relevance of solute miscibility on the crystallization of myo-inositol was also indicated in the systems containing glucose or recombinant human albumin. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  17. Diffusion relaxation times of nonequilibrium isolated small bodies and their solid phase ensembles to equilibrium states

    NASA Astrophysics Data System (ADS)

    Tovbin, Yu. K.

    2017-08-01

    The possibility of obtaining analytical estimates in a diffusion approximation of the times needed by nonequilibrium small bodies to relax to their equilibrium states based on knowledge of the mass transfer coefficient is considered. This coefficient is expressed as the product of the self-diffusion coefficient and the thermodynamic factor. A set of equations for the diffusion transport of mixture components is formulated, characteristic scales of the size of microheterogeneous phases are identified, and effective mass transfer coefficients are constructed for them. Allowing for the developed interface of coexisting and immiscible phases along with the porosity of solid phases is discussed. This approach can be applied to the diffusion equalization of concentrations of solid mixture components in many physicochemical systems: the mutual diffusion of components in multicomponent systems (alloys, semiconductors, solid mixtures of inert gases) and the mass transfer of an absorbed mobile component in the voids of a matrix consisting of slow components or a mixed composition of mobile and slow components (e.g., hydrogen in metals, oxygen in oxides, and the transfer of molecules through membranes of different natures, including polymeric).

  18. Numerical simulation by the molecular collision theory of two-phase mixture explosion characteristics in closed or vented vessels

    NASA Astrophysics Data System (ADS)

    Pascaud, J. M.; Brossard, J.; Lombard, J. M.

    1999-09-01

    The aim of this work consists in presenting a simple modelling (the molecular collision theory), easily usable in an industrial environment in order to predict the evolution of thermodynamical characteristics of the combustion of two-phase mixtures in a closed or a vented vessel. Basic characteristics of the modelling have been developed for ignition and combustion of propulsive powders and adapted with appropriate parameters linked to simplified kinetics. A simple representation of the combustion phenomena based on energy transfers and the action of specific molecules is presented. The model is generalized to various mixtures such as dust suspensions, liquid fuel drops and hybrid mixtures composed of dust and a gaseous supply such as methane or propane in the general case of vented explosions. The pressure venting due to the vent breaking is calculated from thermodynamical characteristics given by the model and taking into account, the mass rate of discharge of the different products deduced from the standard orifice equations. The application conditions determine the fuel ratio of the used mixtures, the nature of the chemical kinetics and the calculation of a universal set of parameters. The model allows to study the influence of the fuel concentration and the supply of gaseous additives, the influence of the vessel volume (2400ell leq V_bleq 250 000ell) and the influence of the venting pressure or the vent area. The first results have been compared with various experimental works available for two phase mixtures and indicate quite correct predictions.

  19. Experimental consideration of capillary chromatography based on tube radial distribution of ternary mixture carrier solvents under laminar flow conditions.

    PubMed

    Jinno, Naoya; Hashimoto, Masahiko; Tsukagoshi, Kazuhiko

    2011-01-01

    A capillary chromatography system has been developed based on the tube radial distribution of the carrier solvents using an open capillary tube and a water-acetonitrile-ethyl acetate mixture carrier solution. This tube radial distribution chromatography (TRDC) system works under laminar flow conditions. In this study, a phase diagram for the ternary mixture carrier solvents of water, acetonitrile, and ethyl acetate was constructed. The phase diagram that included a boundary curve between homogeneous and heterogeneous solutions was considered together with the component ratios of the solvents in the homogeneous carrier solutions required for the TRDC system. It was found that the TRDC system performed well with homogeneous solutions having component ratios of the solvents that were positioned near the homogeneous-heterogeneous solution boundary of the phase diagram. For preparing the carrier solutions of water-hydrophilic/hydrophobic organic solvents for the TRDC system, we used for the first time methanol, ethanol, 1,4-dioxane, and 1-propanol, instead of acetonitrile (hydrophilic organic solvent), as well as chloroform and 1-butanol, instead of ethyl acetate (hydrophobic organic solvent). The homogeneous ternary mixture carrier solutions were prepared near the homogeneous-heterogeneous solution boundary. Analyte mixtures of 2,6-naphthalenedisulfonic acid and 1-naphthol were separated with the TRDC system using these homogeneous ternary mixture carrier solutions. The pressure change in the capillary tube under laminar flow conditions might alter the carrier solution from homogeneous in the batch vessel to heterogeneous, thus affecting the tube radial distribution of the solvents in the capillary tube.

  20. Neural networks supporting switching, hypothesis testing, and rule application

    PubMed Central

    Liu, Zhiya; Braunlich, Kurt; Wehe, Hillary S.; Seger, Carol A.

    2015-01-01

    We identified dynamic changes in recruitment of neural connectivity networks across three phases of a flexible rule learning and set-shifting task similar to the Wisconsin Card Sort Task: switching, rule learning via hypothesis testing, and rule application. During fMRI scanning, subjects viewed pairs of stimuli that differed across four dimensions (letter, color, size, screen location), chose one stimulus, and received feedback. Subjects were informed that the correct choice was determined by a simple unidimensional rule, for example “choose the blue letter.” Once each rule had been learned and correctly applied for 4-7 trials, subjects were cued via either negative feedback or visual cues to switch to learning a new rule. Task performance was divided into three phases: Switching (first trial after receiving the switch cue), hypothesis testing (subsequent trials through the last error trial), and rule application (correct responding after the rule was learned). We used both univariate analysis to characterize activity occurring within specific regions of the brain, and a multivariate method, constrained principal component analysis for fMRI (fMRI-CPCA), to investigate how distributed regions coordinate to subserve different processes. As hypothesized, switching was subserved by a limbic network including the ventral striatum, thalamus, and parahippocampal gyrus, in conjunction with cortical salience network regions including the anterior cingulate and frontoinsular cortex. Activity in the ventral striatum was associated with switching regardless of how switching was cued; visually cued shifts were associated with additional visual cortical activity. After switching, as subjects moved into the hypothesis testing phase, a broad fronto-parietal-striatal network (associated with the cognitive control, dorsal attention, and salience networks) increased in activity. This network was sensitive to rule learning speed, with greater extended activity for the slowest learning speed late in the time course of learning. As subjects shifted from hypothesis testing to rule application, activity in this network decreased and activity in the somatomotor and default mode networks increased. PMID:26197092

  1. Neural networks supporting switching, hypothesis testing, and rule application.

    PubMed

    Liu, Zhiya; Braunlich, Kurt; Wehe, Hillary S; Seger, Carol A

    2015-10-01

    We identified dynamic changes in recruitment of neural connectivity networks across three phases of a flexible rule learning and set-shifting task similar to the Wisconsin Card Sort Task: switching, rule learning via hypothesis testing, and rule application. During fMRI scanning, subjects viewed pairs of stimuli that differed across four dimensions (letter, color, size, screen location), chose one stimulus, and received feedback. Subjects were informed that the correct choice was determined by a simple unidimensional rule, for example "choose the blue letter". Once each rule had been learned and correctly applied for 4-7 trials, subjects were cued via either negative feedback or visual cues to switch to learning a new rule. Task performance was divided into three phases: Switching (first trial after receiving the switch cue), hypothesis testing (subsequent trials through the last error trial), and rule application (correct responding after the rule was learned). We used both univariate analysis to characterize activity occurring within specific regions of the brain, and a multivariate method, constrained principal component analysis for fMRI (fMRI-CPCA), to investigate how distributed regions coordinate to subserve different processes. As hypothesized, switching was subserved by a limbic network including the ventral striatum, thalamus, and parahippocampal gyrus, in conjunction with cortical salience network regions including the anterior cingulate and frontoinsular cortex. Activity in the ventral striatum was associated with switching regardless of how switching was cued; visually cued shifts were associated with additional visual cortical activity. After switching, as subjects moved into the hypothesis testing phase, a broad fronto-parietal-striatal network (associated with the cognitive control, dorsal attention, and salience networks) increased in activity. This network was sensitive to rule learning speed, with greater extended activity for the slowest learning speed late in the time course of learning. As subjects shifted from hypothesis testing to rule application, activity in this network decreased and activity in the somatomotor and default mode networks increased. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Linear discriminant analysis with misallocation in training samples

    NASA Technical Reports Server (NTRS)

    Chhikara, R. (Principal Investigator); Mckeon, J.

    1982-01-01

    Linear discriminant analysis for a two-class case is studied in the presence of misallocation in training samples. A general appraoch to modeling of mislocation is formulated, and the mean vectors and covariance matrices of the mixture distributions are derived. The asymptotic distribution of the discriminant boundary is obtained and the asymptotic first two moments of the two types of error rate given. Certain numerical results for the error rates are presented by considering the random and two non-random misallocation models. It is shown that when the allocation procedure for training samples is objectively formulated, the effect of misallocation on the error rates of the Bayes linear discriminant rule can almost be eliminated. If, however, this is not possible, the use of Fisher rule may be preferred over the Bayes rule.

  3. Phase behaviour in complementary DNA-coated gold nanoparticles and fd-viruses mixtures: a numerical study.

    PubMed

    Chiappini, Massimiliano; Eiser, Erika; Sciortino, Francesco

    2017-01-01

    A new gel-forming colloidal system based on a binary mixture of fd-viruses and gold nanoparticles functionalized with complementary DNA single strands has been recently introduced. Upon quenching below the DNA melt temperature, such a system results in a highly porous gel state, that may be developed in a new functional material of tunable porosity. In order to shed light on the gelation mechanism, we introduce a model closely mimicking the experimental one and we explore via Monte Carlo simulations its equilibrium phase diagram. Specifically, we model the system as a binary mixture of hard rods and hard spheres mutually interacting via a short-range square-well attractive potential. In the experimental conditions, we find evidence of a phase separation occurring either via nucleation-and-growth or via spinodal decomposition. The spinodal decomposition leads to the formation of small clusters of bonded rods and spheres whose further diffusion and aggregation leads to the formation of a percolating network in the system. Our results are consistent with the hypothesis that the mixture of DNA-coated fd-viruses and gold nanoparticles undergoes a non-equilibrium gelation via an arrested spinodal decomposition mechanism.

  4. Study of nanosecond discharges in H2-air mixtures at atmospheric pressure for plasma assisted combustion applications

    NASA Astrophysics Data System (ADS)

    Kobayashi, Sumire; Bonaventura, Zdeněk; Tholin, Fabien; Popov, Nikolay A.; Bourdon, Anne

    2017-07-01

    This paper presents 2D simulations of nanosecond discharges between two point electrodes for four different H2-air mixtures defined by their equivalence ratios ϕ (i.e. φ =0, air, φ =0.3, lean mixture, φ =1, stoichiometric mixture and φ =1.5, rich mixture) at atmospheric pressure and at an initial temperature of 1000 K. In a first step, we have shown that the mixture composition has only a very small influence on the discharge dynamics and structure during the streamer phase and up to the formation of the plasma channel between the two point electrodes in H2-air mixtures with φ \\in [0,1.5]. However, as the plasma channel is formed slightly earlier as the equivalence ratio increases, for a given voltage pulse, the duration of the nanosecond spark phase increases as the equivalence ratio increases. As expected, we have shown that excited states of N2 (and in particular N2(A)) and radicals (and in particular O(D), O(P), H and OH) are very efficiently produced during the voltage pulse after the start of the spark phase. After the voltage pulse, and up to 100 ns, the densities of excited states of N2 and of O(D) decrease. Conversely, most of the O(P), H and OH radicals are produced after the voltage pulse due to the dissociative quenching of electronically excited N2. As for radicals, the gas temperature starts increasing after the start of the spark phase. For all studied mixtures, the density of O(P) atoms and the gas temperature reach their maxima after the end of the voltage pulse and the densities of O(P), H and OH radicals and the maximal gas temperature increase as the equivalence ratio increases. We have shown that the production of radicals is the highest on the discharge axis and the distribution of species after the voltage pulse and up to 100 ns has a larger diameter between the electrodes than close to both electrode tips. As for species, the temperature distribution presents two hot spots close to the point electrode tips. The non-uniform distributions of radical densities and gas temperature obtained after the nanosecond voltage pulse provide accurate initial conditions for 2D reactive flow codes to study the combustion ignition on longer timescales and compare with experiments.

  5. First-order wetting transition at a liquid-vapor interface

    NASA Technical Reports Server (NTRS)

    Schmidt, J. W.; Moldover, M. R.

    1983-01-01

    Evidence from reflectance and contact angle measurements is presented that three-phase mixtures of i-C3H7OH-C7F14 exhibit a first-order wetting phase transition at the liquid-vapor interface at 38 C. Equilibration phenomena support this interpretation. Ellipsometry was used to measure the apparent thickness of the intruding layer in the three-phase mixture. At temperatures slightly above the wetting temperature T(w), the intruding layer's thickness is several hundred angstroms and its variation with temperature is extremely weak. Below T(w), three-phase contact can occur between the vapor and both the upper and lower liquid phases; one of the angles which characterizes this contact has a very simple temperature dependence. The thickness of the intruding layer, monitored as the solutions approached equilibrium, is found to depend quite weakly on the height spanned by the upper liquid phase in the vicinity of a first-order wetting transition.

  6. Temperature tuning of lasing emission from dye-doped liquid crystal at intermediate twisted phase

    NASA Astrophysics Data System (ADS)

    Liao, Kuan-Cheng; Lin, Ja-Hon; Jian, Li-Hao; Chen, Yao-Hui; Wu, Jin-Jei

    2015-07-01

    Temperature tuning of lasing emission from dye-doped cholesteric liquid crystal (CLC) at intermediate twisted phase has been demonstrated in this work. With heavily doping of 42.5% chiral molecules into the nematic liquid crystals, the shifts of photonic bandgap versus temperature is obviously as thermal controlling of the sample below the certain value. By the differential scanning calorimetr measuremet, we demonstrate the phase transition from the CLC to the smectic phase when the temperature is lowered to be about 15°C. Between CLC and smectic phase, the liquid crystal mixtures are operated at intermediate twisted phase that can be used the temperature related refractive mirror. After pump by the Q-switched Nd:YAG laser, the lasing emission from this dye doped LC mixtures has been demonstrated whose emission wavelength can be tuned from 566 to 637 nm with 1.4°C variation.

  7. PROCESSING OF URANIUM-METAL-CONTAINING FUEL ELEMENTS

    DOEpatents

    Moore, R.H.

    1962-10-01

    A process is given for recovering uranium from neutronbombarded uranium- aluminum alloys. The alloy is dissolved in an aluminum halide--alkali metal halide mixture in which the halide is a mixture of chloride and bromide, the aluminum halide is present in about stoichiometric quantity as to uranium and fission products and the alkali metal halide in a predominant quantity; the uranium- and electropositive fission-products-containing salt phase is separated from the electronegative-containing metal phase; more aluminum halide is added to the salt phase to obtain equimolarity as to the alkali metal halide; adding an excess of aluminum metal whereby uranium metal is formed and alloyed with the excess aluminum; and separating the uranium-aluminum alloy from the fission- productscontaining salt phase. (AEC)

  8. 75 FR 10857 - Self-Regulatory Organizations; NASDAQ OMX PHLX, Inc.; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-09

    ... agent. See Exchange Rule 1088, Phase Out of Intermarket Linkage Rules. \\4\\ A Principal Order is an order for the principal account of an Eligible Market Maker and is not a P/A Order. See Exchange Rule 1088...

  9. Solubility Limits in Lennard-Jones Mixtures: Effects of Disparate Molecule Geometries.

    PubMed

    Dyer, Kippi M; Perkyns, John S; Pettitt, B Montgomery

    2015-07-23

    In order to better understand general effects of the size and energy disparities between macromolecules and solvent molecules in solution, especially for macromolecular constructs self-assembled from smaller molecules, we use the first- and second-order exact bridge diagram extensions of the HNC integral equation theory to investigate single-component, binary, ternary, and quaternary mixtures of Lennard-Jones fluids. For pure fluids, we find that the HNCH3 bridge function integral equation (i.e., exact to third order in density) is necessary to quantitatively predict the pure gas and pure liquid sides of the coexistence region of the phase diagram of the Lennard-Jones fluid. For the mixtures, we find that the HNCH2 bridge function integral equation is sufficient to qualitatively predict solubility in the binary, ternary, and quaternary mixtures, up to the nominal solubility limit. The results, as limiting cases, should be useful to several problems, including accurate phase diagram predictions for complex mixtures, design of self-assembling nanostructures via solvent controls, and the solvent contributions to the conformational behavior of macromolecules in complex fluids.

  10. Optimization and characterization of liposome formulation by mixture design.

    PubMed

    Maherani, Behnoush; Arab-tehrany, Elmira; Kheirolomoom, Azadeh; Reshetov, Vadzim; Stebe, Marie José; Linder, Michel

    2012-02-07

    This study presents the application of the mixture design technique to develop an optimal liposome formulation by using the different lipids in type and percentage (DOPC, POPC and DPPC) in liposome composition. Ten lipid mixtures were generated by the simplex-centroid design technique and liposomes were prepared by the extrusion method. Liposomes were characterized with respect to size, phase transition temperature, ζ-potential, lamellarity, fluidity and efficiency in loading calcein. The results were then applied to estimate the coefficients of mixture design model and to find the optimal lipid composition with improved entrapment efficiency, size, transition temperature, fluidity and ζ-potential of liposomes. The response optimization of experiments was the liposome formulation with DOPC: 46%, POPC: 12% and DPPC: 42%. The optimal liposome formulation had an average diameter of 127.5 nm, a phase-transition temperature of 11.43 °C, a ζ-potential of -7.24 mV, fluidity (1/P)(TMA-DPH)((¬)) value of 2.87 and an encapsulation efficiency of 20.24%. The experimental results of characterization of optimal liposome formulation were in good agreement with those predicted by the mixture design technique.

  11. Pharmaceutical Point of View on Parenteral Nutrition

    PubMed Central

    Stawny, M.; Olijarczyk, R.; Jaroszkiewicz, E.; Jelińska, A.

    2013-01-01

    Parenteral nutrition—a form of administering nutrients, electrolytes, trace elements, vitamins, and water—is a widely used mode of therapy applied in many diseases, in patients of different ages both at home and in hospital. The success of nutritional therapy depends chiefly on proper determination of the patient's energetic and electrolytic needs as well as preparation and administration of a safe nutritional mixture. As a parenterally administered drug, it is expected to be microbiologically and physicochemically stable, with all of the components compatible with each other. It is very difficult to obtain a stable nutritional mixture due to the fact that it is a complex, two-phase drug. Also, the risk of incompatibility between mixture components and packaging should be taken into consideration and possibly eliminated. Since parenteral nutrition is a part of therapy, simultaneous use of drugs may cause pharmacokinetic and pharmacodynamic interactions as well as those with the pharmaceutical phase. The aim of this paper is to discuss such aspects of parenteral nutrition as mixture stability, methodology, and methods for determining the stability of nutritional mixtures and drugs added to them. PMID:24453847

  12. Ceramide-1-Phosphate, in Contrast to Ceramide, Is Not Segregated into Lateral Lipid Domains in Phosphatidylcholine Bilayers

    PubMed Central

    Morrow, Michael R.; Helle, Anne; Perry, Joshua; Vattulainen, Ilpo; Wiedmer, Susanne K.; Holopainen, Juha M.

    2009-01-01

    Sphingolipids are key lipid regulators of cell viability: ceramide is one of the key molecules in inducing programmed cell death (apoptosis), whereas other sphingolipids, such as ceramide 1-phosphate, are mitogenic. The thermotropic and structural behavior of binary systems of N-hexadecanoyl-D-erythro-ceramide (C16-ceramide) or N-hexadecanoyl-D-erythro-ceramide-1-phosphate (C16-ceramide-1-phosphate; C16-C1P) with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) was studied with DSC and deuterium nuclear magnetic resonance (2H-NMR). Partial-phase diagrams (up to a mole fraction of sphingolipids X = 0.40) for both mixtures were constructed based on DSC and 2H-NMR observations. For C16-ceramide-containing bilayers DSC heating scans showed already at Xcer = 0.025 a complex structure of the main-phase transition peak suggestive of lateral-phase separation. The transition width increased significantly upon increasing Xcer, and the upper-phase boundary temperature of the mixture shifted to ∼65°C at Xcer = 0.40. The temperature range over which 2H-NMR spectra of C16-ceramide/DPPC-d62 mixtures displayed coexistence of gel and liquid crystalline domains increased from ∼10° for Xcer = 0.1 to ∼21° for Xcer = 0.4. For C16-C1P/DPPC mixtures, DSC and 2H-NMR observations indicated that two-phase coexistence was limited to significantly narrower temperature ranges for corresponding C1P concentrations. To complement these findings, C16-ceramide/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and C16-C1P/POPC mixtures were also studied by 2H-NMR and fluorescence techniques. These observations indicate that DPPC and POPC bilayers are significantly less perturbed by C16-C1P than by C16-ceramide and that C16-C1P is miscible within DPPC bilayers at least up to XC1P = 0.30. PMID:19289048

  13. Effective diffusion coefficients of gas mixture in heavy oil under constant-pressure conditions

    NASA Astrophysics Data System (ADS)

    Li, Huazhou Andy; Sun, Huijuan; Yang, Daoyong

    2017-05-01

    We develop a method to determine the effective diffusion coefficient for each individual component of a gas mixture in a non-volatile liquid (e.g., heavy oil) at high pressures with compositional analysis. Theoretically, a multi-component one-way diffusion model is coupled with the volume-translated Peng-Robinson equation of state to quantify the mass transfer between gas and liquid (e.g., heavy oil). Experimentally, the diffusion tests have been conducted with a PVT setup for one pure CO2-heavy oil system and one C3H8-CO2-heavy oil system under constant temperature and pressure, respectively. Both the gas-phase volume and liquid-phase swelling effect are simultaneously recorded during the measurement. As for the C3H8-CO2-heavy oil system, the gas chromatography method is employed to measure compositions of the gas phase at the beginning and end of the diffusion measurement, respectively. The effective diffusion coefficients are then determined by minimizing the discrepancy between the measured and calculated gas-phase composition at the end of diffusion measurement. The newly developed technique can quantify the contributions of each component of mixture to the bulk mass transfer from gas into liquid. The effective diffusion coefficient of C3H8 in the C3H8-CO2 mixture at 3945 ± 20 kPa and 293.85 K, i.e., 18.19 × 10^{ - 10} {{m}}^{ 2} / {{s}}, is found to be much higher than CO2 at 3950 ± 18 kPa and 293.85 K, i.e., 8.68 × 10^{ - 10} {{m}}^{ 2} / {{s}}. In comparison with pure CO2, the presence of C3H8 in the C3H8-CO2 mixture contributes to a faster diffusion of CO2 from the gas phase into heavy oil and consequently a larger swelling factor of heavy oil.

  14. Solvent Extraction of Rare Earth Elements from a Nitric Acid Leach Solution of Apatite by Mixtures of Tributyl Phosphate and Di-(2-ethylhexyl) Phosphoric Acid

    NASA Astrophysics Data System (ADS)

    Ferdowsi, Ali; Yoozbashizadeh, Hossein

    2017-12-01

    Solvent extraction of rare earths from nitrate leach liquor of apatite using mixtures of tributyl phosphate (TBP) and di-(2-ethylhexyl) phosphoric acid (D2EHPA) was studied. The effects of nitrate and hydrogen ion concentration of the aqueous phase as well as the composition and concentration of extractants in the organic phase on the extraction behavior of lanthanum, cerium, neodymium, and yttrium were investigated. The distribution ratio of REEs increases by increasing the nitrate concentration in aqueous phase and concentration of extractants in organic phase, but the hydrogen ion concentration in aqueous phase has a decreasing effect. Yttrium as a heavy rare earth is more sensitive to these parameters than light rare earth elements. Although the composition of organic phase has a minor effect on the extraction of light rare earths, the percent of extraction of yttrium decreases dramatically by increasing the TBP content of organic phase. Mixtures of TBP and D2EHPA can show either synergism or antagonism extraction depending on the concentration and composition of extractants in organic phase. The best condition for separating rare earth elements in groups of heavy and light REEs can be achieved at high nitrate concentration, low H+ concentration, and high concentration of D2EHPA in organic phase. Separation of Ce and La by TBP and D2EHPA is practically impossible in the studied conditions; however, low nitrate concentration and high hydrogen ion concentration in aqueous phase and low concentration of extractants in organic phase favor the separation of Nd from other light rare earth elements.

  15. How Is the Freezing Point of a Binary Mixture of Liquids Related to the Composition? A Guided Inquiry Experiment

    ERIC Educational Resources Information Center

    Hunnicutt, Sally S.; Grushow, Alexander; Whitnell, Rob

    2017-01-01

    The principles of process-oriented guided inquiry learning (POGIL) are applied to a binary solid-liquid mixtures experiment. Over the course of two learning cycles, students predict, measure, and model the phase diagram of a mixture of fatty acids. The enthalpy of fusion of each fatty acid is determined from the results. This guided inquiry…

  16. A general mixture model and its application to coastal sandbar migration simulation

    NASA Astrophysics Data System (ADS)

    Liang, Lixin; Yu, Xiping

    2017-04-01

    A mixture model for general description of sediment laden flows is developed and then applied to coastal sandbar migration simulation. Firstly the mixture model is derived based on the Eulerian-Eulerian approach of the complete two-phase flow theory. The basic equations of the model include the mass and momentum conservation equations for the water-sediment mixture and the continuity equation for sediment concentration. The turbulent motion of the mixture is formulated for the fluid and the particles respectively. A modified k-ɛ model is used to describe the fluid turbulence while an algebraic model is adopted for the particles. A general formulation for the relative velocity between the two phases in sediment laden flows, which is derived by manipulating the momentum equations of the enhanced two-phase flow model, is incorporated into the mixture model. A finite difference method based on SMAC scheme is utilized for numerical solutions. The model is validated by suspended sediment motion in steady open channel flows, both in equilibrium and non-equilibrium state, and in oscillatory flows as well. The computed sediment concentrations, horizontal velocity and turbulence kinetic energy of the mixture are all shown to be in good agreement with experimental data. The mixture model is then applied to the study of sediment suspension and sandbar migration in surf zones under a vertical 2D framework. The VOF method for the description of water-air free surface and topography reaction model is coupled. The bed load transport rate and suspended load entrainment rate are all decided by the sea bed shear stress, which is obtained from the boundary layer resolved mixture model. The simulation results indicated that, under small amplitude regular waves, erosion occurred on the sandbar slope against the wave propagation direction, while deposition dominated on the slope towards wave propagation, indicating an onshore migration tendency. The computation results also shows that the suspended load will also make great contributions to the topography change in the surf zone, which is usually neglected in some previous researches.

  17. Separations of corticosteroids using electrochemically modulated liquid chromatography: Selectivity enhancements at a porous graphitic carbon stationary phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ting, E.Y.; Porter, M.D.

    Electrochemically modulated liquid chromatography has been applied to the separation of a mixture of structurally similar corticosteroids (i.e., prednisone, prednisolone, cortisone, and hydrocortisone) using a porous graphitic carbon stationary phase. Changes in the voltage applied to the column markedly affected the efficiency as well as the elution order of the separation, with the mixture fully resolved at large negative values of applied potential. Mechanistic aspects in terms of the influence of changes in the applied voltage on the extent of the interactions between these analytes and the stationary phase are briefly discussed. 19 refs., 2 figs.

  18. Fluid-sensitive nanoscale switching with quantum levitation controlled by α -Sn/β -Sn phase transition

    NASA Astrophysics Data System (ADS)

    Boström, Mathias; Dou, Maofeng; Malyi, Oleksandr I.; Parashar, Prachi; Parsons, Drew F.; Brevik, Iver; Persson, Clas

    2018-03-01

    We analyze the Lifshitz pressure between silica and tin separated by a liquid mixture of bromobenzene and chlorobenzene. We show that the phase transition from semimetallic α -Sn to metallic β -Sn can switch Lifshitz forces from repulsive to attractive. This effect is caused by the difference in dielectric functions of α -Sn and β -Sn , giving both attractive and repulsive contributions to the total Lifshitz pressure in different frequency regions controlled by the composition of the intervening liquid mixture. In this way, one may be able to produce phase-transition-controlled quantum levitation in a liquid medium.

  19. 76 FR 48875 - Receipt of Petition To Reconcile Inconsistent Customs and Border Protection Decisions Concerning...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-09

    ..., nitrogenous: Double salts and mixtures of calcium nitrate and ammonium nitrate.'' This document invites... Marking Branch, Regulations and Rulings, Office of International Trade at (202) 325-0036. SUPPLEMENTARY... calcium nitrate double salt that is primarily used as a fertilizer but is also used for waste water...

  20. 40 CFR 60.2994 - Are air curtain incinerators regulated under this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and Compliance Times for Other Solid Waste Incineration Units That Commenced Construction On or Before... percent wood waste. (2) 100 percent clean lumber. (3) 100 percent yard waste. (4) 100 percent mixture of only wood waste, clean lumber, and/or yard waste. Model Rule—Use of Model Rule ...

  1. 77 FR 41692 - Significant New Use Rule for Phenol, 2,4- dimethyl-6-(1-methylpentadecyl)-

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-16

    ... visitors are required to show photographic identification, pass through a metal detector, and sign the EPA... often used as an additive in thermoplastic polymer matrices and in mixtures at concentrations less than... matrices. 5. Revises the recordkeeping requirements under Sec. 721.125 to reflect the modified significant...

  2. Molecular dynamics simulation of real-fluid mutual diffusion coefficients with the Lennard-Jones potential model

    NASA Astrophysics Data System (ADS)

    Stoker, J. M.; Rowley, R. L.

    1989-09-01

    Mutual diffusion coefficients for selected alkanes in carbon tetrachloride were calculated using molecular dynamics and Lennard-Jones (LJ) potentials. Use of effective spherical LJ parameters is desirable when possible for two reasons: (i) computer time is saved due to the simplicity of the model and (ii) the number of parameters in the model is kept to a minimum. Results of this study indicate that mutual diffusivity is particularly sensitive to the molecular size cross parameter, σ12, and that the commonly used Lorentz-Berthelot rules are inadequate for mixtures in which the component structures differ significantly. Good agreement between simulated and experimental mutual diffusivities is obtained with a combining rule for σ12 which better represents these asymmetric mixtures using pure component LJ parameters obtained from self-diffusion coefficient data. The effect of alkane chain length on the mutual diffusion coefficient is correctly predicted. While the effects of alkane branching upon the diffusion coefficient are comparable in size to the uncertainty of these calculations, the qualitative trend due to branching is also correctly predicted by the MD results.

  3. Quasi-Chemical PC-SAFT: An Extended Perturbed Chain-Statistical Associating Fluid Theory for Lattice-Fluid Mixtures.

    PubMed

    Parvaneh, Khalil; Shariati, Alireza

    2017-09-07

    In this study, a new modification of the perturbed chain-statistical associating fluid theory (PC-SAFT) has been proposed by incorporating the lattice fluid theory of Guggenheim as an additional term to the original PC-SAFT terms. As the proposed model has one more term than the PC-SAFT, a new mixing rule has been developed especially for the new additional term, while for the conventional terms of the PC-SAFT, the one-fluid mixing rule is used. In order to evaluate the proposed model, the vapor-liquid equilibria were estimated for binary CO 2 mixtures with 16 different ionic liquids (ILs) of the 1-alkyl-3-methylimidazolium family with various anions consisting of bis(trifluoromethylsulfonyl) imide, hexafluorophosphate, tetrafluoroborate, and trifluoromethanesulfonate. For a comprehensive comparison, three different modes (different adjustable parameters) of the proposed model were compared with the conventional PC-SAFT. Results indicate that the proposed modification of the PC-SAFT EoS is generally more reliable with respect to the conventional PC-SAFT in all the three proposed modes of vapor-liquid equilibria, giving good agreement with literature data.

  4. Temperature effect on stress concentration around circular hole in a composite material specimen representative of X-29A forward-swept wing aircraft

    NASA Technical Reports Server (NTRS)

    Yeh, Hsien-Yang

    1988-01-01

    The theory of anisotropic elasticity was used to evaluate the anisotropic stress concentration factors of a composite laminated plate containing a small circular hole. This advanced composite was used to manufacture the X-29A forward-swept wing. It was found for composite material, that the anisotropic stress concentration is no longer a constant, and that the locations of maximum tangential stress points could shift by changing the fiber orientation with respect to the loading axis. The analysis showed that through the lamination process, the stress concentration factor could be reduced drastically, and therefore the structural performance could be improved. Both the mixture rule approach and the constant strain approach were used to calculate the stress concentration factor of room temperature. The results predicted by the mixture rule approach were about twenty percent deviate from the experimental data. However, the results predicted by the constant strain approach matched the testing data very well. This showed the importance of the inplane shear effect on the evaluation of the stress concentration factor for the X-29A composite plate.

  5. TWO-PHASE FLOW OF TWO HFC REFRIGERANT MIXTURES THROUGH SHORT-TUBE ORIFICES

    EPA Science Inventory

    The report gives results of an experimental investigation to develop an acceptable flow model for short tube orifice expansion devices used in heat pumps. The refrigerants investigated were two hydrofluorocarbon (HFC) mixtures considered hydrochlorofluorocarbon (HCFC)-22 replacem...

  6. Development of performance properties of ternary mixtures : laboratory study on concrete.

    DOT National Transportation Integrated Search

    2011-03-01

    This research project is a comprehensive study of how supplementary cementitious materials (SCMs) can be used to : improve the performance of concrete mixtures. This report summarizes the findings of the Laboratory Study on Concrete : phase of this w...

  7. Methods and systems for deacidizing gaseous mixtures

    DOEpatents

    Hu, Liang

    2010-05-18

    An improved process for deacidizing a gaseous mixture using phase enhanced gas-liquid absorption is described. The process utilizes a multiphasic absorbent that absorbs an acid gas at increased rate and leads to reduced overall energy costs for the deacidizing operation.

  8. Analysis of antimycin A by reversed-phase liquid chromatography/nuclear magnetic-resonance spectrometry

    USGS Publications Warehouse

    Ha, Steven T.K.; Wilkins, Charles L.; Abidi, Sharon L.

    1989-01-01

    A mixture of closely related streptomyces fermentation products, antimycin A, Is separated, and the components are identified by using reversed-phase high-performance liquid chromatography with directly linked 400-MHz proton nuclear magnetic resonance detection. Analyses of mixtures of three amino acids, alanine, glycine, and valine, are used to determine optimal measurement conditions. Sensitivity increases of as much as a factor of 3 are achieved, at the expense of some loss in chromatographic resolution, by use of an 80-μL NMR cell, Instead of a smaller 14-μL cell. Analysis of the antimycin A mixture, using the optimal analytical high performance liquid chromatography/nuclear magnetic resonance conditions, reveals it to consist of at least 10 closely related components.

  9. Density fluctuations in aqueous solution of ionic liquid with lower critical solution temperature: Mixture of tetrabutylphosphonium trifluoroacetate and water

    NASA Astrophysics Data System (ADS)

    Nitta, Ayako; Morita, Takeshi; Saita, Shohei; Kohno, Yuki; Ohno, Hiroyuki; Nishikawa, Keiko

    2015-05-01

    Aqueous solutions of tetrabutylphosphonium trifluoroacetate ([P4444]CF3COO) exhibit a LCST-type phase transition with the critical point near 0.025 in mole fraction of [P4444]CF3COO at T = 302 K. The phase behavior of [P4444]CF3COO-water mixtures was investigated by evaluating their density fluctuations, which provide quantitative descriptions of the mixing states of the solutions. The concentration dependence of the density fluctuations was investigated at 293 and 301 K for the mixtures without distinguishing the components and for the individual components ([P4444]CF3COO and water). A drastic change in the mixing state was observed for the solution when the critical point was approached.

  10. 3-D Numerical Simulation for Gas-Liquid Two-Phase Flow in Aeration Tank

    NASA Astrophysics Data System (ADS)

    Xue, R.; Tian, R.; Yan, S. Y.; Li, S.

    In the crafts of activated sludge treatment, oxygen supply and the suspending state of activated sludge are primary factors to keep biochemistry process carrying on normally. However, they are all controlled by aeration. So aeration is crucial. The paper focus on aeration, use CFD software to simulate the field of aeration tank which is designed by sludge load method. The main designed size of aeration tank is: total volume: 20 000 m3; corridor width: 8m; total length of corridors: 139m; number of corridors: 3; length of one single corridor: 48m; effective depth: 4.5m; additional depth: 0.5m. According to the similarity theory, a geometrical model is set up in proportion of 10:1. The way of liquid flow is submerge to avoid liquid flow out directly. The grid is plotted by dividing the whole computational area into two parts. The bottom part which contains gas pipe and gas exit hole and the above part which is the main area are plotted by tetrahedron and hexahedron respectively. In boundary conditions, gas is defined as the primary-phase, and liquid is defined as the secondary-phase. Choosing mixture model, two-phase flow field of aeration tank is simulated by solved the Continuity equation for the mixture, Momentum equation for the mixture, Volume fraction equation for the secondary phases and Relative velocity formula when gas velocity is 10m/s, 20m/s, 30m/s. what figure shows is the contour of velocity magnitude for the mixture phase when gas velocity is 20m/s. Through analysis, the simulation tendency is agreed with actual running of aeration tank. It is feasible to use mixture model to simulate flow field of aeration tank by fluent software. According to the simulation result, the better velocity of liquid or gas (the quantity of inlet air) can be chosen by lower cost, and also the performance of aeration tank can be forecast. It will be helpful for designing and operation.

  11. Fact or artifact: the representativeness of ESI-MS for complex natural organic mixtures.

    PubMed

    Novotny, Nicole R; Capley, Erin N; Stenson, Alexandra C

    2014-04-01

    Because mass spectrometers provide their own dispersion and resolution of analytes, electrospray ionization mass spectrometry (ESI-MS) has become a workhorse for the characterization of complex mixtures from aerosols to crude oil. Unfortunately, ESI mass spectra commonly contain multimers, adducts and fragments. For the characterization of complex mixtures of unknown initial composition, this presents a significant concern. Mixed-multimer formation could potentially lead to results that bare no resemblance to the original mixture. Conversely, ESI-MS has continually reflected subtle differences between natural organic matter mixtures that are in agreement with prediction or theory. Knowing the real limitations of the technique is therefore critical to avoiding both over-interpretation and unwarranted skepticism. Here, data were collected on four mass spectrometers under a battery of conditions. Results indicate that formation of unrepresentative ions cannot entirely be ruled out, but non-covalent multimers do not appear to make a major contribution to typical natural organic matter spectra based on collision-induced dissociation results. Multimers also appear notably reduced when a cooling gas is present in the accumulation region of the mass spectrometer. For less complex mixtures, the choice of spray solvent can make a difference, but generally spectrum cleanliness (i.e. representativeness) comes at the price of increased selectivity. Copyright © 2014 John Wiley & Sons, Ltd.

  12. A numerical model for boiling heat transfer coefficient of zeotropic mixtures

    NASA Astrophysics Data System (ADS)

    Barraza Vicencio, Rodrigo; Caviedes Aedo, Eduardo

    2017-12-01

    Zeotropic mixtures never have the same liquid and vapor composition in the liquid-vapor equilibrium. Also, the bubble and the dew point are separated; this gap is called glide temperature (Tglide). Those characteristics have made these mixtures suitable for cryogenics Joule-Thomson (JT) refrigeration cycles. Zeotropic mixtures as working fluid in JT cycles improve their performance in an order of magnitude. Optimization of JT cycles have earned substantial importance for cryogenics applications (e.g, gas liquefaction, cryosurgery probes, cooling of infrared sensors, cryopreservation, and biomedical samples). Heat exchangers design on those cycles is a critical point; consequently, heat transfer coefficient and pressure drop of two-phase zeotropic mixtures are relevant. In this work, it will be applied a methodology in order to calculate the local convective heat transfer coefficients based on the law of the wall approach for turbulent flows. The flow and heat transfer characteristics of zeotropic mixtures in a heated horizontal tube are investigated numerically. The temperature profile and heat transfer coefficient for zeotropic mixtures of different bulk compositions are analysed. The numerical model has been developed and locally applied in a fully developed, constant temperature wall, and two-phase annular flow in a duct. Numerical results have been obtained using this model taking into account continuity, momentum, and energy equations. Local heat transfer coefficient results are compared with available experimental data published by Barraza et al. (2016), and they have shown good agreement.

  13. Morphology of molecular soy protein fractions in binary composite gels.

    PubMed

    Kasapis, Stefan; Tay, Sok Li

    2009-08-04

    We investigate the structural properties of gels of binary mixtures of the three major soy protein fractions: 11S, 7S, and 2S. Gels are formed at 25 degrees C in the presence of glucono-delta-lactone and studied using a combination of dynamic rheology and scanning electron microscopy. The theological data was then modeled using a blending-law approach that yields insights into the solvent distribution between the gelled protein fractions and first-order reaction kinetics that follow the gelation process of the single fractions and their mixtures. Gelled mixtures of 11S and 7S yielded enhanced network strength with increasing solid content; in these gels, 50% more solvent partitioned into the 11S phase as compared to that in the 7S phase. In contrast, the addition of small-molecular-weight counterpart 2S to either 11S or 7S results in a catastrophic drop in the values of the overall strength of the mixture. The unexpected phase behavior has been rationalized on the basis of the high water-holding capacity of 2S; 450% more solvent partitions preferentially into the 2S phase as compared to that in the 11S phase. As the concentration of 2S is increased relative to that of 11S or 7S, it becomes the dominant phase and entraps the polymeric segments of 11S (or 7S), thus preventing them from becoming the structural knots of the gel. In addition to the solvent distribution in the gel, the rates of gelation differ markedly between 11S and 2S (with the 11S rate of gelation being up to 2 orders of magnitude greater); a fixed 11S concentration, the rate of gelation decreases with increasing amounts of 2S, further confirming that the latter essentially becomes the dominant phase in the composite gel.

  14. The Impact of Condensed-Phase Viscosity on Multiphase Oxidation Kinetics Involving O3, NO3, and OH

    NASA Astrophysics Data System (ADS)

    Li, J.; Forrester, S. M.; Knopf, D. A.

    2017-12-01

    Organic aerosol (OA) particles are ubiquitous in the atmosphere and have a significant influence on air quality, human health, cloud formation processes and global climate. By now it is well-recognized that organic particulate species can be amorphous in nature, existing in liquid, semi-solid and solid (glassy) phase states. The phase state is modulated by particle composition and environmental conditions such as relative humidity and temperature. These modifications can influence particle viscosity and molecular diffusion and, therefore, impact the reactive uptake of gas-phase oxidants and radicals by the organic substrate. In this study, we determined the reactive uptake coefficients (γ) of O3 by canola oil, NO3 by levoglucosan (LEV) and a LEV/xylitol mixture, and OH by glucose/sulfuric acid mixtures and glucose/1,2,6-hexanetriol mixtures under dry conditions and for temperatures ranging from 293 K to 213 K. Uptake coefficients have been measured employing a chemical ionization mass spectrometer coupled to a temperature-controlled rotating-wall flow reactor. Glass transition temperatures (Tg) of applied substrates were estimated by the Gordon-Taylor equation. Phase states were qualitatively probed via poking experiment using a temperature-controlled cooling stage. Shattering of the substrates indicated the formation of a glassy state. Results show a significant impact of condensed phase state on reactive uptake kinetics whereby γ changed most profoundly around estimated Tg. For example, γ decreases from 6.5×10-4 to 1.9 ×10-5 for O3 uptake by canola oil and from 8.3×10-4 to 3.1×10-4 for NO3 uptake by the LEV/xylitol mixture, respectively. The decrease in γ will be discussed with regard to phase state, desorption lifetime, and Arrhenius temperature dependence of reaction rates. First results of OH uptakes at low temperatures are presented, together with a discussion of the relevant atmospheric implications.

  15. Stress-induced birefringence in the isotropic phases of lyotropic mixtures

    NASA Astrophysics Data System (ADS)

    Fernandes, P. R. G.; Maki, J. N.; Gonçalves, L. B.; de Oliveira, B. F.; Mukai, H.

    2018-02-01

    In this work, the frequency dependence of the known mechano-optical effect which occurs in the micellar isotropic phases (I ) of mixtures of potassium laurate (KL), decanol (DeOH), and water is investigated in the range from 200 mHz to 200 Hz . In order to fit the experimental data, a model of superimposed damped harmonic oscillators is proposed. In this phenomenological approach, the micelles (microscopic oscillators) interact very weakly with their neighbors. Due to shape anisotropy of the basic structures, each oscillator i (i =1 ,2 ,3 ,...,N ) remains in its natural oscillatory rotational movement around its axes of symmetry with a frequency ω0 i. The system will be in the resonance state when the frequency of the driving force ω reaches a value near ω0 i. This phenomenological approach shows excellent agreement with the experimental data. One can find f ˜2.5 , 9.0, and 4.0 Hz as fundamental frequencies of the micellar isotropic phases I , I1, and I2, respectively. The different micellar isotropic phases I , I1, and I2 that we find in the phase diagram of the KL-DeOH-water mixture are a consequence of possible differences in the intermicellar correlation lengths. This work reinforces the possibilities of technological applications of these phases in devices such as mechanical vibration sensors.

  16. Evidence for a New Intermediate Phase in a Strongly Correlated 2D System near Wigner Crystallization

    NASA Astrophysics Data System (ADS)

    Gao, Xuan; Qiu, Richard; Goble, Nicholas; Serafin, Alex; Yin, Liang; Xia, Jian-Sheng; Sullivan, Neil; Pfeiffer, Loren; West, Ken

    How the two dimensional (2D) quantum Wigner crystal (WC) transforms into the metallic liquid phase remains an outstanding problem in physics. In theories considering the 2D WC to liquid transition in the clean limit, it was suggested that a number of intermediate phases might exist. We have studied the transformation between the metallic fluid phase and the low magnetic field reentrant insulating phase (RIP) which was interpreted as due to the WC [Qiu et al., PRL 108, 106404 (2012)], in a strongly correlated 2D hole system in GaAs quantum well with large interaction parameter rs (~20-30) and high mobility. Instead of a sharp transition, we found that increasing density (or lowering rs) drives the RIP into a state where the incipient RIP coexists with Fermi liquid. This apparent mixture phase intermediate between Fermi liquid and WC also exhibits a non-trivial temperature dependent resistivity behavior which can be qualitatively understood by the reversed melting of WC in the mixture, in analogy to the Pomeranchuk effect in the solid-liquid mixture of Helium-3. X.G. thanks NSF (DMR-0906415) for supporting work at CWRU. Experiments at the NHMFL High B/T Facility were supported by NSF Grant 0654118 and the State of Florida. L.P. thanks the Gordon and Betty Moore Foundation and NSF MRSEC (DMR-0819860) for support.

  17. Use of vancomycin silica stationary phase in packed capillary electrochromatography: III. enantiomeric separation of basic compounds with the polar organic mobile phase.

    PubMed

    Fanali, Salvatore; Catarcini, Paolo; Quaglia, Maria Giovanna

    2002-02-01

    The separation of basic compounds into their enantiomers was achieved using capillary electrochromatography in 50 or 75 microm inner diameter (ID) fused-silica capillaries packed with silica a stationary phase derivatized with vancomycin and mobile phases composed of mixtures of polar organic solvents containing 13 mM ammonium acetate. Enantiomer resolution, electroosmotic flow, and the number of theoretical plates were strongly influenced by the type and concentration of the organic solvent. Mobile phases composed of 13 mM ammonium acetate dissolved in mixtures of acetonitrile/methanol, ethanol, n-propanol, or isopropanol were tested and the highest enantioresolutions were achieved using the first mobile phase, allowing the separation of almost all investigated enantiomers (9 from 11 basic compounds). The use of capillaries with different ID (50 and 75 microm ID) packed with the same chiral stationary phase revealed that a higher number of theoretical plates and higher enantioresolution was achieved with the tube with lowest ID.

  18. Phase transformations in 40-60-GPa shocked gneisses from the Haughton Crater (Canada): An Analytical Transmission Electron Microscopy (ATEM) study

    NASA Technical Reports Server (NTRS)

    Martinez, I.; Guyot, F.; Schaerer, U.

    1992-01-01

    In order to better understand phase transformations, chemical migration, and isotopic disequilibrium in highly shocked rocks, we have performed a microprobe and an ATEM study on gneisses shocked up to 60 GPa from the Haughton Crater. This study reveals the following chemical and structural characteristics: (1) SiO2 dominant areas are formed by a mixture of pure SiO2 polycrystalline quartz identified by electron diffraction pattern and chemical analysis and a silica-rich amorphous phase containing minor amounts of aluminium, potassium, and iron; (2) Areas with biotitelike composition are formed by less than 200-nm grains of iron-rich spinels embedded in a silica-rich amorphous phase that is very similar to the one described above; (3) Layers with feldsparlike composition are constituted by 100-200-nm-sized alumina-rich grains (the indexation of the crystalline structure is under progress) and the silica-rich amorphous phase; (4) Zones characterized by the unusual Al/Si ratio close to 1 are formed by spinel grains (200-nm-sized) embedded in the same silica-rich amorphous phase; and (5) The fracturated sillimanites contain domains with a lamellar structure, defined by the intercalation of 100-nm-wide lamellae of mullite crystals and of a silica-rich amorphous phase. These mullite crystals preserved the crystallographical orientation of the preshock sillimanite. All compositional domains, identified at the microprobe scale, can thus be explained by a mixture in different proportion between the following phases: (1) a silica-rich amorphous phase, with minor Al and K; (2) quartz crystals; (3) spinel crystals and alumina-rich crystals; (4) sillimanite; and (5) mullite. Such mixtures of amorphous phases and crystals in different proportions explain disturbed isotope systems in these rocks and chemical heterogeneities observed on the microprobe.

  19. 76 FR 56848 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Order Granting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-14

    ... Rule Change To Amend FINRA Rule 9251 to Explicitly Protect From Discovery Those Documents That Federal... explicitly protect from discovery those documents that federal law prohibits FINRA from disclosing. The... the discovery phase of a disciplinary proceeding. The rule also explicitly shields certain types of...

  20. 75 FR 15480 - Self-Regulatory Organizations; The NASDAQ Stock Market LLC; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-29

    ....cchwallstreet.com . * * * * * 5615. Exemptions from Certain Corporate Governance Requirements This rule provides the exemptions from the corporate governance rules afforded to certain types of Companies, and sets... governance rules to controlled companies and sets forth the phase-in schedule afforded to Companies ceasing...

  1. Oriented 1,2-dimyristoyl-sn-glycero-3-phosphorylcholine/ganglioside membranes: a Fourier transform infrared attenuated total reflection spectroscopic study. Band assignments; orientational, hydrational, and phase behavior; and effects of Ca2+ binding.

    PubMed

    Müller, E; Giehl, A; Schwarzmann, G; Sandhoff, K; Blume, A

    1996-09-01

    Fourier transform infrared (FTIR) attenuated total reflection (ATR) spectroscopy was used to elucidate the hydration behavior and molecular order of phospholipid/ganglioside bilayers. We examined dry and hydrated films of the gangliosides GM1, deacetyl-GM1, lyso-GM1, deacetyllyso-GM1, and GM3 and oriented mixed films of these gangliosides with 1,2-dimyristoyl-sn-glycero-3-phosphorylcholine (DMPC) using polarized light. Analysis of the amide I frequencies reveals that the amide groups are involved in intermolecular interactions via hydrogen bonds of varying strengths. The tilt angle of the acyl chains of the lipids in mixed films was determined as a function of ganglioside structure. Deacetylation of the sialic acid in the headgroup has a stronger influence on the tilt angle than the removal of the ganglioside fatty acid. The phase behavior was examined by FTIR ATR spectroscopy and by differential scanning calorimetry (DSC) measurements on lipid suspensions. At the same molar concentration, lyso-gangliosides have less effect on changes of transition temperature compared to the double-chain analogs. Distinct differences in the amide band shapes were observed between mixtures with lyso-gangliosides and normal double-chain gangliosides. Determined from the dicroic ratio RATR, the orientation of the COO- group in all DMPC/ganglioside mixtures was found to be relatively fixed with respect to the membrane normal. In 4:1 mixtures of DMPC with GM1 and deacetyl-GM1, the binding of Ca2+ leads to a slight decrease in chain tilt in the gel phase, probably caused by a dehydration of the membrane-water interface. In mixtures of DMPC with GM3 and deacetyl-lyso-GM1, a slight increase in chain tilt is observed. The chain tilt in DMPC/lyso-GM1 mixtures is unchanged. Analysis of the COO- band reveals that Ca2+ does not bind to the carboxylate group of the sialic acid of GM1 and deacetyl-GM1, the mixtures in which a decrease in chain tilt was observed. Binding to the sialic acid was only observed for mixtures of DMPC with GM3, lyso-GM1, and deacetyl-lyso-GM1. Ca2+ obviously accumulates at the bilayer-water interface and leads to partial dehydration of the headgroup region in the gel as well as in the liquid-crystalline phase. This can be concluded from the changes in the amide I band shapes. With the exception of DMPC/deacetyl-GM1, the effects on the ester C==O bands are small. The addition of Ca2+ has minor effects on the phase behavior, with the exception of the DMPC/GM1 mixture.

  2. Oxychlorine and Chloride/Ferrian Saponite Mixtures as a Possible Source of Hydrochloric Acid Detected by the Sample Analysis at Mars (SAM) Instrument in Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Hogancamp, J. V.; Sutter, B.; Archer, D., Jr.; Ming, D. W.; Mahaffy, P. R.

    2017-12-01

    The Sample Analysis at Mars (SAM) instrument on board the Curiosity Rover has detected HCl gas releases from several analyzed Gale Crater sediments, which are attributed to the presence of perchlorates, chlorates, and/or chlorides in martian sediment. Previous SAM analog laboratory analyses found that most pure perchlorates and chlorates produced HCl at different temperatures than those observed in the SAM data. Subsequent studies examined the effects of perchlorate and chlorate mixtures with Gale Crater analog iron phases, which are known to catalyze oxychlorine decomposition. Several mixtures produced characteristic O2 releases at similar temperatures as Gale Crater materials, but most of these mixtures did not produce HCl releases comparable to those detected by the SAM instrument. Perchlorates, chlorates, and chlorides were mixed with Gale Crater analog ferrian saponite to understand evolved HCl detected by SAM. Evolved water from thermally decomposing saponite is hypothesized to react with residual chloride phases from oxychlorine decomposition to produce high temperature (>700°C) HCl. Mixtures of chlorates, perchlorates, or chlorides with ferrian saponite were heated to 1000 °C in a laboratory analog SAM instrument. Results demonstrated that all chlorate and perchlorate mixtures produce HCl releases below 1000 °C when mixed with ferrian saponite. Mixtures of chlorides with ferrian saponite produced no oxygen releases but did produce HCl releases with peaks below 1000 °C. Ferrian saponite/Mg-chlorate mixtures produced two HCl releases (347 and 820 °C) similar to the Cumberland drilled sample. Additionally, sodium chloride mixed with ferrian saponite produced no oxygen releases and an HCl release (767 °C) similar to the Quela drilled sample. The Marimba drilled sample, which also produced no oxychlorine-derived oxygen, produced a high temperature HCl release that may be the result of chloride(s) reacting with evolved water from thermally decomposing ferrian saponite. Results of this work demonstrated that chlorides in the presence of evolved water from thermally decomposing saponite can explain the high temperature evolved HCl detected by SAM. Chlorides may either be native to the sample or be produced by perchlorate/chlorate thermal decomposition in order to yield Cl for high temperature (>700 °C) HCl production. Mg bearing Cl phases tend to produce two HCl releases (347-496 and 820 °C) while Ca and Na bearing phases produced one high temperature (>700 °C) HCl release. HCl release temperatures can be used to indicate the cation-type of the oxychlorine phase or chloride which is critical to understanding past geochemical conditions in Gale Crater.

  3. Sum Rule for a Schiff-Like Dipole Moment

    NASA Astrophysics Data System (ADS)

    Raduta, A. A.; Budaca, R.

    The energy-weighted sum rule for an electric dipole transition operator of a Schiff type differs from the Thomas-Reiche-Kuhn (TRK) sum rule by several corrective terms which depend on the number of system components, N. For illustration the formalism was applied to the case of Na clusters. One concludes that the random phase approximation (RPA) results for Na clusters obey the modified TRK sum rule.

  4. Crystallographic Study of Mixture CeBa1.8Pb0.2Cu3Oy in the Range of 860°C to 940 °C

    NASA Astrophysics Data System (ADS)

    Stergiou, A.; Yilmaz, S.; Stergiou, C.

    2007-04-01

    A powder mixture with chemical formula CeBa1.8Pb0.2Cu3Oy was prepared. The mixture was heated in free atmosphere, at temperatures 860°C to 940°C, for 24 to 72h. The samples were measured by X-Ray powder diffraction with CuKa radiation. Each sample was characterized with the help of the PDF and refined, using the Rietveld's ``Powder Profile Analysis''. The first sample (860°C) was identified with the phases: Ba2CeBiO6, CuO and BaCuO2, while all the remaining samples (870°C-940°C) with the phases Ba2CePbO6, CuO and CeO2. The phases Ba2CeBiO6 and Ba2CePbO6 are the main phases with analogous chemical types, but different symmetry. The phase CuO is common in all the samples, while from the remaining phases the BaCuO2 appears only in the first sample and the CeO2 in all, except the first one. The quantity 0.2 of Pb is distributed in the Ba positions, substituting a part of these. The percentages of phases are about 82%, 10% and 8% for the first sample and for all the remaining about 85%, 8% and 7%, respectively with above serious.

  5. Ammonia-water mixtures at high pressures - Melting curves of ammonia dihydrate and ammonia monohydrate and a revised high-pressure phase diagram for the water-rich region. [in primordial solar system ices

    NASA Technical Reports Server (NTRS)

    Boone, S.; Nicol, M. F.

    1991-01-01

    The phase relations of some mixtures of ammonia and water are investigated to create a phase diagram in pressure-temperature-composition space relevant to the geophysical study of bodies in the outer solar system. The mixtures of NH3(x)H2O(1-x), where x is greater than 0.30 but less than 0.51, are examined at pressures and temperatures ranging from 0-6.5 GPa and 125-400 K, respectively. The ruby luminescence technique monitors the pressure and a diamond-anvil cell compresses the samples, and the phases are identified by means of normal- and polarized-light optical microscopy. The melting curve for NH3H2O(2) is described by the equation T = 176 + 60P - 8.5P squared for the ranges of 0.06-1.4 GPa and 179-243 K. The equation for NH3H2O is T = 194 + 37P - P squared, which represents a minor correction of a previous description by Johnson et al. (1985). Observed phase transitions are consistent with the high-pressure stability limit of NH3H2O(2), and the transition boundary is found to be linear.

  6. Accelerating clinical development of HIV vaccine strategies: methodological challenges and considerations in constructing an optimised multi-arm phase I/II trial design.

    PubMed

    Richert, Laura; Doussau, Adélaïde; Lelièvre, Jean-Daniel; Arnold, Vincent; Rieux, Véronique; Bouakane, Amel; Lévy, Yves; Chêne, Geneviève; Thiébaut, Rodolphe

    2014-02-26

    Many candidate vaccine strategies against human immunodeficiency virus (HIV) infection are under study, but their clinical development is lengthy and iterative. To accelerate HIV vaccine development optimised trial designs are needed. We propose a randomised multi-arm phase I/II design for early stage development of several vaccine strategies, aiming at rapidly discarding those that are unsafe or non-immunogenic. We explored early stage designs to evaluate both the safety and the immunogenicity of four heterologous prime-boost HIV vaccine strategies in parallel. One of the vaccines used as a prime and boost in the different strategies (vaccine 1) has yet to be tested in humans, thus requiring a phase I safety evaluation. However, its toxicity risk is considered minimal based on data from similar vaccines. We newly adapted a randomised phase II trial by integrating an early safety decision rule, emulating that of a phase I study. We evaluated the operating characteristics of the proposed design in simulation studies with either a fixed-sample frequentist or a continuous Bayesian safety decision rule and projected timelines for the trial. We propose a randomised four-arm phase I/II design with two independent binary endpoints for safety and immunogenicity. Immunogenicity evaluation at trial end is based on a single-stage Fleming design per arm, comparing the observed proportion of responders in an immunogenicity screening assay to an unacceptably low proportion, without direct comparisons between arms. Randomisation limits heterogeneity in volunteer characteristics between arms. To avoid exposure of additional participants to an unsafe vaccine during the vaccine boost phase, an early safety decision rule is imposed on the arm starting with vaccine 1 injections. In simulations of the design with either decision rule, the risks of erroneous conclusions were controlled <15%. Flexibility in trial conduct is greater with the continuous Bayesian rule. A 12-month gain in timelines is expected by this optimised design. Other existing designs such as bivariate or seamless phase I/II designs did not offer a clear-cut alternative. By combining phase I and phase II evaluations in a multi-arm trial, the proposed optimised design allows for accelerating early stage clinical development of HIV vaccine strategies.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jongmin; Saba, Stacey A.; Hillmyer, Marc A.

    We report on the phase separation behaviors of polymerization mixtures containing a polylactide macro-chain transfer agent (PLA-CTA), styrene, divinylbenzene, hydroxyl-terminated PLA (PLA-OH), and a molecular chain transfer agent which enable the ability to tune the pore size of a cross-linked polymer monolith in a facile manner. Cross-linked monoliths were produced from the mixtures via reversible addition-fragmentation chain transfer (RAFT) polymerization and converted into cross-linked porous polymers by selective removal of PLA while retaining the parent morphology. We demonstrate that pore sizes are tunable over a wide range of length scales from the meso- to macroporous regimes by adjusting the ratiomore » of PLA-CTA to PLA-OH in the reaction mixture which causes the phase separation mechanism to change from polymerization-induced microphase separation to polymerization-induced phase separation. The possibility of increasing porosity and inducing simultaneous micro- and macrophase separation was also realized by adjustments in the molar mass of PLA which enabled the synthesis of hierarchically meso- and macroporous polymers.« less

  8. Optical Limiting by Index-Matched Phase-Segregated Mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Exarhos, Gregory J.; Ferris, Kim F.; Manijeh Razeghi, Gail J. Brown

    The nonlinear optical response for index-matched, non-absorbing immiscible phases (liquid-solid, liquid-liquid, solid-solid) has been determined by means of open aperture z-scan measurements. In mixtures where one constituent shows a relatively high optical nonlinearity, rapid and reversible transformation to a light-scattering state is observed under conditions where a critical incident light fluence is exceeded. This passive broadband response is induced by a transient change in the dispersive part of the refractive index, and is based upon the Christiansen-Shelyubskii filter that at one time was used as a means to monitor the temperature of glass melts. Modeling studies are used to simulatemore » scattering intensities in such textured composites as a function of composition, microstructure, and constituent optical properties. Results provide a rational approach to the selection of materials for use in these limiters. Challenges to preparing dispersed phase mixtures and their response to 532 nm nanosecond pulsed laser irradiation are described.« less

  9. The isotropic-nematic and nematic-nematic phase transition of binary mixtures of tangent hard-sphere chain fluids: An analytical equation of state

    NASA Astrophysics Data System (ADS)

    van Westen, Thijs; Vlugt, Thijs J. H.; Gross, Joachim

    2014-01-01

    An analytical equation of state (EoS) is derived to describe the isotropic (I) and nematic (N) phase of linear- and partially flexible tangent hard-sphere chain fluids and their mixtures. The EoS is based on an extension of Onsager's second virial theory that was developed in our previous work [T. van Westen, B. Oyarzún, T. J. H. Vlugt, and J. Gross, J. Chem. Phys. 139, 034505 (2013)]. Higher virial coefficients are calculated using a Vega-Lago rescaling procedure, which is hereby generalized to mixtures. The EoS is used to study (1) the effect of length bidispersity on the I-N and N-N phase behavior of binary linear tangent hard-sphere chain fluid mixtures, (2) the effect of partial molecular flexibility on the binary phase diagram, and (3) the solubility of hard-sphere solutes in I- and N tangent hard-sphere chain fluids. By changing the length bidispersity, two types of phase diagrams were found. The first type is characterized by an I-N region at low pressure and a N-N demixed region at higher pressure that starts from an I-N-N triphase equilibrium. The second type does not show the I-N-N equilibrium. Instead, the N-N region starts from a lower critical point at a pressure above the I-N region. The results for the I-N region are in excellent agreement with the results from molecular simulations. It is shown that the N-N demixing is driven both by orientational and configurational/excluded volume entropy. By making the chains partially flexible, it is shown that the driving force resulting from the configurational entropy is reduced (due to a less anisotropic pair-excluded volume), resulting in a shift of the N-N demixed region to higher pressure. Compared to linear chains, no topological differences in the phase diagram were found. We show that the solubility of hard-sphere solutes decreases across the I-N phase transition. Furthermore, it is shown that by using a liquid crystal mixture as the solvent, the solubility difference can by maximized by tuning the composition. Theoretical results for the Henry's law constant of the hard-sphere solute are in good agreement with the results from molecular simulation.

  10. Storage of H.sub.2 by absorption and/or mixture within a fluid medium

    DOEpatents

    Berry, Gene David; Aceves, Salvador Martin

    2007-03-20

    For the first time, a hydrogen storage method, apparatus and system having a fluid mixture is provided. At predetermined pressures and/or temperatures within a contained substantially fixed volume, the fluid mixture can store a high density of hydrogen molecules, wherein a predetermined phase of the fluid mixture is capable of being withdrawn from the substantially fixed volume for use as a vehicle fuel or energy storage having reduced and/or eliminated evaporative losses, especially where storage weight, vessel cost, vessel shape, safety, and energy efficiency are beneficial.

  11. Carbon balance assessment by eddy covariance method for agroecosystems with potato plants and oats & vetch mixture on sod-podzolic soils of Russia

    NASA Astrophysics Data System (ADS)

    Meshalkina, J. L.; Yaroslavtsev, A. M.; Vasenev, I. I.; Andreeva, I. V.; Tihonova, M. V.

    2018-01-01

    The carbon balance for the agroecosystems with potato plants and oats & vetch mixture on sod-podzolics soils was evaluated using the eddy covariance approach. Absorption of carbon was recorded only during the growing season; maximum values were detected for all crops in July. The number of days during the vegetation period, when the carbon stocked in the fields with potatoes and oats & vetch mixture was about the same and accounted for 53-55 days. During this period, the increase in gross primary production (GPP) is well correlated with the crop yields. The curve of the gross primary productivity is closely linked to the phases of development of plants; for potatoes, this graph differs significantly for all phases. Form of oats & vetch mixture biomass curve shown linear increases. Carbon losses were observed for all the studied agroecosystems: for fields with an oats & vetch mixture they were 254 g C m-2 y-1, while for fields with potato plants they were 307 g C m-2 y-1. Values about 250-300 g C m-2 per year may be considered as estimated values for the total carbon uptake for agroecosystems with potato plants and oats & vetch mixture on sod-podzolic soils.

  12. Impact of heat treatment on miscibility of proteins and disaccharides in frozen solutions.

    PubMed

    Izutsu, Ken-ichi; Yomota, Chikako; Okuda, Haruhiro; Kawanishi, Toru; Randolph, Theodore W; Carpenter, John F

    2013-10-01

    The purpose of this study was to elucidate the effect of heat treatment (annealing) on the miscibility of concentrated protein and disaccharide mixtures in the freezing segment of lyophilization. Frozen solutions containing a protein (e.g., recombinant human albumin, chicken egg lysozyme, bovine plasma immunoglobulin G, or a humanized IgG1k monoclonal antibody) and a non-reducing disaccharide (e.g., sucrose or trehalose) showed single thermal transitions of the solute mixtures (glass transition temperature of maximally freeze-concentrated solutes: T(g)(')) in their first heating scans. Heat treatment (e.g., -5 °C, 30 min) of some disaccharide-rich mixture frozen solutions at temperatures far above their T(g)(') induced two-step T(g)(') transitions in the subsequent scans, suggesting the separation of the solutes into concentrated protein-disaccharide mixture phase and disaccharide phase. Other frozen solutions showed a single transition of the concentrated solute mixture both before and after heat treatment. The apparent effects of the heat treatment temperature and time on the changes in thermal properties suggest molecular reordering of the concentrated solutes from a kinetically fixed mixture state to a more thermodynamically favorable state as a result of increased mobility. The implications of these phenomena on the quality of protein formulations are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. On-Going Laboratory Efforts to Quantitatively Address Clay Abundance on Mars

    NASA Technical Reports Server (NTRS)

    Roush, Ted L.; Bishop, Janice L.; Brown, Adrian J.; Blake, David F.; Bristow, Thomas F.

    2012-01-01

    Data obtained at visible and near-infrared wavelengths by OMEGA on MarsExpress and CRISM on MRO provide definitive evidence for the presence of phyllosilicates and other hydrated phases on Mars. A diverse range of both Fe/Mg-OH and Al-OH-bearing phyllosilicates were identified including the smectites, nontronite, saponite, and montmorillonite. In order to constrain the abundances of these phyllosilicates spectral analyses of mixtures are needed. We report on our on-going effort to enable the quantitative evaluation of the abundance of hydrated-hydroxylated silicates when they are contained in mixtures. We include two component mixtures of hydrated/hydroxylated silicates with each other and with two analogs for other martian materials; pyroxene (enstatite) and palagonitic soil (an alteration product of basaltic glass). For the hydrated-hydroxylated silicates we include saponite and montmorillonite (Mg- and Al- rich smectites). We prepared three size separates of each end-member for study: 20-45, 63-90, and 125-150 µm. As the second phase of our effort we used scanning electron microscopy imaging and x-ray diffraction to characterize the grain size distribution, and structural nature, respectively, of the mixtures. Visible and near-infrared reflectance spectra of the 63-90 micrometers grain size of the mixture samples are shown in Figure 1. We discuss the results of our measurements of these mixtures.

  14. Thermal transitions, pseudogap behavior, and BCS-BEC crossover in Fermi-Fermi mixtures

    NASA Astrophysics Data System (ADS)

    Karmakar, Madhuparna

    2018-03-01

    We study the mass imbalanced Fermi-Fermi mixture within the framework of a two-dimensional lattice fermion model. Based on the thermodynamic and species-dependent quasiparticle behavior, we map out the finite-temperature phase diagram of this system and show that unlike the balanced Fermi superfluid, there are now two different pseudogap regimes as PG-I and PG-II. While within the PG-I regime both the fermionic species are pseudogapped, PG-II corresponds to the regime where pseudogap feature survives only in the light species. We believe that the single-particle spectral features that we discuss in this paper are observable through the species-resolved radio-frequency spectroscopy and momentum-resolved photoemission spectroscopy measurements on systems such as 6Li-40K mixture. We further investigate the interplay between the population and mass imbalances and report that at a fixed population imbalance, the BCS-BEC crossover in a Fermi-Fermi mixture would require a critical interaction (Uc) for the realization of the uniform superfluid state. The effect of imbalance in mass on the exotic Fulde-Ferrell-Larkin-Ovchinnikov superfluid phase has been probed in detail in terms of the thermodynamic and quasiparticle behavior of this phase. It has been observed that in spite of the s -wave symmetry of the pairing field, a nodal superfluid gap is realized in the Larkin-Ovchinnikov regime. Our results on the various thermal scales and regimes are expected to serve as benchmarks for the experimental observations on 6Li-40K mixture.

  15. Medicare Program; Inpatient Rehabilitation Facility Prospective Payment System for Federal Fiscal Year 2016. Final rule.

    PubMed

    2015-08-06

    This final rule updates the prospective payment rates for inpatient rehabilitation facilities (IRFs) for federal fiscal year (FY) 2016 as required by the statute. As required by section 1886(j)(5) of the Act, this rule includes the classification and weighting factors for the IRF PPS's case-mix groups and a description of the methodologies and data used in computing the prospective payment rates for FY 2016. This final rule also finalizes policy changes, including the adoption of an IRF-specific market basket that reflects the cost structures of only IRF providers, a 1-year phase-in of the revised wage index changes, a 3-year phase-out of the rural adjustment for certain IRFs, and revisions and updates to the quality reporting program (QRP).

  16. In Situ NAPL Modification for Contaminant Source-Zone Passivation, Mass Flux Reduction, and Remediation

    NASA Astrophysics Data System (ADS)

    Mateas, D. J.; Tick, G.; Carroll, K. C.

    2016-12-01

    A remediation method was developed to reduce the aqueous solubility and mass-flux of target NAPL contaminants through the in-situ creation of a NAPL mixture source-zone. This method was tested in the laboratory using equilibrium batch tests and two-dimensional flow-cell experiments. The creation of two different NAPL mixture source zones were tested in which 1) volumes of relatively insoluble n-hexadecane (HEX) or vegetable oil (VO) were injected into a trichloroethene (TCE) contaminant source-zone; and 2) pre-determined HEX-TCE and VO-TCE mixture ratio source zones were emplaced into the flow cell prior to water flushing. NAPL-aqueous phase batch tests were conducted prior to the flow-cell experiments to evaluate the effects of various NAPL mixture ratios on equilibrium aqueous-phase concentrations of TCE and toluene (TOL) and to design optimal NAPL (HEX or VO) injection volumes for the flow-cell experiments. Uniform NAPL mixture source-zones were able to quickly decrease contaminant mass-flux, as demonstrated by the emplaced source-zone experiments. The success of the HEX and VO injections to also decrease mass flux was dependent on the ability of these injectants to homogeneously mix with TCE source-zone. Upon injection, both HEX and VO migrated away from the source-zone, to some extent. However, the lack of a steady-state dissolution phase and the inefficient mass-flux-reduction/mass-removal behavior produced after VO injection suggest that VO was more effective than HEX for mixing and partitioning within the source-zone region to form a more homogeneous NAPL mixture with TCE. VO appears to be a promising source-zone injectant-NAPL due to its negligible long-term toxicity and lower mobilization potential.

  17. Effect of Channel Geometry and Properties of a Vapor-Gas Mixture on Volume Condensation in a Flow through a Nozzle

    NASA Astrophysics Data System (ADS)

    Sidorov, A. A.; Yastrebov, A. K.

    2018-01-01

    A method of direct numerical solution of the kinetic equation for the droplet size distribution function was used for the numerical investigation of volume condensation in a supersonic vapor-gas flow. Distributions of temperature for the gas phase and droplets, degree of supersaturation, pressure, fraction of droplets by weight, the number of droplets per unit mass, and of the nucleation rate along the channel were determined. The influence of nozzle geometry, mixture composition, and temperature dependence of the mixture properties on the investigated process was evaluated. It has been found that the nozzle divergence angle determines the vapor-gas mixture expansion rate: an increase in the divergence angle enhances the temperature decrease rate and the supersaturation degree raise rate. With an increase or decrease in the partial pressure of incondensable gas, the droplet temperature approaches the gas phase temperature or the saturation temperature at the partial gas pressure, respectively. A considerable effect of the temperature dependence of the liquid surface tension and properties on gas phase parameters and the integral characteristics of condensation aerosol was revealed. However, the difference in results obtained with or without considering the temperature dependence of evaporation heat is negligible. The predictions are compared with experimental data of other investigations for two mixtures: a mixture of heavy water vapor with nitrogen (incondensable gas) or n-nonane vapor with nitrogen. The predictions agree quite well qualitatively and quantitatively with the experiment. The comparison of the predictions with numerical results from other publications obtained using the method of moments demonstrates the usefulness of the direct numerical solution method and the method of moments in a wide range of input data.

  18. Closed compact Taylor's droplets in a phase-separated lamellar-sponge mixture under shear flow

    NASA Astrophysics Data System (ADS)

    Courbin, L.; Cristobal, G.; Rouch, J.; Panizza, P.

    2001-09-01

    We have studied by optical microscopy, small-angle light scattering, and rheology, the behavior under shear flow of a phase-separated lamellar-sponge (Lα - L3) ternary mixture. We observe in the Lα-rich region (ΦLα > 80%) the existence of a Newtonian assembly made of closed compact monodisperse lamellar droplets immersed in the sponge phase. Contrary to the classical onion glassy texture obtained upon shearing Lα phases, the droplet size scales herein as dot gamma-1, the inverse of the shear rate. This result is in good agreement with Taylor's picture. Above a critical shear rate, dot gammac, the droplets organize to form a single colloidal crystal whose lattice size varies as dot gamma-1/3. To the memory of Tess Melissa P.

  19. The effect of hydrostatic pressure on model membrane domain composition and lateral compressibility.

    PubMed

    Barriga, H M G; Law, R V; Seddon, J M; Ces, O; Brooks, N J

    2016-01-07

    Phase separation in ternary model membranes is known to occur over a range of temperatures and compositions and can be induced by increasing hydrostatic pressure. We have used small angle X-ray scattering (SAXS) to study phase separation along pre-determined tie lines in dioleoylphosphatidylcholine (DOPC), dipalmitoylphosphatidylcholine (DPPC) and cholesterol (CHOL) mixtures. We can unequivocally distinguish the liquid ordered (Lo) and liquid disordered (Ld) phases in diffraction patterns from biphasic mixtures and compare their lateral compressibility. The variation of tie line endpoints with increasing hydrostatic pressure was determined, at atmospheric pressure and up to 100 MPa. We find an extension and shift of the tie lines towards the DOPC rich region of the phase diagram at increased pressure, this behaviour differs slightly from that reported for decreasing temperature.

  20. Mapping coexistence lines via free-energy extrapolation: application to order-disorder phase transitions of hard-core mixtures.

    PubMed

    Escobedo, Fernando A

    2014-03-07

    In this work, a variant of the Gibbs-Duhem integration (GDI) method is proposed to trace phase coexistence lines that combines some of the advantages of the original GDI methods such as robustness in handling large system sizes, with the ability of histogram-based methods (but without using histograms) to estimate free-energies and hence avoid the need of on-the-fly corrector schemes. This is done by fitting to an appropriate polynomial function not the coexistence curve itself (as in GDI schemes) but the underlying free-energy function of each phase. The availability of a free-energy model allows the post-processing of the simulated data to obtain improved estimates of the coexistence line. The proposed method is used to elucidate the phase behavior for two non-trivial hard-core mixtures: a binary blend of spheres and cubes and a system of size-polydisperse cubes. The relative size of the spheres and cubes in the first mixture is chosen such that the resulting eutectic pressure-composition phase diagram is nearly symmetric in that the maximum solubility of cubes in the sphere-rich solid (∼20%) is comparable to the maximum solubility of spheres in the cube-rich solid. In the polydisperse cube system, the solid-liquid coexistence line is mapped out for an imposed Gaussian activity distribution, which produces near-Gaussian particle-size distributions in each phase. A terminal polydispersity of 11.3% is found, beyond which the cubic solid phase would not be stable, and near which significant size fractionation between the solid and isotropic phases is predicted.

  1. The use of used automobile tyres in a partitioning bioreactor for the biodegradation of xenobiotic mixtures.

    PubMed

    Tomeia, M Concetta; Angeluccia, Domenica Mosca; Daugulis, Andrew J

    2014-01-01

    Waste tyres were utilized as the sorption phase in a two-phase partitioning bioreactor (TPPB) for the biodegradation of a binary mixture of 2,4-dichlorophenol (DCP) and 4-nitrophenol (4NP). These compounds are extensively used in the chemical industry and are found in many industrial effluents. Although both compounds are toxic and are on the EPA list of priority pollutants, a higher inhibitory effect on microorganisms is exerted by DCP, and our experimental tests were focused on strategies to reduce its negative impact on microbial activity. Sorption/desorption tests for the DCP-4NP mixture were first performed to verify the related uptake/release rates by the tyres, which showed that the tyres had a higher capacity for DCP uptake and practically no affinity for 4NP. An acclimatized mixed culture was then utilized in a sequencing batch reactor (SBR) operated in conventional and two-phase mode. For the binary DCP-4NP mixture a significant reduction in DCP toxicity, and a concomitant enhancement in substrate removal efficiency (up to 83%for DCP and approximate 100% for 4NP) were clearly seen for the TPPB operated with 10% and 15% v/v tyres, for influent concentrations up to 180 mg/L, with practically negligible biodegradation in the conventional single phase reactor. The long-term utilization of tyres was confirmed at an influent loading of 180 mg/L with a test performed over 20 work cycles showing an improvement of the removal performance for both compounds.

  2. Experimental study of the heated contact line region for a pure fluid and binary fluid mixture in microgravity.

    PubMed

    Nguyen, Thao T T; Kundan, Akshay; Wayner, Peter C; Plawsky, Joel L; Chao, David F; Sicker, Ronald J

    2017-02-15

    Understanding the dynamics of phase change heat and mass transfer in the three-phase contact line region is a critical step toward improving the efficiency of phase change processes. Phase change becomes especially complicated when a fluid mixture is used. In this paper, a wickless heat pipe was operated on the International Space Station (ISS) to study the contact line dynamics of a pentane/isohexane mixture. Different interfacial regions were identified, compared, and studied. Using high resolution (50×), interference images, we calculated the curvature gradient of the liquid-vapor interface at the contact line region along the edges of the heat pipe. We found that the curvature gradient in the evaporation region increases with increasing heat flux magnitude and decreasing pentane concentration. The curvature gradient for the mixture case is larger than for the pure pentane case. The difference between the two cases increases as pentane concentration decreases. Our data showed that the curvature gradient profile within the evaporation section is separated into two regions with the boundary between the two corresponding to the location of a thick, liquid, "central drop" region at the point of maximum internal local heat flux. We found that the curvature gradients at the central drop and on the flat surfaces where condensation begins are one order of magnitude smaller than the gradients in the corner meniscus indicating the driving forces for fluid flow are much larger in the corners. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Microstructural observations in rapidly-solidified and heat-treated Ni sub 3 Al-Cr alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carro, G.; Flanagan, W.F.

    1992-01-01

    In this paper , the microstructural development following heat treatments of several rapidly-solidified Ni{sub 3}Al-Cr and Ni{sub 3}Al-Cr-B alloys is presented. Depending on composition, the as-solidified samples were either 100% {gamma} phase-in the form of fine anti-phase domains (APD)-or a mixture of {gamma} (APDs) and {beta} phases. Upon annealing, the as-solidified microstructures transform to either APD-free {gamma}or mixtures of {gamma}and {gamma}{prime} phases. For those compositions where the quenched microstructures were 100{gamma}{prime} it was observed that APD coarsening followed conventional grain-growth kinetics, but when {gamma} phase precipitated on the APD boundaries the rate constant changed abruptly while the time exponent remainedmore » unaffected. It was also found that alloys containing critical amounts of chromium and boron are susceptible to precipitation of the boride Cr{sub 5}B{sub 3}.« less

  4. Incorporation of ionic liquid into porous polymer monoliths to enhance the separation of small molecules in reversed-phase high-performance liquid chromatography.

    PubMed

    Wang, Jiafei; Bai, Ligai; Wei, Zhen; Qin, Junxiao; Ma, Yamin; Liu, Haiyan

    2015-06-01

    An ionic liquid was incorporated into the porous polymer monoliths to afford stationary phases with enhanced chromatographic performance for small molecules in reversed-phase high-performance liquid chromatography. The effect of the ionic liquid in the polymerization mixture on the performance of the monoliths was studied in detail. While monoliths without ionic liquid exhibited poor resolution and low efficiency, the addition of ionic liquid to the polymerization mixture provides highly increased resolution and high efficiency. The chromatographic performances of the monoliths were demonstrated by the separations of various small molecules including aromatic hydrocarbons, isomers, and homologues using a binary polar mobile phase. The present column efficiency reached 27 000 plates/m, which showed that the ionic liquid monoliths are alternative stationary phases in the separation of small molecules by high-performance liquid chromatography. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Structural transformations, composition anomalies and a dramatic collapse of linear polymer chains in dilute ethanol-water mixtures.

    PubMed

    Banerjee, Saikat; Ghosh, Rikhia; Bagchi, Biman

    2012-03-29

    Water-ethanol mixtures exhibit many interesting anomalies, such as negative excess partial molar volume of ethanol, excess sound absorption coefficient at low concentrations, and positive deviation from Raoult's law for vapor pressure, to mention a few. These anomalies have been attributed to different, often contradictory origins, but a quantitative understanding is still lacking. We show by computer simulation and theoretical analyses that these anomalies arise from the sudden emergence of a bicontinuous phase that occurs at a relatively low ethanol concentration of x(eth) ≈ 0.06-0.10 (that amounts to a volume fraction of 0.17-0.26, which is a significant range!). The bicontinuous phase is formed by aggregation of ethanol molecules, resulting in a weak phase transition whose nature is elucidated. We find that the microheterogeneous structure of the mixture gives rise to a pronounced nonmonotonic composition dependence of local compressibility and nonmonotonic dependence in the peak value of the radial distribution function of ethyl groups. A multidimensional free energy surface of pair association is shown to provide a molecular explanation of the known negative excess partial volume of ethanol in terms of parallel orientation and hence better packing of the ethyl groups in the mixture due to hydrophobic interactions. The energy distribution of the ethanol molecules indicates additional energy decay channels that explain the excess sound attenuation coefficient in aqueous alcohol mixtures. We studied the dependence of the solvation of a linear polymer chain on the composition of the water-ethanol solvent. We find that there is a sudden collapse of the polymer at x(eth) ≈ 0.05-a phenomenon which we attribute to the formation of the microheterogeneous structures in the binary mixture at low ethanol concentrations. Together with recent single molecule pulling experiments, these results provide new insight into the behavior of polymer chain and foreign solutes, such as enzymes, in aqueous binary mixtures.

  6. Predictions for the Dirac C P -violating phase from sum rules

    NASA Astrophysics Data System (ADS)

    Delgadillo, Luis A.; Everett, Lisa L.; Ramos, Raymundo; Stuart, Alexander J.

    2018-05-01

    We explore the implications of recent results relating the Dirac C P -violating phase to predicted and measured leptonic mixing angles within a standard set of theoretical scenarios in which charged lepton corrections are responsible for generating a nonzero value of the reactor mixing angle. We employ a full set of leptonic sum rules as required by the unitarity of the lepton mixing matrix, which can be reduced to predictions for the observable mixing angles and the Dirac C P -violating phase in terms of model parameters. These sum rules are investigated within a given set of theoretical scenarios for the neutrino sector diagonalization matrix for several known classes of charged lepton corrections. The results provide explicit maps of the allowed model parameter space within each given scenario and assumed form of charged lepton perturbations.

  7. Method for producing catalysis from coal

    DOEpatents

    Farcasiu, Malvina; Derbyshire, Frank; Kaufman, Phillip B.; Jagtoyen, Marit

    1998-01-01

    A method for producing catalysts from coal is provided comprising mixing an aqueous alkali solution with the coal, heating the aqueous mixture to treat the coal, drying the now-heated aqueous mixture, reheating the mixture to form carbonized material, cooling the mixture, removing excess alkali from the carbonized material, and recovering the carbonized material, wherein the entire process is carried out in controlled atmospheres, and the carbonized material is a hydrocracking or hydrodehalogenation catalyst for liquid phase reactions. The invention also provides for a one-step method for producing catalysts from coal comprising mixing an aqueous alkali solution with the coal to create a mixture, heating the aqueous mixture from an ambient temperature to a predetermined temperature at a predetermined rate, cooling the mixture, and washing the mixture to remove excess alkali from the treated and carbonized material, wherein the entire process is carried out in a controlled atmosphere.

  8. Method for producing catalysts from coal

    DOEpatents

    Farcasiu, M.; Derbyshire, F.; Kaufman, P.B.; Jagtoyen, M.

    1998-02-24

    A method for producing catalysts from coal is provided comprising mixing an aqueous alkali solution with the coal, heating the aqueous mixture to treat the coal, drying the now-heated aqueous mixture, reheating the mixture to form carbonized material, cooling the mixture, removing excess alkali from the carbonized material, and recovering the carbonized material, wherein the entire process is carried out in controlled atmospheres, and the carbonized material is a hydrocracking or hydrodehalogenation catalyst for liquid phase reactions. The invention also provides for a one-step method for producing catalysts from coal comprising mixing an aqueous alkali solution with the coal to create a mixture, heating the aqueous mixture from an ambient temperature to a predetermined temperature at a predetermined rate, cooling the mixture, and washing the mixture to remove excess alkali from the treated and carbonized material, wherein the entire process is carried out in a controlled atmosphere. 1 fig.

  9. Validation and refinement of mixture volumetric material properties identified in superpave monitoring project II : phase II.

    DOT National Transportation Integrated Search

    2015-02-01

    This study was initiated to validate and refine mixture volumetric material properties identified in the : Superpave Monitoring Project II. It has been found that differences in performance are primarily controlled : by differences in gradation and r...

  10. Bayesian sample size calculations in phase II clinical trials using a mixture of informative priors.

    PubMed

    Gajewski, Byron J; Mayo, Matthew S

    2006-08-15

    A number of researchers have discussed phase II clinical trials from a Bayesian perspective. A recent article by Mayo and Gajewski focuses on sample size calculations, which they determine by specifying an informative prior distribution and then calculating a posterior probability that the true response will exceed a prespecified target. In this article, we extend these sample size calculations to include a mixture of informative prior distributions. The mixture comes from several sources of information. For example consider information from two (or more) clinicians. The first clinician is pessimistic about the drug and the second clinician is optimistic. We tabulate the results for sample size design using the fact that the simple mixture of Betas is a conjugate family for the Beta- Binomial model. We discuss the theoretical framework for these types of Bayesian designs and show that the Bayesian designs in this paper approximate this theoretical framework. Copyright 2006 John Wiley & Sons, Ltd.

  11. Start-up, performance and optimization of a compost biofilter treating gas-phase mixture of benzene and toluene.

    PubMed

    Rene, Eldon R; Kar, Saurajyoti; Krishnan, Jagannathan; Pakshirajan, K; López, M Estefanía; Murthy, D V S; Swaminathan, T

    2015-08-01

    The performance of a compost biofilter inoculated with mixed microbial consortium was optimized for treating a gas-phase mixture of benzene and toluene. The biofilter was acclimated to these VOCs for a period of ∼18d. The effects of concentration and flow rate on the removal efficiency (RE) and elimination capacity (EC) were investigated by varying the inlet concentration of benzene (0.12-0.95g/m(3)), toluene (0.14-1.48g/m(3)) and gas-flow rate (0.024-0.072m(3)/h). At comparable loading rates, benzene removal in the mixture was reduced in the range of 6.6-41% in comparison with the individual benzene degradation. Toluene removal in mixture was even more affected as observed from the reductions in REs, ranging from 18.4% to 76%. The results were statistically interpreted by performing an analysis of variance (ANOVA) to elucidate the main and interaction effects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Decision net, directed graph, and neural net processing of imaging spectrometer data

    NASA Technical Reports Server (NTRS)

    Casasent, David; Liu, Shiaw-Dong; Yoneyama, Hideyuki; Barnard, Etienne

    1989-01-01

    A decision-net solution involving a novel hierarchical classifier and a set of multiple directed graphs, as well as a neural-net solution, are respectively presented for large-class problem and mixture problem treatments of imaging spectrometer data. The clustering method for hierarchical classifier design, when used with multiple directed graphs, yields an efficient decision net. New directed-graph rules for reducing local maxima as well as the number of perturbations required, and the new starting-node rules for extending the reachability and reducing the search time of the graphs, are noted to yield superior results, as indicated by an illustrative 500-class imaging spectrometer problem.

  13. Thermal Infrared Spectroscopy and Modeled Mineralogy of Fine-Grained Mineral Mixtures: Implications for Martian Surface Mineralogy

    NASA Astrophysics Data System (ADS)

    Rampe, E. B.; Kraft, M. D.; Sharp, T. G.; Michalski, J. R.

    2006-12-01

    Spectral data suggest that the Martian surface may be chemically altered. However, TES data show evidence for abundant primary glass, and Mini-TES data from MER Spirit in the Columbia Hills identify primary basaltic glass in rocks that are believed to be altered (Haskin et al., 2005, Ming et al., 2006, Wang et al., 2006). Debate over whether the primary glass identified spectrally may be interpreted as alteration products, such as clay minerals and/or amorphous silica coatings (Wyatt and McSween, 2002, Kraft et al., 2003), has focused on their spectral similarities (Koeppen and Hamilton, 2005). We suggest that some of the putative primary glass may be due to nonlinear spectral mixing of primary and secondary phases. We created physical mixtures made up of a primary phase (augite, andesine, or a 50:50 weight percent mixture of augite and andesine) and a secondary phase (montmorillonite clay or amorphous silica in 2.5, 5, 10, and 20 weight percent abundances) to test how secondary phases affect primary mineral thermal infrared spectra and modeled mineralogies. We found that the presence of small to moderate amounts of secondary material strongly affect modeled mineralogies, cause the false identification of primary glass in abundances as high as 40 volume percent, and report modeled plagioclase to pyroxene ratios that differ from actual ratios in the mixtures. These results are important for the surface mineralogy of Mars because surface type two (ST2), which may be altered, has the highest modeled plagioclase to pyroxene ratio. The presence of alteration material on Mars may cause the false identification or overestimation of primary glass in TES and Mini-TES data and may cause incorrect modeling of primary phases on Mars.

  14. "Self-Shaping" of Multicomponent Drops.

    PubMed

    Cholakova, Diana; Valkova, Zhulieta; Tcholakova, Slavka; Denkov, Nikolai; Smoukov, Stoyan K

    2017-06-13

    In our recent study we showed that single-component emulsion drops, stabilized by proper surfactants, can spontaneously break symmetry and transform into various polygonal shapes during cooling [ Denkov Nature 2015 , 528 , 392 - 395 ]. This process involves the formation of a plastic rotator phase of self-assembled oil molecules beneath the drop surface. The plastic phase spontaneously forms a frame of plastic rods at the oil drop perimeter which supports the polygonal shapes. However, most of the common substances used in industry appear as mixtures of molecules rather than pure substances. Here we present a systematic study of the ability of multicomponent emulsion drops to deform upon cooling. The observed trends can be summarized as follows: (1) The general drop-shape evolution for multicomponent drops during cooling is the same as with single-component drops; however, some additional shapes are observed. (2) Preservation of the particle shape upon freezing is possible for alkane mixtures with chain length difference Δn ≤ 4; for greater Δn, phase separation within the droplet is observed. (3) Multicomponent particles prepared from alkanes with Δn ≤ 4 plastify upon cooling due to the formation of a bulk rotator phase within the particles. (4) If a compound, which cannot induce self-shaping when pure, is mixed with a certain amount of a compound which induces self-shaping, then drops prepared from this mixture can also self-shape upon cooling. (5) Self-emulsification phenomena are also observed for multicomponent drops. In addition to the three recently reported mechanisms of self-emulsification [ Tcholakova Nat. Commun. 2017 , ( 8 ), 15012 ], a new (fourth) mechanism is observed upon freezing for alkane mixtures with Δn > 4. It involves disintegration of the particles due to a phase separation of alkanes upon freezing.

  15. Thermodynamic properties and energy characteristics of water+1-propanol

    NASA Astrophysics Data System (ADS)

    Alhasov, A. B.; Bazaev, A. R.; Bazaev, E. A.; Osmanova, B. K.

    2017-11-01

    By using own precise experimental data on p,ρ,T,x- relations differential and integral thermodynamic properties of water+1-propanol homogeneous binary mixtures (0.2, 0.5, and 0.8 mole fractions of 1-propanol) were obtained in one phase (liquid, vapor) region, along coexistence curve phase, at critical and supercritical regions of parameters of state. These values were obtained in the regions of temperatures 373.15 - 673.15 K, densities 3 - 820 kg/m3 and pressures up to 50 MPa. It is found that shape of p,ρ,T,- dependences of water+1-propanol mixtures in investigated range of temperatures is the same with those of pure liquid, but the pressure of the mixture is higher than those of pure water or 1-propanol. The critical line of water+1-propanol binary mixtures as opposed to those of water+methanol and water+ethanol mixtures has convex shape. It is ascertained that using water+1-propanol mixture (0.2 mol.fraction of 1-propanol) instead of pure water allows to decrease lower limit of operating temperatures to 50 K, to increase effective coefficient of efficiency and partially unify thermal mechanical equipment of power plant. Our comparative energy analysis of cycles of steam-turbine plant on water and water+1- propanol mixtures, carried out at the same thermobaric conditionsand showed that thermal coefficient of efficiencyofcycle of steam-turbine plant onwater+1-propanol mixture (0.2 mol.fraction of 1-propanol) is higher than those of pure water.Thus and so we made a conclusion about usability of water+1-propanol mixture (0.2 mole fraction of 1-propanol) as a working substance of steam-turbine plant cycle.

  16. Solid catalyzed isoparaffin alkylation at supercritical fluid and near-supercritical fluid conditions

    DOEpatents

    Ginosar, Daniel M.; Fox, Robert V.; Kong, Peter C.

    2000-01-01

    This invention relates to an improved method for the alkylation reaction of isoparaffins with olefins over solid catalysts including contacting a mixture of an isoparaffin, an olefin and a phase-modifying material with a solid acid catalyst member under alkylation conversion conditions at either supercritical fluid, or near-supercritical fluid conditions, at a temperature and a pressure relative to the critical temperature(T.sub.c) and the critical pressure(P.sub.c) of the reaction mixture. The phase-modifying phase-modifying material is employed to promote the reaction's achievement of either a supercritical fluid state or a near-supercritical state while simultaneously allowing for decreased reaction temperature and longer catalyst life.

  17. Nanostructures produced by phase-separation during growth of (III-V).sub.1-x(IV.sub.2).sub.x alloys

    DOEpatents

    Norman, Andrew G [Evergreen, CO; Olson, Jerry M [Lakewood, CO

    2007-06-12

    Nanostructures (18) and methods for production thereof by phase separation during metal organic vapor-phase epitaxy (MOVPE). An embodiment of one of the methods may comprise providing a growth surface in a reaction chamber and introducing a first mixture of precursor materials into the reaction chamber to form a buffer layer (12) thereon. A second mixture of precursor materials may be provided into the reaction chamber to form an active region (14) on the buffer layer (12), wherein the nanostructure (18) is embedded in a matrix (16) in the active region (14). Additional steps are also disclosed for preparing the nanostructure (18) product for various applications.

  18. Evaluation of nicotinamide microemulsion on the skin penetration enhancement.

    PubMed

    Boonme, Prapaporn; Boonthongchuay, Chalida; Wongpoowarak, Wibul; Amnuaikit, Thanaporn

    2016-01-01

    This study purposed to evaluate a microemulsion containing nicotinamide for its characteristics, stability, and skin penetration and retention comparing with a solution of nicotinamide in 2:1 mixture of water and isopropyl alcohol (IPA). The microemulsion system was composed of 1:1 mixture of Span80 and Tween80 as a surfactant mixture, isopropyl palmitate (IPP) as an oil phase, and 2:1 mixture of water and IPA as an aqueous phase. Nicotinamide microemulsion was prepared by dissolving the active in the aqueous phase before simply mixing with the other components. It was determined for its characteristics and stability under various conditions. The skin penetration and retention studies of nicotinamide microemulsion and solution were performed by modified Franz diffusion cells, using newborn pig skin as the membrane. The results showed that nicotinamide microemulsion could be obtained as clear yellowish liquid, was water-in-oil (w/o) type, possessed Newtonian flow, and exhibited physicochemical stability when kept at 4 °C and room temperature (≈30 ± 2 °C) during 3 months. From the skin penetration data, the microemulsion could enhance the skin penetration of nicotinamide comparing with the solution. Additionally, nicotinamide microemulsion could provide much higher amount of skin retention than that of skin penetration, resulting in suitability for a cosmeceutical product.

  19. 78 FR 34693 - Self-Regulatory Organizations; New York Stock Exchange LLC; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ... Proposed Rule Change To Amend Rule 1000 To Revise the Manner by Which the Exchange Will Phase Out the... ``Commission'') the proposed rule change as described in Items I and II below, which Items have been prepared... the proposed rule change from interested persons. \\1\\ 15 U.S.C. 78s(b)(1). \\2\\ 15 U.S.C. 78a. \\3\\ 17...

  20. Phase-transition oscillations induced by a strongly focused laser beam

    NASA Astrophysics Data System (ADS)

    Devailly, Clémence; Crauste-Thibierge, Caroline; Petrosyan, Artyom; Ciliberto, Sergio

    2015-11-01

    We report the observation of a surprising phenomenon consisting in a oscillating phase transition which appears in a binary mixture when this is enlightened by a strongly focused infrared laser beam. The mixture is poly-methyl-meth-acrylate (PMMA)-3-octanone, which has an upper critical solution temperature at Tc=306.6 K and volume fraction ϕc=12.8 % [Crauste et al., arXiv:1310.6720, 2013]. We describe the dynamical properties of the oscillations, which are produced by a competition between various effects: the local accumulation of PMMA produced by the laser beam, thermophoresis, and nonlinear diffusion. We show that the main properties of this kind of oscillations can be reproduced in the Landau theory for a binary mixture in which a local driving mechanism, simulating the laser beam, is introduced.

  1. Universal adsorption at the vapor-liquid interface near the consolute point

    NASA Technical Reports Server (NTRS)

    Schmidt, James W.

    1990-01-01

    The ellipticity of the vapor-liquid interface above mixtures of methylcyclohexane (C7H14) and perfluoromethylcyclohexane (C7F14) has been measured near the consolute point T(c) = 318.6 K. The data are consistent with a model of the interface that combines a short-ranged density-vs height profile in the vapor phase with a much longer-ranged composition-versus-height profile in the liquid. The value of the free parameter produced by fitting the model to the data is consistent with results from two other simple mixtures and a mixture of a polymer and solvent. This experiment combines precision ellipsometry of the vapor-liquid interface with in situ measurements of refractive indices of the liquid phases, and it precisely locates the consolute point.

  2. Coarse-grained modelling of triglyceride crystallisation: a molecular insight into tripalmitin tristearin binary mixtures by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Pizzirusso, Antonio; Brasiello, Antonio; De Nicola, Antonio; Marangoni, Alejandro G.; Milano, Giuseppe

    2015-12-01

    The first simulation study of the crystallisation of a binary mixture of triglycerides using molecular dynamics simulations is reported. Coarse-grained models of tristearin (SSS) and tripalmitin (PPP) molecules have been considered. The models have been preliminarily tested in the crystallisation of pure SSS and PPP systems. Two different quenching procedures have been tested and their performances have been analysed. The structures obtained from the crystallisation procedures show a high orientation order and a high content of molecules in the tuning fork conformation, comparable with the crystalline α phase. The behaviour of melting temperatures for the α phase of the mixture SSS/PPP obtained from the simulations is in qualitative agreement with the behaviour that was experimentally determined.

  3. 76 FR 40850 - Glymes; Proposed Significant New Use Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-12

    ... and diglyme (Refs. 1, 2, 3, and 4), which indicated that it appeared these two chemical substances are... defined at 40 CFR 721.3 as: ``a chemical substance that is directly, or as part of a mixture, sold or made... around a school, or in recreation.'' While hazard data are only currently available for 3 of the 14...

  4. 78 FR 50313 - Final Additional Airworthiness Design Standards: Night Visual Flight Rules (VFR) Under the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-19

    ... aeroplanes, each power or thrust control must be designed so that if the control separates at the engine fuel... control toward lean or shut-off position. (b) Each manual engine mixture control must be designed so that... any generator; and (5) Each generator must have an overvoltage control designed and installed to...

  5. Final Rule for Revised Carbon Monoxide (CO) Standard for Class I and II Nonhandheld New Nonroad Phase 1 Small Spark-Ignition Engines

    EPA Pesticide Factsheets

    Rule published November 13, 1996, addressing the CO emission difference between oxygenated and nonoxygenated fuels that was not reflected when the Agency previously set the CO standard for these nonhandheld engines in a final rule published July 3, 1995.

  6. 76 FR 44645 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-26

    ... Change To Amend FINRA Rule 9251 to Explicitly Protect From Discovery Those Documents That Federal Law... to amend FINRA Rule 9251 to explicitly protect from discovery those documents that federal law... produce to respondents during the discovery phase of a disciplinary proceeding. The rule also explicitly...

  7. Experimental thermal conductivity, thermal diffusivity, and specific heat values for mixtures of nitrogen, oxygen, and argon

    NASA Technical Reports Server (NTRS)

    Perkins, R. A.; Cieszkiewicz, M. T.

    1991-01-01

    Experimental measurements of thermal conductivity and thermal diffusivity obtained with a transient hot-wire apparatus are reported for three mixtures of nitrogen, oxygen, and argon. Values of the specific heat, Cp, are calculated from these measured values and the density calculated with an equation of state. The measurements were made at temperatures between 65 and 303 K with pressures between 0.1 and 70 MPa. The data cover the vapor, liquid, and supercritical gas phases for the three mixtures. The total reported points are 1066 for the air mixture (78.11 percent nitrogen, 20.97 percent oxygen, and 0.92 percent argon), 1058 for the 50 percent nitrogen, 50 percent oxygen mixture, and 864 for the 25 percent nitrogen, 75 oxygen mixture. Empirical thermal conductivity correlations are provided for the three mixtures.

  8. Metastable sound speed in gas-liquid mixtures

    NASA Technical Reports Server (NTRS)

    Bursik, J. W.; Hall, R. M.

    1979-01-01

    A new method of calculating speed of sound for two-phase flow is presented. The new equation assumes no phase change during the propagation of an acoustic disturbance and assumes that only the total entropy of the mixture remains constant during the process. The new equation predicts single-phase values for the speed of sound in the limit of all gas or all liquid and agrees with available two-phase, air-water sound speed data. Other expressions used in the two-phase flow literature for calculating two-phase, metastable sound speed are reviewed and discussed. Comparisons are made between the new expression and several of the previous expressions -- most notably a triply isentropic equation as used, a triply isentropic equation as used, among others, by Karplus and by Wallis. Appropriate differences are pointed out and a thermodynamic criterion is derived which must be satisfied in order for the triply isentropic expression to be thermodynamically consistent. This criterion is not satisfied for the cases examined, which included two-phase nitrogen, air-water, two-phase parahydrogen, and steam-water. Consequently, the new equation derived is found to be superior to the other equations reviewed.

  9. Adhesive phase separation at the dentin interface under wet bonding conditions.

    PubMed

    Spencer, Paulette; Wang, Yong

    2002-12-05

    Under in vivo conditions, there is little control over the amount of water left on the tooth and, thus, there is the danger of leaving the dentin surface so wet that the bonding resin undergoes physical separation into hydrophobic and hydrophilic-rich phases. The purpose of this study was to investigate phase separation in 2,2-bis[4(2-hydroxy-3-methacryloyloxy-propyloxy)-phenyl] propane (BisGMA)-based adhesive using molecular microanalysis and to examine the effect of phase separation on the structural characteristics of the hybrid layer. Model BisGMA/HEMA (hydroxyethl methacrylate) mixtures with/without ethanol and commercial BisGMA-based adhesive (Single Bond) were combined with water at concentrations from 0 to 50 vol%. Macrophase separation in the BisGMA/HEMA/water mixtures was detected using cloud point measurements. In parallel with these measurements, the BisGMA/HEMA and adhesive/water mixtures were cast as films and polymerized. Molecular structure was recorded from the distinct features in the phase-separated adhesive using confocal Raman microspectroscopy (CRM). Human dentin specimens treated with Single Bond were analyzed with scanning electron microscopy (SEM) and CRM mapping across the dentin/adhesive interface. The model BisGMA/HEMA mixtures with ethanol and the commercial BisGMA-based adhesive experienced phase separation at approximately 25 vol% water. Raman spectra collected from the phase-separated adhesive indicated that the composition of the particles and surrounding matrix material was primarily BisGMA and HEMA, respectively. Based on SEM analysis, there was substantial porosity at the adhesive interface with dentin. Micro-Raman spectral analysis of the dentin/adhesive interface indicates that the contribution from the BisGMA component decreases by nearly 50% within the first micrometer. The morphologic results in corroboration with the spectroscopic data suggest that as a result of adhesive phase separation the hybrid layer is not an impervious 3-dimensional collagen/polymer network but a porous web characterized by hydrophobic BisGMA-rich particles distributed in a hydrophilic HEMA-rich matrix. Copyright 2002 Wiley Periodicals, Inc.

  10. Vaporization thermodynamic studies by high-temperature mass spectrometry on some three-phase regions over the MnO-TeO2 binary line in the Mn-Te-O ternary system.

    PubMed

    Narasimhan, T S Lakshmi; Sai Baba, M; Viswanathan, R

    2006-12-28

    Knudsen effusion mass spectrometric measurements have been performed in the temperature range of 850-950 K over four three-phase mixtures, each phase mixture having at least one phase lying on the MnO-TeO2 binary line of the Mn-Te-O phase diagram, and the rest of the phases lying above this binary line. The three-phase mixtures investigated are Mn3O4 + MnO + Mn6Te5O16; Mn3O4 + Mn6Te5O16 + MnTeO3; Mn3O4 + Mn3TeO6 + MnTeO3; and Mn3TeO6 + MnTeO3 + Mn2Te3O8. The vapor pressures of the gaseous species TeO2, TeO, and Te2 over these three-phase mixtures were measured, and various heterogeneous solid-gas reactions were evaluated along with the homogeneous gas-phase reaction TeO2(g) + 0.5Te2(g) = 2 TeO(g). The enthalpy and Gibbs free energy of formation of the four ternary Mn-Te-O phases were deduced at T = 900 K. These values (in kJ.mol-1), along with the estimated uncertainties in them are Delta(f)H(o)m = 4150 +/- 19, 752 +/- 11, 1710 +/- 11, 1924 +/- 40, and Delta(f)G(o)m= 2835 +/- 28, 511 +/- 11, 1254 +/- 19, 1238 +/- 38, for Mn6Te5O16, MnTeO3, Mn3TeO6, and Mn2Te3O8, respectively. A thermochemical assessment was made to examine the conditions under which the ternary Mn-Te-O phases could be formed on a stainless steel clad of mixed-oxide-fueled (MO2; M = U + Pu) fast breeder nuclear reactors. The phase Mn3TeO6 could be formed when the fuel is even slightly hyperstoichiometric (O/M = 2.0002) and the phase Mn6Te5O16 could also be formed when O/M = 2.0004. The threshold tellurium potential for the formation of Mn3TeO6 is higher than that for MnTe0.80 and CrTe1.10, but is comparable to that for MoTe1.10, and even lower than that for FeTe0.81 or NiTe0.63.

  11. Construction of Joule Thomson inversion curves for mixtures using equation of state

    NASA Astrophysics Data System (ADS)

    Patankar, A. S.; Atrey, M. D.

    2017-02-01

    The Joule-Thomson effect is at the heart of Joule-Thomson cryocoolers and gas liquefaction cycles. The effective harnessing of this phenomenon necessitates the knowledge of Joule-Thomson coefficient and the inversion curve. When the working fluid is a mixture, (in mix refrigerant Joule-Thomson cryocooler, MRJT) the phase diagrams, equations of state and inversion curves of multi-component systems become important. The lowest temperature attainable by such a cryocooler depends on the inversion characteristics of the mixture used. In this work the construction of differential Joule-Thomson inversion curves of mixtures using Redlich-Kwong, Soave-Redlich-Kwong and Peng-Robinson equations of state is investigated assuming single phase. It is demonstrated that inversion curves constructed for pure fluids can be improved by choosing an appropriate value of acentric factor. Inversion curves are used to predict maximum inversion temperatures of multicomponent systems. An application where this information is critical is a two-stage J-T cryocooler using a mixture as the working fluid, especially for the second stage. The pre-cooling temperature that the first stage is required to generate depends on the maximum inversion temperature of the second stage working fluid.

  12. Phase Diagram in a Random Mixture of Two Antiferromagnets with Competing Spin Anisotropies. I

    NASA Astrophysics Data System (ADS)

    Someya, Yoshiko

    1981-12-01

    The phase diagram of a random mixture of two antiferromagnets with competing spin anisotropies (A1-xBx) has been analyzed by extending the theory of Matsubara and Inawashiro, and Oguchi and Ishikawa. In the model assumed, the anisotropy energies are expressed by the anisotropic exchange interactions. According to this formulation, it has been shown that the concentration dependence of TN becomes a function of \\includegraphics{dummy.eps}, where P, Q=A, B; SP is a magnitude of P-spin, and JPQη is a η component of exchange integral between P- and Q-spin). Further, the phase boundary between an AF phase and an OAF (oblique antiferromagnetic) phase at T{=}0 K has been shown to be determined by α({\\equiv}SB/SA), if \\includegraphics{dummy.eps} are given. The obtained phase diagrams for Fe1-xCoxCl2, K2Mn1-xFexF4 and Fe1-xCoxCl2\\cdot2H2O are compared with the experimental ones.

  13. Sensor Fusion of Gaussian Mixtures for Ballistic Target Tracking in the Re-Entry Phase

    PubMed Central

    Lu, Kelin; Zhou, Rui

    2016-01-01

    A sensor fusion methodology for the Gaussian mixtures model is proposed for ballistic target tracking with unknown ballistic coefficients. To improve the estimation accuracy, a track-to-track fusion architecture is proposed to fuse tracks provided by the local interacting multiple model filters. During the fusion process, the duplicate information is removed by considering the first order redundant information between the local tracks. With extensive simulations, we show that the proposed algorithm improves the tracking accuracy in ballistic target tracking in the re-entry phase applications. PMID:27537883

  14. Pressurized feed-injection spray-forming apparatus

    DOEpatents

    Berry, R.A.; Fincke, J.R.; McHugh, K.M.

    1995-08-29

    A spray apparatus and method are disclosed for injecting a heated, pressurized liquid in a first predetermined direction into a pressurized gas flow that is flowing in a second predetermined direction, to provide for atomizing and admixing the liquid with the gas to form a two-phase mixture. A valve is also disposed within the injected liquid conduit to provide for a pulsed injection of the liquid and timed deposit of the atomized gas phase. Preferred embodiments include multiple liquid feed ports and reservoirs to provide for multiphase mixtures of metals, ceramics, and polymers. 22 figs.

  15. Pressurized feed-injection spray-forming apparatus

    DOEpatents

    Berry, Ray A.; Fincke, James R.; McHugh, Kevin M.

    1995-01-01

    A spray apparatus and method for injecting a heated, pressurized liquid in a first predetermined direction into a pressurized gas flow that is flowing in a second predetermined direction, to provide for atomizing and admixing the liquid with the gas to form a two-phase mixture. A valve is also disposed within the injected liquid conduit to provide for a pulsed injection of the liquid and timed deposit of the atomized gas phase. Preferred embodiments include multiple liquid feed ports and reservoirs to provide for multiphase mixtures of metals, ceramics, and polymers.

  16. Sensor Fusion of Gaussian Mixtures for Ballistic Target Tracking in the Re-Entry Phase.

    PubMed

    Lu, Kelin; Zhou, Rui

    2016-08-15

    A sensor fusion methodology for the Gaussian mixtures model is proposed for ballistic target tracking with unknown ballistic coefficients. To improve the estimation accuracy, a track-to-track fusion architecture is proposed to fuse tracks provided by the local interacting multiple model filters. During the fusion process, the duplicate information is removed by considering the first order redundant information between the local tracks. With extensive simulations, we show that the proposed algorithm improves the tracking accuracy in ballistic target tracking in the re-entry phase applications.

  17. Two-phase flows within systems with ambient pressure

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Braun, M. J.; Wheeler, R. L., III; Mullen, R. L.

    1985-01-01

    In systems where the design inlet and outlet pressures are maintained above the thermodynamic critical pressure, it is often assumed that two phase flows within the system cannot occur. Designers rely on this simple rule of thumb to circumvent problems associated with a highly compressible two phase flow occurring within the supercritical pressure system along with the uncertainties in rotordynamics, load capacity, heat transfer, fluid mechanics, and thermophysical property variations. The simple rule of thumb is adequate in many low power designs but is inadequate for high performance turbomachines and linear systems, where two phase regions can exist even though outlet pressure is greater than critical pressure. Rotordynamic-fluid-mechanic restoring forces depend on momentum differences, and those for a two phase zone can differ significantly from those for a single-phase zone. Using the Reynolds equation the angular velocity, eccentricity, geometry, and ambient conditions are varied to determine the point of two phase flow incipience.

  18. A Cognitive Modeling Approach to Strategy Formation in Dynamic Decision Making.

    PubMed

    Prezenski, Sabine; Brechmann, André; Wolff, Susann; Russwinkel, Nele

    2017-01-01

    Decision-making is a high-level cognitive process based on cognitive processes like perception, attention, and memory. Real-life situations require series of decisions to be made, with each decision depending on previous feedback from a potentially changing environment. To gain a better understanding of the underlying processes of dynamic decision-making, we applied the method of cognitive modeling on a complex rule-based category learning task. Here, participants first needed to identify the conjunction of two rules that defined a target category and later adapt to a reversal of feedback contingencies. We developed an ACT-R model for the core aspects of this dynamic decision-making task. An important aim of our model was that it provides a general account of how such tasks are solved and, with minor changes, is applicable to other stimulus materials. The model was implemented as a mixture of an exemplar-based and a rule-based approach which incorporates perceptual-motor and metacognitive aspects as well. The model solves the categorization task by first trying out one-feature strategies and then, as a result of repeated negative feedback, switching to two-feature strategies. Overall, this model solves the task in a similar way as participants do, including generally successful initial learning as well as reversal learning after the change of feedback contingencies. Moreover, the fact that not all participants were successful in the two learning phases is also reflected in the modeling data. However, we found a larger variance and a lower overall performance of the modeling data as compared to the human data which may relate to perceptual preferences or additional knowledge and rules applied by the participants. In a next step, these aspects could be implemented in the model for a better overall fit. In view of the large interindividual differences in decision performance between participants, additional information about the underlying cognitive processes from behavioral, psychobiological and neurophysiological data may help to optimize future applications of this model such that it can be transferred to other domains of comparable dynamic decision tasks.

  19. A Cognitive Modeling Approach to Strategy Formation in Dynamic Decision Making

    PubMed Central

    Prezenski, Sabine; Brechmann, André; Wolff, Susann; Russwinkel, Nele

    2017-01-01

    Decision-making is a high-level cognitive process based on cognitive processes like perception, attention, and memory. Real-life situations require series of decisions to be made, with each decision depending on previous feedback from a potentially changing environment. To gain a better understanding of the underlying processes of dynamic decision-making, we applied the method of cognitive modeling on a complex rule-based category learning task. Here, participants first needed to identify the conjunction of two rules that defined a target category and later adapt to a reversal of feedback contingencies. We developed an ACT-R model for the core aspects of this dynamic decision-making task. An important aim of our model was that it provides a general account of how such tasks are solved and, with minor changes, is applicable to other stimulus materials. The model was implemented as a mixture of an exemplar-based and a rule-based approach which incorporates perceptual-motor and metacognitive aspects as well. The model solves the categorization task by first trying out one-feature strategies and then, as a result of repeated negative feedback, switching to two-feature strategies. Overall, this model solves the task in a similar way as participants do, including generally successful initial learning as well as reversal learning after the change of feedback contingencies. Moreover, the fact that not all participants were successful in the two learning phases is also reflected in the modeling data. However, we found a larger variance and a lower overall performance of the modeling data as compared to the human data which may relate to perceptual preferences or additional knowledge and rules applied by the participants. In a next step, these aspects could be implemented in the model for a better overall fit. In view of the large interindividual differences in decision performance between participants, additional information about the underlying cognitive processes from behavioral, psychobiological and neurophysiological data may help to optimize future applications of this model such that it can be transferred to other domains of comparable dynamic decision tasks. PMID:28824512

  20. Spontaneous and Flow-Driven Interfacial Phase Change: Dynamics of Microemulsion Formation at the Pore Scale.

    PubMed

    Tagavifar, Mohsen; Xu, Ke; Jang, Sung Hyun; Balhoff, Matthew T; Pope, Gary A

    2017-11-14

    The dynamic behavior of microemulsion-forming water-oil-amphiphiles mixtures is investigated in a 2.5D micromodel. The equilibrium phase behavior of such mixtures is well-understood in terms of macroscopic phase transitions. However, what is less understood and where experimental data are lacking is the coupling between the phase change and the bulk flow. Herein, we study the flow of an aqueous surfactant solution-oil mixture in porous media and analyze the dependence of phase formation and spatial phase configurations on the bulk flow rate. We find that a microemulsion forms instantaneously as a boundary layer at the initial surface of contact between the surfactant solution and oil. The boundary layer is temporally continuous because of the imposed convection. In addition to the imposed flow, we observe spontaneous pulsed Marangoni flows that drag the microemulsion and surfactant solution into the oil stream, forming large (macro)emulsion droplets. The formation of the microemulsion phase at the interface distinguishes the situation from that of the more common Marangoni flow with only two phases present. Additionally, an emulsion forms via liquid-liquid nucleation or the Ouzo effect (i.e., spontaneous emulsification) at low flow rates and via mechanical mixing at high flow rates. With regard to multiphase flow, contrary to the common belief that the microemulsion is the wetting liquid, we observe that the minor oil phase wets the solid surface. We show that a layered flow pattern is formed because of the out-of-equilibrium phase behavior at high volumetric flow rates (order of 2 m/day) where advection is much faster than the diffusive interfacial mass transfer and transverse mixing, which promote equilibrium behavior. At lower flow rates (order of 30 cm/day), however, the dynamic and equilibrium phase behaviors are well-correlated. These results clearly show that the phase change influences the macroscale flow behavior.

Top