Science.gov

Sample records for phase rotator system

  1. Induction accelerators for the phase rotator system

    SciTech Connect

    Reginato, Lou; Yu, Simon; Vanecek, Dave

    2001-07-30

    The principle of magnetic induction has been applied to the acceleration of high current beams in betatrons and a variety of induction accelerators. The linear induction accelerator (LIA) consists of a simple nonresonant structure where the drive voltage is applied to an axially symmetric gap that encloses a toroidal ferromagnetic material. The change in flux in the magnetic core induces an axial electric field that provides particle acceleration. This simple nonresonant (low Q) structure acts as a single turn transformer that can accelerate from hundreds of amperes to tens of kiloamperes, basically only limited by the drive impedance. The LIA is typically a low gradient structure that can provide acceleration fields of varying shapes and time durations from tens of nanoseconds to several microseconds. The efficiency of the LIA depends on the beam current and can exceed 50% if the beam current exceeds the magnetization current required by the ferromagnetic material. The acceleration voltage available is simply given by the expression V=A dB/dt. Hence, for a given cross section of material, the beam pulse duration influences the energy gain. Furthermore, a premium is put on minimizing the diameter, which impacts the total weight or cost of the magnetic material. The diameter doubly impacts the cost of the LIA since the power (cost) to drive the cores is proportional to the volume as well. The waveform requirements during the beam pulse makes it necessary to make provisions in the pulsing system to maintain the desired dB/dt during the useful part of the acceleration cycle. This is typically done two ways, by using the final stage of the pulse forming network (PFN) and by the pulse compensation network usually in close proximity of the acceleration cell. The choice of magnetic materials will be made by testing various materials both ferromagnetic and ferrimagnetic. These materials will include the nickel-iron, silicon steel amorphous and various types of ferrites not

  2. Rotation-induced phase transition in a spherical gravitating system.

    PubMed

    Klinko, P; Miller, B N; Prokhorenkov, I

    2001-06-01

    Due to the infinite range and singularity of the gravitational force, it is difficult to directly apply the standard methods of statistical physics to self-gravitating systems, e.g., interstellar grains, globular clusters, galaxies, etc. Unusual phenomena can occur, such as a negative heat capacity, unbounded mass, or the gravothermal catastrophe where the equilibrium state is fully collapsed and the entropy is unbounded. Using mean field theory, we investigate the influence of rotation on a purely spherical gravitational system. Although spherical symmetry nullifies the total angular momentum, its square is finite and conserved. Here we study the case where each particle has specific angular momentum of the same magnitude l. We rigorously prove the existence of an upper bound on the entropy and a lower bound for the energy. We demonstrate that, in the microcanonical and canonical ensembles, a phase transition occurs when l falls below a critical value. We characterize the properties of each phase and construct the coexistence curve for each ensemble. Possible applications to astrophysics are considered.

  3. Phase-locked servo system. [for synchronizing the rotation of slip ring assembly

    NASA Technical Reports Server (NTRS)

    Burdin, C. (Inventor)

    1974-01-01

    A phase lock servo system is described for synchronizing the rotation of a slip ring assembly with the rotation of an air bearing table so that a minimum of torque will be imparted through cables extending from the slip ring assembly to the air bearing table as such is rotated. The system includes two servo loops. The first servo loop includes a rate gyroscope carried on the air bearing table which generates a signal through a summing junction to be compared with a signal coming from a tachometer coupled to the slip ring assembly. The corrective signal is applied to a torque motor for rotating the slip ring assembly. The second servo loop includes a pair of photo detector cells which generate pulses responsive to the rotation of the air bearing table and slip ring assembly which are fed through a phase detector, and a variable gain amplifier to the summing junction circuit to provide a fine adjustment for rotating the slip ring assembly.

  4. Transient stability enhancement of electric power generating systems by 120-degree phase rotation

    DOEpatents

    Cresap, Richard L.; Taylor, Carson W.; Kreipe, Michael J.

    1982-01-01

    A method and system for enhancing the transient stability of an intertied three-phase electric power generating system. A set of power exporting generators (10) is connected to a set of power importing generators (20). When a transient cannot be controlled by conventional stability controls, and imminent loss of synchronism is detected (such as when the equivalent rotor angle difference between the two generator sets exceeds a predetermined value, such as 150 degrees), the intertie is disconnected by circuit breakers. Then a switch (30) having a 120-degree phase rotation, or a circuit breaker having a 120-degree phase rotation is placed in the intertie. The intertie is then reconnected. This results in a 120-degree reduction in the equivalent rotor angle difference between the two generator sets, making the system more stable and allowing more time for the conventional controls to stabilize the transient.

  5. Development of simultaneous measurement system of birefringence, optical rotational power, and transmission spectra for chiral liquid crystal phases

    NASA Astrophysics Data System (ADS)

    Feng, Zhengyu; Ishikawa, Ken

    2016-05-01

    A novel experimental setup used to measure the important optical properties of liquid crystal materials is proposed. The setup allows us to measure electric-field-induced birefringence, optical rotational power, and transmission spectra consecutively. This system can be widely applied to characterize liquid crystal materials including blue phases, ferroelectric liquid crystals, and other chiral phases. We adopted this system to study the phase transition behavior of a V-shape switching ferroelectric liquid crystal mixture and made an important correction of experimental results previously reported by Sandhya et al. [ Europhys. Lett. 90, 56005 (2010)]. This finding proves the advantage of this system compared with the measurement method using individual systems.

  6. Three-phase electrical signals analysis for mechanical faults monitoring in rotating machine systems

    NASA Astrophysics Data System (ADS)

    Cablea, Georgia; Granjon, Pierre; Bérenguer, Christophe

    2017-08-01

    The current paper proposes a method to detect mechanical faults in rotating machines using three-phase electrical currents analysis. The proposed fault indicator relies on the use of instantaneous symmetrical components (ISCs), followed by a demodulation step enhancing the small modulations generated in electrical signals by mechanical faults. The limitations due to the multi-component nature of electrical signals, as well as to the noise naturally present in the measured signals are studied and taken into account in order to elaborate a proper and efficient algorithm to compute a mechanical fault indicator. It is theoretically shown that the ISCs based approach results in an increase of the signal-to-noise ratio compared to a single-phase approach, finally leading to an improvement of early fault detection capabilities. This result is validated using both synthetic and experimental signals where the proposed method is used to detect bearing faults and the obtained results are compared to single-phase results.

  7. Intercarrier Interference Reduction in MC-CDMA System through Second Order Duobinary Coded Phase Rotated Conjugate Cancellation Scheme

    PubMed Central

    Chitra, S.; Kumaratharan, N.

    2015-01-01

    Multi-carrier code division multiple access (MC-CDMA) technique is one of the strong candidates for next generation wireless mobile communication systems. Multi-carrier systems are very much sensitive to carrier frequency offset (CFO) results in intercarrier interference (ICI). To mitigate ICI without any spectral loss, a second order duobinary coded phase rotated conjugate cancellation algorithm is proposed in this paper. In the conventional phase rotated conjugate cancellation (PRCC) technique, one path carries the MC-CDMA signal with a phase spin of ϕ and the other path carries the conjugate of the first path signal with -ϕ phase spin. This artificial phase rotation allows the transmitter to tune the transmitted signals so that the ICI effects could be mutually cancelled at the receiver. Although the PRCC technique reduces the spectral efficiency, the limitation can be overcome by the joint second order duobinary coding scheme with PRCC technique. In the proposed method, the correlative coding between the binary symbols modulated on adjacent subcarriers is used to reduce the ICI without any spectral loss. Simulation results show that the proposed PRCC method provides better carrier to interference ratio (CIR) and bit error rate (BER) performances compared to the conventional conjugate cancellation (CC) technique. PMID:25790029

  8. Intercarrier interference reduction in MC-CDMA system through second order duobinary coded phase rotated conjugate cancellation scheme.

    PubMed

    Chitra, S; Kumaratharan, N

    2015-01-01

    Multi-carrier code division multiple access (MC-CDMA) technique is one of the strong candidates for next generation wireless mobile communication systems. Multi-carrier systems are very much sensitive to carrier frequency offset (CFO) results in intercarrier interference (ICI). To mitigate ICI without any spectral loss, a second order duobinary coded phase rotated conjugate cancellation algorithm is proposed in this paper. In the conventional phase rotated conjugate cancellation (PRCC) technique, one path carries the MC-CDMA signal with a phase spin of ϕ and the other path carries the conjugate of the first path signal with -ϕ phase spin. This artificial phase rotation allows the transmitter to tune the transmitted signals so that the ICI effects could be mutually cancelled at the receiver. Although the PRCC technique reduces the spectral efficiency, the limitation can be overcome by the joint second order duobinary coding scheme with PRCC technique. In the proposed method, the correlative coding between the binary symbols modulated on adjacent subcarriers is used to reduce the ICI without any spectral loss. Simulation results show that the proposed PRCC method provides better carrier to interference ratio (CIR) and bit error rate (BER) performances compared to the conventional conjugate cancellation (CC) technique.

  9. Rotating shielded crane system

    DOEpatents

    Commander, John C.

    1988-01-01

    A rotating, radiation shielded crane system for use in a high radiation test cell, comprises a radiation shielding wall, a cylindrical ceiling made of radiation shielding material and a rotatable crane disposed above the ceiling. The ceiling rests on an annular ledge intergrally attached to the inner surface of the shielding wall. Removable plugs in the ceiling provide access for the crane from the top of the ceiling into the test cell. A seal is provided at the interface between the inner surface of the shielding wall and the ceiling.

  10. Rotating Aperture System

    DOEpatents

    Rusnak, Brian; Hall, James M.; Shen, Stewart; Wood, Richard L.

    2005-01-18

    A rotating aperture system includes a low-pressure vacuum pumping stage with apertures for passage of a deuterium beam. A stator assembly includes holes for passage of the beam. The rotor assembly includes a shaft connected to a deuterium gas cell or a crossflow venturi that has a single aperture on each side that together align with holes every rotation. The rotating apertures are synchronized with the firing of the deuterium beam such that the beam fires through a clear aperture and passes into the Xe gas beam stop. Portions of the rotor are lapped into the stator to improve the sealing surfaces, to prevent rapid escape of the deuterium gas from the gas cell.

  11. Thermocapillary Instabilities with System Rotation.

    NASA Astrophysics Data System (ADS)

    Zebib, A.

    1996-11-01

    Coriolis effects on the instabilities of dynamic thermocapillary liquid layers(Smith M.K. & Davis S.H., JFM 132, 119-144, 1983.) are investigated. The basic steady, linear and return, shear flows driven by imposed temperature gradients in the (1,0,0) direction are modified due to system rotation with vector (ω_1,ω_2,ω_3) and a shear flow is generated in the (0,1,0) direction if ω3 is not zero. Linear stability of the basic states is determined by the Marangoni (M), Prandtl (P), Biot, and a vector Taylor number (τ ). In addition, critical states are characterized by wavenumbers α and β, and a phase speed. A pseudospectral method coupled with a minimization scheme is used to determine the preferred form of convection. The influence of rotation is found to be dramatic. For example, the hydrothermal waves preferred in the return flow model with no rotation are replaced by stationary modes at much lower values of M in a manner strongly dependent on P and the rotation vector. These effects occur at values of ( τ ) typical of the microgravity environment of an orbiting space laboratory and thus must be included in designing future space experiments.

  12. Torque Simulator for Rotating Systems

    NASA Technical Reports Server (NTRS)

    Davis, W. T.

    1982-01-01

    New torque brake simulates varying levels of friction in bearings of rotating body. Rolling-tail torque brake uses magnetic force to produce friction between rotating part and stationary part. Simulator electronics produce positive or negative feedback signal, depending on direction of rotation. New system allows for first time in-depth study of effects of tail-fin spin rates on pitch-, yaw-, and roll-control characteristics.

  13. Rotator phases in narrow-gap semiconductors

    SciTech Connect

    Price, D.L.; Saboungi, M.L.; Fortner, J.; Richardson, J.W.; Howells, W.S.

    1993-12-01

    Zintl compounds of lead and tin with the heavier alkali metals are semiconductors with surprising and unusual properties in both solid and liquid states. These are ascribed to the formation of tetrahedral complex anions arising from charge transfer and covalent bonding around the polyvalent metal ions. The tetrahedra exhibit both rotational and translational order, leading to a variety of complex dynamical behaviors in both solid and liquid phases. The changes in order have dramatic effects on electrical transport properties.

  14. Gas-phase rotational spectroscopy of AlCCH (XΣ+): A model system for organo-aluminum compounds

    NASA Astrophysics Data System (ADS)

    Sun, M.; Halfen, D. T.; Min, J.; Clouthier, D. J.; Ziurys, L. M.

    2012-11-01

    The pure rotational spectrum of AlCCH in its ground electronic state (XΣ+) has been measured using Fourier transform microwave (FTMW) and mm/sub-mm direct absorption spectroscopy. AlCCH was created in a DC discharge from HCCH and aluminum vapor, either produced by a Broida-type oven, or generated from Al(CH3)3 in a supersonic jet source. Rotational transitions were measured for five isotopologues of AlCCH, with 13C and deuterium substitutions. From these data, rotational and Al and D quadrupole parameters were determined, as well as an accurate structure. AlCCH appears to exhibit an acetylenic arrangement with significant covalent character in the Al-C single bond.

  15. Machine protection system for rotating equipment and method

    DOEpatents

    Lakshminarasimha, Arkalgud N.; Rucigay, Richard J.; Ozgur, Dincer

    2003-01-01

    A machine protection system and method for rotating equipment introduces new alarming features and makes use of full proximity probe sensor information, including amplitude and phase. Baseline vibration amplitude and phase data is estimated and tracked according to operating modes of the rotating equipment. Baseline vibration and phase data can be determined using a rolling average and variance and stored in a unit circle or tracked using short term average and long term average baselines. The sensed vibration amplitude and phase is compared with the baseline vibration amplitude and phase data. Operation of the rotating equipment can be controlled based on the vibration amplitude and phase.

  16. Rotationally Invariant Holographic Tracking System

    NASA Astrophysics Data System (ADS)

    Lambert, James L.; Chao, Tien-Hsin; Gheen, Gregory; Johnston, Alan R.; Liu, Hua-Kuang

    1989-06-01

    A multi-channel holographic correlator has been constructed which can identify and track objects of a given shape across the input field independent of their in-plane rotation. This system, derived from the classic Vander Lugt correlator, incorporates a hololens to store an array of matched spatial filters (MSFs) on thermoplastic film. Each member of the MSF array is generated from a different incrementally rotated version of the training object. Rotational invariant tracking is achieved through superposition of the corresponding array of the correlations in the output plane. Real time tracking is accomplished by utilizing a liquid crystal light valve (LCLV) illuminated with a CRT to process video input signals. The system can be programmed to recognize different objects by recording the MSF array on re-usable thermoplastic film. Discussion of the system architecture and laboratory results are presented.

  17. Phase rotation symmetry and the topology of oriented scattering networks

    NASA Astrophysics Data System (ADS)

    Delplace, Pierre; Fruchart, Michel; Tauber, Clément

    2017-05-01

    We investigate the topological properties of dynamical states evolving on periodic oriented graphs. This evolution, which encodes the scattering processes occurring at the nodes of the graph, is described by a single-step global operator, in the spirit of the Ho-Chalker model. When the successive scattering events follow a cyclic sequence, the corresponding scattering network can be equivalently described by a discrete time-periodic unitary evolution, in line with Floquet systems. Such systems may present anomalous topological phases where all the first Chern numbers are vanishing, but where protected edge states appear in a finite geometry. To investigate the origin of such anomalous phases, we introduce the phase rotation symmetry, a generalization of usual symmetries which only occurs in unitary systems (as opposed to Hamiltonian systems). Equipped with this new tool, we explore a possible explanation of the pervasiveness of anomalous phases in scattering network models, and we define bulk topological invariants suited to both equivalent descriptions of the network model, which fully capture the topology of the system. We finally show that the two invariants coincide, again through a phase rotation symmetry arising from the particular structure of the network model.

  18. Rotational isomerism of molecules in condensed phases

    NASA Astrophysics Data System (ADS)

    Sakka, Tetsuo; Iwasaki, Matae; Ogata, Yukio

    1991-08-01

    A statistical mechanical model is developed for the description of the conformational distribution of organic molecules in the liquid and solid phases. In the model, they are assumed to have one internal freedom of rotation. The molecules are fixed to lattice sites and have two types of ordering, conformational and distributional. The latter is supposed to represent an ordering typical of solid state. The model is compared with the experimental results of the rotational-isomeric ratio of 1,2-dichloro-1,1-difluoroethane, in the temperature range from 77 to 300 K. It explains successfully the experimental results, especially the behavior near the melting point. From the point of view of melting, the present model is an extension of the Lennard-Jones and Devonshire model, because, when the distinctions between the two conformers are neglected, the parameter representing the distributional ordering of the molecules results in the same equation as that derived from the Lennard-Jones and Devonshire model.

  19. Rotating Cylinder Treatment System Demonstration

    EPA Science Inventory

    In August 2008, a rotating cylinder treatment system (RCTSTM) demonstration was conducted near Gladstone, CO. The RCTSTM is a novel technology developed to replace the aeration/oxidation and mixing components of a conventional lime precipitation treatment s...

  20. Rotating Cylinder Treatment System Demonstration

    EPA Science Inventory

    In August 2008, a rotating cylinder treatment system (RCTSTM) demonstration was conducted near Gladstone, CO. The RCTSTM is a novel technology developed to replace the aeration/oxidation and mixing components of a conventional lime precipitation treatment s...

  1. Extraction of ascorbate oxidase from Cucurbita maxima by continuous process in perforated rotating disc contactor using aqueous two-phase systems.

    PubMed

    Porto, T S; Marques, P P; Porto, C S; Moreira, K A; Lima-Filho, J L; Converti, A; Pessoa, A; Porto, A L F

    2010-02-01

    The ascorbate oxidase is the enzyme used to determine the content of ascorbic acid in the pharmaceutical and food industries and clinics analyses. The techniques currently used for the purification of this enzyme raise its production cost. Thus, the development of alternative processes and with the potential to reduce costs is interesting. The application of aqueous two-phase system is proposed as an alternative to purification because it enables good separation of biomolecules. The objective of this study was to determine the conditions to continuously pre-purify the enzyme ascorbate oxidase by an aqueous two-phase system (PEG/citrate) using rotating column provided with perforated discs. Under the best conditions (20,000 g/mol PEG molar mass, 10% PEG concentration, and 25% citrate concentration), the system showed satisfactory results (partition coefficient, 3.35; separation efficiency, 54.98%; and purification factor, 1.46) and proved suitable for the pre-purification of ascorbate oxidase in continuous process.

  2. Faraday rotation system. Topical report

    SciTech Connect

    Bauman, L.E.; Wang, W.

    1994-07-01

    The Faraday Rotation System (FRS) is one of the advanced laser-based diagnostics developed at DIAL to provide support for the demonstration of prototype-scale coal-fired combustion magnetohydrodynamic (MHD) electrical power generation. Intended for application in the MHD channel, the system directly measures electron density through a measurement of the induced rotation in the polarization of a far infrared laser beam after passing through the MHD flow along the magnetic field lines. A measurement of the induced polarization ellipticity provides a measure of the electron collision frequency which together with the electron density gives the electron conductivity, a crucial parameter for MHD channel performance. The theory of the measurements, a description of the system, its capabilities, laboratory demonstration measurements on seeded flames with comparison to emission absorption measurements, and the current status of the system are presented in this final report.

  3. Rotating field collector subsystem phase 1 study and evaluation

    NASA Astrophysics Data System (ADS)

    Jones, D.; Eibling, J. A.

    1982-10-01

    The rotating field collector system is an alternative concept in which all heliostats are mounted on a single large platform which rotates around a tower to track the azumuthal angle of the Sun. Each heliostat is mounted to the platform with appropriate pivots, linkage, and controls to provide the additional positioning required to properly direct the solar radiation onto the receiver. The results are presented of the first phase of a study to investigate the technical and economic merits of a particular type of rotating field collector subsystem. The large pie-shaped platform would revolve over an array of support pedestals by means of a roller at the top of each pedestal. Several heliostats were built to demonstrate their construction features, and the operation of both flat and amphitheater rotating fields was studied. Work included an analysis of the concepts, development of modifications and additions to make the system comply with design criteria, and cost estimates to be used for comparison with other heliostat subsystems. Because of considerably high cost estimates, the focus of a large part of the study was directed toward developing lower cost designs of major components.

  4. Decoupling translational and rotational effects on the phase synchronization of rotating helices

    NASA Astrophysics Data System (ADS)

    Tu, Jonathan H.; Arcak, Murat; Maharbiz, Michel M.

    2015-02-01

    The locomotion of swimming microorganisms often relies on synchronized motions; examples include the bundling of flagella and metachronal coordination of cilia. It is now generally accepted that such behavior can result from hydrodynamic interactions alone. In this paper we consider the interactions between two side-by-side rigid helices driven by constant torques. We use the method of regularized Stokeslets to simulate an end-pinned model, in which restoring forces and torques are applied at one end of each helix. This allows us to decouple the respective effects of translation and rotation on phase synchronization. We find that while translational freedom leads to synchrony, rotational freedom can result in either synchrony or antisynchrony, depending on the stiffness of the system. In addition, we characterize the nature of the physical mechanisms driving these behaviors, focusing on the individual effects of each applied force and torque. For translational freedom, there is a single underlying mechanism in which the interaction forces indirectly influence the helix rotation rates. Multiple mechanisms are at play for rotational freedom: the interaction torques may exert either direct or indirect influence depending on stiffness. These characterizations are important to the future development of reduced-order models, which should capture not only the expected end behaviors (synchrony or antisynchrony), but also the nature of the driving mechanisms.

  5. Quantum Rotational Effects in Nanomagnetic Systems

    NASA Astrophysics Data System (ADS)

    O'Keeffe, Michael F.

    Quantum tunneling of the magnetic moment in a nanomagnet must conserve the total angular momentum. For a nanomagnet embedded in a rigid body, reversal of the magnetic moment will cause the body to rotate as a whole. When embedded in an elastic environment, tunneling of the magnetic moment will cause local elastic twists of the crystal structure. In this thesis, I will present a theoretical study of the interplay between magnetization and rotations in a variety of nanomagnetic systems which have some degree of rotational freedom. We investigate the effect of rotational freedom on the tunnel splitting of a nanomagnet which is free to rotate about its easy axis. Calculating the exact instanton of the coupled equations of motion shows that mechanical freedom of the particle renormalizes the easy axis anisotropy, increasing the tunnel splitting. To understand magnetization dynamics in free particles, we study a quantum mechanical model of a tunneling spin embedded in a rigid rotor. The exact energy levels for a symmetric rotor exhibit first and second order quantum phase transitions between states with different values the magnetic moment. A quantum phase diagram is obtained in which the magnetic moment depends strongly on the moments of inertia. An intrinsic contribution to decoherence of current oscillations of a flux qubit must come from the angular momentum it transfers to the surrounding body. Within exactly solvable models of a qubit embedded in a rigid body and an elastic medium, we show that slow decoherence is permitted if the solid is macroscopically large. The spin-boson model is one of the simplest representations of a two-level system interacting with a quantum harmonic oscillator, yet has eluded a closed-form solution. I investigate some possible approaches to understanding its spectrum. The Landau-Zener dynamics of a tunneling spin coupled to a torsional resonator show that for certain parameter ranges the system exhibits multiple Landau-Zener transitions

  6. Sagnac rotational phase shifts in a mesoscopic electron interferometer with spin-orbit interactions

    SciTech Connect

    Zivkovic, Marko; Jaeaeskelaeinen, Markku; Search, Christopher P.; Djuric, Ivana

    2008-03-15

    The Sagnac effect is an important phase coherent effect in optical and atom interferometers where rotations of the interferometer with respect to an inertial reference frame result in a shift in the interference pattern proportional to the rotation rate. Here, we analyze the Sagnac effect in a mesoscopic semiconductor electron interferometer. We include in our analysis the Rashba spin-orbit interactions in the ring. Our results indicate that spin-orbit interactions increase the rotation-induced phase shift. We discuss the potential experimental observability of the Sagnac phase shift in such mesoscopic systems.

  7. Cooling system for rotating machine

    DOEpatents

    Gerstler, William Dwight; El-Refaie, Ayman Mohamed Fawzi; Lokhandwalla, Murtuza; Alexander, James Pellegrino; Quirion, Owen Scott; Palafox, Pepe; Shen, Xiaochun; Salasoo, Lembit

    2011-08-09

    An electrical machine comprising a rotor is presented. The electrical machine includes the rotor disposed on a rotatable shaft and defining a plurality of radial protrusions extending from the shaft up to a periphery of the rotor. The radial protrusions having cavities define a fluid path. A stationary shaft is disposed concentrically within the rotatable shaft wherein an annular space is formed between the stationary and rotatable shaft. A plurality of magnetic segments is disposed on the radial protrusions and the fluid path from within the stationary shaft into the annular space and extending through the cavities within the radial protrusions.

  8. Axisymmetric Column Collapse in a Rotating System

    NASA Astrophysics Data System (ADS)

    Warnett, Jay; Thomas, Peter; Dennisenko, Petr

    2012-11-01

    We discuss experimental and computational results of a study investigating the collapse of an initially axisymmetric cylindrical column of granular material within a rotating environment of air or liquids. In industry this type of granular column collapse that is subject to background rotation is encountered, for instance, in the context of the spreading of powders and fertilizers. In comparison to its non-rotating counterpart the physical characteristics of the column collapse in a rotating system are expected to be modified by effects arising from centrifugal forces and Coriolis forces. We compare our new results for the rotating flow to data available in the literature for the collapse of granular columns in non-rotating systems to highlight the differences observed.

  9. Determination of the liquid crystals phase transition temperatures using optical rotation effect

    NASA Astrophysics Data System (ADS)

    Niu, Xiao-ling; Liu, Wei-guo; Liu, Peng; Cai, Chang-long

    2011-11-01

    Using optical rotation effect, a sensitive, simple optical analytical system is developed for determining the phase transition temperatures of liquid crystals (LCs). When a monochromatic polarized light passes through LCs sample and analyzer, the light intensity changes with temperature. Especially, during the phase transition process, the intensity varies greatly due to optical rotation effect. The variation of light intensity versus variation of temperature curve shows the phase transition temperatures of LCs clearly. The phase transition temperatures of three cholesteric liquid crystals (ChLCs) and a nematic liquid crystals (NLCs) were detected by this method, and compared with those of the differential scanning calorimetry (DSC) and polarized light microscope (PLM) methods.

  10. Bistability of rotational modes in a system of coupled pendulums

    NASA Astrophysics Data System (ADS)

    Smirnov, Lev A.; Kryukov, Alexey K.; Osipov, Grigory V.; Kurths, Jürgen

    2016-12-01

    The main goal of this research is to examine any peculiarities and special modes observed in the dynamics of a system of two nonlinearly coupled pendulums. In addition to steady states, an in-phase rotation limit cycle is proved to exist in the system with both damping and constant external force. This rotation mode is numerically shown to become unstable for certain values of the coupling strength. We also present an asymptotic theory developed for an infinitely small dissipation, which explains why the in-phase rotation limit cycle loses its stability. Boundaries of the instability domain mentioned above are found analytically. As a result of numerical studies, a whole range of the coupling parameter values is found for the case where the system has more than one rotation limit cycle. There exist not only a stable in-phase cycle, but also two out-of phase ones: a stable rotation limit cycle and an unstable one. Bistability of the limit periodic mode is, therefore, established for the system of two nonlinearly coupled pendulums. Bifurcations that lead to the appearance and disappearance of the out-ofphase limit regimes are discussed as well.

  11. Boundary layer control of rotating convection systems.

    PubMed

    King, Eric M; Stellmach, Stephan; Noir, Jerome; Hansen, Ulrich; Aurnou, Jonathan M

    2009-01-15

    Turbulent rotating convection controls many observed features of stars and planets, such as magnetic fields, atmospheric jets and emitted heat flux patterns. It has long been argued that the influence of rotation on turbulent convection dynamics is governed by the ratio of the relevant global-scale forces: the Coriolis force and the buoyancy force. Here, however, we present results from laboratory and numerical experiments which exhibit transitions between rotationally dominated and non-rotating behaviour that are not determined by this global force balance. Instead, the transition is controlled by the relative thicknesses of the thermal (non-rotating) and Ekman (rotating) boundary layers. We formulate a predictive description of the transition between the two regimes on the basis of the competition between these two boundary layers. This transition scaling theory unifies the disparate results of an extensive array of previous experiments, and is broadly applicable to natural convection systems.

  12. Meniscus Stability in Rotating Systems

    NASA Astrophysics Data System (ADS)

    Reichel, Yvonne; Dreyer, Michael

    2013-11-01

    In this study, the stability of free surfaces of fluid between two rotating coaxial, circular disks is examined. Radially mounted baffles are used to form menisci of equal size. To the center of the upper disk, a tube is connected in which a separate meniscus is formed. Assuming solid-body rotation and ignoring dynamic effects, it is observed that the free surfaces between the disks fail to remain stable once the rotation speed exceeds a critical value. In other words, Rayleigh-Taylor instability ensues when the capillary forces fail to balance centrifugal forces. Dimensionless critical rotation speeds are studied by means of the Surface Evolver via SE-FIT for varied number of baffles, the normalized distance between the disks, and the normalized central tube radius. Drop tower tests are performed to confirm some of the numerical results. The computation also reveals that there are different modes of instability as a function of the relevant parameters. This study was funded by the space agency of the German Aerospace Center with resources of the Federal Ministry of Economics and Technology on the basis of a resolution of the German Bundestag under grant number 50 RL 1320.

  13. Faraday rotation measurements by phase-based technique on HL-2A

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Deng, Z. C.; Li, Y. G.; Li, C. Z.; Yi, J.; Li, L. C.; Lui, Y.; Yang, Q. W.; Duan, X. R.; Brower, D. L.; Ding, W. X.

    2012-06-01

    Poloidal magnetic field is a very important physical parameter for the understanding of heating and confinement in tokamak plasmas. One channel of an eight-chord, horizontally-viewing, double-path interferometer system on HL-2A has been modified to include a polarimeter capability in order to measure Faraday rotation. The polarimeter utilizes one phase technique, which is based on a Veron-type HCN laser interferometer and ``Dodel and Kunz''-type polarimeter including a rotating grating to shift the frequency of one probing beam by Δω, and two counter-rotating circularly-polarized probing beams. The Faraday rotation angle can be directly determined by measuring the plasma birefringence. The implementation of this instrument only needs one HCN laser source and one detector to characterize the rotation. The first experimental results have shown that the Faraday rotation angle of less than 1° can be measured with up to 0.1 ms time resolution.

  14. System for controlled acoustic rotation of objects

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B. (Inventor)

    1983-01-01

    A system is described for use with acoustically levitated objects, which enables close control of rotation of the object. One system includes transducers that propagate acoustic waves along the three dimensions (X, Y, Z) of a chamber of rectangular cross section. Each transducers generates one wave which is resonant to a corresponding chamber dimension to acoustically levitate an object, and additional higher frequency resonant wavelengths for controlling rotation of the object. The three chamber dimensions and the corresponding three levitation modes (resonant wavelengths) are all different, to avoid degeneracy, or interference, of waves with one another, that could have an effect on object rotation. Only the higher frequencies, with pairs of them having the same wavelength, are utilized to control rotation, so that rotation is controlled independently of levitation and about any arbitrarily chosen axis.

  15. Confinement-driven rotator-I to rotator-V phase transition of alkane

    NASA Astrophysics Data System (ADS)

    Mukherjee, Prabir K.

    2017-04-01

    The behavior of the rotator-I to rotator-V (R_I\\text-R_V) phase transition of alkane in nanoconfinement situations is studied theoretically. Recent experimental studies have shown that confinement has dramatic effects on the R_I\\text-RV phase transition. These include the weakening of the R_I\\text-RV phase transition, decrease of the order parameters, change of the profile of the specific heat and reduction of the extent of the hysteresis region. We described these experimental observations within Landau phenomenological theory. The impact of confinement on the R_I\\text-RV phase transition is discussed in great detail. The theoretical predictions are compared with recent experimental results.

  16. Phase diagram of a rotating Bose-Einstein condensate with anharmonic confinement

    SciTech Connect

    Jackson, A.D.; Kavoulakis, G.M.; Lundh, E.

    2004-05-01

    We examine the phase diagram of an effectively repulsive Bose-Einstein condensate of atoms that rotates in a quadratic-plus-quartic potential. With use of a variational method we identify the three possible phases of the system as a function of the rotational frequency of the trap and of the coupling constant. The derived phase diagram is shown to be universal and partly exact in the limit of weak interactions and small anharmonicity. The variational results are found to be consistent with numerical solutions of the Gross-Pitaevskii equation.

  17. Measurement of phase difference for micromachined gyros driven by rotating aircraft.

    PubMed

    Zhang, Zengping; Zhang, Fuxue; Zhang, Wei

    2013-08-21

    This paper presents an approach for realizing a phase difference measurement of a new gyro. A silicon micromachined gyro was mounted on rotating aircraft for aircraft attitude control. Aircraft spin drives the silicon pendulum of a gyro rotating at a high speed so that it can sense the transverse angular velocity of the rotating aircraft based on the gyroscopic precession principle when the aircraft has transverse rotation. In applications of the rotating aircraft single channel control system, such as damping in the attitude stabilization loop, the gyro signal must be kept in sync with the control signal. Therefore, the phase difference between both signals needs to be measured accurately. Considering that phase difference is mainly produced by both the micromachined part and the signal conditioning circuit, a mathematical model has been established and analyzed to determine the gyro's phase frequency characteristics. On the basis of theoretical analysis, a dynamic simulation has been done for a case where the spin frequency is 15 Hz. Experimental results with the proposed measurement method applied to a silicon micromachined gyro driven by a rotating aircraft demonstrate that it is effective in practical applications. Measured curve and numerical analysis of phase frequency characteristic are in accordance, and the error between measurement and simulation is only 5.3%.

  18. Measurement of Phase Difference for Micromachined Gyros Driven by Rotating Aircraft

    PubMed Central

    Zhang, Zengping; Zhang, Fuxue; Zhang, Wei

    2013-01-01

    This paper presents an approach for realizing a phase difference measurement of a new gyro. A silicon micromachined gyro was mounted on rotating aircraft for aircraft attitude control. Aircraft spin drives the silicon pendulum of a gyro rotating at a high speed so that it can sense the transverse angular velocity of the rotating aircraft based on the gyroscopic precession principle when the aircraft has transverse rotation. In applications of the rotating aircraft single channel control system, such as damping in the attitude stabilization loop, the gyro signal must be kept in sync with the control signal. Therefore, the phase difference between both signals needs to be measured accurately. Considering that phase difference is mainly produced by both the micromachined part and the signal conditioning circuit, a mathematical model has been established and analyzed to determine the gyro's phase frequency characteristics. On the basis of theoretical analysis, a dynamic simulation has been done for a case where the spin frequency is 15 Hz. Experimental results with the proposed measurement method applied to a silicon micromachined gyro driven by a rotating aircraft demonstrate that it is effective in practical applications. Measured curve and numerical analysis of phase frequency characteristic are in accordance, and the error between measurement and simulation is only 5.3%. PMID:23966195

  19. On-line phase measuring profilometry for a rotating object

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Cao, Yiping; Yang, Xin; Peng, Kuang

    2014-11-01

    On-line phase measuring profilometry (OPMP) for a rotating object is proposed. N frames of circular sinusoidal grating patterns are designed in advance, in which the transmittance along the radial direction is sinusoidal and there is a fixed shifting phase pitch of 2π/N between every adjacent two grating patterns along the radial direction. While the measured object is rotating, the designed grating patterns are projected onto the rotating object by digital light processing and the corresponding deformed patterns caused by the object at different positions are captured by a charge coupled device camera. By pixel matching and rotation transformation with special marks, N frames of the deformed patterns of the object at the same position can be extracted. Hence, the rotating object can be reconstructed by the extracted deformed patterns. The results of computer emulation and experiment show the feasibility and validity of the proposed OPMP. Either the maximum measurement absolute error is 0.118 mm or the maximum root mean square error is 0.077 mm in the measured region of 0 to 25 mm.

  20. GENERAL: Canonical Entropy and Phase Transition of Rotating Black Hole

    NASA Astrophysics Data System (ADS)

    Zhao, Ren; Wu, Yue-Qin; Zhang, Li-Chun

    2008-07-01

    Recently, the Hawking radiation of a black hole has been studied using the tunnel effect method. The radiation spectrum of a black hole is derived. By discussing the correction to spectrum of the rotating black hole, we obtain the canonical entropy. The derived canonical entropy is equal to the sum of Bekenstein-Hawking entropy and correction term. The correction term near the critical point is different from the one near others. This difference plays an important role in studying the phase transition of the black hole. The black hole thermal capacity diverges at the critical point. However, the canonical entropy is not a complex number at this point. Thus we think that the phase transition created by this critical point is the second order phase transition. The discussed black hole is a five-dimensional Kerr-AdS black hole. We provide a basis for discussing thermodynamic properties of a higher-dimensional rotating black hole.

  1. Inertial rotation measurement with atomic spins: From angular momentum conservation to quantum phase theory

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Yuan, H.; Tang, Z.; Quan, W.; Fang, J. C.

    2016-12-01

    Rotation measurement in an inertial frame is an important technology for modern advanced navigation systems and fundamental physics research. Inertial rotation measurement with atomic spin has demonstrated potential in both high-precision applications and small-volume low-cost devices. After rapid development in the last few decades, atomic spin gyroscopes are considered a promising competitor to current conventional gyroscopes—from rate-grade to strategic-grade applications. Although it has been more than a century since the discovery of the relationship between atomic spin and mechanical rotation by Einstein [Naturwissenschaften, 3(19) (1915)], research on the coupling between spin and rotation is still a focus point. The semi-classical Larmor precession model is usually adopted to describe atomic spin gyroscope measurement principles. More recently, the geometric phase theory has provided a different view of the rotation measurement mechanism via atomic spin. The theory has been used to describe a gyroscope based on the nuclear spin ensembles in diamond. A comprehensive understanding of inertial rotation measurement principles based on atomic spin would be helpful for future applications. This work reviews different atomic spin gyroscopes and their rotation measurement principles with a historical overlook. In addition, the spin-rotation coupling mechanism in the context of the quantum phase theory is presented. The geometric phase is assumed to be the origin of the measurable rotation signal from atomic spins. In conclusion, with a complete understanding of inertial rotation measurements using atomic spin and advances in techniques, wide application of high-performance atomic spin gyroscopes is expected in the near future.

  2. Work and energy in rotating systems

    NASA Astrophysics Data System (ADS)

    Manjarres, Diego A.; Herrera, William J.; Diaz, Rodolfo A.

    2013-08-01

    The way in which forces transform from an inertial reference frame to a non-inertial rotating frame is well studied in the literature. However, the treatment of the work-energy theorem in rotating systems is not considered in textbooks. In this paper, we show that the work-energy theorem can still be applied to a closed system of particles in a rotating reference frame, as long as the work of fictitious forces is properly included in the formalism. The Coriolis force does not contribute to the work coming from fictitious forces. It is remarkable that real forces that do no work in an inertial reference frame can do work in the rotating reference frame and vice versa.

  3. Rotating Rake Turbofan Duct Mode Measurement System

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.

    2005-01-01

    An experimental measurement system was developed and implemented by the NASA Glenn Research Center in the 1990s to measure turbofan duct acoustic modes. The system is a continuously rotating radial microphone rake that is inserted into the duct. This Rotating Rake provides a complete map of the acoustic duct modes present in a ducted fan and has been used on a variety of test articles: from a low-speed, concept test rig, to a full-scale production turbofan engine. The Rotating Rake has been critical in developing and evaluating a number of noise reduction concepts as well as providing experimental databases for verification of several aero-acoustic codes. More detailed derivation of the unique Rotating Rake equations are presented in the appendix.

  4. Using Rotations to Build Aerospace Coordinate Systems

    DTIC Science & Technology

    2008-08-01

    protocol for distributed interactive simulation environments. Appendices then discuss combining rotations, conversions with a particular type of Euler...interactive simulation environments. Appendices then discuss combining rotations, conversions with a particular type of Euler angle convention, the dangers...won’t need such a one in this report. The ECEF has two common coordinate systems: a polar- type “latitude–longitude– height” called geodetic

  5. New demodulation filter in digital phase rotation beamforming.

    PubMed

    Schneider, Fabio Kurt; Yoo, Yang Mo; Agarwal, Anup; Koh, Liang Mong; Kim, Yongmin

    2006-07-01

    In this paper, we present a new quadrature demodulation filter to reduce hardware complexity in digital phase rotation beamforming. Due to its low sensitivity to phase delay errors, digital quadrature demodulation is commonly used in ultrasound machines. However, since it requires two lowpass filters for each channel to remove harmonics, the direct use of conventional finite impulse response (FIR) filters in ultrasound machines is computationally expensive and burdensome. In our new method, an efficient multi-stage uniform coefficient (MSUC) filter is utilized to remove harmonic components in phase rotation beamforming. In comparison with the directly implemented FIR (DI-FIR) and the previously-proposed signed-power-of-two FIR (SPOT-FIR) lowpass filters, the proposed MSUC filter reduces the necessary hardware resources by 93.9% and 83.9%, respectively. In simulation, the MSUC filter shows a negligible degradation in image quality. The proposed method resulted in comparable spatial and contrast resolution to the DI-FIR approach in the phantom study. These preliminary results indicate that the proposed quadrature demodulation filtering method could significantly reduce the hardware complexity in phase rotation beamforming while maintaining comparable image quality.

  6. Excitation system for rotating synchronous machines

    DOEpatents

    Umans, Stephen D.; Driscoll, David J.

    2002-01-01

    A system for providing DC current to a rotating superconducting winding is provided. The system receives current feedback from the superconducting winding and determines an error signal based on the current feedback and a reference signal. The system determines a control signal corresponding to the error signal and provides a positive and negative superconducting winding excitation voltage based on the control signal.

  7. Influence of rotation on BN separation in binary particle system

    NASA Astrophysics Data System (ADS)

    Wu, Ping; Wang, Shuang; Xie, Ziang; Huang, Yuming; Tong, Lige; Zhang, Peikun; Yin, Shaowu; Liu, Chuanping; Wang, Li

    2013-06-01

    Granular particles systems under vertical vibration exhibit Brazilian Nut separation (BN), Reversed BN (RBN) separation or transitional phases at different vibrating conditions. In the present work, we investigate the influence of rotation on the BN separation of a binary granular particle system by changing rotational speed. 13X molecular sieve particles with diameter 6.00 mm and 0.60 mm are used. Vibration frequency f is 30 Hz and dimensionless acceleration Γ is 1.52 or 1.75, in which the particle system mainly exhibits BN separation tendency. Rotational speed ω varies from 0 to 150rpm, while the upper surface of the particle system maintains flat. We took the pictures of the particles distribution and measured the particles mass layer by layer to obtain the 3-D distribution of the particles. The results show that rotation enhances the BN separation tendency at slow rotational speed. The BN separation becomes strongest when ω is approximately 50rpm, then the BN separation tendency reduces as ω continues to increase. A butterfly pattern appears in the middle particles layer under the simultaneous stimulations of vibration and rotation.

  8. Balanced-Rotating-Spray Tank-And-Pipe-Cleaning System

    NASA Technical Reports Server (NTRS)

    Thaxton, Eric A.; Caimi, Raoul E. B.

    1995-01-01

    Spray head translates and rotates to clean entire inner surface of tank or pipe. Cleansing effected by three laterally balanced gas/liquid jets from spray head that rotates about longitudinal axis. Uses much less liquid. Cleaning process in system relies on mechanical action of jets instead of contaminant dissolution. Eliminates very difficult machining needed to make multiple converging/diverging nozzles within one spray head. Makes nozzle much smaller. Basic two-phase-flow, supersonic-nozzle design applied to other spray systems for interior or exterior cleaning.

  9. Design and Implementation of Hybrid CORDIC Algorithm Based on Phase Rotation Estimation for NCO

    PubMed Central

    Zhang, Chaozhu; Han, Jinan; Li, Ke

    2014-01-01

    The numerical controlled oscillator has wide application in radar, digital receiver, and software radio system. Firstly, this paper introduces the traditional CORDIC algorithm. Then in order to improve computing speed and save resources, this paper proposes a kind of hybrid CORDIC algorithm based on phase rotation estimation applied in numerical controlled oscillator (NCO). Through estimating the direction of part phase rotation, the algorithm reduces part phase rotation and add-subtract unit, so that it decreases delay. Furthermore, the paper simulates and implements the numerical controlled oscillator by Quartus II software and Modelsim software. Finally, simulation results indicate that the improvement over traditional CORDIC algorithm is achieved in terms of ease of computation, resource utilization, and computing speed/delay while maintaining the precision. It is suitable for high speed and precision digital modulation and demodulation. PMID:25110750

  10. Design and implementation of hybrid CORDIC algorithm based on phase rotation estimation for NCO.

    PubMed

    Zhang, Chaozhu; Han, Jinan; Li, Ke

    2014-01-01

    The numerical controlled oscillator has wide application in radar, digital receiver, and software radio system. Firstly, this paper introduces the traditional CORDIC algorithm. Then in order to improve computing speed and save resources, this paper proposes a kind of hybrid CORDIC algorithm based on phase rotation estimation applied in numerical controlled oscillator (NCO). Through estimating the direction of part phase rotation, the algorithm reduces part phase rotation and add-subtract unit, so that it decreases delay. Furthermore, the paper simulates and implements the numerical controlled oscillator by Quartus II software and Modelsim software. Finally, simulation results indicate that the improvement over traditional CORDIC algorithm is achieved in terms of ease of computation, resource utilization, and computing speed/delay while maintaining the precision. It is suitable for high speed and precision digital modulation and demodulation.

  11. Specifying Rotating Polygons And Their Drive Systems

    NASA Astrophysics Data System (ADS)

    Sherman, Randy J.

    1986-07-01

    Specifying a rotating polygonal mirror and drive system involves a careful analysis of the complete optical scanning system it is used in and the specific effects of each characteristic of the beam deflector on system performance. This would appear on the surface to be straightforward, however there are subtleties that may evade the most conscientious and diligent specifier. The intent here is to identify same pitfalls the specifier should be alert to.

  12. Mechanical and Thermal Prototype Testing for a Rotatable Collimator for the LHC Phase II Collimation Upgrade

    SciTech Connect

    Smith, Jeffrey Claiborne; Doyle, Eric; Keller, Lewis; Lundgren, Steven; Markiewicz, Thomas Walter; /SLAC

    2010-08-26

    The Phase II upgrade to the LHC collimation system calls for complementing the robust Phase I graphite collimators with high Z, low impedance Phase II collimators. The design for the collimation upgrade has not been finalized. One option is to use metallic rotatable collimators and testing of this design will be discussed here. The Phase II collimators must be robust in various operating conditions and accident scenarios. A prototype collimator jaw has been tested for both mechanical and thermal compliance with the design goals. Thermal expansion bench-top tests are compared to ANSYS simulation results.

  13. Rotating Cylinder Treatment System Demonstration (Presentation)

    EPA Science Inventory

    In August 2008, a rotating cylinder treatment system (RCTSTM) demonstration was conducted near Gladstone, CO. The RCTSTM is a novel technology developed to replace the aeration/oxidation and mixing components of a conventional lime precipitation treatment s...

  14. Rotating Cylinder Treatment System Demonstration (Presentation)

    EPA Science Inventory

    In August 2008, a rotating cylinder treatment system (RCTSTM) demonstration was conducted near Gladstone, CO. The RCTSTM is a novel technology developed to replace the aeration/oxidation and mixing components of a conventional lime precipitation treatment s...

  15. Ultrasound phase rotation beamforming on multi-core DSP.

    PubMed

    Ma, Jieming; Karadayi, Kerem; Ali, Murtaza; Kim, Yongmin

    2014-01-01

    Phase rotation beamforming (PRBF) is a commonly-used digital receive beamforming technique. However, due to its high computational requirement, it has traditionally been supported by hardwired architectures, e.g., application-specific integrated circuits (ASICs) or more recently field-programmable gate arrays (FPGAs). In this study, we investigated the feasibility of supporting software-based PRBF on a multi-core DSP. To alleviate the high computing requirement, the analog front-end (AFE) chips integrating quadrature demodulation in addition to analog-to-digital conversion were defined and used. With these new AFE chips, only delay alignment and phase rotation need to be performed by DSP, substantially reducing the computational load. We implemented the delay alignment and phase rotation modules on a Texas Instruments C6678 DSP with 8 cores. We found it takes 200 μs to beamform 2048 samples from 64 channels using 2 cores. With 4 cores, 20 million samples can be beamformed in one second. Therefore, ADC frequencies up to 40 MHz with 2:1 decimation in AFE chips or up to 20 MHz with no decimation can be supported as long as the ADC-to-DSP I/O requirement can be met. The remaining 4 cores can work on back-end processing tasks and applications, e.g., color Doppler or ultrasound elastography. One DSP being able to handle both beamforming and back-end processing could lead to low-power and low-cost ultrasound machines, benefiting ultrasound imaging in general, particularly portable ultrasound machines. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Femtosecond analysis of free molecular rotation in the gas phase

    NASA Astrophysics Data System (ADS)

    Borisevich, N. A.; Khoroshilov, E. V.; Kryukov, I. V.; Kryukov, P. G.; Sharkov, A. V.; Blokhin, A. P.; Tolstorozhev, G. B.

    1992-04-01

    The time-resolved S 1→S *n absorption anisotropy decay resulting from rotation of free gas phase POPOP molecules at 593 K and PPO molecules at 483 K was studied after S 0→S *1 excitation by femtosecond linearly polarized pulses at 308 nm. The time evolution of the anisotropy measured through a few picoseconds after excitation is in agreement with the results of calculations made for POPOP and PPO using orientational correlation functions developed for rigid asymmetric top molecules.

  17. A low frequency rotational energy harvesting system

    NASA Astrophysics Data System (ADS)

    Febbo, M.; Machado, S. P.; Ramirez, J. M.; Gatti, C. D.

    2016-11-01

    This paper presents a rotary power scavenging unit comprised of two systems of flexible beams connected by two masses which are joined by means of a spring, considering a PZT (QP16N, Midé Corporation) piezoelectric sheet mounted on one of the beams. The energy harvesting (EH) system is mounted rigidly on a rotating hub. The gravitational force on the masses causes sustained oscillatory motion in the flexible beams as long as there is rotary motion. The intention is to use the EH system in the wireless autonomous monitoring of wind turbines under different wind conditions. Specifically, the development is oriented to monitor the dynamic state of the blades of a wind generator of 30 KW which rotates between 50 and 150 rpm. The paper shows a complete set of experimental results on three devices, modifying the amount of beams in the frame supporting the system. The results show an acceptable sustained voltage generation for the expected range, in the three proposed cases. Therefore, it is possible to use this system for generating energy in a low-frequency rotating environment. As an alternative, the system can be easily adapted to include an array of piezoelectric sheets to each of the beams, to provide more power generation.

  18. Comparisons in Outcome and Subject Comfort between Rotation Chair Systems.

    PubMed

    Kim, Bong Jik; Won, Yu-Kyung; Hyun, Jaihwan; Na, Woo-Sung; Jung, Jae Yun; Suh, Myung-Whan

    2017-07-01

    A rotation chair test has been used to evaluate the function of the horizontal semicircular canals. Currently, two chair systems according to the presence of cylindrical darkroom are used in a clinic setting. However, it has not been thoroughly investigated whether one system is superior to the other system or not. In this study, we aimed to compare test outcomes and subject convenience between two systems. Twenty subjects with no history of otologic disease were enrolled. Subjects were tested with two systems: system [A] with a cylindrical chamber and system [B] with no chamber. The results of sinusoidal harmonic acceleration (SHA), step velocity (SV), and visual fixation (VFX) tests were compared between the systems. Subject convenience was assessed with a questionnaire survey and results were compared between the systems. There were no significant differences in gain or asymmetry in SHA test between the systems. However, the phase of system [A] was significantly lower than that of system [B] at 0.16 Hz. There was no significant difference between the systems in directional preponderance (DP) gain or DP time constant. Regarding the VFX test, gain was higher in system [A] than system [B]. Subjects reported less stuffiness and less anxiety with system [B] than system [A], while preferring the system [A] goggles. A rotation chair system without a darkroom can provide a more comfortable experience for subjects in terms of stuffiness and anxiety, while showing comparable results in SHA and SV tests with a darkroom system.

  19. Comparisons in Outcome and Subject Comfort between Rotation Chair Systems

    PubMed Central

    Kim, Bong Jik; Won, Yu-Kyung; Hyun, Jaihwan; Na, Woo-Sung; Jung, Jae Yun; Suh, Myung-Whan

    2017-01-01

    Background and Objectives A rotation chair test has been used to evaluate the function of the horizontal semicircular canals. Currently, two chair systems according to the presence of cylindrical darkroom are used in a clinic setting. However, it has not been thoroughly investigated whether one system is superior to the other system or not. In this study, we aimed to compare test outcomes and subject convenience between two systems. Subjects and Methods Twenty subjects with no history of otologic disease were enrolled. Subjects were tested with two systems: system [A] with a cylindrical chamber and system [B] with no chamber. The results of sinusoidal harmonic acceleration (SHA), step velocity (SV), and visual fixation (VFX) tests were compared between the systems. Subject convenience was assessed with a questionnaire survey and results were compared between the systems. Results There were no significant differences in gain or asymmetry in SHA test between the systems. However, the phase of system [A] was significantly lower than that of system [B] at 0.16 Hz. There was no significant difference between the systems in directional preponderance (DP) gain or DP time constant. Regarding the VFX test, gain was higher in system [A] than system [B]. Subjects reported less stuffiness and less anxiety with system [B] than system [A], while preferring the system [A] goggles. Conclusions A rotation chair system without a darkroom can provide a more comfortable experience for subjects in terms of stuffiness and anxiety, while showing comparable results in SHA and SV tests with a darkroom system. PMID:28704895

  20. Rotating single cycle two-phase thermally activated heat pump

    SciTech Connect

    Fabris, G.

    1993-06-08

    A thermally activated heat pump is described which utilizes single working fluid which as a whole passes consecutively through all parts of the apparatus in a closed loop series; the working fluid in low temperature saturated liquid state at condensation is pumped to higher pressure with a pump; subsequently heat is added to the liquid of increased pressure, the liquid via the heating is brought to a high temperature saturated liquid state; the high temperature liquid passes and flashes subsequently in form of two-phase flow through a rotating two-phase flow turbine; in such a way the working fluid performs work on the two-phase turbine which in turn powers the liquid pump and a lower compressor; two-phase flow exiting the two-phase turbine separated by impinging tangentially on housing of the turbine; low temperature heat is added to the housing in such a way evaporating the separated liquid on the housing; in such a way the liquid is fully vaporized the vapor then enters a compressor, the compressor compresses the vapor to a higher condensation pressure and corresponding increased temperature, the vapor at the condensation pressure enters a condenser whereby heat is rejected and the vapor is fully condensed into state of saturated liquid, mid saturated liquid enters the pump and repeats the cycle.

  1. Impact of a counter-rotating planetary rotation system on thin-film thickness and uniformity

    DOE PAGES

    Oliver, J. B.

    2017-06-12

    Planetary rotation systems incorporating forward- and counter-rotating planets are used as a means of increasing coating-system capacity for large oblong substrates. Comparisons of planetary motion for the two types of rotating systems are presented based on point tracking for multiple revolutions, as well as comparisons of quantitative thickness and uniformity. Counter-rotation system geometry is shown to result in differences in thin-film thickness relative to standard planetary rotation for precision optical coatings. As a result, this systematic error in thin-film thickness will reduce deposition yields for sensitive coating designs.

  2. Nonlinear energy transfers and phase diagrams for geostrophically balanced rotating-stratified flows.

    PubMed

    Herbert, Corentin

    2014-03-01

    Equilibrium statistical mechanics tools have been developed to obtain indications about the natural tendencies of nonlinear energy transfers in two-dimensional and quasi-two-dimensional flows like rotating and stratified flows in geostrophic balance. In this article we consider a simple model of such flows with a nontrivial vertical structure, namely, two-layer quasigeostrophic flows, which remain amenable to analytical study. We obtain the statistical equilibria of the system in the case of a linear vorticity-stream function relation, build the corresponding phase diagram, and discuss the most probable outcome of nonlinear energy transfers, both on the horizontal and on the vertical, in the presence of stratification and rotation.

  3. Polarization-induced phase noise in fiber optic Michelson interferometer with Faraday rotator mirrors

    NASA Astrophysics Data System (ADS)

    Wu, Yuefeng; Li, Fang; Zhang, Wentao; Xiao, Hao; Liu, Yuliang

    2008-11-01

    Polarization-induced phase noise in Michelson interferometer with imperfect Faraday rotator mirrors was investigated. This kind of noise generates from the rotation angle errors of Faraday rotator mirrors and external polarization perturbation. The conversion factor κ, representing the magnitude conversion ability from polarization-noise to polarization induced phase-noise, have been theoretically evaluated and experimentally investigated.

  4. Spontaneous rotation in a driven mechanical system

    NASA Astrophysics Data System (ADS)

    Alexander, T. J.

    2016-06-01

    We show that a mass free to circulate around a shaken pivot point exhibits resonance-like effects and large amplitude dynamics even though there is no natural frequency in the system, simply through driving under geometrical constraint. We find that synchronization between force and mass occurs over a wide range of forcing amplitudes and frequencies, even when the forcing axis is dynamically, and randomly, changed. Above a critical driving amplitude the mass will spontaneously rotate, with a fractal boundary dividing clockwise and anti-clockwise rotations. We show that this has significant implications for energy harvesting, with large output power over a wide frequency range. We examine also the effect of driving symmetry on the resultant dynamics, and show that if the shaking is circular the motion becomes constrained, whereas for anharmonic rectilinear shaking the dynamics may become chaotic, with the system mimicking that of the kicked rotor.

  5. Absence of vacuum induced Berry phases without the rotating wave approximation in cavity QED.

    PubMed

    Larson, Jonas

    2012-01-20

    We revisit earlier studies on Berry phases suggested to appear in certain cavity QED settings. It has been especially argued that a nontrivial geometric phase is achievable even in the situation of no cavity photons. We, however, show that such results hinge on imposing the rotating wave approximation (RWA), while without the RWA no Berry phases occur in these schemes. A geometrical interpretation of our results is obtained by introducing semiclassical energy surfaces which in a simple way brings out the phase-space dynamics. With the RWA, a conical intersection between the surfaces emerges and encircling it gives rise to the Berry phase. Without the RWA, the conical intersection is absent and therefore the Berry phase vanishes. It is believed that this is a first example showing how the application of the RWA in the Jaynes-Cummings model may lead to false conclusions, regardless of the mutual strengths between the system parameters.

  6. On the Use of the Phase Memory Time T2for the Quantitative Characterization of the Rotational Motions of Proteins in Lipid Bilayer Systems

    NASA Astrophysics Data System (ADS)

    van der Struijf, C.; Levine, Y. K.

    1998-02-01

    Numerical simulations of the echo responses from a nitroxide label rigidly attached to a large protein undergoing ultraslow rotational motions in a lipid bilayer are presented. The echoes are formed by the application of Hahn, COSY, and 2D-ELDOR sequences utilizing both soft and hard microwave pulses. The simulations address the question of whether the echo responses elicited by these sequences are affected by restricted angular excursions of the long axis of the protein relative to the normal to the bilayer plane. The results indicate that all three pulse sequences yield the same quantitative motional information regardless of the nature of the microwave pulses and there is no theoretical reason for preferring one sequence above the others.

  7. Optimizing the adiabatic buncher and phase-energy rotator for neutrino factories

    NASA Astrophysics Data System (ADS)

    Poklonskiy, Alexey A.; Neuffer, David; Johnstone, Carol J.; Berz, Martin; Makino, Kyoko; Ovsyannikov, Dmitriy A.; Ovsyannikov, Alexandre D.

    2006-03-01

    In the US scenario for a Neutrino Factory presented in "A feasibility study of a neutrino source based on a muon storage ring", N. Holtkamp (Ed.), D. Finley (Ed.), Fermilab, April 15th, 2000), a large percentage of the cost is related to an induction linac for phase-energy rotation and bunching of the muon beam collected after the production target and decay channel. A more cost-effective adiabatic buncher and phase-energy rotator has been proposed to replace the induction linac system (D. Neuffer, A. Van Ginneken, High-frequency bunching and (φ-δE) rotation for a muon source, Proceedings of the 2001 Particle Accelerators Conference, Chicago, 2001, p. 2029). The new method uses consecutive RF cavities with differing frequencies. The frequencies are changed to enable bunching and phase-energy rotation. In this paper, the theoretical concept is developed and demonstrated with simulation results obtained with the map code COSY Infinity ( http://cosy.pa.msu.edu). An optimization strategy is also explored.

  8. Stochastic Rotation Dynamics simulations of wetting multi-phase flows

    NASA Astrophysics Data System (ADS)

    Hiller, Thomas; Sanchez de La Lama, Marta; Brinkmann, Martin

    2016-06-01

    Multi-color Stochastic Rotation Dynamics (SRDmc) has been introduced by Inoue et al. [1,2] as a particle based simulation method to study the flow of emulsion droplets in non-wetting microchannels. In this work, we extend the multi-color method to also account for different wetting conditions. This is achieved by assigning the color information not only to fluid particles but also to virtual wall particles that are required to enforce proper no-slip boundary conditions. To extend the scope of the original SRDmc algorithm to e.g. immiscible two-phase flow with viscosity contrast we implement an angular momentum conserving scheme (SRD+mc). We perform extensive benchmark simulations to show that a mono-phase SRDmc fluid exhibits bulk properties identical to a standard SRD fluid and that SRDmc fluids are applicable to a wide range of immiscible two-phase flows. To quantify the adhesion of a SRD+mc fluid in contact to the walls we measure the apparent contact angle from sessile droplets in mechanical equilibrium. For a further verification of our wettability implementation we compare the dewetting of a liquid film from a wetting stripe to experimental and numerical studies of interfacial morphologies on chemically structured surfaces.

  9. The rotation, color, phase coefficient, and diameter of 1915 Quetzalcoatl

    NASA Astrophysics Data System (ADS)

    Binzel, R. P.; Tholen, D. J.

    1983-09-01

    Photoelectric observations of 1915 Quetzalcoatl on March 2, 1981 show that this asteroid has a rotational period of 4.9 + or - 0.3 hr and a lightcurve amplitude of 0.26 magnitudes. B-V and U-B colors are found to be 0.83 + or - 0.04 and 0.43 + or - 0.03, respectively, consistent with Quetzalcoatl being an S-type asteroid. Additional observations from March 31, 1981, give a linear phase coefficient of 0.033 mag/deg and a mean B(1,0) magnitude of 20.10. The resulting estimated mean diameter for Quetzalcoatl is only 0.37 km, making it one of the smallest asteroids for which physical observations have yet been made.

  10. The rotation, color, phase coefficient, and diameter of 1915 Quetzalcoatl

    NASA Technical Reports Server (NTRS)

    Binzel, R. P.; Tholen, D. J.

    1983-01-01

    Photoelectric observations of 1915 Quetzalcoatl on March 2, 1981 show that this asteroid has a rotational period of 4.9 + or - 0.3 hr and a lightcurve amplitude of 0.26 magnitudes. B-V and U-B colors are found to be 0.83 + or - 0.04 and 0.43 + or - 0.03, respectively, consistent with Quetzalcoatl being an S-type asteroid. Additional observations from March 31, 1981, give a linear phase coefficient of 0.033 mag/deg and a mean B(1,0) magnitude of 20.10. The resulting estimated mean diameter for Quetzalcoatl is only 0.37 km, making it one of the smallest asteroids for which physical observations have yet been made.

  11. Femtosecond pure-rotational coherent anti-stokes raman scattering gas phase diagnostics.

    SciTech Connect

    Kearney, Sean Patrick; Serrano, Justin Raymond

    2010-12-01

    We discuss recent experiments for the characterization of our femtosecond pure rotational CARS facility for observation of Raman transients in N{sub 2} and atmospheric air. The construction of a simplified femtosecond four-wave mixing system with only a single laser source is presented. Pure-rotational Raman transients reveal well-ordered time-domain recurrence peaks associated with the near-uniform spacing of rotational Raman peaks in the spectral domain. Long-time, 100-ps duration observations of the transient Raman polarization are presented, and the observed transients are compared to simulated results. Fourier transformation of the transients reveals two distinct sets of beat frequencies. Simulation results for temperatures from 300-700 K are used to illustrate the temperature sensitivity of the time-domain transients and their Fourier-transform counterparts. And strategies for diagnostics are briefly discussed. These results are being utilized to develop gas-phase measurement strategies for temperature and species concentration.

  12. A Rotational Pressure-Correction Scheme for Incompressible Two-Phase Flows with Open Boundaries

    PubMed Central

    Dong, S.; Wang, X.

    2016-01-01

    Two-phase outflows refer to situations where the interface formed between two immiscible incompressible fluids passes through open portions of the domain boundary. We present several new forms of open boundary conditions for two-phase outflow simulations within the phase field framework, as well as a rotational pressure correction based algorithm for numerically treating these open boundary conditions. Our algorithm gives rise to linear algebraic systems for the velocity and the pressure that involve only constant and time-independent coefficient matrices after discretization, despite the variable density and variable viscosity of the two-phase mixture. By comparing simulation results with theory and the experimental data, we show that the method produces physically accurate results. We also present numerical experiments to demonstrate the long-term stability of the method in situations where large density contrast, large viscosity contrast, and backflows occur at the two-phase open boundaries. PMID:27163909

  13. A Rotational Pressure-Correction Scheme for Incompressible Two-Phase Flows with Open Boundaries.

    PubMed

    Dong, S; Wang, X

    2016-01-01

    Two-phase outflows refer to situations where the interface formed between two immiscible incompressible fluids passes through open portions of the domain boundary. We present several new forms of open boundary conditions for two-phase outflow simulations within the phase field framework, as well as a rotational pressure correction based algorithm for numerically treating these open boundary conditions. Our algorithm gives rise to linear algebraic systems for the velocity and the pressure that involve only constant and time-independent coefficient matrices after discretization, despite the variable density and variable viscosity of the two-phase mixture. By comparing simulation results with theory and the experimental data, we show that the method produces physically accurate results. We also present numerical experiments to demonstrate the long-term stability of the method in situations where large density contrast, large viscosity contrast, and backflows occur at the two-phase open boundaries.

  14. Multiple operating system rotation environment moving target defense

    DOEpatents

    Evans, Nathaniel; Thompson, Michael

    2016-03-22

    Systems and methods for providing a multiple operating system rotation environment ("MORE") moving target defense ("MTD") computing system are described. The MORE-MTD system provides enhanced computer system security through a rotation of multiple operating systems. The MORE-MTD system increases attacker uncertainty, increases the cost of attacking the system, reduces the likelihood of an attacker locating a vulnerability, and reduces the exposure time of any located vulnerability. The MORE-MTD environment is effectuated by rotation of the operating systems at a given interval. The rotating operating systems create a consistently changing attack surface for remote attackers.

  15. Cylindrical gravity currents in a rotating system

    NASA Astrophysics Data System (ADS)

    Wu, Ching-Sen; Dai, Albert

    2016-11-01

    This study aims at investigating the dynamical processes in the formation of stable cylindrical gravity currents, by a full-depth lock release, in a rotating system conducted by direct numerical simulations. The simulations reproduce the major features observed in the laboratory and provide more detailed flow information. Both the qualitative and quantitative measures are provided through the flow patterns and the predicted energy budgets. At the initial stage, during tenth of a revolution of the system, the Kelvin-Helmholtz vortices form and the flow structure maintain nearly axisymmetric. Afterwards, three-dimensionality of flow quickly develops and the outer rim of current breaks away from the body, which gives rise to the maximum dissipation rate in the system. The detached outer rim continues to propagate outward until a maximum radius of propagation is attained. Then the body of current exhibits a regularly contraction-relaxation motion in a period, the energy is transformed back and forth between potential energy and kinetic energy. With the use of high-resolution of numerical computations, the formation of lobe-and-cleft structure and swirling strength for the rotating gravity currents are clearly observed.

  16. Hydrodynamic theory of rotating ultracold Bose-Einstein condensates in supersolid phase

    NASA Astrophysics Data System (ADS)

    Sachdeva, Rashi; Ghosh, Sankalpa

    2015-05-01

    Within the mean field Gross-Pitaevskii framework, ultracold atomic condensates with long-range interaction are predicted to have a supersolid-like ground state beyond a critical interaction strength. Such a mean field supersolid-like ground state has periodically modulated superfluid density which implies the coexistence of superfluid and crystalline order. An ultracold atomic system in such a mean field ground state can be subjected to an artificial gauge field created either through rotation or by introducing space dependent coupling among hyperfine states of the atoms using Raman lasers. Starting from this Gross-Pitaevskii energy functional that describes such systems at zero temperature, we construct a hydrodynamic theory to describe the low-energy long-wavelength excitations of a rotating supersolid of weakly interacting ultracold atoms in two spatial dimensions for a generic type of long-range interaction. We treat the supersolidity in such a system within the framework of the well known two-fluid approximation. Considering such a system in the fast rotation limit where a vortex lattice in superfluid coexists with the supersolid lattice, we analytically obtain the dispersion relations of collective excitations around this equilibrium state. The dispersion relation gives the modes of the rotating supersolid which can be experimentally measured within the current technology. We point out that this can clearly identify an ultracold atomic supersolid phase in an unambiguous way.

  17. Geometric Phase Of The Faraday Rotation Of Electromagnetic Waves In Magnetized Plasma

    SciTech Connect

    Jian Liu and Hong Qin

    2011-11-07

    The geometric phase of circularly polarized electromagnetic waves in nonuniform magnetized plasmas is studied theoretically. The variation of the propagation direction of circularly polarized waves results in a geometric phase, which also contributes to the Faraday rotation, in addition to the standard dynamical phase. The origin and properties of the geometric phase is investigated. The in uence of the geometric phase to plasma diagnostics using Faraday rotation is also discussed as an application of the theory.

  18. Counter-Rotating Tandem Motor Drilling System

    SciTech Connect

    Kent Perry

    2009-04-30

    Gas Technology Institute (GTI), in partnership with Dennis Tool Company (DTC), has worked to develop an advanced drill bit system to be used with microhole drilling assemblies. One of the main objectives of this project was to utilize new and existing coiled tubing and slimhole drilling technologies to develop Microhole Technology (MHT) so as to make significant reductions in the cost of E&P down to 5000 feet in wellbores as small as 3.5 inches in diameter. This new technology was developed to work toward the DOE's goal of enabling domestic shallow oil and gas wells to be drilled inexpensively compared to wells drilled utilizing conventional drilling practices. Overall drilling costs can be lowered by drilling a well as quickly as possible. For this reason, a high drilling rate of penetration is always desired. In general, high drilling rates of penetration (ROP) can be achieved by increasing the weight on bit and increasing the rotary speed of the bit. As the weight on bit is increased, the cutting inserts penetrate deeper into the rock, resulting in a deeper depth of cut. As the depth of cut increases, the amount of torque required to turn the bit also increases. The Counter-Rotating Tandem Motor Drilling System (CRTMDS) was planned to achieve high rate of penetration (ROP) resulting in the reduction of the drilling cost. The system includes two counter-rotating cutter systems to reduce or eliminate the reactive torque the drillpipe or coiled tubing must resist. This would allow the application of maximum weight-on-bit and rotational velocities that a coiled tubing drilling unit is capable of delivering. Several variations of the CRTDMS were designed, manufactured and tested. The original tests failed leading to design modifications. Two versions of the modified system were tested and showed that the concept is both positive and practical; however, the tests showed that for the system to be robust and durable, borehole diameter should be substantially larger than

  19. Improved magnetic feedback system on the fast rotating kink mode

    NASA Astrophysics Data System (ADS)

    Peng, Qian

    This thesis presents an improved feedback system on HBT-EP and suppression of the fast rotating kink mode using this system. HBT-EP is an experimental tokamak at Columbia University designed to study the magnetohydrodynamic (MHD) instabilities in confined fusion. The most damaging instabilities are global long wavelength kink modes, which break the toroidal symmetry of the magnetic structure and lead to plasma disruption and termination. When a tokamak is surrounded by a close fitting conducting wall, then the single helicity linear dispersion relation of the kink instability has two dominating branches: one is the "slow mode", rotating at the time scale of wall time, known as resistive wall mode (RWM), the other is the fast mode, that becomes unstable near the ideal wall stability limit. Both instabilities are required to be controlled by the feedback system in HBT-EP. In this thesis, improvements have been made upon the previous GPU-based system to enhance the feedback performance and obtain clear evidence of the feedback suppression effect. Specifically, a new algorithm is implemented that maintains an accurate phase shift between the applied perturbation and the unstable mode. This prevents the excitation of the slow kink mode observed in previous studies and results in high gain suppression for fast mode control at all frequency for the first time. When the system is turned off, suppression is lost and the fast mode is observed to grow back. The feedback performance is tested with several wall configurations including the presence of ferritic material. This provides the first comparison of feedback control between the ferritic and stainless wall. The effect of plasma rotation on feedback control is tested by applying a static voltage on a bias probe. As the mode rotation being slowed by the radial current flow, a higher gain on the kink mode is required to achieve feedback suppression. The change in plasma rotation also modifies the plasma response to the

  20. Design of a Rotatable Copper Collimator for the LHC Phase II Collimation Upgrade

    SciTech Connect

    Smith, Jeffrey Claiborne; Doyle, Eric; Keller, Lewis; Lundgren, Steven; Markiewicz, Thomas Walter; Lari, Luisella; /LPHE, Lausanne

    2010-02-15

    The Phase II upgrade to the LHC collimation system calls for complementing the robust Phase I graphite collimators with high Z, low impedance Phase II collimators. The design for the collimation upgrade has not been finalized. One option is to use metallic rotatable collimators and this design will be discussed here. The Phase II collimators must be robust in various operating conditions and accident scenarios. Design issues include: (1) Collimator jaw deflection and sagitta due to heating must be small when operated in the steady state condition, (2) Collimator jaws must withstand transitory periods of high beam impaction with no permanent damage, (3) Jaws must recover from accident scenario where up to 8 full intensity beam pulses impact on the jaw surface and (4) The beam impedance contribution due to the collimators must be small to minimize coherent beam instabilities.

  1. Magnetic translation and Berry's phase factor through adiabatically rotating a magnetic field

    NASA Astrophysics Data System (ADS)

    Qi, Zhen

    This dissertation covers two results obtained by the author on the Berry phase. Chapter one is the introduction. In chapter two, a special method is introduced to study the infinitely degenerate system of a charged particle moving in an adiabatically rotating magnetic field. It leads to the factorisation of the quantum evolution operator into three factors: a rotation, a path-dependent magnetic translation and a dynamical factor. While the rotation operator is well known from Berry's original work, this dissertation finds the new role played by the magnetic translation operator in the quantum adiabatic evolution. Chapter three introduces a nontrivial example where the concept of the Berry phase can be used even if the Hamiltonian is a time-dependent sum of a discrete spectrum part and a continuous spectrum part. The maximum amount of information concerning the evolution operator is also obtained in this case. These two results attest to the naturalness and effectiveness of the concept of the Berry phase, and are convincing evidence that more discoveries are waiting to be made in the future.

  2. Rotation-Enabled 7-Degree of Freedom Seismometer for Geothermal Resource Development. Phase 1 Final Report

    SciTech Connect

    Pierson, Bob; Laughlin, Darren

    2013-10-29

    Under this Department of Energy (DOE) grant, A-Tech Corporation d.b.a. Applied Technology Associates (ATA), seeks to develop a seven-degree-of-freedom (7-DOF) seismic measurement tool for high-temperature geothermal applications. The Rotational-Enabled 7-DOF Seismometer includes a conventional tri-axial accelerometer, a conventional pressure sensor or hydrophone, and a tri-axial rotational sensor. The rotational sensing capability is novel, based upon ATA's innovative research in rotational sensing technologies. The geothermal industry requires tools for high-precision seismic monitoring of crack formation associated with Enhanced Geothermal System (EGS) stimulation activity. Currently, microseismic monitoring is conducted by deploying many seismic tools at different depth levels along a 'string' within drilled observation wells. Costs per string can be hundreds of thousands of dollars. Processing data from the spatial arrays of linear seismometers allows back-projection of seismic wave states. In contrast, a Rotational-Enabled 7-DOF Seismometer would simultaneously measure p-wave velocity, s-wave velocity, and incident seismic wave direction all from a single point measurement. In addition, the Rotational-Enabled 7-DOF Seismometer will, by its nature, separate p- and s-waves into different data streams, simplifying signal processing and facilitating analysis of seismic source signatures and geological characterization. By adding measurements of three additional degrees-of-freedom at each level and leveraging the information from this new seismic observable, it is likely that an equally accurate picture of subsurface seismic activity could be garnered with fewer levels per hole. The key cost savings would come from better siting of the well due to increased information content and a decrease in the number of confirmation wells drilled, also due to the increase in information per well. Improved seismic tools may also increase knowledge, understanding, and confidence

  3. Autonomous strange nonchaotic oscillations in a system of mechanical rotators

    NASA Astrophysics Data System (ADS)

    Jalnine, Alexey Yu.; Kuznetsov, Sergey P.

    2017-05-01

    We investigate strange nonchaotic self-oscillations in a dissipative system consisting of three mechanical rotators driven by a constant torque applied to one of them. The external driving is nonoscillatory; the incommensurable frequency ratio in vibrational-rotational dynamics arises due to an irrational ratio of diameters of the rotating elements involved. It is shown that, when losing stable equilibrium, the system can demonstrate two- or three-frequency quasi-periodic, chaotic and strange nonchaotic self-oscillations. The conclusions of the work are confirmed by numerical calculations of Lyapunov exponents, fractal dimensions, spectral analysis, and by special methods of detection of a strange nonchaotic attractor (SNA): phase sensitivity and analysis using rational approximation for the frequency ratio. In particular, SNA possesses a zero value of the largest Lyapunov exponent (and negative values of the other exponents), a capacitive dimension close to 2 and a singular continuous power spectrum. In general, the results of this work shed a new light on the occurrence of strange nonchaotic dynamics.

  4. Phase-space analysis of charged and optical beam transport: Wigner rotation angle

    NASA Technical Reports Server (NTRS)

    Dattoli, G.; Torre, Amalia

    1994-01-01

    The possibility of using the phase space formalism to establish a correspondence between the dynamical behavior of squeezed states and optical or charged beams, propagating through linear systems, has received a great deal of attention during the last years. In this connection, it has been indicated how optical experiments may be conceived to measure the Wigner rotation angle. In this paper we address the topic within the context of the paraxial propagation of optical or charged beams and suggest a possible experiment for measuring the Wigner angle using an electron beam passing through quadrupoles and drift sections. The analogous optical system is also discussed.

  5. Stress field rotation or block rotation: An example from the Lake Mead fault system

    NASA Technical Reports Server (NTRS)

    Ron, Hagai; Nur, Amos; Aydin, Atilla

    1990-01-01

    The Coulomb criterion, as applied by Anderson (1951), has been widely used as the basis for inferring paleostresses from in situ fault slip data, assuming that faults are optimally oriented relative to the tectonic stress direction. Consequently if stress direction is fixed during deformation so must be the faults. Freund (1974) has shown that faults, when arranged in sets, must generally rotate as they slip. Nur et al., (1986) showed how sufficiently large rotations require the development of new sets of faults which are more favorably oriented to the principal direction of stress. This leads to the appearance of multiple fault sets in which older faults are offset by younger ones, both having the same sense of slip. Consequently correct paleostress analysis must include the possible effect of fault and material rotation, in addition to stress field rotation. The combined effects of stress field rotation and material rotation were investigated in the Lake Meade Fault System (LMFS) especially in the Hoover Dam area. Fault inversion results imply an apparent 60 degrees clockwise (CW) rotation of the stress field since mid-Miocene time. In contrast structural data from the rest of the Great Basin suggest only a 30 degrees CW stress field rotation. By incorporating paleomagnetic and seismic evidence, the 30 degrees discrepancy can be neatly resolved. Based on paleomagnetic declination anomalies, it is inferred that slip on NW trending right lateral faults caused a local 30 degrees counter-clockwise (CCW) rotation of blocks and faults in the Lake Mead area. Consequently the inferred 60 degrees CW rotation of the stress field in the LMFS consists of an actual 30 degrees CW rotation of the stress field (as for the entire Great Basin) plus a local 30 degrees CCW material rotation of the LMFS fault blocks.

  6. Coherent control of molecular rotational state populations by periodic phase-step modulation

    SciTech Connect

    Zhang Shian; Wu Meizhen; Lu Chenhui; Jia Tianqing; Sun Zhenrong

    2011-10-15

    We theoretically demonstrate that the molecular rotational state populations through an impulsive nonresonant Raman process can be manipulated by shaping the femtosecond laser pulse with a periodic phase-step modulation. We show that, by precisely controlling these parameters characterizing the periodic phase-step modulation, both the odd and even rotational state populations can be completely suppressed or reconstructed as that induced by the transform-limited laser pulse, and the relative excitation between the odd and even rotational state populations can also be obtained. Furthermore, we show that the field-free molecular alignment can be manipulated due to the modulation of the odd and even rotational state populations.

  7. Studies of chondrogenesis in rotating systems

    NASA Technical Reports Server (NTRS)

    Duke, P. J.; Daane, E. L.; Montufar-Solis, D.

    1993-01-01

    A great deal of energy has been exerted over the years researching methods for regenerating and repairing bone and cartilage. Several techniques, especially bone implants and grafts, show great promise for providing a remedy for many skeletal disorders and chondrodystrophies. The bioreactor (rotating-wall vessel, RWV) is a cell culture system that creates a nurturing environment conducive to cell aggregation. Chondrocyte cultures have been studied as implants for repair and replacement of damaged and missing bone and cartilage since 1965 [Chesterman and Smith, J Bone Joint Surg 50B:184-197, 1965]. The ability to use large, tissue-like cartilage aggregates grown in the RWV would be of great clinical significance in treating skeletal disorders. In addition, the RWV may provide a superior method for studying chondrogenesis and chondrogenic mutations. Because the RWV is also reported to simulate many of the conditions of microgravity it is a very useful ground-based tool for studying how cell systems will react to microgravity.

  8. Studies of chondrogenesis in rotating systems.

    PubMed

    Duke, P J; Daane, E L; Montufar-Solis, D

    1993-03-01

    A great deal of energy has been exerted over the years researching methods for regenerating and repairing bone and cartilage. Several techniques, especially bone implants and grafts, show great promise for providing a remedy for many skeletal disorders and chondrodystrophies. The bioreactor (rotating-wall vessel, RWV) is a cell culture system that creates a nurturing environment conducive to cell aggregation. Chondrocyte cultures have been studied as implants for repair and replacement of damaged and missing bone and cartilage since 1965 [Chesterman and Smith, J Bone Joint Surg 50B:184-197, 1965]. The ability to use large, tissue-like cartilage aggregates grown in the RWV would be of great clinical significance in treating skeletal disorders. In addition, the RWV may provide a superior method for studying chondrogenesis and chondrogenic mutations. Because the RWV is also reported to simulate many of the conditions of microgravity it is a very useful ground-based tool for studying how cell systems will react to microgravity.

  9. Studies of chondrogenesis in rotating systems

    NASA Technical Reports Server (NTRS)

    Duke, P. J.; Daane, E. L.; Montufar-Solis, D.

    1993-01-01

    A great deal of energy has been exerted over the years researching methods for regenerating and repairing bone and cartilage. Several techniques, especially bone implants and grafts, show great promise for providing a remedy for many skeletal disorders and chondrodystrophies. The bioreactor (rotating-wall vessel, RWV) is a cell culture system that creates a nurturing environment conducive to cell aggregation. Chondrocyte cultures have been studied as implants for repair and replacement of damaged and missing bone and cartilage since 1965 [Chesterman and Smith, J Bone Joint Surg 50B:184-197, 1965]. The ability to use large, tissue-like cartilage aggregates grown in the RWV would be of great clinical significance in treating skeletal disorders. In addition, the RWV may provide a superior method for studying chondrogenesis and chondrogenic mutations. Because the RWV is also reported to simulate many of the conditions of microgravity it is a very useful ground-based tool for studying how cell systems will react to microgravity.

  10. Tidal resonances in binary star systems. II - Slowly rotating stars

    NASA Astrophysics Data System (ADS)

    Alexander, M. E.

    1988-12-01

    The potential energy of tidal interactions in a binary system with rotating components is formulated as a perturbation Hamiltonian which self-consistently couples the dynamics of the rotating stars' oscillations and orbital motion. The action-angle formalism used to discuss tidal resonances in the nonrotating case (Alexander, 1987) is extended to rotating stars. The behavior of a two-mode system and the procedure for treating an arbitrary number of modes are discussed.

  11. Ammonia emissions of a rotational grazing system

    NASA Astrophysics Data System (ADS)

    Voglmeier, Karl; Häni, Christoph; Jocher, Markus; Ammann, Christof

    2017-04-01

    Intensive agricultural livestock production is the main source of air pollution by ammonia (NH3). Grazing is considered to reduce emissions significantly. However, ammonia emissions measurements on pastures are very rare and most emission models base their emissions factors for grazing on studies from the 1990s, which report a large emission range from 2.7% to 13.6% of the applied total ammonia nitrogen (TAN). We present first results of the Posieux pasture experiment in 2016 where NH3 concentration and fluxes were measured during the grazing season. The applied methods include an eddy covariance system with a two channel reactive nitrogen (Nr) converter measuring in parallel the sum of oxidized Nr species and the sum of the total Nr species. The difference of the two channels corresponds to the sum of reduced Nr species. Furthermore four MiniDOAS instruments for line integrated concentration measurements without an inlet system were used. The fluxes were estimated by applying a backward Lagrangian stochastic model (bLS) to the concentration difference of paired MiniDOAS up- and downwind of a sub-plot of the field. Monitoring of dung (visual survey) and urine patch locations (with soil electrical conductivity sensor) was carried out after each grazing rotation on selected sub-plots. It helped to compute statistics of the dung/urine patch distribution on the pasture. The experimental setup and the environmental conditions resulted in high temporal and spatial dynamics of NH3 concentrations and fluxes. The calculated fluxes were used to estimate the total net emission during the grazing period. Based on the average dung/urine patch distribution on the field an emission factor for the pasture was computed and compared to results from the literature. We discuss the applicability and limitations of the two measurement systems, reconsider the main emission drivers and explain differences in the results.

  12. Some dynamic problems of rotating windmill systems

    NASA Technical Reports Server (NTRS)

    Dugundji, J.

    1976-01-01

    The basic whirl stability of a rotating windmill on a flexible tower is reviewed. Effects of unbalance, gravity force, gyroscopic moments, and aerodynamics are discussed. Some experimental results on a small model windmill are given.

  13. Bound Motion of Bodies and Paticles in the Rotating Systems

    NASA Astrophysics Data System (ADS)

    Pardy, Miroslav

    2007-04-01

    The Lagrange theory of particle motion in the noninertial systems is applied to the Foucault pendulum, isosceles triangle pendulum and the general triangle pendulum swinging on the rotating Earth. As an analogue, planet orbiting in the rotating galaxy is considered as the giant galactic gyroscope. The Lorentz equation and the Bargmann-Michel-Telegdi equations are generalized for the rotation system. The knowledge of these equations is inevitable for the construction of LHC where each orbital proton “feels” the Coriolis force caused by the rotation of the Earth.

  14. Gas-phase diagnostic by time-resolved rotational coherent anti-Stokes Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Seeger, Thomas; Leipertz, A.

    2011-05-01

    Dual-broadband pure rotational CARS (RCARS) is nowadays a well-developed gas phase measurement technique. Nevertheless there are challenges for technical applications due to stray light interference, soot emission or droplets. Beside this for diffusion flames also a strong, unknown and varying non-resonant background signal is contributing to the CARS signal. Possible applications of time-resolved pure rotational coherent anti-Stokes Raman spectroscopy for different applications are demonstrated and its potential of for gas-phase thermometry is investigated. The field of application covers studies on flame research especially sooting flames as well as its use in technical combustion systems e.g., for the determination of the gas-phase temperature in the vaporizing spray of a GDI injector. A new advantageous approach by using picosecond (ps) laser sources as a diagnostic tool is also demonstrated. By time-delaying the ps probe laser beam problems due to stray light interference, soot emission or droplets can be reduced tremendously of even eliminated.

  15. Microfog lubricant application system for advanced turbine engine components, phase 2. Tasks 3, 4 and 5: Wettability and heat transfer of microfog jets impinging on a heated rotating disc, and evaluation of reclassifying nozzles and a vortex mist generator

    NASA Technical Reports Server (NTRS)

    Shim, J.; Leonardi, S. J.

    1972-01-01

    The wettabilities and heat transfer rates of microfog jets (oil-mist nozzle flows) impinging on a heated rotating disc were determined under an inert atmosphere of nitrogen at temperatures ranging from 600 to 800 F. The results are discussed in relation to the various factors involved in the microfog lubricant application systems. Two novel reclassifying nozzles and a vortex mist generator were also studied.

  16. Coherent beam combination using self-phase locked stimulated Brillouin scattering phase conjugate mirrors with a rotating wedge for high power laser generation.

    PubMed

    Park, Sangwoo; Cha, Seongwoo; Oh, Jungsuk; Lee, Hwihyeong; Ahn, Heekyung; Churn, Kil Sung; Kong, Hong Jin

    2016-04-18

    The self-phase locking of a stimulated Brillouin scattering-phase conjugate mirror (SBS-PCM) allows a simple and scalable coherent beam combination of existing lasers. We propose a simple optical system composed of a rotating wedge and a concave mirror to overcome the power limit of the SBS-PCM. Its phase locking ability and the usefulness on the beam-combination laser are demonstrated experimentally. A four-beam combination is demonstrated using this SBS-PCM scheme. The relative phases between the beams were measured to be less than λ/24.7.

  17. Phase diagram of two-dimensional fast-rotating ultracold fermionic atoms near unitarity

    SciTech Connect

    Nikolic, Predrag

    2010-02-15

    By analyzing vortex lattices, re-entrant Cooper pairing, and Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states in a single theoretical framework, we explore how vortices and spin textures join to protect superconductivity against large magnetic fields. We use a rapidly rotating ultracold gas of fermionic atoms near unitarity as a model system amenable to experimental exploration and discover a hierarchy of spin-polarized and FFLO phases in which a metal or a band insulator of unpaired particles coexists with a spatially modulated superfluid hosting a vortex lattice. Quantum fluctuations can transform these phases into strongly correlated 'vortex-liquid' metals and insulators, respectively. We argue that vortex lattices significantly enhance the stability of FFLO states and discuss prospects for observing these states in cold-atom experiments.

  18. Research of optical rotation measurement system based on centroid algorithm.

    PubMed

    Cao, Junjie; Jia, Hongzhi; Shen, Xinrong; Jiang, Shixin

    2016-09-01

    An optical rotation measurement system based on digital signal processor, modulated laser, and step motor rotating stage is established. Centroid algorithm featured fast and simple calculation is introduced to process light signals with or without sample to obtain the optical rotating angle through the step difference between two centroids. The system performance is proved experimentally with standard quartz tubes and glucose solutions. After various measurements, the relative error and precision of the system are determined to 0.4% and 0.004°, which demonstrates the reliable repeatability and high accuracy of whole measurement system.

  19. Suspension System Provides Independent Translation And Rotation

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer

    1994-01-01

    Spring suspension provides one translational and one rotational degree of freedom. Suspension used to provide for pitching and plunging movements of airfoil in wind tunnel. Translational freedom provided by two thin, flat steel spring tines, clamped at one end to stationary block fixed to ceiling of wind tunnel, and clamped to movable block at other end.

  20. Short rotation forestry harvesting - systems and costs

    Treesearch

    Bruce R. Hartsough; Bryce J. Stokes

    1997-01-01

    Single stem short rotation plantations in the United States are largely dedicated to pulp production, with fuel as a secondary product. There are very limited plantings for fuel production, and others where the primary purpose is treatment of various wastewater's. All production harvesting of single stem plantations is conducted with conventional forestry...

  1. Fast phase manipulation of the single nuclear spin in solids by rotating fields

    NASA Astrophysics Data System (ADS)

    Shimo-Oka, T.; Tokura, Y.; Suzuki, Y.; Mizuochi, N.

    2017-03-01

    We propose fast phase gates of single nuclear spins interacting with single electron spins. The gate operation utilizes geometric phase shifts of the electron spin induced by fast and slow rotating fields; the path difference depending on nuclear-spin states enables nuclear phase shifts. The gate time is inversely proportional to the frequency of the slow rotating field. As an example, we use nitrogen-vacancy centers in diamond, and show, in principle, the phase-gate time orders of magnitude to be shorter than previously reported. We also confirmed the robustness of the gate against decoherence and systematic errors.

  2. Rotation of solid bodies in the solar system

    NASA Technical Reports Server (NTRS)

    Peale, S. J.

    1973-01-01

    The effects of elastic distortion, nonprincipal axis rotation, precessing orbits, and internal dissipation on the rotation of a solid solar system body, which is in the gravitational field of an exterior body, are relatively easily analyzed by a Hamiltonian theory developed here. Examples of applications include the Chandler wobble, wobble of the moon, spin-orbit coupling, generalized Cassini laws, and tidal evolution.

  3. Harvesting systems and costs for short rotation poplar

    Treesearch

    B. Rummer; D. Mitchell

    2013-01-01

    The objective of this review is to compare the cost of coppice and longer rotation poplar harvesting technology. Harvesting technology for short rotation poplar has evolved over the years to address both coppice harvest and single-stem harvest systems. Two potential approaches for coppice harvesting are modified forage harvesters and modified mulcher-balers. Both of...

  4. Rotations

    Treesearch

    John R. Jones; Wayne D. Shepperd

    1985-01-01

    The rotation, in forestry, is the planned number of years between formation of a crop or stand and its final harvest at a specified stage of maturity (Ford-Robertson 1971). The rotation used for many species is the age of culmination of mean usable volume growth [net mean annual increment (MAI)]. At that age, usable volume divided by age reaches its highest level. That...

  5. Nonadiabatic Berry's phase for a spin particle in a rotating magnetic field

    NASA Astrophysics Data System (ADS)

    Wang, Shun-Jin

    1990-11-01

    The time-dependent Schrödinger equation for a spin particle in a rotating magnetic field is solved analytically by the cranking method, and the exact solutions are employed to study the nonadiabatic Berry's phase. An alternative expression for Berry's phase is given, which shows that Berry's phase is related to the expectation value of spin along the rotating axis and gives Berry's phase a physical explanation besides its gauge geometric interpretation. This expression also presents a simple algorithm for calculating the nonadiabatic Berry's phase for Hamiltonians that are nonlinear functions of the SU(2) generators. It is shown that nonadiabaticity alters the time evolution ray and in turn changes its Berry's phase. For the SU(2) dynamical group, the nonadiabatic effect on Berry's phase manifests itself as spin alignment (a phenomenon in nuclear physics), and spin-alignment quantization (observed recently in high-spin nuclear physics) is related to Berry's-phase quantization.

  6. Semiclassical shell structure in rotating Fermi systems

    SciTech Connect

    Magner, A. G.; Sitdikov, A. S.; Khamzin, A. A.; Bartel, J.

    2010-06-15

    The collective moment of inertia is derived analytically within the cranking model for any rotational frequency of the harmonic-oscillator potential well and at a finite temperature. Semiclassical shell-structure components of the collective moment of inertia are obtained for any potential by using the periodic-orbit theory. We found semiclassically their relation to the free-energy shell corrections through the shell-structure components of the rigid-body moment of inertia of the statistically equilibrium rotation in terms of short periodic orbits. The shell effects in the moment of inertia exponentially disappear with increasing temperature. For the case of the harmonic-oscillator potential, one observes a perfect agreement of the semiclassical and quantum shell-structure components of the free energy and the moment of inertia for several critical bifurcation deformations and several temperatures.

  7. Rotating rod renewable microcolumns for automated, solid-phase DNA hybridization studies.

    PubMed

    Bruckner-Lea, C J; Stottlemyre, M S; Holman, D A; Grate, J W; Brockman, F J; Chandler, D P

    2000-09-01

    The development of a new temperature-controlled renewable microcolumn flow cell for solid-phase nucleic acid hybridization in an automated sequential injection system is described. The flow cell included a stepper motor-driven rotating rod with the working end cut to a 45 degrees angle. In one position, the end of the rod prevented passage of microbeads while allowing fluid flow; rotation of the rod by 180 degrees releases the beads. This system was used to rapidly test many hybridization and elution protocols to examine the temperature and solution conditions required for sequence-specific nucleic acid hybridization. Target nucleic acids labeled with a near-infrared fluorescent dye were detected immediately postcolumn during all column perfusion and elution steps using a flow-through fluorescence detector. Temperature control of the column and the presence of Triton X-100 surfactant were critical for specific hybridization. Perfusion of the column with complementary oligonucleotide (200 microL, 10 nM) resulted in hybridization with 8% of the DNA binding sites on the microbeads with a solution residence time of less than 1 s and a total sample perfusion time of 40 s. The use of the renewable column system for detection of an unlabeled PCR product in a sandwich assay was also demonstrated.

  8. Cylindrical Cardboard Model for a Rotating System in Special Relativity.

    ERIC Educational Resources Information Center

    Noerdlinger, Peter D.

    1979-01-01

    Presents a cylindrical cardboard model that helps students at the graduate or undergraduate level to visualize the nature of simultaneity and the propagation of light in a rotating coordinate system. (HM)

  9. Three-parameter error analysis method based on rotating coordinates in rotating birefringent polarizer system

    NASA Astrophysics Data System (ADS)

    Cao, Junjie; Jia, Hongzhi

    2015-11-01

    We propose error analysis using a rotating coordinate system with three parameters of linearly polarized light—incidence angle, azimuth angle on the front surface, and angle between the incidence and vibration planes—and demonstrate the method on a rotating birefringent prism system. The transmittance and angles are calculated plane-by-plane using a birefringence ellipsoid model and the final transmitted intensity equation is deduced. The effects of oblique incidence, light interference, beam convergence, and misalignment of the rotation and prism axes are discussed. We simulate the entire error model using MATLAB and conduct experiments based on a built polarimeter. The simulation and experimental results are consistent and demonstrate the rationality and validity of this method.

  10. Three-parameter error analysis method based on rotating coordinates in rotating birefringent polarizer system

    SciTech Connect

    Cao, Junjie; Jia, Hongzhi

    2015-11-15

    We propose error analysis using a rotating coordinate system with three parameters of linearly polarized light—incidence angle, azimuth angle on the front surface, and angle between the incidence and vibration planes—and demonstrate the method on a rotating birefringent prism system. The transmittance and angles are calculated plane-by-plane using a birefringence ellipsoid model and the final transmitted intensity equation is deduced. The effects of oblique incidence, light interference, beam convergence, and misalignment of the rotation and prism axes are discussed. We simulate the entire error model using MATLAB and conduct experiments based on a built polarimeter. The simulation and experimental results are consistent and demonstrate the rationality and validity of this method.

  11. Three-parameter error analysis method based on rotating coordinates in rotating birefringent polarizer system.

    PubMed

    Cao, Junjie; Jia, Hongzhi

    2015-11-01

    We propose error analysis using a rotating coordinate system with three parameters of linearly polarized light--incidence angle, azimuth angle on the front surface, and angle between the incidence and vibration planes--and demonstrate the method on a rotating birefringent prism system. The transmittance and angles are calculated plane-by-plane using a birefringence ellipsoid model and the final transmitted intensity equation is deduced. The effects of oblique incidence, light interference, beam convergence, and misalignment of the rotation and prism axes are discussed. We simulate the entire error model using MATLAB and conduct experiments based on a built polarimeter. The simulation and experimental results are consistent and demonstrate the rationality and validity of this method.

  12. Probing Vitamine C, Aspirin and Paracetamol in the Gas Phase: High Resolution Rotational Studies

    NASA Astrophysics Data System (ADS)

    Mata, S.; Cabezas, C.; Varela, M.; Pena, I.; Nino, A.; López, J. C.; Alonso, J. L.; Grabow, J.-U.

    2011-06-01

    A solid sample of Vitamin C (m.p. 190°C) vaporized by laser ablation has been investigated in gas phase and characterized through their rotational spectra. Two spectroscopy techniques has been used to obtain the spectra: a new design of broadband chirped pulse Fourier transform microwave spectroscopy with in-phase/quadrature-phase-modulation passage-acquired-coherence technique (IMPACT) and conventional laser ablation molecular beam Fourier transform microwave spectroscopy (LA-MB-FTMW). Up to now, two low-energy conformer have been observed and their rotational constants determined. Ab initio calculations at the MP2/6-311++G (d,p) level of theory predicted rotational constants which helped us to identify these conformers unequivocally. Among the molecules to benefit from the LA-MB-FTMW technique there are common important drugs never observed in the gas phase through rotational spectroscopy. We present here the results on acetyl salicylic acid and acetaminophen (m.p. 136°C), commonly known as aspirin and paracetamol respectively. We have observed two stable conformers of aspirin and two for paracetamol. The internal rotation barrier of the methyl group in aspirin has been determined for both conformers from the analysis of the A-E splittings due to the coupling of internal and overall rotation. J. L. Alonso, C. Pérez, M. E. Sanz, J. C. López, S. Blanco, Phys. Chem. Chem. Phys. 11,617-627 (2009)and references therein

  13. Phase Diagram of a 2-D Plane Rotator Model with Integer and Half-Integer Vortices

    NASA Astrophysics Data System (ADS)

    de Souza, Adauto J. F.; Landau, D. P.

    1996-03-01

    A two-dimensional plane rotator spin model is simulated by employing the single cluster embeding Monte Carlo technique and the re-weighting histogram analysis. The system is described by the Hamiltonian^1 \\cal H = -J1 sum_< i,j > Si \\cdot Sj - J2 sum_< i,j > ( Si \\cdot Sj )^2. In adition to the familiar integer vortices, this model possesses half-integer vortex excitations as well. The system exhibits three low-temperature phases which may be identified by the behavior of suitably defined two-point correlation functions. The half- and integer-vortex densities as a function of temperature are calculated for several values of the parameter α = J_2/J_1. The phase boundaries are determined and the nature of the phase transitions is investigated. Research supported in part by the CNPq and the NSF. Permanent address: Departmento de Física e Matemática, Universidade Federal Rural de Pernambuco, 52171-900, Recife, Pernambuco, Brazil ^1 D.H. Lee and G. Grinstein Phys. Rev. Lett. \\underline55, 541, (1985)

  14. Self-shaping of oil droplets via the formation of intermediate rotator phases upon cooling.

    PubMed

    Denkov, Nikolai; Tcholakova, Slavka; Lesov, Ivan; Cholakova, Diana; Smoukov, Stoyan K

    2015-12-17

    Revealing the chemical and physical mechanisms underlying symmetry breaking and shape transformations is key to understanding morphogenesis. If we are to synthesize artificial structures with similar control and complexity to biological systems, we need energy- and material-efficient bottom-up processes to create building blocks of various shapes that can further assemble into hierarchical structures. Lithographic top-down processing allows a high level of structural control in microparticle production but at the expense of limited productivity. Conversely, bottom-up particle syntheses have higher material and energy efficiency, but are more limited in the shapes achievable. Linear hydrocarbons are known to pass through a series of metastable plastic rotator phases before freezing. Here we show that by using appropriate cooling protocols, we can harness these phase transitions to control the deformation of liquid hydrocarbon droplets and then freeze them into solid particles, permanently preserving their shape. Upon cooling, the droplets spontaneously break their shape symmetry several times, morphing through a series of complex regular shapes owing to the internal phase-transition processes. In this way we produce particles including micrometre-sized octahedra, various polygonal platelets, O-shapes, and fibres of submicrometre diameter, which can be selectively frozen into the corresponding solid particles. This mechanism offers insights into achieving complex morphogenesis from a system with a minimal number of molecular components.

  15. Self-shaping of oil droplets via the formation of intermediate rotator phases upon cooling

    NASA Astrophysics Data System (ADS)

    Denkov, Nikolai; Tcholakova, Slavka; Lesov, Ivan; Cholakova, Diana; Smoukov, Stoyan K.

    2015-12-01

    Revealing the chemical and physical mechanisms underlying symmetry breaking and shape transformations is key to understanding morphogenesis. If we are to synthesize artificial structures with similar control and complexity to biological systems, we need energy- and material-efficient bottom-up processes to create building blocks of various shapes that can further assemble into hierarchical structures. Lithographic top-down processing allows a high level of structural control in microparticle production but at the expense of limited productivity. Conversely, bottom-up particle syntheses have higher material and energy efficiency, but are more limited in the shapes achievable. Linear hydrocarbons are known to pass through a series of metastable plastic rotator phases before freezing. Here we show that by using appropriate cooling protocols, we can harness these phase transitions to control the deformation of liquid hydrocarbon droplets and then freeze them into solid particles, permanently preserving their shape. Upon cooling, the droplets spontaneously break their shape symmetry several times, morphing through a series of complex regular shapes owing to the internal phase-transition processes. In this way we produce particles including micrometre-sized octahedra, various polygonal platelets, O-shapes, and fibres of submicrometre diameter, which can be selectively frozen into the corresponding solid particles. This mechanism offers insights into achieving complex morphogenesis from a system with a minimal number of molecular components.

  16. Rotational Augmentation Disparities in the MEXICO and UAE Phase VI Experiments: Preprint

    SciTech Connect

    Schreck, S.; Sant, T.; Micallef, D.

    2010-05-01

    Wind turbine structures and components suffer excessive loads and premature failures when key aerodynamic phenomena are not well characterized, fail to be understood, or are inaccurately predicted. Turbine blade rotational augmentation remains incompletely characterized and understood, thus limiting robust prediction for design. Pertinent rotational augmentation research including experimental, theoretical, and computational work has been pursued for some time, but large scale wind tunnel testing is a relatively recent development for investigating wind turbine blade aerodynamics. Because of their large scale and complementary nature, the MEXICO and UAE Phase VI wind tunnel experiments offer unprecedented synergies to better characterize and understand rotational augmentation of blade aerodynamics.

  17. Icing research tunnel rotating bar calibration measurement system

    NASA Technical Reports Server (NTRS)

    Gibson, Theresa L.; Dearmon, John M.

    1993-01-01

    In order to measure icing patterns across a test section of the Icing Research Tunnel, an automated rotating bar measurement system was developed at the NASA Lewis Research Center. In comparison with the previously used manual measurement system, this system provides a number of improvements: increased accuracy and repeatability, increased number of data points, reduced tunnel operating time, and improved documentation. The automated system uses a linear variable differential transformer (LVDT) to measure ice accretion. This instrument is driven along the bar by means of an intelligent stepper motor which also controls data recording. This paper describes the rotating bar calibration measurement system.

  18. Microscopic Faraday rotation measurement system using pulsed magnetic fields.

    PubMed

    Egami, Shigeki; Watarai, Hitoshi

    2009-09-01

    Microscopic Faraday rotation measurement system using a pulsed magnetic field has been constructed, which can be applied to micron sized diamagnetic and paramagnetic materials. A pulsed magnetic coil could generate a maximum magnetic flux density of about 12 T. The performance of the microscopic Faraday rotation apparatus was demonstrated by the measurement of the Verdet constant V of a polystyrene particle, after the calibration of the pulsed magnetic flux density using a glass plate as a standard material. Also, the magneto-optical rotation dispersion of some diamagnetic substances have been measured and analyzed with V=alambda(-2)+b. The values of a and b were compared to their magnetic susceptibilities.

  19. Adaptive control of a rotating system

    NASA Astrophysics Data System (ADS)

    Dyniewicz, Bartłomiej; Pręgowska, Agnieszka; Bajer, Czesław I.

    2014-02-01

    In the present paper, an adaptive control of structural vibrations is presented. Based on earlier research, we claim that the periodical switching on of magneto-rheological controlled dampers results in the reduction of the amplitudes of vibrations more than does their permanent actuation. This statement, when applied to a moving load problem, was mathematically proved in earlier papers. In the present paper we determine the efficiency of such a control applied to a rotating shaft. The earlier mathematical analysis allows us to propose a control strategy. A finite element simulation together with the solution of the control problem shows that the dampers should act only during a short period of the highest displacements of the structure. The same conclusion is found in experimental tests. Although high frequency control with MR dampers is less efficient than in the theoretical investigations, we have found an amplitude reduction in the range of 10-20%.

  20. The internal dynamics of slowly rotating biological systems

    NASA Technical Reports Server (NTRS)

    Kessler, John O.

    1992-01-01

    The structure and the dynamics of biological systems are complex. Steady gravitational forces that act on organisms cause hydrostatic pressure gradients, stress in solid components, and ordering of movable subsystems according to density. Rotation induces internal motion; it also stresses and or deforms regions of attachment and containment. The disrupted gravitationally ordered layers of movable entities are replaced by their orbital movements. New ordering geometries may arise also, especially if fluids of various densities occur. One novel result obtained concerns the application of scheduled variation of clinostat rotation rates to the management of intracellular particle trajectories. Rotation and its consequences are discussed in terms of scaling factors for parameters such as time, derived from mathematical models for simple rotating mechanical systems.

  1. Phase-rotated MR spectroscopy using dual-PRESS: theory and application in human brain

    SciTech Connect

    Ramadan, Saadallah; Mountford, Carolyn E.; Thomas, M. Albert

    2007-11-05

    Phase-rotation spectroscopic acquisition is inherently different from the popular signal-averaging method. Phase-rotation will be described theoretically and experimentally in this article. Traditionally, a single echo is acquired in a PRESS or STEAM sequence at a particular TE. If a long-TE spectrum is desired, then another echo is usually acquired at a longer echo time. We here propose a method by which a pair echoes, at short-TE and a long-TE, are acquired in one experiment, thus saving 50% of total acquisition time without significant sacrifice spectral quality. The phase-rotation approach has been implemented with the proposed method. An additional benefit the proposed Dual-PRESS method, is that it gives an insight into the transverse relaxation time constant, T2, for the various metabolites. The Dual-PRESS method is applied in phantom and in-vivo.

  2. Phase-rotated MR spectroscopy using dual-PRESS: theory and application in human brain

    NASA Astrophysics Data System (ADS)

    Ramadan, Saadallah; Thomas, M. Albert; Mountford, Carolyn E.

    2007-11-01

    Phase-rotation spectroscopic acquisition is inherently different from the popular signal-averaging method. Phase-rotation will be described theoretically and experimentally in this article. Traditionally, a single echo is acquired in a PRESS or STEAM sequence at a particular TE. If a long-TE spectrum is desired, then another echo is usually acquired at a longer echo time. We here propose a method by which a pair echoes, at short-TE and a long-TE, are acquired in one experiment, thus saving 50% of total acquisition time without significant sacrifice spectral quality. The phase-rotation approach has been implemented with the proposed method. An additional benefit the proposed Dual-PRESS method, is that it gives an insight into the transverse relaxation time constant, T2, for the various metabolites. The Dual-PRESS method is applied in phantom and in-vivo.

  3. Simulation of a beam rotation system for a spallation source

    NASA Astrophysics Data System (ADS)

    Reiss, Tibor; Reggiani, Davide; Seidel, Mike; Talanov, Vadim; Wohlmuther, Michael

    2015-04-01

    With a nominal beam power of nearly 1 MW on target, the Swiss Spallation Neutron Source (SINQ), ranks among the world's most powerful spallation neutron sources. The proton beam transport to the SINQ target is carried out exclusively by means of linear magnetic elements. In the transport line to SINQ the beam is scattered in two meson production targets and as a consequence, at the SINQ target entrance the beam shape can be described by Gaussian distributions in transverse x and y directions with tails cut short by collimators. This leads to a highly nonuniform power distribution inside the SINQ target, giving rise to thermal and mechanical stresses. In view of a future proton beam intensity upgrade, the possibility of homogenizing the beam distribution by means of a fast beam rotation system is currently under investigation. Important aspects which need to be studied are the impact of a rotating proton beam on the resulting neutron spectra, spatial flux distributions and additional—previously not present—proton losses causing unwanted activation of accelerator components. Hence a new source description method was developed for the radiation transport code MCNPX. This new feature makes direct use of the results from the proton beam optics code TURTLE. Its advantage to existing MCNPX source options is that all phase space information and correlations of each primary beam particle computed with TURTLE are preserved and transferred to MCNPX. Simulations of the different beam distributions together with their consequences in terms of neutron production are presented in this publication. Additionally, a detailed description of the coupling method between TURTLE and MCNPX is provided.

  4. Phase boundary of the boson Mott insulator in a rotating optical lattice

    SciTech Connect

    Umucalilar, R. O.; Oktel, M. Oe.

    2007-11-15

    We consider the Bose-Hubbard model in a two-dimensional rotating optical lattice and investigate the consequences of the effective magnetic field created by rotation. Using a Gutzwiller-type variational wave function, we find an analytical expression for the Mott insulator (MI)-superfluid (SF) transition boundary in terms of the maximum eigenvalue of the Hofstadter butterfly. The dependence of phase boundary on the effective magnetic field is complex, reflecting the self-similar properties of the single particle energy spectrum. Finally, we argue that fractional quantum Hall phases exist close to the MI-SF transition boundaries, including MI states with particle densities greater than one.

  5. Fiber-optic rotational seismic system for investigation of the rotational events

    NASA Astrophysics Data System (ADS)

    Jaroszewicz, Leszek R.; Krajewski, Zbigniew; Kowalski, Jerzy; Zinówko, Paweł

    2011-05-01

    The paper presents a new telemetric system for direct measurement and investigation the rotational components exist in seismic events. The FORS - fiber optic rotational seismometer and seismographs constructed on the base of the Sagnac interferometer are the elements of the system. The special construction of the system protects their elements remote control in real time via internet utilize the GSP/GSM connections. The first results according application autonomous FORS (AFORS) with accuracy in the range 4.9.10-9 - 6.1.10-8 rad/s in detection bandpass 1.66 - 212.30 Hz located in Ksiαz and Warsaw, as well as older one FORS-II (mounted in Ojców) are reported.

  6. Design of infrared zoom system with rotating lens group

    NASA Astrophysics Data System (ADS)

    Li, Yong; Yang, Changcheng; Li, Shenghui

    2008-03-01

    In surveillance applications there is a need for infrared zoom systems which give two fields of view. For such systems long operation range is the most critical parameter which is bound up with focal length and transmittance of systems. In this paper the design of an infrared zoom system with rotating lens group is described. Different from the conventional axially moving zoom systems, this system is based on a rotating mechanism consisting of two separated lenses. The system achieves dual FOVs due to different magnifications. In narrow field of view mode, the system has long focal length and higher transmittance because the rotating lens group is outside the optical path. The final design is an infrared zoom system operating in 3μm~5μm, with a F number of 4.0, EFL of 250mm/62.5mm. This paper contains the calculation of first-order parameter, the optimum design of rotating motion, the analysis of aberrations, MTF, and Narcissus, This designed system has diffraction limited image quality of in both FOVs.

  7. Nonlinear two-dimensional terahertz photon echo and rotational spectroscopy in the gas phase

    NASA Astrophysics Data System (ADS)

    Lu, Jian; Zhang, Yaqing; Hwang, Harold Y.; Ofori-Okai, Benjamin K.; Fleischer, Sharly; Nelson, Keith A.

    2016-10-01

    Ultrafast 2D spectroscopy uses correlated multiple light-matter interactions for retrieving dynamic features that may otherwise be hidden under the linear spectrum; its extension to the terahertz regime of the electromagnetic spectrum, where a rich variety of material degrees of freedom reside, remains an experimental challenge. We report a demonstration of ultrafast 2D terahertz spectroscopy of gas-phase molecular rotors at room temperature. Using time-delayed terahertz pulse pairs, we observe photon echoes and other nonlinear signals resulting from molecular dipole orientation induced by multiple terahertz field-dipole interactions. The nonlinear time domain orientation signals are mapped into the frequency domain in 2D rotational spectra that reveal J-state-resolved nonlinear rotational dynamics. The approach enables direct observation of correlated rotational transitions and may reveal rotational coupling and relaxation pathways in the ground electronic and vibrational state.

  8. Phase-locked telemetry system for rotary instrumentation of turbomachinery, phase 1

    NASA Technical Reports Server (NTRS)

    Adler, A.; Hoeks, B.

    1978-01-01

    A telemetry system for use in making strain and temperature measurements on the rotating components of high speed turbomachines employs phase locked transmitters, which offer greater measurement channel capacity and reliability than existing systems which employ L-C carrier oscillators. A prototype transmitter module was tested at 175 C combined with 40,000 g's acceleration.

  9. Effect of nanoparticles on the RII -RI -RV rotator phase transitions of alkanes

    NASA Astrophysics Data System (ADS)

    Mukherjee, Prabir K.

    2017-08-01

    Experimental studies have shown that nanoparticles play an important role on the rotator phase transitions of n-alkanes. A phenomenological model for predicting the RII -RI -RV phase transitions in mixtures of alkanes and nanoparticles has been proposed by combining Flory-Huggins free energy of isotropic mixing and Landau free energy. The impact of nanoparticles on the RII -RI -RV phase transitions and their transition temperatures is discussed by means of phenomenological theory. The possibility of the tricritical behavior of the RI -RV phase transition in the mixtures of alkanes and nanoparticles is discussed. The theoretical predictions are in good qualitative agreement with available experimental results.

  10. Polar rotation angle identifies elliptic islands in unsteady dynamical systems

    NASA Astrophysics Data System (ADS)

    Farazmand, Mohammad; Haller, George

    2016-02-01

    We propose rotation inferred from the polar decomposition of the flow gradient as a diagnostic for elliptic (or vortex-type) invariant regions in non-autonomous dynamical systems. We consider here two- and three-dimensional systems, in which polar rotation can be characterized by a single angle. For this polar rotation angle (PRA), we derive explicit formulas using the singular values and vectors of the flow gradient. We find that closed level sets of the PRA reveal elliptic islands in great detail, and singular level sets of the PRA uncover centers of such islands. Both features turn out to be objective (frame-invariant) for two-dimensional systems. We illustrate the diagnostic power of PRA for elliptic structures on several examples.

  11. The aerodynamic analysis of the gyroplane rotating-wing system

    NASA Technical Reports Server (NTRS)

    Wheatley, John B

    1934-01-01

    An aerodynamic analysis of the gyroplane rotating-wing system is presented herein. This system consists of a freely rotating rotor in which opposite blades are rigidly connected and allowed to rotate or feather freely about their span axis. Equations have been derived for the lift, the lift-drag ratio, the angle of attack, the feathering angles, and the rolling and pitching moments of a gyroplane rotor in terms of its basic parameters. Curves of lift-drag ratio against lift coefficient have been calculated for a typical case, showing the effect of varying the pitch angle, the solidarity, and the average blade-section drag coefficient. The analysis expresses satisfactorily the qualitative relations between the rotor characteristics and the rotor parameters. As disclosed by this investigation, the aerodynamic principles of the gyroplane are sound, and further research on this wing system is justified.

  12. Combined Solar system and rotation curve constraints on MOND

    NASA Astrophysics Data System (ADS)

    Hees, Aurélien; Famaey, Benoit; Angus, Garry W.; Gentile, Gianfranco

    2016-01-01

    The Modified Newtonian Dynamics (MOND) paradigm generically predicts that the external gravitational field in which a system is embedded can produce effects on its internal dynamics. In this communication, we first show that this external field effect (EFE) can significantly improve some galactic rotation curves fits by decreasing the predicted velocities of the external part of the rotation curves. In modified gravity versions of MOND, this EFE also appears in the Solar system and leads to a very good way to constrain the transition function of the theory. A combined analysis of the galactic rotation curves and Solar system constraints (provided by the Cassini spacecraft) rules out several classes of popular MOND transition functions, but leaves others viable. Moreover, we show that Laser Interferometer Space Antenna Pathfinder will not be able to improve the current constraints on these still viable transition functions.

  13. Geometric phase Doppler effect: when structured light meets rotating structured materials.

    PubMed

    Liu, Zhenxing; Liu, Yuanyuan; Ke, Yougang; Zhou, Junxiao; Liu, Yachao; Luo, Hailu; Wen, Shuangchun

    2017-05-15

    We examine the geometric phase Doppler effect that appears when a structured light interacts with a rotating structured material. In our scheme the structured light possesses a vortex phase and the structured material works as an inhomogeneous anisotropic plate. We show that the Doppler effect manifests itself as a frequency shift which can be interpreted in terms of a dynamic evolution of Pancharatnam-Berry phase on the hybrid-order Poincaré sphere. The frequency shift induced by the change rate of Pancharatnam-Berry phase with time is derived from both the Jones matrix calculations and the theory of the hybrid-order Poincaré sphere. Unlike the conventional rotational Doppler effect, the frequency shift is proportional to the variation of total angular momentum of light beam, irrespective of the orbital angular momentum of input beams.

  14. Growth of uniformly aligned nanorod arrays by oblique angle deposition with two-phase substrate rotation

    NASA Astrophysics Data System (ADS)

    Ye, D.-X.; Karabacak, T.; Lim, B. K.; Wang, G.-C.; Lu, T.-M.

    2004-07-01

    Due to the shadowing effect, the oblique angle deposition technique can produce nanorods tilted toward the incident deposition flux. Periodic posts serving as seeds on a substrate allow the fabrication of nanorod arrays with controllable separations. However, in a conventional oblique angle deposition with no substrate rotation, nanorods grow faster along their widths in the direction perpendicular to the plane of incident flux. This anisotropic growth can result in 'fan-out' shapes of nanorods that touch each other due to the faster growing widths. Asymmetric two-phase substrate rotation was designed to eliminate the side growth in oblique angle deposition. In this method, the growing rods are exposed to the deposition flux from all angles with some portion of a rod surface receiving more flux than the rest. We fabricated well-aligned Si nanorod arrays with uniform sizes from templates arranged in square and triangular lattices using this two-phase substrate rotation method.

  15. Analyzer-based phase contrast imaging and phase retrieval using a rotating anode x-ray source

    SciTech Connect

    Vine, D. J.; Paganin, D. M.; Pavlov, K. M.; Kraeusslich, J.; Wehrhan, O.; Uschmann, I.; Foerster, E.

    2007-12-17

    We have performed an analyzer crystal based phase contrast imaging (ABI) experiment using a rotating anode x-ray source. The use of such an incoherent source demonstrates the potential of ABI as a quantitative characterization tool for the laboratory environment. A phase contrast image of a plastic phantom was recorded on high resolution x-ray film and the projected thickness was retrieved from a single image. The projected thickness recovered from the phase contrast image was shown to quantitatively agree with a reference optical microscope measurement.

  16. Rotationally invariant Fresnel lens-encoded circular harmonic binary phase-only filters.

    PubMed

    Davis, J A; York, L R; Cottrell, D M

    1991-05-10

    Binary phase-only circular harmonic filters show an angular dependence on the rotational orientation of the input object, which can be removed by encoding a Fresnel lens onto the filter. Theoretical and experimental results are presented using these filters written onto the magnetooptic spatial light modulator.

  17. Changing pulsatility by delaying the rotational speed phasing of a rotary left ventricular assist device.

    PubMed

    Date, Kazuma; Nishimura, Takashi; Arakawa, Mamoru; Takewa, Yoshiaki; Kishimoto, Satoru; Umeki, Akihide; Ando, Masahiko; Mizuno, Toshihide; Tsukiya, Tomonori; Ono, Minoru; Tatsumi, Eisuke

    2017-03-01

    Continuous-flow left ventricular assist devices (LVADs) have improved the prognosis of end-stage heart failure. However, continuous-flow LVADs diminish pulsatility, which possibly result in bleeding, aortic insufficiency, and other adverse effects. We previously developed a novel control system for a continuous-flow LVAD (EVAHEART(®); Sun Medical), and demonstrated that we could create sufficient pulsatility by increasing its rotational speed (RS) in the systolic phase (Pulsatile Mode) in the normal heart model. Here, we aimed to evaluate differences between systolic assist with advanced and delayed loads by shifting the timing of increased RS. We implanted EVAHEART in six goats (55.3 ± 4.3 kg) with normal hearts. We reduced their heart rates to <60 bpm using propranolol and controlled the heart rates at 80 and 120 bpm using ventricular pacing. We shifted the timing of increasing RS from -60 to +60 ms in the systolic phase. We found significant increases in all the following parameters when assessments of delayed timing (+60 ms) were compared with assessments of advanced timing (-60 ms): pulse pressure, mean dP/dt max of aortic pressure, and energy-equivalent pulse pressure. During continuous-flow LVAD support, pulsatility can be controlled using a rotary pump. In particular, pulsatility can be shifted by delaying increased RS.

  18. High COP rotating wheel solid desiccant system

    SciTech Connect

    Macriss, R.A.; Zawacki, T.S.

    1982-06-01

    This paper presents a technical assessment of a third-generation desiccant cooling unit approaching ARI (American Refrigeration Institute) design-point Coefficient of Performance (COP) for cooling of 0.95, at a design-point Energy Efficiency Ratio(EER) of over 20, and a Seasonal Coefficient of Performance (SCOP) for heating of 0.75. Typically, solar-gas desiccant systems operate on open-cycle principles and can provide cooling, heating, ventilation, and/or humidification/dehumidification and use ambient air as the working fluid, thus avoiding the need for high-pressure, or highvacuum, sealed-refrigerant assemblies. Among several alternative solar-desiccant systems, the adiabatic, rotary-regenerative system is the most advanced open-cycle, solid-desiccant, heating-cooling system presently considered for solar applications. In addition to space heating and cooling, the system can inexpensively provide fresh makeup air due to its regenerative nature. Since 1974, two residential-size units have been under development, and laboratory, field, and manufacturing-cost evaluations have highlighted their potential advantages for space conditioning. Recently, a third ''advanced'' unit was designed, which incorporates identical technology to that of the earlier models and a higher effectiveness heat exchanger. Projected rated and seasonal cooling performance comparison between the ''advanced'' and earlier models are also presented for three climatic regions.

  19. High COP rotating wheel solid desiccant system

    SciTech Connect

    Macriss, R.A.; Zawacki, T.S.

    1982-01-01

    Solar and solar-gas activated desiccant space-conditioning systems can be reasonably compact, simple and void of high technology components, with operation that is intrinsically safe, of potentially long-life, and with moderate servicing demands. They can, further, operate in any US climate and utilize, even under maximum design conditions, low-grade thermal input, typical of low-cost, flat-plate collectors. A technical assessment is presented of a third-generation desiccant cooling unit approaching ARI (American Refrigeration Institute) design-point Coefficient of Performance (COP) for cooling of 0.95, at a design-point Energy Efficiency Ratio (EER) of over 20, and a Seasonal Coefficient of Performance (SCOP) for heating of 0.75. Typically, solar-gas desiccant systems operate on open-cycle principles and can provide cooling, heating, ventilation, and/or humidification/dehumidification and use ambient air as the working fluid, thus avoiding the need for high-pressure, or highvacuum, sealed-refrigerant assemblies. Among several alternative solar-desiccant systems, the adiabatic, rotary-regenerative system is the most advanced open-cycle, solid-desiccant, heating-cooling system presently considered for solar applications. In addition to space heating and cooling, the system can inexpensively provide fresh make-up air due to its regenerative nature. Since 1974, two residential-size units have been under development, and laboratory, field, and manufacturing-cost evaluations have highlighted their potential advantages for space conditioning. Recently, a third advanced unit was designed, which incorporates identical technology to that of the earlier models and a higher effectiveness heat exchanger. Projected rated and seasonal cooling performance comparison between the advanced and earlier models are also presented for three climatic regions.

  20. Gain and phase of perceived virtual rotation evoked by electrical vestibular stimuli

    PubMed Central

    Peters, Ryan M.; Rasman, Brandon G.; Inglis, J. Timothy

    2015-01-01

    Galvanic vestibular stimulation (GVS) evokes a perception of rotation; however, very few quantitative data exist on the matter. We performed psychophysical experiments on virtual rotations experienced when binaural bipolar electrical stimulation is applied over the mastoids. We also performed analogous real whole body yaw rotation experiments, allowing us to compare the frequency response of vestibular perception with (real) and without (virtual) natural mechanical stimulation of the semicircular canals. To estimate the gain of vestibular perception, we measured direction discrimination thresholds for virtual and real rotations. Real direction discrimination thresholds decreased at higher frequencies, confirming multiple previous studies. Conversely, virtual direction discrimination thresholds increased at higher frequencies, implying low-pass filtering of the virtual perception process occurring potentially anywhere between afferent transduction and cortical responses. To estimate the phase of vestibular perception, participants manually tracked their perceived position during sinusoidal virtual and real kinetic stimulation. For real rotations, perceived velocity was approximately in phase with actual velocity across all frequencies. Perceived virtual velocity was in phase with the GVS waveform at low frequencies (0.05 and 0.1 Hz). As frequency was increased to 1 Hz, the phase of perceived velocity advanced relative to the GVS waveform. Therefore, at low frequencies GVS is interpreted as an angular velocity signal and at higher frequencies GVS becomes interpreted increasingly as an angular position signal. These estimated gain and phase spectra for vestibular perception are a first step toward generating well-controlled virtual vestibular percepts, an endeavor that may reveal the usefulness of GVS in the areas of clinical assessment, neuroprosthetics, and virtual reality. PMID:25925318

  1. Angular distribution of particle fluxes in rotating systems. [application to plasmas in Jupiter magnetosphere

    NASA Technical Reports Server (NTRS)

    Northrop, T. G.

    1976-01-01

    Charged-particle pitch-angle distributions at one point on a magnetic drift surface in a rapidly rotating axisymmetric mirroring system (such as Jupiter's magnetosphere would be in the absence of the 10-deg dipole tilt) are related to those at another point by Liouville's theorem. If the distribution function in the rotating frame is gyrotropic; i.e., if it is independent of the phase angle of the gyration, it is gyrotropic at all points on that drift surface. Examples are given of 'pancake', 'dumbbell', and isotropic distributions when they are observed from the nonrotating frame at different points on a drift surface.

  2. Effects of uniform rotational flow on predator-prey system

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Hee

    2012-12-01

    Rotational flow is often observed in lotic ecosystems, such as streams and rivers. For example, when an obstacle interrupts water flowing in a stream, energy dissipation and momentum transfer can result in the formation of rotational flow, or a vortex. In this study, I examined how rotational flow affects a predator-prey system by constructing a spatially explicit lattice model consisting of predators, prey, and plants. A predation relationship existed between the species. The species densities in the model were given as S (for predator), P (for prey), and G (for plant). A predator (prey) had a probability of giving birth to an offspring when it ate prey (plant). When a predator or prey was first introduced, or born, its health state was assigned an initial value of 20 that subsequently decreased by one with every time step. The predator (prey) was removed from the system when the health state decreased to less than zero. The degree of flow rotation was characterized by the variable, R. A higher R indicates a higher tendency that predators and prey move along circular paths. Plants were not affected by the flow because they were assumed to be attached to the streambed. Results showed that R positively affected both predator and prey survival, while its effect on plants was negligible. Flow rotation facilitated disturbances in individuals’ movements, which consequently strengthens the predator and prey relationship and prevents death from starvation. An increase in S accelerated the extinction of predators and prey.

  3. Aircraft body-axis rotation measurement system

    NASA Technical Reports Server (NTRS)

    Cowdin, K. T. (Inventor)

    1983-01-01

    A two gyro four gimbal attitude sensing system having gimbal lock avoidance is provided with continuous azimuth information, rather than roll information, relative to the magnetic cardinal headings while in near vertical attitudes to allow recovery from vertical on a desired heading. The system is comprised of a means for stabilizing an outer roll gimbal that is common to a vertical gyro and a directional gyro with respect to the aircraft platform which is being angularly displaced about an axis substantially parallel to the outer roll gyro axis. A means is also provided for producing a signal indicative of the magnitude of such displacement as an indication of aircraft heading. Additional means are provided to cause stabilization of the outer roll gimbal whenever the pitch angle of the aircraft passes through a threshold prior to entering vertical flight and destabilization of the outer roll gimbal upon passing through the threshold when departing vertical flight.

  4. Cryogenic cooling with cryocooler on a rotating system.

    PubMed

    Oguri, S; Choi, J; Kawai, M; Tajima, O

    2013-05-01

    We developed a system that continuously maintains a cryocooler for long periods on a rotating table. A cryostat that holds the cryocooler is set on the table. A compressor is located on the ground and supplies high-purity (>99.999%) and high-pressure (1.7 MPa) helium gas and electricity to the cryocooler. The operation of the cryocooler and other instruments requires the development of interface components between the ground and rotating table. A combination of access holes at the center of the table and two rotary joints allows simultaneous circulation of electricity and helium gas. The developed system provides two innovative functions under the rotating condition, cooling from room temperature and the maintenance of a cold condition for long periods. We have confirmed these abilities as well as temperature stability under a condition of continuous rotation at 20 rpm. The developed system can be applied in various fields, e.g., in tests of Lorentz invariance, searches for axion, radio astronomy, and cosmology, and application of radar systems. In particular, there is a plan to use this system for a radio telescope observing cosmic microwave background radiation.

  5. Sagnac experiment with electrons: Reanalysis of a rotationally induced phase shift for charged particles

    NASA Astrophysics Data System (ADS)

    Neutze, Richard; Hasselbach, Franz

    1998-07-01

    Using a path-integral formalism, we present a reanalysis of the Sagnac experiment with electrons of Hasselbach and Nicklaus [Phys. Rev. A 48, 143 (1993)]. Our analysis, from an inertial frame of reference, makes explicit the central role of the electrostatic biprism in generating interference fringes and recovers the Sagnac formula for the phase shift induced when rotating the interferometer. This phase shift, however, is shown to differ significantly in physical origin from the similar experiment with neutrons. In the electron Sagnac experiment, rotation displaces all classical electron paths closer to (or further from, depending upon direction) the electrostatic biprisms, thereby perturbing the electrostatic potential along these paths, and a phase shift of an electrostatic nature arises. Our analysis yields a corrected expression for the projected area of the interferometer and small numerical corrections to previous work are consequently given.

  6. Rotating solid radiative coolant system for space nuclear reactors

    SciTech Connect

    Apley, W.J.; Babb, A.L.

    1988-05-01

    The RING power system described in this paper is proposed as a primary or emergency heat rejection system for advanced space reactor power applications. The system employs a set of four (4) counter-rotating, 90 degree offset, coolant-carrying rings. The rings (segmented, corrugated, finned, thin-walled pipes, filled with liquid lithium) pass through a cavity heat exchanger and reradiate the absorbed heat to the space environment. 25 refs., 6 figs., 3 tabs.

  7. Precision optical angular position marker system for rotating machinery

    NASA Technical Reports Server (NTRS)

    Barranger, J. P.

    1983-01-01

    An optical system is described which generates one or more markers of the angular shaft position of rotating machinery. The system consists of a light source, an optical cable, a machinery mounted lens assembly, a light detector, and a signal conditioner. Light reflected by targets on the rotor is converted to a digital output signal. The system is highly immune to extreme environments of vibration and temperature and achieved a 0.002 percent precision under operational test conditions.

  8. Cooling the two-dimensional short spherocylinder liquid to the tetratic phase: Heterogeneous dynamics with one-way coupling between rotational and translational hopping.

    PubMed

    Su, Yen-Shuo; I, Lin

    2015-07-01

    We numerically demonstrate the transition from the isotropic liquid to the tetratic phase with quasilong-range tetratic alignment order (i.e., with nearly parallel or perpendicular aligned rods), for the cold two-dimensional (2D) short spherocylinder system before crystallization and investigate the thermal assisted heterogeneous rotational and translational micromotions. Comparing with the 2D liquid of isotropic particles, spherocylinders introduce extra rotational degrees of freedom and destroy packing isotropy and the equivalence between rotational and translational motions. It is found that cooling leads to the stronger dynamical heterogeneity with more cooperative hopping and the stronger retardations of rotational hopping than translational hopping. Under topological constraints from nearly parallel and perpendicular rods of the tetratic phase, longitudinal and transverse translational hopping can occur without rotational hopping, but not the reverse. The empty space trailing a neighboring translational hopping patch is needed for triggering the patch rotational hopping with its translational motion into the empty space. It is the origin for the observed increasing separation of hopping time scales and the one-way coupling between rotational and translational hopping. Strips of longitudinally or transversely aligned rods can be ruptured and reconnected with neighboring strips through buckling, kink formation, and patch rotation, under the unbalanced torques or forces from their neighboring rods and thermal kicks.

  9. Dynamics of rotating superfluid systems with pinning

    SciTech Connect

    Sedrakyan, A.D.; Sedrakyan, D.M.

    1995-08-01

    Equations describing the dynamics of motion of superfluid systems with pinning are derived, and analytical solutions of these equations are established for the case where the difference between the angular velocities of the superfluid and normal components is small. The solutions can be used to explain the time-dependent behavior of the angular velocity of the Vela pulsar. It is shown that vortex pinning in the period between two consecutive jumps in the pulsar angular velocity can redistribute the vortex number density so as to produce both the observed jump and the after-jump relaxation of the pulsar. For one thing, the formulas obtained are shown to provide an explanation of the 1988 Christmas discontinuity in the angular velocity of the Vela pulsar. 8 refs.

  10. Outcomes of a Rotational Dissection System in Gross Anatomy

    ERIC Educational Resources Information Center

    Marshak, David W.; Oakes, Joanne; Hsieh, Pei-Hsuan; Chuang, Alice Z.; Cleary, Leonard J.

    2015-01-01

    At the University of Texas Houston Medical School, a rotational dissection system was introduced to improve coordination between the Gross Anatomy and the Introduction to Clinical Medicine (ICM) courses. Six students were assigned to each cadaver and divided into two teams. For each laboratory, one team was assigned to dissect and the other to…

  11. Outcomes of a Rotational Dissection System in Gross Anatomy

    ERIC Educational Resources Information Center

    Marshak, David W.; Oakes, Joanne; Hsieh, Pei-Hsuan; Chuang, Alice Z.; Cleary, Leonard J.

    2015-01-01

    At the University of Texas Houston Medical School, a rotational dissection system was introduced to improve coordination between the Gross Anatomy and the Introduction to Clinical Medicine (ICM) courses. Six students were assigned to each cadaver and divided into two teams. For each laboratory, one team was assigned to dissect and the other to…

  12. On the simplest binary system of rotating black holes

    SciTech Connect

    Manko, V. S.; Rodchenko, E. D.; Sadovnikov, B. I.; Ruiz, E.

    2009-05-01

    Exact axisymmetric stationary solution of the Einstein equations describing a system of two counter-rotating identical Kerr black holes is worked out in a physical parametrization within the framework of the Ernst formalism and analytically extended double-Kerr solution. The derivation of the limiting case of extreme constituents is also discussed.

  13. Results from the first preclinical CT scanner with grating based phase contrast and a rotating gantry

    SciTech Connect

    Bech, Martin; Tapfer, Arne; Velroyen, Astrid; Yaroshenko, Andre; Pauwels, Bart; Bruyndonckx, Peter; Liu Xuan; Sasov, Alexander; Mohr, Juergen; Walter, Marco; Pfeiffer, Franz

    2012-07-31

    After successful demonstrations of soft-tissue phase-contrast imaging with grating interferometers at synchrotron radiation sources and at laboratory based x-ray tubes, a first preclinical CT scanner with grating based phase contrast imaging modality has been constructed. The rotating gantry is equipped with a three-grating interferometer, a 50 watt tungsten anode source and a Hamamatsu flat panel detector. The total length of the interferometer is 45 cm, and the bed of the scanner is optimized for mice, with a scanning diameter of 35 mm. From one single scan both phase-contrast and standard attenuation based tomography can be attained, providing an overall gain in image contrast.

  14. Phase effects due to previous pulses in time-resolved Faraday rotation measurements

    SciTech Connect

    Trowbridge, Christopher J.; Sih, Vanessa

    2015-02-14

    Time-resolved Faraday rotation measurements have proved transformative in the investigation of spin dynamics in semiconductors. In materials with spin lifetimes which are on the order of, or greater than, the laser repetition time, the collective effect of spin polarization due to the whole pump pulse train becomes important. Here, we discuss a relative phase shift which results from these spins. We derive and experimentally validate a closed-form expression which describes this phase shift and characterize it throughout parameter space. A spin lifetime measurement based on this phase shift is described, and we discuss situations in which the model used must be augmented to be applicable.

  15. Phase transitions and marginal ensemble equivalence for freely evolving flows on a rotating sphere.

    PubMed

    Herbert, C; Dubrulle, B; Chavanis, P H; Paillard, D

    2012-05-01

    The large-scale circulation of planetary atmospheres such as that of the Earth is traditionally thought of in a dynamical framework. Here we apply the statistical mechanics theory of turbulent flows to a simplified model of the global atmosphere, the quasigeostrophic model, leading to nontrivial equilibria. Depending on a few global parameters, the structure of the flow may be either a solid-body rotation (zonal flow) or a dipole. A second-order phase transition occurs between these two phases, with associated spontaneous symmetry breaking in the dipole phase. This model allows us to go beyond the general theory of marginal ensemble equivalence through the notion of Goldstone modes.

  16. Results from the first preclinical CT scanner with grating based phase contrast and a rotating gantry

    NASA Astrophysics Data System (ADS)

    Bech, Martin; Tapfer, Arne; Velroyen, Astrid; Yaroshenko, Andre; Pauwels, Bart; Bruyndonckx, Peter; Liu, Xuan; Sasov, Alexander; Mohr, Jürgen; Walter, Marco; Pfeiffer, Franz

    2012-07-01

    After successful demonstrations of soft-tissue phase-contrast imaging with grating interferometers at synchrotron radiation sources and at laboratory based x-ray tubes, a first preclinical CT scanner with grating based phase contrast imaging modality has been constructed. The rotating gantry is equipped with a three-grating interferometer, a 50 watt tungsten anode source and a Hamamatsu flat panel detector. The total length of the interferometer is 45 cm, and the bed of the scanner is optimized for mice, with a scanning diameter of 35 mm. From one single scan both phase-contrast and standard attenuation based tomography can be attained, providing an overall gain in image contrast.

  17. Simplified aerodynamic analysis of the cyclogiro rotating wing system

    NASA Technical Reports Server (NTRS)

    Wheatley, John B

    1930-01-01

    A simplified aerodynamic theory of the cyclogiro rotating wing is presented herein. In addition, examples have been calculated showing the effect on the rotor characteristics of varying the design parameters of the rotor. A performance prediction, on the basis of the theory here developed, is appended, showing the performance to be expected of a machine employing this system of sustentation. The aerodynamic principles of the cyclogiro are sound; hovering flight, vertical climb, and a reasonable forward speed may be obtained with a normal expenditure of power. Auto rotation in a gliding descent is available in the event of a power-plant failure.

  18. [Systemic learning planification for medical students during oncology clinical rotation].

    PubMed

    Gonçalves, Anthony; Viens, Patrice; Gilabert, Marine; Turrini, Olivier; Lambaudie, Eric; Prebet, Thomas; Farnault, Bertrand; Eisinger, François; Gorincour, Guillaume; Bertucci, François

    2011-12-01

    The expected increase in cancer incidence emphasizes the need for specific training in this area, including either family physician or specialized oncologists. In France, the fourth to sixth years of medical teaching include both theoretical classes at the university and daily actual practice at the hospital. Thus, clinical rotations are thought to play a major role in the training of medical students and also largely participate to the choice of the student of his/her final specialty. Pedagogic quality of these rotations is dependent on multiple parameters, including a rigorous planification of the expected learning. Here, we reported a systemic planification of learning activities for medical students during an oncology rotation at the Paoli-Calmettes Institute in Marseille, France, a regional comprehensive cancer center. This planification includes an evaluation of learning requirements, definition of learning objectives, selection of learning methods and choice of methods of assessment of the students' achievement of these objectives as well as the learning activity itself.

  19. Rotational motion of traveling spots in dissipative systems.

    PubMed

    Teramoto, Takashi; Suzuki, Katsuya; Nishiura, Yasumasa

    2009-10-01

    What is the origin of rotational motion? An answer is presented through the study of the dynamics for spatially localized spots near codimension 2 singularity consisting of drift and peanut instabilities. The drift instability causes a head-tail asymmetry in spot shape, and the peanut one implies a deformation from circular to peanut shape. Rotational motion of spots can be produced by combining these instabilities in a class of three-component reaction-diffusion systems. Partial differential equations dynamics can be reduced to a finite-dimensional one by projecting it to slow modes. Such a reduction clarifies the bifurcational origin of rotational motion of traveling spots in two dimensions in close analogy to the normal form of 1:2 mode interactions.

  20. An Update on Phased Array Results Obtained on the GE Counter-Rotating Open Rotor Model

    NASA Technical Reports Server (NTRS)

    Podboy, Gary; Horvath, Csaba; Envia, Edmane

    2013-01-01

    Beamform maps have been generated from 1) simulated data generated by the LINPROP code and 2) actual experimental phased array data obtained on the GE Counter-rotating open rotor model. The beamform maps show that many of the tones in the experimental data come from their corresponding Mach radius. If the phased array points to the Mach radius associated with a tone then it is likely that the tone is a result of the loading and thickness noise on the blades. In this case, the phased array correctly points to where the noise is coming from and indicates the axial location of the loudest source in the image but not necessarily the correct vertical location. If the phased array does not point to the Mach radius associated with a tone then some mechanism other than loading and thickness noise may control the amplitude of the tone. In this case, the phased array may or may not point to the actual source. If the source is not rotating it is likely that the phased array points to the source. If the source is rotating it is likely that the phased array indicates the axial location of the loudest source but not necessarily the correct vertical location. These results indicate that you have to be careful in how you interpret phased array data obtained on an open rotor since they may show the tones coming from a location other than the source location. With a subsonic tip speed open rotor the tones can come form locations outboard of the blade tips. This has implications regarding noise shielding.

  1. Time-Resolved Photodetachment Anisotropy: Gas-Phase Rotational and Vibrational Dynamics of the Fluorescein Anion.

    PubMed

    Horke, Daniel A; Chatterley, Adam S; Bull, James N; Verlet, Jan R R

    2015-01-02

    The photoelectron signal of the singly deprotonated fluorescein anion is found to be highly dependent on the relative polarization between pump and probe pulses, and time-resolved photodetachment anisotropy (TR-PA) is developed as a probe of the rotational dynamics of the chromophore. The total photoelectron signal shows both rotational and vibrational wavepacket dynamics, and we demonstrate how TR-PA can readily disentangle these dynamical processes. TR-PA in fluorescein presents specific opportunities for its development as a probe for rotational dynamics in large biomolecules as fluorescein derivatives are commonly incorporated in complex biomolecules and have been used extensively in time-resolved fluorescence anisotropy measurements, to which TR-PA is a gas-phase analogue.

  2. Giant Faraday rotation induced by the Berry phase in bilayer graphene under strong terahertz fields

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Xu, Xiaodong; Liu, Ren-Bao

    2014-04-01

    High-order terahertz (THz) sideband generation in semiconductors is a phenomenon with physics similar to that of high-order harmonic generation but in a regime of much lower frequency. Our previous paper [1] found that the electron-hole pair excited by a weak optical laser can accumulate a Berry phase along a cyclic trajectory under the driving of a strong elliptically polarized THz field. Furthermore, the Berry phase appears as the Faraday rotation angle of the emission signal under short-pulse excitation in monolayer MoS_{2}. In this paper, the theory of the Berry phase in THz extreme nonlinear optics is applied to biased bilayer graphene with Bernal stacking, which has similar Bloch band features and optical properties to monolayer MoS_{2}, such as the time-reversal related valleys and the valley contrasting optical selection rule. However, the biased bilayer graphene has much larger Berry curvature than monolayer MoS_{2}, which leads to a large Berry phase of the quantum trajectory and in turn a giant Faraday rotation of the optical emission (˜1 rad for a THz field with frequency 1 THz and strength 8 kV cm-1). This surprisingly big angle shows that the Faraday rotation can be induced more efficiently by the Berry curvature in momentum space than by the magnetic field in real space. It provides opportunities to use bilayer graphene and THz lasers for ultrafast electro-optical devices.

  3. Gas Phase Rovibrational Spectroscopy of Dmso, PART.I: when a Synchrotron Source Reveals AN Unusual Rotational Behaviour

    NASA Astrophysics Data System (ADS)

    Cuisset, Arnaud; Sadovskii, Dmitrii A.; Pirali, Olivier

    2013-06-01

    Many of us have enjoyed the spectacle of a spinning top influenced by friction: rotating rapidly about a stable stationary axis, the top loses slowly its angular momentum j (and energy), slows down gradually, and then, suddenly, its axis becomes unstable, the top wobbles, and an abrupt change of the top's position follows. In other words, the system undergoes a bifurcation. In the case of the tippe top, rotation about its lower point is stable at low values of angular momentum J and becomes unstable at large J. Something quite similar occurs in a freely rotating dimethylsulfoxyde (DMSO, (CH_3)_2SO) molecule. For the first time in such large polyatomic molecule a quantum bifurcation induced by a gyroscopic destabilization was observed. This unusual phenomenon in rotational dynamics was discovered in the rovibrational states of the bending fundamental ν_{23} band of DMSO whose high-resolution gas phase absorption spectrum was observed along with that of ν_{11} by Cuisset et al. using the exceptional properties of the AILES beamline in the Far-Infrared domain. A. Cuisset, O. Pirali, D. Sadovskii,Phys. Rev. Lett., 109,(094101), 2012. A. Cuisset, L. Nanobashvili, I. Smirnova, R. Bocquet, F. Hindle, G. Mouret, O. Pirali, P. Roy, D. Sadovskii,Chem. Phys. Lett., 492,(30),2010 J. B. Brubach et al., AIP Conf. Proc., 1214, (81), 2010.

  4. Translational and rotational dynamic analysis of a superconducting levitation system

    NASA Astrophysics Data System (ADS)

    Cansiz, A.; Hull, J. R.; Gundogdu, Ö.

    2005-07-01

    The rotational dynamics of a disc-shaped permanent magnet rotor levitated over a high temperature superconductor was studied experimentally and theoretically. The interaction between the rotor magnet and the superconductor was modelled by assuming the magnet to be a magnetic dipole and the superconductor a diamagnet. In the magnetomechanical analysis of the superconductor part, the frozen image concept was combined with the diamagnetic image, and the damping in the system was neglected. The interaction potential of the system is the combination of magnetic and gravitational potentials. From the dynamical analysis the equations of motion of the permanent magnet were stated as a function of lateral, vertical, tilt, precision and rotating angles. The vibration behaviour and correlation of the vibration of one direction with that of another were determined with a numerical calculation based on the Runge-Kutta method. The various vibrational frequencies identified were vertical, radial, tilt, precession and rotation. The tests performed for experimental verifications were translational and rotational. The permanent magnet was 'spun up' under vacuum conditions to analyse the dynamics of the free 'spin down' behaviour of the permanent magnet.

  5. Phase-Oriented Gear Systems

    NASA Technical Reports Server (NTRS)

    Vranish, John M.

    2007-01-01

    Phase-oriented gear systems are differential planetary transmissions in which each planet gear has two sets of unequal numbers of teeth indexed at prescribed relative angles (phases). The figure illustrates an application of the phase-oriented gearing concept to a relatively simple speed-reducing differential planetary transmission that includes a sun gear, an idler gear, three identical planet gears, a ground internal ring gear, and an output internal ring gear. Typically, the ground internal ring gear and output internal ring gear have different numbers of teeth, giving rise to a progressive and periodic phase shift between the corresponding pairs of teeth engaged by each successive planet gear. To accommodate this phase shift, it is necessary to introduce a compensating phase shift between the ground-gear-engaging and output-gearengaging sections of each planet gear. This is done by individually orienting each planet gear

  6. Kinematic principles of primate rotational vestibulo-ocular reflex. I. Spatial organization of fast phase velocity axes

    NASA Technical Reports Server (NTRS)

    Hess, B. J.; Angelaki, D. E.

    1997-01-01

    The spatial organization of fast phase velocity vectors of the vestibulo-ocular reflex (VOR) was studied in rhesus monkeys during yaw rotations about an earth-horizontal axis that changed continuously the orientation of the head relative to gravity ("barbecue spit" rotation). In addition to a velocity component parallel to the rotation axis, fast phases also exhibited a velocity component that invariably was oriented along the momentary direction of gravity. As the head rotated through supine and prone positions, torsional components of fast phase velocity axes became prominent. Similarly, as the head rotated through left and right ear-down positions, fast phase velocity axes exhibited prominent vertical components. The larger the speed of head rotation the greater the magnitude of this fast phase component, which was collinear with gravity. The main sequence properties of VOR fast phases were independent of head position. However, peak amplitude as well as peak velocity of fast phases were both modulated as a function of head orientation, exhibiting a minimum in prone position. The results suggest that the fast phases of vestibulo-ocular reflexes not only redirect gaze and reposition the eye in the direction of head motion but also reorient the eye with respect to earth-vertical when the head moves relative to gravity. As further elaborated in the companion paper, the underlying mechanism could be described as a dynamic, gravity-dependent modulation of the coordinates of ocular rotations relative to the head.

  7. Kinematic principles of primate rotational vestibulo-ocular reflex. I. Spatial organization of fast phase velocity axes

    NASA Technical Reports Server (NTRS)

    Hess, B. J.; Angelaki, D. E.

    1997-01-01

    The spatial organization of fast phase velocity vectors of the vestibulo-ocular reflex (VOR) was studied in rhesus monkeys during yaw rotations about an earth-horizontal axis that changed continuously the orientation of the head relative to gravity ("barbecue spit" rotation). In addition to a velocity component parallel to the rotation axis, fast phases also exhibited a velocity component that invariably was oriented along the momentary direction of gravity. As the head rotated through supine and prone positions, torsional components of fast phase velocity axes became prominent. Similarly, as the head rotated through left and right ear-down positions, fast phase velocity axes exhibited prominent vertical components. The larger the speed of head rotation the greater the magnitude of this fast phase component, which was collinear with gravity. The main sequence properties of VOR fast phases were independent of head position. However, peak amplitude as well as peak velocity of fast phases were both modulated as a function of head orientation, exhibiting a minimum in prone position. The results suggest that the fast phases of vestibulo-ocular reflexes not only redirect gaze and reposition the eye in the direction of head motion but also reorient the eye with respect to earth-vertical when the head moves relative to gravity. As further elaborated in the companion paper, the underlying mechanism could be described as a dynamic, gravity-dependent modulation of the coordinates of ocular rotations relative to the head.

  8. Mechanical manifestations of bursting oscillations in slowly rotating systems

    NASA Astrophysics Data System (ADS)

    Rakaric, Zvonko; Kovacic, Ivana

    2016-12-01

    This study is concerned with certain mechanical systems that comprise discrete masses moving along slowly rotating objects. The corresponding equation of relative motion is derived, with the rotating motion creating slowly varying external excitation. Depending on the system parameters, two cases are distinguished: two-well and single-well potential, i.e. the Duffing bistable oscillator and a pure cubic oscillator. It is illustrated that both systems can exhibit bursting oscillations, consisting of fast oscillations around the slow flow. Their mechanisms are explained in terms of bifurcation theory: the first one with respect to the existence of certain saddle-node bifurcation points, and the second one by creation of a certain hysteresis loop. The exact expressions for the slow flow are derived, in the first case as a discontinuous curve, and in the second one as a continuous curve. The influence of the excitation magnitude, which is a potential control parameter, on the characteristics of bursting oscillations is numerically illustrated.

  9. Phase-modulated rotating-frame NQR techniques for spatial encoding

    PubMed

    Casanova; Robert; Pusiol

    1999-11-01

    The rotating-frame method of localization for spatially resolved spectroscopy and imaging in the pure quadrupole regime relies on a gradient B(1) field in which spins experience a flip angle dependent on their position in the B(1) field strength. So far, the techniques have been implemented as amplitude-modulated methods, i.e., the spatial nuclear quadrupole distribution is encoded in the amplitude of the free-induction decay signals. In this work, we describe the implementation of phase-modulated variants of both two-dimensional and rapid rotating-frame imaging techniques. The experiments are discussed for both single crystalline and powder samples. The phase-modulated experiment offers some advantages over the amplitude-encoding technique: It enables one to distinguish the sign of the spatial coordinate and the signal-to-noise ratio is higher than for the simplest amplitude-encoding method. Copyright 1999 Academic Press.

  10. Fabrication of polyhedral particles from spherical colloids and their self-assembly into rotator phases.

    PubMed

    Vutukuri, Hanumantha Rao; Imhof, Arnout; van Blaaderen, Alfons

    2014-12-08

    Particle shape is a critical parameter that plays an important role in self-assembly, for example, in designing targeted complex structures with desired properties. Over the last decades, an unprecedented range of monodisperse nanoparticle systems with control over the shape of the particles have become available. In contrast, the choice of micrometer-sized colloidal building blocks of particles with flat facets, that is, particles with polygonal shapes, is significantly more limited. This can be attributed to the fact that in contrast to nanoparticles, the larger colloids are significantly harder to synthesize as single crystals. It is now shown that a very simple building block, such as a micrometer-sized polymeric spherical colloidal particle, is already enough to fabricate particles with regularly placed flat facets, including completely polygonal shapes with sharp edges. As an illustration that the yields are high enough for further self-assembly studies, the formation of three-dimensional rotator phases of fluorescently labelled, micrometer-sized, and charged rhombic dodecahedron particles was demonstrated. This method for fabricating polyhedral particles opens a new avenue for designing new materials.

  11. Spectral-domain low-coherence interferometry for phase-sensitive measurement of Faraday rotation at multiple depths.

    PubMed

    Yeh, Yi-Jou; Black, Adam J; Akkin, Taner

    2013-10-10

    We describe a method for differential phase measurement of Faraday rotation from multiple depth locations simultaneously. A polarization-maintaining fiber-based spectral-domain interferometer that utilizes a low-coherent light source and a single camera is developed. Light decorrelated by the orthogonal channels of the fiber is launched on a sample as two oppositely polarized circular states. These states reflect from sample surfaces and interfere with the corresponding states of the reference arm. A custom spectrometer, which is designed to simplify camera alignment, separates the orthogonal channels and records the interference-related oscillations on both spectra. Inverse Fourier transform of the spectral oscillations in k-space yields complex depth profiles, whose amplitudes and phase difference are related to reflectivity and Faraday rotation within the sample, respectively. Information along a full depth profile is produced at the camera speed without performing an axial scan for a multisurface sample. System sensitivity for the Faraday rotation measurement is 0.86 min of arc. Verdet constants of clear liquids and turbid media are measured at 687 nm.

  12. Translation-rotation coupling, phase transitions, and elastic phenomena in orientationally disordered crystals

    NASA Astrophysics Data System (ADS)

    Lynden-Bell, R. M.; Michel, K. H.

    1994-07-01

    Many of the properties of orientationally disordered crystals are profoundly affected by the coupling (known as translation-rotation coupling) between translation displacements and molecular orientation. The consequences of translation-rotation coupling depend on molecular and crystal symmetry, and vary throughout the Brillouin zone. One result is an indirect coupling between the orientations of different molecules, which plays an important role in the order/disorder phase transition, especially in ionic orientationally disordered crystals. Translation-rotation coupling also leads to softening of elastic constants and affects phonon spectra. This article describes the theory of the coupling from the point of view of the microscopic Hamiltonian and the resulting Landau free energy. Considerable emphasis is placed on the restrictions due to symmetry as these are universal and can be used to help one's qualitative understanding of experimental observations. The application of the theory to phase transitions is described. The softening of elastic constants is discussed and shown to be universal. However, anomalies associated with the order/disorder phase transition are shown to be restricted to cases in which the symmetry of the order parameter satisfies certain conditions. Dynamic effects on phonon spectra are described and finally the recently observed dielectric behavior of ammonium compounds is discussed. Throughout the article examples from published experiments are used to illustrate the application of the theory including well known examples such as the alkali metal cyanides and more recently discovered orientationally disordered crystals such as the fullerite, C60.

  13. Four-phase patterns in forced oscillatory systems

    SciTech Connect

    Lin, A. L.; Hagberg, A.; Ardelea, A.; Swinney, H. L.; Meron, E.

    2000-09-01

    We investigate pattern formation in self-oscillating systems forced by an external periodic perturbation. Experimental observations and numerical studies of reaction-diffusion systems and an analysis of an amplitude equation are presented. The oscillations in each of these systems entrain to rational multiples of the perturbation frequency for certain values of the forcing frequency and amplitude. We focus on the subharmonic resonant case where the system locks at one-fourth the driving frequency, and four-phase rotating spiral patterns are observed at low forcing amplitudes. The spiral patterns are studied using an amplitude equation for periodically forced oscillating systems. The analysis predicts a bifurcation (with increasing forcing) from rotating four-phase spirals to standing two-phase patterns. This bifurcation is also found in periodically forced reaction-diffusion equations, the FitzHugh-Nagumo and Brusselator models, even far from the onset of oscillations where the amplitude equation analysis is not strictly valid. In a Belousov-Zhabotinsky chemical system periodically forced with light we also observe four-phase rotating spiral wave patterns. However, we have not observed the transition to standing two-phase patterns, possibly because with increasing light intensity the reaction kinetics become excitable rather than oscillatory. (c) 2000 The American Physical Society.

  14. Dual annular rotating "windowed" nuclear reflector reactor control system

    DOEpatents

    Jacox, Michael G.; Drexler, Robert L.; Hunt, Robert N. M.; Lake, James A.

    1994-01-01

    A nuclear reactor control system is provided in a nuclear reactor having a core operating in the fast neutron energy spectrum where criticality control is achieved by neutron leakage. The control system includes dual annular, rotatable reflector rings. There are two reflector rings: an inner reflector ring and an outer reflector ring. The reflectors are concentrically assembled, surround the reactor core, and each reflector ring includes a plurality of openings. The openings in each ring are capable of being aligned or non-aligned with each other. Independent driving means for each of the annular reflector rings is provided so that reactor criticality can be initiated and controlled by rotation of either reflector ring such that the extent of alignment of the openings in each ring controls the reflection of neutrons from the core.

  15. Phase stable RF transport system

    DOEpatents

    Curtin, Michael T.; Natter, Eckard F.; Denney, Peter M.

    1992-01-01

    An RF transport system delivers a phase-stable RF signal to a load, such as an RF cavity of a charged particle accelerator. A circuit generates a calibration signal at an odd multiple frequency of the RF signal where the calibration signal is superimposed with the RF signal on a common cable that connects the RF signal with the load. Signal isolating diplexers are located at both the RF signal source end and load end of the common cable to enable the calibration to be inserted and extracted from the cable signals without any affect on the RF signal. Any phase shift in the calibration signal during traverse of the common cable is then functionally related to the phase shift in the RF signal. The calibration phase shift is used to control a phase shifter for the RF signal to maintain a stable RF signal at the load.

  16. GENERAL: Nonadiabatic Geometric Phase in Composite Systems and Its Subsystem

    NASA Astrophysics Data System (ADS)

    Li, Xin

    2008-11-01

    We point out that the time-dependent gauge transformation technique may be effective in investigating the nonadiabatic geometric phase of a subsystem in a composite system. As an example, we consider two uniaxially coupled spin —1/2 particles with one of particles driven by rotating magnetic Geld. The influences of coupling and precession frequency of the magnetic Geld on geometric phase are also discussed in detail.

  17. Phase coarsening in multicomponent systems

    NASA Astrophysics Data System (ADS)

    Wang, K. G.; Wang, Gabriel Q.

    2017-02-01

    A theory for phase coarsening in multicomponent systems is developed in which both the multicomponent thermodynamic effect and kinetic effect from a nonzero volume fraction are considered. In contrast to previous theory, a diffusion screening zone for a coarsening particle due to nonzero volume fraction is introduced. The evolution equation for phase coarsening in multicomponent systems is derived in a rigorous way in the framework of the maximum rate of dissipation with the constraints of mass and energy conservation. Existing previous relations are recovered and generalized. Some findings such as the relationship between the maximum particle size and volume fraction and particle size distribution in multicomponent systems are discovered.

  18. A new post-phase rotation based dynamic receive beamforming architecture for smartphone-based wireless ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Park, Minsuk; Kang, Jeeun; Lee, Gunho; Kim, Min; Song, Tai-Kyong

    2016-04-01

    Recently, a portable US imaging system using smart devices is highlighted for enhancing the portability of diagnosis. Especially, the system combination can enhance the user experience during whole US diagnostic procedures by employing the advanced wireless communication technology integrated in a smart device, e.g., WiFi, Bluetooth, etc. In this paper, an effective post-phase rotation-based dynamic receive beamforming (PRBF-POST) method is presented for wireless US imaging device integrating US probe system and commercial smart device. In conventional, the frame rate of conventional PRBF (PRBF-CON) method suffers from the large amount of calculations for the bifurcated processing paths of in-phase and quadrature signal components as the number of channel increase. Otherwise, the proposed PRBF-POST method can preserve the frame rate regardless of the number of channels by firstly aggregating the baseband IQ data along the channels whose phase quantization levels are identical ahead of phase rotation and summation procedures on a smart device. To evaluate the performance of the proposed PRBF-POST method, the pointspread functions of PRBF-CON and PRBF-POST methods were compared each other. Also, the frame rate of each PRBF method was measured 20-times to calculate the average frame rate and its standard deviation. As a result, the PRBFCON and PRBF-POST methods indicates identical beamforming performance in the Field-II simulation (correlation coefficient = 1). Also, the proposed PRBF-POST method indicates the consistent frame rate for varying number of channels (i.e., 44.25, 44.32, and 44.35 fps for 16, 64, and 128 channels, respectively), while the PRBF-CON method shows the decrease of frame rate as the number of channel increase (39.73, 13.19, and 3.8 fps). These results indicate that the proposed PRBF-POST method can be more advantageous for implementing the wireless US imaging system than the PRBF-CON method.

  19. Analysis of afferent responses from isolated semicircular canal of the guitarfish using rotational acceleration white-noise inputs. II. Estimation of linear system parameters and gain and phase spectra.

    PubMed

    O'Leary, D P; Honrubia, V

    1976-05-01

    Quantitative estimates were computed for exponential coefficients and rate constants contributing to afferent unit impulse responses obtained from bundles innervating specific regions of the semicircular canal. The grouping of these estimates into specific response classes provided quantitative correlations with specific anatomical regions of innervation of the crista. Linear system gain and phase spectra were computed also, by applying Fourier transformations to unit impulse responses, for purposes of comparison with previous studies employing frequency domain analyses. Responses fitted by third-order linear system equations were specific to afferents innervating the crest and transition regions of the crista; whereas those fitted by overdamped, second-order equations were specific to afferents innervating the slopes and transition crista regions. It was concluded that strictly mechanical models of the transduction process are inadequate to account for the diverse and spatially distributed classes of observed responses and, moreover, structural features such as different hair cell types or efferent innervation effects could be excluded as inoperative in this preparation. The alternative hypothesis was suggested that certain of the observed subcomponents could be direct reflections of the initial mechanical stimulus, but that other subcomponents were reflections of more complex filtering mechanisms operating at the cellular or synaptic levels.

  20. NMR system and method having a permanent magnet providing a rotating magnetic field

    DOEpatents

    Schlueter, Ross D [Berkeley, CA; Budinger, Thomas F [Berkeley, CA

    2009-05-19

    Disclosed herein are systems and methods for generating a rotating magnetic field. The rotating magnetic field can be used to obtain rotating-field NMR spectra, such as magic angle spinning spectra, without having to physically rotate the sample. This result allows magic angle spinning NMR to be conducted on biological samples such as live animals, including humans.

  1. Airy pattern approximation of a phased microphone array response to a rotating point source.

    PubMed

    Debrouwere, Maarten; Angland, David

    2017-02-01

    Deconvolution of phased microphone array source maps is a commonly applied technique in order to improve the dynamic range and resolution of beamforming. Most deconvolution algorithms require a point spread function (PSF). In this work, it is shown that the conventional definition of the PSF, based on steering vectors, is changed when the source is rotating. The effect of rotation results in an increase in the resolution and aperture of the array. The concept of virtual array positions created by source rotation is used to derive an approximation of the PSF based on an Airy pattern. The Airy pattern approximation is suitable for use in deconvolution of rotating source maps as it is more accurate and computationally less expensive than the conventional PSF definition. The proposed Airy pattern approximation was tested with both CLEAN and DAMAS deconvolution algorithms. On the same hardware, it was significantly faster when compared to the conventional definition. The limitations of the Airy pattern approximation are shown in a synthesized broadband test case with a high dynamic range. However, in most practical beamforming applications, the proposed Airy pattern approximated PSF for deconvolution is a suitable option considering its accuracy and speed.

  2. On linear structure and phase rotation invariant properties of block M-PSK modulation codes

    NASA Technical Reports Server (NTRS)

    Kasami, Tadao; Takata, Toyoo; Fujiwara, Toru; Lin, Shu

    1991-01-01

    Two important structural properties of block M(=2')-ary PSK modulation codes, linear structure and phase symmetry, are investigated. An M-ary modulation code is first represented as a code with symbols from the integer group S(MPSK) = (0,1,2,...M-1) under modulo-M addition. Then the linear structure of block MPSK modulation codes over S(M-PSK) with respect to modulo-M vector addition is defined, and conditions are derived under which a block MPSK modulation code is linear. Once the linear structure is developed, the phase symmetry of block M-PSK modulation codes is studied. In particular, a necessary and sufficient condition for a block MPSK modulation code that is linear as a binary code to be invariant under 2 h 180 deg/M phase rotation (for h = 1 to l) is derived. Finally, a list of short 8PSK and 16PSK modulation codes is given, together with their linear structure and the smallest phase rotation for which a code is invariant.

  3. The Pluto System At Small Phase Angles

    NASA Astrophysics Data System (ADS)

    Verbiscer, Anne J.; Buie, Marc W.; Binzel, Richard; Ennico, Kimberly; Grundy, William M.; Olkin, Catherine B.; Showalter, Mark Robert; Spencer, John R.; Stern, S. Alan; Weaver, Harold A.; Young, Leslie; New Horizons Science Team

    2016-10-01

    Hubble Space Telescope observations of the Pluto system acquired during the New Horizons encounter epoch (HST Program 13667, M. Buie, PI) span the phase angle range from 0.06 to 1.7 degrees, enabling the measurement and characterization of the opposition effect for Pluto and its satellites at 0.58 microns using HST WFC3/UVIS with the F350LP filter, which has a broadband response and a pivot wavelength of 0.58 microns. At these small phase angles, differences in the opposition effect width and amplitude appear. The small satellites Nix and Hydra both exhibit a very narrow opposition surge, while the considerably larger moon Charon has a broader opposition surge. Microtextural surface properties derived from the shape and magnitude of the opposition surge of each surface contain a record of the collisional history of the system. We combine these small phase angle observations with those made at larger phase angles by the New Horizons Long Range Reconnaissance Imager (LORRI), which also has a broadband response with a pivot wavelength of 0.61 microns, to produce the most complete disk-integrated solar phase curves that we will have for decades to come. Modeling these disk-integrated phase curves generates sets of photometric parameters that will inform spectral modeling of the satellite surfaces as well as terrains on Pluto from spatially resolved New Horizons Ralph Linear Etalon Imaging Spectral Array (LEISA) data from 1.2 to 2.5 microns. Rotationally resolved phase curves of Pluto reveal opposition effects that only appear at phase angles less than 0.1 degree and have widths and amplitudes that are highly dependent on longitude and therefore on Pluto's diverse terrains. The high albedo region informally known as Sputnik Planum dominates the disk-integrated reflectance of Pluto on the New Horizons encounter hemisphere. These results lay the groundwork for observations at true opposition in 2018, when the Pluto system will be observable at phase angles so small that

  4. Horizontally rotated cell culture system with a coaxial tubular oxygenator

    NASA Technical Reports Server (NTRS)

    Wolf, David A. (Inventor); Schwarz, Ray P. (Inventor); Trinh, Tinh T. (Inventor)

    1991-01-01

    The present invention relates to a horizontally rotating bioreactor useful for carrying out cell and tissue culture. For processing of mammalian cells, the system is sterilized and fresh fluid medium, microcarrier beads, and cells are admitted to completely fill the cell culture vessel. An oxygen containing gas is admitted to the interior of the permeable membrane which prevents air bubbles from being introduced into the medium. The cylinder is rotated at a low speed within an incubator so that the circular motion of the fluid medium uniformly suspends the microbeads throughout the cylinder during the cell growth period. The unique design of this cell and tissue culture device was initially driven by two requirements imposed by its intended use for feasibility studies for three dimensional culture of living cells and tissues in space by JSC. They were compatible with microgravity and simulation of microgravity in one G. The vessels are designed to approximate the extremely quiescent low shear environment obtainable in space.

  5. Efficient optimal design of suspension systems for rotating shafts

    NASA Technical Reports Server (NTRS)

    Pilkey, W. D.; Wang, B. P.; Vannoy, D.

    1975-01-01

    A new technique is proposed for the optimum design of suspension systems for rotating shafts. In this approach the conventional method of trial and error search for optimum parameter values for a prescribed design configuration has been replaced by an efficient two-stage procedure. In the first stage a generic force is substituted for the suspension system to be designed and the absolute optimum (or limiting) performance characteristics of the shaft are computed. In the second stage, using a chosen suspension system configuration, parameter identification techniques are are applied to find the design parameters so that the suspension system will respond as close as possible to the absolute optimal performance. In this approach the repetitive shaft analyses required in the conventional search techniques are avoided. Hence, the new technique is relatively efficient computationally and is suitable for large systems. Both linear and nonlinear suspension systems can be designed. A simple Jeffcott rotor is used to demonstrate the new technique.

  6. All-optical animation projection system with rotating fieldstone

    NASA Astrophysics Data System (ADS)

    Ishii, Yuko; Takayama, Yoshihisa; Kodate, Kashiko

    2007-06-01

    A simple and compact rewritable holographic memory system using a fieldstone of Ulexite is proposed. The role of the fieldstone is to impose random patterns on the reference beam to record plural images with the random-reference multiplexing scheme. The operations for writing and reading holograms are carried out by simply rotating the fieldstone in one direction. One of the features of this approach is found in a way to generate random patterns without computer drawings. The experimental study confirms that our system enables the smooth readout of the stored images one after another so that the series of reproduced images are projected as an animation.

  7. Bounded Nonlinear Control of a Rotating Pendulum System

    NASA Astrophysics Data System (ADS)

    Luyckx, L.; Loccufier, M.; Noldus, E.

    2004-08-01

    We are interested in the output feedback control of mechanical systems governed by the Euler-Lagrange formalism. The systems are collocated actuator-sensor controlled and underactuated. We present a design method by means of a specific example : the set point control of a rotating pendulum. We use constrained output feedback, whereby the control inputs satisfy a priori imposed upper bounds. The closed loop stability analysis relies on the direct method of Liapunov. This results in a frequency criterion on the controller's linear dynamic component and some restrictions on its nonlinearities. The control parameters are tuned for maximizing closed loop damping.

  8. Optimization of the parameters for a rotating, mixed-phase reactor

    NASA Technical Reports Server (NTRS)

    Cleland, J. G.; Kornfeld, D. M.

    1992-01-01

    The motion of small, monodisperse particles in fluid was studied in a horizontal, cylindrical container rotating about its axis. One instigation for the study was the common requirement for mixed-phase, chemical or biological reactors to maintain particles in suspension for extended periods. A cylindrical, rotating reactor can allow long-term particle suspension without particle collisions and resulting agglomeration. The purpose of this study was to verify parametric effects and optimize the time of particle suspension. The theoretical and experimental results were obtained for inert, constant-diameter particles of nearly neutral buoyancy. The centrifugal buoyancy and gravitation terms were both included in the equations of motion. Laser illumination, photography and computer imaging were used to measure experimental particle concentration.

  9. Observed Magnetic Island Rotation and Reconnecting Modes with Phase Velocity in the Ion Diamagnetic Velocity

    NASA Astrophysics Data System (ADS)

    Buratti, P.; Coppi, B.; Basu, B.

    2016-10-01

    The modes that can produce magnetic reconnection in low collisionality regimes and that are driven by the plasma current density gradient are shown to have a characteristic phase velocity in the direction of the ion diamagnetic velocity. Thus the initially formed magnetic islands rotate in the same direction. This result is consistent with the experimental observations of rotating magnetic islands, produced by ``internal modes'' excited in magnetically confined toroidal plasmas, with the caveat that the observed islands have gone through a non-linear evolution that is not covered by the presented theory. In the low collisionality regimes of interest there are to types of singularity to be removed i) that of the perturbed plasma current density removed by a local plasma finite ``inductivity'' ii) that of the perturbed electron temperature (due to a large longitudinal thermal conductivity) removed by a finite transverse electron thermal conductivity. Sponsored by the U.S. D.O.E.

  10. Phase-space model of a collisionless stellar cylinder embedded in a rotating halo

    NASA Astrophysics Data System (ADS)

    Kondratyev, B. P.; Kireeva, E. N.

    The phase-space model of a stellar cylindrical bar embedded in a rotating triaxial halo is constructed. The equations of motion of an individual star in the bar are derived and solved. The model has three integrals of motion and the condition of the cylinder boundary conservation is derived. The model is found to represent a four-dimensional ellipsoid in six-dimensional phase space. The phase-space distribution function of stars is derived, which depends on isolating integrals of motion. The centroid velocity field describes longitudinal shear averaged flows in the cylinder. Two non-zero components of the velocity dispersion tensor depend quadratically on coordinates and vanish at the surface of the cylindrical bar.

  11. A novel rotating-shaft bioreactor for two-phase cultivation of tissue-engineered cartilage.

    PubMed

    Chen, Huang-Chi; Lee, Hsiao-Ping; Sung, Ming-Lun; Liao, Chun-Jen; Hu, Yu-Chen

    2004-01-01

    A novel rotating-shaft bioreactor (RSB) was developed for two-phase cultivation of tissue-engineered cartilage. The reactor consisted of a rotating shaft on which the chondrocyte/scaffold constructs (7.5 mm diameter x 3.5 mm thickness) were fixed and a reactor vessel half-filled with medium. The horizontal rotation of the shaft resulted in alternating exposure of the constructs to gas and liquid phases, thus leading to efficient oxygen and nutrient transfer, as well as periodically changing, mild shear stress exerting on the construct surfaces (0-0.32 dyn/cm2 at 10 rpm), as revealed by computer simulation. Strategic operation of the RSB (maintaining rotating speed at 10 rpm for 3 weeks and lowering the speed to 2 rpm in week 4) in combination with higher seeding density (6 x 10(6) chondrocytes/scaffold) and medium perfusion resulted in uniform cell distribution and increased glycosaminoglycan (3.1 mg/scaffold) and collagen (7.0 mg/scaffold) deposition. The 4-week constructs resembled native cartilages in terms of not only gross appearance and cell morphology but also distributions of glycosaminoglycan, total collagen, and type II collagen, confirming the maintenance of chondrocyte phenotype and formation of cartilage-like constructs in the RSB cultures. In summary, the novel RSB may be implicated for in vitro study of chondrogenesis and de novo cartilage development under periodic mechanical loading. With proper optimization of the culture conditions, a RSB may be employed for the production of cartilage-like constructs.

  12. Phase transitions in disordered systems

    NASA Astrophysics Data System (ADS)

    Hrahsheh, Fawaz Y.

    Disorder can have a wide variety of consequences for the physics of phase transitions. Some transitions remain unchanged in the presence of disorder while others are completely destroyed. In this thesis we study the effects of disorder on several classical and quantum phase transitions in condensed matter systems. After a brief introduction, we study the ferromagnetic phase transition in a randomly layered Heisenberg magnet using large-scale Monte-Carlo simulations. Our results provide numerical evidence for the exotic infinite-randomness scenario. We study classical and quantum smeared phase transitions in substitutional alloys A1-xBx. Our results show that the disorder completely destroys the phase transition with a pronounced tail of the ordered phase developing for all compositions x < 1. In addition, we find that short-ranged disorder correlations can have a dramatic effect on the transition. Moreover, we show an experimental realization of the composition-tuned ferromagnetic-to-paramagnetic quantum phase transition in Sr1-xCa xRuO3. We investigate the effects of disorder on first-order quantum phase transitions on the example of the N-color quantum Ashkin-Teller model. By means of a strong disorder renormalization group, we demonstrate that disorder rounds the first-order transition to a continuous one for both weak and strong coupling between the colors. Finally, we investigate the superfluid-insulator quantum phase transition of one-dimensional bosons with off-diagonal disorder by means of large-scale Monte-Carlo simulations. Beyond a critical disorder strength, we find nonuniversal, disorder dependent critical behavior.

  13. Failure Accommodation Tested in Magnetic Suspension Systems for Rotating Machinery

    NASA Technical Reports Server (NTRS)

    Provenza, Andy J.

    2000-01-01

    The NASA Glenn Research Center at Lewis Field and Texas A&M University are developing techniques for accommodating certain types of failures in magnetic suspension systems used in rotating machinery. In recent years, magnetic bearings have become a viable alternative to rolling element bearings for many applications. For example, industrial machinery such as machine tool spindles and turbomolecular pumps can today be bought off the shelf with magnetically supported rotating components. Nova Gas Transmission Ltd. has large gas compressors in Canada that have been running flawlessly for years on magnetic bearings. To help mature this technology and quiet concerns over the reliability of magnetic bearings, NASA researchers have been investigating ways of making the bearing system tolerant to faults. Since the potential benefits from an oil-free, actively controlled bearing system are so attractive, research that is focused on assuring system reliability and safety is justifiable. With support from the Fast Quiet Engine program, Glenn's Structural Mechanics and Dynamics Branch is working to demonstrate fault-tolerant magnetic suspension systems targeted for aerospace engine applications. The Flywheel Energy Storage Program is also helping to fund this research.

  14. Resonant microsphere gyroscope based on a double Faraday rotator system.

    PubMed

    Xie, Chengfeng; Tang, Jun; Cui, Danfeng; Wu, Dajin; Zhang, Chengfei; Li, Chunming; Zhen, Yongqiu; Xue, Chenyang; Liu, Jun

    2016-10-15

    The resonant microsphere gyroscope is proposed based on a double Faraday rotator system for the resonant microsphere gyroscope (RMSG) that is characterized by low insertion losses and does not destroy the reciprocity of the gyroscope system. Use of the echo suppression structure and the orthogonal polarization method can effectively inhibit both the backscattering noise and the polarization error, and reduce them below the system sensitivity limit. The resonance asymmetry rate dropped from 34.2% to 2.9% after optimization of the backscattering noise and the polarization noise, which greatly improved the bias stability and the scale factor linearity of the proposed system. Additionally, based on the optimum parameters for the double Faraday rotator system, a bias stability of 0.04°/s has been established for an integration time of 10 s in 1000 s in a resonator microsphere gyroscope using a microsphere resonator with a diameter of 1 mm and a Q of 7.2×106.

  15. FOSREM - Fibre-Optic System for Rotational Events&Phenomena Monitoring

    NASA Astrophysics Data System (ADS)

    Jaroszewicz, Leszek; Krajewski, Zbigniew; Kurzych, Anna; Kowalski, Jerzy; Teisseyre, Krzysztof

    2016-04-01

    We present the construction and tests of fiber-optic rotational seismometer named FOSREM (Fibre-Optic System for Rotational Events&Phenomena Monitoring). This presented device is designed for detection and monitoring the one-axis rotational motions, brought about to ground or human-made structures both by seismic events and the creep processes. The presented system works by measuring Sagnac effect and generally consists of two basic elements: optical sensor and electronic part. The optical sensor is based on so-called the minimum configuration of FOG (Fibre-Optic Gyroscope) where the Sagnac effect produces a phase shift between two counter-propagating light beams proportional to the measured rotation speed. The main advantage of the sensor of this type is its complete insensitivity to linear motions and a direct measurement of rotational speed. It may work even when tilted, moreover, used in continuous mode it may record the tilt. The electronic system, involving specific electronic solutions, calculates and records rotational events data by realizing synchronous in a digital form by using 32 bit DSP (Digital Signal Processing). Storage data and system control are realised over the internet by using connection between FOSREM and GSM/GPS. The most significant attribute of our system is possibility to measure rotation in wide range both amplitude up to 10 rad/s and frequency up to 328.12 Hz. Application of the wideband, low coherence and high power superluminescent diode with long fibre loop and suitable low losses optical elements assures the theoretical sensitivity of the system equal to 2·10-8 rad/s/Sqrt(Hz). Moreover, the FOSREM is fully remote controlled as well as is suited for continuous, autonomous work in very long period of time (weeks, months, even years), so it is useful for systematic seismological investigation at any place. Possible applications of this system include seismic monitoring in observatories, buildings, mines and even on glaciers and in

  16. Stellar Rotation-Planetary Orbit Period Commensurability in the HAT-P-11 System

    NASA Astrophysics Data System (ADS)

    Béky, Bence; Holman, Matthew J.; Kipping, David M.; Noyes, Robert W.

    2014-06-01

    A number of planet host stars have been observed to rotate with a period equal to an integer multiple of the orbital period of their close planet. We expand this list by analyzing Kepler data of HAT-P-11 and finding a period ratio of 6:1. In particular, we present evidence for a long-lived spot on the stellar surface that is eclipsed by the planet in the same position four times, every sixth transit. We also identify minima in the out-of-transit light curve and confirm that their phase with respect to the stellar rotation is mostly stationary for the 48 month time frame of the observations, confirming the proposed rotation period. For comparison, we apply our methods to Kepler-17 and confirm the findings of Bonomo & Lanza that the period ratio is not exactly 8:1 in that system. Finally, we provide a hypothesis on how interactions between a star and its planet could possibly result in an observed commensurability for systems where the stellar differential rotation profile happens to include a period at some latitude that is commensurable to the planetary orbit.

  17. Stellar rotation-planetary orbit period commensurability in the HAT-P-11 system

    SciTech Connect

    Béky, Bence; Holman, Matthew J.; Noyes, Robert W.; Kipping, David M.

    2014-06-10

    A number of planet host stars have been observed to rotate with a period equal to an integer multiple of the orbital period of their close planet. We expand this list by analyzing Kepler data of HAT-P-11 and finding a period ratio of 6:1. In particular, we present evidence for a long-lived spot on the stellar surface that is eclipsed by the planet in the same position four times, every sixth transit. We also identify minima in the out-of-transit light curve and confirm that their phase with respect to the stellar rotation is mostly stationary for the 48 month time frame of the observations, confirming the proposed rotation period. For comparison, we apply our methods to Kepler-17 and confirm the findings of Bonomo and Lanza that the period ratio is not exactly 8:1 in that system. Finally, we provide a hypothesis on how interactions between a star and its planet could possibly result in an observed commensurability for systems where the stellar differential rotation profile happens to include a period at some latitude that is commensurable to the planetary orbit.

  18. An optimized rotating helium-recondensing system using Roebuck refrigerators

    NASA Astrophysics Data System (ADS)

    Jeong, Sangkw. O. O. N.; Lee, C.

    1999-09-01

    This paper describes an optimized design of the helium-recondensing system utilizing cascade Roebuck refrigerators. A superconducting generator or motor has a superconducting field winding in its rotor that should be continuously cooled by cryogen. Liquid helium transfer from the stationary system to the rotor of the LTS (Low Temperature Superconductor) superconducting generator has been problematic, cumbersome, and inefficient. The novel concept of a rotating helium-recondensing system is contrived. The vaporized cold helium inside the rotor is isothermally compressed by centrifugal force and recondensed to 4.2 K reservoir through the expansion process. There is no helium coupling between the rotor and the stationary liquid helium storage. Thermodynamic analysis of the cascade refrigeration system is performed to determine the optimum key design parameters. The loss mechanisms are also described to point out the sources that might reduce the system performance.

  19. Numerical and Experimental study of secondary flows in a rotating two-phase flow: the tea leaf paradox

    NASA Astrophysics Data System (ADS)

    Calderer, Antoni; Neal, Douglas; Prevost, Richard; Mayrhofer, Arno; Lawrenz, Alan; Foss, John; Sotiropoulos, Fotis

    2015-11-01

    Secondary flows in a rotating flow in a cylinder, resulting in the so called ``tea leaf paradox'', are fundamental for understanding atmospheric pressure systems, developing techniques for separating red blood cells from the plasma, and even separating coagulated trub in the beer brewing process. We seek to gain deeper insights in this phenomenon by integrating numerical simulations and experiments. We employ the Curvilinear Immersed boundary method (CURVIB) of Calderer et al. (J. Comp. Physics 2014), which is a two-phase flow solver based on the level set method, to simulate rotating free-surface flow in a cylinder partially filled with water as in the tea leave paradox flow. We first demonstrate the validity of the numerical model by simulating a cylinder with a rotating base filled with a single fluid, obtaining results in excellent agreement with available experimental data. Then, we present results for the cylinder case with free surface, investigate the complex formation of secondary flow patterns, and show comparisons with new experimental data for this flow obtained by Lavision. Computational resources were provided by the Minnesota Supercomputing Institute.

  20. Phase-linking and the perceived motion during off-vertical axis rotation

    PubMed Central

    Wood, Scott J.; McCollum, Gin

    2010-01-01

    Human off-vertical axis rotation (OVAR) in the dark typically produces perceived motion about a cone, the amplitude of which changes as a function of frequency. This perception is commonly attributed to the fact that both the OVAR and the conical motion have a gravity vector that rotates about the subject. Little-known, however, is that this rotating-gravity explanation for perceived conical motion is inconsistent with basic observations about self-motion perception: (a) that the perceived vertical moves toward alignment with the gravito-inertial acceleration (GIA) and (b) that perceived translation arises from perceived linear acceleration, as derived from the portion of the GIA not associated with gravity. Mathematically proved in this article is the fact that during OVAR these properties imply mismatched phase of perceived tilt and translation, in contrast to the common perception of matched phases which correspond to conical motion with pivot at the bottom. This result demonstrates that an additional perceptual rule is required to explain perception in OVAR. This study investigates, both analytically and computationally, the phase relationship between tilt and translation at different stimulus rates—slow (45°/s) and fast (180°/s), and the three-dimensional shape of predicted perceived motion, under different sets of hypotheses about self-motion perception. We propose that for human motion perception, there is a phase-linking of tilt and translation movements to construct a perception of one’s overall motion path. Alternative hypotheses to achieve the phase match were tested with three-dimensional computational models, comparing the output with published experimental reports. The best fit with experimental data was the hypothesis that the phase of perceived translation was linked to perceived tilt, while the perceived tilt was determined by the GIA. This hypothesis successfully predicted the bottom-pivot cone commonly reported and a reduced sense of tilt

  1. M-dwarf rapid rotators and the detection of relatively young multiple M-star systems

    SciTech Connect

    Rappaport, S.; Joss, M.; Sanchis-Ojeda, R. E-mail: mattjoss@mit.edu; and others

    2014-06-20

    We have searched the Kepler light curves of ∼3900 M-star targets for evidence of periodicities that indicate, by means of the effects of starspots, rapid stellar rotation. Several analysis techniques, including Fourier transforms, inspection of folded light curves, 'sonograms', and phase tracking of individual modulation cycles, were applied in order to distinguish the periodicities due to rapid rotation from those due to stellar pulsations, eclipsing binaries, or transiting planets. We find 178 Kepler M-star targets with rotation periods, P {sub rot}, of <2 days, and 110 with P {sub rot} < 1 day. Some 30 of the 178 systems exhibit two or more independent short periods within the same Kepler photometric aperture, while several have 3 or more short periods. Adaptive optics imaging and modeling of the Kepler pixel response function for a subset of our sample support the conclusion that the targets with multiple periods are highly likely to be relatively young physical binary, triple, and even quadruple M star systems. We explore in detail the one object with four incommensurate periods all less than 1.2 days, and show that two of the periods arise from one of a close pair of stars, while the other two arise from the second star, which itself is probably a visual binary. If most of these M-star systems with multiple periods turn out to be bound M stars, this could prove a valuable way discovering young hierarchical M-star systems; the same approach may also be applicable to G and K stars. The ∼5% occurrence rate of rapid rotation among the ∼3900 M star targets is consistent with spin evolution models that include an initial contraction phase followed by magnetic braking, wherein a typical M star can spend several hundred Myr before spinning down to periods longer than 2 days.

  2. State-Space Modeling, System Identification and Control of a 4th Order Rotational Mechanical System

    DTIC Science & Technology

    2009-12-01

    SYSTEM IDENTIFICATION AND CONTROL OF A 4th ORDER ROTATIONAL MECHANICAL SYSTEM by Jeremiah P. Anderson December 2009 Thesis Advisor...DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE State-space Modeling, System Identification and Control of a 4th Order Rotational Mechanical...Educational Control Products is modeled from first principles and represented in state-space form. Identification of the state-space parameters was

  3. Dynamics of Rotating Multi-component Turbomachinery Systems

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles

    1993-01-01

    The ultimate objective of turbomachinery vibration analysis is to predict both the overall, as well as component dynamic response. To accomplish this objective requires complete engine structural models, including multistages of bladed disk assemblies, flexible rotor shafts and bearings, and engine support structures and casings. In the present approach each component is analyzed as a separate structure and boundary information is exchanged at the inter-component connections. The advantage of this tactic is that even though readily available detailed component models are utilized, accurate and comprehensive system response information may be obtained. Sample problems, which include a fixed base rotating blade and a blade on a flexible rotor, are presented.

  4. Accurate Compensation of Attitude Angle Error in a Dual-Axis Rotation Inertial Navigation System.

    PubMed

    Jiang, Rui; Yang, Gongliu; Zou, Rui; Wang, Jing; Li, Jing

    2017-03-17

    In the dual-axis rotation inertial navigation system (INS), besides the gyro error, accelerometer error, rolling misalignment angle error, and the gimbal angle error, the shaft swing angle and the axis non-orthogonal angle also affect the attitude accuracy. Through the analysis of the structure, we can see that the shaft swing angle and axis non-orthogonal angle will produce coning errors which cause the fluctuation of the attitude. According to the analysis of the rotation vector, it can be seen that the coning error will generate additional drift velocity along the rotating shaft, which can reduce the navigation precision of the system. In this paper, based on the establishment of the modulation average frame, the vector projection is carried out, and then the attitude conversion matrix and the attitude error matrix mainly including the shaft swing angle and axis non-orthogonal are obtained. Because the attitude angles are given under the static condition, the shaft swing angle and the axis non-orthogonal angle are estimated by the static Kalman filter (KF). This kind of KF method has been widely recognized as the standard optimal estimation tool for estimating the parameters such as coning angles (α₁ , α₂), initial phase angles (ϕ₁,ϕ₂), and the non-perpendicular angle (η). In order to carry out the system level verification, a dual axis rotation INS is designed. Through simulation and experiments, the results show that the amplitudes of the attitude angles' variation are reduced by about 20%-30% when the shaft rotates. The attitude error equation is reasonably simplified and the calibration method is accurate enough. The attitude accuracy is further improved.

  5. Accurate Compensation of Attitude Angle Error in a Dual-Axis Rotation Inertial Navigation System

    PubMed Central

    Jiang, Rui; Yang, Gongliu; Zou, Rui; Wang, Jing; Li, Jing

    2017-01-01

    In the dual-axis rotation inertial navigation system (INS), besides the gyro error, accelerometer error, rolling misalignment angle error, and the gimbal angle error, the shaft swing angle and the axis non-orthogonal angle also affect the attitude accuracy. Through the analysis of the structure, we can see that the shaft swing angle and axis non-orthogonal angle will produce coning errors which cause the fluctuation of the attitude. According to the analysis of the rotation vector, it can be seen that the coning error will generate additional drift velocity along the rotating shaft, which can reduce the navigation precision of the system. In this paper, based on the establishment of the modulation average frame, the vector projection is carried out, and then the attitude conversion matrix and the attitude error matrix mainly including the shaft swing angle and axis non-orthogonal are obtained. Because the attitude angles are given under the static condition, the shaft swing angle and the axis non-orthogonal angle are estimated by the static Kalman filter (KF). This kind of KF method has been widely recognized as the standard optimal estimation tool for estimating the parameters such as coning angles (α1 , α2), initial phase angles (ϕ1,ϕ2), and the non-perpendicular angle (η). In order to carry out the system level verification, a dual axis rotation INS is designed. Through simulation and experiments, the results show that the amplitudes of the attitude angles’ variation are reduced by about 20%–30% when the shaft rotates. The attitude error equation is reasonably simplified and the calibration method is accurate enough. The attitude accuracy is further improved. PMID:28304354

  6. The oblate spheroidal harmonics under coordinate system rotation and translation

    NASA Astrophysics Data System (ADS)

    Panou, Georgios

    2014-05-01

    Several recent studies in geodesy and related sciences make use of oblate spheroidal harmonics. For instance, the Earth's external gravitational potential can be mathematically expanded in an oblate spheroidal harmonic series which converges outside any spheroid enclosing all the masses. In this presentation, we develop the exact relations between the solid oblate spheroidal harmonics in two coordinate systems, related to each other by an arbitrary rotation or translation. We start with the relations which exist between the spherical harmonics in the two coordinate systems. This problem has received considerable attention in the past and equivalent results have been independently derived by several investigators. Then, combining the previous results with the expressions which relate the solid spherical harmonics and the solid spheroidal harmonics, we obtain the relations under consideration. For simplicity, complex notation has been adopted throughout the work. This approach is also suitable and easy to use in the zonal harmonic expansions. The spherical harmonics under coordinate system rotation and translation are obtained as a degenerate case. The above theory can be used in any spheroidal harmonic model. Finally, some simple examples are given, in order to illuminate the mathematical derivations.

  7. Measuring femoral and rotational alignment: EOS system versus computed tomography.

    PubMed

    Folinais, D; Thelen, P; Delin, C; Radier, C; Catonne, Y; Lazennec, J Y

    2013-09-01

    Computed tomography (CT) is currently the reference standard for measuring femoral and tibial rotational alignment. The EOS System is a new biplanar low-dose radiographic device that allows 3-dimensional lower-limb modelling with automated measurements of femoral and tibial rotational alignment (torsion). Femoral and tibial torsion measurements provided by the EOS System are equivalent to those obtained using CT. In a retrospective analysis of 43 lower limbs in 30 patients, three senior radiologists measured femoral and tibial torsion on both CT and EOS images. Agreement between CT and EOS values was assessed by computing Pearson's correlation coefficient and interobserver reproducibility by computing the intraclass correlation coefficient (ICC). Femoral torsion was 13.4° by EOS vs. 13.7° by CT (P=0.5) and tibial torsion was 30.8° by EOS vs. 30.3° by CT (P=0.4). Strong associations were found between EOS and CT values for both femoral torsion (P=0.93) and tibial torsion (P=0.89). With EOS, the ICC was 0.93 for femoral torsion and 0.86 for tibial torsion; corresponding values with CT were 0.90 and 0.92. The EOS system is a valid alternative to CT for lower-limb torsion measurement. EOS imaging allows a comprehensive evaluation in all three planes while substantially decreasing patient radiation exposure. Level III, case-control. Copyright © 2013. Published by Elsevier Masson SAS.

  8. Fiber optic phase stepping system for interferometry

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Beheim, Glenn

    1991-01-01

    A closed loop phase control system using an all-fiber optical configuration has been developed for use in phase-stepping interferometry. This system drives the relative phase of two interfering beams through a sequence of pi/2 rad increments so that the initial relative phase of these beams can be determined. This phase-stepping system uses optical fibers to provide spatially uniform phase steps from a flexible, easily aligned optical configuration. In addition, this system uses phase feedback to eliminate phase modulator errors and to compensate for phase drifts caused by environmental disturbances.

  9. Dynamic deformation measurements of a rotating disc by twin-pulsed 3D digital holography and interpolation of phase maps

    NASA Astrophysics Data System (ADS)

    Perez-Lopez, Carlos; Mendoza Santoyo, Fernando

    2004-06-01

    This paper describes the application of twin-pulsed 3D digital holography to the measurement of the dynamic deformation of a disc while it rotates. Object rotation produces interferometric fringes that are related to deformations for instance, stress due to the centrifugal forces, out-to plane vibrations, and the object angular displacement. Furthermore an unbalanced disc that rotates may present a characteristic vibration amplitude pattern at a specific frequency. An optical arrangement that illuminates, with a twin pulsed laser, from three different positions the object was used to recover the x, y and z displacement components in a rotating object. The technique is able to distinguish the disc rotation from the displacement along the x-y plane and the out-of-plane z displacement. Two laser pulses are fired in order to take two digital holgrams with a time separation of 20 μs. This is done for each of the three object illumination positions. Triads of twin-pulsed digital holograms taken at different times during object rotation are processed independently, and their optical phase maps retrieved by the conventional Fourier transform method together with the combination of data from the three illumination positions. The phase term related to the deformation is found experimentally where the intrinsic sensitivity vector is related to the rotation via the vector cross product, forming parallel fringes. To recover the rotation and deformation data the unwrapped phase maps were used as 'tilt' phase planes an all three sensitivity vectors in order to recover the in-plane, and out-to plane displacements. An interpolation algorithm was developed to correlate the time depending phase maps, leading to obtain object vibration frequency data. Experimental results are presented, showing in particular that the rotating object has an unbalancing due to the detected vibration frequency.

  10. Geometric phase due to orbit–orbit interaction: rotating LP11 modes in a two-mode fiber

    NASA Astrophysics Data System (ADS)

    Pradeep Chakravarthy, T.; Naik, Dinesh N.; Viswanathan, Nirmal K.

    2017-10-01

    Accumulation of geometric phase due to non-coplanar propagation of higher-order modes in an optical fiber is experimentally demonstrated. Vertically-polarized LP11 fiber mode, excited in a horizontally-held, torsion-free, step-index, two-mode optical fiber, rotates due to asymmetry in the propagating k-vectors, arising due to off-centered beam location at the fiber input. Perceiving the process as due to rotation of the fiber about the off-axis launch position, the orbital Berry phase accumulation upon scanning the launch position in a closed-loop around the fiber axis manifests as rotational Doppler effect, a consequence of orbit–orbit interaction. The anticipated phase accumulation as a function of the input launch position, observed through interferometry is connected to the mode rotation angle, quantified using the autocorrelation method.

  11. Rotation dynamics of C{sub 60} molecules in a monolayer fullerene film on the WO{sub 2}/W(110) surface near the rotational phase transition

    SciTech Connect

    Bozhko, S. I.; Levchenko, E. A.; Semenov, V. N.; Bulatov, M. F.; Shvets, I. V.

    2015-05-15

    The rotation dynamics of C{sub 60} molecules in monolayer fullerene films grown on the WO{sub 2}/W(110) surface is studied by scanning tunneling microscopy. The formation of molecule clusters, which have a high libron vibration amplitude, is detected near the rotational phase transition temperature. The energy parameters that determine a change in the molecule orientation, namely, the energy difference between the nearest minima of the C{sub 60} molecule energy (30 meV) as a function of the molecule orientation and the potential barrier between them (610 meV), are determined. The results are discussed in terms of the mean-field approximation.

  12. Muscle: A Three Phase System

    PubMed Central

    Frater, R.; Simon, Shirley E.; Shaw, F. H.

    1959-01-01

    The partition of sulfate, Ca++, and Mg++ across the membrane of the sartorius muscle has been studied, and the effect of various concentrations of these ions in the Ringer solution on the cellular level of Na+, K+, and Cl- has been determined. The level of the three divalent ions in toad plasma and muscle in vivo has been assayed. Muscle was found to contain an almost undetectable amount of inorganic sulfate. Increases in the external level of these ions brought about increases in intracellular content, calculated from the found extracellular space as determined with radioiodinated serum albumin or inulin. Less of the cell water is available to sulfate than to Cl-, and the Mg++ space is less than the Na+ space. An amount of muscle water similar to that found for Li+ and I- appears to be available to these divalent ions. Sulfate efflux from the cell was extremely rapid, and it was not found possible to differentiate kinetically between intra- and extracellular material. These results are consistent with the theory of a three phase system, assuming the muscle to consist of an extracellular phase and two intracellular phases. Mg++ and Ca++ are adsorbed onto the ordered phase, and increments in cellular content found on raising the external level are assumed to occur in the free intracellular phase. PMID:13824654

  13. Extremal rotating black holes in the near-horizon limit: Phase space and symmetry algebra

    NASA Astrophysics Data System (ADS)

    Compère, G.; Hajian, K.; Seraj, A.; Sheikh-Jabbari, M. M.

    2015-10-01

    We construct the NHEG phase space, the classical phase space of Near-Horizon Extremal Geometries with fixed angular momenta and entropy, and with the largest symmetry algebra. We focus on vacuum solutions to d dimensional Einstein gravity. Each element in the phase space is a geometry with SL (2 , R) × U(1) d - 3 isometries which has vanishing SL (2 , R) and constant U (1) charges. We construct an on-shell vanishing symplectic structure, which leads to an infinite set of symplectic symmetries. In four spacetime dimensions, the phase space is unique and the symmetry algebra consists of the familiar Virasoro algebra, while in d > 4 dimensions the symmetry algebra, the NHEG algebra, contains infinitely many Virasoro subalgebras. The nontrivial central term of the algebra is proportional to the black hole entropy. The conserved charges are given by the Fourier decomposition of a Liouville-type stress-tensor which depends upon a single periodic function of d - 3 angular variables associated with the U (1) isometries. This phase space and in particular its symmetries can serve as a basis for a semiclassical description of extremal rotating black hole microstates.

  14. The rotating biplanar linac-magnetic resonance imaging system.

    PubMed

    Fallone, Biagio Gino

    2014-07-01

    We have successfully built linac-magnetic resonance imaging (MR) systems based on a linac waveguide placed between open MR planes (perpendicular) or through the central opening of one of the planes (parallel) to improve dosimetric properties. It rotates on a gantry to irradiate at any angle. Irradiation during MR imaging and automatic 2-dimensional MR image-based target tracking and automatic beam steering to the moving target have been demonstrated with our systems. The functioning whole-body system (0.6-T MR and 6-MV linac) has been installed in an existing clinical vault without removing the walls or the ceiling and without the need of a helium exhaust vent. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Phase Rotation of Muon Beams for Producing Intense Low-Energy Muon Beams

    SciTech Connect

    Neuffer, D.; Bao, Y.; Hansen, G.

    2016-01-01

    Low-energy muon beams are useful for rare decay searches, which provide access to new physics that cannot be addressed at high-energy colliders. However, muons are produced within a broad energy spread unmatched to the low-energy required. In this paper we outline a phase rotation method to significantly increase the intensity of low-energy muons. The muons are produced from a short pulsed proton driver, and develop a time-momentum correlation in a drift space following production. A series of rf cavities is used to bunch the muons and phase-energy rotate the bunches to a momentum of around 100 MeV/c. Then another group of rf cavities is used to decelerate the muon bunches to low-energy. This obtains ~0.1 muon per 8 GeV proton, which is significantly higher than currently planned Mu2e experiments, and would enable a next generation of rare decay searches, and other intense muon beam applications.

  16. Ultramicrowave communications system, phase 2

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Communications system design was completed and reviewed. Minor changes were made in order to make it more cost effective and to increase design flexibility. System design activities identified the techniques and procedures to generate and monitor high data rate test signals. Differential bi-phase demodulation is the proposed method for this system. The mockup and packaging designs were performed, and component layout and interconnection constraints were determined, as well as design drawings for dummy parts of the system. The possibility of adding a low cost option to the transceiver system was studied. The communications program has the advantage that new technology signal processing devices can be readily interfaced with the existing radio frequency subsystem to produce a short range radar.

  17. Analysis of the classical phase space and energy transfer for two rotating dipoles with and without external electric field

    NASA Astrophysics Data System (ADS)

    González-Férez, Rosario; Iñarrea, Manuel; Salas, J. Pablo; Schmelcher, Peter

    2017-01-01

    We explore the classical dynamics of two interacting rotating dipoles that are fixed in the space and exposed to an external homogeneous electric field. Kinetic energy transfer mechanisms between the dipoles are investigated by varying both the amount of initial excess kinetic energy of one of them and the strength of the electric field. In the field-free case, and depending on the initial excess energy, an abrupt transition between equipartition and nonequipartition regimes is encountered. The study of the phase space structure of the system as well as the formulation of the Hamiltonian in an appropriate coordinate frame provide a thorough understanding of this sharp transition. When the electric field is turned on, the kinetic energy transfer mechanism is significantly more complex and the system goes through different regimes of equipartition and nonequipartition of the energy including chaotic behavior.

  18. Phases and phase transitions in disordered quantum systems

    NASA Astrophysics Data System (ADS)

    Vojta, Thomas

    2013-08-01

    These lecture notes give a pedagogical introduction to phase transitions in disordered quantum systems and to the exotic Griffiths phases induced in their vicinity. We first review some fundamental concepts in the physics of phase transitions. We then derive criteria governing under what conditions spatial disorder or randomness can change the properties of a phase transition. After introducing the strong-disorder renormalization group method, we discuss in detail some of the exotic phenomena arising at phase transitions in disordered quantum systems. These include infinite-randomness criticality, rare regions and quantum Griffiths singularities, as well as the smearing of phase transitions. We also present a number of experimental examples.

  19. Effect of through-plane motion on left ventricular rotation: a study using slice-following harmonic phase imaging.

    PubMed

    Brotman, David; Zhang, Ziheng; Sampath, Smita

    2013-05-01

    Noninvasive quantification of regional left ventricular rotation may improve understanding of cardiac function. Current methods used to quantify rotation typically acquire data on a set of prescribed short-axis slices, neglecting effects due to through-plane myocardial motion. We combine principles of slice-following tagged imaging with harmonic phase analysis methods to account for through-plane motion in regional rotation measurements. We compare rotation and torsion measurements obtained using our method to those obtained from imaging datasets acquired without slice-following. Our results in normal volunteers demonstrate differences in the general trends of average and regional rotation-time plots in midbasal slices and the rotation versus circumferential strain loops. We observe substantial errors in measured peak average rotation of the order of 58% for basal slices (due to change in the pattern of the curve), -6.6% for midventricular slices, and -8.5% for apical slices; and an average error in base-to-apex torsion of 19% when through-plane motion is not considered. This study concludes that due to an inherent base-to-apex gradient in rotation that exists in the left ventricular, accounting for through-plane motion is critical to the accuracy of left ventricular rotation quantification.

  20. The Effect of Through-Plane Motion on Left Ventricular Rotation: A Study Using Slice Following Harmonic Phase Imaging

    PubMed Central

    Brotman, David; Zhang, Ziheng; Sampath, Smita

    2012-01-01

    Non-invasive quantification of regional left ventricular (LV) rotation may improve understanding of cardiac function. Current methods employed to quantify rotation typically acquire data on a set of prescribed short-axis slices, neglecting effects due to through-plane myocardial motion. We combine principles of slice-following tagged imaging with harmonic phase analysis methods to account for through-plane motion in regional rotation measurements. We compare rotation and torsion measurements obtained using our method to those obtained from imaging datasets acquired without slice-following. Our results in normal volunteers demonstrate differences in the general trends of average and regional rotation-time plots in mid-basal slices, and of the rotation versus circumferential strain loops. We observe substantial errors in measured peak average rotation of the order of 58% for basal slices (due to change in the pattern of the curve), −6.6% for mid-ventricular slices, and −8.5% for apical slices; and an average error in base-to-apex torsion of 19% when through-plane motion is not considered. This study concludes that due to an inherent base-to-apex gradient in rotation that exists in the LV, accounting for through-plane motion is critical to the accuracy of LV rotation quantification. PMID:22700308

  1. SVD for imaging systems with discrete rotational symmetry.

    PubMed

    Clarkson, Eric; Palit, Robin; Kupinski, Matthew A

    2010-11-22

    The singular value decomposition (SVD) of an imaging system is a computationally intensive calculation for tomographic imaging systems due to the large dimensionality of the system matrix. The computation often involves memory and storage requirements beyond those available to most end users. We have developed a method that reduces the dimension of the SVD problem towards the goal of making the calculation tractable for a standard desktop computer. In the presence of discrete rotational symmetry we show that the dimension of the SVD computation can be reduced by a factor equal to the number of collection angles for the tomographic system. In this paper we present the mathematical theory for our method, validate that our method produces the same results as standard SVD analysis, and finally apply our technique to the sensitivity matrix for a clinical CT system. The ability to compute the full singular value spectra and singular vectors will augment future work in system characterization, image-quality assessment and reconstruction techniques for tomographic imaging systems.

  2. Rotation of stress and blocks in the Lake Mead, Nevada, Fault System

    NASA Technical Reports Server (NTRS)

    Ron, Hagai; Nur, Amos; Aydin, Atilla

    1993-01-01

    The combined effects of stress field rotation and material rotation were found in the Lake Mead, Nevada Fault System (LMFS). Fault inversion results imply an apparent 60 deg clockwise (CW) rotation of the stress field since mid-Miocene time. In contrast, structural data from the Great Basin suggest only a 30 deg CW stress field rotation. By incorporating paleomagnetic declination anomalies, it is inferred that slip on faults caused a local 30 deg counterclockwise rotation of blocks and faults in the Lake Mead area, so that the inferred 60 deg CW rotation of the stress field in the LMFS is actually only 30 deg.

  3. Determination of critical micelle concentration with the rotating sample system.

    PubMed

    Kao, Linus T; Shetty, Gautam N; Gratzl, Miklós

    2008-12-01

    A novel experimental approach using the rotating sample system (RSS) is proposed here for the determination of the critical micelle concentration (CMC) of surfactants. The RSS has been conceived in our laboratory as a convection platform for physicochemical studies and analyses in microliter-sized sample drops. The scheme allows for vigorous rotation of the drop despite its small size through efficient air-liquid mechanical coupling. Thus, changes in surface properties of aqueous samples result in corresponding modulation of the hydrodynamic performance of the RSS, which can be utilized to investigate interfacial phenomena. In this work, we demonstrate that the RSS can be used to study the effects of surfactants on the surface and in the bulk of very small samples with hydrodynamic electrochemistry. Potassium ferrocyanide is employed here with cyclic voltammetry to probe the air-water interface of solutions containing Triton X-100. The CMC of this surfactant determined using this approach is 140 ppm, which agrees well with reported values obtained with conventional methods in much larger samples. The results also demonstrate that besides the CMC, variations in bulk rheological properties can also be investigated in very small specimens using the RSS with a simple method.

  4. Prediction of Earth rotation parameters by fuzzy inference systems

    NASA Astrophysics Data System (ADS)

    Akyilmaz, O.; Kutterer, H.

    2004-09-01

    The short-term prediction of Earth rotation parameters (ERP) (length-of-day and polar motion) is studied up to 10 days by means of ANFIS (adaptive network based fuzzy inference system). The prediction is then extended to 40 days into the future by using the formerly predicted values as input data. The ERP C04 time series with daily values from the International Earth Rotation Service (IERS) serve as the data base. Well-known effects in the ERP series, such as the impact of the tides of the solid Earth and the oceans or seasonal variations of the atmosphere, were removed a priori from the C04 series. The residual series were used for both training and validation of the network. Different network architectures are discussed and compared in order to optimize the network solution. The results of the prediction are analyzed and compared with those of other methods. Short-term ERP values predicted by ANFIS show root-mean-square errors which are equal to or even lower than those from the other considered methods. The presented method is easy to use.

  5. Rotating pressure measurement system using an on board calibration standard

    NASA Technical Reports Server (NTRS)

    Senyitko, Richard G.; Blumenthal, Philip Z.; Freedman, Robert J.

    1991-01-01

    A computer-controlled multichannel pressure measurement system was developed to acquire detailed flow field measurements on board the Large Low Speed Centrifugal Compressor Research Facility at the NASA Lewis Research Center. A pneumatic slip ring seal assembly is used to transfer calibration pressures to a reference standard transducer on board the compressor rotor in order to measure very low differential pressures with the high accuracy required. A unique data acquisition system was designed and built to convert the analog signal from the reference transducer to the variable frequency required by the multichannel pressure measurement system and also to provide an output for temperature control of the reference transducer. The system also monitors changes in test cell barometric pressure and rotating seal leakage and provides an on screen warning to the operator if limits are exceeded. The methods used for the selection and testing of the the reference transducer are discussed, and the data acquisition system hardware and software design are described. The calculated and experimental data for the system measurement accuracy are also presented.

  6. Phase measurement system using a dithered clock

    DOEpatents

    Fairley, C.R.; Patterson, S.R.

    1991-05-28

    A phase measurement system is disclosed which measures the phase shift between two signals by dithering a clock signal and averaging a plurality of measurements of the phase differences between the two signals. 8 figures.

  7. The sum rule for dipolar absorptions and rotational kinetic energy of wate and some dipolar molecules in condensed phases

    NASA Astrophysics Data System (ADS)

    Ikawa, Shun-ichi; Yamazaki, Shuichi; Kimura, Masao

    1981-06-01

    Another form of the sum rule for dipolar absorptions has been derived by means of quantum statistics. The difference between this and usually used form results from a quantum effect on the molecular rotational motion. By the joint use of the two forms, average rotational kinetic energies of water molec in the liquid and solid phases and some dipolar molecules in solutions have been estimated. It has been shown that the average rotational kinetic energ larger than the value expected from the classical equipartition rule, with an increase in the hindering potential for the rotational motion of the mole The dipole moments of water molecules in liquid and solid water have been estimated. These are considerably smaller than the gas-phase value.

  8. Systems and assemblies for transferring high power laser energy through a rotating junction

    DOEpatents

    Norton, Ryan J.; McKay, Ryan P.; Fraze, Jason D.; Rinzler, Charles C.; Grubb, Daryl L.; Faircloth, Brian O.; Zediker, Mark S.

    2016-01-26

    There are provided high power laser devices and systems for transmitting a high power laser beam across a rotating assembly, including optical slip rings and optical rotational coupling assemblies. These devices can transmit the laser beam through the rotation zone in free space or within a fiber.

  9. Laser-driven rotational dynamics of gas-phase molecules: Control and applications

    NASA Astrophysics Data System (ADS)

    Ren, Xiaoming

    In this thesis, our work on developing new techniques to measure and enhance field-free molecular alignment and orientation is described. Non-resonant femtosecond laser pulses are used to align and orient rotationally-cold gas-phase molecules. The time-dependent Schrodinger equation is solved to simulate the experimental results. A single-shot kHz velocity map imaging (VMI) spectrometer is developed for characterizing 1D and 3D alignment. Stimulated by a novel metric for 3D alignment proposed by Makhija et al. [Phys. Rev. A 85,033425 (2012)], a multi-pulse scheme to improve 3D alignment is demonstrated experimentally on difluoro-iodobenzene molecules and the best field-free 3D alignment is achieved. A degenerate four wave mixing probe is developed to overcome limitations in VMI measurement; experiments on different types of molecules show good agreement with computational results. Highly aligned linear molecules are used for high harmonic generation experiments. Due to the high degree of alignment, fractional revivals, variation of revival structure with harmonic order and the shape resonance and Cooper minimum in the photoionization cross section of molecular nitrogen are all observed directly in experiment for the first time. Enhanced orientation from rotationally cold heteronuclear molecules is also demonstrated. We follow the theory developed by Zhang et al. [Phys. Rev. A 83, 043410 (2011)] and demonstrate experimentally for the first time that for rotationally cold carbon monoxide an aligning laser pulse followed by a two-color laser pulse can increase field-free orientation level by almost a factor of three compared to using just the two-color pulse.

  10. [Effect of conservation tillage on weeds in a rotation system on the Loess Plateau of eastern Gansu, Northwest China].

    PubMed

    Zhao, Yu-xin; Lu, Jiao-yun; Yang, Hui-min

    2015-04-01

    A field study was conducted to investigate the influences of no-tillage, stubble retention and crop type on weed density, species composition and community feature in a rotation system (winter wheat-common vetch-maize) established 12 years ago on the Loess Plateau of eastern Gansu. This study showed that the weed species composition, density and community feature varied with the change of crop phases. No-tillage practice increased the weed density at maize phase, while rotation with common vetch decreased the density in the no-tillage field. Stubble retention reduced the weed density under maize phase and the lowest density was observed in the no-tillage plus stubble retention field. No-tillage practice significantly increased the weed species diversity under winter wheat phase and decreased the diversity under common vetch phase. At maize phase, a greater species diversity index was observed in the no-tillage field. These results suggested that no-tillage practice and stubble retention possibly suppress specific weeds with the presence of some crops and crop rotation is a vital way to controlling weeds in a farming system.

  11. Beyond the diffraction limit of optical/IR interferometers. I. Angular diameter and rotation parameters of Achernar from differential phases

    NASA Astrophysics Data System (ADS)

    Domiciano de Souza, A.; Hadjara, M.; Vakili, F.; Bendjoya, P.; Millour, F.; Abe, L.; Carciofi, A. C.; Faes, D. M.; Kervella, P.; Lagarde, S.; Marconi, A.; Monin, J.-L.; Niccolini, G.; Petrov, R. G.; Weigelt, G.

    2012-09-01

    Context. Spectrally resolved long-baseline optical/IR interferometry of rotating stars opens perspectives to investigate their fundamental parameters and the physical mechanisms that govern their interior, photosphere, and circumstellar envelope structures. Aims: Based on the signatures of stellar rotation on observed interferometric wavelength-differential phases, we aim to measure angular diameters, rotation velocities, and orientation of stellar rotation axes. Methods: We used the AMBER focal instrument at ESO-VLTI in its high-spectral resolution mode to record interferometric data on the fast rotator Achernar. Differential phases centered on the hydrogen Br γ line (K band) were obtained during four almost consecutive nights with a continuous Earth-rotation synthesis during ~5 h/night, corresponding to ~60° position angle coverage per baseline. These observations were interpreted with our numerical code dedicated to long-baseline interferometry of rotating stars. Results: By fitting our model to Achernar's differential phases from AMBER, we could measure its equatorial radius Req = 11.6 ± 0.3 R⊙, equatorial rotation velocity Veq = 298 ± 9 km s-1, rotation axis inclination angle i = 101.5 ± 5.2°, and rotation axis position angle (from North to East) PArot = 34.9 ± 1.6°. From these parameters and the stellar distance, the equatorial angular diameter ⌀eq of Achernar is found to be 2.45 ± 0.09 mas, which is compatible with previous values derived from the commonly used visibility amplitude. In particular, ⌀eq and PArot measured in this work with VLTI/AMBER are compatible with the values previously obtained with VLTI/VINCI. Conclusions: The present paper, based on real data, demonstrates the super-resolution potential of differential interferometry for measuring sizes, rotation velocities, and orientation of rotating stars in cases where visibility amplitudes are unavailable and/or when the star is partially or poorly resolved. In particular, we showed

  12. Phase locking of the rotation of a graphene nanoplatelet to an RF electric field in a quadrupole ion trap

    NASA Astrophysics Data System (ADS)

    Coppock, Joyce E.; Nagornykh, Pavel; Murphy, Jacob P. J.; Kane, Bruce E.

    2016-09-01

    Particle trapping technologies provide the opportunity to study two-dimensional materials that are fully decoupled from substrates. We investigate the dynamics of a rotating micron-scale graphene particle that is levitated in high vacuum in a quadrupole ion trap and probed via optical scattering. The particle is spun to frequencies ranging from hundreds of kHz to above 50 MHz using a circularly polarized laser. We observe phase locking of particle rotation frequency to an applied RF electric field. The rotation frequency can be adjusted by changing the applied field frequency. We discuss prospects for measurements of particle properties enabled by this technique.

  13. State-to-state rotational phase coherence effect on the vibration-rotation band shape - An accurate quantum calculation for CO-He

    NASA Technical Reports Server (NTRS)

    Boissoles, J.; Boulet, C.; Robert, D.; Green, S.

    1989-01-01

    Accurate coupled state calculations of line coupling are performed for infrared lines of carbon monoxide perturbed by helium. Such calculations lead to both real and imaginary line couplings. For the first time, the effect of this imaginary line couplings, connected with state-to-state rotational phase coherences, on infrared band shape, is analyzed. An extension of detailed balance principle to the complex plane is suggested from the present computed off-diagonal cross sections. This allows us to understand the physical mechanism underlying the weak effect of phase coherences on CO-He infrared band shape.

  14. Geometric phases and quantum phase transitions in open systems.

    PubMed

    Nesterov, Alexander I; Ovchinnikov, S G

    2008-07-01

    The relationship is established between quantum phase transitions and complex geometric phases for open quantum systems governed by a non-Hermitian effective Hamiltonian with accidental crossing of the eigenvalues. In particular, the geometric phase associated with the ground state of the one-dimensional dissipative Ising model in a transverse magnetic field is evaluated, and it is demonstrated that the related quantum phase transition is of the first order.

  15. Broken rotational and translational symmetries in the pseudogap phase of cuprates

    NASA Astrophysics Data System (ADS)

    Taillefer, Louis

    2011-03-01

    A large in-plane anisotropy of the Nernst coefficient in YBCO is found to set in precisely at the pseudogap temperature T* throughout the doping phase diagram. This implies that the pseudogap phase is an electronic state that breaks the four-fold rotational symmetry of the copper-oxide planes. At a somewhat lower temperature, of order T* /2, the positive Hall and Seebeck coefficients of YBCO start dropping, and they reach large negative values at T = 0 , in the normal state accessed by applying high magnetic fields [2,3]. We interpret this in terms of an electron pocket forming in the Fermi surface of YBCO as a result of a Fermi-surface reconstruction caused by some order which breaks the translational symmetry of the lattice. Because very similar transport anomalies are observed in Eu-LSCO, where they coincide with the onset of stripe order, we infer that some form of stripe order is also at play in YBCO, and argue that the pseudogap phase is a precursor region of stripe (or spin-density-wave) fluctuations. In collaboration with F. Laliberte, N. Doiron-Leyraud, J. Chang, R. Daou, O. Cyr-Choiniere, D. LeBoeuf, B. Vignolle, C. Proust, I. Sheikin, L. Malone, K. Behnia, B. J. Ramshaw, R. Liang, D. A. Bonn, W. N. Hardy, S. Pyon, T. Takayama, Y. Tanaka, H. Takagi.

  16. Phase synchronization of a new chaotic system

    NASA Astrophysics Data System (ADS)

    Vahedi, Shahed; Md Noorani, Mohd Salmi

    2013-09-01

    In this paper, we are going to apply phase and anti-phase synchronization on a recently studied chaotic system by the authors. The technique we employ to extract the phase at each time is EMD and we show that the corresponding intrinsic modes of the two systems are well phase locked after activating the control functions.

  17. Phase-conjugated mirror-induced oscillations outside the rotating-wave approximation

    NASA Astrophysics Data System (ADS)

    Hassan, S. S.; Frege, O.

    2002-06-01

    Dynamical behaviour of a single harmonic oscillator (HO) and of a single and two cooperative atoms in front of a phase-conjugated mirror is investigated without using the rotating-wave approximation. The mean photon number of the HO shows transient oscillation of frequency (2ω0) and O(γ/ω0), the ratio of the free-space decay rate to the oscillation frequency, and the fluorescent spectrum becomes asymmetric due to additional resonant and non-resonant dispersive terms. In the single-two-level-atom case, the mean atomic inversion and the fluorescent intensity show steady oscillation O(γ0/ω0), the ratio of the A-coefficient to the atomic transition frequency. The amplitude of this steady oscillation at frequency (2ω0) is larger in the case of two cooperative atoms.

  18. Polarization rotation of light propagating through a medium with efficient four-wave mixing and cross-phase modulation

    NASA Astrophysics Data System (ADS)

    Sahoo, Sushree S.; Bhowmick, Arup; Mohapatra, Ashok K.

    2017-03-01

    We have studied the rotation of an elliptically polarized light propagating through thermal rubidium vapor with efficient four-wave mixing (FWM) and cross-phase modulation (XPM). These nonlinear processes are enhanced by Zeeman coherence within the degenerate sub-levels of the two-level atomic system. The elliptically polarized light with small ellipticity is considered as the superposition of a strong-linearly-polarized pump beam and a weak-orthogonal-polarized probe beam. The interference of the probe and the newly generated light field due to degenerate FWM and their gain in the medium due to a large XPM induced by the pump beam leads to the rotation of the elliptical polarized light. A theoretical analysis of the probe propagation through the nonlinear medium was used to explain the experimental observation and the fitting of the experimental data gives the estimates of the third-order non-linear susceptibilities associated with FWM and XPM. Our study can provide useful parameters for the generation of efficient squeezed vacuum states and squeezed polarization states of light. Furthermore our study finds application in controlling the diffraction of a linearly-polarized light beam traversing the medium.

  19. Evaluation of Five Phase Digitally Controlled Rotating Field Plasma Source for Photochemical Mercury Vapor Generation Optical Emission Spectrometry.

    PubMed

    Matusiewicz, Henryk; Ślachciński, Mariusz; Pawłowski, Paweł; Portalski, Marek

    2015-01-01

    A new sensitive method for total mercury determination in reference materials using a 5-phase digitally controlled rotating field plasma source (RFP) for optical emission spectrometry (OES) was developed. A novel synergic effect of ultrasonic nebulization (USN) and ultraviolet-visible light (UV-Vis) irradiation when used in combination was exploited for efficient Hg vapor generation. UV- and Vis-based irradiation systems were studied. It was found that the most advantageous design was an ultrasonic nebulizer fitted with a 6 W mercury lamp supplying a microliter sample to a quartz oscillator, converting liquid into aerosol at the entrance of the UV spray chamber. Optimal conditions involved using a 20% v/v solution of acetic acid as the generation medium. The mercury cold vapor, favorably generated from Hg(2+) solutions by UV irradiation, was rapidly transported into a plasma source with rotating field generated within the five electrodes and detected by digitally controlled rotating field plasma optical emission spectrometry (RFP-OES). Under optimal conditions, the experimental concentration detection limit for the determination, calculated as the concentration giving a signal equal to three times the standard deviation of the blank (LOD, 3σblank criterion, peak height), was 4.1 ng mL(-1). The relative standard deviation for samples was equal to or better than 5% for liquid analysis and microsampling capability. The methodology was validated through determination of mercury in three certified reference materials (corresponding to biological and environmental samples) (NRCC DOLT-2, NRCC PACS-1, NIST 2710) using the external aqueous standard calibration techniques in acetic acid media, with satisfactory recoveries. Mercury serves as an example element to validate the capability of this approach. This is a simple, reagent-saving, cost-effective and green analytical method for mercury determination.

  20. Research on motor rotational speed measurement in regenerative braking system of electric vehicle

    NASA Astrophysics Data System (ADS)

    Pan, Chaofeng; Chen, Liao; Chen, Long; Jiang, Haobin; Li, Zhongxing; Wang, Shaohua

    2016-01-01

    Rotational speed signals acquisition and processing techniques are widely used in rotational machinery. In order to realized precise and real-time control of motor drive and regenerative braking process, rotational speed measurement techniques are needed in electric vehicles. Obtaining accurate motor rotational speed signal will contribute to the regenerative braking force control steadily and realized higher energy recovery rate. This paper aims to develop a method that provides instantaneous speed information in the form of motor rotation. It addresses principles of motor rotational speed measurement in the regenerative braking systems of electric vehicle firstly. The paper then presents ideal and actual Hall position sensor signals characteristics, the relation between the motor rotational speed and the Hall position sensor signals is revealed. Finally, Hall position sensor signals conditioning and processing circuit and program for motor rotational speed measurement have been carried out based on measurement error analysis.

  1. Irreparable rotator cuff tears: a novel classification system.

    PubMed

    Castricini, R; De Benedetto, M; Orlando, N; Gervasi, E; Castagna, A

    2014-04-01

    Irreparable rotator cuff tears can be managed by several approaches. However, current tear classifications fail to reflect the wide variety of their presentation, which has important clinical and prognostic implications. We describe a novel classification system based on preoperative imaging findings and intraoperative observation where each cuff tendon (numbered sequentially: 1-supraspinatus, 2-infraspinatus, 3-teres minor, and 4-subscapularis) is assessed intraoperatively for reducibility to the footprint; tendons with reparable lesions are assessed for fatty degeneration (which predicts healing potential) and given a plus if degeneration is <50 % (Fuchs stage I-II/Goutallier stage 0-II) or a minus if it is ≥50 % (Fuchs stage III/Goutallier stage III-IV). The proposed system (1) allows more consistent and reproducible classification of cuff tears where at least one tendon is irreparable; (2) results in more accurate diagnosis; (3) guides in treatment selection; and (4) ensures better outcomes and realistic patient expectations. The novel classification system can contribute to develop increasingly exhaustive and reproducible classification models.

  2. Exploration of the Jovian System Tapping Jupiter's Rotational Energy

    NASA Astrophysics Data System (ADS)

    Sanmartin, J. R.; Lorenzini, E. C.

    2004-12-01

    Tours of the great outer planets and their moons can be accomplished by utilizing an electrodynamic tether attached to the spacecraft as both power system and propulsion device. Through interaction with the planetary magnetic field and inner plasmasphere, the tether could get electrical power, and either thrust or drag, out of the rotational motion of the planet; the relatively low altitude of the stationary orbit makes it possible to produce drag and power in portions of elliptical orbits inside the stationary orbit, and thrust and power outside. A Hollow Cathode and the (bare) tether itself would establish cathodic and anodic contact, respectively. By switching on and off the electrodynamic system at periapse and apoapse in specifically designed sequences, the orbit can be made to evolve to allow spacecraft capture, navigation through the moon system, and gravitational escape, without recourse to propellant and on-board power sources. For a tether tape in a Jovian tour, results are presented on a detailed orbital calculation of capture; on electrical power that can be drawn; on tether heating; and on expellant consumed at the Hollow Cathode throughout the tour. Orbital windows to get a secondary probe released from the spacecraft or the spacecraft itself into low orbit around Jupiter or one of its big moons, for scientific explorations, are discussed.

  3. Bone resorption is affected by follicular phase length in female rotating shift workers.

    PubMed Central

    Lohstroh, Pete N; Chen, Jiangang; Ba, Jianming; Ryan, Louise M; Xu, Xiping; Overstreet, James W; Lasley, Bill L

    2003-01-01

    Stressors as subtle as night work or shift work can lead to irregular menstrual cycles, and changes in reproductive hormone profiles can adversely affect bone health. This study was conducted to determine if stresses associated with the disruption of regular work schedule can induce alterations in ovarian function which, in turn, are associated with transient bone resorption. Urine samples from 12 rotating shift workers from a textile mill in Anqing, China, were collected in 1996-1998 during pairs of sequential menstrual cycles, of which one was longer than the other (28.4 vs. 37.4 days). Longer cycles were characterized by a prolonged follicular phase. Work schedules during the luteal-follicular phase transition (LFPT) preceding each of the two cycles were evaluated. All but one of the shorter cycles were associated with regular, forward phase work shift progression during the preceding LFPT. In contrast, five longer cycles were preceded by a work shift interrupted either by an irregular shift or a number of "off days." Urinary follicle-stimulating hormone levels were reduced in the LFPT preceding longer cycles compared with those in the LFPT preceding shorter cycles. There was greater bone resorption in the follicular phase of longer cycles than in that of shorter cycles, as measured by urinary deoxypyridinoline. These data confirm reports that changes in work shift can lead to irregularity in menstrual cycle length. In addition, these data indicate that there may be an association between accelerated bone resorption in menstrual cycles and changes of regularity in work schedule during the preceding LFPT. PMID:12676625

  4. New Approaches to Optical Systems for Inertial Rotation Sensing

    DTIC Science & Technology

    1981-12-01

    circulating Sagnac System and Section III on New Techniques for Fiber _: ... Gyroscopes). Obviously methods for increasing the sensitivity and accuracy in...describing our work on this problem done under this contract. We have been considering various methods for overcoming this problem and describe them...briefly below. Further details on these proposed methods will also be found in Appendix D. The phase error we have described above can be minimized

  5. Planetary period oscillations in Saturn's magnetosphere: Evidence in magnetic field phase data for rotational modulation of Saturn kilometric radiation emissions

    NASA Astrophysics Data System (ADS)

    Andrews, D. J.; Cecconi, B.; Cowley, S. W. H.; Dougherty, M. K.; Lamy, L.; Provan, G.; Zarka, P.

    2011-09-01

    Initial Voyager observations of Saturn kilometric radiation (SKR) indicated that the modulations in emitted power near the ˜11 h planetary rotation period are “strobe like,” varying with a phase independent of observer position, while subsequent Cassini studies of related oscillations in the magnetospheric magnetic field and plasma parameters have shown that these rotate around the planet with a period close to the SKR period. However, analysis of magnetic oscillation data over the interval 2004-2010 reveals the presence of variable secular drifts between the phases of the dominant southern period magnetic oscillations and SKR modulations, which become very marked after Cassini apoapsis moved for the first time into the postdusk sector in mid-2009. Here we use a simple theoretical model to show that such phase drifts arise if the SKR modulation phase also rotates around the auroral oval, combined with a highly restricted view of the SKR sources by the spacecraft due to the conical beaming of the emissions. Strobe-like behavior then occurs in the predawn-to-noon sector where the spacecraft has a near-continuous view of the most intense midmorning SKR sources, in agreement with the Voyager findings, while elsewhere the SKR modulation phase depends strongly on spacecraft local time, being in approximate antiphase with the midmorning sources in the postdusk sector. Supporting evidence for this scenario is provided through an independent determination of the variable rotation period of the southern magnetic field perturbations throughout the 6 year interval.

  6. EEMD Independent Extraction for Mixing Features of Rotating Machinery Reconstructed in Phase Space

    PubMed Central

    Ma, Zaichao; Wen, Guangrui; Jiang, Cheng

    2015-01-01

    Empirical Mode Decomposition (EMD), due to its adaptive decomposition property for the non-linear and non-stationary signals, has been widely used in vibration analyses for rotating machinery. However, EMD suffers from mode mixing, which is difficult to extract features independently. Although the improved EMD, well known as the ensemble EMD (EEMD), has been proposed, mode mixing is alleviated only to a certain degree. Moreover, EEMD needs to determine the amplitude of added noise. In this paper, we propose Phase Space Ensemble Empirical Mode Decomposition (PSEEMD) integrating Phase Space Reconstruction (PSR) and Manifold Learning (ML) for modifying EEMD. We also provide the principle and detailed procedure of PSEEMD, and the analyses on a simulation signal and an actual vibration signal derived from a rubbing rotor are performed. The results show that PSEEMD is more efficient and convenient than EEMD in extracting the mixing features from the investigated signal and in optimizing the amplitude of the necessary added noise. Additionally PSEEMD can extract the weak features interfered with a certain amount of noise. PMID:25871723

  7. Muscle: A Three Phase System

    PubMed Central

    Simon, Shirley E.; Johnstone, B. M.; Shankly, K. H.; Shaw, F. H.

    1959-01-01

    The partition of Li+, Br-, and I- across the membrane of the sartorius muscle of the toad Bufo marinus has been investigated both at the steady state and with kinetic methods. Li+ was found to have access to an amount of muscle water similar to that of Na+. Br- and I- could be regarded as being interchangeable with cellular Cl-. None of the foreign ions caused significant losses of cellular K+. Li+ efflux from the cell was slower in muscles which were equilibrated for long periods in Li+ than in short equilibrated muscles. Na+ efflux from Li+-treated muscles was similar in rate to normal controls, but the amount of Na+ in the slow fraction was increased by Li+. I- efflux was extremely rapid, and it was not possible to differentiate kinetically between intra- and extracellular material. These results have been found to be consistent with the hypothesis of a three phase system for muscle. PMID:14446942

  8. Stimulated Light Emission and Inelastic Scattering by a Classical Linear System of Rotating Particles

    SciTech Connect

    Asenjo-Garcia, Ana; Manjavacas, Alejandro; Garcia de Abajo, F. Javier

    2011-05-27

    The rotational dynamics of particles subject to external illumination is found to produce light amplification and inelastic scattering at high rotation velocities. Light emission at frequencies shifted with respect to the incident light by twice the rotation frequency dominates over elastic scattering within a wide range of light and rotation frequencies. Remarkably, net amplification of the incident light is produced in this classical linear system via stimulated emission. Large optically induced acceleration rates are predicted in vacuum accompanied by moderate heating of the particle, thus supporting the possibility of observing these effects under extreme rotation conditions.

  9. Determination of crystal violet in water by direct solid phase spectrophotometry after rotating disk sorptive extraction.

    PubMed

    Manzo, Valentina; Navarro, Orielle; Honda, Luis; Sánchez, Karen; Inés Toral, M; Richter, Pablo

    2013-03-15

    The microextraction of crystal violet (CV) from water samples into polydimethylsiloxane (PDMS) using the rotating disk sorptive extraction (RDSE) technique was performed. The extracting device was a small Teflon disk that had an embedded miniature magnetic stirring bar and a PDMS (560 μL) film attached to one side of the disk using double-sided tape. The extraction involves a preconcentration of CV into the PDMS, where the analyte is then directly quantified using solid phase spectrophotometry at 600 nm. Different chemical and extraction device-related variables were studied to achieve the best sensitivity for the determination. The optimum extraction was performed at pH 14 because under this condition, CV is transformed to the neutral and colorless species carbinol, which can be quantitatively transferred to the PDMS phase. Although the colorless species is the chemical form extracted in the PDMS, an intense violet coloration appeared in the phase because the -OH bond in the carbinol molecule is weakened through the formation of hydrogen bonds with the oxygen atoms of the PDMS, allowing the resonance between the three benzene rings to compensate for the charge deficit on the central carbon atom of the molecule. The accuracy and precision of the method were evaluated in river water samples spiked with 10 and 30 μg L(-1) of CV, yielding a relative standard deviation of 6.2% and 8.4% and a recovery of 98.4% and 99.4%, respectively. The method detection limit was 1.8 μg L(-1) and the limit of quantification was 5.4 μg L(-1), which can be decreased if the sample volume is increased.

  10. On the importance of vibrational contributions to small-angle optical rotation: Fluoro-oxirane in gas phase and solution

    NASA Astrophysics Data System (ADS)

    Pedersen, Thomas Bondo; Kongsted, Jacob; Crawford, T. Daniel; Ruud, Kenneth

    2009-01-01

    The specific optical rotation of (S)-fluoro-oxirane in gas phase and solution is predicted using time-dependent density functional theory (B3LYP functional) and coupled cluster linear response theory. Upon vibrational averaging, the coupled cluster singles and doubles model predicts the gas phase specific optical rotation to be 8.1° (dm g/cm3)-1 at 355 nm at room temperature. This is an order of magnitude smaller than the B3LYP result of 68.4° (dm g/cm3)-1. The main source of this discrepancy is the electronic contribution at the equilibrium geometry. The effects of cyclohexane and acetonitrile solvents are calculated for both the electronic and vibrational contributions with the B3LYP functional. The specific optical rotation is estimated to change significantly depending on the polarity of the solvent, increasing in cyclohexane and decreasing in acetonitrile.

  11. Study on the Rotation Properties and the Design Issue of Non-Contact Rotating System Using HTS Bulks and Permanent Magnets

    NASA Astrophysics Data System (ADS)

    Okamura, R.; Kim, S. B.; Ozaki, Y.; Ueda, H.

    2017-07-01

    In previous study, non-contact rotating system consisting of the ring-shaped high temperature superconducting (HTS) bulks, ring-shaped permanent magnets (PMs) and stator coil was proposed. In this system, HTS bulks were magnetized by PMs and PMs were levitated with strong restoring force. In our previous study, we have constructed the rotating system with the ring-shaped HTS bulks with ID 20 mm, OD 60 mm, and 15-mm thickness. However, since these bulks costs too much, we switched to use HTS bulks with ID 20 mm, OD 60 mm, and 5-mm-thickness to miniaturize the system. However, this system have potential to fail the radial stability of rotating shaft. Therefore, we focused on the rotating and the radial restoring force in terms of the stability of the rotating shaft in the rotating system with 5-mm thickness HTS bulks.

  12. Phase ambiguity resolution for offset QPSK modulation systems

    NASA Technical Reports Server (NTRS)

    Nguyen, Tien M. (Inventor)

    1991-01-01

    A demodulator for Offset Quaternary Phase Shift Keyed (OQPSK) signals modulated with two words resolves eight possible combinations of phase ambiguity which may produce data error by first processing received I(sub R) and Q(sub R) data in an integrated carrier loop/symbol synchronizer using a digital Costas loop with matched filters for correcting four of eight possible phase lock errors, and then the remaining four using a phase ambiguity resolver which detects the words to not only reverse the received I(sub R) and Q(sub R) data channels, but to also invert (complement) the I(sub R) and/or Q(sub R) data, or to at least complement the I(sub R) and Q(sub R) data for systems using nontransparent codes that do not have rotation direction ambiguity.

  13. Phase ambiguity resolution for offset QPSK modulation systems

    NASA Astrophysics Data System (ADS)

    Nguyen, Tien M.

    1991-06-01

    A demodulator for Offset Quaternary Phase Shift Keyed (OQPSK) signals modulated with two words resolves eight possible combinations of phase ambiguity which may produce data error by first processing received I(sub R) and Q(sub R) data in an integrated carrier loop/symbol synchronizer using a digital Costas loop with matched filters for correcting four of eight possible phase lock errors, and then the remaining four using a phase ambiguity resolver which detects the words to not only reverse the received I(sub R) and Q(sub R) data channels, but to also invert (complement) the I(sub R) and/or Q(sub R) data, or to at least complement the I(sub R) and Q(sub R) data for systems using nontransparent codes that do not have rotation direction ambiguity.

  14. Rotating disk electrode system for elevated pressures and temperatures

    SciTech Connect

    Fleige, M. J.; Wiberg, G. K. H.; Arenz, M.

    2015-06-15

    We describe the development and test of an elevated pressure and temperature rotating disk electrode (RDE) system that allows measurements under well-defined mass transport conditions. As demonstrated for the oxygen reduction reaction on polycrystalline platinum (Pt) in 0.5M H{sub 2}SO{sub 4}, the setup can easily be operated in a pressure range of 1–101 bar oxygen, and temperature of 140 °C. Under such conditions, diffusion limited current densities increase by almost two orders of magnitude as compared to conventional RDE setups allowing, for example, fuel cell catalyst studies under more realistic conditions. Levich plots demonstrate that the mass transport is indeed well-defined, i.e., at low electrode potentials, the measured current densities are fully diffusion controlled, while at higher potentials, a mixed kinetic-diffusion controlled regime is observed. Therefore, the setup opens up a new field for RDE investigations under temperature and current density conditions relevant for low and high temperature proton exchange membrane fuel cells.

  15. Gravitational radiation from rotating monopole-string systems

    SciTech Connect

    Babichev, E.; Dokuchaev, V.; Kachelriess, M.

    2005-02-15

    We study the gravitational radiation from a rotating monopole-antimonopole pair connected by a string. While at not too high frequencies the emitted gravitational spectrum is described asymptotically by P{sub n}{proportional_to}n{sup -1}, the spectrum is exponentially suppressed in the high-frequency limit, P{sub n}{proportional_to}exp(-n/n{sub cr}). Below n{sub cr}, the emitted spectrum of gravitational waves is very similar to the case of an oscillating monopole pair connected by a string, and we argue, therefore, that the spectrum found holds approximately for any moving monopole-string system. As an application, we discuss the stochastic gravitational wave background generated by monopole-antimonopole pairs connected by strings in the early Universe and gravitational wave bursts emitted at present by monopole-string networks. We confirm that advanced gravitational wave detectors have the potential to detect a signal for string tensions as small as G{mu}{approx}10{sup -13}.

  16. On the Doppler effect for photons in rotating systems

    NASA Astrophysics Data System (ADS)

    Giuliani, Giuseppe

    2014-03-01

    The analysis of the Doppler effect for photons in rotating systems, studied using the Mössbauer effect, confirms the general conclusions of a previous paper dedicated to experiments with photons emitted/absorbed by atoms/nuclei in inertial flight. The wave theory of light is so deeply rooted that it continues to be applied to describe phenomena in which the fundamental entities at work are discrete (photons). The fact that the wave theory of light can describe one aspect of these phenomena should not overshadow two issues: the corpuscular theory of light, first applied to the Doppler effect for photons by Schrödinger in 1922, is by far more complete since it describes all of the features of the studied phenomena; the wave theory can only be used when the number of photons at work is statistically significant. This disregarding of basic methodological criteria may appear to be a minor fault. However, the historical development of quantum physics shows that the predominance of the wave theory of radiation, beyond its natural application domain, has hampered the reorientation toward the photon description of the underlying phenomena.

  17. Rotating dipole and quadrupole field for a multiple cathode system

    SciTech Connect

    Chang, X.; Ben-Zvi, I.; Kewisch, J.; Litvinenko, V.; Meng, W.; Pikin, A.; Ptitsyn, V.; Rao, T.; Sheehy, B.; Skarita, J.; Wang, E.; Wu, Q.; Xin, T.

    2011-03-28

    A multiple cathode system has been designed to provide the high average current polarized electron bunches for the future electron-ion collider eRHIC [1]. One of the key research topics in this design is the technique to generate a combined dipole and quadrupole rotating field at high frequency (700 kHz). This type of field is necessary for combining bunches from different cathodes to the same axis with minimum emittance growth. Our simulations and the prototype test results to achieve this will be presented. The future eRHIC project, next upgrade of EHIC, will be the first electron-heavy ion collider in the world. For polarized-electron and polarized proton collisions, it requires a polarized electron source with high average current ({approx}50 mA), short bunch ({approx}3 mm), emittance of about 20 {micro}m and energy spread of {approx}1% at 10 MeV. The state-of-art polarized electron cathode can generate average current of about more than 1 mA, but much less than 50 mA. The current is limited by the quantum efficiency, lifetime, space charge and ultra-high vacuum requirement of the polarized cathode. A possible approach to achieve the 50 mA beam is to employ multiple cathodes, such as 20 cathodes, and combine the multiple bunched beams from cathodes to the same axis. We name it as 'Gatling gun' because its operations bear similarity to a multi-barrel Gatling gun. The electron spin direction is not affected by electric field but will follow to the direction of the magnetic bending. This requires that, to preserve the spin polarization from cathode, the fixed bending field after the solenoid and the rotating bending field in combiner must be either a pair of electric bendings or a pair of magnetic bendings. We choose the scheme with a pair of magnetic bendings because it is much easier than the scheme with a pair of electric bendings at our 200 keV electron energy level.

  18. THE ROTATING MAGNETIC FIELD OSCILLATOR SYSTEM FOR CURRENT DRIVE IN THE TRANSLATION, CONFINEMENT AND SUSTAINMENT EXPERIMENT

    SciTech Connect

    S. TOBIN; ET AL

    2000-12-01

    The experimental setup and test results for the {approximately}125 MW rotating magnetic field current drive system of the Translation, Confinement and Sustainment Experiment at the University of Washington are described. The oscillator system, constructed at Los Alamos National Laboratory, drives two tank circuits (15 kV{sub peak} potential, 8.5 kA{sub peak} maximum circulating current in each tank to date) operated 90{degree} out of phase to produce a 54 G rotating magnetic field with a frequency of 163 kHz ({omega} = 1.02{sup x} 10{sup {minus}6} s{sup {minus}1}). Programmable waveform generators control ''hot deck'' totem pole drivers that are used to control the grid of 12 Machlett 8618 magnetically beamed triode tubes. This setup allows the current to be turned on or off in less than 100 ns ({approximately}6{degree}). Both tank circuits are isolated from the current source by a 1:1 air core, transmission line transformer. Each tank circuit contains two saddle coils (combined inductance of 1.6 {micro}H) and radio frequency capacitors (580 nF). Test results are presented for three conditions: no external load, a resistive external load and a plasma load. A SPICE model of the oscillator system was created. Comparisons between this model and experimental data are given.

  19. Phase Noise in Photonic Phased-Array Antenna Systems

    NASA Technical Reports Server (NTRS)

    Logan, Ronald T., Jr.; Maleki, Lute

    1998-01-01

    The total noise of a phased-array antenna system employing a photonic feed network is analyzed using a model for the individual component noise including both additive and multiplicative equivalent noise generators.

  20. Galactic Rotation withOUT Dark Matter: Solar System Perspective

    NASA Astrophysics Data System (ADS)

    Gallo, C. F.; Feng, James

    2010-02-01

    Planetary rotation around our Sun is described with Newtonian gravity/dynamics. These two-body calculations balance gravitational and centrifugal forces to yield stable orbits. The rotation of disk galaxies involves the gravitational interaction of many bodies, but this data is also described with Newtonian gravity/dynamics by balancing all the gravitational forces against the centrifugal forces at each and every point in the galactic disk to yield stable rotation. A thin-disk galaxy is complex mathematical problem that does NOT have an analytical solution. Numerical (computational) techniques are required to obtain an accurate UNIQUE STABLE solution for the radial mass distribution to yield any specific measured rotation curve. Both the Solar and Galactic rotation descriptions are achieved withOUT Mysterious Dark Matter which has never been experimentally detected. Speculations re Dark Matter are NOT required to describe the galactic rotation curves and achieve stability, only Newtonian physics with numerical solutions enabled by modern computational techniques.[4pt] References:[0pt] http://arxiv.org/abs/astro-ph/0803.0556[0pt] http://arxiv.org/abs/astro-ph/0804.0217[0pt] http://arxiv.org/abs/astro-ph/0804.3203 )

  1. Galactic Rotation withOUT Dark Matter: Solar System Perspective

    NASA Astrophysics Data System (ADS)

    Gallo, Chuck; Feng, James

    2009-11-01

    Planetary rotation around our Sun is described with Newtonian gravity/dynamics. These two-body calculations balance gravitational and centrifugal forces to yield stable orbits. The rotation of disk galaxies involves the gravitational interaction of many bodies, but this data is also described with Newtonian gravity/dynamics by balancing all the gravitational forces against the centrifugal forces at each and every point in the galactic disk to yield stable rotation. A thin-disk galaxy is complex mathematical problem that does NOT have an analytical solution. Numerical (computational) techniques are required to obtain an accurate UNIQUE STABLE solution for the radial mass distribution to yield any specific measured rotation curve. Both the Solar and Galactic rotation descriptions are achieved withOUT Mysterious Dark Matter which has never been experimentally detected. Speculations re Dark Matter are NOT required to describe the galactic rotation curves and achieve stability, only Newtonian physics with numerical solutions enabled by modern computational techniques.[4pt] References:[0pt] http://arxiv.org/abs/astro-ph/0803.0556[0pt] http://arxiv.org/abs/astro-ph/0804.0217[0pt] http://arxiv.org/abs/astro-ph/0804.3203

  2. Fates of Setaria faberi and Abutilon theophrasti seeds in three crop rotation systems

    USDA-ARS?s Scientific Manuscript database

    Weed seeds in and on the soil are the primary cause of weed infestations in arable fields. Previous studies have documented reductions in weed seedbanks due to cropping system diversification through extended rotation sequences, but the impacts of different rotation systems on additions to and losse...

  3. Outcomes of a rotational dissection system in gross anatomy.

    PubMed

    Marshak, David W; Oakes, Joanne; Hsieh, Pei-Hsuan; Chuang, Alice Z; Cleary, Leonard J

    2015-01-01

    At the University of Texas Houston Medical School, a rotational dissection system was introduced to improve coordination between the Gross Anatomy and the Introduction to Clinical Medicine (ICM) courses. Six students were assigned to each cadaver and divided into two teams. For each laboratory, one team was assigned to dissect and the other to attend ICM or study independently. For the next laboratory, the assignments were reversed. At the start of the session, the team that had dissected previously spent 30 minutes teaching the other team. In 2012, the students were given three traditional practical examinations with 50 questions drawn equally from each laboratory. Students also completed three mid-course evaluations. There were no significant differences in overall performance between the two teams. Nevertheless, we wanted to determine how well individual students identified structures they had dissected compared with those they had not. For dissected structures, the mean percent correct was 80.0 ± 13.0 (mean ± standard deviation), and for undissected structures, it was 78.3 ± 14.1. The difference was small, but statistically significant (P = 0.0007). Although this result validated the concerns expressed by some students, it did not appear that a change in the system was justified. Students were generally enthusiastic about the opportunity to learn clinical skills in the first semester of medical school, and 91-96% of the students agreed that learning anatomy at the same time helped them understand the physical examination exercises in ICM.

  4. A rotating two-phase gas/liquid flow for pressure reduction in underwater plasma arc welding

    SciTech Connect

    Steinkamp, H.; Creutz, M.; Mewes, D.; Bartzsch, J.

    1994-12-31

    Plasma arc welding processes are used in off-shore industry for the construction and maintenance in the wet surrounding of underwater structures and pipelines. In greater water depth the density of the plasma gas increase because of the greater hydrostatic pressure. This causes an increase of the conductive heat losses to the wet surrounding. To keep up the energy flux to the workpiece a pressure reduction is favorable against the surrounding. To keep up the energy flux to the workpiece a pressure reduction is favorable against the surrounding. The plasma arc has to burn in a locally dry area. This requirement can be fulfilled by a rotating disc placed above the workpiece. In the gap between the lower end of the cylinder and the workpiece a rotating two-phase flow is maintained. The flow around the rotating disc is experimentally investigated. The rotating disc is placed above the surface of the workpiece which is simulated by a flat plate. Water is forced out of the cylinder due to centrifugal forces set up by the rotating disc and flat plate. The velocity distribution in the flow is measured by Laser-Doppler-Anemometry. The phase distribution in the two-phase flow in the gap is measured by local electrical probes. The static pressure in the gaseous atmosphere is reduced in comparison to the hydrostatic pressure of the surrounding water. The pressure reduction is given by the void fraction, the phase distribution and the volume flow rates of both phases in the gap as well as by the speed of revolution and the design of the disc and the work surface. Apart from the investigations on the fluid dynamics, the method to reduce the pressure was technically proved. Experiments were carried out under water with a plasma MIG welder.

  5. Comparing cropping system productivity of fixed rotations and a flexible fallow system using Aqua-Crop

    USDA-ARS?s Scientific Manuscript database

    In the Central High Plains, the predominant crop rotation is winter wheat (Triticum aestivum L.)-fallow. Producers are looking to add diversity and intensity to their cropping systems and improve water use efficiency by adding summer crops, however, the elimination of summer fallow may increase the ...

  6. Molecular disorder and translation/rotation coupling in the plastic crystal phase of hybrid perovskites.

    PubMed

    Even, J; Carignano, M; Katan, C

    2016-03-28

    The complexity of hybrid organic perovskites calls for an innovative theoretical view that combines usually disconnected concepts in order to achieve a comprehensive picture: (i) the intended applications of this class of materials are currently in the realm of conventional semiconductors, which reveal the key desired properties for the design of efficient devices. (ii) The reorientational dynamics of the organic component resembles that observed in plastic crystals, therefore requiring a stochastic treatment that can be done in terms of pseudospins and rotator functions. (iii) The overall structural similarity with all inorganic perovskites suggests the use of the high temperature pseudo cubic phase as the reference platform on which further refinements can be built. In this paper we combine the existing knowledge on these three fields to define a general scenario based on which we can continue the quest towards a fundamental understanding of hybrid organic perovskites. With the introduction of group theory as the main tool to rationalize the different ideas and with the help of molecular dynamics simulations, several experimentally observed properties are naturally explained with possible suggestions for future work.

  7. Reproducibility of phase rotation stimulated echo acquisition mode at 3T in schizophrenia: Emphasis on glutamine.

    PubMed

    Bustillo, Juan R; Rediske, Nathan; Jones, Thomas; Rowland, Laura M; Abbott, Christopher; Wijtenburg, S Andrea

    2016-02-01

    To determine the reproducibility and reliability of glutamine (Gln), measured with a very short echo time phase rotation stimulated echo acquisition mode (VTE-PR STEAM) sequence at 3T, in subjects with schizophrenia. Seven subjects with schizophrenia were scanned twice with VTE-PR STEAM in a Siemens 3T TIM Trio scanner with a 32-channel head coil. Spectroscopic data were collected from two voxels in gray matter, one in the dorsal anterior cingulate and the other in the medial occipital cortex. Reproducibility was assessed using coefficients of variation (CVs) and reliability with standard error of measurement and intraclass correlations (ICCs). Phantoms containing increasing concentrations of Gln in a physiologic solution of other neurometabolites with overlapping resonances were scanned to assess the validity of spectral Gln measurement. Very good reliability and reproducibility for Gln in both regions of interest were supported by CVs of ≤10.0% and ICCs of ≥0.6, respectively. Phantom studies documented a robust correspondence between known Gln concentrations and VTE-PR STEAM measurements of this metabolite (R(2)  = 0.988). The VTE-PR STEAM approach at 3T permits the longitudinal assessment of Gln and other (1) H MR spectroscopy neurometabolites in a clinically plausible setting. © 2015 Wiley Periodicals, Inc.

  8. Displacement, distance, and shape measurements of fast-rotating rough objects by two mutually tilted interference fringe systems.

    PubMed

    Günther, Philipp; Kuschmierz, Robert; Pfister, Thorsten; Czarske, Jürgen W

    2013-05-01

    The precise distance measurement of fast-moving rough surfaces is important in several applications such as lathe monitoring. A nonincremental interferometer based on two mutually tilted interference fringe systems has been realized for this task. The distance is coded in the phase difference between the generated interference signals corresponding to the fringe systems. Large tilting angles between the interference fringe systems are necessary for a high sensitivity. However, due to the speckle effect at rough surfaces, different envelopes and phase jumps of the interference signals occur. At large tilting angles, these signals become dissimilar, resulting in a small correlation coefficient and a high measurement uncertainty. Based on a matching of illumination and receiving optics, the correlation coefficient and the phase difference estimation have been improved significantly. For axial displacement measurements of recurring rough surfaces, laterally moving with velocities of 5 m/s, an uncertainty of 110 nm has been attained. For nonrecurring surfaces, a distance measurement uncertainty of 830 nm has been achieved. Incorporating the additionally measured lateral velocity and the rotational speed, the two-dimensional shape of rotating objects results. Since the measurement uncertainty of the displacement, distance, and shape is nearly independent of the lateral surface velocity, this technique is predestined for fast-rotating objects, such as crankshafts, camshafts, vacuum pump shafts, or turning parts of lathes.

  9. Phases, phase equilibria, and phase rules in low-dimensional systems.

    PubMed

    Frolov, T; Mishin, Y

    2015-07-28

    We present a unified approach to thermodynamic description of one, two, and three dimensional phases and phase transformations among them. The approach is based on a rigorous definition of a phase applicable to thermodynamic systems of any dimensionality. Within this approach, the same thermodynamic formalism can be applied for the description of phase transformations in bulk systems, interfaces, and line defects separating interface phases. For both lines and interfaces, we rigorously derive an adsorption equation, the phase coexistence equations, and other thermodynamic relations expressed in terms of generalized line and interface excess quantities. As a generalization of the Gibbs phase rule for bulk phases, we derive phase rules for lines and interfaces and predict the maximum number of phases than may coexist in systems of the respective dimensionality.

  10. Phases, phase equilibria, and phase rules in low-dimensional systems

    SciTech Connect

    Frolov, T.; Mishin, Y.

    2015-07-28

    We present a unified approach to thermodynamic description of one, two, and three dimensional phases and phase transformations among them. The approach is based on a rigorous definition of a phase applicable to thermodynamic systems of any dimensionality. Within this approach, the same thermodynamic formalism can be applied for the description of phase transformations in bulk systems, interfaces, and line defects separating interface phases. For both lines and interfaces, we rigorously derive an adsorption equation, the phase coexistence equations, and other thermodynamic relations expressed in terms of generalized line and interface excess quantities. As a generalization of the Gibbs phase rule for bulk phases, we derive phase rules for lines and interfaces and predict the maximum number of phases than may coexist in systems of the respective dimensionality.

  11. System and Method for Determining Rate of Rotation Using Brushless DC Motor

    NASA Technical Reports Server (NTRS)

    Howard, David E. (Inventor); Smith, Dennis A. (Inventor)

    2000-01-01

    A system and method are provided for measuring rate of rotation. A brushless DC motor is rotated and produces a back electromagnetic force (emf) on each winding thereof. Each winding's back-emf is squared. The squared outputs associated with each winding are combined, with the square root being taken of such combination, to produce a DC output proportional only to the rate of rotation of the motor's shaft.

  12. System and Method for Determining Rate of Rotation Using Brushless DC Motor

    NASA Technical Reports Server (NTRS)

    Howard, David E. (Inventor); Smith, Dennis A. (Inventor)

    2000-01-01

    A system and method are provided for measuring rate of rotation. A brushless DC motor is rotated and produces a back electromagnetic force (emf) on each winding thereof. Each winding's back-emf is squared. The squared outputs associated with each winding are combined, with the square root being taken of such combination, to produce a DC output proportional only to the rate of rotation of the motor's shaft.

  13. Bridge Reinforcement System. Phase III.

    DTIC Science & Technology

    1983-10-14

    The inside of each groove had a slight radius to cause the fibers to spread out and alternately work the resin into the fibers. Mold Rotating Equipment...Design Drawings D) Hoop Stress Program E) Test Report F) Attachment Fittings G) Preliminary Racetrack Tooling Drawings i LIST OF FIGURES Figure No...Title Page 2.0-1 Subscale Test Specimen ..... ............ 4 3.0-1 Maximum Stress of 164,080 psi at Failure . 7 3.1-1 Magnetic Particle Clutch Creel

  14. Vibrational response of a moving suspension-slider loading system exciting a rotating flexible disk

    NASA Astrophysics Data System (ADS)

    Pei, Yong-Chen; Tan, Qing-Chang; Yang, Xin; Chatwin, Chris

    2012-07-01

    To investigate the vibrational response of the magnetic read/write head in hard disk drives this paper models a rotating flexible disk excited by a moving suspension-slider system which is considered to be a mass-dashpot-spring loading system, with the initial unstressed transverse runout integrated into the rotating disk dynamic model. The slider motion on the disk surface is driven by the suspension rotating at a constant speed. By subtracting the steady-state deflection component from the instantaneous deflection response of the rotating disk system, the relative vibration transverse deflection of the slider caused by the motion of the suspension-slider loading system is obtained. The effects of the slider initial and final positions, speed of movement, the disk rotational speed, and the disk mode of the initial transverse runout on the maximum amplitude of the relative vibration deflection are analyzed.

  15. Rotating Wolf-Rayet stars in a post RSG/LBV phase. An evolutionary channel towards long-duration GRBs?

    NASA Astrophysics Data System (ADS)

    Gräfener, G.; Vink, J. S.; Harries, T. J.; Langer, N.

    2012-11-01

    Context. Wolf-Rayet (WR) stars with fast rotating cores are thought to be the direct progenitors of long-duration gamma-ray bursts (LGRBs). A well accepted evolutionary channel towards LGRBs is chemically-homogeneous evolution at low metallicities, which completely avoids a red supergiant (RSG), or luminous blue variable (LBV) phase. On the other hand, strong absorption features with velocities of several hundred km s-1 have been found in some LGRB afterglow spectra (GRB 020813 and GRB 021004), which have been attributed to dense circumstellar (CS) material that has been ejected in a previous RSG or LBV phase, and is interacting with a fast WR-type stellar wind. Aims: Here we investigate the properties of Galactic WR stars and their environment to identify similar evolutionary channels that may lead to the formation of LGRBs. Methods: We compile available information on the spectropolarimetric properties of 29 WR stars, the presence of CS ejecta for 172 WR stars, and the CS velocities in the environment of 34 WR stars in the Galaxy. We use linear line-depolarization as an indicator of rotation, nebular morphology as an indicator of stellar ejecta, and velocity patterns in UV absorption features as an indicator of increased velocities in the CS environment. Results: Based on previous nebular classifications, we determine an incidence rate of ~23% of WR stars with "possible ejecta nebulae" in the Galaxy. We find that this group of objects dominates the population of WR stars with spectropolarimetric signatures of rotation, while WR stars without such nebulae only rarely show indications of rotation. This confirms the correlation between rotation and CS ejecta from our previous work. The corresponding objects are most likely in an early stage after a preceding RSG or LBV phase, and have not yet lost their angular momenta due to the strong mass-loss in the WR phase. From their photometric periods we estimate rotation parameters in the range ω = νrot/νcrit = 0

  16. Cryofree Toploading Rotator System for High-Throughput Study of Novel Low-Dimensional Electron Systems

    DTIC Science & Technology

    2015-01-30

    Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 cryogenics , electronics, cryogen -free, piezoelectrics, rotator, magnetic...top-loading cryogenic systems required close collaboration on matters such as size, electrical wiring, positioner precision, and electrical noise...achieves all four objectives. The starting platform on which this DURIP built is a Leiden Cryogenics CF-900 cryogen free- dilution refrigerator, a system

  17. Temporal and Spatial Constraints on Multi-Phase Crustal Rotation in the Forearc of Northern Chile

    NASA Astrophysics Data System (ADS)

    Dashwood, B.; Taylor, G. K.

    2004-12-01

    The forearc of northern Chile between ~23-29oS records some of the largest paleomagnetically detected crustal rotations reported to date in the Central Andes. In contrast to much of the rest of the Central Andes rotations appear to pre-date the main uplift and shortening of the Andean plateau between 25 Ma and the present time. We report new studies in which we have endeavoured to investigate the scale of the rotated area and timing of the rotation in the forearc area between 27-30oS. Several authors have documented clockwise rotations in Mesozoic to Eocene units of up to 55o which, previously, appeared to decrease very sharply from about 30o of rotation at 28oS to near zero at ~30oS near La Serena. We present new data from over 120 sites from a range of Mesozoic to Eocene units in both the Coastal Cordillera and Precordillera. New data from two Paleocene plutons in the Tres Cruces area (29oS) combined with existing information from contemporary plutons (66-62Ma) from as far north as Inca De Oro (26oS) show the rotation to decrease smoothly suggesting a continuum in the deformation gradient controlling the rotations between these latitudes. These data also suggest that there was a distinct, if small ~10o, rotation in Cretaceous times. In order to better constrain the age of the main rotation we also present new data from Triassic to Eocene units in the La Guardia area, east of the city of Copiapó (27oS), in which we are able to demonstrate a variation in rotation during the period 60-40 Ma. In total these data strongly suggest to us that the large rotations of this region vary relatively uniformly and slowly with distance N-S and that a substantial part of this rotation pre-dates both the Andean orogeny and also the Incaic Orogeny of this part of the Central Andes. We suggest that the bulk of rotation was associated with the period of maximum obliquity of convergence between the Nazca and South American plates between 50-40 Ma. In addition, in the older rocks, of

  18. Geology of the Phase II System

    SciTech Connect

    Laney, R.; Laughlin, A. William

    1980-11-19

    This is a report on the analysis of EE-2 cuttings and thin sections, geologic characterization of the Phase II system, comparison with Phase 1, and geologic speculations and recommendations concerning Phase II. The EE-2 litholog has been included in the pocket.

  19. Star and planetary system formation in collapsing, viscous, rotating clouds

    NASA Technical Reports Server (NTRS)

    Wiita, P. J.; Schramm, D. N.; Symbalisty, E. M. D.

    1979-01-01

    The results of a preliminary investigation of several processes that are of interest both for the formation of stars and for the evolution of planetary systems are presented. It is shown that turbulent viscosity is capable of playing an important role in conveying angular momentum over time scales that are short enough to be significant. Meridional circulation can also act in this fashion during some phases of the evolution. This transport may reduce the probability of formation of the rings that have been found by most earlier investigators. Transport and mixing on a faster than cooling time scale should also inhibit usual modes of fragmentation and the present work casts some doubt on the multiple successive fragmentation scenarios that lead from a massive molecular cloud to a collection of roughly solar mass protostars. The conditions that are probable in the disks that would exist at varying phases of collapse are examined and it is concluded that turbulent viscosity would be very important in a pre-solar nebula.

  20. Architecture and life support systems for a rotating space habitat

    NASA Astrophysics Data System (ADS)

    Misra, Gaurav

    Life Support Systems are critical to sustain human habitation of space over long time periods. As orbiting space habitats become operational in the future, support systems such as atmo-sphere, food, water etc. will play a very pivotal role in sustaining life. To design a long-duration space habitat, it's important to consider the full gamut of human experience of the environment. Long-term viability depends on much more than just the structural or life support efficiency. A space habitat isn't just a machine; it's a life experience. To be viable, it needs to keep the inhabitants satisfied with their condition. This paper provides conceptual research on several key factors that influence the growth and sustainability of humans in a space habitat. Apart from the main life support system parameters, the architecture (both interior and exterior) of the habitat will play a crucial role in influencing the liveability in the space habitat. In order to ensure the best possible liveability for the inhabitants, a truncated (half cut) torus is proposed as the shape of the habitat. This structure rotating at an optimum rpm will en-sure 1g pseudo gravity to the inhabitants. The truncated torus design has several advantages over other proposed shapes such as a cylinder or a sphere. The design provides minimal grav-ity variation (delta g) in the living area, since its flat outer pole ensures a constant gravity. The design is superior in economy of structural and atmospheric mass. Interior architecture of the habitat addresses the total built environment, drawing from diverse disciplines includ-ing physiology, psychology, and sociology. Furthermore, factors such as line of sight, natural sunlight and overhead clearance have been discussed in the interior architecture. Substantial radiation shielding is also required in order to prevent harmful cosmic radiations and solar flares from causing damage to inhabitants. Regolith shielding of 10 tons per meter square is proposed for the

  1. Phase control system concepts and simulations. [solar power satellite system

    NASA Technical Reports Server (NTRS)

    Lindsay, V. C.

    1980-01-01

    A phase control system concept for a solar power satellite is proposed which partitions the system into three major levels. The first level of phase control consists of a reference phase distribution system implemented in the form of phase distribution tree structure. The major purpose of the tree structure is to electronically compensate for the phase shift due to the transition path lengths from the center of the spacetenna to each phase control center located in each subarray. In the reference system, this is accomplished using the master slave returnable timing system technique. The second level of phase control consists of the beam steering and microwave power generating system which houses the power transponders. This transponder consists of a set of phase conjugation multipliers driven by the reference phase distribution system output and the output of a pilot spread spectrum receiver which accepts the received pilot via a diplexer connected to a separate receive horn or the subarray itself. The output of the phase conjugation circuits serve as inputs to the third level of the phase control system. The third level of phase control is associated with maintaining an equal and constant phase shift through the microwave power amplifier devices while minimizing the associated phase noise effects on the generated power beam. This is accomplished by providing a phase locked loop around each high power amplifier.

  2. Design and Simulation of a Rotating Aperture & Vacuum System for Neutron Imaging

    SciTech Connect

    Fitsos, P; Hall, J; Rusnak, B; Shen, S

    2006-02-27

    The development of a high-energy (10Mev) neutron imaging system at Lawrence Livermore National Laboratory (LLNL) depends on a precision engineered rotating aperture and vacuum system for generating neutrons that are used for imaging dense objects. This subsystem is part of a larger system which includes a linear accelerator that creates a deuteron beam, a scintillator detector, imaging optics and a high resolution CCD camera. The rotating aperture vacuum system has been successfully simulated and tested. Results show the feasibility of the design and point toward ways to improve the design by minimizing the rotating aperture gap.

  3. All-reflective, highly accurate polarization rotator for high-power short-pulse laser systems.

    PubMed

    Keppler, S; Hornung, M; Bödefeld, R; Kahle, M; Hein, J; Kaluza, M C

    2012-08-27

    We present the setup of a polarization rotating device and its adaption for high-power short-pulse laser systems. Compared to conventional halfwave plates, the all-reflective principle using three zero-phase shift mirrors provides a higher accuracy and a higher damage threshold. Since plan-parallel plates, e.g. these halfwave plates, generate postpulses, which could lead to the generation of prepulses during the subsequent laser chain, the presented device avoids parasitic pulses and is therefore the preferable alternative for high-contrast applications. Moreover the device is easily scalable for large beam diameters and its spectral reflectivity can be adjusted by an appropriate mirror coating to be well suited for ultra-short laser pulses.

  4. Rotational grazing systems and grazing management research: Mapping the future

    USDA-ARS?s Scientific Manuscript database

    A recent publication reviewed a substantial amount of evidence generated from a geographically diverse effort by university and agency scientists over the past 6 decades to investigate the impacts of rotational grazing on fundamental rangeland ecological processes. Their findings, and others as well...

  5. A rotational framework to reduce weed density in organic systems

    USDA-ARS?s Scientific Manuscript database

    Weeds are a major obstacle to successful crop production in organic farming. Producers may be able to reduce inputs for weed management by designing rotations to disrupt population dynamics of weeds. Population-based management in conventional farming has reduced herbicide use 50% because weed den...

  6. Correlation between Rotator Cuff Tears and Systemic Atherosclerotic Disease

    PubMed Central

    Donovan, Andrea; Schweitzer, Mark; Bencardino, Jenny; Petchprapa, Catherine; Cohen, Jodi; Ciavarra, Gina

    2011-01-01

    The purpose of this study was to investigate the association of aortic arch calcification, a surrogate marker of atherosclerosis, with rotator cuff tendinosis and tears given the hypothesis that decreased tendon vascularity is a contributing factor in the etiology of tendon degeneration. A retrospective review was performed to identify patients ages 50 to 90 years who had a shoulder MRI and a chest radiograph performed within 6 months of each other. Chest radiographs and shoulder MRIs from 120 patients were reviewed by two sets of observers blinded to the others' conclusions. Rotator cuff disease was classified as tendinosis, partial thickness tear, and full thickness tear. The presence or absence of aortic arch calcification was graded and compared with the MRI appearance of the rotator cuff. The tendon tear grading was positively correlated with patient age. However, the tendon tear grading on MRI was not significantly correlated with the aorta calcification scores on chest radiographs. Furthermore, there was no significant correlation between aorta calcification severity and tendon tear grading. In conclusion, rotator cuff tears did not significantly correlate with aortic calcification severity. This suggests that tendon ischemia may not be associated with the degree of macrovascular disease. PMID:22091372

  7. Information Display System for Atypical Flight Phase

    NASA Technical Reports Server (NTRS)

    Statler, Irving C. (Inventor); Ferryman, Thomas A. (Inventor); Amidan, Brett G. (Inventor); Whitney, Paul D. (Inventor); White, Amanda M. (Inventor); Willse, Alan R. (Inventor); Cooley, Scott K. (Inventor); Jay, Joseph Griffith (Inventor); Lawrence, Robert E. (Inventor); Mosbrucker, Chris J. (Inventor); Rosenthal, Loren J. (Inventor); Lynch, Robert E. (Inventor); Chidester, Thomas R. (Inventor); Prothero, Gary L. (Inventor); Andrei, Adi (Inventor); Romanowski, Timothy P. (Inventor); Robin, Daniel E. (Inventor); Prothero, Jason W. (Inventor)

    2007-01-01

    Method and system for displaying information on one or more aircraft flights, where at least one flight is determined to have at least one atypical flight phase according to specified criteria. A flight parameter trace for an atypical phase is displayed and compared graphically with a group of traces, for the corresponding flight phase and corresponding flight parameter, for flights that do not manifest atypicality in that phase.

  8. Phase protection system for ac power lines

    NASA Technical Reports Server (NTRS)

    Wong, W. J. (Inventor)

    1974-01-01

    The system described provides protection for phase sensitive loads from being or remaining connected to ac power lines whenever a phase reversal occurs. It comprises a solid state phase detection circuit, a dc power relay circuit, an ac-to-dc converter for energizing the relay circuit, and a bistable four terminal transducer coupled between the phase detection circuit and the power relay circuit, for controlling both circuits.

  9. Characterizing the rotational irregularities of the Vela pulsar from 21 yr of phase-coherent timing

    NASA Astrophysics Data System (ADS)

    Shannon, R. M.; Lentati, L. T.; Kerr, M.; Johnston, S.; Hobbs, G.; Manchester, R. N.

    2016-07-01

    Pulsars show two classes of rotational irregularities that can be used to understand neutron-star interiors and magnetospheres: glitches and timing noise. Here we present an analysis of the Vela pulsar spanning nearly 21 yr of observation and including eight glitches. We identify the relative pulse number of all of the observations between glitches, with the only pulse-number ambiguities existing over glitch events. We use the phase coherence of the timing solution to simultaneously model the timing noise and glitches in a Bayesian framework, allowing us to select preferred models for both. We find the glitches can be described using only permanent and transient changes in spin frequency, i.e. no step changes in frequency derivative. For all of the glitches, we only need two exponentially decaying changes in spin frequency to model the transient components. In contrast to previous studies, we find that the dominant transient components decay on a common ≈1300 d time-scale, and that a larger fraction (≳25 per cent) of glitch amplitudes are associated with these transient components. We also detect shorter-duration transient components of ≈25 d, as previously observed, but are limited in sensitivity to events with shorter durations by the cadence of our observations. The timing noise is well described by a steep power-law process that is independent of the glitches and subdominant to the glitch recovery. The braking index is constrained to be <8 with 95 per cent confidence. This methodology can be used to robustly measure the properties of glitches and timing noise in other pulsars.

  10. Void fraction and phase distribution of a rotating two-phase gas-liquid flow around a plasma arc under water

    SciTech Connect

    Steinkamp, H.; Mewes, D.

    1994-12-31

    Plasma arc welding processes are used in off-shore industry for construction and maintenance in the wet surrounding of underwater structures and pipelines. In greater water depth the density of the plasma gas increase because of the greater hydrostatic pressure. This causes the increase of conductive heat losses to the wet surrounding. To keep up the energy flux to the workpiece to be welded, the plasma arc has to burn in a local dry area with an inside pressure of 1 bar. This requirement can be fulfilled by a rotating cylinder with a liquid film flowing down the inner wall. The flow around the rotating cylinder to create a local dry area around the plasma arc under water is experimentally investigated. The rotating cylinder is placed above the work surface which is simulated by a flat plate. According to the centrifugal forces of the rotating flow inside the gap between the lower end of the cylinder and the flat plate the water is forced out of the cylinder. The velocity distribution in the flow is measured by Laser-Doppler anemometry. The phase distribution in the two-phase flow in the gap is measured by local electrical probes. The static pressure inside the gaseous atmosphere is reduced in comparison to the hydrostatic pressure of the surrounding water. The pressure reduction is given by the void fraction, the phase distribution and the volume flow rates of both phases in the gap as well as by the speed of revolution and the design of the cylinder and the work surface. The influence of these parameters on the heat transfer from the workpiece to the two-phase flow regime is also investigated.

  11. Detailed flow and force measurements in a rotated triangular tube bundle subjected to two-phase cross-flow

    NASA Astrophysics Data System (ADS)

    Pettigrew, M. J.; Zhang, C.; Mureithi, N. W.; Pamfil, D.

    2005-05-01

    Two-phase cross-flow exists in many shell-and-tube heat exchangers. A detailed knowledge of the characteristics of two-phase cross-flow in tube bundles is required to understand and formulate flow-induced vibration parameters such as damping, fluidelastic instability, and random excitation due to turbulence. An experimental program was undertaken with a rotated-triangular array of cylinders subjected to air/water flow to simulate two-phase mixtures. The array is made of relatively large diameter cylinders (38 mm) to allow for detailed two-phase flow measurements between cylinders. Fiber-optic probes were developed to measure local void fraction. Local flow velocities and bubble diameters or characteristic lengths of the two-phase mixture are obtained by using double probes. Both the dynamic lift and drag forces were measured with a strain gauge instrumented cylinder.

  12. A Vision-Based Dynamic Rotational Angle Measurement System for Large Civil Structures

    PubMed Central

    Lee, Jong-Jae; Ho, Hoai-Nam; Lee, Jong-Han

    2012-01-01

    In this paper, we propose a vision-based rotational angle measurement system for large-scale civil structures. Despite the fact that during the last decade several rotation angle measurement systems were introduced, they however often required complex and expensive equipment. Therefore, alternative effective solutions with high resolution are in great demand. The proposed system consists of commercial PCs, commercial camcorders, low-cost frame grabbers, and a wireless LAN router. The calculation of rotation angle is obtained by using image processing techniques with pre-measured calibration parameters. Several laboratory tests were conducted to verify the performance of the proposed system. Compared with the commercial rotation angle measurement, the results of the system showed very good agreement with an error of less than 1.0% in all test cases. Furthermore, several tests were conducted on the five-story modal testing tower with a hybrid mass damper to experimentally verify the feasibility of the proposed system. PMID:22969348

  13. A vision-based dynamic rotational angle measurement system for large civil structures.

    PubMed

    Lee, Jong-Jae; Ho, Hoai-Nam; Lee, Jong-Han

    2012-01-01

    In this paper, we propose a vision-based rotational angle measurement system for large-scale civil structures. Despite the fact that during the last decade several rotation angle measurement systems were introduced, they however often required complex and expensive equipment. Therefore, alternative effective solutions with high resolution are in great demand. The proposed system consists of commercial PCs, commercial camcorders, low-cost frame grabbers, and a wireless LAN router. The calculation of rotation angle is obtained by using image processing techniques with pre-measured calibration parameters. Several laboratory tests were conducted to verify the performance of the proposed system. Compared with the commercial rotation angle measurement, the results of the system showed very good agreement with an error of less than 1.0% in all test cases. Furthermore, several tests were conducted on the five-story modal testing tower with a hybrid mass damper to experimentally verify the feasibility of the proposed system.

  14. Beyond the diffraction limit of optical/IR interferometers. II. Stellar parameters of rotating stars from differential phases

    NASA Astrophysics Data System (ADS)

    Hadjara, M.; Domiciano de Souza, A.; Vakili, F.; Jankov, S.; Millour, F.; Meilland, A.; Khorrami, Z.; Chelli, A.; Baffa, C.; Hofmann, K.-H.; Lagarde, S.; Robbe-Dubois, S.

    2014-09-01

    Context. As previously demonstrated on Achernar, one can derive the angular radius, rotational velocity, axis tilt, and orientation of a fast-rotating star from the differential phases obtained by spectrally resolved long baseline interferometry using earth-rotation synthesis. Aims: We applied this method on a small sample of stars for different spectral types and classes, in order to generalize the technique to other rotating stars across the H-R diagram and determine their fundamental parameters. Methods: We used differential phase data from the AMBER/VLTI instrument obtained prior to refurbishing its spectrometer in 2010. With the exception of Fomalhaut, which has been observed in the medium-resolution mode of AMBER (λ/δλ ≈ 1500), our three other targets, Achernar, Altair, and δ Aquilae offered high-resolution (λ/δλ ≈ 12 000) spectro-interferometric data around the Brγ absorption line in K band. These data were used to constrain the input parameters of an analytical, still realistic model to interpret the observations with a systematic approach for the error budget analysis in order to robustly conclude on the physics of our 4 targets. We applied the super resolution provided by differential phases φdiff to measure the size (equatorial radius Req and angular diameter ⌀eq), the equatorial rotation velocity (Veq), the inclination angle (i), and the rotation axis position angle (PArot) of 4 fast-rotating stars: Achernar, Altair, δ Aquilae, and Fomalhaut. The stellar parameters of the targets were constrained using a semi-analytical algorithm dedicated to fast rotators SCIROCCO. Results: The derived parameters for each star were Req = 11.2 ± 0.5 R⊙, Veqsini = 290 ± 17 km s-1, PArot = 35.4° ± 1.4°, for Achernar; Req = 2.0 ± 0.2 R⊙, Veqsini = 226 ± 34 km s-1, PArot = -65.5° ± 5.5°, for Altair; Req = 2.2 ± 0.3 R⊙, Veqsini = 74 ± 35 km s-1, PArot = -101.2° ± 14°, for δ Aquilae; and Req = 1.8 ± 0.2 R⊙, Veqsini = 93 ± 16 km s-1

  15. Design and Realization of Rotating Machinery Conditions Monitoring System Based on Labview

    NASA Astrophysics Data System (ADS)

    Fan, Qiyuan

    Nonlinear dynamic analysis of rotating machinery system has always been the hot spot of the rotational dynamics research. This article sets up a rotating machinery condition monitoring system to realize the measurement of system dynamic characteristic parameters based on NI(National Instruments) virtual instruments technology. The measurement of vibration signal of rotating machinery system is achieved by using NI company general data acquisition module of NI company. Meanwhile, by analyzing and processing the acquired data using Labview 2012, the dynamic characteristics, such as .the speed of the rotating machinery system, the axis trajectory, spectrum parameters, are attained. The measurement results show that the rotating machinery condition monitoring system based on Labview is easy to operate, easy to realize the function extension and maintenance, and that it can be used in the industrial engineering projects with rotation characteristics. Labview as the development tools used by virtual instrument function, is very powerful data acquisition software products support is one of the features of it, so using Labview programming and data acquisition is simple and convenient [1].

  16. A stable high-speed rotational transmission system based on nanotubes

    SciTech Connect

    Cai, Kun; Yin, Hang; Wei, Ning; Chen, Zhen; Shi, Jiao

    2015-01-12

    A stable rotational transmission system is designed with a single-walled carbon nanotube (SWCNT)-based motor and double-walled carbon nanotubes (DWCNTs)-based bearing. The system response is investigated using molecular dynamics (MD) simulation. It is found that the rotating motor can actuate the rotation of the inner tube in bearing because of the attraction between the two adjacent coaxial ends of motor and rotor (the inner tube in bearing). To have a stable nanostructure, each carbon atom on the adjacent ends of motor and rotor is bonded with a hydrogen atom. To obtain a stable high-speed rotational transmission system, both an armchair and a zigzag model are used in MD simulation. In each model, the motor with different diameters and rotational speeds is employed to examine the rotational transmission of corresponding DWCNTs. It is demonstrated that the long range van der Waals interaction between the adjacent ends of motor and rotor leads to a stable configuration of the adjacent ends, and further leads to a stable rotation of rotor when driven by a high-speed motor. As compared with the armchair model, the rotor in the zigzag model could reach a stable rotation mode much easier.

  17. A stable high-speed rotational transmission system based on nanotubes

    NASA Astrophysics Data System (ADS)

    Cai, Kun; Yin, Hang; Wei, Ning; Chen, Zhen; Shi, Jiao

    2015-01-01

    A stable rotational transmission system is designed with a single-walled carbon nanotube (SWCNT)-based motor and double-walled carbon nanotubes (DWCNTs)-based bearing. The system response is investigated using molecular dynamics (MD) simulation. It is found that the rotating motor can actuate the rotation of the inner tube in bearing because of the attraction between the two adjacent coaxial ends of motor and rotor (the inner tube in bearing). To have a stable nanostructure, each carbon atom on the adjacent ends of motor and rotor is bonded with a hydrogen atom. To obtain a stable high-speed rotational transmission system, both an armchair and a zigzag model are used in MD simulation. In each model, the motor with different diameters and rotational speeds is employed to examine the rotational transmission of corresponding DWCNTs. It is demonstrated that the long range van der Waals interaction between the adjacent ends of motor and rotor leads to a stable configuration of the adjacent ends, and further leads to a stable rotation of rotor when driven by a high-speed motor. As compared with the armchair model, the rotor in the zigzag model could reach a stable rotation mode much easier.

  18. Attitude Heading Reference System Using MEMS Inertial Sensors with Dual-Axis Rotation

    PubMed Central

    Kang, Li; Ye, Lingyun; Song, Kaichen; Zhou, Yang

    2014-01-01

    This paper proposes a low cost and small size attitude and heading reference system based on MEMS inertial sensors. A dual-axis rotation structure with a proper rotary scheme according to the design principles is applied in the system to compensate for the attitude and heading drift caused by the large gyroscope biases. An optimization algorithm is applied to compensate for the installation angle error between the body frame and the rotation table's frame. Simulations and experiments are carried out to evaluate the performance of the AHRS. The results show that the proper rotation could significantly reduce the attitude and heading drifts. Moreover, the new AHRS is not affected by magnetic interference. After the rotation, the attitude and heading are almost just oscillating in a range. The attitude error is about 3° and the heading error is less than 3° which are at least 5 times better than the non-rotation condition. PMID:25268911

  19. Attitude heading reference system using MEMS inertial sensors with dual-axis rotation.

    PubMed

    Kang, Li; Ye, Lingyun; Song, Kaichen; Zhou, Yang

    2014-09-29

    This paper proposes a low cost and small size attitude and heading reference system based on MEMS inertial sensors. A dual-axis rotation structure with a proper rotary scheme according to the design principles is applied in the system to compensate for the attitude and heading drift caused by the large gyroscope biases. An optimization algorithm is applied to compensate for the installation angle error between the body frame and the rotation table's frame. Simulations and experiments are carried out to evaluate the performance of the AHRS. The results show that the proper rotation could significantly reduce the attitude and heading drifts. Moreover, the new AHRS is not affected by magnetic interference. After the rotation, the attitude and heading are almost just oscillating in a range. The attitude error is about 3° and the heading error is less than 3° which are at least 5 times better than the non-rotation condition.

  20. Modeling and simulation of a counter-rotating turbine system for underwater vehicles

    NASA Astrophysics Data System (ADS)

    Wang, Xinping; Dang, Jianjun

    2016-12-01

    The structure of a counter-rotating turbine of an underwater vehicle is designed by adding the counter-rotating second-stage turbine disk after the conventional single-stage turbine. The available kinetic energy and the absorption power of the auxiliary system are calculated at different working conditions, and the results show that the power of the main engine and auxiliary system at the counter-rotating turbine system matches well with each other. The experimental simulation of the lubricating oil loop, fuel loop, and seawater loop are completed right before the technology scheme of the counter-rotating turbine system is proposed. The simulation results indicate that the hydraulic transmission system can satisfy the requirements for an underwater vehicle running at a steady sailing or variable working conditions.

  1. Non-rotational aspherical models of the human optical system

    NASA Astrophysics Data System (ADS)

    Giovanzana, S.; Kasprzak, H. T.; Pałucki, B.; Ţălu, Ş.

    2013-12-01

    The aim of this work was to define three-dimensional (3D) non-rotational aspherical parametric models for the human cornea and lens using computational geometry and CAD representations. The hyperbolic cosine based function is used for the cornea and a parametric model is used for lens modeling. Data analysis and visualization of 3D non-rotational models were made using the Rhinoceros CAD software and MATLAB software was used for numeric computation. We combined, implemented, and evaluated these models with a 3D ray-tracing in order to fully analyze the human eye model. It was found that 3D non-rotational aspherical models for the human eye could be more accurately modeled and rendered for analysis with finite element method. The objective of this study is to present and analyze mathematical models of the cornea and lens and to highlight the potential of optical applications of the eye models containing astigmatic surfaces, which are more close to the real eye than spherosymmetric eye models.

  2. Mental rotation and the motor system: embodiment head over heels.

    PubMed

    Krüger, Markus; Amorim, Michel-Ange; Ebersbach, Mirjam

    2014-01-01

    We examined whether body parts attached to abstract stimuli automatically force embodiment in a mental rotation task. In Experiment 1, standard cube combinations reflecting a human pose were added with (1) body parts on anatomically possible locations, (2) body parts on anatomically impossible locations, (3) colored end cubes, and (4) simple end cubes. Participants (N=30) had to decide whether two simultaneously presented stimuli, rotated in the picture plane, were identical or not. They were fastest and made less errors in the possible-body condition, but were slowest and least accurate in the impossible-body condition. A second experiment (N=32) replicated the results and ruled out that the poor performance in the impossible-body condition was due to the specific stimulus material. The findings of both experiments suggest that body parts automatically trigger embodiment, even when it is counterproductive and dramatically impairs performance, as in the impossible-body condition. It can furthermore be concluded that body parts cannot be used flexibly for spatial orientation in mental rotation tasks, compared to colored end cubes. Thus, embodiment appears to be a strong and inflexible mechanism that may, under certain conditions, even impede performance. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Rotating disk sorbent extraction for pre-concentration of chromogenic organic compounds and direct determination by solid phase spectrophotometry.

    PubMed

    Richter, Pablo; Cañas, Alejandro; Muñoz, Carlos; Leiva, Claudio; Ahumada, Inés

    2011-06-10

    A novel and very simple microextraction approach for pre-concentration and direct solid phase spectrophotometric measurement has been developed for the determination of chromogenic analytes. The model analyte to assess this approach was the chromophore malachite green (MG). The analyte was extracted from water samples onto a small rotating disk made of Teflon containing a sorbent phase of polydimethylsiloxane (PDMS) on one of its surfaces. We refer to the extraction procedure as rotating disk sorptive extraction (RDSE). After extraction, the sorbent phase with the concentrated analyte was separated from the Teflon disk and used directly for MG determination by solid phase spectrophotometry at 624 nm, without the necessity of a desorption step. Chemical and extraction variables such as concentration of sodium sulfate, pH, disk rotational velocity, extraction time, and temperature were studied in order to establish the best conditions for extraction. Under optimum conditions, the extraction of MG was carried out in 18 min and 90 min, for sample volumes of 100mL or 1000 mL, respectively. The detection limit, based on three times the standard deviation of the blank phase (3σ(b)), was 1.4 μg L⁻¹ and the repeatability, expressed as relative standard deviation (RSD), for 20 μg L⁻¹ MG was 8.1%. This study also applied the method to real samples, obtaining quantitative recovery (mean recovery of 99.3%). The PDMS phases could be reused after desorbing the MG into methanol for 3h. Replacement of the PDMS film onto the disk is very easy and low cost.

  4. On linear structure and phase rotation invariant properties of block 2(sup l)-PSK modulation codes

    NASA Technical Reports Server (NTRS)

    Lin, Shu

    1990-01-01

    Two important structural properties of block 2(l)-ary PSK (phase shift keying) modulation codes, linear structure and phase symmetry, are investigated. For an additive white Gaussian noise (AWGN) channel, the error performance of a modulation code depends on its squared Euclidean distance distribution. Linear structure of a code makes the error performance analysis much easier. Phase symmetry of a code is important in resolving carrier phase ambiguity and ensuring rapid carrier phase resynchronization after temporary loss of synchronization. It is desirable for a code to have as many phase symmetries as possible. A 2(l)-ary modulation code is represented here as a code with symbols from the integer group. S sub 2(l) PSK = (0,1,2,...,2(l)-1), under the modulo-2(l) addition. The linear structure of block 2(l)-ary PSK modulation codes over S sub 2(l)-ary PSK with respect to the modulo-2(l) vector addition is defined, and conditions under which a block 2(l)-ary PSK modulation code is linear are derived. Once the linear structure is developed, phase symmetry of a block 2(l)-ary PSK modulation code is studied. It is a necessary and sufficient condition for a block 2(l)-PSK modulation code, which is linear as a binary code, to be invariant under 180 deg/2(l-h) phase rotation, for 1 is less than or equal to h is less than or equal to l. A list of short 8-PSK and 16-PSK modulation codes is given, together with their linear structure and the smallest phase rotation for which a code is invariant.

  5. Ultramicrowave communications system, phase 3

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The ultramicrowave communications system program investigated the feasibility of a solid state system that meets the projected space to space requirements, while using the advantages of the 100 to 200 GHz band. The program successfully demonstrated a laboratory model of a high frequency communications system operating between 100 to 200 GHz. In the process, vendor claims for performance specifications of discrete components were evaluated, and a window was provided into system design and integration problems.

  6. Development of a rotating algal biofilm growth system for attached microalgae growth with in situ biomass harvest.

    PubMed

    Gross, Martin; Henry, Wesley; Michael, Clayton; Wen, Zhiyou

    2013-12-01

    This work aimed to develop a rotating algal biofilm (RAB) cultivation system that can be widely adopted by microalgae producers for easy biomass harvest. Algal cells were grown on the surface of a material rotating between nutrient-rich liquid and CO2-rich gaseous phase. Scrapping biomass from the attached surface avoided the expensive harvest operations such as centrifugation. Among various attachment materials, cotton sheet resulted in best algal growth, durability, and cost effectiveness. A lab-scale RAB system was further optimized with harvest frequency, rotation speed, and CO2 levels. The algal biomass from the RAB system had a similar water content as that in centrifuged biomass. An open pond raceway retrofitted with a pilot-scale RAB system resulted in a much higher biomass productivity when compared to a control open pond. Collectively, the research shows that the RAB system is an efficient algal culture system for easy biomass harvest with enhanced biomass productivity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Phased-array radar for airborne systems

    NASA Astrophysics Data System (ADS)

    Tahim, Raghbir S.; Foshee, James J.; Chang, Kai

    2003-09-01

    Phased array antenna systems, which support high pulse rates and high transmit power, are well suited for radar and large-scale surveillance. Sensors and communication systems can function as the eyes and ears for ballistic missile defense applications, providing early warning of attack, target detection and identification, target tracking, and countermeasure decision. In such applications, active array radar systems that contain solid-state transmitter sources and low-noise preamplifiers for transmission and reception are preferred over the conventional radar antennas, because the phased array radar offers the advantages of power management and efficiency, reliability, signal reception, beam steering target detection. The current phased array radar designs are very large, complex and expensive and less efficient because of high RF losses in the phase control circuits used for beam scan. Several thousands of phase shifters and drivers may be required for a single system thus making the system very complex and expensive. This paper describes the phased array radar system based on high power T/R modules, wide-band radiating planar antenna elements and very low loss wide-band phase control circuits (requiring reduced power levels) for beam scan. The phase shifter design is based on micro-strip feed lines perturbed by the proximity of voltage controlled piezoelectric transducer (PET). Measured results have shown an added insertion loss of less than 1 dB for a phase shift of 450 degrees from 2 to 20 GHz. The new wideband phased array radar design provides significant reduction in size cost and weight. Compared to the conventional phased array systems, the cost saving is more than 15 to 1.

  8. Rotating machinery dynamics simulation. I. Rigid systems with ball bearing nonlinearities and outer ring ovality under rotating unbalance excitation

    PubMed

    el-Saeidy

    2000-02-01

    The radial clearance in rolling bearing systems, required to compensate for dimensional changes associated with thermal expansion of the various parts during operation, may cause dimensional attrition and comprise bearing life, if unloaded operation occurs and balls skid [D. Childs and D. Moyer, ASME J. Eng. Gas Turb. Power 107, 152-159 (1985)]. Also, it can cause jumps in the response to unbalance excitation. These undesirable effects may be eliminated by introducing two or more loops into one of the bearing races so that at least two points of the ring circumference provide a positive zero clearance [D. Childs, Handbook of Rotordynamics, edited by F. Ehrich (McGraw-Hill, NY, 1992)]. The deviation of the outer ring with two loops, known as ovality, is one of the bearing distributed defects. Although this class of imperfections has received much work, none of the available studies has simulated the effect of the outer ring ovality on the dynamic behavior of rotating machinery under rotating unbalance with consideration of ball bearing nonlinearities, shaft elasticity, and speed of rotation. To fill this gap, the equations of motion of a rotor-ball bearing system are formulated using finite-elements (FE) discretization and Lagrange's equations. The analyses are specialized to a rigid-rotor system, by retaining the rigid body modes only in the FE solution. Samples of the results are presented in both time domain and frequency domain for a system with and without outer ring ovality. It is found that with ideal bearings (no ovality), the vibration spectrum is qualitatively and quantitatively the same in both the horizontal and vertical directions. When the ring ovality is introduced, however, the spectrum in both orthogonal planes is no longer similar. And magnitude of the bearing load has increased in the form of repeated random impacts, between balls and rings, in the horizontal direction (direction of maximum clearance) compared to a continuous contact along the

  9. Determination and visualization of rotational ambiguity in four-component systems.

    PubMed

    Golshan, Azadeh; Maeder, Marcel; Abdollahi, Hamid

    2013-09-24

    One of the main problems that limit the use of model-free analysis methods for the resolution of multivariate data is that usually there is rotational ambiguity in the result. While methods for the complete definition of rotational ambiguity for two- and three-component systems have been published recently, the comprehensive and general resolution of rotational ambiguity for four-component systems has eluded chemists for several decades. We have developed an extension of self-modelling curve resolution for a mixture of four-components. The performance of the method was verified by applying it to resolve simulated and real data sets.

  10. Terahertz disorder-localized rotational modes and lattice vibrational modes in the orientationally-disordered and ordered phases of camphor.

    PubMed

    Nickel, Daniel V; Ruggiero, Michael T; Korter, Timothy M; Mittleman, Daniel M

    2015-03-14

    The temperature-dependent terahertz spectra of the partially-disordered and ordered phases of camphor (C10H16O) are measured using terahertz time-domain spectroscopy. In its partially-disordered phases, a low-intensity, extremely broad resonance is found and is characterized using both a phenomenological approach and an approach based on ab initio solid-state DFT simulations. These two descriptions are consistent and stem from the same molecular origin for the broad resonance: the disorder-localized rotational correlations of the camphor molecules. In its completely ordered phase(s), multiple lattice phonon modes are measured and are found to be consistent with those predicted using solid-state DFT simulations.

  11. Possible acceleration of cosmic rays in a rotating system: Uehling-Uhlenbeck model

    SciTech Connect

    Kwang-Hua, Chu Rainer

    2016-11-15

    We illustrate the possible acceleration of cosmic rays passing through a kind of amplification channel (via diffusion modes of propagating plane-wave fronts) induced by a rotating system. Our analysis is mainly based on the quantum discrete kinetic model (considering a discrete Uehling-Uhlenbeck collision term), which has been used to study the propagation of plane (e.g., acoustic) waves in a system of rotating gases.

  12. Hybrid laser-beam-shaping system for rotatable dual beams with long depth of focus

    NASA Astrophysics Data System (ADS)

    Chou, Fu-Lung; Chen, Cheng-Huan; Lin, Yu-Chung; Lin, Mao-Chi

    2016-10-01

    A laser processing system consisting of two diffractive elements and one refractive element is proposed enabling a Gaussian laser beam to be transformed into two beams with a depth of focus of up to 150 µm and focal spot smaller than 5 µm. For specific laser processing, the two beams are rotatable when the beam-splitting diffractive element is rotated. The overall system is versatile for laser cutting and drilling.

  13. General criteria for determining rotation or oscillation in a two-dimensional axisymmetric system

    NASA Astrophysics Data System (ADS)

    Koyano, Yuki; Yoshinaga, Natsuhiko; Kitahata, Hiroyuki

    2015-07-01

    A self-propelled particle in a two-dimensional axisymmetric system, such as a particle in a central force field or confined in a circular region, may show rotational or oscillatory motion. These motions do not require asymmetry of the particle or the boundary, but arise through spontaneous symmetry breaking. We propose a generic model for a self-propelled particle in a two-dimensional axisymmetric system. A weakly nonlinear analysis establishes criteria for determining rotational or oscillatory motion.

  14. Controllable nanoscale rotating actuator system based on carbon nanotube and graphene

    NASA Astrophysics Data System (ADS)

    Huang, Jianzhang; Han, Qiang

    2016-04-01

    A controllable nanoscale rotating actuator system consisting of a double carbon nanotube and graphene driven by a temperature gradient is proposed, and its rotating dynamics performance and driving mechanism are investigated through molecular dynamics simulations. The outer tube exhibits stable pure rotation with certain orientation under temperature gradient and the steady rotational speed rises as the temperature gradient increases. It reveals that the driving torque is caused by the difference of atomic van der Waals potentials due to the temperature gradient and geometrical features of carbon nanotube. A theoretical model for driving torque is established based on lattice dynamics theory and its predicted results agree well with molecular dynamics simulations. Further discussion is taken according to the theoretical model. The work in this study would be a guide for design and application of controllable nanoscale rotating devices based on carbon nanotubes and graphene.

  15. Phase-Insensitive Ultrasonic Testing System

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.

    1995-01-01

    Ultrasonic testing system developed for use in revealing hidden disbonds at rough, inaccessible interfaces between layers of material. Includes array of small piezoelectric transducers, receiving outputs electronically processed individually and combined in such way as to make system phase-insensitive, overcoming limitations imposed by phase-sensitivity. Development of present ultrasonic system and phase-insensitive-array technique which based motivated by need to detect disbonds under conditions of bondline inhibitor, liner, and fuel at ends of segments of solid rocket motor of space shuttle. Here, liner-to-fuel bondline very rough with respect to ultrasonic wavelength.

  16. Phase-Insensitive Ultrasonic Testing System

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.

    1995-01-01

    Ultrasonic testing system developed for use in revealing hidden disbonds at rough, inaccessible interfaces between layers of material. Includes array of small piezoelectric transducers, receiving outputs electronically processed individually and combined in such way as to make system phase-insensitive, overcoming limitations imposed by phase-sensitivity. Development of present ultrasonic system and phase-insensitive-array technique which based motivated by need to detect disbonds under conditions of bondline inhibitor, liner, and fuel at ends of segments of solid rocket motor of space shuttle. Here, liner-to-fuel bondline very rough with respect to ultrasonic wavelength.

  17. EFFECTS OF ROTATION ON STOCHASTICITY OF GRAVITATIONAL WAVES IN THE NONLINEAR PHASE OF CORE-COLLAPSE SUPERNOVAE

    SciTech Connect

    Kotake, Kei; Iwakami-Nakano, Wakana; Ohnishi, Naofumi

    2011-08-01

    By performing three-dimensional (3D) simulations that demonstrate the neutrino-driven core-collapse supernovae aided by the standing accretion shock instability (SASI), we study how the spiral modes of the SASI can impact the properties of the gravitational-wave (GW) emission. To see the effects of rotation in the nonlinear postbounce phase, we give a uniform rotation on the flow advecting from the outer boundary of the iron core, the specific angular momentum of which is assumed to agree with recent stellar evolution models. We compute fifteen 3D models in which the initial angular momentum and the input neutrino luminosities from the protoneutron star are changed in a systematic manner. By performing a ray-tracing analysis, we accurately estimate the GW amplitudes generated by anisotropic neutrino emission. Our results show that the gravitational waveforms from neutrinos in models that include rotation exhibit a common feature; otherwise, they vary much more stochastically in the absence of rotation. The breaking of the stochasticity stems from the excess of the neutrino emission parallel to the spin axis. This is because the compression of matter is more enhanced in the vicinity of the equatorial plane due to the growth of the spiral SASI modes, leading to the formation of the spiral flows circulating around the spin axis with higher temperatures. We point out that recently proposed future space interferometers like Fabry-Perot-type DECIGO would permit the detection of these signals for a Galactic supernova.

  18. Consequences of a strong phase transition in the dense matter equation of state for the rotational evolution of neutron stars

    NASA Astrophysics Data System (ADS)

    Bejger, M.; Blaschke, D.; Haensel, P.; Zdunik, J. L.; Fortin, M.

    2017-03-01

    Aims: We explore the implications of a strong first-order phase transition region in the dense matter equation of state in the interiors of rotating neutron stars, and the resulting creation of two disjoint families of neutron-star configurations (the so-called high-mass twins). Methods: We numerically obtained rotating, axisymmetric, and stationary stellar configurations in the framework of general relativity, and studied their global parameters and stability. Results: The instability induced by the equation of state divides stable neutron star configurations into two disjoint families: neutron stars (second family) and hybrid stars (third family), with an overlapping region in mass, the high-mass twin-star region. These two regions are divided by an instability strip. Its existence has interesting astrophysical consequences for rotating neutron stars. We note that it provides a natural explanation for the rotational frequency cutoff in the observed distribution of neutron star spins, and for the apparent lack of back-bending in pulsar timing. It also straightforwardly enables a substantial energy release in a mini-collapse to another neutron-star configuration (core quake), or to a black hole.

  19. Accuracy of gantry rotation time of less than 300 ms for modern MDCT systems.

    PubMed

    Fukuda, Atsushi; Lin, Pei-Jan Paul; Matsubara, Kosuke; Miyati, Tosiaki

    2015-01-01

    The accuracy of gantry rotation times of less than 300 ms has been assessed for two "state-of-the art" MDCT systems. The rotation time was measured at selected nominal rotation times (275 and 280 ms) with a solid-state detector; Unfors Xi probe. The detector was positioned on the inner bottom of the gantry bore. Because a pair of two successive radiation peaks is necessary for determination of the rotation time, the radiation detection was performed with the helical scan mode of operation. Upon completion of the data acquisition, we determined the peak times with the Unfors Xi View software program to obtain the rotation time. The means and standard deviations of the measured rotation times were 275.3 ± 0.5 and 285.1 ± 0.4 ms, respectively. The inaccuracy of the rotation time was approximately 5 ms at most, which was comparable to that previously reported for slower rotation times.

  20. Non-Abelian effects in a quadrupole system rotating around two axes

    SciTech Connect

    Zwanziger, J.W.; Koenig, M.; Pines, A. Department of Chemistry, University of California, Berkeley, CA )

    1990-09-01

    The {sup 35}Cl nuclear quadrupole resonance spectrum of a single crystal of sodium chlorate (R. Tycko, Phys. Rev. Lett. 58, 2281 (1987)) rotating about two axes reflects a non-Abelian gauge potential. This gauge potential is an example of Wilczek and Zee's (Phys. Rev. Lett. 52, 2111 (1984)) generalization of Berry's phase to the adiabatic transport of degenerate states.

  1. Advances in Rotational Seismic Measurements

    SciTech Connect

    Pierson, Robert; Laughlin, Darren; Brune, Robert

    2016-10-19

    Rotational motion is increasingly understood to be a significant part of seismic wave motion. Rotations can be important in earthquake strong motion and in Induced Seismicity Monitoring. Rotational seismic data can also enable shear selectivity and improve wavefield sampling for vertical geophones in 3D surveys, among other applications. However, sensor technology has been a limiting factor to date. The US Department of Energy (DOE) and Applied Technology Associates (ATA) are funding a multi-year project that is now entering Phase 2 to develop and deploy a new generation of rotational sensors for validation of rotational seismic applications. Initial focus is on induced seismicity monitoring, particularly for Enhanced Geothermal Systems (EGS) with fracturing. The sensors employ Magnetohydrodynamic (MHD) principles with broadband response, improved noise floors, robustness, and repeatability. This paper presents a summary of Phase 1 results and Phase 2 status.

  2. Rotation mechanism of methylammonium molecules in organometal halide perovskite in cubic phase: An ab initio molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Shimamura, Kohei; Hakamata, Tomoya; Shimojo, Fuyuki; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya

    2016-12-01

    Rotation of methylammonium (CH3NH3 or MA) molecules is believed to govern the excellent transport properties of photocarriers in the MA lead iodide (MAPbI3) perovskite. Of particular interest is its cubic phase, which exists in industrially important films at room temperature. In order to investigate the rotational behaviors of the MA molecules, we have performed ab initio molecular dynamics simulations of cubic-MAPbI3 at room temperature. There are two types of rotational motions of MA molecules in a crystalline PbI3 cage: reorientation of a whole molecule and intramolecular rotation around the C-N bond within MA molecules. Using a cubic symmetry-assisted analysis (CSAA), we found that the prominent orientation of the C-N bond is the crystalline ⟨110 ⟩ directions, rather than the ⟨100 ⟩ and ⟨111 ⟩ directions. Rapid rotation around the C-N bond is also observed, which easily occurs when the rotational axis is parallel to the ⟨110 ⟩ directions according to the CSAA. To explain the atomistic mechanisms underlying these CSAA results, we have focused on the relation between H-I hydrogen bonds and the orientation of an MA molecule. Here, the hydrogen bonds were defined by population analysis, and it has been found that, while H atoms in the CH3 group (HC) hardly interacts with I atoms, those in the NH3 group (HN) form at least one hydrogen bond with I atoms and their interatomic distances are in a wide range, 2.2-3.7 Å. Based on these findings, we have given a possible explanation to why the ⟨110 ⟩ directions are preferred. Namely, the atomic arrangement and interatomic distance between MA and surrounding I atoms are most suitable for the formation of hydrogen bonds. In addition to films, these results are potentially applicable to the rotational behaviors in bulk MAPbI3 as well, considering that the atomistic structure and time constants regarding the rotation of MA molecules statistically agree with bulk experiments.

  3. Coordinate transformation between rotating and inertial systems under the constant two-way speed of light

    NASA Astrophysics Data System (ADS)

    Choi, Yang-Ho

    2016-09-01

    An observation system consists of the world lines of rest observers in the system. Recently a coordinate transformation between an isotropic and a rotating observation system has been presented which was derived through a relativistic circular approach based on the Lorentz transformation. It was formulated such that the relative speeds between the two systems are the same, but the two-way speed of light is not constant in the rotating observation system. The constancy of the two-way speed of light in inertial frames has been known to be experimentally verified. This paper presents the transformation that holds the constancy in the rotating system as well. Though the rotating system is in motion with acceleration, it can be regarded as locally inertial. Thus, in the limit, a transformation into a rotating system should be reduced to a transformation into an inertial systems. The transformation presented is consistent with the one between inertial systems so that the latter can be derived from the former in the limit. Moreover it allows us to theoretically analyze the generalized Sagnac effect, which involves rectilinear motion as well as circular motion. The theoretical analysis corresponds to the experimental results.

  4. Flow of Fluid and Particle Assemblages in Rotating Systems

    NASA Technical Reports Server (NTRS)

    Kizito, John; Hiltner, David; Niederhaus, Charles; Kleis, Stanley; Hudson, Ed; Gonda, Steve

    2004-01-01

    NASA-designed bioreactors have been highly successful in growing three-dimensional tissue structures in a low shear environment both on earth and in space. The goal of the present study is to characterize the fluid flow environment within the HFB-S bioreactor and determine the spatial distribution of particles that mimic cellular tissue structures. The results will be used to obtain optimal operating conditions of rotation rates and media perfusehnfuse rates which are required for cell culture growth protocols. Two types of experiments have been performed so far. First, we have performed laser florescent dye visualization of the perfusion loop to determine the mixing times within the chamber. The second type of experiments involved particles which represent cellular tissue to determine the spatial distribution with the chamber. From these experiments we established that mixing times were largely dependant on the speed ratio and sign of the difference between the spinner and the dome. The shortest mixing times occurred when the spinner rotates faster than the dome and longest mixing times occurs with no relative motion between the dome and spinner. Also, we have determined the spatial and temporal distribution of particle assemblages within the chamber.

  5. Vapor phase heat transport systems

    NASA Astrophysics Data System (ADS)

    Hedstrom, J. C.; Neeper, D. A.

    1985-09-01

    Progress in theoretical and experimental investigations of various forms of a vapor transport system for solar space heating is described, which could also be applied to service water heating. The refrigerant is evaporated in a solar collector, which may be located on the external wall or roof of a building. The vapor is condensed in a passively discharged thermal storage unit located within the building. The condensed liquid can be returned to the collector either by a motor-driven pump or by a completely passive self-pumping mechanism in which the vapor pressure lifts the liquid from the condenser to the collector. The theoretical investigation analyzes this self-pumping scheme. Experiments in solar test cells compared the operation of both passive and active forms of the vapor system with the operation of a passive water wall. The vapor system operates as expected, with potential advantages over other passive systems in design flexibility and energy yield.

  6. Rotationally Resolved Electronic Spectroscopy of Biomolecules in the Gas Phase. Melatonin.

    NASA Astrophysics Data System (ADS)

    Yi, John T.; Pratt, David W.; Brand, Christian; Wollenhaupt, Miriam; Schmitt, Michael; Meerts, W. Leo

    2011-06-01

    Rotationally resolved electronic spectra of the A and B bands of melatonin have been analyzed using an evolutionary strategy approach. From a comparison of the ab initio calculated structures of energy selected conformers to the experimental rotational constants, the A band could be shown to be due to a gauche structure of the side chain, while the B band is an anti structure. Both bands show a complicated pattern due to a splitting from the three-fold internal rotation of the methyl rotor in the N-acetyl group of the molecules. From a torsional analysis we additionally were able to determine the barriers of the methyl torsion in both electronic states. The electronic nature of the lowest excited singlet state could be determined to be 1LB (as in the chromophore indole) from comparison to the results of ab initio calculations.

  7. Rotationally resolved electronic spectroscopy of biomolecules in the gas phase. Melatonin

    NASA Astrophysics Data System (ADS)

    Yi, John T.; Brand, Christian; Wollenhaupt, Miriam; Pratt, David W.; Leo Meerts, W.; Schmitt, Michael

    2011-07-01

    Rotationally resolved electronic spectra of the A and B bands of melatonin have been analyzed using an evolutionary strategy approach. From a comparison of the ab initio calculated structures of energy selected conformers to the experimental rotational constants, the A band could be shown to be due to a gauche structure of the side chain, while the B band is an anti structure. Both bands show a complicated pattern due to a splitting from the threefold internal rotation of the methyl rotor in the N-acetyl group of the molecules. From a torsional analysis we additionally were able to determine the barriers of the methyl torsion in both electronic states of melatonin B and give an estimate for the change of the barrier upon electronic excitation in melatonin A. The electronic nature of the lowest excited singlet state could be determined to be 1Lb (as in the chromophore indole) from comparison to the results of ab initio calculations.

  8. Phase Transitions in Model Active Systems

    NASA Astrophysics Data System (ADS)

    Redner, Gabriel S.

    The amazing collective behaviors of active systems such as bird flocks, schools of fish, and colonies of microorganisms have long amazed scientists and laypeople alike. Understanding the physics of such systems is challenging due to their far-from-equilibrium dynamics, as well as the extreme diversity in their ingredients, relevant time- and length-scales, and emergent phenomenology. To make progress, one can categorize active systems by the symmetries of their constituent particles, as well as how activity is expressed. In this work, we examine two categories of active systems, and explore their phase behavior in detail. First, we study systems of self-propelled spherical particles moving in two dimensions. Despite the absence of an aligning interaction, this system displays complex emergent dynamics, including phase separation into a dense active solid and dilute gas. Using simulations and analytic modeling, we quantify the phase diagram and separation kinetics. We show that this nonequilibrium phase transition is analogous to an equilibrium vapor-liquid system, with binodal and spinodal curves and a critical point. We also characterize the dense active solid phase, a unique material which exhibits the structural signatures of a crystalline solid near the crystal-hexatic transition point, as well as anomalous dynamics including superdiffusive motion on intermediate timescales. We also explore the role of interparticle attraction in this system. We demonstrate that attraction drastically changes the phase diagram, which contains two distinct phase-separated regions and is reentrant as a function of propulsion speed. We interpret this complex situation with a simple kinetic model, which builds from the observed microdynamics of individual particles to a full description of the macroscopic phase behavior. We also study active nematics, liquid crystals driven out of equilibrium by energy-dissipating active stresses. The equilibrium nematic state is unstable in these

  9. Particulate Organic Matter Affects Soil Nitrogen Mineralization under Two Crop Rotation Systems.

    PubMed

    Bu, Rongyan; Lu, Jianwei; Ren, Tao; Liu, Bo; Li, Xiaokun; Cong, Rihuan

    2015-01-01

    Changes in the quantity and/or quality of soil labile organic matter between and after different types of cultivation system could play a dominant role in soil nitrogen (N) mineralization. The quantity and quality of particulate organic matter (POM) and potentially mineralizable-N (PMN) contents were measured in soils from 16 paired rice-rapeseed (RR)/cotton-rapeseed (CR) rotations sites in Hubei province, central China. Then four paired soils encompassing low (10th percentile), intermediate (25th and 75th percentiles), and high (90th percentile) levels of soil PMN were selected to further study the effects of POM on soil N mineralization by quantifying the net N mineralization in original soils and soils from which POM was removed. Both soil POM carbon (POM-C) and N (POM-N) contents were 45.8% and 55.8% higher under the RR rotation compared to the CR rotation, respectively. The PMN contents were highly correlated with the POM contents. The PMN and microbial biomass N (MBN) contents concurrently and significantly decreased when POM was removed. The reduction rate of PMN was positively correlated with changes in MBN after the removal of POM. The reduction rates of PMN and MBN after POM removal are lower under RR rotations (38.0% and 16.3%, respectively) than CR rotations (45.6% and 19.5%, respectively). Furthermore, infrared spectroscopy indicated that compounds with low-bioavailability accumulated (e.g., aromatic recalcitrant materials) in the soil POM fraction under the RR rotation but not under the CR rotation. The results of the present study demonstrated that POM plays a vital role in soil N mineralization under different rotation systems. The discrepancy between POM content and composition resulting from different crop rotation systems caused differences in N mineralization in soils.

  10. Particulate Organic Matter Affects Soil Nitrogen Mineralization under Two Crop Rotation Systems

    PubMed Central

    Bu, Rongyan; Lu, Jianwei; Ren, Tao; Liu, Bo; Li, Xiaokun; Cong, Rihuan

    2015-01-01

    Changes in the quantity and/or quality of soil labile organic matter between and after different types of cultivation system could play a dominant role in soil nitrogen (N) mineralization. The quantity and quality of particulate organic matter (POM) and potentially mineralizable-N (PMN) contents were measured in soils from 16 paired rice-rapeseed (RR)/cotton-rapeseed (CR) rotations sites in Hubei province, central China. Then four paired soils encompassing low (10th percentile), intermediate (25th and 75th percentiles), and high (90th percentile) levels of soil PMN were selected to further study the effects of POM on soil N mineralization by quantifying the net N mineralization in original soils and soils from which POM was removed. Both soil POM carbon (POM-C) and N (POM-N) contents were 45.8% and 55.8% higher under the RR rotation compared to the CR rotation, respectively. The PMN contents were highly correlated with the POM contents. The PMN and microbial biomass N (MBN) contents concurrently and significantly decreased when POM was removed. The reduction rate of PMN was positively correlated with changes in MBN after the removal of POM. The reduction rates of PMN and MBN after POM removal are lower under RR rotations (38.0% and 16.3%, respectively) than CR rotations (45.6% and 19.5%, respectively). Furthermore, infrared spectroscopy indicated that compounds with low-bioavailability accumulated (e.g., aromatic recalcitrant materials) in the soil POM fraction under the RR rotation but not under the CR rotation. The results of the present study demonstrated that POM plays a vital role in soil N mineralization under different rotation systems. The discrepancy between POM content and composition resulting from different crop rotation systems caused differences in N mineralization in soils. PMID:26647157

  11. Phononic Phase Conjugation in an Optomechanical System

    NASA Astrophysics Data System (ADS)

    Buchmann, Lukas; Wright, Ewan; Meystre, Pierre

    2013-05-01

    We study theoretically the phase conjugation of a phononic field in an optomechanical system with two mechanical modes coupled to a common optical field. Phase conjugation becomes the dominant process for an appropriate choice of driving field parameters, and he effective coupling coefficients between phonon modes can result in amplification and entanglement, phase-conjugation or a mixture thereof. We discuss surprising consequences of mechanical phase-conjugation that could lead to the preparation of mechanical states with negative temperature, the improvement of quantum memories and the study of the quantum-classical transition. Supported by DARPA ORCHID program.

  12. Biomechanical Reconstruction Using the Tacit Learning System: Intuitive Control of Prosthetic Hand Rotation.

    PubMed

    Oyama, Shintaro; Shimoda, Shingo; Alnajjar, Fady S K; Iwatsuki, Katsuyuki; Hoshiyama, Minoru; Tanaka, Hirotaka; Hirata, Hitoshi

    2016-01-01

    Background: For mechanically reconstructing human biomechanical function, intuitive proportional control, and robustness to unexpected situations are required. Particularly, creating a functional hand prosthesis is a typical challenge in the reconstruction of lost biomechanical function. Nevertheless, currently available control algorithms are in the development phase. The most advanced algorithms for controlling multifunctional prosthesis are machine learning and pattern recognition of myoelectric signals. Despite the increase in computational speed, these methods cannot avoid the requirement of user consciousness and classified separation errors. "Tacit Learning System" is a simple but novel adaptive control strategy that can self-adapt its posture to environment changes. We introduced the strategy in the prosthesis rotation control to achieve compensatory reduction, as well as evaluated the system and its effects on the user. Methods: We conducted a non-randomized study involving eight prosthesis users to perform a bar relocation task with/without Tacit Learning System support. Hand piece and body motions were recorded continuously with goniometers, videos, and a motion-capture system. Findings: Reduction in the participants' upper extremity rotatory compensation motion was monitored during the relocation task in all participants. The estimated profile of total body energy consumption improved in five out of six participants. Interpretation: Our system rapidly accomplished nearly natural motion without unexpected errors. The Tacit Learning System not only adapts human motions but also enhances the human ability to adapt to the system quickly, while the system amplifies compensation generated by the residual limb. The concept can be extended to various situations for reconstructing lost functions that can be compensated.

  13. Rotational grazing systems and livestock grazing behavior in shrub-dominated semi-arid and arid rangelands

    USDA-ARS?s Scientific Manuscript database

    Rotational grazing systems (RGS) are often implemented to alleviate undesirable selective grazing by livestock. At both fine and coarse scales, livestock selectively graze individual plants, patches, communities, and landscapes. Smaller pastures, increased stocking density, and rotation allow manage...

  14. Critical-Point Description of the Transition from Vibrational to Rotational Regimes in the Pairing Phase

    SciTech Connect

    Clark, R.M.; Macchiavelli, A.O.; Fortunato, L.; Kruecken, R.

    2006-01-27

    An approximate solution at the critical point of the pairing transition from harmonic vibration to deformed rotation in gauge space is found by analytic solution of the collective pairing Hamiltonian. The eigenvalues are expressed in terms of the zeros of Bessel functions of integer order. The results are compared to the pairing bands based on the Pb isotopes.

  15. Optical spatial phase retarder/modulator by a rotating freely suspended LC film

    NASA Astrophysics Data System (ADS)

    Saghaei, Tayebeh; Feiz, Mohammad-Sadegh; Amjadi, Ahmad

    2016-12-01

    This study presents a new method to develop a thin controllable retarder/modulator with spatial axial symmetry by rotating a freely suspended of 4-Cyano-4-n-pentylbiphenyl (5CB) and N-(4-methoxybenzylidene)-4-butylaniline (MBBA) liquid crystal films using mechanical method or as a liquid film motor.

  16. Rotational spectra and gas phase structure of the maleimide - Formic acid doubly hydrogen bonded dimer

    NASA Astrophysics Data System (ADS)

    Pejlovas, Aaron M.; Kukolich, Stephen G.

    2016-03-01

    Rotational transitions were measured for the maleimide - formic acid doubly hydrogen bonded dimer using a Flygare-Balle type pulsed-beam Fourier transform microwave spectrometer. No splittings caused by possible concerted double proton tunneling motion were observed. Experimental rotational constants (MHz), quadrupole coupling constants (MHz), and centrifugal distortion constants (kHz) were determined for the parent and three deuterium substituted isotopologues. The values for the parent are A = 2415.0297(10), B = 784.37494(38), C = 592.44190(33), DJ = 0.0616(64), DJK = -0.118(35), DK = -1.38(15), 1.5χaa = 2.083(14), and 0.25(χbb-χcc) = 1.1565(29). The hydrogen bond lengths were determined using a nonlinear least squares structure fitting program. Rotational constants for this complex are consistent with a planar structure, with an inertial defect of Δ = -0.528 amu Å2. The B3LYP calculation yielded rotational constants within 0.1% of the experimental values.

  17. Phase shielding soliton in parametrically driven systems.

    PubMed

    Clerc, Marcel G; Garcia-Ñustes, Mónica A; Zárate, Yair; Coulibaly, Saliya

    2013-05-01

    Parametrically driven extended systems exhibit dissipative localized states. Analytical solutions of these states are characterized by a uniform phase and a bell-shaped modulus. Recently, a type of dissipative localized state with a nonuniform phase structure has been reported: the phase shielding solitons. Using the parametrically driven and damped nonlinear Schrödinger equation, we investigate the main properties of this kind of solution in one and two dimensions and develop an analytical description for its structure and dynamics. Numerical simulations are consistent with our analytical results, showing good agreement. A numerical exploration conducted in an anisotropic ferromagnetic system in one and two dimensions indicates the presence of phase shielding solitons. The structure of these dissipative solitons is well described also by our analytical results. The presence of corrective higher-order terms is relevant in the description of the observed phase dynamical behavior.

  18. Influence of Rotation Increments on Imaging Performance for a Rotatory Dual-Head PET System

    PubMed Central

    Meng, Fanzhen; Cao, Xu; Cao, Xuezhou; Wang, Jianxun; Li, Liang; Chen, Xueli

    2017-01-01

    For a rotatory dual-head positron emission tomography (PET) system, how to determine the rotation increments is an open problem. In this study, we simulated the characteristics of a rotatory dual-head PET system. The influences of different rotation increments were compared and analyzed. Based on this simulation, the imaging performance of a prototype system was verified. A reconstruction flowchart was proposed based on a precalculated system response matrix (SRM). The SRM made the relationships between the voxels and lines of response (LORs) fixed; therefore, we added the interpolation method into the flowchart. Five metrics, including spatial resolution, normalized mean squared error (NMSE), peak signal-to-noise ratio (PSNR), contrast-to-noise (CNR), and structure similarity (SSIM), were applied to assess the reconstructed image quality. The results indicated that the 60° rotation increments with the bilinear interpolation had advantages in resolution, PSNR, NMSE, and SSIM. In terms of CNR, the 90° rotation increments were better than other increments. In addition, the reconstructed images of 90° rotation increments were also flatter than that of 60° increments. Therefore, both the 60° and 90° rotation increments could be used in the real experiments, and which one to choose may depend on the application requirement. PMID:28154827

  19. Locomotion gaits of a rotating cylinder pair

    NASA Astrophysics Data System (ADS)

    van Rees, Wim M.; Novati, Guido; Koumoutsakos, Petros; Mahadevan, L.

    2015-11-01

    Using 2D numerical simulations of the Navier-Stokes equations, we demonstrate that a simple pair of rotating cylinders can display a range of locomotion patterns of biological and engineering interest. Steadily counter-rotating the cylinders causes the pair to move akin to a vortex dipole for low rotation rates, but as the rotational velocity is increased the direction of motion reverses. Unsteady rotations lead to different locomotion gaits that resemble jellyfish (for in-phase rotations) and undulating swimmers (for out-of-phase rotations). The small number of parameters for this simple system allows us to systematically map the phase space of these gaits, and allows us to understand the underlying physical mechanisms using a minimal model with implications for biological locomotion and engineered analogs.

  20. Hydraulic Excavation System. Phase 2

    DTIC Science & Technology

    1988-09-01

    tunnel boring machine , which is limited to producing a straight circular opening. This SBIR project has been directed towards the development of a...flexible system with minimal setup time. This productivity may be compared with a tunnel boring machine and conventional blasting using a large jumbo. A...51 tunnel boring machine costs are based on a 3.7-m-diameter machine with a 7-person crew. This comparison does not include the cost of a concrete

  1. Density distribution of a rotating plasma in Tornado magnetic confinement systems

    SciTech Connect

    Kuznetsov, V.M.; Pakhomov, A.B.; Rusakov, A.I.

    1984-12-01

    The density distribution of a rotating plasma in a Tornado magnetic confinement system is calculated under the assumption that the plasma rotates at constant angular velocity throughout the region bounded by the separatrix. The component of the centrifugal inertial force parallel to the magnetic force lines is shown to pinch the plasma toward the equatorial plane of the system. The density distribution depends on the ratio v/T of the plasma drift velocity and temperature. The experimentally measured density distribution can be used to determine v/T and thus to analyze the rotating plasma. If v is known for the rotating plasma then T can be calculated from v, and vice versa.

  2. Unconventional Topological Phase Transition in Two-Dimensional Systems with Space-Time Inversion Symmetry.

    PubMed

    Ahn, Junyeong; Yang, Bohm-Jung

    2017-04-14

    We study a topological phase transition between a normal insulator and a quantum spin Hall insulator in two-dimensional (2D) systems with time-reversal and twofold rotation symmetries. Contrary to the case of ordinary time-reversal invariant systems, where a direct transition between two insulators is generally predicted, we find that the topological phase transition in systems with an additional twofold rotation symmetry is mediated by an emergent stable 2D Weyl semimetal phase between two insulators. Here the central role is played by the so-called space-time inversion symmetry, the combination of time-reversal and twofold rotation symmetries, which guarantees the quantization of the Berry phase around a 2D Weyl point even in the presence of strong spin-orbit coupling. Pair creation and pair annihilation of Weyl points accompanying partner exchange between different pairs induces a jump of a 2D Z_{2} topological invariant leading to a topological phase transition. According to our theory, the topological phase transition in HgTe/CdTe quantum well structure is mediated by a stable 2D Weyl semimetal phase because the quantum well, lacking inversion symmetry intrinsically, has twofold rotation about the growth direction. Namely, the HgTe/CdTe quantum well can show 2D Weyl semimetallic behavior within a small but finite interval in the thickness of HgTe layers between a normal insulator and a quantum spin Hall insulator. We also propose that few-layer black phosphorus under perpendicular electric field is another candidate system to observe the unconventional topological phase transition mechanism accompanied by the emerging 2D Weyl semimetal phase protected by space-time inversion symmetry.

  3. Unconventional Topological Phase Transition in Two-Dimensional Systems with Space-Time Inversion Symmetry

    NASA Astrophysics Data System (ADS)

    Ahn, Junyeong; Yang, Bohm-Jung

    2017-04-01

    We study a topological phase transition between a normal insulator and a quantum spin Hall insulator in two-dimensional (2D) systems with time-reversal and twofold rotation symmetries. Contrary to the case of ordinary time-reversal invariant systems, where a direct transition between two insulators is generally predicted, we find that the topological phase transition in systems with an additional twofold rotation symmetry is mediated by an emergent stable 2D Weyl semimetal phase between two insulators. Here the central role is played by the so-called space-time inversion symmetry, the combination of time-reversal and twofold rotation symmetries, which guarantees the quantization of the Berry phase around a 2D Weyl point even in the presence of strong spin-orbit coupling. Pair creation and pair annihilation of Weyl points accompanying partner exchange between different pairs induces a jump of a 2D Z2 topological invariant leading to a topological phase transition. According to our theory, the topological phase transition in HgTe /CdTe quantum well structure is mediated by a stable 2D Weyl semimetal phase because the quantum well, lacking inversion symmetry intrinsically, has twofold rotation about the growth direction. Namely, the HgTe /CdTe quantum well can show 2D Weyl semimetallic behavior within a small but finite interval in the thickness of HgTe layers between a normal insulator and a quantum spin Hall insulator. We also propose that few-layer black phosphorus under perpendicular electric field is another candidate system to observe the unconventional topological phase transition mechanism accompanied by the emerging 2D Weyl semimetal phase protected by space-time inversion symmetry.

  4. Experimental data and numerical predictions of a single-phase flow in a batch square stirred tank reactor with a rotating cylinder agitator

    NASA Astrophysics Data System (ADS)

    Escamilla-Ruíz, I. A.; Sierra-Espinosa, F. Z.; García, J. C.; Valera-Medina, A.; Carrillo, F.

    2017-09-01

    Single-phase flows in stirred tank reactors have useful characteristics for a wide number of industrial applications. Usually, reactors are cylindrical vessels and complex impeller designs, which are often highly energy consuming and produce complicated flow patterns. Therefore, a novel configuration consisting of a square stirred tank reactor is proposed in this study with potential advantages over conventional reactors. In the present work hydrodynamics and turbulence have been studied for a single-phase flow in steady state operating in batch condition. The flow was induced by drag from a rotating cylinder with two diameters. The effects of drag from the stirrer as well as geometrical parameters of the system on the hydrodynamic behavior were investigated using Computational Fluids Dynamics (CFD) and non-intrusive Laser Doppler Anemometry, (LDA). Data obtained from LDA measurements were used for the validation of the CFD simulations, and to detecting the macro-instabilities inside the tank, based on the time series analysis for three rotational speeds N = 180, 1000 and 2000 rpm. The numerical results revealed the formation of flow patterns and macro-vortex structures in the upper part of the tank as consequence of the Reynolds number and the stream discharge emanated from the cylindrical stirrer. Moreover, increasing the cylinder diameter has an impact on the number of recirculation loops as well as the energy consumption of the entire system showing better performance in the presence of turbulent flows.

  5. Experimental data and numerical predictions of a single-phase flow in a batch square stirred tank reactor with a rotating cylinder agitator

    NASA Astrophysics Data System (ADS)

    Escamilla-Ruíz, I. A.; Sierra-Espinosa, F. Z.; García, J. C.; Valera-Medina, A.; Carrillo, F.

    2017-04-01

    Single-phase flows in stirred tank reactors have useful characteristics for a wide number of industrial applications. Usually, reactors are cylindrical vessels and complex impeller designs, which are often highly energy consuming and produce complicated flow patterns. Therefore, a novel configuration consisting of a square stirred tank reactor is proposed in this study with potential advantages over conventional reactors. In the present work hydrodynamics and turbulence have been studied for a single-phase flow in steady state operating in batch condition. The flow was induced by drag from a rotating cylinder with two diameters. The effects of drag from the stirrer as well as geometrical parameters of the system on the hydrodynamic behavior were investigated using Computational Fluids Dynamics (CFD) and non-intrusive Laser Doppler Anemometry, (LDA). Data obtained from LDA measurements were used for the validation of the CFD simulations, and to detecting the macro-instabilities inside the tank, based on the time series analysis for three rotational speeds N = 180, 1000 and 2000 rpm. The numerical results revealed the formation of flow patterns and macro-vortex structures in the upper part of the tank as consequence of the Reynolds number and the stream discharge emanated from the cylindrical stirrer. Moreover, increasing the cylinder diameter has an impact on the number of recirculation loops as well as the energy consumption of the entire system showing better performance in the presence of turbulent flows.

  6. Biomechanical Reconstruction Using the Tacit Learning System: Intuitive Control of Prosthetic Hand Rotation

    PubMed Central

    Oyama, Shintaro; Shimoda, Shingo; Alnajjar, Fady S. K.; Iwatsuki, Katsuyuki; Hoshiyama, Minoru; Tanaka, Hirotaka; Hirata, Hitoshi

    2016-01-01

    Background: For mechanically reconstructing human biomechanical function, intuitive proportional control, and robustness to unexpected situations are required. Particularly, creating a functional hand prosthesis is a typical challenge in the reconstruction of lost biomechanical function. Nevertheless, currently available control algorithms are in the development phase. The most advanced algorithms for controlling multifunctional prosthesis are machine learning and pattern recognition of myoelectric signals. Despite the increase in computational speed, these methods cannot avoid the requirement of user consciousness and classified separation errors. “Tacit Learning System” is a simple but novel adaptive control strategy that can self-adapt its posture to environment changes. We introduced the strategy in the prosthesis rotation control to achieve compensatory reduction, as well as evaluated the system and its effects on the user. Methods: We conducted a non-randomized study involving eight prosthesis users to perform a bar relocation task with/without Tacit Learning System support. Hand piece and body motions were recorded continuously with goniometers, videos, and a motion-capture system. Findings: Reduction in the participants' upper extremity rotatory compensation motion was monitored during the relocation task in all participants. The estimated profile of total body energy consumption improved in five out of six participants. Interpretation: Our system rapidly accomplished nearly natural motion without unexpected errors. The Tacit Learning System not only adapts human motions but also enhances the human ability to adapt to the system quickly, while the system amplifies compensation generated by the residual limb. The concept can be extended to various situations for reconstructing lost functions that can be compensated. PMID:27965567

  7. Nitrogen, tillage, and crop rotation effects on nitrous oxide emissions from irrigated cropping systems.

    PubMed

    Halvorson, Ardell D; Del Grosso, Stephen J; Reule, Curtis A

    2008-01-01

    We evaluated the effects of irrigated crop management practices on nitrous oxide (N(2)O) emissions from soil. Emissions were monitored from several irrigated cropping systems receiving N fertilizer rates ranging from 0 to 246 kg N ha(-1) during the 2005 and 2006 growing seasons. Cropping systems included conventional-till (CT) continuous corn (Zea mays L.), no-till (NT) continuous corn, NT corn-dry bean (Phaseolus vulgaris L.) (NT-CDb), and NT corn-barley (Hordeum distichon L.) (NT-CB). In 2005, half the N was subsurface band applied as urea-ammonium nitrate (UAN) at planting to all corn plots, with the rest of the N applied surface broadcast as a polymer-coated urea (PCU) in mid-June. The entire N rate was applied as UAN at barley and dry bean planting in the NT-CB and NT-CDb plots in 2005. All plots were in corn in 2006, with PCU being applied at half the N rate at corn emergence and a second N application as dry urea in mid-June followed by irrigation, both banded on the soil surface in the corn row. Nitrous oxide fluxes were measured during the growing season using static, vented chambers (1-3 times wk(-1)) and a gas chromatograph analyzer. Linear increases in N(2)O emissions were observed with increasing N-fertilizer rate, but emission amounts varied with growing season. Growing season N(2)O emissions were greater from the NT-CDb system during the corn phase of the rotation than from the other cropping systems. Crop rotation and N rate had more effect than tillage system on N(2)O emissions. Nitrous oxide emissions from N application ranged from 0.30 to 0.75% of N applied. Spikes in N(2)O emissions after N fertilizer application were greater with UAN and urea than with PCU fertilizer. The PCU showed potential for reducing N(2)O emissions from irrigated cropping systems.

  8. A three-dimensional phase field model coupled with lattice kinetics solver for modeling crystal growth in furnaces with accelerated crucible rotation and traveling magnetic field

    SciTech Connect

    Lin, Guang; Bao, Jie; Xu, Zhijie

    2014-11-01

    In this study, which builds on other related work, we present a new three-dimensional numerical model for crystal growth in a vertical solidification system. This model accounts for buoyancy, accelerated crucible rotation technique (ACRT), and traveling magnetic field (TMF) induced convective flow and their effect on crystal growth and the chemical component's transport process. The evolution of the crystal growth interface is simulated using the phase field method. A semi-implicit lattice kinetics solver based on the Boltzmann equation is employed to model the unsteady incompressible flow. A one-way coupled concentration transport model is used to simulate the component fraction variation in both the liquid and solid phases, which can be used to check the quality of the crystal growth.

  9. Interacting galaxies: corotating and counter-rotating systems with tidal tails

    NASA Astrophysics Data System (ADS)

    Mesa, Valeria; Duplancic, Fernanda; Alonso, Sol; Coldwell, Georgina; Lambas, Diego G.

    2014-02-01

    We analyse interacting galaxy pairs with evidence of tidal features in the Sloan Digital Sky Survey Data Release 7. The pairs were selected within z < 0.1 by requiring a projected separation rp < 50 h- 1 kpc and relative radial velocity ΔV < 500 km s-1. We complete spectroscopic pairs using galaxies with photometric redshifts considering ΔVphot < 6800 km s-1, taking into account the mean photometric redshift uncertainty. We classify by visual inspection pairs of spirals into corotating and counter-rotating systems. For a subsample of non-active galactic nucleus (non-AGN) galaxies, counter-rotating pairs have larger star formation rates and a higher fraction of young, star-forming galaxies. These effects are enhanced by restricting to rp < 12 h- 1 kpc. The distributions of C, Dn(4000) and (Mu - Mr) for AGN galaxies show that counter-rotating hosts have bluer colours and younger stellar population than the corotating galaxies although the relative fractions of Seyfert, LINER, Composite and Ambiguous AGN are similar. Also, counter-rotating hosts have more powerful AGN as revealed by enhanced Lum[O III] values. The number of corotating systems is approximately twice the number of counter-rotating pairs which could be owed to a more rapid evolution of counter-rotating systems, besides possible different initial conditions of these interacting pairs.

  10. Ground beetle (Coleoptera: Carabidae) assemblages in conventional and diversified crop rotation systems.

    PubMed

    O'Rourke, Megan E; Liebman, Matt; Rice, Marlin E

    2008-02-01

    Ground beetles (Coleoptera: Carabidae) are important in agro-ecosystems as generalist predators of invertebrate pests and weed seeds and as prey for larger animals. However, it is not well understood how cropping systems affect ground beetles. Over a 2-yr period, carabids were monitored two times per month using pitfall traps in a conventional chemical input, 2-yr, corn/soybean rotation system and a low input, 4-yr, corn/soybean/triticale-alfalfa/alfalfa rotation system. Carabid assemblages were largely dominated by a few species across all cropping treatments with Poecilus chalcites Say comprising >70% of pitfall catches in both years of study. Overall carabid activity density and species richness were higher in the low input, 4-yr rotation compared with the conventionally managed, 2-yr rotation. There were greater differences in the temporal activity density and species richness of carabids among crops than within corn and soybean treatments managed with different agrichemical inputs and soil disturbance regimes. Detrended correspondence analysis showed strong yearly variation in carabid assemblages in all cropping treatments. The increase in carabid activity density and species richness observed in the 4-yr crop rotation highlights the potential benefits of diverse crop habitats for carabids and the possibility for managing natural enemies by manipulating crop rotations.

  11. Magnetic nanoparticles stimulation to enhance liquid-liquid two-phase mass transfer under static and rotating magnetic fields

    NASA Astrophysics Data System (ADS)

    Azimi, Neda; Rahimi, Masoud

    2017-01-01

    Rotating magnetic field (RMF) was applied on a micromixer to break the laminar flow and induce chaotic flow to enhance mass transfer between two-immiscible organic and aqueous phases. The results of RMF were compared to those of static magnetic field (SMF). For this purpose, experiments were carried out in a T-micromixer at equal volumetric flow rates of organic and aqueous phases. Fe3O4 nanoparticles were synthesized by co-precipitation technique and they were dissolved in organic phase. Results obtained from RMF and SMF were compared in terms of overall volumetric mass transfer coefficient (KLa) and extraction efficiency (E) at various Reynolds numbers. Generally, RMF showed higher effect in mass transfer characteristics enhancement compared with SMF. The influence of rotational speeds of magnets (ω) in RMF was investigated, and measurable enhancements of KLa and E were observed. In RMF, the effect of magnetic field induction (B) was investigated. The results reveal that at constant concentration of nanoparticles, by increasing of B, mass transfer characteristics will be enhanced. The effect of various nanoparticles concentrations (ϕ) within 0.002-0.01 (w/v) on KLa and E at maximum induction of RMF (B=76 mT) was evaluated. Maximum values of KLa (2.1±0.001) and E (0.884±0.001) were achieved for the layout of RMF (B=76 mT), ω=16 rad/s and MNPs concentration of 0.008-0.01 (w/v).

  12. Metastable Phase Evolution in Oxide Systems

    NASA Astrophysics Data System (ADS)

    Levi, Carlos G.

    2005-03-01

    Multi-component ceramics are often synthesized by routes that facilitate mixing at the molecular scale and subsequently generate a solid product at low homologous temperatures. Examples include chemical and physical vapor deposition, thermal spray, and pyrolytic decomposition of precursor solutions. In these processes the solid evolves rapidly from a highly energized state, typically in a temperature regime wherein long-range diffusion is largely constrained and the equilibrium configuration can be kinetically suppressed. The resulting product may exhibit various forms of metastability such as amorphization, nanocrystallinity, extended solid solubility and alternate crystalline forms. The approach allows access to novel combinations of structure and composition with unprecedented defect structures that, if reasonably durable, could have properties of potential technological interest. Understanding phase selection and evolution is facilitated by having a suitable reference framework depicting the thermodynamic hierarchy of the phases available to the system under the relevant processing conditions. When transformations are partitionless the phase menu and hierarchy can be readily derived from the relative position of the T0 curves/surfaces for the different pairs of phases. The result is a phase hierarchy map, which is an analog of the phase diagram for partitionless equilibrium. Such maps can then be used to assess the kinetic effects on the selection of metastable states and their subsequent evolution. This presentation will discuss the evolution of metastable phases in oxides, with emphasis on systems involving fluorite phases and their ordered or distorted derivatives. The concepts will be illustrated primarily with zirconia-based systems, notably those of interest in thermal barrier coatings, fuel cells and ferroelectrics (ZrO2-MO3/2, where M = Y, Sc, the lanthanides and combinations thereof, as well as ZrO2-YO3/2-TiO2, ZrO2-TiO2-PbO, etc.). Of particular

  13. Block Copolymer Modified Epoxy Amine System for Reactive Rotational Molding: Structures, Properties and Processability

    NASA Astrophysics Data System (ADS)

    Lecocq, Eva; Nony, Fabien; Tcharkhtchi, Abbas; Gérard, Jean-François

    2011-05-01

    Poly(styrene-butadiene-methylmethacrylate) (SBM) and poly(methylmethacrylate-butyle-acrylate-methylmethacrylate) (MAM) triblock copolymers have been dissolved in liquid DGEBA epoxy resin which is subsequently polymerized by meta-xylene diamine (MXDA) or Jeffamine EDR-148. A chemorheology study of these formulations by plate-plate rheology and by thermal analysis has allowed to conclude that the addition of these copolymer blocks improve the reactive rotational moulding processability without affecting the processing time. Indeed, it prevents the pooling of the formulation at the bottom of the mould and a too rapid build up of resin viscosity of these thermosetting systems. The morphology of the cured blends examined by scanning electron microscopy (SEM) shows an increase of fracture surface area and thereby a potential increase of the toughness with the modification of epoxy system. Dynamic mechanical spectroscopy (DMA) and opalescence of final material show that the block PMMA, initially miscible, is likely to induce phase separation from the epoxy-amine matrix. Thereby, the poor compatibilisation between the toughener and the matrix has a detrimental effect on the tensile mechanical properties. The compatibilisation has to be increased to improve in synergy the processability and the final properties of these block copolymer modified formulations. First attempts could be by adapting the length and ratio of each block.

  14. Wavefront twisting by rotating back holes: orbital angular momentum generation and phase coherent detection

    NASA Astrophysics Data System (ADS)

    Yang, Huan

    2014-03-01

    In this work we study the wave propagation and scattering near a rotating black hole. In particular, we assume a coherent emission source near the black hole, and investigate the wavefront distortion as seen by a distant observer. Near the observer, the propagating wave can be decomposed using the Laguerre-Gaussian mode basis, and its wavefront distortion can be characterized by the decomposition coefficient. We find that this decomposition spectrum is symmetric for wave sources located near a Schwarzschild black hole, but is generically asymmetric if the host black hole is rotating. The spectrum asymmetry, or the net orbital angular momentum carried by the wave, is intimately related with the black hole spin, mass, the wave frequency, the source location as well as the observer's location. We present semi-analytical expressions and numerical results of these parameter-dependences, which suggest that the black-hole-induced spectrum asymmetry is generally too weak to be observed in radio astronomy.

  15. Asteroid Light Curves from the Palomar Transient Factory Survey: Rotation Periods and Phase Functions from Sparse Photometry

    NASA Astrophysics Data System (ADS)

    Waszczak, Adam; Chang, Chan-Kao; Ofek, Eran O.; Laher, Russ; Masci, Frank; Levitan, David; Surace, Jason; Cheng, Yu-Chi; Ip, Wing-Huen; Kinoshita, Daisuke; Helou, George; Prince, Thomas A.; Kulkarni, Shrinivas

    2015-09-01

    We fit 54,296 sparsely sampled asteroid light curves in the Palomar Transient Factory survey to a combined rotation plus phase-function model. Each light curve consists of 20 or more observations acquired in a single opposition. Using 805 asteroids in our sample that have reference periods in the literature, we find that the reliability of our fitted periods is a complicated function of the period, amplitude, apparent magnitude, and other light-curve attributes. Using the 805-asteroid ground-truth sample, we train an automated classifier to estimate (along with manual inspection) the validity of the remaining ˜53,000 fitted periods. By this method we find that 9033 of our light curves (of ˜8300 unique asteroids) have “reliable” periods. Subsequent consideration of asteroids with multiple light-curve fits indicates a 4% contamination in these “reliable” periods. For 3902 light curves with sufficient phase-angle coverage and either a reliable fit period or low amplitude, we examine the distribution of several phase-function parameters, none of which are bimodal though all correlate with the bond albedo and with visible-band colors. Comparing the theoretical maximal spin rate of a fluid body with our amplitude versus spin-rate distribution suggests that, if held together only by self-gravity, most asteroids are in general less dense than ˜2 g cm-3, while C types have a lower limit of between 1 and 2 g cm-3. These results are in agreement with previous density estimates. For 5-20 km diameters, S types rotate faster and have lower amplitudes than C types. If both populations share the same angular momentum, this may indicate the two types’ differing ability to deform under rotational stress. Lastly, we compare our absolute magnitudes (and apparent-magnitude residuals) to those of the Minor Planet Center’s nominal (G = 0.15, rotation-neglecting) model; our phase-function plus Fourier-series fitting reduces asteroid photometric rms scatter by a factor of

  16. Bench-Top Impedance Measurements for a Rotatable Copper Collimator for the LHC Phase II Collimation Upgrade

    SciTech Connect

    Smith, Jeffrey Claiborne; Bane, Karl; Doyle, Eric; Keller, Lew; Lundgren, Steve; Markiewicz, Tom; Ng, Cho-Kuen; Xiao, Liling; /SLAC

    2010-08-26

    Simulations have been performed in Omega3P to study both trapped modes and impedance contributions of a rotatable collimator for the LHC phase II collimation upgrade. Bench-top stretched coil probe impedance methods are also being implemented for measurements on prototype components to directly measure the low frequency impedance contributions. The collimator design also calls for a RF contact interface at both jaw ends with contact resistance much less than a milliohm in order to limit transverse impedance. DC resistance measurements in a custom built test chamber have been performed to test the performance of this interface.

  17. ASTEROID LIGHT CURVES FROM THE PALOMAR TRANSIENT FACTORY SURVEY: ROTATION PERIODS AND PHASE FUNCTIONS FROM SPARSE PHOTOMETRY

    SciTech Connect

    Waszczak, Adam; Chang, Chan-Kao; Cheng, Yu-Chi; Ip, Wing-Huen; Kinoshita, Daisuke; Ofek, Eran O.; Laher, Russ; Surace, Jason; Masci, Frank; Helou, George; Levitan, David; Prince, Thomas A.; Kulkarni, Shrinivas

    2015-09-15

    We fit 54,296 sparsely sampled asteroid light curves in the Palomar Transient Factory survey to a combined rotation plus phase-function model. Each light curve consists of 20 or more observations acquired in a single opposition. Using 805 asteroids in our sample that have reference periods in the literature, we find that the reliability of our fitted periods is a complicated function of the period, amplitude, apparent magnitude, and other light-curve attributes. Using the 805-asteroid ground-truth sample, we train an automated classifier to estimate (along with manual inspection) the validity of the remaining ∼53,000 fitted periods. By this method we find that 9033 of our light curves (of ∼8300 unique asteroids) have “reliable” periods. Subsequent consideration of asteroids with multiple light-curve fits indicates a 4% contamination in these “reliable” periods. For 3902 light curves with sufficient phase-angle coverage and either a reliable fit period or low amplitude, we examine the distribution of several phase-function parameters, none of which are bimodal though all correlate with the bond albedo and with visible-band colors. Comparing the theoretical maximal spin rate of a fluid body with our amplitude versus spin-rate distribution suggests that, if held together only by self-gravity, most asteroids are in general less dense than ∼2 g cm{sup −3}, while C types have a lower limit of between 1 and 2 g cm{sup −3}. These results are in agreement with previous density estimates. For 5–20 km diameters, S types rotate faster and have lower amplitudes than C types. If both populations share the same angular momentum, this may indicate the two types’ differing ability to deform under rotational stress. Lastly, we compare our absolute magnitudes (and apparent-magnitude residuals) to those of the Minor Planet Center’s nominal (G = 0.15, rotation-neglecting) model; our phase-function plus Fourier-series fitting reduces asteroid photometric rms

  18. Rotation-translation device for condensed-phase spectroscopy with small sample volumes

    NASA Astrophysics Data System (ADS)

    Nuernberger, Patrick; Krampert, Gerhard; Brixner, Tobias; Vogt, Gerhard

    2006-08-01

    We present and characterize an experimental device for optical spectroscopy with small sample volumes contained in a thin film. Employing rotational and translational motion, the sample transport speeds are high enough to offer a new sample volume for each interaction in time-resolved spectroscopy experiments working with a 1kHz repetition rate. This is especially suited for ultrafast femtosecond spectroscopy such as transient absorption spectroscopy or fluorescence upconversion. To reduce photodegradation and effects from local thermal heating, a large sample area is scanned in contrast to conventional devices with either only rotation or translation movements. For characterization of the setup, transient absorption experiments are carried out using the rotation-translation device and a conventional flow-cell setup, which exhibit similar signal-to-noise ratio in the two cases. The effects of photodegradation and diffusion are also investigated, demonstrating the suitability of the device for time-resolved spectroscopic experiments. The transient absorption data show that the setup is well suited for biomolecular samples, which are often only available in small amounts and are very sensitive to thermal heating.

  19. Order-disorder phase transition in a chaotic system.

    PubMed

    Anugraha, Rinto; Tamura, Koyo; Hidaka, Yoshiki; Oikawa, Noriko; Kai, Shoichi

    2008-04-25

    For soft-mode turbulence, which is essentially the spatiotemporal chaos caused by the nonlinear interaction between convective modes and Goldstone modes in electroconvection of homeotropic nematics, a type of order-disorder phase transition was revealed, in which a new order parameter was introduced as pattern ordering. We calculated the spatial correlation function and the anisotropy of the convective patterns as a 2D XY system because the convective wave vector could freely rotate in the homeotropic system. We found the hidden order in the chaotic patterns observed beyond the Lifshitz frequency f(L), and a transition from a disordered to a hidden ordered state occurred at the f(L) with the increase of the frequency of the applied voltages.

  20. Phase control of intermittency in dynamical systems.

    PubMed

    Zambrano, Samuel; Mariño, Inés P; Salvadori, Francesco; Meucci, Riccardo; Sanjuán, Miguel A F; Arecchi, F T

    2006-07-01

    We present a nonfeedback method to tame or enhance crisis-induced intermittency in dynamical systems. By adding a small harmonic perturbation to a parameter of the system, the intermittent behavior can be suppressed or enhanced depending on the value of the phase difference between the main driving and the perturbation. The validity of the method is shown both in the model and in an experiment with a CO2 laser. An analysis of this scheme applied to the quadratic map near crisis illustrates the role of phase control in nonlinear dynamical systems.

  1. An interferometer-based phase control system

    NASA Astrophysics Data System (ADS)

    Ott, J. H.; Rice, J. S.

    1981-12-01

    A system for focusing and pointing the SPS power beam is discussed. The system is ground based and closed loop. One receiving antenna is required on earth. A conventional uplinked data channel transmits an 8-bit phase error correction back to the SPS for sequential calibration of each power module. Beam pointing resolution is better than 140 meters at the rectenna.

  2. An interferometer-based phase control system

    NASA Technical Reports Server (NTRS)

    Ott, J. H.; Rice, J. S.

    1981-01-01

    A system for focusing and pointing the SPS power beam is discussed. The system is ground based and closed loop. One receiving antenna is required on earth. A conventional uplinked data channel transmits an 8-bit phase error correction back to the SPS for sequential calibration of each power module. Beam pointing resolution is better than 140 meters at the rectenna.

  3. Evaluation of soil quality indicators in paddy soils under different crop rotation systems

    NASA Astrophysics Data System (ADS)

    Nadimi-Goki, Mandana; Bini, Claudio; Haefele, Stephan; Abooei, Monireh

    2013-04-01

    Evaluation of soil quality indicators in paddy soils under different crop rotation systems Soil quality, by definition, reflects the capacity to sustain plant and animal productivity, maintain or enhance water and air quality, and promote plant and animal health. Soil quality assessment is an essential issue in soil management for agriculture and natural resource protection. This study was conducted to detect the effects of four crop rotation systems (rice-rice-rice, soya-rice-rice, fallow-rice and pea-soya-rice) on soil quality indicators (soil moisture, porosity, bulk density, water-filled pore space, pH, extractable P, CEC, OC, OM, microbial respiration, active carbon) in paddy soils of Verona area, Northern Italy. Four adjacent plots which managed almost similarly, over five years were selected. Surface soil samples were collected from each four rotation systems in four times, during growing season. Each soil sample was a composite of sub-samples taken from 3 points within 350 m2 of agricultural land. A total of 48 samples were air-dried and passed through 2mm sieve, for some chemical, biological, and physical measurements. Statistical analysis was done using SPSS. Statistical results revealed that frequency distribution of most data was normal. The lowest CV% was related to pH. Analysis of variance (ANOVA) and comparison test showed that there are significant differences in soil quality indicators among crop rotation systems and sampling times. Results of multivariable regression analysis revealed that soil respiration had positively correlation coefficient with soil organic matter, soil moisture and cation exchange capacity. Overall results indicated that the rice rotation with legumes such as bean and soybean improved soil quality over a long time in comparison to rice-fallow rotation, and this is reflected in rice yield. Keywords: Soil quality, Crop Rotation System, Paddy Soils, Italy

  4. A Method for Achieving Constant Rotation Rates in a Micro-Orthogonal Linkage System

    SciTech Connect

    Dickey, F.M.; Holswade, S.C.; Romero, L.A.

    1999-05-12

    Silicon micromachine designs include engines that consist of orthog- onally oriented linear comb drive actuators mechanically connected to a rotating gear. These gears are as small as 50 {micro}m in diameter and can be driven at rotation rates exceeding 300,000 rpm. Generally, these en- gines will run with non-uniform rotation rates if the drive signals are not properly designed and maintained over a range of system parameters. We present a method for producing constant rotation rates in a micro-engine driven by an orthogonal linkage system. We show that provided the val- ues of certain masses, springs, damping factors, and lever arms are in the right proportions, the system behaves as though it were symmetrical. We will refer to systems built in this way as being quasi-symmetrical. We show that if a system is built quasi-symmetrically , then it is possible to achieve constant rotation rates even if one does not know the form of the friction function, or the value of the friction. We analyze this case in some detail.

  5. A Faraday rotation search for magnetic fields in quasar damped Ly alpha absorption systems

    NASA Technical Reports Server (NTRS)

    Oren, Abraham L.; Wolfe, Arthur M.

    1995-01-01

    We present the results of a Faraday rotation survey of 61 radio-bright QSOs conducted at the National Radio Astronomy Observatory (NRAO) Very Large Array (VLA). The Galactic contribution to the Faraday rotation is estimated and subtracted to determine the extragalactic rotation measure (RRM) for each source. Eleven of these QSOs are known to exhibit damped Ly alpha absorption. The rate of incidence of significant Faraday rotation of these 11 sources is compared to the remaining 50 and is found to be higher at the 99.8% confidence level. However, as this is based upon only two detections of Faraday rotation in the damped Ly alpha sample, the result is only tentative. If the two detections in the damped Ly alpha sample are dug to the absorbing systems, then the inferred rotation measure induced by these systems is roughly 250 rad/sq m. The two detections were for the two lowest redshift absorbers in the sample. We find that a rotation measure of 250 rad/sq m would have gone undetected for any other absorber in the damped Ly alpha sample due to the 1/(1 + 2) squared dilution of the observed RRM with redshift. Thus the data are consistent with, but do not prove, the hypothesis that Faraday rotation is a generic property of damped Ly alpha absorbers. We do not confirm the suggestion that the amplitude of RRMs increases with redshift. Rather, the data are consistent with no redshift evolution. We find that the uncertainty in the estimation of the Galactic rotation measure (GRM) is a more serious problem than previously realized for extra-galactic Faraday rotation studies of QSO absorbers. A careful analysis of current methods for estimating GRM indicate that it can be determined to an accuracy of about 15 - 20 rad/sq m. Previous studies underestimated this uncertainty by more than a factor of 2. Due to this uncertainty, rotation measures such as we suspect are associated with damped Ly alpha absorption systems can only be detected at redshifts less than z approximately

  6. System and Method for Obtaining Simultaneous Levitation and Rotation of a Ferromagnetic Object

    NASA Astrophysics Data System (ADS)

    Banerjee, Subrata; Sarkar, Mrinal Kanti; Ghosh, Arnab

    2017-02-01

    In this work a practical demonstration for simultaneous levitation and rotation for a ferromagnetic cylindrical object is presented. A hollow steel cylinder has been arranged to remain suspended stably under I-core electromagnet utilizing dc attraction type levitation principle and then arranged to rotate the levitated object around 1000 rpm speed based on eddy current based energy meter principle. Since the object is to be rotating during levitated condition the device will be frictionless, energy-efficient and robust. This technology may be applied to frictionless energy meter, wind turbine, machine tool applications, precision instruments and many other devices where easy energy-efficient stable rotation will be required. The cascade lead compensation control scheme has been applied for stabilization of unstable levitation system. The proposed device is successfully tested in the laboratory and experimental results have been produced.

  7. Ka-Band Phased Array System Characterization

    NASA Technical Reports Server (NTRS)

    Acosta, R.; Johnson, S.; Sands, O.; Lambert, K.

    2001-01-01

    Phased Array Antennas (PAAs) using patch-radiating elements are projected to transmit data at rates several orders of magnitude higher than currently offered with reflector-based systems. However, there are a number of potential sources of degradation in the Bit Error Rate (BER) performance of the communications link that are unique to PAA-based links. Short spacing of radiating elements can induce mutual coupling between radiating elements, long spacing can induce grating lobes, modulo 2 pi phase errors can add to Inter Symbol Interference (ISI), phase shifters and power divider network introduce losses into the system. This paper describes efforts underway to test and evaluate the effects of the performance degrading features of phased-array antennas when used in a high data rate modulation link. The tests and evaluations described here uncover the interaction between the electrical characteristics of a PAA and the BER performance of a communication link.

  8. Implementation of Automatic Process of Edge Rotation Diagnostic System on J-TEXT Tokamak

    NASA Astrophysics Data System (ADS)

    Zhang, Zepin; Cheng, Zhifeng; Luo, Jian; Wang, Zhijiang; Zhang, Xiaolong; Hou, Saiying; Cheng, Cheng

    2014-08-01

    A spectral diagnostic control system (SDCS) is developed to implement automatic process of the edge rotation diagnostic system on the J-TEXT tokamak. The SDCS contains a control module, data operation module, data analysis module, and data upload module. The core of this system is a newly developed software “Spectra Assist”, which completes the whole process by coupling all related subroutines and servers. The results of data correction and calculated rotation are presented. In the daily discharge of J-TEXT, SDCS is proved to have a stable performance and high efficiency in completing the process of data acquisition, operation and results output.

  9. Electrostatic 512kV Rotator/Oscillator Propulsion System

    SciTech Connect

    Maker, David

    2007-01-30

    The purpose of this paper is to show that by replacing the standard General Relativity (GR) gravity metric term with goo with a new one E and M goo in the Kerr metric you obtain some interesting propulsion effects. To prove that this replacement is plausible however one has to First show how it fits into the context of the equivalence principle and conventional quantum mechanics; here in the form of a new Dirac equation. In that regard this new Dirac equation has the advantage that it puts the general covariance at the beginning of the Dirac equation derivation, instead of in the covariant (gauge) derivatives; having the effect of reducing the number of free parameters from 18 to 1 and thus streamlining the Standard Model (SM) of particle physics. This very successful new Dirac equation has a square root of that new E and M gii in front of its kinetic term. This new E and M gii should then allow replacement the conventional gravity goo at least in the context of quantum mechanics. The implication then is that the gravity term in the Schwarzchild and in the Kerr rotational metric(s) can be replaced as well with this new E and M metric term in the context of E and M experiments with the Maxwell equations applying in the small field limit. We solve for this time increment dt in this new Kerr metric using the quadratic formula given the presence of dt2 and dt terms in that metric and show how we can measure its effect in an experiment. This dt would create an impulse/m that can be used for propulsion.

  10. SYNCHROTRON RADIO FREQUENCY PHASE CONTROL SYSTEM

    DOEpatents

    Plotkin, M.; Raka, E.C.; Snyder, H.S.

    1963-05-01

    A system for canceling varying phase changes introduced by connecting cables and control equipment in an alternating gradient synchrotron is presented. In a specific synchrotron embodiment twelve spaced accelerating stations for the proton bunches are utilized. In order to ensure that the protons receive their boost or kick at the exact instant necessary it is necessary to compensate for phase changes occurring in the r-f circuitry over the wide range of frequencies dictated by the accelerated velocities of the proton bunches. A constant beat frequency is utilized to transfer the r-f control signals through the cables and control equipment to render the phase shift constant and readily compensable. (AEC)

  11. Eye position signals modify vestibulo- and cervico-ocular fast phases during passive yaw rotations in humans.

    PubMed

    Anastasopoulos, D; Mandellos, D; Kostadima, V; Pettorossi, V E

    2002-08-01

    We studied the amplitude, latency, and probability of occurrence of fast phases (FP) in darkness to unpredictable vestibular and/or cervical yaw stimulation in normal human subjects. The rotational stimuli were smoothed trapezoidal motion transients of 14 degrees amplitude and 1.25 s duration. Eye position before stimulus application (initial eye position, IEP) was introduced as a variable by asking the subjects to fixate a spot appearing either straight ahead or at 7 degrees eccentric positions. The recordings demonstrated that the generation of FP during vestibular stimulation was facilitated when the whole-body rotation was directed opposite the eccentric IEP. Conversely, FP were attenuated if the whole-body rotation was directed toward the eccentric IEP; i.e., the FP attenuated if they were made to further eccentric positions. Cervical stimulation-induced FP were small and variable in direction when IEP was directed straight ahead before stimulus onset. Eccentric IEPs resulted in large FP, the direction of which was essentially independent of the neck-proprioceptive stimulus. They tended to move the eye toward the primary position, both when the trunk motion under the stationary head was directed toward or away from the IEP. FP dependence on IEP was evident also during head-on-trunk rotations. No consistent interaction between vestibularly and cervically induced FP was found. We conclude that extraretinal eye position signals are able to modify vestibularly evoked reflexive FP in darkness, aiming at minimizing excursions of the eyes away from the primary position. However, neck-induced FP do not relate to specific tasks of stabilization or visual search. By keeping the eyes near the primary position, FP may permit flexibility of orienting responses to incoming stimuli. This recentering bias for both vestibularly and cervically generated FP may represent a visuomotor optimizing strategy.

  12. Radio Frequency Trap for Containment of Plasmas in Antimatter Propulsion Systems Using Rotating Wall Electric Fields

    NASA Technical Reports Server (NTRS)

    Sims, William Herbert, III (Inventor); Martin, James Joseph (Inventor); Lewis, Raymond A. (Inventor)

    2003-01-01

    A containment apparatus for containing a cloud of charged particles comprises a cylindrical vacuum chamber having a longitudinal axis. Within the vacuum chamber is a containment region. A magnetic field is aligned with the longitudinal axis of the vacuum chamber. The magnetic field is time invariant and uniform in strength over the containment region. An electric field is also aligned with the longitudinal axis of the vacuum chamber and the magnetic field. The electric field is time invariant, and forms a potential well over the containment region. One or more means are disposed around the cloud of particles for inducing a rotating electric field internal to the vacuum chamber. The rotating electric field imparts energy to the charged particles within the containment region and compress the cloud of particles. The means disposed around the outer surface of the vacuum chamber for inducing a rotating electric field are four or more segments forming a segmented ring, the segments conforming to the outer surface of the vacuum chamber. Each of the segments is energized by a separate alternating voltage. The sum of the voltages imposed on each segment establishes the rotating field. When four segments form a ring, the rotating field is obtained by a signal generator applying a sinusoidal signal phase delayed by 90,180 and 270 degrees in sequence to the four segments.

  13. Radio Frequency Trap for Containment of Plasmas in Antimatter Propulsion Systems Using Rotating Wall Electric Fields

    NASA Technical Reports Server (NTRS)

    Sims, William Herbert, III (Inventor); Martin, James Joseph (Inventor); Lewis, Raymond A. (Inventor)

    2003-01-01

    A containment apparatus for containing a cloud of charged particles comprises a cylindrical vacuum chamber having a longitudinal axis. Within the vacuum chamber is a containment region. A magnetic field is aligned with the longitudinal axis of the vacuum chamber. The magnetic field is time invariant and uniform in strength over the containment region. An electric field is also aligned with the longitudinal axis of the vacuum chamber and the magnetic field. The electric field is time invariant, and forms a potential well over the containment region. One or more means are disposed around the cloud of particles for inducing a rotating electric field internal to the vacuum chamber. The rotating electric field imparts energy to the charged particles within the containment region and compress the cloud of particles. The means disposed around the outer surface of the vacuum chamber for inducing a rotating electric field are four or more segments forming a segmented ring, the segments conforming to the outer surface of the vacuum chamber. Each of the segments is energized by a separate alternating voltage. The sum of the voltages imposed on each segment establishes the rotating field. When four segments form a ring, the rotating field is obtained by a signal generator applying a sinusoidal signal phase delayed by 90,180 and 270 degrees in sequence to the four segments.

  14. Diversifying crop rotations with pulses enhances system productivity

    PubMed Central

    Gan, Yantai; Hamel, Chantal; O’Donovan, John T.; Cutforth, Herb; Zentner, Robert P.; Campbell, Con A.; Niu, Yining; Poppy, Lee

    2015-01-01

    Agriculture in rainfed dry areas is often challenged by inadequate water and nutrient supplies. Summerfallowing has been used to conserve rainwater and promote the release of nitrogen via the N mineralization of soil organic matter. However, summerfallowing leaves land without any crops planted for one entire growing season, creating lost production opportunity. Additionally, summerfallowing has serious environmental consequences. It is unknown whether alternative systems can be developed to retain the beneficial features of summerfallowing with little or no environmental impact. Here, we show that diversifying cropping systems with pulse crops can enhance soil water conservation, improve soil N availability, and increase system productivity. A 3-yr cropping sequence study, repeated for five cycles in Saskatchewan from 2005 to 2011, shows that both pulse- and summerfallow-based systems enhances soil N availability, but the pulse system employs biological fixation of atmospheric N2, whereas the summerfallow-system relies on ‘mining’ soil N with depleting soil organic matter. In a 3-yr cropping cycle, the pulse system increased total grain production by 35.5%, improved protein yield by 50.9%, and enhanced fertilizer-N use efficiency by 33.0% over the summerfallow system. Diversifying cropping systems with pulses can serve as an effective alternative to summerfallowing in rainfed dry areas. PMID:26424172

  15. Impact and Estimation of Balance Coordinate System Rotations and Translations in Wind-Tunnel Testing

    NASA Technical Reports Server (NTRS)

    Toro, Kenneth G.; Parker, Peter A.

    2017-01-01

    Discrepancies between the model and balance coordinate systems lead to biases in the aerodynamic measurements during wind-tunnel testing. The reference coordinate system relative to the calibration coordinate system at which the forces and moments are resolved is crucial to the overall accuracy of force measurements. This paper discusses sources of discrepancies and estimates of coordinate system rotation and translation due to machining and assembly differences. A methodology for numerically estimating the coordinate system biases will be discussed and developed. Two case studies are presented using this methodology to estimate the model alignment. Examples span from angle measurement system shifts on the calibration system to discrepancies in actual wind-tunnel data. The results from these case-studies will help aerodynamic researchers and force balance engineers to better the understand and identify potential differences in calibration systems due to coordinate system rotation and translation.

  16. Monitoring the rotation status of wind turbine blades using high-speed camera system

    NASA Astrophysics Data System (ADS)

    Zhang, Dongsheng; Chen, Jubing; Wang, Qiang; Li, Kai

    2013-06-01

    The measurement of the rotating object is of great significance in engineering applications. In this study, a high-speed dual camera system based on 3D digital image correlation has been developed in order to monitor the rotation status of the wind turbine blades. The system allows sequential images acquired at a rate of 500 frames per second (fps). An improved Newton-Raphson algorithm has been proposed which enables detection movement including large rotation and translation in subpixel precision. The simulation experiments showed that this algorithm is robust to identify the movement if the rotation angle is less than 16 degrees between the adjacent images. The subpixel precision is equivalent to the normal NR algorithm, i.e.0.01 pixels in displacement. As a laboratory research, the high speed camera system was used to measure the movement of the wind turbine model which was driven by an electric fan. In the experiment, the image acquisition rate was set at 387 fps and the cameras were calibrated according to Zhang's method. The blade was coated with randomly distributed speckles and 7 locations in the blade along the radial direction were selected. The displacement components of these 7 locations were measured with the proposed method. Conclusion is drawn that the proposed DIC algorithm is suitable for large rotation detection, and the high-speed dual camera system is a promising, economic method in health diagnose of wind turbine blades.

  17. System for automatically aligning a support roller system under a rotating body

    DOEpatents

    Singletary, B.H.

    1982-07-21

    Two support rings on a rotatable drum respectively engage conically tapered end surfaces of support rollers mounted on pivot universally relative to its axis of rotation and translate therealong. Rotation of the drum on differential conical support roller diameters causes pivotal steering and axial translation of support roller until roller is centered on support rings.

  18. System for automatically aligning a support roller system under a rotating body

    DOEpatents

    Singletary, B. Huston

    1983-01-01

    Two support rings on a rotatable drum respectively engage conically tapered nd surfaces of support rollers mounted on pivot universally relative to its axis of rotation and translate therealong. Rotation of the drum on differential conical support roller diameters causes pivotal steering and axial translation of support roller until roller is centered on support rings.

  19. Security of continuous-variable quantum key distribution: towards a de Finetti theorem for rotation symmetry in phase space

    NASA Astrophysics Data System (ADS)

    Leverrier, A.; Karpov, E.; Grangier, P.; Cerf, N. J.

    2009-11-01

    Proving the unconditional security of quantum key distribution (QKD) is a highly challenging task as one needs to determine the most efficient attack compatible with experimental data. This task is even more demanding for continuous-variable QKD as the Hilbert space where the protocol is described is infinite dimensional. A possible strategy to address this problem is to make an extensive use of the symmetries of the protocol. In this paper, we investigate a rotation symmetry in phase space that is particularly relevant to continuous-variable QKD, and explore the way towards a new quantum de Finetti theorem that would exploit this symmetry and provide a powerful tool to assess the security of continuous-variable protocols. As a first step, a single-party asymptotic version of this quantum de Finetti theorem in phase space is derived.

  20. Performance of phased rotation, conformation and translation function: accurate protein model building with tripeptidic and tetrapeptidic fragments.

    PubMed

    Pavelcík, Frantisek; Václavík, Jirí

    2010-09-01

    The automatic building of protein structures with tripeptidic and tetrapeptidic fragments was investigated. The oligopeptidic conformers were positioned in the electron-density map by a phased rotation, conformation and translation function and refined by a real-space refinement. The number of successfully located fragments lay within the interval 75-95% depending on the resolution and phase quality. The overlaps of partially located fragments were analyzed. The correctly positioned fragments were connected into chains. Chains formed in this way were extended directly into the electron density and a sequence was assigned. In the initial stage of the model building the number of located fragments was between 60% and 95%, but this number could be increased by several cycles of reciprocal-space refinement and automatic model rebuilding. A nearly complete structure can be obtained on the condition that the resolution is reasonable. Computer graphics will only be needed for a final check and small corrections.

  1. Plasmonic metasurface for optical rotation

    NASA Astrophysics Data System (ADS)

    Wen, Dandan; Yue, Fuyong; Zhang, Chunmei; Zang, Xiaofei; Liu, Huigang; Wang, Wei; Chen, Xianzhong

    2017-07-01

    Optical activity, known as optical rotation, has found many applications ranging from optical isolators and concentration determination to sophisticated organic structure analysis. Miniaturization and integration are two continuing trends in the production of photonic devices. However, there are fundamental or technical challenges to further reduce the thickness of the optical elements to generate desirable polarization rotation with broadband and high efficiency. Here, in this paper, an efficient method to realize optical rotation for the visible and near infrared light is experimentally demonstrated using an ultrathin metasurface. The polarization rotation originates from the additional phase difference between the two circular polarizations induced by the rectangular metasurface phase grating. Benefiting from the advantages of the reflective metasurface, the fabricated highly efficient device can operate in the broadband. Good agreement between the designed rotation angle and measured results renders this technique very attractive for practical applications in device miniaturization and system integration.

  2. Vapor-phase heat-transport system

    NASA Astrophysics Data System (ADS)

    Hedstrom, J. C.

    1983-11-01

    A vapor-phase heat-transport system is being tested in one of the passive test cells at Los Alamos. The system consists of one selective-surface collector and a condenser inside a water storage tank. The refrigerant, R-11, can be returned to the collector by gravity or with a pump. Results from several operating configurations are presented, together with a comparison with other passive systems. A new self-pumping concept is presented.

  3. Vapor-phase heat-transport system

    NASA Astrophysics Data System (ADS)

    Hedstrom, J. C.

    A vapor-phase heat-transport system is being tested in one of the passive test cells at Los Alamos. The system consists of one selective-surface collector and a condenser inside a water storage tank. The refrigerant, R-11, can be returned to the collector by gravity or with a pump. Results from several operating configurations are presented, together with a comparison with other passive systems. A new self-pumping concept is presented.

  4. Nutrients in soil water under three rotational cropping systems, Iowa, USA

    USDA-ARS?s Scientific Manuscript database

    tSubsurface nutrient losses differ between annual and perennial crops; however, nutrient losses fromcropping systems that rotate annual and perennial crops are poorly documented. This study trackedNO3-N and P in soil water under three cropping systems suited for the U.S. Midwest, includingtwo-year (...

  5. Cover crop termination timing is critical in organic rotational no-till systems

    USDA-ARS?s Scientific Manuscript database

    Cover crop-based rotational no-till enables organic farmers to reduce labor and build soil health. In these systems, cover crops are terminated with a roller-crimper and cash crops are direct-seeded into the mulch. A cropping system experiment was conducted at three locations in the Mid-Atlantic t...

  6. A Rotating Phantom: Evaluation Of Hard And Software For Gated Gamma Camera Systems In Nuclear Medicine.

    NASA Astrophysics Data System (ADS)

    Vanregemorter, J.; Deconinck, F.; Bossuyt, A.

    1986-06-01

    In this paper we describe a rotating dynamic phantom which allows quality control of hardware and software for gated gamma camera systems in nuclear medicine. The phantom not only allows simulation of a gated heart study but also testing of the response of the whole system to time frequencies.

  7. Field trials of a short-rotation biomass feller buncher and selected harvesting systems

    Treesearch

    Bryce J. Stokes; Douglas J. Frederick; Dennis T. Curtin

    1986-01-01

    A continuous-speed felling and bunching prototype machine was evaluated in harvesting a three-year-old, short-rotation sycamore plantation. A small tractor, grapple skidder, and large chipper were evaluate along with the prototype machine as complete harvesting systems. Prediction equations, production rates, and costs were developed for each component of the systems....

  8. Electronic system for digital acquisition of rotational panoramic radiographs

    SciTech Connect

    McDavid, W.D.; Dove, S.B.; Welander, U.; Tronje, G. )

    1991-04-01

    A prototype system for digital panoramic imaging of the maxillofacial complex has been developed. In this system x-ray film is replaced by an electronic sensor that delivers the image information to a computer for storage in digital format. The images, which are similar to conventional panoramic radiographs, are displayed on a high-resolution video monitor and may be stored on optical disk for future use. Hard-copy output is also available. The present prototype system has been installed on an Orthopantomograph model OP10 panoramic x-ray machine is programmed for operation with this machine, but in principle the system can be installed on any such device. The system may be incorporated into the design of future panoramic x-ray systems or may be used to retrofit panoramic x-ray systems now using photographic film to record the radiographic image. Greater sensitivity of electronic sensors should make possible a reduction of x-ray dose to the patient, compared with film-based systems.

  9. Review of analysis methods for rotating systems with periodic coefficients

    NASA Technical Reports Server (NTRS)

    Dugundji, J.; Wendell, J. H.

    1981-01-01

    Two of the more common procedures for analyzing the stability and forced response of equations with periodic coefficients are reviewed: the use of Floquet methods, and the use of multiblade coordinate and harmonic balance methods. The analysis procedures of these periodic coefficient systems are compared with those of the more familiar constant coefficient systems.

  10. Local Anesthetics in the Gas-Phase the Rotational Spectrum of Butamben and Isobutamben

    NASA Astrophysics Data System (ADS)

    Vallejo-López, Montserrat; Ecija, Patricia; Caminati, Walther; Grabow, Jens-Uwe; Lesarri, Alberto; Cocinero, Emilio J.

    2016-06-01

    Benzocaine (BZ), butamben (BTN) and isobutamben (BTI) are local anesthetics characterized by a hydrophilic head and a lipophilic aliphatic tail linked by an aminobenzoate group. Previous rotational work on BZ (H2N-C6H4-COO-Et) showed that its ethyl aliphatic tail may adopt either in-plane (trans) or out of plane (gauche) conformations, with a low interconversion barrier below 50 cm-1. Here we extend the rotational study to BTN and BTI, isolated in a supersonic jet expansion and vaporized either by heating or UV ps-laser ablation methods. Both molecules share a 14 heavy-atoms skeleton, differing in their butyl (-(CH2)3-CH3) or isobutyl (-CH2-CH(CH3)2) four-carbon tail. We detected a single conformer for BTN and two conformers for BTI. The two molecules do not adopt an all-trans carbon skeleton. Conversely, the β-ethyl carbon in BTN is gauche. For BTI the β-carbon may be either trans or gauche. The microwave spectrum covered the cm- (BTN, BTI, 6-18 GHz) and mm-wave (BTW, 50-75 GHz) frequency ranges.In all the cases, rotational and centrifugal distortion constants as well as the diagonal elements of the 14N nuclear quadrupole coupling tensor were accurate determined and compared to the theoretical results (ab initio and DFT). No transitions belonging to configurations predicted as higher minima of the PES were found, pointing out that conformational interconversions may take place in the jet. A. Lesarri, S. T. Shipman, G. G. Brown, L. Alvarez-Valtierra, R. D. Suenram, B. H. Pate, Int. Symp. Mol. Spectrosc., 2008, Comm. RH07. E. Aguado, A. Longarte, E. Alejandro, J. A. Fernández, F. Castaño, J. Phys. Chem. A, 2006, 110, 6010.

  11. Rotatable high-resolution ARPES system for tunable linear-polarization geometry

    PubMed Central

    Iwasawa, H.; Schwier, E. F.; Zheng, M.; Kojima, Y.; Hayashi, H.; Jiang, J.; Higashiguchi, M.; Aiura, Y.; Namatame, H.; Taniguchi, M.

    2017-01-01

    A rotatable high-resolution angle-resolved photoemission spectroscopy (ARPES) system has been developed to utilize tunable linear-polarization geometries on the linear undulator beamline (BL-1) at Hiroshima Synchrotron Radiation Center. By rotating the whole ARPES measurement system, the photoelectron detection plane can be continuously changed from parallel to normal against the electric field vector of linearly polarized undulator radiation. This polarization tunability enables us to identify the symmetry of the initial electronic states with respect to the mirror planes, and to selectively observe the electronic states based on the dipole selection rule in the photoemission process. Specifications of the rotatable high-resolution ARPES system are described, as well as its capabilities with some representative experimental results. PMID:28664891

  12. Bifurcation analysis of surge and rotating stall in the Moore-Greitzer compression system

    NASA Astrophysics Data System (ADS)

    Hos, Csaba; Champneys, Alan; Kullmann, Laszlo

    2003-04-01

    A simple compression system model, described by a set of three ordinary nonlinear differential equations (the Moore-Greitzer model) is studied using bifurcation analysis to give a qualitative understanding of the presence of surge and rotating stall. First, three parameter values are chosen and a reduced planar system is studied to detect the local bifurcations of pure surge modes. The global bifurcation diagrams are then completed with the help of the continuation software AUTO. A special feature of this 2D system is a set of parameter values where two Takens-Bogdanov points merge. As a next step, the interaction of surge and rotating stall modes is analysed using the same branch tracking technique. Several novel bifurcation scenarios are described. Two-parameter bifurcation maps are computed and a satisfactory agreement with experimental results is found. An explanation is given for the onset of deep surge, rotating stall, classic surge and the hysteresis effects experienced in measurements.

  13. VizieR Online Data Catalog: Rotating Wolf-Rayet stars in post RSG/LBV phase (Graefener+, 2012)

    NASA Astrophysics Data System (ADS)

    Graefener, G.; Vink, J. S.; Harries, T. J.; Langer, N.

    2013-01-01

    Wolf-Rayet (WR) stars with fast rotating cores are thought to be the direct progenitors of long-duration gamma-ray bursts (LGRBs). A well accepted evolutionary channel towards LGRBs is chemically-homogeneous evolution at low metallicities, which completely avoids a red supergiant (RSG), or luminous blue variable (LBV) phase. On the other hand, strong absorption features with velocities of several hundred km/s have been found in some LGRB afterglow spectra (GRB 020813 and GRB 021004), which have been attributed to dense circumstellar (CS) material that has been ejected in a previous RSG or LBV phase, and is interacting with a fast WR-type stellar wind. Here we investigate the properties of Galactic WR stars and their environment to identify similar evolutionary channels that may lead to the formation of LGRBs. We compile available information on the spectropolarimetric properties of 29 WR stars, the presence of CS ejecta for 172 WR stars, and the CS velocities in the environment of 34 WR stars in the Galaxy. We use linear line-depolarization as an indicator of rotation, nebular morphology as an indicator of stellar ejecta, and velocity patterns in UV absorption features as an indicator of increased velocities in the CS environment. (2 data files).

  14. A Novel Phase Rotation Scheme on the Constellations for the E-UTRA Uplink ACK/NACK Signals

    NASA Astrophysics Data System (ADS)

    Nakao, Seigo; Takata, Tomohumi; Imamura, Daichi; Hiramatsu, Katsuhiko

    Hybrid automatic repeat request (HARQ) is employed for the Evolved Universal Terrestrial Radio Access (E-UTRA) downlink. The ACK/NACK signals from each user equipment (UE) are multiplexed by code division multiple access (CDMA) and transmitted via a physical uplink control channel (PUCCH). The ACK/NACK signals are code spread by the cyclic shift (CS) sequences made from zero auto-correlation (ZAC) sequences; however, the orthogonality of these sequences is not guaranteed depending on the propagation channels; moreover, the amount of inter-code interference (ICI) depends on the delay spread of the channel and the transmitting timing control error of each UE. In the conventional PUCCH structure, ICI between two ACK signals does not degrade their detection performance, whereas ICI between an ACK signal and a NACK signal degrades the detection performance. This causes a serious gap between the detection performances of ACK and NACK signals, because generally in a PUCCH, there are more ACK signals than NACK signals. In this paper, we propose a novel phase rotation scheme on the constellations of ACK/NACK signals that can resolve this issue, and the simulation evaluation results confirm the benefits of the proposed phase rotation scheme.

  15. The CentO satellite confers translational and rotational phasing on cenH3 nucleosomes in rice centromeres.

    PubMed

    Zhang, Tao; Talbert, Paul B; Zhang, Wenli; Wu, Yufeng; Yang, Zujun; Henikoff, Jorja G; Henikoff, Steven; Jiang, Jiming

    2013-12-10

    Plant and animal centromeres comprise megabases of highly repeated satellite sequences, yet centromere function can be specified epigenetically on single-copy DNA by the presence of nucleosomes containing a centromere-specific variant of histone H3 (cenH3). We determined the positions of cenH3 nucleosomes in rice (Oryza sativa), which has centromeres composed of both the 155-bp CentO satellite repeat and single-copy non-CentO sequences. We find that cenH3 nucleosomes protect 90-100 bp of DNA from micrococcal nuclease digestion, sufficient for only a single wrap of DNA around the cenH3 nucleosome core. cenH3 nucleosomes are translationally phased with 155-bp periodicity on CentO repeats, but not on non-CentO sequences. CentO repeats have an ∼10-bp periodicity in WW dinucleotides and in micrococcal nuclease cleavage, providing evidence for rotational phasing of cenH3 nucleosomes on CentO and suggesting that satellites evolve for translational and rotational stabilization of centromeric nucleosomes.

  16. Ocular Reflex Phase during Off-Vertical Axis Rotation in Humans is Modified by Head-Turn-On-Trunk Position

    PubMed Central

    Douglas, Samantha B.; Clément, Gilles; Denise, Pierre; Wood, Scott J.

    2017-01-01

    Constant velocity Off-Vertical Axis Rotation (OVAR) imposes a continuously varying orientation of the head and body relative to gravity, which generates a modulation of horizontal (conjugate and vergence), vertical, and torsional eye movements. We introduced the head-turn-on-trunk paradigm during OVAR to examine the extent to whether the modulation of these ocular reflexes is mediated by graviceptors in the head, i.e., otoliths, versus other body graviceptors. Ten human subjects were rotated in darkness about their longitudinal axis 20° off-vertical at a constant velocity of 45 and 180°/s, corresponding to 0.125 and 0.5 Hz. Binocular responses were obtained with the head and trunk aligned, and then with the head turned relative to the trunk 40° to the right or left of center. The modulation of vertical and torsional eye position was greater at 0.125 Hz while the modulation of horizontal and vergence slow phase velocity was greater at 0.5 Hz. The amplitude modulation was not significantly altered by head-on-trunk position, but the phases shifted towards alignment with the head. These results are consistent with the modulation of ocular reflexes during OVAR being primarily mediated by the otoliths in response to the sinusoidally varying linear acceleration along the interaural and naso-occipital head axis. PMID:28176802

  17. The Nano-X Linear Accelerator: A Compact and Economical Cancer Radiotherapy System Incorporating Patient Rotation.

    PubMed

    Eslick, Enid M; Keall, Paul J

    2015-10-01

    Rapid technological improvements in radiotherapy delivery results in improved outcomes to patients, yet current commercial systems with these technologies on board are costly. The aim of this study was to develop a state-of-the-art cancer radiotherapy system that is economical and space efficient fitting with current world demands. The Nano-X system is a compact design that is light weight combining a patient rotation system with a vertical 6 MV fixed beam. In this paper, we present the Nano-X system design configuration, an estimate of the system dimensions and its potential impact on shielding cost reductions. We provide an assessment of implementing such a radiotherapy system clinically, its advantages and disadvantages compared to a compact conventional gantry rotating linac. The Nano-X system has several differentiating features from current radiotherapy systems, it is [1] compact and therefore can fit into small vaults, [2] light weight, and [3] engineering efficient, i.e., it rotates a relatively light component and the main treatment delivery components are not under rotation (e.g., DMLCs). All these features can have an impact on reducing the costs of the system. In terms of shielding requirements, leakage radiation was found to be the dominant contributor to the Nano-X vault and as such no primary shielding was necessary. For a low leakage design, the Nano-X vault footprint and concrete volume required is 17 m2 and 35 m3 respectively, compared to 54 m2 and 102 m3 for a conventional compact linac vault, resulting in decreased costs in shielding. Key issues to be investigated in future work are the possible patient comfort concerns associated with the patient rotation system, as well as the magnitude of deformation and subsequent adaptation requirements.

  18. Non-interferometric determination of Berry phases: Precession reversal in noiseless systems

    NASA Astrophysics Data System (ADS)

    Englman, R.

    2016-11-01

    It is pointed out that the transition spectra between energy eigen-states of time periodic two level systems manifesting a Berry phase (BP) have two-peaked structures. These are similar to the twin peaks described by the author in Englman [J. Chem. Phys. 144, 024103 (2016)] for the "Molecular Aharonov-Bohm effect," but are now of unequal heights depending on the values of the BP. A rotation-directional reversal protocol of the precessing field allows a novel, spectroscopic (not interferometric or phase-probing) determination of the dynamic and topological phases from the peak-to-peak line shape distances, here worked out for noiseless BP systems.

  19. Characteristics of steady vibration in a rotating hub-beam system

    NASA Astrophysics Data System (ADS)

    Zhao, Zhen; Liu, Caishan; Ma, Wei

    2016-02-01

    A rotating beam features a puzzling character in which its frequencies and modal shapes may vary with the hub's inertia and its rotating speed. To highlight the essential nature behind the vibration phenomena, we analyze the steady vibration of a rotating Euler-Bernoulli beam with a quasi-steady-state stretch. Newton's law is used to derive the equations governing the beam's elastic motion and the hub's rotation. A combination of these equations results in a nonlinear partial differential equation (PDE) that fully reflects the mutual interaction between the two kinds of motion. Via the Fourier series expansion within a finite interval of time, we reduce the PDE into an infinite system of a nonlinear ordinary differential equation (ODE) in spatial domain. We further nondimensionalize the ODE and discretize it via a difference method. The frequencies and modal shapes of a general rotating beam are then determined numerically. For a low-speed beam where the ignorance of geometric stiffening is feasible, the beam's vibration characteristics are solved analytically. We validate our numerical method and the analytical solutions by comparing with either the past experiments or the past numerical findings reported in existing literature. Finally, systematic simulations are performed to demonstrate how the beam's eigenfrequencies vary with the hub's inertia and rotating speed.

  20. Emergency vehicle alert system, phase 2

    NASA Technical Reports Server (NTRS)

    Barr, Tom; Harper, Warren; Reed, Bill; Wallace, David

    1993-01-01

    The EVAS provides warning for hearing-impaired motor vehicle drivers that an emergency vehicle is in the local vicinity. Direction and distance to the emergency vehicle are presented visually to the driver. This is accomplished by a special RF transmission/reception system. During this phase the receiver and transmitter from Phase 1 were updated and modified and a directional antenna developed. The system was then field tested with good results. Static and dynamic (moving vehicle) tests were made with the direction determined correctly 98 percent of the time.

  1. GPS synchronized power system phase angle measurements

    NASA Astrophysics Data System (ADS)

    Wilson, Robert E.; Sterlina, Patrick S.

    1994-09-01

    This paper discusses the use of Global Positioning System (GPS) synchronized equipment for the measurement and analysis of key power system quantities. Two GPS synchronized phasor measurement units (PMU) were installed before testing. It was indicated that PMUs recorded the dynamic response of the power system phase angles when the northern California power grid was excited by the artificial short circuits. Power system planning engineers perform detailed computer generated simulations of the dynamic response of the power system to naturally occurring short circuits. The computer simulations use models of transmission lines, transformers, circuit breakers, and other high voltage components. This work will compare computer simulations of the same event with field measurement.

  2. Dynamics of rotationally fissioned asteroids: Source of observed small asteroid systems

    NASA Astrophysics Data System (ADS)

    Jacobson, Seth A.; Scheeres, Daniel J.

    2011-07-01

    We present a model of near-Earth asteroid (NEA) rotational fission and ensuing dynamics that describes the creation of synchronous binaries and all other observed NEA systems including: doubly synchronous binaries, high- e binaries, ternary systems, and contact binaries. Our model only presupposes the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect, "rubble pile" asteroid geophysics, and gravitational interactions. The YORP effect torques a "rubble pile" asteroid until the asteroid reaches its fission spin limit and the components enter orbit about each other (Scheeres, D.J. [2007]. Icarus 189, 370-385). Non-spherical gravitational potentials couple the spin states to the orbit state and chaotically drive the system towards the observed asteroid classes along two evolutionary tracks primarily distinguished by mass ratio. Related to this is a new binary process termed secondary fission - the secondary asteroid of the binary system is rotationally accelerated via gravitational torques until it fissions, thus creating a chaotic ternary system. The initially chaotic binary can be stabilized to create a synchronous binary by components of the fissioned secondary asteroid impacting the primary asteroid, solar gravitational perturbations, and mutual body tides. These results emphasize the importance of the initial component size distribution and configuration within the parent asteroid. NEAs may go through multiple binary cycles and many YORP-induced rotational fissions during their approximately 10 Myr lifetime in the inner Solar System. Rotational fission and the ensuing dynamics are responsible for all NEA systems including the most commonly observed synchronous binaries.

  3. Post-Transition State Dynamics in Gas Phase Reactivity: Importance of Bifurcations and Rotational Activation.

    PubMed

    Martín-Sómer, Ana; Yáñez, Manuel; Hase, William L; Gaigeot, Marie-Pierre; Spezia, Riccardo

    2016-03-08

    Beyond the established use of thermodynamic vs kinetic control to explain chemical reaction selectivity, the concept of bifurcations on a potential energy surface (PES) is proving to be of pivotal importance with regard to selectivity. In this article, we studied by means of post-transition state (TS) direct dynamics simulations the effect that vibrational and rotational excitation at the TS may have on selectivity on a bifurcating PES. With this aim, we studied the post-TS unimolecular reactivity of the [Ca(formamide)](2+) ion, for which Coulomb explosion and neutral loss reactions compete. The PES exhibits different kinds of nonintrinsic reaction coordinate (IRC) dynamics, among them PES bifurcations, which direct the trajectories to multiple reaction paths after passing the TS. Direct dynamics simulations were used to distinguish between the bifurcation non-IRC dynamics and non-IRC dynamics arising from atomistic motions directing the trajectories away from the IRC. Overall, we corroborated the idea that kinetic selectivity often does not reduce to a simple choice between paths with different barrier heights and instead dynamical behavior after passing the TS may be crucial. Importantly, rotational excitation may play a pivotal role on the reaction selectivity favoring nonthermodynamic products.

  4. Quantum phase fluctuations of coherent and thermal light coupled to a non-degenerate parametric oscillator beyond rotating wave approximation

    NASA Astrophysics Data System (ADS)

    Alam, Mohosin; Mandal, Swapan; Wahiddin, Mohamed Ridza

    2017-09-01

    The essence of the rotating wave approximation (RWA) is to eliminate the non-conserving energy terms from the interaction Hamiltonian. The cost of using RWA is heavy if the frequency of the input radiation field is low (e.g. below optical region). The well known Bloch-Siegert effect is the out come of the inclusion of the terms which are normally neglected under RWA. We investigate the fluctuations of the quantum phase of the coherent light and the thermal light coupled to a nondegenerate parametric oscillator (NDPO). The Hamiltonian and hence the equations of motion involving the signal and idler modes are framed by using the strong (classical) pump condition. These differential equations are nonlinear in nature and are found coupled to each other. Without using the RWA, we obtain the analytical solutions for the signal and idler fields. These solutions are obtained up to the second orders in dimensionless coupling constants. The analytical expressions for the quantum phase fluctuation parameters due to Carruther's and Nieto are obtained in terms of the coupling constants and the initial photon numbers of the input radiation field. Moreover, we keep ourselves confined to the Pegg-Barnett formalism for measured phase operators. With and without using the RWA, we compare the quantum phase fluctuations for coherent and thermal light coupled to the NDPO. In spite of the significant departures (quantitative), the qualitative features of the phase fluctuation parameters for the input thermal light are identical for NDPO with and without RWA. On the other hand, we report some interesting results of input coherent light coupled to the NDPO which are substantially different from their RWA counterpart. In spite of the various quantum optical phenomena in a NDPO, we claim that it is the first effort where the complete analytical approach towards the solutions and hence the quantum phase fluctuations of input radiation fields coupled to it are obtained beyond rotating wave

  5. Rotating target wheel system for super-heavy element production at ATLAS

    NASA Astrophysics Data System (ADS)

    Greene, John P.; Heinz, Andreas; Falout, Joe; Janssens, Robert V. F.

    2004-03-01

    A new scattering chamber housing a large diameter rotating target wheel has been designed and constructed in front of the Fragment Mass Analyzer (FMA) for the production of very heavy nuclei ( Z>100) using beams from the Argonne Tandem Linear Accelerator System (ATLAS). In addition to the target and drive system, the chamber is extensively instrumented in order to monitor target performance and deterioration. Capabilities also exist to install rotating entrance and exit windows for gas cooling of the target within the scattering chamber. The design and initial tests are described.

  6. Cell partition in two phase polymer systems

    NASA Technical Reports Server (NTRS)

    Brooks, D. E.

    1979-01-01

    Aqueous phase-separated polymer solutions can be used as support media for the partition of biological macromolecules, organelles and cells. Cell separations using the technique have proven to be extremely sensitive to cell surface properties but application of the systems are limited to cells or aggregates which do not significantly while the phases are settling. Partition in zero g in principle removes this limitation but an external driving force must be applied to induce the phases to separate since their density difference disappears. We have recently shown that an applied electric field can supply the necessary driving force. We are proposing to utilize the NASA FES to study field-driven phase separation and cell partition on the ground and in zero g to help define the separation/partition process, with the ultimate goal being to develop partition as a zero g cell separation technique.

  7. Rotational testing.

    PubMed

    Furman, J M

    2016-01-01

    The natural stimulus for the semicircular canals is rotation of the head, which also might stimulate the otolith organs. Vestibular stimulation usually induces eye movements via the vestibulo-ocular reflex (VOR). The orientation of the subject with respect to the axis of rotation and the orientation of the axis of rotation with respect to gravity together determine which labyrinthine receptors are stimulated for particular motion trajectories. Rotational testing usually includes the measurement of eye movements via a video system but might use a subject's perception of motion. The most common types of rotational testing are whole-body computer-controlled sinusoidal or trapezoidal stimuli during earth-vertical axis rotation (EVAR), which stimulates primarily the horizontal semicircular canals bilaterally. Recently, manual impulsive rotations, known as head impulse testing (HIT), have been developed to assess individual horizontal semicircular canals. Most types of rotational stimuli are not used routinely in the clinical setting but may be used in selected research environments. This chapter will discuss clinically relevant rotational stimuli and several types of rotational testing that are used primarily in research settings.

  8. 3D shape and eccentricity measurements of fast rotating rough objects by two mutually tilted interference fringe systems

    NASA Astrophysics Data System (ADS)

    Czarske, J. W.; Kuschmierz, R.; Günther, P.

    2013-06-01

    Precise measurements of distance, eccentricity and 3D-shape of fast moving objects such as turning parts of lathes, gear shafts, magnetic bearings, camshafts, crankshafts and rotors of vacuum pumps are on the one hand important tasks. On the other hand they are big challenges, since contactless precise measurement techniques are required. Optical techniques are well suitable for distance measurements of non-moving surfaces. However, measurements of laterally fast moving surfaces are still challenging. For such tasks the laser Doppler distance sensor technique was invented by the TU Dresden some years ago. This technique has been realized by two mutually tilted interference fringe systems, where the distance is coded in the phase difference between the generated interference signals. However, due to the speckle effect different random envelopes and phase jumps of the interference signals occur. They disturb the phase difference estimation between the interference signals. In this paper, we will report on a scientific breakthrough on the measurement uncertainty budget which has been achieved recently. Via matching of the illumination and receiving optics the measurement uncertainty of the displacement and distance can be reduced by about one magnitude. For displacement measurements of a recurring rough surface a standard deviation of 110 nm were attained at lateral velocities of 5 m / s. Due to the additionally measured lateral velocity and the rotational speed, the two-dimensional shape of rotating objects is calculated. The three-dimensional shape can be conducted by employment of a line camera. Since the measurement uncertainty of the displacement, vibration, distance, eccentricity, and shape is nearly independent of the lateral surface velocity, this technique is predestined for fast-rotating objects. Especially it can be advantageously used for the quality control of workpieces inside of a lathe towards the reduction of process tolerances, installation times and

  9. Ray selection for optimization of rotationally symmetric systems

    NASA Astrophysics Data System (ADS)

    Forbes, Greg W.; Ruoff, Johannes; Flesch, Andreas; Kerwien, Norbert

    2016-06-01

    Efficient performance assessment is essential during the design of systems involving complex aspheres. We present new classes of pupil sampling schemes that, with a reduced number of rays, yield accurate estimates of the RMS wavefront aberration over a circular pupil. It turns out that the number of samples in the pupil can be reduced by a factor of about 0.7, and these ideas can also be expected to lead to a similar additional reduction factor when averaging over the field and color. Beyond that, analysis of a patented lens system is used to establish the path to further significant reductions.

  10. Accurate gas-phase structure of para-dioxane by fs Raman rotational coherence spectroscopy and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Den, Takuya; Menzi, Samuel; Frey, Hans-Martin; Leutwyler, Samuel

    2017-08-01

    p-Dioxane is non-polar, hence its rotational constants cannot be determined by microwave rotational coherence spectroscopy (RCS). We perform high-resolution gas-phase rotational spectroscopy of para-dioxane-h8 and -d8 using femtosecond time-resolved Raman RCS in a gas cell at T = 293 K and in a pulsed supersonic jet at T ˜130 K. The inertial tensor of p-dioxane-h8 is strongly asymmetric, leading to a large number of asymmetry transients in its RCS spectrum. In contrast, the d8-isotopomer is a near-oblate symmetric top that exhibits a much more regular RCS spectrum with few asymmetry transients. Fitting the fs Raman RCS transients of p-dioxane-h8 to an asymmetric-top model yields the ground-state rotational constants A0 = 5084.4(5) MHz, B0 = 4684(1) MHz, C0 = 2744.7(8) MHz, and (A0 + B0)/2 = 4884.5(7) MHz (±1 σ ). The analogous values for p-dioxane-d8 are A0 = 4083(2) MHz, B0 = 3925(4) MHz, C0 = 2347.1(6) MHz, and (A0 + B0)/2 = 4002.4(6) MHz. We determine the molecular structure with a semi-experimental approach involving the highly correlated coupled-cluster singles, doubles and iterated triples method and the cc-pCVXZ basis set series from double- to quadruple-zeta (X = D, T, Q). Combining the calculated vibrationally averaged rotational constants A0c a l c(X ) ,B0c a l c(X ) ,C0c a l c(X ) for increasing basis-set size X with non-linear extrapolation to the experimental constants A0e x p,B0e x p,C0e x p allows to determine the equilibrium ground state structure of p-dioxane. For instance, the equilibrium C-C and C-O bond lengths are re(CC) = 1.5135(3) Å and re(CO) = 1.4168(4) Å, and the four axial C-H bond lengths are 0.008 Å longer than the four equatorial ones. The latter is ascribed to the trans-effect (anomeric effect), i.e., the partial delocalization of the electron lone-pairs on the O atoms that are oriented trans, relative to the axial CH bonds.

  11. Self locking drive system for rotating plug of a nuclear reactor

    DOEpatents

    Brubaker, James E.

    1979-01-01

    This disclosure describes a self locking drive system for rotating the plugs on the head of a nuclear reactor which is able to restrain plug motion if a seismic event should occur during reactor refueling. A servomotor is engaged via a gear train and a bull gear to the plug. Connected to the gear train is a feedback control system which allows the motor to rotate the plug to predetermined locations for refueling of the reactor. The gear train contains a self locking double enveloping worm gear set. The worm gear set is utilized for its self locking nature to prevent unwanted rotation of the plugs as the result of an earthquake. The double enveloping type is used because its unique contour spreads the load across several teeth providing added strength and allowing the use of a conventional size worm.

  12. Average-passage simulation of counter-rotating propfan propulsion systems as applied to cruise missiles

    NASA Technical Reports Server (NTRS)

    Mulac, Richard A.; Schneider, Jon C.; Adamczyk, John J.

    1989-01-01

    Counter-rotating propfan (CRP) propulsion technologies are currently being evaluated as cruise missile propulsion systems. The aerodynamic integration concerns associated with this application are being addressed through the computational modeling of the missile body-propfan flowfield interactions. The work described in this paper consists of a detailed analysis of the aerodynamic interactions between the control surfaces and the propfan blades through the solution of the average-passage equation system. Two baseline configurations were studied, the control fins mounted forward of the counter-rotating propeller and the control fins mounted aft of the counter-rotating propeller. In both cases, control fin-propfan separation distance and control fin deflection angle were varied.

  13. Rotating and static sources for gamma knife radiosurgery systems: Monte Carlo studies.

    PubMed

    Cheung, J Y C; Yu, K N

    2006-07-01

    Rotating gamma systems (RGSs), GammaART-6000, and its Chinese equivalents, such as OUR and MASEP, etc., are new radiosurgery systems that use rotating 60Co sources instead of the 201 static sources (Leksell gamma knife, LGK). The rotating sources of RGSs simulate an infinite number of beams and promote extremely high target to surface dose ratios. However, the results of Monte Carlo in this study shows that RGS variants (modeled as having the same latitude angles, source to focus distance, and the distance from the source to the end of the collimator as the LGK) have smaller beam profile penumbra in the z direction, while LGK has smaller penumbra in the x and y directions. The differences are more significant in using larger collimators.

  14. Mössbauer experiments in rotating systems and iso red/blue shift

    NASA Astrophysics Data System (ADS)

    Kholmetskii, A. L.; Yarman, T.; Missevitch, O. V.

    2012-09-01

    We analyze both the old Mössbauer experiments in a rotating system and our new experiment on this subject, which unambiguously indicate the presence of an additional component in the relative energy shift ΔE/E between emission and absorption lines, as compared with the classic relativistic expression written to the accuracy c-2 (that is ΔE/E = -u2/2c2, where u is the tangential velocity of absorber, and c the light velocity in vacuum). The additional dilation of time for the rotating absorber constitutes more than 20% from the relativistic value, and it many times exceeds the measuring uncertainty. This effect cannoe be explained by common relativity theory and thus it should be considered as the experimental confirmation of the Santilli iso red/blue shift in rotating systems.

  15. Rotating and static sources for gamma knife radiosurgery systems: Monte Carlo studies

    SciTech Connect

    Cheung, J. Y. C.; Yu, K. N.

    2006-07-15

    Rotating gamma systems (RGSs), GammaART-6000{sup TM}, and its Chinese equivalents, such as OUR and MASEP, etc., are new radiosurgery systems that use rotating {sup 60}Co sources instead of the 201 static sources (Leksell gamma knife, LGK). The rotating sources of RGSs simulate an infinite number of beams and promote extremely high target to surface dose ratios. However, the results of Monte Carlo in this study shows that RGS variants (modeled as having the same latitude angles, source to focus distance, and the distance from the source to the end of the collimator as the LGK) have smaller beam profile penumbra in the z direction, while LGK has smaller penumbra in the x and y directions. The differences are more significant in using larger collimators.

  16. Power system identification toolbox: Phase two progress

    SciTech Connect

    Trudnowski, D.J.

    1994-08-01

    This report describes current progress on a project funded by the Bonneville Power Administration (BPA) to develop a set of state-of-the-art analysis software (termed the Power System Identification [PSI] Toolbox) for fitting dynamic models to measured data. The project is being conducted as a three-phase effort. The first phase, completed in late 1992, involved investigating the characteristics of the analysis techniques by evaluating existing software and developing guidelines for best use. Phase Two includes extending current software, developing new analysis algorithms and software, and demonstrating and developing applications. The final phase will focus on reorganizing the software into a modular collection of documented computer programs and developing user manuals with instruction and application guidelines. Phase Two is approximately 50% complete; progress to date and a vision for the final product of the PSI Toolbox are described. The needs of the power industry for specialized system identification methods are particularly acute. The industry is currently pushing to operate transmission systems much closer to theoretical limits by using real-time, large-scale control systems to dictate power flows and maintain dynamic stability. Reliably maintaining stability requires extensive system-dynamic modeling and analysis capability, including measurement-based methods. To serve this need, the BPA has developed specialized system-identification computer codes through in-house efforts and university contract research over the last several years. To make full integrated use of the codes, as well as other techniques, the BPA has commissioned Pacific Northwest Laboratory (PNL) to further develop the codes and techniques into the PSI Toolbox.

  17. Fast Offset Laser Phase-Locking System

    NASA Technical Reports Server (NTRS)

    Shaddock, Daniel; Ware, Brent

    2008-01-01

    Figure 1 shows a simplified block diagram of an improved optoelectronic system for locking the phase of one laser to that of another laser with an adjustable offset frequency specified by the user. In comparison with prior systems, this system exhibits higher performance (including higher stability) and is much easier to use. The system is based on a field-programmable gate array (FPGA) and operates almost entirely digitally; hence, it is easily adaptable to many different systems. The system achieves phase stability of less than a microcycle. It was developed to satisfy the phase-stability requirement for a planned spaceborne gravitational-wave-detecting heterodyne laser interferometer (LISA). The system has potential terrestrial utility in communications, lidar, and other applications. The present system includes a fast phasemeter that is a companion to the microcycle-accurate one described in High-Accuracy, High-Dynamic-Range Phase-Measurement System (NPO-41927), NASA Tech Briefs, Vol. 31, No. 6 (June 2007), page 22. In the present system (as in the previously reported one), beams from the two lasers (here denoted the master and slave lasers) interfere on a photodiode. The heterodyne photodiode output is digitized and fed to the fast phasemeter, which produces suitably conditioned, low-latency analog control signals which lock the phase of the slave laser to that of the master laser. These control signals are used to drive a thermal and a piezoelectric transducer that adjust the frequency and phase of the slave-laser output. The output of the photodiode is a heterodyne signal at the difference between the frequencies of the two lasers. (The difference is currently required to be less than 20 MHz due to the Nyquist limit of the current sampling rate. We foresee few problems in doubling this limit using current equipment.) Within the phasemeter, the photodiode-output signal is digitized to 15 bits at a sampling frequency of 40 MHz by use of the same analog

  18. Investigation of Control System and Display Variations on Spacecraft Handling Qualities for Docking with Stationary and Rotating Targets

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce; Goodrich, Kenneth H.; Bailey, Randall E.; Barnes, James R.; Ragsdale, William A.; Neuhaus, Jason R.

    2010-01-01

    This paper documents the investigation into the manual docking of a preliminary version of the Crew Exploration Vehicle with stationary and rotating targets in Low Earth Orbit. The investigation was conducted at NASA Langley Research Center in the summer of 2008 in a repurposed fixed-base transport aircraft cockpit and involved nine evaluation astronauts and research pilots. The investigation quantified the benefits of a feed-forward reaction control system thruster mixing scheme to reduce translation-into-rotation coupling, despite unmodeled variations in individual thruster force levels and off-axis center of mass locations up to 12 inches. A reduced rate dead-band in the phase-plane attitude controller also showed some promise. Candidate predictive symbology overlaid on a docking ring centerline camera image did not improve handling qualities, but an innovative attitude status indicator symbol was beneficial. The investigation also showed high workload and handling quality problems when manual dockings were performed with a rotating target. These concerns indicate achieving satisfactory handling quality ratings with a vehicle configuration similar to the nominal Crew Exploration Vehicle may require additional automation.

  19. Role of length polydispersity in the phase behavior of freely rotating hard-rectangle fluids

    NASA Astrophysics Data System (ADS)

    Díaz-De Armas, Ariel; Martínez-Ratón, Yuri

    2017-05-01

    We use the density-functional formalism, in particular the scaled-particle theory, applied to a length-polydisperse hard-rectangle fluid to study its phase behavior as a function of the mean particle aspect ratio κ0 and polydispersity Δ0. The numerical solutions of the coexistence equations are calculated by transforming the original problem with infinite degrees of freedoms to a finite set of equations for the amplitudes of the Fourier expansion of the moments of the density profiles. We divide the study into two parts. The first one is devoted to the calculation of the phase diagrams in the packing fraction η0-κ0 plane for a fixed Δ0 and selecting parent distribution functions with exponential (the Schulz distribution) or Gaussian decays. In the second part we study the phase behavior in the η0-Δ0 plane for fixed κ0 while Δ0 is changed. We characterize in detail the orientational ordering of particles and the fractionation of different species between the coexisting phases. Also we study the character (second vs first order) of the isotropic-nematic phase transition as a function of polydispersity. We particularly focus on the stability of the tetratic phase as a function of κ0 and Δ0. The isotropic-nematic transition becomes strongly of first order when polydispersity is increased: The coexistence gap widens and the location of the tricritical point moves to higher values of κ0 while the tetratic phase is slightly destabilized with respect to the nematic one. The results obtained here can be tested in experiments on shaken monolayers of granular rods.

  20. Role of length polydispersity in the phase behavior of freely rotating hard-rectangle fluids.

    PubMed

    Díaz-De Armas, Ariel; Martínez-Ratón, Yuri

    2017-05-01

    We use the density-functional formalism, in particular the scaled-particle theory, applied to a length-polydisperse hard-rectangle fluid to study its phase behavior as a function of the mean particle aspect ratio κ_{0} and polydispersity Δ_{0}. The numerical solutions of the coexistence equations are calculated by transforming the original problem with infinite degrees of freedoms to a finite set of equations for the amplitudes of the Fourier expansion of the moments of the density profiles. We divide the study into two parts. The first one is devoted to the calculation of the phase diagrams in the packing fraction η_{0}-κ_{0} plane for a fixed Δ_{0} and selecting parent distribution functions with exponential (the Schulz distribution) or Gaussian decays. In the second part we study the phase behavior in the η_{0}-Δ_{0} plane for fixed κ_{0} while Δ_{0} is changed. We characterize in detail the orientational ordering of particles and the fractionation of different species between the coexisting phases. Also we study the character (second vs first order) of the isotropic-nematic phase transition as a function of polydispersity. We particularly focus on the stability of the tetratic phase as a function of κ_{0} and Δ_{0}. The isotropic-nematic transition becomes strongly of first order when polydispersity is increased: The coexistence gap widens and the location of the tricritical point moves to higher values of κ_{0} while the tetratic phase is slightly destabilized with respect to the nematic one. The results obtained here can be tested in experiments on shaken monolayers of granular rods.

  1. Phase-ambiguity resolution for QPSK modulation systems. Part 2: A method to resolve offset QPSK

    NASA Technical Reports Server (NTRS)

    Nguyen, Tien Manh

    1989-01-01

    Part 2 presents a new method to resolve the phase-ambiguity for Offset QPSK modulation systems. When an Offset Quaternary Phase-Shift-Keyed (OQPSK) communications link is utilized, the phase ambiguity of the reference carrier must be resolved. At the transmitter, two different unique words are separately modulated onto the quadrature carriers. At the receiver, the recovered carrier may have one of four possible phases, 0, 90, 180, or 270 degrees, referenced to the nominally correct phase. The IF portion of the channel may cause a phase-sense reversal, i.e., a reversal in the direction of phase rotation for a specified bit pattern. Hence, eight possible phase relationships (the so-called eight ambiguous phase conditions) between input and output of the demodulator must be resolved. Using the In-phase (I)/Quadrature (Q) channel reversal correcting property of an OQPSK Costas loop with integrated symbol synchronization, four ambiguous phase conditions are eliminated. Thus, only four possible ambiguous phase conditions remain. The errors caused by the remaining ambiguous phase conditions can be corrected by monitoring and detecting the polarity of the two unique words. The correction of the unique word polarities results in the complete phase-ambiguity resolution for the OQPSK system.

  2. Phase-ambiguity resolution for QPSK modulation systems. Part 2: A method to resolve offset QPSK

    NASA Astrophysics Data System (ADS)

    Nguyen, Tien Manh

    1989-05-01

    Part 2 presents a new method to resolve the phase-ambiguity for Offset QPSK modulation systems. When an Offset Quaternary Phase-Shift-Keyed (OQPSK) communications link is utilized, the phase ambiguity of the reference carrier must be resolved. At the transmitter, two different unique words are separately modulated onto the quadrature carriers. At the receiver, the recovered carrier may have one of four possible phases, 0, 90, 180, or 270 degrees, referenced to the nominally correct phase. The IF portion of the channel may cause a phase-sense reversal, i.e., a reversal in the direction of phase rotation for a specified bit pattern. Hence, eight possible phase relationships (the so-called eight ambiguous phase conditions) between input and output of the demodulator must be resolved. Using the In-phase (I)/Quadrature (Q) channel reversal correcting property of an OQPSK Costas loop with integrated symbol synchronization, four ambiguous phase conditions are eliminated. Thus, only four possible ambiguous phase conditions remain. The errors caused by the remaining ambiguous phase conditions can be corrected by monitoring and detecting the polarity of the two unique words. The correction of the unique word polarities results in the complete phase-ambiguity resolution for the OQPSK system.

  3. ISDSN Sensor System Phase One Test Report

    SciTech Connect

    Gail Heath

    2011-09-01

    This Phase 1 Test Report documents the test activities and results completed for the Idaho National Laboratory (INL) sensor systems that will be deployed in the meso-scale test bed (MSTB) at Florida International University (FIU), as outlined in the ISDSN-MSTB Test Plan. This report captures the sensor system configuration tested; test parameters, testing procedure, any noted changes from the implementation plan, acquired test data sets, and processed results.

  4. Phase-Compensating System For Fiber-Optic Holography

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Beheim, Glenn

    1990-01-01

    Phase-compensating system controls relative phase of laser light emitted from two optical fibers. Stabilized for conventional holographic applications, or stepped through sequence of 90 degree phase shifts for phase-stepping holographic interferometry. Closed-loop system compensates for phase fluctuations caused by mechanical stresses and temperature changes in fibers, providing long-term phase stability and phase steps accurate to within 0.02 degrees. Controls environmental fluctuations in phases of light emitted by output fibers.

  5. In-flight investigation of a rotating cylinder-based structural excitation system for flutter testing

    NASA Technical Reports Server (NTRS)

    Vernon, Lura

    1993-01-01

    A research excitation system was test flown at the NASA Dryden Flight Research Facility on the two-seat F-16XL aircraft. The excitation system is a wingtip-mounted vane with a rotating slotted cylinder at the trailing edge. As the cylinder rotates during flight, the flow is alternately deflected upward and downward through the slot, resulting in a periodic lift force at twice the cylinder's rotational frequency. Flight testing was conducted to determine the excitation system's effectiveness in the subsonic, transonic, and supersonic flight regimes. Primary research objectives were to determine the system's ability to develop adequate force levels to excite the aircraft's structure and to determine the frequency range over which the system could excite structural modes of the aircraft. In addition, studies were conducted to determine optimal excitation parameters, such as sweep duration, sweep type, and energy levels. The results from the exciter were compared with results from atmospheric turbulence excitation at the same flight conditions. The comparison indicated that the vane with a rotating slotted cylinder provides superior results. The results from the forced excitation were of higher quality and had less variation than the results from atmospheric turbulence. The forced excitation data also invariably yielded higher structural damping values than those from the atmospheric turbulence data.

  6. The synchronous rotations of Eris/Dysnomia and Orcus/Vanth binary systems

    NASA Astrophysics Data System (ADS)

    Rabinowitz, David L.; Owainati, Yasi

    2014-11-01

    We have measured the rotation periods of the Eris/Dysnomia and Orcus/Vanth binary systems using long-term observations obtained with the SMARTS 1.3m telescope at Cerro Tololo, combined with incidental observations obtained by the La Silla - QUEST survey on the ESO 1.0-m Schmidt at La Silla, and using historical observations of Eris published by others. We find that both binary systems are synchronous, with the dominant periodicity in their light curves matching their mutual orbit periods (9.54 and 15.774 days, respectively). For Orcus/Vanth, the reflected light from both bodies contributes to the signal. The measured periodicity could be due to the rotation of Orcus or Vanth separately, but it is most likely the system is doubly synchronous. For Eris/Dysnomia, only Eris is bright enough to contribute significantly to the observations. The conclusion is therefore unambiguous that Eris is synchronously rotating with the orbit of Dysnomia. This is surprising given that Eris is 500 times brighter than Dysnomia, and likely to be 100 to 10000 times more massive (assuming an albedo > 5% for Dysnomia). If Dysnomia has migrated outward from Eris owing to long-term tidal interactions, the time for Eris to slow from an initially fast rotation (period < 1 day) to a synchronous one is longer than the age of the solar system. We discuss the constraints these observations place on the relative albedos, masses, and internal composition of the two binary systems.

  7. Mobile large scale 3D coordinate measuring system based on network of rotating laser automatic theodolites

    NASA Astrophysics Data System (ADS)

    Liu, Zhigang; Liu, Zhongzheng; Wu, Jianwei; Xu, Yaozhong

    2010-08-01

    This paper presents a mobile 3D coordinate measuring system for large scale metrology. This system is composed of a network of rotating laser automatic theodolites (N-RLATs) and a portable touch probe. In the N-RLAT system, each RLAT consists of two laser fans which rotate about its own Z axis at a constant speed and scan the whole metrology space. The optical sensors mounted on the portable touch probe receive the sweeping laser fans and generate the corresponding pulse signals, which establish a relationship between rotating angle of laser fan and time, and then the space angle measurement is converted into the corresponding peak time precision measurement of pulse signal. The rotating laser fans are modeled mathematically as a time varying parametrical vector in its local framework. A two steps on-site calibration method for solving the parameters of each RLAT and coordinate transformation among the N-RLATs. The portable probe is composed of optical sensors array with specified geometrical features and a touch point, on which the coordinates of optical sensors is determined by the N-RLATs and the touch point is estimated by solving a non-linear system. A prototype mobile 3D coordinate measuring system is developed and experiment results show its validity.

  8. Performance evaluation of a 90°-rotating dual-head small animal PET system

    NASA Astrophysics Data System (ADS)

    Zhang, Chunhui; Chen, Xueli; Zhu, Shouping; Wan, Lu; Xie, Qingguo; Liang, Jimin

    2015-08-01

    Dual-head PET system suffers from poor resolution in the dimension perpendicular to the detector heads and vastly increased computations required by the accurate estimation of the system response matrix (SRM). The problem of poor x-axis resolution is caused by missing data owing to the intrinsic geometry flaws of the dual-head PET, which leads to high SRM similarity between the adjacent voxels along the x-axis. To compensate for this problem, our dual-head PET system prototype incorporates a {{90}{^\\circ}} -rotating mechanism. In addition, the cubic field of view (FOV) and cubic voxels are adopted to achieve a better geometrical symmetry, which avoids the re-estimation of SRM after rotation. The spatial resolution, sensitivity, noise equivalent count rate, scatter fraction and pileup fraction under different head separation distances were evaluated by a series of simulations, and the results were compared with those of the non-rotation system. The SRM was estimated using the Monte Carlo method and the three-dimensional images were reconstructed using the ordered subsets expectation maximization algorithm. Experimental results reveal a significantly improved x-axis resolution via the proposed rotation mechanism. Our system can achieve x-axis spatial resolution of 0.79 mm, 0.74 mm and 0.72 mm at the center of FOV under the head separation distance of 5 cm, 10 cm and 15 cm, respectively.

  9. Conservation of `Moving' Energy in Nonholonomic Systems with Affine Constraints and Integrability of Spheres on Rotating Surfaces

    NASA Astrophysics Data System (ADS)

    Fassò, Francesco; Sansonetto, Nicola

    2016-04-01

    Energy is in general not conserved for mechanical nonholonomic systems with affine constraints. In this article we point out that, nevertheless, in certain cases, there is a modification of the energy that is conserved. Such a function is the pull-back of the energy of the system written in a system of time-dependent coordinates in which the constraint is linear, and for this reason will be called a `moving' energy. After giving sufficient conditions for the existence of a conserved, time-independent moving energy, we point out the role of symmetry in this mechanism. Lastly, we apply these ideas to prove that the motions of a heavy homogeneous solid sphere that rolls inside a convex surface of revolution in uniform rotation about its vertical figure axis, are (at least for certain parameter values and in open regions of the phase space) quasi-periodic on tori of dimension up to three.

  10. Analyzing Age-Rotation-Activity Relationships in Wide Binary Systems

    NASA Astrophysics Data System (ADS)

    Walton Clarke, Riley; Davenport, James R. A.

    2017-01-01

    We present an analysis of flare activity among equal mass wide binary pairs using a combination of value-added data sets from the NASA Kepler mission. Wide binary twins form from the same molecular cloud and are therefore coeval, making them ideal benchmarks for stellar evolution and formation studies. This implies that their magnetic activity should decay at the same rate, causing a similar decrease in flare activity over time. The first data set is the list of known wide binary candidates in the Kepler field, and contains pairs of stars that have similar proper motions. We then crossmatch these systems with data on relative flare luminosity for ~200,000 stars in the original Kepler field, provided by an automated flare-finding algorithm. This combined data set allows us to compare flare activity, mass, and pair separation between stars in binary pairs. We preliminarily find that the flare rates for these stars do not show strong correlation, indicating either a large intrinsic scatter in the flare rate as these stars age, or that the formation mechanism of wide binaries somehow affects their dynamo evolution. As a goal for future development of this work, we hope to compare flare rates with gyrochronology in these key systems.

  11. Rotation, scale and translation invariant pattern recognition system for color images

    NASA Astrophysics Data System (ADS)

    Barajas-García, Carolina; Solorza-Calderón, Selene; Álvarez-Borrego, Josué

    2016-12-01

    This work presents a color image pattern recognition system invariant to rotation, scale and translation. The system works with three 1D signatures, one for each RGB color channel. The signatures are constructed based on Fourier transform, analytic Fourier-Mellin transform and Hilbert binary rings mask. According with the statistical theory of box-plots, the pattern recognition system has a confidence level at least of 95.4%.

  12. Effect of Shear Strain on the α-ε Phase Transition of Iron: a New Approach in the Rotational Diamond Anvil Cell

    SciTech Connect

    Ma,Y.; Selvi, E.; Levitas, V.; Hashemi, J.

    2006-01-01

    The effect of shear strain on the iron {alpha}-{var_epsilon} phase transformation has been studied using a rotational diamond anvil cell (RDAC). The initial transition is observed to take place at the reduced pressure of 10.8 GPa under pressure and shear operation. Complete phase transformation was observed at 15.4 GPa. The rotation of an anvil causes limited pressure elevation and makes the pressure distribution symmetric in the sample chamber before the phase transition. However, it causes a significant pressure increase at the center of the sample and brings about a large pressure gradient during the phase transformation. The resistance to the phase interface motion is enhanced due to strain hardening during the pressure and shear operations on iron and this further increases the transition pressure. The work of macroscopic shear stress and the work of the pressure and shear stress at the defect tips account for the pressure reduction of the iron phase transition.

  13. A study on phase-noise reduction method in phase-locked loop systems.

    PubMed

    Takagi, Keiji

    2003-09-01

    Experimental studies are carried out on phase noise and the correlation coefficient between the phase and average current noises of voltage-controlled oscillator in phased-locked loop (PLL) systems. The precise phase stabilization technique is discussed, and new methods to reduce the phase noise are described in PLL systems, using the correlation.

  14. Frequency estimation for optical coherent M-QAM system without removing modulated data phase

    NASA Astrophysics Data System (ADS)

    Yu, Song; Cao, Yinwen; Leng, Haijun; Wu, Guohua; Gu, Wanyi

    2012-08-01

    For optical coherent M-ary quadrature amplitude modulation (M-QAM) system, the frequency offset can be extracted directly by applying Fast Fourier Transform (FFT) to the signal's argument, without removing the modulated data phase. By categorizing the constellation points and rotating some constellation points by π/4, this algorithm is robust to extract the frequency offset against the noise. Numerical simulations of 16-QAM and 256-QAM coherent systems are presented to demonstrate this algorithm.

  15. Crop rotations that include legumes and reduced tillage improve the energy efficiency of crop production systems

    USDA-ARS?s Scientific Manuscript database

    Text: Modern crop production requires large inputs of energy and these inputs represent a substantial cost. Management practices such as crop rotation and choice of tillage practice influence the energy balance for a production system. Legumes support bacteria that are capable of fixing nitrogen (N)...

  16. Crop rotations that include legumes and reduced tillage improve the energy efficiency of crop production systems

    USDA-ARS?s Scientific Manuscript database

    Modern crop production requires large inputs of energy and these inputs represent a substantial cost. Management practices such as crop rotation and choice of tillage practice influence the energy balance for a production system. Legumes support bacteria that are capable of fixing nitrogen (N). This...

  17. Ultrahigh-speed rotating nanoelectromechanical system devices assembled from nanoscale building blocks.

    PubMed

    Kim, Kwanoh; Xu, Xiaobin; Guo, Jianhe; Fan, D L

    2014-04-07

    The development of rotary nanomotors is crucial for advancing nanoelectromechanical system technology. In this work, we report design, assembly and rotation of ordered arrays of nanomotors. The nanomotors are bottom-up assembled from nanoscale building blocks with nanowires as rotors, patterned nanomagnets as bearings and quadrupole microelectrodes as stators. Arrays of nanomotors rotate with controlled angle, speed (over 18,000 r.p.m.), and chirality by electric fields. Using analytical modelling, we reveal the fundamental nanoscale electrical, mechanical and magnetic interactions in the nanomotor system, which excellently agrees with experimental results and provides critical understanding for designing metallic nanoelectromechanical systems. The nanomotors can be continuously rotated for 15 h over 240,000 cycles. They are applied for controlled biochemical release and demonstrate releasing rate of biochemicals on nanoparticles that can be precisely tuned by mechanical rotations. The innovations reported in this research, from concept, design and actuation to application, are relevant to nanoelectromechanical system, nanomedicine, microfluidics and lab-on-a-chip architectures.

  18. Ultrahigh-speed rotating nanoelectromechanical system devices assembled from nanoscale building blocks

    NASA Astrophysics Data System (ADS)

    Kim, Kwanoh; Xu, Xiaobin; Guo, Jianhe; Fan, D. L.

    2014-04-01

    The development of rotary nanomotors is crucial for advancing nanoelectromechanical system technology. In this work, we report design, assembly and rotation of ordered arrays of nanomotors. The nanomotors are bottom-up assembled from nanoscale building blocks with nanowires as rotors, patterned nanomagnets as bearings and quadrupole microelectrodes as stators. Arrays of nanomotors rotate with controlled angle, speed (over 18,000 r.p.m.), and chirality by electric fields. Using analytical modelling, we reveal the fundamental nanoscale electrical, mechanical and magnetic interactions in the nanomotor system, which excellently agrees with experimental results and provides critical understanding for designing metallic nanoelectromechanical systems. The nanomotors can be continuously rotated for 15 h over 240,000 cycles. They are applied for controlled biochemical release and demonstrate releasing rate of biochemicals on nanoparticles that can be precisely tuned by mechanical rotations. The innovations reported in this research, from concept, design and actuation to application, are relevant to nanoelectromechanical system, nanomedicine, microfluidics and lab-on-a-chip architectures.

  19. Fertilization regimes affect the soil biological characteristics of a sudangrass and ryegrass rotation system.

    PubMed

    Li, WenXi; Lu, JianWei; Li, FangBai; Wang, Yan; Lu, JunMing; Li, XiaoKun

    2011-06-01

    The sudangrass (Sorghum sudanense) and ryegrass (Lolium multiflorum L.) rotation is an intensive and new cropping system in Central China. Nutrient management practices in this rotation system may influence soil fertility, the important aspects of which are soil biological properties and quality. As sensitive soil biological properties and quality indicators, soil microbial community activity, microbial biomass, enzyme activities, soil organic matter (SOM) and total N resulting from different fertilization regimes in this rotation system were studied through a four-year field experiment from April 2005 to May 2009. Treatments included control (CK), fertilizer phosphorus and potassium (PK), fertilizer nitrogen and potassium (NK), fertilizer nitrogen and phosphorus (NP) and a fertilizer nitrogen, phosphorus and potassium combination (NPK). Soil microbial community activities in the NK, NP and NPK treatments were significantly lower than those in the CK and PK treatments after the sudangrass and ryegrass trial. The highest microbial biomass C, microbial biomass N, SOM, total N, sucrase and urease activities were found in the NPK treatment, and these soil quality indicators were significantly higher in the NK, NP and NPK treatments than in the PK and CK treatments. Soil microbial biomass and enzyme activities were positively associated with SOM in the sudangrass and ryegrass rotation system, indicating that fertilization regimes, especially N application, reduced microbial community activity in the soil. Proper fertilization regimes will increase microbial biomass, enzyme activity and SOM and improve soil fertility.

  20. Viking radio science data analysis and synthesis. [rotation of Mars, solar system dynamics, and gravitational laws

    NASA Technical Reports Server (NTRS)

    Shapiro, I. I.

    1984-01-01

    The rotational motion of Mars and its geophysical ramifications were investigated. Solar system dynamics and the laws of gravitation were also studied. The planetary ephemeris program, which was the central element in data analysis for this project, is described in brief. Viking Lander data were used in the investigation.

  1. Mesquite cover responses in rotational grazing/prescribed fire management systems: Landscape assessment using aerial images

    Treesearch

    R. J. Ansley; W. E. Pinchak; W. R. Teague

    2007-01-01

    Prescribed fire is used to reduce rate of mesquite (Prosopis glandulosa) encroachment and dominance on grassland ecosystems, but is difficult to apply in continuousgrazed systems because of the difficulty in accumulating sufficient herbaceous biomass (that is, ‘fine fuel’) that is needed to fuel fire. We evaluated the potential of rotationally...

  2. The impact of the belgian workers' compensation system on return to work after rotator cuff surgery.

    PubMed

    Didden, Karolien; Leirs, Geert; Aerts, Peter

    2010-10-01

    We retrospectively assessed time off work after rotator cuff repair, in relation with the compensation system and the shoulder loading demand at work. The Belgian insurance system distinghuises three main financial compensation systems for time off work. Patients with a work-related accident receive the highest compensation. A second group includes employees suffering a private accident or a chronic rotator cuff tear. Self-employed workers receive the lowest compensation. Work-demand on the shoulder was graded level I to IV according to the Iannotti classification. From a series of 201 young patients who underwent rotator cuff tear surgery, 93 were selected based on specific inclusion criteria; of these 93 patients, 73 could be thoroughly investigated. We found a significantly longer postoperative time off work in the highest compensation group (7 months versus 2.5 months for the lowest compensation group). We found a significantly longer postoperative time to return to work in the higher stages of the Iannoti classification. Based on the results of this study, the probable postoperative absence from work can be roughly estimated for each patient after rotator cuff surgery in relation with the particular compensation system and particular occupational demand level.

  3. On the Phase Dependence of Double-Resonance Experiments in Rotational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Schmitz, David; Shubert, V. Alvin; Krin, Anna; Patterson, David; Schnell, Melanie

    2015-06-01

    We report double-resonance experiments using broadband chirped-pulse Fourier transform microwave spectroscopy that facilitate spectral assignment and yield information about weak transitions with high resolution and sensitivity. Using the diastereomers menthone and isomenthone as examples, we investigate both the amplitude and the phase dependence of the free-induction decay of the microwave signal transition from pumping a radio frequency transition sharing a common level. We observe a strong phase change when scanning the radio frequency through molecular resonance. The direction of the phase change depends on the energy level arrangement, i.e., if it is progressive or regressive. The experimental results can be simulated using the density-matrix formalism using the three-level Bloch equations and are best described with the AC Stark effect within the dressed-state picture, resulting in an Autler-Townes splitting. The characteristic phase inversion allows for a) the precise frequency determination of the typically weak radio frequency transitions exploiting the high sensitivity of the connected strong microwave signal transition and b) definitive information about the connectivity of the energy levels involved, i.e., progressive vs. regressive arrangements.

  4. Development of a rotary instrumentation system, phase 2

    NASA Technical Reports Server (NTRS)

    Adler, A.; Skidmore, W.

    1982-01-01

    A rotary instrumentation system which consists of ruggedized miniature telemetry transmitters installed on the rotating shaft of a gas turbine engine to telemeter the outputs of sensors (strain gages, thermocouples, etc.) on rotating engine components was designed. A small prototype system, which demonstrates the capabilities of performing in the intended environment and demonstrates that the system is expandable to handle about 100 data channels was developed.

  5. Development of a rotary instrumentation system, phase 2

    NASA Astrophysics Data System (ADS)

    Adler, A.; Skidmore, W.

    1982-12-01

    A rotary instrumentation system which consists of ruggedized miniature telemetry transmitters installed on the rotating shaft of a gas turbine engine to telemeter the outputs of sensors (strain gages, thermocouples, etc.) on rotating engine components was designed. A small prototype system, which demonstrates the capabilities of performing in the intended environment and demonstrates that the system is expandable to handle about 100 data channels was developed.

  6. Evidence from stellar rotation of enhanced disc dispersal. I. The case of the triple visual system BD-21 1074 in the β Pictoris association

    NASA Astrophysics Data System (ADS)

    Messina, S.; Monard, B.; Biazzo, K.; Melo, C. H. F.; Frasca, A.

    2014-10-01

    Context. The early stage of stellar evolution is characterized by a magnetic coupling between a star and its accretion disc, known as a star-disc locking mechanism. The disc-locking prevents the star to spin its rotation up, and its timescale depends on the disc lifetime, which should not be longer than about 10 Myr. Some mechanisms can significantly shorten this lifetime, allowing a few stars to start spinning up much earlier than other stars and increasing the observed rotation period dispersion among coeval stars. Aims: In the present study, we aim to investigate how the properties of the circumstellar environment can shorten the disc lifetime, more specifically the presence of a close stellar companion. Methods: We have identified a few multiple stellar systems, composed of stars with similar masses, which belong to associations with a known age. Since all parameters that are responsible for the rotational evolution, with the exception of environment properties and initial stellar rotation, are similar for all components, we expect that significant differences among the rotation periods can only arise from differences in the disc lifetimes. A photometric timeseries allowed us to measure the rotation periods of each component, while high-resolution spectra provided us with the fundamental parameters, v sin i and chromospheric line fluxes. Results: In the present study, we have collected timeseries photometry of BD-21 1074, a member of the 21 Myr old β Pictoris association, and measured the rotation periods of its brightest components A and B. They differ significantly, and the component B, which has a closer companion C, rotates faster than the more distant and isolated component A. It also displays a slightly higher chromospheric activity level. Conclusions: Since components A and B have similar mass, age, and initial chemical composition, we can ascribe the rotation period difference to either different initial rotation periods or different disc

  7. Non-axisymmetric shapes of a rotating drop in an immiscible system

    NASA Technical Reports Server (NTRS)

    Wang, T. G.; Tagg, R.; Cammack, L.; Croonquist, A. P.

    1982-01-01

    The nonaxisymmetric shapes of a rotating drop in an immiscible system were studied. Five basic families of shapes (axisymmetric, two-lobed, three-lobed, four-lobed, and toroidal) were observed. The sequence (axisymmetric to two-lobed to three-lobed to four-lobed to toroidal) seems to be linked to increasing spin-up velocity. For the axisymmetric case, direct comparisons of experiments with the theory of a free rotating drop were surprisingly good the equatorial area differs from theory by only 30%. Furthermore, the non-axisymmetric shapes are in good qualitative agreement with the theory, although the theory does not address the presence of an outer fluid.

  8. Navigation system measures AP and rotational knee laxity in ACL replacement.

    PubMed

    Jenny, Jean-Yves

    2009-10-01

    We used a non-image-based navigation system to measure anterior and rotational laxity during anterior cruciate ligament replacement. The preoperative and postoperative navigated measurements of anterior laxity were compared with the preoperative and postoperative stress radiographs. There was a significant difference between these 2 measurements, but they were significantly correlated. Navigated anterior laxity measurement can therefore be considered reliable. The intraoperative information about the correction of the anterior laxity may have relevance in controlling the quality of the procedure and improving reproducibility. Information about rotational laxity may be helpful, but its exact significance must be more precisely defined. Copyright 2009, SLACK Incorporated.

  9. Phase discriminating capacitive array sensor system

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor); Rahim, Wadi (Inventor)

    1993-01-01

    A phase discriminating capacitive sensor array system which provides multiple sensor elements which are maintained at a phase and amplitude based on a frequency reference provided by a single frequency stabilized oscillator. Sensor signals provided by the multiple sensor elements are controlled by multiple phase control units, which correspond to the multiple sensor elements, to adjust the sensor signals from the multiple sensor elements based on the frequency reference. The adjustment made to the sensor signals is indicated by output signals which indicate the proximity of the object. The output signals may also indicate the closing speed of the object based on the rate of change of the adjustment made, and the edges of the object based on a sudden decrease in the adjustment made.

  10. An Accurate Calibration Method Based on Velocity in a Rotational Inertial Navigation System

    PubMed Central

    Zhang, Qian; Wang, Lei; Liu, Zengjun; Feng, Peide

    2015-01-01

    Rotation modulation is an effective method to enhance the accuracy of an inertial navigation system (INS) by modulating the gyroscope drifts and accelerometer bias errors into periodically varying components. The typical RINS drives the inertial measurement unit (IMU) rotation along the vertical axis and the horizontal sensors’ errors are modulated, however, the azimuth angle error is closely related to vertical gyro drift, and the vertical gyro drift also should be modulated effectively. In this paper, a new rotation strategy in a dual-axis rotational INS (RINS) is proposed and the drifts of three gyros could be modulated, respectively. Experimental results from a real dual-axis RINS demonstrate that the maximum azimuth angle error is decreased from 0.04° to less than 0.01° during 1 h. Most importantly, the changing of rotation strategy leads to some additional errors in the velocity which is unacceptable in a high-precision INS. Then the paper studies the basic reason underlying horizontal velocity errors in detail and a relevant new calibration method is designed. Experimental results show that after calibration and compensation, the fluctuation and stages in the velocity curve disappear and velocity precision is improved. PMID:26225983

  11. Deformation of a Quantum Many-Particle System by a Rotating Impurity

    NASA Astrophysics Data System (ADS)

    Schmidt, Richard; Lemeshko, Mikhail

    2016-01-01

    During the past 70 years, the quantum theory of angular momentum has been successfully applied to describing the properties of nuclei, atoms, and molecules, and their interactions with each other as well as with external fields. Because of the properties of quantum rotations, the angular-momentum algebra can be of tremendous complexity even for a few interacting particles, such as valence electrons of an atom, not to mention larger many-particle systems. In this work, we study an example of the latter: a rotating quantum impurity coupled to a many-body bosonic bath. In the regime of strong impurity-bath couplings, the problem involves the addition of an infinite number of angular momenta, which renders it intractable using currently available techniques. Here, we introduce a novel canonical transformation that allows us to eliminate the complex angular-momentum algebra from such a class of many-body problems. In addition, the transformation exposes the problem's constants of motion, and renders it solvable exactly in the limit of a slowly rotating impurity. We exemplify the technique by showing that there exists a critical rotational speed at which the impurity suddenly acquires one quantum of angular momentum from the many-particle bath. Such an instability is accompanied by the deformation of the phonon density in the frame rotating along with the impurity.

  12. An Accurate Calibration Method Based on Velocity in a Rotational Inertial Navigation System.

    PubMed

    Zhang, Qian; Wang, Lei; Liu, Zengjun; Feng, Peide

    2015-07-28

    Rotation modulation is an effective method to enhance the accuracy of an inertial navigation system (INS) by modulating the gyroscope drifts and accelerometer bias errors into periodically varying components. The typical RINS drives the inertial measurement unit (IMU) rotation along the vertical axis and the horizontal sensors' errors are modulated, however, the azimuth angle error is closely related to vertical gyro drift, and the vertical gyro drift also should be modulated effectively. In this paper, a new rotation strategy in a dual-axis rotational INS (RINS) is proposed and the drifts of three gyros could be modulated, respectively. Experimental results from a real dual-axis RINS demonstrate that the maximum azimuth angle error is decreased from 0.04° to less than 0.01° during 1 h. Most importantly, the changing of rotation strategy leads to some additional errors in the velocity which is unacceptable in a high-precision INS. Then the paper studies the basic reason underlying horizontal velocity errors in detail and a relevant new calibration method is designed. Experimental results show that after calibration and compensation, the fluctuation and stages in the velocity curve disappear and velocity precision is improved.

  13. Numerical control matrix rotation for the LINC-NIRVANA multiconjugate adaptive optics system

    NASA Astrophysics Data System (ADS)

    Arcidiacono, Carmelo; Bertram, Thomas; Ragazzoni, Roberto; Farinato, Jacopo; Esposito, Simone; Riccardi, Armando; Pinna, Enrico; Puglisi, Alfio; Fini, Luca; Xompero, Marco; Busoni, Lorenzo; Quiros-Pacheco, Fernando; Briguglio, Runa

    2010-07-01

    LINC-NIRVANA will realize the interferometric imaging focal station of the Large Binocular Telescope. A double Layer Oriented multi-conjugate adaptive optics system assists the two arms of the interferometer, supplying high order wave-front correction. In order to counterbalance the field rotation, mechanical derotation for the two ground wave-front sensors, and optical derotators for the mid-high layers sensors fix the positions of the focal planes with respect to the pyramids aboard the wave-front sensors. The derotation introduces pupil images rotation on the wavefront sensors: the projection of the deformable mirrors on the sensor consequently change. The proper adjustment of the control matrix will be applied in real-time through numerical computation of the new matrix. In this paper we investigate the temporal and computational aspects related to the pupils rotation, explicitly computing the wave-front errors that may be generated.

  14. Wigner rotation and Thomas precession: geometric phases and related physical theories

    NASA Astrophysics Data System (ADS)

    Brezov, Danail S.; Mladenova, Clementina D.; Mladenov, Ivaïlo M.

    2015-06-01

    We use a vector parameter description of the Lorentz groups in ℝ2,1 and ℝ3,1 to obtain an exact expression for the Thomas factor as a geometric phase. The effect of phase accumulation in Thomas-Wigner precession phenomena is seen as a manifestation of the hyperbolic solid angle theorem. On the infinitesimal level, our description involves affine connections on the noncompact Hopf fibrations U(1) → SU(1, 1) → Δ and SU(2) → PSL(2,ℂ) → H 3. The associated gauge field is a restriction of the familiar Yang-Mills anti-instanton. We also consider the dual compact case, and we discuss generalizations to arbitrary dimensions and applications in various branches of theoretical physics.

  15. Advanced Wastewater Treatment Engineering—Investigating Membrane Fouling in both Rotational and Static Membrane Bioreactor Systems Using Empirical Modelling

    PubMed Central

    Paul, Parneet; Jones, Franck Anderson

    2016-01-01

    Advanced wastewater treatment using membranes are popular environmental system processes since they allow reuse and recycling. However, fouling is a key limiting factor and so proprietary systems such as Avanti’s RPU-185 Flexidisks membrane bioreactor (MBR) use novel rotating membranes to assist in ameliorating it. In earlier research, this rotating process was studied by creating a simulation model based on first principles and traditional fouling mechanisms. In order to directly compare the potential benefits of this rotational system, this follow-up study was carried out using Avanti’s newly developed static (non-rotating) Flexidisks MBR system. The results from operating the static pilot unit were simulated and modelled using the rotational fouling model developed earlier however with rotational switching functions turned off and rotational parameters set to a static mode. The study concluded that a rotating MBR system could increase flux throughput when compared against a similar static system. It is thought that although the slowly rotating spindle induces a weak crossflow shear, it is still able to even out cake build up across the membrane surface, thus reducing the likelihood of localised critical flux being exceeded at the micro level and lessening the potential of rapid trans-membrane pressure increases at the macro level. PMID:26742053

  16. Advanced Wastewater Treatment Engineering-Investigating Membrane Fouling in both Rotational and Static Membrane Bioreactor Systems Using Empirical Modelling.

    PubMed

    Paul, Parneet; Jones, Franck Anderson

    2016-01-05

    Advanced wastewater treatment using membranes are popular environmental system processes since they allow reuse and recycling. However, fouling is a key limiting factor and so proprietary systems such as Avanti's RPU-185 Flexidisks membrane bioreactor (MBR) use novel rotating membranes to assist in ameliorating it. In earlier research, this rotating process was studied by creating a simulation model based on first principles and traditional fouling mechanisms. In order to directly compare the potential benefits of this rotational system, this follow-up study was carried out using Avanti's newly developed static (non-rotating) Flexidisks MBR system. The results from operating the static pilot unit were simulated and modelled using the rotational fouling model developed earlier however with rotational switching functions turned off and rotational parameters set to a static mode. The study concluded that a rotating MBR system could increase flux throughput when compared against a similar static system. It is thought that although the slowly rotating spindle induces a weak crossflow shear, it is still able to even out cake build up across the membrane surface, thus reducing the likelihood of localised critical flux being exceeded at the micro level and lessening the potential of rapid trans-membrane pressure increases at the macro level.

  17. Ocular Reflex Phase During Off-Vertical Axis Rotation In Humans Is Modified By Head-On-Trunk Position

    NASA Technical Reports Server (NTRS)

    Wood, Scott; Clement, Gilles; Denise, Pierre; Reschke, Millard

    2005-01-01

    Constant velocity Off-Vertical Axis Rotation (OVAR) imposes a continuously varying orientation of the head and body relative to gravity. The ensuing ocular reflexes include modulation of both horizontal and torsional eye velocity as a function of the varying linear acceleration along the lateral plane. The purpose of this study was to examine whether the modulation of these ocular reflexes would be modified by different head-on-trunk positions. Ten human subjects were rotated in darkness about their longitudinal axis 20 deg off-vertical at constant rates of 45 and 180 deg/s, corresponding to 0.125 and 0.5 Hz. Binocular responses were obtained with video-oculography with the head and trunk aligned, and then with the head turned relative to the trunk 40 deg to the right or left of center. Sinusoidal curve fits were used to derive amplitude, phase and bias velocity of the eye movements across multiple cycles for each head-on-trunk position. Consistent with previous studies, the modulation of torsional eye movements was greater at 0.125 Hz while the modulation of horizontal eye movements was greater at 0.5 Hz. Neither amplitude nor bias velocities were significantly altered by head-on-trunk position. The phases of both torsional and horizontal ocular reflexes, on the other hand, shifted towards alignment with the head. These results are consistent with the modulation of torsional and horizontal ocular reflexes during OVAR being primarily mediated by the otoliths in response to the sinusoidally varying linear acceleration along the interaural head axis.

  18. Ocular Reflex Phase During Off-Vertical Axis Rotation In Humans Is Modified By Head-On-Trunk Position

    NASA Technical Reports Server (NTRS)

    Wood, Scott; Clement, Gilles; Denise, Pierre; Reschke, Millard

    2005-01-01

    Constant velocity Off-Vertical Axis Rotation (OVAR) imposes a continuously varying orientation of the head and body relative to gravity. The ensuing ocular reflexes include modulation of both horizontal and torsional eye velocity as a function of the varying linear acceleration along the lateral plane. The purpose of this study was to examine whether the modulation of these ocular reflexes would be modified by different head-on-trunk positions. Ten human subjects were rotated in darkness about their longitudinal axis 20 deg off-vertical at constant rates of 45 and 180 deg/s, corresponding to 0.125 and 0.5 Hz. Binocular responses were obtained with video-oculography with the head and trunk aligned, and then with the head turned relative to the trunk 40 deg to the right or left of center. Sinusoidal curve fits were used to derive amplitude, phase and bias velocity of the eye movements across multiple cycles for each head-on-trunk position. Consistent with previous studies, the modulation of torsional eye movements was greater at 0.125 Hz while the modulation of horizontal eye movements was greater at 0.5 Hz. Neither amplitude nor bias velocities were significantly altered by head-on-trunk position. The phases of both torsional and horizontal ocular reflexes, on the other hand, shifted towards alignment with the head. These results are consistent with the modulation of torsional and horizontal ocular reflexes during OVAR being primarily mediated by the otoliths in response to the sinusoidally varying linear acceleration along the interaural head axis.

  19. Linear parameter varying control design for rotating systems supported by journal bearings

    NASA Astrophysics Data System (ADS)

    Almeida Gonçalves Siqueira, Adriano; Nicoletti, Rodrigo; Norrick, Nicklas; Lucchesi Cavalca, Kátia; Fiori de Castro, Helio; Bauer, Jens; Dohnal, Fadi

    2012-05-01

    Linear parameter varying (LPV) control is a model-based control technique that takes into account time-varying parameters of the plant. In the case of rotating systems supported by lubricated bearings, the dynamic characteristics of the bearings change in time as a function of the rotating speed. Hence, LPV control can tackle the problem of run-up and run-down operational conditions when dynamic characteristics of the rotating system change significantly in time due to the bearings and high vibration levels occur. In this work, the LPV control design for a flexible shaft supported by plain journal bearings is presented. The model used in the LPV control design is updated from unbalance response experimental results and dynamic coefficients for the entire range of rotating speeds are obtained by numerical optimization. Experimental implementation of the designed LPV control resulted in strong reduction of vibration amplitudes when crossing the critical speed, without affecting system behavior in sub- or super-critical speeds.

  20. Quantized phase slips with hysteresis in rotating spin-orbit-coupled Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Zhang, Chuanyi

    2017-03-01

    Recently, hysteresis has been observed experimentally in a quantized superfluid circuit [S. Eckel, J. G. Lee, F. Jendrzejewski, N. Murray, C. W. Clark, C. J. Lobb, W. D. Phillips, M. Edwards, and G. K. Campbell, Nature (London) 506, 200 (2014), 10.1038/nature12958], which is a very important step for developing atomtronic devices. Here we find that quantized phase slips occur as the angular velocity rises, and the average angular momenta are quantized at special angular velocities, immune to the nonlinear interactions. When the spin and orbital angular momentum coupling is introduced, we find that two hysteresis loops could arise for each spin, and there exists a phase slip for spin up in one loop and spin down in the other loop. At the special angular velocities, a phase slip emerges for spin down in the lower state of the loop. Especially, multistability appears if the angular velocity is located in the hysteretic region. These results can promote experimental verification and pave the way for atomtronic devices.

  1. [Nutrient management strategy of paddy rice-upland crop rotation system].

    PubMed

    Fan, Ming-Sheng; Jiang, Rong-Feng; Zhang, Fu-Suo; Lü, Shi-Hua; Liu, Xue-Jun

    2008-02-01

    Paddy rice-upland crop rotation system is a major cropping system in China, and practiced widely along the Yangtze River basin. A unique feature of this system is the annual conversion of soil from aerobic to anaerobic and then back to aerobic condition, which can result in the changes of soil physical, chemical, and biological prosperities among seasons, making a special agroecosystem. The major challenges faced by this system include declining or stagnating productivity, increasing shortage of irrigation water, improper management of nutrients, low efficiency of resource utilization, and environmental pollution. Based on an overview of the characteristics and problems of paddy rice-upland crop rotation system, this paper put forward a strategy of practicing integrated nutrient management to solve the contradictions between nutrient input, crop production and environmental risk. The key points of this strategy included nutrient management from the whole rotation system perspective, integrated use of nutrients from various sources (chemical fertilizers, organic fertilizers, and nutrients from the environment), synchronization of nutrient supply and crop nutrient demand, application of different management technologies based on the characteristics of different nutrient resources, and integration of nutrient management with other cropping system technologies like water saving and high-yielding cultivation, etc.

  2. Pattern recognition system invariant to rotation and scale to identify color images

    NASA Astrophysics Data System (ADS)

    Coronel-Beltrán, Angel

    2014-10-01

    This work presents a pattern recognition digital system based on nonlinear correlations. The correlation peak values given by the system were analyzed by the peak-to-correlation energy (PCE) metric to determine the optimal value of the non-linear coefficient kin the k-law. The system was tested with 18 different color images of butterflies; each image was rotated from 0° to 180° with increments of 1° and scaled ±25% with increments of 1% and to take advantage of the color property of the images the RGB model was employed. The boxplot statistical analysis of the mean with ±2*EE (standard errors) for the PCE values set that the system invariant to rotation and scale has a confidence level at least of 95.4%.

  3. The construction of an electrode biasing system for driving plasma rotation in J-TEXT tokamak

    NASA Astrophysics Data System (ADS)

    Zhu, T. Z.; Chen, Z. P.; Sun, Yue; Nan, J. Y.; Liu, H.; Zhuang, G.; Wang, Z. J.

    2014-05-01

    A newly designed electrode biasing system has been constructed for driving plasma rotation in J-TEXT tokamak. To reduce the influence to the plasma, the system contains a pneumatic driving system so that it can reciprocate in a single discharge, with a stroke of about 5 cm in 100 ms. The power supply of the system can provide stable and adjustable dc voltage in the range of 0-700 V, with adjustable duration of 10-200 ms; its instantaneous power output can reach up to more than 200 kW. In addition, the power supply can also provide a multi-cycle voltage waveform, with adjustable pulse width and voltage amplitude. When applying a positive bias to the plasma, both an improvement of plasma confinement and the speed-up of plasma-edge toroidal rotation in the same direction of plasma current are observed in the experiments.

  4. The construction of an electrode biasing system for driving plasma rotation in J-TEXT tokamak.

    PubMed

    Zhu, T Z; Chen, Z P; Sun, Yue; Nan, J Y; Liu, H; Zhuang, G; Wang, Z J

    2014-05-01

    A newly designed electrode biasing system has been constructed for driving plasma rotation in J-TEXT tokamak. To reduce the influence to the plasma, the system contains a pneumatic driving system so that it can reciprocate in a single discharge, with a stroke of about 5 cm in 100 ms. The power supply of the system can provide stable and adjustable dc voltage in the range of 0-700 V, with adjustable duration of 10-200 ms; its instantaneous power output can reach up to more than 200 kW. In addition, the power supply can also provide a multi-cycle voltage waveform, with adjustable pulse width and voltage amplitude. When applying a positive bias to the plasma, both an improvement of plasma confinement and the speed-up of plasma-edge toroidal rotation in the same direction of plasma current are observed in the experiments.

  5. Wavefront twisting by rotating black holes: Orbital angular momentum generation and phase coherent detection

    NASA Astrophysics Data System (ADS)

    Yang, Huan; Casals, Marc

    2014-07-01

    In this paper we study wave propagation and scattering near a black hole. In particular, we assume a coherent emission source near the black hole and investigate the wavefront distortion as seen by a distant observer. By ignoring the spin nature of the electromagnetic radiation we model it by a complex scalar field. Then, the propagating wave near the observer can be decomposed using the Laguerre-Gaussian mode basis and its wavefront distortion can be characterized by the decomposition coefficient. We find that this decomposition spectrum is symmetric with respect to the azimuthal quantum number in the case that the wave source is located near a nonrotating (Schwarzschild) black hole, whereas the spectrum is generically asymmetric if the host black hole is rotating (Kerr). The spectral asymmetry, or the net orbital angular momentum carried by the wave, is intimately related to the black-hole spin and mass, the wave frequency and the locations of the source and the observer. We present semianalytical expressions and numerical results for these parameter dependences. If the emitted radiation is temporally coherent, our results show that the secondary images (arising from the orbiting of the wavefront around the black hole) of the source can be almost as bright as its primary image. Separately, in the case of temporally incoherent radiation, we show that the nonfundamental spectrum components in the primary image could be resolved by spatially separated telescopes, although that would be degenerate with the telescope direction. Finally, our results suggest that the black-hole-induced spectral asymmetry is generally too weak to be observed in radio astronomy, even if the observer is located near an optical caustic.

  6. Bose-Einstein condensates in rotating lattices.

    PubMed

    Bhat, Rajiv; Holland, M J; Carr, L D

    2006-02-17

    Strongly interacting bosons in a two-dimensional rotating square lattice are investigated via a modified Bose-Hubbard Hamiltonian. Such a system corresponds to a rotating lattice potential imprinted on a trapped Bose-Einstein condensate. Second-order quantum phase transitions between states of different symmetries are observed at discrete rotation rates. For the square lattice we study, there are four possible ground-state symmetries.

  7. Benchmarking Velocity and Vorticity Measurement Systems on the UCLA Large-Scale Rotating Convection Device

    NASA Astrophysics Data System (ADS)

    Hawkins, E. K.; Aurnou, J. M.; Pilegard, T.; Grannan, A. M.; Ribeiro, A.; Cheng, J. S.; May, S.

    2015-12-01

    In order to simulate the turbulent, rapidly-rotating convection processes that occur in Earth's core and other planetary cores, we have designed and fabricated a large-scale experimental device at UCLA. Capable of accessing a broad range of parameters (e.g., Ekman numbers between E ≃ 10-2 to 10-8 and Rayleigh numbers between Ra ≃ 104 to 1013), this device is ideal for identifying new regimes of core-style convection and for determining scaling trends that can be extrapolated to planetary conditions. In particular, this device provides the opportunity to characterize the heat transfer and velocity field behaviors needed to build and test next-generation, asymptotically accurate models of rotating convection. Two experimental measurement systems, a Laser Doppler Velocimetry (LDV) and a Particle Image Velocimetry (PIV) system, have been implemented on the UCLA rotating convection device. LDV allows for the acquisition of high resolution point velocity profiles while PIV allows for the measurement of planar velocity fields using a light sheet through the fluid layer. We present results showing the strong agreement between LDV and PIV measurements. In addition, we present results of the spin up process of a homogeneous fluid that show agreement between experimental measurements, obtained through LDV, with established theory. Our present results validate the use of the LDV and PIV systems on the UCLA rotating convection device. Thus, these two systems are now calibrated to measure the velocity and vorticity fields that characterize the turbulent, rotating core-style convection that underlies dynamo generation in planetary bodies.

  8. Automated Air Information Production System - Phase II.

    DTIC Science & Technology

    1980-10-01

    Center (DMAAC). The scope of this effort encompassed the analysis , design, specification, implementation, and test and evaluation of all hardware and...and the implementation of a PILOT system. The scope of the Phase I effort encompassed the analysis , design, and specification of all hardware and...division multiplexors, and 2 Government furnished KG-34 encrypt/decrypt units and Mosler safes. The Publishing subsystem hardware configuration (reference

  9. Ageing in a system of polydisperse goethite boardlike particles showing rich phase behaviour.

    PubMed

    Leferink op Reinink, A B G M; van den Pol, E; Byelov, D V; Petukhov, A V; Vroege, G J

    2012-11-21

    Using microradian x-ray scattering and polarized light microscopy the rich liquid crystalline phase behaviour of a polydisperse system of chromium-modified goethite particles has been studied for five years. We observe that the particles stay highly mobile over years and the rich phase behaviour keeps developing in novel and even surprising ways. While in many other colloidal systems particle size polydispersity suppresses the formation of ordered phases, goethite particles form multiple coexisting ordered phases. The particle polydispersity problem is then solved by particle exchange between coexisting phases. One usually expects that a less ordered phase (e.g., nematic) is formed first while crystallization of the smectic and columnar crystals might take a longer time. For goethite particles we find the opposite, i.e. the nematic phase grows over years at the expense of a better ordered smectic phase. Moreover, SAXS patterns revealed peak splitting for both the smectic and the columnar phase, meaning that the system displays fractionated crystallization. We further discovered that the centred rectangular columnar phase spontaneously forms out of the simple rectangular columnar phase. The reverse transition is observed as well. We explain the ease of these martensitic transitions by showing how slight rotation and translation of the particles triggers the transition.

  10. g--Acceleration of Gravity: Its Measurement from the Shape of Water by Using a Computerized Rotational System

    ERIC Educational Resources Information Center

    Pintao, Carlos A. F.; de Souza Filho, Moacir P.

    2007-01-01

    This paper proposes a different experimental setup compared with the traditional ones, in order to determine the acceleration of gravity, which is carried out by using a fluid at a constant rotation. A computerized rotational system--by using a data acquisition system with specific software, a power amplifier and a rotary motion sensor--is…

  11. g--Acceleration of Gravity: Its Measurement from the Shape of Water by Using a Computerized Rotational System

    ERIC Educational Resources Information Center

    Pintao, Carlos A. F.; de Souza Filho, Moacir P.

    2007-01-01

    This paper proposes a different experimental setup compared with the traditional ones, in order to determine the acceleration of gravity, which is carried out by using a fluid at a constant rotation. A computerized rotational system--by using a data acquisition system with specific software, a power amplifier and a rotary motion sensor--is…

  12. Development and Testing of Prototype Giant Magnetoresistive (GMR) Rotating Probe System

    NASA Astrophysics Data System (ADS)

    Wincheski, Buzz; Simpson, John; Namkung, Min; Perey, Dan; Callahan, John

    2003-03-01

    Continued development of the giant magnetoresistive based rotating probe system has resulted in the fabrication of a fieldable prototype instrument. The system, designed for the detection of deeply buried flaws under installed fasteners, utilizes a giant magnetoresistive sensor within the self-nulling probe design for improved low frequency capabilities. The prototype unit incorporates a new probe design for deep penetration and reduced edge effects along with new electronics and system software. Testing of the prototype system has been performed at SANDIA National Laboratories Aging Aircraft NDI Validation Center. The complete system configuration along with field testing results are presented.

  13. An induction Linac approach to phase rotation of a muon bunch in the production region of {mu}{sup +}-{mu}{sup {minus}} colliders

    SciTech Connect

    Turner, W.C.

    1995-11-22

    The possibility of using an induction linac for phase rotation, or equivalently flattening the head to tail mean energy sweep, of a muon bunch in the production region of a {mu}{sup +} {minus} {mu}{sup {minus}} is examined. Axial spreading of an accelerating bunch is analyzed and the form of appropriate induction cell voltage waveforms is derived. A set of parametric equations for the induction accelerator structure is given and specific solutions are presented which demonstrate the technological feasibility of the induction linac approach to phase rotation.

  14. Crusader Automated Docking System Phase 3 report

    SciTech Connect

    Jatko, W.B.; Goddard, J.S.; Ferrell, R.K.; Gleason, S.S.; Hicks, J.S.; Varma, V.K.

    1996-03-01

    The US Army is developing the next generation of battlefield artillery vehicles, including an advanced, self-propelled howitzer and a companion resupply vehicle. The resupply vehicle is intended to rendezvous with the howitzer near the battlefront and to upload ammunition to the howitzer. The Army has recommended that the vehicles incorporate robotics to increase safety, by allowing the crew to remain inside their vehicles during resupply operations. Oak Ridge National Laboratory has developed an autonomous docking system for a 6-D.F. robotic, ammunition transfer arm. The docking system augments the operator`s abilities by determining the position and orientation (pose) of a docking port. The pose is the location of the x, y, and z reference axes in 3-D space; and the orientation is the rotations--roll, pitch, and yaw--about those axes. Bye precisely determining the pose of the docking port, the robot can be instructed to move to the docking position without operator intervention. The system uses a video camera and frame grabber to digitize images of the special docking port. Custom algorithms were developed to recognize the port in the camera image, to determine the pose from its image features, and to distribute the results to the robot control computer. The system is loosely coupled to the robot and can be easily adapted to different mechanical configurations. The system has successfully demonstrated autonomous docking on a 24-in. tabletop robot and a 12-ft ammunition resupply robot. The update rate, measurement accuracy, continuous operation, and accuracy with obstructed view have been determined experimentally.

  15. Solid-fluid and solid-solid equilibrium in hard sphere united atom models of n-alkanes: rotator phase stability.

    PubMed

    Cao, M; Monson, P A

    2009-10-22

    We present a study of the phase behavior for models of n-alkanes with chain lengths up to C(21) based on hard sphere united atom models of methyl and methylene groups, with fixed bond lengths and C-C-C bond angles. We extend earlier work on such models of shorter alkanes by allowing for gauche conformations in the chains. We focus particularly on the orientational order about the chain axes in the solid phase near the melting point, and our model shows how the loss of this orientational order leads to the formation of rotator phases. We have made extensive calculations of the thermodynamic properties of the models as well as order parameters for tracking the degree of orientational order around the chain axis. Depending on the chain length and whether the carbon number is even or odd, the model exhibits both a rotator phase and a more orientationally ordered solid phase in addition to the fluid phase. Our results indicate that the transition between the two solid phases is first-order with a small density change. The results are qualitatively similar to those seen experimentally and show that rotator phases can appear in models of alkanes without explicit treatment of attractive forces or explicit treatment of the hydrogen atoms in the chains.

  16. Flow between Rotating Cylinders as a Model of Instability in Nonequilibrium Systems

    NASA Astrophysics Data System (ADS)

    Rodenborn, Bruce; Swinney, Harry L.

    2010-03-01

    The study of flow between rotating concentric cylinders (Couette-Taylor flow) began over a century ago and has been conducted by giants in the fields of fluid mechanics and astrophysics such as Lord Rayleigh, G.I. Taylor, and S. Chandreshekar. The system still yields seminal findings in fluid turbulence, hydrodynamic stability theory, plasma physics and chaos theory. It is also a model system for instabilities that arise in proto-planetary and proto-solar disks, the earth's core and other important applications. Simple geometry makes the base fluid state at low rotation rates analytically solvable at an undergraduate level, which belies the zoo of instabilities and patterns that develop for higher rotation rates. Low-cost cameras and open source software make a well-instrumented experiment possible for a few hundred dollars. Just as the Couette-Taylor system provides a valuable model for instability in systems driven away from thermodynamic equilibrium, it also serves as a valuable model experiment that builds important scientific abilities including: instrument control, data acquisition, image analysis, Fourier spectral analysis and other experimental skills. I use a Couette-Taylor system in annual winter schools on experimental physics, ``Hands-On Research in Complex Systems'' conducted in developing countries to stimulate interest in low-cost, table-top experimental physics.

  17. Phase-Locked Loop Noise Reduction via Phase Detector Implementation for Single-Phase Systems

    SciTech Connect

    Thacker, Timothy; Boroyevich, Dushan; Burgos, Rolando; Wang, Fei

    2011-01-01

    A crucial component of grid-connected converters is the phase-locked loop (PLL) control subsystem that tracks the grid voltage's frequency and phase angle. Therefore, accurate fast-responding PLLs for control and protection purposes are required to provide these measurements. This paper proposes a novel feedback mechanism for single-phase PLL phase detectors using the estimated phase angle. Ripple noise appearing in the estimated frequency, most commonly the second harmonic under phase-lock conditions, is reduced or eliminated without the use of low-pass filters, which can cause delays to occur and limits the overall performance of the PLL response to dynamic changes in the system. The proposed method has the capability to eliminate the noise ripple entirely and, under extreme line distortion conditions, can reduce the ripple by at least half. Other modifications implemented through frequency feedback are shown to decrease the settling time of the PLL up to 50%. Mathematical analyses with the simulated and experimental results are provided to confirm the validity of the proposed methods.

  18. Ionic liquids intercalated in montmorillonite as the sorptive phase for the extraction of low-polarity organic compounds from water by rotating-disk sorptive extraction.

    PubMed

    Fiscal-Ladino, Jhon A; Obando-Ceballos, Mónica; Rosero-Moreano, Milton; Montaño, Diego F; Cardona, Wilson; Giraldo, Luis F; Richter, Pablo

    2017-02-08

    Montmorillonite (MMT) clays were modified by the intercalation into their galleries of ionic liquids (IL) based on imidazolium quaternary ammonium salts. This new eco-materials exhibited good features for use as a sorptive phase in the extraction of low-polarity analytes from aqueous samples. Spectroscopic analyses of the modified clays were conducted and revealed an increase in the basal spacing and a shifting of the reflection plane towards lower values as a consequence of the effective intercalation of organic cations into the MMT structure. The novel sorbent developed herein was assayed as the sorptive phase in rotating-disk sorptive extraction (RDSE), using polychlorinated biphenyls (PCBs), representative of low-polarity pollutants, as model analytes. The final determination was made by gas chromatography with electron capture detection. Among the synthetized sorptive phases, the selected system for analytical purposes consisted of MMT modified with the 1-hexadecyl-3-methylimidazolium bromide (HDMIM-Br) IL. Satisfactory analytical features were achieved using a sample volume of 5 mL: the relative recoveries from a wastewater sample were higher than 80%, the detection limits were between 3 ng L(-1) and 43 ng L(-1), the precision (within-run precision) expressed as the relative standard deviation ranged from 2% to 24%, and the enrichment factors ranged between 18 and 28. Using RDSE, the extraction efficiency achieved for the selected MMT-HDMIM-Br phase was compared with other commercial solid phases/supports, such as polypropylene, polypropylene with 1-octanol (as a supported liquid membrane), octadecyl (C18) and octyl (C8), and showed the highest response for all the studied analytes. Under the optimized extraction conditions, this new device was applied in the analysis of the influent of a wastewater treatment plant in Santiago (Chile), demonstrating its applicability through the good recoveries and precision achieved with real samples. Copyright © 2016

  19. In vitro evaluation of translating and rotating plates using a robot testing system under follower load.

    PubMed

    Yan, Y; Bell, K M; Hartman, R A; Hu, J; Wang, W; Kang, J D; Lee, J Y

    2017-01-01

    Various modifications to standard "rigid" anterior cervical plate designs (constrained plate) have been developed that allow for some degree of axial translation and/or rotation of the plate (semi-constrained plate)-theoretically promoting proper load sharing with the graft and improved fusion rates. However, previous studies about rigid and dynamic plates have not examined the influence of simulated muscle loading. The objective of this study was to compare rigid, translating, and rotating plates for single-level corpectomy procedures using a robot testing system with follower load. In-vitro biomechanical test. N = 15 fresh-frozen human (C3-7) cervical specimens were biomechanically tested. The follower load was applied to the specimens at the neutral position from 0 to 100 N. Specimens were randomized into a rigid plate group, a translating plate group and a rotating plate group and then tested in flexion, extension, lateral bending and axial rotation to a pure moment target of 2.0 Nm under 100N of follower load. Range of motion, load sharing, and adjacent level effects were analyzed using a repeated measures analysis of variance (ANOVA). No significant differences were observed between the translating plate and the rigid plate on load sharing at neutral position and C4-6 ROM, but the translating plate was able to maintain load through the graft at a desired level during flexion. The rotating plate shared less load than rigid and translating plates in the neutral position, but cannot maintain the graft load during flexion. This study demonstrated that, in the presence of simulated muscle loading (follower load), the translating plate demonstrated superior performance for load sharing compared to the rigid and rotating plates.

  20. SNR Degradation in Undersampled Phase Measurement Systems

    PubMed Central

    Salido-Monzú, David; Meca-Meca, Francisco J.; Martín-Gorostiza, Ernesto; Lázaro-Galilea, José L.

    2016-01-01

    A wide range of measuring applications rely on phase estimation on sinusoidal signals. These systems, where the estimation is mainly implemented in the digital domain, can generally benefit from the use of undersampling to reduce the digitizer and subsequent digital processing requirements. This may be crucial when the application characteristics necessarily imply a simple and inexpensive sensor. However, practical limitations related to the phase stability of the band-pass filter prior digitization establish restrictions to the reduction of noise bandwidth. Due to this, the undersampling intensity is practically defined by noise aliasing, taking into account the amount of signal-to-noise ratio (SNR) reduction caused by it considering the application accuracy requirements. This work analyzes the relationship between undersampling frequency and SNR reduction, conditioned by the stability requirements of the filter that defines the noise bandwidth before digitization. The effect of undersampling is quantified in a practical situation where phase differences are measured by in-phase and quadrature (I/Q) demodulation for an infrared ranging application. PMID:27783033

  1. SNR Degradation in Undersampled Phase Measurement Systems.

    PubMed

    Salido-Monzú, David; Meca-Meca, Francisco J; Martín-Gorostiza, Ernesto; Lázaro-Galilea, José L

    2016-10-24

    A wide range of measuring applications rely on phase estimation on sinusoidal signals. These systems, where the estimation is mainly implemented in the digital domain, can generally benefit from the use of undersampling to reduce the digitizer and subsequent digital processing requirements. This may be crucial when the application characteristics necessarily imply a simple and inexpensive sensor. However, practical limitations related to the phase stability of the band-pass filter prior digitization establish restrictions to the reduction of noise bandwidth. Due to this, the undersampling intensity is practically defined by noise aliasing, taking into account the amount of signal-to-noise ratio (SNR) reduction caused by it considering the application accuracy requirements. This work analyzes the relationship between undersampling frequency and SNR reduction, conditioned by the stability requirements of the filter that defines the noise bandwidth before digitization. The effect of undersampling is quantified in a practical situation where phase differences are measured by in-phase and quadrature (I/Q) demodulation for an infrared ranging application.

  2. Misalignment calibration of geomagnetic vector measurement system using parallelepiped frame rotation method

    NASA Astrophysics Data System (ADS)

    Pang, Hongfeng; Zhu, XueJun; Pan, Mengchun; Zhang, Qi; Wan, Chengbiao; Luo, Shitu; Chen, Dixiang; Chen, Jinfei; Li, Ji; Lv, Yunxiao

    2016-12-01

    Misalignment error is one key factor influencing the measurement accuracy of geomagnetic vector measurement system, which should be calibrated with the difficulties that sensors measure different physical information and coordinates are invisible. A new misalignment calibration method by rotating a parallelepiped frame is proposed. Simulation and experiment result show the effectiveness of calibration method. The experimental system mainly contains DM-050 three-axis fluxgate magnetometer, INS (inertia navigation system), aluminium parallelepiped frame, aluminium plane base. Misalignment angles are calculated by measured data of magnetometer and INS after rotating the aluminium parallelepiped frame on aluminium plane base. After calibration, RMS error of geomagnetic north, vertical and east are reduced from 349.441 nT, 392.530 nT and 562.316 nT to 40.130 nT, 91.586 nT and 141.989 nT respectively.

  3. Phase-rotation based receive-beamformer for miniaturized volumetric ultrasound imaging scanners using 2-D CMUT-on-ASIC arrays

    NASA Astrophysics Data System (ADS)

    Kim, Bae-Hyung; Lee, Seunghun; Song, Jongkeun; Kim, Youngil; Jeon, Taeho; Cho, Kyungil

    2013-03-01

    Up-to-date capacitive micromachined ultrasonic transducer (CMUT) technologies provide us unique opportunities to minimize the size and cost of ultrasound scanners by integrating front-end circuits into CMUT arrays. We describe a design prototype of a portable ultrasound scan-head probe using 2-D phased CMUT-on-ASIC arrays of 3-MHz 250 micrometer-pitch by fabricating and integrating front-end electronics with 2-D CMUT array elements. One of the objectives of our work is to design a receive beamformer architecture for the smart probe with compact size and comparable performance. In this work, a phase-rotation based receive beamformer using the sampling frequency of 4 times the center frequency and a hybrid beamforming to reduce the channel counts of the system-side are introduced. Parallel beamforming is considered for the purpose of saving power consumption of battery (by firing fewer times per image frame). This architecture has the advantage of directly obtaining I and Q components. By using the architecture, the interleaved I/Q data from the storage is acquired and I/Q demodulation for baseband processing is directly achieved without demodulators including sin and cosine lookup tables and mixers. Currently, we are extending the presented architecture to develop a true smart probe by including lower power devices and cooling systems, and bringing wireless data transmission into consideration.

  4. An MRI-compatible patient rotation system - design, construction, and first organ deformation results.

    PubMed

    Whelan, Brendan; Liney, Gary P; Dowling, Jason A; Rai, Robba; Holloway, Lois; McGarvie, Leigh; Feain, Ilana; Barton, Michael; Berry, Megan; Wilkins, Rob; Keall, Paul

    2017-02-01

    Conventionally in radiotherapy, a very heavy beam forming apparatus (gantry) is rotated around a patient. From a mechanical perspective, a more elegant approach is to rotate the patient within a stationary beam. Key obstacles to this approach are patient tolerance and anatomical deformation. Very little information on either aspect is available in the literature. The purpose of this work was therefore to design and test an MRI-compatible patient rotation system such that the feasibility of a patient rotation workflow could be tested. A patient rotation system (PRS) was designed to fit inside the bore of a 3T MRI scanner (Skyra, Siemens) such that 3D images could be acquired at different rotation angles. Once constructed, a pelvic imaging study was carried out on a healthy volunteer. T2-weighted MRI images were taken every 45° between 0° and 360°, (with 0° equivalent to supine). The prostate, bladder, and rectum were segmented using atlas-based auto contouring. The images from each angle were registered back to the 0° image in three steps: (a) Rigid registration was based on MRI visible markers on the couch. (b) Rigid registration based on the prostate contour (equivalent to a rigid shift to the prostate). (c) Nonrigid registration. The Dice similarity coefficient (DSC) and mean average surface distance (MASD) were calculated for each organ at each step. The PRS met all design constraints and was successfully integrated with the MRI scanner. Phantom images showed minimal difference in signal or noise with or without the PRS in the MRI scanner. For the MRI images, the DSC (mean ± standard deviation) over all angles in the prostate, rectum, and bladder was 0.60 ± 0.11, 0.56 ± 0.15, and 0.76 ± 0.06 after rigid couch registration, 0.88 ± 0.03, 0.81 ± 0.08, and 0.86 ± 0.03 after rigid prostate guided registration, and 0.85 ± 0.03, 0.88 ± 0.02, 0.87 ± 0.02 after nonrigid registration. An MRI-compatible patient rotation system has been

  5. Theoretical analysis of rotating two phase detonation in a rocket motor

    NASA Technical Reports Server (NTRS)

    Shen, I.; Adamson, T. C., Jr.

    1973-01-01

    Tangential mode, non-linear wave motion in a liquid propellant rocket engine is studied, using a two phase detonation wave as the reaction model. Because the detonation wave is followed immediately by expansion waves, due to the side relief in the axial direction, it is a Chapman-Jouguet wave. The strength of this wave, which may be characterized by the pressure ratio across the wave, as well as the wave speed and the local wave Mach number, are related to design parameters such as the contraction ratio, chamber speed of sound, chamber diameter, propellant injection density and velocity, and the specific heat ratio of the burned gases. In addition, the distribution of flow properties along the injector face can be computed. Numerical calculations show favorable comparison with experimental findings. Finally, the effects of drop size are discussed and a simple criterion is found to set the lower limit of validity of this strong wave analysis.

  6. In-flight investigation of a rotating cylinder-based structural excitation system for flutter testing

    NASA Technical Reports Server (NTRS)

    Vernon, Lura

    1993-01-01

    A research excitation system was test flown at the NASA Dryden Flight Research Facility on the two-seat F-16XL aircraft. The excitation system is a wingtip-mounted vane with a rotating slotted cylinder at the trailing edge. As the cylinder rotates during flight, the flow is alternately deflected upward and downward through the slot, resulting in a periodic lift force at twice the cylinder's rotational frequency. Flight testing was conducted to determine the excitation system's effectiveness in the subsonic and transonic flight regimes. Primary research objectives were to determine the system's ability to develop adequate force levels to excite the aircraft's structure and to determine the frequency range over which the system could excite structural modes of the aircraft. The results from the exciter were compared with results from atmospheric turbulence excitation at the same flight conditions. The results from the forced excitation were of higher quality and had less variation than the results from atmospheric turbulence. The forced excitation data also invariably yielded higher structural damping values than those from the atmospheric turbulence data.

  7. Grazing bifurcation analysis of a relative rotation system with backlash non-smooth characteristic

    NASA Astrophysics Data System (ADS)

    Liu, Shuang; Wang, Zhao-Long; Zhao, Shuang-Shuang; Li, Hai-Bin; Li, Jian-Xiong

    2015-07-01

    Grazing bifurcation of a relative rotation system with backlash non-smooth characteristic is studied along with the change of the external excitation in this paper. Considering the oil film, backlash, time-varying stiffness and time-varying error, the dynamical equation of a relative rotation system with a backlash non-smooth characteristic is deduced by applying the elastic hydrodynamic lubrication (EHL) and the Grubin theories. In the process of relative rotation, the occurrence of backlash will lead to the change of dynamic behaviors of the system, and the system will transform from the meshing state to the impact state. Thus, the zero-time discontinuous mapping (ZDM) and the Poincare mapping are deduced to analyze the local dynamic characteristics of the system before as well as after the moment that the backlash appears (i.e., the grazing state). Meanwhile, the grazing bifurcation mechanism is analyzed theoretically by applying the impact and Floquet theories. Numerical simulations are also given, which confirm the analytical results. Project supported by the National Natural Science Foundation of China (Grant No. 61104040), the Natural Science Foundation of Hebei Province, China (Grant No. E2012203090), and the University Innovation Team of Hebei Province Leading Talent Cultivation Project, China (Grant No. LJRC013).

  8. In-flight investigation of a rotating cylinder-based structural excitation system for flutter testing

    NASA Technical Reports Server (NTRS)

    Vernon, Lura

    1993-01-01

    A research excitation system was test flown at the NASA Dryden Flight Research Facility on the two-seat F-16XL aircraft. The excitation system is a wingtip-mounted vane with a rotating slotted cylinder at the trailing edge. As the cylinder rotates during flight, the flow is alternately deflected upward and downward through the slot, resulting in a periodic lift force at twice the cylinder's rotational frequency. Flight testing was conducted to determine the excitation system's effectiveness in the subsonic and transonic flight regimes. Primary research objectives were to determine the system's ability to develop adequate force levels to excite the aircraft's structure and to determine the frequency range over which the system could excite structural modes of the aircraft. The results from the exciter were compared with results from atmospheric turbulence excitation at the same flight conditions. The results from the forced excitation were of higher quality and had less variation than the results from atmospheric turbulence. The forced excitation data also invariably yielded higher structural damping values than those from the atmospheric turbulence data.

  9. Phase-resolved heat-flux measurements on the blade of a full-scale rotating turbine

    NASA Technical Reports Server (NTRS)

    Dunn, M. G.; Seymour, P. J.; Woodward, S. H.; George, W. K.; Chupp, R. E.

    1988-01-01

    This paper presents detailed phase-resolved heat-flux data obtained on the blade of a Teledyne 702 HP full-stage rotating turbine. A shock tube is used as a short-duration source of heated air, and platinum thin-film gages are used to obtain the heat-flux measurements. Results are presented along the midspan at several locations on the blade suction and pressure surfaces from the stagnation point to near the trailing edge. For these measurements, the turbine was operating at the design flow function and at 100 percent corrected speed. Results are presented for the design vane/blade spacing (0.19 Cs) and at a wide spacing (0.50 Cs). Data are also presented illustrating the phase-resolved blade heat-flux distribution with upstream cold gas injection from discrete holes on the vane surface. The results illustrate that several successive passages can be superimposed upon each other and that a heat-flux pattern can be determined within the passage.

  10. Emergent Noncentrosymmetry and Piezoelectricity Driven by Oxygen Octahedral Rotations in n = 2 Dion-Jacobson Phase Layer Perovskites

    SciTech Connect

    Strayer, Megan E.; Gupta, Arnab Sen; Akamatsu, Hirofumi; Lei, Shiming; Benedek, Nicole A.; Gopalan, Venkatraman; Mallouk, Thomas E.

    2016-04-29

    We demonstrate the loss of centrosymmetry via oxygen octahedral rotations in the n = 2 Dion–Jacobson family of layered oxide perovskites, A'LaB2O7 (A' = Rb, Cs; B = Nb, Ta). Ab initio density functional theory calculations predict that all four materials should adopt polar space groups, in contrast to the results of previous experimental studies that have assigned these materials to the centrosymmetric P4/mmm space group. Optical second harmonic generation experiments confirm the presence of a noncentrosymmetric phase at ambient temperature. Piezoresponse force microscopy experiments also show that this phase is piezoelectric. Moreover, to elucidate the symmetry-breaking and assign the appropriate space groups, the crystal structure of CsLaNb2O7is refined as a function of temperature from synchrotron X-ray diffraction data. Above 550 K, CsLaNb2O7 adopts the previously determined centrosymmetric P4/mmm space group. Between 550 and 350 K, the symmetry is lowered to the noncentrosymmetric space group Amm2. Below 350 K, additional symmetry lowering is observed as peak splitting, but the space group cannot be unambiguously identified.

  11. Debris Evaluation after Root Canal Shaping with Rotating and Reciprocating Single-File Systems

    PubMed Central

    Dagna, Alberto; Gastaldo, Giulia; Beltrami, Riccardo; Poggio, Claudio

    2016-01-01

    This study evaluated the root canal dentine surface by scanning electron microscope (SEM) after shaping with two reciprocating single-file NiTi systems and two rotating single-file NiTi systems, in order to verify the presence/absence of the smear layer and the presence/absence of open tubules along the walls of each sample; Forty-eight single-rooted teeth were divided into four groups and shaped with OneShape (OS), F6 SkyTaper (F6), WaveOne (WO) and Reciproc and irrigated using 5.25% NaOCl and 17% EDTA. Root canal walls were analyzed by SEM at a standard magnification of 2500×. The presence/absence of the smear layer and the presence/absence of open tubules at the coronal, middle, and apical third of each canal were estimated using a five-step scale for scores. Numeric data were analyzed using Kruskal-Wallis and Mann-Whitney U statistical tests and significance was predetermined at P < 0.05; The Kruskal-Wallis ANOVA for debris score showed significant differences among the NiTi systems (P < 0.05). The Mann-Whitney test confirmed that reciprocating systems presented significantly higher score values than rotating files. The same results were assessed considering the smear layer scores. ANOVA confirmed that the apical third of the canal maintained a higher quantity of debris and smear layer after preparation of all the samples; Single-use NiTi systems used in continuous rotation appeared to be more effective than reciprocating instruments in leaving clean walls. The reciprocating systems produced more debris and smear layer than rotating instruments. PMID:27763503

  12. Rotationally resolved midultraviolet studies of Triton and the Pluto/Charon system. I - IUE results

    NASA Technical Reports Server (NTRS)

    Stern, S. A.; Brosch, Noah; Barker, Edwin S.; Gladstone, G. R.

    1991-01-01

    The present uniform analysis of the full set of IUE spectra of Pluto + Charon and Triton attempts to characterize these objects' UV photometric properties variation with rotational phase, giving attention to the 2550-3200 A range. The visible-UV color differentiation increases as Pluto reaches its maximum bolometric brightness; the IUE data suggests that this could be due to a UV surface absorption feature on Pluto or Charon. Typical UV albedos are found on Triton which agree with Voyager photopolarimeter results; Pluto's albedo is much lower than that of Triton, but the amplitude of the Pluto UV lightcurve is greater than that of Triton.

  13. Regression Test on the Rotational Speed between Two Loads as the Preparation for Braking System

    NASA Astrophysics Data System (ADS)

    Purwanti, B. S. R.; Yusivar, F.; K, I. Garniwa M.

    2013-04-01

    This paper is preparing the mathematic model of braking control, continuously of determination the error (e), delta error (de) of speed reduction [9]. Load-1 and Load-2 are driven by an electric motor located on the same shaft. Both loads are driven clock wise (CW), counter clock wise (CCW) by an asynchronous three-phase motor (M3). The mass of each load is also differentiated to simulate slip phenomena. Rotational speed of M3 is equal to Load-1, detected by Sensor-1, while speed rotation of Load-2 is detected by Sensor-2. The rotation for Load-1 and Load-2 can be adjusted on several position Hj (j = 1, 2, 3). Once Load-1 and Load-2 reach a constant speed, current source will be disconnected. Speed reduction from (ω±1475 rpm) to stagnant (ω=0 rpm) on Load-1 and Load-2 is considered time function. Data collected from both load (ω (t)) known as e, de; on each position of Hj. It uses covariance analysis to make sure that both loads are concurrent with each other against time difference. The objective of this research is to determine slip phenomena of speed reduction of each load. The expectations are to generate smoother braking and minimize the time needed when implemented with ANFIS.

  14. The breakdown of the anelastic approximation in rotating compressible convection: implications for astrophysical systems.

    PubMed

    Calkins, Michael A; Julien, Keith; Marti, Philippe

    2015-03-08

    The linear theory for rotating compressible convection in a plane layer geometry is presented for the astrophysically relevant case of low Prandtl number gases. When the rotation rate of the system is large, the flow remains geostrophically balanced for all stratification levels investigated and the classical (i.e. incompressible) asymptotic scaling laws for the critical parameters are recovered. For sufficiently small Prandtl numbers, increasing stratification tends to further destabilize the fluid layer, decrease the critical wavenumber and increase the oscillation frequency of the convective instability. In combination, these effects increase the relative magnitude of the time derivative of the density perturbation contained in the conservation of mass equation to non-negligible levels; the resulting convective instabilities occur in the form of compressional quasi-geostrophic oscillations. We find that the anelastic equations, which neglect this term, cannot capture these instabilities and possess spuriously growing eigenmodes in the rapidly rotating, low Prandtl number regime. It is shown that the Mach number for rapidly rotating compressible convection is intrinsically small for all background states, regardless of the departure from adiabaticity.

  15. The breakdown of the anelastic approximation in rotating compressible convection: implications for astrophysical systems

    PubMed Central

    Calkins, Michael A.; Julien, Keith; Marti, Philippe

    2015-01-01

    The linear theory for rotating compressible convection in a plane layer geometry is presented for the astrophysically relevant case of low Prandtl number gases. When the rotation rate of the system is large, the flow remains geostrophically balanced for all stratification levels investigated and the classical (i.e. incompressible) asymptotic scaling laws for the critical parameters are recovered. For sufficiently small Prandtl numbers, increasing stratification tends to further destabilize the fluid layer, decrease the critical wavenumber and increase the oscillation frequency of the convective instability. In combination, these effects increase the relative magnitude of the time derivative of the density perturbation contained in the conservation of mass equation to non-negligible levels; the resulting convective instabilities occur in the form of compressional quasi-geostrophic oscillations. We find that the anelastic equations, which neglect this term, cannot capture these instabilities and possess spuriously growing eigenmodes in the rapidly rotating, low Prandtl number regime. It is shown that the Mach number for rapidly rotating compressible convection is intrinsically small for all background states, regardless of the departure from adiabaticity. PMID:25792951

  16. Fiber optic sensor system for detecting movement or position of a rotating wheel bearing

    DOEpatents

    Veeser, Lynn R.; Rodriguez, Patrick J.; Forman, Peter R.; Monahan, Russell E.; Adler, Jonathan M.

    1997-01-01

    An improved fiber optic sensor system and integrated sensor bearing assembly for detecting movement or position of a rotating wheel bearing having a multi-pole tone ring which produces an alternating magnetic field indicative of movement and position of the rotating member. A magneto-optical material, such as a bismuth garnet iron (B.I.G.) crystal, having discrete magnetic domains is positioned in the vicinity of the tone ring so that the domains align themselves to the magnetic field generated by the tone ring. A single fiber optic cable, preferably single mode fiber, carries light generated by a source of light to the B.I.G. crystal. The light passes through the B.I.G. crystal and is refracted at domain boundaries in the crystal. The intensity of the refracted light is indicative of the amount of alignment of the domains and therefore the strength of the magnetic field. The refracted light is carried by the fiber optic cable to an optic receiver where the intensity is measured and an electrical signal is generated and sent to a controller indicating the frequency of the changes in light intensity and therefore the rotational speed of the rotating wheel bearing.

  17. A self-calibration method for tri-axis rotational inertial navigation system

    NASA Astrophysics Data System (ADS)

    Gao, Pengyu; Li, Kui; Wang, Lei; Liu, Zengjun

    2016-11-01

    The navigation accuracy of the rotational inertial navigation system (RINS) could be greatly improved by periodically rotating the inertial measurement unit (IMU) with gimbals. However, error parameters in RINS should be effectively calibrated and compensated. In this paper, a self-calibration method is proposed for tri-axis RINS using attitude errors and velocity errors as measurements. The proposed calibration scheme is designed as three separate steps, and a certain gimbal rotates continuously in each step. All the error parameters in the RINS are calibrated when the whole scheme finishes. The separate calibration steps reduce the correlations between error parameters, and the observability of errors in this method is clear to demonstrate according to the relations between navigation errors and error parameters when gimbals rotate. Each calibration step only lasts 12 min, thus gyro drifts and accelerometers biases could be regarded as constant. The proposed calibration scheme is tested in both simulation and actual tri-axis RINS, and simulation and experimental results show that all 23 error parameters could be well estimated in tri-axis RINS. A long-term vehicle navigation experiment results show that after calibration and compensation, the navigation performance has doubled approximately, and the velocity accuracy is less than 2 m s-1 while the position accuracy is less than 1500 m, fully illustrating the significance of the proposed self-calibration method in improving the navigation performance of RINS.

  18. Intelligent Robotic Systems Study (IRSS), phase 4

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Under the Intelligent Robotics Systems Study (IRSS), a generalized robotic control architecture was developed for use with the ProtoFlight Manipulator Arm (PFMA). Based upon the NASREM system design concept, the controller built for the PFMA provides localized position based force control, teleoperation, and advanced path recording and playback capabilities. The PFMA has six computer controllable degrees of freedom (DOF) plus a 7th manually indexable DOF, making the manipulator a pseudo 7 DOF mechanism. Joints on the PFMA are driven via 7 pulse width modulated amplifiers. Digital control of the PFMA is implemented using a variety of single board computers. There were two major activities under the IRSS phase 4 study: (1) enhancement of the PFMA control system software functionality; and (2) evaluation of operating modes via a teleoperation performance study. These activities are described and results are given.

  19. Rotational elasticity

    NASA Astrophysics Data System (ADS)

    Vassiliev, Dmitri

    2017-04-01

    We consider an infinite three-dimensional elastic continuum whose material points experience no displacements, only rotations. This framework is a special case of the Cosserat theory of elasticity. Rotations of material points are described mathematically by attaching to each geometric point an orthonormal basis that gives a field of orthonormal bases called the coframe. As the dynamical variables (unknowns) of our theory, we choose the coframe and a density. We write down the general dynamic variational functional for our rotational theory of elasticity, assuming our material to be physically linear but the kinematic model geometrically nonlinear. Allowing geometric nonlinearity is natural when dealing with rotations because rotations in dimension three are inherently nonlinear (rotations about different axes do not commute) and because there is no reason to exclude from our study large rotations such as full turns. The main result of the talk is an explicit construction of a class of time-dependent solutions that we call plane wave solutions; these are travelling waves of rotations. The existence of such explicit closed-form solutions is a non-trivial fact given that our system of Euler-Lagrange equations is highly nonlinear. We also consider a special case of our rotational theory of elasticity which in the stationary setting (harmonic time dependence and arbitrary dependence on spatial coordinates) turns out to be equivalent to a pair of massless Dirac equations. The talk is based on the paper [1]. [1] C.G.Boehmer, R.J.Downes and D.Vassiliev, Rotational elasticity, Quarterly Journal of Mechanics and Applied Mathematics, 2011, vol. 64, p. 415-439. The paper is a heavily revised version of preprint https://arxiv.org/abs/1008.3833

  20. Rotating Casimir systems: Magnetic-field-enhanced perpetual motion, possible realization in doped nanotubes, and laws of thermodynamics

    NASA Astrophysics Data System (ADS)

    Chernodub, M. N.

    2013-01-01

    Recently, we have demonstrated that for a certain class of Casimir-type systems (“devices”) the energy of zero-point vacuum fluctuations reaches its global minimum when the device rotates about a certain axis rather than remains static. This rotational vacuum effect may lead to the emergence of permanently rotating objects provided the negative rotational energy of zero-point fluctuations cancels the positive rotational energy of the device itself. In this paper, we show that for massless electrically charged particles the rotational vacuum effect should be drastically (astronomically) enhanced in the presence of a magnetic field. As an illustration, we show that in a background of experimentally available magnetic fields the zero-point energy of massless excitations in rotating torus-shaped doped carbon nanotubes may indeed overwhelm the classical energy of rotation for certain angular frequencies so that the permanently rotating state is energetically favored. The suggested “zero-point-driven” devices—which have no internally moving parts—correspond to a perpetuum mobile of a new, fourth kind: They do not produce any work despite the fact that their equilibrium (ground) state corresponds to a permanent rotation even in the presence of an external environment. We show that our proposal is consistent with the laws of thermodynamics.