Sample records for phase separation method

  1. Method for separating disparate components in a fluid stream

    DOEpatents

    Meikrantz, David H.

    1990-01-01

    The invention provides a method of separating a mixed component waste stream in a centrifugal separator. The mixed component waste stream is introduced into the separator and is centrifugally separated within a spinning rotor. A dual vortex separation occurs due to the phase density differences, with the phases exiting the rotor distinct from one another. In a preferred embodiment, aqueous solutions of organics can be separated with up to 100% efficiency. The relatively more dense water phase is centrifugally separated through a radially outer aperture in the separator, while the relatively less dense organic phase is separated through a radially inner aperture.

  2. Phase-separated, epitaxial composite cap layers for electronic device applications and method of making the same

    DOEpatents

    Aytug, Tolga [Knoxville, TN; Paranthaman, Mariappan Parans [Knoxville, TN; Polat, Ozgur [Knoxville, TN

    2012-07-17

    An electronic component that includes a substrate and a phase-separated layer supported on the substrate and a method of forming the same are disclosed. The phase-separated layer includes a first phase comprising lanthanum manganate (LMO) and a second phase selected from a metal oxide (MO), metal nitride (MN), a metal (Me), and combinations thereof. The phase-separated material can be an epitaxial layer and an upper surface of the phase-separated layer can include interfaces between the first phase and the second phase. The phase-separated layer can be supported on a buffer layer comprising a composition selected from the group consisting of IBAD MgO, LMO/IBAD-MgO, homoepi-IBAD MgO and LMO/homoepi-MgO. The electronic component can also include an electronically active layer supported on the phase-separated layer. The electronically active layer can be a superconducting material, a ferroelectric material, a multiferroic material, a magnetic material, a photovoltaic material, an electrical storage material, and a semiconductor material.

  3. The study of membrane formation via phase inversion method by cloud point and light scattering experiment

    NASA Astrophysics Data System (ADS)

    Arahman, Nasrul; Maimun, Teuku; Mukramah, Syawaliah

    2017-01-01

    The composition of polymer solution and the methods of membrane preparation determine the solidification process of membrane. The formation of membrane structure prepared via non-solvent induced phase separation (NIPS) method is mostly determined by phase separation process between polymer, solvent, and non-solvent. This paper discusses the phase separation process of polymer solution containing Polyethersulfone (PES), N-methylpirrolidone (NMP), and surfactant Tetronic 1307 (Tet). Cloud point experiment is conducted to determine the amount of non-solvent needed on induced phase separation. Amount of water required as a non-solvent decreases by the addition of surfactant Tet. Kinetics of phase separation for such system is studied by the light scattering measurement. With the addition of Tet., the delayed phase separation is observed and the structure growth rate decreases. Moreover, the morphology of fabricated membrane from those polymer systems is analyzed by scanning electron microscopy (SEM). The images of both systems show the formation of finger-like macrovoids through the cross-section.

  4. Method for separating water soluble organics from a process stream by aqueous biphasic extraction

    DOEpatents

    Chaiko, David J.; Mego, William A.

    1999-01-01

    A method for separating water-miscible organic species from a process stream by aqueous biphasic extraction is provided. An aqueous biphase system is generated by contacting a process stream comprised of water, salt, and organic species with an aqueous polymer solution. The organic species transfer from the salt-rich phase to the polymer-rich phase, and the phases are separated. Next, the polymer is recovered from the loaded polymer phase by selectively extracting the polymer into an organic phase at an elevated temperature, while the organic species remain in a substantially salt-free aqueous solution. Alternatively, the polymer is recovered from the loaded polymer by a temperature induced phase separation (cloud point extraction), whereby the polymer and the organic species separate into two distinct solutions. The method for separating water-miscible organic species is applicable to the treatment of industrial wastewater streams, including the extraction and recovery of complexed metal ions from salt solutions, organic contaminants from mineral processing streams, and colorants from spent dye baths.

  5. Prediction of Phase Separation of Immiscible Ga-Tl Alloys

    NASA Astrophysics Data System (ADS)

    Kim, Yunkyum; Kim, Han Gyeol; Kang, Youn-Bae; Kaptay, George; Lee, Joonho

    2017-06-01

    Phase separation temperature of Ga-Tl liquid alloys was investigated using the constrained drop method. With this method, density and surface tension were investigated together. Despite strong repulsive interactions, molar volume showed ideal mixing behavior, whereas surface tension of the alloy was close to that of pure Tl due to preferential adsorption of Tl. Phase separation temperatures and surface tension values obtained with this method were close to the theoretically calculated values using three different thermodynamic models.

  6. Combination of Complex-Based and Magnitude-Based Multiecho Water-Fat Separation for Accurate Quantification of Fat-Fraction

    PubMed Central

    Yu, Huanzhou; Shimakawa, Ann; Hines, Catherine D. G.; McKenzie, Charles A.; Hamilton, Gavin; Sirlin, Claude B.; Brittain, Jean H.; Reeder, Scott B.

    2011-01-01

    Multipoint water–fat separation techniques rely on different water–fat phase shifts generated at multiple echo times to decompose water and fat. Therefore, these methods require complex source images and allow unambiguous separation of water and fat signals. However, complex-based water–fat separation methods are sensitive to phase errors in the source images, which may lead to clinically important errors. An alternative approach to quantify fat is through “magnitude-based” methods that acquire multiecho magnitude images. Magnitude-based methods are insensitive to phase errors, but cannot estimate fat-fraction greater than 50%. In this work, we introduce a water–fat separation approach that combines the strengths of both complex and magnitude reconstruction algorithms. A magnitude-based reconstruction is applied after complex-based water–fat separation to removes the effect of phase errors. The results from the two reconstructions are then combined. We demonstrate that using this hybrid method, 0–100% fat-fraction can be estimated with improved accuracy at low fat-fractions. PMID:21695724

  7. Rapid Separation of Copper Phase and Iron-Rich Phase From Copper Slag at Low Temperature in a Super-Gravity Field

    NASA Astrophysics Data System (ADS)

    Lan, Xi; Gao, Jintao; Huang, Zili; Guo, Zhancheng

    2018-03-01

    A novel approach for quickly separating a metal copper phase and iron-rich phase from copper slag at low temperature is proposed based on a super-gravity method. The morphology and mineral evolution of the copper slag with increasing temperature were studied using in situ high-temperature confocal laser scanning microscopy and ex situ scanning electron microscopy and X-ray diffraction methods. Fe3O4 particles dispersed among the copper slag were transformed into FeO by adding an appropriate amount of carbon as a reducing agent, forming the slag melt with SiO2 at low temperature and assisting separation of the copper phase from the slag. Consequently, in a super-gravity field, the metallic copper and copper matte were concentrated as the copper phase along the super-gravity direction, whereas the iron-rich slag migrated in the opposite direction and was quickly separated from the copper phase. Increasing the gravity coefficient (G) significantly enhanced the separation efficiency. After super-gravity separation at G = 1000 and 1473 K (1200 °C) for 3 minutes, the mass fraction of Cu in the separated copper phase reached 86.11 wt pct, while that in the separated iron-rich phase was reduced to 0.105 wt pct. The recovery ratio of Cu in the copper phase was as high as up to 97.47 pct.

  8. Rapid Separation of Copper Phase and Iron-Rich Phase From Copper Slag at Low Temperature in a Super-Gravity Field

    NASA Astrophysics Data System (ADS)

    Lan, Xi; Gao, Jintao; Huang, Zili; Guo, Zhancheng

    2018-06-01

    A novel approach for quickly separating a metal copper phase and iron-rich phase from copper slag at low temperature is proposed based on a super-gravity method. The morphology and mineral evolution of the copper slag with increasing temperature were studied using in situ high-temperature confocal laser scanning microscopy and ex situ scanning electron microscopy and X-ray diffraction methods. Fe3O4 particles dispersed among the copper slag were transformed into FeO by adding an appropriate amount of carbon as a reducing agent, forming the slag melt with SiO2 at low temperature and assisting separation of the copper phase from the slag. Consequently, in a super-gravity field, the metallic copper and copper matte were concentrated as the copper phase along the super-gravity direction, whereas the iron-rich slag migrated in the opposite direction and was quickly separated from the copper phase. Increasing the gravity coefficient (G) significantly enhanced the separation efficiency. After super-gravity separation at G = 1000 and 1473 K (1200 °C) for 3 minutes, the mass fraction of Cu in the separated copper phase reached 86.11 wt pct, while that in the separated iron-rich phase was reduced to 0.105 wt pct. The recovery ratio of Cu in the copper phase was as high as up to 97.47 pct.

  9. Selective Detection of Peptide-Oligonucleotide Heteroconjugates Utilizing Capillary HPLC-ICPMS

    NASA Astrophysics Data System (ADS)

    Catron, Brittany; Caruso, Joseph A.; Limbach, Patrick A.

    2012-06-01

    A method for the selective detection and quantification of peptide:oligonucleotide heteroconjugates, such as those generated by protein:nucleic acid cross-links, using capillary reversed-phase high performance liquid chromatography (cap-RPHPLC) coupled with inductively coupled plasma mass spectrometry detection (ICPMS) is described. The selective detection of phosphorus as 31P+, the only natural isotope, in peptide-oligonucleotide heteroconjugates is enabled by the elemental detection capabilities of the ICPMS. Mobile phase conditions that allow separation of heteroconjugates while maintaining ICPMS compatibility were investigated. We found that trifluoroacetic acid (TFA) mobile phases, used in conventional peptide separations, and hexafluoroisopropanol/triethylamine (HFIP/TEA) mobile phases, used in conventional oligonucleotide separations, both are compatible with ICPMS and enable heteroconjugate separation. The TFA-based separations yielded limits of detection (LOD) of ~40 ppb phosphorus, which is nearly seven times lower than the LOD for HFIP/TEA-based separations. Using the TFA mobile phase, 1-2 pmol of a model heteroconjugate were routinely separated and detected by this optimized capLC-ICPMS method.

  10. Phase-separation induced extraordinary toughening of magnetic hydrogels

    NASA Astrophysics Data System (ADS)

    Tang, Jingda; Li, Chenghai; Li, Haomin; Lv, Zengyao; Sheng, Hao; Lu, Tongqing; Wang, T. J.

    2018-05-01

    Phase separation markedly influences the physical properties of hydrogels. Here, we find that poly (N, N-dimethylacrylamide) (PDMA) hydrogels suffer from phase separation in aqueous sodium hydroxide solutions when the concentration is higher than 2 M. The polymer volume fraction and mechanical properties show an abrupt change around the transition point. We utilize this phase separation mechanism to synthesize tough magnetic PDMA hydrogels with the in-situ precipitation method. For comparison, we also prepared magnetic poly (2-acrylamido-2-methyl-propane sulfonic acid sodium) (PNaAMPS) magnetic hydrogels, where no phase separation occurs. The phase-separated magnetic PDMA hydrogels exhibit an extraordinarily high toughness of ˜1000 J m-2; while non-phase-separated magnetic PNaAMPS hydrogels only show a toughness of ˜1 J m-2, three orders of magnitude lower than that of PDMA hydrogels. This phase separation mechanism may become a new approach to prepare tough magnetic hydrogels and inspire more applications.

  11. Robust water fat separated dual-echo MRI by phase-sensitive reconstruction.

    PubMed

    Romu, Thobias; Dahlström, Nils; Leinhard, Olof Dahlqvist; Borga, Magnus

    2017-09-01

    The purpose of this work was to develop and evaluate a robust water-fat separation method for T1-weighted symmetric two-point Dixon data. A method for water-fat separation by phase unwrapping of the opposite-phase images by phase-sensitive reconstruction (PSR) is introduced. PSR consists of three steps; (1), identification of clusters of tissue voxels; (2), unwrapping of the phase in each cluster by solving Poisson's equation; and (3), finding the correct sign of each unwrapped opposite-phase cluster, so that the water-fat images are assigned the correct identities. Robustness was evaluated by counting the number of water-fat swap artifacts in a total of 733 image volumes. The method was also compared to commercial software. In the water-fat separated image volumes, the PSR method failed to unwrap the phase of one cluster and misclassified 10. One swap was observed in areas affected by motion and was constricted to the affected area. Twenty swaps were observed surrounding susceptibility artifacts, none of which spread outside the artifact affected regions. The PSR method had fewer swaps when compared to commercial software. The PSR method can robustly produce water-fat separated whole-body images based on symmetric two-echo spoiled gradient echo images, under both ideal conditions and in the presence of common artifacts. Magn Reson Med 78:1208-1216, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  12. Method of separating lignocellulosic material into lignin, cellulose and dissolved sugars

    DOEpatents

    Black, S.K.; Hames, B.R.; Myers, M.D.

    1998-03-24

    A method is described for separating lignocellulosic material into (a) lignin, (b) cellulose, and (c) hemicellulose and dissolved sugars. Wood or herbaceous biomass is digested at elevated temperature in a single-phase mixture of alcohol, water and a water-immiscible organic solvent (e.g., a ketone). After digestion, the amount of water or organic solvent is adjusted so that there is phase separation. The lignin is present in the organic solvent, the cellulose is present in a solid pulp phase, and the aqueous phase includes hemicellulose and any dissolved sugars.

  13. Method of separating lignocellulosic material into lignin, cellulose and dissolved sugars

    DOEpatents

    Black, Stuart K.; Hames, Bonnie R.; Myers, Michele D.

    1998-01-01

    A method for separating lignocellulosic material into (a) lignin, (b) cellulose, and (c) hemicellulose and dissolved sugars. Wood or herbaceous biomass is digested at elevated temperature in a single-phase mixture of alcohol, water and a water-immiscible organic solvent (e.g., a ketone). After digestion, the amount of water or organic solvent is adjusted so that there is phase separation. The lignin is present in the organic solvent, the cellulose is present in a solid pulp phase, and the aqueous phase includes hemicellulose and any dissolved sugars.

  14. Linear solvation energy relationships in normal phase chromatography based on gradient separations.

    PubMed

    Wu, Di; Lucy, Charles A

    2017-09-22

    Coupling the modified Soczewiñski model and one gradient run, a gradient method was developed to build a linear solvation energy relationship (LSER) for normal phase chromatography. The gradient method was tested on dinitroanilinopropyl (DNAP) and silica columns with hexane/dichloromethane (DCM) mobile phases. LSER models built based on the gradient separation agree with those derived from a series of isocratic separations. Both models have similar LSER coefficients and comparable goodness of fit, but the LSER model based on gradient separation required fewer trial and error experiments. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Optimization of a reversed-phase-high-performance thin-layer chromatography method for the separation of isoniazid, ethambutol, rifampicin and pyrazinamide in fixed-dose combination antituberculosis tablets.

    PubMed

    Shewiyo, D H; Kaale, E; Risha, P G; Dejaegher, B; Smeyers-Verbeke, J; Vander Heyden, Y

    2012-10-19

    This paper presents the development of a new RP-HPTLC method for the separation of pyrazinamide, isoniazid, rifampicin and ethambutol in a four fixed-dose combination (4 FDC) tablet formulation. It is a single method with two steps in which after plate development pyrazinamide, isoniazid and rifampicin are detected at an UV wavelength of 280 nm. Then ethambutol is derivatized and detected at a VIS wavelength of 450 nm. Methanol, ethanol and propan-1-ol were evaluated modifiers to form alcohol-water mobile phases. Systematic optimization of the composition of each alcohol in the mobile phase was carried out using the window diagramming concept to obtain the best separation. Examination of the Rf distribution of the separated compounds showed that separation of the compounds with the mobile phase containing ethanol at the optimal fraction was almost situated within the optimal Rf-values region of 0.20-0.80. Therefore, ethanol was selected as organic modifier and the optimal mobile phase composition was found to be ethanol, water, glacial acetic acid (>99% acetic acid) and 37% ammonia solution (70/30/5/1, v/v/v/v). The method is new, quick and cheap compared to the actual method in the International Pharmacopoeia for the assay of the 4 FDC tablets, which involves the use of two separate HPLC methods. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Characterization of free thiol variants of an IgG1 by reversed phase ultra high pressure liquid chromatography coupled with mass spectrometry.

    PubMed

    Liu, Hongbin; Jeong, Justin; Kao, Yung-Hsiang; Zhang, Yonghua Taylor

    2015-05-10

    RP-HPLC has been demonstrated as a powerful tool to study antibody free thiol and disulfide variants. Recently, the introduction of UHPLC columns with wide pore size (300Å) and small particle size (1.7μm) offered the opportunity to further improve the separation of such variants. This paper describes a systematic evaluation of stationary phases, operating parameters, and mobile phases for a UHPLC based method to separate free thiol variants of a recombinant monoclonal antibody (referred as mAb A), targeting high resolution, high throughput and improved recovery. Among the four different stationary phases evaluated, UHPLC diphenyl columns were found to provide the best separation. Using an optimized UHPLC method, free thiol variants of mAb A were separated in 5min. Importantly, the UHPLC method revealed minor variants that had coeluted in an HPLC based method, and the UHPLC method is also applicable as a platform method for characterization of other mAbs as well. Furthermore, an on-line UHPLC-MS method was developed to characterize the separated variants, and this method can streamline the characterization of fully assembled monoclonal and bispecific therapeutic antibodies. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Method and turbine for extracting kinetic energy from a stream of two-phase fluid

    NASA Technical Reports Server (NTRS)

    Elliott, D. G. (Inventor)

    1979-01-01

    An axial flow separator turbine is described which includes a number of nozzles for delivering streams of a two-phase fluid along linear paths. A phase separator which responsively separates the vapor and liquid is characterized by concentrically related annuli supported for rotation within the paths. The separator has endless channels for confining the liquid under the influence of centrifugal forces. A vapor turbine fan extracts kinetic energy from the liquid. Angular momentum of both the liquid phase and the vapor phase of the fluid is converted to torque.

  18. Method for separating mono- and di-octylphenyl phosphoric acid esters

    DOEpatents

    Arnold, Jr., Wesley D.

    1977-01-01

    A method for separating mono-octylphenyl phosphoric acid ester and di-octylphenyl phosphoric acid ester from a mixture thereof comprises reacting the ester mixture with a source of lithium or sodium ions to form a mixture of the phosphate salts; contacting the salt mixture with an organic solvent which causes the dioctylphenyl phosphate salt to be dissolved in the organic solvent phase and the mono-octylphenyl phosphate salt to exist in a solid phase; separating the phases; recovering the phosphate salts from their respective phases; and acidifying the recovered salts to form the original phosphoric acid esters.

  19. Effect of the Hartmann number on phase separation controlled by magnetic field for binary mixture system with large component ratio

    NASA Astrophysics Data System (ADS)

    Heping, Wang; Xiaoguang, Li; Duyang, Zang; Rui, Hu; Xingguo, Geng

    2017-11-01

    This paper presents an exploration for phase separation in a magnetic field using a coupled lattice Boltzmann method (LBM) with magnetohydrodynamics (MHD). The left vertical wall was kept at a constant magnetic field. Simulations were conducted by the strong magnetic field to enhance phase separation and increase the size of separated phases. The focus was on the effect of magnetic intensity by defining the Hartmann number (Ha) on the phase separation properties. The numerical investigation was carried out for different governing parameters, namely Ha and the component ratio of the mixed liquid. The effective morphological evolutions of phase separation in different magnetic fields were demonstrated. The patterns showed that the slant elliptical phases were created by increasing Ha, due to the formation and increase of magnetic torque and force. The dataset was rearranged for growth kinetics of magnetic phase separation in a plot by spherically averaged structure factor and the ratio of separated phases and total system. The results indicate that the increase in Ha can increase the average size of separated phases and accelerate the spinodal decomposition and domain growth stages. Specially for the larger component ratio of mixed phases, the separation degree was also significantly improved by increasing magnetic intensity. These numerical results provide guidance for setting the optimum condition for the phase separation induced by magnetic field.

  20. Method for separating biological cells. [suspended in aqueous polymer systems

    NASA Technical Reports Server (NTRS)

    Brooks, D. E. (Inventor)

    1980-01-01

    A method for separating biological cells by suspending a mixed cell population in a two-phase polymer system is described. The polymer system consists of droplet phases with different surface potentials for which the cell populations exhibit different affinities. The system is subjected to an electrostatic field of sufficient intensity to cause migration of the droplets with an attendant separation of cells.

  1. Separation of aromatic carboxylic acids using quaternary ammonium salts on reversed-phase HPLC. 2. Application for the analysis of Loy Yang coal oxidation products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawamura, K.; Okuwaki, A.; Verheyen, T.V.

    In order to develop separation processes and analytical methods for aromatic carboxylic acids for the coal oxidation products, the separation behavior of aromatic carboxylic acids on a reversed-phase HPLC using eluent containing quaternary ammonium salt was optimized using the solvent gradient method. This method was applied for the analysis of Loy Yang coal oxidation products. It was confirmed that the analytical data using this method were consistent with those determined using gas chromatography.

  2. Methods for recovering a solvent from a fluid volume and methods of removing at least one compound from a nonpolar solvent

    DOEpatents

    Ginosar, Daniel M.; Wendt, Daniel S.; Petkovic, Lucia M.

    2014-06-10

    A method of removing a nonpolar solvent from a fluid volume that includes at least one nonpolar compound, such as a fat, an oil or a triglyceride, is provided. The method comprises contacting a fluid volume with an expanding gas to expand the nonpolar solvent and form a gas-expanded solvent. The gas-expanded solvent may have a substantially reduced density in comparison to the at least one nonpolar compound and/or a substantially reduced capacity to solubilize the nonpolar compound, causing the nonpolar compounds to separate from the gas-expanded nonpolar solvent into a separate liquid phase. The liquid phase including the at least one nonpolar compound may be separated from the gas-expanded solvent using conventional techniques. After separation of the liquid phase, at least one of the temperature and pressure may be reduced to separate the nonpolar solvent from the expanding gas such that the nonpolar solvent may be recovered and reused.

  3. Development of Electrospun Nanomaterials and their Applications in Separation Science

    NASA Astrophysics Data System (ADS)

    Newsome, Toni Elwell

    In separations, efficiency is inversely related to the diameter of the sorbent particles of the stationary phase. Thus, materials research in separation science has primarily been directed towards reducing the diameter of the sorbent particle used in the stationary phase. In this dissertation, innovative methods designed for the fabrication and application of electrospun sorbent nanomaterials for separation science are described. Electrospinning is a facile, cost-effective technique that relies on repulsive electrostatic forces to produce nanofibers from a viscoelastic solution. Here, electrospinning is used to generate polymer, carbon, and silica-based nanofibers which are employed as sorbent nanomaterials in extractions and separations. Electrospun carbon nanofibers have proven to be ideal extractive phases for solid-phase microextraction (SPME) when coupled to gas chromatography (GC) for headspace sampling of volatile analytes. Herein, these carbon nanofibers were employed in the direct extraction of nonvolatile analytes and coupled to liquid chromatography (LC) for the first time. The high surface area of the coatings led to enhanced extraction efficiencies; they offered a 3-33 fold increase in efficiency relative to a commercial SPME phase. Carbon nanofibers proved to be stable when immersed in liquids common to LC demonstrating the enhanced stability of these coatings in SPME coupled to LC relative to conventional SPME fibers. The enhanced chemical and mechanical stability of the carbon SPME coatings considerably expanded the range of compounds applicable to SPME and extended the lifetimes of the fibers. Electrospun nanofibers have also proven to be ideal stationary phases in ultra-thin layer chromatography (UTLC). Nanofibers provide faster separations and enhanced separation efficiencies compared to commercial particle-based stationary phases in a relatively short distance. Here, the electrospun-UTLC technology was extended for the first time to nanofibers composed of silica, the most commonly used surface for TLC. An electrospinning method was optimized to produce silica-based nanofibers with the smallest diameter possible (300-380 nm) while maintaining homogenous nanofiber morphology. Highly efficient separations were performed in 15 mm with observed plate heights as low as 8.6 mum. Silica-based nanofibers proved to be chemically stable with a wide variety of TLC reagents demonstrating the enhanced compatibility of these phases with common TLC methods relative to polymer and carbon nanofiber UTLC plates. The extension of electrospun UTLC to silica-based nanofibers vastly expanded the range of analytes and TLC methods which can be used with this technology. The main disadvantage of conventional TLC development methods is that the mobile phase velocity decreases with increasing separation distance. Here, the chromatographic performance of electrospun polymer stationary phases was further improved by using a forced-flow mobile phase in planar electrochromatography (PEC) in which mobile phase velocity does not diminish with increasing distance. Separations were performed on polymer nanofiber UTLC plates in 1-2 min. Compared to UTLC, PEC offered unique selectivity, decreased analysis times (> 4 times faster), and enhanced efficiency (2-3 times lower plate height). In addition, two-dimensional (2D) separations of a complex analyte mixture using UTLC followed by PEC required only 11 min and exhibited a significant increase in separation number (70-77).

  4. Nanocomposites for ultra high density information storage, devices including the same, and methods of making the same

    DOEpatents

    Goyal, Amit; Shin, Junsoo

    2014-04-01

    A nanocomposite article that includes a single-crystal or single-crystal-like substrate and heteroepitaxial, phase-separated layer supported by a surface of the substrate and a method of making the same are described. The heteroepitaxial layer can include a continuous, non-magnetic, crystalline, matrix phase, and an ordered, magnetic magnetic phase disposed within the matrix phase. The ordered magnetic phase can include a plurality of self-assembled crystalline nanostructures of a magnetic material. The phase-separated layer and the single crystal substrate can be separated by a buffer layer. An electronic storage device that includes a read-write head and a nanocomposite article with a data storage density of 0.75 Tb/in.sup.2 is also described.

  5. Simultaneous separation and analysis of water- and fat-soluble vitamins on multi-modal reversed-phase weak anion exchange material by HPLC-UV.

    PubMed

    Dabre, Romain; Azad, Nazanin; Schwämmle, Achim; Lämmerhofer, Michael; Lindner, Wolfgang

    2011-04-01

    Several methods for the separation of vitamins on HPLC columns were already validated in the last 20 years. However, most of the techniques focus on separating either fat- or water-soluble vitamins and only few methods are intended to separate lipophilic and hydrophilic vitamins simultaneously. A mixed-mode reversed-phase weak anion exchange (RP-WAX) stationary phase was developed in our laboratory in order to address such mixture of analytes with different chemical characteristics, which are difficult to separate on standard columns. The high versatility in usage of the RP-WAX chromatographic material allowed a baseline separation of ten vitamins within a single run, seven water-soluble and three fat-soluble, using three different chromatographic modes: some positively charged vitamins are eluted in ion exclusion and ion repulsion modes whereas the negatively charged molecules are eluted in the ion exchange mechanism. The non-charged molecules are eluted in a classical reversed-phase mode, regarding their polarities. The method was validated for the vitamin analysis in tablets, evaluating selectivity, robustness, linearity, accuracy, and precision. The validated method was finally employed for the analysis of the vitamin content of some commercially available supplement tablets. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Cell separation in immunoaffinity partition in aqueous polymer two-phase systems

    NASA Technical Reports Server (NTRS)

    Karr, Laurel J.; Van Alstine, James M.; Snyder, Robert S.; Shafer, Steven G.; Harris, J. Milton

    1989-01-01

    Two methods for immunoaffinity partitioning are described. One technique involves the covalent coupling of poly (ethylene glycol) (PEG) to immunoglobulin G antibody preparations. In the second method PEG-modified Protein A is used to complex with cells and unmodified antibody. The effects of PEG molecular weight, the degree of modification, and varying phase system composition on antibody activity and its affinity for the upper phase are studied. It is observed that both methods resulted in effective cell separation.

  7. Purification of flavonoids from licorice using an off-line preparative two-dimensional normal-phase liquid chromatography/reversed-phase liquid chromatography method.

    PubMed

    Fan, Yunpeng; Fu, Yanhui; Fu, Qing; Cai, Jianfeng; Xin, Huaxia; Dai, Mei; Jin, Yu

    2016-07-01

    An orthogonal (71.9%) off-line preparative two-dimensional normal-phase liquid chromatography/reversed-phase liquid chromatography method coupled with effective sample pretreatment was developed for separation and purification of flavonoids from licorice. Most of the nonflavonoids were firstly removed using a self-made Click TE-Cys (60 μm) solid-phase extraction. In the first dimension, an industrial grade preparative chromatography was employed to purify the crude flavonoids. Click TE-Cys (10 μm) was selected as the stationary phase that provided an excellent separation with high reproducibility. Ethyl acetate/ethanol was selected as the mobile phase owing to their excellent solubility for flavonoids. Flavonoids co-eluted in the first dimension were selected for further purification using reversed-phase liquid chromatography. Multiple compounds could be isolated from one normal-phase fraction and some compounds with bad resolution in one-dimensional liquid chromatography could be prepared in this two-dimensional system owing to the orthogonal separation. Moreover, this two-dimensional liquid chromatography method was beneficial for the preparation of relatively trace flavonoid compounds, which were enriched in the first dimension and further purified in the second dimension. Totally, 24 flavonoid compounds with high purity were obtained. The results demonstrated that the off-line two-dimensional liquid chromatography method was effective for the preparative separation and purification of flavonoids from licorice. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. METHOD OF SEPARATING URANIUM FROM ALLOYS

    DOEpatents

    Chiotti, P.; Shoemaker, H.E.

    1960-06-28

    Uranium can be recovered from metallic uraniumthorium mixtures containing uranium in comparatively small amounts. The method of recovery comprises adding a quantity of magnesium to a mass to obtain a content of from 48 to 85% by weight; melting and forming a magnesium-thorium alloy at a temperature of between 585 and 800 deg C; agitating the mixture, allowing the mixture to settle whereby two phases, a thorium-containing magnesium-rich liquid phase and a solid uranium-rich phase, are formed; and separating the two phases.

  9. Model reduction method using variable-separation for stochastic saddle point problems

    NASA Astrophysics Data System (ADS)

    Jiang, Lijian; Li, Qiuqi

    2018-02-01

    In this paper, we consider a variable-separation (VS) method to solve the stochastic saddle point (SSP) problems. The VS method is applied to obtain the solution in tensor product structure for stochastic partial differential equations (SPDEs) in a mixed formulation. The aim of such a technique is to construct a reduced basis approximation of the solution of the SSP problems. The VS method attempts to get a low rank separated representation of the solution for SSP in a systematic enrichment manner. No iteration is performed at each enrichment step. In order to satisfy the inf-sup condition in the mixed formulation, we enrich the separated terms for the primal system variable at each enrichment step. For the SSP problems by regularization or penalty, we propose a more efficient variable-separation (VS) method, i.e., the variable-separation by penalty method. This can avoid further enrichment of the separated terms in the original mixed formulation. The computation of the variable-separation method decomposes into offline phase and online phase. Sparse low rank tensor approximation method is used to significantly improve the online computation efficiency when the number of separated terms is large. For the applications of SSP problems, we present three numerical examples to illustrate the performance of the proposed methods.

  10. Analyses of procyanidins in foods using Diol phase HPLC

    USDA-ARS?s Scientific Manuscript database

    Separation of procyanidins using silica-based HPLC suffered from poor resolution for higher oligomers and low sensitivity due to the fluorescence quenching effects of methylene chloride in the mobile phase. Optimization of a published Diol-phase HPLC method resulted in near baseline separation for p...

  11. Separation of multiphosphorylated peptide isomers by hydrophilic interaction chromatography on an aminopropyl phase.

    PubMed

    Singer, David; Kuhlmann, Julia; Muschket, Matthias; Hoffmann, Ralf

    2010-08-01

    The separation of isomeric phosphorylated peptides is challenging and often impossible for multiphosphorylated isomers using chromatographic and capillary electrophoretic methods. In this study we investigated the separation of a set of single-, double-, and triple-phosphorylated peptides (corresponding to the human tau protein) by ion-pair reversed-phase chromatography (IP-RPC) and hydrophilic interaction chromatography (HILIC). In HILIC both hydroxyl and aminopropyl stationary phases were tested with aqueous acetonitrile in order to assess their separation efficiency. The hydroxyl phase separated the phosphopeptides very well from the unphosphorylated analogue, while on the aminopropyl phase even isomeric phosphopeptides attained baseline separation. Thus, up to seven phosphorylated versions of a given tau domain were separated. Furthermore, the low concentration of an acidic ammonium formate buffer allowed an online analysis with electrospray ionization tandem mass spectrometry (ESI-MS/MS) to be conducted, enabling peptide sequencing and identification of phosphorylation sites.

  12. Study Of Phase Separation In Glass

    NASA Technical Reports Server (NTRS)

    Neilson, George F.; Weinberg, Michael C.; Smith, Gary L.

    1989-01-01

    Report describes an experimental study of effect of hydroxide content on phase separation in soda/silica glasses. Ordinary and gel glasses melted at 1,565 degree C, and melts stirred periodically. "Wet" glasses produced by passing bubbles of N2 saturated with water through melts; "dry" glasses prepared in similar manner, except N2 dried before passage through melts. Analyses of compositions of glasses performed by atomic-absorption and index-of-refraction measurements. Authors conclude hydroxide speeds up phase separation, regardless of method (gel or ordinary) by which glass prepared. Eventually helps material scientists to find ways to control morphology of phase separation.

  13. A new acetonitrile-free mobile phase method for LC-ELSD quantification of fructooligosaccharides in onion (Allium cepa L.).

    PubMed

    Downes, Katherine; Terry, Leon A

    2010-06-30

    Onion soluble non-structural carbohydrates consist of fructose, glucose and sucrose plus fructooligosaccharides (FOS) with degrees of polymerisation (DP) in the range of 3-19. In onion, sugars and FOS are typically separated using liquid chromatography (LC) with acetonitrile (ACN) as a mobile phase. In recent times, however, the production of ACN has diminished due, in part, to the current worldwide economic recession. A study was therefore undertaken, to find an alternative LC method to quantify sugars and FOS from onion without the need for ACN. Two mobile phases were compared; the first taken from a paper by Vågen and Slimestad (2008) using ACN mobile phase, the second, a newly reported method using ethanol (EtOH). The EtOH mobile phase eluted similar concentrations of all FOS compared to the ACN mobile phase. In addition, limit of detection, limit of quantification and relative standard deviation values were sufficiently and consistently lower for all FOS using the EtOH mobile phase. The drawback of the EtOH mobile phase was mainly the inability to separate all individual sugar peaks, yet FOS could be successfully separated. However, using the same onion extract, a previously established LC method based on an isocratic water mobile phase could be used in a second run to separate sugars. Although the ACN mobile phase method is more convenient, in the current economic climate a method based on inexpensive and plentiful ethanol is a valid alternative and could potentially be applied to other fresh produce types. In addition to the mobile phase solvent, the effect of extraction solvents on sugar and FOS concentration was also investigated. EtOH is still widely used to extract sugars from onion although previous literature has concluded that MeOH is a superior solvent. For this reason, an EtOH-based extraction method was compared with a MeOH-based method to extract both sugars and FOS. The MeOH-based extraction method was more efficacious at extracting sugars and FOS from onion flesh, eluting significantly higher concentrations of glucose, kestose, nystose and DP5-DP8. Copyright 2010 Elsevier B.V. All rights reserved.

  14. Critical review: Injectability of calcium phosphate pastes and cements.

    PubMed

    O'Neill, R; McCarthy, H O; Montufar, E B; Ginebra, M-P; Wilson, D I; Lennon, A; Dunne, N

    2017-03-01

    Calcium phosphate cements (CPC) have seen clinical success in many dental and orthopaedic applications in recent years. The properties of CPC essential for clinical success are reviewed in this article, which includes properties of the set cement (e.g. bioresorbability, biocompatibility, porosity and mechanical properties) and unset cement (e.g. setting time, cohesion, flow properties and ease of delivery to the surgical site). Emphasis is on the delivery of calcium phosphate (CaP) pastes and CPC, in particular the occurrence of separation of the liquid and solid components of the pastes and cements during injection; and established methods to reduce this phase separation. In addition a review of phase separation mechanisms observed during the extrusion of other biphasic paste systems and the theoretical models used to describe these mechanisms are discussed. Occurrence of phase separation of calcium phosphate pastes and cements during injection limits their full exploitation as a bone substitute in minimally invasive surgical applications. Due to lack of theoretical understanding of the phase separation mechanism(s), optimisation of an injectable CPC that satisfies clinical requirements has proven difficult. However, phase separation of pastes during delivery has been the focus across several research fields. Therefore in addition to a review of methods to reduce phase separation of CPC and the associated constraints, a review of phase separation mechanisms observed during extrusion of other pastes and the theoretical models used to describe these mechanisms is presented. It is anticipated this review will benefit future attempts to develop injectable calcium phosphate based systems. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  15. Enantioselective separation of all-E-astaxanthin and its determination in microbial sources.

    PubMed

    Grewe, Claudia; Menge, Sieglinde; Griehl, Carola

    2007-09-28

    A method for the enantioselective separation of all-E-astaxanthin (3,3'-dihydroxy-beta,beta-carotene-4,4'-dione), an important colorant in the feed industry, was developed. Different chiral stationary phases (CSPs) such as Pirkle phases (R,R Ulmo and l-leucine), modified polysaccharides and a beta-cyclodextrin have been investigated on their separation performance of astaxanthin enantiomers. Direct resolution was only achieved employing the Chiralcel OD-RH (cellulose-tris-3,5-dimethylphenyl-carbamate) under reversed phase conditions. The chiral separation of the enantiomeric forms of astaxanthin produced in microalgae and yeasts was reported. The yeast Xanthophyllomyces sp. produces astaxanthin predominantly in the R,R configuration, whereas in the green microalgae Scenedesmus sp. astaxanthin is built primarily in the S,S form. The separation method for the identification of astaxanthin enantiomers is of great interest since astaxanthin is used as functional food additive in human nutrition. Moreover the method may be used as a food chain indicator in farmed salmon.

  16. Preparative separation of the polar part from the rhizomes of Anemarrhena asphodeloides using a hydrophilic C18 stationary phase.

    PubMed

    Cai, Jianfeng; Xin, Huaxia; Cheng, Lingping; Fu, YanHui; Jiang, Dasen; Feng, Jiatao; Fu, Qing; Jin, Yu; Liang, Xinmiao

    2017-09-15

    The goal of this study was to develop a method that utilized a hydrophilic C18 stationary phase in the preparative high performance liquid chromatography to isolate the polar part from the rhizomes of Anemarrhena asphodeloides. The results showed that an initial mobile phase of pure water for the separation could greatly increase the retention and solubility of the polar compounds at the preparative scale. Introducing polar groups on the surface of the hydrophilic C18 column together with the use of optimized mobile phase compositions improved the column separation selectivity for polar compounds. Eleven previously undescribed compounds in Anemarrhena asphodeloides were obtained, indicating that the method developed in this study would facilitate the purification and separation of the polar part of traditional Chinese medicines. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Evaluation of comprehensive multidimensional separations using reversed-phase, reversed-phase liquid chromatography/mass spectrometry for shotgun proteomics.

    PubMed

    Nakamura, Tatsuji; Kuromitsu, Junro; Oda, Yoshiya

    2008-03-01

    Two-dimensional liquid-chromatographic (LC) separation followed by mass spectrometric (MS) analysis was examined for the identification of peptides in complex mixtures as an alternative to widely used two-dimensional gel electrophoresis followed by MS analysis for use in proteomics. The present method involves the off-line coupling of a narrow-bore, polymer-based, reversed-phase column using an acetonitrile gradient in an alkaline mobile phase in the first dimension with octadecylsilanized silica (ODS)-based nano-LC/MS in the second dimension. After the first separation, successive fractions were acidified and dried off-line, then loaded on the second dimension column. Both columns separate peptides according to hydrophobicity under different pH conditions, but more peptides were identified than with the conventional technique for shotgun proteomics, that is, the combination of a strong cation exchange column with an ODS column, and the system was robust because no salts were included in the mobile phases. The suitability of the method for proteomics measurements was evaluated.

  18. METHOD OF INHIBITING CORROSION IN URANYL SULFATE SOLUTIONS

    DOEpatents

    Bohlmann, E.G.; Griess, J.C. Jr.

    1960-08-23

    A method is given for treating a uranyl sulfate solution to inhibit the corrosiveness of the solution and elevate the phase separation temperature of the solution. Lithium sulfate is added to the solution in an amount ranging from 0.25 to 1.3 times the uranyl sulfate concentration. The corrosiveness of the solution with respect to stainless steel is substantially decreased by this means. This treatment also serves to raise the phase separation temperature of the solution (above 250 deg C), at which time the uranyl sulfate solution separates into two liquid phases of unequal uranium concentration and thus becomes unsuitable as nuclear reactor fuel.

  19. Impinging jet separators for liquid metal magnetohydrodynamic power cycles

    NASA Technical Reports Server (NTRS)

    Bogdanoff, D. W.

    1973-01-01

    In many liquid metal MHD power, cycles, it is necessary to separate the phases of a high-speed liquid-gas flow. The usual method is to impinge the jet at a glancing angle against a solid surface. These surface separators achieve good separation of the two phases at a cost of a large velocity loss due to friction at the separator surface. This report deals with attempts to greatly reduce the friction loss by impinging two jets against each other. In the crude impinging jet separators tested to date, friction losses were greatly reduced, but the separation of the two phases was found to be much poorer than that achievable with surface separators. Analyses are presented which show many lines of attack (mainly changes in separator geometry) which should yield much better separation for impinging jet separators).

  20. Development and validation of LC methods for the separation of misoprostol related substances and diastereoisomers.

    PubMed

    Kahsay, Getu; Song, Huiying; Eerdekens, Fran; Tie, Yaxin; Hendriks, Danny; Van Schepdael, Ann; Cabooter, Deirdre; Adams, Erwin

    2015-01-01

    Misoprostol is a synthetic prostaglandin E1 analogue which is mainly used for prevention and treatment of gastric ulcers, but also for abortion due to its labour inducing effect. Misoprostol exists as a mixture of diastereoisomers (1:1) and has several related impurities owing to its instability at higher temperatures and moisture. A simple and robust reversed phase liquid chromatographic (RPLC) method is described for the separation of the related substances and a normal phase (NP) LC method for the separation of misoprostol diastereoisomers. The RPLC method was performed using an Ascentis Express C18 (150 mm × 4.6 mm, 5 μm) column kept at 35 °C. The mobile phase was a gradient mixture of mobile phase A (ACN-H2O-MeOH, 28:69:3 v/v/v) and mobile phase B (ACN-H2O-MeOH, 47:50:3 v/v/v) eluted at a flow rate of 1.5 mL/min. UV detection was performed at 200 nm. The NPLC method was undertaken by using an XBridge bare silica (150 mm × 2.1 mm, 3.5 μm) column at 35 °C. The mobile phase contained 1-propanol-heptane-TFA (4:96:0.1%, v/v/v), pumped at a flow rate of 0.5 mL/min. UV detection was performed at 205 nm. This LC method can properly separate the two diastereoisomers (Rs > 2) within an analysis time of less than 20 min. Both methods were validated according to the ICH guidelines. Furthermore, these new LC methods have been successfully applied for purity control and diastereoisomers ratio determination of misoprostol bulk drug, tablets and dispersion. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Green chromatography separation of analytes of greatly differing properties using a polyethylene glycol stationary phase and a low-toxic water-based mobile phase.

    PubMed

    Šatínský, Dalibor; Brabcová, Ivana; Maroušková, Alena; Chocholouš, Petr; Solich, Petr

    2013-07-01

    A simple, rapid, and environmentally friendly HPLC method was developed and validated for the separation of four compounds (4-aminophenol, caffeine, paracetamol, and propyphenazone) with different chemical properties. A "green" mobile phase, employing water as the major eluent, was proposed and applied to the separation of analytes with different polarity on polyethylene glycol (PEG) stationary phase. The chromatography separation of all compounds and internal standard benzoic acid was performed using isocratic elution with a low-toxicity mobile phase consisting of 0.04% (v/v) triethylamine and water. HPLC separation was carried out using a PEG reversed-phase stationary phase Supelco Discovery HS PEG column (15 × 4 mm; particle size 3 μm) at a temperature of 30 °C and flow rate at 1.0 mL min(-1). The UV detector was set at 210 nm. In this study, a PEG stationary phase was shown to be suitable for the efficient isocratic separation of compounds that differ widely in hydrophobicity and acid-base properties, particularly 4-aminophenol (log P, 0.30), caffeine (log P, -0.25), and propyphenazone (log P, 2.27). A polar PEG stationary phase provided specific selectivity which allowed traditional chromatographic problems related to the separation of analytes with different polarities to be solved. The retention properties of the group of structurally similar substances (aromatic amines, phenolic compounds, and xanthine derivatives) were tested with different mobile phases. The proposed green chromatography method was successfully applied to the analysis of active substances and one degradation impurity (4-aminophenol) in commercial preparation. Under the optimum chromatographic conditions, standard calibration was carried out with good linearity correlation coefficients for all compounds in the range (0.99914-0.99997, n = 6) between the peak areas and concentration of compounds. Recovery of the sample preparation was in the range 100 ± 5% for all compounds. The intraday method precision was determined as RSD, and the values were lower than 1.00%.

  2. Precipitation phase separation schemes in the Naqu River basin, eastern Tibetan plateau

    NASA Astrophysics Data System (ADS)

    Liu, Shaohua; Yan, Denghua; Qin, Tianling; Weng, Baisha; Lu, Yajing; Dong, Guoqiang; Gong, Boya

    2018-01-01

    Precipitation phase has a profound influence on the hydrological processes in the Naqu River basin, eastern Tibetan plateau. However, there are only six meteorological stations with precipitation phase (rainfall/snowfall/sleet) before 1979 within and around the basin. In order to separate snowfall from precipitation, a new separation scheme with S-shaped curve of snowfall proportion as an exponential function of daily mean temperature was developed. The determinations of critical temperatures in the single/two temperature threshold (STT/TTT2) methods were explored accordingly, and the temperature corresponding to the 50 % snowfall proportion (SP50 temperature) is an efficiently critical temperature for the STT, and two critical temperatures in TTT2 can be determined based on the exponential function and SP50 temperature. Then, different separation schemes were evaluated in separating snowfall from precipitation in the Naqu River basin. The results show that the S-shaped curve methods outperform other separation schemes. Although the STT and TTT2 slightly underestimate and overestimate the snowfall when the temperature is higher and colder than SP50 temperature respectively, the monthly and annual separation snowfalls are generally consistent with the observed snowfalls. On the whole, S-shaped curve methods, STT, and TTT2 perform well in separating snowfall from precipitation with the Pearson correlation coefficient of annual separation snowfall above 0.8 and provide possible approaches to separate the snowfall from precipitation for hydrological modelling.

  3. Regenerable immobilized aminosilane sorbents for carbon dioxide capture applications

    DOEpatents

    Gay, McMahan; Choi, Sunho; Jones, Christopher W

    2014-09-16

    A method for the separation of carbon dioxide from ambient air and flue gases is provided wherein a phase separating moiety with a second moiety are simultaneously coupled and bonded onto an inert substrate to create a mixture which is subsequently contacted with flue gases or ambient air. The phase-separating moiety is an amine whereas the second moiety is an aminosilane, or a Group 4 propoxide such as titanium (IV) propoxide (tetrapropyl orthotitanate, C.sub.12H.sub.28O.sub.4Ti). The second moiety makes the phase-separating moiety insoluble in the pores of the inert substrate. The new sorbents have a high carbon dioxide loading capacity and considerable stability over hundreds of cycles. The synthesis method is readily scalable for commercial and industrial production.

  4. Use of Solid Phase Extraction in the Biochemistry Laboratory to Separate Different Lipids

    ERIC Educational Resources Information Center

    Flurkey, William H.

    2005-01-01

    Solid-phase extraction (SPE) was used to demonstrate how various lipids and lipid classes could be separated in a biochemistry laboratory setting. Three different SPE methods were chosen on their ability to separate a lipid mixture, consisting of a combination of a either a fatty acid, a triacylglycerol, a mono- or diacylglycerol, phospholipid,…

  5. Thin-layer chromatography with stationary phase gradient as a method for separation of water-soluble vitamins.

    PubMed

    Cimpoiu, Claudia; Hosu, Anamaria; Puscas, Anitta

    2012-02-03

    The group of hydrophilic vitamins play an important role in human health, and their lack or excess produces specific diseases. Therefore, the analysis of these compounds is indispensable for monitoring their content in pharmaceuticals and food in order to prevent some human diseases. TLC was successfully applied in the analysis of hydrophilic vitamins, but the most difficult problem in the simultaneous analysis of all these compounds is to find an optimum stationary phase-mobile phase system due to different chemical characteristics of analytes. Unfortunately structural analogues are difficult to separate in one chromatographic run, and this is the case in hydrophilic vitamins investigations. TLC gives the possibility to perform two-dimensional separations by using stationary phase gradient achieving the highest resolution by combining two systems with different selectivity. The goal of this work was to develop a method of analysis enabling separation of hydrophilic vitamins using TLC with adsorbent gradient. The developed method was used for identifying the water-soluble vitamins in alcoholic extracts of Hippophae rhamnoides and of Ribes nigrum. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Method to separate lignin-rich solid phase from acidic biomass suspension at an acidic pH

    DOEpatents

    Yasarla, Kumar Lakshmi Rakesh; Ramarao, Bandaru V; Amidon, Thomas

    2017-09-05

    A method of separating a lignin-rich solid phase from a solution suspension, by pretreating a lignocellulosic biomass with a pretreatment fluid having remove soluble components, colloidal material and primarily lignin containing particles; separating the pretreated lignocellulosic biomass from the pretreatment fluid with soluble components, colloidal material and primarily lignin containing particles; flocculating the separated pretreatment fluid with soluble components, colloidal material and primarily lignin containing particles using polyethylene oxide (i.e., PEO) or cationic Poly acrylamide (i.e., CPAM) as a flocculating agent; and filtering the flocculated separated pretreatment fluid with soluble components, colloidal material and primarily lignin containing particles to remove agglomerates.

  7. Exploring Liquid Sequential Injection Chromatography to Teach Fundamentals of Separation Methods: A Very Fast Analytical Chemistry Experiment

    ERIC Educational Resources Information Center

    Penteado, Jose C.; Masini, Jorge Cesar

    2011-01-01

    Influence of the solvent strength determined by the addition of a mobile-phase organic modifier and pH on chromatographic separation of sorbic acid and vanillin has been investigated by the relatively new technique, liquid sequential injection chromatography (SIC). This technique uses reversed-phase monolithic stationary phase to execute fast…

  8. A Temperature-Dependent Phase-Field Model for Phase Separation and Damage

    NASA Astrophysics Data System (ADS)

    Heinemann, Christian; Kraus, Christiane; Rocca, Elisabetta; Rossi, Riccarda

    2017-07-01

    In this paper we study a model for phase separation and damage in thermoviscoelastic materials. The main novelty of the paper consists in the fact that, in contrast with previous works in the literature concerning phase separation and damage processes in elastic media, in our model we encompass thermal processes, nonlinearly coupled with the damage, concentration and displacement evolutions. More particularly, we prove the existence of "entropic weak solutions", resorting to a solvability concept first introduced in Feireisl (Comput Math Appl 53:461-490, 2007) in the framework of Fourier-Navier-Stokes systems and then recently employed in Feireisl et al. (Math Methods Appl Sci 32:1345-1369, 2009) and Rocca and Rossi (Math Models Methods Appl Sci 24:1265-1341, 2014) for the study of PDE systems for phase transition and damage. Our global-in-time existence result is obtained by passing to the limit in a carefully devised time-discretization scheme.

  9. Separation of phenolic acids from sugarcane rind by online solid-phase extraction with high-speed counter-current chromatography.

    PubMed

    Geng, Ping; Fang, Yingtong; Xie, Ronglong; Hu, Weilun; Xi, Xingjun; Chu, Qiao; Dong, Genlai; Shaheen, Nusrat; Wei, Yun

    2017-02-01

    Sugarcane rind contains some functional phenolic acids. The separation of these compounds from sugarcane rind is able to realize the integrated utilization of the crop and reduce environment pollution. In this paper, a novel protocol based on interfacing online solid-phase extraction with high-speed counter-current chromatography (HSCCC) was established, aiming at improving and simplifying the process of phenolic acids separation from sugarcane rind. The conditions of online solid-phase extraction with HSCCC involving solvent system, flow rate of mobile phase as well as saturated extent of absorption of solid-phase extraction were optimized to improve extraction efficiency and reduce separation time. The separation of phenolic acids was performed with a two-phase solvent system composed of butanol/acetic acid/water at a volume ratio of 4:1:5, and the developed online solid-phase extraction with HSCCC method was validated and successfully applied for sugarcane rind, and three phenolic acids including 6.73 mg of gallic acid, 10.85 mg of p-coumaric acid, and 2.78 mg of ferulic acid with purities of 60.2, 95.4, and 84%, respectively, were obtained from 150 mg sugarcane rind crude extracts. In addition, the three different elution methods of phenolic acids purification including HSCCC, elution-extrusion counter-current chromatography and back-extrusion counter-current chromatography were compared. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Liquid chromatographic separation and thermodynamic investigation of lorcaserin hydrochloride enantiomers on immobilized amylose-based chiral stationary phase.

    PubMed

    Wani, Dattatraya V; Rane, Vipul P; Mokale, Santosh N

    2018-03-01

    A novel liquid chromatographic method was developed for enantiomeric separation of lorcaserin hydrochloride on Chiralpak IA column containing chiral stationary phase immobilized with amylose tris (3.5-dimethylphenylcarbamate) as chiral selector. Baseline separation with resolution greater than 4 was achieved using mobile phase containing mixture of n-hexane/ethanol/methanol/diethylamine (95:2.5:2.5:0.1, v/v/v/v) at a flow rate of 1.2 mL/min. The limit of detection and limit of quantification of the S-enantiomer were found to be 0.45 and 1.5 μg/mL, respectively; the developed method was validated as per ICH guideline. The influence of column oven temperatures studied in the range of 20°C to 50°C on separation was studied; from this, retention, separation, and resolution were investigated. The thermodynamic parameters ΔH°, ΔS°, and ΔG° were evaluated from van't Hoff plots,(Ink' versus 1/T) and used to explain the strength of interaction between enantiomers and immobilized amylose-based chiral stationary phase. © 2017 Wiley Periodicals, Inc.

  11. Ionic liquid/water mixtures: from hostility to conciliation.

    PubMed

    Kohno, Yuki; Ohno, Hiroyuki

    2012-07-21

    Water was originally inimical to ionic liquids (ILs) especially in the analysis of their detailed properties. Various data on the properties of ILs indicate that there are two ways to design functions of ionic liquids. The first is to change the structure of component ions, to provide "task-specific ILs". The second is to mix ILs with other components, such as other ILs, organic solvents or water. Mixing makes it easy to control the properties of the solution. In this strategy, water is now a very important partner. Below, we summarise our recent results on the properties of IL/water mixtures. Stable phase separation is an effective method in some separation processes. Conversely, a dynamic phase change between a homogeneous mixture and separation of phases is important in many fields. Analysis of the relation between phase behaviour and the hydration state of the component ions indicates that the pattern of phase separation is governed by the hydrophilicity of the ions. Sufficiently hydrophilic ions yielded ILs that are miscible with water, and hydrophobic ions gave stable phase separation with water. ILs composed of hydrophobic but hydrated ions undergo a dynamic phase change between a homogeneous mixture and separate phases according to temperature. ILs having more than seven water molecules per ion pair undergo this phase transition. These dynamic phase changes are considered, with some examples, and application is made to the separation of water-soluble proteins.

  12. Improved Separations of Proteins and Sugar Derivatives Using the Small-Scale Cross-Axis Coil Planet Centrifuge with Locular Multilayer Coiled Columns

    PubMed Central

    Shinomiya, Kazufusa; Umezawa, Motoki; Seki, Manami; Nitta, Jun; Zaima, Kazumasa; Harikai, Naoki; Ito, Yoichiro

    2016-01-01

    1) Background Countercurrent chromatography (CCC) is liquid-liquid partition chromatography without using a solid support matrix. This technique requires further improvement of partition efficiency and shortening theseparation time. 2) Methods The locular multilayer coils modified with and without mixer glass beads were developed for the separation of proteins and 4-methylumbelliferyl (MU) sugar derivatives using the small-scale cross-axis coil planet centrifuge. 3) Results Proteins were well separated from each other and the separation was improved at a low flow rate of the mobile phase. On the other hand, 4-MU sugar derivatives were sufficiently resolved with short separation time at a highflow rate of the mobile phase under satisfactory stationary phase retention. 4) Conclusion Effective separations were achieved using the locular multilayer coil for proteins with aqueous-aqueous polymer phase systems and for 4-MU sugar derivatives with organic-aqueous two-phase solvent systems by inserting a glass bead into each locule. PMID:27891507

  13. [Fast optimization of stepwise gradient conditions for ternary mobile phase in reversed-phase high performance liquid chromatography].

    PubMed

    Shan, Yi-chu; Zhang, Yu-kui; Zhao, Rui-huan

    2002-07-01

    In high performance liquid chromatography, it is necessary to apply multi-composition gradient elution for the separation of complex samples such as environmental and biological samples. Multivariate stepwise gradient elution is one of the most efficient elution modes, because it combines the high selectivity of multi-composition mobile phase and shorter analysis time of gradient elution. In practical separations, the separation selectivity of samples can be effectively adjusted by using ternary mobile phase. For the optimization of these parameters, the retention equation of samples must be obtained at first. Traditionally, several isocratic experiments are used to get the retention equation of solute. However, it is time consuming especially for the separation of complex samples with a wide range of polarity. A new method for the fast optimization of ternary stepwise gradient elution was proposed based on the migration rule of solute in column. First, the coefficients of retention equation of solute are obtained by running several linear gradient experiments, then the optimal separation conditions are searched according to the hierarchical chromatography response function which acts as the optimization criterion. For each kind of organic modifier, two initial linear gradient experiments are used to obtain the primary coefficients of retention equation of each solute. For ternary mobile phase, only four linear gradient runs are needed to get the coefficients of retention equation. Then the retention times of solutes under arbitrary mobile phase composition can be predicted. The initial optimal mobile phase composition is obtained by resolution mapping for all of the solutes. A hierarchical chromatography response function is used to evaluate the separation efficiencies and search the optimal elution conditions. In subsequent optimization, the migrating distance of solute in the column is considered to decide the mobile phase composition and sustaining time of the latter steps until all the solutes are eluted out. Thus the first stepwise gradient elution conditions are predicted. If the resolution of samples under the predicted optimal separation conditions is satisfactory, the optimization procedure is stopped; otherwise, the coefficients of retention equation are adjusted according to the experimental results under the previously predicted elution conditions. Then the new stepwise gradient elution conditions are predicted repeatedly until satisfactory resolution is obtained. Normally, the satisfactory separation conditions can be found only after six experiments by using the proposed method. In comparison with the traditional optimization method, the time needed to finish the optimization procedure can be greatly reduced. The method has been validated by its application to the separation of several samples such as amino acid derivatives, aromatic amines, in which satisfactory separations were obtained with predicted resolution.

  14. [[Chiral separation of five arylpropionic acid drugs and determination of their enantiomers in pharmaceutical preparations by reversed-phase high performance liquid chromatography with cellulose-tris-(4-methylbenzoate) stationary phase

    PubMed

    Luo, An; Wan, Qiang; Fan, Huajun; Chen, Zhi; Wu, Xuehao; Huang, Xiaowen; Zang, Linquan

    2014-09-01

    Chromatographic behaviors for enantiomeric separation of arylpropionic acid drugs were systematically developed by reversed phase-high performance liquid chromatography (RP-HPLC) using cellulose-tris-(4-methylbenzoate) (CTMB) as chiral stationary phase (CSP). The effects of the composition of the mobile phase, additives and temperature on chiral separation of flurbiprofen, pranoprofen, naproxen, ibuprofen and loxoprofen were further investigated. The enantiomers had been successfully separated on CSP of CTMB by the mobile phase of methanol-0.1% (v/v) formic acid except naproxen by acetonitrile-0.1% (v/v) formic acid at 25 °C. The mechanisms of the racemic resolution for the above mentioned five drugs are discussed thermodynamically and structurally. The resolutions between respective enantiomers for arylpropionic acid drugs on CTMB had significant differences due to their chromatographic behaviors. The order of resolutions ranked pranoprofen, loxoprofen, flurbiprofen, ibuprofen and naproxen. The method established has been successfully applied to the determination of the enantiomers of the five drugs in commercial preparations under the optimized conditions. It proved that the method is simple, reliable and accurate.

  15. Optimization of the high-performance liquid chromatographic separation of a complex mixture containing urinary steroids, boldenone and bolasterone: application to urine samples.

    PubMed

    Gonzalo-Lumbreras, R; Izquierdo-Hornillos, R

    2000-05-26

    An HPLC separation of a complex mixture containing 13 urinary anabolics and corticoids, and boldenone and bolasterone (synthetic anabolics) has been carried out. The applied optimization method involved the use of binary, ternary and quaternary mobile phases containing acetonitrile, methanol or tetrahydrofuran as organic modifiers. The effect of different reversed-phase packings and temperature on the separation was studied. The optimum separation was achieved by using a water-acetonitrile (60:40, v/v) mobile phase in reversed-phase HPLC at 30 degrees C, allowing the separation of all the analytes in about 24 min. Calibration graphs were obtained using bolasterone or methyltestosterone as internal standards. Detection limits were in the range 0.012-0.107 microg ml(-1). The optimized separation was applied to the analysis, after liquid-liquid extraction, of human urine samples spiked with steroids.

  16. Evaluation of Inorganic/Organic Separators

    NASA Technical Reports Server (NTRS)

    Donnel, C. P., III

    1976-01-01

    Thirty-six (36) experimental 40AH sealed silver-zinc cells were constructed during phase I of this two (2) phase program. These cells were divided into six (6) groups of six (6) cells each. Each group of six (6) cells was evenly divided into two batches of three (3) cells each. Groups 1 through 4 each featured a different inorganic filler material in the slurry used to coat the separator substrate. Groups 5 and 6 featured an alternate method of separator bag construction. With the exception of the various separator materials, the parts and processes used to produce these thirty-six (36) cells were the same as those used to make the HR40-7 cell. The two (2) batches of cells in each cell group differed only in the lots of solutions and other separator slurry components used. Each cell was given two formation charge/discharge cycles prior to being shipped to NASA Lewis Research Center. Phase II of the program consisted of constructing another thirty-six (36) 40AH experimental cells in six (6) groups of six (6) cells each. Each group was distinguished by the type of precoated separator material used to fabricate separator bags. A new method of separator bag construction was used in this phase of the program. These cells were given two (2) formation cycles and shipped to NASA Lewis Research Center.

  17. CO.sub.2 separation from low-temperature flue gases

    DOEpatents

    Dilmore, Robert; Allen, Douglas; Soong, Yee; Hedges, Sheila

    2010-11-30

    Two methods are provide for the separation of carbon dioxide from the flue gases. The first method utilizes a phase-separating moiety dissolved in an aqueous solution of a basic moiety to capture carbon dioxide. The second method utilizes a phase-separating moiety as a suspended solid in an aqueous solution of a basic moiety to capture carbon dioxide. The first method takes advantage of the surface-independent nature of the CO.sub.2 absorption reactions in a homogeneous aqueous system. The second method also provides permanent sequestration of the carbon dioxide. Both methods incorporate the kinetic rate enhancements of amine-based scrubbing while eliminating the need to heat the entire amine solution (80% water) in order to regenerate and release CO.sub.2. Both methods also take advantage of the low-regeneration temperatures of CO.sub.2-bearing mineral systems such as Na.sub.2CO.sub.3/NaHCO.sub.3 and K.sub.2CO.sub.3/KHCO.sub.3.

  18. Preparative isolation of flavonoid glycosides from Sphaerophysa salsula using hydrophilic interaction solid-phase extraction coupled with two-dimensional preparative liquid chromatography.

    PubMed

    Jiao, Lijin; Tao, Yanduo; Wang, Weidong; Shao, Yun; Mei, Lijuan; Wang, Qilan; Dang, Jun

    2017-10-01

    An offline preparative two-dimensional reversed-phase liquid chromatography/hydrophilic interaction liquid chromatography coupled with hydrophilic interaction solid-phase extraction method was developed for the preparative isolation of flavonoid glycosides from a crude sample of Sphaerophysa salsula. First, the non-flavonoids were removed using an XAmide solid-phase extraction cartridge. Based on the separation results of three different chromatographic stationary phases, the first-dimensional preparation was performed on an XAqua C18 prep column, and 15 fractions were obtained from the 5.2 g target sample. Then, three representative fractions were selected for additional purification on an XAmide preparative column to further isolate the flavonoid glycosides. In all, eight flavonoid glycosides were isolated in purities over 97%. The results demonstrated that the two-dimensional liquid chromatography method used in this study was effective for the preparative separation of flavonoid glycosides from Sphaerophysa salsula. Additionally, this method showed great potential for the separation of flavonoid glycosides from other plant materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The separation of flavonoids from Pongamia pinnata using combination columns in high-speed counter-current chromatography with a three-phase solvent system.

    PubMed

    Yin, Hao; Zhang, Si; Long, Lijuan; Yin, Hang; Tian, Xinpeng; Luo, Xiongming; Nan, Haihan; He, Sha

    2013-11-08

    The mangrove plant Pongamia pinnata (Leguminosae) is well known as a plant pesticide. Previous studies have indicated that the flavonoids are responsible of the biological activities of the plant. A new high-speed counter-current chromatography (HSCCC) method for the separation of three flavonoids, karanjin (1), pinnatin (2), and pongaflavone (3), from P. pinnata was developed in the present study. The lower and intermediate phase (LP and IP) of a new three-phase solvent system, n-hexane-acetonitrile-dichloromethane-water, at a volume ratio of 5:5:1:5, were used as the stationary phases, while the upper phase (UP) was used as the mobile phase, and the volume ratio between the stationary phases in the CCC column could be tuned by varying the initial pumped volume ratio of the stationary phases. The CCC columns containing all three phases of the solvent system were considered combination columns. According to the theories of combination column, it is possible to optimize the retention time of the target compounds by varying the volume ratio of the stationary phases in the HSCCC combination columns, as well as the suitable volume ratios of the stationary phases for the separation of the target compounds were predicted from the partition coefficients of the compounds in the three-phase solvent system. Then, three HSCCC separations using the combination columns with initial pumped LP:IP volume ratios of 1:0, 0.9:0.1, and 0.7:0.3 were performed separately based on the prediction. Three target compounds were prepared with high purity when the initial pumped volume ratio of the stationary phases was 0.9:0.1. The baseline separation of compounds 2 and 3 was achieved on the combination column with an initial pumped volume ratio of 0.7:0.3. Furthermore, the three experiments clearly demonstrated that the retentions and resolutions of the target compounds increased with an increasing volume ratio of IP, which is consistent with the prediction for the retention times for the solutes on combination columns. The method proposed here reduces the need for solvent selection compared with the conventional method and may have broad potential applicability in the preparation of natural products. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Development of an on-line mixed-mode gel liquid chromatography×reversed phase liquid chromatography method for separation of water extract from Flos Carthami.

    PubMed

    Wang, Yu-Qing; Tang, Xu; Li, Jia-Fu; Wu, Yun-Long; Sun, Yu-Ying; Fang, Mei-Juan; Wu, Zhen; Wang, Xiu-Min; Qiu, Ying-Kun

    2017-10-13

    A novel on-line comprehensive two-dimensional liquid chromatography (2D-LC) method by coupling mixed-mode gel liquid chromatography (MMG-LC) with reversed phase liquid chromatography (RPLC) was developed. A mixture of 17 reference compounds was used to study the separation mechanism. A crude water extract of Flos Carthami was applied to evaluate the performance of the novel 2D-LC system. In the first dimension, the extract was eluted with a gradient of water/methanol over a cross-linked dextran gel Sephadex LH-20 column. Meanwhile, the advantages of size exclusion, reversed phase partition and adsorption separation mechanism were exploited before further on-line reversed phase purification on the second dimension. This novel on-line mixed-mode Sephadex LH-20×RPLC method provided higher peak resolution, sample processing ability (2.5mg) and better orthogonality (72.9%) versus RPLC×RPLC and hydrophilic interaction liquid chromatography (HILIC)×RPLC. To the best of our knowledge, this is the first report of a mixed-mode Sephadex LH-20×RPLC separation method with successful applications in on-line mode, which might be beneficial for harvesting targets from complicated medicinal plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. SEPARATION AND QUANTITATION OF NITROBENZENES AND THEIR REDUCTION PRODUCTS NITROANILINES AND PHENYLENEDIAMINES BY REVERSED=PHASE HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY

    EPA Science Inventory

    A reversed-phase high-performance liquid chromatographic method for the separation and quantitation of a mixture consisting of nitrobenzene, dinitrobenzene isomers, 1,3,5-trinitrobenzene and their reduction products: aniline, nitroanilines and phenylenediamines has been developed...

  2. Molar mass fractionation in aqueous two-phase polymer solutions of dextran and poly(ethylene glycol).

    PubMed

    Zhao, Ziliang; Li, Qi; Ji, Xiangling; Dimova, Rumiana; Lipowsky, Reinhard; Liu, Yonggang

    2016-06-24

    Dextran and poly(ethylene glycol) (PEG) in phase separated aqueous two-phase systems (ATPSs) of these two polymers, with a broad molar mass distribution for dextran and a narrow molar mass distribution for PEG, were separated and quantified by gel permeation chromatography (GPC). Tie lines constructed by GPC method are in excellent agreement with those established by the previously reported approach based on density measurements of the phases. The fractionation of dextran during phase separation of ATPS leads to the redistribution of dextran of different chain lengths between the two phases. The degree of fractionation for dextran decays exponentially as a function of chain length. The average separation parameters, for both dextran and PEG, show a crossover from mean field behavior to Ising model behavior, as the critical point is approached. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Laser-induced phase separation of silicon carbide

    PubMed Central

    Choi, Insung; Jeong, Hu Young; Shin, Hyeyoung; Kang, Gyeongwon; Byun, Myunghwan; Kim, Hyungjun; Chitu, Adrian M.; Im, James S.; Ruoff, Rodney S.; Choi, Sung-Yool; Lee, Keon Jae

    2016-01-01

    Understanding the phase separation mechanism of solid-state binary compounds induced by laser–material interaction is a challenge because of the complexity of the compound materials and short processing times. Here we present xenon chloride excimer laser-induced melt-mediated phase separation and surface reconstruction of single-crystal silicon carbide and study this process by high-resolution transmission electron microscopy and a time-resolved reflectance method. A single-pulse laser irradiation triggers melting of the silicon carbide surface, resulting in a phase separation into a disordered carbon layer with partially graphitic domains (∼2.5 nm) and polycrystalline silicon (∼5 nm). Additional pulse irradiations cause sublimation of only the separated silicon element and subsequent transformation of the disordered carbon layer into multilayer graphene. The results demonstrate viability of synthesizing ultra-thin nanomaterials by the decomposition of a binary system. PMID:27901015

  4. Application of phase-trafficking methods to natural products research.

    PubMed

    Araya, Juan J; Montenegro, Gloria; Mitscher, Lester A; Timmermann, Barbara N

    2010-09-24

    A novel simultaneous phase-trafficking approach using spatially separated solid-supported reagents for rapid separation of neutral, basic, and acidic compounds from organic plant extracts with minimum labor is reported. Acidic and basic ion-exchange resins were physically separated into individual sacks ("tea bags") for trapping basic and acidic compounds, respectively, leaving behind in solution neutral components of the natural mixtures. Trapped compounds were then recovered from solid phase by appropriate suspension in acidic or basic solutions. The feasibility of the proposed separation protocol was demonstrated and optimized with an "artificial mixture" of model compounds. In addition, the utility of this methodology was illustrated with the successful separation of the alkaloid skytanthine from Skytanthus acutus Meyen and the main catechins and caffeine from Camellia sinensis L. (Kuntze). This novel approach offers multiple advantages over traditional extraction methods, as it is not labor intensive, makes use of only small quantities of solvents, produces fractions in adequate quantities for biological assays, and can be easily adapted to field conditions for bioprospecting activities.

  5. Application of Phase-Trafficking Methods to Natural Products Research

    PubMed Central

    Araya, Juan J.; Montenegro, Gloria; Mitscher, Lester A.; Timmermann, Barbara N.

    2010-01-01

    A novel simultaneous phase-trafficking approach using spatially separated solid-supported reagents (SSR) for rapid separation of neutral, basic, and acidic compounds from organic plant extracts with minimum labor is reported. Acidic and basic ion exchange resins were physically separated into individual sacks (“teabags”) for trapping basic and acidic compounds respectively, leaving behind in solution neutral components of the natural mixtures. Trapped compounds were then recovered from solid phase by appropriate suspension in acidic or basic solutions. The feasibility of the proposed separation protocol was demonstrated and optimized with an “artificial mixture” of model compounds. In addition, the utility of this methodology was illustrated with the successful separation of the alkaloid skytanthine from Skytanthus acutus Meyen and the main catechins and caffeine from Camellia sinensis L. (Kuntze). This novel approach offers multiple advantages over traditional extraction methods, as it is not labor intensive, makes use of only small quantities of solvents, produces fractions in adequate quantities for biological assays, and can be easily adapted to field conditions for bioprospecting activities. PMID:20704309

  6. Temperature-Induced Phase Separation in Molecular Assembly of Nanotubes Comprising Amphiphilic Polypeptide with Poly( N-Ethyl Glycine) in Water by a Hydrophilic-Region Driven Type Mechanism.

    PubMed

    Hattori, Tetsuya; Itagaki, Toru; Uji, Hirotaka; Kimura, Shunsaku

    2018-06-20

    Two kinds of amphiphilic polypeptides having different types of hydrophilic polypeptoids, poly(sarcosine)-b-(L-Leu-Aib)6 (ML12) and poly(N-ethyl glycine)-b-(L-Leu-Aib)6 (EL12), were self-assembled via two paths to phase-separated nanotubes. One path was via sticking ML12 nanotubes with EL12 nanotubes, and the other was a preparation from a mixture of ML12 and EL12 in solution. In either case, nanotubes showed temperature-induced phase separation along the long axis, which was observed by two methods of labeling one phase with gold nanoparticles and fluorescence resonance energy transfer between the components. The phase-separation was ascribed to aggregation of poly(N-ethyl glycine) blocks over the cloud point temperature. The addition of 5% trifluoroethanol was needed for the phase separation, because the tight association of the helices in the hydrophobic region should be loosened to allow lateral diffusion of the components to be separated. The phase-separation in molecular assemblies in water based on the hydrophilic-region driven type mechanism therefore requires sophisticated balances of association forces exerting among the hydrophilic and hydrophobic regions of the amphiphilic polypeptoids.

  7. Detecting phase separation of freeze-dried binary amorphous systems using pair-wise distribution function and multivariate data analysis.

    PubMed

    Chieng, Norman; Trnka, Hjalte; Boetker, Johan; Pikal, Michael; Rantanen, Jukka; Grohganz, Holger

    2013-09-15

    The purpose of this study is to investigate the use of multivariate data analysis for powder X-ray diffraction-pair-wise distribution function (PXRD-PDF) data to detect phase separation in freeze-dried binary amorphous systems. Polymer-polymer and polymer-sugar binary systems at various ratios were freeze-dried. All samples were analyzed by PXRD, transformed to PDF and analyzed by principal component analysis (PCA). These results were validated by differential scanning calorimetry (DSC) through characterization of glass transition of the maximally freeze-concentrate solute (Tg'). Analysis of PXRD-PDF data using PCA provides a more clear 'miscible' or 'phase separated' interpretation through the distribution pattern of samples on a score plot presentation compared to residual plot method. In a phase separated system, samples were found to be evenly distributed around the theoretical PDF profile. For systems that were miscible, a clear deviation of samples away from the theoretical PDF profile was observed. Moreover, PCA analysis allows simultaneous analysis of replicate samples. Comparatively, the phase behavior analysis from PXRD-PDF-PCA method was in agreement with the DSC results. Overall, the combined PXRD-PDF-PCA approach improves the clarity of the PXRD-PDF results and can be used as an alternative explorative data analytical tool in detecting phase separation in freeze-dried binary amorphous systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. [Separation and determination of eight plant hormones by reversed-phase high performance liquid chromatography].

    PubMed

    Fang, N; Hou, S; Shao, X; He, Y; Zhao, G

    1998-09-01

    In this paper, reversed-phase high performance liquid chromatographic technique was used for the separation and determination of eight plant hormones. Methanol-water-acetic acid system was chosen as the mobile phase. The effects of different separation conditions, such as the methanol and acetic acid concentrations in mobile phase, on the retention behaviours of eight plant hormones in this system were studied. The general trends in retention behaviours could be correlated to the methanol concentration in mobile phase. The experimental results showed that the optimum separation was achieved with following gradient elution condition: 0-3 minutes, 70% (water percentage in mobile phase), 3-13 minutes, 70%-20%, 13-48 minutes, 20%. Benzene was added to be as the internal standard. Under this experimental condition, the eight plant hormones could be separated completely and detected quantitatively at 260 nm within 16 minutes. The calibration curves for the eight compounds gave linearity over a wide range. The correlation coefficients of each components were r(ZT) = 0.9971, r(GAs) = 0.9999, r(K) = 0.9997, r(BA) = 0.9995, r(IAA) = 0.9998, r(IPA) = 0.9982, r(IBA) = 0.9995 and r(NAA) = 0.9995. The method is rapid, simple and efficient. It is a suitable method for the accurate determination of gibberellic acid (GA) and alpha-naphthaleneacetic acid (alpha-NAA) in products for agricultural use.

  9. Industrial application of green chromatography--I. Separation and analysis of niacinamide in skincare creams using pure water as the mobile phase.

    PubMed

    Yang, Yu; Strickland, Zackary; Kapalavavi, Brahmam; Marple, Ronita; Gamsky, Chris

    2011-03-15

    In this work, chromatographic separation of niacin and niacinamide using pure water as the sole component in the mobile phase has been investigated. The separation and analysis of niacinamide have been optimized using three columns at different temperatures and various flow rates. Our results clearly demonstrate that separation and analysis of niacinamide from skincare products can be achieved using pure water as the eluent at 60°C on a Waters XTerra MS C18 column, a Waters XBridge C18 column, or at 80°C on a Hamilton PRP-1 column. The separation efficiency, quantification quality, and analysis time of this new method are at least comparable with those of the traditional HPLC methods. Compared with traditional HPLC, the major advantage of this newly developed green chromatography technique is the elimination of organic solvents required in the HPLC mobile phase. In addition, the pure water chromatography separations described in this work can be directly applied in industrial plant settings without further modification of the existing HPLC equipment. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. On-line comprehensive two-dimensional normal-phase liquid chromatography × reversed-phase liquid chromatography for preparative isolation of Peucedanum praeruptorum.

    PubMed

    Wang, Xin-Yuan; Li, Jia-Fu; Jian, Ya-Mei; Wu, Zhen; Fang, Mei-Juan; Qiu, Ying-Kun

    2015-03-27

    A new on-line comprehensive preparative two-dimensional normal-phase liquid chromatography × reversed-phase liquid chromatography (2D NPLC × RPLC) system was developed for the separation of complicated natural products. It was based on the use of a silica gel packed medium-pressure column as the first dimension and an ODS preparative HPLC column as the second dimension. The two dimensions were connected with normal-phase (NP) and reversed-phase (RP) enrichment units, involving a newly developed airflow assisted adsorption (AAA) technique. The instrument operation and the performance of this NPLC × RPLC separation method were illustrated by gram-scale isolation of ethanol extract from the roots of Peucedanum praeruptorum. In total, 19 compounds with high purity were obtained via automated multi-step preparative separation in a short period of time using this system, and their structures were comprehensively characterized by ESI-MS, (1)H NMR, and (13)C NMR. Including two new compounds, five isomers in two groups with identical HPLC and TLC retention values were also obtained and identified by 1D NMR and 2D NMR. This is the first report of an NPLC × RPLC system successfully applied in an on-line preparative process. This system not only solved the interfacing problem of mobile-phase immiscibility caused by NP and RP separation, it also exhibited apparent advantages in separation efficiency and sample treatment capacity compared with conventional methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Enantiomeric separation of type I and type II pyrethroid insecticides with different chiral stationary phases by reversed-phase high-performance liquid chromatography.

    PubMed

    Zhang, Ping; Yu, Qian; He, Xiulong; Qian, Kun; Xiao, Wei; Xu, Zhifeng; Li, Tian; He, Lin

    2018-04-01

    The enantiomeric separation of type I (bifenthrin, BF) and type II (lambda-cyhalothrin, LCT) pyrethroid insecticides on Lux Cellulose-1, Lux Cellulose-3, and Chiralpak IC chiral columns was investigated by reversed-phase high-performance liquid chromatography. Methanol/water or acetonitrile/water was used as mobile phase at a flow rate of 0.8 mL/min. The effects of chiral stationary phase, mobile phase composition, column temperature, and thermodynamic parameters on enantiomer separation were carefully studied. Bifenthrin got a partial separation on Lux Cellulose-1 column and baseline separation on Lux Cellulose-3 column, while LCT enantiomers could be completely separated on both Lux Cellulose-1 and Lux Cellulose-3 columns. Chiralpak IC provided no separation ability for both BF and LCT. Retention factor (k) and selectivity factor (α) decreased with the column temperature increasing from 10°C to 40°C for both BF and LCT enantiomers. Thermodynamic parameters including ∆H and ∆S were also calculated, and the maximum R s were not always obtained at lowest temperature. Furthermore, the quantitative analysis methods for BF and LCT enantiomers in soil and water were also established. Such results provide a new approach for pyrethroid separation under reversed-phase condition and contribute to environmental risk assessment of pyrethroids at enantiomer level. © 2017 Wiley Periodicals, Inc.

  12. Simultaneous separation by reversed-phase high-performance liquid chromatography and mass spectral identification of anthocyanins and flavonols in Shiraz grape skin.

    PubMed

    Downey, Mark O; Rochfort, Simone

    2008-08-01

    A limitation of large-scale viticultural trials is the time and cost of comprehensive compositional analysis of the fruit by high-performance liquid chromatography (HPLC). In addition, separate methods have generally been required to identify and quantify different classes of metabolites. To address these shortcomings a reversed-phase HPLC method was developed to simultaneously separate the anthocyanins and flavonols present in grape skins. The method employs a methanol and water gradient acidified with 10% formic acid with a run-time of 48 min including re-equilibration. Identity of anthocyanins and flavonols in Shiraz (Vitis vinifera L.) skin was confirmed by mass spectral analysis.

  13. Separation of Californium from other Actinides

    DOEpatents

    Mailen, J C; Ferris, L M

    1973-09-25

    A method is provided for separating californium from a fused fluoride composition containing californium and at least one element selected from the group consisting of plutonium, americium, curium, uranium, thorium, and protactinium which comprises contacting said fluoride composition with a liquid bismuth phase containing sufficient lithium or thorium to effect transfer of said actinides to the bismuth phase and then contacting the liquid bismuth phase with molten LiCl to effect selective transfer of californium to the chloride phase.

  14. Enhanced thermoelectric properties of phase-separating bismuth selenium telluride thin films via a two-step method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takashiri, Masayuki, E-mail: takashiri@tokai-u.jp; Kurita, Kensuke; Hagino, Harutoshi

    2015-08-14

    A two-step method that combines homogeneous electron beam (EB) irradiation and thermal annealing has been developed to enhance the thermoelectric properties of nanocrystalline bismuth selenium telluride thin films. The thin films, prepared using a flash evaporation method, were treated with EB irradiation in a N{sub 2} atmosphere at room temperature and an acceleration voltage of 0.17 MeV. Thermal annealing was performed under Ar/H{sub 2} (5%) at 300 °C for 60 min. X-ray diffraction was used to determine that compositional phase separation between bismuth telluride and bismuth selenium telluride developed in the thin films exposed to higher EB doses and thermal annealing. We proposemore » that the phase separation was induced by fluctuations in the distribution of selenium atoms after EB irradiation, followed by the migration of selenium atoms to more stable sites during thermal annealing. As a result, thin film crystallinity improved and mobility was significantly enhanced. This indicates that the phase separation resulting from the two-step method enhanced, rather than disturbed, the electron transport. Both the electrical conductivity and the Seebeck coefficient were improved following the two-step method. Consequently, the power factor of thin films that underwent the two-step method was enhanced to 20 times (from 0.96 to 21.0 μW/(cm K{sup 2}) that of the thin films treated with EB irradiation alone.« less

  15. Isolation of >1 nm Diameter Single-Wall Carbon Nanotube Species Using Aqueous Two-Phase Extraction.

    PubMed

    Fagan, Jeffrey A; Hároz, Erik H; Ihly, Rachelle; Gui, Hui; Blackburn, Jeffrey L; Simpson, Jeffrey R; Lam, Stephanie; Hight Walker, Angela R; Doorn, Stephen K; Zheng, Ming

    2015-05-26

    In this contribution we demonstrate the effective separation of single-wall carbon nanotube (SWCNT) species with diameters larger than 1 nm through multistage aqueous two-phase extraction (ATPE), including isolation at the near-monochiral species level up to at least the diameter range of SWCNTs synthesized by electric arc synthesis (1.3-1.6 nm). We also demonstrate that refined species are readily obtained from both the metallic and semiconducting subpopulations of SWCNTs and that this methodology is effective for multiple SWCNT raw materials. Using these data, we report an empirical function for the necessary surfactant concentrations in the ATPE method for separating different SWCNTs into either the lower or upper phase as a function of SWCNT diameter. This empirical correlation enables predictive separation design and identifies a subset of SWCNTs that behave unusually as compared to other species. These results not only dramatically increase the range of SWCNT diameters to which species selective separation can be achieved but also demonstrate that aqueous two-phase separations can be designed across experimentally accessible ranges of surfactant concentrations to controllably separate SWCNT populations of very small (∼0.62 nm) to very large diameters (>1.7 nm). Together, the results reported here indicate that total separation of all SWCNT species is likely feasible by the ATPE method, especially given future development of multistage automated extraction techniques.

  16. Fluorous tagging strategy for solution-phase synthesis of small molecules, peptides and oligosaccharides

    PubMed Central

    Zhang, Wei

    2005-01-01

    The purification of reaction mixtures is a slow process in organic synthesis, especially during the production of large numbers of analogs and compound libraries. Phase-tag methods such as solid-phase synthesis and fluorous synthesis, provide efficient ways of addressing the separation issue. Fluorous synthesis employs functionalized perfluoroalkyl groups attached to substrates or reagents. The separation of the resulting fluorous molecules can be achieved using strong and selective fluorous liquid-liquid extraction, fluorous silica gel-based solid-phase extraction or high-performance liquid chromatography. Fluorous technology is a novel solution-phase method, which has the advantages of fast reaction times in homogeneous environments, being readily adaptable to literature conditions, having easy intermediate analysis, and having flexibility in reaction scale and scope. In principle, any synthetic methods that use a solid-support could be conducted in solution-phase by replacing the polymer linker with a corresponding fluorous tag. This review summarizes the progress of fluorous tags in solution-phase synthesis of small molecules, peptides and oligosaccharides. PMID:15595439

  17. Measuring local volume fraction, long-wavelength correlations, and fractionation in a phase-separating polydisperse fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williamson, J. J., E-mail: johnjosephwilliamson@gmail.com; Evans, R. M. L.

    We dynamically simulate fractionation (partitioning of particle species) during spinodal gas-liquid separation of a size-polydisperse colloid, using polydispersity up to ∼40% and a skewed parent size distribution. We introduce a novel coarse-grained Voronoi method to minimise size bias in measuring local volume fraction, along with a variety of spatial correlation functions which detect fractionation without requiring a clear distinction between the phases. These can be applied whether or not a system is phase separated, to determine structural correlations in particle size, and generalise easily to other kinds of polydispersity (charge, shape, etc.). We measure fractionation in both mean size andmore » polydispersity between the phases, its direction differing between model interaction potentials which are identical in the monodisperse case. These qualitative features are predicted by a perturbative theory requiring only a monodisperse reference as input. The results show that intricate fractionation takes place almost from the start of phase separation, so can play a role even in nonequilibrium arrested states. The methods for characterisation of inhomogeneous polydisperse systems could in principle be applied to experiment as well as modelling.« less

  18. Fabrication of PVDF-based blend membrane with a thin hydrophilic deposition layer and a network structure supporting layer via the thermally induced phase separation followed by non-solvent induced phase separation process

    NASA Astrophysics Data System (ADS)

    Wu, Zhiguo; Cui, Zhenyu; Li, Tianyu; Qin, Shuhao; He, Benqiao; Han, Na; Li, Jianxin

    2017-10-01

    A simple strategy of thermally induced phase separation followed by non-solvent induced phase separation (TIPS-NIPS) is reported to fabricate poly (vinylidene fluoride) (PVDF)-based blend membrane. The dissolved poly (styrene-co-maleic anhydride) (SMA) in diluent prevents the crystallization of PVDF during the cooling process and deposites on the established PVDF matrix in the later extraction. Compared with traditional coating technique, this one-step TIPS-NIPS method can not only fabricate a supporting layer with an interconnected network structure even via solid-liquid phase separation of TIPS, but also form a uniform SMA skin layer approximately as thin as 200 nm via surface deposition of NIPS. Besides the better hydrophilicity, what's interesting is that the BSA rejection ratio increases from 48% to 94% with the increase of SMA, which indicates that the separation performance has improved. This strategy can be conveniently extended to the creation of firmly thin layer, surface functionalization and structure controllability of the membrane.

  19. Separation of uranium isotopes by chemical exchange

    DOEpatents

    Ogle, P.R. Jr.

    1974-02-26

    A chemical exchange method is provided for separating /sup 235/U from / sup 238/U comprising contacting a first phase containing UF/sub 6/ with a second phase containing a compound selected from the group consisting of NOUF/sub 6/, NOUF/sub 7/, and NO/sub 2/UF/sub 7/ until the U Fsub 6/ in the first phase becomes enriched in the /sup 235/U isotope. (Official Gazette)

  20. Recovery Of Chromium Metal (VI) Using Supported Liquid Membrane (SLM) Method, A study of Influence of NaCl and pH in Receiving Phase on Transport

    NASA Astrophysics Data System (ADS)

    Cholid Djunaidi, Muhammad; Lusiana, Retno A.; Rahayu, Maya D.

    2017-06-01

    Chromium metal(VI) is a valuable metal but in contrary has high toxicity, so the separation and recovery from waste are very important. One method that can be used for the separation and recovery of chromium (VI) is a Supported Liquid Membrane (SLM). SLM system contains of three main components: a supporting membrane, organic solvents and carrier compounds. The supported Membrane used in this research is Polytetrafluoroethylene (PTFE), organic solvent is kerosene, and the carrier compound used is aliquat 336. The supported liquid membrane is placed between two phases, namely, feed phase as the source of analyte (Cr(VI)) and the receiving phase as the result of separation. Feed phase is the electroplating waste which contains of chromium metal with pH variation about 4, 6 and 9. Whereas the receiving phase are the solution of HCl, NaOH, HCl-NaCl and NaOH-NaCl with pH variation about 1, 3, 5 and 7. The efficiency separation is determined by measurement of chromium in the feed and the receiving phase using AAS (Atomic Absorption Spectrophotometry). The experiment results show that transport of Chrom (VI) by Supported Liquid membrane (SLM) is influenced by pH solution in feed phase and receiving phase as well as NaCl in receiving phase. The highest chromium metal is transported from feed phase about 97,78%, whereas in receiving phase shows about 58,09%. The highest chromium metal transport happens on pH 6 in feed phase, pH 7 in receiving phase with the mixture of NaOH and NaCl using carrier compound aliquat 336.

  1. Water-fat separation with parallel imaging based on BLADE.

    PubMed

    Weng, Dehe; Pan, Yanli; Zhong, Xiaodong; Zhuo, Yan

    2013-06-01

    Uniform suppression of fat signal is desired in clinical applications. Based on phase differences introduced by different chemical shift frequencies, Dixon method and its variations are used as alternatives of fat saturation methods, which are sensitive to B0 inhomogeneities. Iterative Decomposition of water and fat with Echo Asymmetry and Least squares estimation (IDEAL) separates water and fat images with flexible echo shifting. Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction (PROPELLER, alternatively termed as BLADE), in conjunction with IDEAL, yields Turboprop IDEAL (TP-IDEAL) and allows for decomposition of water and fat signal with motion correction. However, the flexibility of its parameter setting is limited, and the related phase correction is complicated. To address these problems, a novel method, BLADE-Dixon, is proposed in this study. This method used the same polarity readout gradients (fly-back gradients) to acquire in-phase and opposed-phases images, which led to less complicated phase correction and more flexible parameter setting compared to TP-IDEAL. Parallel imaging and undersampling were integrated to reduce scan time. Phantom, orbit, neck and knee images were acquired with BLADE-Dixon. Water-fat separation results were compared to those measured with conventional turbo spin echo (TSE) Dixon and TSE with fat saturation, respectively, to demonstrate the performance of BLADE-Dixon. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. [Separation and purification of the components in Trachelospermum jasminoides by two dimensional hydrophilic interaction liquid chromatography- reversed-phase liquid chromatography].

    PubMed

    Jia, Youmei; Cai, Jianfeng; Xin, Huaxia; Feng, Jiatao; Fu, Yanhui; Fu, Qing; Jin, Yu

    2017-06-08

    A preparative two dimensional hydrophilic interaction liquid chromatography/reversed-phase liquid chromatography (Pre-2D-HILIC/RPLC) method was established to separate and purify the components in Trachelospermum jasminoides . The pigments and strongly polar components were removed from the crude extract after the active carbon decolorization and solid phase extraction processes. A Click XIon column (250 mm×20 mm, 10 μm) was selected as stationary phase and water-acetonitrile as mobile phases in the first dimensional HILIC. Finally, 15 fractions were collected under UV-triggered mode. In the second dimensional RPLC, a C18 column (250 mm×20 mm, 5 μm) was selected and water-acetonitrile was used as mobile phases. As a result, 14 compounds with high purity were obtained, which were further identified by mass spectrometry (MS) and nuclear magnetic resonance (NMR). Finally, 11 lignan compounds and three flavonoid compounds were obtained. The method has a good orthogonality, and can improve the resolution and the peak capacity. It is significant for the separation of complex components from Trachelospermum jasminoides .

  3. Comparing monolithic and fused core HPLC columns for fast chromatographic analysis of fat-soluble vitamins.

    PubMed

    Kurdi, Said El; Muaileq, Dina Abu; Alhazmi, Hassan A; Bratty, Mohammed Al; Deeb, Sami El

    2017-06-27

    HPLC stationary phases of monolithic and fused core type can be used to achieve fast chromatographic separation as an alternative to UPLC. In this study, monolithic and fused core stationary phases are compared for fast separation of four fat-soluble vitamins. Three new methods on the first and second generation monolithic silica RP-18e columns and a fused core pentafluoro-phenyl propyl column were developed. Application of three fused core columns offered comparable separations of retinyl palmitate, DL-α-tocopheryl acetate, cholecalciferol and menadione in terms of elution speed and separation efficiency. Separation was achieved in approx. 5 min with good resolution (Rs > 5) and precision (RSD ≤ 0.6 %). Monolithic columns showed, however, a higher number of theoretical plates, better precision and lower column backpressure than the fused core column. The three developed methods were successfully applied to separate and quantitate fat-soluble vitamins in commercial products.

  4. A New Approach to Detect Mover Position in Linear Motors Using Magnetic Sensors

    PubMed Central

    Paul, Sarbajit; Chang, Junghwan

    2015-01-01

    A new method to detect the mover position of a linear motor is proposed in this paper. This method employs a simple cheap Hall Effect sensor-based magnetic sensor unit to detect the mover position of the linear motor. With the movement of the linear motor, Hall Effect sensor modules electrically separated 120° along with the idea of three phase balanced condition (va + vb + vc = 0) are used to produce three phase signals. The amplitude of the sensor output voltage signals are adjusted to unit amplitude to minimize the amplitude errors. With the unit amplitude signals three to two phase transformation is done to reduce the three multiples of harmonic components. The final output thus obtained is converted to position data by the use of arctangent function. The measurement accuracy of the new method is analyzed by experiments and compared with the conventional two phase method. Using the same number of sensor modules as the conventional two phase method, the proposed method gives more accurate position information compared to the conventional system where sensors are separated by 90° electrical angles. PMID:26506348

  5. Numerical analysis of wet separation of particles by density differences

    NASA Astrophysics Data System (ADS)

    Markauskas, D.; Kruggel-Emden, H.

    2017-07-01

    Wet particle separation is widely used in mineral processing and plastic recycling to separate mixtures of particulate materials into further usable fractions due to density differences. This work presents efforts aiming to numerically analyze the wet separation of particles with different densities. In the current study the discrete element method (DEM) is used for the solid phase while the smoothed particle hydrodynamics (SPH) is used for modeling of the liquid phase. The two phases are coupled by the use of a volume averaging technique. In the current study, simulations of spherical particle separation were performed. In these simulations, a set of generated particles with two different densities is dropped into a rectangular container filled with liquid. The results of simulations with two different mixtures of particles demonstrated how separation depends on the densities of particles.

  6. Recent development in liquid chromatography stationary phases for separation of Traditional Chinese Medicine components.

    PubMed

    Jin, Hongli; Liu, Yanfang; Guo, Zhimou; Wang, Jixia; Zhang, Xiuli; Wang, Chaoran; Liang, Xinmiao

    2016-10-25

    Traditional Chinese Medicine (TCM) is an ancient medical practice which has been used to prevent and cure diseases for thousands of years. TCMs are frequently multi-component systems with mainly unidentified constituents. The study of the chemical compositions of TCMs remains a hotspot of research. Different strategies have been developed to manage the significant complexity of TCMs, in an attempt to determine their constituents. Reversed-phase liquid chromatography (RPLC) is still the method of choice for the separation of TCMs, but has many problems related to limited selectivity. Recently, enormous efforts have been concentrated on the development of efficient liquid chromatography (LC) methods for TCMs, based on selective stationary phases. This can improve the resolution and peak capacity considerably. In addition, high-efficiency stationary phases have been applied in the analysis of TCMs since the invention of ultra high-performance liquid chromatography (UHPLC). This review describes the advances in LC methods in TCM research from 2010 to date, and focuses on novel stationary phases. Their potential in the separation of TCMs using relevant applications is also demonstrated. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Development of a sensitive and rapid method for rifampicin impurity analysis using supercritical fluid chromatography.

    PubMed

    Li, Wei; Wang, Jun; Yan, Zheng-Yu

    2015-10-10

    A novel simple, fast and efficient supercritical fluid chromatography (SFC) method was developed and compared with RPLC method for the separation and determination of impurities in rifampicin. The separation was performed using a packed diol column and a mobile phase B (modifier) consisting of methanol with 0.1% ammonium formate (w/v) and 2% water (v/v). Overall satisfactory resolutions and peak shapes for rifampicin quinone (RQ), rifampicin (RF), rifamycin SV (RSV), rifampicin N-oxide (RNO) and 3-formylrifamycinSV (3-FR) were obtained by optimization of the chromatography system. With gradient elution of mobile phase, all of the impurities and the active were separated within 4 min. Taking full advantage of features of SFC (such as particular selectivity, non-sloping baseline in gradient elution, and without injection solvent effects), the method was successfully used for determination of impurities in rifampicin, with more impurity peaks detected, better resolution achieved and much less analysis time needed compared with conventional reversed-phase liquid chromatography (RPLC) methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Separation and identification of neutral cereal lipids by normal phase high-performance liquid chromatography, using evaporative light-scattering and electrospray mass spectrometry for detection.

    PubMed

    Rocha, João M; Kalo, Paavo J; Ollilainen, Velimatti; Malcata, F Xavier

    2010-04-30

    A novel method was developed for the analysis of molecular species in neutral lipid classes, using separation by normal phase high-performance liquid chromatography, followed by detection by evaporative light-scattering and electrospray ionization tandem mass spectrometry. Monoacid standards, i.e. sterol esters, triacylglycerols, fatty acids, diacylglycerols, free sterols and monoacylglycerols, were separated to baseline on microbore 3 microm-silica gel columns. Complete or partial separation of molecular species in each lipid class permitted identification by automatic tandem mass spectrometry of ammonium adducts, produced via positive electrospray ionization. After optimization of the method, separation and identification of molecular species of various lipid classes was comprehensively tested by analysis of neutral lipids from the free lipid extract of maize flour. 2010 Elsevier B.V. All rights reserved.

  9. Sensitivity of snow process simulations to precipitation-phase transition method in forested and open areas

    NASA Astrophysics Data System (ADS)

    Lundberg, A.; Gustafsson, D.

    2009-04-01

    Modeling of forest snow processes is complicated and especially problematic seems to be the separation of precipitation phase in climates where a large part of the precipitation falls at temperatures near zero degrees Celsius. When the precipitation is classified as snow, the tree crowns can carry an order of magnitude more canopy storage as compared to when the precipitation is classified as rain, and snow in the trees also alters the albedo of the forest while rain does not. Many different schemes for the precipitation phase separation are used by various snow models. Some models use just one air temperature threshold (TR/S) below which all precipitation is assumed to be snow and above which all precipitation is classified as rain. A more common approach for forest snow models is to use two temperature thresholds. The snow fraction (SF) is then set to one below the snow threshold (TS) and to zero above the rain threshold (TR) and SF is assumed to decrease linearly between these two thresholds. Also more sophisticated schemes exist, but three seems to be a lack of agreement on how the precipitation phase separations should be performed. The aim with this study is to use a hydrological model including canopy snow processes to illustrate the sensitivity for different formulations of the precipitation phase separation on a) the simulated maximum snow pack storage b) the interception evaporation loss and c) snow melt runoff. In other words, to investigate of the choice of precipitation phase separation has an impact on the simulated wintertime water balance. Simulations are made for sites in different climates and for both open fields and forest sites in different regions of Sweden from north to south. In general, precipitation phase separation methods that classified snowfall at higher temperatures resulted in a larger proportion of the precipitation lost by interception evaporation as a result of the increased interception capacity. However, the maximum snow accumulation was also increased in some cases due to the overall increased snowfall, depending on canopy density and precipitation and temperature regimes. Results show that the choice of precipitation phase separation method can have an significant impact on the simulated wintertime water balance, especially in forested regions.

  10. Integration of carboxyl modified magnetic particles and aqueous two-phase extraction for selective separation of proteins.

    PubMed

    Gai, Qingqing; Qu, Feng; Zhang, Tao; Zhang, Yukui

    2011-07-15

    Both of the magnetic particle adsorption and aqueous two-phase extraction (ATPE) were simple, fast and low-cost method for protein separation. Selective proteins adsorption by carboxyl modified magnetic particles was investigated according to protein isoelectric point, solution pH and ionic strength. Aqueous two-phase system of PEG/sulphate exhibited selective separation and extraction for proteins before and after magnetic adsorption. The two combination ways, magnetic adsorption followed by ATPE and ATPE followed by magnetic adsorption, for the separation of proteins mixture of lysozyme, bovine serum albumin, trypsin, cytochrome C and myloglobin were discussed and compared. The way of magnetic adsorption followed by ATPE was also applied to human serum separation. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Use of low volatility mobile phases in electroosmotic thin-layer chromatography.

    PubMed

    Berezkin, V G; Balushkin, A O; Tyaglov, B V; Litvin, E F

    2005-08-19

    A variant of electroosmotic thin-layer chromatography is suggested with the use of low volatility compounds as mobile phases aimed at drastically decreasing the evaporation of the mobile phase and improving the reproducibility of the method. The linear movement velocity of zones of separated compounds is experimentally shown to increase 2-12-fold in electroosmotic chromatography (compared to similar values in traditional TLC). The separation efficiency is also considerably increased.

  12. Principles of Micellar Electrokinetic Capillary Chromatography Applied in Pharmaceutical Analysis

    PubMed Central

    Hancu, Gabriel; Simon, Brigitta; Rusu, Aura; Mircia, Eleonora; Gyéresi, Árpád

    2013-01-01

    Since its introduction capillary electrophoresis has shown great potential in areas where electrophoretic techniques have rarely been used before, including here the analysis of pharmaceutical substances. The large majority of pharmaceutical substances are neutral from electrophoretic point of view, consequently separations by the classic capillary zone electrophoresis; where separation is based on the differences between the own electrophoretic mobilities of the analytes; are hard to achieve. Micellar electrokinetic capillary chromatography, a hybrid method that combines chromatographic and electrophoretic separation principles, extends the applicability of capillary electrophoretic methods to neutral analytes. In micellar electrokinetic capillary chromatography, surfactants are added to the buffer solution in concentration above their critical micellar concentrations, consequently micelles are formed; micelles that undergo electrophoretic migration like any other charged particle. The separation is based on the differential partitioning of an analyte between the two-phase system: the mobile aqueous phase and micellar pseudostationary phase. The present paper aims to summarize the basic aspects regarding separation principles and practical applications of micellar electrokinetic capillary chromatography, with particular attention to those relevant in pharmaceutical analysis. PMID:24312804

  13. Centrifugal pyrocontactor

    DOEpatents

    Chow, Lorac S.; Leonard, Ralph A.

    1993-01-01

    A method for mixing and separating immiscible liquid salts and liquid metals in a centrifugal contractor. The method includes introducing the liquids into an annular mixing zone and intensely mixing the liquids using vertical vanes attached to a rotor cooperating with vertical baffles, a horizontal baffle, and bottom vanes attached to the contactor housing. The liquids enter the contactor in the range of 700-800 degrees Celsius. The liquids are separated in the rotor into a dense phase and a light phase which are discharged from the contactor.

  14. Centrifugal pyrocontactor

    DOEpatents

    Chow, L.S.; Leonard, R.A.

    1993-10-19

    A method is described for mixing and separating immiscible liquid salts and liquid metals in a centrifugal contractor. The method includes introducing the liquids into an annular mixing zone and intensely mixing the liquids using vertical vanes attached to a rotor cooperating with vertical baffles, a horizontal baffle, and bottom vanes attached to the contactor housing. The liquids enter the contactor in the range of 700-800 degrees Celsius. The liquids are separated in the rotor into a dense phase and a light phase which are discharged from the contactor. 6 figures.

  15. Separation and structural analysis of saponins in a bark extract from Quillaja saponaria Molina.

    PubMed

    Nord, L I; Kenne, L

    1999-07-20

    Six major saponins were isolated from a bark extract from Quillaja saponaria Molina. Solid-phase extraction, followed by a two-step reversed-phase HPLC separation procedure with phosphate and ammonium acetate buffers of different pH values, was used. The compounds were characterised using NMR spectroscopy, mass spectrometry and chemical methods.

  16. Particle separation by phase modulated surface acoustic waves.

    PubMed

    Simon, Gergely; Andrade, Marco A B; Reboud, Julien; Marques-Hueso, Jose; Desmulliez, Marc P Y; Cooper, Jonathan M; Riehle, Mathis O; Bernassau, Anne L

    2017-09-01

    High efficiency isolation of cells or particles from a heterogeneous mixture is a critical processing step in lab-on-a-chip devices. Acoustic techniques offer contactless and label-free manipulation, preserve viability of biological cells, and provide versatility as the applied electrical signal can be adapted to various scenarios. Conventional acoustic separation methods use time-of-flight and achieve separation up to distances of quarter wavelength with limited separation power due to slow gradients in the force. The method proposed here allows separation by half of the wavelength and can be extended by repeating the modulation pattern and can ensure maximum force acting on the particles. In this work, we propose an optimised phase modulation scheme for particle separation in a surface acoustic wave microfluidic device. An expression for the acoustic radiation force arising from the interaction between acoustic waves in the fluid was derived. We demonstrated, for the first time, that the expression of the acoustic radiation force differs in surface acoustic wave and bulk devices, due to the presence of a geometric scaling factor. Two phase modulation schemes are investigated theoretically and experimentally. Theoretical findings were experimentally validated for different mixtures of polystyrene particles confirming that the method offers high selectivity. A Monte-Carlo simulation enabled us to assess performance in real situations, including the effects of particle size variation and non-uniform acoustic field on sorting efficiency and purity, validating the ability to separate particles with high purity and high resolution.

  17. High-performance liquid chromatography analysis methods developed for quantifying enzymatic esterification of flavonoids in ionic liquids.

    PubMed

    Lue, Bena-Marie; Guo, Zheng; Xu, Xuebing

    2008-07-11

    Methods using reversed-phase high-performance liquid chromatography (RP-HPLC) with ELSD were investigated to quantify enzymatic reactions of flavonoids with fatty acids in the presence of diverse room temperature ionic liquids (RTILs). A buffered salt (preferably triethylamine-acetate) was found essential for separation of flavonoids from strongly polar RTILs, whereby RTILs were generally visible as two major peaks identified based on an ion-pairing/exchanging hypothesis. C8 and C12 stationary phases were optimal while mobile phase pH (3-7) had only a minor influence on separation. The method developed was successfully applied for primary screening of RTILs (>20), with in depth evaluation of substrates in 10 RTILs, for their evaluation as reaction media.

  18. Behavior of new complexes of tetrakis(4-methoxylphenyl)porphyrin with heavy rare earth elements in reversed-phase high performance liquid chromatography.

    PubMed

    Zhang, Jun-Feng; Wang, Hong; Hou, An-Xin; Wang, Chang-Fa; Zhang, Hua-Shan

    2004-08-01

    An HPLC method has been developed for the separation of new complexes of tetrakis(4-methoxylphenyl)porphyrin (TMOPP) with four heavy rare earth elements (RE = Y, Er, Tm, and Yb). The function of amine and acid in the mobile phase has been investigated and a reasonable explanation is presented. Successful separation of the RE-TMOPP-Cl complexes is accomplished in 10 min with a mobile phase consisting of methanol-water-acetic acid-triethanolamine. The detection limits (S/N= 3) for the four complexes are 0.01 microg/mL. This method is rapid, sensitive, and simple.

  19. Two-dimensional RPLC-RPLC system with different pH in two dimensions for separation of alkaloids from Corydalis yanhusuo W. T. Wang.

    PubMed

    Zhang, Jing; Jin, Yu; Liu, Yanfang; Xiao, Yuansheng; Feng, Jiatao; Xue, Xingya; Zhang, Xiuli; Liang, Xinmiao

    2009-06-01

    An effective method utilizing the same RP chromatographic column with different pH in first and second LC dimensions has been developed for separation of the basic compounds from traditional Chinese medicines (TCMs). In this work, the alkaloids in Corydalis yanhusuo which is an important TCM were selected as a model to develop the method. The additives and pH values of the mobile phase were optimized in this work. To investigate the feasibility of this method, off-line mode separation was performed in the experiments. According to the UV-absorption intensity, there were eight fractions collected in acidic conditions. All the fractions were analyzed in basic conditions. The results showed that the chromatographic selectivities were significantly different in the separations performed with acidic and alkaline elution systems. Complementary separation was achieved in this work. It is demonstrated that this method would be an effective tool for alkaloids research. Based on the different pH of the mobile phase in this method, it could also be suitable to analyze compounds which were sensible to the pH of the solution.

  20. Hydrophilic interaction liquid chromatography in the speciation analysis of selenium.

    PubMed

    Sentkowska, Aleksandra; Pyrzynska, Krystyna

    2018-02-01

    The hydrophilic interaction liquid chromatography (HILIC) coupled to mass spectrometry was employed to study retention behavior of selected selenium compounds using two different HILIC stationary phases: silica and zwitterionic. Two organic solvents - acetonitrile and methanol - were compared as a component of mobile phase. Separation parameters such as a content of organic modifier, the eluent pH and inorganic buffer concentration were investigated. Based on all observations, methanol seems to be beneficial for the separation of studied compounds. The optimal HILIC separation method involved silica column and eluent composed of 85% MeOH and CH 3 COONH 4 (8 mM, pH 7) was compared to RP method in terms of time of the single run, the separation efficiency and limit of detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Optimization and validation of the reversed-phase high-performance liquid chromatography with fluorescence detection method for the separation of tocopherol and tocotrienol isomers in cereals, employing a novel sorbent material.

    PubMed

    Irakli, Maria N; Samanidou, Victoria F; Papadoyannis, Ioannis N

    2012-03-07

    The separation and determination of tocopherols (Ts) and tocotrienols (T3s) by reversed-phase high-performance liquid chromatography with fluorescence detection has been developed and validated after optimization of various chromatographic conditions and other experimental parameters. Analytes were separated on a PerfectSil Target ODS-3 (250 × 4.6 mm, 3 μm) column filled with a novel sorbent material of ultrapure silica gel. The separation of Ts and T3s was optimized in terms of mobile-phase composition and column temperature on the basis of the best compromise among efficiency, resolution, and analysis time. Using a gradient elution of mobile phase composed of isopropanol/water and 7 °C column temperature, a satisfactory resolution was achieved within 62 min. For the quantitative determination, α-T acetate (50 μg/mL) was used as the internal standard. Detection limits ranged from 0.27 μg/mL (γ-T) to 0.76 μg/mL (γ-T3). The validation of the method was examined performing intraday (n = 5) and interday (n = 3) assays and was found to be satisfactory, with high accuracy and precision results. Solid-phase extraction provided high relative extraction recoveries from cereal samples: 87.0% for γ-T3 and 115.5% for δ-T. The method was successfully applied to cereals, such as durum wheat, bread wheat, rice, barley, oat, rye, and corn.

  2. Treatment methods for breaking certain oil and water emulsions

    DOEpatents

    Sealock, Jr., L. John; Baker, Eddie G.; Elliott, Douglas C.

    1992-01-01

    Disclosed are treatment methods for breaking emulsions of petroleum oil and salt water, fatty oil and water, and those resulting from liquefication of organic material. The emulsions are broken by heating to a predetermined temperature at or above about 200.degree. C. and pressurizing to a predetermined pressure above the vapor pressure of water at the predetermined temperature to produce a heated and pressurized fluid. The heated and pressurized fluid is contained in a single vessel at the predetermined temperature and pressure for a predetermined period of time to effectively separate the emulsion into substantially distinct first and second phases, the first phase comprising primarily the petroleum oil, the second phase comprising primarily the water. The first and second phases are separately withdrawn from the vessel at a withdraw temperature between about 200.degree. C. and 374.degree. C. and a withdraw pressure above the vapor pressure of water at the withdraw temperature. Where solids are present in the certain emulsions, the above described treatment may also effectively separate the certain emulsion into a substantially distinct third phase comprising primarily the solids.

  3. Texas A&M vortex type phase separator

    NASA Astrophysics Data System (ADS)

    Best, Frederick

    2000-01-01

    Phase separation is required for regenerative biological and chemical process systems as well as thermal transport and rejection systems. Liquid and gas management requirements for future spacecraft will demand small, passive systems able to operate over wide ranges of inlet qualities. Conservation and recycling of air and water is a necessary part of the construction and operation of the International Space Station as well as future long duration space missions. Space systems are sensitive to volume, mass, and power. Therefore, it is necessary to develop a method to recycle wastewater with minimal power consumption. Regenerative life support systems currently being investigated require phase separation to separate the liquid from the gas produced. The microgravity phase separator designed and fabricated at Texas A&M University relies on centripetal driven buoyancy forces to form a gas-liquid vortex within a fixed, right-circular cylinder. Two-phase flow is injected tangentially along the inner wall of this cylinder producing a radial acceleration gradient. The gradient produced from the intrinsic momentum of the injected mixture results in a rotating flow that drives the buoyancy process by the production of a hydrostatic pressure gradient. Texas A&M has flown several KC-135 flights with separator. These flights have included scaling studies, stability and transient investigations, and tests for inventory instrumentation. Among the hardware tested have been passive devices for separating mixed vapor/liquid streams into single-phase streams of vapor only and liquid only. .

  4. Liquid-phase thermal diffusion isotope separation apparatus and method having tapered column

    DOEpatents

    Rutherford, William M.

    1988-05-24

    A thermal diffusion counterflow method and apparatus for separating isotopes in solution in which the solution is confined in a long, narrow, vertical slit which tapers from bottom to top. The variation in the width of the slit permits maintenance of a stable concentration distribution with relatively long columns, thus permitting isotopic separation superior to that obtainable in the prior art.

  5. Liquid-phase thermal diffusion isotope separation apparatus and method having tapered column

    DOEpatents

    Rutherford, W.M.

    1985-12-04

    A thermal diffusion counterflow method and apparatus for separating isotopes in solution in which the solution is confined in a long, narrow, vertical slit which tapers from bottom to top. The variation in the width of the slit permits maintenance of a stable concentration distribution with relatively long columns, thus permitting isotopic separation superior to that obtained in the prior art.

  6. Synthesis and evaluation of a maltose-bonded silica gel stationary phase for hydrophilic interaction chromatography and its application in Ginkgo Biloba extract separation in two-dimensional systems.

    PubMed

    Sheng, Qianying; Yang, Kaiya; Ke, Yanxiong; Liang, Xinmiao; Lan, Minbo

    2016-09-01

    Maltose covalently bonded to silica was prepared by using carbonyl diimidazole as a cross-linker and employed as a stationary phase for hydrophilic interaction liquid chromatography. The column efficiency and the effect of water content, buffer concentration, and pH value influenced on retention were investigated. The separation or enrichment selectivity was also studied with nucleosides, saccharides, amino acids, peptides, and glycopeptides. The results indicated that the stationary phase processed good separation efficiency and separation selectivity in hydrophilic interaction liquid chromatography mode. Moreover, a two-dimensional hydrophilic interaction liquid chromatography× reversed-phase liquid chromatography method with high orthogonality was developed to analyze the Ginkgo Biloba extract fractions. The development of this two-dimensional chromatographic system would be an effective tool for the separation of complex samples of different polarities and contents. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Chemical-Reaction-Controlled Phase Separated Drops: Formation, Size Selection, and Coarsening

    NASA Astrophysics Data System (ADS)

    Wurtz, Jean David; Lee, Chiu Fan

    2018-02-01

    Phase separation under nonequilibrium conditions is exploited by biological cells to organize their cytoplasm but remains poorly understood as a physical phenomenon. Here, we study a ternary fluid model in which phase-separating molecules can be converted into soluble molecules, and vice versa, via chemical reactions. We elucidate using analytical and simulation methods how drop size, formation, and coarsening can be controlled by the chemical reaction rates, and categorize the qualitative behavior of the system into distinct regimes. Ostwald ripening arrest occurs above critical reaction rates, demonstrating that this transition belongs entirely to the nonequilibrium regime. Our model is a minimal representation of the cell cytoplasm.

  8. Use of vancomycin silica stationary phase in packed capillary electrochromatography. II. Enantiomer separation of venlafaxine and O-desmethylvenlafaxine in human plasma.

    PubMed

    Fanali, S; Rudaz, S; Veuthey, J L; Desiderio, C

    2001-06-01

    A capillary electrochromatography method, using vancomycin chiral stationary phase packed capillary, was optimized for the simultaneous chiral separation of the antidepressant drug venlafaxine and its main active metabolite O-desmethylvenlafaxine. Simultaneous baseline enantiomeric separation of the two compounds was obtained using a mobile phase composed of 100 mM ammonium acetate buffer pH 6/water/acetonitrile (5:5:90, v/v). The electrokinetic injection for sample introduction provided a limit of quantitation for both the compounds of 0.05 microg/ml racemate concentration suitable for the analysis of venlafaxine and metabolite in biological samples. The acetonitrile mobile phase concentration was found to modulate the analytes elution times, the enantiomeric resolution and the efficiency of the separation. The column was tested for repeatability and linearity showing RSD values (%) in the range of 0.13-0.24, 2.47-3.66 and 1.35-2.50 for migration time, sample/internal standard peak area ratio and enantiomeric resolution, respectively and correlation coefficients higher than 0.9990. The method was applied to the analysis of clinical samples of patients under depression therapy showing a stereoselective metabolism for venlafaxine.

  9. Hybrid Solution-Adaptive Unstructured Cartesian Method for Large-Eddy Simulation of Detonation in Multi-Phase Turbulent Reactive Mixtures

    DTIC Science & Technology

    2012-03-27

    pulse- detonation engines ( PDE ), stage separation, supersonic cav- ity oscillations, hypersonic aerodynamics, detonation induced structural...ADAPTIVE UNSTRUCTURED CARTESIAN METHOD FOR LARGE-EDDY SIMULATION OF DETONATION IN MULTI-PHASE TURBULENT REACTIVE MIXTURES 5b. GRANT NUMBER FA9550...CCL Report TR-2012-03-03 Hybrid Solution-Adaptive Unstructured Cartesian Method for Large-Eddy Simulation of Detonation in Multi-Phase Turbulent

  10. Method and apparatus for controlling carrier envelope phase

    DOEpatents

    Chang, Zenghu [Manhattan, KS; Li, Chengquan [Sunnyvale, CA; Moon, Eric [Manhattan, KS

    2011-12-06

    A chirped pulse amplification laser system. The system generally comprises a laser source, a pulse modification apparatus including first and second pulse modification elements separated by a separation distance, a positioning element, a measurement device, and a feedback controller. The laser source is operable to generate a laser pulse and the pulse modification apparatus operable to modify at least a portion of the laser pulse. The positioning element is operable to reposition at least a portion of the pulse modification apparatus to vary the separation distance. The measurement device is operable to measure the carrier envelope phase of the generated laser pulse and the feedback controller is operable to control the positioning element based on the measured carrier envelope phase to vary the separation distance of the pulse modification elements and control the carrier envelope phase of laser pulses generated by the laser source.

  11. [Separation of alkaloids in tea by high-speed counter-current chromatography].

    PubMed

    Yuan, L; Fu, R; Zhang, T; Deng, J; Li, X

    1998-07-01

    Alkaloids extracted from the green tea were separated by high-speed counter-current chromatography. A series of experiments have been performed to investigate effects of different solvent system. A system of CHCl3-CH3OH-NaH2PO4(23 mmol/L) = (4:3:2) was selected, in which the upper phase was used as the stationary phase, and the lower phase as mobile phase. When acidity of solvent system is pH 5.6, three chemical components are very efficiently isolated by one injection of 50 mg sample mixture. Analyzing the eluted fractions by TLC, we know that one is caffeine, and the other is theophylline. In comparing the separation results by high-speed counter-current chromatography with those by TLC, the advantages of this method is verified. It should find wide applications of this technology for the separation of crude mixture of plant components.

  12. Effects of temperature and solvent condition on phase separation induced molecular fractionation of gum arabic/hyaluronan aqueous mixtures.

    PubMed

    Hu, Bing; Han, Lingyu; Gao, Zhiming; Zhang, Ke; Al-Assaf, Saphwan; Nishinari, Katsuyoshi; Phillips, Glyn O; Yang, Jixin; Fang, Yapeng

    2018-05-14

    Effects of temperature and solvent condition on phase separation-induced molecular fractionation of gum arabic/hyaluronan (GA/HA) mixed solutions were investigated. Two gum arabic samples (EM10 and STD) with different molecular weights and polydispersity indices were used. Phase diagrams, including cloud and binodal curves, were established by visual observation and GPC-RI methods. The molecular parameters of control and fractionated GA, from upper and bottom phases, were measured by GPC-MALLS. Fractionation of GA increased the content of arabinogalactan-protein complex (AGP) from ca. 11% to 18% in STD/HA system and 28% to 55% in EM10/HA system. The phase separation-induced molecular fractionation was further studied as a function of temperature and solvent condition (varying ionic strength and ethanol content). Increasing salt concentration (from 0.5 to 5 mol/L) greatly reduced the extent of phase separation-induced fractionation. This effect may be ascribed to changes in the degree of ionization and shielding of the acid groups. Increasing temperature (from 4 °C to 80 °C) also exerted a significant influence on phase separation-induced fractionation. The best temperature for GA/HA mixture system was 40 °C while higher temperature negatively affected the fractionation due to denaturation and possibly degradation in mixed solutions. Increasing the ethanol content up to 30% showed almost no effect on the phase separation induced fractionation. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Preparation and Characterization of Hydrophilically Modified PVDF Membranes by a Novel Nonsolvent Thermally Induced Phase Separation Method

    PubMed Central

    Hu, Ningen; Xiao, Tonghu; Cai, Xinhai; Ding, Lining; Fu, Yuhua; Yang, Xing

    2016-01-01

    In this study, a nonsolvent thermally-induced phase separation (NTIPS) method was first proposed to fabricate hydrophilically-modified poly(vinylidene fluoride) (PVDF) membranes to overcome the drawbacks of conventional thermally-induced phase separation (TIPS) and nonsolvent-induced phase separation (NIPS) methods. Hydrophilically-modified PVDF membranes were successfully prepared by blending in hydrophilic polymer polyvinyl alcohol (PVA) at 140 °C. A series of PVDF/PVA blend membranes was prepared at different total polymer concentrations and blend ratios. The morphological analysis via SEM indicated that the formation mechanism of these hydrophilically-modified membranes was a combined NIPS and TIPS process. As the total polymer concentration increased, the tensile strength of the membranes increased; meanwhile, the membrane pore size, porosity and water flux decreased. With the PVDF/PVA blend ratio increased from 10:0 to 8:2, the membrane pore size and water flux increased. The dynamic water contact angle of these membranes showed that the hydrophilic properties of PVDF/PVA blend membranes were prominently improved. The higher hydrophilicity of the membranes resulted in reduced membrane resistance and, hence, higher permeability. The total resistance Rt of the modified PVDF membranes decreased significantly as the hydrophilicity increased. The irreversible fouling related to pore blocking and adsorption fouling onto the membrane surface was minimal, indicating good antifouling properties. PMID:27869711

  14. Preparation and Characterization of Hydrophilically Modified PVDF Membranes by a Novel Nonsolvent Thermally Induced Phase Separation Method.

    PubMed

    Hu, Ningen; Xiao, Tonghu; Cai, Xinhai; Ding, Lining; Fu, Yuhua; Yang, Xing

    2016-11-18

    In this study, a nonsolvent thermally-induced phase separation (NTIPS) method was first proposed to fabricate hydrophilically-modified poly(vinylidene fluoride) (PVDF) membranes to overcome the drawbacks of conventional thermally-induced phase separation (TIPS) and nonsolvent-induced phase separation (NIPS) methods. Hydrophilically-modified PVDF membranes were successfully prepared by blending in hydrophilic polymer polyvinyl alcohol (PVA) at 140 °C. A series of PVDF/PVA blend membranes was prepared at different total polymer concentrations and blend ratios. The morphological analysis via SEM indicated that the formation mechanism of these hydrophilically-modified membranes was a combined NIPS and TIPS process. As the total polymer concentration increased, the tensile strength of the membranes increased; meanwhile, the membrane pore size, porosity and water flux decreased. With the PVDF/PVA blend ratio increased from 10:0 to 8:2, the membrane pore size and water flux increased. The dynamic water contact angle of these membranes showed that the hydrophilic properties of PVDF/PVA blend membranes were prominently improved. The higher hydrophilicity of the membranes resulted in reduced membrane resistance and, hence, higher permeability. The total resistance R t of the modified PVDF membranes decreased significantly as the hydrophilicity increased. The irreversible fouling related to pore blocking and adsorption fouling onto the membrane surface was minimal, indicating good antifouling properties.

  15. Rapid purification of diastereoisomers from Piper kadsura using supercritical fluid chromatography with chiral stationary phases.

    PubMed

    Xin, Huaxia; Dai, Zhuoshun; Cai, Jianfeng; Ke, Yanxiong; Shi, Hui; Fu, Qing; Jin, Yu; Liang, Xinmiao

    2017-08-04

    Supercritical fluid chromatography (SFC) with chiral stationary phases (CSPs) is an advanced solution for the separation of achiral compounds in Piper kadsura. Analogues and stereoisomers are abundant in natural products, but there are obstacles in separation using conventional method. In this paper, four lignan diastereoisomers, (-)-Galbelgin, (-)-Ganschisandrin, Galgravin and (-)-Veraguensin, from Piper kadsura were separated and purified by chiral SFC. Purification strategy was designed, considering of the compound enrichment, sample purity and purification throughput. Two-step achiral purification method on chiral preparative columns with stacked automated injections was developed. Unconventional mobile phase modifier dichloromethane (DCM) was applied to improve the sample solubility. Four diastereoisomers was prepared at the respective weight of 103.1mg, 10.0mg, 152.3mg and 178.6mg from 710mg extract with the purity of greater than 98%. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Composite mixed oxide ionic and electronic conductors for hydrogen separation

    DOEpatents

    Gopalan, Srikanth [Westborough, MA; Pal, Uday B [Dover, MA; Karthikeyan, Annamalai [Quincy, MA; Hengdong, Cui [Allston, MA

    2009-09-15

    A mixed ionic and electronic conducting membrane includes a two-phase solid state ceramic composite, wherein the first phase comprises an oxygen ion conductor and the second phase comprises an n-type electronically conductive oxide, wherein the electronically conductive oxide is stable at an oxygen partial pressure as low as 10.sup.-20 atm and has an electronic conductivity of at least 1 S/cm. A hydrogen separation system and related methods using the mixed ionic and electronic conducting membrane are described.

  17. Organised surfactant assemblies in analytical atomic spectrometry

    NASA Astrophysics Data System (ADS)

    Sanz-Medel, Alfredo; Fernandez de la Campa, Maria del Rosario; Gonzalez, Elisa Blanco; Fernandez-Sanchez, Maria Luisa

    1999-02-01

    The use of surfactant-based organised assemblies in analytical atomic spectroscopy is extensively and critically reviewed along three main lines: first, the ability of organised media to enhance detection of atomic spectroscopic methods by favourable manipulation of physical and chemical properties of the sample solution second, the extension of separation mechanisms by resorting to organised media and third a discussion of synergistic combinations of liquid chromatography separations and atomic detectors via the use of vesicular mobile phases. Changes in physical properties of sample solutions aspirated in atomic spectrometry by addition of surfactants can be advantageously used in at least four different ways: (i) to improve nebulisation efficiency; (ii) to enhance wettability of solid surfaces used for atomisation; (iii) to improve compatibility between aqueous and organic phases; and (iv) to achieve good dispersion of small particles in "slurry" techniques. Controversial results and statements published so far are critically discussed. The ability of surfactant-based organised assemblies, such as micelles and vesicles, to organise reactants at the molecular level has also been applied to enhance the characteristics of chemical generation of volalite species of metals and semi-metals (e.g., hydride or ethylide generation of As, Pb, Cd, Se, Sn, and cold vapour Hg generation) used in atomic methods. Enhancements in efficiency/transport of volatile species, increases in the reaction kinetics, stabilisation of some unstable species and changes in the selectivity of the reactions by surfactants are dealt with. Non-chromatographic cloud-point separations to design pre-concentration procedures with subsequent metal determination by atomic methods are addressed along with chromatographic separations of expanded scope by addition of surfactants to the conventional aqueous mobile phases of reversed-phase high-performance liquid chromatography. Finally, the synergistic effect of using vesicles to improve both the separation capabilities of reversed-phase HPLC and the detectability of atomic detectors by on-line vesicular hydride generation is described. In particular, the possible separation mechanisms responsible for micellar and vesicular mobile phases in reversed-phase chromatographies are analysed and compared. The possible effect of modification of stationary phases by monomers of the surfactants should also be taken into account. The application of such on-line couplings to develop new hybrid approaches to tackle modern problems of trace element speciation for As, Hg, Se, and Cd completes this revision of the present interface between analytical atomic spectroscopy and surfactant-based organised assemblies.

  18. Actinide extraction methods

    DOEpatents

    Peterman, Dean R [Idaho Falls, ID; Klaehn, John R [Idaho Falls, ID; Harrup, Mason K [Idaho Falls, ID; Tillotson, Richard D [Moore, ID; Law, Jack D [Pocatello, ID

    2010-09-21

    Methods of separating actinides from lanthanides are disclosed. A regio-specific/stereo-specific dithiophosphinic acid having organic moieties is provided in an organic solvent that is then contacted with an acidic medium containing an actinide and a lanthanide. The method can extend to separating actinides from one another. Actinides are extracted as a complex with the dithiophosphinic acid. Separation compositions include an aqueous phase, an organic phase, dithiophosphinic acid, and at least one actinide. The compositions may include additional actinides and/or lanthanides. A method of producing a dithiophosphinic acid comprising at least two organic moieties selected from aromatics and alkyls, each moiety having at least one functional group is also disclosed. A source of sulfur is reacted with a halophosphine. An ammonium salt of the dithiophosphinic acid product is precipitated out of the reaction mixture. The precipitated salt is dissolved in ether. The ether is removed to yield the dithiophosphinic acid.

  19. Wavefield iterative deconvolution to remove multiples and produce phase specific Ps receiver functions

    NASA Astrophysics Data System (ADS)

    Ainiwaer, A.; Gurrola, H.

    2018-03-01

    Common conversion point stacking or migration of receiver functions (RFs) and H-k (H is depth and k is Vp/Vs) stacking of RFs has become a common method to study the crust and upper mantle beneath broad-band three-component seismic stations. However, it can be difficult to interpret Pds RFs due to interference between the Pds, PPds and PSds phases, especially in the mantle portion of the lithosphere. We propose a phase separation method to isolate the prominent phases of the RFs and produce separate Pds, PPds and PSds `phase specific' receiver functions (referred to as PdsRFs, PPdsRFs and PSdsRFs, respectively) by deconvolution of the wavefield rather than single seismograms. One of the most important products of this deconvolution method is to produce Ps receiver functions (PdsRFs) that are free of crustal multiples. This is accomplished by using H-k analysis to identify specific phases in the wavefield from all seismograms recorded at a station which enables development of an iterative deconvolution procedure to produce the above-mentioned phase specific RFs. We refer to this method as wavefield iterative deconvolution (WID). The WID method differentiates and isolates different RF phases by exploiting their differences in moveout curves across the entire wave front. We tested the WID by applying it to synthetic seismograms produced using a modified version of the PREM velocity model. The WID effectively separates phases from each stacked RF in synthetic data. We also applied this technique to produce RFs from seismograms recorded at ARU (a broad-band station in Arti, Russia). The phase specific RFs produced using WID are easier to interpret than traditional RFs. The PdsRFs computed using WID are the most improved, owing to the distinct shape of its moveout curves as compared to the moveout curves for the PPds and PSds phases. The importance of this WID method is most significant in reducing interference between phases for depths of less than 300 km. Phases from deeper layers (i.e. P660s as compared to PP220s) are less likely to be misinterpreted because the large amount of moveout causes the appropriate phases to stack coherently if there is sufficient distribution in ray parameter. WID is most effective in producing clean PdsRFs that are relatively free of reverberations whereas PPdsRFs and PSdsRFs retain contamination from reverberations.

  20. Selective Separation and Determination of Heavy Metals (Cd, Pb, Cr) Speciation Forms from Hortic Antrosols

    NASA Astrophysics Data System (ADS)

    Bulgariu, D.; Bulgariu, L.

    2009-04-01

    The speciation, inter-phases distribution and biodisponibility of heavy metals in soils represent one of main problem of environmental geochemistry and agro-chemistry. This problem is very important in case of hortic antrosols (soils from glasshouses) for the elimination of agricultural products (fruits, vegetables) contamination with heavy metals. In soils from glass houses, the speciation and inter-phases distribution processes of heavy metals have a particular dynamic, different in comparison with those from non-protected soils. The predominant distribution forms of heavy metals in such soils types are: complexes with low mass organic molecules, organic-mineral complexes, complexes with inorganic ligands (hydroxide-complexes, carbonate-complexes, sulphate-complexes, etc.) and basic salts. All of these have high stabilities in conditions of soils from glass houses, and in consequence, the separation and determination of speciation forms (which is directly connected with biodisponibility of heavy metals) by usual methods id very difficult and has a high uncertain degree. In this study is presented an original method for the selective separation and differentiation of speciation forms of heavy metals from glass houses soils, which is based by the combination of solid-liquid sequential extraction (SPE) with the extraction in aqueous polymer-inorganic salt two-phase systems (ABS). The soil samples used for this study have been sampled from three different locations (glass houses from Iasi, Barlad and Bacau - Romania) where the vegetables cultivation have bee performed by three different technologies. In this way was estimated the applicability and the analytical limits of method proposed by as, in function of the chemical-mineralogical and physical-chemical characteristics of soils. As heavy metals have been studied cadmium, lead and chromium, all being known for their high toxicity. The procedure used for the selective separation and differentiation of speciation forms of heavy metals from glass houses soils has two main steps: (i) non-destructive separation of chemical-mineralogical associations and aggregates from soils samples - for this the separation method with heavy liquids (bromophorme) and isodynamic magnetic method have been used; (ii) sequential extraction of heavy metals from soil fractions separated in the first step, by using combined SPE-ABS procedure. For the preparation of combined extraction systems was used polyethylene glycol (with different molecular mass: 2000, 4000 and 8000). As phase-forming inorganic salts and as selective extracting agents we have used different usual inorganic reagents. The type and concentration of phase-forming salts have been selected in function of, both nature of extracted heavy metals and chemical-mineralogical characteristics of soil samples. The experimental parameters investigated in this study are: molecular mass of polyethylene glycol and the concentration of polymeric solutions, nature and concentration of phase-forming salts, nature and concentration of extracting agents, pH in extraction system phase, type of extracted heavy metals, type of speciation forms of heavy metals and their concentrations. All these factors can influence significantly the efficiency and the selectivity of separation process. The experimental results have indicate that the combined SPE-ABS extraction systems have better separation efficiency, in comparison with traditional SPE systems and ca realized a accurate discrimination between speciation forms of heavy metals from soils. Under these conditions, the estimation of inter-phases distribution and biodisponibility of heavy metals has a high precision. On the other hand, when the combined SPE-ABS systems are used, the concomitant extraction of the elements from the same geochemical association with studied heavy metals (inevitable phenomena in case of separation by SPE procedures) is significant diminished. This increases the separation selectivity and facilitated the more accurate determination of speciation forms concentration. By adequate selection of extraction conditions can be realized the selective separation of organic-mineral complexes, which will permit to perform detailed studies about the structure and chemical composition of these. Acknowledgments The authors would like to acknowledge the financial support from Romanian Ministry of Education and Research (Project PNCDI 2-D5 no. 51045/07).

  1. Enantioseparation of Racemic Flurbiprofen by Aqueous Two-Phase Extraction With Binary Chiral Selectors of L-dioctyl Tartrate and L-tryptophan.

    PubMed

    Chen, Zhi; Zhang, Wei; Wang, Liping; Fan, Huajun; Wan, Qiang; Wu, Xuehao; Tang, Xunyou; Tang, James Z

    2015-09-01

    A novel method for chiral separation of flurbiprofen enantiomers was developed using aqueous two-phase extraction (ATPE) coupled with biphasic recognition chiral extraction (BRCE). An aqueous two-phase system (ATPS) was used as an extracting solvent which was composed of ethanol (35.0% w/w) and ammonium sulfate (18.0% w/w). The chiral selectors in ATPS for BRCE consideration were L-dioctyl tartrate and L-tryptophan, which were screened from amino acids, β-cyclodextrin derivatives, and L-tartrate esters. Factors such as the amounts of L-dioctyl tartrate and L-tryptophan, pH, flurbiprofen concentration, and the operation temperature were investigated in terms of chiral separation of flurbiprofen enantiomers. The optimum conditions were as follows: L-dioctyl tartrate, 80 mg; L-tryptophan, 40 mg; pH, 4.0; flurbiprofen concentration, 0.10 mmol/L; and temperature, 25 °C. The maximum separation factor α for flurbiprofen enantiomers could reach 2.34. The mechanism of chiral separation of flurbiprofen enantiomers is discussed and studied. The results showed that synergistic extraction has been established by L-dioctyl tartrate and L-tryptophan, which enantioselectively recognized R- and S-enantiomers in top and bottom phases, respectively. Compared to conventional liquid-liquid extraction, ATPE coupled with BRCE possessed higher separation efficiency and enantioselectivity without the use of any other organic solvents. The proposed method is a potential and powerful alternative to conventional extraction for separation of various enantiomers. © 2015 Wiley Periodicals, Inc.

  2. Selective spectroscopic imaging of hyperpolarized pyruvate and its metabolites using a single-echo variable phase advance method in balanced SSFP

    PubMed Central

    Varma, Gopal; Wang, Xiaoen; Vinogradov, Elena; Bhatt, Rupal S.; Sukhatme, Vikas; Seth, Pankaj; Lenkinski, Robert E.; Alsop, David C.; Grant, Aaron K.

    2015-01-01

    Purpose In balanced steady state free precession (bSSFP), the signal intensity has a well-known dependence on the off-resonance frequency, or, equivalently, the phase advance between successive radiofrequency (RF) pulses. The signal profile can be used to resolve the contributions from the spectrally separated metabolites. This work describes a method based on use of a variable RF phase advance to acquire spatial and spectral data in a time-efficient manner for hyperpolarized 13C MRI. Theory and Methods The technique relies on the frequency response from a bSSFP acquisition to acquire relatively rapid, high-resolution images that may be reconstructed to separate contributions from different metabolites. The ability to produce images from spectrally separated metabolites was demonstrated in-vitro, as well as in-vivo following administration of hyperpolarized 1-13C pyruvate in mice with xenograft tumors. Results In-vivo images of pyruvate, alanine, pyruvate hydrate and lactate were reconstructed from 4 images acquired in 2 seconds with an in-plane resolution of 1.25 × 1.25mm2 and 5mm slice thickness. Conclusions The phase advance method allowed acquisition of spectroscopically selective images with high spatial and temporal resolution. This method provides an alternative approach to hyperpolarized 13C spectroscopic MRI that can be combined with other techniques such as multi-echo or fluctuating equilibrium bSSFP. PMID:26507361

  3. Nanostructures produced by phase-separation during growth of (III-V).sub.1-x(IV.sub.2).sub.x alloys

    DOEpatents

    Norman, Andrew G [Evergreen, CO; Olson, Jerry M [Lakewood, CO

    2007-06-12

    Nanostructures (18) and methods for production thereof by phase separation during metal organic vapor-phase epitaxy (MOVPE). An embodiment of one of the methods may comprise providing a growth surface in a reaction chamber and introducing a first mixture of precursor materials into the reaction chamber to form a buffer layer (12) thereon. A second mixture of precursor materials may be provided into the reaction chamber to form an active region (14) on the buffer layer (12), wherein the nanostructure (18) is embedded in a matrix (16) in the active region (14). Additional steps are also disclosed for preparing the nanostructure (18) product for various applications.

  4. Development and characterization of polyethersulfone/TiO2 mixed matrix membranes for CO2/CH4 separation

    NASA Astrophysics Data System (ADS)

    Galaleldin, S.; Mannan, H. A.; Mukhtar, H.

    2017-12-01

    In this study, mixed matrix membranes comprised of polyethersulfone as the bulk polymer phase and titanium dioxide (TiO2) nanoparticles as the inorganic discontinuous phase were prepared for CO2/CH4 separation. Membranes were synthesized at filler loading of 0, 5, 10 and 15 wt % via dry phase inversion method. Morphology, chemical bonding and thermal characteristics of membranes were scrutinized utilizing different techniques, namely: Field Emission Scanning Electron Microscopy (FESEM), Fourier Transform InfraRed (FTIR) spectra and Thermogravimetric analysis (TGA) respectively. Membranes gas separation performance was evaluated for CO2 and CH4 gases at 4 bar feed pressure. The highest separation performance was achieved by mixed matrix membrane (MMM) at 5 % loading of TiO2.

  5. ANALYSIS OF SELECTED PYRETHROID PESTICIDES USING REVERSE PHASE HIGH PRESSURE LIQUID CHROMATOGRAPHY/UV

    EPA Science Inventory

    This research was conducted in cooperation with EPA Region 4 in Athens, GA to develop a method to analyze selected pyrethroid pesticides using Reverse Phase-High Pressure Liquid Chromatography (HPLC). This HPLC method will aid researchers in separating and identifying these py...

  6. High-temperature LC-MS/MS of permethylated glycans derived from glycoproteins.

    PubMed

    Zhou, Shiyue; Hu, Yunli; Mechref, Yehia

    2016-06-01

    Various glycomic analysis methods have been developed due to the essential roles of glycans in biological processes as well as the potential application of glycomics in biomarker discovery in many diseases. Permethylation is currently considered to be one of the most common derivatization methods in MS-based glycomic analysis. Permethylation not only improves ionization efficiency and stability of sialylated glycans in positive mode but also allows for enhanced separation performance on reversed-phase liquid chromatography (RPLC). Recently, RPLC-MS analysis of permethylated glycans exhibited excellent performance in sensitivity and reproducibility and became a widely-applied comprehensive strategy in glycomics. However, separating permethylated glycans by RPLC always suffers from peak broadening for high-molecular-weight branched glycans, which probably due to the low exchange rate between the stationary phase and mobile phase limited by intermolecular interactions of the methyl groups associated with the branching of the glycan structures. In this study, we employed high separation temperature conditions for RPLC of permethylated glycans, thus achieving enhanced peak capacity, improving peak shape, and enhancing separation efficiency. Additionally, partial isomeric separation were observed in RPLC of permethylated glycans at high-temperature. Mathematical processing of the correlation between retention time and molecular weight also revealed the advantage of high-temperature LC method for both manual and automatic glycan identification. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Effect of Alcohols on the Phase Behavior and Emulsification of a Sucrose Fatty Acid Ester/Water/Edible Oil System.

    PubMed

    Matsuura, Tsutashi; Ogawa, Akihiro; Ohara, Yukari; Nishina, Shogo; Nakanishi, Maho; Gohtani, Shoichi

    2018-02-01

    The effect of alcohols (ethanol, 1-propanol, propylene glycol, glycerin, sucrose) on the phase behavior and emulsification of sucrose stearic acid ester (SSE)/water/edible vegetable oil (EVO) systems was investigated. Adding sucrose, propylene glycol, and glycerin narrowed the oil-separated two-phase region in the phase diagram of the SSE/water/EVO systems, whereas adding ethanol and 1-propanol expanded the oil-separated two-phase region. Changing the course of emulsification in the phase diagram showed that the size of the oil-droplet particle typically decreased in a system with a narrowed oil-separated region. The emulsification properties of the systems varied with respect to changes in the phase diagram. The microstructure of the systems was examined using small-angle X-ray scattering, and the ability to retain the oil in the lamellar structure of the SSEs was suggested as an important role in emulsification, because the mechanism of the systems was the same as that for the liquid crystal emulsification method.

  8. A unified classification of stationary phases for packed column supercritical fluid chromatography.

    PubMed

    West, C; Lesellier, E

    2008-05-16

    The use of supercritical fluids as chromatographic mobile phases allows to obtain rapid separations with high efficiency on packed columns, which could favour the replacement of numerous HPLC methods by supercritical fluid chromatography (SFC) ones. Moreover, despite some unexpected chromatographic behaviours, general retention rules are now well understood, and mainly depend on the nature of the stationary phase. The use of polar stationary phases improves the retention of polar compounds, when C18-bonded silica favours the retention of hydrocarbonaceous compounds. In this sense, reversed-phase and normal-phase chromatography can be achieved in SFC, as in HPLC. However, these two domains are clearly separated in HPLC due to the opposite polarity of the mobile phases used for each method. In SFC, the same mobile phase can be used with both polar and non-polar stationary phases. Consequently, the need for a novel classification of stationary phases in SFC appears, allowing a unification of the classical reversed- and normal-phase domains. In this objective, the paper presents the development of a five-dimensional classification based on retention data for 94-111 solutes, using 28 commercially available columns representative of three major types of stationary phases. This classification diagram is based on a linear solvation energy relationship, on the use of solvation vectors and the calculation of similarity factors between the different chromatographic systems. This classification will be of great help in the choice of the well-suited stationary phase, either in regards of a particular separation or to improve the coupling of columns with complementary properties.

  9. Ionic liquid as a mobile phase additive in high-performance liquid chromatography for the simultaneous determination of eleven fluorescent whitening agents in paper materials.

    PubMed

    Wang, Qing; Chen, Xianbo; Qiu, Bin; Zhou, Liang; Zhang, Hui; Xie, Juan; Luo, Yan; Wang, Bin

    2016-04-01

    In the present study, 11 4,4'-diaminostilbene-2,2'-disulfonic acid based fluorescent whitening agents with different numbers of sulfonic acid groups were separated by using an ionic liquid as a mobile phase additive in high-performance liquid chromatography with fluorescence detection. The effects of ionic liquid concentration, pH of mobile phase B, and composition of mobile phase A on the separation of fluorescent whitening agents were systematically investigated. The ionic liquid tetrabutylammonium tetrafluoroborate is superior to tetrabutylammomnium bromide for the separation of the fluorescent whitening agents. The optimal separation conditions were an ionic liquid concentration at 8 mM and the pH of mobile phase B at 8.5 with methanol as mobile phase A. The established method exhibited low limits of detection (0.04-0.07 ng/mL) and wide linearity ranges (0.30-20 ng/mL) with high linear correlation coefficients from 0.9994 to 0.9998. The optimized procedure was applied to analyze target analytes in paper samples with satisfactory results. Eleven target analytes were quantified, and the recoveries of spiked paper samples were in the range of 85-105% with the relative standard deviations from 2.1 to 5.1%. The obtained results indicated that the method was efficient for detection of 11 fluorescent whitening agents. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. P-code enhanced method for processing encrypted GPS signals without knowledge of the encryption code

    NASA Technical Reports Server (NTRS)

    Young, Lawrence E. (Inventor); Meehan, Thomas K. (Inventor); Thomas, Jr., Jess Brooks (Inventor)

    2000-01-01

    In the preferred embodiment, an encrypted GPS signal is down-converted from RF to baseband to generate two quadrature components for each RF signal (L1 and L2). Separately and independently for each RF signal and each quadrature component, the four down-converted signals are counter-rotated with a respective model phase, correlated with a respective model P code, and then successively summed and dumped over presum intervals substantially coincident with chips of the respective encryption code. Without knowledge of the encryption-code signs, the effect of encryption-code sign flips is then substantially reduced by selected combinations of the resulting presums between associated quadrature components for each RF signal, separately and independently for the L1 and L2 signals. The resulting combined presums are then summed and dumped over longer intervals and further processed to extract amplitude, phase and delay for each RF signal. Precision of the resulting phase and delay values is approximately four times better than that obtained from straight cross-correlation of L1 and L2. This improved method provides the following options: separate and independent tracking of the L1-Y and L2-Y channels; separate and independent measurement of amplitude, phase and delay L1-Y channel; and removal of the half-cycle ambiguity in L1-Y and L2-Y carrier phase.

  11. Dispersive solid-phase microextraction and capillary electrophoresis separation of food colorants in beverages using diamino moiety functionalized silica nanoparticles as both extractant and pseudostationary phase.

    PubMed

    Liu, Feng-Jie; Liu, Chuan-Ting; Li, Wei; Tang, An-Na

    2015-01-01

    In this work, a new method for the determination of food colorants in beverage samples is developed, using diamino moiety functionalized silica nanoparticles (dASNPs) as both adsorbents in dispersive solid-phase microextraction (dSPME) and pseudostationary phases (PSPs) in capillary electrophoresis (CE) separation. dASNPs were firstly used as adsorbents for the preconcentration of four colorants by the dSPME process. After that, colorants were efficiently separated by CE using 30 mM phosphate buffer (pH 6.0) containing 2 mM β-CD and 0.9 mg/mL dASNPs as additives. All factors influencing dSPME and CE separations were optimized in detail. The investigated analytes showed good linearities with correlation coefficients (R(2)) higher than 0.9932. The limits of detection for the four food colorants were between 0.030 and 0.36 mg/L, which are lower than those reported previously. The established method was also used to analyze four colorants in beverage samples with recoveries ranging from 82.7% to 114.6%. To the best of our knowledge, this is the first time to use NPs both as extractants in dSPME and pseudostationary phases in CE for the analytical purpose. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Supramolecular separation mechanism of pentafluorophenyl column using ibuprofen and omeprazole as markers: LC-MS and simulation study.

    PubMed

    Hussain, Afzal; AlAjmi, Mohamed F; Ali, Imran

    2018-06-01

    The pentafluorophenyl (PFP) column is emerging as a new advancement in separation science to analyze a wide range of analytes and, thus, its separation mechanism at supramolecular level is significant. We developed a mechanism for the separation of ibuprofen and omeprazole using different combinations (ranging from 50:50 to 60:40) of water-acetonitrile containing 0.1% formic acid as the mobile phase. The column used was Waters Acquity UPLC HSS PFP (75 × 2.1 mm, 1.8 μm). The reverse order of elution was observed in different combinations of the mobile phases. The docking study indicated hydrogen bonding between ibuprofen and PFP stationary phase (binding energy was -11.30 kJ/mol). Separation at PFP stationary phase is controlled by hydrogen bonding along with π-π interactions. This stationary phase may be used to analyze both aromatic and aliphatic analytes. The developed mechanism will be useful to separate various analytes by considering the possible interactions, leading to saving of energy, time and money. In addition, this work will be highly useful in preparative chromatography where separation is the major problem at a large scale. Moreover, the developed LC-MS-QTOF method may be used to analyze ibuprofen and omeprazole in an unknown sample owing to the low value of detection limits. Copyright © 2018 John Wiley & Sons, Ltd.

  13. SEPARATION OF POLONIUM, PROTACTINIUM OR MIXTURES THEREOF IN AQUEOUS SOLUTION FROM BISMUTH, LEAD, ZIRCONIUM AND/OR COLUMBIUM VALUES

    DOEpatents

    Van Winkle, Q.; Kraus, K.A.

    1959-10-27

    A process is presented for separating polonium, protactinium, or mixtures thereof in aqueous solution from bismuth, zirconium, lead, and niobium values contained in the solution. The method comprises providing hydrochloric acid in the solution in a concentration of at least 5N. contacting the aqueous solution with a substantially waterimmiscible organic solvent such as diisopropyl ketone, and separating the aqueous phase containing the bismuth, zirconium, lead, and niobium from the organic extract phase containing the polonium, protactinium, or mixture thereof.

  14. (PRESENT AT NCCU) ANALYSIS OF SELECTED PYRETHROID PESTICIDES USING REVERSE PHASE HIGH LIQUID CHROMATOGRAPHY

    EPA Science Inventory

    This research was conducted in cooperation with EPA Region 4 in Athens, GA to develop a method to analyze selected pyrethroid pesticides using Reverse Phase-High Pressure Liquid Chromatography (HPLC). This HPLC method will aid researchers in separating and identifying these pyre...

  15. Noninvasive OCT imaging of the retinal morphology and microvasculature based on the combination of the phase and amplitude method

    NASA Astrophysics Data System (ADS)

    Qin, Lin; Fan, Shanhui; Zhou, Chuanqing

    2017-04-01

    To implement the optical coherence tomography (OCT) angiography on the low scanning speed OCT system, we developed a joint phase and amplitude method to generate 3-D angiograms by analysing the frequency distribution of signals from non-moving and moving scatterers and separating the signals from the tissue and blood flow with high-pass filter dynamically. This approach firstly compensates the sample motion between adjacent A-lines. Then according to the corrected phase information, we used a histogram method to determine the bulk non-moving tissue phases dynamically, which is regarded as the cut-off frequency of a high-pass filter, and separated the moving and non-moving scatters using the mentioned high-pass filter. The reconstructed image can visualize the components of moving scatters flowing, and enables volumetric flow mapping combined with the corrected phase information. Furthermore, retinal and choroidal blood vessels can be simultaneously obtained by separating the B-scan into retinal part and choroidal parts using a simple segmentation algorithm along the RPE. After the compensation of axial displacements between neighbouring images, three-dimensional vasculature of ocular vessels has been visualized. Experiments were performed to demonstrate the effectiveness of the proposed method for 3-D vasculature imaging of human retina and choroid. The results revealed depth-resolved vasculatures in retina and choroid, suggesting that our approach can be used for noninvasive and three-dimensional angiography with a low-speed clinical OCT, and it has a great potential for clinic application.

  16. Development and validation of a liquid chromatography-tandem mass spectrometry method for the separation of conjugated and unconjugated 17alpha- and 17beta-boldenone in urine sample.

    PubMed

    Gasparini, Mara; Assini, Walter; Bozzoni, Eros; Tognoli, Nadia; Dusi, Guglielmo

    2007-03-14

    Natural occurrence or illegal treatment of boldenone (BOLD) presence in cattle urine is under debate within the European Union. Separation of conjugated and unconjugated forms of 17alpha-boldenone (alpha-BOLD) and 17beta-boldenone (beta-BOLD) and presence of related molecules as androsta-1,4-diene-3,17-dione (ADD) appear critical points for the decision of an illegal use. The aim of this study is a new analytical approach of BOLD and ADD confirmation in cattle urine. The separation between conjugated and unconjugated forms of BOLD was obtained by a preliminary urine liquid-liquid extraction step with ethyl acetate. In this step the organic phase extracts only unconjugated BOLD and ADD, while BOLD in conjugated form remain in urine phase. Afterwards the urine phase, contains conjugated BOLD, was subjected to an enzymatic deconjugation. Solid-phase extraction (OASIS-HLB Waters) was used for the purification and concentration of analytes in organic and urine phases and liquid chromatography ion electrospray tandem mass spectrometry (LC-MS-MS) was applied for the confirmation of BOLD and ADD, using deuterium-labelled 17beta-boldenone (BOLD-d3) as internal standard. The method was validated as a quantitative confirmatory method according to the Commission Decision 2002/657/CE. The results obtained demonstrate that the developed method show very high specificity, precision, trueness and ruggedness. Decision limits (CCalpha) smaller than 0.5 ng mL(-1) were obtained for each analyte.

  17. Method for the determination of chromium in feed matrix by HPLC.

    PubMed

    Umesh, Balakrishnan; Rajendran, Rajendra Moorthy; Manoharan, Muthu Tamizh

    2015-11-01

    An improved method for the chromatographic separation and determination of chromium (III) and (VI) [ CRIII AND CRVI: ] in mineral mixtures and feed samples has been developed. The method uses precolumn derivatization using ammonium pyrrolidinedithiocarbamate ( APD: ) followed by reversed-phase liquid chromatography to separate the chromium ions. Both Cr(III) and Cr(VI) species are chelated with ammonium pyrrolidinedithiocarbamate prior to separation by mixing with acetonitrile and 0.5 mmol acetate buffer (pH 4.5). Optimum chromatographic separations were obtained with a polymer-based reversed-phase column (Kinetex, 5 μ, 250 × 4.5 mm, Phenomenex, Torrance, CA) and a mobile phase containing acetonitrile and water (7:3). Both Cr(III) and Cr(VI) ion concentrations were directly determined from the corresponding areas in the chromatogram. The effect of analytical parameters, including pH, concentration of ligand, incubation temperature, and mobile phase, was optimized for both chromium complexes. The range of the procedure was found to be linear for Cr(III) and Cr(VI) concentrations between 0.125 and 4 μg/mL (r² = 0.9926) and 0.1 and 3.0 μg/mL (r² = 0.9983), respectively. Precision was evaluated by replicate analysis in which the percentage relative standard deviation values for chromium complex were found to be below 4.0. The recoveries obtained (85-115%) for both Cr(III) and Cr(VI) complexes indicated the accuracy of the developed method. The degradation products, as well as the excipients, were well resolved from the chromium complex peak in the chromatogram. Finally, the new method proved to be suitable for routine analysis of Cr(III) and Cr(VI) species in raw materials, mineral mixtures, and feed samples. © 2015 Poultry Science Association Inc.

  18. Hybrid and Mixed Matrix Membranes for Separations from Fermentations

    PubMed Central

    Davey, Christopher John; Leak, David; Patterson, Darrell Alec

    2016-01-01

    Fermentations provide an alternative to fossil fuels for accessing a number of biofuel and chemical products from a variety of renewable and waste substrates. The recovery of these dilute fermentation products from the broth, however, can be incredibly energy intensive as a distillation process is generally involved and creates a barrier to commercialization. Membrane processes can provide a low energy aid/alternative for recovering these dilute fermentation products and reduce production costs. For these types of separations many current polymeric and inorganic membranes suffer from poor selectivity and high cost respectively. This paper reviews work in the production of novel mixed-matrix membranes (MMMs) for fermentative separations and those applicable to these separations. These membranes combine a trade-off of low-cost and processability of polymer membranes with the high selectivity of inorganic membranes. Work within the fields of nanofiltration, reverse osmosis and pervaporation has been discussed. The review shows that MMMs are currently providing some of the most high-performing membranes for these separations, with three areas for improvement identified: Further characterization and optimization of inorganic phase(s), Greater understanding of the compatibility between the polymer and inorganic phase(s), Improved methods for homogeneously dispersing the inorganic phase. PMID:26938567

  19. Distribution of free and antibody-bound peptide hormones in two-phase aqueous polymer systems

    PubMed Central

    Desbuquois, Bernard; Aurbach, G. D.

    1972-01-01

    Peptide hormones labelled with radioactive iodine were partitioned into the aqueous two-phase polymer systems developed by Albertsson (1960) and the conditions required for separation of free from antibody-bound hormone have been worked out. Hormones studied included insulin, growth hormone, parathyroid hormone and [arginine]-vasopressin. Free and antibody-bound hormones show different distribution coefficients in a number of systems tested; two systems, the dextran–polyethylene glycol and dextran sulphate–polyethylene glycol system, give optimum separation. Free hormones distribute readily into the upper phase of these systems, whereas hormone–antibody complexes, as well as uncombined antibody, are found almost completely in the lower phase. Various factors including the polymer concentration, the ionic composition of the system, the nature of the hormone and the nature of added serum protein differentially affect the distribution coefficients for free and antibody-bound hormone. These factors can be adequately controlled so as to improve separation. The two-phase partition method has been successfully applied to measure binding of labelled hormone to antibody under standard radioimmunoassay conditions. It exhibits several advantages over the method of equilibration dialysis and can be applied to the study of non-immunological interactions. PMID:4672674

  20. Recovery of sugars from ionic liquid biomass liquor by solvent extraction

    DOEpatents

    Brennan, Timothy Charles R.; Holmes, Bradley M.; Simmons, Blake A.; Blanch, Harvey W.

    2015-10-13

    The present invention provides for a composition comprising a solution comprising (a) an ionic liquid (IL) or ionic liquid-aqueous (ILA) phase and (b) an organic phase, wherein the solution comprises a sugar and a boronic acid. The present invention also provides for a method of removing a sugar from a solution, comprising: (a) providing a solution comprising (i) an IL or ILA phase and (ii) an organic phase, wherein the solution comprises an IL, a sugar and a boronic acid; (b) contacting the sugar with the boronic acid to form a sugar-boronic acid complex, (c) separating the organic phase and the aqueous phase, wherein the organic phase contains the sugar-boronic acid complex, and optionally (d) separating the sugar from the organic phase.

  1. An atom probe perspective on phase separation and precipitation in duplex stainless steels

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Garfinkel, David A.; Tucker, Julie D.; Haley, Daniel; Young, George A.; Poplawsky, Jonathan D.

    2016-06-01

    Three-dimensional chemical imaging of Fe-Cr alloys showing Fe-rich (α)/Cr-rich (α‧) phase separation is reported using atom probe tomography techniques. The extent of phase separation, i.e., amplitude and wavelength, has been quantitatively assessed using the Langer-Bar-on-Miller, proximity histogram, and autocorrelation function methods for two separate Fe-Cr alloys, designated 2101 and 2205. Although the 2101 alloy possesses a larger wavelength and amplitude after annealing at 427 °C for 100-10 000 h, it exhibits a lower hardness than the 2205 alloy. In addition to this phase separation, ultra-fine Ni-Mn-Si-Cu-rich G-phase precipitates form at the α/α‧ interfaces in both alloys. For the 2101 alloy, Cu clusters act to form a nucleus, around which a Ni-Mn-Si shell develops during the precipitation process. For the 2205 alloy, the Ni and Cu atoms enrich simultaneously and no core-shell chemical distribution was found. This segregation phenomenon may arise from the exact Ni/Cu ratio inside the ferrite. After annealing for 10 000 h, the number density of the G-phase within the 2205 alloy was found to be roughly one order of magnitude higher than in the 2101 alloy. The G-phase precipitates have an additional deleterious effect on the thermal embrittlement, as evaluated by the Ashby-Orowan equation, which explains the discrepancy between the hardness and the rate of phase separation with respect to annealing time (Gladman T 1999 Mater. Sci. Tech. Ser. 15 30-36). ).

  2. An atom probe perspective on phase separation and precipitation in duplex stainless steels

    DOE PAGES

    Garfinkel, David A.; Tucker, Julie D.; Haley, Daniel A.; ...

    2016-05-16

    Here, three-dimensional chemical imaging of Fe–Cr alloys showing Fe-rich (α)/Cr-rich (α') phase separation is reported using atom probe tomography techniques. The extent of phase separation, i.e., amplitude and wavelength, has been quantitatively assessed using the Langer-Bar-on-Miller, proximity histogram, and autocorrelation function methods for two separate Fe–Cr alloys, designated 2101 and 2205. Although the 2101 alloy possesses a larger wavelength and amplitude after annealing at 427 °C for 100–10 000 h, it exhibits a lower hardness than the 2205 alloy. In addition to this phase separation, ultra-fine Ni–Mn–Si–Cu-rich G-phase precipitates form at the α/α' interfaces in both alloys. For the 2101more » alloy, Cu clusters act to form a nucleus, around which a Ni–Mn–Si shell develops during the precipitation process. For the 2205 alloy, the Ni and Cu atoms enrich simultaneously and no core–shell chemical distribution was found. This segregation phenomenon may arise from the exact Ni/Cu ratio inside the ferrite. After annealing for 10 000 h, the number density of the G-phase within the 2205 alloy was found to be roughly one order of magnitude higher than in the 2101 alloy. The G-phase precipitates have an additional deleterious effect on the thermal embrittlement, as evaluated by the Ashby–Orowan equation, which explains the discrepancy between the hardness and the rate of phase separation with respect to annealing time (Gladman T 1999 Mater. Sci. Tech. Ser. 15 30–36).« less

  3. Method for solvent extraction with near-equal density solutions

    DOEpatents

    Birdwell, Joseph F.; Randolph, John D.; Singh, S. Paul

    2001-01-01

    Disclosed is a modified centrifugal contactor for separating solutions of near equal density. The modified contactor has a pressure differential establishing means that allows the application of a pressure differential across fluid in the rotor of the contactor. The pressure differential is such that it causes the boundary between solutions of near-equal density to shift, thereby facilitating separation of the phases. Also disclosed is a method of separating solutions of near-equal density.

  4. Purification of lignans from Fructus Arctii using off-line two-dimensional supercritical fluid chromatography/reversed-phase liquid chromatography.

    PubMed

    Yang, Bichao; Xin, Huaxia; Wang, Feier; Cai, Jianfeng; Liu, Yanfang; Fu, Qing; Jin, Yu; Liang, Xinmiao

    2017-08-01

    As a common traditional Chinese medicine, Fructus Arctii has important clinical medical values. Its main components are lignans, which are difficult to separate and analyze because of the complex composition, similar chemical structures, and close properties. In this study, an off-line two-dimensional supercritical fluid chromatography/reversed-phase liquid chromatography method, as well as an effective sample pretreatment method based on hydrophilic interaction chromatography material, was developed to enrich the minor lignan fractions and obtain high-purity compounds. In total, 12 high-purity compounds were isolated from Fructus Arctii. Their structures were identified by using high-resolution mass spectrometry and nuclear magnetic resonance spectroscopy, which showed that all were lignans and that most of them were isomers. The results demonstrated the effective off-line two-dimensional supercritical fluid chromatography/reversed-phase liquid chromatography method for the purification of lignans from Fructus Arctii. The separation protocol established here will be beneficial for the separation of complex samples from other kinds of natural products. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. PYROCHEMICAL DECONTAMINATION METHOD FOR REACTOR FUEL

    DOEpatents

    Buyers, A.G.

    1959-06-30

    A pyro-chemical method is presented for decontaminating neutron irradiated uranium and separating plutonium therefrom by contact in the molten state with a metal chloride salt. Uranium trichloride and uranium tetrachloride either alone or in admixture with alkaline metal and alkaline eanth metal fluorides under specified temperature and specified phase ratio conditions extract substantially all of the uranium from the irradiated uranium fuel together with certain fission products. The phases are then separated leaving purified uranium metal. The uranium and plutonium in the salt phase can be reduced to forin a highly decontaminated uraniumplutonium alloy. The present method possesses advantages for economically decontaminating irradiated nuclear fuel elements since irradiated fuel may be proccessed immediately after withdrawal from the reactor and the uranium need not be dissolved and later reduced to the metallic form. Accordingly, the uranium may be economically refabricated and reinserted into the reactor.

  6. Critical assessment of three high performance liquid chromatography analytical methods for food carotenoid quantification.

    PubMed

    Dias, M Graça; Oliveira, Luísa; Camões, M Filomena G F C; Nunes, Baltazar; Versloot, Pieter; Hulshof, Paul J M

    2010-05-21

    Three sets of extraction/saponification/HPLC conditions for food carotenoid quantification were technically and economically compared. Samples were analysed for carotenoids alpha-carotene, beta-carotene, beta-cryptoxanthin, lutein, lycopene, and zeaxanthin. All methods demonstrated good performance in the analysis of a composite food standard reference material for the analytes they are applicable to. Methods using two serial connected C(18) columns and a mobile phase based on acetonitrile, achieved a better carotenoid separation than the method using a mobile phase based on methanol and one C(18)-column. Carotenoids from leafy green vegetable matrices appeared to be better extracted with a mixture of methanol and tetrahydrofuran than with tetrahydrofuran alone. Costs of carotenoid determination in foods were lower for the method with mobile phase based on methanol. However for some food matrices and in the case of E-Z isomer separations, this was not technically satisfactory. Food extraction with methanol and tetrahydrofuran with direct evaporation of these solvents, and saponification (when needed) using pyrogallol as antioxidant, combined with a HPLC system using a slight gradient mobile phase based on acetonitrile and a stationary phase composed by two serial connected C(18) columns was the most technically and economically favourable method. 2010. Published by Elsevier B.V.

  7. Phase behavior and kinetics of phase separation of a nonionic microemulsion of C12E5/water/1-chlorotetradecane upon a temperature quench.

    PubMed

    Roshan Deen, G; Oliveira, Cristiano L P; Pedersen, Jan Skov

    2009-05-21

    The phase behavior and phase separation kinetics of a model ternary nonionic microemulsion system composed of pentaethylene glycol dodecyl ether (C12E5), water, and 1-chlorotetradecane were studied. With increasing temperature, the microemulsion exhibits the following rich phase behavior: oil-in-water phase (L1+O), droplet microemulsion phase (L1), lamellar liquid crystalline phase (Lproportional), and sponge-like (liquid) phase (L3). The microemulsion with a fixed surfactant-to-oil volume fraction ratio (Phis/Phio) of 0.81 and droplet volume fraction of 0.087 was perturbed from equilibrium by a temperature quench from the L1 region (24 degrees C) to an unstable region L1+O (13 degrees C), where the excess oil phase is in equilibrium with the microemulsion droplets. The process of phase separation in the unstable region was followed by time-resolved small-angle X-ray scattering (TR-SAXS) and time-resolved turbidity methods. Due to the large range of scattering vector (q=0.004-0.22 A(-1)) that is possible to access with the TR-SAXS method, the growth of the oil droplets and shrinking of the microemulsion droplets as a result of phase separation could be studied simultaneously. By using an advanced polydisperse ellipsoidal hard-sphere model, the experimental curves have been quantitatively analyzed. The microemulsion droplets were modeled as polydisperse core-shell ellipsoidal particles, using molecular constraints, and the oil droplets are modeled as polydisperse spheres. The radius of gyration (Rg) of the growing oil droplets, volume fraction of oil in the microemulsion droplets, and polydispersity were obtained from the fit parameters. The volume equivalent radius at the neutral plane between the surfactant head and tail of the microemulsion droplet decreased from 76 to 51 A, while the radius of oil drop increased to 217 A within the 160 min of the experiment. After about 48 min from the temperature quench, the system reaches a steady state and continues to coarsen at a constant fraction of the oil of 0.51 in the oil phase by Ostwald ripening with the power law dependence of Roil proportional, variant t1/3. The size of the oil droplets determined by the time-resolved turbidity method is in good agreement with that of the TR-SAXS, highlighting the usefulness of the method in the size determination of oil-in-water microemulsions on an absolute scale.

  8. Confined Pattern-Directed Assembly of Polymer-Grafted Nanoparticles in a Phase Separating Blend with a Homopolymer Matrix.

    PubMed

    Zhang, Ren; Lee, Bongjoon; Bockstaller, Michael R; Douglas, Jack F; Stafford, Christopher M; Kumar, Sanat K; Raghavan, Dharmaraj; Karim, Alamgir

    The controlled organization of nanoparticle (NP) constituents into superstructures of well-defined shape, composition and connectivity represents a continuing challenge in the development of novel hybrid materials for many technological applications. We show that the phase separation of polymer-tethered nanoparticles immersed in a chemically different polymer matrix provides an effective and scalable method for fabricating defined submicron-sized amorphous NP domains in melt polymer thin films. We investigate this phenomenon with a view towards understanding and controlling the phase separation process through directed nanoparticle assembly. In particular, we consider isothermally annealed thin films of polystyrene-grafted gold nanoparticles (AuPS) dispersed in a poly(methyl methacrylate) (PMMA) matrix. Classic binary polymer blend phase separation related morphology transitions, from discrete AuPS domains to bicontinuous to inverse domain structure with increasing nanoparticle composition is observed, yet the kinetics of the AuPS/PMMA polymer blends system exhibit unique features compared to the parent PS/PMMA homopolymer blend. We further illustrate how to pattern-align the phase-separated AuPS nanoparticle domain shape, size and location through the imposition of a simple and novel external symmetry-breaking perturbation via soft-lithography. Specifically, submicron-sized topographically patterned elastomer confinement is introduced to direct the nanoparticles into kinetically controlled long-range ordered domains, having a dense yet well-dispersed distribution of non-crystallizing nanoparticles. The simplicity, versatility and roll-to-roll adaptability of this novel method for controlled nanoparticle assembly should make it useful in creating desirable patterned nanoparticle domains for a variety of functional materials and applications.

  9. Isolation, Separation, and Preconcentration of Biologically Active Compounds from Plant Matrices by Extraction Techniques.

    PubMed

    Raks, Victoria; Al-Suod, Hossam; Buszewski, Bogusław

    2018-01-01

    Development of efficient methods for isolation and separation of biologically active compounds remains an important challenge for researchers. Designing systems such as organomineral composite materials that allow extraction of a wide range of biologically active compounds, acting as broad-utility solid-phase extraction agents, remains an important and necessary task. Selective sorbents can be easily used for highly selective and reliable extraction of specific components present in complex matrices. Herein, state-of-the-art approaches for selective isolation, preconcentration, and separation of biologically active compounds from a range of matrices are discussed. Primary focus is given to novel extraction methods for some biologically active compounds including cyclic polyols, flavonoids, and oligosaccharides from plants. In addition, application of silica-, carbon-, and polymer-based solid-phase extraction adsorbents and membrane extraction for selective separation of these compounds is discussed. Potential separation process interactions are recommended; their understanding is of utmost importance for the creation of optimal conditions to extract biologically active compounds including those with estrogenic properties.

  10. Global and local skin friction diagnostics from TSP surface patterns on an underwater cylinder in crossflow

    NASA Astrophysics Data System (ADS)

    Miozzi, Massimo; Capone, Alessandro; Di Felice, Fabio; Klein, Christian; Liu, Tianshu

    2016-12-01

    A systematical method is formulated for extracting skin-friction fields from Temperature Sensitive Paint (TSP) images in the sense of time-averaging and phase-averaging. The method is applied to an underwater cylinder in crossflow at two subcritical regimes (Re = 72 000 and 144 000). TSP maps are decomposed in a time-averaged, a phase-averaged, and a random component. The asymptotic form of the energy equation at the wall provides an Euler-Lagrange equation set that is solved numerically to gain the relative skin friction time- and phase-averaged fields from the TSP surface temperature maps. The comparison of the time averaged relative skin-friction profiles with the literature data shows an excellent agreement on the whole laminar boundary layer up to the laminar separation line. Downstream of separation, time averaged results identify the secondary reattachment/separation events, which are lost in the available literature data. The periodic behavior of the skin-friction is taken, describing how the laminar separation bubble evolves by providing the time history of the laminar separation line and of the secondary reattachment/separation over the entire vortex shedding period. Instantaneous skin friction maps reveal the existence of coherent structures by capturing their footprint on the cylinder's surface. An array of Π-shaped traces marks the existence of counter-rotating, streamwise-oriented vortices just before the laminar separation line. Their interaction with the laminar boundary layer and with the separation line is briefly described. An example of the intermittent excerpt of their influence through the laminar separation line is reported.

  11. Fast separation of triterpenoid saponins using supercritical fluid chromatography coupled with single quadrupole mass spectrometry.

    PubMed

    Huang, Yang; Zhang, Tingting; Zhou, Haibo; Feng, Ying; Fan, Chunlin; Chen, Weijia; Crommen, Jacques; Jiang, Zhengjin

    2016-03-20

    Triterpenoid saponins (TSs) are the most important components of some traditional Chinese medicines (TCMs) and have exhibited valuable pharmacological properties. In this study, a rapid and efficient method was developed for the separation of kudinosides, stauntosides and ginsenosides using supercritical fluid chromatography coupled with single quadrupole mass spectrometry (SFC-MS). The separation conditions for the selected TSs were carefully optimized after the initial screening of eight stationary phases. The best compromise for all compounds in terms of chromatographic performance and MS sensitivity was obtained when water (5-10%) and formic acid (0.05%) were added to the supercritical carbon dioxide/MeOH mobile phase. Beside the composition of the mobile phase, the nature of the make-up solvent for interfacing SFC with MS was also evaluated. Compared to reversed phase liquid chromatography, the SFC approach showed higher resolution and shorter running time. The developed SFC-MS methods were successfully applied to the separation and identification of TSs present in Ilex latifolia Thunb., Panax quinquefolius L. and Panax ginseng C.A. Meyer. These results suggest that this SFC-MS approach could be employed as a useful tool for the quality assessment of natural products containing TSs as active components. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Enantioseparation of Six Antihistamines with Immobilized Cellulose Chiral Stationary Phase by HPLC

    PubMed Central

    Zhou, Jie; Luo, Pei; Chen, Shanshan; Meng, Lingchang; Sun, Chong; Du, Qiuzheng; Sun, Fang

    2016-01-01

    A stereoselective high performance liquid chromatography method has been developed for the chiral separation of the enantiomers of six antihistamines, doxylamine, carbinoxamine, dioxopromethazine, oxomemazine, cetirizine and hydroxyzine. The effects of mobile phase additive, column temperature and flow rate on the retention time and resolution were studied. Enantiomeric separation of cetirizine, doxylamine and hydroxyzine were achieved on cellulose tris-(3,5-dichlorophenylcarbamate) immobilized on silica gel chiral stationary phase known as Chiralpak IC (RS = 3.74, RS = 1.85 and RS = 1.74, respectively). PMID:26657408

  13. All-optical phase discrimination using SOA.

    PubMed

    Power, Mark J; Webb, Roderick P; Manning, Robert J

    2013-11-04

    We describe the first experimental demonstration of a novel all-optical phase discrimination technique, which can separate the two orthogonal phase components of a signal onto different frequencies. This method exploits nonlinear mixing in a semiconductor optical amplifier (SOA) to separate a 10.65 Gbaud QPSK signal into two 10.65 Gb/s BPSK signals which are then demodulated using a delay interferometer (DI). Eye diagrams and spectral measurements verify correct operation and a conversion efficiency greater than 9 dB is observed on both output BPSK channels when compared with the input QPSK signal.

  14. Interactions between coherent twin boundaries and phase transition of iron under dynamic loading and unloading

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Chen, Jun; Zhang, Xueyang; Zhu, Wenjun

    2017-09-01

    Phase transitions and deformation twins are constantly reported in many BCC metals under high pressure, whose interactions are of fundamental importance to understand the strengthening mechanism of these metals under extreme conditions. However, the interactions between twins and phase transition in BCC metals remain largely unexplored. In this work, interactions between coherent twin boundaries and α ↔ ɛ phase transition of iron are investigated using both non-equilibrium molecular dynamics simulations and the nudged elastic band method. Mechanisms of both twin-assisted phase transition and reverse phase transition are studied, and orientation relationships between BCC and HCP phases are found to be ⟨"separators="|11 1 ¯ ⟩ B C C||⟨"separators="|1 ¯2 1 ¯ 0 ⟩ H C P and ⟨"separators="|1 1 ¯ 0 ⟩ B C C||⟨"separators="|0001 ⟩ H C P for both cases. The twin boundary corresponds to {"separators="|10 1 ¯ 0 } H C P after the phase transition. It is amazing that the reverse transition seems to be able to "memorize" and recover the initial BCC twins. The memory would be partly lost when plastic slips take place in the HCP phase before the reverse transition. In the recovered initial BCC twins, three major twin spacings are observed, which are well explained in terms of energy barriers of transition from the HCP phase to the BCC twin. Besides, the variant selection rule of the twin assisted phase transition is also discussed. The results of present work could be expected to give some clues for producing ultra-fine grain structures in materials exhibiting martensitic phase transition.

  15. High-performance liquid chromatography separation and intact mass analysis of detergent-solubilized integral membrane proteins

    PubMed Central

    Berridge, Georgina; Chalk, Rod; D’Avanzo, Nazzareno; Dong, Liang; Doyle, Declan; Kim, Jung-In; Xia, Xiaobing; Burgess-Brown, Nicola; deRiso, Antonio; Carpenter, Elisabeth Paula; Gileadi, Opher

    2011-01-01

    We have developed a method for intact mass analysis of detergent-solubilized and purified integral membrane proteins using liquid chromatography–mass spectrometry (LC–MS) with methanol as the organic mobile phase. Membrane proteins and detergents are separated chromatographically during the isocratic stage of the gradient profile from a 150-mm C3 reversed-phase column. The mass accuracy is comparable to standard methods employed for soluble proteins; the sensitivity is 10-fold lower, requiring 0.2–5 μg of protein. The method is also compatible with our standard LC–MS method used for intact mass analysis of soluble proteins and may therefore be applied on a multiuser instrument or in a high-throughput environment. PMID:21093405

  16. Enantiomeric separation and quantification of R/S-amphetamine in urine by ultra-high performance supercritical fluid chromatography tandem mass spectrometry.

    PubMed

    Hegstad, S; Havnen, H; Helland, A; Spigset, O; Frost, J

    2018-03-01

    To distinguish between legal and illegal consumption of amphetamine reliable analytical methods for chiral separation of the R- and S-enantiomers of amphetamine in biological specimens are required. In this regard, supercritical fluid chromatography (SFC) has several potential advantages over liquid chromatography, including rapid separation of enantiomers due to low viscosity and high diffusivity of supercritical carbon dioxide, the main component in the SFC mobile phase. A method for enantiomeric separation and quantification of R- and S-amphetamine in urine was developed and validated using ultra-high performance supercritical fluid chromatography-tandem mass spectrometry (UHPSFC-MS/MS). Sample preparation prior to UHPSFC-MS/MS analysis was a semi-automatic solid phase extraction method. The UHPSFC-MS/MS method used a Chiralpak AD-3 column with a mobile phase consisting of CO 2 and 0.2% cyclohexylamine in 2-propanol. The injection volume was 2 μL and run-time was 6 min. MS/MS detection was performed with positive electrospray ionization and two multiple reaction monitoring transitions (m/z 136.1 > 119.0 and m/z 136.1 > 91.0). The calibration range was 50-10,000 ng/mL for each enantiomer. The between-assay relative standard deviations were in the range of 3.7-7.6%. Recovery was 92-93% and matrix effects ranged from 100 to 104% corrected with internal standard. After development and validation, the method has been successfully implemented in routine use at our laboratory for both separation and quantification of R/S-amphetamine, and has proved to be a reliable and useful tool for distinguishing intake of R- and S-amphetamine in authentic patient samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Effect of Iron Oxide and Phase Separation on the Color of Blue Jun Ware Glaze.

    PubMed

    Wang, Fen; Yang, Changan; Zhu, Jianfeng; Lin, Ying

    2015-09-01

    Based on the traditional Jun ware glaze, the imitated Jun ware glazes were prepared by adding iron oxide and introducing phase separation agent apatite through four-angle-method. The effect of iron oxide contents, phase separation and the firing temperature on the color of Jun ware glazes were investigated by a neutral atmosphere experiment, optical microscope and scanning electronic microscope. The results showed that the colorant, mainly Fe2O3, contributed to the Jun ware glaze blue and cyan colors of Jun ware glaze. The light scatter caused by the small droplets in phase separation structure only influenced the shade of the glaze color, intensify or weaken the color, and thus made the glaze perfect and elegant opal visual effects, but was not the origin of general blue or cyan colors of Jun ware glaze. In addition, the firing temperature and the basic glaze composition affected the glaze colors to some extent.

  18. Removal of actinide elements from liquid scintillation cocktail wastes using liquid-liquid extraction and demulsification techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foltz, K.; Landsberger, S.; Srinivasan, B.

    1994-12-31

    A method for the separation of radionuclides with Z greater than 88, from lower-level radioactive wastes (liquid scintillation cocktail or LSC wastes), is described. The method is liquid-liquid extraction (LLX) and demulsification. The actinide elements are removed from the LSC wastes by extraction into an aqueous phase after the cocktail has been demulsified. The aqueous and organic phases are separated, then the wastes type remaining may be incinerated. Future experiments will be performed to study the effects of pH and temperature and to extend the study to wastes containing americium.

  19. [Simultaneous determination of 15 industrial synthetic dyes in condiment by solid phase extraction-high performance liquid chromatography].

    PubMed

    Liu, Min; Li, Xiaolin; Bie, Wei; Wang, Minglin; Feng, Qian

    2011-02-01

    A new method was established for the determination of 15 industrial synthetic dyes in condiment by solid phase extraction-high performance liquid chromatography (SPE-HPLC). The samples were extracted by methanol-water (1:1, v/v) and purified by a solid phase extraction column. Then, the chromatographic separation was achieved on a Luna C18 column by linear gradient elution. The mobile phase was 10 mmol/L ammonium acetate-acetonitrile (containing 1% acetic acid). The results showed that the 15 industrial synthetic dyes can be separated efficiently. The recoveries of the 15 industrial synthetic dyes spiked in condiment were between 84.6% and 114.2% with the relative standard deviations of 0.9% - 10.3%. The limits of detection of this method was 0.05 - 0.18 mg/kg for the 15 industrial synthetic dyes. The method is simple, sensitive, accurate, repeatable and can be used for simultaneous determination of the 15 illegally added industrial synthetic dyes.

  20. Use of (N-1)-D expansions for N-D phase unwrapping in MRI

    NASA Astrophysics Data System (ADS)

    Bones, Philip J.; King, Laura J.; Millane, Rick P.

    2017-09-01

    In MRI the presence of metal implants causes severe artifacts in images and interferes with the usual techniques used to separate fat signals from other tissues. In the Dixon method, three images are acquired at different echo times to enable the variation in the magnetic field to be estimated. However, the estimate is represented as the phase of a complex quantity and therefore suffers from wrapping. High field gradients near the metal mean that the phase estimate is undersampled and therefore challenging to unwrap. We have developed POP, phase estimation by onion peeling, an algorithm which unwraps the phase along 1-D paths for a 2-D image obtained with the Dixon method. The unwrapping is initially performed along a closed path enclosing the implant and well separated from it. The recovered phase is expanded using a smooth periodic basis along the path. Then, path-by-path, the estimate is applied to the next path and then the expansion coefficients are estimated to best fit the wrapped measurements. We have successfully tested POP on MRI images of specially constructed phantoms and on a group of patients with hip implants. In principle, POP can be extended to 3-D imaging. In that case, POP would entail representing phase with a suitably smooth basis over a series of surfaces enclosing the implant (the "onion skins"), again beginning the phase estimation well away from the implant. An approach for this is proposed. Results are presented for fat and water separation for 2-D images of phantoms and actual patients. The practicality of the method and its employment in clinical MRI are discussed.

  1. The Reciprocal Principle of Selectand-Selector-Systems in Supramolecular Chromatography †.

    PubMed

    Schurig, Volker

    2016-11-15

    In selective chromatography and electromigration methods, supramolecular recognition of selectands and selectors is due to the fast and reversible formation of association complexes governed by thermodynamics. Whereas the selectand molecules to be separated are always present in the mobile phase, the selector employed for the separation of the selectands is either part of the stationary phase or is added to the mobile phase. By the reciprocal principle, the roles of selector and selectand can be reversed. In this contribution in honor of Professor Stig Allenmark, the evolution of the reciprocal principle in chromatography is reviewed and its advantages and limitations are outlined. Various reciprocal scenarios, including library approaches, are discussed in efforts to optimize selectivity in separation science.

  2. Experimental design methodologies in the optimization of chiral CE or CEC separations: an overview.

    PubMed

    Dejaegher, Bieke; Mangelings, Debby; Vander Heyden, Yvan

    2013-01-01

    In this chapter, an overview of experimental designs to develop chiral capillary electrophoresis (CE) and capillary electrochromatographic (CEC) methods is presented. Method development is generally divided into technique selection, method optimization, and method validation. In the method optimization part, often two phases can be distinguished, i.e., a screening and an optimization phase. In method validation, the method is evaluated on its fit for purpose. A validation item, also applying experimental designs, is robustness testing. In the screening phase and in robustness testing, screening designs are applied. During the optimization phase, response surface designs are used. The different design types and their application steps are discussed in this chapter and illustrated by examples of chiral CE and CEC methods.

  3. Development of a Simple RP-HPLC-UV Method for Determination of Azithromycin in Bulk and Pharmaceutical Dosage forms as an Alternative to the USP Method

    PubMed Central

    Ghari, Tayebeh; Kobarfard, Farzad; Mortazavi, Seyed Alireza

    2013-01-01

    The present study was designed to develop a simple, validated liquid chromatographic method for the analysis of azithromycin in bulk and pharmaceutical dosage forms using ultraviolet detector. The best stationary phase was determined as C18 column, 5 μm, 250 mm × 4.6 mm. Mobile phase was optimized to obtain a fast and selective separation of the drug. Flow rate was 1.5 mL/min, Wavelength was set at 210 nm and the volume of each injection was 500 μL. An isocratic methanol/buffer mobile phase at the ratio of 90:10 v/v gave the best separation and resolution. The proposed method was accurate, precise, sensitive, and linear over a wide range of concentration of azithromycin. The developed method has the advantage of using UV detector compared to the USP method in which electrochemical detector has been used. The validated method was successfully applied to the determination of azithromycin in bulk and pharmaceutical dosage forms. PMID:24250672

  4. Ionic liquids as stationary phases for fatty acid analysis by gas chromatography.

    PubMed

    Fanali, C; Micalizzi, G; Dugo, P; Mondello, L

    2017-12-04

    The present paper provides an overview of the application of ionic liquid (IL) columns for GC analysis of fatty acid methyl esters (FAMEs). Although their separation can be carried out utilizing GC columns containing polar stationary phases, some ILs have been employed as stationary phases, either commercial or laboratory made, in GC analysis. Monodimensional and bidimensional GC methods have been optimized in order to achieve the best separation especially considering the geometric and positional isomers of unsaturated fatty acids. Several methods for the analysis of trans-fatty acids have also been reported. The use of GC-GC, using either the same IL columns or different columns in the first and second dimensions, allowed the separation of a large number of FAMEs. The application of the IL columns for GC analysis of FAMEs in different types of real samples is described, e.g., oil of different nature (fish, flaxseed, and olive), margarine and butter, biodiesel, milk, bacteria etc.

  5. Separation-oriented derivatization of native fluorescent compounds through fluorous labeling followed by liquid chromatography with fluorous-phase.

    PubMed

    Sakaguchi, Yohei; Yoshida, Hideyuki; Todoroki, Kenichiro; Nohta, Hitoshi; Yamaguchi, Masatoshi

    2009-06-15

    We have developed a new and simple method based on "fluorous derivatization" for LC of native fluorescent compounds. This method involves the use of a column with a fluorous stationary phase. Native fluorescent analytes with target functional groups are precolumn derivatized with a nonfluorescent fluorous tag, and the fluorous-labeled analytes are retained in the column, whereas underivatized substances are not. Only the retained fluorescent analytes are detected fluorometrically at appropriate retention times, and retained substrates without fluorophores are not detected. In this study, biologically important carboxylic acids (homovanillic acid, vanillylmandelic acid, and 5-hydroxyindoleacetic acid) and drugs (naproxen, felbinac, flurbiprofen, and etodolac) were used as model native fluorescent compounds. Experimental results indicate that the fluorous-phase column can selectively retain fluorous compounds including fluorous-labeled analytes on the basis of fluorous separation. We believe that separation-oriented derivatization presented here is the first step toward the introduction of fluorous derivatization in quantitative LC analysis.

  6. Separation and Depleted Uranium Fragments from Gun Test Catchment. Volume 2. Catchment System and Separations Methods

    DTIC Science & Technology

    1993-12-30

    projectile fragments from target materials, principally sand. Phase I activities included (1) literature review of separations technology , (2) site visits, (3...the current operation, evaluation of alternative means for separation of DU from sand, a review of uranium mining technology for v possible...the current operation, evaluation of alternative means for separation of DU from sand, a review of uranium mining technology for possible

  7. Isocratic non-aqueous reversed-phase high-performance liquid chromatographic separation of capsanthin and capsorubin in red peppers (Capsicum annuum L.), paprika and oleoresin.

    PubMed

    Weissenberg, M; Schaeffler, I; Menagem, E; Barzilai, M; Levy, A

    1997-01-03

    A simple, rapid high-performance liquid chromatography method has been devised in order to separate and quantify the xanthophylls capsorubin and capasanthin present in red pepper (Capsicum annuum L.) fruits and preparations made from them (paprika and oleoresin). A reversed-phase isocratic non-aqueous system allows the separation of xanthophylls within a few minutes, with detection at 450 nm, using methyl red as internal standard to locate the various carotenoids and xanthophylls found in plant extracts. The selection of extraction solvents, mild saponification conditions, and chromatographic features is evaluated and discussed. The method is proposed for rapid screening of large plant populations, plant selection, as well as for paprika products and oleoresin, and also for nutrition and quality control studies.

  8. Selective extraction and separation of oxymatrine from Sophora flavescens Ait. extract by silica-confined ionic liquid.

    PubMed

    Bi, Wentao; Tian, Minglei; Row, Kyung Ho

    2012-01-01

    This study highlighted the application of a two-stepped extraction method for extraction and separation of oxymatrine from Sophora flavescens Ait. extract by utilizing silica-confined ionic liquids as sorbent. The optimized silica-confined ionic liquid was firstly mixed with plant extract to adsorb oxymatrine. Simultaneously, some interference, such as matrine, was removed. The obtained suspension was then added to a cartridge for solid phase extraction. Through these two steps, target compound was adequately separated from interferences with 93.4% recovery. In comparison with traditional solid phase extraction, this method accelerates loading and reduces the use of organic solvents during washing. Moreover, the optimization of loading volume was simplified as optimization of solid/liquid ratio. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. OPTIMIZATION AND VALIDATION OF HPLC METHOD FOR TETRAMETHRIN DETERMINATION IN HUMAN SHAMPOO FORMULATION.

    PubMed

    Zeric Stosic, Marina Z; Jaksic, Sandra M; Stojanov, Igor M; Apic, Jelena B; Ratajac, Radomir D

    2016-11-01

    High-performance liquid chromatography (HPLC) method with diode array detection (DAD) were optimized and validated for separation and determination of tetramethrin in an antiparasitic human shampoo. In order to optimize separation conditions, two different columns, different column oven temperatures, as well as mobile phase composition and ratio, were tested. Best separation was achieved on the Supelcosil TM LC-18- DB column (4.6 x 250 mm), particle size 5 jim, with mobile phase methanol : water (78 : 22, v/v) at a flow rate of 0.8 mL/min and at temperature of 30⁰C. The detection wavelength of the detector was set at 220 nm. Under the optimum chromatographic conditions, standard calibration curve was measured with good linearity [r2 = 0.9997]. Accuracy of the method defined as a mean recovery of tetramethrin from shampoo matrix was 100.09%. The advantages of this method are that it can easily be used for the routine analysis of drug tetramethrin in pharmaceutical formulas and in all pharmaceutical researches involving tetramethrin.

  10. SEPARATION OF T-MAZ ETHOXYLATED SORBITAN FATTY ACID ESTERS BY REVERSE PHASE CHROMATOGRAPHY

    EPA Science Inventory

    The method for determination of T-MAZ ethoxylated sorbitan fatty acid esters is described. This work demonstrates that with a less retentive C8 alkyl bonded phase packing, reverse phase chromatography can be used to analyze nonionic polymer mixtures with a molecular weight range ...

  11. Polysaccharide-derived mesoporous materials (Starbon®) for sustainable separation of complex mixtures.

    PubMed

    Zuin, Vânia G; Budarin, Vitaliy L; De Bruyn, Mario; Shuttleworth, Peter S; Hunt, Andrew J; Pluciennik, Camille; Borisova, Aleksandra; Dodson, Jennifer; Parker, Helen L; Clark, James H

    2017-09-21

    The recovery and separation of high value and low volume extractives are a considerable challenge for the commercial realisation of zero-waste biorefineries. Using solid-phase extractions (SPE) based on sustainable sorbents is a promising method to enable efficient, green and selective separation of these complex extractive mixtures. Mesoporous carbonaceous solids derived from renewable polysaccharides are ideal stationary phases due to their tuneable functionality and surface structure. In this study, the structure-separation relationships of thirteen polysaccharide-derived mesoporous materials and two modified types as sorbents for ten naturally-occurring bioactive phenolic compounds were investigated. For the first time, a comprehensive statistical analysis of the key molecular and surface properties influencing the recovery of these species was carried out. The obtained results show the possibility of developing tailored materials for purification, separation or extraction, depending on the molecular composition of the analyte. The wide versatility and application span of these polysaccharide-derived mesoporous materials offer new sustainable and inexpensive alternatives to traditional silica-based stationary phases.

  12. Chromatographic Techniques for Rare Earth Elements Analysis

    NASA Astrophysics Data System (ADS)

    Chen, Beibei; He, Man; Zhang, Huashan; Jiang, Zucheng; Hu, Bin

    2017-04-01

    The present capability of rare earth element (REE) analysis has been achieved by the development of two instrumental techniques. The efficiency of spectroscopic methods was extraordinarily improved for the detection and determination of REE traces in various materials. On the other hand, the determination of REEs very often depends on the preconcentration and separation of REEs, and chromatographic techniques are very powerful tools for the separation of REEs. By coupling with sensitive detectors, many ambitious analytical tasks can be fulfilled. Liquid chromatography is the most widely used technique. Different combinations of stationary phases and mobile phases could be used in ion exchange chromatography, ion chromatography, ion-pair reverse-phase chromatography and some other techniques. The application of gas chromatography is limited because only volatile compounds of REEs can be separated. Thin-layer and paper chromatography are techniques that cannot be directly coupled with suitable detectors, which limit their applications. For special demands, separations can be performed by capillary electrophoresis, which has very high separation efficiency.

  13. Anisotropic properties of phase separation in two-component dipolar Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Li, Jinbin

    2018-03-01

    Using Crank-Nicolson method, we calculate ground state wave functions of two-component dipolar Bose-Einstein condensates (BECs) and show that, due to dipole-dipole interaction (DDI), the condensate mixture displays anisotropic phase separation. The effects of DDI, inter-component s-wave scattering, strength of trap potential and particle numbers on the density profiles are investigated. Three types of two-component profiles are present, first cigar, along z-axis and concentric torus, second pancake (or blood cell), in xy-plane, and two non-uniform ellipsoid, separated by the pancake and third two dumbbell shapes.

  14. SEPARATION OF THORIUM FROM URANIUM BY EXTRACTION

    DOEpatents

    Bohlmann, E.G.

    1959-07-28

    A method is presented for the recovery and separation of uranium and thorium values contained in an aqueous nitric acid solution which is more than 3 M in nitric acid. The uranium and thorium containing solution preferable about 7 M in nitric acid is contacted with tributyl phosphatekerosene mixture. Both U and Th are extracted by the immiscible organic. After phase separation the Th is selectively back extracted by contacting with an aqueous nitric acid solution preferably between 0.1 to 1.5 M in nitric acid. The uranium which is still in the organic extractant phase may be recovered by contacting with water.

  15. Industrial application of green chromatography - II. Separation and analysis of preservatives in skincare products using subcritical water chromatography.

    PubMed

    Yang, Y; Kapalavavi, B; Gujjar, L; Hadrous, S; Marple, R; Gamsky, C

    2012-10-01

    Several high-temperature liquid chromatography (HTLC) and subcritical water chromatography (SBWC) methods have been successfully developed in this study for separation and analysis of preservatives contained in Olay skincare creams. Efficient separation and quantitative analysis of preservatives have been achieved on four commercially available ZirChrom and Waters XBridge columns at temperatures ranging from 100 to 200°C. The quantification results obtained by both HTLC and SBWC methods developed for preservatives analysis are accurate and reproducible. A large number of replicate HTLC and SBWC runs also indicate no significant system building-up or interference for skincare cream analysis. Compared with traditional HPLC separation carried out at ambient temperature, the HTLC methods can save up to 90% methanol required in the HPLC mobile phase. However, the SBWC methods developed in this project completely eliminated the use of toxic organic solvents required in the HPLC mobile phase, thus saving a significant amount of money and making the environment greener. Although both homemade and commercial systems can accomplish SBWC separations, the SBWC methods using the commercial system for preservative analysis are recommended for industrial applications because they can be directly applied in industrial plant settings. © 2012 The Authors ICS © 2012 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  16. Classification of LC columns based on the QSRR method and selectivity toward moclobemide and its metabolites.

    PubMed

    Plenis, Alina; Olędzka, Ilona; Bączek, Tomasz

    2013-05-05

    This paper focuses on a comparative study of the column classification system based on the quantitative structure-retention relationships (QSRR method) and column performance in real biomedical analysis. The assay was carried out for the LC separation of moclobemide and its metabolites in human plasma, using a set of 24 stationary phases. The QSRR models established for the studied stationary phases were compared with the column test performance results under two chemometric techniques - the principal component analysis (PCA) and the hierarchical clustering analysis (HCA). The study confirmed that the stationary phase classes found closely related by the QSRR approach yielded comparable separation for moclobemide and its metabolites. Therefore, the QSRR method could be considered supportive in the selection of a suitable column for the biomedical analysis offering the selection of similar or dissimilar columns with a relatively higher certainty. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Demodulation of moire fringes in digital holographic interferometry using an extended Kalman filter.

    PubMed

    Ramaiah, Jagadesh; Rastogi, Pramod; Rajshekhar, Gannavarpu

    2018-03-10

    This paper presents a method for extracting multiple phases from a single moire fringe pattern in digital holographic interferometry. The method relies on component separation using singular value decomposition and an extended Kalman filter for demodulating the moire fringes. The Kalman filter is applied by modeling the interference field locally as a multi-component polynomial phase signal and extracting the associated multiple polynomial coefficients using the state space approach. In addition to phase, the corresponding multiple phase derivatives can be simultaneously extracted using the proposed method. The applicability of the proposed method is demonstrated using simulation and experimental results.

  18. Integrated method of thermosensitive triblock copolymer-salt aqueous two phase extraction and dialysis membrane separation for purification of lycium barbarum polysaccharide.

    PubMed

    Wang, Yun; Hu, Xiaowei; Han, Juan; Ni, Liang; Tang, Xu; Hu, Yutao; Chen, Tong

    2016-03-01

    A polymer-salt aqueous two-phase system (ATPS) consisting of thermosensitive copolymer ethylene-oxide-b-propylene-oxide-b-ethylene-oxide (EOPOEO) and NaH2PO4 was employed in deproteinization for lycium barbarum polysaccharide (LBP). The effects of salt type and concentration, EOPOEO concentration, amount of crude LBP solution and temperature were studied. In the primary extraction process, LBP was preferentially partitioned to the bottom (salt-rich) phase with high recovery ratio of 96.3%, while 94.4% of impurity protein was removed to the top (EOPOEO-rich) phase. Moreover, the majority of pigments could be discarded to top phase. After phase-separation, the LBP in the bottom phase was further purified by dialysis membrane to remove salt and other small molecular impurities. The purity of LBP was enhanced to 64%. Additionally, the FT-IR spectrum was used to identify LBP. EOPOEO was recovered by a temperature-induced separation, and reused in a new ATPS. An ideal extraction and recycle result were achieved. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Preparation and evaluation of diblock copolymer-grafted silica by sequential surface initiated-atom transfer radical polymerization for reverse-phase/ion-exchange mixed-mode chromatography.

    PubMed

    Bo, Chun Miao; Wang, Chaozhan; Wei, Yin Mao

    2017-12-01

    A novel approach that involved the grafting of diblock copolymer with two types of monomer onto substrate by sequential surface initiated-atom transfer radical polymerization was proposed to prepare a mixed-mode chromatographic stationary phase. The distinguishing feature of this method is that it can be applied in the preparation of various mixed-mode stationary phases. In this study, a new reverse-phase/ion-exchange stationary phase was prepared by grafting hydrophobic styrene and cationic sodium 4-styrenesulfonate by the proposed approach onto silica surface. The chromatographic properties of the prepared stationary phase were evaluated by the separation of benzene derivatives, anilines, and β-agonists, and by the effect of pH values and acetonitrile content on the retention. Compared with typical RP columns, the prepared stationary phase achieved the better resolution and higher selectivity at a shorter separation time and lower organic content. Moreover, the application of the prepared column was proved by separating widely distributed polar and charged compounds simultaneously. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Ternary Polymeric Composites Exhibiting Bulk and Surface Quadruple-Shape Memory Properties.

    PubMed

    Buffington, Shelby Lois; Posnick, Benjamin M; Paul, Justine Elizabeth; Mather, Patrick T

    2018-06-19

    We report the design and characterization of a multiphase quadruple shape memory composite capable of switching between 4 programmed shapes, three temporary and one permanent. Our approach combined two previously reported fabrication methods by embedding an electrospun mat of PCL in a miscible blend of epoxy monomers and PMMA as a composite matrix. As epoxy polymerization occurred the matrix underwent phase separation between the epoxy and PMMA materials. This created a multiphase composite with PCL fibers and a two-phase matrix composed of phase-separated epoxy and PMMA. The resulting composite demonstrated three separate thermal transitions and amenability to mechanical programming of three separate temporary shapes in addition to one final, equilibrium shape. In addition, quadruple surface shape memory abilities are successfully demonstrated. The versatility of this approach offers a large degree of design flexibility for multi-shape memory materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Membrane contactor assisted water extraction system for separating hydrogen peroxide from a working solution, and method thereof

    DOEpatents

    Snyder, Seth W [Lincolnwood, IL; Lin, Yupo J [Naperville, IL; Hestekin', Jamie A [Fayetteville, AR; Henry, Michael P [Batavia, IL; Pujado, Peter [Kildeer, IL; Oroskar, Anil [Oak Brook, IL; Kulprathipanja, Santi [Inverness, IL; Randhava, Sarabjit [Evanston, IL

    2010-09-21

    The present invention relates to a membrane contactor assisted extraction system and method for extracting a single phase species from multi-phase working solutions. More specifically one preferred embodiment of the invention relates to a method and system for membrane contactor assisted water (MCAWE) extraction of hydrogen peroxide (H.sub.2O.sub.2) from a working solution.

  2. Anisotropic imprint of amorphization and phase separation in manganite thin films via laser interference irradiation.

    PubMed

    Ding, Junfeng; Lin, Zhipeng; Wu, Jianchun; Dong, Zhili; Wu, Tom

    2015-02-04

    Materials with mesoscopic structural and electronic phase separation, either inherent from synthesis or created via external means, are known to exhibit functionalities absent in the homogeneous counterparts. One of the most notable examples is the colossal magnetoresistance discovered in mixed-valence manganites, where the coexistence of nano- to micrometer-sized phase-separated domains dictates the magnetotransport. However, it remains challenging to pattern and process such materials into predesigned structures and devices. In this work, a direct laser interference irradiation (LII) method is employed to produce periodic stripes in thin films of a prototypical phase-separated manganite Pr0.65 (Ca0.75 Sr0.25 )0.35 MnO3 (PCSMO). LII induces selective structural amorphization within the crystalline PCSMO matrix, forming arrays with dimensions commensurate with the laser wavelength. Furthermore, because the length scale of LII modification is compatible to that of phase separation in PCSMO, three orders of magnitude of increase in magnetoresistance and significant in-plane transport anisotropy are observed in treated PCSMO thin films. Our results show that LII is a rapid, cost-effective and contamination-free technique to tailor and improve the physical properties of manganite thin films, and it is promising to be generalized to other functional materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A Simple, Cost-Efficient Method to Separate Microalgal Lipids from Wet Biomass Using Surface Energy-Modified Membranes.

    PubMed

    Kwak, Moo Jin; Yoo, Youngmin; Lee, Han Sol; Kim, Jiyeon; Yang, Ji-Won; Han, Jong-In; Im, Sung Gap; Kwon, Jong-Hee

    2016-01-13

    For the efficient separation of lipid extracted from microalgae cells, a novel membrane was devised by introducing a functional polymer coating onto a membrane surface by means of an initiated chemical vapor deposition (iCVD) process. To this end, a steel-use-stainless (SUS) membrane was modified in a way that its surface energy was systemically modified. The surface modification by conformal coating of functional polymer film allowed for selective separation of oil-water mixture, by harnessing the tuned interfacial energy between each liquid phase and the membrane surface. The surface-modified membrane, when used with chloroform-based solvent, exhibited superb permeate flux, breakthrough pressure, and also separation yield: it allowed separation of 95.5 ± 1.2% of converted lipid (FAME) in the chloroform phase from the water/MeOH phase with microalgal debris. This result clearly supported that the membrane-based lipid separation is indeed facilitated by way of membrane being functionalized, enabling us to simplify the whole downstream process of microalgae-derived biodiesel production.

  4. Protein separations using enhanced-fluidity liquid chromatography.

    PubMed

    Bennett, Raffeal; Olesik, Susan V

    2017-11-10

    Enhanced-fluidity liquid chromatography (EFLC) methods using methanol/H 2 O/CO 2 and hydrophilic interaction liquid chromatography (HILIC) were explored for the separation of proteins and peptides. EFLC is a separation mode that uses a mobile phase made of conventional solvents combined with liquid carbon dioxide (CO 2 ) in subcritical conditions. The addition of liquid CO 2 enhances diffusivity and decreases viscosity while maintaining mixture polarity, which typically results in reduced time of analysis. TFA additive and elevated temperature were leveraged as key factors in the separation of a 13-analyte intact protein mixture in under 5min. Under these conditions EFLC showed modest improvement in terms of peak asymmetry and analysis time over the competing ACN/H 2 O separation. Protein analytes detected by electrospray ionization - quadrupole time of flight, were shown to be unaffected by the addition of CO 2 in the mobile phase. Herein, the feasibility of separating hydrophilic proteins up to 80kDa (with transferrin) is demonstrated for CO 2 -containing mobile phases. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Selective determination of heavy metals (Cd, Pb, Cr) speciation forms from hortic anthrosols

    NASA Astrophysics Data System (ADS)

    Bulgariu, Dumitru; Bulgariu, Laura; Filipov, Feodor; Astefanei, Dan; Stoleru, Vasile

    2010-05-01

    In soils from glass houses, the speciation and inter-phases distribution processes of heavy metals have a particular dynamic, different in comparison with those from non-protected soils. The predominant distribution forms of heavy metals in such soils types are: complexes with low mass organic molecules, organic-mineral complexes, complexes with inorganic ligands (hydroxide-complexes, carbonate-complexes, sulphate-complexes, etc.) and basic salts. All of these have high stabilities in conditions of soils from glass houses, and in consequence, the separation and determination of speciation forms (which is directly connected with biodisponibility of heavy metals) by usual methods id very difficult and has a high uncertain degree. In this study is presented an original method for the selective separation and differentiation of speciation forms of heavy metals from glass houses soils, which is based by the combination of solid-liquid sequential extraction (SPE) with the extraction in aqueous polymer-inorganic salt two-phase systems (ABS). The soil samples used for this study have been sampled from three different locations (glass houses from Iasi, Barlad and Bacau - Romania) where the vegetables cultivation have been performed by three different technologies. In this way was estimated the applicability and the analytical limits of method proposed by as, in function of the chemical-mineralogical and physical-chemical characteristics of soils. As heavy metals have been studied cadmium, lead and chromium, all being known for their high toxicity. The procedure used for the selective separation and differentiation of speciation forms of heavy metals from glass houses soils has two main steps: (i) non-destructive separation of chemical-mineralogical associations and aggregates from soils samples - for this the separation method with heavy liquids (bromophorme) and isodynamic magnetic method have been used; (ii) sequential extraction of heavy metals from soil fractions separated in the first step, by using combined SPE-ABS procedure. For the preparation of combined extraction systems was used polyethylene glycol (with different molecular mass: 2000, 4000 and 8000). As phase-forming inorganic salts and as selective extracting agents we have used different usual inorganic reagents. The type and concentration of phase-forming salts have been selected in function of, both nature of extracted heavy metals and chemical-mineralogical characteristics of soil samples. The experimental parameters investigated in this study are: molecular mass of polyethylene glycol and the concentration of polymeric solutions, nature and concentration of phase-forming salts, nature and concentration of extracting agents, pH in extraction system phase, type of extracted heavy metals, type of speciation forms of heavy metals and their concentrations. All these factors can influence significantly the efficiency and the selectivity of separation process. The experimental results have indicate that the combined SPE-ABS extraction systems have better separation efficiency, in comparison with traditional SPE systems and ca realized a accurate discrimination between speciation forms of heavy metals from soils. Under these conditions, the estimation of inter-phases distribution and biodisponibility of heavy metals has a high precision. On the other hand, when the combined SPE-ABS systems are used, the concomitant extraction of the elements from the same geochemical association with studied heavy metals (inevitable phenomena in case of separation by SPE procedures) is significant diminished. This increases the separation selectivity and facilitated the more accurate determination of speciation forms concentration. By adequate selection of extraction conditions can be realized the selective separation of organic-mineral complexes, which will permit to perform detailed studies about the structure and chemical composition of these. Acknowledgments The authors would like to acknowledge the financial support from Romanian Ministry of Education and Research (Project PNCDI 2-D5 no. 51045/07 and project PNCDI 2 - D5 no. 52-141 / 2008).

  6. Evaluation of Wet Chemical ICP-AES Elemental Analysis Methods usingSimulated Hanford Waste Samples-Phase I Interim Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, Charles J.; Edwards, Thomas B.

    2005-04-30

    The wet chemistry digestion method development for providing process control elemental analyses of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Melter Feed Preparation Vessel (MFPV) samples is divided into two phases: Phase I consists of: (1) optimizing digestion methods as a precursor to elemental analyses by ICP-AES techniques; (2) selecting methods with the desired analytical reliability and speed to support the nine-hour or less turnaround time requirement of the WTP; and (3) providing baseline comparison to the laser ablation (LA) sample introduction technique for ICP-AES elemental analyses that is being developed at the Savannah River National Laboratory (SRNL).more » Phase II consists of: (1) Time-and-Motion study of the selected methods from Phase I with actual Hanford waste or waste simulants in shielded cell facilities to ensure that the methods can be performed remotely and maintain the desired characteristics; and (2) digestion of glass samples prepared from actual Hanford Waste tank sludge for providing comparative results to the LA Phase II study. Based on the Phase I testing discussed in this report, a tandem digestion approach consisting of sodium peroxide fusion digestions carried out in nickel crucibles and warm mixed-acid digestions carried out in plastic bottles has been selected for Time-and-Motion study in Phase II. SRNL experience with performing this analytical approach in laboratory hoods indicates that well-trained cell operator teams will be able to perform the tandem digestions in five hours or less. The selected approach will produce two sets of solutions for analysis by ICP-AES techniques. Four hours would then be allocated for performing the ICP-AES analyses and reporting results to meet the nine-hour or less turnaround time requirement. The tandem digestion approach will need to be performed in two separate shielded analytical cells by two separate cell operator teams in order to achieve the nine-hour or less turnaround time. Because of the simplicity of the warm mixed-acid method, a well-trained cell operator team may in time be able to perform both sets of digestions. However, having separate shielded cells for each of the methods is prudent to avoid overcrowding problems that would impede a minimal turnaround time.« less

  7. Improved quality-by-design compliant methodology for method development in reversed-phase liquid chromatography.

    PubMed

    Debrus, Benjamin; Guillarme, Davy; Rudaz, Serge

    2013-10-01

    A complete strategy dedicated to quality-by-design (QbD) compliant method development using design of experiments (DOE), multiple linear regressions responses modelling and Monte Carlo simulations for error propagation was evaluated for liquid chromatography (LC). The proposed approach includes four main steps: (i) the initial screening of column chemistry, mobile phase pH and organic modifier, (ii) the selectivity optimization through changes in gradient time and mobile phase temperature, (iii) the adaptation of column geometry to reach sufficient resolution, and (iv) the robust resolution optimization and identification of the method design space. This procedure was employed to obtain a complex chromatographic separation of 15 antipsychotic basic drugs, widely prescribed. To fully automate and expedite the QbD method development procedure, short columns packed with sub-2 μm particles were employed, together with a UHPLC system possessing columns and solvents selection valves. Through this example, the possibilities of the proposed QbD method development workflow were exposed and the different steps of the automated strategy were critically discussed. A baseline separation of the mixture of antipsychotic drugs was achieved with an analysis time of less than 15 min and the robustness of the method was demonstrated simultaneously with the method development phase. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Determination of volatile compounds in cider apple juices using a covalently bonded ionic liquid coating as the stationary phase in gas chromatography.

    PubMed

    Pello-Palma, Jairo; González-Álvarez, Jaime; Gutiérrez-Álvarez, María Dolores; Dapena de la Fuente, Enrique; Mangas-Alonso, Juan José; Méndez-Sánchez, Daniel; Gotor-Fernández, Vicente; Arias-Abrodo, Pilar

    2017-04-01

    A chromatographic method for the separation of volatile compounds in Asturian cider apple juices has been developed. For this separation purpose, a monocationic imidazolium-based ionic liquid bearing a reactive terminal iodine atom was synthesized by a quaternization-anion exchange chemical sequence. Next, the gas chromatography (GC) stationary phase was prepared by covalently linking the imidazolium monolith to the reactive silanol groups of the inner capillary wall at 70 °C. This coated GC column exhibited good thermal stability (290 °C), as well as good efficiency (2000 plates/m) in the separation of volatile compounds from Asturian apple cider juices, and was characterized using the Abraham solvation parameter model. The intra-day and inter-day precision of the chromatographic method was evaluated, obtaining relative standard deviations from 3.7 to 12.9% and from 7.4 to 18.0%, respectively. Furthermore, recoveries from 82.5 to 122% were achieved. Graphical Abstract Covalent bonding of an ionic liquid to inner column wall led to a great improvement of the separation efficiencies of stationary phases in gas chromatography.

  9. Determination of ambroxol hydrochloride, methylparaben and benzoic acid in pharmaceutical preparations based on sequential injection technique coupled with monolithic column.

    PubMed

    Satínský, Dalibor; Huclová, Jitka; Ferreira, Raquel L C; Montenegro, Maria Conceição B S M; Solich, Petr

    2006-02-13

    The porous monolithic columns show high performance at relatively low pressure. The coupling of short monoliths with sequential injection technique (SIA) results in a new approach to implementation of separation step to non-separation low-pressure method. In this contribution, a new separation method for simultaneous determination of ambroxol, methylparaben and benzoic acid was developed based on a novel reversed-phase sequential injection chromatography (SIC) technique with UV detection. A Chromolith SpeedROD RP-18e, 50-4.6 mm column with 10 mm precolumn and a FIAlab 3000 system with a six-port selection valve and 5 ml syringe were used for sequential injection chromatographic separations in our study. The mobile phase used was acetonitrile-tetrahydrofuran-0.05M acetic acid (10:10:90, v/v/v), pH 3.75 adjusted with triethylamine, flow rate 0.48 mlmin(-1), UV-detection was at 245 nm. The analysis time was <11 min. A new SIC method was validated and compared with HPLC. The method was found to be useful for the routine analysis of the active compounds ambroxol and preservatives (methylparaben or benzoic acid) in various pharmaceutical syrups and drops.

  10. Direct single-shot phase retrieval from the diffraction pattern of separated objects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leshem, Ben; Xu, Rui; Dallal, Yehonatan

    The non-crystallographic phase problem arises in numerous scientific and technological fields. An important application is coherent diffractive imaging. Recent advances in X-ray free-electron lasers allow capturing of the diffraction pattern from a single nanoparticle before it disintegrates, in so-called ‘diffraction before destruction’ experiments. Presently, the phase is reconstructed by iterative algorithms, imposing a non-convex computational challenge, or by Fourier holography, requiring a well-characterized reference field. Here we present a convex scheme for single-shot phase retrieval for two (or more) sufficiently separated objects, demonstrated in two dimensions. In our approach, the objects serve as unknown references to one another, reducing themore » phase problem to a solvable set of linear equations. We establish our method numerically and experimentally in the optical domain and demonstrate a proof-of-principle single-shot coherent diffractive imaging using X-ray free-electron lasers pulses. Lastly, our scheme alleviates several limitations of current methods, offering a new pathway towards direct reconstruction of complex objects.« less

  11. Direct single-shot phase retrieval from the diffraction pattern of separated objects

    DOE PAGES

    Leshem, Ben; Xu, Rui; Dallal, Yehonatan; ...

    2016-02-22

    The non-crystallographic phase problem arises in numerous scientific and technological fields. An important application is coherent diffractive imaging. Recent advances in X-ray free-electron lasers allow capturing of the diffraction pattern from a single nanoparticle before it disintegrates, in so-called ‘diffraction before destruction’ experiments. Presently, the phase is reconstructed by iterative algorithms, imposing a non-convex computational challenge, or by Fourier holography, requiring a well-characterized reference field. Here we present a convex scheme for single-shot phase retrieval for two (or more) sufficiently separated objects, demonstrated in two dimensions. In our approach, the objects serve as unknown references to one another, reducing themore » phase problem to a solvable set of linear equations. We establish our method numerically and experimentally in the optical domain and demonstrate a proof-of-principle single-shot coherent diffractive imaging using X-ray free-electron lasers pulses. Lastly, our scheme alleviates several limitations of current methods, offering a new pathway towards direct reconstruction of complex objects.« less

  12. Chiral separation of a diketopiperazine pheromone from marine diatoms using supercritical fluid chromatography.

    PubMed

    Frenkel, Johannes; Wess, Carsten; Vyverman, Wim; Pohnert, Georg

    2014-03-01

    The proline derived diketopiperazine has been identified in plants, insects and fungi with unknown function and was recently also reported as the first pheromone from a diatom. Nevertheless the stereochemistry and enantiomeric excess of this natural product remained inaccessible using direct analytical methods. Here we introduce a chiral separation of this metabolite using supercritical fluid chromatography/mass spectrometry. Several chromatographic methods for chiral analysis of the diketopiperazine from the diatom Seminavis robusta and synthetic enantiomers have been evaluated but neither gas chromatography nor high performance liquid chromatography on different chiral cyclodextrin phases were successful in separating the enantiomers. In contrast, supercritical fluid chromatography achieved baseline separation within four minutes of run time using amylose tris(3,5-dimethylphenylcarbamate) as stationary phase and 2-propanol/CO2 as mobile phase. This very rapid chromatographic method in combination with ESI mass spectrometry allowed the direct analysis of the cyclic dipeptide out of the complex sea water matrix after SPE enrichment. The method could be used to determine the enantiomeric excess of freshly released pheromone and to follow the rapid degradation observed in diatom cultures. Initially only trace amounts of c(d-Pro-d-Pro) were found besides the dominant c(l-Pro-l-Pro) in the medium. However the enantiomeric excess decreased upon pheromone degradation within few hours indicating that a preferential conversion and thus inactivation of the l-proline derived natural product takes place. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. On-line comprehensive two-dimensional normal-phase liquid chromatography×reversed-phase liquid chromatography for preparative isolation of toad venom.

    PubMed

    Li, Jia-Fu; Fang, Hua; Yan, Xia; Chang, Fang-Rong; Wu, Zhen; Wu, Yun-Long; Qiu, Ying-Kun

    2016-07-22

    An on-line comprehensive preparative two-dimensional normal-phase liquid chromatography×reversed-phase liquid chromatography (2D NPLC×RPLC) system was constructed with a newly developed vacuum evaporation assisted adsorption (VEAA) interface, allowing fast removal of NPLC solvent in the vacuum condition and successfully solving the solvent incompatibility problem between NPLC and RPLC. The system achieved on-line solvent exchange within the two dimensions and its performance was illustrated by gram-scale isolation of crude extract from the venom of Bufo bufo gargarizans. Within separation time of ∼20h, 19 compounds were obtained with high purity in a single run. With the VEAA interface, the 2D system exhibited apparent advantages in separation efficiency and automation compared with conventional methods, indicating its promising application in the routine separation process for complicated natural products. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Spectrofluorometry, thin layer chromatography, and column high-performance liquid chromatography determination of rabeprazole sodium in the presence of its acidic and oxidized degradation products.

    PubMed

    Osman, Afaf Osman; Osman, Afaf; Osman, Mohamed

    2009-01-01

    The objective of this study is to develop validated stability-indicating spectrofluorometric, TLC-densitometric, and HPLC methods for the determination of rabeprazole sodium and its degradation products. The first method was based on measuring the fluorescence intensity of the drug at 416 and 311 nm for the emission and at 320 and 274 nm for the excitation for acid and oxidized solutions, respectively. The second method was based on the separation of the drug from its acidic and oxidized degradation products followed by densitometric measurement of the intact drug spot at 284 nm. The separation was carried out on Fluka TLC sheets of silica gel 60 F254 using isopropyl alcohol--30% ammonia (80 + 2, v/v) mobile phase. The third method was based on HPLC separation of rabeprazole sodium from its acidic and oxidized degradation products on a reversed-phase Waters Nova-Pak C18 column using 0.05 M potassium dihydrogen phosphate-methanol-acetonitrile (5 + 3 + 2, v/v/v) pH 7 +/- 0.2 mobile phase. The proposed procedures were successfully applied for the determination of rabeprazole sodium in pure form, laboratory-prepared mixtures, tablet, and expired batch. The obtained results were statistically compared with those of a reported method and validated according to United States Pharmacopeia guidelines. Two main acidic degradation products of the drug were separated and subjected to IR spectrometry and MS to confirm their structures, and the schemes for their formation were elucidated.

  15. Simultaneous Multiple-Location Separation Control

    NASA Technical Reports Server (NTRS)

    Greenblatt, David (Inventor)

    2009-01-01

    A method of controlling a shear layer for a fluid dynamic body introduces first periodic disturbances into the fluid medium at a first flow separation location. Simultaneously, second periodic disturbances are introduced into the fluid medium at a second flow separation location. A phase difference between the first and second periodic disturbances is adjusted to control flow separation of the shear layer as the fluid medium moves over the fluid dynamic body.

  16. Determination of pterins in urine by HPLC with UV and fluorescent detection using different types of chromatographic stationary phases (HILIC, RP C8, RP C18).

    PubMed

    Kośliński, Piotr; Jarzemski, Piotr; Markuszewski, Michał J; Kaliszan, Roman

    2014-03-01

    Pterins are a class of potential cancer biomarkers. New methods involving hydrophilic interaction liquid chromatography (HILIC) and reversed phase (RP) high-performance liquid chromatography have been developed for analysis of eight pterin compounds: 6,7-dimethylpterin, pterin, 6-OH-methylpterin, biopterin, isoxanthopterin, neopterin, xanthopterin, and pterin-6-carboxylic acid. The effect of mobile phase composition, buffer type, pH and concentration on retention using HILIC, C8 and C18 RP stationary phases were examined. Separation of pterins on RP and HILIC stationary phase was performed and optimized. Eight pterins were successfully separated on HILIC Luna diol-bonded phases, Aquasil C18 RP column and LiChrospher C8 RP column. Determination and separation of the pterins from urine samples were performed on HILIC Luna and LiChrospher C8 RP columns which were chosen as the most appropriate ones. Finally, LiChrospher C8 RP column with fluorescence detection was selected for further validation of the method. The optimum chromatographic condition was mobile phase methanol (A)/phosphoric buffer pH 7, 10mM (B), isocratic elution 0-15min 5% A flow=0.5ml/min 15-17min. 5% A, flow=0.5-1ml/min the linearity (R(2)>0.997) and retention time repeatability (RSD%<1) were at satisfactory level. The precision of peak areas expressed as RSD in % was between 0.55 and 14. Pterins detection limits varied from 0.041ng/ml to 2.9ng/ml. Finally, HPLC method was used for the analysis of pterins in urine samples with two different oxidation procedures. Concentration levels of pterin compounds in bladder cancer patients and healthy subjects were compared. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Preparative isolation and purification of four flavonoids from the petals of Nelumbo nucifera by high-speed counter-current chromatography.

    PubMed

    Xingfeng, Guo; Daijie, Wang; Wenjuan, Duan; Jinhua, Du; Xiao, Wang

    2010-01-01

    Flavonoids, the primary constituents of the petals of Nelumbo nucifera, are known to have antioxidant properties and antibacterial bioactivities. However, efficient methods for the preparative isolation and purification of flavonoids from this plant are not currently available. To develop an efficient method for the preparative isolation and purification of flavonoids from the petals of N. nucifera by high-speed counter-current chromatography (HSCCC). Following an initial clean-up step on a polyamide column, HSCCC was utilised to separate and purify flavonoids. Purities and identities of the isolated compounds were established by HPLC-PAD, ESI-MS, (1)H-NMR and (13)C-NMR. The separation was performed using a two-phase solvent system composed of ethyl acetate-methanol-water-acetic acid (4 : 1 : 5 : 0.1, by volume), in which the upper phase was used as the stationary phase and the lower phase was used as the mobile phase at a flow-rate of 1.0 mL/min in the head-to-tail elution mode. Ultimately, 5.0 mg syringetin-3-O-beta-d-glucoside, 6.5 mg quercetin-3-O-beta-d-glucoside, 12.8 mg isorhamnetin-3-O-beta-d-glucoside and 32.5 mg kaempferol-3-O-beta-d-glucoside were obtained from 125 mg crude sample. The combination of HSCCC with a polyamide column is an efficient method for the preparative separation and purification of flavonoids from the petals of N. nucifera. (c) 2009 John Wiley & Sons, Ltd.

  18. Silica aerogel coated on metallic wire by phase separation of polystyrene for in-tube solid phase microextraction.

    PubMed

    Baktash, Mohammad Yahya; Bagheri, Habib

    2017-06-02

    In this research, an attempt was made toward synthesizing a sol-gel-based silica aerogel and its subsequent coating on a copper wire by phase separation of polystyrene. Adaption of this new approach enabled us to coat the metallic wire with powder materials. The use of this method for coating, led to the formation of a porous and thick structure of silica aerogel. The coated wire was placed in a needle and used as the sorbent for in-tube solid phase microextraction of chlorobenzenes (CBs). The superhydrophobicity of sorbent on extraction efficiency was investigated by using different ratios of tetraethylorthosilicate/methyltrimethoxysilane. The surface coated with the prepared silica aerogel by the phase separation of polystyrene showed high contact angle, approving the desired superhydrophobic properties. Effects of major parameters influencing the extraction efficiency including the extraction temperature, extraction time, ionic strength, desorption time were investigated and optimized. The limits of detection and quantification of the method under the optimized condition were 0.1-1.2 and 0.4-4.1ngL -1 , respectively. The relative standard deviations (RSD%) at a concentration level of 10ngL -1 were between 4 and 10% (n=3). The calibration curves of CBs showed linearity from 1 to100ngL -1 . Eventually, the method was successfully applied to the extraction of model compounds from real water samples and relative recoveries varied from 88 to 115%. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. A chiral HPLC method for the simultaneous separation of configurational isomers of the predominant cis/trans forms of astaxanthin.

    PubMed

    Abu-Lafi, S; Turujman, S A

    1997-01-01

    We report an HPLC method that allows the simultaneous separation of configurational isomers of the predominant cis/trans forms of astaxanthin. The configurational isomers of the all-trans-, and most of the configurational isomers of the 9-cis-, 13-cis- and 15-cis-astaxanthin were separated on a Sumichiral OA-2000 column, which is manufactured and packed in Japan with a Pirkle covalent D-phenylglycine chiral stationary phase (CSP). The large separation of the cis isomers from the all-trans isomers that we report here ensure the suitability of this method for the routine determination of the ratio of the configurational isomers of all-trans-astaxanthin.

  20. Prediction of antisymmetric buffet loads on horizontal stabilizers in massively separated flows, phase II

    DOT National Transportation Integrated Search

    1999-05-01

    The Federal Aviation Administration (FAA) has a continuing program to collect data and develop predictive methods for aircraft flight loads. Some of the most severe and potentially catastrophic flight loads are produced by separated flows. Structural...

  1. An efficient and target-oriented sample enrichment method for preparative separation of minor alkaloids by pH-zone-refining counter-current chromatography.

    PubMed

    Feng, Rui-Hong; Hou, Jin-Jun; Zhang, Yi-Bei; Pan, Hui-Qin; Yang, Wenzhi; Qi, Peng; Yao, Shuai; Cai, Lu-Ying; Yang, Min; Jiang, Bao-Hong; Liu, Xuan; Wu, Wan-Ying; Guo, De-An

    2015-08-28

    An efficient and target-oriented sample enrichment method was established to increase the content of the minor alkaloids in crude extract by using the corresponding two-phase solvent system applied in pH-zone-refining counter-current chromatography. The enrichment and separation of seven minor indole alkaloids from Uncaria rhynchophylla (Miq.) Miq. ex Havil(UR) were selected as an example to show the advantage of this method. An optimized two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (3:7:1:9, v/v) was used in this study, where triethylamine (TEA) as the retainer and hydrochloric acid (HCl) as the eluter were added at the equimolar of 10mM. Crude alkaloids of UR dissolved in the corresponding upper phase (containing 10mM TEA) were extracted twice with lower phase (containing 10mM TEA) and lower phase (containing 10mM HCl), respectively, the second lower phase extract was subjected to pH-zone-refining CCC separation after alkalization and desalination. Finally, from 10g of crude alkaloids, 4g of refined alkaloids was obtained and the total content of seven target indole alkaloids was increased from 4.64% to 15.78%. Seven indole alkaloids, including 54mg isocorynoxeine, 21mg corynoxeine, 46mg isorhynchophylline, 35mg rhynchophylline, 65mg hirsutine, 51mg hirsuteine and 27mg geissoschizine methylether were all simultaneously separated from 2.5g of refined alkaloids, with the purity of 86.4%, 97.5%, 90.3%, 92.1%, 98.5%, 92.3%, and 92.8%, respectively. The total content and purities of the seven minor indole alkaloids were tested by HPLC and their chemical structures were elucidated by ESI-HRMS and (1)H NMR. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. [Study on extracting and separating curcuminoids from Curcuma longa rhizome using ultrasound strengthen by microemulsion].

    PubMed

    Yue, Chun-Hua; Zheng, Li-Tao; Guo, Qi-Ming; Li, Kun-Ping

    2014-05-01

    To establish a new method for the extraction and separation of curcuminoids from Curcuma longa rhizome by cloud-point preconcentration using microemulsions as solvent. The spectrophotometry was used to detect the solubility of curcumin in different oil phase, emulsifier and auxiliary emulsifier, and the microemulsion prescription was used for false three-phase figure optimization. The extraction process was optimized by uniform experiment design. The curcuminoids were separated from microemulsion extract by cloud-point preconcentration. Oil phase was oleic acid ethyl ester; Emulsifier was OP emulsifier; Auxiliary emulsifier was polyethylene glycol(peg) 400; The quantity of emulsifier to auxiliary emulsifier was the ratio of 5: 1; Microemulsion prescription was water-oleic acid ethyl ester-mixed emulsifier (0.45:0.1:0.45). The optimum extraction process was: time for 12.5 min, temperature of 52 degrees C, power of 360 W, frequency of 400 kHz, and the liquid-solid ratio of 40:1. The extraction rate of curcuminoids was 92.17% and 86.85% in microemulsion and oil phase, respectively. Curcuminoids is soluble in this microemulsion prescription with good extraction rate. This method is simple and suitable for curcuminoids extraction from Curcuma longa rhizome.

  3. Phospholipid hydrolysis in a pharmaceutical emulsion assessed by physicochemical parameters and a new analytical method.

    PubMed

    Rabinovich-Guilatt, Laura; Dubernet, Catherine; Gaudin, Karen; Lambert, Gregory; Couvreur, Patrick; Chaminade, Pierre

    2005-09-01

    The aim of this work was to develop a simple high-performance liquid chromatography (HPLC) technique with evaporative light scattering detection (ELSD) for the separation and quantification of the major phospholipid (PL) and lysophospholipid (LPL) classes contained in a pharmaceutical phospholipid-based emulsion. In the established method, phosphatidylcholine (PC), phosphatidylethanolamine (PE), sphingomyeline (SM), lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE) were separated with a PVA-Sil stationary phase and a binary gradient from pure chloroform to methanol:water (94:6 v/v) at 3.4%/min. The ELSD detection was enhanced using 0.1% triethylamine and formic acid in each gradient mobile phases. Factors such as stationary phase and ELSD drift tube temperature were optimized, concluding in optimal temperatures of 25 degrees C for separation and 50 degrees C for evaporation. This HPLC-ELSD method was then applied to a PL-emulsion exposed to autoclaving and accelerated thermal conditions at 50 degrees C. Hydrolysis of PC and PE followed first-order kinetics, representing only 45% of the total lipid mass after 3 months. The chemical stability was correlated to commonly measured formulation physical and physico-chemical parameters such as droplet size, emulsion pH and zeta-potential.

  4. Multiple dual mode counter-current chromatography with variable duration of alternating phase elution steps.

    PubMed

    Kostanyan, Artak E; Erastov, Andrey A; Shishilov, Oleg N

    2014-06-20

    The multiple dual mode (MDM) counter-current chromatography separation processes consist of a succession of two isocratic counter-current steps and are characterized by the shuttle (forward and back) transport of the sample in chromatographic columns. In this paper, the improved MDM method based on variable duration of alternating phase elution steps has been developed and validated. The MDM separation processes with variable duration of phase elution steps are analyzed. Basing on the cell model, analytical solutions are developed for impulse and non-impulse sample loading at the beginning of the column. Using the analytical solutions, a calculation program is presented to facilitate the simulation of MDM with variable duration of phase elution steps, which can be used to select optimal process conditions for the separation of a given feed mixture. Two options of the MDM separation are analyzed: 1 - with one-step solute elution: the separation is conducted so, that the sample is transferred forward and back with upper and lower phases inside the column until the desired separation of the components is reached, and then each individual component elutes entirely within one step; 2 - with multi-step solute elution, when the fractions of individual components are collected in over several steps. It is demonstrated that proper selection of the duration of individual cycles (phase flow times) can greatly increase the separation efficiency of CCC columns. Experiments were carried out using model mixtures of compounds from the GUESSmix with solvent systems hexane/ethyl acetate/methanol/water. The experimental results are compared to the predictions of the theory. A good agreement between theory and experiment has been demonstrated. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Utilization of deep eutectic solvents as novel mobile phase additives for improving the separation of bioactive quaternary alkaloids.

    PubMed

    Tan, Ting; Zhang, Mingliang; Wan, Yiqun; Qiu, Hongdeng

    2016-01-01

    Deep eutectic solvents (DESs) were used as novel mobile phase additives to improve chromatographic separation of four quaternary alkaloids including coptisine chloride, sanguinarine, berberine chloride and chelerythrine on a C18 column. DESs as a new class of ionic liquids are renewably sourced, environmentally benign, low cost and easy to prepare. Seven DESs were obtained by mixing different hydrogen acceptors and hydrogen-bond donors. The effects of organic solvents, the concentration of DESs, the types of DESs and the pH values of the buffer solution on the separation of the analytes were investigated. The composition of acetonitrile and 1.0% deep eutectic solvents aqueous solution (pH 3.3, adjusted with hydrochloric acid) in a 32:68 (v/v) ratio was used as optimized mobile phase, with which four quaternary alkaloids were well separated. When a small amount of DESs was added in the mobile phase for the separation of alkaloids on the C18 column, noticeable improvements were distinctly observed such as decreasing peak tailing and improving resolution. The separation mechanism mediated by DESs as mobile phase additives can be attributed to combined effect of both hydrogen acceptors and hydrogen-bond donors. For example, choline chloride can effectively cover the residual silanols on silica surface and ethylene glycol can reduce the retention time of analytes. The proposed method has been applied to determine BerbC in Lanqin Chinese herbal oral solution and BerbC tablet. Utilization of DESs in mobile phase can efficiently improve separation and selectivity of analytes from complex samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. [Determination of sennosides and degraded products in the process of sennoside metabolism by HPLC].

    PubMed

    Sun, Yan; Li, Xuetuo; Yu, Xingju

    2004-01-01

    A method for the separation and determination of sennosides A and B and the main composition (sennidins A and B) in degraded products of sennosides by linear gradient high performance liquid chromatography has been developed. Separation conditions were as follows: column, a Spherisorb C18 column (250 mm x 4.6 mm i.d., 10 microm); column temperature, 40 degrees C; detection wavelength, 360 nm; mobile phase A, 1.25% acetic acid aqueous solution; mobile phase B, methanol; linear gradient, 100% A --> (20 min) 100% B. The method is effective, quick, accurate and reproducible. The satisfactory results show that this new method has certain practical values as an approach of real-time analysis in the process of sennoside metabolism.

  7. Simultaneous determination of piracetam and its four impurities by RP-HPLC with UV detection.

    PubMed

    Arayne, M Saeed; Sultana, Najma; Siddiqui, Farhan Ahmed; Mirza, Agha Zeeshan; Qureshi, Faiza; Zuberi, M Hashim

    2010-08-01

    A simple and rapid high-performance liquid chromatographic method for the separation and determination of piracetam and its four impurities, 2-oxopyrrolidin-1-yl)acetic acid, pyrrolidin-2-one, methyl (2-oxopyrrolidin-1-yl)acetate, and ethyl (2-oxopyrrolidin-1-yl)acetate, was developed. The separation was achieved on a reversed-phase C(18) Nucleosil column (25 cm x 0.46 cm, 10 microm). The mobile phase is composed of an aqueous solution containing 0.2 g/L of triethyl amine-acetonitrile (85:15, v/v). The pH of the mobile phase was adjusted to 6.5 with phosphoric acid at a flow rate of 1 mL/min at ambient temperature and UV detection at 205 nm. The developed method was found to give good separation between the pure drug and its four related substance. The polynomial regression data for the calibration plots showed good linear relationship in the concentration range of 50-10,000 ng/mL, 25-10,000 ng/mL, 45-10,000 ng/mL, 34-10,000 ng/mL, and 55-10,000 ng/mL, respectively, with r(2) = 0.9999. The method was validated for precision, accuracy, ruggedness, and recovery. The minimum quantifiable amounts were found to be 50 ng/mL of piracetam, 25 ng/mL of 2-oxopyrrolidin-1-yl)acetic acid, 45 ng/mL of pyrrolidin-2-one, 34 ng/mL of methyl (2-oxopyrrolidin-1-yl)acetate, and 55 ng/mL of ethyl (2-oxopyrrolidin-1-yl)acetate. Statistical analysis proves that the method is reproducible and selective for the estimation of piracetam as well as its related substance. As the method could effectively separate the drug from the related substances, it can be employed as a stability-indicating one. The proposed method shows high efficiency, allowing the separation of the main component piracetam from other impurities.

  8. Application of X-Y Separable 2-D Array Beamforming for Increased Frame Rate and Energy Efficiency in Handheld Devices

    PubMed Central

    Owen, Kevin; Fuller, Michael I.; Hossack, John A.

    2015-01-01

    Two-dimensional arrays present significant beamforming computational challenges because of their high channel count and data rate. These challenges are even more stringent when incorporating a 2-D transducer array into a battery-powered hand-held device, placing significant demands on power efficiency. Previous work in sonar and ultrasound indicates that 2-D array beamforming can be decomposed into two separable line-array beamforming operations. This has been used in conjunction with frequency-domain phase-based focusing to achieve fast volume imaging. In this paper, we analyze the imaging and computational performance of approximate near-field separable beamforming for high-quality delay-and-sum (DAS) beamforming and for a low-cost, phaserotation-only beamforming method known as direct-sampled in-phase quadrature (DSIQ) beamforming. We show that when high-quality time-delay interpolation is used, separable DAS focusing introduces no noticeable imaging degradation under practical conditions. Similar results for DSIQ focusing are observed. In addition, a slight modification to the DSIQ focusing method greatly increases imaging contrast, making it comparable to that of DAS, despite having a wider main lobe and higher side lobes resulting from the limitations of phase-only time-delay interpolation. Compared with non-separable 2-D imaging, up to a 20-fold increase in frame rate is possible with the separable method. When implemented on a smart-phone-oriented processor to focus data from a 60 × 60 channel array using a 40 × 40 aperture, the frame rate per C-mode volume slice increases from 16 to 255 Hz for DAS, and from 11 to 193 Hz for DSIQ. Energy usage per frame is similarly reduced from 75 to 4.8 mJ/ frame for DAS, and from 107 to 6.3 mJ/frame for DSIQ. We also show that the separable method outperforms 2-D FFT-based focusing by a factor of 1.64 at these data sizes. This data indicates that with the optimal design choices, separable 2-D beamforming can significantly improve frame rate and battery life for hand-held devices with 2-D arrays. PMID:22828829

  9. Paired-ion chromatography and high performance liquid chromatography of labetalol in feeds.

    PubMed

    Townley, E R; Ross, B

    1980-11-01

    A high performance liquid chromatographic (HPLC) method using reverse phase paired-ion chromatography and ultraviolet detection at 280 nm has been developed to determine labetalol, an alpha and beta adrenoceptor blocking agent, in Purina No. 5001 rodent chow. The method is simple and rapid, and demonstrates a separation technique applicable to other acidic and basic drugs. It requires only extraction of the drug with methanol--water--acetic acid (66 + 33 + 1) and separation of insoluble material by filtration before HPLC. Labetalol, is chromatographically separated from soluble feed components by means of a microBondapak C18 column and methanol--water--acetic acid (66 + 33 + 1) mobile phase, 0.005M with respect to sodium dioctylsulfosuccinate paired-ion reagent. Average recovery is 98.7% with a relative standard deviation of +/- 2.3% for the equipment described.

  10. A validated LC method for determination of 2,3-dichlorobenzoic acid and its associated regio isomers.

    PubMed

    Krishnaiah, Ch; Sri, Khagga Bhavya

    2012-05-01

    A simple, selective and sensitive gradient reversed-phase liquid chromatography method has been developed for the separation and determination of 2,3-dichlorobenzoic acid, which is an intermediate of the lamotrizine drug substance, and its regio isomers. The separation was achieved on a reversed-phase United States Pharmacopeia L1 (C-18) column using 0.01 M ammonium acetate buffer at pH 2.5 and methanol (50:50 v/v) mixture as mobile phase A and a methanol and water mixture (80:20 v/v) as mobile phase B in a gradient elution at flow rate 1.2 mL/min with ultraviolet detection at 210 nm. The method is found to be selective, precise, linear, accurate and robust. It was used for quality assurance and monitoring the synthetic reactions involved in the process development of lamotrizine. The method is found to be simple, rapid, specific and reliable for the determination of unreacted levels of raw materials and isomers in reaction mixtures and finished product lamotrizine. The method was fully validated as per International Conference of Harmonization guidelines and results from validation confirm that the method is highly suitable for its intended purpose. © The Author [2012]. Published by Oxford University Press. All rights reserved.

  11. Separation performance of cucurbit[7]uril in ionic liquid-based sol-gel coating as stationary phase for capillary gas chromatography.

    PubMed

    Wang, Xiaogang; Qi, Meiling; Fu, Ruonong

    2014-12-05

    Here we report the separation performance of a new stationary phase of cucurbit[7]uril (CB7) incorporated into an ionic liquid-based sol-gel coating (CB7-SG) for capillary gas chromatography (GC). The CB7-SG stationary phase showed an average polarity of 455, suggesting its polar nature. Abraham system constants revealed that its major interactions with analytes include H-bond basicity (a), dipole-dipole (s) and dispersive (l) interactions. The CB7-SG stationary phase achieved baseline separation for a wide range of analytes with symmetrical peak shapes and showed advantages over the conventional polar stationary phase that failed to resolve some critical analytes. Also, it exhibited different retention behaviors from the conventional stationary phase in terms of retention times and elution order. Most interestingly, in contrast to the conventional polar phase, the CB7-SG stationary phase exhibited longer retentions for analytes of lower polarity but relatively comparable retentions for polar analytes such as alcohols and phenols. The high resolving ability and unique retention behaviors of the CB7-SG stationary phase may stem from the comprehensive interactions of the aforementioned interactions and shape selectivity. Moreover, the CB7-SG column showed good peak shapes for analytes prone to peak tailing, good thermal stability up to 280°C and separation repeatability with RSD values in the range of 0.01-0.11% for intra-day, 0.04-0.41% for inter-day and 2.5-6.0% for column-to-column, respectively. As demonstrated, the proposed coating method can simultaneously address the solubility problem with CBs for the intended purpose and achieve outstanding GC separation performance. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Analysis of Phase Separation in Czochralski Grown Single Crystal Ilmenite

    NASA Technical Reports Server (NTRS)

    Wilkins, R.; Powell, Kirk St. A.; Loregnard, Kieron R.; Lin, Sy-Chyi; Muthusami, Jayakumar; Zhou, Feng; Pandey, R. K.; Brown, Geoff; Hawley, M. E.

    1998-01-01

    Ilmenite (FeTiOs) is a wide bandgap semiconductor with an energy gap of 2.58 eV. Ilmenite has properties suited for radiation tolerant applications, as well as a variety of other electronic applications. Single crystal ilmenite has been grown from the melt using the Czochralski method. Growth conditions have a profound effect on the microstructure of the samples. Here we present data from a variety of analytical techniques which indicate that some grown crystals exhibit distinct phase separation during growth. This phase separation is apparent for both post-growth annealed and unannealed samples. Under optical microscopy, there appear two distinct areas forming a matrix with an array of dots on order of 5 pm diameter. While appearing bright in the optical micrograph, atomic force microscope (AFM) shows the dots to be shallow pits on the surface. Magnetic force microscope (MFM) shows the dots to be magnetic. Phase identification via electron microprobe analysis (EMPA) indicates two major phases in the unannealed samples and four in the annealed samples, where the dots appear to be almost pure iron. This is consistent with micrographs taken with a scanning probe microscope used in the magnetic force mode. Samples that do not exhibit the phase separation have little or no discernible magnetic structure detectable by the MFM.

  13. Preparative supercritical fluid chromatography: A powerful tool for chiral separations.

    PubMed

    Speybrouck, David; Lipka, Emmanuelle

    2016-10-07

    In 2012, the 4 biggest pharmaceutical blockbusters were pure enantiomers and separating racemic mixtures is now frequently a key step in the development of a new drug. For a long time, preparative liquid chromatography was the technique of choice for the separation of chiral compounds either during the drug discovery process to get up to a hundred grams of a pure enantiomer or during the clinical trial phases needing kilograms of material. However the advent of supercritical Fluid Chromatography (SFC) in the 1990s has changed things. Indeed, the use of carbon dioxide as the mobile phase in SFC offers many advantages including high flow rate, short equilibration time as well as low solvent consumption. Despite some initial teething troubles, SFC is becoming the primary method for preparative chiral chromatography. This article will cover recent developments in preparative SFC for the separation of enantiomers, reviewing several aspects such as instrumentation, chiral stationary phases, mobile phases or purely preparative considerations including overloading, productivity or large scale chromatography. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Liquid-liquid phase separation and core-shell structure of ternary Al-In-Sn immiscible alloys

    NASA Astrophysics Data System (ADS)

    Zhao, Degang; Bo, Lin; Wang, Lin; Li, Shanshan

    2018-04-01

    In this study, the liquid-liquid phase separation of four kinds of ternary immiscible Al-In-Sn melts was investigated with resistivity and thermodynamics method. The nonlinear changes in ρ-T and DSC curves of Al-In-Sn immiscible alloys above monotectic reaction temperature revealed the occurrence of liquid-liquid phase separation of Al-In-Sn melts. The monotectic temperature, liquid phase separation temperature and immiscible gap of ternary Al-In-Sn alloys were lower than those of binary Al-In alloy. With the Al content decreasing, the immiscible gap of Al-In-Sn alloy decreased. The composition of Al80In10Sn10, Al70In15Sn15, Al60In20Sn20 and Al50In25Sn25 was located in the immiscible zone of Al-In-Sn system. Due to the differences of Stokes effect, Marangoni convection and immiscible gap, the solidification morphology of four kinds of Al-In-Sn monotectic alloy was different. The core–shell structure of Al-In-Sn monotectic alloy can form within a certain range of composition.

  15. A technique for generating phase-space-based Monte Carlo beamlets in radiotherapy applications.

    PubMed

    Bush, K; Popescu, I A; Zavgorodni, S

    2008-09-21

    As radiotherapy treatment planning moves toward Monte Carlo (MC) based dose calculation methods, the MC beamlet is becoming an increasingly common optimization entity. At present, methods used to produce MC beamlets have utilized a particle source model (PSM) approach. In this work we outline the implementation of a phase-space-based approach to MC beamlet generation that is expected to provide greater accuracy in beamlet dose distributions. In this approach a standard BEAMnrc phase space is sorted and divided into beamlets with particles labeled using the inheritable particle history variable. This is achieved with the use of an efficient sorting algorithm, capable of sorting a phase space of any size into the required number of beamlets in only two passes. Sorting a phase space of five million particles can be achieved in less than 8 s on a single-core 2.2 GHz CPU. The beamlets can then be transported separately into a patient CT dataset, producing separate dose distributions (doselets). Methods for doselet normalization and conversion of dose to absolute units of Gy for use in intensity modulated radiation therapy (IMRT) plan optimization are also described.

  16. Accurate, efficient, and (iso)geometrically flexible collocation methods for phase-field models

    NASA Astrophysics Data System (ADS)

    Gomez, Hector; Reali, Alessandro; Sangalli, Giancarlo

    2014-04-01

    We propose new collocation methods for phase-field models. Our algorithms are based on isogeometric analysis, a new technology that makes use of functions from computational geometry, such as, for example, Non-Uniform Rational B-Splines (NURBS). NURBS exhibit excellent approximability and controllable global smoothness, and can represent exactly most geometries encapsulated in Computer Aided Design (CAD) models. These attributes permitted us to derive accurate, efficient, and geometrically flexible collocation methods for phase-field models. The performance of our method is demonstrated by several numerical examples of phase separation modeled by the Cahn-Hilliard equation. We feel that our method successfully combines the geometrical flexibility of finite elements with the accuracy and simplicity of pseudo-spectral collocation methods, and is a viable alternative to classical collocation methods.

  17. Cellulosic Biomass-Reinforced Polyvinylidene Fluoride Separators with Enhanced Dielectric Properties and Thermal Tolerance.

    PubMed

    Li, Lei; Yu, Miao; Jia, Chao; Liu, Jianxin; Lv, Yanyan; Liu, Yanhua; Zhou, Yi; Liu, Chuanting; Shao, Ziqiang

    2017-06-21

    Safety issues are critical barriers to large-scale energy storage applications of lithium-ion batteries (LIBs). Using an ameliorated, thermally stable, shutdown separator is an effective method to overcome the safety issues. Herein, we demonstrate a novel, cellulosic biomass-material-blended polyvinylidene fluoride separator that was prepared using a simple nonsolvent-induced phase separation technique. This process formed a microporous composite separator with reduced crystallinity, uniform pore size distribution, superior thermal tolerance, and enhanced electrolyte wettability and dielectric and mechanical properties. In addition, the separator has a superior capacity retention and a better rate capability compared to the commercialized microporous polypropylene membrane. This fascinating membrane was fabricated via a relatively eco-friendly and cost-effective method and is an alternative, promising separator for high-power LIBs.

  18. [Isolation and preparation of an imidazole alkaloid from radix radix of Aconitum pendulum Busch by semi-preparative high-speed counter-current chromatography].

    PubMed

    Liu, Yongling; Chen, Tao; Chen, Chen; Zou, Denglang; Li, Yulin

    2014-05-01

    Aconitum pendulum Busch is rich C19 diterpenoid alkaloids, but there is no report of imidazole alkaloid in Aconitum pendulum Busch. In this study, an imidazole alkaloid named 1H-imidazole-2-carboxylic acid, butyl ester (ICABE) was successfully separated from Aconitum pendulum Busch with semi-preparative high-speed counter-current chromatography (HSCCC). The partition coefficient was measured by HPLC to select the solvent systems for ICABE separation by HSCCC. The separation was performed with a two-phase solvent system composed of n-hexane-chloroform-ethanol-water (10:1 : 13:2, v/v/v/v). The upper phase was used as the stationary phase and the lower phase as the mobile phase. It was operated at a flow rate of 1.8 mL/min. The apparatus was rotated at 850 r/min, and the detection wavelength was set at 230 nm. Under the selected conditions, a high efficiency separation of HSCCC was achieved, and 7.5 mg of ICABE was obtained from 100 mg of the crude sample of Aconitum pendulum in one-step separation within 350 min. The HPLC analysis showed that the purity of the compound was over 98%. The chemical structure was confirmed by UV, 1H-NMR and 13C-NMR. The established method is simple, highly efficient and suitable for large scale separation of ICABE from radix of Aconitum pendulum Busch.

  19. Synthetic oligonucleotide separations by mixed-mode reversed-phase/weak anion-exchange liquid chromatography.

    PubMed

    Zimmermann, Aleksandra; Greco, Roberto; Walker, Isabel; Horak, Jeannie; Cavazzini, Alberto; Lämmerhofer, Michael

    2014-08-08

    Synthetic oligonucleotides gain increasing importance in new therapeutic concepts and as probes in biological sciences. If pharmaceutical-grade purities are required, chromatographic purification using ion-pair reversed-phase chromatography is commonly carried out. However, separation selectivity for structurally closely related impurities is often insufficient, especially at high sample loads. In this study, a "mixed-mode" reversed-phase/weak anion exchanger stationary phase has been investigated as an alternative tool for chromatographic separation of synthetic oligonucleotides with minor sequence variations. The employed mixed-mode phase shows great flexibility in method development. It has been run in various gradient elution modes, viz. one, two or three parameter (mixed) gradients (altering buffer pH, buffer concentration, and organic modifier) to find optimal elution conditions and gain further insight into retention mechanisms. Compared to ion-pair reversed-phase and mere anion-exchange separation, enhanced selectivities were observed with the mixed-mode phase for 20-23 nucleotide (nt) long oligonucleotides with similar sequences. Oligonucleotides differing by 1, 2 or 3 nucleotides in length could be readily resolved and separation factors for single nucleotide replacements declined in the order Cytosine (C)/Guanine (G)>Adenine (A)/Guanine∼Guanine/Thymine (T)>Adenine/Cytosine∼Cytosine/Thymine>Adenine/Thymine. Selectivities were larger when the modification was at the 3' terminal-end, declined when it was in the middle of the sequence and was smallest when it was located at the 5' terminus. Due to the lower surface area of the 200Å pore size mixed-mode stationary phase compared to the corresponding 100Å material, lower retention times with equal selectivities under milder elution conditions were achievable. Considering high sample loading capacities of the mixed-mode anion-exchanger phase, it should have great potential for chromatographic oligonucleotide separation and purification. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. The Development of Novel Nanomaterials for Separation Science

    NASA Astrophysics Data System (ADS)

    Zewe, Joseph William

    Separation efficiency is inversely proportional to the diameter of the particles of the stationary phase. Accordingly, a major aim of current separations research is focused on the reduction of both the diameter and particle-to-particle size variation of sorbent materials utilized as stationary phases. Herein, novel methods for the fabrication and application of various nanoscale stationary phases are described. Electrospinning is a simple and cost-effective method of generating nanofibers; here both polymeric and carbon electrospun nanofibers are applied as sorbent materials. Carbon nanofibers are of particular interest; graphite and glassy carbon are widely utilized in separation science due to their chemical and mechanical stability and unique selectivity. Electrospun carbon nanofibers have proven to be ideal for use as an extractive phase for solid phase microextraction (SPME) and have been successfully coupled to both gas and liquid chromatography. The high surface area nanofibrous mat provides extraction efficiencies for both polar and nonpolar compounds that range from 2-8 times greater than those attainable using currently available commercial SPME fibers. The electrospun nanofibrous SPME phases proved to be very stable when immersed in a range of solvents, demonstrating increased stability relative to conventional liquid SPME coatings. The chemical and mechanical stability of the electrospun carbon nanofiber SPME phases expands the range of compounds that are applicable to SPME while extending the lifetime of the SPME fibers. Molecularly imprinted (MI) electrospun polymeric and carbon nanofibers were also generated using the template molecule dibutyl butyl phosphonate (DBBP), a surrogate for chemical warfare agents. Nicotine was also used as a template molecule. The MI-nanofibers imprinted with DBBP were applied as an adsorbent for SPME. The MI-SPME fibers preferentially adsorbed the DBBP template molecule relative to the non-imprinted SPME fibers, demonstrating that imprinted surfaces containing analyte-specific recognition sites can be produced. MI-nicotine electrospun nanofibers were also studied as a solid phase extraction (SPE) adsorbent for the extraction of nicotine from water. The MI-nanofibers showed a greater extraction efficiency for nicotine relative to their non-imprinted counterparts. Electrospun nanofibers have proven to be effective stationary phases in ultra-thin layer chromatography (UTLC), giving more efficient separations in shorter analysis times than traditional particle-based stationary phases. This technology was further enhanced by aligning the nanofibrous mats in a single direction. Aligned electrospun UTLC (AE-UTLC) devices showed improved performance relative to non-aligned electrospun UTLC phases, demonstrating higher separation efficiency and reduced times of analysis. All currently utilized carbon sorbents, including the carbon nanofibers described in this work, possess at least two different surface sites for interaction with solutes, namely basal-plane and edge-plane sites. It is predicted that a more homogenous carbon surface, consisting entirely of either all-basal or all-edge plane sites, would produce a separation with a significant improvement in chromatographic efficiency. Progress toward homogenous carbon phases and their application and sorption behavior are also discussed.

  1. Vapors-liquid phase separator. [infrared telescope heat sink

    NASA Technical Reports Server (NTRS)

    Frederking, T. H. K.; Brown, G. S.; Chuang, C.; Kamioka, Y.; Kim, Y. I.; Lee, J. M.; Yuan, S. W. K.

    1980-01-01

    The use of porous plugs, mostly with in the form of passive devices with constant area were considered as vapor-liquid phase separators for helium 2 storage vessels under reduced gravity. The incorporation of components with variable cross sectional area as a method of flow rate modification was also investigated. A particular device which uses a shutter-type system for area variation was designed and constructed. This system successfully permitted flor rate changes of up to plus or minus 60% from its mean value.

  2. Extremely asymmetric phase diagram of homopolymer-monotethered nanoparticles: Competition between chain conformational entropy and particle steric interaction.

    PubMed

    Zhang, Tiancai; Fu, Chao; Yang, Yingzi; Qiu, Feng

    2017-02-07

    The phase behaviors of homopolymer-monotethered nanoparticles (HMNs) in melt are investigated via a theoretical method combining self-consistent field theory for polymers and density functional theory for hard spheres. An extremely asymmetric phase diagram is observed: (i) microphases are only possible for the volume fraction of the tethered polymer f A > 0.35; (ii) in addition to lamellar phase, the system can only self-assemble into various morphologies with a polymer-rich matrix, including gyroid phase, cylindrical phase, and spherical phase. In the frame of this theory, the critical point for HMNs' microphase separation is significantly lower than that of linear diblock copolymers. Furthermore, the characteristic length of microphase-separated structures of HMNs is much smaller than that of linear diblock copolymers with the same molecular weight. Our calculation results on morphologies and characteristic length agree well with recent simulations and experimental observations.

  3. Quantification of sunscreen ethylhexyl triazone in topical skin-care products by normal-phase TLC/densitometry.

    PubMed

    Sobanska, Anna W; Pyzowski, Jaroslaw

    2012-01-01

    Ethylhexyl triazone (ET) was separated from other sunscreens such as avobenzone, octocrylene, octyl methoxycinnamate, and diethylamino hydroxybenzoyl hexyl benzoate and from parabens by normal-phase HPTLC on silica gel 60 as stationary phase. Two mobile phases were particularly effective: (A) cyclohexane-diethyl ether 1 : 1 (v/v) and (B) cyclohexane-diethyl ether-acetone 15 : 1 : 2 (v/v/v) since apart from ET analysis they facilitated separation and quantification of other sunscreens present in the formulations. Densitometric scanning was performed at 300 nm. Calibration curves for ET were nonlinear (second-degree polynomials), with R > 0.998. For both mobile phases limits of detection (LOD) were 0.03 and limits of quantification (LOQ) 0.1 μg spot(-1). Both methods were validated.

  4. Polymer-induced phase separation and crystallization in immunoglobulin G solutions.

    PubMed

    Li, Jianguo; Rajagopalan, Raj; Jiang, Jianwen

    2008-05-28

    We study the effects of the size of polymer additives and ionic strength on the phase behavior of a nonglobular protein-immunoglobulin G (IgG)-by using a simple four-site model to mimic the shape of IgG. The interaction potential between the protein molecules consists of a Derjaguin-Landau-Verwey-Overbeek-type colloidal potential and an Asakura-Oosawa depletion potential arising from the addition of polymer. Liquid-liquid equilibria and fluid-solid equilibria are calculated by using the Gibbs ensemble Monte Carlo technique and the Gibbs-Duhem integration (GDI) method, respectively. Absolute Helmholtz energy is also calculated to get an initial coexisting point as required by GDI. The results reveal a nonmonotonic dependence of the critical polymer concentration rho(PEG) (*) (i.e., the minimum polymer concentration needed to induce liquid-liquid phase separation) on the polymer-to-protein size ratio q (equivalently, the range of the polymer-induced depletion interaction potential). We have developed a simple equation for estimating the minimum amount of polymer needed to induce the liquid-liquid phase separation and show that rho(PEG) (*) approximately [q(1+q)(3)]. The results also show that the liquid-liquid phase separation is metastable for low-molecular weight polymers (q=0.2) but stable at large molecular weights (q=1.0), thereby indicating that small sizes of polymer are required for protein crystallization. The simulation results provide practical guidelines for the selection of polymer size and ionic strength for protein phase separation and crystallization.

  5. Analysis of reduced monoclonal antibodies using size exclusion chromatography coupled with mass spectrometry

    NASA Astrophysics Data System (ADS)

    Liu, Hongcheng; Gaza-Bulseco, Georgeen; Chumsae, Chris

    2009-12-01

    Size-exclusion chromatography (SEC) has been widely used to detect antibody aggregates, monomer, and fragments. SEC coupled to mass spectrometry has been reported to measure the molecular weights of antibody; antibody conjugates, and antibody light chain and heavy chain. In this study, separation of antibody light chain and heavy chain by SEC and direct coupling to a mass spectrometer was further studied. It was determined that employing mobile phases containing acetonitrile, trifluoroacetic acid, and formic acid allowed the separation of antibody light chain and heavy chain after reduction by SEC. In addition, this mobile phase allowed the coupling of SEC to a mass spectrometer to obtain a direct molecular weight measurement. The application of the SEC-MS method was demonstrated by the separation of the light chain and the heavy chain of multiple recombinant monoclonal antibodies. In addition, separation of a thioether linked light chain and heavy chain from the free light chain and the free heavy chain of a recombinant monoclonal antibody after reduction was also achieved. This optimized method provided a separation of antibody light chain and heavy chain based on size and allowed a direct measurement of molecular weights by mass spectrometry. In addition, this method may help to identify peaks eluting from SEC column directly.

  6. Unsteady RANS/DES analysis of flow around helicopter rotor blades at forword flight conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenyu; Qian, Yaoru

    2018-05-01

    In this paper, the complex flows around forward-flying helicopter blades are numerically investigated. Both the Reynolds-averaged Navier-Stokes (RANS) and the Detached Eddy Simulation (DES) methods are used for the analysis of characteristics like local dynamic flow separation, effects of radial sweeping and reversed flow. The flow was solved by a highly efficient finite volume solver with multi-block structured grids. Focusing upon the complexity of the advance ratio effects, above properties are fully recognized. The current results showed significant agreements between both RANS and DES methods at phases with attached flow phases. Detailed information of separating flow near the withdrawal phases are given by DES results. The flow analysis of these blades under reversed flow reveals a significant interaction between the reversed flow and the span-wise sweeping.

  7. First derivative ratio spectrophotometric, HPTLC-densitometric, and HPLC determination of nicergoline in presence of its hydrolysis-induced degradation product.

    PubMed

    Ahmad, Abdel Kader S; Kawy, M Abdel; Nebsen, M

    2002-10-15

    Three methods are presented for the determination of Nicergoline in presence of its hydrolysis-induced degradation product. The first method was based on measurement of the first derivative of ratio spectra amplitude of Nicergoline at 291 nm. The second method was based on separation of Nicergoline from its degradation product followed by densitometric measurement of the spots at 287 nm. The separation was carried out on HPTLC silica gel F(254) plates, using methanol-ethyl acetate-glacial acetic acid (5:7:3, v/v/v) as mobile phase. The third method was based on high performance liquid chromatographic (HPLC) separation and determination of Nicergoline from its degradation product on a reversed phase, nucloesil C(18) column using a mobile phase of methanol-water-glacial acetic acid (80:20:0.1, v/v/v) with UV detection at 280 nm. Chlorpromazine hydrochloride was used as internal standard. Laboratory prepared mixtures containing different percentages of the degradation product were analysed by the proposed methods and satisfactory results were obtained. These methods have been successfully applied to the analysis of Nicergoline in Sermion tablets. The validities of these methods were ascertained by applying standard addition technique, the mean percentage recovery +/- R.S.D.% was found to be 99.47 +/- 0.752, 100.01 +/- 0.940, 99.75 +/- 0.740 for the first derivative of ratio spectra method, the HPTLC method and the HPLC method, respectively. The proposed methods were statistically compared with the manufacturer's HPLC method of analysis of Nicergoline and no significant difference was found with respect to both precision and accuracy. They have the advantage of being stability indicating. Therefore, they can be used for routine analysis of the drug in quality control laboratories. Copyright 2002 Elsevier Science B.V.

  8. Process for treating fission waste

    DOEpatents

    Rohrmann, Charles A.; Wick, Oswald J.

    1983-01-01

    A method is described for the treatment of fission waste. A glass forming agent, a metal oxide, and a reducing agent are mixed with the fission waste and the mixture is heated. After melting, the mixture separates into a glass phase and a metal phase. The glass phase may be used to safely store the fission waste, while the metal phase contains noble metals recovered from the fission waste.

  9. Temperature-enhanced alumina HPLC method for the analysis of wax esters, sterol esters, and methyl esters.

    PubMed

    Moreau, Robert A; Kohout, Karen; Singh, Vijay

    2002-12-01

    Previous attempts at separating nonpolar lipid esters (including wax esters, sterol esters, and methyl esters) have achieved only limited success. Among the several normal-phase methods tested, a single recent report of a method employing an alumina column at 30 degrees C with a binary gradient system was the most promising. In the current study, modification of the alumina method by increasing the column temperature to 75 degrees C improved the separation of standards of wax esters and sterol esters. Elevated column temperature also enhanced the separation of FAME with differing degrees of unsaturation. Evidence was also presented to indicate that the method similarly separated phytosterol esters, based on their levels of unsaturation. With the increased interest in phytosterol- and phytostanol-ester enriched functional foods, this method should provide a technique to characterize and compare these products.

  10. Method performance and multi-laboratory assessment of a normal phase high pressure liquid chromatography-fluorescence detection method for the quantitation of flavanols and procyanidins in cocoa and chocolate containing samples.

    PubMed

    Robbins, Rebecca J; Leonczak, Jadwiga; Johnson, J Christopher; Li, Julia; Kwik-Uribe, Catherine; Prior, Ronald L; Gu, Liwei

    2009-06-12

    The quantitative parameters and method performance for a normal-phase HPLC separation of flavanols and procyanidins in chocolate and cocoa-containing food products were optimized and assessed. Single laboratory method performance was examined over three months using three separate secondary standards. RSD(r) ranged from 1.9%, 4.5% to 9.0% for cocoa powder, liquor and chocolate samples containing 74.39, 15.47 and 1.87 mg/g flavanols and procyanidins, respectively. Accuracy was determined by comparison to the NIST Standard Reference Material 2384. Inter-lab assessment indicated that variability was quite low for seven different cocoa-containing samples, with a RSD(R) of less than 10% for the range of samples analyzed.

  11. A decision directed detector for the phase incoherent Gaussian channel

    NASA Technical Reports Server (NTRS)

    Kazakos, D.

    1975-01-01

    A vector digital signalling scheme is proposed for simultaneous adaptive data transmission and phase estimation. The use of maximum likelihood estimation methods predicts a better performance than the phase-locked loop. The phase estimate is shown to converge to the true value, so that the adaptive nature of the detector effectively achieves phase acquisition and improvement in performance. No separate synchronization interval is required and phase fluctuations can be tracked simultaneously with the transmission of information.

  12. Construction of a hydrazone-linked chiral covalent organic framework-silica composite as the stationary phase for high performance liquid chromatography.

    PubMed

    Zhang, Kai; Cai, Song-Liang; Yan, Yi-Lun; He, Zi-Hao; Lin, Hui-Mei; Huang, Xiao-Ling; Zheng, Sheng-Run; Fan, Jun; Zhang, Wei-Guang

    2017-10-13

    Covalent organic frameworks (COFs), as an emerging class of crystalline porous organic polymers, have great potential for applications in chromatographic separation owning to their fascinating crystalline structures and outstanding properties. However, development of COF materials as novel stationary phases in high performance liquid chromatography (HPLC) is just in its infancy. Herein, we report the design and construction of a new hydrazone-linked chiral COF, termed BtaMth COF, from a chiral hydrazide building block (Mth) and present a one-pot synthetic method for the fabrication of BtaMth@SiO 2 composite for HPLC separation of isomers. The as-synthesized BtaMth chiral COF displays good crystallinity, high porosity, as well as excellent chemical stability. Meanwhile, the fabricated HPLC column by using BtaMth@SiO 2 composite as the new stationary phase exhibits high resolution performances for the separation of positional isomers including nitrotoluene and nitrochlorobenzene, as well as cis-trans isomers including beta-cypermethrin and metconazole. Additionally, some effects such as the composition of the mobile phase and column temperature for HPLC separations on the BtaMth@SiO 2 packed column also have been studied in detail. The successful applications indicate the great potentials of hydrazone-linked chiral COF-silica composite as novel stationary phase for the efficient HPLC separation. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Improving Reliability of a Residency Interview Process

    PubMed Central

    Serres, Michelle L.; Gundrum, Todd E.

    2013-01-01

    Objective. To improve the reliability and discrimination of a pharmacy resident interview evaluation form, and thereby improve the reliability of the interview process. Methods. In phase 1 of the study, authors used a Many-Facet Rasch Measurement model to optimize an existing evaluation form for reliability and discrimination. In phase 2, interviewer pairs used the modified evaluation form within 4 separate interview stations. In phase 3, 8 interviewers individually-evaluated each candidate in one-on-one interviews. Results. In phase 1, the evaluation form had a reliability of 0.98 with person separation of 6.56; reproducibly, the form separated applicants into 6 distinct groups. Using that form in phase 2 and 3, our largest variation source was candidates, while content specificity was the next largest variation source. The phase 2 g-coefficient was 0.787, while confirmatory phase 3 was 0.922. Process reliability improved with more stations despite fewer interviewers per station—impact of content specificity was greatly reduced with more interview stations. Conclusion. A more reliable, discriminating evaluation form was developed to evaluate candidates during resident interviews, and a process was designed that reduced the impact from content specificity. PMID:24159209

  14. Method and apparatus for physical separation of different sized nanostructures

    DOEpatents

    Roberts, Christopher B.; Saunders, Steven R.

    2012-07-10

    The present application provides apparatuses and methods for the size-selective fractionation of ligand-capped nanoparticles that utilizes the tunable thermophysical properties of gas-expanded liquids. The nanoparticle size separation processes are based on the controlled reduction of the solvent strength of an organic phase nanoparticle dispersion through increases in concentration of the antisolvent gas, such as CO.sub.2, via pressurization. The method of nanomaterial separation contains preparing a vessel having a solvent and dispersed nanoparticles, pressurizing the chamber with a gaseous antisolvent, and causing a first amount of the nanoparticles to precipitate, transporting the solution to a second vessel, pressurizing the second vessel with the gaseous antisolvent and causing further nanoparticles to separate from the solution.

  15. A single step reversed-phase high performance liquid chromatography separation of polar and non-polar lipids.

    PubMed

    Olsson, Petter; Holmbäck, Jan; Herslöf, Bengt

    2014-11-21

    This paper reports a simple chromatographic system to separate lipids classes as well as their molecular species. By the use of phenyl coated silica as stationary phase in combination with a simple mobile phase consisting of methanol and water, all tested lipid classes elute within 30 min. Furthermore, a method to accurately predict retention times of specific lipid components for this type of chromatography is presented. Common detection systems were used, namely evaporative light scattering detection (ELSD), charged aerosol detection (CAD), electrospray mass spectrometry (ESI-MS), and UV detection. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Dynamical phase separation using a microfluidic device: experiments and modeling

    NASA Astrophysics Data System (ADS)

    Aymard, Benjamin; Vaes, Urbain; Radhakrishnan, Anand; Pradas, Marc; Gavriilidis, Asterios; Kalliadasis, Serafim; Complex Multiscale Systems Team

    2017-11-01

    We study the dynamical phase separation of a binary fluid by a microfluidic device both from the experimental and from the modeling points of view. The experimental device consists of a main channel (600 μm wide) leading into an array of 276 trapezoidal capillaries of 5 μm width arranged on both sides and separating the lateral channels from the main channel. Due to geometrical effects as well as wetting properties of the substrate, and under well chosen pressure boundary conditions, a multiphase flow introduced into the main channel gets separated at the capillaries. Understanding this dynamics via modeling and numerical simulation is a crucial step in designing future efficient micro-separators. We propose a diffuse-interface model, based on the classical Cahn-Hilliard-Navier-Stokes system, with a new nonlinear mobility and new wetting boundary conditions. We also propose a novel numerical method using a finite-element approach, together with an adaptive mesh refinement strategy. The complex geometry is captured using the same computer-aided design files as the ones adopted in the fabrication of the actual device. Numerical simulations reveal a very good qualitative agreement between model and experiments, demonstrating also a clear separation of phases.

  17. Development and Validation of a Stability-indicating Reversed-phase UPLC-UV Method for the Assay of Imidacloprid and Estimation of its Related Compounds.

    PubMed

    Tian, Jingzhi; Rustum, Abu

    2018-02-01

    Imidacloprid is used as an active pharmaceutical ingredient (API) in veterinary drugs to control fleas and ticks for dogs and cats. Here we are reporting for the first time a validated stability-indicating reversed-phase UPLC-UV method for the assay of imidacloprid and estimation of its related compounds. The stability-indicating capability of this method has been demonstrated by a forced degradation study. All related compounds including processing impurities, imidacloprid API and degradates from stressed samples were well separated from each other. Structures of major degradates from forced degradation study were elucidated through UPLC-MS/MS and key degradation pathways were proposed from the proposed chemical structures of major degradates. The UPLC-UV method is carried out using an HSS T3 column (C18, 2.1 × 30 mm, 1.8 μm particle size) maintained at 30°C with mobile phase A (0.05% v/v of phosphoric acid in water) and mobile phase B (methanol/acetonitrile 75/25 v/v). Analytes are separated by a gradient elution and detected at 270 nm. The UPLC method is green and fast with only 6.5 min run time and about 3.5 ml mobile phase consumption for each sample analysis. The UPLC-UV method was validated according to ICH guidelines. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Method and device for ion mobility separations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibrahim, Yehia M.; Garimella, Sandilya V. B.; Smith, Richard D.

    2017-07-11

    Methods and devices for ion separations or manipulations in gas phase are disclosed. The device includes a single non-planar surface. Arrays of electrodes are coupled to the surface. A combination of RF and DC voltages are applied to the arrays of electrodes to create confining and driving fields that move ions through the device. The DC voltages are static DC voltages or time-dependent DC potentials or waveforms.

  19. A review on solid phase extraction of actinides and lanthanides with amide based extractants.

    PubMed

    Ansari, Seraj A; Mohapatra, Prasanta K

    2017-05-26

    Solid phase extraction is gaining attention from separation scientists due to its high chromatographic utility. Though both grafted and impregnated forms of solid phase extraction resins are popular, the later is easy to make by impregnating a given organic extractant on to an inert solid support. Solid phase extraction on an impregnated support, also known as extraction chromatography, combines the advantages of liquid-liquid extraction and the ion exchange chromatography methods. On the flip side, the impregnated extraction chromatographic resins are less stable against leaching out of the organic extractant from the pores of the support material. Grafted resins, on the other hand, have a higher stability, which allows their prolong use. The goal of this article is a brief literature review on reported actinide and lanthanide separation methods based on solid phase extractants of both the types, i.e., (i) ligand impregnation on the solid support or (ii) ligand functionalized polymers (chemically bonded resins). Though the literature survey reveals an enormous volume of studies on the extraction chromatographic separation of actinides and lanthanides using several extractants, the focus of the present article is limited to the work carried out with amide based ligands, viz. monoamides, diamides and diglycolamides. The emphasis will be on reported applied experimental results rather than on data pertaining fundamental metal complexation. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Separation and determination of polyurethane amine catalysts in polyether polyols by using UHPLC-Q-TOF-MS on a reversed-phase/cation-exchange mixed-mode column.

    PubMed

    Li, Jiaxiao; Zhu, Marcel

    2018-02-01

    A simple, selective, and accurate ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry method was established and validated for the efficient separation and quantification of polyurethane amine catalysts in polyether polyols. Amine catalysts were primarily separated in polyether polyol-based sample by solid-phase extraction, and further baseline separated on a reversed-phase/cation-exchange mixed-mode column (SiELC Primesep™ 200) using 0.1% trifluoroacetic acid/acetonitrile as a mobile phase in gradient elution mode at a flow rate of 0.2 mL/min. High-resolution quadrupole time-of-flight mass spectrometry analysis in electrospray ionization positive mode allowed the identification as N,N'-bis[3-(dimethylamino)propyl]urea, N-[2-(2-dimethylaminoethoxy)ethyl]-N-methyl-1,3-propanediamine, and N,N,N',N'-tetramethyldipropylenetriamine. The method was validated and presented good linearity for all the analytes in blank matrices within the concentration range of 0.20-5.0 or 0.1-2.0 μg/mL with the correlation coefficients (R 2 ) ranging from 0.986 to 0.997. Method recovery ranged within 81-105% at all three levels (80, 100, and 120% of the original amount) with relative standard deviations of 1.0-6.2%. The limits of detection were in the range of 0.007-0.051 μg/mL. Good precision was obtained with relative standard deviation below 3.2 and 0.72% for peak area and retention time of three amines, respectively. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Determination of fenoterol in human plasma by HPLC with fluorescence detection after derivatization.

    PubMed

    Meineke, Ingolf; Steinmetz, Hannelore; Kramer, Skaidrit; Gleiter, Christoph H

    2002-06-20

    A new method for the determination of fenoterol is described, which uses HPLC separation with fluorescence detection. Dobutamine is employed as an internal standard. The separation was achieved on a short reversed phase column with a mobile phase consisting of water, acetonitrile and methanol. Prior to chromatography both analytes are derivatized with 9-chloroformyl-carbazole. Isolation of the analytes from plasma is carried out by liquid-liquid extraction into 2-butanol after protein precipitation with acetonitrile. The method is capable of estimating fenoterol concentrations in the sub-nanogram per ml range with sufficient accuracy and precision. The determination of fenoterol can now be carried out in the average laboratory without radiolabelled material.

  2. Aptamer-functionalized Fe3 O4 magnetic nanoparticles as a solid-phase extraction adsorbent for the selective extraction of berberine from Cortex phellodendri.

    PubMed

    Jiang, Ling-Feng; Chen, Bo-Cheng; Chen, Ben; Li, Xue-Jian; Liao, Hai-Lin; Zhang, Wen-Yan; Wu, Lin

    2017-07-01

    The extraction adsorbent was fabricated by immobilizing the highly specific recognition and binding of aptamer onto the surface of Fe 3 O 4 magnetic nanoparticles, which not only acted as recognition elements to recognize and capture the target molecule berberine from the extract of Cortex phellodendri, but also could favor the rapid separation and purification of the bound berberine by using an external magnet. The developed solid-phase extraction method in this work was useful for the selective extraction and determination of berberine in Cortex phellodendri extracts. Various conditions such as the amount of aptamer-functionalized Fe 3 O 4 magnetic nanoparticles, extraction time, temperature, pH value, Mg 2+ concentration, elution time and solvent were optimized for the solid-phase extraction of berberine. Under optimal conditions, the purity of berberine extracted from Cortex phellodendri was as high as 98.7% compared with that of 4.85% in the extract, indicating that aptamer-functionalized Fe 3 O 4 magnetic nanoparticles-based solid-phase extraction method was very effective for berberine enrichment and separation from a complex herb extract. The applicability and reliability of the developed solid-phase extraction method were demonstrated by separating berberine from nine different concentrations of one Cortex phellodendri extract. The relative recoveries of the spiked solutions of all the samples were between 95.4 and 111.3%, with relative standard deviations ranging between 0.57 and 1.85%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Analysis of solvent induced porous PMMA-Bioglass monoliths by the phase separation method--mechanical and in vitro biocompatible studies.

    PubMed

    Durgalakshmi, D; Balakumar, S

    2015-01-14

    Mimicking three dimensional microstructural scaffolds with their requisite mechanical properties in relation to human bone is highly needed for implant applications. Various biocompatible polymers and bioactive glasses were synthesized to achieve these properties. In the present study, we have fabricated highly porous and bioactive PMMA-Bioglass scaffolds by the phase separation method. Chloroform, acetone and an ethanol-water mixture were used as the different solvent phases in preparing the scaffolds. Large interconnecting pores of sizes ∼100 to 250 μm were observed in the scaffolds and a porosity percentage up to 54% was also achieved by this method. All samples showed a brittle fracture with the highest modulus of 91 MPa for the ethanol-water prepared scaffolds. The bioactivities of the scaffolds were further studied by immersing them in simulated body fluid for 28 days. Scanning electron microscopy, X-ray diffraction and Raman spectra confirmed the formation of bioactive hydroxyl calcium apatite on the surfaces of the scaffolds.

  4. APPLICATION OF A SPRAY DEPOSITION METHOD FOR REVERSED PHASE LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY

    EPA Science Inventory

    Four coal gasification wastewater samples were analyzed for nonvolatile and polar organics by liquid chromatography-mass spectrometry (LC/MS). Samples were separated on a reverse phase liquid chromatographic column using an aqueous solvent as the eluant. A special spray depositio...

  5. Novel Procedure for Extraction of a Latent Grape Polyphenoloxidase Using Temperature-Induced Phase Separation in Triton X-114 1

    PubMed Central

    Sánchez-Ferrer, Alvaro; Bru, Roque; Garcia-Carmona, Francisco

    1989-01-01

    Polyphenoloxidase from grape berries is extracted only by nonionic detergents with a hydrophilic-lipophilic balance between 12.4 and 13.5. The enzyme was partially purified in latent form, free of phenolics and chlorophylls, by using temperature phase partitioning in a solution of Triton X-114. This method permits the purification of the enzyme with the same fold purification as the commonly used method, but with a yield three times higher and a 90% reduction in time needed. The latent enzyme can be activated by different treatments, including trypsin and cationic and anionic detergents. Cetyltrimethylamonium bromide was found to be the most effective detergent activator, followed by sodium dodecyl sulfate. Polyphenoloxidase in grape berries, in spite of being an integral membrane protein, had an anomalous interaction with Triton X-114, remaining in the detergent-poor phase after phase separation. This could be explained by its having a short hydrophobic tail that anchors it to the membrane. Images Figure 1 Figure 3 PMID:16667205

  6. Apparatus and method for rapid separation and detection of hydrocarbon fractions in a fluid stream

    DOEpatents

    Sluder, Charles S.; Storey, John M.; Lewis, Sr., Samuel A.

    2013-01-22

    An apparatus and method for rapid fractionation of hydrocarbon phases in a sample fluid stream are disclosed. Examples of the disclosed apparatus and method include an assembly of elements in fluid communication with one another including one or more valves and at least one sorbent chamber for removing certain classifications of hydrocarbons and detecting the remaining fractions using a detector. The respective ratios of hydrocarbons are determined by comparison with a non separated fluid stream.

  7. Fiber-based monolithic columns for liquid chromatography.

    PubMed

    Ladisch, Michael; Zhang, Leyu

    2016-10-01

    Fiber-based monoliths for use in liquid chromatographic separations are defined by columns packed with aligned fibers, woven matrices, or contiguous fiber structures capable of achieving rapid separations of proteins, macromolecules, and low molecular weight components. A common denominator and motivating driver for this approach, first initiated 25 years ago, was reducing the cost of bioseparations in a manner that also reduced residence time of retained components while achieving a high ratio of mass to momentum transfer. This type of medium, when packed into a liquid chromatography column, minimized the fraction of stagnant liquid and resulted in a constant plate height for non-adsorbing species. The uncoupling of dispersion from eluent flow rate enabled the surface chemistry of the stationary phase to be considered separately from fluid transport phenomena and pointed to new ways to apply chemistry for the engineering of rapid bioseparations. This paper addresses developments and current research on fiber-based monoliths and explains how the various forms of this type of chromatographic stationary phase have potential to provide new tools for analytical and preparative scale separations. The different stationary phases are discussed, and a model that captures the observed constant plate height as a function of mobile phase velocity is reviewed. Methods that enable hydrodynamically stable fiber columns to be packed and operated over a range of mobile phase flow rates, together with the development of new fiber chemistries, are shown to provide columns that extend the versatility of liquid chromatography using monoliths, particularly at the preparative scale. Graphical Abstract Schematic representation of a sample mixture being separated by a rolled-stationary phase column, resulting separated peaks shown in the chromatogram.

  8. Nanoporous thermosetting polymers.

    PubMed

    Raman, Vijay I; Palmese, Giuseppe R

    2005-02-15

    Potential applications of nanoporous thermosetting polymers include polyelectrolytes in fuel cells, separation membranes, adsorption media, and sensors. Design of nanoporous polymers for such applications entails controlling permeability by tailoring pore size, structure, and interface chemistry. Nanoporous thermosetting polymers are often synthesized via free radical mechanisms using solvents that phase separate during polymerization. In this work, a novel technique for the synthesis of nanoporous thermosets is presented that is based on the reactive encapsulation of an inert solvent using step-growth cross-linking polymerization without micro/macroscopic phase separation. The criteria for selecting such a monomer-polymer-solvent system are discussed based on FTIR analysis, observed micro/macroscopic phase separation, and thermodynamics of swelling. Investigation of resulting network pore structures by scanning electron microscopy (SEM) and small-angle X-ray scattering following extraction and supercritical drying using carbon dioxide showed that nanoporous polymeric materials with pore sizes ranging from 1 to 50 nm can be synthesized by varying the solvent content. The differences in the porous morphology of these materials compared to more common free radically polymerized analogues that exhibit phase separation were evident from SEM imaging. Furthermore, it was demonstrated that the chemical activity of the nanoporous materials obtained by our method could be tailored by grafting appropriate functional groups at the pore interface.

  9. Semi-Preparative Isolation and Purification of Three Tauro-Conjugated Cholic Acids from Pulvis Fellis Suis by HSCCC Coupled with ELSD Detection.

    PubMed

    He, Jiao; Zhang, Yongmin; Ito, Yoichiro; Sun, Wenji

    2011-01-01

    Coupled with evaporative light scattering detection, a high-speed counter-current chromatography (HSCCC) method was applied to the separation and purification of three tauro-conjugated cholic acids of taurochenodeoxycholic acid (TCDCA), taurohyodeoxycholic acid (THDCA) and taurohyocholic acid (THCA) from Pulvis Fellis Suis (Pig gallbladder bile) for the first time. The two-phase solvent system composed of chloroform-methanol-water-acetic acid (4:4:2:0.3, v/v/v/v) was selected for the one-step separation where the lower phase was used as the mobile phase in the head to tail elution mode. The revolution speed of the separation column, flow rate of the mobile phase and separation temperature were 800 rpm, 1.5 ml/min and 25°C respectively. From 100 mg of the crude extract, 10.2 mg of TCDCA, 11.8 mg of THDCA and 5.3 mg of THCA were obtained with the purity of 94.6%, 96.5% and 95.4%, respectively. in one step separation The HSCCC fractions were analyzed by high-performance liquid chromatography (HPLC) and the structures of the three tauro-conjugated cholic acids were identified by ESI-MS, (1)H NMR and (13)C NMR.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, John Howard

    A method for removing sulfur, nitrogen or metals from an oil feedstock. The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.

  11. Wave packet interferometry and quantum state reconstruction by acousto-optic phase modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tekavec, Patrick F.; Dyke, Thomas R.; Marcus, Andrew H.

    2006-11-21

    Studies of wave packet dynamics often involve phase-selective measurements of coherent optical signals generated from sequences of ultrashort laser pulses. In wave packet interferometry (WPI), the separation between the temporal envelopes of the pulses must be precisely monitored or maintained. Here we introduce a new (and easy to implement) experimental scheme for phase-selective measurements that combines acousto-optic phase modulation with ultrashort laser excitation to produce an intensity-modulated fluorescence signal. Synchronous detection, with respect to an appropriately constructed reference, allows the signal to be simultaneously measured at two phases differing by 90 deg. Our method effectively decouples the relative temporal phasemore » from the pulse envelopes of a collinear train of optical pulse pairs. We thus achieve a robust and high signal-to-noise scheme for WPI applications, such as quantum state reconstruction and electronic spectroscopy. The validity of the method is demonstrated, and state reconstruction is performed, on a model quantum system - atomic Rb vapor. Moreover, we show that our measurements recover the correct separation between the absorptive and dispersive contributions to the system susceptibility.« less

  12. Comparison of liquid and supercritical fluid chromatography mobile phases for enantioselective separations on polysaccharide stationary phases.

    PubMed

    Khater, Syame; Lozac'h, Marie-Anne; Adam, Isabelle; Francotte, Eric; West, Caroline

    2016-10-07

    Analysis and production of enantiomerically pure compounds is a major topic of interest when active pharmaceutical ingredients are concerned. Enantioselective chromatography has become a favourite both at the analytical and preparative scales. High-performance liquid chromatography (HPLC) and supercritical fluid chromatography (SFC) are dominating the scene and are often seen as complementary techniques. Nowadays, for economic and ecologic reasons, SFC may be preferred over normal-phase HPLC (NPLC) as it allows significant reductions in solvent consumption. However, the transfer of NPLC methods to SFC is not always straightforward. In this study, we compare the retention of achiral molecules and separation of enantiomers under supercritical fluid (carbon dioxide with ethanol or isopropanol) and liquid normal-phase (heptane with ethanol or isopropanol) elution modes with polysaccharide stationary phases in order to explore the differences between the retention and enantioseparation properties between the two modes. Chemometric methods (namely quantitative structure-retention relationships and discriminant analysis) are employed to compare the results obtained on a large set of analytes (171 achiral probes and 97 racemates) and gain some understanding on the retention and separation mechanisms. The results indicate that, contrary to popular belief, carbon dioxide - solvent SFC mobile phases are often weaker eluents than liquid mobile phases. It appears that SFC and NPLC elution modes provide different retention mechanisms. While some enantioseparations are unaffected, facilitating the transfer between the two elution modes, other enantioseparations may be drastically different due to different types and strength of interactions contributing to enantioselectivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Recent highlights in electro-driven separations- selected applications of alkylthiol gold nanoparticles in capillary electrophoresis and capillary electro-chromatography.

    PubMed

    Guihen, Elizabeth

    2017-09-01

    To date, alkylthiol gold nanoparticles (AuNPs) have been widely used in electro-chromatographic separation techniques as a viable alternative to traditional stationary phases. This is mainly due to their stability, chemical inertness, ease of functionality, increased phase ratio, ability to form self-assembled monolayers. They also yield versatile stationary phases with highly specific targeted functionalities. At the nanoscale region, the chemical and physical properties of a molecule display different attributes to that of the parent molecules or material, hence these features can be harnessed in electro-driven chromatographic separations. Application areas illustrating the use of AuNPs in separation science continue to grow and expand to cover many different kinds of analysis. The last decade has witnessed a successful trend in miniaturisation of chemical separation systems toward the micro and nanoscale ranges. Nanoparticle-based stationary phases fit well with performing chemical separations on microfluidic and capillary platforms. In this review the theory of the use of alkylthiol gold nanoparticles in electro-chromatographic driven separation methods will be discussed. This will be followed by details of recent and selected applications showing alkylthiol gold nanoparticles in capillary electrophoretic and open-tubular electro-chromatographic separations. This review will focus solely on alkylthiol based gold nanoparticles, therefore other kinds of chemical moieties bonded to gold nanoparticles are outside the scope of this review. Finally the future outlook of this exciting technology will be outlined in some detail in the final section. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Carbon nanotube (CNT) and nanofibrillated cellulose (NFC) reinforcement effect on thermoplastic polyurethane (TPU) scaffolds fabricated via phase separation using dimethyl sulfoxide (DMSO) as solvent.

    PubMed

    Mi, Hao-Yang; Jing, Xin; Salick, Max R; Cordie, Travis M; Turng, Lih-Sheng

    2016-09-01

    Although phase separation is a simple method of preparing tissue engineering scaffolds, it suffers from organic solvent residual in the scaffold. Searching for nontoxic solvents and developing effective solvent removal methods are current challenges in scaffold fabrication. In this study, thermoplastic polyurethane (TPU) scaffolds containing carbon nanotubes (CNTs) or nanofibrillated cellulose fibers (NFCs) were prepared using low toxicity dimethyl sulfoxide (DMSO) as a solvent. The effects of two solvent removal approaches on the final scaffold morphology were studied. The freeze drying method caused large pores, with small pores on the pore walls, which created connections between the pores. Meanwhile, the leaching and freeze drying method led to interconnected fine pores with smaller pore diameters. The nucleation effect of CNTs and the phase separation behavior of NFCs in the TPU solution resulted in significant differences in the microstructures of the resulting scaffolds. The mechanical performance of the nanocomposite scaffolds with different morphologies was investigated. Generally, the scaffolds with a fine pore structure showed higher compressive properties, and both the CNTs and NFCs improved the compressive properties of the scaffolds, with greater enhancement found in TPU/NFC nanocomposite scaffolds. In addition, all scaffolds showed good sustainability under cyclical load bearing, and the biocompatibility of the scaffolds was verified via 3T3 fibroblast cell culture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Water and fat separation in real-time MRI of joint movement with phase-sensitive bSSFP.

    PubMed

    Mazzoli, Valentina; Nederveen, Aart J; Oudeman, Jos; Sprengers, Andre; Nicolay, Klaas; Strijkers, Gustav J; Verdonschot, Nico

    2017-07-01

    To introduce a method for obtaining fat-suppressed images in real-time MRI of moving joints at 3 Tesla (T) using a bSSFP sequence with phase detection to enhance visualization of soft tissue structures during motion. The wrist and knee of nine volunteers were imaged with a real-time bSSFP sequence while performing dynamic tasks. For appropriate choice of sequence timing parameters, water and fat pixels showed an out-of-phase behavior, which was exploited to reconstruct water and fat images. Additionally, a 2-point Dixon sequence was used for dynamic imaging of the joints, and resulting water and fat images were compared with our proposed method. The joints could be visualized with good water-fat separation and signal-to-noise ratio (SNR), while maintaining a relatively high temporal resolution (5 fps in knee imaging and 10 fps in wrist imaging). The proposed method produced images of moving joints with higher SNR and higher image quality when compared with the Dixon method. Water-fat separation is feasible in real-time MRI of moving knee and wrist at 3 T. PS-bSSFP offers movies with higher SNR and higher diagnostic quality when compared with Dixon scans. Magn Reson Med 78:58-68, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  16. [Progresses in screening active compounds from herbal medicine by affinity chromatography].

    PubMed

    Feng, Ying-shu; Tong, Shan-shan; Xu, Xi-ming; Yu, Jiang-nan

    2015-03-01

    Affinity chromatography is a chromatographic method for separating molecules using the binding characteristics of the stationary phase with potential drug molecules. This method can be performed as a high throughput screening method and a chromatographic separation method to screen a variety of active drugs. This paper summarizes the history of affinity chromatography, screening technology of affinity chromatography, and application of affinity chromatography in screening bio-active compounds in herbal medicines, and then discusses its application prospects, in order to broaden applications of the affinity chromatography in drug screening.

  17. Comparison of originator and biosimilar therapeutic monoclonal antibodies using comprehensive two-dimensional liquid chromatography coupled with time-of-flight mass spectrometry.

    PubMed

    Sorensen, Matthew; Harmes, David C; Stoll, Dwight R; Staples, Gregory O; Fekete, Szabolcs; Guillarme, Davy; Beck, Alain

    2016-10-01

    As research, development, and manufacturing of biosimilar protein therapeutics proliferates, there is great interest in the continued development of a portfolio of complementary analytical methods that can be used to efficiently and effectively characterize biosimilar candidate materials relative to the respective reference (i.e., originator) molecule. Liquid phase separation techniques such as liquid chromatography and capillary electrophoresis are powerful tools that can provide both qualitative and quantitative information about similarities and differences between reference and biosimilar materials, especially when coupled with mass spectrometry. However, the inherent complexity of these protein materials challenges even the most modern one-dimensional (1D) separation methods. Two-dimensional (2D) separations present a number of potential advantages over 1D methods, including increased peak capacity, 2D peak patterns that can facilitate unknown identification, and improvement in the compatibility of some separation methods with mass spectrometry. In this study, we demonstrate the use of comprehensive 2D-LC separations involving cation-exchange (CEX) and reversed-phase (RP) separations in the first and second dimensions to compare 3 reference/biosimilar pairs of monoclonal antibodies (cetuximab, trastuzumab and infliximab) that cover a range of similarity/disimilarity in a middle-up approach. The second dimension RP separations are coupled to time-of-flight mass spectrometry, which enables direct identification of features in the chromatograms obtained from mAbs digested with the IdeS enzyme, or digestion with IdeS followed by reduction with dithiothreitol. As many as 23 chemically unique mAb fragments were detected in a single sample. Our results demonstrate that these rich datasets enable facile assesment of the degree of similarity between reference and biosimilar materials.

  18. Process for treating fission waste. [Patent application

    DOEpatents

    Rohrmann, C.A.; Wick, O.J.

    1981-11-17

    A method is described for the treatment of fission waste. A glass forming agent, a metal oxide, and a reducing agent are mixed with the fission waste and the mixture is heated. After melting, the mixture separates into a glass phase and a metal phase. The glass phase may be used to safely store the fission waste, while the metal phase contains noble metals recovered from the fission waste.

  19. Development of an Efficient Meso- scale Multi-phase Flow Solver in Nuclear Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Taehun

    2015-10-20

    The proposed research aims at formulating a predictive high-order Lattice Boltzmann Equation for multi-phase flows relevant to nuclear energy related application - namely, saturated and sub-cooled boiling in reactors, and liquid- liquid mixing and extraction for fuel cycle separation. An efficient flow solver will be developed based on the Finite Element based Lattice Boltzmann Method (FE- LBM), accounting for phase-change heat transfer and capable of treating multiple phases over length scales from the submicron to the meter. A thermal LBM will be developed in order to handle adjustable Prandtl number, arbitrary specific heat ratio, a wide range of temperature variations,more » better numerical stability during liquid-vapor phase change, and full thermo-hydrodynamic consistency. Two-phase FE-LBM will be extended to liquid–liquid–gas multi-phase flows for application to high-fidelity simulations building up from the meso-scale up to the equipment sub-component scale. While several relevant applications exist, the initial applications for demonstration of the efficient methods to be developed as part of this project include numerical investigations of Critical Heat Flux (CHF) phenomena in nuclear reactor fuel bundles, and liquid-liquid mixing and interfacial area generation for liquid-liquid separations. In addition, targeted experiments will be conducted for validation of this advanced multi-phase model.« less

  20. Fast and comprehensive analysis of secondary metabolites in cocoa products using ultra high-performance liquid chromatography directly after pressurized liquid extraction.

    PubMed

    Damm, Irina; Enger, Eileen; Chrubasik-Hausmann, Sigrun; Schieber, Andreas; Zimmermann, Benno F

    2016-08-01

    Fast methods for the extraction and analysis of various secondary metabolites from cocoa products were developed and optimized regarding speed and separation efficiency. Extraction by pressurized liquid extraction is automated and the extracts are analyzed by rapid reversed-phase ultra high-performance liquid chromatography and normal-phase high-performance liquid chromatography methods. After extraction, no further sample treatment is required before chromatographic analysis. The analytes comprise monomeric and oligomeric flavanols, flavonols, methylxanthins, N-phenylpropenoyl amino acids, and phenolic acids. Polyphenols and N-phenylpropenoyl amino acids are separated in a single run of 33 min, procyanidins are analyzed by normal-phase high-performance liquid chromatography within 16 min, and methylxanthins require only 6 min total run time. A fourth method is suitable for phenolic acids, but only protocatechuic acid was found in relevant quantities. The optimized methods were validated and applied to 27 dark chocolates, one milk chocolate, two cocoa powders and two food supplements based on cocoa extract. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Amplitude and Phase Characteristics of Signals at the Output of Spatially Separated Antennas for Paths with Scattering

    NASA Astrophysics Data System (ADS)

    Anikin, A. S.

    2018-06-01

    Conditional statistical characteristics of the phase difference are considered depending on the ratio of instantaneous output signal amplitudes of spatially separated weakly directional antennas for the normal field model for paths with radio-wave scattering. The dependences obtained are related to the physical processes on the radio-wave propagation path. The normal model parameters are established at which the statistical characteristics of the phase difference depend on the ratio of the instantaneous amplitudes and hence can be used to measure the phase difference. Using Shannon's formula, the amount of information on the phase difference of signals contained in the ratio of their amplitudes is calculated depending on the parameters of the normal field model. Approaches are suggested to reduce the shift of phase difference measured for paths with radio-wave scattering. A comparison with results of computer simulation by the Monte Carlo method is performed.

  2. [Development of an automatic vacuum liquid chromatographic device and its application in the separation of the components from Schisandra chinensis (Turz) Baill].

    PubMed

    Zhu, Jingbo; Liu, Baoyue; Shan, Shibo; Ding, Yanl; Kou, Zinong; Xiao, Wei

    2015-08-01

    In order to meet the needs of efficient purification of products from natural resources, this paper developed an automatic vacuum liquid chromatographic device (AUTO-VLC) and applied it to the component separation of petroleum ether extracts of Schisandra chinensis (Turcz) Baill. The device was comprised of a solvent system, a 10-position distribution valve, a 3-position changes valve, dynamic axis compress chromatographic columns with three diameters, and a 10-position fraction valve. The programmable logic controller (PLC) S7- 200 was adopted to realize the automatic control and monitoring of the mobile phase changing, column selection, separation time setting and fraction collection. The separation results showed that six fractions (S1-S6) of different chemical components from 100 g Schisandra chinensis (Turcz) Baill. petroleum ether phase were obtained by the AUTO-VLC with 150 mm diameter dynamic axis compress chromatographic column. A new method used for the VLC separation parameters screened by using multiple development TLC was developed and confirmed. The initial mobile phase of AUTO-VLC was selected by taking Rf of all the target compounds ranging from 0 to 0.45 for fist development on the TLC; gradient elution ratio was selected according to k value (the slope of the linear function of Rf value and development times on the TLC) and the resolution of target compounds; elution times (n) were calculated by the formula n ≈ ΔRf/k. A total of four compounds with the purity more than 85% and 13 other components were separated from S5 under the selected conditions for only 17 h. Therefore, the development of the automatic VLC and its method are significant to the automatic and systematic separation of traditional Chinese medicines.

  3. Properties of water as a novel stationary phase in capillary gas chromatography.

    PubMed

    Gallant, Jonathan A; Thurbide, Kevin B

    2014-09-12

    A novel method of separation that uses water as a stationary phase in capillary gas chromatography (GC) is presented. Through applying a water phase to the interior walls of a stainless steel capillary, good separations were obtained for a large variety of analytes in this format. It was found that carrier gas humidification and backpressure were key factors in promoting stable operation over time at various temperatures. For example, with these measures in place, the retention time of an acetone test analyte was found to reduce by only 44s after 100min of operation at a column temperature of 100°C. In terms of efficiency, under optimum conditions the method produced about 20,000 plates for an acetone test analyte on a 250μm i.d.×30m column. Overall, retention on the stationary phase generally increased with analyte water solubility and polarity, but was relatively little correlated with analyte volatility. Conversely, non-polar analytes were essentially unretained in the system. These features were applied to the direct analysis of different polar analytes in both aqueous and organic samples. Results suggest that this approach could provide an interesting alternative tool in capillary GC separations. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. A general ionic liquid pH-zone-refining countercurrent chromatography method for separation of alkaloids from Nelumbo nucifera Gaertn.

    PubMed

    Fang, Yingtong; Li, Quan; Shao, Qian; Wang, Binghai; Wei, Yun

    2017-07-21

    The alkaloids from lotus (Nelumbo nucifera Gaertn) are effective in lowering hyperlipemia and level of cholesterol. However, there is not a general method for their separation. In this work, a general ionic liquid pH-zone-refining countercurrent chromatography method for isolation and purification of six alkaloids from the whole lotus plant was successfully established by using ionic liquids as the modifier of the two-phase solvent system. The conditions of ionic liquid pH-zone-refining countercurrent chromatography, involving solvent systems, concentration of retainer and eluter, types of ionic liquids, the content of ionic liquids as well as ionic liquids posttreatment, were optimized to improve extraction efficiency. Finally, the separation of these six alkaloids was performed with a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water-[C 4 mim][PF 6 ] at a volume ratio of 5:2:2:8:0.1, where 10mM TEA was added to the organic stationary phase as a retainer and 3mM HCl was added to the aqueous mobile phase as an eluter. As a result, six alkaloids including N-nornuciferine, liensinine, nuciferine, isoliensinine, roemerine and neferine were successfully separated with the purities of 97.0%, 90.2%, 94.7%, 92.8%, 90.4% and 95.9%, respectively. The established general method has been respectively applied to the crude samples of lotus leaves and lotus plumules. A total of 37.3mg of liensinine, 57.7mg of isoliensinine and 179.9mg of neferine were successfully purified in one run from 1.00g crude extract of lotus plumule with the purities of 93.2%, 96.5% and 98.8%, respectively. Amount of 45.6mg N-nornuciferine, 21.6mg nuciferine and 11.7mg roemerine was obtained in one step separation from 1.05g crude extract of lotus leaves with the purity of 96.9%, 95.6% and 91.33%, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. System and method for tuning adjusting the central frequency of a laser while maintaining frequency stabilization to an external reference

    NASA Technical Reports Server (NTRS)

    Livas, Jeffrey (Inventor); Thorpe, James I. (Inventor); Numata, Kenji (Inventor)

    2011-01-01

    A method and system for stabilizing a laser to a frequency reference with an adjustable offset. The method locks a sideband signal generated by passing an incoming laser beam through the phase modulator to a frequency reference, and adjusts a carrier frequency relative to the locked sideband signal by changing a phase modulation frequency input to the phase modulator. The sideband signal can be a single sideband (SSB), dual sideband (DSB), or an electronic sideband (ESB) signal. Two separate electro-optic modulators can produce the DSB signal. The two electro-optic modulators can be a broadband modulator and a resonant modulator. With a DSB signal, the method can introduce two sinusoidal phase modulations at the phase modulator. With ESB signals, the method can further drive the optical phase modulator with an electrical signal with nominal frequency OMEGA(sub 1) that is phase modulated at a frequency OMEGA(sub 2)

  6. Integration of phase separation with ultrasound-assisted salt-induced liquid-liquid microextraction for analyzing the fluoroquinones in human body fluids by liquid chromatography.

    PubMed

    Wang, Huili; Gao, Ming; Wang, Mei; Zhang, Rongbo; Wang, Wenwei; Dahlgren, Randy A; Wang, Xuedong

    2015-03-15

    Herein, we developed a novel integrated device to perform phase separation based on ultrasound-assisted salt-induced liquid-liquid microextraction for determination of five fluoroquinones (FQs) in human body fluids. The integrated device consisted of three simple HDPE components used to separate the extraction solvent from the aqueous phase prior to retrieving the extractant. A series of extraction parameters were optimized using the response surface method based on central composite design. Optimal conditions consisted of 945μL acetone extraction solvent, pH 2.1, 4.1min stir time, 5.9g Na2SO4, and 4.0min centrifugation. Under optimized conditions, the limits of detection (at S/N=3) were 0.12-0.66μgL(-1), the linear range was 0.5-500μgL(-1) and recoveries were 92.6-110.9% for the five FQs extracted from plasma and urine. The proposed method has several advantages, such as easy construction from inexpensive materials, high extraction efficiency, short extraction time, and compatibility with HPLC analysis. Thus, this method shows excellent prospects for sample pretreatment and analysis of FQs in human body fluids. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Separation and determination of synthetic impurities of difloxacin by reversed-phase high-performance liquid chromatography.

    PubMed

    Rao, R Nageswara; Nagaraju, V

    2004-11-19

    A simple and rapid reversed-phase high-performance liquid chromatographic method for separation and determination of process-related impurities of difloxacin (DFL) was developed. The separation was achieved on a reversed-phase C(18) column using methanol-water-acetic acid (78:21.9:0.1, v/v/v) as a mobile solvent at a flow rate of 1.0 ml/min at 28 degrees C using UV detection at 230 nm. It was linear over a range of 0.03 x 10(-6) to 1.60 x 10(-6)g for process related impurities and 0.05 x 10(-6) to 2.40 x 10(-6)g for difloxacin. The detection limits were 0.009 x 10(-6) to 0.024 x 10(-6)g for all the compounds examined. The recoveries were found to be in the range of 97.6-102.0% for impurities as well as difloxacin. The precision and robustness of the method were evaluated. It was used for not only quality assurance, but also monitoring the synthetic reactions involved in the process development work of difloxacin. The method was found to be specific, precise and reliable for the determination of unreacted levels of raw materials, intermediates in the reaction mixtures and the finished products of difloxacin.

  8. Quantification of Sunscreen Ethylhexyl Triazone in Topical Skin-Care Products by Normal-Phase TLC/Densitometry

    PubMed Central

    Sobanska, Anna W.; Pyzowski, Jaroslaw

    2012-01-01

    Ethylhexyl triazone (ET) was separated from other sunscreens such as avobenzone, octocrylene, octyl methoxycinnamate, and diethylamino hydroxybenzoyl hexyl benzoate and from parabens by normal-phase HPTLC on silica gel 60 as stationary phase. Two mobile phases were particularly effective: (A) cyclohexane-diethyl ether 1 : 1 (v/v) and (B) cyclohexane-diethyl ether-acetone 15 : 1 : 2 (v/v/v) since apart from ET analysis they facilitated separation and quantification of other sunscreens present in the formulations. Densitometric scanning was performed at 300 nm. Calibration curves for ET were nonlinear (second-degree polynomials), with R > 0.998. For both mobile phases limits of detection (LOD) were 0.03 and limits of quantification (LOQ) 0.1 μg spot−1. Both methods were validated. PMID:22629203

  9. The rheology and phase separation kinetics of mixed-matrix membrane dopes

    NASA Astrophysics Data System (ADS)

    Olanrewaju, Kayode Olaseni

    Mixed-matrix hollow fiber membranes are being developed to offer more efficient gas separations applications than what the current technologies allow. Mixed-matrix membranes (MMMs) are membranes in which molecular sieves incorporated in a polymer matrix enhance separation of gas mixtures based on the molecular size difference and/or adsorption properties of the component gases in the molecular sieve. The major challenges encountered in the efficient development of MMMs are associated with some of the paradigm shifts involved in their processing, as compared to pure polymer membranes. For instance, mixed-matrix hollow fiber membranes are prepared by a dry-wet jet spinning method. Efficient large scale processing of hollow fibers by this method requires knowledge of two key process variables: the rheology and kinetics of phase separation of the MMM dopes. Predicting the rheological properties of MMM dopes is not trivial; the presence of particles significantly affects neat polymer membrane dopes. Therefore, the need exists to characterize and develop predictive capabilities for the rheology of MMM dopes. Furthermore, the kinetics of phase separation of polymer solutions is not well understood. In the case of MMM dopes, the kinetics of phase separation are further complicated by the presence of porous particles in a polymer solution. Thus, studies on the phase separation kinetics of polymer solutions and suspensions of zeolite particles in polymer solutions are essential. Therefore, this research thesis aims to study the rheology and phase separation kinetics of mixed-matrix membrane dopes. In our research efforts to develop predictive models for the shear rheology of suspensions of zeolite particles in polymer solutions, it was found that MFI zeolite suspensions have relative viscosities that dramatically exceed the Krieger-Dougherty predictions for hard sphere suspensions. Our investigations showed that the major origin of this discrepancy is the selective absorption of solvent molecules from the suspending polymer solution into the zeolite pores. Consequently, both the viscosity of the polymer solution and the particle contribution to the suspension viscosity are greatly increased. A predictive model for the viscosity of porous zeolite suspensions incorporating a solvent absorption parameter, alpha, into the Krieger-Dougherty model was developed. We experimentally determined the solvent absorption parameter and our results are in good agreement with the theoretical pore volume of MFI particles. In addition, fundamental studies were conducted with spherical nonporous silica suspensions to elucidate the role of colloidal and hydrodynamic forces on the rheology of mixed-matrix membrane dopes. Also in this thesis, details of a novel microfluidic device for measuring the phase separation kinetics of membrane dopes are presented. We have used this device to quantify the phase separation kinetics (PSK) of polymer solutions and MMM dopes upon contact with an array of relevant nonsolvent. For the polymer solution, we found that PSK is governed by the micro-rheological and thermodynamic properties of the polymer solution and nonsolvent. For the MMM dopes, we found that the PSK may increase with increase in particles surface area due to surface diffusion enhancement. In addition, it was found that the dispersed particles alter the thermodynamic properties of the dope based on the hydrophilicity and porosity of the particle.

  10. Problem of the thermodynamic status of the mixed-layer minerals

    USGS Publications Warehouse

    Zen, E.-A.

    1962-01-01

    Minerals that show mixed layering, particularly with the component layers in random sequence, pose problems because they may behave thermodynamically as single phases or as polyphase aggregates. Two operational criteria are proposed for their distinction. The first scheme requires two samples of mixed-layer material which differ only in the proportions of the layers. If each of these two samples are allowed to equilibrate with the same suitably chosen monitoring solution, then the intensive parameters of the solution will be invariant if the mixed-layer sample is a polyphase aggregate, but not otherwise. The second scheme makes use of the fact that portions of many titration curves of clay minerals show constancy of the chemical activities of the components in the equilibrating solutions, suggesting phase separation. If such phase separation occurs for a mixed-layer material, then, knowing the number of independent components in the system, it should be possible to decide on the number of phases the mixed-layer material represents. Knowledge of the phase status of mixed-layer material is essential to the study of the equilibrium relations of mineral assemblages involving such material, because a given mixed-layer mineral will be plotted and treated differently on a phase diagram, depending on whether it is a single phase or a polyphase aggregate. Extension of the titration technique to minerals other than the mixed-layer type is possible. In particular, this method may be used to determine if cryptoperthites and peristerites are polyphase aggregates. In general, for any high-order phase separation, the method may be used to decide just at what point in this continuous process the system must be regarded operationally as a polyphase aggregate. ?? 1962.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Read, Douglas; Sillerud, Colin Halliday

    The overarching goal of this project is to integrate Sandia's microfabricated gas-chromatography ( GC) columns with a stationary phase material that is capable of retaining high-volatility chemicals and permanent gases. The successful integration of such a material with GCs would dramatically expand the repertoire of detectable compounds for Sandia's various microanalysis systems. One such promising class of candidate materials is metal-organic frameworks (MOFs). In this report we detail our methods for controlled deposition of HKUST-1 MOF stationary phases within GC columns. We demonstrate: the chromatographic separation of natural gas; a method for determining MOF film thickness from chromatography alone; andmore » the first-reported GC x GC separation of natural gas -- in general -- let alone for two disparate MOF stationary phases. In addition we determine the fundamental thermodynamic constant for mass sorption, the partition coefficient, for HKUST-1 and several light hydrocarbons and select toxic industrial chemicals.« less

  12. Solid-phase extraction versus matrix solid-phase dispersion: Application to white grapes.

    PubMed

    Dopico-García, M S; Valentão, P; Jagodziñska, A; Klepczyñska, J; Guerra, L; Andrade, P B; Seabra, R M

    2007-11-15

    The use of matrix solid-phase dispersion (MSPD) was tested to, separately, extract phenolic compounds and organic acids from white grapes. This method was compared with a more conventional analytical method previously developed that combines solid liquid extraction (SL) to simultaneously extract phenolic compounds and organic acids followed by a solid-phase extraction (SPE) to separate the two types of compounds. Although the results were qualitatively similar for both techniques, the levels of extracted compounds were in general quite lower on using MSPD, especially for organic acids. Therefore, SL-SPE method was preferred to analyse white "Vinho Verde" grapes. Twenty samples of 10 different varieties (Alvarinho, Avesso, Asal-Branco, Batoca, Douradinha, Esganoso de Castelo Paiva, Loureiro, Pedernã, Rabigato and Trajadura) from four different locations in Minho (Portugal) were analysed in order to study the effects of variety and origin on the profile of the above mentioned compounds. Principal component analysis (PCA) was applied separately to establish the main sources of variability present in the data sets for phenolic compounds, organic acids and for the global data. PCA of phenolic compounds accounted for the highest variability (77.9%) with two PCs, enabling characterization of the varieties of samples according to their higher content in flavonol derivatives or epicatechin. Additionally, a strong effect of sample origin was observed. Stepwise linear discriminant analysis (SLDA) was used for differentiation of grapes according to the origin and variety, resulting in a correct classification of 100 and 70%, respectively.

  13. Reflection full-waveform inversion using a modified phase misfit function

    NASA Astrophysics Data System (ADS)

    Cui, Chao; Huang, Jian-Ping; Li, Zhen-Chun; Liao, Wen-Yuan; Guan, Zhe

    2017-09-01

    Reflection full-waveform inversion (RFWI) updates the low- and highwavenumber components, and yields more accurate initial models compared with conventional full-waveform inversion (FWI). However, there is strong nonlinearity in conventional RFWI because of the lack of low-frequency data and the complexity of the amplitude. The separation of phase and amplitude information makes RFWI more linear. Traditional phase-calculation methods face severe phase wrapping. To solve this problem, we propose a modified phase-calculation method that uses the phase-envelope data to obtain the pseudo phase information. Then, we establish a pseudophase-information-based objective function for RFWI, with the corresponding source and gradient terms. Numerical tests verify that the proposed calculation method using the phase-envelope data guarantees the stability and accuracy of the phase information and the convergence of the objective function. The application on a portion of the Sigsbee2A model and comparison with inversion results of the improved RFWI and conventional FWI methods verify that the pseudophase-based RFWI produces a highly accurate and efficient velocity model. Moreover, the proposed method is robust to noise and high frequency.

  14. Spiral Countercurrent Chromatography

    PubMed Central

    Ito, Yoichiro; Knight, Martha; Finn, Thomas M.

    2013-01-01

    For many years, high-speed countercurrent chromatography conducted in open tubing coils has been widely used for the separation of natural and synthetic compounds. In this method, the retention of the stationary phase is solely provided by the Archimedean screw effect by rotating the coiled column in the centrifugal force field. However, the system fails to retain enough of the stationary phase for polar solvent systems such as the aqueous–aqueous polymer phase systems. To address this problem, the geometry of the coiled channel was modified to a spiral configuration so that the system could utilize the radially acting centrifugal force. This successfully improved the retention of the stationary phase. Two different types of spiral columns were fabricated: the spiral disk assembly, made by stacking multiple plastic disks with single or four interwoven spiral channels connected in series, and the spiral tube assembly, made by inserting the tetrafluoroethylene tubing into a spiral frame (spiral tube support). The capabilities of these column assemblies were successfully demonstrated by separations of peptides and proteins with polar two-phase solvent systems whose stationary phases had not been well retained in the earlier multilayer coil separation column for high-speed countercurrent chromatography. PMID:23833207

  15. Simultaneous Separation of Manganese, Cobalt, and Nickel by the Organic-Aqueous-Aqueous Three-Phase Solvent Extraction

    NASA Astrophysics Data System (ADS)

    Shirayama, Sakae; Uda, Tetsuya

    2016-04-01

    This research outlines an organic-aqueous-aqueous three-phase solvent extraction method and proposes its use in a new metal separation process for the recycling of manganese (Mn), cobalt (Co), and nickel (Ni) from used lithium ion batteries (LIBs). The three-phase system was formed by mixing xylene organic solution, 50 pct polyethylene glycol (PEG) aqueous solution, and 1 mol L-1 sodium sulfate (Na2SO4) aqueous solution. The xylene organic solution contained 2-ethylhexylphosphonic acid (D2EHPA) as an extractant for Mn ion, and the Na2SO4 aqueous solution contained 1 mol L-1 potassium thiocyanate (KSCN) as an extractant for Co ion. Concentrations of the metal ions were varied by dissolving metal sulfates in the Na2SO4 aqueous solution. As a result of the experiments, Mn, Co, and Ni ions were distributed in the xylene organic phase, PEG-rich aqueous phase, and Na2SO4-rich aqueous phase, respectively. The separation was effective when the pH value was around 4. Numerical simulation was also conducted in order to predict the distribution of metal ions after the multi-stage counter-current extractions.

  16. Development of tropine-salt aqueous two-phase systems and removal of hydrophilic ionic liquids from aqueous solution.

    PubMed

    Wu, Haoran; Yao, Shun; Qian, Guofei; Song, Hang

    2016-08-26

    A novel aqueous two-phase systems (ATPS) composed of a small molecule organic compound tropine and an organic or inorganic salt aqueous solution has been developed for the first time. The phase behavior of tropine-salt ATPS was systemically investigated and the phase equilibrium data were measured in different temperatures and concentrations and correlated by the Merchuk equation with satisfactory results. The detection of the conductivity and particle size proved the formation of micelle in the process of forming tropine-salt ATPS. The separation application of the ATPS was assessed with the removal of hydrophilic benzothiazolium-based ionic liquids (ILs) from aqueous solution. The result showed that ILs were effectively extracted into the top tropine-rich phase. Finally, ILs in the top tropine-rich phase were further separated by the means of adsorption-desorption with DM301 macroporous resin and ethanol. The method of novel tropine-salt ATPS combined with adsorption-desorption is demonstrated a promising alternative thought and approach for the removal or recovery of hydrophilic compounds from aqueous media and also could provide a potential application for bio-separation. Copyright © 2016. Published by Elsevier B.V.

  17. Hygroscopic and phase separation properties of ammonium sulfate/organic/water ternary solutions

    NASA Astrophysics Data System (ADS)

    Zawadowicz, M. A.; Proud, S. R.; Seppalainen, S. S.; Cziczo, D. J.

    2015-03-01

    Atmospheric aerosol particles are often partially or completely composed of inorganic salts, such as ammonium sulfate and sodium chloride, and therefore exhibit hygroscopic properties. Many inorganic salts have well-defined deliquescence and efflorescence points at which they take up and lose water, respectively. Deliquescence and efflorescence of simple inorganic salt particles have been investigated by a variety of methods, such as IR spectroscopy, tandem mobility analysis and electrodynamic balance. Field measurements have shown that atmospheric aerosols are not typically pure inorganic salt, instead they often also contain organic species. There is ample evidence from laboratory studies that suggests that mixed particles exist in a phase-separated state, with an aqueous inorganic core and organic shell. Although phase separation has not been measured in situ, there is no reason it would not also take place in the atmosphere. Many recent studies have focused on microscopy techniques that require deposition of the aerosol on a glass slide, possibly changing its surface properties. Here, we investigate the deliquescence and efflorescence points, phase separation and ability to exchange gas-phase components of mixed organic and inorganic aerosol using a flow tube coupled with FTIR spectroscopy. Ammonium sulfate aerosol mixed with organic polyols with different O : C ratios, including 1,4-butanediol, glycerol, 1,2,6-hexanetriol, 1,2-hexanediol, and 1,5-pentanediol have been investigated. Those constituents correspond to materials found in the atmosphere in great abundance, and therefore, particles prepared in this study should mimic atmospheric mixed phase aerosol particles. The results of this study tend to be in agreement with previous microscopy experiments, with several key differences, which possibly reveal a size-dependent effect on phase separation in organic/inorganic aerosol particles.

  18. Preparative separation and identification of novel subsidiary colors of the color additive D&C Red No. 33 (Acid Red 33) using spiral high-speed counter-current chromatography☆

    PubMed Central

    Weisz, Adrian; Ridge, Clark D.; Mazzola, Eugene P.; Ito, Yoichiro

    2015-01-01

    Three low-level subsidiary color impurities (A, B, and C) often present in batches of the color additive D&C Red No. 33 (R33, Acid Red 33, Colour Index No. 17200) were separated from a portion of R33 by spiral high-speed counter-current chromatography (HSCCC). The separation involved use of a very polar solvent system, 1-BuOH/5 mM aq. (NH4)2SO4. Addition of ammonium sulfate to the lower phase forced partition of the components into the upper phase, thereby eliminating the need to add a hydrophobic counterion as was previously required for separations of components from sulfonated dyes. The very polar solvent system used would not have been retained in a conventional multi-layer coil HSCCC instrument, but the spiral configuration enabled retention of the stationary phase, and thus, the separation was possible. A 1 g portion of R33 enriched in A, B, and C was separated using the upper phase of the solvent system as the mobile phase. The retention of the stationary phase was 38.1%, and the separation resulted in 4.8 mg of A of >90% purity, 18.3 mg of B of >85% purity, and 91 mg of C of 65–72% purity. A second separation of a portion of the C mixture resulted in 7 mg of C of >94% purity. The separated impurities were identified by high-resolution mass spectrometry and NMR spectroscopic techniques as follows: 5-amino-3-biphenyl-3-ylazo-4-hydroxy-naphthalene-2,7-disulfonic acid, A; 5-amino-4-hydroxy-6-phenyl-3-phenylazo-naphthalene-2,7-disulfonic acid, B; and 5-amino-4-hydroxy-3,6-bis-phenylazo-naphthalene-2,7-disulfonic acid, C. The isomers A and B are compounds reported for the first time. Application of the spiral HSCCC method resulted in the additional benefit of yielding 930 mg of the main component of R33, 5-amino-4-hydroxy-3-phenylazo-naphthalene-2,7-disulfonic acid, of >97% purity. PMID:25591404

  19. Preparative separation and identification of novel subsidiary colors of the color additive D&C Red No. 33 (Acid Red 33) using spiral high-speed counter-current chromatography.

    PubMed

    Weisz, Adrian; Ridge, Clark D; Mazzola, Eugene P; Ito, Yoichiro

    2015-02-06

    Three low-level subsidiary color impurities (A, B, and C) often present in batches of the color additive D&C Red No. 33 (R33, Acid Red 33, Colour Index No. 17200) were separated from a portion of R33 by spiral high-speed counter-current chromatography (HSCCC). The separation involved use of a very polar solvent system, 1-BuOH/5mM aq. (NH4)2SO4. Addition of ammonium sulfate to the lower phase forced partition of the components into the upper phase, thereby eliminating the need to add a hydrophobic counterion as was previously required for separations of components from sulfonated dyes. The very polar solvent system used would not have been retained in a conventional multi-layer coil HSCCC instrument, but the spiral configuration enabled retention of the stationary phase, and thus, the separation was possible. A 1g portion of R33 enriched in A, B, and C was separated using the upper phase of the solvent system as the mobile phase. The retention of the stationary phase was 38.1%, and the separation resulted in 4.8 mg of A of >90% purity, 18.3mg of B of >85% purity, and 91 mg of C of 65-72% purity. A second separation of a portion of the C mixture resulted in 7 mg of C of >94% purity. The separated impurities were identified by high-resolution mass spectrometry and NMR spectroscopic techniques as follows: 5-amino-3-biphenyl-3-ylazo-4-hydroxy-naphthalene-2,7-disulfonic acid, A; 5-amino-4-hydroxy-6-phenyl-3-phenylazo-naphthalene-2,7-disulfonic acid, B; and 5-amino-4-hydroxy-3,6-bis-phenylazo-naphthalene-2,7-disulfonic acid, C. The isomers A and B are compounds reported for the first time. Application of the spiral HSCCC method resulted in the additional benefit of yielding 930 mg of the main component of R33, 5-amino-4-hydroxy-3-phenylazo-naphthalene-2,7-disulfonic acid, of >97% purity. Published by Elsevier B.V.

  20. Validation of an HPLC method for the determination of fleroxacin and its photo-degradation products in pharmaceutical forms.

    PubMed

    Djurdjevic, Predrag; Laban, Aleksandra; Jelikic-Stankov, Milena

    2004-01-01

    HPLC determination of fleroxacin in dosage forms was carried out using either reversed-phase column YMC pack ODS-AQ or Supelco LC Hisep shielded hydrophobic phase column, with UV detection at 280 nm. The mobile phase for ODS column consisted of 50:50:0.5 v/v/v and for Hisep column 15:85:0.5 v/v/v acetonitrile-water-triethylamine. The pH of the mobile phase was adjusted to 6.30 for ODS column and to 6.85 for Hisep column, with H3PO4. Linear response was obtained in the concentration range of fleroxacin between 0.01 and 1.30 micrograms/mL. Detection limit was 4.8 ng/mL. Recovery test in the determination of fleroxacin in "Quinodis" tablets (Hoffmann La Roche, nominal mass 400 or 200 mg) was 98-101% for both columns. The effect of the composition and pH of the mobile phase on spectra, retention time and dissociation constants of fleroxacin was discussed. The proposed method could be also used for separation of the photo-degradation products of fleroxacin. Ten degradation products were separated on the ODS-AQ column, thus confirming the suitability of the proposed method for stability study of fleroxacin in pharmaceuticals.

  1. LC-method development for the quantification of neuromedin-like peptides. Emphasis on column choice and mobile phase composition.

    PubMed

    Van Wanseele, Yannick; Viaene, Johan; Van den Borre, Leslie; Dewachter, Kathleen; Vander Heyden, Yvan; Smolders, Ilse; Van Eeckhaut, Ann

    2017-04-15

    In this study, the separation of four neuromedin-like peptides is investigated on four different core-shell stationary phases. Moreover, the effect of the mobile phase composition, i.e. organic modifier (acetonitrile and methanol) and additive (trifluoroacetic acid, formic acid, acetic acid, ammonium formate and ammonium acetate) on the chromatographic performance is studied. An improvement in chromatographic performance is observed when using the ammonium salt instead of its corresponding acid as additive, except for the column containing a positively charged surface (C18+). In general, the RP-Amide column provided the highest separation power with different mobile phases. However, for the neuromedin-like peptides of interest, the C18+ column in combination with a mobile phase containing methanol as organic modifier and acetic acid as additive provided narrower and higher peaks. A three-factor, three-level design is applied to further optimize the method in terms of increased peak height and reduced solvent consumption, without loss in resolution. The optimized method was subsequently used to assess the in vitro microdialysis recovery of the peptides of interest. Recovery values between 4 and 8% were obtained using a perfusion flow rate of 2μL/min. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Simultaneous analysis of tert-butylhydroquinone, tert-butylquinone, butylated hydroxytoluene, 2-tert-butyl-4-hydroxyanisole, 3-tert-butyl-4-hydroxyanisole, α-tocopherol, γ-tocopherol, and δ-tocopherol in edible oils by normal-phase high performance liquid chromatography.

    PubMed

    Li, Jun; Bi, Yanlan; Sun, Shangde; Peng, Dan

    2017-11-01

    A normal-phase high performance liquid chromatography method for the simultaneous determination of tert-butylhydroquinone, tert-butylquinone, butylated hydroxytoluene, 2-tert-butyl-4-hydroxyanisole, 3-tert-butyl-4-hydroxyanisole, α-tocopherol, γ-tocopherol, and δ-tocopherol in edible oils was investigated. A silica column was used to separate the analytes with the gradient elution. An ultraviolet-visible detector was set at dual wavelengths mode (280 and 310nm). The column temperature was 30°C. The analytes were directly extracted with methanol. Results showed that the normal-phase high performance liquid chromatography method performed well with wide liner ranges (0.10∼500.00μg/mL, R 2 >0.9998), low limits of detection and quantitation (below 0.40 and 1.21μg/mL, respectively), and good recoveries (81.38∼102.34% in soybean oils and 83.03∼100.79% in lard, respectively). The reduction of tert-butylquinone caused by the reverse-phase high performance liquid chromatography during the injection was avoided with the current normal-phase method. The two isomers of butylated hydroxyanisole can also be separated with good resolution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Effect of Preparation Methods on Crystallization Behavior and Tensile Strength of Poly(vinylidene fluoride) Membranes

    PubMed Central

    Liu, Jie; Lu, Xiaolong; Wu, Chunrui

    2013-01-01

    Poly(vinylidene fluoride) (PVDF) membranes were prepared by non solvent induced phase separation (NIPS), melt spinning and the solution-cast method. The effect of preparation methods with different membrane formation mechanisms on crystallization behavior and tensile strength of PVDF membranes was investigated. Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) and X-ray diffraction (XRD) were employed to examine the crystal form of the surface layers and the overall membranes, respectively. Spherulite morphologies and thermal behavior of the membranes were studied by polarized light optical microscopy (PLO) and differential scanning calorimetry (DSC) separately. It was found that the crystallization behavior of PVDF membranes was closely related to the preparation methods. For membranes prepared by the NIPS method, the skin layers had a mixture of α and β phases, the overall membranes were predominantly α phase, and the total crystallinity was 60.0% with no spherulite. For melt spinning membranes, the surface layers also showed a mixture of α and β phases, the overall membranes were predominantly α phase. The total crystallinity was 48.7% with perfect spherulites. Whereas the crystallization behavior of solution-cast membranes was related to the evaporation temperature and the additive, when the evaporation temperature was 140 °C with a soluble additive in the dope solution, obvious spherulites appeared. The crystalline morphology of PVDF exerted a great influence on the tensile strength of the membranes, which was much higher with perfect spherulites. PMID:24957064

  4. COORDINATION COMPOUND-SOLVENT EXTRACTION PROCESS FOR URANIUM RECOVERY

    DOEpatents

    Reas, W.H.

    1959-03-10

    A method is presented for the separation of uranium from aqueous solutions containing a uranyl salt and thorium. Thc separation is effected by adding to such solutions an organic complexing agent, and then contacting the solution with an organic solvent in which the organic complexing agent is soluble. By use of the proper complexing agent in the proper concentrations uranium will be complexed and subsequently removed in the organic solvent phase, while the thorium remains in the aqueous phase. Mentioned as suitable organic complexing agents are antipyrine, bromoantipyrine, and pyramidon.

  5. RF kicker cavity to increase control in common transport lines

    DOEpatents

    Douglas, David R.; Ament, Lucas J. P.

    2017-04-18

    A method of controlling e-beam transport where electron bunches with different characteristics travel through the same beam pipe. An RF kicker cavity is added at the beginning of the common transport pipe or at various locations along the common transport path to achieve independent control of different bunch types. RF energy is applied by the kicker cavity kicks some portion of the electron bunches, separating the bunches in phase space to allow independent control via optics, or separating bunches into different beam pipes. The RF kicker cavity is operated at a specific frequency to enable kicking of different types of bunches in different directions. The phase of the cavity is set such that the selected type of bunch passes through the cavity when the RF field is at a node, leaving that type of bunch unaffected. Beam optics may be added downstream of the kicker cavity to cause a further separation in phase space.

  6. Dissolution and Separation of Aluminum and Aluminosilicates

    DOE PAGES

    McFarlane, Joanna; Benker, Dennis; DePaoli, David W.; ...

    2015-12-19

    The selection of an aluminum alloy for target irradiation affects post-irradiation target dissolution and separations. Recent tests with aluminum alloy 6061 yielded greater than expected precipitation in the dissolver, forming up to 10 wt.% solids of aluminum hydroxides and aluminosilicates. Aluminosilicate dissolution presents challenges in a number of different areas, metals extraction from minerals, flyash treatment, and separations from aluminum alloys. We present experimental work that attempts to maximize dissolution of aluminum metal, along with silicon, magnesium, and copper impurities, through control of temperature, the rate of reagent addition, and incubation time. Aluminum phase transformations have been identified as amore » function of time and temperature, using X-ray diffraction. Solutions have been analyzed using wet chemical methods and X-ray fluorescence. Our data have been compared with published calculations of aluminum phase diagrams. Approaches are given to enhance the dissolution of aluminum and aluminosilicate phases in caustic solution.« less

  7. Simultaneous separation of water- and fat-soluble vitamins in isocratic pressure-assisted capillary electrochromatography using a methacrylate-based monolithic column.

    PubMed

    Yamada, Hiroki; Kitagawa, Shinya; Ohtani, Hajime

    2013-06-01

    A method of simultaneous separation of water- and fat-soluble vitamins using pressure-assisted CEC with a methacrylate-based capillary monolithic column was developed. In the proposed method, water-soluble vitamins were mainly separated electrophoretically, while fat soluble-ones were separated chromatographically by the interaction with a methacrylate-based monolith. A mixture of six water-soluble and four fat-soluble vitamins was separated simultaneously within 20 min with an isocratic elution using 1 M formic acid (pH 1.9)/acetonitrile (30:70, v/v) containing 10 mM ammonium formate as a mobile phase. When the method was applied to a commercial multivitamin tablet and a spiked one, the vitamins were successfully analyzed, and no influence of the matrix contained in the tablet was observed. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Scattering Studies of Hydrophobic Monomers in Liposomal Bilayers: An Expanding Shell Model of Monomer Distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richter, Andrew; Dergunov, Sergey; Ganus, Bill

    2011-01-01

    Hydrophobic monomers partially phase separate from saturated lipids when loaded into lipid bilayers in amounts exceeding a 1:1 monomer/lipid molar ratio. This conclusion is based on the agreement between two independent methods of examining the structure of monomer-loaded bilayers. Complete phase separation of monomers from lipids would result in an increase in bilayer thickness and a slight increase in the diameter of liposomes. A homogeneous distribution of monomers within the bilayer would not change the bilayer thickness and would lead to an increase in the liposome diameter. The increase in bilayer thickness, measured by the combination of small-angle neutron scatteringmore » (SANS) and small-angle X-ray scattering (SAXS), was approximately half of what was predicted for complete phase separation. The increase in liposome diameter, measured by dynamic light scattering (DLS), was intermediate between values predicted for a homogeneous distribution and complete phase separation. Combined SANS, SAXS, and DLS data suggest that at a 1.2 monomer/lipid ratio approximately half of the monomers are located in an interstitial layer sandwiched between lipid sheets. These results expand our understanding of using self-assembled bilayers as scaffolds for the directed covalent assembly of organic nanomaterials. In particular, the partial phase separation of monomers from lipids corroborates the successful creation of nanothin polymer materials with uniform imprinted nanopores. Pore-forming templates do not need to span the lipid bilayer to create a pore in the bilayer-templated films.« less

  9. Scattering Studies of Hydrophobic Monomers in Liposomal Bilayers: An Expanding Shell Model of Monomer Distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richter, Andrew G.; Dergunov, Sergey A.; Ganus, Bill

    2011-03-10

    Hydrophobic monomers partially phase separate from saturated lipids when loaded into lipid bilayers in amounts exceeding a 1:1 monomer/lipid molar ratio. This conclusion is based on the agreement between two independent methods of examining the structure of monomer-loaded bilayers. Complete phase separation of monomers from lipids would result in an increase in bilayer thickness and a slight increase in the diameter of liposomes. A homogeneous distribution of monomers within the bilayer would not change the bilayer thickness and would lead to an increase in the liposome diameter. The increase in bilayer thickness, measured by the combination of small-angle neutron scatteringmore » (SANS) and small-angle X-ray scattering (SAXS), was approximately half of what was predicted for complete phase separation. The increase in liposome diameter, measured by dynamic light scattering (DLS), was intermediate between values predicted for a homogeneous distribution and complete phase separation. Combined SANS, SAXS, and DLS data suggest that at a 1.2 monomer/lipid ratio approximately half of the monomers are located in an interstitial layer sandwiched between lipid sheets. These results expand our understanding of using self-assembled bilayers as scaffolds for the directed covalent assembly of organic nanomaterials. In particular, the partial phase separation of monomers from lipids corroborates the successful creation of nanothin polymer materials with uniform imprinted nanopores. Finally, pore-forming templates do not need to span the lipid bilayer to create a pore in the bilayer-templated films.« less

  10. Scale separation for multi-scale modeling of free-surface and two-phase flows with the conservative sharp interface method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, L.H., E-mail: Luhui.Han@tum.de; Hu, X.Y., E-mail: Xiangyu.Hu@tum.de; Adams, N.A., E-mail: Nikolaus.Adams@tum.de

    In this paper we present a scale separation approach for multi-scale modeling of free-surface and two-phase flows with complex interface evolution. By performing a stimulus-response operation on the level-set function representing the interface, separation of resolvable and non-resolvable interface scales is achieved efficiently. Uniform positive and negative shifts of the level-set function are used to determine non-resolvable interface structures. Non-resolved interface structures are separated from the resolved ones and can be treated by a mixing model or a Lagrangian-particle model in order to preserve mass. Resolved interface structures are treated by the conservative sharp-interface model. Since the proposed scale separationmore » approach does not rely on topological information, unlike in previous work, it can be implemented in a straightforward fashion into a given level set based interface model. A number of two- and three-dimensional numerical tests demonstrate that the proposed method is able to cope with complex interface variations accurately and significantly increases robustness against underresolved interface structures.« less

  11. Offline solid-phase extraction for preconcentration of pharmaceuticals and personal care products in environmental water and their simultaneous determination using the reversed phase high-performance liquid chromatography method.

    PubMed

    G Archana; Dhodapkar, Rita; Kumar, Anupama

    2016-09-01

    The present study reports a precise and simple offline solid-phase extraction (SPE) coupled with reversed-phase high-performance liquid chromatography (RP-HPLC) method for the simultaneous determination of five representative and commonly present pharmaceuticals and personal care products (PPCPs), a new class of emerging pollutants in the aquatic environment. The target list of analytes including ciprofloxacin, acetaminophen, caffeine benzophenone and irgasan were separated by a simple HPLC method. The column used was a reversed-phase C18 column, and the mobile phase was 1 % acetic acid and methanol (20:80 v/v) under isocratic conditions, at a flow rate of 1 mL min(-1). The analytes were separated and detected within 15 min using the photodiode array detector (PDA). The linearity of the calibration curves were obtained with correlation coefficients 0.98-0.99.The limit of detection (LOD), limit of quantification (LOQ), precision, accuracy and ruggedness demonstrated the reproducibility, specificity and sensitivity of the developed method. Prior to the analysis, the SPE was performed using a C18 cartridge to preconcentrate the targeted analytes from the environmental water samples. The developed method was applied to evaluate and fingerprint PPCPs in sewage collected from a residential engineering college campus, polluted water bodies such as Nag river and Pili river and the influent and effluent samples from a sewage treatment plant (STP) situated at Nagpur city, in the peak summer season. This method is useful for estimation of pollutants present in microquantities in the surface water bodies and treated sewage as compared to nanolevel pollutants detected by mass spectrometry (MS) detectors.

  12. TLC-Densitometric and RP-HPLC Methods for Simultaneous Determination of Dexamethasone and Chlorpheniramine Maleate in the Presence of Methylparaben and Propylparaben.

    PubMed

    Farid, Nehal F; Naguib, Ibrahim A; Moatamed, Radwa S; El Ghobashy, Mohamed R

    2017-01-01

    Validated simple, sensitive, and highly selective methods are applied for the quantitative determination of dexamethasone and chlorpheniramine maleate in the presence of their reported preservatives (methylparaben and propylparaben), whether in pure forms or in pharmaceutical formulation. TLC is the first method, in which dexamethasone, chlorpheniramine maleate, methylparaben, and propylparaben are separated on silica gel TLC F254 plates using hexane-acetone-ammonia (5.5 + 4.5 + 0.5, v/v/v) as the developing phase. Separated bands are scanned at 254 nm over a concentration range of 0.1-1.7 and 0.4-2.8 μg/band, with mean ± SD recoveries of 99.12 ± 0.964 and 100.14 ± 0.962%, for dexamethasone and chlorpheniramine maleate, respectively. Reversed-phase HPLC is the second method, in which a mixture of dexamethasone and chlorpheniramine maleate, methylparaben, and propylparaben is separated on a reversed-phase silica C18 (5 μm particle size, 250 mm, 4.6 mm id) column using 0.1 M ammonium acetate buffer-acetonitrile (60 + 40, v/v, pH 3) as the mobile phase. The drugs were detected at 220 nm over a concentration range of 5-50 μg/mL, 2-90 μg/mL, 4-100 μg/mL, and 7-50 μg/mL, with mean ± SD recoveries of 100.85 ± 0.905, 99.67 ± 1.281, 100.20 ± 0.906, and 99.81 ± 0.954%, for dexamethasone, chlorpheniramine maleate, methylparaben paraben, and propylparaben, respectively. The advantages of the suggested methods over previously reported methods are the ability to detect lower concentrations of the main drugs and to show better resolution of interfering preservatives; hence, these methods could be more reliable for routine QC analyses.

  13. Ion chromatography with the indirect ultraviolet detection of alkali metal ions and ammonium using imidazolium ionic liquid as ultraviolet absorption reagent and eluent.

    PubMed

    Liu, Yong-Qiang; Yu, Hong

    2016-08-01

    Indirect ultraviolet detection was conducted in ultraviolet-absorption-agent-added mobile phase to complete the detection of the absence of ultraviolet absorption functional group in analytes. Compared with precolumn derivatization or postcolumn derivatization, this method can be widely used, has the advantages of simple operation and good linear relationship. Chromatographic separation of Li(+) , Na(+) , K(+) , and NH4 (+) was performed on a carboxylic acid base cation exchange column using imidazolium ionic liquid/acid/organic solvent as the mobile phase, in which imidazolium ionic liquids acted as ultraviolet absorption reagent and eluting agent. The retention behaviors of four kinds of cations are discussed, and the mechanism of separation and detection are described. The main factors influencing the separation and detection were the background ultraviolet absorption reagent and the concentration of hydrogen ion in the ion chromatography-indirect ultraviolet detection. The successful separation and detection of Li(+) , Na(+) , K(+) , and NH4 (+) within 13 min was achieved using the selected chromatographic conditions, and the detection limits (S/N = 3) were 0.02, 0.11, 0.30, and 0.06 mg/L, respectively. A new separation and analysis method of alkali metal ions and ammonium by ion chromatography with indirect ultraviolet detection method was developed, and the application range of ionic liquid was expanded. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. High-performance liquid chromatography study of the enantiomer separation of chrysanthemic acid and its analogous compounds on a terguride-based stationary phase.

    PubMed

    Dondi, M; Flieger, M; Olsovska, J; Polcaro, C M; Sinibaldi, M

    1999-10-29

    The direct enantioseparation of chrysanthemic acid [2,2-dimethyl-3-(2-methylpropenyl)-cyclopropanecarboxylic acid] and its halogen-substituted analogues was systematically studied by HPLC using a terguride-based chiral stationary phase in combination with a UV diode array and chiroptical detectors. Isomers with (1R) configuration always eluted before those with (IS) configuration. The elution sequence of cis- and trans-isomers was strongly affected by mobile phase pH, whereas the enantioselectivity remained the same. Conditions for the separation of all the enantiomers were also examined. This method was used for monitor the hydrolytic degradation products of Cyfluthrin (Baythroid) in soil under laboratory conditions.

  15. Description and Evaluation of Chiral Interactive Sites on Bonded Cyclodextrin Stationary Phases for Liquid Chromatography

    NASA Astrophysics Data System (ADS)

    Beesley, Thomas E.

    Development of chiral separations has been essential to the drug discovery and development process. The solubility requirements for a number of methods and/or the mobile phase requirements for application of certain detection systems have opened up many opportunities for cyclodextrin-based CSPs for liquid chromatography. Even though a few chiral stationary phases cover a wide area of enantioselectivity, they do not meet the entire needs of the industry. Cyclodextrin phases offer some unique mechanisms and opportunities to resolve chiral separation problems especially in the aqueous reversed-phase and non-aqueous polar organic modes. This chapter addresses the need to understand the chiral stationary phase structure, the mechanisms at work, and the role mobile phase composition plays in driving those mechanisms to produce enantioselectivity. In addition, the development of certain derivatives has played an essential part in expanding that basic role for certain chiral separations. What these derivatives contribute in concert with the basic structure is a critical part of the understanding to the effective use of these phases. During this study it was determined that the role of steric hindrance has been vastly underestimated, both to the extent that it has occurred and to its effectiveness for obtaining enantioselectivity. References to the entire 20-year history of the cyclodextrin phase development and application literature up to this current date have been reviewed and incorporated.

  16. Determination of capsaicinoids in topical cream by liquid-liquid extraction and liquid chromatography.

    PubMed

    Kaale, Eliangiringa; Van Schepdael, Ann; Roets, Eugène; Hoogmartens, Jos

    2002-11-07

    A reversed-phase liquid chromatography (LC) method has been developed, optimised and validated for the separation and quantitation of capsaicin (CP) and dihydrocapsaicin (DHCP) in a topical cream formulation. Sample preparation involves liquid-liquid extraction prior to LC analysis. The method uses a Hypersil C(18) BDS, 5 micrometer, 250x4.6 mm I.D. column maintained at 35 degrees C. The mobile phase comprises methanol, water, acetonitrile (ACN) and acetic acid (47:42:10:1, v/v/v/v) at a flow rate of 1.0 ml/min. Robustness was evaluated by performing a central composite face-centred design (CCF) experiment. The method shows good selectivity, linearity, sensitivity and repeatability. The conditions allow the separation and quantitation of CP and DHCP without interference from the other substances contained in the cream.

  17. A novel mechanical model for phase-separation in debris flows

    NASA Astrophysics Data System (ADS)

    Pudasaini, Shiva P.

    2015-04-01

    Understanding the physics of phase-separation between solid and fluid phases as a two-phase mass moves down slope is a long-standing challenge. Here, I propose a fundamentally new mechanism, called 'separation-flux', that leads to strong phase-separation in avalanche and debris flows. This new model extends the general two-phase debris flow model (Pudasaini, 2012) to include a separation-flux mechanism. The new flux separation mechanism is capable of describing and controlling the dynamically evolving phase-separation, segregation, and/or levee formation in a real two-phase, geometrically three-dimensional debris flow motion and deposition. These are often observed phenomena in natural debris flows and industrial processes that involve the transportation of particulate solid-fluid mixture material. The novel separation-flux model includes several dominant physical and mechanical aspects that result in strong phase-separation (segregation). These include pressure gradients, volume fractions of solid and fluid phases and their gradients, shear-rates, flow depth, material friction, viscosity, material densities, boundary structures, gravity and topographic constraints, grain shape, size, etc. Due to the inherent separation mechanism, as the mass moves down slope, more and more solid particles are brought to the front, resulting in a solid-rich and mechanically strong frontal surge head followed by a weak tail largely consisting of the viscous fluid. The primary frontal surge head followed by secondary surge is the consequence of the phase-separation. Such typical and dominant phase-separation phenomena are revealed here for the first time in real two-phase debris flow modeling and simulations. However, these phenomena may depend on the bulk material composition and the applied forces. Reference: Pudasaini, Shiva P. (2012): A general two-phase debris flow model. J. Geophys. Res., 117, F03010, doi: 10.1029/2011JF002186.

  18. Convergence of Artificial Protein Polymers and Intrinsically Disordered Proteins.

    PubMed

    Dzuricky, Michael; Roberts, Stefan; Chilkoti, Ashutosh

    2018-05-01

    A flurry of research in recent years has revealed the molecular origins of many membraneless organelles to be the liquid phase separation of intrinsically disordered proteins (IDPs). Consequently, protein disorder has emerged as an important driver of intracellular compartmentalization by providing specialized microenvironments chemically distinct from the surrounding medium. Though the importance of protein disorder and its relationship to intracellular phase behavior are clear, a detailed understanding of how such phase behavior can be predicted and controlled remains elusive. While research in IDPs has largely focused on the implications of structural disorder on cellular function and disease, another field, that of artificial protein polymers, has focused on the de novo design of protein polymers with controllable material properties. A subset of these polymers, specifically those derived from structural proteins such as elastin and resilin, are also disordered sequences that undergo liquid-liquid phase separation. This phase separation has been used in a variety of biomedical applications, and researchers studying these polymers have developed methods to precisely characterize and tune their phase behavior. Despite their disparate origins, both fields are complementary as they study the phase behavior of intrinsically disordered polypeptides. This Perspective hopes to stimulate collaborative efforts by highlighting the similarities between these two fields and by providing examples of how such collaboration could be mutually beneficial.

  19. Planar particle/droplet size measurement technique using digital particle image velocimetry image data

    NASA Technical Reports Server (NTRS)

    Kadambi, Jaikrishnan R. (Inventor); Wernet, Mark P. (Inventor); Mielke, Amy F. (Inventor)

    2005-01-01

    A method for determining a mass flux of an entrained phase in a planar two-phase flow records images of particles in the two-phase flow. Respective sizes of the particles (the entrained phase) are determined as a function of a separation between spots identified on the particle images. Respective velocities of the particles are determined. The mass flux of the entrained phase is determined as a function of the size and velocity of the particles.

  20. Multiple fuel supply system for an internal combustion engine

    DOEpatents

    Crothers, William T.

    1977-01-01

    A multiple fuel supply or an internal combustion engine wherein phase separation of components is deliberately induced. The resulting separation permits the use of a single fuel tank to supply components of either or both phases to the engine. Specifically, phase separation of a gasoline/methanol blend is induced by the addition of a minor amount of water sufficient to guarantee separation into an upper gasoline phase and a lower methanol/water phase. A single fuel tank holds the two-phase liquid with separate fuel pickups and separate level indicators for each phase. Either gasoline or methanol, or both, can be supplied to the engine as required by predetermined parameters. A fuel supply system for a phase-separated multiple fuel supply contained in a single fuel tank is described.

  1. Development and validation of a reversed phase liquid chromatographic method for analysis of oxytetracycline and related impurities.

    PubMed

    Kahsay, Getu; Shraim, Fairouz; Villatte, Philippe; Rotger, Jacques; Cassus-Coussère, Céline; Van Schepdael, Ann; Hoogmartens, Jos; Adams, Erwin

    2013-03-05

    A simple, robust and fast high-performance liquid chromatographic method is described for the analysis of oxytetracycline and its related impurities. The principal peak and impurities are all baseline separated in 20 min using an Inertsil C₈ (150 mm × 4.6 mm, 5 μm) column kept at 50 °C. The mobile phase consists of a gradient mixture of mobile phases A (0.05% trifluoroacetic acid in water) and B (acetonitrile-methanol-tetrahydrofuran, 80:15:5, v/v/v) pumped at a flow rate of 1.3 ml/min. UV detection was performed at 254 nm. The developed method was validated for its robustness, sensitivity, precision and linearity in the range from limit of quantification (LOQ) to 120%. The limits of detection (LOD) and LOQ were found to be 0.08 μg/ml and 0.32 μg/ml, respectively. This method allows the separation of oxytetracycline from all known and 5 unknown impurities, which is better than previously reported in the literature. Moreover, the simple mobile phase composition devoid of non-volatile buffers made the method suitable to interface with mass spectrometry for further characterization of unknown impurities. The developed method has been applied for determination of related substances in oxytetracycline bulk samples available from four manufacturers. The validation results demonstrate that the method is reliable for quantification of oxytetracycline and its impurities. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Response surface methodology for the determination of the design space of enantiomeric separations on cinchona-based zwitterionic chiral stationary phases by high performance liquid chromatography.

    PubMed

    Hanafi, Rasha Sayed; Lämmerhofer, Michael

    2018-01-26

    Quality-by-Design approach for enantioselective HPLC method development surpasses Quality-by-Testing in offering the optimal separation conditions with the least number of experiments and in its ability to describe the method's Design Space visually which helps to determine enantiorecognition to a significant extent. Although some schemes exist for enantiomeric separations on Cinchona-based zwitterionic stationary phases, the exact design space and the weights by which each of the chromatographic parameters influences the separation have not yet been statistically studied. In the current work, a screening design followed by a Response Surface Methodology optimization design were adopted for enantioseparation optimization of 3 model drugs namely the acidic Fmoc leucine, the amphoteric tryptophan and the basic salbutamol. The screening design proved that the acid/base additives are of utmost importance for the 3 chiral drugs, and that among 3 different pairs of acids and bases, acetic acid and diethylamine is the couple able to provide acceptable resolution at variable conditions. Visualization of the response surface of the retention factor, separation factor and resolution helped describe accurately the magnitude by which each chromatographic factor (% MeOH, concentration and ratio of acid base modifiers) affects the separation while interacting with other parameters. The global optima compromising highest enantioresolution with the least run time for the 3 chiral model drugs varied extremely, where it was best to set low % methanol with equal ratio of acid-base modifiers for the acidic drug, very high % methanol and 10-fold higher concentration of the acid for the amphoteric drug while 20 folds of the base modifier with moderate %methanol were needed for the basic drug. Considering the selected drugs as models for many series of structurally related compounds, the design space defined and the optimum conditions computed are the key for method development on cinchona-based chiral stationary phases. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. A Modified MuDPIT Separation Identified 4,488 Proteins in a System Wide Analysis of Quiescence in Yeast

    PubMed Central

    Webb, Kristofor J.; Xu, Tao; Park, Sung Kyu; Yates, John R.

    2013-01-01

    A modified multidimensional protein identification technology (MudPIT) separation was coupled to an LTQ Orbitrap Velos mass spectrometer and used to rapidly identify the near complete yeast proteome from a whole cell tryptic digest. This modified on-line two dimensional liquid chromatography separation consists of 39 strong cation exchange steps followed by a short 18.5 min reversed-phase (RP) gradient. A total of 4,269 protein identifications were made from 4,189 distinguishable protein families from yeast during log phase growth. The “Micro” MudPIT separation performed as well as a standard MudPIT separation in 40% less gradient time. The majority of the yeast proteome can now be routinely covered in less than a days’ time with high reproducibility and sensitivity. The newly devised separation method was used to detect changes in protein expression during cellular quiescence in yeast. An enrichment in the GO annotations ‘oxidation reduction’, ‘catabolic processing’ and ‘cellular response to oxidative stress’ was seen in the quiescent cellular fraction, consistent with their long lived stress resistant phenotypes. Heterogeneity was observed in the stationary phase fraction with a less dense cell population showing reductions in KEGG pathway categories of ‘Ribosome’ and ‘Proteasome’, further defining the complex nature of yeast populations present during stationary phase growth. In total 4,488 distinguishable protein families were identified in all cellular conditions tested. PMID:23540446

  4. Solid Phase Extraction (SPE) for Biodiesel Processing and Analysis

    DTIC Science & Technology

    2017-12-13

    1 METHODS ...sources. There are several methods than can be applied to development of separation techniques that may replace necessary water wash steps in...biodiesel refinement. Unfortunately, the most common methods are poorly suited or face high costs when applied to diesel purification. Distillation is

  5. Enantioselective ultra high performance liquid and supercritical fluid chromatography: The race to the shortest chromatogram.

    PubMed

    Ciogli, Alessia; Ismail, Omar H; Mazzoccanti, Giulia; Villani, Claudio; Gasparrini, Francesco

    2018-03-01

    The ever-increasing need for enantiomerically pure chiral compounds has greatly expanded the number of enantioselective separation methods available for the precise and accurate measurements of the enantiomeric purity. The introduction of chiral stationary phases for liquid chromatography in the last decades has revolutionized the routine methods to determine enantiomeric purity of chiral drugs, agrochemicals, fragrances, and in general of organic and organometallic compounds. In recent years, additional efforts have been placed on faster, enantioselective analytical methods capable to fulfill the high throughput requirements of modern screening procedures. Efforts in this field, capitalizing on improved chromatographic particle technology and dedicated instrumentation, have led to highly efficient separations that are routinely completed on the seconds time scale. An overview of the recent achievements in the field of ultra-high-resolution chromatography on column packed with chiral stationary phases, both based on sub-2 μm fully porous and sub-3 μm superficially porous particles, will be given, with an emphasis on very recent studies on ultrafast chiral separations. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Three dimensional liquid chromatography coupling ion exchange chromatography/hydrophobic interaction chromatography/reverse phase chromatography for effective protein separation in top-down proteomics.

    PubMed

    Valeja, Santosh G; Xiu, Lichen; Gregorich, Zachery R; Guner, Huseyin; Jin, Song; Ge, Ying

    2015-01-01

    To address the complexity of the proteome in mass spectrometry (MS)-based top-down proteomics, multidimensional liquid chromatography (MDLC) strategies that can effectively separate proteins with high resolution and automation are highly desirable. Although various MDLC methods that can effectively separate peptides from protein digests exist, very few MDLC strategies, primarily consisting of 2DLC, are available for intact protein separation, which is insufficient to address the complexity of the proteome. We recently demonstrated that hydrophobic interaction chromatography (HIC) utilizing a MS-compatible salt can provide high resolution separation of intact proteins for top-down proteomics. Herein, we have developed a novel 3DLC strategy by coupling HIC with ion exchange chromatography (IEC) and reverse phase chromatography (RPC) for intact protein separation. We demonstrated that a 3D (IEC-HIC-RPC) approach greatly outperformed the conventional 2D IEC-RPC approach. For the same IEC fraction (out of 35 fractions) from a crude HEK 293 cell lysate, a total of 640 proteins were identified in the 3D approach (corresponding to 201 nonredundant proteins) as compared to 47 in the 2D approach, whereas simply prolonging the gradients in RPC in the 2D approach only led to minimal improvement in protein separation and identifications. Therefore, this novel 3DLC method has great potential for effective separation of intact proteins to achieve deep proteome coverage in top-down proteomics.

  7. Microwave assisted synthesis of metal-organic framework MIL-101 nanocrystals as sorbent and pseudostationary phase in capillary electrophoresis for the separation of anthraquinones in environmental water samples.

    PubMed

    Liu, Yue; Hu, Jia; Li, Yan; Shang, Yun-Tao; Wang, Jia-Qi; Zhang, Ye; Wang, Zhong-Liang

    2017-10-01

    In this work, a CE method was developed to separate five anthraquinones: aloe-emodin, rhein, emodin, chrysophanol, and physcion. The CE method used a nano-sized metal organic framework MIL-101 (nMIL-101) as pseudostationary phase (PSP) and sorbent for dispersed particle extraction (DPE). The nMIL-101 was synthesized by microwave technique and was characterized by UV-vis, TEM, Zeta potential, X-ray diffraction spectrometry and micropore physisorption. In this method, anthraquinones were adsorbed by nMIL-101 of a fast kinetics within 10 min and then separated by CE. The CE conditions were optimized considering time, pH, buffer ionic strength, and nanoparticles concentration. The optimal CE condition is using 20 mM sodium borate buffer (pH 9.1) containing 15% methanol (v/v) and 400 mg/L nMIL-101 as additives within 8 min. The LODs varied from 24 to 57 μg/L, which were lower than those previously reported. Our method has been successfully applied to determine trace anthraquinones in environmental water samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Single-reactor process for producing liquid-phase organic compounds from biomass

    DOEpatents

    Dumesic, James A.; Simonetti, Dante A.; Kunkes, Edward L.

    2015-12-08

    Disclosed is a method for preparing liquid fuel and chemical intermediates from biomass-derived oxygenated hydrocarbons. The method includes the steps of reacting in a single reactor an aqueous solution of a biomass-derived, water-soluble oxygenated hydrocarbon reactant, in the presence of a catalyst comprising a metal selected from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, Mo, Tc, Ru, Rh, Pd, Ag, W, Re, Os, Ir, Pt, and Au, at a temperature, and a pressure, and for a time sufficient to yield a self-separating, three-phase product stream comprising a vapor phase, an organic phase containing linear and/or cyclic mono-oxygenated hydrocarbons, and an aqueous phase.

  9. Single-reactor process for producing liquid-phase organic compounds from biomass

    DOEpatents

    Dumesic, James A [Verona, WI; Simonetti, Dante A [Middleton, WI; Kunkes, Edward L [Madison, WI

    2011-12-13

    Disclosed is a method for preparing liquid fuel and chemical intermediates from biomass-derived oxygenated hydrocarbons. The method includes the steps of reacting in a single reactor an aqueous solution of a biomass-derived, water-soluble oxygenated hydrocarbon reactant, in the presence of a catalyst comprising a metal selected from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, Mo, Tc, Ru, Rh, Pd, Ag, W, Re, Os, Ir, Pt, and Au, at a temperature, and a pressure, and for a time sufficient to yield a self-separating, three-phase product stream comprising a vapor phase, an organic phase containing linear and/or cyclic mono-oxygenated hydrocarbons, and an aqueous phase.

  10. Compatibilized Immiscible Polymer Blends for Gas Separations

    PubMed Central

    Panapitiya, Nimanka; Wijenayake, Sumudu; Nguyen, Do; Karunaweera, Chamaal; Huang, Yu; Balkus, Kenneth; Musselman, Inga; Ferraris, John

    2016-01-01

    Membrane-based gas separation has attracted a great deal of attention recently due to the requirement for high purity gasses in industrial applications like fuel cells, and because of environment concerns, such as global warming. The current methods of cryogenic distillation and pressure swing adsorption are energy intensive and costly. Therefore, polymer membranes have emerged as a less energy intensive and cost effective candidate to separate gas mixtures. However, the use of polymeric membranes has a drawback known as the permeability-selectivity tradeoff. Many approaches have been used to overcome this limitation including the use of polymer blends. Polymer blending technology synergistically combines the favorable properties of different polymers like high gas permeability and high selectivity, which are difficult to attain with a single polymer. During polymer mixing, polymers tend to uncontrollably phase separate due to unfavorable thermodynamics, which limits the number of completely miscible polymer combinations for gas separations. Therefore, compatibilizers are used to control the phase separation and to obtain stable membrane morphologies, while improving the mechanical properties. In this review, we focus on immiscible polymer blends and the use of compatibilizers for gas separation applications. PMID:28773766

  11. Magnetic resonance separation imaging using a divided inversion recovery technique (DIRT).

    PubMed

    Goldfarb, James W

    2010-04-01

    The divided inversion recovery technique is an MRI separation method based on tissue T(1) relaxation differences. When tissue T(1) relaxation times are longer than the time between inversion pulses in a segmented inversion recovery pulse sequence, longitudinal magnetization does not pass through the null point. Prior to additional inversion pulses, longitudinal magnetization may have an opposite polarity. Spatial displacement of tissues in inversion recovery balanced steady-state free-precession imaging has been shown to be due to this magnetization phase change resulting from incomplete magnetization recovery. In this paper, it is shown how this phase change can be used to provide image separation. A pulse sequence parameter, the time between inversion pulses (T180), can be adjusted to provide water-fat or fluid separation. Example water-fat and fluid separation images of the head, heart, and abdomen are presented. The water-fat separation performance was investigated by comparing image intensities in short-axis divided inversion recovery technique images of the heart. Fat, blood, and fluid signal was suppressed to the background noise level. Additionally, the separation performance was not affected by main magnetic field inhomogeneities.

  12. Extraction of heavy metal ions from waste colored glass through phase separation.

    PubMed

    Chen, Danping; Masui, Hirotsugu; Miyoshi, Hiroshi; Akai, Tomoko; Yazawa, Tetsuo

    2006-01-01

    A new method utilizing phase separation phenomena for the extraction of heavy metal ions used as colorants in colored glass is proposed. Colored soda-lime-silica glass containing Co or Cr as a colorant was remelted with B2O3 to yield soda-lime-borosilicate glass. The soda-lime-borosilicate glass thus obtained was leached in 1M nitric acid at 90 degrees C to dissolve the borate phase. All cations (Na, Ca, Cr and Co) concentrated in the borate phase are successfully leached out with the dissolution of the borate phase, when the amount of the B2O3 added to the glass and heat treatment conditions are properly chosen. Porous silicate glass powders with high SiO2 purity are obtained as the result of the leaching. Porous glass can also be formed as bulk material by controlling the composition of additives during the remelting.

  13. Ramsey's method of separated oscillating fields and its application to gravitationally induced quantum phase shifts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abele, H.; Jenke, T.; Leeb, H.

    2010-03-15

    We propose to apply Ramsey's method of separated oscillating fields to the spectroscopy of the quantum states in the gravity potential above a horizontal mirror. This method allows a precise measurement of quantum mechanical phaseshifts of a Schroedinger wave packet bouncing off a hard surface in the gravitational field of the Earth. Measurements with ultracold neutrons will offer a sensitivity to Newton's law or hypothetical short-ranged interactions, which is about 21 orders of magnitude below the energy scale of electromagnetism.

  14. Development and validation of a simple high-performance liquid chromatography analytical method for simultaneous determination of phytosterols, cholesterol and squalene in parenteral lipid emulsions.

    PubMed

    Novak, Ana; Gutiérrez-Zamora, Mercè; Domenech, Lluís; Suñé-Negre, Josep M; Miñarro, Montserrat; García-Montoya, Encarna; Llop, Josep M; Ticó, Josep R; Pérez-Lozano, Pilar

    2018-02-01

    A simple analytical method for simultaneous determination of phytosterols, cholesterol and squalene in lipid emulsions was developed owing to increased interest in their clinical effects. Method development was based on commonly used stationary (C 18 , C 8 and phenyl) and mobile phases (mixtures of acetonitrile, methanol and water) under isocratic conditions. Differences in stationary phases resulted in peak overlapping or coelution of different peaks. The best separation of all analyzed compounds was achieved on Zorbax Eclipse XDB C 8 (150 × 4.6 mm, 5 μm; Agilent) and ACN-H 2 O-MeOH, 80:19.5:0.5 (v/v/v). In order to achieve a shorter time of analysis, the method was further optimized and gradient separation was established. The optimized analytical method was validated and tested for routine use in lipid emulsion analyses. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Reaction-mediated entropic effect on phase separation in a binary polymer system

    NASA Astrophysics Data System (ADS)

    Sun, Shujun; Guo, Miaocai; Yi, Xiaosu; Zhang, Zuoguang

    2017-10-01

    We present a computer simulation to study the phase separation behavior induced by polymerization in a binary system comprising polymer chains and reactive monomers. We examined the influence of interaction parameter between components and monomer concentration on the reaction-induced phase separation. The simulation results demonstrate that increasing interaction parameter (enthalpic effect) would accelerate phase separation, while entropic effect plays a key role in the process of phase separation. Furthermore, scanning electron microscopy observations illustrate identical morphologies as found in theoretical simulation. This study may enrich our comprehension of phase separation in polymer mixture.

  16. A simple method to separate red wine nonpolymeric and polymeric phenols by solid-phase extraction.

    PubMed

    Pinelo, Manuel; Laurie, V Felipe; Waterhouse, Andrew L

    2006-04-19

    Simple polyphenols and tannins differ in the way that they contribute to the organoleptic profile of wine and their effects on human health. Very few straightforward techniques to separate red wine nonpolymeric phenols from the polymeric fraction are available in the literature. In general, they are complex, time-consuming, and generate large amounts of waste. In this procedure, the separation of these compounds was achieved using C18 cartridges, three solvents with different elution strengths, and pH adjustments of the experimental matrices. Two full factorial 2(3) experimental designs were performed to find the optimal critical variables and their values, allowing for the maximization of tannin recovery and separation efficiency (SE). Nonpolymeric phenols such as phenolic acids, monomers, and oligomers of flavonol and flavan-3-ols and anthocyanins were removed from the column by means of an aqueous solvent followed by ethyl acetate. The polymeric fraction was then eluted with a combination of methanol/acetone/water. The best results were attained with 1 mL of wine sample, a 10% methanol/water solution (first eluant), ethyl acetate (second eluant), and 66% acetone/water as the polymeric phenols-eluting solution (third eluant), obtaining a SE of ca. 90%. Trials with this method on fruit juices also showed high separation efficiency. Hence, this solid-phase extraction method has been shown to be a simple and efficient alternative for the separation of nonpolymeric phenolic fractions and the polymeric ones, and this method could have important applications to sample purification prior to biological testing due to the nonspecific binding of polymeric phenolics to nearly all enzymes and receptor sites.

  17. Quantitative phase imaging using four interferograms with special phase shifts by dual-wavelength in-line phase-shifting interferometry

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoqing; Wang, Yawei; Ji, Ying; Xu, Yuanyuan; Xie, Ming; Han, Hao

    2018-05-01

    A new approach of quantitative phase imaging using four interferograms with special phase shifts in dual-wavelength in-line phase-shifting interferometry is presented. In this method, positive negative 2π phase shifts are employed to easily separate the incoherent addition of two single-wavelength interferograms by combining the phase-shifting technique with the subtraction procedure, then the quantitative phase at one of both wavelengths can be achieved based on two intensities without the corresponding dc terms by the use of the character of the trigonometric function. The quantitative phase of the other wavelength can be retrieved from two dc-term suppressed intensities obtained by employing the two-step phase-shifting technique or the filtering technique in the frequency domain. The proposed method is illustrated with theory, and its effectiveness is demonstrated by simulation experiments of the spherical cap and the HeLa cell, respectively.

  18. Optimization of a new mobile phase to know the complex and real polyphenolic composition: towards a total phenolic index using high-performance liquid chromatography.

    PubMed

    Tsao, Rong; Yang, Raymond

    2003-11-07

    An HPLC method is reported for the separation and quantification of five major polyphenolic groups found in fruits and related products: single ring phenolic acids (hydroxybenzoic acid and hydroxycinnamic acid derivatives), flavan-3-ols, flavonols, anthocyanins, and dihydrochalcones. A binary mobile phase consisting of 6% acetic acid in 2 mM sodium acetate aqueous solution (v/v, final pH 2.55) (solvent A) and acetonitrile (solvent B) was used. The use of sodium acetate was new and key to the near baseline separation of 25 phenolics commonly found in fruits. A photodiode array detector was used and data were collected at four wavelengths (280, 320, 360, and 520 nm). This method was sensitive and gave good separation of polyphenolics in apple, cherry, strawberry, blackberry, grape, apple juice, and a processing by-product. The improved separation has led to better understanding of the polyphenolic profiles of these fruits. Individual as well as total phenolic content was obtained, and the latter was close to and correlated well with that obtained by the Folin-Ciocalteu method (FC). The HPLC data can be used as a total phenolic index (TPI) for quantification of fruit phenolics, which is advantageous over the FC because it has more information on individual compounds.

  19. Method of filling a microchannel separation column

    DOEpatents

    Arnold, Don W.

    2002-01-01

    A method for packing a stationary phase into a small diameter fluid passageway or flow channel. Capillary action is employed to distribute a stationary phase uniformly along both the length and diameter of the flow channel. The method disclosed here: 1) eliminates the need for high pressure pumps and fittings and the safety hazards associated therewith; 2) allows the use of readily available commercial microparticles, either coated or uncoated, as the stationary phase; 3) provides for different types of particles, different particle sizes, and different particle size distributions to be packed in sequence, or simultaneously; 4) eliminates the need for plugging the flow channel prior to adding the stationary phase to retain the packing particles; and 5) many capillaries can be filled simultaneously.

  20. Theoretical Calculation of Jet Fuel Thermochemistry. 1; Tetrahydrodicylopentadiene (JP10) Thermochemistry Using the CBS-QB3 and G3(MP2)//B3LYP Methods

    NASA Technical Reports Server (NTRS)

    Zehe, Michael J.; Jaffe, Richard L.

    2010-01-01

    High-level ab initio calculations have been performed on the exo and endo isomers of gas-phase tetrahydrodicyclopentadiene (THDCPD), a principal component of the jet fuel JP10, using the Gaussian Gx and Gx(MPx) composite methods, as well as the CBS-QB3 method, and using a variety of isodesmic and homodesmotic reaction schemes. The impetus for this work is to help resolve large discrepancies existing between literature measurements of the formation enthalpy Delta (sub f)H deg (298) for exo-THDCPD. We find that use of the isodesmic bond separation reaction C10H16 + 14CH4 yields 12C2H6 yields results for the exo isomer (JP10) in between the two experimentally accepted values, for the composite methods G3(MP2), G3(MP2)//B3LYP, and CBS-QB3. Application of this same isodesmic bond separation scheme to gas-phase adamantane yields a value for Delta (sub f)H deg (298) within 5 kJ/mol of experiment. Isodesmic bond separation calculations for the endo isomer give a heat of formation in excellent agreement with the experimental measurement. Combining our calculated values for the gas-phase heat of formation with recent measurements of the heat of vaporization yields recommended values for Delta (sub f)H deg (298)liq of -126.4 and -114.7 kJ/mol for the exo and endo isomers, respectively.

  1. Three-step interferometric method with blind phase shifts by use of interframe correlation between interferograms

    NASA Astrophysics Data System (ADS)

    Muravsky, Leonid I.; Kmet', Arkady B.; Stasyshyn, Ihor V.; Voronyak, Taras I.; Bobitski, Yaroslav V.

    2018-06-01

    A new three-step interferometric method with blind phase shifts to retrieve phase maps (PMs) of smooth and low-roughness engineering surfaces is proposed. Evaluating of two unknown phase shifts is fulfilled by using the interframe correlation between interferograms. The method consists of two stages. The first stage provides recording of three interferograms of a test object and their processing including calculation of unknown phase shifts, and retrieval of a coarse PM. The second stage implements firstly separation of high-frequency and low-frequency PMs and secondly producing of a fine PM consisting of areal surface roughness and waviness PMs. Extraction of the areal surface roughness and waviness PMs is fulfilled by using a linear low-pass filter. The computer simulation and experiments fulfilled to retrieve a gauge block surface area and its areal surface roughness and waviness have confirmed the reliability of the proposed three-step method.

  2. Development and optimisation of an HPLC-DAD-ESI-Q-ToF method for the determination of phenolic acids and derivatives.

    PubMed

    Restivo, Annalaura; Degano, Ilaria; Ribechini, Erika; Colombini, Maria Perla

    2014-01-01

    A method for the HPLC-MS/MS analysis of phenols, including phenolic acids and naphtoquinones, using an amide-embedded phase column was developed and compared to the literature methods based on classical C18 stationary phase columns. RP-Amide is a recently developed polar embedded stationary phase, whose wetting properties mean that up to 100% water can be used as an eluent. The increased retention and selectivity for polar compounds and the possibility of working in 100% water conditions make this column particularly interesting for the HPLC analysis of phenolic acids and derivatives. In this study, the chromatographic separation was optimised on an HPLC-DAD, and was used to separate 13 standard phenolic acids and derivatives. The method was validated on an HPLC-ESI-Q-ToF. The acquisition was performed in negative polarity and MS/MS target mode. Ionisation conditions and acquisition parameters for the Q-ToF detector were investigated by working on collision energies and fragmentor potentials. The performance of the method was fully evaluated on standards. Moreover, several raw materials containing phenols were analysed: walnut, gall, wine, malbec grape, French oak, red henna and propolis. Our method allowed us to characterize the phenolic composition in a wide range of matrices and to highlight possible matrix effects.

  3. In Situ Activation of Microcapsules

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor)

    2000-01-01

    Disclosed are microcapsules comprising a polymer shell enclosing two or more immiscible liquid phases in which a drug, or a prodrug and a drug activator are partitioned into separate phases. or prevented from diffusing out of the microcapsule by a liquid phase in which the drug is poorly soluble. Also disclosed are methods of using the microcapsules for in situ activation of drugs where upon exposure to an appropriate energy source the internal phases mix and the drug is activated in situ.

  4. Method and apparatus for ion mobility spectrometry with alignment of dipole direction (IMS-ADD)

    DOEpatents

    Shvartsburg, Alexandre A [Richland, WA; Tang, Keqi [Richland, WA; Smith, Richard D [Richland, WA

    2007-01-30

    Techniques and instrumentation are described for analyses of substances, including complex samples/mixtures that require separation prior to characterization of individual components. A method is disclosed for separation of ion mixtures and identification of ions, including protein and other macromolecular ions and their different structural isomers. Analyte ions are not free to rotate during the separation, but are substantially oriented with respect to the drift direction. Alignment is achieved by applying, at a particular angle to the drift field, a much stronger alternating electric field that "locks" the ion dipoles with moments exceeding a certain value. That value depends on the buffer gas composition, pressure, and temperature, but may be as low as .about.3 Debye under certain conditions. The presently disclosed method measures the direction-specific cross-sections that provide the structural information complementing that obtained from known methods, and, when coupled to those methods, increases the total peak capacity and specificity of gas-phase separations. Simultaneous 2-D separations by direction-specific cross sections along and orthogonally to the ion dipole direction are also possible.

  5. Synthesis of monodisperse silica microspheres and modification with diazoresin for mixed-mode ultra high performance liquid chromatography separations.

    PubMed

    Cong, Hailin; Yu, Bing; Tian, Chao; Zhang, Shuai; Yuan, Hua

    2017-11-01

    Monodisperse silica particles with average diameters of 1.9-2.9 μm were synthesized by a modified Stöber method, in which tetraethyl orthosilicate was continuously supplied to the reaction mixture containing KCl electrolyte, water, ethanol, and ammonia. The obtained silica particles were modified by self-assembly with positively charged photosensitive diazoresin on the surface. After treatment with ultraviolet light, the ionic bonding between silica and diazoresin was converted into covalent bonding through a unique photochemistry reaction of diazoresin. Depending on the chemical structure of diazoresin and mobile phase composition, the diazoresin-modified silica stationary phase showed different separation mechanisms, including reversed phase and hydrophilic interactions. Therefore, a variety of baseline separation of benzene analogues and organic acids was achieved by using the diazoresin-modified silica particles as packing materials in ultra high performance liquid chromatography. According to the π-π interactional difference between carbon rings of fullerenes and benzene rings of diazoresin, C 60 and C 70 were also well separated by ultra-high performance liquid chromatography. Because it has a small size, the ∼2.5 μm monodisperse diazoresin-modified silica stationary phase shows ultra-high efficiency compared with the commercial C 18 -silica high-performance liquid chromatography stationary phase with average diameters of ∼5 μm. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The contribution of photosynthetic pigments to the development of biochemical separation methods: 1900-1980.

    PubMed

    Albertsson, Per-Ake

    2003-01-01

    The role of photosynthetic pigments in the development of separation methods in biochemistry during the period 1900-1980 is described beginning with M. Tswett who introduced separation of chlorophylls and carotenoids on columns and coined the term chromatography in 1906. In Uppsala, T. Svedberg developed the ultracentrifuge in the 1920s. A. Tiselius improved electrophoresis in the 1930s and developed chromatography of proteins in the 1940s and 1950s. Others of 'The Uppsala school in separation science' include J. Porath, P. Flodin and S. Hjertén who further developed various gel chromatographic methods. Hjertén introduced free zone electrophoresis in narrow tubes, a forerunner of capillary electrophoresis. Two proteins, phycoerythrin and phycocyanin, were used as test substances in all these methodological studies. Aqueous two-phase partitioning as a separation method was introduced in 1956 by the author. In this work, chloroplast particles were used, and the method was applied for the separation and purification of intact chloroplasts, inside-out thylakoid vesicles and plasma membranes. My research was carried out in cooperation with G. Blomquist, G. Johansson, C. Larsson, B. Andersson and H.-E. Akerlund during a 20-year period, 1960-1980.

  7. HPLC separation of acetaminophen and its impurities using a mixed-mode reversed-phase/cation exchange stationary phase.

    PubMed

    Călinescu, Octavian; Badea, Irinel A; Vlădescu, Luminiţa; Meltzer, Viorica; Pincu, Elena

    2012-04-01

    Determination of acetaminophen and its main impurities: 4-nitrophenol, 4'-chloroacetanilide, as well as 4-aminophenol and its degradation products, p-benzoquinone and hydroquinone has been developed and validated by a new high-performance liquid chromatography method. Chromatographic separation has been obtained on a Hypersil Duet C18/SCX column, using gradient elution, with a mixture of phosphate buffer (pH = 4.88) and methanol as a mobile phase. Analysis time did not exceed 14.5 min and good resolutions, peak shapes and asymmetries have resulted. The linearity of the method has been tested in the range of 5.0-60 µg/mL for acetaminophen and 0.5-6 µg/mL for the other compounds. The limits of detection and quantification have been also established to be lower than 0.1 µg/mL and 0.5 µg/mL, respectively. The method has been successfully applied for the analysis of commercial acetaminophen preparations. © The Author [2012]. Published by Oxford University Press. All rights reserved.

  8. Continuous Determination of High-Vapor Phase Concentrations of Tetrachloroethylene Using On-Line Mass Spectrometry

    EPA Science Inventory

    A method was developed to determine the vapor concentration of tetrachloroethylene (PCE) at and below its equilibrium vapor phase concentration, 168,000 μg/L (25°C). Vapor samples were drawn by vacuum into a six-port sampling valve and injected through a jet separator into an io...

  9. Profiling of polar metabolites in biological extracts using diamond hydride-based aqueous normal phase chromatography.

    PubMed

    Callahan, Damien L; De Souza, David; Bacic, Antony; Roessner, Ute

    2009-07-01

    Highly polar metabolites, such as sugars and most amino acids are not retained by conventional RP LC columns. Without sufficient retention low concentration compounds are not detected due ion suppression and structural isomers are not resolved. In contrast, hydrophilic interaction chromatography (HILIC) and aqueous normal phase chromatography (ANP) retain compounds based on their hydrophilicity and therefore provides a means of separating highly polar compounds. Here, an ANP method based on the diamond hydride stationary phase is presented for profiling biological small molecules by LC. A rapid separation system based upon a fast gradient that delivers reproducible chromatography is presented. Approximately 1000 compounds were reproducibly detected in human urine samples and clear differences between these samples were identified. This chromatography was also applied to xylem fluid from soyabean (Glycine max) plants to which 400 compounds were detected. This method greatly increases the metabolite coverage over RP-only metabolite profiling in biological samples. We show that both forms of chromatography are necessary for untargeted comprehensive metabolite profiling and that the diamond hydride stationary phase provides a good option for polar metabolite analysis.

  10. Separation of aqueous two-phase polymer systems in microgravity

    NASA Technical Reports Server (NTRS)

    Vanalstine, J. M.; Harris, J. M.; Synder, S.; Curreri, P. A.; Bamberger, S. B.; Brooks, D. E.

    1984-01-01

    Phase separation of polymer systems in microgravity is studied in aircraft flights to prepare shuttle experiments. Short duration (20 sec) experiments demonstrate that phase separation proceeds rapidly in low gravity despite appreciable phase viscosities and low liquid interfacial tensions (i.e., 50 cP, 10 micro N/m). Ostwald ripening does not appear to be a satisfactory model for the phase separation mechanism. Polymer coated surfaces are evaluated as a means to localize phases separated in low gravity. Contact angle measurements demonstrate that covalently coupling dextran or PEG to glass drastically alters the 1-g wall wetting behavior of the phases in dextran-PEG two phase systems.

  11. Quality by design approach for the separation of naproxcinod and its related substances by fused core particle technology column.

    PubMed

    Inugala, Ugandar Reddy; Pothuraju, Nageswara Rao; Vangala, Ranga Reddy

    2013-01-01

    This paper describes the development of a rapid, novel, stability-indicating gradient reversed-phase high-performance liquid chromatographic method and associated system suitability parameters for the analysis of naproxcinod in the presence of its related substances and degradents using a quality-by-design approach. All of the factors that affect the separation of naproxcinod and its impurities and their mutual interactions were investigated and robustness of the method was ensured. The method was developed using an Ascentis Express C8 150 × 4.6 mm, 2.7 µm column with a mobile phase containing a gradient mixture of two solvents. The eluted compounds were monitored at 230 nm, the run time was 20 min within which naproxcinod and its eight impurities were satisfactorily separated. Naproxcinod was subjected to the stress conditions of oxidative, acid, base, hydrolytic, thermal and photolytic degradation. Naproxcinod was found to degrade significantly in acidic and basic conditions and to be stable in thermal, photolytic, oxidative and aqueous degradation conditions. The degradation products were satisfactorily resolved from the primary peak and its impurities, proving the stability-indicating power of the method. The developed method was validated as per International Conference on Harmonization guidelines with respect to specificity, linearity, limit of detection, limit of quantification, accuracy, precision and robustness.

  12. Development and evaluation of a hydrophilic interaction liquid chromatography-MS/MS method to quantify 19 nucleobases and nucleosides in rat plasma.

    PubMed

    Du, Yan; Li, Yin-Jie; Hu, Xun-Xiu; Deng, Xu; Qian, Zeng-Ting; Li, Zheng; Guo, Meng-Zhe; Tang, Dao-Quan

    2017-04-01

    As essential endogenous compounds, nucleobases and nucleosides fulfill various functions in living organisms. This study presents the development and validation of a new hydrophilic interaction liquid chromatography tandem mass spectrometry method for simultaneous quantification of 19 nucleobases and nucleosides in rat plasma. For the sample preparation, 15 kinds of protein precipitants were evaluated according to the chromatographic profile and ion response of analytes. The optimization of chromatographic separation was respectively performed using reversed-phase liquid chromatography and hydrophilic interaction liquid chromatography mode; each separation mode included two test columns with different stationary phases. The chromatographic profile and parameters such as half-width (W 1/2 ), capacity factor (K') and tailing factor (f t ) were used to evaluate the separation efficiencies. Furthermore, the adopted composition of two mobile phase systems and the concentrations of the additives in the optimum buffer system were also investigated. The developed method was fully validated and successfully applied quantitatively to determine 19 nucleobases and nucleosides in plasma from normal and diabetic nephropathy (DN) rats. Significant differences between normal and DN rats were found in plasma levels of cytosine, xanthine, thymidine, adenosine, guanosine, inosine and 8-hydroxy-2'-deoxyguanosine. This information may provide a useful reference for the discovery of potential biomarkers of DN. Copyright © 2016 John Wiley & Sons, Ltd.

  13. [Chiral separation of five beta-blockers using di-n-hexyl L-tartrate-boric acid complex as mobile phase additive by reversed-phase liquid chromatography].

    PubMed

    Yang, Juan; Wang, Lijuan; Guo, Qiaoling; Yang, Gengliang

    2012-03-01

    A reversed-phase high performance liquid chromatographic (HPLC) method using the di-n-hexyl L-tartrate-boric acid complex as a chiral mobile phase additive was developed for the enantioseparation of five beta-blockers including propranolol, esmolol, metoprolol, bisoprolol and sotalol. In order to obtain a better enantioseparation, the influences of concentrations of di-n-butyl L-tartrate and boric acid, the type, concentration and pH of the buffer, methanol content as well as the molecular structure of analytes were extensively investigated. The separation of the analytes was performed on a Venusil MP-C18 column (250 mm x 4.6 mm, 5 microm). The mobile phase was 15 mmol/L ammonium acetate-methanol containing 60 mmol/L boric acid, 70 mmol/L di-n-hexyl L-tartrate (pH 6.00). The volume ratios of 15 mmol/L ammonium acetate to methanol were 20: 80 for propranolol, esmolol, metoprolol, bisoprolol and 30: 70 for sotalol. The flow rate was 0.5 mL/min and the detection wavelength was set at 214 nm. Under the optimized conditions, baseline enantioseparation was obtained separately for the five pairs of analytes.

  14. Preparative isolation and purification of theaflavins and catechins by high-speed countercurrent chromatography.

    PubMed

    Wang, Kunbo; Liu, Zhonghua; Huang, Jian-an; Dong, Xinrong; Song, Lubing; Pan, Yu; liu, Fang

    2008-05-15

    High-speed countercurrent chromatography (HSCCC) has been applied for the separation of theaflavins and catechins. The HSCCC run was carried out with a two-phase solvent system composed of hexane-ethyl acetate-methanol-water-acetic acid (1:5:1:5:0.25, v/v) by eluting the lower aqueous phase at 2 ml/min at 700 rpm. The results indicated that pure theaflavin, theaflavins-3-gallate, theaflavins-3'-gallate and theaflavin-3,3'-digallate could be obtained from crude theaflavins sample and black tea. The structures of the isolated compounds were positively confirmed by (1)H NMR and (13)C NMR, MS analysis, HPLC data and TLC data. Meanwhile, catechins including epigallocatechin gallate, gallocatechin gallate, epicatechin gallate and epigallocatechin were isolated from the aqueous extract of green tea by using the same solvent system. This study developed a modified method combined with enrichment theaflavins method by using HSCCC for separation of four individual theaflavins, especially for better separation of theaflavins monogallates.

  15. Preparative isolation and purification of three stilbene glycosides from the tibetan medicinal plant Rheum tanguticum maxim. Ex Balf. by high-speed counter-current chromatography.

    PubMed

    Zhao, Xiao-Hui; Han, Fa; Li, Yu-Lin; Yue, Hui-Lan

    2013-02-01

    Stilbene glycosides are the primary constituents of Rheum tanguticum Maxim. ex Balf., to which different bioactivities has been attributed, including: anti-HIV, anti-oxidant, anti-tumour, anti-malarial, and anti-allergy activity. However, effective methods for the isolation and purification of stilbene glycosides, such as trans-rhapontin, cis-rhapontin and trans-desoxyrhaponticin, from this herb are not currently available. To develop an efficient method for the preparative isolation and purification of three stilbene glycosides from Rheum tanguticum Maxim. ex Balf. via high-speed counter-current chromatography (HSCCC). A solvent system composed of chloroform:n-butanol:methanol:water (4:1:3:2, v/v/v/v) was developed for the separation. The upper phase was used as the stationary phase, and the lower phase was used as the mobile phase. The flow rate was 1.8 mL/min. The apparatus was controlled at 800 rpm and 25 °C, and the effluent was monitored at 280 nm. Chemical constituents were analysed by high-performance liquid chromatography (HPLC), and their structures were identified by ¹H- and ¹³C-NMR. Under the optimised conditions, 25.5 mg trans-rhapontin, 16.0 mg cis-rhapontin and 20.5 mg trans-desoxyrhaponticin were separated from 80 mg crude sample; the isolates had purities of 99.6, 97.2 and 99.2%, respectively. A simple and efficient HSCCC method has been optimised for the preparative separation of stilbene glycosides from Rheum tanguticum Maxim. ex Balf. Copyright © 2012 John Wiley & Sons, Ltd.

  16. In-line micro-matrix solid-phase dispersion extraction for simultaneous separation and extraction of Sudan dyes in different spices.

    PubMed

    Rajabi, Maryam; Sabzalian, Sedigheh; Barfi, Behruz; Arghavani-Beydokhti, Somayeh; Asghari, Alireza

    2015-12-18

    A novel, simple, fast, and miniaturized method, termed in-line micro-matrix solid-phase dispersion (in-line MMSPD), coupled with high performance liquid chromatography (HPLC) was developed for the simultaneous extraction and determination of Sudan dyes (i.e. Sudan I-IV, Sudan orange G, Sudan black B, and Sudan red G) with the aid of an experimental design strategy. In this method, a matrix solid-phase dispersion (MSPD) column including a suitable mixture of polar sorbents was inserted in the mobile phase pathway, and while the interfering compounds were retained, the analytes were eluted and entered into the analytical column. In this way, the extraction, elution, and separation of the analytes were performed sequentially. Under the optimal experimental conditions (including the amount of sample, 0.0426g; amount of dispersant phase, 0.0216g of florisil, 0.0227g of silica, 0.0141g of alumina; and blending time, 112s), the limits of detection (LODs), limits of quantification, linear dynamic ranges, and recoveries were obtained to be 0.3-15.3μgkg(-1), 1-50μgkg(-1), 50-28,000μgkg(-1), and 94.5-99.1%, respectively. The results obtained showed that determination of the selected Sudan dyes in food samples using an enough sensitive and a simple analytically validated method like in-line MMSPD may offer a suitable screening method, which could be useful for food analysis and adulteration. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Quality by design: a systematic and rapid liquid chromatography and mass spectrometry method for eprosartan mesylate and its related impurities using a superficially porous particle column.

    PubMed

    Kalariya, Pradipbhai D; Kumar Talluri, Murali V N; Gaitonde, Vinay D; Devrukhakar, Prashant S; Srinivas, Ragampeta

    2014-08-01

    The present work describes the systematic development of a robust, precise, and rapid reversed-phase liquid chromatography method for the simultaneous determination of eprosartan mesylate and its six impurities using quality-by-design principles. The method was developed in two phases, screening and optimization. During the screening phase, the most suitable stationary phase, organic modifier, and pH were identified. The optimization was performed for secondary influential parameters--column temperature, gradient time, and flow rate using eight experiments--to examine multifactorial effects of parameters on the critical resolution and generated design space representing the robust region. A verification experiment was performed within the working design space and the model was found to be accurate. This study also describes other operating features of the column packed with superficially porous particles that allow very fast separations at pressures available in most liquid chromatography instruments. Successful chromatographic separation was achieved in less than 7 min using a fused-core C18 (100 mm × 2.1 mm, 2.6 μm) column with linear gradient elution of 10 mM ammonium formate (pH 3.0) and acetonitrile as the mobile phase. The method was validated for specificity, linearity, accuracy, precision, and robustness in compliance with the International Conference on Harmonization Q2 (R1) guidelines. The impurities were identified by liquid chromatography with mass spectrometry. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Stationary-phase optimized selectivity liquid chromatography: development of a linear gradient prediction algorithm.

    PubMed

    De Beer, Maarten; Lynen, Fréderic; Chen, Kai; Ferguson, Paul; Hanna-Brown, Melissa; Sandra, Pat

    2010-03-01

    Stationary-phase optimized selectivity liquid chromatography (SOS-LC) is a tool in reversed-phase LC (RP-LC) to optimize the selectivity for a given separation by combining stationary phases in a multisegment column. The presently (commercially) available SOS-LC optimization procedure and algorithm are only applicable to isocratic analyses. Step gradient SOS-LC has been developed, but this is still not very elegant for the analysis of complex mixtures composed of components covering a broad hydrophobicity range. A linear gradient prediction algorithm has been developed allowing one to apply SOS-LC as a generic RP-LC optimization method. The algorithm allows operation in isocratic, stepwise, and linear gradient run modes. The features of SOS-LC in the linear gradient mode are demonstrated by means of a mixture of 13 steroids, whereby baseline separation is predicted and experimentally demonstrated.

  19. Gradient stationary phase optimized selectivity liquid chromatography with conventional columns.

    PubMed

    Chen, Kai; Lynen, Frédéric; Szucs, Roman; Hanna-Brown, Melissa; Sandra, Pat

    2013-05-21

    Stationary phase optimized selectivity liquid chromatography (SOSLC) is a promising technique to optimize the selectivity of a given separation. By combination of different stationary phases, SOSLC offers excellent possibilities for method development under both isocratic and gradient conditions. The so far available commercial SOSLC protocol utilizes dedicated column cartridges and corresponding cartridge holders to build up the combined column of different stationary phases. The present work is aimed at developing and extending the gradient SOSLC approach towards coupling conventional columns. Generic tubing was used to connect short commercially available LC columns. Fast and base-line separation of a mixture of 12 compounds containing phenones, benzoic acids and hydroxybenzoates under both isocratic and linear gradient conditions was selected to demonstrate the potential of SOSLC. The influence of the connecting tubing on the deviation of predictions is also discussed.

  20. Evaluation of an International Pharmacopoeia method for the analysis of nelfinavir mesilate by liquid chromatography.

    PubMed

    Yekkala, Raja Satyanarayana; Vandenwayenberg, Stephanie; Hoogmartens, Jos; Adams, Erwin

    2006-11-17

    A gradient LC method for the determination of related substances in nelfinavir mesilate (NFVM) has been recently published in the International Pharmacopoeia. The method uses a base deactivated reversed phase C18 column (25 cm x 4.6 mm I.D.), 5 microm kept at a temperature of 35 degrees C. The mobile phases consist of acetonitrile, methanol, phosphate buffer pH 3.4 and water. The flow rate is 1.0 ml/min. UV detection is performed at 225 nm. A system suitability test (SST) is described to govern the quality of the separation. The separation towards NFVM components was investigated on 18 C18 columns and correlation was made with the column classification system developed in our laboratory. The method was evaluated using a Hypersil BDS C18 column (25 cm x 4.6 mm I.D.), 5 microm. A two level fractional factorial design was applied to examine the robustness of the method. The method shows good selectivity, precision, linearity and sensitivity. Seven commercial samples were examined using this method.

  1. Identification of procyanidins in cocoa (Theobroma cacao) and chocolate using high-performance liquid chromatography/mass spectrometry.

    PubMed

    Hammerstone, J F; Lazarus, S A; Mitchell, A E; Rucker, R; Schmitz, H H

    1999-02-01

    Monomeric and oligomeric procyanidins present in cocoa and chocolate were separated and identified using a modified normal-phase high-performance liquid chromatography (HPLC) method coupled with on-line mass spectrometry (MS) analysis using an atmospheric pressure ionization electrospray chamber. The chromatographic separation was achieved using a silica stationary phase in combination with a gradient ascending in polarity. This qualitative report confirms the presence of a complex series of procyanidins in raw cocoa and certain chocolates using HPLC/MS techniques. Although both cocoa and chocolate contained monomeric and oligomeric procyanidin units 2-10, only use of negative mode provided MS data for the higher oligomers (i.e., >pentamer). Application of this method for qualitative analysis of proanthocyanidins in other food products and confirmation of this method as a reliable quantitative tool for determining levels of procyanidins in cocoa, chocolate, and other food products are currently being investigated.

  2. Null test fourier domain alignment technique for phase-shifting point diffraction interferometer

    DOEpatents

    Naulleau, Patrick; Goldberg, Kenneth Alan

    2000-01-01

    Alignment technique for calibrating a phase-shifting point diffraction interferometer involves three independent steps where the first two steps independently align the image points and pinholes in rotation and separation to a fixed reference coordinate system, e.g, CCD. Once the two sub-elements have been properly aligned to the reference in two parameters (separation and orientation), the third step is to align the two sub-element coordinate systems to each other in the two remaining parameters (x,y) using standard methods of locating the pinholes relative to some easy to find reference point.

  3. Phased array ghost elimination.

    PubMed

    Kellman, Peter; McVeigh, Elliot R

    2006-05-01

    Parallel imaging may be applied to cancel ghosts caused by a variety of distortion mechanisms, including distortions such as off-resonance or local flow, which are space variant. Phased array combining coefficients may be calculated that null ghost artifacts at known locations based on a constrained optimization, which optimizes SNR subject to the nulling constraint. The resultant phased array ghost elimination (PAGE) technique is similar to the method known as sensitivity encoding (SENSE) used for accelerated imaging; however, in this formulation is applied to full field-of-view (FOV) images. The phased array method for ghost elimination may result in greater flexibility in designing acquisition strategies. For example, in multi-shot EPI applications ghosts are typically mitigated by the use of an interleaved phase encode acquisition order. An alternative strategy is to use a sequential, non-interleaved phase encode order and cancel the resultant ghosts using PAGE parallel imaging. Cancellation of ghosts by means of phased array processing makes sequential, non-interleaved phase encode acquisition order practical, and permits a reduction in repetition time, TR, by eliminating the need for echo-shifting. Sequential, non-interleaved phase encode order has benefits of reduced distortion due to off-resonance, in-plane flow and EPI delay misalignment. Furthermore, the use of EPI with PAGE has inherent fat-water separation and has been used to provide off-resonance correction using a technique referred to as lipid elimination with an echo-shifting N/2-ghost acquisition (LEENA), and may further generalized using the multi-point Dixon method. Other applications of PAGE include cancelling ghosts which arise due to amplitude or phase variation during the approach to steady state. Parallel imaging requires estimates of the complex coil sensitivities. In vivo estimates may be derived by temporally varying the phase encode ordering to obtain a full k-space dataset in a scheme similar to the autocalibrating TSENSE method. This scheme is a generalization of the UNFOLD method used for removing aliasing in undersampled acquisitions. The more general scheme may be used to modulate each EPI ghost image to a separate temporal frequency as described in this paper. Copyright (c) 2006 John Wiley & Sons, Ltd.

  4. Phased array ghost elimination

    PubMed Central

    Kellman, Peter; McVeigh, Elliot R.

    2007-01-01

    Parallel imaging may be applied to cancel ghosts caused by a variety of distortion mechanisms, including distortions such as off-resonance or local flow, which are space variant. Phased array combining coefficients may be calculated that null ghost artifacts at known locations based on a constrained optimization, which optimizes SNR subject to the nulling constraint. The resultant phased array ghost elimination (PAGE) technique is similar to the method known as sensitivity encoding (SENSE) used for accelerated imaging; however, in this formulation is applied to full field-of-view (FOV) images. The phased array method for ghost elimination may result in greater flexibility in designing acquisition strategies. For example, in multi-shot EPI applications ghosts are typically mitigated by the use of an interleaved phase encode acquisition order. An alternative strategy is to use a sequential, non-interleaved phase encode order and cancel the resultant ghosts using PAGE parallel imaging. Cancellation of ghosts by means of phased array processing makes sequential, non-interleaved phase encode acquisition order practical, and permits a reduction in repetition time, TR, by eliminating the need for echo-shifting. Sequential, non-interleaved phase encode order has benefits of reduced distortion due to off-resonance, in-plane flow and EPI delay misalignment. Furthermore, the use of EPI with PAGE has inherent fat-water separation and has been used to provide off-resonance correction using a technique referred to as lipid elimination with an echo-shifting N/2-ghost acquisition (LEENA), and may further generalized using the multi-point Dixon method. Other applications of PAGE include cancelling ghosts which arise due to amplitude or phase variation during the approach to steady state. Parallel imaging requires estimates of the complex coil sensitivities. In vivo estimates may be derived by temporally varying the phase encode ordering to obtain a full k-space dataset in a scheme similar to the autocalibrating TSENSE method. This scheme is a generalization of the UNFOLD method used for removing aliasing in undersampled acquisitions. The more general scheme may be used to modulate each EPI ghost image to a separate temporal frequency as described in this paper. PMID:16705636

  5. Multifunctional nanocomposite hollow fiber membranes by solvent transfer induced phase separation.

    PubMed

    Haase, Martin F; Jeon, Harim; Hough, Noah; Kim, Jong Hak; Stebe, Kathleen J; Lee, Daeyeon

    2017-11-01

    The decoration of porous membranes with a dense layer of nanoparticles imparts useful functionality and can enhance membrane separation and anti-fouling properties. However, manufacturing of nanoparticle-coated membranes requires multiple steps and tedious processing. Here, we introduce a facile single-step method in which bicontinuous interfacially jammed emulsions are used to form nanoparticle-functionalized hollow fiber membranes. The resulting nanocomposite membranes prepared via solvent transfer-induced phase separation and photopolymerization have exceptionally high nanoparticle loadings (up to 50 wt% silica nanoparticles) and feature densely packed nanoparticles uniformly distributed over the entire membrane surfaces. These structurally well-defined, asymmetric membranes facilitate control over membrane flux and selectivity, enable the formation of stimuli responsive hydrogel nanocomposite membranes, and can be easily modified to introduce antifouling features. This approach forms a foundation for the formation of advanced nanocomposite membranes comprising diverse building blocks with potential applications in water treatment, industrial separations and as catalytic membrane reactors.

  6. Indirect ultraviolet detection of alkaline earth metal ions using an imidazolium ionic liquid as an ultraviolet absorption reagent in ion chromatography.

    PubMed

    Liu, Yong-Qiang; Yu, Hong

    2017-04-01

    A convenient and versatile method was developed for the separation and detection of alkaline earth metal ions by ion chromatography with indirect UV detection. The chromatographic separation of Mg 2+ , Ca 2+ , and Sr 2+ was performed on a carboxylic acid base cation exchange column using imidazolium ionic liquid/acid as the mobile phase, in which the imidazolium ionic liquid acted as an UV-absorption reagent. The effects of imidazolium ionic liquids, detection wavelength, acids in the mobile phase, and column temperature on the retention of Mg 2+ , Ca 2+ , and Sr 2+ were investigated. The main factors influencing the separation and detection were the background UV absorption reagent and the concentration of hydrogen ion in ion chromatography with indirect UV detection. The successful separation and detection of Mg 2+ , Ca 2+ , and Sr 2+ within 14 min were achieved using the selected chromatographic conditions, and the detection limits (S/N = 3) were 0.06, 0.12, and 0.23 mg/L, respectively. A new separation and detection method of alkaline earth metal ions by ion chromatography with indirect UV detection was developed, and the application range of ionic liquids was expanded. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Method of dehydrating natural gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wells, R. E.

    1985-01-01

    A method for dehydration of natural gas is provided wherein well head gas is supplied to a three-phase inlet separator, the vapor mixture of natural gas and water removed from that inlet separator means is supplied to a turboexpander, and the resulting refrigerated mixture of natural gas and condensed water vapor is supplied to a multi-phase outlet separator. The turboexpander may have integral means for subsequent compression of the refrigerated mixture and may be coupled through reduction gears to a means for generating electricity. A portion of the refrigerated mixture may be connected to a heat exchanger for cooling themore » well head natural gas prior to entry into the inlet separator. The flow of refrigerated mixture to this heat exchanger may be controlled by a temperature sensitive valve downstream of the heat exchanger. Methanol may be injected into the vapor mixture prior to entry into the turboexpander. The flow of methanol into the vapor mixture may be controlled by a valve sensitive to the flow rate of the vapor mixture and the water vapor content of the refrigerated mixture. Natural gas vapor from the outlet separator may be recirculated through the turboexpander if the output water vapor content of the natural gas vapor stream is too high.« less

  8. Film thickness dependence of phase separation and dewetting behaviors in PMMA/SAN blend films.

    PubMed

    You, Jichun; Liao, Yonggui; Men, Yongfeng; Shi, Tongfei; An, Lijia

    2010-09-21

    Film thickness dependence of complex behaviors coupled by phase separation and dewetting in blend [poly(methyl methacrylate) (PMMA) and poly(styrene-ran-acrylonitrile) (SAN)] films on silicon oxide substrate at 175 °C was investigated by grazing incidence ultrasmall-angle X-ray scattering (GIUSAX) and in situ atomic force microscopy (AFM). It was found that the dewetting pathway was under the control of the parameter U(q0)/E, which described the initial amplitude of the surface undulation and original thickness of film, respectively. Furthermore, our results showed that interplay between phase separation and dewetting depended crucially on film thickness. Three mechanisms including dewetting-phase separation/wetting, dewetting/wetting-phase separation, and phase separation/wetting-pseudodewetting were discussed in detail. In conclusion, it is relative rates of phase separation and dewetting that dominate the interplay between them.

  9. Analysis of benzo(a)pyrene in airborne particulates by gas chromatography

    NASA Technical Reports Server (NTRS)

    Luedecke, E.

    1976-01-01

    A routine method was developed to measure benzo(a)pyrene in airborne particulates. Samples were collected on a filter and the organic portion was extracted with cyclohexane. The polynuclear hydrocarbon (PNHC) fraction was separated from the aliphatics by column chromatography. An internal standard was added to the extract and a portion of it was injected into a gas chromatograph. Although the gas chromatographic method has often been reported in the literature, satisfactory separation of benzo(a)pyrene and benzo(e)pyrene has not been achieved. With the introduction of a nematic liquid crystal as the stationary phase good separation is now possible.

  10. Use of a Ceramic Membrane to Improve the Performance of Two-Separate-Phase Biocatalytic Membrane Reactor.

    PubMed

    Ranieri, Giuseppe; Mazzei, Rosalinda; Wu, Zhentao; Li, Kang; Giorno, Lidietta

    2016-03-14

    Biocatalytic membrane reactors (BMR) combining reaction and separation within the same unit have many advantages over conventional reactor designs. Ceramic membranes are an attractive alternative to polymeric membranes in membrane biotechnology due to their high chemical, thermal and mechanical resistance. Another important use is their potential application in a biphasic membrane system, where support solvent resistance is highly needed. In this work, the preparation of asymmetric ceramic hollow fibre membranes and their use in a two-separate-phase biocatalytic membrane reactor will be described. The asymmetric ceramic hollow fibre membranes were prepared using a combined phase inversion and sintering technique. The prepared fibres were then used as support for lipase covalent immobilization in order to develop a two-separate-phase biocatalytic membrane reactor. A functionalization method was proposed in order to increase the density of the reactive hydroxyl groups on the surface of ceramic membranes, which were then amino-activated and treated with a crosslinker. The performance and the stability of the immobilized lipase were investigated as a function of the amount of the immobilized biocatalytst. Results showed that it is possible to immobilize lipase on a ceramic membrane without altering its catalytic performance (initial residual specific activity 93%), which remains constant after 6 reaction cycles.

  11. Efficient chemical potential evaluation with kinetic Monte Carlo method and non-uniform external potential: Lennard-Jones fluid, liquid, and solid

    NASA Astrophysics Data System (ADS)

    Ustinov, E. A.

    2017-07-01

    The aim of this paper is to present a method of a direct evaluation of the chemical potential of fluid, liquid, and solid with kinetic Monte Carlo simulation. The method is illustrated with the 12-6 Lennard-Jones (LJ) system over a wide range of density and temperature. A distinctive feature of the methodology used in the present study is imposing an external potential on the elongated simulation box to split the system into two equilibrium phases, one of which is substantially diluted. This technique provides a reliable direct evaluation of the chemical potential of the whole non-uniform system (including that of the uniformly distributed dense phase in the central zone of the box), which, for example, is impossible in simulation of the uniform crystalline phase. The parameters of the vapor-liquid, liquid-solid, and fluid-solid transitions have been reliably determined. The chemical potential and the pressure are defined as thermodynamically consistent functions of density and temperature separately for the liquid and the solid (FCC) phases. It has been shown that in two-phase systems separated by a flat interface, the crystal melting always occurs at equilibrium conditions. It is also proved that in the limit of zero temperature, the specific heat capacity of an LJ crystal at constant volume is exactly 3Rg (where Rg is the gas constant) without resorting to harmonic oscillators.

  12. Optimization of ultra-high pressure liquid chromatography - tandem mass spectrometry determination in plasma and red blood cells of four sphingolipids and their evaluation as biomarker candidates of Gaucher's disease.

    PubMed

    Chipeaux, Caroline; de Person, Marine; Burguet, Nathalie; Billette de Villemeur, Thierry; Rose, Christian; Belmatoug, Nadia; Héron, Sylvie; Le Van Kim, Caroline; Franco, Mélanie; Moussa, Fathi

    2017-11-24

    While important advances have been recently achieved in the optimization of lipid classes' separation, information on the specific determination of medium polarity lipids such as sphingolipids (SLs) in highly complex matrices remains fragmentary. In human, disorders of SL metabolism known as sphingolipidoses are a heterogeneous group of inherited disorders affecting primarily the central nervous. Early diagnosis of these conditions is of importance notably when a corrective therapy is available. The diagnosis is generally based on the determination of specific SLs in plasma and red blood cells (RBCs). For instance, glucosylceramide (GL1), glucosylsphingosine (Lyso-GL1), sphingosine (Sph), and sphingosine-1-phosphate (S1P) are proposed as relevant biomarkers for Gaucher disease (GD). Our main objective was to evaluate these biomarker candidates in a cohort of GD patients. However, most of current methods of GL1, Lyso-GL1, Sph, and S1P determination in plasma of GD patients require at least two liquid chromatographic runs. On the other hand, except for GL1 nothing is known concerning the RBC sphingolipid content. Yet, several reversed phase LC-MS methods of SLs separation and/or determination in various media with different sample preparation approaches have been proposed since 2010. Here we focused on stationary phase selection and mobile phase composition as well as on the sample preparation step to optimize and validate an UHPLC-MS/MS method for the simultaneous quantification of the four sphingolipids in both plasma and RBCs. A comparison between seven stationary phases including two RP18, two polar embedded RP18, and three HILIC phases shows that under our conditions polar embedded RP18 phases are the most appropriate for the separation of the four SLs, in terms of efficiency, peak symmetry, and separation time. In the same way, a comparison between a single step extraction with methanol and a liquid-liquid extraction with a mixture of methanol/methyl tert-butyl ether, shows that the latter mixture is the most appropriate for the extraction of SLs in terms of recovery and absence of matrix effect. After validation, this method was applied to the evaluation of the targeted SLs in a cohort of 15 known GD patients. The obtained results show that Lyso-GL1 is the only relevant biomarker in both plasma and RBCs for GD diagnosis. As the proposed method is applicable to the determination in such a highly complex matrices of four SLs with a large difference in polarity, and as the sample preparation procedure is freedom of matrix effects, this method can be easily adapted to a large diversity of samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Two complementary reversed-phase separations for comprehensive coverage of the semipolar and nonpolar metabolome.

    PubMed

    Naser, Fuad J; Mahieu, Nathaniel G; Wang, Lingjue; Spalding, Jonathan L; Johnson, Stephen L; Patti, Gary J

    2018-02-01

    Although it is common in untargeted metabolomics to apply reversed-phase liquid chromatography (RPLC) and hydrophilic interaction liquid chromatography (HILIC) methods that have been systematically optimized for lipids and central carbon metabolites, here we show that these established protocols provide poor coverage of semipolar metabolites because of inadequate retention. Our objective was to develop an RPLC approach that improved detection of these metabolites without sacrificing lipid coverage. We initially evaluated columns recently released by Waters under the CORTECS line by analyzing 47 small-molecule standards that evenly span the nonpolar and semipolar ranges. An RPLC method commonly used in untargeted metabolomics was considered a benchmarking reference. We found that highly nonpolar and semipolar metabolites cannot be reliably profiled with any single method because of retention and solubility limitations of the injection solvent. Instead, we optimized a multiplexed approach using the CORTECS T3 column to analyze semipolar compounds and the CORTECS C 8 column to analyze lipids. Strikingly, we determined that combining these methods allowed detection of 41 of the total 47 standards, whereas our reference RPLC method detected only 10 of the 47 standards. We then applied credentialing to compare method performance at the comprehensive scale. The tandem method showed more than a fivefold increase in credentialing coverage relative to our RPLC benchmark. Our results demonstrate that comprehensive coverage of metabolites amenable to reversed-phase separation necessitates two reconstitution solvents and chromatographic methods. Thus, we suggest complementing HILIC methods with a dual T3 and C 8 RPLC approach to increase coverage of semipolar metabolites and lipids for untargeted metabolomics. Graphical abstract Analysis of semipolar and nonpolar metabolites necessitates two reversed-phase chromatography (RPLC) methods, which extend metabolome coverage more than fivefold for untargeted profiling. HILIC hydrophilic interaction liquid chromatography.

  14. Determination of heavy polycyclic aromatic hydrocarbons by non-aqueous reversed phase liquid chromatography: Application and limitation in refining streams.

    PubMed

    Panda, Saroj K; Muller, Hendrik; Al-Qunaysi, Thunayyan A; Koseoglu, Omer R

    2018-01-19

    The heavy polycyclic aromatic hydrocarbons (HPAHs) cause detrimental effects to hydrocracker operations by deactivating the catalysts and depositing in the downstream of the reactor/ exchangers. Therefore, it is essential to continuously monitor the accumulation of HPAHs in a hydrocracker unit. To accurately measure the concentration of HPAHs, the development of a fast and reliable analytical method is inevitable. In this work, an analytical method based on non-aqueous reversed phase chromatography in combination with high resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was developed. As a first step, five different types of stationary phases were evaluated for the separation of HPAHs in non-aqueous mode and the best suited phase was further used for the fractionation of HPAHs in a fractionator bottom sample obtained from a refinery hydrocracker unit. The eight major fractions or peaks obtained from the separation were further characterized by UV spectroscopy and FT-ICR MS and the compounds in the fractions were tentatively confirmed as benzoperylene, coronene, methylcoronene, naphthenocoronene, benzocoronene, dibenzoperylene, naphthocoronene and ovalene. The developed liquid chromatography method can be easily adapted in a refinery laboratory for the quantitation of HPAHs in hydrocracking products. The method was further tested to check the interference of sulfur aromatics and/or large alkylated aromatic hydrocarbons on the determination of HPAHs in hydrocracking products. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Phase Transition between Black and Blue Phosphorenes: A Quantum Monte Carlo Study

    NASA Astrophysics Data System (ADS)

    Li, Lesheng; Yao, Yi; Reeves, Kyle; Kanai, Yosuke

    Phase transition of the more common black phosphorene to blue phosphorene is of great interest because they are predicted to exhibit unique electronic and optical properties. However, these two phases are predicted to be separated by a rather large energy barrier. In this work, we study the transition pathway between black and blue phosphorenes by using the variable cell nudge elastic band method combined with density functional theory calculation. We show how diffusion quantum Monte Carlo method can be used for determining the energetics of the phase transition and demonstrate the use of two approaches for removing finite-size errors. Finally, we predict how applied stress can be used to control the energetic balance between these two different phases of phosphorene.

  16. Enantiomeric separation of 2-arylpropionic acid nonsteroidal anti-inflammatory drugs by HPLC with hydroxypropyl-beta-cyclodextrin as chiral mobile phase additive.

    PubMed

    Ye, Jincui; Yu, Wenying; Chen, Guosheng; Shen, Zhengrong; Zeng, Su

    2010-08-01

    The enantio-separations of eight 2-arylpropionic acid nonsteroidal anti-inflammatory drugs (2-APA NSAIDs) were established using reversed-phase high-performance liquid chromatography with hydroxypropyl-beta-cyclodextrin (HP-beta-CD) as chiral mobile phase additive for studying the stereoselective skin permeation of suprofen, ketoprofen, naproxen, indoprofen, fenoprofen, furbiprofen, ibuprofen and carprofen. The effects of the mobile phase composition, concentration of HP-beta-CD and column temperature on retention and enantioselective separation were investigated. With 2-APA NSAIDs as acidic analytes, the retention times and resolutions of the enantiomers were strongly related to the pH of the mobile phase. In addition, both the concentration of HP-beta-CD and temperature had a great effect on retention time, but only a slight or almost no effect on resolutions of the analytes. Enantioseparations were achieved on a Shimpack CLC-ODS (150 x 4.6 mm i.d., 5 microm) column. The mobile phase was a mixture of methanol and phosphate buffer (pH 4.0-5.5, 20 mM) containing 25 mM HP-beta-CD. This method was flexible, simple and economically advantageous over the use of chiral stationary phase, and was successfully applied to the enantioselective determination of the racemic 2-APA NSAIDs in an enantioselective skin permeation study.

  17. Development of a method for the analysis of nucleotides from the mantle tissue of the mussel Mytilus galloprovincialis.

    PubMed

    Blanco López, S L; Moal, J; San Juan Serrano, F

    2000-09-01

    Reversed-phase HPLC was applied to obtain a sensitive and efficient means for quantitating nucleotides in the mussel Mytilus galloprovincialis. We obtained a good separation of adenylic, guanylic, uridylic and cytidylic nucleotides. Adenine nucleotides play a critical role in the regulation and integration of cellular metabolism; particularly in the mantle tissue in the mussel, they are involved in the regulation of the enzyme glycogen phosphorylase, a key enzyme in the transfer of bioenergetic reserves (glycogen) to gametogenic development; it is of great importance to have a measure of the concentrations in vivo during the reproductive cycle of the organism. Different elution conditions were tested: isocratic versus step gradient elution, different mobile phase pH and the type and proportion of ion-pairing agent added to the mobile phase. The best method was selected and the separation and accurate determination of adenine, citidine, guanine and uridine nucleotides was accomplished within a 20-min run, with UV-Vis detection (254 nm).

  18. [Study on the analytical methods of catechins in tea and green tea polyphenol samples by high performance liquid chromatography].

    PubMed

    Dai, J; Wang, H X; Chen, S W; Tang, J

    2001-09-01

    Hypersil BDS C18 and Zorbax SB C18, suitable to separate simultaneously seven kinds of catechins and caffeine, were screened out from seven brands of reversed-phase columns. Mobile phase was a solution of methanol-water-acetic acid (or trifluoro acetic acid). Seven kinds of catechins in tea samples from six places in China and three green tea polyphenol(GTP) samples from different producers were separated and determined in 30 min by isocratic and gradient elutions. The effects of mobile phase components and temperature of column on retention parameters of catechins and caffeine are reviewed. Chromatographic conditions and pretreatment methods of samples were optimized. Gallocatechin gallate(GCG) and (-)-catechin gallate(CG) were identified by electrospray ionization mass spectrometry(ESI-MS) and prepared by high performance liquid chromatography for quantitative analysis. The other catechins, (-)-epigallocatechin (EGC), (+)-catechin (D-C), (-)-epicatechin(EC), (-)-epigallocatechin gallate(EGCG), (-)-epicatechin gallate(ECG) were identified with standards.

  19. ORGANIC-HIGH IONIC STRENGTH AQUEOUS SOLVENT SYSTEMS FOR SPIRAL COUNTER-CURRENT CHROMATOGRAPHY: GRAPHIC OPTIMIZATION OF PARTITION COEFFICIENT

    PubMed Central

    Zeng, Yun; Liu, Gang; Ma, Ying; Chen, Xiaoyuan; Ito, Yoichiro

    2012-01-01

    A new series of organic-high ionic strength aqueous two-phase solvents systems was designed for separation of highly polar compounds by spiral high-speed counter-current chromatography. A total of 21 solvent systems composed of 1-butanol-ethanol-saturated ammonium sulfate-water at various volume ratios are arranged according to an increasing order of polarity. Selection of the two-phase solvent system for a single compound or a multiple sample mixture can be achieved by two steps of partition coefficient measurements using a graphic method. The capability of the method is demonstrated by optimization of partition coefficient for seven highly polar samples including tartrazine (K=0.77), tryptophan (K=1.00), methyl green (K= 0.93), tyrosine (0.81), metanephrine (K=0.89), tyramine (K=0.98), and normetanephrine (K=0.96). Three sulfonic acid components in D&C Green No. 8 were successfully separated by HSCCC using the graphic selection of the two-phase solvent system. PMID:23467197

  20. Simultaneous determination of atorvastatin calcium and olmesartan medoxomil in a pharmaceutical formulation by reversed phase high-performance liquid chromatography, high-performance thin-layer chromatography, and UV spectrophotometric methods.

    PubMed

    Soni, Hiral; Kothari, Charmy; Khatri, Deepak; Mehta, Priti

    2014-01-01

    Validated RP-HPLC, HPTLC, and UV spectrophotometric methods have been developed for the simultaneous determination of atorvastatin calcium (ATV) and olmesartan medoxomil (OLM) in a pharmaceutical formulation. The RP-HPLC separation was achieved on a Kromasil C18 column (250 x 4.6 mm, 5 microm particle size) using 0.01 M potassium dihydrogen o-phosphate (pH 4 adjusted with o-phosphoric acid)-acetonitrile (50 + 50, v/v) as the mobile phase at a flow rate of 1.5 mL/min. Quantification was achieved by UV detection at 276 nm. The HPTLC separation was achieved on precoated silica gel 60F254 plates using chloroform-methanol-acetonitrile (4 + 2+ 4, v/v/v) mobile phase. Quantification was achieved with UV detection at 276 nm. The UV-Vis spectrophotometric method was based on the simultaneous equation method that involves measurement of absorbance at two wavelengths, i.e., 255 nm (lambda max of OLM) and 246.2 nm (lambda max of ATV) in methanol. All three methods were validated as per International Conference on Harmonization guidelines. The proposed methods were simple, precise, accurate, and applicable for the simultaneous determination of ATV and OLM in a marketed formulation. The results obtained by applying the proposed methods were statistically analyzed and were found satisfactory.

  1. A three-dimensional quality-guided phase unwrapping method for MR elastography

    NASA Astrophysics Data System (ADS)

    Wang, Huifang; Weaver, John B.; Perreard, Irina I.; Doyley, Marvin M.; Paulsen, Keith D.

    2011-07-01

    Magnetic resonance elastography (MRE) uses accumulated phases that are acquired at multiple, uniformly spaced relative phase offsets, to estimate harmonic motion information. Heavily wrapped phase occurs when the motion is large and unwrapping procedures are necessary to estimate the displacements required by MRE. Two unwrapping methods were developed and compared in this paper. The first method is a sequentially applied approach. The three-dimensional MRE phase image block for each slice was processed by two-dimensional unwrapping followed by a one-dimensional phase unwrapping approach along the phase-offset direction. This unwrapping approach generally works well for low noise data. However, there are still cases where the two-dimensional unwrapping method fails when noise is high. In this case, the baseline of the corrupted regions within an unwrapped image will not be consistent. Instead of separating the two-dimensional and one-dimensional unwrapping in a sequential approach, an interleaved three-dimensional quality-guided unwrapping method was developed to combine both the two-dimensional phase image continuity and one-dimensional harmonic motion information. The quality of one-dimensional harmonic motion unwrapping was used to guide the three-dimensional unwrapping procedures and it resulted in stronger guidance than in the sequential method. In this work, in vivo results generated by the two methods were compared.

  2. A NEW HPLC METHOD FOR SEPARATION OF PHYTOPLANKTON PIGMENTS IN NATURAL SAMPLES

    EPA Science Inventory

    A new high-performance liquid chromatographic (HPLC) method was developed to analyze, in a single run, most polar and non-polar chlorophylls and carotenoids from marine phytoplankton. The method is based on a reverse-phase amide C16 (RP-amide C16) column and an elution gradient o...

  3. Synthesis of a mixed-model stationary phase derived from glutamine for HPLC separation of structurally different biologically active compounds: HILIC and reversed-phase applications.

    PubMed

    Aral, Tarık; Aral, Hayriye; Ziyadanoğulları, Berrin; Ziyadanoğulları, Recep

    2015-01-01

    A novel mixed-mode stationary phase was synthesised starting from N-Boc-glutamine, aniline and spherical silica gel (4 µm, 60 Å). The prepared stationary phase was characterized by IR and elemental analysis. The new stationary phase bears an embedded amide group into phenyl ring, highly polar a terminal amide group and non-polar groups (phenyl and alkyl groups). At first, this new mixed-mode stationary phase was used for HILIC separation of four nucleotides and five nucleosides. The effects of different separation conditions, such as pH value, mobile phase and temperature, on the separation process were investigated. The optimum separation for nucleotides was achieved using HILIC isocratic elution with aqueous mobile phase and acetonitrile with 20°C column temperature. Under these conditions, the four nucleotides could be separated and detected at 265 nm within 14 min. Five nucleosides were separated under HILIC isocratic elution with aqueous mobile phase containing pH=3.25 phosphate buffer (10mM) and acetonitrile with 20°C column temperature and detected at 265 nm within 14 min. Chromatographic parameters as retention factor, selectivity, theoretical plate number and peak asymmetry factor were calculated for the effect of temperature and water content in mobile phase on the separation process. The new column was also tested for nucleotides and nucleosides mixture and six analytes were separated in 10min. The chromatographic behaviours of these polar analytes on the new mixed-model stationary phase were compared with those of HILIC columns under similar conditions. Further, phytohormones and phenolic compounds were separated in order to see influence of the new stationary phase in reverse phase conditions. Eleven plant phytohormones were separated within 13 min using RP-HPLC gradient elution with aqueous mobile phase containing pH=2.5 phosphate buffer (10mM) and acetonitrile with 20°C column temperature and detected at 230 or 278 nm. The best separation conditions for seven phenolic compounds was also achieved using reversed-phase HPLC gradient elution with aqueous mobile phase containing pH=2.5 phosphate buffer (10mM) and acetonitrile with 20°C column temperature and seven phenolic compounds could be separated and detected at 230 nm within 16 min. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Development of Recombinant Human Growth Hormone (rhGH) sustained-release microspheres by a low temperature aqueous phase/aqueous phase emulsion method.

    PubMed

    Kang, Jian; Wu, Fei; Cai, Yunpeng; Xu, Mingxin; He, Mu; Yuan, Weien

    2014-10-01

    A novel method has been developed to protect Recombinant Human Growth Hormone (rhGH) in poly (lactic-co-glycolic acid) (PLGA) microspheres using an aqueous phase/aqueous phase emulsion and S/O/W multi-emulsion method. This method develops a novel rhGH sustained-release system, which is based on the combination of rhGH-loaded dextran microparticles and PLGA microspheres. The process to fabricate rhGH-loaded dextran microparticles involves an aqueous phase/aqueous phase emulsion system formed at the reduced temperature. RhGH was first dissolved in water together with dextran and polyethylene glycol, followed by stirring at the speed of 2000 rpm for 20-30s at 0°C, and then a freezing process could enable the dextran phase to separate from the continuous PEG phase and rhGH could preferentially be loaded with dextran. The sample after freezing and phase separation was then lyophilized to powder and washed with dichloromethane to remove the PEG. Once loaded in the dextran microparticles (1-4 μm in diameter), rhGH gained resistance to interface tensions and was encapsulated into PLGA microspheres without aggregation thereafter. RhGH released from PLGA microspheres was in a sustained manner with minimal burst and maximally reduced incomplete release in vitro. Single subcutaneous injection of rhGH-loaded PLGA microspheres to rats resulted in a stable plasma concentration for 30 days avoiding the drug concentration fluctuations after multiple injections of protein solutions. In a hypophysectomized rat model, the IGF-1 and bodyweight results showed that there were higher than the levels obtained for the sustained release formulation by W/O/W for 40 days. These results suggest that the microsphere delivery system had the potential to be an injectable depot for sustained-release of the biocompatible protein of rhGH. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Process for radioisotope recovery and system for implementing same

    DOEpatents

    Meikrantz, David H [Idaho Falls, ID; Todd, Terry A [Aberdeen, ID; Tranter, Troy J [Idaho Falls, ID; Horwitz, E Philip [Naperville, IL

    2009-10-06

    A method of recovering daughter isotopes from a radioisotope mixture. The method comprises providing a radioisotope mixture solution comprising at least one parent isotope. The at least one parent isotope is extracted into an organic phase, which comprises an extractant and a solvent. The organic phase is substantially continuously contacted with an aqueous phase to extract at least one daughter isotope into the aqueous phase. The aqueous phase is separated from the organic phase, such as by using an annular centrifugal contactor. The at least one daughter isotope is purified from the aqueous phase, such as by ion exchange chromatography or extraction chromatography. The at least one daughter isotope may include actinium-225, radium-225, bismuth-213, or mixtures thereof. A liquid-liquid extraction system for recovering at least one daughter isotope from a source material is also disclosed.

  6. Process for radioisotope recovery and system for implementing same

    DOEpatents

    Meikrantz, David H.; Todd, Terry A.; Tranter, Troy J.; Horwitz, E. Philip

    2007-01-02

    A method of recovering daughter isotopes from a radioisotope mixture. The method comprises providing a radioisotope mixture solution comprising at least one parent isotope. The at least one parent isotope is extracted into an organic phase, which comprises an extractant and a solvent. The organic phase is substantially continuously contacted with an aqueous phase to extract at least one daughter isotope into the aqueous phase. The aqueous phase is separated from the organic phase, such as by using an annular centrifugal contactor. The at least one daughter isotope is purified from the aqueous phase, such as by ion exchange chromatography or extraction chromatography. The at least one daughter isotope may include actinium-225, radium-225, bismuth-213, or mixtures thereof. A liquid-liquid extraction system for recovering at least one daughter isotope from a source material is also disclosed.

  7. Pre-Combustion Carbon Dioxide Capture by a New Dual Phase Ceramic-Carbonate Membrane Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Jerry Y. S.

    2015-01-31

    This report documents synthesis, characterization and carbon dioxide permeation and separation properties of a new group of ceramic-carbonate dual-phase membranes and results of a laboratory study on their application for water gas shift reaction with carbon dioxide separation. A series of ceramic-carbonate dual phase membranes with various oxygen ionic or mixed ionic and electronic conducting metal oxide materials in disk, tube, symmetric, and asymmetric geometric configurations was developed. These membranes, with the thickness of 10 μm to 1.5 mm, show CO 2 permeance in the range of 0.5-5×10 -7 mol·m -2·s -1·Pa -1 in 500-900°C and measured CO 2/N 2more » selectivity of up to 3000. CO 2 permeation mechanism and factors that affect CO 2 permeation through the dual-phase membranes have been identified. A reliable CO 2 permeation model was developed. A robust method was established for the optimization of the microstructures of ceramic-carbonate membranes. The ceramic-carbonate membranes exhibit high stability for high temperature CO 2 separations and water gas shift reaction. Water gas shift reaction in the dual-phase membrane reactors was studied by both modeling and experiments. It is found that high temperature syngas water gas shift reaction in tubular ceramic-carbonate dual phase membrane reactor is feasible even without catalyst. The membrane reactor exhibits good CO 2 permeation flux, high thermal and chemical stability and high thermal shock resistance. Reaction and separation conditions in the membrane reactor to produce hydrogen of 93% purity and CO 2 stream of >95% purity, with 90% CO 2 capture have been identified. Integration of the ceramic-carbonate dual-phase membrane reactor with IGCC process for carbon dioxide capture was analyzed. A methodology was developed to identify optimum operation conditions for a membrane tube of given dimensions that would treat coal syngas with targeted performance. The calculation results show that the dual-phase membrane reactor could improve IGCC process efficiency but the cost of the membrane reactor with membranes having current CO 2 permeance is high. Further research should be directed towards improving the performance of the membranes and developing cost-effective, scalable methods for fabrication of dual-phase membranes and membrane reactors.« less

  8. Weighted least squares phase unwrapping based on the wavelet transform

    NASA Astrophysics Data System (ADS)

    Chen, Jiafeng; Chen, Haiqin; Yang, Zhengang; Ren, Haixia

    2007-01-01

    The weighted least squares phase unwrapping algorithm is a robust and accurate method to solve phase unwrapping problem. This method usually leads to a large sparse linear equation system. Gauss-Seidel relaxation iterative method is usually used to solve this large linear equation. However, this method is not practical due to its extremely slow convergence. The multigrid method is an efficient algorithm to improve convergence rate. However, this method needs an additional weight restriction operator which is very complicated. For this reason, the multiresolution analysis method based on the wavelet transform is proposed. By applying the wavelet transform, the original system is decomposed into its coarse and fine resolution levels and an equivalent equation system with better convergence condition can be obtained. Fast convergence in separate coarse resolution levels speeds up the overall system convergence rate. The simulated experiment shows that the proposed method converges faster and provides better result than the multigrid method.

  9. Chiral ligand-exchange high-performance liquid chromatography with copper (II)-L-phenylalanine complexes for separation of 3,4-dimethoxy-α-methylphenylalanine racemes.

    PubMed

    Jia, Dong-Xu; Ai, Zheng-Gui; Xue, Ya-Ping; Zheng, Yu-Guo

    2014-11-01

    L-3, 4-dimethoxy-α-methylphenylalanine (L-DMMD) is an important intermediate for the synthesis of 3-hydroxy-α-methyl-L-tyrosine (L-methyldopa). This paper describes an efficient, accurate, and low-priced method of high-performance liquid chromatography (HPLC) using chiral mobile phase and conventional C18 column to separate L-DMMD from its enantiomers. The effects of ligands, copper salts, organic modifiers, pHs of mobile phase, and temperatures on the retention factors (k') and selectivity (α) were evaluated to achieve optimal separation performance. Then, thermal analysis of the optimal separation conditions was investigated as well. It was confirmed that the optimal mobile phase was composed of 20 % (v/v) methanol, 8 mM L-phenylalanine (L-Phe), and 4 mM cupric sulfate in water of pH 3.2, and the column temperature was set at 20 °C. Baseline separation of two enantiomers could be obtained through the conventional C18 column with a resolution (R) of 3.18 in less than 18 min. Thermodynamic data (∆∆H and ∆∆S) obtained by Van't Hoff plots revealed the chiral separation was an enthalpy-controlled process. To the best of our knowledge, this is the first report regarding the enantioseparation of DMMD by chiral ligand-exchange HPLC.

  10. Methods and apparatuses for deoxygenating biomass-derived pyrolysis oil

    DOEpatents

    Baird, Lance Awender; Brandvold, Timothy A.

    2015-10-20

    Embodiments of methods and apparatuses for deoxygenating a biomass-derived pyrolysis oil are provided. In one example, a method comprises the steps of separating a low-oxygen biomass-derived pyrolysis oil effluent into a low-oxygen-pyoil organic phase stream and an aqueous phase stream. Phenolic compounds are removed from the aqueous phase stream to form a phenolic-rich diluent recycle stream. A biomass-derived pyrolysis oil stream is diluted and heated with the phenolic-rich diluent recycle stream to form a heated diluted pyoil feed stream. The heated diluted pyoil feed stream is contacted with a deoxygenating catalyst in the presence of hydrogen to deoxygenate the heated diluted pyoil feed stream.

  11. Separation and determination of citrinin in corn using HPLC fluorescence detection assisted by molecularly imprinted solid phase extraction clean-up

    USDA-ARS?s Scientific Manuscript database

    A liquid chromatography based method to detect citrinin in corn was developed using molecularly imprinted solid phase extraction (MISPE) sample clean-up. Molecularly imprinted polymers were synthesized using 1,4-dihydroxy-2-naphthoic acid as the template and an amine functional monomer. Density func...

  12. Short communication: separation and quantification of caseins and casein macropeptide using ion-exchange chromatography.

    PubMed

    Holland, B; Rahimi Yazdi, S; Ion Titapiccolo, G; Corredig, M

    2010-03-01

    The aim of this work was to improve an existing method to separate and quantify the 4 major caseins from milk samples (i.e., containing whey proteins) using ion-exchange chromatography. The separation process was carried out using a mini-preparative cation exchange column (1 or 5mL of column volume), using urea acetate as elution buffer at pH 3.5 with a NaCl gradient. All 4 major caseins were separated, and the purity of each peak was assessed using sodium dodecyl sulfate-PAGE. Purified casein fractions were also added to raw milk to confirm their elution volumes. The quantification was carried out using purified caseins in buffer as well as added directly to fresh skim milk. This method can also be employed to determine the decrease in kappa-casein and the release of the casein-macropeptide during enzymatic hydrolysis using rennet. In this case, the main advantage of using this method is the lack of organic solvents compared with the conventional method for separation of macropeptide (using reversed phase HPLC).

  13. Microphase Separation in Oil-Water Mixtures Containing Hydrophilic and Hydrophobic Ions

    NASA Astrophysics Data System (ADS)

    Tasios, Nikos; Samin, Sela; van Roij, René; Dijkstra, Marjolein

    2017-11-01

    We develop a lattice-based Monte Carlo simulation method for charged mixtures capable of treating dielectric heterogeneities. Using this method, we study oil-water mixtures containing an antagonistic salt, with hydrophilic cations and hydrophobic anions. Our simulations reveal several phases with a spatially modulated solvent composition, in which the ions partition between water-rich and water-poor regions according to their affinity. In addition to the recently observed lamellar phase, we find tubular and droplet phases, reminiscent of those found in block copolymers and surfactant systems. Interestingly, these structures stem from ion-mediated interactions, which allows for tuning of the phase behavior via the concentrations, the ionic properties, and the temperature.

  14. Simultaneous liquid chromatography/mass spectrometry determination of both polar and "multiresidue" pesticides in food using parallel hydrophilic interaction/reversed-phase liquid chromatography and a hybrid sample preparation approach.

    PubMed

    Robles-Molina, José; Gilbert-López, Bienvenida; García-Reyes, Juan F; Molina-Díaz, Antonio

    2017-09-29

    Pesticide testing of foodstuffs is usually accomplished with generic wide-scope multi-residue methods based on liquid chromatography tandem mass spectrometry (LC-MS/MS). However, this approach does not cover some special pesticides, the so called "single-residue method" compounds, that are hardly compatible with standard reversed-phase (RP) separations due to their specific properties. In this article, we propose a comprehensive strategy for the integration of single residue method compounds and standard multiresidue pesticides within a single run. It is based on the use of a parallel LC column assembly with two different LC gradients performing orthogonal hydrophilic interaction chromatography (HILIC) and reversed-phase (RPLC) chromatography within one analytical run. Two sample aliquots were simultaneously injected on each column, using different gradients, being the eluents merged post-column prior to mass spectrometry detection. The approach was tested with 41 multiclass pesticides covering a wide range of physicochemical properties across several orders of log K ow (from -4 to +5.5). With this assembly, distinct separation from the void was attained for all the pesticides studied, keeping similar performance in terms of sensitivity, peak area reproducibility (<6 RSD% in most cases) and retention time stability of standard single column approaches (better than±0.1min). The application of the proposed approach using parallel HILIC/RPLC and RPLC/aqueous normal phase (Obelisc) were assessed in leek using LC-MS/MS. For this purpose, a hybrid QuEChERS (Quick, easy, cheap, effective, rugged and safe)/QuPPe (quick method for polar pesticides) method was evaluated based on solvent extraction with MeOH and acetonitrile followed by dispersive solid-phase extraction, delivering appropriate recoveries for most of the pesticides included in the study within the log K ow in the range from -4 to +5.5. The proposed strategy may be extended to other fields such as sport drug testing or environmental analysis, where the same type of variety of analytes featuring poor retention within a single chromatographic separation occurs. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Precision control of carrier-envelope phase in grating based chirped pulse amplifiers.

    PubMed

    Li, Chengquan; Moon, Eric; Mashiko, Hiroki; Nakamura, Christopher M; Ranitovic, Predrag; Maharjan, Chakra M; Cocke, C Lewis; Chang, Zenghu; Paulus, Gerhard G

    2006-11-13

    It is demonstrated that the carrier-envelope (CE) phase of pulses from a high power ultrafast laser system with a grating-based stretcher and compressor can be stabilized to a root mean square (rms) value of 180 mrad over almost 2 hours, excluding a brief re-locking period. The stabilization was accomplished via feedback control of the grating separation in the stretcher. It shows that the long term CE phase stability of a grating based chirped pulse amplification system can be as good as that of lasers using a glass-block stretcher and a prism pair compressor. Moreover, by adjusting the grating separation to preset values, the relative CE phase could be locked to an arbitrary value in the range of 2pi. This method is better than using a pair of wedge plates to adjust the phase after the hollow-core fiber compressor. The CE phase stabilization after a hollow-core fiber compressor was confirmed by a CE-phase meter based on the measurement of the left-to-right asymmetry of electrons produced by above-threshold ionization.

  16. Counter-current motion in counter-current chromatography.

    PubMed

    Ito, Yoichiro

    2014-12-12

    After the CCC2012 meeting, I have received an e-mail regarding the terminology of "Countercurrent Chromatography". It stated that the term "Countercurrent" is a misnomer, because its stationary phase is motionless in the column and that the method should be renamed as liquid-liquid separations or centrifugal separations. However, it was found that these names are already used for various other techniques as found via Google search. The term "Countercurrent Chromatography" was originally made after two preparative methods of Countercurrent distribution and liquid Chromatography, both having no countercurrent motion in the column. However, it is surprising to find that this F1 hybrid method "Countercurrent Chromatography" can clearly exhibit countercurrent motion within the separation column in both hydrodynamic and hydrostatic equilibrium systems. This justifies that "Countercurrent Chromatography" is a proper term for this chromatographic method. Published by Elsevier B.V.

  17. Final summarizing report on Grant DE-SC0001014 "Separation of Highly Complex Mixtures by Two-dimension Liquid Chromatography"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guiochon, Georges

    The goal of our research was a fundamental investigation of methods available for the coupling of two separate chromatographic separations that would considerably enhance the individual separation power of each of these two separations. This gain arises from the combination of two independent retention mechanisms, one of them separating the components that coelute on the other column, making possible the separation of many more compounds in a given time. The two separation mechanisms used must be very different. This is possible because many retention mechanisms are available, using different kinds of molecular interactions, hydrophobic or hydrophilic interactions, polar interactions, hydrogenmore » bonding, complex formation, ionic interactions, steric exclusion. Two methods can be used, allowing separations to be performed in space (spreading the bands of sample components on a plate covered with stationary phase layer) or in time (eluting the sample components through a column and detecting the bands leaving the column). Both offer a wide variety of possible combinations and were studied.« less

  18. Comparison of chiral electrophoretic separation methods for phenethylamines and application on impurity analysis.

    PubMed

    Borst, Claudia; Holzgrabe, Ulrike

    2010-12-15

    A chiral microemulsion electrokinetic chromatography method has been developed for the separation of the enantiomers of the phenethylamines ephedrine, N-methylephedrine, norephedrine, pseudoephedrine, adrenaline (epinephrine), 2-amino-1-phenylethanol, diethylnorephedrine, and 2-(dibutylamino)-1-phenyl-1-propanol, respectively. The separations were achieved using an oil-in-water microemulsion consisting of the oil-component ethyl acetate, the surfactant sodium dodecylsulfate, the cosurfactant 1-butanol, the organic modifier propan-2-ol and 20mM phosphate buffer pH 2.5 as aqueous phase. For enantioseparation sulfated beta-cyclodextrin was added. The method was compared to an already described CZE method, which made use of heptakis(2,3-di-O-diacetyl-6-O-sulfo)-beta-cyclodextrin (HDAS) as chiral selector. Additionally, the developed method was successfully applied to the related substances analysis of noradrenaline, adrenaline, dipivefrine, ephedrine and pseudoephedrine monographed in the European Pharmacopoeia 6. Copyright 2010 Elsevier B.V. All rights reserved.

  19. Phase separation and large deviations of lattice active matter

    NASA Astrophysics Data System (ADS)

    Whitelam, Stephen; Klymko, Katherine; Mandal, Dibyendu

    2018-04-01

    Off-lattice active Brownian particles form clusters and undergo phase separation even in the absence of attractions or velocity-alignment mechanisms. Arguments that explain this phenomenon appeal only to the ability of particles to move persistently in a direction that fluctuates, but existing lattice models of hard particles that account for this behavior do not exhibit phase separation. Here we present a lattice model of active matter that exhibits motility-induced phase separation in the absence of velocity alignment. Using direct and rare-event sampling of dynamical trajectories, we show that clustering and phase separation are accompanied by pronounced fluctuations of static and dynamic order parameters. This model provides a complement to off-lattice models for the study of motility-induced phase separation.

  20. New approaches with two cyano columns to the separation of acetaminophen, phenylephrine, chlorpheniramine and related compounds.

    PubMed

    Olmo, B; García, A; Marín, A; Barbas, C

    2005-03-25

    The development of new pharmaceutical forms with classical active compounds generates new analytical problems. That is the case of sugar-free sachets of cough-cold products containing acetaminophen, phenylephrine hydrochloride and chlorpheniramine maleate. Two cyanopropyl stationary phases have been employed to tackle the problem. The Discovery cyanopropyl (SUPELCO) column permitted the separation of the three actives, maleate and excipients (mainly saccharine and orange flavour) with a constant proportion of aqueous/ organic solvent (95:5, v/v) and a pH gradient from 7.5 to 2. The run lasted 14 min. This technique avoids many problems related to baseline shifts with classical organic solvent gradients and opens great possibilities to modify selectivity not generally used in reversed phase HPLC. On the other hand, the Agilent Zorbax SB-CN column with a different retention profile permitted us to separate not only the three actives and the excipients but also the three known related compounds: 4-aminophenol, 4-chloracetanilide and 4-nitrophenol in an isocratic method with a run time under 30 min. This method was validated following ICH guidelines and validation parameters showed that it could be employed as stability-indicating method for this pharmaceutical form.

  1. Unweighted least squares phase unwrapping by means of multigrid techniques

    NASA Astrophysics Data System (ADS)

    Pritt, Mark D.

    1995-11-01

    We present a multigrid algorithm for unweighted least squares phase unwrapping. This algorithm applies Gauss-Seidel relaxation schemes to solve the Poisson equation on smaller, coarser grids and transfers the intermediate results to the finer grids. This approach forms the basis of our multigrid algorithm for weighted least squares phase unwrapping, which is described in a separate paper. The key idea of our multigrid approach is to maintain the partial derivatives of the phase data in separate arrays and to correct these derivatives at the boundaries of the coarser grids. This maintains the boundary conditions necessary for rapid convergence to the correct solution. Although the multigrid algorithm is an iterative algorithm, we demonstrate that it is nearly as fast as the direct Fourier-based method. We also describe how to parallelize the algorithm for execution on a distributed-memory parallel processor computer or a network-cluster of workstations.

  2. Multi-phased anaerobic baffled reactor treating food waste.

    PubMed

    Ahamed, A; Chen, C-L; Rajagopal, R; Wu, D; Mao, Y; Ho, I J R; Lim, J W; Wang, J-Y

    2015-04-01

    This study was conducted to identify the performance of a multi-phased anaerobic baffled reactor (MP-ABR) with food waste (FW) as the substrate for biogas production and thereby to promote an efficient energy recovery and treatment method for the wastes with high organic solid content through phase separation. A four-chambered ABR was operated at an HRT of 30 days with an OLR of 0.5-1.0 g-VS/Ld for a period of 175 days at 35 ± 1°C. Consistent overall removal efficiencies of 85.3% (CODt), 94.5% (CODs), 89.6% (VFA) and 86.4% (VS) were observed throughout the experiment displaying a great potential to treat FW. Biogas generated was 215.57 mL/g-VS removed d. Phase separation was observed and supported by the COD and VFA trends, and an efficient recovery of bioenergy from FW was achieved. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. DEVELOPMENT OF LOW-DIFFUSION FLUX-SPLITTING METHODS FOR DENSE GAS-SOLID FLOWS

    EPA Science Inventory

    The development of a class of low-diffusion upwinding methods for computing dense gas-solid flows is presented in this work. An artificial compressibility/low-Mach preconditioning strategy is developed for a hyperbolic two-phase flow equation system consisting of separate solids ...

  4. Reversed-phase ion-pair liquid chromatography method for purification of duplex DNA with single base pair resolution

    PubMed Central

    Wysoczynski, Christina L.; Roemer, Sarah C.; Dostal, Vishantie; Barkley, Robert M.; Churchill, Mair E. A.; Malarkey, Christopher S.

    2013-01-01

    Obtaining quantities of highly pure duplex DNA is a bottleneck in the biophysical analysis of protein–DNA complexes. In traditional DNA purification methods, the individual cognate DNA strands are purified separately before annealing to form DNA duplexes. This approach works well for palindromic sequences, in which top and bottom strands are identical and duplex formation is typically complete. However, in cases where the DNA is non-palindromic, excess of single-stranded DNA must be removed through additional purification steps to prevent it from interfering in further experiments. Here we describe and apply a novel reversed-phase ion-pair liquid chromatography purification method for double-stranded DNA ranging in lengths from 17 to 51 bp. Both palindromic and non-palindromic DNA can be readily purified. This method has the unique ability to separate blunt double-stranded DNA from pre-attenuated (n-1, n-2, etc) synthesis products, and from DNA duplexes with single base pair overhangs. Additionally, palindromic DNA sequences with only minor differences in the central spacer sequence of the DNA can be separated, and the purified DNA is suitable for co-crystallization of protein–DNA complexes. Thus, double-stranded ion-pair liquid chromatography is a useful approach for duplex DNA purification for many applications. PMID:24013567

  5. Simultaneous determination of Cr(iii) and Cr(vi) using reversed-phased ion-pairing liquid chromatography with dynamic reaction cell inductively coupled plasma mass spectrometry

    USGS Publications Warehouse

    Wolf, R.E.; Morrison, J.M.; Goldhaber, M.B.

    2007-01-01

    A method for the simultaneous determination of Cr(iii) and Cr(vi) species in waters, soil leachates and synthetic bio-fluids is described. The method uses reversed-phase ion-pairing liquid chromatography to separate the chromium species and a dynamic reaction cell (DRC??) equipped ICP-MS for detection of chromium. Separation of the chromium species is carried out in less than 2 min. Cr(iii) is complexed with ethylenediaminetetraacetic acid (EDTA) prior to separation by mixing samples with the mobile phase containing 2.0 mM tetrabutylammonium hydroxide (TBAOH), 0.5 mM EDTA (dipotassium salt), and 5% (vol/vol) methanol, adjusted to pH 7.6. The interfering 40Ar 12C+ background peak at mass 52 was reduced by over four orders of magnitude to less than 200 cps by using 0.65 mL min-1 ammonia as a reaction gas and an RPq setting on the DRC of 0.75. Method detection limits (MDLs) of 0.09 ??g L-1 for Cr(iii) and 0.06 ??g L-1 for Cr(vi) were obtained based on peak areas at mass 52 for 50 ??L injections of low level spikes. Reproducibility at 2 ??g L-1 was 3% RSD for 5 replicate injections. The tolerance of the method to various levels of common cations and anions found in natural waters and to matrix constituents found in soil leachates and simulated gastric and lung fluids was tested by performing spike recovery calculations for a variety of samples. ?? The Royal Society of Chemistry.

  6. Fabrication of Janus particles composed of poly (lactic-co-glycolic) acid and hard fat using a solvent evaporation method.

    PubMed

    Matsumoto, Akihiro; Murao, Satoshi; Matsumoto, Michiko; Watanabe, Chie; Murakami, Masahiro

    The feasibility of fabricating Janus particles based on phase separation between a hard fat and a biocompatible polymer was investigated. The solvent evaporation method used involved preparing an oil-in-water (o/w) emulsion with a mixture of poly (lactic-co-glycolic) acid (PLGA), hard fat, and an organic solvent as the oil phase and a polyvinyl alcohol aqueous solution as the water phase. The Janus particles were formed when the solvent was evaporated to obtain certain concentrations of PLGA and hard fat in the oil phase, at which phase separation was estimated to occur based on the phase diagram analysis. The hard fat hemisphere was proven to be the oil phase using a lipophilic dye Oil Red O. When the solvent evaporation process was performed maintaining a specific volume during the emulsification process; Janus particles were formed within 1.5 h. However, the formed Janus particles were destroyed by stirring for over 6 h. In contrast, a few Janus particles were formed when enough water to dissolve the oil phase solvent was added to the emulsion immediately after the emulsification process. The optimized volume of the solvent evaporation medium dominantly formed Janus particles and maintained the conformation for over 6 h with stirring. These results indicate that the formation and stability of Janus particles depend on the rate of solvent evaporation. Therefore, optimization of the solvent evaporation rate is critical to obtaining stable PLGA and hard fat Janus particles.

  7. Preparative separation of two subsidiary colors of FD&C Yellow No. 5 (Tartrazine) using spiral high-speed counter-current chromatography◊

    PubMed Central

    Roque, Jose A.; Mazzola, Eugene P.; Ito, Yoichiro

    2014-01-01

    Specifications in the U.S. Code of Federal Regulations for the color additive FD&C Yellow No. 5 (Colour Index No. 19140) limit the level of the tetrasodium salt of 4-[(4',5-disulfo[1,1'-biphenyl]-2-yl)hydrazono]-4,5-dihydro-5-oxo-1-(4-sulfophenyl)-1H-pyrazole-3-carboxylic acid and that of the trisodium salt of 4,4'-[4,5-dihydro-5-oxo-4-[(4-sulfophenyl)hydrazono]-1H-pyrazol-1,3-diyl]bis[benzenesulfonic acid], which are subsidiary colors abbreviated as Pk5 and Pk7, respectively. Small amounts of Pk5 and Pk7 are needed by the U.S. Food and Drug Administration for confirmatory analyses and for development of analytical methods. The present study describes the use of spiral high-speed counter-current chromatography (HSCCC) with the recently introduced highly polar organic/high-ionic strength aqueous solvent systems to separate Pk5 and Pk7 from a sample of FD&C Yellow No. 5 containing ~3.5% Pk5 and ~0.7% Pk7. Multiple ~1.0 g portions of FD&C Yellow No. 5 (totaling 6.4 g dye) were separated, using the upper phase of the solvent system 1-BuOH/EtOHabs/saturated ammonium sulfate/water, 1.7:0.3:1:1, v/v/v/v, as the mobile phase. After applying a specially developed method for removing the ammonium sulfate from the HSCCC-collected fractions, these separations resulted in an enriched mixture (~160 mg) of Pk5 and Pk7 (~46% and ~21%, respectively). Separation of the enriched mixture, this time using the lower phase of that solvent system as the mobile phase, resulted in ~ 61 mg of Pk5 collected in fractions whose purity ranged from 88.0% to 92.7% (by HPLC at 254 nm). Pk7 (20.7 mg, ~83% purity) was recovered from the upper phase of the column content. Application of this procedure also resulted in purifying the major component of FD&C Yellow No. 5 to >99% purity. The separated compounds were characterized by high-resolution mass spectrometry and several 1H and 13C nuclear magnetic resonance spectroscopic techniques (COSY, NOESY, HSQC, and HMBC). PMID:24755184

  8. Integrated acoustic phase separator and multiphase fluid composition monitoring apparatus and method

    DOEpatents

    Sinha, Dipen N.

    2016-01-12

    An apparatus and method for down hole gas separation from the multiphase fluid flowing in a wellbore or a pipe, for determining the quantities of the individual components of the liquid and the flow rate of the liquid, and for remixing the component parts of the fluid after which the gas volume may be measured, without affecting the flow stream, are described. Acoustic radiation force is employed to separate gas from the liquid, thereby permitting measurements to be separately made for these two components; the liquid (oil/water) composition is determined from ultrasonic resonances; and the gas volume is determined from capacitance measurements. Since the fluid flows around and through the component parts of the apparatus, there is little pressure difference, and no protection is required from high pressure differentials.

  9. Integrated acoustic phase separator and multiphase fluid composition monitoring apparatus and method

    DOEpatents

    Sinha, Dipen N

    2014-02-04

    An apparatus and method for down hole gas separation from the multiphase fluid flowing in a wellbore or a pipe, for determining the quantities of the individual components of the liquid and the flow rate of the liquid, and for remixing the component parts of the fluid after which the gas volume may be measured, without affecting the flow stream, are described. Acoustic radiation force is employed to separate gas from the liquid, thereby permitting measurements to be separately made for these two components; the liquid (oil/water) composition is determined from ultrasonic resonances; and the gas volume is determined from capacitance measurements. Since the fluid flows around and through the component parts of the apparatus, there is little pressure difference, and no protection is required from high pressure differentials.

  10. Effect of applied strain on phase separation of Fe-28 at.% Cr alloy: 3D phase-field simulation

    NASA Astrophysics Data System (ADS)

    Zhu, Lihui; Li, Yongsheng; Liu, Chengwei; Chen, Shi; Shi, Shujing; Jin, Shengshun

    2018-04-01

    A quantitative simulation of the separation of the α‧ phase in Fe-28 at.% Cr alloy under the effects of applied strain is performed by utilizing a three-dimensional phase-field model. The elongation of the Cr-enriched α‧ phase becomes obvious with the influence of applied uniaxial strain for the phase separation transforms from spinodal decomposition of 700 K to nucleation and growth of 773 K. The applied strain shows a significant influence on the early stage phase separation, and the influence is enlarged with the elevated temperature. The steady-state coarsening with the mechanism of spinodal decomposition is substantially affected by the applied strain for low-temperature aging, while the influence is reduced as the temperature increases and as the phase separation mechanism changes to nucleation and growth. The peak value of particle size distribution decreases, and the PSD for 773 K becomes more widely influenced by the applied strain. The simulation results of separation of the Cr-enriched α‧ phase with the applied strain provide a further understanding of the strain effect on the phase separation of Fe-Cr alloys from the metastable region to spinodal regions.

  11. Nanocomposite and method of making thereof

    DOEpatents

    Tangirala, Ravisubhash; Milliron, Delia J.; Llordes, Anna

    2016-03-15

    An embodiment of an inorganic nanocomposite includes a nanoparticle phase and a matrix phase. The nanoparticle phase includes nanoparticles that are arranged in a repeating structure. In an embodiment, the nanoparticles have a spherical or pseudo-spherical shape and are incompatible with hydrazine. In another embodiment, the nanoparticles have neither a spherical nor pseudo-spherical shape. The matrix phase lies between the nanoparticles of the nanoparticle phase. An embodiment of a method of making an inorganic nanocomposite of the present invention includes forming a nanoparticle superlattice on a substrate. The nanoparticle superlattice includes nanoparticles. Each nanoparticle has organic ligands attached to a surface of the nanoparticle. The organic ligands separate adjacent nanoparticles within the nanoparticle superlattice. The method also includes forming a solution that includes an inorganic precursor. The nanoparticle superlattice is placed in the solution for a sufficient time for the inorganic precursor to replace the organic ligands.

  12. Cold-induced aqueous acetonitrile phase separation: A salt-free way to begin quick, easy, cheap, effective, rugged, safe.

    PubMed

    Shao, Gang; Agar, Jeffrey; Giese, Roger W

    2017-07-14

    Cooling a 1:1 (v/v) solution of acetonitrile and water at -16° C is known to result in two clear phases. We will refer to this event as "cold-induced aqueous acetonitrile phase separation (CIPS)". On a molar basis, acetonitrile is 71.7% and 13.6% in the upper and lower phases, respectively, in our study. The phase separation proceeds as a descending cloud of microdroplets. At the convenient temperature (typical freezer) employed here the lower phase is rather resistant to solidification, although it emerges from the freezer as a solid if various insoluble matter is present at the outset. In a preliminary way, we replaced the initial (salting-out) step of a representative QuEChERS procedure with CIPS, applying this modified procedure ("CIPS-QuEChERS") to a homogenate of salmon (and partly to beef). Three phases resulted, where only the upper, acetonitrile-rich phase is a liquid (that is completely clear). The middle phase comprises ice and precipitated lipids, while the lower phase is the residual matrix of undissolved salmon or meat. Treating the upper phase from salmon, after isolation, with anhydrous MgSO 4 and C18-Si (typical QuEChERS dispersive solid phase extraction sorbents), and injecting into a GC-MS in a nontargeted mode, gives two-fold more preliminary hits for chemicals, and also number of spiked pesticides recovered, relative to that from a comparable QuEChERS method. In part, this is because of much higher background signals in the latter case. Further study of CIPS-QuEChERS is encouraged, including taking advantage of other QuERChERS conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Rapid enantiomeric separation and simultaneous determination of phenethylamines by ultra high performance liquid chromatography with fluorescence and mass spectrometric detection: application to the analysis of illicit drugs distributed in the Japanese market and biological samples.

    PubMed

    Inagaki, Shinsuke; Hirashima, Haruo; Taniguchi, Sayuri; Higashi, Tatsuya; Min, Jun Zhe; Kikura-Hanajiri, Ruri; Goda, Yukihiro; Toyo'oka, Toshimasa

    2012-12-01

    A rapid enantiomeric separation and simultaneous determination method based on ultra high performance liquid chromatography (UHPLC) was developed for phenethylamine-type abused drugs using (R)-(-)-4-(N,N-dimethylaminosulfonyl)-7-(3-isothiocyanatopyrrolidin-1-yl)-2,1,3-benzoxadiazole ((R)-(-)-DBD-Py-NCS) as the chiral fluorescent derivatization reagent. The derivatives were rapidly enantiomerically separated by reversed-phase UHPLC using a column of 2.3-µm octadecylsilica (ODS) particles by isocratic elution with water-methanol or water-acetonitrile systems as the mobile phase. The proposed method was applied to the analysis of products containing illicit drugs distributed in the Japanese market. Among the products, 1-(3,4-methylenedioxyphenyl)butan-2-amine (BDB) and 1-(2-methoxy4,5-methylenedioxyphenyl)propan-2-amine (MMDA-2) were detected in racemic form. Furthermore, the method was successfully applied to the analysis of hair specimens from rats that were continuously dosed with diphenyl(pyrrolidin-2-yl)methanol (D2PM). Using UHPLC-fluorescence (FL) detection, (R)- and (S)-D2PM from hair specimens were enantiomerically separated and detected with high sensitivity. The detection limits of (R)- and (S)-D2PM were 0.12 and 0.21 ng/mg hair, respectively (signal-to-noise ratio (S/N) = 3). Copyright © 2012 John Wiley & Sons, Ltd.

  14. Joint water-fat separation and deblurring for spiral imaging.

    PubMed

    Wang, Dinghui; Zwart, Nicholas R; Pipe, James G

    2018-06-01

    Most previous approaches to spiral Dixon water-fat imaging perform the water-fat separation and deblurring sequentially based on the assumption that the phase accumulation and blurring as a result of off-resonance are separable. This condition can easily be violated in regions where the B 0 inhomogeneity varies rapidly. The goal of this work is to present a novel joint water-fat separation and deblurring method for spiral imaging. The proposed approach is based on a more accurate signal model that takes into account the phase accumulation and blurring simultaneously. A conjugate gradient method is used in the image domain to reconstruct the deblurred water and fat iteratively. Spatially varying convolutions with a local convergence criterion are used to reduce the computational demand. Both simulation and high-resolution brain imaging have demonstrated that the proposed joint method consistently improves the quality of reconstructed water and fat images compared with the sequential approach, especially in regions where the field inhomogeneity changes rapidly in space. The loss of signal-to-noise-ratio as a result of deblurring is minor at optimal echo times. High-quality water-fat spiral imaging can be achieved with the proposed joint approach, provided that an accurate field map of B 0 inhomogeneity is available. Magn Reson Med 79:3218-3228, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  15. Separation and quantification of 15 carotenoids by reversed phase high performance liquid chromatography coupled to diode array detection with isosbestic wavelength approach.

    PubMed

    Mitrowska, Kamila; Vincent, Ursula; von Holst, Christoph

    2012-04-13

    The manuscript presents the development of a new reverse phase high performance liquid chromatography (RP-HPLC) photo diode array detection method allowing the separation and quantification of 15 carotenoids (adonirubin, adonixanthin, astaxanthin, astaxanthin dimethyl disuccinate, asteroidenone, beta-apo-8'-carotenal, beta-apo-8'-carotenoic acid ethyl ester, beta-carotene, canthaxanthin, capsanthin, citranaxanthin, echinenone, lutein, lycopene, and zeaxanthin), 10 of which are feed additives authorised within the European Union. The developed method allows for the reliable determination of the total carotenoid content in one run using the corresponding E-isomer as calibration standard while taking into account the E/Z-isomers composition. This is a key criterion for the application of the method, since for most of the analytes included in this study analytical standards are only available for the E-isomers. This goal was achieved by applying the isosbestic concept, in order to identify specific wavelengths, at which the absorption coefficients are identical for all stereoisomers concerned. The second target referred to the optimisation of the LC conditions. By means of an experimental design, an optimised RP-HPLC method was developed allowing for a sufficient chromatographic separation of all carotenoids. The selected method uses a Suplex pKb-100 HPLC column and applying a gradient with a mixture of acetonitrile, tert-butyl-methyl ether and water as mobile phases. The limits of detection and limits of quantification ranged from 0.06 mg L(-1) to 0.14 mg L(-1) and from 0.20 mg L(-1) to 0.48 mg L(-1), respectively. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Method of forming supported doped palladium containing oxidation catalysts

    DOEpatents

    Mohajeri, Nahid

    2014-04-22

    A method of forming a supported oxidation catalyst includes providing a support comprising a metal oxide or a metal salt, and depositing first palladium compound particles and second precious metal group (PMG) metal particles on the support while in a liquid phase including at least one solvent to form mixed metal comprising particles on the support. The PMG metal is not palladium. The mixed metal particles on the support are separated from the liquid phase to provide the supported oxidation catalyst.

  17. Development and Optimisation of an HPLC-DAD-ESI-Q-ToF Method for the Determination of Phenolic Acids and Derivatives

    PubMed Central

    Restivo, Annalaura; Degano, Ilaria; Ribechini, Erika; Colombini, Maria Perla

    2014-01-01

    A method for the HPLC-MS/MS analysis of phenols, including phenolic acids and naphtoquinones, using an amide-embedded phase column was developed and compared to the literature methods based on classical C18 stationary phase columns. RP-Amide is a recently developed polar embedded stationary phase, whose wetting properties mean that up to 100% water can be used as an eluent. The increased retention and selectivity for polar compounds and the possibility of working in 100% water conditions make this column particularly interesting for the HPLC analysis of phenolic acids and derivatives. In this study, the chromatographic separation was optimised on an HPLC-DAD, and was used to separate 13 standard phenolic acids and derivatives. The method was validated on an HPLC-ESI-Q-ToF. The acquisition was performed in negative polarity and MS/MS target mode. Ionisation conditions and acquisition parameters for the Q-ToF detector were investigated by working on collision energies and fragmentor potentials. The performance of the method was fully evaluated on standards. Moreover, several raw materials containing phenols were analysed: walnut, gall, wine, malbec grape, French oak, red henna and propolis. Our method allowed us to characterize the phenolic composition in a wide range of matrices and to highlight possible matrix effects. PMID:24551158

  18. Spectrophotometric and Reversed-Phase High-Performance Liquid Chromatographic Method for the Determination of Doxophylline in Pharmaceutical Formulations

    PubMed Central

    Joshi, HR; Patel, AH; Captain, AD

    2010-01-01

    Two methods are described for determination of Doxophylline in a solid dosage form. The first method was based on ultraviolet (UV)-spectrophotometric determination of the drug. It involves absorbance measurement at 274 nm (λmax of Doxophylline) in 0.1 N hydrochloric acid. The calibration curve was linear, with the correlation coefficient between 0.99 and 1.0 over a concentration range of 0.20–30 mg/ml for the drug. The second method was based on high-performance liquid chromatography (HPLC) separation of the drug in reverse-phase mode using the Hypersil ODS C18 column (250 × 4.6 mm, 5 mm). The mobile phase constituted of buffer acetonitrile (80:20) and pH adjusted to 3.0, with dilute orthophosphoric acid delivered at a flow rate 1.0 ml/min. Detection was performed at 210 nm. Separation was completed within 7 min. The calibration curve was linear, with the correlation coefficient between 0.99 and 1.0 over a concentration range of 0.165–30 mg/ml for the drug. The relative standard deviation was found to be <2.0% for the UV-spectrophotometry and HPLC methods. Both these methods have been successively applied to the solid dosage pharmaceutical formulation, and were fully validated according to ICH guidelines. PMID:21042488

  19. Separation and quantitation of three acidic herbicide residues in tobacco and soil by dispersive solid-phase extraction and UPLC-MS/MS.

    PubMed

    Xiong, Wei; Tao, Xiaoqiu; Pang, Su; Yang, Xue; Tang, GangLing; Bian, Zhaoyang

    2014-01-01

    A method for the determination of three acidic herbicides, dicamba, 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) in tobacco and soil has been developed based on the use of liquid-liquid extraction and dispersive solid-phase extraction (dispersive-SPE) followed by UPLC-MS/MS. Two percentage of (v/v) formic acid in acetonitrile as the extraction helped partitioning of analytes into the acetonitrile phase. The extract was then cleaned up by dispersive-SPE using primary secondary amine as selective sorbents. Quantitative analysis was done in the multiple-reaction monitoring mode using stable isotope-labeled internal standards for each compound. A separate internal standard for each analyte is required to minimize sample matrix effects on each analyte, which can lead to poor analyte recoveries and decreases in method accuracy and precision. The total analysis time was <4 min. The linear range of the method was from 1 to 100 ng mL(-1) with a limit of detection of each herbicide varied from 0.012 to 0.126 ng g(-1). The proposed method is faster, more sensitive and selective than the traditional methods and more accurate and robust than the published LC-MS/MS methods. © The Author [2013]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Methods for improved forewarning of critical events across multiple data channels

    DOEpatents

    Hively, Lee M [Philadelphia, TN

    2007-04-24

    This disclosed invention concerns improvements in forewarning of critical events via phase-space dissimilarity analysis of data from mechanical devices, electrical devices, biomedical data, and other physical processes. First, a single channel of process-indicative data is selected that can be used in place of multiple data channels without sacrificing consistent forewarning of critical events. Second, the method discards data of inadequate quality via statistical analysis of the raw data, because the analysis of poor quality data always yields inferior results. Third, two separate filtering operations are used in sequence to remove both high-frequency and low-frequency artifacts using a zero-phase quadratic filter. Fourth, the method constructs phase-space dissimilarity measures (PSDM) by combining of multi-channel time-serial data into a multi-channel time-delay phase-space reconstruction. Fifth, the method uses a composite measure of dissimilarity (C.sub.i) to provide a forewarning of failure and an indicator of failure onset.

  1. A novel technique for phase synchrony measurement from the complex motor imaginary potential of combined body and limb action

    NASA Astrophysics Data System (ADS)

    Zhou, Zhong-xing; Wan, Bai-kun; Ming, Dong; Qi, Hong-zhi

    2010-08-01

    In this study, we proposed and evaluated the use of the empirical mode decomposition (EMD) technique combined with phase synchronization analysis to investigate the human brain synchrony of the supplementary motor area (SMA) and primary motor area (M1) during complex motor imagination of combined body and limb action. We separated the EEG data of the SMA and M1 into intrinsic mode functions (IMFs) using the EMD method and determined the characteristic IMFs by power spectral density (PSD) analysis. Thereafter, the instantaneous phases of the characteristic IMFs were obtained by the Hilbert transformation, and the single-trial phase-locking value (PLV) features for brain synchrony measurement between the SMA and M1 were investigated separately. The classification performance suggests that the proposed approach is effective for phase synchronization analysis and is promising for the application of a brain-computer interface in motor nerve reconstruction of the lower limbs.

  2. Analysis of switchgrass-derived bio-oil and associated aqueous phase generated in a semi-pilot scale auger pyrolyzer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Shoujie; Ye, X. Philip; Borole, Abhijeet P.

    To efficiently utilize water-soluble compounds in bio-oil and evaluate the potential effects of these compounds on processes such as microbial electrolysis, our study investigated the physico-chemical properties of bio-oil and the associated aqueous phase generated from switchgrass using a semi-pilot scale auger pyrolyzer. Combining separation and detection strategies with organic solvent extraction, an array of analytical instruments and methods were used to identify and quantify the chemical constituents. Separation of an aqueous phase from crude bio-oil was achieved by adding water (water: crude bio-oil at 4:1 in weight), which resulted in a partition of 61 wt.% of the organic compoundsmore » into a bio-oil aqueous phase (BOAP). GC/MS analysis for BOAP identified over 40 compounds of which 16 were quantified. Acetic acid, propionic acid, and levoglucosan are the major components in BOAP. In addition, a significant portion of chemicals that have the potential to be upgraded to hydrocarbon fuels were extracted to BOAP (77 wt.% of the alcohols, 61 wt.% of the furans, and 52 wt.% of the phenolic compounds in crude bio-oil). Valorization of the BOAP may require conversion methods capable of accommodating a very broad substrate specificity. Ultimately, a better separation strategy is needed to selectively remove the acidic and polar components from crude bio-oil to improve economic feasibility of biorefinery operations.« less

  3. Analysis of switchgrass-derived bio-oil and associated aqueous phase generated in a semi-pilot scale auger pyrolyzer

    DOE PAGES

    Ren, Shoujie; Ye, X. Philip; Borole, Abhijeet P.; ...

    2016-03-30

    To efficiently utilize water-soluble compounds in bio-oil and evaluate the potential effects of these compounds on processes such as microbial electrolysis, our study investigated the physico-chemical properties of bio-oil and the associated aqueous phase generated from switchgrass using a semi-pilot scale auger pyrolyzer. Combining separation and detection strategies with organic solvent extraction, an array of analytical instruments and methods were used to identify and quantify the chemical constituents. Separation of an aqueous phase from crude bio-oil was achieved by adding water (water: crude bio-oil at 4:1 in weight), which resulted in a partition of 61 wt.% of the organic compoundsmore » into a bio-oil aqueous phase (BOAP). GC/MS analysis for BOAP identified over 40 compounds of which 16 were quantified. Acetic acid, propionic acid, and levoglucosan are the major components in BOAP. In addition, a significant portion of chemicals that have the potential to be upgraded to hydrocarbon fuels were extracted to BOAP (77 wt.% of the alcohols, 61 wt.% of the furans, and 52 wt.% of the phenolic compounds in crude bio-oil). Valorization of the BOAP may require conversion methods capable of accommodating a very broad substrate specificity. Ultimately, a better separation strategy is needed to selectively remove the acidic and polar components from crude bio-oil to improve economic feasibility of biorefinery operations.« less

  4. Stability and Oil Migration of Oil-in-Water Emulsions Emulsified by Phase-Separating Biopolymer Mixtures.

    PubMed

    Yang, Nan; Mao, Peng; Lv, Ruihe; Zhang, Ke; Fang, Yapeng; Nishinari, Katsuyoshi; Phillips, Glyn O

    2016-08-01

    Oil-in-water (O/W) emulsions with varying concentration of oil phase, medium-chain triglyceride (MCT), were prepared using phase-separating gum arabic (GA)/sugar beet pectin (SBP) mixture as an emulsifier. Stability of the emulsions including emulsion phase separation, droplet size change, and oil migration were investigated by means of visual observation, droplet size analysis, oil partition analysis, backscattering of light, and interfacial tension measurement. It was found that in the emulsions prepared with 4.0% GA/1.0% SBP, when the concentration of MCT was greater than 2.0%, emulsion phase separation was not observed and the emulsions were stable with droplet size unchanged during storage. This result proves the emulsification ability of phase-separating biopolymer mixtures and their potential usage as emulsifiers to prepare O/W emulsion. However, when the concentration of MCT was equal or less than 2.0%, emulsion phase separation occurred after preparation resulting in an upper SBP-rich phase and a lower GA-rich phase. The droplet size increased in the upper phase whereas decreased slightly in the lower phase with time, compared to the freshly prepared emulsions. During storage, the oil droplets exhibited a complex migration process: first moving to the SBP-rich phase, then to the GA-rich phase and finally gathering at the interface between the two phases. The mechanisms of the emulsion stability and oil migration in the phase-separated emulsions were discussed. © 2016 Institute of Food Technologists®

  5. The use of Whatman-31ET paper for an efficient method for radiochemical purity test of 131I-Hippuran

    NASA Astrophysics Data System (ADS)

    Rezka Putra, Amal; Maskur; Sugiharto, Yono; Chairuman; Hardi Gunawan, Adang; Awaludin, Rohadi

    2018-01-01

    Current chromatography methods used for radiochemical purity test of 131I-Hippuran is time consuming. Therefore, in this study we explored several static and mobile phases in order to have a chromatography method which is accurate and efficient or less time consuming. In this study, stationary phases (Whatman-1, 31ET, and 3MM papers) and several mobile phases were explored to separate 131I-Hippuran from its impurity (131I iodide ion). The results of this study showed that the most efficient chromatography system for measurement of radiochemical purity of 131I-Hippuran was by using Whatman-31ET paper and n-butanol: acetic acid: water (4:1:1) as a static phase and mobile phase respectively. Developing time for this method was of approximately 75.7 ± 2.7 minutes. The result of radiochemical purity (%RCP) of 131I-Hippuran measured with this chromatography system either using Whatman-1 or Whatman-31ET paper strips was 98.7%. The short size of Whatman-31ET paper strip (1 x 8 cm) was found to have shorter developing time compared to that of long size paper. This system showed a good separation of 131I-Hippuran from its impurities and gave %RCP of 98.1% ± 0.04% with developing time approximately 44.3 ± 9.4 minutes. The short size of Whatman-31ET paper strips was found to be more efficient compared to that of Whatman-1 and Whatman-3MM paper strips in term of developing time.

  6. PREPARATIVE ISOLATION AND PURIFICATION OF THREE GLYCINE-CONJUGATED CHOLIC ACIDS FROM PULVIS FELLIS SUIS BY HIGH-SPEED COUNTERCURRENT CHROMATOGRAPHY COUPLED WITH ELSD DETECTION.

    PubMed

    He, Jiao; Li, Jing; Sun, Wenji; Zhang, Tianyou; Ito, Yoichiro

    2012-01-01

    Coupled with evaporative light scattering detection, a high-speed counter-current chromatography (HSCCC) method was developed for preparative isolation and purification of three glycine-conjugated cholic acids, glycochenodeoxycholic acid (GCDCA), glycohyodeoxycholic acid (GHDCA) and glycohyocholic acid (GHCA) from Pulvis Fellis Suis (Pig gallbladder bile) for the first time. The separation was performed with a two-phase solvent system consisted of chloroform-methanol-water-acetic acid (65:30:10:1.5, v/v/v/v) by eluting the lower phase in the head-to-tail elution mode. The revolution speed of the separation column, flow rate of the mobile phase and separation temperature were 800 rpm, 2 ml/min and 25 °C, respectively. In a single operation, 33 mg of GCDCA, 38 mg of GHDCA and 23 mg of GHCA were obtained from 200 mg of crude extract with the purity of 95.65%, 96.72% and 96.63%, respectively, in one step separation. The HSCCC fractions were analyzed by high-performance liquid chromatography (HPLC) and the structures of the three glycine-conjugated cholic acids were identified by ESI-MS, (1)H NMR and (13)C NMR.

  7. PREPARATIVE ISOLATION AND PURIFICATION OF THREE GLYCINE-CONJUGATED CHOLIC ACIDS FROM PULVIS FELLIS SUIS BY HIGH-SPEED COUNTERCURRENT CHROMATOGRAPHY COUPLED WITH ELSD DETECTION

    PubMed Central

    He, Jiao; Li, Jing; Sun, Wenji; Zhang, Tianyou; Ito, Yoichiro

    2011-01-01

    Coupled with evaporative light scattering detection, a high-speed counter-current chromatography (HSCCC) method was developed for preparative isolation and purification of three glycine-conjugated cholic acids, glycochenodeoxycholic acid (GCDCA), glycohyodeoxycholic acid (GHDCA) and glycohyocholic acid (GHCA) from Pulvis Fellis Suis (Pig gallbladder bile) for the first time. The separation was performed with a two-phase solvent system consisted of chloroform-methanol-water-acetic acid (65:30:10:1.5, v/v/v/v) by eluting the lower phase in the head-to-tail elution mode. The revolution speed of the separation column, flow rate of the mobile phase and separation temperature were 800 rpm, 2 ml/min and 25 °C, respectively. In a single operation, 33 mg of GCDCA, 38 mg of GHDCA and 23 mg of GHCA were obtained from 200 mg of crude extract with the purity of 95.65%, 96.72% and 96.63%, respectively, in one step separation. The HSCCC fractions were analyzed by high-performance liquid chromatography (HPLC) and the structures of the three glycine-conjugated cholic acids were identified by ESI-MS, 1H NMR and 13C NMR. PMID:23008527

  8. Fast analysis of capsaicinoids in Naga Jolokia extracts (Capsicum chinense) by high-performance liquid chromatography using fused core columns.

    PubMed

    Stipcovich, Tea; Barbero, Gerardo F; Ferreiro-González, Marta; Palma, Miguel; Barroso, Carmelo G

    2018-01-15

    A rapid high-performance liquid chromatography method with a C18 reverse-phase fused-core column has been developed for the determination and quantification of the main capsaicinoids (nornordihydrocapsaicin, nordihydrocapsaicin, capsaicin, dihydrocapsaicin, homocapsaicin and homodihydrocapsaicin) present in Naga Jolokia peppers. A fused-core Kinetex™ C18 column (50×2.1mm i.d.; 2.6μm) was used for the analysis. The chromatographic separation was obtained with a gradient method in which the mobile phase was water (0.1% acetic acid) as solvent A and acetonitrile (0.1% acetic acid) as solvent B. The separation of all compounds was achieved in less than 3min with a total analysis time (sample-to-sample) of 10min. The robustness of the method was evaluated. The method showed excellent repeatability and intermediate precision expressed as coefficient of variance of less than 2%. The developed method was employed for the quantification of the major capsaicinoids present in different peppers and commercial products containing chilli peppers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Single-molecule dilution and multiple displacement amplification for molecular haplotyping.

    PubMed

    Paul, Philip; Apgar, Josh

    2005-04-01

    Separate haploid analysis is frequently required for heterozygous genotyping to resolve phase ambiguity or confirm allelic sequence. We demonstrate a technique of single-molecule dilution followed by multiple strand displacement amplification to haplotype polymorphic alleles. Dilution of DNA to haploid equivalency, or a single molecule, is a simple method for separating di-allelic DNA. Strand displacement amplification is a robust method for non-specific DNA expansion that employs random hexamers and phage polymerase Phi29 for double-stranded DNA displacement and primer extension, resulting in high processivity and exceptional product length. Single-molecule dilution was followed by strand displacement amplification to expand separated alleles to microgram quantities of DNA for more efficient haplotype analysis of heterozygous genes.

  10. Determination of some phenolic compounds in red wine by RP-HPLC: method development and validation.

    PubMed

    Burin, Vívian Maria; Arcari, Stefany Grützmann; Costa, Léa Luzia Freitas; Bordignon-Luiz, Marilde T

    2011-09-01

    A methodology employing reversed-phase high-performance liquid chromatography (RP-HPLC) was developed and validated for simultaneous determination of five phenolic compounds in red wine. The chromatographic separation was carried out in a C(18) column with water acidify with acetic acid (pH 2.6) (solvent A) and 20% solvent A and 80% acetonitrile (solvent B) as the mobile phase. The validation parameters included: selectivity, linearity, range, limits of detection and quantitation, precision and accuracy, using an internal standard. All calibration curves were linear (R(2) > 0.999) within the range, and good precision (RSD < 2.6%) and recovery (80-120%) was obtained for all compounds. This method was applied to quantify phenolics in red wine samples from Santa Catarina State, Brazil, and good separation peaks for phenolic compounds in these wines were observed.

  11. Separation of the enantiomers of ibuprofen and its major phase I metabolites in urine using capillary electrophoresis.

    PubMed

    Bjørnsdottir, I; Kepp, D R; Tjørnelund, J; Hansen, S H

    1998-03-01

    A capillary electrophoresis method for determination of the enantiomers of ibuprofen and its major phase I metabolites: 2'-hydroxyibuprofen and 2'-carboxyibuprofen in urine samples have been developed. Cyclodextrins and linear dextrins have been investigated as chiral selectors. Simultaneous chiral separation of the enantiomers of ibuprofen, 2'-hydroxyibuprofen and 2'-carboxyibuprofen was obtained using a mixture of dextrin 10 and heptakis (2,3,6-tri-O-methyl)-beta-cyclodextrin in a 2-[N-morpholino]ethanesulphonic acid buffer, pH 5.26. The electroosmotic flow was reversed using hexadimethrine bromide as a buffer additive. The method can be used for the determination of the free enantiomers of ibuprofen, 2'-hydroxyibuprofen and 2'-carboxyibuprofen as well as for the indirect determination of their glucuronic acid conjugates in urine samples.

  12. The Chiral Separation Effect in quenched finite-density QCD

    NASA Astrophysics Data System (ADS)

    Puhr, Matthias; Buividovich, Pavel

    2018-03-01

    We present results of a study of the Chiral Separation Effect (CSE) in quenched finite-density QCD. Using a recently developed numerical method we calculate the conserved axial current for exactly chiral overlap fermions at finite density for the first time. We compute the anomalous transport coeffcient for the CSE in the confining and deconfining phase and investigate possible deviations from the universal value. In both phases we find that non-perturbative corrections to the CSE are absent and we reproduce the universal value for the transport coeffcient within small statistical errors. Our results suggest that the CSE can be used to determine the renormalisation factor of the axial current.

  13. Metastability Gap in the Phase Diagram of Monoclonal IgG Antibody.

    PubMed

    Rowe, Jacob B; Cancel, Rachel A; Evangelous, Tyler D; Flynn, Rhiannon P; Pechenov, Sergei; Subramony, J Anand; Zhang, Jifeng; Wang, Ying

    2017-10-17

    Crystallization of IgG antibodies has important applications in the fields of structural biology, biotechnology, and biopharmaceutics. However, a rational approach to crystallize antibodies is still lacking. In this work, we report a method to estimate the solubility of antibodies at various temperatures. We experimentally determined the full phase diagram of an IgG antibody. Using the full diagram, we examined the metastability gaps, i.e., the distance between the crystal solubility line and the liquid-liquid coexistence curve, of IgG antibodies. By comparing our results to the partial phase diagrams of other IgGs reported in literature, we found that IgG antibodies have similar metastability gaps. Thereby, we present an equation with two phenomenological parameters to predict the approximate location of the solubility line of IgG antibodies with respect to their liquid-liquid coexistence curves. We have previously shown that the coexistence curve of an antibody solution can be readily determined by the polyethylene glycol-induced liquid-liquid phase separation method. Combining the polyethylene glycol-induced liquid-liquid phase separation measurements and the phenomenological equation in this article, we provide a general and practical means to predict the thermodynamic conditions for crystallizing IgG antibodies in the solution environments of interest. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Rapid and sensitive analytical method for monitoring of 12 organotin compounds in natural waters.

    PubMed

    Vahčič, Mitja; Milačič, Radmila; Sčančar, Janez

    2011-03-01

    A rapid analytical method for the simultaneous determination of 12 different organotin compounds (OTC): methyl-, butyl-, phenyl- and octyl-tins in natural water samples was developed. It comprises of in situ derivatisation (by using NaBEt4) of OTC in salty or fresh water sample matrix adjusted to pH 6 with Tris-citrate buffer, extraction of ethylated OTC into hexane, separation of OTC in organic phase on 15 m GC column and subsequent quantitative determination of separated OTC by ICP-MS. To optimise the pH of ethylation, phosphate, carbonate and Tris-citrate buffer were investigated alternatively to commonly applied sodium acetate - acetic acid buffer. The ethylation yields in Tris-citrate buffer were found to be better for TBT, MOcT and DOcT in comparison to commonly used acetate buffer. Iso-octane and hexane were examined as organic phase for extraction of ethylated OTC. The advantage of hexane was in its ability for quantitative determination of TMeT. GC column of 15 m in length was used for separation of studied OTC under the optimised separation conditions and its performances compared to 30 m column. The analytical method developed enables sensitive simultaneous determination of 12 different OTC and appreciably shortened analysis time in larger series of water samples. LOD's obtained for the newly developed method ranged from 0.05-0.06 ng Sn L-1 for methyl-, 0.11-0.45 ng Sn L-1 for butyl-, 0.11-0.16 ng Sn L-1 for phenyl-, and 0.07-0.10 ng Sn L-1 for octyl-tins. By applying the developed analytical method, marine water samples from the Northern Adriatic Sea containing mainly butyl- and methyl-tin species were analysed to confirm the proposed method's applicability.

  15. STRIPPING OF URANIUM FROM ORGANIC EXTRACTANTS

    DOEpatents

    Crouse, D.J. Jr.

    1962-09-01

    A liquid-liquid extraction method is given for recovering uranium values from uranium-containing solutions. Uranium is removed from a uranium-containing organic solution by contacting said organic solution with an aqueous ammonium carbonate solution substantially saturated in uranium values. A uranium- containing precipitate is thereby formed which is separated from the organic and aqueous phases. Uranium values are recovered from this separated precipitate. (AE C)

  16. Different Spectrophotometric and Chromatographic Methods for Determination of Mepivacaine and Its Toxic Impurity.

    PubMed

    Abdelwahab, Nada S; Fared, Nehal F; Elagawany, Mohamed; Abdelmomen, Esraa H

    2017-09-01

    Stability-indicating spectrophotometric, TLC-densitometric, and ultra-performance LC (UPLC) methods were developed for the determination of mepivacaine HCl (MEP) in the presence of its toxic impurity, 2,6-dimethylanaline (DMA). Different spectrophotometric methods were developed for the determination of MEP and DMA. In a dual-wavelength method combined with direct spectrophotometric measurement, the absorbance difference between 221.4 and 240 nm was used for MEP measurements, whereas the absorbance at 283 nm was used for measuring DMA in the binary mixture. In the second-derivative method, amplitudes at 272.2 and 232.6 nm were recorded and used for the determination of MEP and DMA, respectively. The developed TLC-densitometric method depended on chromatographic separation using silica gel 60 F254 TLC plates as a stationary phase and methanol-water-acetic acid (9 + 1 + 0.1, v/v/v) as a developing system, with UV scanning at 230 nm. The developed UPLC method depended on separation using a C18 column (250 × 4.6 mm id, 5 μm particle size) as a stationary phase and acetonitrile-water (40 + 60, v/v; pH 4 with phosphoric acid) as a mobile phase at a flow rate of 0.4 mL/min, with UV detection at 215 nm. The chromatographic run time was approximately 1 min. The proposed methods were validated with respect to International Conference on Harmonization guidelines regarding precision, accuracy, ruggedness, robustness, and specificity.

  17. Carrier-separating demodulation of phase shifting self-mixing interferometry

    NASA Astrophysics Data System (ADS)

    Tao, Yufeng; Wang, Ming; Xia, Wei

    2017-03-01

    A carrier separating method associated with noise-elimination had been introduced into a sinusoidal phase-shifting self-mixing interferometer. The conventional sinusoidal phase shifting self-mixing interferometry was developed into a more competitive instrument with high computing efficiency and nanometer accuracy of λ / 100 in dynamical vibration measurement. The high slew rate electro-optic modulator induced a sinusoidal phase carrier with ultralow insertion loss in this paper. In order to extract phase-shift quickly and precisely, this paper employed the carrier-separating to directly generate quadrature signals without complicated frequency domain transforms. Moreover, most noises were evaluated and suppressed by a noise-elimination technology synthesizing empirical mode decomposition with wavelet transform. The overall laser system was described and inherent advantages such as high computational efficiency and decreased nonlinear errors of the established system were demonstrated. The experiment implemented on a high precision PZT (positioning accuracy was better than 1 nm) and compared with laser Doppler velocity meter. The good agreement of two instruments shown that the short-term resolution had improved from 10 nm to 1.5 nm in dynamic vibration measurement with reduced time expense. This was useful in precision measurement to improve the SMI with same sampling rate. The proposed signal processing was performed in pure time-domain requiring no preprocessing electronic circuits.

  18. SW-846 Test Method 3200: Mercury Species Fractionation and Quantification by Microwave Assisted Extraction, Selective Solvent Extraction and/or Solid Phase Extraction

    EPA Pesticide Factsheets

    a sequential extraction and separation procedure that maybe used in conjunction with a determinative method to differentiate mercury species that arepresent in soils and sediments. provides information on both total mercury andvarious mercury species.

  19. Fluid Phase Separation (FPS) experiment for flight on a space shuttle Get Away Special (GAS) canister

    NASA Technical Reports Server (NTRS)

    Peters, Bruce; Wingo, Dennis; Bower, Mark; Amborski, Robert; Blount, Laura; Daniel, Alan; Hagood, Bob; Handley, James; Hediger, Donald; Jimmerson, Lisa

    1990-01-01

    The separation of fluid phases in microgravity environments is of importance to environmental control and life support systems (ECLSS) and materials processing in space. A successful fluid phase separation experiment will demonstrate a proof of concept for the separation technique and add to the knowledge base of material behavior. The phase separation experiment will contain a premixed fluid which will be exposed to a microgravity environment. After the phase separation of the compound has occurred, small samples of each of the species will be taken for analysis on the Earth. By correlating the time of separation and the temperature history of the fluid, it will be possible to characterize the process. The experiment has been integrated into space available on a manifested Get Away Special (GAS) experiment, CONCAP 2, part of the Consortium for Materials Complex Autonomous Payload (CAP) Program, scheduled for STS-42. The design and the production of a fluid phase separation experiment for rapid implementation at low cost is presented.

  20. Atomic Force Microscopy Studies of Functional and Dysfunctional Pulmonary Surfactant Films. I. Micro- and Nanostructures of Functional Pulmonary Surfactant Films and the Effect of SP-A

    PubMed Central

    Zuo, Yi Y.; Keating, Eleonora; Zhao, Lin; Tadayyon, Seyed M.; Veldhuizen, Ruud A. W.; Petersen, Nils O.; Possmayer, Fred

    2008-01-01

    Monolayers of a functional pulmonary surfactant (PS) can reach very low surface tensions well below their equilibrium value. The mechanism by which PS monolayers reach such low surface tensions and maintain film stability remains unknown. As shown previously by fluorescence microscopy, phospholipid phase transition and separation seem to be important for the normal biophysical properties of PS. This work studied phospholipid phase transitions and separations in monolayers of bovine lipid extract surfactant using atomic force microscopy. Atomic force microscopy showed phospholipid phase separation on film compression and a monolayer-to-multilayer transition at surface pressure 40–50 mN/m. The tilted-condensed phase consisted of domains not only on the micrometer scale, as detected previously by fluorescence microscopy, but also on the nanometer scale, which is below the resolution limits of conventional optical methods. The nanodomains were embedded uniformly within the liquid-expanded phase. On compression, the microdomains broke up into nanodomains, thereby appearing to contribute to tilted-condensed and liquid-expanded phase remixing. Addition of surfactant protein A altered primarily the nanodomains and promoted the formation of multilayers. We conclude that the nanodomains play a predominant role in affecting the biophysical properties of PS monolayers and the monolayer-to-multilayer transition. PMID:18212010

  1. Retention behavior of long chain quaternary ammonium homologues and related nitroso-alkymethylamines

    USGS Publications Warehouse

    Abidi, S.L.

    1985-01-01

    Several chromatographic methods have been utilized to study the retentionbehavior of a homologous series of n-alkylbenzyldimethylammonium chlorides (ABDAC) and the corresponding nitroso-n-alkylmethylamines (NAMA). Linear correlation of the logarithmic capacity factor (k') with the number of carbons in the alkyl chain provides useful information on both gas chromatographic (GC) and high-performance liquid chromatographich (HPLC) retention parameters of unknown components. Under all conditions empolyed, GC methodology has proved effective in achieving complete resolution of the homologous mixture of NMA despite its obvious inadequacy in the separation of E-Z configurational isomers. Conversely, normal-phase HPLC on silica demonstrates that the selectivity (a) value for an E-Z pair is much higher than that for an adjacent homologous pair. In the reversed-phase HPLC study, three different silica-based column systems were examined under various mobile phase conditions. The extent of variation in k' was found to be a function of the organic modifier, counter-ion concentration, eluent pH, nature of counter-ion, and the polarity and type of stationary phase. The k'—[NaClO4] profiles showed similar trends between the ABDAC and the NAMA series, supporting the dipolar electronic structures of the latter compounds. Mobile phase and stationary phase effects on component separation are described. The methodology presented establishes the utility of HPLC separation techniques as versatile analytical tools for practical application.

  2. Noise-Source Separation Using Internal and Far-Field Sensors for a Full-Scale Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Miles, Jeffrey H.

    2009-01-01

    Noise-source separation techniques for the extraction of the sub-dominant combustion noise from the total noise signatures obtained in static-engine tests are described. Three methods are applied to data from a static, full-scale engine test. Both 1/3-octave and narrow-band results are discussed. The results are used to assess the combustion-noise prediction capability of the Aircraft Noise Prediction Program (ANOPP). A new additional phase-angle-based discriminator for the three-signal method is also introduced.

  3. Methods of calculating engineering parameters for gas separations

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.

    1980-01-01

    A group additivity method has been generated which makes it possible to estimate, from the structural formulas alone, the energy of vaporization and the molar volume at 25 C of many nonpolar organic liquids. From these two parameters and appropriate thermodynamic relationships it is then possible to predict the vapor pressure of the liquid phase and the solubility of various gases in nonpolar organic liquids. The data are then used to evaluate organic and some inorganic liquids for use in gas separation stages or as heat exchange fluids in prospective thermochemical cycles for hydrogen production.

  4. [Determination of patulin in fruits and jam by solid phase extraction-ultra performance liquid chromatography].

    PubMed

    Lü, Weichao; Shen, Shuchang; Wang, Chao

    2017-11-08

    With magnesium silicate, silica gel, diatomite and calcium sulfate as raw materials, a new solid phase extraction column was prepared through a series of processes of grinding to ethanol homogenate, drying and packing into polypropylene tube. The sample was hydrolyzed by pectinase, extracted by acetonitrile and purified by solid phase extraction. The target compounds were separated on a C18 column (100 mm×2.1 mm, 1.8 μm), using 0.8% (v/v) tetrahydrofuran solution as mobile phase with a flow rate of 0.5 mL/min. The detection wavelength was 276 nm. The effect of pectinase on extraction yield and purification effect of solid-phase extraction column were investigated. The optimum chromatographic conditions were selected. There was a good linear relationship between the peak heights and the mass concentrations of patulin in the range of 0.1 to 10 mg/L with the correlation coefficient ( R 2 ) of 1. The limit of detection for this method was 10.22 μg/kg. The spiked recoveries of samples were 86.58%-94.84% with the relative standard deviations (RSDs) of 1.45%-2.28%. The results indicated that the self-made solid phase extraction column had a good purification efficiency, and the UPLC had a high separation efficiency. The method is simple, accurate and of great significance for the quality and safety control of fruit products.

  5. Improving chemical shift encoding‐based water–fat separation based on a detailed consideration of magnetic field contributions

    PubMed Central

    Ruschke, Stefan; Eggers, Holger; Meineke, Jakob; Rummeny, Ernst J.; Karampinos, Dimitrios C.

    2018-01-01

    Purpose To improve the robustness of existing chemical shift encoding‐based water–fat separation methods by incorporating a priori information of the magnetic field distortions in complex‐based water–fat separation. Methods Four major field contributions are considered: inhomogeneities of the scanner magnet, the shim field, an object‐based field map estimate, and a residual field. The former two are completely determined by spherical harmonic expansion coefficients directly available from the magnetic resonance (MR) scanner. The object‐based field map is forward simulated from air–tissue interfaces inside the field of view (FOV). The missing residual field originates from the object outside the FOV and is investigated by magnetic field simulations on a numerical whole body phantom. In vivo the spatially linear first‐order component of the residual field is estimated by measuring echo misalignments after demodulation of other field contributions resulting in a linear residual field. Gradient echo datasets of the cervical and the ankle region without and with shimming were acquired, where all four contributions were incorporated in the water–fat separation with two algorithms from the ISMRM water–fat toolbox and compared to water–fat separation with less incorporated field contributions. Results Incorporating all four field contributions as demodulation steps resulted in reduced temporal and spatial phase wraps leading to almost swap‐free water–fat separation results in all datasets. Conclusion Demodulating estimates of major field contributions reduces the phase evolution to be driven by only small differences in local tissue susceptibility, which supports the field smoothness assumption of existing water–fat separation techniques. PMID:29424458

  6. Fast comprehensive two-dimensional gas chromatography method for fatty acid methyl ester separation and quantification using dual ionic liquid columns.

    PubMed

    Nosheen, Asia; Mitrevski, Blagoj; Bano, Asghari; Marriott, Philip J

    2013-10-18

    Safflower oil is a complex mixture of C18 saturated and unsaturated fatty acids amongst other fatty acids, and achieving separation between these similar structure components using one dimensional gas chromatography (GC) may be difficult. This investigation aims to obtain improved separation of fatty acid methyl esters in safflower oil, and their quantification using comprehensive two-dimensional GC (GC×GC). Here, GC×GC separation is accomplished by the coupling of two ionic liquid (IL) column phases: the combination of SLB-IL111 with IL59 column phases was finally selected since it provided excellent separation of a FAME standard mixture, as well as fatty acids in safflower and linseed oil, compared to other tested column sets. Safflower oil FAME were well separated in a short run of 16min. FAME validation was demonstrated by method reproducibility, linearity over a range up to 500mgL(-1), and limits of detection which ranged from 1.9mgL(-1) to 5.2mgL(-1) at a split ratio of 20:1. Quantification was carried out using two dilution levels of 200-fold for major components and 20-fold for trace components. The fatty acids C15:0 and C17:0 were not reported previously in safflower oil. The SLB-IL111/IL59 column set proved to be an effective and novel configuration for separation and quantification of vegetable and animal oil fatty acids. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Simultaneous determination of arsenic and mercury species in rice by ion-pairing reversed phase chromatography with inductively coupled plasma mass spectrometry.

    PubMed

    Fang, Yong; Pan, Yushi; Li, Peng; Xue, Mei; Pei, Fei; Yang, Wenjian; Ma, Ning; Hu, Qiuhui

    2016-12-15

    An analytical method using reversed phase chromatography-inductively coupled plasma mass spectrometry for arsenic and mercury speciation analysis was described. The effect of ion-pairing reagent on simultaneous separation of four arsenic (arsenite, arsenate, monomethlyarsonate and dimethylarsinate) and three mercury species (inorganic mercury (Hg(II)), methylmecury and ethylmercury) was investigated. Parameters including concentrations and pH of the mobile phase were optimized. The separation and re-equilibration time was attained within 20min. Meanwhile, a sequential extraction method for arsenic and mercury in rice was tested. Subsequently, 1% HNO3 microwave-assisted extraction was chosen. Calibration curves based on peak area measurements were linear with correlation coefficient greater than 0.9958 for each species in the range studied. The detection limits of the species were in the range of 0.84-2.41μg/L for arsenic and 0.01-0.04μg/L for mercury, respectively. The proposed method was then successfully applied for the simultaneous determination of arsenic and mercury species in rice flour standard material and two kinds of rice from local markets. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. An integrated system for synchronous culture of animal cells under controlled conditions.

    PubMed

    Mendoza-Pérez, Elena; Hernández, Vanessa; Palomares, Laura A; Serrato, José A

    2016-01-01

    The cell cycle has fundamental effects on cell cultures and their products. Tools to synchronize cultured cells allow the study of cellular physiology and metabolism at particular cell cycle phases. However, cells are most often arrested by methods that alter their homeostasis and are then cultivated in poorly controlled environments. Cell behavior could then be affected by the synchronization method and culture conditions used, and not just by the particular cell cycle phase under study. Moreover, only a few viable cells are recovered. Here, we designed an integrated system where a large number of cells from a controlled bioreactor culture is separated by centrifugal elutriation at high viabilities. In contrast to current elutriation methods, cells are injected directly from a bioreactor into an injection loop, allowing the introduction of a large number of cells into the separation chamber without stressful centrifugation. A low pulsation peristaltic pump increases the stability of the elutriation chamber. Using this approach, a large number of healthy cells at each cell cycle phase were obtained, allowing their direct inoculation into fully instrumented bioreactors. Hybridoma cells synchronized and cultured in this system behaved as expected for a synchronous culture.

  9. Methods, systems, and apparatus for storage, transfer and/or control of information via matter wave dynamics

    NASA Technical Reports Server (NTRS)

    Vestergaard Hau, Lene (Inventor)

    2012-01-01

    Methods, systems and apparatus for generating atomic traps, and for storing, controlling and transferring information between first and second spatially separated phase-coherent objects, or using a single phase-coherent object. For plural objects, both phase-coherent objects have a macroscopic occupation of a particular quantum state by identical bosons or identical BCS-paired fermions. The information may be optical information, and the phase-coherent object(s) may be Bose-Einstein condensates, superfluids, or superconductors. The information is stored in the first phase-coherent object at a first storage time and recovered from the second phase-coherent object, or the same first phase-coherent object, at a second revival time. In one example, an integrated silicon wafer-based optical buffer includes an electrolytic atom source to provide the phase-coherent object(s), a nanoscale atomic trap for the phase-coherent object(s), and semiconductor-based optical sources to cool the phase-coherent object(s) and provide coupling fields for storage and transfer of optical information.

  10. SFC-MS/MS as an orthogonal technique for improved screening of polar analytes in anti-doping control.

    PubMed

    Parr, Maria Kristina; Wuest, Bernhard; Naegele, Edgar; Joseph, Jan F; Wenzel, Maxi; Schmidt, Alexander H; Stanic, Mijo; de la Torre, Xavier; Botrè, Francesco

    2016-09-01

    HPLC is considered the method of choice for the separation of various classes of drugs. However, some analytes are still challenging as HPLC shows limited resolution capabilities for highly polar analytes as they interact insufficiently on conventional reversed-phase (RP) columns. Especially in combination with mass spectrometric detection, limitations apply for alterations of stationary phases. Some highly polar sympathomimetic drugs and their metabolites showed almost no retention on different RP columns. Their retention remains poor even on phenylhexyl phases that show different selectivity due to π-π interactions. Supercritical fluid chromatography (SFC) as an orthogonal separation technique to HPLC may help to overcome these issues. Selected polar drugs and metabolites were analyzed utilizing SFC separation. All compounds showed sharp peaks and good retention even for the very polar analytes, such as sulfoconjugates. Retention times and elution orders in SFC are different to both RP and HILIC separations as a result of the orthogonality. Short cycle times could be realized. As temperature and pressure strongly influence the polarity of supercritical fluids, precise regulation of temperature and backpressure is required for the stability of the retention times. As CO2 is the main constituent of the mobile phase in SFC, solvent consumption and solvent waste are considerably reduced. Graphical Abstract SFC-MS/MS vs. LC-MS/MS.

  11. Anodic etching of GaN based film with a strong phase-separated InGaN/GaN layer: Mechanism and properties

    NASA Astrophysics Data System (ADS)

    Gao, Qingxue; Liu, Rong; Xiao, Hongdi; Cao, Dezhong; Liu, Jianqiang; Ma, Jin

    2016-11-01

    A strong phase-separated InGaN/GaN layer, which consists of multiple quantum wells (MQW) and superlattices (SL) layers and can produce a blue wavelength spectrum, has been grown on n-GaN thin film, and then fabricated into nanoporous structures by electrochemical etching method in oxalic acid. Scanning electron microscopy (SEM) technique reveals that the etching voltage of 8 V leads to a vertically aligned nanoporous structure, whereas the films etched at 15 V show branching pores within the n-GaN layer. Due to the low doping concentration of barriers (GaN layers) in the InGaN/GaN layer, we observed a record-low rate of etching (<100 nm/min) and nanopores which are mainly originated from the V-pits in the phase-separated layer. In addition, there exists a horizontal nanoporous structure at the interface between the phase-separated layer and the n-GaN layer, presumably resulting from the high transition of electrons between the barrier and the well (InGaN layer) at the interface. As compared to the as-grown MQW structure, the etched MQW structure exhibits a photoluminescence (PL) enhancement with a partial relaxation of compressive stress due to the increased light-extracting surface area and light-guiding effect. Such a compressive stress relaxation can be further confirmed by Raman spectra.

  12. Electron irradiation induced phase separation in a sodium borosilicate glass

    NASA Astrophysics Data System (ADS)

    Sun, K.; Wang, L. M.; Ewing, R. C.; Weber, W. J.

    2004-06-01

    Electron irradiation induced phase separation in a sodium borosilicate glass was studied in situ by analytical electron microscopy. Distinctly separate phases that are rich in boron and silicon formed at electron doses higher than 4.0 × 10 11 Gy during irradiation. The separated phases are still in amorphous states even at a much high dose (2.1 × 10 12 Gy). It indicates that most silicon atoms remain tetrahedrally coordinated in the glass during the entire irradiation period, except some possible reduction to amorphous silicon. The particulate B-rich phase that formed at high dose was identified as amorphous boron that may contain some oxygen. Both ballistic and ionization processes may contribute to the phase separation.

  13. Block copolymer self-assembly derived ultrafiltration membranes: From science to start-up

    NASA Astrophysics Data System (ADS)

    Wiesner, Ulrich

    In the last ten years a novel method to generate asymmetric ultrafiltration membranes has been established. It is based on the combination of block copolymer self-assembly with non-solvent induced phase separation (NIPS) and is now referred to as SNIPS. NIPS as an industry proven method for the formation of phase inversion membranes opening a pathway to scale up and commercialization of these membranes. The combination of NIPS with block copolymer self-assembly leads to asymmetric membranes with narrow pore size distributions in the top surface layer (so called isoporous membranes) as well as high pore densities, thereby potentially combining high resolution with high flux in membrane separation processes. Such membranes have potential applications in the biopharmaceutical industry where a large fraction of the costs are currently associated with time-consuming non-membrane based separation processes. This talk will describe a family of isoporous ultrafiltration membranes based on the self-assembly behavior of an ABC triblock terpolymer which has led to the formation of a start-up company out of Cornell University. After introduction of the SNIPS process in general, and its application to such ABC triblock terpolymers in particular, open scientific questions associated with the formation mechanisms of the top surface separation layer in such membranes is discussed, which is at the heart of enabling high performance separation behavior. Furthermore, challenges translating scientific work into industrial settings are highlighted.

  14. Spectro-microscopic Characterization of Physical Properties and Phase Separations in Individual Atmospheric Particles

    NASA Astrophysics Data System (ADS)

    OBrien, R. E.; Wang, B.; Neu, A.; Kelly, S. T.; Lundt, N.; Epstein, S. A.; MacMillan, A.; You, Y.; Laskin, A.; Nizkorodov, S.; Bertram, A. K.; Moffet, R.; Gilles, M.

    2013-12-01

    The phase state and liquid-liquid phase separations of ambient and laboratory generated aerosol particles were investigated using (1) scanning transmission x-ray microscopy/near-edge x-ray absorption fine structure spectroscopy (STXM/NEXAFS) coupled to a relative humidity (RH) controlled in-situ chamber and (2) environmental scanning electron microscopy (ESEM). The phase states of the particles were determined from measurements of their size and optical density. A comparison is made between the observed phase states of ambient samples and of laboratory generated aerosols to determine how well laboratory samples represent the phase of ambient samples. In addition, liquid-liquid phase separations in laboratory generated particles were investigated. Preliminary results showing that liquid-liquid phase separations occur at RH's between the deliquescence and efflorescence points and that the organic phase surrounds the inorganic phase will be presented. The STXM/NEXAFS technique provides insight into the degree of mixing at the deliquescence point and the degree of phase separation for particles of atmospherically relevant sizes.

  15. A simplified radiometabolite analysis procedure for PET radioligands using a solid phase extraction with micellar medium.

    PubMed

    Nakao, Ryuji; Halldin, Christer

    2013-07-01

    A solid phase extraction method has been developed for simple and high-speed direct determination of PET radioligands in plasma. This methodology makes use of a micellar medium and a solid-phase extraction cartridge for displacement of plasma protein bound radioligand and separation of PET radioligands from their radiometabolites without significant preparation. The plasma samples taken from monkey or human during PET measurements were mixed with a micellar eluent containing an anionic surfactant sodium dodecyl sulphate and loaded onto SPE cartridges. The amount of radioactivity corresponding to parent radioligand (retained on the cartridge) and its radioactive metabolites (eluted with micellar eluent) was measured. Under the optimized conditions, excellent separation of target PET radioligands from their radiometabolites was achieved with a single elution and short run-time of 1 min. This method was successfully applied to study the metabolism for (11)C-labelled radioligands in human or monkey plasma. The amount of parent PET radioligands estimated by micellar solid phase extraction strongly corresponded with that determined by radio-LC. The improved throughput permitted the analysis of a large number of plasma samples (up to 13 samples per one PET study) for accurate estimation of metabolite-corrected input function during quantitative PET imaging studies. Solid phase extraction together with micellar medium is fast, sensitive and easy to use, and therefore it is an attractive alternative method to determine relative composition of PET radioligands in plasma. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Analysis of catecholamines in urine by unique LC/MS suitable ion-pairing chromatography.

    PubMed

    Bergmann, Marianne L; Sadjadi, Seyed; Schmedes, Anne

    2017-07-01

    The catecholamines, epinephrine (E) and norepinephrine (NE) are small polar, hydrophilic molecules, posing significant challenges to liquid chromatography - tandem mass spectrometry (LC-MS/MS) method development. Specifically, these compounds show little retention on conventional reversed-phase liquid chromatography columns. This work presents development and validation of an LC-MS/MS method for determining catecholamines in urine, based on a new approach to ion-pairing chromatography (IPC), in which the ion-pairing reagent (IPR), 1-Heptane Sulfonic Acid (HSA), is added to the extracted samples instead of the mobile phases. A Hamilton STARlet workstation carried out the solid phase extraction of urine samples. The extracted samples were diluted with 60mmol/L HSA and injected on a Kinetex core-shell biphenyl column with conventional LC-MS/MS suitable mobile phases. Chromatographic separation of E and NE was achieved successfully with very stable retention times (RT). In 484 injections, the RTs were steady with a CV of less than ±4%. Furthermore, HSA was separated from E and NE, allowing HSA to be diverted to waste instead of entering the mass spectrometer ion chamber. The method was validated with good analytical performance, and even though the analysis for urinary catecholamines is increasingly being replaced by plasma free metanephrines in diagnosing pheochromocytomas, this work represents the application of a new analytical technique that can be transferred to other small polar molecules, that are difficult to chromatograph on traditional reversed phase columns. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Determination of dapsone in serum and saliva using reversed-phase high-performance liquid chromatography with ultraviolet or electrochemical detection.

    PubMed

    Moncrieff, J

    1994-03-18

    A simple, extractionless method for the determination of dapsone in serum and saliva is described. Reversed-phase high-performance liquid chromatography is used with UV detection at 295 nm or electrochemical detection at 0.7 V. Diazoxide in buffer is the internal standard for UV detection and practolol for electrochemical detection. Sample preparation is minimal with protein precipitation of serum samples whilst saliva samples are simply diluted with addition of an internal standard. Low-level serum and saliva samples are front-cut on-line with a 3 cm laboratory-made precolumn in the loop position on a standard Valco injection valve. Isocratic separation is achieved on a 250 mm x 4.6 mm I.D. stainless-steel Spherisorb S5 ODS-1 column. The mobile phase for high levels of dapsone is acetonitrile-elution buffer (12:88, v/v) at 2 ml/min and a column temperature of 40 degrees C for both serum and saliva separations. For the low-level assays using electrochemical detection and solid-phase clean-up, the mobile phase is acetonitrile-methanol-elution buffer (9:4:87, v/v/v). The UV and electrochemical detection limits are 25 ng/ml and 200 pg/ml, respectively, in both serum and saliva. This simple method is applicable to the routine monitoring of dapsone levels in serum from leprotic patients and electrochemical detection gives a simple, reliable method for the monitoring of trough values in subjects on anti-malarial prophylaxis.

  18. Electroactive poly(vinylidene fluoride)-based structures for advanced applications.

    PubMed

    Ribeiro, Clarisse; Costa, Carlos M; Correia, Daniela M; Nunes-Pereira, João; Oliveira, Juliana; Martins, Pedro; Gonçalves, Renato; Cardoso, Vanessa F; Lanceros-Méndez, Senentxu

    2018-04-01

    Poly(vinylidene fluoride) (PVDF) and its copolymers are the polymers with the highest dielectric constants and electroactive responses, including piezoelectric, pyroelectric and ferroelectric effects. This semicrystalline polymer can crystallize in five different forms, each related to a different chain conformation. Of these different phases, the β phase is the one with the highest dipolar moment and the highest piezoelectric response; therefore, it is the most interesting for a diverse range of applications. Thus, a variety of processing methods have been developed to induce the formation of the polymer β phase. In addition, PVDF has the advantage of being easily processable, flexible and low-cost. In this protocol, we present a number of reproducible and effective methods to produce β-PVDF-based morphologies/structures in the form of dense films, porous films, 3D scaffolds, patterned structures, fibers and spheres. These structures can be fabricated by different processing techniques, including doctor blade, spin coating, printing technologies, non-solvent-induced phase separation (NIPS), temperature-induced phase separation (TIPS), solvent-casting particulate leaching, solvent-casting using a 3D nylon template, freeze extraction with a 3D poly(vinyl alcohol) (PVA) template, replica molding, and electrospinning or electrospray, with the fabrication method depending on the desired characteristics of the structure. The developed electroactive structures have shown potential to be used in a wide range of applications, including the formation of sensors and actuators, in biomedicine, for energy generation and storage, and as filtration membranes.

  19. Preparative isolation and purification of five flavonoid glycosides and one benzophenone galloyl glycoside from Psidium guajava by high-speed counter-current chromatography (HSCCC).

    PubMed

    Zhu, Yindi; Liu, Yue; Zhan, Ying; Liu, Lin; Xu, Yajuan; Xu, Tunhai; Liu, Tonghua

    2013-12-16

    Psidium guajava leaves have a diverse phytochemical composition including flavonoids, phenolics, meroterpenoids and triterpenes, responsible for the biological activities of the medicinal parts. In particular, flavonol glycosides show beneficial effects on type II diabetes mellitus. A simple and efficient HSCCC method has been developed for the preparative separation of five flavonoid glycosides and one diphenylmethane glycoside from P. guajava. A solvent system composed of n-hexane-ethyl acetate-methanol-water (0.7:4:0.8:4, v/v/v/v) was optimized for the separation. The upper phase was used as the stationary phase, and the lower phase was used as the mobile phase. Under the optimized conditions, hyperoside (15.3 mg), isoquercitrin (21.1 mg), reynoutrin (65.2 mg), quercetin-3-O-β-D-arabinopyranoside (71.7 mg), quercetin-3-O-α-L-arabinofuranoside (105.6 mg) and 2,4,6-trihydroxy-3,5-dimethylbenzophenone 4-O-(6''-O-galloyl)-β-D-glucopyranoside (98.4 mg) were separated from crude sample (19.8 g). The structures of all the isolates were identified by ESI-MS, 1H- and 13C-NMR analyses and their purities (>95%) were determined using HPLC.

  20. [Preparation and performance characterization of gold nanoparticles modified chiral capillary electrochromatography stationary phase].

    PubMed

    Xiong, Lele; Li, Ruijun; Ji, Yibing

    2017-07-08

    Gold nanoparticles (GNPs, 15 nm) were prepared and introduced to amino groups derived silica monolithic column. Bovine serum albumin (BSA) was immobilized via covalent modification method onto the carboxylic functionalized GNPs to afford chiral stationary phase (CSP) for enantioseparation. GNPs were well dispersed and successfully incorporated onto the columns with the contents as high as 17.18% by characterization method such as transmission electron microscopy (TEM), ultraviolet (UV)-visible absorption spectra and scanning electron microscopy (SEM). The preparation conditions of the BSA modified CSP were optimized and 10% (v/v) 3-aminopropyltriethoxysilane (APTES) and 15 g/L BSA were selected as appropriate reaction conditions. The enantioseparation performance of the BSA modified CSP has been investigated by capillary electrochromatography (CEC). Enantiomers of tryptophan, ephedrine and atenolol were resolved, and the baseline separation of tryptophan was achieved. Meanwhile, the influences of pH value, buffer concentrations and applied voltages used on the chiral separation were studied, and the optimal separation conditions were 10 mmol/L phosphate buffer at pH 7.4 and 15 kV applied voltages. In comparison with the BSA modified CSP prepared by physical adsorption, the CSP prepared by covalent modification method had better separation results, and the analytes could be separated directly without pre-column derivatization. In addition, the prepared BSA modified CSP exhibited good run to run repeatability with relative standard deviations (RSDs) of the migration times and selectivity factors not more than 2.3% and 0.96%, respectively. This work offers a good thinking for modification with other proteins or other types of chiral selectors.

  1. Carbon nanotube-based benzyl polymethacrylate composite monolith as a solid phase extraction adsorbent and a stationary phase material for simultaneous extraction and analysis of polycyclic aromatic hydrocarbon in water.

    PubMed

    Al-Rifai, Asma'a; Aqel, Ahmad; Wahibi, Lamya Al; ALOthman, Zeid A; Badjah-Hadj-Ahmed, Ahmed-Yacine

    2018-02-02

    A composite of multi-walled carbon nanotubes incorporated into a benzyl methacrylate-co-ethylene dimethacrylate porous monolith was prepared, characterized and used as solid phase adsorbent and as stationary phase for simultaneous extraction and separation of ten polycyclic aromatic hydrocarbons, followed by nano-liquid chromatography analysis. The extraction and chromatographic parameters were optimized with regard to the extraction efficiency and the quality of chromatographic analytes separation. Under the optimized conditions, all PAHs were separated in 13 min with suitable resolution values (Rs = 1.74-3.98). Addition of a small amount of carbon nanotubes (0.1% with respect to monomers) to the polymerization mixture increased the efficiency for the separation column to over 41,700 plates m -1 for chrysene at flow rate of 0.5 μL min -1 . The method showed a wide linear range (1-500 μg L -1 with R 2 more than 0.9938), acceptable extraction repeatability (RSDs < 6.4%, n = 3) and reproducibility (RSDs < 12.6%, five parallel-made solid phase extraction cartridges) and satisfactory detection limits (0.02-0.22 μg L -1 ). Finally, the proposed method was successfully applied to the detection of polycyclic aromatic hydrocarbons in environmental water samples. After a simple extraction procedure with preconcentration factor equal to 100, the average recovery values in ultra-pure, tap and sea water samples were found to be in the range 81.3-95.4% with %RSD less than 6.4. Again, the presence of carbon nanotubes (0.3% relatively to monomers) in native polymer enhanced the extraction performance for the solid phase adsorbent up to 78.4%. The application of the monoliths modified with CNTs in extraction and nano-scale liquid chromatography for analysis of environmental samples offered several advantages; it demonstrated an acceptable precision, low detection limits, good reproducibility, satisfying recoveries and wide dynamic linear ranges. Copyright © 2018. Published by Elsevier B.V.

  2. Efficient Exploitation of Separation Space in Two-Dimensional Liquid Chromatography System for Comprehensive and Efficient Proteomic Analyses.

    PubMed

    Lee, Hangyeore; Mun, Dong-Gi; So, Jeong Eun; Bae, Jingi; Kim, Hokeun; Masselon, Christophe; Lee, Sang-Won

    2016-12-06

    Proteomics aims to achieve complete profiling of the protein content and protein modifications in cells, tissues, and biofluids and to quantitatively determine changes in their abundances. This information serves to elucidate cellular processes and signaling pathways and to identify candidate protein biomarkers and/or therapeutic targets. Analyses must therefore be both comprehensive and efficient. Here, we present a novel online two-dimensional reverse-phase/reverse-phase liquid chromatography separation platform, which is based on a newly developed online noncontiguous fractionating and concatenating device (NCFC fractionator). In bottom-up proteomics analyses of a complex proteome, this system provided significantly improved exploitation of the separation space of the two RPs, considerably increasing the numbers of peptides identified compared to a contiguous 2D-RP/RPLC method. The fully automated online 2D-NCFC-RP/RPLC system bypassed a number of labor-intensive manual processes required with the previously described offline 2D-NCFC RP/RPLC method, and thus, it offers minimal sample loss in a context of highly reproducible 2D-RP/RPLC experiments.

  3. Development of a process for separation of mogroside V from Siraitia grosvenorii by macroporous resins.

    PubMed

    Zhang, Min; Yang, Huihua; Zhang, Hongyang; Wang, Yuerong; Hu, Ping

    2011-08-25

    A separation method was developed for the preparative separation and enrichment of the non-caloric sweetener mogroside V from Siraitia grosvenorii. The adsorption properties of six macroporous resins were evaluated. Results showed that HZ 806 resin offered the best adsorption and desorption capacities. Based on the adsorption experiments on HZ 806, the adsorption data were found to fit the Freundlich model well. The pseudo-second-order kinetic model showed the highest correlation with the experimental results. Separation was performed with deionized water and 40% aqueous ethanol solution as mobile phases. In a typical run, 100 g of herb was processed and 3.38 g of mogroside V with a purity of 10.7% was harvested. This separation method provided a 15.1-fold increase in the purification factor from 0.5% to 10.7%. The present study showed that HZ 806 resins were effective for the separation and enrichment of mogroside V from S. grosvenorii.

  4. Recovery of hydrogen iodide

    DOEpatents

    Norman, John H.

    1983-01-01

    A method of extraction of HI from an aqueous solution of HI and I.sub.2. HBr is added to create a two-phase liquid mixture wherein a dry phase consists essentially of HBr, I and HI and is in equilibrium with a wet phase having a far greater HBr:HI ratio. Using a countercurrent extractor, two solutions can be obtained: a dry HBr--HI--I.sub.2 solution and a wet essentially HBr solution. The dry and wet phases are easily separable, and HI is recovered from the dry phase, after first separating I.sub.2, as by distillation. Alternatively, the HI-HBr liquid mixture is treated to catalytically decompose the HI. HBr is recovered from the wet phase by suitable treatment, including high-pressure distillation, to produce an H.sub.2 O--HBr azeotrope that is not more than 25 mole percent HBr. The azeotrope may be returned for use in an earlier step in the overall process which results in the production of the aqueous solution of HI and I.sub.2 without major detriment because of the presence of HBr.

  5. Recovery of hydrogen iodide

    DOEpatents

    Norman, J.H.

    1983-08-02

    A method is described for extraction of HI from an aqueous solution of HI and I[sub 2]. HBr is added to create a two-phase liquid mixture wherein a dry phase consists essentially of HBr, I and HI and is in equilibrium with a wet phase having a far greater HBr:HI ratio. Using a countercurrent extractor, two solutions can be obtained: a dry HBr--HI--I[sub 2] solution and a wet essentially HBr solution. The dry and wet phases are easily separable, and HI is recovered from the dry phase, after first separating I[sub 2], as by distillation. Alternatively, the HI-HBr liquid mixture is treated to catalytically decompose the HI. HBr is recovered from the wet phase by suitable treatment, including high-pressure distillation, to produce an H[sub 2]O--HBr azeotrope that is not more than 25 mole percent HBr. The azeotrope may be returned for use in an earlier step in the overall process which results in the production of the aqueous solution of HI and I[sub 2] without major detriment because of the presence of HBr. 1 fig.

  6. Microstructure Evolution and Related Magnetic Properties of Cu-Zr-Al-Gd Phase-Separating Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Kim, Sang Jun; Kim, Jinwoo; Park, Eun Soo

    2018-04-01

    We carefully investigated the correlation between microstructures and magnetic properties of Cu-Zr-Al-Gd phase-separating metallic glasses (PSMGs). The saturation magnetizations of the PSMGs were determined by total Gd contents of the alloys, while their coercivity exhibits a large deviation by the occurrence of phase separation due to the boundary pinning effect of hierarchically separated amorphous phases. Especially, the PSMGs containing Gd-rich amorphous nanoparticles show the highest coercivity which can be attributed to the size effect of the ferromagnetic amorphous phase. Furthermore, the selective crystallization of ferromagnetic amorphous phases can affect the magnetization behavior of the PSMGs. Our results could provide a novel strategy for tailoring unique soft magnetic properties of metallic glasses by introducing hierarchically separated amorphous phases and controlling their crystallinity.

  7. Microstructure Evolution and Related Magnetic Properties of Cu-Zr-Al-Gd Phase-Separating Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Kim, Sang Jun; Kim, Jinwoo; Park, Eun Soo

    2018-06-01

    We carefully investigated the correlation between microstructures and magnetic properties of Cu-Zr-Al-Gd phase-separating metallic glasses (PSMGs). The saturation magnetizations of the PSMGs were determined by total Gd contents of the alloys, while their coercivity exhibits a large deviation by the occurrence of phase separation due to the boundary pinning effect of hierarchically separated amorphous phases. Especially, the PSMGs containing Gd-rich amorphous nanoparticles show the highest coercivity which can be attributed to the size effect of the ferromagnetic amorphous phase. Furthermore, the selective crystallization of ferromagnetic amorphous phases can affect the magnetization behavior of the PSMGs. Our results could provide a novel strategy for tailoring unique soft magnetic properties of metallic glasses by introducing hierarchically separated amorphous phases and controlling their crystallinity.

  8. A validated chiral liquid chromatographic method for the enantiomeric separation of safinamide mesilate, a new anti-Parkinson drug.

    PubMed

    Zhang, Kai; Xue, Na; Shi, Xiaowei; Liu, Weina; Meng, Jing; Du, Yumin

    2011-04-28

    A enantioselective reversed-phase high performance liquid chromatographic method was developed for the enantiomeric resolution of safinamide mesilate, 2(S)-[4-(3-fluorobenzyloxy)benzylamino] propionamide methanesulfonate, a neuroprotectant with antiparkinsonian and anticonvulsant activity for the treatment of Parkinson disease. The enantiomers of safinamide mesilate were baseline resolved on a Chiralcel OD-RH (150mm×4.6mm, 5μm) column using a mobile phase system containing 300mM sodium di-hydrogen phosphate buffer (pH 3.0):methanol:acetonitrile (65:25:10, v/v/v). The resolution between the enantiomers was not less than 3.0. The pH value of buffer solution in the mobile phase has played a key role in enhancing chromatographic efficiency and resolution between the enantiomers. The developed method was validated and proved to be robust. The limit of detection and limit of quantification of (R)-enantiomer were found to be 15 and 50ng/mL, respectively, for 20μL injection volume. The percentage recovery of (R)-enantiomer was ranged from 94.2 to 103.7 in bulk drug samples of safinamide mesilate. The sample solution and mobile phase were found to be stable at least for 48h. The final optimized method was successfully applied to separate (R)-enantiomer from safinamide mesilate and was proven to be reproducible and accurate for the quantitative determination of (R)-enantiomer in bulk drugs. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. An Experimental Design Approach for Impurity Profiling of Valacyclovir-Related Products by RP-HPLC

    PubMed Central

    Katakam, Prakash; Dey, Baishakhi; Hwisa, Nagiat T; Assaleh, Fathi H; Chandu, Babu R; Singla, Rajeev K; Mitra, Analava

    2014-01-01

    Abstract Impurity profiling has become an important phase of pharmaceutical research where both spectroscopic and chromatographic methods find applications. The analytical methodology needs to be very sensitive, specific, and precise which will separate and determine the impurity of interest at the 0.1% level. Current research reports a validated RP-HPLC method to detect and separate valacyclovir-related impurities (Imp-E and Imp-G) using the Box-Behnken design approach of response surface methodology. A gradient mobile phase (buffer: acetonitrile as mobile phase A and acetonitrile: methanol as mobile phase B) was used. Linearity was found in the concentration range of 50–150 μg/mL. The mean recovery of impurities was 99.9% and 103.2%, respectively. The %RSD for the peak areas of Imp-E and Imp-G were 0.9 and 0.1, respectively. No blank interferences at the retention times of the impurities suggest the specificity of the method. The LOD values were 0.0024 μg/mL for Imp-E and 0.04 μg/mL for Imp-G and the LOQ values were obtained as 0.0082 μg/mL and 0.136 μg/mL, respectively, for the impurities. The S/N ratios in both cases were within the specification limits. Proper peak shapes and satisfactory resolution with good retention times suggested the suitability of the method for impurity profiling of valacyclovir-related drug substances. PMID:25853072

  10. Chiral ligand exchange high-speed countercurrent chromatography: mechanism, application and comparison with conventional liquid chromatography in enantioseparation of aromatic α-hydroxyl acids

    PubMed Central

    Tong, Shengqiang; Shen, Mangmang; Cheng, Dongping; Ito, Yoichiro; Yan, Jizhong

    2014-01-01

    This work concentrates on the separation mechanism and application of chiral ligand exchange high-speed countercurrent chromatography (HSCCC) in enantioseparations, and comparison with traditional chiral ligand exchange high performance liquid chromatography (HPLC). The enantioseparation of ten aromatic α-hydroxyl acids were performed by these two chromatographic methods. Results showed that five of the racemates were successfully enantioseparated by HSCCC while only three of the racemates could be enantioseparated by HPLC using a suitable chiral ligand mobile phase additive. For HSCCC, the two-phase solvent system was composed of butanol-water (1:1, v/v), to which N-n-dodecyl-L-proline was added in the organic phase as chiral ligand and cupric acetate was added in the aqueous phase as a transition metal ion. Various operation parameters in HSCCC were optimized by enantioselective liquid-liquid extraction. Based on the results of the present studies the separation mechanism for HSCCC was proposed. For HPLC, the optimized mobile phase composed of aqueous solution containing 6 mmol L−1 L-phenylalanine and 3 mmol L−1 cupric sulfate and methanol was used for enantioseparation. Among three ligands tested on a conventional reverse stationary phase column, only one was found to be effective. In the present studies HSCCC presented unique advantages due to its high versatility of two-phase solvent systems and it could be used as an alternative method for enantioseparations. PMID:25087742

  11. Ion chromatography electrospray ionization mass spectrometry method development and investigation of lithium hexafluorophosphate-based organic electrolytes and their thermal decomposition products.

    PubMed

    Kraft, Vadim; Grützke, Martin; Weber, Waldemar; Winter, Martin; Nowak, Sascha

    2014-08-08

    A method based on the coupling of ion chromatography (IC) and electrospray ionization mass spectrometry (ESI-MS) for the separation and determination of thermal decomposition products of LiPF6-based organic electrolytes is presented. The utilized electrolytes, LP30 and LP50, are commercially available and consist of 1mol/l LiPF6 dissolved in ethylene carbonate/dimethyl carbonate and ethylene carbonate/ethyl methyl carbonate, respectively. For the separation method development three ion chromatographic columns with different capacity and stationary phase were used and compared. Besides the known hydrolysis products of lithium hexafluorophosphate, several new organophosphates were separated and identified with the developed IC-ESI-MS method during aging investigations of the electrolytes. The chemical structures were elucidated with IC-ESI-MS/MS. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Phase and group refractive indices of air calculation by fitting of phase difference measured using a combination of laser and low-coherence interferometry

    NASA Astrophysics Data System (ADS)

    Pikálek, Tomáš; Šarbort, Martin; Číp, Ondřej; Pham, Minh Tuan; Lešundák, Adam; Pravdová, Lenka; Buchta, Zdeněk.

    2017-06-01

    The air refractive index is an important parameter in interferometric length measurements, since it substantially affects the measurement accuracy. We present a refractive index of air measurement method based on monitoring the phase difference between the ambient air and vacuum inside a permanently evacuated double-spaced cell. The cell is placed in one arm of the Michelson interferometer equipped with two light sources—red LED and HeNe laser, while the low-coherence and laser interference signals are measured separately. Both phase and group refractive indices of air can be calculated from the measured signals. The method was experimentally verified by comparing the obtained refractive index values with two different techniques.

  13. Pi-Pi contacts are an overlooked protein feature relevant to phase separation

    PubMed Central

    Vernon, Robert McCoy; Chong, Paul Andrew; Tsang, Brian; Kim, Tae Hun; Bah, Alaji; Farber, Patrick; Lin, Hong

    2018-01-01

    Protein phase separation is implicated in formation of membraneless organelles, signaling puncta and the nuclear pore. Multivalent interactions of modular binding domains and their target motifs can drive phase separation. However, forces promoting the more common phase separation of intrinsically disordered regions are less understood, with suggested roles for multivalent cation-pi, pi-pi, and charge interactions and the hydrophobic effect. Known phase-separating proteins are enriched in pi-orbital containing residues and thus we analyzed pi-interactions in folded proteins. We found that pi-pi interactions involving non-aromatic groups are widespread, underestimated by force-fields used in structure calculations and correlated with solvation and lack of regular secondary structure, properties associated with disordered regions. We present a phase separation predictive algorithm based on pi interaction frequency, highlighting proteins involved in biomaterials and RNA processing. PMID:29424691

  14. Superfluid helium 2 liquid-vapor phase separation: Technology assessment

    NASA Technical Reports Server (NTRS)

    Lee, J. M.

    1984-01-01

    A literature survey of helium 2 liquid vapor phase separation is presented. Currently, two types of He 2 phase separators are being investigated: porous, sintered metal plugs and the active phase separator. The permeability K(P) shows consistency in porous plug geometric characterization. Both the heat and mass fluxes increase with K(P). Downstream pressure regulation to adjust for varying heat loads and both temperatures is possible. For large dynamic heat loads, the active phase separator shows a maximum heat rejection rate of up to 2 W and bath temperature stability of 0.1 mK. Porous plug phase separation performance should be investigated for application to SIRTF and, in particular, that plugs of from 10 to the minus ninth square centimeters to 10 to the minus eighth square centimeters in conjunction with downstream pressure regulation be studied.

  15. Multi-layer coatings for bipolar rechargeable batteries with enhanced terminal voltage

    DOEpatents

    Farmer, Joseph C.; Kaschmitter, James; Pierce, Steve

    2017-06-06

    A method for producing a multi-layer bipolar coated cell according to one embodiment includes applying a first active cathode material above a substrate to form a first cathode; applying a first solid-phase ionically-conductive electrolyte material above the first cathode to form a first electrode separation layer; applying a first active anode material above the first electrode separation layer to form a first anode; applying an electrically conductive barrier layer above the first anode; applying a second active cathode material above the anode material to form a second cathode; applying a second solid-phase ionically-conductive electrolyte material above the second cathode to form a second electrode separation layer; applying a second active anode material above the second electrode separation layer to form a second anode; and applying a metal material above the second anode to form a metal coating section. In another embodiment, the anode is formed prior to the cathode. Cells are also disclosed.

  16. Separation of aromatic carboxylic acids using quaternary ammonium salts on reversed-phase HPLC. 1. Separation behavior of aromatic carboxylic acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawamura, K.; Okuwaki, A.; Verheyen, T.

    In order to develop separation processes and analytical methods for aromatic carboxylic acids for the coal oxidation products, the separation behavior of aromatic carboxylic acids on a reversed-phase HPLC using eluent containing quaternary ammonium salt has been investigated. The retention mechanism of aromatic carboxylic acids was discussed on the basis of both ion-pair partition model and ion-exchange model. The retention behavior of aromatic carboxylic acids possessing one (or two) carboxylic acid group(s) followed the ion-pair partition model, where linear free energy relationship was observed between the capacity factor and the extraction equilibrium constants of benzoic acid and naphthalene carboxylic acid.more » Besides, the retention behavior followed ion-exchange model with increasing the number of carboxylic acids, where the capacity factor of benzene polycarboxylic acids is proportional to the association constants between aromatic acids and quaternary ammonium ions calculated on the basis of an electrostatic interaction model.« less

  17. Improved Method for the Qualitative Analyses of Palm Oil Carotenes Using UPLC.

    PubMed

    Ng, Mei Han; Choo, Yuen May

    2016-04-01

    Palm oil is the richest source of natural carotenes, comprising 500-700 ppm in crude palm oil (CPO). Its concentration is found to be much higher in oil extracted from palm-pressed fiber, a by-product from the milling of oil palm fruits. There are 11 types of carotenes in palm oil, excluding the cis/trans isomers of some of the carotenes. Qualitative separation of these individual carotenes is particularly useful for the identification and confirmation of different types of oil as the carotenes profile is unique to each type of vegetable oil. Previous studies on HPLC separation of the individual palm carotenes reported a total analyses time of up to 100 min using C30 stationary phase. In this study, the separation was completed in <5 min. The qualitative separation was successfully carried out using a commonly used stationary phase, C18. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Enriching and Separating Primary Copper Impurity from Pb-3 Mass Pct Cu Melt by Super-Gravity Technology

    NASA Astrophysics Data System (ADS)

    Yang, Yuhou; Song, Bo; Song, Gaoyang; Yang, Zhanbing; Xin, Wenbin

    2016-10-01

    In this study, super-gravity technology was introduced in the lead bullion-refining process to investigate the enriching and separating laws of copper impurity from Pb-3 mass pct Cu melt. With the gravity coefficient G = 700 at the cooling rate of ν = 5 K min-1, the entire copper phase gathers at the upper area of the sample, and it is hard to find any copper particles at the bottom area of the sample. The floatation movement of copper phase was greatly intensified by super gravity and the mass pct of copper in tailing lead is up to 8.631 pct, while that in the refined lead is only 0.113 pct. The refining rate of lead bullion reached up to 94.27 pct. Copper-phase impurity can be separated effectively from Pb-3 mass pct Cu melt by filtration method in super-gravity field, and the separation efficiency increased with the increasing gravity coefficient in the range of G ≥ 10. After filtration at 613 K (340 °C) with gravity coefficient G = 100 for 10 minutes, the refined lead, with just 0.157 mass pct copper impurity, was separated to the bottom of the crucible, and the copper dross containing only 23.56 mass pct residual lead was intercepted by the carbon fiber felt, leading to the separation efficiency up to 96.18 pct (meaning a great reduction in metal loss).

  19. A comparative evaluation of different ionic liquids for arsenic species separation and determination in wine varietals by liquid chromatography - hydride generation atomic fluorescence spectrometry.

    PubMed

    Castro Grijalba, Alexander; Fiorentini, Emiliano F; Martinez, Luis D; Wuilloud, Rodolfo G

    2016-09-02

    The application of different ionic liquids (ILs) as modifiers for chromatographic separation and determination of arsenite [As(III)], arsenate [As(V)], dimethylarsonic acid (DMA) and monomethylarsonic acid (MMA) species in wine samples, by reversed-phase high performance liquid chromatography coupled to hydride generation atomic fluorescence spectrometry detection (RP-HPLC-HG-AFS) was studied in this work. Several factors influencing the chromatographic separation of the As species, such as pH of the mobile phase, buffer solution concentration, buffer type, IL concentration and length of alkyl groups in ILs were evaluated. The complete separation of As species was achieved using a C18 column in isocratic mode with a mobile phase composed of 0.5% (v/v) 1-octyl-3-methylimidazolium chloride ([C8mim]Cl) and 5% (v/v) methanol at pH 8.5. A multivariate methodology was used to optimize the variables involved in AFS detection of As species after they were separated by HPLC. The ILs showed remarkable performance for the separation of As species, which was obtained within 18min with a resolution higher than 0.83. The limits of detection for As(III), As(V), MMA and DMA were 0.81, 0.89, 0.62 and 1.00μg As L(-1). The proposed method was applied for As speciation analysis in white and red wine samples originated from different grape varieties. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Preparation and evaluation of silica-UIO-66 composite as liquid chromatographic stationary phase for fast and efficient separation.

    PubMed

    Yan, Zhiming; Zheng, Jiangnan; Chen, Jinfeng; Tong, Ping; Lu, Minghua; Lin, Zian; Zhang, Lan

    2014-10-31

    A silica-UIO-66 composite was fabricated by a simple hydrothermal method and then applied as liquid chromatographic stationary phase for fast and efficient separation. X-ray diffraction patterns showed the presence of UIO-66 crystals in the silica-UIO-66 composites; while scanning electron microscope (SEM) images revealed that silica-UIO-66 composites were a homogeneous mixture of silica bead and UIO-66 crystals. A variety of substituted aromatics, chlorobenzene compounds and polycyclic aromatic hydrocarbons (PAHs) were used to evaluate the retention properties of the silica-UIO-66 composite packed column. Under the optimized conditions, baseline separation of ethylbenzene (EB) and styrene was obtained with high resolution and short retention time. In addition, the silica-UIO-66 composite packed column also showed some advantages in separation of positional isomers, with which baseline separation of EB and xylene, chlorotoluene and dichlorobenzene isomers was achieved. Moreover, the retention mechanisms of these compounds were also discussed in detail. The relative standard deviations (RSDs) for the separation of EB and xylene, chlorotoluene and dichlorobenzene isomers, as well as EB and styrene were 0.42-0.9%, 1.0-1.9%, 0.75-2.0%, and 0.9-2.1% for the retention time, peak area, peak height, and half peak width, respectively. The column efficiencies for EB, p-chlorotoluene, p-dichlorobenzene and styrene were 8780, 9060, 9990 and 5130 plates/m. The successful applications suggested high potentials of silica-MOFs composite as stationary phase for fast and efficient liquid chromatography separation. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Determination of noscapine, hexylresorcinol and anethole in cough lozenges by liquid chromatography.

    PubMed

    Lucangioli, S; Fernández Otero, G; Rodríguez, V; Carducci, C N

    1996-06-01

    A liquid chromatographic method was developed for the simultaneous separation and determination of noscapine hydrochloride, hexylresorcinol and anethole in cough lozenges. Analysis was performed on a phenyl column with phosphate buffer- acetonitrile as mobile phase and the separated components were detected at 282 mm. Recoveries obtained for the analytes were of 94.6% for noscapine hydrochloride, 99.1% for hexylresorcinol and 96.3% for anethole. The values of the relative standard deviation were 0.8% for noscapine hydrochloride, 1.5% for hexylresorcinol and 1.1% for anethole. The analytical method was validated and a system suitability test was accomplished for the chromatographic method.

  2. Phase-field modeling of diffusional phase behaviors of solid surfaces: A case study of phase-separating Li XFePO 4 electrode particles

    DOE PAGES

    Heo, Tae Wook; Chen, Long-Qing; Wood, Brandon C.

    2015-04-08

    In this paper, we present a comprehensive phase-field model for simulating diffusion-mediated kinetic phase behaviors near the surface of a solid particle. The model incorporates elastic inhomogeneity and anisotropy, diffusion mobility anisotropy, interfacial energy anisotropy, and Cahn–Hilliard diffusion kinetics. The free energy density function is formulated based on the regular solution model taking into account the possible solute-surface interaction near the surface. The coherency strain energy is computed using the Fourier-spectral iterative-perturbation method due to the strong elastic inhomogeneity with a zero surface traction boundary condition. Employing a phase-separating Li XFePO 4 electrode particle for Li-ion batteries as a modelmore » system, we perform parametric three-dimensional computer simulations. The model permits the observation of surface phase behaviors that are different from the bulk counterpart. For instance, it reproduces the theoretically well-established surface modes of spinodal decomposition of an unstable solid solution: the surface mode of coherent spinodal decomposition and the surface-directed spinodal decomposition mode. We systematically investigate the influences of major factors on the kinetic surface phase behaviors during the diffusional process. Finally, our simulation study provides insights for tailoring the internal phase microstructure of a particle by controlling the surface phase morphology.« less

  3. On the phase form of a deformation quantization with separation of variables

    NASA Astrophysics Data System (ADS)

    Karabegov, Alexander

    2016-06-01

    Given a star product with separation of variables on a pseudo-Kähler manifold, we obtain a new formal (1, 1)-form from its classifying form and call it the phase form of the star product. The cohomology class of a star product with separation of variables equals the class of its phase form. We show that the phase forms can be arbitrary and they bijectively parametrize the star products with separation of variables. We also describe the action of a change of the formal parameter on a star product with separation of variables, its formal Berezin transform, classifying form, phase form, and canonical trace density.

  4. [Influences of ion-suppressors on retention behaviors of nine food additives in reversed-phase high performance liquid chromatographic separation].

    PubMed

    Zhao, Yonggang; Chen, Xiaohong; Li, Xiaoping; Yao, Shanshan; Jin, Micong

    2011-10-01

    The influences of ion-suppressors on retention behaviors of nine food additives, i.e., acesulfame, saccharin, caffeine, aspartame, benzoic acid, sorbic acid, stevioside, dehydroacetic acid and neotame in reversed-phase high performance liquid chromatographic (RP-HPLC) separation were investigated. The organic modification effects of acids, i. e. , trifluoroacetic acid (TFA) and buffer salts, i. e. , TFA-ammonium acetate (AmAc) were studied emphatically. The relationships between retention factors of solutes and volume percentages of ion-suppressors in the mobile phase systems of acetonitrile-TFA aqueous solution and acetonitrile-TFA-AmAc aqueous solution were quantitatively established, separately. The separation of nine food additives was completed by a gradient elution with acetonitrile-TFA (0.01%, v/v)-AmAc (2. 5 mmol/L) aqueous solution as the mobile phases. An RP-HPLC method was established for the simultaneous determination of nine food additives in red wine. In the range of 10. 0 - 100. 0 mg/L, nine food additives showed good linearity with the correlation coefficients ( r2 ) larger than 0. 999 1. The limits of detection (LODs) were in the range of 0. 33 - 2. 36 mg/L and the limits of quantification (LOQs) were in the range of 1. 11 - 7. 80 mg/L. The spiked recoveries were between 87. 61% and 108. 4% with the relative standard deviations (RSDs) of 2. 2% -9. 4%. These results are of referential significance for the rapid establishment and accu- rate optimization of RP-HPLC separation for the simultaneous determination of food additives in other foods.

  5. Macroscopic and tunable nanoparticle superlattices

    DOE PAGES

    Zhang, Honghu; Wang, Wenjie; Mallapragada, Surya; ...

    2016-10-24

    In this paper, we describe a robust method to assemble nanoparticles into highly ordered superlattices by inducing aqueous phase separation of neutral capping polymers. Here we demonstrate the approach with thiolated polyethylene-glycol-functionalized gold nanoparticles (PEG-AuNPs) in the presence of salts (for example, K 2CO 3) in solutions that spontaneously migrate to the liquid–vapor interface to form a Gibbs monolayer. We show that by increasing salt concentration, PEG-AuNP monolayers transform from two-dimensional (2D) gas-like to liquid-like phase and eventually, beyond a threshold concentration, to a highly ordered hexagonal structure, as characterized by surface sensitive synchrotron X-ray reflectivity and grazing incidence X-raymore » diffraction. Furthermore, the method allows control of the inplane packing in the crystalline phase by varying the K 2CO 3 and PEG-AuNPs concentrations and the length of PEG. Using polymer-brush theory, we argue that the assembly and crystallization is driven by the need to reduce surface tension between PEG and the salt solution. Our approach of taking advantage of the phase separation of PEG in salt solutions is general (i.e., can be used with any nanoparticles) leads to high-quality macroscopic and tunable crystals. In conclusion, we discuss how the method can also be applied to the design of orderly 3D structures.« less

  6. Short-column anion-exchange chromatography for soil and peat humic substances profiling by step-wise gradient of high pH aqueous sodium ethylenediaminetetraacetate.

    PubMed

    Hutta, Milan; Ráczová, Janka; Góra, Róbert; Pessl, Juraj

    2015-08-21

    Novel anion-exchange liquid chromatographic method with step gradient of aqueous EDTA(4-) based mobile phase elution has been developed to profile available Slovak soil humic substances and alkaline extracts of various soils. The method utilize short glass column (30mm×3mm) filled in with hydrolytically stable particles (60μm diameter) Separon HEMA-BIO 1000 having (diethylamino)ethyl functional groups. Step gradient was programmed by mixing mobile phase composed of aqueous solution of sodium EDTA (pH 12.0; 5mmolL(-1)) and mobile phase constituted of aqueous solution of sodium EDTA (pH 12.0, 500mmolL(-1)). The FLD of HSs was set to excitation wavelength 480nm and emission wavelength 530nm (λem). Separation mechanism was studied by use of selected aromatic acids related to humic acids with the aid of UV spectrophotometric detection at 280nm. The proposed method benefits from high ionic strength (I=5molL(-1)) of the end mobile phase buffer and provides high recovery of humic acids (98%). Accurate and reproducible profiling of studied humic substances, alkaline extracts of various types of soils enables straightforward characterization and differentiation of HSs in arable and forest soils. Selected model aromatic acids were used for separation mechanism elucidation. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. WET FLUORIDE SEPARATION METHOD

    DOEpatents

    Seaborg, G.T.; Gofman, J.W.; Stoughton, R.W.

    1958-11-25

    The separation of U/sup 233/ from thorium, protactinium, and fission products present in neutron-irradiated thorium is accomplished by dissolving the irradiated materials in aqueous nitric acid, adding either a soluble fluoride, iodate, phosphate, or oxalate to precipltate the thorium, separating the precipltate from the solution, and then precipitating uranlum and protactinium by alkalizing the solution. The uranium and protactinium precipitate is removcd from the solution and dissolved in nitric acid. The uranyl nitrate may then be extracted from the acid solution by means of ether, and the protactinium recovered from the aqueous phase.

  8. Laser-assisted isotope separation of tritium

    DOEpatents

    Herman, Irving P.; Marling, Jack B.

    1983-01-01

    Methods for laser-assisted isotope separation of tritium, using infrared multiple photon dissociation of tritium-bearing products in the gas phase. One such process involves the steps of (1) catalytic exchange of a deuterium-bearing molecule XYD with tritiated water DTO from sources such as a heavy water fission reactor, to produce the tritium-bearing working molecules XYT and (2) photoselective dissociation of XYT to form a tritium-rich product. By an analogous procedure, tritium is separated from tritium-bearing materials that contain predominately hydrogen such as a light water coolant from fission or fusion reactors.

  9. Direct NMR Monitoring of Phase Separation Behavior of Highly Supersaturated Nifedipine Solution Stabilized with Hypromellose Derivatives.

    PubMed

    Ueda, Keisuke; Higashi, Kenjirou; Moribe, Kunikazu

    2017-07-03

    We investigated the phase separation behavior and maintenance mechanism of the supersaturated state of poorly water-soluble nifedipine (NIF) in hypromellose (HPMC) derivative solutions. Highly supersaturated NIF formed NIF-rich nanodroplets through phase separation from aqueous solution containing HPMC derivative. Dissolvable NIF concentration in the bulk water phase was limited by the phase separation of NIF from the aqueous solution. HPMC derivatives stabilized the NIF-rich nanodroplets and maintained the NIF supersaturation with phase-separated NIF for several hours. The size of the NIF-rich phase was different depending on the HPMC derivatives dissolved in aqueous solution, although the droplet size had no correlation with the time for which NIF supersaturation was maintained without NIF crystallization. HPMC acetate and HPMC acetate succinate (HPMC-AS) effectively maintained the NIF supersaturation containing phase-separated NIF compared with HPMC. Furthermore, HPMC-AS stabilized NIF supersaturation more effectively in acidic conditions. Solution 1 H NMR measurements of NIF-supersaturated solution revealed that HPMC derivatives distributed into the NIF-rich phase during the phase separation of NIF from the aqueous solution. The hydrophobicity of HPMC derivative strongly affected its distribution into the NIF-rich phase. Moreover, the distribution of HPMC-AS into the NIF-rich phase was promoted at lower pH due to the lower aqueous solubility of HPMC-AS. The distribution of a large amount of HPMC derivatives into NIF-rich phase induced the strong inhibition of NIF crystallization from the NIF-rich phase. Polymer distribution into the drug-rich phase directly monitored by solution NMR technique can be a useful index for the stabilization efficiency of drug-supersaturated solution containing a drug-rich phase.

  10. Evaluation of the separation characteristics of application-specific (volatile organic compounds) open-tubular columns for gas chromatography.

    PubMed

    Poole, Colin F; Qian, Jing; Kiridena, Waruna; Dekay, Colleen; Koziol, Wladyslaw W

    2006-11-17

    The solvation parameter model is used to characterize the separation characteristics of two application-specific open-tubular columns (Rtx-Volatiles and Rtx-VGC) and a general purpose column for the separation of volatile organic compounds (DB-WAXetr) at five equally spaced temperatures over the range 60-140 degrees C. System constant differences and retention factor correlation plots are then used to determine selectivity differences between the above columns and their closest neighbors in a large database of system constants and retention factors for forty-four open-tubular columns. The Rtx-Volatiles column is shown to have separation characteristics predicted for a poly(dimethyldiphenylsiloxane) stationary phase containing about 16% diphenylsiloxane monomer. The Rtx-VGC column has separation properties similar to the poly(cyanopropylphenyldimethylsiloxane) stationary phase containing 14% cyanopropylphenylsiloxane monomer DB-1701 for non-polar and dipolar/polarizable compounds but significantly different characteristics for the separation of hydrogen-bond acids. For all practical purposes the DB-WAXetr column is shown to be selectivity equivalent to poly(ethylene glycol) columns prepared using different chemistries for bonding and immobilizing the stationary phase. Principal component analysis and cluster analysis are then used to classify the system constants for the above columns and a sub-database of eleven open-tubular columns (DB-1, HP-5, DB-VRX, Rtx-20, DB-35, Rtx-50, Rtx-65, DB-1301, DB-1701, DB-200, and DB-624) commonly used for the separation of volatile organic compounds. A rationale basis for column selection based on differences in intermolecular interactions is presented as an aid to method development for the separation of volatile organic compounds.

  11. Rationalizing the light-induced phase separation of mixed halide organic-inorganic perovskites.

    PubMed

    Draguta, Sergiu; Sharia, Onise; Yoon, Seog Joon; Brennan, Michael C; Morozov, Yurii V; Manser, Joseph S; Kamat, Prashant V; Schneider, William F; Kuno, Masaru

    2017-08-04

    Mixed halide hybrid perovskites, CH 3 NH 3 Pb(I 1-x Br x ) 3 , represent good candidates for low-cost, high efficiency photovoltaic, and light-emitting devices. Their band gaps can be tuned from 1.6 to 2.3 eV, by changing the halide anion identity. Unfortunately, mixed halide perovskites undergo phase separation under illumination. This leads to iodide- and bromide-rich domains along with corresponding changes to the material's optical/electrical response. Here, using combined spectroscopic measurements and theoretical modeling, we quantitatively rationalize all microscopic processes that occur during phase separation. Our model suggests that the driving force behind phase separation is the bandgap reduction of iodide-rich phases. It additionally explains observed non-linear intensity dependencies, as well as self-limited growth of iodide-rich domains. Most importantly, our model reveals that mixed halide perovskites can be stabilized against phase separation by deliberately engineering carrier diffusion lengths and injected carrier densities.Mixed halide hybrid perovskites possess tunable band gaps, however, under illumination they undergo phase separation. Using spectroscopic measurements and theoretical modelling, Draguta and Sharia et al. quantitatively rationalize the microscopic processes that occur during phase separation.

  12. LC-MS n Analysis of Isomeric Chondroitin Sulfate Oligosaccharides Using a Chemical Derivatization Strategy

    NASA Astrophysics Data System (ADS)

    Huang, Rongrong; Pomin, Vitor H.; Sharp, Joshua S.

    2011-09-01

    Improved methods for structural analyses of glycosaminoglycans (GAGs) are required to understand their functional roles in various biological processes. Major challenges in structural characterization of complex GAG oligosaccharides using liquid chromatography-mass spectrometry (LC-MS) include the accurate determination of the patterns of sulfation due to gas-phase losses of the sulfate groups upon collisional activation and inefficient on-line separation of positional sulfation isomers prior to MS/MS analyses. Here, a sequential chemical derivatization procedure including permethylation, desulfation, and acetylation was demonstrated to enable both on-line LC separation of isomeric mixtures of chondroitin sulfate (CS) oligosaccharides and accurate determination of sites of sulfation by MS n . The derivatized oligosaccharides have sulfate groups replaced with acetyl groups, which are sufficiently stable to survive MS n fragmentation and reflect the original sulfation patterns. A standard reversed-phase LC-MS system with a capillary C18 column was used for separation, and MS n experiments using collision-induced dissociation (CID) were performed. Our results indicate that the combination of this derivatization strategy and MS n methodology enables accurate identification of the sulfation isomers of CS hexasaccharides with either saturated or unsaturated nonreducing ends. Moreover, derivatized CS hexasaccharide isomer mixtures become separable by LC-MS method due to different positions of acetyl modifications.

  13. LC-MSn Analysis of Isomeric Chondroitin Sulfate Oligosaccharides Using a Chemical Derivatization Strategy

    PubMed Central

    Huang, Rongrong; Pomin, Vitor H.; Sharp, Joshua S.

    2011-01-01

    Improved methods for structural analyses of glycosaminoglycans (GAGs) are required to understand their functional roles in various biological processes. Major challenges in structural characterization of complex GAG oligosaccharides using liquid chromatography-mass spectrometry (LC-MS) include the accurate determination of the patterns of sulfation due to gas-phase losses of the sulfate groups upon collisional activation and inefficient on-line separation of positional sulfation isomers prior to MS/MS analyses. Here, a sequential chemical derivatization procedure including permethylation, desulfation, and acetylation was demonstrated to enable both on-line LC separation of isomeric mixtures of chondroitin sulfate (CS) oligosaccharides and accurate determination of sites of sulfation by MSn. The derivatized oligosaccharides have sulfate groups replaced with acetyl groups, which are sufficiently stable to survive MSn fragmentation and reflect the original sulfation patterns. A standard reversed-phase LC-MS system with a capillary C18 column was used for separation, and MSn experiments using collision-induced dissociation (CID) were performed. Our results indicate that the combination of this derivatization strategy and MSn methodology enables accurate identification of the sulfation isomers of CS hexasaccharides with either saturated or unsaturated nonreducing ends. Moreover, derivatized CS hexasaccharide isomer mixtures become separable by LC-MS method due to different positions of acetyl modifications. PMID:21953261

  14. Quantitative Phase Imaging in a Volume Holographic Microscope

    NASA Astrophysics Data System (ADS)

    Waller, Laura; Luo, Yuan; Barbastathis, George

    2010-04-01

    We demonstrate a method for quantitative phase imaging in a Volume Holographic Microscope (VHM) from a single exposure, describe the properties of the system and show experimental results. The VHM system uses a multiplexed volume hologram (VH) to laterally separate images from different focal planes. This 3D intensity information is then used to solve the transport of intensity (TIE) equation and recover phase quantitatively. We discuss the modifications to the technique that were made in order to give accurate results.

  15. Avoiding chaos in Wonderland

    NASA Astrophysics Data System (ADS)

    Kohring, G. A.

    2006-08-01

    Wonderland, a compact, integrated economic, demographic and environmental model, is investigated using methods developed for studying critical phenomena. Simulation results show the parameter space separates into two phases, one of which contains the property of long term, sustainable development. By employing information contain in the phase diagram, an optimal strategy involving pollution taxes is developed as a means of moving a system initially in a unsustainable region of the phase diagram into a region of sustainability while ensuring minimal regret with respect to long-term economic growth.

  16. A Preliminary Assessment of Phase Separator Ground-Based and Reduced-Gravity Testing for ALS Systems

    NASA Technical Reports Server (NTRS)

    Hall, Nancy Rabel

    2006-01-01

    A viewgraph presentation of phase separator ground-based and reduced-gravity testing for Advanced Life Support (ALS) systems is shown. The topics include: 1) Multiphase Flow Technology Program; 2) Types of Separators; 3) MOBI Phase Separators; 4) Experiment set-up; and 5) Preliminary comparison/results.

  17. Quantitative determination of triterpene saponins and alkenated-phenolics from Labisia pumila using LC-UV/ELSD method and confirmation by LC-ESI-TOF

    USDA-ARS?s Scientific Manuscript database

    This study describes the first analytical method for the determination of saponins and alkenated-phenolics from the leaves, leaves/stems and roots of Labisia pumila using a HPLC-UV-ELSD method. The separation was achieved using a reversed phase column, PDA and ELS detection, and a water/acetonitrile...

  18. Quantitative determination of triperpene saponins and alkenated-phenolics from Labisia pumila using LC-UV/ELSD method and confirmation by LC-ESI-TOF

    USDA-ARS?s Scientific Manuscript database

    This study describes the first analytical method for the determination of saponins and alkenated-phenolics from the leaves, leaves/stems and roots of Labisia pumila using a HPLC-UV-ELSD method. The separation was achieved using a reversed phase column, PDA and ELS detection, and a water/acetonitrile...

  19. Subzero-Temperature Liquid-Liquid Extraction Coupled with UPLC-MS-MS for the Simultaneous Determination of 12 Bioactive Components in Traditional Chinese Medicine Gegen-Qinlian Decoction.

    PubMed

    Shi, Zhihong; Li, Zhimin; Zhang, Shulan; Fu, Hongna; Zhang, Hongyi

    2015-09-01

    Based on the phase separation phenomenon of acetonitrile-water system at subzero temperature, a subzero-temperature liquid-liquid extraction coupled with ultra-performance liquid chromatography tandem quadrupole mass spectrometry : UPLC-MS-MS) method was developed for the simultaneous determination of 12 bioactive components in Gegen-Qinlian decoction. After optimization, the extraction conditions were set as follows: 3.0 mL of aqueous sample solution (pH 5.86) was extracted with 2 mL of acetonitrile at -35°C for 35 min. The separated acetonitrile phase was diluted 10-fold with water before UPLC-MS-MS analysis. Separation was performed on a Waters ACQUITY UPLC(®)BEH C18 column (2.1 × 100 mm i.d., 1.7 µm) with ammonium formate buffer solution (20 mmol L(-1), pH 3.2, adjusted by formic acid) and acetonitrile as mobile phase with gradient elution. Twelve target components could be separated within 10 min and quantified in multiple reaction monitoring mode, both positive and negative ionization modes were employed. Limits of detection were in the range of 0.0003-0.0451 μg mL(-1). Relative standard deviation values for intra- and interday precision were <2.71 and 8.94%, respectively. The established method provides a simple and effective framework for the quality control of Gegen-Qinlian decoction and related traditional Chinese medicinal preparations. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Simultaneous separation and determination of six arsenic species in rice by anion-exchange chromatography with inductively coupled plasma mass spectrometry.

    PubMed

    Ma, Li; Yang, Zhaoguang; Tang, Jie; Wang, Lin

    2016-06-01

    The simultaneous separation and determination of arsenite As(III), arsenate As(V), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenobetaine (AsB), and arsenocholine (AsC) in rice samples have been carried out in one single anion-exchange column run by high-performance liquid chromatography with inductively coupled plasma mass spectrometry. To estimate the effect of variables on arsenic (As) speciation, the chromatographic conditions including type of competing anion, ionic strength, pH of elution buffer, and flow rate of mobile phase have been investigated by a univariate approach. Under the optimum chromatographic conditions, baseline separation of six As species has been achieved within 10 min by gradient elution program using 4 mM NH4 HCO3 at pH 8.6 as mobile phase A and 4 mM NH4 HCO3 , 40 mM NH4 NO3 at pH 8.6 as mobile phase B. The method detection limits for As(III), As(V), MMA, DMA, AsB, and AsC were 0.4, 0.9, 0.2, 0.4, 0.5, and 0.3 μg/kg, respectively. The proposed method has been applied to separation and quantification of As species in real rice samples collected from Hunan Province, China. The main As species detected in all samples were As(III), As(V) and DMA, with inorganic As accounting for over 80% of total As in these samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Optimization of Robust HPLC Method for Quantitation of Ambroxol Hydrochloride and Roxithromycin Using a DoE Approach.

    PubMed

    Patel, Rashmin B; Patel, Nilay M; Patel, Mrunali R; Solanki, Ajay B

    2017-03-01

    The aim of this work was to develop and optimize a robust HPLC method for the separation and quantitation of ambroxol hydrochloride and roxithromycin utilizing Design of Experiment (DoE) approach. The Plackett-Burman design was used to assess the impact of independent variables (concentration of organic phase, mobile phase pH, flow rate and column temperature) on peak resolution, USP tailing and number of plates. A central composite design was utilized to evaluate the main, interaction, and quadratic effects of independent variables on the selected dependent variables. The optimized HPLC method was validated based on ICH Q2R1 guideline and was used to separate and quantify ambroxol hydrochloride and roxithromycin in tablet formulations. The findings showed that DoE approach could be effectively applied to optimize a robust HPLC method for quantification of ambroxol hydrochloride and roxithromycin in tablet formulations. Statistical comparison between results of proposed and reported HPLC method revealed no significant difference; indicating the ability of proposed HPLC method for analysis of ambroxol hydrochloride and roxithromycin in pharmaceutical formulations. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Methods to control for unmeasured confounding in pharmacoepidemiology: an overview.

    PubMed

    Uddin, Md Jamal; Groenwold, Rolf H H; Ali, Mohammed Sanni; de Boer, Anthonius; Roes, Kit C B; Chowdhury, Muhammad A B; Klungel, Olaf H

    2016-06-01

    Background Unmeasured confounding is one of the principal problems in pharmacoepidemiologic studies. Several methods have been proposed to detect or control for unmeasured confounding either at the study design phase or the data analysis phase. Aim of the Review To provide an overview of commonly used methods to detect or control for unmeasured confounding and to provide recommendations for proper application in pharmacoepidemiology. Methods/Results Methods to control for unmeasured confounding in the design phase of a study are case only designs (e.g., case-crossover, case-time control, self-controlled case series) and the prior event rate ratio adjustment method. Methods that can be applied in the data analysis phase include, negative control method, perturbation variable method, instrumental variable methods, sensitivity analysis, and ecological analysis. A separate group of methods are those in which additional information on confounders is collected from a substudy. The latter group includes external adjustment, propensity score calibration, two-stage sampling, and multiple imputation. Conclusion As the performance and application of the methods to handle unmeasured confounding may differ across studies and across databases, we stress the importance of using both statistical evidence and substantial clinical knowledge for interpretation of the study results.

  3. Supercritical fluid reverse micelle separation

    DOEpatents

    Fulton, John L.; Smith, Richard D.

    1993-01-01

    A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W.sub.o that determines the maximum size of the reverse micelles. The maximum ratio W.sub.o of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions.

  4. Supercritical fluid reverse micelle separation

    DOEpatents

    Fulton, J.L.; Smith, R.D.

    1993-11-30

    A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W[sub o] that determines the maximum size of the reverse micelles. The maximum ratio W[sub o] of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions. 27 figures.

  5. Direct formation of nano-pillar arrays by phase separation of polymer blend for the enhanced out-coupling of organic light emitting diodes with low pixel blurring.

    PubMed

    Lee, Cholho; Han, Kyung-Hoon; Kim, Kwon-Hyeon; Kim, Jang-Joo

    2016-03-21

    We have demonstrated a simple and efficient method to fabricate OLEDs with enhanced out-coupling efficiencies and with low pixel blurring by inserting nano-pillar arrays prepared through the lateral phase separation of two immiscible polymers in a blend film. By selecting a proper solvent for the polymer and controlling the composition of the polymer blend, the nano-pillar arrays were formed directly after spin-coating of the polymer blend and selective removal of one phase, needing no complicated processes such as nano-imprint lithography. Pattern size and distribution were easily controlled by changing the composition and thickness of the polymer blend film. Phosphorescent OLEDs using the internal light extraction layer containing the nano-pillar arrays showed a 30% enhancement of the power efficiency, no spectral variation with the viewing angle, and only a small increment in pixel blurring. With these advantages, this newly developed method can be adopted for the commercial fabrication process of OLEDs for lighting and display applications.

  6. Pi-Pi contacts are an overlooked protein feature relevant to phase separation.

    PubMed

    Vernon, Robert McCoy; Chong, Paul Andrew; Tsang, Brian; Kim, Tae Hun; Bah, Alaji; Farber, Patrick; Lin, Hong; Forman-Kay, Julie Deborah

    2018-02-09

    Protein phase separation is implicated in formation of membraneless organelles, signaling puncta and the nuclear pore. Multivalent interactions of modular binding domains and their target motifs can drive phase separation. However, forces promoting the more common phase separation of intrinsically disordered regions are less understood, with suggested roles for multivalent cation-pi, pi-pi, and charge interactions and the hydrophobic effect. Known phase-separating proteins are enriched in pi-orbital containing residues and thus we analyzed pi-interactions in folded proteins. We found that pi-pi interactions involving non-aromatic groups are widespread, underestimated by force-fields used in structure calculations and correlated with solvation and lack of regular secondary structure, properties associated with disordered regions. We present a phase separation predictive algorithm based on pi interaction frequency, highlighting proteins involved in biomaterials and RNA processing. © 2018, Vernon et al.

  7. Vertical phase separation in bulk heterojunction solar cells formed by in situ polymerization of fulleride

    PubMed Central

    Zhang, Lipei; Xing, Xing; Zheng, Lingling; Chen, Zhijian; Xiao, Lixin; Qu, Bo; Gong, Qihuang

    2014-01-01

    Vertical phase separation of the donor and the acceptor in organic bulk heterojunction solar cells is crucial to improve the exciton dissociation and charge transport efficiencies. This is because whilst the exciton diffusion length is limited, the organic film must be thick enough to absorb sufficient light. However, it is still a challenge to control the phase separation of a binary blend in a bulk heterojunction device architecture. Here we report the realization of vertical phase separation induced by in situ photo-polymerization of the acrylate-based fulleride. The power conversion efficiency of the devices with vertical phase separation increased by 20%. By optimising the device architecture, the power conversion efficiency of the single junction device reached 8.47%. We believe that in situ photo-polymerization of acrylate-based fulleride is a universal and controllable way to realise vertical phase separation in organic blends. PMID:24861168

  8. Method for removing metals from a cleaning solution

    DOEpatents

    Deacon, Lewis E.

    2002-01-01

    A method for removing accumulated metals from a cleaning solution is provided. After removal of the metals, the cleaning solution can be discharged or recycled. The process manipulates the pH levels of the solution as a means of precipitating solids. Preferably a dual phase separation at two different pH levels is utilized.

  9. COMPUTER-ASSISTED HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY METHOD DEVELOPMENT WITH APPLICATIONS TO THE ISOLATION AND ANALYSIS OF PHYTOPLANKTON PIGMENTS. (R826944)

    EPA Science Inventory

    We used chromatography modeling software to assist in HPLC method development, with the goal
    of enhancing separations through the exclusive use of gradient time and column temperature. We
    surveyed nine stationary phases for their utility in pigment purification and natur...

  10. Determination of citrus limonoid glucosides by high performance liquid chromatography coupled to post-column reaction with Ehrlich’s Reagent

    USDA-ARS?s Scientific Manuscript database

    A method for the identification and quantification of citrus limonoid glucosides in juices based upon high performance liquid chromatography (HPLC) separation coupled to post-column reaction with Ehrlichs’s reagent has been developed. This method utilizes a phenyl stationary phase and an isocratic ...

  11. Expanding the term "Design Space" in high performance liquid chromatography (I).

    PubMed

    Monks, K E; Rieger, H-J; Molnár, I

    2011-12-15

    The current article presents a novel approach to applying Quality by Design (QbD) principles to the development of high pressure reversed phase liquid chromatography (HPLC) methods. Four common critical parameters in HPLC--gradient time, temperature, pH of the aqueous eluent, and stationary phase--are evaluated within the Quality by Design framework by the means of computer modeling software and a column database, to a satisfactory degree. This work proposes the establishment of two mutually complimentary Design Spaces to fully depict a chromatographic method; one Column Design Space (CDS) and one Eluent Design Space (EDS) to describe the influence of the stationary phase and of the mobile phase on the separation selectivity, respectively. The merge of both Design Spaces into one is founded on the continuous nature of the mobile phase influence on retention and the great variety of the stationary phases available. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Dispersive micro-solid phase extraction combined with dispersive liquid-liquid microextraction for speciation analysis of antimony by electrothermal vaporization inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Chen, Shizhong; Zhu, Shengping; Lu, Dengbo

    2018-01-01

    A method was developed for speciation analysis of antimony by electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) after preconcentration/separation using dispersive micro-solid phase extraction (DMSPE) and dispersive liquid-liquid micro-extraction (DLLME). In DMSPE, titanium dioxide nanofibers were used for preconcentration and separation of analytes. The upper aqueous phase and elution solution from DMSPE were used for further preconcentration and separation of Sb(III) and Sb(V) by DLLME without any pre-oxidation or pre-reduction operation, respectively. The extracts from DLLME were used for ETV-ICP-MS determination with APDC as a chemical modifier. Under optimal conditions, the detection limits of this method were 0.019 and 0.025 pg mL- 1 with relative standard deviations of 5.7% and 6.9% for Sb(III) and Sb(V) (c = 1.0 ng mL- 1, n = 9), respectively. This method was applied for speciation analysis of Sb and its distribution in the tea leaves and the tea infusion, including total, suspended, soluble, organic and inorganic Sb as well as Sb(III) and Sb(V). The results showed that the contents of Sb are 62.7, 12.9 and 47.3 ng g- 1 in the tea leaves, tea residue and tea soup, respectively; those of soluble, organic, inorganic, Sb(III) and Sb(V) are 0.41, 0.11, 0.29, 0.21 and 0.07 ng mL- 1 in the tea soup, respectively. A certified reference material of tea leaves (GBW 07605) was analyzed by this method with satisfactory results.

  13. Analytical Method for Determining Tetrazene in Water.

    DTIC Science & Technology

    1987-12-01

    8217-decanesulfonic acid sodium salt. The mobile phase pH was adjusted to 3 with glacial acetic acid. The modified mobile phase was optimal for separating of...modified with sodium tartrate, gave a well-defined reduction wave at the dropping mercury electrode. The height of the reduction wave was proportional to...anitmony trisulphide, nitrocellulose, PETN, powdered aluminum and calcium silicide . The primer samples were sequentially extracted, first with

  14. REMOVAL OF CERTAIN FISSION PRODUCT METALS FROM LIQUID BISMUTH COMPOSITIONS

    DOEpatents

    Dwyer, O.E.; Howe, H.E.; Avrutik, E.R.

    1959-11-24

    A method is described for purifying a solution of urarium in liquid bismuth containing at least one metal from the group consisting of selenium, tellurium, palladium, ruthenium, rhodium, niobium, and zirconium. The solution is contacted with zinc in an inert atmosphere to form a homogeneous melt, a solid zinc phase is formed, and the zinc phase containing the metal is separated from the melt.

  15. Comparison of a novel distillation method versus a traditional distillation method in a model gin system using liquid/liquid extraction.

    PubMed

    Greer, Derek; Pfahl, Les; Rieck, Jim; Daniels, Tim; Garza, Oscar

    2008-10-08

    This research studied a novel form of distillation (high vacuum distillation) as a method for preserving volatile aroma chemicals important to the organoleptic attributes of a four botanical model gin as well as the degradation products generated during the heating required in traditional methods of gin distillation. A 2 (5) factorial experiment was conducted in a partially confounded incomplete block design and analyzed using the PROC MIXED procedure from SAS. A model gin was made of dried juniper berries (Juniperus communis), coriander seed (Coriandrum sativum), angelica root (Angelica archangelica), and dry lemon peel (Citrus limonum). This was distilled on a traditional still utilizing atmospheric pressure and a heating mantel to initiate phase separation as well as a novel still (high vacuum) utilizing high vacuum pressures below 0.1 mmHg and temperatures below -15 degrees C to initiate phase separation. The degradation products (alpha-pinene, alpha-phellandrene, E-caryophyllene, and beta-myrcene) were present at greater levels (approximately 10 times) in the traditional still-made gin as compared to the novel gin.

  16. Massive Fabrication of Polymer Microdiscs by Phase Separation and Freestanding Process.

    PubMed

    Zhang, Hong; Fujii, Mao; Okamura, Yosuke; Zhang, Li; Takeoka, Shinji

    2016-06-29

    We present a facile method to fabricate polymer thin films with tens of nanometers thickness and several micrometers size (also called "microdiscs" herein) by applying phase separation of polymer blend. A water-soluble supporting layer is employed to obtain a freestanding microdisc suspension. Owing to their miniaturized size, microdiscs can be injected through a syringe needle. Herein, poly(d,l-lactic acid) microdiscs were fabricated with various thicknesses and sizes, in the range from ca. 10 to 60 nm and from ca. 1.0 to 10.0 μm, respectively. Magnetic nanoparticles were deposited on polymer microdiscs with a surface coating method. The magnetic manipulation of microdiscs in a liquid environment under an external magnetic field was achieved with controllable velocity by adjusting the microdisc dimensions and the loading amount of magnetic components. Such biocompatible polymer microdiscs are expected to serve as injectable vehicles for targeted drug delivery.

  17. Hetero-junction photovoltaic device and method of fabricating the device

    DOEpatents

    Aytug, Tolga; Christen, David K; Paranthaman, Mariappan Parans; Polat, Ozgur

    2014-02-10

    A hetero-junction device and fabrication method in which phase-separated n-type and p-type semiconductor pillars define vertically-oriented p-n junctions extending above a substrate. Semiconductor materials are selected for the p-type and n-type pillars that are thermodynamically stable and substantially insoluble in one another. An epitaxial deposition process is employed to form the pillars on a nucleation layer and the mutual insolubility drives phase separation of the materials. During the epitaxial deposition process, the orientation is such that the nucleation layer initiates propagation of vertical columns resulting in a substantially ordered, three-dimensional structure throughout the deposited material. An oxidation state of at least a portion of one of the p-type or the n-type semiconductor materials is altered relative to the other, such that the band-gap energy of the semiconductor materials differ with respect to stoichiometric compositions and the device preferentially absorbs particular selected bands of radiation.

  18. Development and validation of a simple and robust method for arsenic speciation in human urine using HPLC/ICP-MS.

    PubMed

    Sen, Indranil; Zou, Wei; Alvaran, Josephine; Nguyen, Linda; Gajek, Ryszard; She, Jianwen

    2015-01-01

    In order to better distinguish the different toxic inorganic and organic forms of arsenic (As) exposure in individuals, we have developed and validated a simple and robust analytical method for determining the following six As species in human urine: arsenous (III) acid (As-III), As (V) acid, monomethylarsonic acid, dimethylarsinic acid, arsenobetaine (AsB), and arsenocholine. In this method, human urine is diluted using a pH 5.8 buffer, separation is performed using an anion exchange column with isocratic HPLC, and detection is achieved using inductively coupled plasma-MS. The method uses a single mobile phase consisting of low concentrations of both phosphate buffer (5 mM) and ammonium nitrate salt (5 mM) at pH 9.0; this minimizes the column equilibration time and overcomes challenges with separation between AsB and As-III. In addition, As-III oxidation is prevented by degassing the sample preparation buffer at pH 5.8, degassing the mobile phase online at pH 9.0, and by the use of low temperature (-70 °C) and flip-cap airtight tubes for long term storage of samples. The method was validated using externally provided reference samples. Results were in agreement with target values at varying concentrations and successfully passed external performance test criteria. Internal QC samples were prepared and repeatedly analyzed to assess the method's long-term precision, and further analyses were completed on anonymous donor urine to assess the quality of the method's baseline separation. Results from analyses of external reference samples agreed with target values at varying concentrations, and results from precision studies yielded absolute CV values of 3-14% and recovery from 82 to 115% for the six As species. Analysis of anonymous donor urine confirmed the well-resolved baseline separation capabilities of the method for real participant samples.

  19. Unexpected retention behavior of baicalin: Hydrophilic interaction like properties of a reversed-phase column.

    PubMed

    Magda, Balázs; Márta, Zoltán; Imre, Tímea; Kalapos-Kovács, Bernadett; Klebovich, Imre; Fekete, Jenő; Szabó, Pál T

    2015-01-01

    The original aim of this study was to develop a method for the determination of baicalin from membrane vesicles. The unconventional chromatographic separation ("inverse gradient elution" on a reversed phase column) was due to a lucky chance, which is detailed and discussed in this study. The validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method is proved to be sensitive, rapid and selective. Chromatographic separation was performed on a Zorbax SB-C8 column (250 mm × 4.6 mm, i.d.; 5 μm) with 0.1% formic acid in water and methanol by linear gradient elution. Quantification of baicalin was determined by multiple reaction monitoring (MRM) mode using electrospray ionization (ESI). The calibration curve was linear (r = 0.9987) over the concentration range from 1 to 1000 nM. The coefficient of variation and relative error of baicalin for intra- and inter-assay at three quality control (QC) levels were 2.0-10.2% and -6.1 to 6.7%, respectively. The lower limit of quantification (LLOQ) for baicalin was 1 nM (0.446 ng/ml), without preconcentration of the sample. This method was subsequently applied to vesicular transport assays of baicalin in membrane vesicles successfully. The developed method can open up new area of research in the chromatographic separation of flavonoids and their glucuronides. Copyright © 2015. Published by Elsevier B.V.

  20. Liquid-liquid and solid-phase extractions of phenols from virgin olive oil and their separation by chromatographic and electrophoretic methods.

    PubMed

    Bendini, Alessandra; Bonoli, Matteo; Cerretani, Lorenzo; Biguzzi, Barbara; Lercker, Giovanni; Toschi, Tullia Gallina

    2003-01-24

    The high oxidative stability of virgin olive oil is related to its high monounsaturated/polyunsaturated ratio and to the presence of antioxidant compounds, such as tocopherols and phenols. In this paper, the isolation of phenolic compounds from virgin olive oil, by different methods, was tested and discussed. Particularly liquid-liquid and solid-phase extraction methods were compared, assaying, for the latter, three stationary phases (C8, C18 and Diol) and several elution mixtures. Quantification of phenolic and o-diphenolic substances in the extracts was performed by the traditional Folin-Ciocalteau method and the sodium molybdate reaction, respectively. Furthermore, the quantification of phenolic compounds in the extracts and in a standard mixture was carried out both with diode array and mass spectrometric detection and capillary zone electrophoresis.

Top