Sample records for phase shift effects

  1. Research on effects of phase error in phase-shifting interferometer

    NASA Astrophysics Data System (ADS)

    Wang, Hongjun; Wang, Zhao; Zhao, Hong; Tian, Ailing; Liu, Bingcai

    2007-12-01

    Referring to phase-shifting interferometry technology, the phase shifting error from the phase shifter is the main factor that directly affects the measurement accuracy of the phase shifting interferometer. In this paper, the resources and sorts of phase shifting error were introduction, and some methods to eliminate errors were mentioned. Based on the theory of phase shifting interferometry, the effects of phase shifting error were analyzed in detail. The Liquid Crystal Display (LCD) as a new shifter has advantage as that the phase shifting can be controlled digitally without any mechanical moving and rotating element. By changing coded image displayed on LCD, the phase shifting in measuring system was induced. LCD's phase modulation characteristic was analyzed in theory and tested. Based on Fourier transform, the effect model of phase error coming from LCD was established in four-step phase shifting interferometry. And the error range was obtained. In order to reduce error, a new error compensation algorithm was put forward. With this method, the error can be obtained by process interferogram. The interferogram can be compensated, and the measurement results can be obtained by four-step phase shifting interferogram. Theoretical analysis and simulation results demonstrate the feasibility of this approach to improve measurement accuracy.

  2. EUV phase-shifting masks and aberration monitors

    NASA Astrophysics Data System (ADS)

    Deng, Yunfei; Neureuther, Andrew R.

    2002-07-01

    Rigorous electromagnetic simulation with TEMPEST is used to examine the use of phase-shifting masks in EUV lithography. The effects of oblique incident illumination and mask patterning by ion-mixing of multilayers are analyzed. Oblique incident illumination causes streamers at absorber edges and causes position shifting in aerial images. The diffraction waves between ion-mixed and pristine multilayers are observed. The phase-shifting caused by stepped substrates is simulated and images show that it succeeds in creation of phase-shifting effects. The diffraction process at the phase boundary is also analyzed. As an example of EUV phase-shifting masks, a coma pattern and probe based aberration monitor is simulated and aerial images are formed under different levels of coma aberration. The probe signal rises quickly as coma increases as designed.

  3. Effect of Phase Shift from Corals to Zoantharia on Reef Fish Assemblages

    PubMed Central

    Cruz, Igor C. S.; Loiola, Miguel; Albuquerque, Tiago; Reis, Rodrigo; de Anchieta C. C. Nunes, José; Reimer, James D.; Mizuyama, Masaru; Kikuchi, Ruy K. P.; Creed, Joel C.

    2015-01-01

    Consequences of reef phase shifts on fish communities remain poorly understood. Studies on the causes, effects and consequences of phase shifts on reef fish communities have only been considered for coral-to-macroalgae shifts. Therefore, there is a large information gap regarding the consequences of novel phase shifts and how these kinds of phase shifts impact on fish assemblages. This study aimed to compare the fish assemblages on reefs under normal conditions (relatively high cover of corals) to those which have shifted to a dominance of the zoantharian Palythoa cf. variabilis on coral reefs in Todos os Santos Bay (TSB), Brazilian eastern coast. We examined eight reefs, where we estimated cover of corals and P. cf. variabilis and coral reef fish richness, abundance and body size. Fish richness differed significantly between normal reefs (48 species) and phase-shift reefs (38 species), a 20% reduction in species. However there was no difference in fish abundance between normal and phase shift reefs. One fish species, Chaetodon striatus, was significantly less abundant on normal reefs. The differences in fish assemblages between different reef phases was due to differences in trophic groups of fish; on normal reefs carnivorous fishes were more abundant, while on phase shift reefs mobile invertivores dominated. PMID:25629532

  4. Quantitative phase imaging using four interferograms with special phase shifts by dual-wavelength in-line phase-shifting interferometry

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoqing; Wang, Yawei; Ji, Ying; Xu, Yuanyuan; Xie, Ming; Han, Hao

    2018-05-01

    A new approach of quantitative phase imaging using four interferograms with special phase shifts in dual-wavelength in-line phase-shifting interferometry is presented. In this method, positive negative 2π phase shifts are employed to easily separate the incoherent addition of two single-wavelength interferograms by combining the phase-shifting technique with the subtraction procedure, then the quantitative phase at one of both wavelengths can be achieved based on two intensities without the corresponding dc terms by the use of the character of the trigonometric function. The quantitative phase of the other wavelength can be retrieved from two dc-term suppressed intensities obtained by employing the two-step phase-shifting technique or the filtering technique in the frequency domain. The proposed method is illustrated with theory, and its effectiveness is demonstrated by simulation experiments of the spherical cap and the HeLa cell, respectively.

  5. Spectral changes induced by a phase modulator acting as a time lens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plansinis, B. W.; Donaldson, W. R.; Agrawal, G. P.

    2015-07-06

    We show both numerically and experimentally that a phase modulator, acting as a time lens in the Fourier-lens configuration, can induce spectral broadening, narrowing, or shifts, depending on the phase of the modulator cycle. These spectral effects depend on the maximum phase shift that can be imposed by the modulator. In our numerical simulations, pulse spectrum could be compressed by a factor of 8 for a 30 rad phase shift. Experimentally, spectral shifts over a 1.35 nm range and spectral narrowing and broadening by a factor of 2 were demonstrated using a lithium niobate phase modulator with a maximum phasemore » shift of 16 rad at a 10 GHz modulation frequency. All spectral changes were accomplished without employing optical nonlinear effects such as self- or cross-phase modulation.« less

  6. Dark goggles and bright light improve circadian rhythm adaptation to night-shift work.

    PubMed

    Eastman, C I; Stewart, K T; Mahoney, M P; Liu, L; Fogg, L F

    1994-09-01

    We compared the contributions of bright light during the night shift and dark goggles during daylight for phase shifting the circadian rhythm of temperature to realign with a 12-hour shift of sleep. After 10 baseline days there were 8 night-work/day-sleep days. Temperature was continuously recorded from 50 subjects. There were four groups in a 2 x 2 design: light (bright, dim), goggles (yes, no). Subjects were exposed to bright light (about 5,000 lux) for 6 hours on the first 2 night shifts. Dim light was < 500 lux. Both bright light and goggles were significant factors for producing circadian rhythm phase shifts. The combination of bright light plus goggles was the most effective, whereas the combination of dim light and no goggles was the least effective. The temperature rhythm either phase advanced or phase delayed when it aligned with daytime sleep. However, when subjects did not have goggles only phase advances occurred. Goggles were necessary for producing phase delays. The most likely explanation is that daylight during the travel-home window after a night shift inhibits phase-delay shifts, and goggles can prevent this inhibition. Larger temperature-rhythm phase shifts were associated with better subjective daytime sleep, less subjective fatigue and better mood.

  7. Circular carrier squeezing interferometry: Suppressing phase shift error in simultaneous phase-shifting point-diffraction interferometer

    NASA Astrophysics Data System (ADS)

    Zheng, Donghui; Chen, Lei; Li, Jinpeng; Sun, Qinyuan; Zhu, Wenhua; Anderson, James; Zhao, Jian; Schülzgen, Axel

    2018-03-01

    Circular carrier squeezing interferometry (CCSI) is proposed and applied to suppress phase shift error in simultaneous phase-shifting point-diffraction interferometer (SPSPDI). By introducing a defocus, four phase-shifting point-diffraction interferograms with circular carrier are acquired, and then converted into linear carrier interferograms by a coordinate transform. Rearranging the transformed interferograms into a spatial-temporal fringe (STF), so the error lobe will be separated from the phase lobe in the Fourier spectrum of the STF, and filtering the phase lobe to calculate the extended phase, when combined with the corresponding inverse coordinate transform, exactly retrieves the initial phase. Both simulations and experiments validate the ability of CCSI to suppress the ripple error generated by the phase shift error. Compared with carrier squeezing interferometry (CSI), CCSI is effective on some occasions in which a linear carrier is difficult to introduce, and with the added benefit of eliminating retrace error.

  8. Ultra narrow flat-top filter based on multiple equivalent phase shifts

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Zou, Xihua; Yin, Zuowei; Chen, Xiangfei; Shen, Haisong

    2008-11-01

    Instead of real phase shifts, equivalent phase shifts (EPS) are adopted to construct ultra narrow phase-shifted band-pass filer in sampled Bragg gratings (SBG). Two optimized distributions of multiple equivalent phase shifts, using 2 and 5 EPSs respectively, are given in this paper to realize flat-top and ripple-free transmission characteristics simultaneously. Also two demonstrations with 5 EPSs both on hydrogen-loaded and photosensitive fibers are presented and their spectrums are examined by an optical vector analyzer (OVA). Given only ordinary phase mask and sub-micrometer precision control, ultra-narrowband flat-top filters with expected performance can be achieved flexibly and cost-effectively.

  9. Carbachol Induces Phase-dependent Phase Shifts of Per1 Transcription Rhythms in Cultured Suprachiasmatic Nucleus Slices.

    PubMed

    Dojo, Kumiko; Yamaguchi, Yoshiaki; Fustin, Jean-Michel; Doi, Masao; Kobayashi, Masaki; Okamura, Hitoshi

    2017-04-01

    Among nonphotic stimulants, a classic cholinergic agonist, carbachol, is known to have a strong and unique phase-resetting effect on the circadian clock: Intracerebroventricular carbachol treatment causes phase delays during the subjective early night and phase advances in the subjective late night, but the effects of this drug on the suprachiasmatic nucleus (SCN) in vivo and in vitro are still controversial. In the present study, we succeeded in reproducing the biphasic phase-shifting effect of carbachol on clock gene expression in organotypic SCN slices prepared from mice carrying a Per1-promoter fused luciferase gene ( Per1-luc). Since this biphasic effect of carbachol in Per1-luc SCN was prevented by atropine but not by mecamylamine, we concluded that these phase shifts were muscarinic receptor-dependent. Next, we analyzed the expression of muscarinic receptors in the SCN by in situ hybridization and found that M3 and M4 subtypes were expressed in SCN cells. These signals appeared neonatally and reached adult levels at postnatal day 10. Together, these findings suggest that carbachol has a phase-dependent phase-shifting effect on the SCN clock through muscarinic receptor subtypes expressed in the SCN.

  10. A Control Allocation System for Automatic Detection and Compensation of Phase Shift Due to Actuator Rate Limiting

    NASA Technical Reports Server (NTRS)

    Yildiz, Yidiray; Kolmanovsky, Ilya V.; Acosta, Diana

    2011-01-01

    This paper proposes a control allocation system that can detect and compensate the phase shift between the desired and the actual total control effort due to rate limiting of the actuators. Phase shifting is an important problem in control system applications since it effectively introduces a time delay which may destabilize the closed loop dynamics. A relevant example comes from flight control where aggressive pilot commands, high gain of the flight control system or some anomaly in the system may cause actuator rate limiting and effective time delay introduction. This time delay can instigate Pilot Induced Oscillations (PIO), which is an abnormal coupling between the pilot and the aircraft resulting in unintentional and undesired oscillations. The proposed control allocation system reduces the effective time delay by first detecting the phase shift and then minimizing it using constrained optimization techniques. Flight control simulation results for an unstable aircraft with inertial cross coupling are reported, which demonstrate phase shift minimization and recovery from a PIO event.

  11. Lateral geniculate lesions block circadian phase-shift responses to a benzodiazepine.

    PubMed Central

    Johnson, R F; Smale, L; Moore, R Y; Morin, L P

    1988-01-01

    Several pharmacological treatments, including application of an excitatory neurotoxin to the lateral geniculate nucleus (LGN) and systemic administration of triazolam, a clinically effective benzodiazepine, can elicit large phase shifts in a circadian rhythm according to the time of administration. The hypothesis that the LGN might mediate the effect of triazolam on circadian clock function was tested. Bilateral lesions of the LGN, which destroyed the connection from the intergeniculate leaflet to the suprachiasmatic nucleus, blocked phase-shift responses to triazolam. The requirement of an intact LGN for triazolam to shift circadian phase suggests that the LGN may be a site through which stimuli gain access to the circadian clock to modulate rhythm phase and entrainment. Images PMID:3293053

  12. When are night shifts effective for nursing student clinical learning? Findings from a mixed-method study design.

    PubMed

    Palese, Alvisa; Basso, Felix; Del Negro, Elena; Achil, Illarj; Ferraresi, Annamaria; Morandini, Marzia; Moreale, Renzo; Mansutti, Irene

    2017-05-01

    Some nursing programmes offer night shifts for students while others do not, mainly due to the lack of evidence regarding their effectiveness on clinical learning. The principal aims of the study were to describe nursing students' perceptions and to explore conditions influencing effectiveness on learning processes during night shifts. An explanatory mixed-method study design composed of a cross-sectional study (primary method, first phase) followed by a descriptive phenomenological study design (secondary method, second phase) in 2015. Two bachelor of nursing degree programmes located in Northern Italy, three years in length and requiring night shifts for students starting in the second semester of the 1st year, were involved. First phase: all nursing students ending their last clinical placement of the academic year attended were eligible; 352 out the 370 participated. Second phase: a purposeful sample of nine students among those included in the first phase and who attended the highest amount of night shifts were interviewed. First phase: a questionnaire composed of closed and open-ended questions was adopted; data was analyzed through descriptive statistical methods. Second phase: an open-ended face-to-face audio-recorded interview was adopted and data was analyzed through content analysis. Findings from the quantitative phase, showed that students who attended night shifts reported satisfaction (44.7%) less frequently than those who attended only day shifts (55.9%). They also reported boredom (23.5%) significantly more often compared to day shift students (p=0001). Understanding of the nursing role and learning competence was significantly inferior among night shift students as compared to day shift students, while the perception of wasting time was significantly higher among night shift students compared to their counterparts. Night shift students performed nursing rounds (288; 98.2%), non-nursing tasks (247; 84.3%) and/or less often managed clinical problems (insomnia 37; 12.6% and disorientation/confusion 32; 10.9%). Findings from the qualitative phase showed night shifts are experienced by students as a "time potentially capable of generating clinical learning": learning is maximized when students play an active role, encounter patients' clinical problems and develop relationships with patients, caregivers and staff. Night shifts remains ambiguous from the students' perspective and their introduction in nursing education should be approached with care, considering the learning aims expected by students in their clinical placements and the education of clinical mentors education who should be capable of effectively involving students in the process of night care by avoiding non-nursing tasks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Algorithms for image recovery calculation in extended single-shot phase-shifting digital holography

    NASA Astrophysics Data System (ADS)

    Hasegawa, Shin-ya; Hirata, Ryo

    2018-04-01

    The single-shot phase-shifting method of image recovery using an inclined reference wave has the advantages of reducing the effects of vibration, being capable of operating in real time, and affording low-cost sensing. In this method, relatively low reference angles compared with that in the conventional method using phase shift between three or four pixels has been required. We propose an extended single-shot phase-shifting technique which uses the multiple-step phase-shifting algorithm and the corresponding multiple pixels which are the same as that of the period of an interference fringe. We have verified the theory underlying this recovery method by means of Fourier spectral analysis and its effectiveness by evaluating the visibility of the image using a high-resolution pattern. Finally, we have demonstrated high-contrast image recovery experimentally using a resolution chart. This method can be used in a variety of applications such as color holographic interferometry.

  14. Calibration Method to Eliminate Zeroth Order Effect in Lateral Shearing Interferometry

    NASA Astrophysics Data System (ADS)

    Fang, Chao; Xiang, Yang; Qi, Keqi; Chen, Dawei

    2018-04-01

    In this paper, a calibration method is proposed which eliminates the zeroth order effect in lateral shearing interferometry. An analytical expression of the calibration error function is deduced, and the relationship between the phase-restoration error and calibration error is established. The analytical results show that the phase-restoration error introduced by the calibration error is proportional to the phase shifting error and zeroth order effect. The calibration method is verified using simulations and experiments. The simulation results show that the phase-restoration error is approximately proportional to the phase shift error and zeroth order effect, when the phase shifting error is less than 2° and the zeroth order effect is less than 0.2. The experimental result shows that compared with the conventional method with 9-frame interferograms, the calibration method with 5-frame interferograms achieves nearly the same restoration accuracy.

  15. A three pulse phase response curve to three milligrams of melatonin in humans

    PubMed Central

    Burgess, Helen J; Revell, Victoria L; Eastman, Charmane I

    2008-01-01

    Exogenous melatonin is increasingly used for its phase shifting and soporific effects. We generated a three pulse phase response curve (PRC) to exogenous melatonin (3 mg) by administering it to free-running subjects. Young healthy subjects (n = 27) participated in two 5 day laboratory sessions, each preceded by at least a week of habitual, but fixed sleep. Each 5 day laboratory session started and ended with a phase assessment to measure the circadian rhythm of endogenous melatonin in dim light using 30 min saliva samples. In between were three days in an ultradian dim light (< 150 lux)–dark cycle (LD 2.5 : 1.5) during which each subject took one pill per day at the same clock time (3 mg melatonin or placebo, double blind, counterbalanced). Each individual's phase shift to exogenous melatonin was corrected by subtracting their phase shift to placebo (a free-run). The resulting PRC has a phase advance portion peaking about 5 h before the dim light melatonin onset, in the afternoon. The phase delay portion peaks about 11 h after the dim light melatonin onset, shortly after the usual time of morning awakening. A dead zone of minimal phase shifts occurred around the first half of habitual sleep. The fitted maximum advance and delay shifts were 1.8 h and 1.3 h, respectively. This new PRC will aid in determining the optimal time to administer exogenous melatonin to achieve desired phase shifts and demonstrates that using exogenous melatonin as a sleep aid at night has minimal phase shifting effects. PMID:18006583

  16. Application of virtual phase-shifting speckle-interferometry for detection of polymorphism in the Chlamydia trachomatis omp1 gene

    NASA Astrophysics Data System (ADS)

    Feodorova, Valentina A.; Saltykov, Yury V.; Zaytsev, Sergey S.; Ulyanov, Sergey S.; Ulianova, Onega V.

    2018-04-01

    Method of phase-shifting speckle-interferometry has been used as a new tool with high potency for modern bioinformatics. Virtual phase-shifting speckle-interferometry has been applied for detection of polymorphism in the of Chlamydia trachomatis omp1 gene. It has been shown, that suggested method is very sensitive to natural genetic mutations as single nucleotide polymorphism (SNP). Effectiveness of proposed method has been compared with effectiveness of the newest bioinformatic tools, based on nucleotide sequence alignment.

  17. Nonphotic phase shifting in female Syrian hamsters: interactions with the estrous cycle.

    PubMed

    Young Janik, L; Janik, Daniel

    2003-08-01

    Nonphotic phase shifting of circadian rhythms was examined in female Syrian hamsters. Animals were stimulated at zeitgeber time 4.5 by either placing them in a novel running wheel or by transferring them to a clean home cage. Placement in a clean home cage was more effective than novel wheel treatment in stimulating large (> 1.5 h) phase shifts. Peak phase shifts (ca. 3.5 h) and the percentage of females showing large phase shifts were comparable to those found in male hamsters stimulated with novel wheels. The amount of activity induced by nonphotic stimulation and the amount of phase shifting varied slightly with respect to the 4-day estrous cycle. Animals tended to run less and shift less on the day of estrus. Nonphotic stimulation on proestrus often resulted in a 1-day delay of the estrous cycle reflected in animals' postovulatory vaginal discharge and the expression of sexual receptivity (lordosis). This delay of the estrous cycle was associated with large phase advances and high activity. These results extend the generality of nonphotic phase shifting to females for the first time and raise the possibility that resetting of circadian rhythms can induce changes in the estrous cycle.

  18. Improved phase shift approach to the energy correction of the infinite order sudden approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, B.; Eno, L.; Rabitz, H.

    1980-07-15

    A new method is presented for obtaining energy corrections to the infinite order sudden (IOS) approximation by incorporating the effect of the internal molecular Hamiltonian into the IOS wave function. This is done by utilizing the JWKB approximation to transform the Schroedinger equation into a differential equation for the phase. It is found that the internal Hamiltonian generates an effective potential from which a new improved phase shift is obtained. This phase shift is then used in place of the IOS phase shift to generate new transition probabilities. As an illustration the resulting improved phase shift (IPS) method is appliedmore » to the Secrest--Johnson model for the collinear collision of an atom and diatom. In the vicinity of the sudden limit, the IPS method gives results for transition probabilities, P/sub n/..-->..n+..delta..n, in significantly better agreement with the 'exact' close coupling calculations than the IOS method, particularly for large ..delta..n. However, when the IOS results are not even qualitatively correct, the IPS method is unable to satisfactorily provide improvements.« less

  19. Edge effects in phase-shifting masks for 0.25-µm lithography

    NASA Astrophysics Data System (ADS)

    Wong, Alfred K. K.; Neureuther, Andrew R.

    1993-03-01

    The impact on image quality of scattering from phase-shifter edges and of interactions between phase-shifter and chrome edges is assessed using rigorous electromagnetic simulation. Effects of edge taper in phase-shift masks, spacing between phase-shifter and chrome edges, small outrigger features with a trench phase-shifter, and of the repair of phase defects by etching to 360 degree(s) are considered. Near field distributions and diffraction efficiencies are examined and images are compared with more approximate results from the commonly used Hopkins' theory of imaging.

  20. Blind phase error suppression for color-encoded digital fringe projection profilometry

    NASA Astrophysics Data System (ADS)

    Ma, S.; Zhu, R.; Quan, C.; Li, B.; Tay, C. J.; Chen, L.

    2012-04-01

    Color-encoded digital fringe projection profilometry (CDFPP) has the advantage of fast speed, non-contact and full-field testing. It is one of the most important dynamic three-dimensional (3D) profile measurement techniques. However, due to factors such as color cross-talk and gamma distortion of electro-optical devices, phase errors arise when conventional phase-shifting algorithms with fixed phase shift values are utilized to retrieve phases. In this paper, a simple and effective blind phase error suppression approach based on isotropic n-dimensional fringe pattern normalization (INFPN) and carrier squeezing interferometry (CSI) is proposed. It does not require pre-calibration for the gamma and color-coupling coefficients or the phase shift values. Simulation and experimental works show that our proposed approach is able to effectively suppress phase errors and achieve accurate measurement results in CDFPP.

  1. S-Matrix to potential inversion of low-energy α-12C phase shifts

    NASA Astrophysics Data System (ADS)

    Cooper, S. G.; Mackintosh, R. S.

    1990-10-01

    The IP S-matrix to potential inversion procedure is applied to phase shifts for selected partial waves over a range of energies below the inelastic threshold for α-12C scattering. The phase shifts were determined by Plaga et al. Potentials found by Buck and Rubio to fit the low-energy alpha cluster resonances need only an increased attraction in the surface to accurately reproduce the phase-shift behaviour. Substantial differences between the potentials for odd and even partial waves are necessary. The surface tail of the potential is postulated to be a threshold effect.

  2. A Mathematical Model of the Circadian Phase-Shifting Effects of Exogenous Melatonin

    PubMed Central

    Breslow, Emily R.; Phillips, Andrew J.K.; Huang, Jean M.; St. Hilaire, Melissa A.; Klerman, Elizabeth B.

    2013-01-01

    Melatonin is endogenously produced and released in humans during nighttime darkness and is suppressed by ocular light exposure. Exogenous melatonin is used to induce circadian phase shifts and sleep. The circadian phase-shifting ability of a stimulus (e.g., melatonin or light) relative to its timing may be displayed as a phase response curve (PRC). Published PRCs to exogenous melatonin show a transition from phase advances to delays approximately 1 h after dim light melatonin onset. A previously developed mathematical model simulates endogenous production and clearance of melatonin as a function of circadian phase, light-induced suppression, and resetting of circadian phase by light. We extend this model to include the pharmacokinetics of oral exogenous melatonin and phase-shifting effects via melatonin receptors in the suprachiasmatic nucleus of the mammalian hypothalamus. Model parameters are fit using 2 data sets: (1) blood melatonin concentration following a 0.3- or 5.0-mg dose, and (2) a PRC to a 3.0-mg dose of melatonin. After fitting to the 3.0-mg PRC, the model correctly predicts that, by comparison, the 0.5-mg PRC is slightly decreased in amplitude and shifted to a later circadian phase. This model also reproduces blood concentration profiles of various melatonin preparations that differ only in absorption rate and percentage degradation by first-pass hepatic metabolism. This model can simulate experimental protocols using oral melatonin, with potential application to guide dose size and timing to optimally shift and entrain circadian rhythms. PMID:23382594

  3. Resynchronization of circadian sleep-wake and temperature cycles in the squirrel monkey following phase shifts of the environmental light-dark cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wexler, D.B.; Moore-ede, M.C.

    1986-12-01

    Circadian rhythms in physiological and behavioral functions gradually resynchronize after phase shifts in environmental time cues. In order to characterize the rate of circadian resynchronization in a diurnal primate model, the temperature, locomotor activity, and polygraphically determined sleep-wake states were monitored in squirrel monkeys before and after 8-h phase shifts of an environmental light-dark cycle of 12 h light and 12 h dark (LD 12:12). For the temperature rhythm, resynchronization took 4 d after phase delay shift and 5 d after phase advance shift; for the rest-activity cycle, resynchronization times were 3 d and 6 d, respectively. The activity acrophasemore » shifted more rapidly than the temperature acrophase early in the post-delay shift interval, but this internal desynchronization between rhythms disappeared during the course of resynchronization. Further study of the early resynchronization process requires emphasis on identifying evoked effects and measuring circadian pacemaker function. 13 references.« less

  4. Resynchronization of circadian sleep-wake and temperature cycles in the squirrel monkey following phase shifts of the environmental light-dark cycle

    NASA Technical Reports Server (NTRS)

    Wexler, D. B.; Moore-Ede, M. C.

    1986-01-01

    Circadian rhythms in physiological and behavioral functions gradually resynchronize after phase shifts in environmental time cues. In order to characterize the rate of circadian resynchronization in a diurnal primate model, the temperature, locomotor activity, and polygraphically determined sleep-wake states were monitored in squirrel monkeys before and after 8-h phase shifts of an environmental light-dark cycle of 12 h light and 12 h dark (LD 12:12). For the temperature rhythm, resynchronization took 4 d after phase delay shift and 5 d after phase advance shift; for the rest-activity cycle, resynchronization times were 3 d and 6 d, respectively. The activity acrophase shifted more rapidly than the temperature acrophase early in the post-delay shift interval, but this internal desynchronization between rhythms disappeared during the course of resynchronization. Further study of the early resynchronization process requires emphasis on identifying evoked effects and measuring circadian pacemaker function.

  5. Robust phase-shifting interferometry resistant to multiple disturbances

    NASA Astrophysics Data System (ADS)

    Liu, Qian; Yue, Xiaobin; Li, Lulu; Zhang, Hui; He, Jianguo

    2018-04-01

    Phase-shifting interferometry (PSI) is sensitive to many disturbances, including the environmental vibration, laser instability, phase-shifting error and camera nonlinearity. A robust PSI (RPSI) based on the temporal spectrum analysis is proposed to suppress the effects of these common disturbances. RPSI retrieves wavefront phase from the temporal Fourier spectrum peak, which is identified by detecting the modulus of spectrum, and a referencing method is presented to improve the phase extracting accuracy. Simulations demonstrate the feasibility and effectiveness of RPSI. Experimental results indicate that RPSI is resistant to common disturbances in implementing PSI and achieves accuracy better than 0.03 rad in the disturbed environment. RPSI relaxes requirements on the hardware, environment and operator, and provides an easy-to-use design of an interferometer.

  6. 3D measurement using combined Gray code and dual-frequency phase-shifting approach

    NASA Astrophysics Data System (ADS)

    Yu, Shuang; Zhang, Jing; Yu, Xiaoyang; Sun, Xiaoming; Wu, Haibin; Liu, Xin

    2018-04-01

    The combined Gray code and phase-shifting approach is a commonly used 3D measurement technique. In this technique, an error that equals integer multiples of the phase-shifted fringe period, i.e. period jump error, often exists in the absolute analog code, which can lead to gross measurement errors. To overcome this problem, the present paper proposes 3D measurement using a combined Gray code and dual-frequency phase-shifting approach. Based on 3D measurement using the combined Gray code and phase-shifting approach, one set of low-frequency phase-shifted fringe patterns with an odd-numbered multiple of the original phase-shifted fringe period is added. Thus, the absolute analog code measured value can be obtained by the combined Gray code and phase-shifting approach, and the low-frequency absolute analog code measured value can also be obtained by adding low-frequency phase-shifted fringe patterns. Then, the corrected absolute analog code measured value can be obtained by correcting the former by the latter, and the period jump errors can be eliminated, resulting in reliable analog code unwrapping. For the proposed approach, we established its measurement model, analyzed its measurement principle, expounded the mechanism of eliminating period jump errors by error analysis, and determined its applicable conditions. Theoretical analysis and experimental results show that the proposed approach can effectively eliminate period jump errors, reliably perform analog code unwrapping, and improve the measurement accuracy.

  7. Alternative stable states and phase shifts in coral reefs under anthropogenic stress.

    PubMed

    Fung, Tak; Seymour, Robert M; Johnson, Craig R

    2011-04-01

    Ecosystems with alternative stable states (ASS) may shift discontinuously from one stable state to another as environmental parameters cross a threshold. Reversal can then be difficult due to hysteresis effects. This contrasts with continuous state changes in response to changing environmental parameters, which are less difficult to reverse. Worldwide degradation of coral reefs, involving "phase shifts" from coral to algal dominance, highlights the pressing need to determine the likelihood of discontinuous phase shifts in coral reefs, in contrast to continuous shifts with no ASS. However, there is little evidence either for or against the existence of ASS for coral reefs. We use dynamic models to investigate the likelihood of continuous and discontinuous phase shifts in coral reefs subject to sustained environmental perturbation by fishing, nutrification, and sedimentation. Our modeling results suggest that coral reefs with or without anthropogenic stress can exhibit ASS, such that discontinuous phase shifts can occur. We also find evidence to support the view that high macroalgal growth rates and low grazing rates on macroalgae favor ASS in coral reefs. Further, our results suggest that the three stressors studied, either alone or in combination, can increase the likelihood of both continuous and discontinuous phase shifts by altering the competitive balance between corals and algae. However, in contrast to continuous phase shifts, we find that discontinuous shifts occur only in model coral reefs with parameter values near the extremes of their empirically determined ranges. This suggests that continuous shifts are more likely than discontinuous shifts in coral reefs. Our results also suggest that, for ecosystems in general, tackling multiple human stressors simultaneously maximizes resilience to phase shifts, ASS, and hysteresis, leading to improvements in ecosystem health and functioning.

  8. Solitary waves of surface plasmon polariton via phase shifts under Doppler broadening and Kerr nonlinearity

    NASA Astrophysics Data System (ADS)

    Ahmad, S.; Ahmad, A.; Bacha, B. A.; Khan, A. A.; Abdul Jabar, M. S.

    2017-12-01

    Surface Plasmon Polaritons (SPPs) are theoretically investigated at the interface of a dielectric metal and gold. The output pulse from the dielectric is used as the input pulse for the generation of SPPs. The SPPs show soliton-like behavior at the interface. The solitary form of a SPP is maintained under the effects of Kerr nonlinearity, Doppler broadening and Fresnel dragging whereas its phase shift is significantly modified. A 0.3radian phase shift is calculated in the presence of both Kerr nonlinearity and Fresnel dragging in the absence of plasma motion. The phase shift is enhanced to 60radian due to the combined effect of Doppler broadening, Kerr nonlinearity and Fresnel dragging. The results may have significant applications in nano-photonics, optical tweezers, photovoltaic devices, plasmonster and sensing technology.

  9. ACUTE ETHANOL MODULATES GLUTAMATERGIC AND SEROTONERGIC PHASE SHIFTS OF THE MOUSE CIRCADIAN LOCK IN VITRO

    PubMed Central

    Prosser, Rebecca A.; Mangrum, Charles A.; Glass, J. David

    2008-01-01

    Alcohol abuse is associated with sleep problems, which are often linked to circadian rhythm disturbances. However, there is no information on the direct effects of ethanol on the mammalian circadian clock. Acute ethanol inhibits glutamate signaling, which is the primary mechanism through which light resets the mammalian clock in the suprachiasmatic nucleus (SCN). Glutamate and light also inhibit circadian clock resetting induced by non-photic signals, including serotonin. Thus, we investigated the effects of acute ethanol on both glutamatergic and serotoninergic resetting of the SCN clock in vitro. We show that ethanol dose-dependently inhibits glutamate-induced phase shifts and enhances serotonergic phase shifts. The inhibition of glutamate-induced phase shifts is not affected by excess glutamate, glycine or D-serine, but is prevented by excess brain-derived neurotrophic factor (BDNF). BDNF is known to augment glutamate signaling in the SCN and to be necessary for glutamate/light-induced phase shifts. Thus, ethanol may inhibit glutamate-induced clock resetting at least in part by blocking BDNF enhancement of glutamate signaling. Ethanol enhancement of serotonergic phase shifts is mimicked by treatments that suppress glutamate signaling in the SCN, including antagonists of glutamate receptors, BDNF signaling and nitric oxide synthase. The combined effect of ethanol with these treatments is not additive, suggesting they act through a common pathway. Our data indicate further that the interaction between serotonin and glutamate in the SCN may occur downstream from nitric oxide synthase activation. Thus, acute ethanol disrupts normal circadian clock phase regulation, which could contribute to the physiological and psychological problems associated with alcohol abuse. PMID:18313227

  10. Coma measurement by transmission image sensor with a PSM

    NASA Astrophysics Data System (ADS)

    Wang, Fan; Wang, Xiangzhao; Ma, Mingying; Zhang, Dongqing; Shi, Weijie; Hu, Jianming

    2005-01-01

    As feature size decreases, especially with the use of resolution enhancement technique such as off axis illumination and phase shifting mask, fast and accurate in-situ measurement of coma has become very important in improving the performance of modern lithographic tools. The measurement of coma can be achieved by the transmission image sensor, which is an aerial image measurement device. The coma can be determined by measuring the positions of the aerial image at multiple illumination settings. In the present paper, we improve the measurement accuracy of the above technique with an alternating phase shifting mask. Using the scalar diffraction theory, we analyze the effect of coma on the aerial image. To analyze the effect of the alternating phase shifting mask, we compare the pupil filling of the mark used in the above technique with that of the phase-shifted mark used in the new technique. We calculate the coma-induced image displacements of the marks at multiple partial coherence and NA settings, using the PROLITH simulation program. The simulation results show that the accuracy of coma measurement can increase approximately 20 percent using the alternating phase shifting mask.

  11. Measurement and Calibration of PSD with Phase-shifting Interferometers

    NASA Technical Reports Server (NTRS)

    Lehan, J. P.

    2008-01-01

    We discuss the instrumental aspects affecting the measurement accuracy when determining PSD with phase shifting interferometers. These include the source coherence, optical train effects, and detector effects. The use of a carefully constructed calibration standard will also be discussed. We will end with a recommended measurement and data handling procedure.

  12. Inverse effects of flowing phase-shift nanodroplets and lipid-shelled microbubbles on subsequent cavitation during focused ultrasound exposures.

    PubMed

    Zhang, Siyuan; Cui, Zhiwei; Xu, Tianqi; Liu, Pan; Li, Dapeng; Shang, Shaoqiang; Xu, Ranxiang; Zong, Yujin; Niu, Gang; Wang, Supin; He, Xijing; Wan, Mingxi

    2017-01-01

    This paper compared the effects of flowing phase-shift nanodroplets (NDs) and lipid-shelled microbubbles (MBs) on subsequent cavitation during focused ultrasound (FUS) exposures. The cavitation activity was monitored using a passive cavitation detection method as solutions of either phase-shift NDs or lipid-shelled MBs flowed at varying velocities through a 5-mm diameter wall-less vessel in a transparent tissue-mimicking phantom when exposed to FUS. The intensity of cavitation for the phase-shift NDs showed an upward trend with time and cavitation for the lipid-shelled MBs grew to a maximum at the outset of the FUS exposure followed by a trend of decreases when they were static in the vessel. Meanwhile, the increase of cavitation for the phase-shift NDs and decrease of cavitation for the lipid-shelled MBs had slowed down when they flowed through the vessel. During two discrete identical FUS exposures, while the normalized inertial cavitation dose (ICD) value for the lipid-shelled MB solution was higher than that for the saline in the first exposure (p-value <0.05), it decreased to almost the same level in the second exposure. For the phase-shift NDs, the normalized ICD was 0.71 in the first exposure and increased to 0.97 in the second exposure. At a low acoustic power, the normalized ICD values for the lipid-shelled MBs tended to increase with increasing velocities from 5 to 30cm/s (r>0.95). Meanwhile, the normalized ICD value for the phase-shift NDs was 0.182 at a flow velocity of 5cm/s and increased to 0.188 at a flow velocity of 15cm/s. As the flow velocity increased to 20cm/s, the normalized ICD was 0.185 and decreased to 0.178 at a flow velocity of 30cm/s. At high acoustic power, the normalized ICD values for both the lipid-shelled MBs and the phase-shift NDs increased with increasing flow velocities from 5 to 30cm/s (r>0.95). The effects of the flowing phase-shift NDs vaporized into gas bubbles as cavitation nuclei on the subsequent cavitation were inverse to those of the flowing lipid-shelled MBs destroyed after focused ultrasound exposures. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Chronic phase advance alters circadian physiological rhythms and peripheral molecular clocks

    PubMed Central

    Wolff, Gretchen; Duncan, Marilyn J.

    2013-01-01

    Shifting the onset of light, acutely or chronically, can profoundly affect responses to infection, tumor progression, development of metabolic disease, and mortality in mammals. To date, the majority of phase-shifting studies have focused on acute exposure to a shift in the timing of the light cycle, whereas the consequences of chronic phase shifts alone on molecular rhythms in peripheral tissues such as skeletal muscle have not been studied. In this study, we tested the effect of chronic phase advance on the molecular clock mechanism in two phenotypically different skeletal muscles. The phase advance protocol (CPA) involved 6-h phase advances (earlier light onset) every 4 days for 8 wk. Analysis of the molecular clock, via bioluminescence recording, in the soleus and flexor digitorum brevis (FDB) muscles and lung demonstrated that CPA advanced the phase of the rhythm when studied immediately after CPA. However, if the mice were placed into free-running conditions (DD) for 2 wk after CPA, the molecular clock was not phase shifted in the two muscles but was still shifted in the lung. Wheel running behavior remained rhythmic in CPA mice; however, the endogenous period length of the free-running rhythm was significantly shorter than that of control mice. Core body temperature, cage activity, and heart rate remained rhythmic throughout the experiment, although the onset of the rhythms was significantly delayed with CPA. These results provide clues that lifestyles associated with chronic environmental desynchrony, such as shift work, can have disruptive effects on the molecular clock mechanism in peripheral tissues, including both types of skeletal muscle. Whether this can contribute, long term, to increased incidence of insulin resistance/metabolic disease requires further study. PMID:23703115

  14. Quantum phase gate based on electromagnetically induced transparency in optical cavities

    NASA Astrophysics Data System (ADS)

    Borges, Halyne S.; Villas-Bôas, Celso J.

    2016-11-01

    We theoretically investigate the implementation of a quantum controlled-phase gate in a system constituted by a single atom inside an optical cavity, based on the electromagnetically induced transparency effect. First we show that a probe pulse can experience a π phase shift due to the presence or absence of a classical control field. Considering the interplay of the cavity-EIT effect and the quantum memory process, we demonstrated a controlled-phase gate between two single photons. To this end, first one needs to store a (control) photon in the ground atomic states. In the following, a second (target) photon must impinge on the atom-cavity system. Depending on the atomic state, this second photon will be either transmitted or reflected, acquiring different phase shifts. This protocol can then be easily extended to multiphoton systems, i.e., keeping the control photon stored, it may induce phase shifts in several single photons, thus enabling the generation of multipartite entangled states. We explore the relevant parameter space in the atom-cavity system that allows the implementation of quantum controlled-phase gates using the recent technologies. In particular, we have found a lower bound for the cooperativity of the atom-cavity system which enables the implementation of phase shift on single photons. The induced shift on the phase of a photonic qubit and the controlled-phase gate between single photons, combined with optical devices, enable one to perform universal quantum computation.

  15. Repeated light-dark phase shifts modulate voluntary ethanol intake in male and female high alcohol-drinking (HAD1) rats.

    PubMed

    Clark, James W; Fixaris, Michael C; Belanger, Gabriel V; Rosenwasser, Alan M

    2007-10-01

    Chronic disruption of sleep and other circadian biological rhythms, such as occurs in shift work or in frequent transmeridian travel, appears to represent a significant source of allostatic load, leading to the emergence of stress-related physical and psychological illness. Recent animal experiments have shown that these negative health effects may be effectively modeled by exposure to repeated phase shifts of the daily light-dark (LD) cycle. As chronobiological disturbances are thought to promote relapse in abstinent alcoholics, and may also be associated with increased risk of subsequent alcohol abuse in nonalcoholic populations, the present experiment was designed to examine the effects of repeated LD phase shifts on voluntary ethanol intake in rats. A selectively bred, high alcohol-drinking (HAD1) rat line was utilized to increase the likelihood of excessive alcoholic-like drinking. Male and female rats of the selectively bred HAD1 rat line were maintained individually under a LD 12:12 cycle with both ethanol (10% v/v) and water available continuously. Animals in the experimental group were subjected to repeated 6-hour LD phase advances at 3 to 4 week intervals, while control rats were maintained under a stable LD cycle throughout the study. Contact-sensing drinkometers were used to monitor circadian lick patterns, and ethanol and water intakes were recorded weekly. Control males showed progressively increasing ethanol intake and ethanol preference over the course of the study, but males exposed to chronic LD phase shifts exhibited gradual decreases in ethanol drinking. In contrast, control females displayed decreasing ethanol intake and ethanol preference over the course of the experiment, while females exposed to experimental LD phase shifts exhibited a slight increase in ethanol drinking. Chronic circadian desynchrony induced by repeated LD phase shifts resulted in sex-specific modulation of voluntary ethanol intake, reducing ethanol intake in males while slightly increasing intake in females. While partially contrary to initial predictions, these results are consistent with extensive prior research showing that chronic stress may either increase or decrease ethanol intake, depending on strain, sex, stressor type, and experimental history. Thus, repeated LD phase shifts may provide a novel chronobiological model for the analysis of stress effects on alcohol intake.

  16. Sleep deprivation decreases phase-shift responses of circadian rhythms to light in the mouse: role of serotonergic and metabolic signals.

    PubMed

    Challet, E; Turek, F W; Laute, M; Van Reeth, O

    2001-08-03

    The circadian pacemaker in the suprachiasmatic nuclei is primarily synchronized to the daily light-dark cycle. The phase-shifting and synchronizing effects of light can be modulated by non-photic factors, such as behavioral, metabolic or serotonergic cues. The present experiments examine the effects of sleep deprivation on the response of the circadian pacemaker to light and test the possible involvement of serotonergic and/or metabolic cues in mediating the effects of sleep deprivation. Photic phase-shifting of the locomotor activity rhythm was analyzed in mice transferred from a light-dark cycle to constant darkness, and sleep-deprived for 8 h from Zeitgeber Time 6 to Zeitgeber Time 14. Phase-delays in response to a 10-min light pulse at Zeitgeber Time 14 were reduced by 30% in sleep-deprived mice compared to control mice, while sleep deprivation without light exposure induced no significant phase-shifts. Stimulation of serotonin neurotransmission by fluoxetine (10 mg/kg), a serotonin reuptake inhibitor that decreases light-induced phase-delays in non-deprived mice, did not further reduce light-induced phase-delays in sleep-deprived mice. Impairment of serotonin neurotransmission with p-chloroamphetamine (three injections of 10 mg/kg), which did not increase light-induced phase-delays in non-deprived mice significantly, partially normalized light-induced phase-delays in sleep-deprived mice. Injections of glucose increased light-induced phase-delays in control and sleep-deprived mice. Chemical damage of the ventromedial hypothalamus by gold-thioglucose (600 mg/kg) prevented the reduction of light-induced phase-delays in sleep-deprived mice, without altering phase-delays in control mice. Taken together, the present results indicate that sleep deprivation can reduce the light-induced phase-shifts of the mouse suprachiasmatic pacemaker, due to serotonergic and metabolic changes associated with the loss of sleep.

  17. Coral-macroalgal phase shifts or reef resilience: links with diversity and functional roles of herbivorous fishes on the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Cheal, A. J.; MacNeil, M. Aaron; Cripps, E.; Emslie, M. J.; Jonker, M.; Schaffelke, B.; Sweatman, H.

    2010-12-01

    Changes from coral to macroalgal dominance following disturbances to corals symbolize the global degradation of coral reefs. The development of effective conservation measures depends on understanding the causes of such phase shifts. The prevailing view that coral-macroalgal phase shifts commonly occur due to insufficient grazing by fishes is based on correlation with overfishing and inferences from models and small-scale experiments rather than on long-term quantitative field studies of fish communities at affected and resilient sites. Consequently, the specific characteristics of herbivorous fish communities that most promote reef resilience under natural conditions are not known, though this information is critical for identifying vulnerable ecosystems. In this study, 11 years of field surveys recorded the development of the most persistent coral-macroalgal phase shift (>7 years) yet observed on Australia’s Great Barrier Reef (GBR). This shift followed extensive coral mortality caused by thermal stress (coral bleaching) and damaging storms. Comparisons with two similar reefs that suffered similar disturbances but recovered relatively rapidly demonstrated that the phase shift occurred despite high abundances of one herbivore functional group (scraping/excavating parrotfishes: Labridae). However, the shift was strongly associated with low fish herbivore diversity and low abundances of algal browsers (predominantly Siganidae) and grazers/detritivores (Acanthuridae), suggesting that one or more of these factors underpin reef resilience and so deserve particular protection. Herbivorous fishes are not harvested on the GBR, and the phase shift was not enhanced by unusually high nutrient levels. This shows that unexploited populations of herbivorous fishes cannot ensure reef resilience even under benign conditions and suggests that reefs could lose resilience under relatively low fishing pressure. Predictions of more severe and widespread coral mortality due to global climate change emphasize the need for more effective identification and protection of ecosystem components that are critical for the prevention of coral reef phase shifts.

  18. Circadian Phase-Shifting Effects of Bright Light, Exercise, and Bright Light + Exercise.

    PubMed

    Youngstedt, Shawn D; Kline, Christopher E; Elliott, Jeffrey A; Zielinski, Mark R; Devlin, Tina M; Moore, Teresa A

    2016-02-26

    Limited research has compared the circadian phase-shifting effects of bright light and exercise and additive effects of these stimuli. The aim of this study was to compare the phase-delaying effects of late night bright light, late night exercise, and late evening bright light followed by early morning exercise. In a within-subjects, counterbalanced design, 6 young adults completed each of three 2.5-day protocols. Participants followed a 3-h ultra-short sleep-wake cycle, involving wakefulness in dim light for 2h, followed by attempted sleep in darkness for 1 h, repeated throughout each protocol. On night 2 of each protocol, participants received either (1) bright light alone (5,000 lux) from 2210-2340 h, (2) treadmill exercise alone from 2210-2340 h, or (3) bright light (2210-2340 h) followed by exercise from 0410-0540 h. Urine was collected every 90 min. Shifts in the 6-sulphatoxymelatonin (aMT6s) cosine acrophase from baseline to post-treatment were compared between treatments. Analyses revealed a significant additive phase-delaying effect of bright light + exercise (80.8 ± 11.6 [SD] min) compared with exercise alone (47.3 ± 21.6 min), and a similar phase delay following bright light alone (56.6 ± 15.2 min) and exercise alone administered for the same duration and at the same time of night. Thus, the data suggest that late night bright light followed by early morning exercise can have an additive circadian phase-shifting effect.

  19. Terahertz artificial birefringence and tunable phase shifter based on dielectric metasurface with compound lattice.

    PubMed

    Ji, Yun-Yun; Fan, Fei; Chen, Meng; Yang, Lei; Chang, Sheng-Jiang

    2017-05-15

    A dielectric metasurface with line-square compound lattice structure has been fabricated and demonstrated in the terahertz (THz) regime by the THz time-domain spectroscopy and numerical simulation. A polarization dependent electromagnetically induced transparency (EIT) effect is achieved in this metasurface due to the mode coupling and interference between the resonance modes in line and square subunits of the metasurface. Accompany with the EIT effect, a large artificial birefringence effect between two orthogonal polarization states is also observed in this compound metasurface, of which birefringence is over 0.6. Furthermore, the liquid crystals are filled on the surface of this dielectric metasurface to fabricate an electrically tunable THz LC phase shifter. The experimental results show that its tunable phase shift under the biased electric field reaches 0.33π, 1.8 times higher than the bare silicon, which confirms the enhancement role of THz microstructure on the LC phase shift in the THz regime. The large birefringence phase shift of this compound metasurface and its LC tunable phase shifter will be of great significance for potential applications in THz polarization and phase devices.

  20. Circadian rhythm adaptation to simulated night shift work: effect of nocturnal bright-light duration.

    PubMed

    Eastman, C I; Liu, L; Fogg, L F

    1995-07-01

    We compared bright-light durations of 6, 3 and 0 hours (i.e. dim light) during simulated night shifts for phase shifting the circadian rectal temperature rhythm to align with a 12-hour shift of the sleep schedule. After 10 baseline days there were 8 consecutive night-work, day-sleep days, with 8-hour sleep (dark) periods. The bright light (about 5,000 lux, around the baseline temperature minimum) was used during all 8 night shifts, and dim light was < 500 lux. This was a field study in which subjects (n = 46) went outside after the night shifts and slept at home. Substantial circadian adaptation (i.e. a large cumulative temperature rhythm phase shift) was produced in many subjects in the bright light groups, but not in the dim light group. Six and 3 hours of bright light were each significantly better than dim light for phase shifting the temperature rhythm, but there was no significant difference between 6 and 3 hours. Thus, durations > 3 hours are probably not necessary in similar shift-work situations. Larger temperature rhythm phase shifts were associated with better subjective daytime sleep, less subjective fatigue and better overall mood.

  1. A method searching for optimum fractional order and its application in self-phase modulation induced nonlinear phase noise estimation in coherent optical fiber transmission systems

    NASA Astrophysics Data System (ADS)

    Huang, Chuan; Guo, Peng; Yang, Aiying; Qiao, Yaojun

    2018-07-01

    In single channel systems, the nonlinear phase noise only comes from the channel itself through self-phase modulation (SPM). In this paper, a fast-nonlinear effect estimation method is proposed based on fractional Fourier transformation (FrFT). The nonlinear phase noise caused by Self-phase modulation effect is accurately estimated for single model 10Gbaud OOK and RZ-QPSK signals with the fiber length range of 0-200 km and the launch power range of 1-10 mW. The pulse windowing is adopted to search the optimum fractional order for the OOK and RZ-QPSK signals. Since the nonlinear phase shift caused by the SPM effect is very small, the accurate optimum fractional order of the signal cannot be found based on the traditional method. In this paper, a new method magnifying the phase shift is proposed to get the accurate optimum order and thus the nonlinear phase shift is calculated. The simulation results agree with the theoretical analysis and the method is applicable to signals whose pulse type has the similar characteristics with Gaussian pulse.

  2. Effects of partial circadian adjustments on sleep and vigilance quality during simulated night work.

    PubMed

    Chapdelaine, Simon; Paquet, Jean; Dumont, Marie

    2012-08-01

    In most situations, complete circadian adjustment is not recommended for night workers. With complete adjustment, workers experience circadian misalignment when returning on a day-active schedule, causing repeated circadian phase shifts and internal desynchrony. For this reason, partial circadian realignment was proposed as a good compromise to stabilize internal circadian rhythms in night shift workers. However, the extent of partial circadian adjustment necessary to improve sleep and vigilance quality is still a matter of debate. In this study, the effects of small but statistically significant partial circadian adjustments on sleep and vigilance quality were assessed in a laboratory simulation of night work to determine whether they were also of clinical significance. Partial adjustments obtained by phase delay or by phase advance were quantified not only by the phase shift of dim light salivary melatonin onset, but also by the overlap of the episode of melatonin production with the sleep-wake cycle adopted during simulated night work. The effects on daytime sleep and night-time vigilance quality were modest. However, they suggest that even small adjustments by phase delay may decrease the accumulation of sleep debt, whereas the advance strategy improves subjective alertness and mood during night work. Furthermore, absolute phase shifts, by advance or by delay, were associated with improved subjective alertness and mood during the night shift. These strategies need to be tested in the field, to determine whether they can be adapted to real-life situations and provide effective support to night workers. © 2012 European Sleep Research Society.

  3. A polarization-independent liquid crystal phase modulation using polymer-network liquid crystals in a 90° twisted cell

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Hsin; Chen, Ming-Syuan; Lin, Wei-Chih; Tsou, Yu-Shih

    2012-07-01

    A polarization-independent liquid crystal phase modulation using polymer-network liquid crystals in a 90° twisted cell (T-PNLC) is demonstrated. T-PNLC consists of three layers. Liquid crystal (LC) directors in the two layers near glass substrates are orthogonal to each other and those two layers modulate two eigen-polarizations of an incident light. As a result, two eigen-polarizations of an incident light experience the same phase shift. In the middle layer, LC directors are perpendicular to the glass substrate and contribute no phase shift. The phase shift of T-PNLC is electrically tunable and polarization-independent. T-PNLC does not require any bias voltage for operation. The phase shift is 0.28 π rad for the voltage of 30 Vrms. By measuring and analyzing the optical phase shift of T-PNLC at the oblique incidence of transverse magnetic wave, the pretilt angle of LC directors and the effective thickness of three layers are obtained and discussed. The potential applications are spatial light modulators, laser beam steering, and micro-lens arrays.

  4. A single dose of alcohol does not meaningfully alter circadian phase advances and phase delays to light in humans

    PubMed Central

    Rizvydeen, Muneer; Fogg, Louis F.; Keshavarzian, Ali

    2016-01-01

    Central circadian timing influences mental and physical health. Research in nocturnal rodents has demonstrated that when alcohol is consumed, it reaches the central hypothalamic circadian pacemaker (suprachiasmatic nuclei) and can directly alter circadian phase shifts to light. In two separate studies, we examined, for the first time, the effects of a single dose of alcohol on circadian phase advances and phase delays to light in humans. Two 23-day within-subjects placebo-controlled counterbalanced design studies were conducted. Both studies consisted of 6 days of fixed baseline sleep to stabilize circadian timing, a 2-day laboratory session, a 6-day break, and a repeat of 6 days of fixed sleep and a 2-day laboratory session. In the phase advance study (n = 10 light drinkers, 24–45 yr), the laboratory sessions consisted of a baseline dim light phase assessment, sleep episode, alcohol (0.6 g/kg) or placebo, 2-h morning bright light pulse, and final phase assessment. In the phase-delay study (n = 14 light drinkers, 22–44 yr), the laboratory sessions consisted of a baseline phase assessment, alcohol (0.8 g/kg) or placebo, 2-h late night bright light pulse, sleep episode, and final phase assessment. In both studies, alcohol either increased or decreased the observed phase shifts to light (interaction P ≥ 0.46), but the effect of alcohol vs. placebo on phase shifts to light was always on average smaller than 30 min. Thus, no meaningful effects of a single dose of alcohol vs. placebo on circadian phase shifts to light in humans were observed. PMID:26936778

  5. A single dose of alcohol does not meaningfully alter circadian phase advances and phase delays to light in humans.

    PubMed

    Burgess, Helen J; Rizvydeen, Muneer; Fogg, Louis F; Keshavarzian, Ali

    2016-04-15

    Central circadian timing influences mental and physical health. Research in nocturnal rodents has demonstrated that when alcohol is consumed, it reaches the central hypothalamic circadian pacemaker (suprachiasmatic nuclei) and can directly alter circadian phase shifts to light. In two separate studies, we examined, for the first time, the effects of a single dose of alcohol on circadian phase advances and phase delays to light in humans. Two 23-day within-subjects placebo-controlled counterbalanced design studies were conducted. Both studies consisted of 6 days of fixed baseline sleep to stabilize circadian timing, a 2-day laboratory session, a 6-day break, and a repeat of 6 days of fixed sleep and a 2-day laboratory session. In the phase advance study (n= 10 light drinkers, 24-45 yr), the laboratory sessions consisted of a baseline dim light phase assessment, sleep episode, alcohol (0.6 g/kg) or placebo, 2-h morning bright light pulse, and final phase assessment. In the phase-delay study (n= 14 light drinkers, 22-44 yr), the laboratory sessions consisted of a baseline phase assessment, alcohol (0.8 g/kg) or placebo, 2-h late night bright light pulse, sleep episode, and final phase assessment. In both studies, alcohol either increased or decreased the observed phase shifts to light (interaction P≥ 0.46), but the effect of alcohol vs. placebo on phase shifts to light was always on average smaller than 30 min. Thus, no meaningful effects of a single dose of alcohol vs. placebo on circadian phase shifts to light in humans were observed. Copyright © 2016 the American Physiological Society.

  6. Can short-wavelength depleted bright light during single simulated night shifts prevent circadian phase shifts?

    PubMed

    Regente, J; de Zeeuw, J; Bes, F; Nowozin, C; Appelhoff, S; Wahnschaffe, A; Münch, M; Kunz, D

    2017-05-01

    In single night shifts, extending habitual wake episodes leads to sleep deprivation induced decrements of performance during the shift and re-adaptation effects the next day. We investigated whether short-wavelength depleted (=filtered) bright light (FBL) during a simulated night shift would counteract such effects. Twenty-four participants underwent a simulated night shift in dim light (DL) and in FBL. Reaction times, subjective sleepiness and salivary melatonin concentrations were assessed during both nights. Daytime sleep was recorded after both simulated night shifts. During FBL, we found no melatonin suppression compared to DL, but slightly faster reaction times in the second half of the night. Daytime sleep was not statistically different between both lighting conditions (n = 24) and there was no significant phase shift after FBL (n = 11). To conclude, our results showed positive effects from FBL during simulated single night shifts which need to be further tested with larger groups, in more applied studies and compared to standard lighting. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Phase Shifting Capacity of the Circadian Pacemaker Determined by the SCN Neuronal Network Organization

    PubMed Central

    vanderLeest, Henk Tjebbe; Rohling, Jos H. T.; Michel, Stephan; Meijer, Johanna H.

    2009-01-01

    Background In mammals, a major circadian pacemaker that drives daily rhythms is located in the suprachiasmatic nuclei (SCN), at the base of the hypothalamus. The SCN receive direct light input via the retino-hypothalamic tract. Light during the early night induces phase delays of circadian rhythms while during the late night it leads to phase advances. The effects of light on the circadian system are strongly dependent on the photoperiod to which animals are exposed. An explanation for this phenomenon is currently lacking. Methodology and Principal Findings We recorded running wheel activity in C57 mice and observed large amplitude phase shifts in short photoperiods and small shifts in long photoperiods. We investigated whether these different light responses under short and long days are expressed within the SCN by electrophysiological recordings of electrical impulse frequency in SCN slices. Application of N-methyl-D-aspartate (NMDA) induced sustained increments in electrical activity that were not significantly different in the slices from long and short photoperiods. These responses led to large phase shifts in slices from short days and small phase shifts in slices from long days. An analysis of neuronal subpopulation activity revealed that in short days the amplitude of the rhythm was larger than in long days. Conclusions The data indicate that the photoperiodic dependent phase responses are intrinsic to the SCN. In contrast to earlier predictions from limit cycle theory, we observed large phase shifting responses in high amplitude rhythms in slices from short days, and small shifts in low amplitude rhythms in slices from long days. We conclude that the photoperiodic dependent phase responses are determined by the SCN and propose that synchronization among SCN neurons enhances the phase shifting capacity of the circadian system. PMID:19305510

  8. Microwave phase shifter with controllable power response based on slow- and fast-light effects in semiconductor optical amplifiers.

    PubMed

    Xue, Weiqi; Sales, Salvador; Capmany, José; Mørk, Jesper

    2009-04-01

    We suggest and experimentally demonstrate a method for increasing the tunable rf phase shift of semiconductor waveguides while at the same time enabling control of the rf power. This method is based on the use of slow- and fast-light effects in a cascade of semiconductor optical amplifiers combined with the use of spectral filtering to enhance the role of refractive index dynamics. A continuously tunable phase shift of approximately 240 degrees at a microwave frequency of 19 GHz is demonstrated in a cascade of two semiconductor optical amplifiers, while maintaining an rf power change of less than 1.6 dB. The technique is scalable to more amplifiers and should allow realization of an rf phase shift of 360 degrees.

  9. Does calcium influx regulate melatonin production through the circadian pacemaker in chick pineal cells? Effects of nitrendipine, Bay K 8644, Co2+, Mn2+, and low external Ca2+.

    PubMed

    Zatz, M; Mullen, D A

    1988-11-01

    We have recently described a system, using dispersed chick pineal cells in static culture, which displays a persistent, photosensitive, circadian rhythm of melatonin production and release. Here, we describe the effects of nitrendipine (NTR) (a dihydropyridine 'antagonist' of L-type calcium channels), Bay K 8644 (BK) (a dihydropyridine calcium channel 'agonist'), cobalt and manganese ions (both inorganic calcium channel blockers), and low external calcium concentrations, on the melatonin rhythm. NTR inhibited and BK stimulated melatonin output; they were potent and effective. Co2+, Mn2+, and low external Ca2+ markedly inhibited melatonin output. These results support a role for calcium influx through voltage-dependent calcium channels (L-type) in the regulation of melatonin production. Four or 8 h pulses of white light or darkness, in otherwise constant red light, cause, in addition to acute effects, phase-dependent phase shifts of the melatonin rhythm in subsequent cycles. Such phase shifts indicate an effect on (proximal to) the pacemaker generating the rhythm. Four or 8 h pulses of NTR, BK, Co2+, or low Ca2+, however, did not appreciably alter the phase of subsequent melatonin cycles. Neither did BK interfere with phase shifts induced by light pulses. Mn2+ pulses did induce phase-dependent phase shifts, but, unlike those evoked by light or dark pulses, these were all delays. Such effects of Mn2+ in other systems have been attributed to, and are characteristic of, 'metabolic inhibitors'. On balance, the results fail to support a prominent role for calcium influx in regulating the pacemaker underlying the circadian rhythm in chick pineal cells. Rather, calcium influx appears to regulate melatonin production primarily by acting on the melatonin-synthesizing apparatus, distal to the pacemaker.

  10. Circadian Phase-Shifting Effects of Bright Light, Exercise, and Bright Light + Exercise

    PubMed Central

    Kline, Christopher E.; Elliott, Jeffrey A.; Zielinski, Mark R.; Devlin, Tina M.; Moore, Teresa A.

    2016-01-01

    Limited research has compared the circadian phase-shifting effects of bright light and exercise and additive effects of these stimuli. The aim of this study was to compare the phase-delaying effects of late night bright light, late night exercise, and late evening bright light followed by early morning exercise. In a within-subjects, counterbalanced design, 6 young adults completed each of three 2.5-day protocols. Participants followed a 3-h ultra-short sleep-wake cycle, involving wakefulness in dim light for 2h, followed by attempted sleep in darkness for 1 h, repeated throughout each protocol. On night 2 of each protocol, participants received either (1) bright light alone (5,000 lux) from 2210–2340 h, (2) treadmill exercise alone from 2210–2340 h, or (3) bright light (2210–2340 h) followed by exercise from 0410–0540 h. Urine was collected every 90 min. Shifts in the 6-sulphatoxymelatonin (aMT6s) cosine acrophase from baseline to post-treatment were compared between treatments. Analyses revealed a significant additive phase-delaying effect of bright light + exercise (80.8 ± 11.6 [SD] min) compared with exercise alone (47.3 ± 21.6 min), and a similar phase delay following bright light alone (56.6 ± 15.2 min) and exercise alone administered for the same duration and at the same time of night. Thus, the data suggest that late night bright light followed by early morning exercise can have an additive circadian phase-shifting effect. PMID:27103935

  11. l-5-hydroxytryptophan resets the circadian locomotor activity rhythm of the nocturnal Indian pygmy field mouse, Mus terricolor

    NASA Astrophysics Data System (ADS)

    Basu, Priyoneel; Singaravel, Muniyandi; Haldar, Chandana

    2012-03-01

    We report that l-5-hydroxytryptophan (5-HTP), a serotonin precursor, resets the overt circadian rhythm in the Indian pygmy field mouse, Mus terricolor, in a phase- and dose-dependent manner. We used wheel running to assess phase shifts in the free-running locomotor activity rhythm. Following entrainment to a 12:12 h light-dark cycle, 5-HTP (100 mg/kg in saline) was intraperitoneally administered in complete darkness at circadian time (CT)s 0, 3, 6, 9, 12, 15, 18, and 21, and the ensuing phase shifts in the locomotor activity rhythm were calculated. The results show that 5-HTP differentially shifts the phase of the rhythm, causing phase advances from CT 0 to CT 12 and phase delays from CT 12 to CT 21. Maximum advance phase shift was at CT 6 (1.18 ± 0.37 h) and maximum delay was at CT 18 (-2.36 ± 0.56 h). No extended dead zone is apparent. Vehicle (saline) at any CT did not evoke a significant phase shift. Investigations with different doses (10, 50, 100, and 200 mg/kg) of 5-HTP revealed that the phase resetting effect is dose-dependent. The shape of the phase-response curve (PRC) has a strong similarity to PRCs obtained using some serotonergic agents. There was no significant increase in wheel-running activity after 5-HTP injection, ruling out behavioral arousal-dependent shifts. This suggests that this phase resetting does not completely depend on feedback of the overt rhythmic behavior on the circadian clock. A mechanistic explanation of these shifts is currently lacking.

  12. Manipulation of wavefront using helical metamaterials.

    PubMed

    Yang, Zhenyu; Wang, Zhaokun; Tao, Huan; Zhao, Ming

    2016-08-08

    Helical metamaterials, a kind of 3-dimensional structure, has relatively strong coupling effect among the helical nano-wires. Therefore, it is expected to be a good candidate for generating phase shift and controlling wavefront with high efficiency. In this paper, using the finite-difference time-domain (FDTD) method, we studied the phase shift properties in the helical metamaterials. It is found that the phase shift occurs for both transmitted and reflected light waves. And the maximum of reflection coefficients can reach over 60%. In addition, the phase shift (φ) is dispersionless in the range of 600 nm to 860 nm, that is, it is only dominated by the initial angle (θ) of the helix. The relationship between them is φ = ± 2θ. Using Jones calculus we give a further explanation for these properties. Finally, by arranging the helixes in an array with a constant phase gradient, the phenomenon of anomalous refraction was also observed in a broad wavelength range.

  13. Highly noise-tolerant hybrid algorithm for phase retrieval from a single-shot spatial carrier fringe pattern

    NASA Astrophysics Data System (ADS)

    Dong, Zhichao; Cheng, Haobo

    2018-01-01

    A highly noise-tolerant hybrid algorithm (NTHA) is proposed in this study for phase retrieval from a single-shot spatial carrier fringe pattern (SCFP), which effectively combines the merits of spatial carrier phase shift method and two dimensional continuous wavelet transform (2D-CWT). NTHA firstly extracts three phase-shifted fringe patterns from the SCFP with one pixel malposition; then calculates phase gradients by subtracting the reference phase from the other two target phases, which are retrieved respectively from three phase-shifted fringe patterns by 2D-CWT; finally, reconstructs the phase map by a least square gradient integration method. Its typical characters include but not limited to: (1) doesn't require the spatial carrier to be constant; (2) the subtraction mitigates edge errors of 2D-CWT; (3) highly noise-tolerant, because not only 2D-CWT is noise-insensitive, but also the noise in the fringe pattern doesn't directly take part in the phase reconstruction as in previous hybrid algorithm. Its feasibility and performances are validated extensively by simulations and contrastive experiments to temporal phase shift method, Fourier transform and 2D-CWT methods.

  14. Giant enhancement in Goos-Hänchen shift at the singular phase of a nanophotonic cavity

    NASA Astrophysics Data System (ADS)

    Sreekanth, Kandammathe Valiyaveedu; Ouyang, Qingling; Han, Song; Yong, Ken-Tye; Singh, Ranjan

    2018-04-01

    In this letter, we experimentally demonstrate thirtyfold enhancement in Goos-Hänchen shift at the Brewster angle of a nanophotonic cavity that operates at the wavelength of 632.8 nm. In particular, the point-of-darkness and the singular phase are achieved using a four-layered metal-dielectric-dielectric-metal asymmetric Fabry-Perot cavity. A highly absorbing ultra-thin layer of germanium in the stack gives rise to the singular phase and the enhanced Goos-Hänchen shift at the point-of-darkness. The obtained giant Goos-Hänchen shift in the lithography-free nanophotonic cavity could enable many intriguing applications including cost-effective label-free biosensors.

  15. Doppler-corrected differential detection system

    NASA Technical Reports Server (NTRS)

    Simon, Marvin K. (Inventor); Divsalar, Dariush (Inventor)

    1991-01-01

    Doppler in a communication system operating with a multiple differential phase-shift-keyed format (MDPSK) creates an adverse phase shift in an incoming signal. An open loop frequency estimation is derived from a Doppler-contaminated incoming signal. Based upon the recognition that, whereas the change in phase of the received signal over a full symbol contains both the differentially encoded data and the Doppler induced phase shift, the same change in phase over half a symbol (within a given symbol interval) contains only the Doppler induced phase shift, and the Doppler effect can be estimated and removed from the incoming signal. Doppler correction occurs prior to the receiver's final output of decoded data. A multiphase system can operate with two samplings per symbol interval at no penalty in signal-to-noise ratio provided that an ideal low pass pre-detection filter is employed, and two samples, at 1/4 and 3/4 of the symbol interval T sub s, are taken and summed together prior to incoming signal data detection.

  16. Optical ranging and communication method based on all-phase FFT

    NASA Astrophysics Data System (ADS)

    Li, Zening; Chen, Gang

    2014-10-01

    This paper describes an optical ranging and communication method based on all-phase fast fourier transform (FFT). This kind of system is mainly designed for vehicle safety application. Particularly, the phase shift of the reflecting orthogonal frequency division multiplexing (OFDM) symbol is measured to determine the signal time of flight. Then the distance is calculated according to the time of flight. Several key factors affecting the phase measurement accuracy are studied. The all-phase FFT, which can reduce the effects of frequency offset, phase noise and the inter-carrier interference (ICI), is applied to measure the OFDM symbol phase shift.

  17. A Control Allocation Technique to Recover From Pilot-Induced Oscillations (CAPIO) Due to Actuator Rate Limiting

    NASA Technical Reports Server (NTRS)

    Yildiz, Yildiray; Kolmanovsky, Ilya V.

    2010-01-01

    This paper proposes a control allocation technique that can help pilots recover from pilot induced oscillations (PIO). When actuators are rate-saturated due to aggressive pilot commands, high gain flight control systems or some anomaly in the system, the effective delay in the control loop may increase depending on the nature of the cause. This effective delay increase manifests itself as a phase shift between the commanded and actual system signals and can instigate PIOs. The proposed control allocator reduces the effective time delay by minimizing the phase shift between the commanded and the actual attitude accelerations. Simulation results are reported, which demonstrate phase shift minimization and recovery from PIOs. Conversion of the objective function to be minimized and constraints to a form that is suitable for implementation is given.

  18. Spectroscopic Doppler analysis for visible-light optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Shu, Xiao; Liu, Wenzhong; Duan, Lian; Zhang, Hao F.

    2017-12-01

    Retinal oxygen metabolic rate can be effectively measured by visible-light optical coherence tomography (vis-OCT), which simultaneously quantifies oxygen saturation and blood flow rate in retinal vessels through spectroscopic analysis and Doppler measurement, respectively. Doppler OCT relates phase variation between sequential A-lines to the axial flow velocity of the scattering medium. The detectable phase shift is between -π and π due to its periodicity, which limits the maximum measurable unambiguous velocity without phase unwrapping. Using shorter wavelengths, vis-OCT is more vulnerable to phase ambiguity since flow induced phase variation is linearly related to the center wavenumber of the probing light. We eliminated the need for phase unwrapping using spectroscopic Doppler analysis. We split the whole vis-OCT spectrum into a series of narrow subbands and reconstructed vis-OCT images to extract corresponding Doppler phase shifts in all the subbands. Then, we quantified flow velocity by analyzing subband-dependent phase shift using linear regression. In the phantom experiment, we showed that spectroscopic Doppler analysis extended the measurable absolute phase shift range without conducting phase unwrapping. We also tested this method to quantify retinal blood flow in rodents in vivo.

  19. Two solitons oblique collision in anisotropic non-extensive dusty plasma

    NASA Astrophysics Data System (ADS)

    El-Labany, S. K.; El-Taibany, W. F.; Behery, E. E.; Fouda, S. M.

    2017-03-01

    Using an extended Poincaré-Lighthill-Kue method, the oblique collision of two dust acoustic solitons (DASs) in a magnetized non-extensive plasma with the effect of dust pressure anisotropy is studied. The dust fluid is supposed to have an arbitrary charge. A couple of Korteweg-de Vries (KdV) equations are derived for the colliding DASs. The phase shift of each soliton is obtained. It is found that the dust pressure anisotropy, the non-extensive parameter for electrons and ions, plays an important role in determining the collision phase shifts. The present results show that, for the negative dust case, the phase shift of the first soliton decreases, while that of the second soliton increases as either the dust pressure ratio increases or the ion non-extensive parameter decreases. On the other hand, for the positive dust case, the phase shift of the first soliton decreases, while the phase shift of the second soliton increases as either the dust pressure ratio or the ion non-extensive parameter increases. The application of the present findings to some dusty plasma phenomena occurring in space and laboratory plasmas is briefly discussed.

  20. Wavelet filtered shifted phase-encoded joint transform correlation for face recognition

    NASA Astrophysics Data System (ADS)

    Moniruzzaman, Md.; Alam, Mohammad S.

    2017-05-01

    A new wavelet-filtered-based Shifted- phase-encoded Joint Transform Correlation (WPJTC) technique has been proposed for efficient face recognition. The proposed technique uses discrete wavelet decomposition for preprocessing and can effectively accommodate various 3D facial distortions, effects of noise, and illumination variations. After analyzing different forms of wavelet basis functions, an optimal method has been proposed by considering the discrimination capability and processing speed as performance trade-offs. The proposed technique yields better correlation discrimination compared to alternate pattern recognition techniques such as phase-shifted phase-encoded fringe-adjusted joint transform correlator. The performance of the proposed WPJTC has been tested using the Yale facial database and extended Yale facial database under different environments such as illumination variation, noise, and 3D changes in facial expressions. Test results show that the proposed WPJTC yields better performance compared to alternate JTC based face recognition techniques.

  1. "Phase capture" in amblyopia: the influence function for sampled shape.

    PubMed

    Levi, Dennis M; Li, Roger W; Klein, Stanley A

    2005-06-01

    This study was concerned with what stimulus information humans with amblyopia use to judge the shape of simple objects. We used a string of four Gabor patches to define a contour. A fifth, center patch served as the test pattern. The observers' task was to judge the location of the test pattern relative to the contour. The contour was either a straight line, or an arc with positive or negative curvature. We asked whether phase shifts in the inner or outer pairs of patches distributed along the contour influence the perceived shape. That is, we measured the phase shift influence function. Our results, consistent with previous studies, show that amblyopes are imprecise in shape discrimination, showing elevated thresholds for both lines and curves. We found that amblyopes often make much larger perceptual errors (biases) than do normal observers in the absence of phase shifts. These errors tend to be largest for curved shapes and at large separations. In normal observers, shifting the phase of inner patches of the string by 0.25 cycle results in almost complete phase capture (attraction) at the smallest separation (2 lambda), and the capture effect falls off rapidly with separation. A 0.25 cycle shift of the outer pair of patches has a much smaller effect, in the opposite direction (repulsion). While several amblyopic observers showed reduced capture by the phase of the inner patches, to our surprise, several of the amblyopes were sensitive to the phase of the outer patches. We used linear multiple regression to determine the weights of all cues to the task: the carrier phase of the inner patches, carrier phase of the outer patches and the envelope of the outer patches. Compared to normal observers, some amblyopes show a weaker influence of the phase of the inner patches, and a stronger influence of both the phase and envelope of the outer patches. We speculate that this may be a consequence of abnormal "crowding" of the inner patches by the outer ones.

  2. Compensating temperature-induced ultrasonic phase and amplitude changes

    NASA Astrophysics Data System (ADS)

    Gong, Peng; Hay, Thomas R.; Greve, David W.; Junker, Warren R.; Oppenheim, Irving J.

    2016-04-01

    In ultrasonic structural health monitoring (SHM), environmental and operational conditions, especially temperature, can significantly affect the propagation of ultrasonic waves and thus degrade damage detection. Typically, temperature effects are compensated using optimal baseline selection (OBS) or optimal signal stretch (OSS). The OSS method achieves compensation by adjusting phase shifts caused by temperature, but it does not fully compensate phase shifts and it does not compensate for accompanying signal amplitude changes. In this paper, we develop a new temperature compensation strategy to address both phase shifts and amplitude changes. In this strategy, OSS is first used to compensate some of the phase shifts and to quantify the temperature effects by stretching factors. Based on stretching factors, empirical adjusting factors for a damage indicator are then applied to compensate for the temperature induced remaining phase shifts and amplitude changes. The empirical adjusting factors can be trained from baseline data with temperature variations in the absence of incremental damage. We applied this temperature compensation approach to detect volume loss in a thick wall aluminum tube with multiple damage levels and temperature variations. Our specimen is a thick-walled short tube, with dimensions closely comparable to the outlet region of a frac iron elbow where flow-induced erosion produces the volume loss that governs the service life of that component, and our experimental sequence simulates the erosion process by removing material in small damage steps. Our results show that damage detection is greatly improved when this new temperature compensation strategy, termed modified-OSS, is implemented.

  3. Effects of modulation phase on profile analysis in normal-hearing and hearing-impaired listeners

    NASA Astrophysics Data System (ADS)

    Rogers, Deanna; Lentz, Jennifer

    2003-04-01

    The ability to discriminate between sounds with different spectral shapes in the presence of amplitude modulation was measured in normal-hearing and hearing-impaired listeners. The standard stimulus was the sum of equal-amplitude modulated tones, and the signal stimulus was generated by increasing the level of half the tones (up components) and decreasing the level of half the tones (down components). The down components had the same modulation phase, and a phase shift was applied to the up components to encourage segregation from the down tones. The same phase shift was used in both standard and signal stimuli. Profile-analysis thresholds were measured as a function of the phase shift between up and down components. The phase shifts were 0, 30, 45, 60, 90, and 180 deg. As expected, thresholds were lowest when all tones had the same modulation phase and increased somewhat with increasing phase disparity. This small increase in thresholds was similar for both groups. These results suggest that hearing-impaired listeners are able to use modulation phase to group sounds in a manner similar to that of normal listeners. [Work supported by NIH (DC 05835).

  4. Self-Organization in 2D Traffic Flow Model with Jam-Avoiding Drive

    NASA Astrophysics Data System (ADS)

    Nagatani, Takashi

    1995-04-01

    A stochastic cellular automaton (CA) model is presented to investigate the traffic jam by self-organization in the two-dimensional (2D) traffic flow. The CA model is the extended version of the 2D asymmetric exclusion model to take into account jam-avoiding drive. Each site contains either a car moving to the up, a car moving to the right, or is empty. A up car can shift right with probability p ja if it is blocked ahead by other cars. It is shown that the three phases (the low-density phase, the intermediate-density phase and the high-density phase) appear in the traffic flow. The intermediate-density phase is characterized by the right moving of up cars. The jamming transition to the high-density jamming phase occurs with higher density of cars than that without jam-avoiding drive. The jamming transition point p 2c increases with the shifting probability p ja. In the deterministic limit of p ja=1, it is found that a new jamming transition occurs from the low-density synchronized-shifting phase to the high-density moving phase with increasing density of cars. In the synchronized-shifting phase, all up cars do not move to the up but shift to the right by synchronizing with the move of right cars. We show that the jam-avoiding drive has an important effect on the dynamical jamming transition.

  5. Frequency shift of the Bragg and Non-Bragg backscattering from periodic water wave

    NASA Astrophysics Data System (ADS)

    Wen, Biyang; Li, Ke

    2016-08-01

    Doppler effect is used to measure the relative speed of a moving target with respect to the radar, and is also used to interpret the frequency shift of the backscattering from the ocean wave according to the water-wave phase velocity. The widely known relationship between the Doppler shift and the water-wave phase velocity was deduced from the scattering measurements data collected from actual sea surface, and has not been verified under man-made conditions. Here we show that this ob- served frequency shift of the scattering data from the Bragg and Non-Bragg water wave is not the Doppler shift corresponding to the water-wave phase velocity as commonly believed, but is the water-wave frequency and its integral multiple frequency. The power spectrum of the backscatter from the periodic water wave consists of serials discrete peaks, which is equally spaced by water wave frequency. Only when the water-wave length is the integer multiples of the Bragg wave, and the radar range resolution is infinite, does the frequency shift of the backscattering mathematically equal the Doppler shift according to the water-wave phase velocity.

  6. Investigation of the Effect of Various Oxide and Fluoride Additives on the Microstructure, Electronic Properties, and Phase Shifting Ability of Ba(1-x) Sr(x)TiO3

    DTIC Science & Technology

    1993-09-01

    AD-A271 756 ARMY RESEARCH LABORATORY Investigation of the Effect of Various Oxide and Flouride Additives on the Microstructure, Electronic Properties ...NUMBERS Investigation of the Effect of Various Oxide and Fluoride Additives on the Microstructure, Electronic Properties , and Phase Shifting Ability of...dielectric properties . tunability. hysteresis. and grain size have been investigated. The homogeneity of the doped materials has been verified using

  7. Magneto-optical non-reciprocal devices in silicon photonics

    PubMed Central

    Shoji, Yuya; Mizumoto, Tetsuya

    2014-01-01

    Silicon waveguide optical non-reciprocal devices based on the magneto-optical effect are reviewed. The non-reciprocal phase shift caused by the first-order magneto-optical effect is effective in realizing optical non-reciprocal devices in silicon waveguide platforms. In a silicon-on-insulator waveguide, the low refractive index of the buried oxide layer enhances the magneto-optical phase shift, which reduces the device footprints. A surface activated direct bonding technique was developed to integrate a magneto-optical garnet crystal on the silicon waveguides. A silicon waveguide optical isolator based on the magneto-optical phase shift was demonstrated with an optical isolation of 30 dB and insertion loss of 13 dB at a wavelength of 1548 nm. Furthermore, a four port optical circulator was demonstrated with maximum isolations of 15.3 and 9.3 dB in cross and bar ports, respectively, at a wavelength of 1531 nm. PMID:27877640

  8. Knowledge-based support for the participatory design and implementation of shift systems.

    PubMed

    Gissel, A; Knauth, P

    1998-01-01

    This study developed a knowledge-based software system to support the participatory design and implementation of shift systems as a joint planning process including shift workers, the workers' committee, and management. The system was developed using a model-based approach. During the 1st phase, group discussions were repeatedly conducted with 2 experts. Thereafter a structure model of the process was generated and subsequently refined by the experts in additional semistructured interviews. Next, a factual knowledge base of 1713 relevant studies was collected on the effects of shift work. Finally, a prototype of the knowledge-based system was tested on 12 case studies. During the first 2 phases of the system, important basic information about the tasks to be carried out is provided for the user. During the 3rd phase this approach uses the problem-solving method of case-based reasoning to determine a shift rota which has already proved successful in other applications. It can then be modified in the 4th phase according to the shift workers' preferences. The last 2 phases support the final testing and evaluation of the system. The application of this system has shown that it is possible to obtain shift rotas suitable to actual problems and representative of good ergonomic solutions. A knowledge-based approach seems to provide valuable support for the complex task of designing and implementing a new shift system. The separation of the task into several phases, the provision of information at all stages, and the integration of all parties concerned seem to be essential factors for the success of the application.

  9. Phase-step retrieval for tunable phase-shifting algorithms

    NASA Astrophysics Data System (ADS)

    Ayubi, Gastón A.; Duarte, Ignacio; Perciante, César D.; Flores, Jorge L.; Ferrari, José A.

    2017-12-01

    Phase-shifting (PS) is a well-known technique for phase retrieval in interferometry, with applications in deflectometry and 3D-profiling, which requires a series of intensity measurements with certain phase-steps. Usually the phase-steps are evenly spaced, and its knowledge is crucial for the phase retrieval. In this work we present a method to extract the phase-step between consecutive interferograms. We test the proposed technique with images corrupted by additive noise. The results were compared with other known methods. We also present experimental results showing the performance of the method when spatial filters are applied to the interferograms and the effect that they have on their relative phase-steps.

  10. Phase-shift parametrization and extraction of asymptotic normalization constants from elastic-scattering data

    NASA Astrophysics Data System (ADS)

    Ramírez Suárez, O. L.; Sparenberg, J.-M.

    2017-09-01

    We introduce a simplified effective-range function for charged nuclei, related to the modified K matrix but differing from it in several respects. Negative-energy zeros of this function correspond to bound states. Positive-energy zeros correspond to resonances and "echo poles" appearing in elastic-scattering phase-shifts, while its poles correspond to multiple-of-π phase shifts. Padé expansions of this function allow one to parametrize phase shifts on large energy ranges and to calculate resonance and bound-state properties in a very simple way, independently of any potential model. The method is first tested on a d -wave 12C+α potential model. It is shown to lead to a correct estimate of the subthreshold-bound-state asymptotic normalization constant (ANC) starting from the elastic-scattering phase shifts only. Next, the 12C+α experimental p -wave and d -wave phase shifts are analyzed. For the d wave, the relatively large error bars on the phase shifts do not allow one to improve the ANC estimate with respect to existing methods. For the p wave, a value agreeing with the 12C(6Li,d )16O transfer-reaction measurement and with the recent remeasurement of the 16Nβ -delayed α decay is obtained, with improved accuracy. However, the method displays two difficulties: the results are sensitive to the Padé-expansion order and the simplest fits correspond to an imaginary ANC, i.e., to a negative-energy "echo pole," the physical meaning of which is still debatable.

  11. Control of the spin geometric phase in semiconductor quantum rings.

    PubMed

    Nagasawa, Fumiya; Frustaglia, Diego; Saarikoski, Henri; Richter, Klaus; Nitta, Junsaku

    2013-01-01

    Since the formulation of the geometric phase by Berry, its relevance has been demonstrated in a large variety of physical systems. However, a geometric phase of the most fundamental spin-1/2 system, the electron spin, has not been observed directly and controlled independently from dynamical phases. Here we report experimental evidence on the manipulation of an electron spin through a purely geometric effect in an InGaAs-based quantum ring with Rashba spin-orbit coupling. By applying an in-plane magnetic field, a phase shift of the Aharonov-Casher interference pattern towards the small spin-orbit-coupling regions is observed. A perturbation theory for a one-dimensional Rashba ring under small in-plane fields reveals that the phase shift originates exclusively from the modulation of a pure geometric-phase component of the electron spin beyond the adiabatic limit, independently from dynamical phases. The phase shift is well reproduced by implementing two independent approaches, that is, perturbation theory and non-perturbative transport simulations.

  12. Performance Analysis of Direct-Sequence Code-Division Multiple-Access Communications with Asymmetric Quadrature Phase-Shift-Keying Modulation

    NASA Technical Reports Server (NTRS)

    Wang, C.-W.; Stark, W.

    2005-01-01

    This article considers a quaternary direct-sequence code-division multiple-access (DS-CDMA) communication system with asymmetric quadrature phase-shift-keying (AQPSK) modulation for unequal error protection (UEP) capability. Both time synchronous and asynchronous cases are investigated. An expression for the probability distribution of the multiple-access interference is derived. The exact bit-error performance and the approximate performance using a Gaussian approximation and random signature sequences are evaluated by extending the techniques used for uniform quadrature phase-shift-keying (QPSK) and binary phase-shift-keying (BPSK) DS-CDMA systems. Finally, a general system model with unequal user power and the near-far problem is considered and analyzed. The results show that, for a system with UEP capability, the less protected data bits are more sensitive to the near-far effect that occurs in a multiple-access environment than are the more protected bits.

  13. l-Serine Enhances Light-Induced Circadian Phase Resetting in Mice and Humans.

    PubMed

    Yasuo, Shinobu; Iwamoto, Ayaka; Lee, Sang-Il; Ochiai, Shotaro; Hitachi, Rina; Shibata, Satomi; Uotsu, Nobuo; Tarumizu, Chie; Matsuoka, Sayuri; Furuse, Mitsuhiro; Higuchi, Shigekazu

    2017-12-01

    Background: The circadian clock is modulated by the timing of ingestion or food composition, but the effects of specific nutrients are poorly understood. Objective: We aimed to identify the amino acids that modulate the circadian clock and reset the light-induced circadian phase in mice and humans. Methods: Male CBA/N mice were orally administered 1 of 20 l-amino acids, and the circadian and light-induced phase shifts of wheel-running activity were analyzed. Antagonists of several neurotransmitter pathways were injected before l-serine administration, and light-induced phase shifts were analyzed. In addition, the effect of l-serine on the light-induced phase advance was investigated in healthy male students (mean ± SD age 22.2 ± 1.8 y) by using dim-light melatonin onset (DLMO) determined by saliva samples as an index of the circadian phase. Results: l-Serine administration enhanced light-induced phase shifts in mice (1.86-fold; P < 0.05). Both l-serine and its metabolite d-serine, a coagonist of N -methyl-d-aspartic acid (NMDA) receptors, exerted this effect, but d-serine concentrations in the hypothalamus did not increase after l-serine administration. The effect of l-serine was blocked by picrotoxin, an antagonist of γ-aminobutyric acid A receptors, but not by MK801, an antagonist of NMDA receptors. l-Serine administration altered the long-term expression patterns of clock genes in the suprachiasmatic nuclei. After advancing the light-dark cycle by 6 h, l-serine administration slightly accelerated re-entrainment to the shifted cycle. In humans, l-serine ingestion before bedtime induced significantly larger phase advances of DLMO after bright-light exposure during the morning (means ± SEMs-l-serine: 25.9 ± 6.6 min; placebo: 12.1 ± 7.0 min; P < 0.05). Conclusion: These results suggest that l-serine enhances light-induced phase resetting in mice and humans, and it may be useful for treating circadian disturbances. © 2017 American Society for Nutrition.

  14. Energy shifts in photoemission lines during the tetragonal- to cubic-phase transition in BaTiO3 single crystals and systems with CoFe2O4 and NiFe2O4 overlayers

    NASA Astrophysics Data System (ADS)

    Welke, M.; Huth, P.; Dabelow, K.; Gorgoi, M.; Schindler, K.-M.; Chassé, A.; Denecke, R.

    2018-05-01

    In BaTiO3 the phase transition from tetragonal to cubic is connected with the disappearance of the ferroelectric polarization. In photoelectron spectroscopy huge transient shifts in the binding energies of all core-level photoemission lines have been observed while heating and cooling through the Curie temperature. Excitation energies from 2 keV to 6 keV have been used to show this to be a bulk effect and not a surface effect alone. These observations are discussed in terms of charging, which results from the disappearance of the ferroelectric polarization. This mechanism has previously been proposed as the origin of electron emission in ferroelectric materials. Besides the jump-like shifts, additional permanent shifts in binding energies have been observed for the tetragonal and the cubic phase. These experimental shifts have been related to theoretical ones from ab initio calculations. In addition to BaTiO3 single crystals, systems with CoFe2O4 and NiFe2O4 overlayers on BaTiO3 have been investigated. The low conductivity of these layers sets them apart from metallic overlayers like Fe or Co, where the shifts are suppressed. This difference adds further support for charging as the origin of the effect.

  15. The coating design of phase-shifting reflector array with high reflectance and specified reflection phase shifts for static Michelson interferometer

    NASA Astrophysics Data System (ADS)

    Zhang, Xuanni; Zhang, Hui; Wang, Yijun

    2016-02-01

    The optical Doppler Michelson imaging interferometer is widely used for wind measurements. Four interferograms obtained simultaneously are needed to immune to environmental disturbances. Thus, a static and divided mirror Michelson interferometer is proposed. Its highlight is the phase-shifting reflector array, which divides one mirror into four quadrants coated by different multilayer films with high reflectance, specified phase steps π/2 and little polarization effects. By combining analytical and empirical method, four coatings are designed with software TFCalc. The simulated results showed good agreement with the desired optical properties. Due to the limitation of the optical material and function of the software TFCalc, there are some design errors within tolerance.

  16. Computer modeling of in terferograms of flowing plasma and determination of the phase shift

    NASA Astrophysics Data System (ADS)

    Blažek, J.; Kříž, P.; Stach, V.

    2000-03-01

    Interferograms of the flowing gas contain information about the phase shift between the object and the reference beams. The determination of the phase shift is the first step in getting information about the inner distribution of the density in cylindrically symmetric discharges. Slightly modified Takeda method based on the Fourier transformation is applied to determine the phase information from the interferogram. The least squares spline approximation is used for approximation and smoothing intensity profiles. At the same time, cubic splines with their end-knots conditions naturally realize “hanning windows” eliminating unwanted edge effects. For the purpose of numerical testing of the method, we developed a code that for a density given in advance reconstructs the corresponding interferogram.

  17. Photothermal effects in phase shifted FBG with varied light wavelength and intensity.

    PubMed

    Ding, Meng; Chen, Dijun; Fang, Zujie; Wang, Di; Zhang, Xi; Wei, Fang; Yang, Fei; Ying, Kang; Cai, Haiwen

    2016-10-31

    The intensity enhancement effect of a phase-shifted fiber Bragg grating (PSFBG) is investigated theoretically and experimentally in this paper. Due to the effect, both of the FBG reflection bands and the transmission peak show red-shift with the increase of pump light wavelength from the shorter side to the longer side of the Bragg wavelength. The transmission peak shifts in pace with the pump's wavelength, which is much faster than the reflection band. The maximum shift increases with the pump power. In contrast, the red-shift is very small when the pump light deceases from the longer side of the Bragg wavelength. Such asymmetric behavior is checked dynamically by using a frequency modulated laser in a serrated wave, showing push-pull behavior. The effect of the characteristics of thermal dissipation conditions is also measured. The fiber loss coefficient of FBG being tested is estimated from the measured data to be about 0.001 mm-1, which may be attributed to the H2-loading and UV exposure in FBG fabrication. The observed phenomena are believed of importance in application where PSFBG is utilized as a narrow linewidth filter.

  18. Countercurrent distribution of biological cells

    NASA Technical Reports Server (NTRS)

    1982-01-01

    It is known that the addition of phosphate buffer to two polymer aqueous phase systems has a strong effect on the partition behavior of cells and other particles in such mixtures. The addition of sodium phosphate to aqueous poly(ethylene glycol) dextran phase systems causes a concentration-dependent shift in binodial on the phase diagram, progressively lowering the critical conditions for phase separation as the phosphate concentration is increased. Sodium chloride produces no significant shift in the critical point relative to the salt-free case. Accurate determinations of the phase diagram require measurements of the density of the phases; data is presented which allows this parameter to be calculated from polarimetric measurements of the dextran concentrations of both phases. Increasing polymer concentrations in the phase systems produce increasing preference of the phosphate for the dextran-rich bottom phase. Equilibrium dialysis experiments showed that poly(ethylene glycol) effectively rejected phosphate, and to a lesser extent chloride, but that dextran had little effect on the distribution of either salt. Increasing ionic strength via addition of 0.15 M NaCl to phase systems containing 0.01 M phosphate produces an increased concentration of phosphate ions in the bottom dextran-rich phase, the expected effect in this type of Donnan distribution.

  19. Towards the control of the modal energy transfer in transverse mode instabilities

    NASA Astrophysics Data System (ADS)

    Stihler, Christoph; Jauregui, Cesar; Tünnermann, Andreas; Limpert, Jens

    2018-02-01

    Thermally-induced refractive index gratings (RIG) in high-power fiber laser systems lead to transverse mode instabilities (TMI) above a certain average power threshold. The effect of TMI is currently the main limitation for the further average power scaling of fiber lasers and amplifiers with nearly diffraction-limited beam quality. In this work we experimentally investigate, for the first time, the growth of the RIG strength by introducing a phase-shift between the RIG and the modal interference pattern in a fiber amplifier. The experiments reveal that the RIG is strong enough to couple energy between different transverse modes even at powers significantly below the TMI threshold, provided that the introduced phase-shift is high enough. This indicates that, as the strength of the RIG further increases with increasing average output power, the RIG becomes more and more sensitive to even small noise-induced phase-shifts, which ultimately trigger TMI. Furthermore, it is shown that a beam cleaning also occurs when a positive phase-shift is introduced, even above the TMI threshold. This finding will pave the way for the development of a new class of mitigation strategies for TMI, which key feature is the control of the introduced phase-shift.

  20. ACUTE ETHANOL DISRUPTS PHOTIC AND SEROTONERGIC CIRCADIAN CLOCK PHASE-RESETTING IN THE MOUSE

    PubMed Central

    Brager, Allison J.; Ruby, Christina L.; Prosser, Rebecca A.; Glass, J. David

    2011-01-01

    Background Alcohol abuse is associated with impaired circadian rhythms and sleep. Ethanol administration disrupts circadian clock phase-resetting, suggesting a mode for the disruptive effect of alcohol abuse on the circadian timing system. In this study, we extend previous work in C57BL/6J mice to: 1) characterize the SCN pharmacokinetics of acute systemic ethanol administration; 2) explore the effects of acute ethanol on photic and non-photic phase-resetting; and 2) determine if the SCN is a direct target for photic effects. Methods First, microdialysis was used to characterize the pharmacokinetics of acute i.p. injections of 3 doses of ethanol (0.5, 1.0 and 2.0 g/kg) in the mouse suprachiasmatic (SCN) circadian clock. Second, the effects of acute i.p. ethanol administration on photic phase-delays and serotonergic ([+]8-OH-DPAT-induced) phase-advances of the circadian activity rhythm were assessed. Third, the effects of reverse-microdialysis ethanol perfusion of the SCN on photic phase-resetting were characterized. Results Peak ethanol levels from the 3 doses of ethanol in the SCN occurred within 20–40 min post-injection with half-lives for clearance ranging from 0.6–1.8 hr. Systemic ethanol treatment dose-dependently attenuated photic and serotonergic phase-resetting. This treatment also did not affect basal SCN neuronal activity as assessed by Fos expression. Intra-SCN perfusion with ethanol markedly reduced photic phase-delays. Conclusions These results confirm that acute ethanol attenuates photic phase-delay shifts and serotonergic phase-advance shifts in the mouse. This dual effect could disrupt photic and non-photic entrainment mechanisms governing circadian clock timing. It is also significant that the SCN clock is a direct target for disruptive effects of ethanol on photic shifting. Such actions by ethanol could underlie the disruptive effects of alcohol abuse on behavioral, physiological, and endocrine rhythms associated with alcoholism. PMID:21463340

  1. "Phase capture" in the perception of interpolated shape: cue combination and the influence function.

    PubMed

    Levi, Dennis M; Wing-Hong Li, Roger; Klein, Stanley A

    2003-09-01

    This study was concerned with what stimulus information observers use to judge the shape of simple objects. We used a string of four Gabor patches to define a contour. A fifth, center patch served as a test pattern. The observers' task was to judge the location of the test pattern relative to the contour. The contour was either a straight line, or an arc with positive or negative curvature (the radius of curvature was either 2 or 6 deg). We asked whether phase shifts in the inner or outer pairs of patches distributed along the contour influence the perceived shape. That is, we measured the phase shift influence function. We found that shifting the inner patches of the string by 0.25 cycle results in almost complete phase capture (attraction) at the smallest separation (2 lambda), and the capture effect falls off rapidly with separation. A 0.25 cycle shift of the outer pair of patches has a much smaller effect, in the opposite direction (repulsion). In our experiments, the contour is defined by two cues--the cue provided by the Gabor carrier (the 'feature' cue) and that defined by the Gaussian envelope (the 'envelope' cue). Our phase shift influence function can be thought of as a cue combination task. An ideal observer would weight the cues by the inverse variance of the two cues. The variance in each of these cues predicts the main features of our results quite accurately.

  2. An Extrinsic Fabry-Perot Interferometric Sensor using Intermodal Phase Shifting and Demultiplexing of the Propagating Modes in a Few-Mode Fiber

    NASA Astrophysics Data System (ADS)

    Chatterjee, Julius

    This dissertation demonstrates a fiber-optic phase shifted Fabry-Perot interferometer (PS-FPI) as a sensor using modal demultiplexing. Single wavelength Fabry-Perot interferometers suffer from fringe ambiguity and loss of sensitivity at fringe extremes. These hindrances cause it to be a secondary choice when being selected for a measurement task at hand, and more often than not, white light based sensors are selected in favor of the single wavelength Fabry-Perot sensors. This work aims to introduce a technique involving the demultiplexing of the propagating linearly polarized (LP) modes in few mode fibers to obtain two fringe systems from the same sensing cavity. This results in a few-mode interferometer that effectively has two to three orders of magnitude higher perturbation sensitivity than a conventional few mode interferometer for the same sensing region. In this work, two different modal demultiplexing techniques (MD) are used to demodulate the propagating modes and to obtain two fringe sets. These output fringe sets are shifted in phase with respect to each other by a phase shift due to the propagation of the modes in the fiber-optic layout. A method of controlling this phase shift by straining a length of a two mode fiber located separate from the PS-FPI cavity is demonstrated and corresponding changes in phase shifts are shown. The results show a controllable phase shift for both the MD techniques, which is useful in sensing by permitting quadrature demodulation of interferometric fringes and also results in a novel few-mode sensing system having more than two orders of magnitude sensitivity than conventional few-mode devices.

  3. Shift in Food Intake and Changes in Metabolic Regulation and Gene Expression during Simulated Night-Shift Work: A Rat Model.

    PubMed

    Marti, Andrea Rørvik; Meerlo, Peter; Grønli, Janne; van Hasselt, Sjoerd Johan; Mrdalj, Jelena; Pallesen, Ståle; Pedersen, Torhild Thue; Henriksen, Tone Elise Gjøtterud; Skrede, Silje

    2016-11-08

    Night-shift work is linked to a shift in food intake toward the normal sleeping period, and to metabolic disturbance. We applied a rat model of night-shift work to assess the immediate effects of such a shift in food intake on metabolism. Male Wistar rats were subjected to 8 h of forced activity during their rest (ZT2-10) or active (ZT14-22) phase. Food intake, body weight, and body temperature were monitored across four work days and eight recovery days. Food intake gradually shifted toward rest-work hours, stabilizing on work day three. A subgroup of animals was euthanized after the third work session for analysis of metabolic gene expression in the liver by real-time polymerase chain reaction (PCR). Results show that work in the rest phase shifted food intake to rest-work hours. Moreover, liver genes related to energy storage and insulin metabolism were upregulated, and genes related to energy breakdown were downregulated compared to non-working time-matched controls. Both working groups lost weight during the protocol and regained weight during recovery, but animals that worked in the rest phase did not fully recover, even after eight days of recovery. In conclusion, three to four days of work in the rest phase is sufficient to induce disruption of several metabolic parameters, which requires more than eight days for full recovery.

  4. High-speed optical phase-shifting apparatus

    DOEpatents

    Zortman, William A.

    2016-11-08

    An optical phase shifter includes an optical waveguide, a plurality of partial phase shifting elements arranged sequentially, and control circuitry electrically coupled to the partial phase shifting elements. The control circuitry is adapted to provide an activating signal to each of the N partial phase shifting elements such that the signal is delayed by a clock cycle between adjacent partial phase shifting elements in the sequence. The transit time for a guided optical pulse train between the input edges of consecutive partial phase shifting elements in the sequence is arranged to be equal to a clock cycle, thereby enabling pipelined processing of the optical pulses.

  5. Beam shuttering interferometer and method

    DOEpatents

    Deason, V.A.; Lassahn, G.D.

    1993-07-27

    A method and apparatus resulting in the simplification of phase shifting interferometry by eliminating the requirement to know the phase shift between interferograms or to keep the phase shift between interferograms constant. The present invention provides a simple, inexpensive means to shutter each independent beam of the interferometer in order to facilitate the data acquisition requirements for optical interferometry and phase shifting interferometry. By eliminating the requirement to know the phase shift between interferograms or to keep the phase shift constant, a simple, economical means and apparatus for performing the technique of phase shifting interferometry is provide which, by thermally expanding a fiber optical cable changes the optical path distance of one incident beam relative to another.

  6. Beam shuttering interferometer and method

    DOEpatents

    Deason, Vance A.; Lassahn, Gordon D.

    1993-01-01

    A method and apparatus resulting in the simplification of phase shifting interferometry by eliminating the requirement to know the phase shift between interferograms or to keep the phase shift between interferograms constant. The present invention provides a simple, inexpensive means to shutter each independent beam of the interferometer in order to facilitate the data acquisition requirements for optical interferometry and phase shifting interferometry. By eliminating the requirement to know the phase shift between interferograms or to keep the phase shift constant, a simple, economical means and apparatus for performing the technique of phase shifting interferometry is provide which, by thermally expanding a fiber optical cable changes the optical path distance of one incident beam relative to another.

  7. Effective Algorithm for Detection and Correction of the Wave Reconstruction Errors Caused by the Tilt of Reference Wave in Phase-shifting Interferometry

    NASA Astrophysics Data System (ADS)

    Xu, Xianfeng; Cai, Luzhong; Li, Dailin; Mao, Jieying

    2010-04-01

    In phase-shifting interferometry (PSI) the reference wave is usually supposed to be an on-axis plane wave. But in practice a slight tilt of reference wave often occurs, and this tilt will introduce unexpected errors of the reconstructed object wave-front. Usually the least-square method with iterations, which is time consuming, is employed to analyze the phase errors caused by the tilt of reference wave. Here a simple effective algorithm is suggested to detect and then correct this kind of errors. In this method, only some simple mathematic operation is used, avoiding using least-square equations as needed in most methods reported before. It can be used for generalized phase-shifting interferometry with two or more frames for both smooth and diffusing objects, and the excellent performance has been verified by computer simulations. The numerical simulations show that the wave reconstruction errors can be reduced by 2 orders of magnitude.

  8. Tunable Spin dependent beam shift by simultaneously tailoring geometric and dynamical phases of light in inhomogeneous anisotropic medium

    PubMed Central

    Pal, Mandira; Banerjee, Chitram; Chandel, Shubham; Bag, Ankan; Majumder, Shovan K.; Ghosh, Nirmalya

    2016-01-01

    Spin orbit interaction and the resulting Spin Hall effect of light are under recent intensive investigations because of their fundamental nature and potential applications. Here, we report an interesting manifestation of spin Hall effect of light and demonstrate its tunability in an inhomogeneous anisotropic medium exhibiting spatially varying retardance level. In our system, the beam shift occurs only for one circular polarization mode keeping the other orthogonal mode unaffected, which is shown to arise due to the combined spatial gradients of the geometric phase and the dynamical phase of light. The constituent two orthogonal circular polarization modes of an input linearly polarized light evolve in different trajectories, eventually manifesting as a large and tunable spin separation. The spin dependent beam shift and the demonstrated principle of simultaneously tailoring space-varying geometric and dynamical phase of light for achieving its tunability (of both magnitude and direction), may provide an attractive route towards development of spin-optical devices. PMID:28004825

  9. Microstrip Antennas with Broadband Integrated Phase Shifting

    NASA Technical Reports Server (NTRS)

    Bernhard, Jennifer T.; Romanofsky, Robert R. (Technical Monitor)

    2001-01-01

    The goal of this research was to investigate the feasibility of using a spiral microstrip antenna that incorporates a thin ferroelectric layer to achieve both radiation and phase shifting. This material is placed between the conductive spiral antenna structure and the grounded substrate. Application of a DC bias between the two arms of the spiral antenna will change the effective permittivity of the radiating structure and the degree of coupling between contiguous spiral arms, therefore changing the phase of the RF signal transmitted or received by the antenna. This could eliminate the need for a separate phase shifter apart from the antenna structure. The potential benefits of such an antenna element compared to traditional phased array elements include: continuous, broadband phase shifting at the antenna, lower overall system losses, lighter, more efficient, and more compact phased arrays, and simpler control algorithms. Professor Jennifer Bernhard, graduate student Gregory Huff, and undergraduate student Brian Huang participated in this effort from March 1, 2000 to February 28, 2001. No inventions resulted from the research undertaken in this cooperative agreement.

  10. White light phase shifting interferometry and color fringe analysis for the detection of contaminants in water

    NASA Astrophysics Data System (ADS)

    Dubey, Vishesh; Singh, Veena; Ahmad, Azeem; Singh, Gyanendra; Mehta, Dalip Singh

    2016-03-01

    We report white light phase shifting interferometry in conjunction with color fringe analysis for the detection of contaminants in water such as Escherichia coli (E.coli), Campylobacter coli and Bacillus cereus. The experimental setup is based on a common path interferometer using Mirau interferometric objective lens. White light interferograms are recorded using a 3-chip color CCD camera based on prism technology. The 3-chip color camera have lesser color cross talk and better spatial resolution in comparison to single chip CCD camera. A piezo-electric transducer (PZT) phase shifter is fixed with the Mirau objective and they are attached with a conventional microscope. Five phase shifted white light interferograms are recorded by the 3-chip color CCD camera and each phase shifted interferogram is decomposed into the red, green and blue constituent colors, thus making three sets of five phase shifted intererograms for three different colors from a single set of white light interferogram. This makes the system less time consuming and have lesser effect due to surrounding environment. Initially 3D phase maps of the bacteria are reconstructed for red, green and blue wavelengths from these interferograms using MATLAB, from these phase maps we determines the refractive index (RI) of the bacteria. Experimental results of 3D shape measurement and RI at multiple wavelengths will be presented. These results might find applications for detection of contaminants in water without using any chemical processing and fluorescent dyes.

  11. Study of nanometer-level precise phase-shift system used in electronic speckle shearography and phase-shift pattern interferometry

    NASA Astrophysics Data System (ADS)

    Jing, Chao; Liu, Zhongling; Zhou, Ge; Zhang, Yimo

    2011-11-01

    The nanometer-level precise phase-shift system is designed to realize the phase-shift interferometry in electronic speckle shearography pattern interferometry. The PZT is used as driving component of phase-shift system and translation component of flexure hinge is developed to realize micro displacement of non-friction and non-clearance. Closed-loop control system is designed for high-precision micro displacement, in which embedded digital control system is developed for completing control algorithm and capacitive sensor is used as feedback part for measuring micro displacement in real time. Dynamic model and control model of the nanometer-level precise phase-shift system is analyzed, and high-precision micro displacement is realized with digital PID control algorithm on this basis. It is proved with experiments that the location precision of the precise phase-shift system to step signal of displacement is less than 2nm and the location precision to continuous signal of displacement is less than 5nm, which is satisfied with the request of the electronic speckle shearography and phase-shift pattern interferometry. The stripe images of four-step phase-shift interferometry and the final phase distributed image correlated with distortion of objects are listed in this paper to prove the validity of nanometer-level precise phase-shift system.

  12. Thermal residual stress evaluation based on phase-shift lateral shearing interferometry

    NASA Astrophysics Data System (ADS)

    Dai, Xiangjun; Yun, Hai; Shao, Xinxing; Wang, Yanxia; Zhang, Donghuan; Yang, Fujun; He, Xiaoyuan

    2018-06-01

    An interesting phase-shift lateral shearing interferometry system was proposed to evaluate the thermal residual stress distribution in transparent specimen. The phase-shift interferograms was generated by moving a parallel plane plate. Based on analyzing the fringes deflected by deformation and refractive index change, the stress distribution can be obtained. To verify the validity of the proposed method, a typical experiment was elaborately designed to determine thermal residual stresses of a transparent PMMA plate subjected to the flame of a lighter. The sum of in-plane stress distribution was demonstrated. The experimental data were compared with values measured by digital gradient sensing method. Comparison of the results reveals the effectiveness and feasibility of the proposed method.

  13. Frequency domain phase-shifted confocal microscopy (FDPCM) with array detection

    NASA Astrophysics Data System (ADS)

    Ge, Baoliang; Huang, Yujia; Fang, Yue; Kuang, Cuifang; Xiu, Peng; Liu, Xu

    2017-09-01

    We proposed a novel method to reconstruct images taken by array detected confocal microscopy without prior knowledge about its detector distribution. The proposed frequency domain phase-shifted confocal microscopy (FDPCM) shifts the image from each detection channel to its corresponding place by substituting the phase information in Fourier domain. Theoretical analysis shows that our method could approach the resolution nearly twofold of wide-field microscopy. Simulation and experiment results are also shown to verify the applicability and effectiveness of our method. Compared to Airyscan, our method holds the advantage of simplicity and convenience to be applied to array detectors with different structure, which makes FDPCM have great potential in the application of biomedical observation in the future.

  14. Performance improvement of coherent free-space optical communication with quadrature phase-shift keying modulation using digital phase estimation.

    PubMed

    Li, Xueliang; Geng, Tianwen; Ma, Shuang; Li, Yatian; Gao, Shijie; Wu, Zhiyong

    2017-06-01

    The performance of coherent free-space optical (CFSO) communication with phase modulation is limited by both phase fluctuations and intensity scintillations induced by atmospheric turbulence. To improve the system performance, one effective way is to use digital phase estimation. In this paper, a CFSO communication system with quadrature phase-shift keying modulation is studied. With consideration of the effects of log-normal amplitude fluctuations and Gauss phase fluctuations, a two-stage Mth power carrier phase estimation (CPE) scheme is proposed. The simulation results show that the phase noise can be suppressed greatly by this scheme, and the system symbol error rate performance with the two-stage Mth power CPE can be three orders lower than that of the single-stage Mth power CPE. Therefore, the two-stage CPE we proposed can contribute to the performance improvements of the CFSO communication system and has determinate guidance sense to its actual application.

  15. Temporal dynamics of circadian phase shifting response to consecutive night shifts in healthcare workers: role of light-dark exposure.

    PubMed

    Stone, Julia E; Sletten, Tracey L; Magee, Michelle; Ganesan, Saranea; Mulhall, Megan D; Collins, Allison; Howard, Mark; Lockley, Steven W; Rajaratnam, Shantha M W

    2018-06-01

    Shift work is highly prevalent and is associated with significant adverse health impacts. There is substantial inter-individual variability in the way the circadian clock responds to changing shift cycles. The mechanisms underlying this variability are not well understood. We tested the hypothesis that light-dark exposure is a significant contributor to this variability; when combined with diurnal preference, the relative timing of light exposure accounted for 71% of individual variability in circadian phase response to night shift work. These results will drive development of personalised approaches to manage circadian disruption among shift workers and other vulnerable populations to potentially reduce the increased risk of disease in these populations. Night shift workers show highly variable rates of circadian adaptation. This study examined the relationship between light exposure patterns and the magnitude of circadian phase resetting in response to night shift work. In 21 participants (nursing and medical staff in an intensive care unit) circadian phase was measured using 6-sulphatoxymelatonin at baseline (day/evening shifts or days off) and after 3-4 consecutive night shifts. Daily light exposure was examined relative to individual circadian phase to quantify light intensity in the phase delay and phase advance portions of the light phase response curve (PRC). There was substantial inter-individual variability in the direction and magnitude of phase shift after three or four consecutive night shifts (mean phase delay -1:08 ± 1:31 h; range -3:43 h delay to +3:07 h phase advance). The relative difference in the distribution of light relative to the PRC combined with diurnal preference accounted for 71% of the variability in phase shift. Regression analysis incorporating these factors estimated phase shift to within ±60 min in 85% of participants. No participants met criteria for partial adaptation to night work after three or four consecutive night shifts. Our findings provide evidence that the phase resetting that does occur is based on individual light exposure patterns relative to an individual's baseline circadian phase. Thus, a 'one size fits all' approach to promoting adaptation to shift work using light therapy, implemented without knowledge of circadian phase, may not be efficacious for all individuals. © 2018 Monash University. The Journal of Physiology © 2018 The Physiological Society.

  16. Role of Inflammatory Signaling in the Differential Effects of Saturated and Poly-unsaturated Fatty Acids on Peripheral Circadian Clocks.

    PubMed

    Kim, Sam-Moon; Neuendorff, Nichole; Chapkin, Robert S; Earnest, David J

    2016-05-01

    Inflammatory signaling may play a role in high-fat diet (HFD)-related circadian clock disturbances that contribute to systemic metabolic dysregulation. Therefore, palmitate, the prevalent proinflammatory saturated fatty acid (SFA) in HFD and the anti-inflammatory, poly-unsaturated fatty acid (PUFA), docosahexaenoic acid (DHA), were analyzed for effects on circadian timekeeping and inflammatory responses in peripheral clocks. Prolonged palmitate, but not DHA, exposure increased the period of fibroblast Bmal1-dLuc rhythms. Acute palmitate treatment produced phase shifts of the Bmal1-dLuc rhythm that were larger in amplitude as compared to DHA. These phase-shifting effects were time-dependent and contemporaneous with rhythmic changes in palmitate-induced inflammatory responses. Fibroblast and differentiated adipocyte clocks exhibited cell-specific differences in the time-dependent nature of palmitate-induced shifts and inflammation. DHA and other inhibitors of inflammatory signaling (AICAR, cardamonin) repressed palmitate-induced proinflammatory responses and phase shifts of the fibroblast clock, suggesting that SFA-mediated inflammatory signaling may feed back to modulate circadian timekeeping in peripheral clocks. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  17. In-line phase shift tomosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammonds, Jeffrey C.; Price, Ronald R.; Pickens, David R.

    2013-08-15

    Purpose: The purpose of this work is to (1) demonstrate laboratory measurements of phase shift images derived from in-line phase-contrast radiographs using the attenuation-partition based algorithm (APBA) of Yan et al.[Opt. Express 18(15), 16074–16089 (2010)], (2) verify that the APBA reconstructed images obey the linearity principle, and (3) reconstruct tomosynthesis phase shift images from a collection of angularly sampled planar phase shift images.Methods: An unmodified, commercially available cabinet x-ray system (Faxitron LX-60) was used in this experiment. This system contains a tungsten anode x-ray tube with a nominal focal spot size of 10 μm. The digital detector uses CsI/CMOS withmore » a pixel size of 50 × 50 μm. The phantoms used consisted of one acrylic plate, two polystyrene plates, and a habanero pepper. Tomosynthesis images were reconstructed from 51 images acquired over a ±25° arc. All phase shift images were reconstructed using the APBA.Results: Image contrast derived from the planar phase shift image of an acrylic plate of uniform thickness exceeded the contrast of the traditional attenuation image by an approximate factor of two. Comparison of the planar phase shift images from a single, uniform thickness polystyrene plate with two polystyrene plates demonstrated an approximate linearity of the estimated phase shift with plate thickness (−1600 rad vs −2970 rad). Tomographic phase shift images of the habanero pepper exhibited acceptable spatial resolution and contrast comparable to the corresponding attenuation image.Conclusions: This work demonstrated the feasibility of laboratory-based phase shift tomosynthesis and suggests that phase shift imaging could potentially provide a new imaging biomarker. Further investigation will be needed to determine if phase shift contrast will be able to provide new tissue contrast information or improved clinical performance.« less

  18. Evaluation of quadrature-phase-shift-keying signal characteristics in W-band radio-over-fiber transmission using direct in-phase/quadrature-phase conversion technique

    NASA Astrophysics Data System (ADS)

    Suzuki, Meisaku; Kanno, Atsushi; Yamamoto, Naokatsu; Sotobayashi, Hideyuki

    2016-02-01

    The effects of in-phase/quadrature-phase (IQ) imbalances are evaluated with a direct IQ down-converter in the W-band (75-110 GHz). The IQ imbalance of the converter is measured within a range of +/-10 degrees in an intermediate frequency of DC-26.5 GHz. 1-8-G-baud quadrature phase-shift keying (QPSK) signals are transmitted successfully with observed bit error rates within a forward error correction limit of 2×10-3 using radio over fiber (RoF) techniques. The direct down-conversion technique is applicable to next-generation high-speed wireless access communication systems in the millimeter-wave band.

  19. Simulation of Dual-Electrode Capacitively Coupled Plasma Discharges

    NASA Astrophysics Data System (ADS)

    Lu, Yijia; Ji, Linhong; Cheng, Jia

    2016-12-01

    Dual-electrode capacitively coupled plasma discharges are investigated here to lower the non-uniformity of plasma density. The dual-electrode structure proposed by Jung splits the electrode region and increases the flexibility of fine tuning non-uniformity. Different RF voltages, frequencies, phase-shifts and electrode areas are simulated and the influences are discussed. RF voltage and electrode area have a non-monotonic effect on non-uniformity, while frequency has a monotonic effect. Phase-shift has a cyclical influence on non-uniformity. A special combination of 224 V voltage and 11% area ratio with 10 MHz lowers the non-uniformity of the original set (200 V voltage and 0% area ratio with 10 MHz) by 46.5%. The position of the plasma density peak at the probe line has been tracked and properly tuning the phase-shift can obtain the same trace as tuning frequency or voltage. supported by National Natural Science Foundation of China (No. 51405261)

  20. Deep-turbulence wavefront sensing using digital holography in the on-axis phase shifting recording geometry

    NASA Astrophysics Data System (ADS)

    Thornton, Douglas E.; Spencer, Mark F.; Perram, Glen P.

    2017-09-01

    The effects of deep turbulence in long-range imaging applications presents unique challenges to properly measure and correct for aberrations incurred along the atmospheric path. In practice, digital holography can detect the path-integrated wavefront distortions caused by deep turbulence, and di erent recording geometries offer different benefits depending on the application of interest. Previous studies have evaluated the performance of the off-axis image and pupil plane recording geometries for deep-turbulence sensing. This study models digital holography in the on-axis phase shifting recording geometry using wave optics simulations. In particular, the analysis models spherical-wave propagation through varying deep-turbulence conditions to estimate the complex optical field, and performance is evaluated by calculating the field-estimated Strehl ratio and RMS wavefront error. Altogether, the results show that digital holography in the on-axis phase shifting recording geometry is an effective wavefront-sensing method in the presence of deep turbulence.

  1. Proprioceptive influence on the optokinetic nystagmus.

    PubMed

    Botti, F; Anastasopoulos, D; Kostadima, V; Bambagioni, D; Pettorossi, V E

    2001-01-01

    The influence of neck and leg proprioceptive inputs on optokinetic-induced quick phases was studied in humans. Ten subjects received unidirectional horizontal optokinetic stimulation (10-20%/s) during sinusoidal neck, leg and combined neck + leg proprioceptive stimulation. The optokinetic reflex was measured by electro-oculography. Neck stimulation induced a shift in the nystagmus beating field in the opposite direction to body movement (gain 0.3 0.4, phase 140-180 degrees). The beating field shift resulted totally from the amplitude and frequency modulation of optokinetic quick phases, as slow phases were not affected. Leg proprioceptive stimulation induced a similar effect, but the phase of the response lagged by approximately 90 degrees compared with that of neck response. With combined neck + leg stimulation, the amplitude of the effect was a sum of the separate effects, but the phase coincided with that of the leg response. This suggests that neck and leg proprioceptive signals do not add linearly and that the leg signal determines the time of the response.

  2. Development of models simulating operation of elements of radio devices, for solving problems of ensuring electromagnetic compatibility of radio electronic means

    NASA Astrophysics Data System (ADS)

    Glotov, V. V.; Ostroumov, I. V.; Romashchenko, M. A.

    2018-05-01

    To study the effect of phase-shift signals parameters on EMC of REM, a generalized signal generation model in a radio transmitter was developed which allows obtaining digital representations of phase-shift signals, which are a continuous pulse in the time domain and on the frequency axis with different signal element envelope shapes.

  3. Imaging the Gouy phase shift in photonic jets with a wavefront sensor.

    PubMed

    Bon, Pierre; Rolly, Brice; Bonod, Nicolas; Wenger, Jérôme; Stout, Brian; Monneret, Serge; Rigneault, Hervé

    2012-09-01

    A wavefront sensor is used as a direct observation tool to image the Gouy phase shift in photonic nanojets created by micrometer-sized dielectric spheres. The amplitude and phase distributions of light are found in good agreement with a rigorous electromagnetic computation. Interestingly the observed phase shift when travelling through the photonic jet is a combination of the awaited π Gouy shift and a phase shift induced by the bead refraction. Such direct spatial phase shift observation using wavefront sensors would find applications in microscopy, diffractive optics, optical trapping, and point spread function engineering.

  4. PSK Shift Timing Information Detection Using Image Processing and a Matched Filter

    DTIC Science & Technology

    2009-09-01

    phase shifts are enhanced.  Develop, design, and test the resulting phase shift identification scheme. xx  Develop, design, and test an optional...and the resulting phase shift identification algorithm is investigated for SNR levels in the range -2dB to 12 dB. Detection performances are derived...test the resulting phase shift identification scheme.  Develop, design, and test an optional analysis window overlapping technique to improve phase

  5. Frequency shifts in distortion-product otoacoustic emissions evoked by swept tones

    PubMed Central

    Shera, Christopher A.; Abdala, Carolina

    2016-01-01

    When distortion-product otoacoustic emissions (DPOAEs) are evoked using stimuli whose instantaneous frequencies change rapidly and continuously with time (swept tones), the oscillatory interference pattern known as distortion-product fine structure shifts slightly along the frequency axis in the same direction as the sweep. By analogy with the temporal mechanisms thought to underlie the differing efficacies of up- and down-swept stimuli as perceptual maskers (e.g., Schroeder-phase complexes), fine-structure shifts have been ascribed to the phase distortion associated with dispersive wave propagation in the cochlea. This paper tests an alternative hypothesis and finds that the observed shifts arise predominantly as a methodological side effect of the analysis procedures commonly used to extract delayed emissions from the measured time waveform. Approximate expressions for the frequency shifts of DPOAE distortion and reflection components are derived, validated with computer simulations, and applied to account for DPOAE fine-structure shifts measured in human subjects. Component magnitudes are shown to shift twice as much as component phases. Procedures for compensating swept-tone measurements to obtain estimates of the total DPOAE and its components measured at other sweep rates or in the sinusoidal steady state are presented. PMID:27586726

  6. Shift in Food Intake and Changes in Metabolic Regulation and Gene Expression during Simulated Night-Shift Work: A Rat Model

    PubMed Central

    Marti, Andrea Rørvik; Meerlo, Peter; Grønli, Janne; van Hasselt, Sjoerd Johan; Mrdalj, Jelena; Pallesen, Ståle; Pedersen, Torhild Thue; Henriksen, Tone Elise Gjøtterud; Skrede, Silje

    2016-01-01

    Night-shift work is linked to a shift in food intake toward the normal sleeping period, and to metabolic disturbance. We applied a rat model of night-shift work to assess the immediate effects of such a shift in food intake on metabolism. Male Wistar rats were subjected to 8 h of forced activity during their rest (ZT2-10) or active (ZT14-22) phase. Food intake, body weight, and body temperature were monitored across four work days and eight recovery days. Food intake gradually shifted toward rest-work hours, stabilizing on work day three. A subgroup of animals was euthanized after the third work session for analysis of metabolic gene expression in the liver by real-time polymerase chain reaction (PCR). Results show that work in the rest phase shifted food intake to rest-work hours. Moreover, liver genes related to energy storage and insulin metabolism were upregulated, and genes related to energy breakdown were downregulated compared to non-working time-matched controls. Both working groups lost weight during the protocol and regained weight during recovery, but animals that worked in the rest phase did not fully recover, even after eight days of recovery. In conclusion, three to four days of work in the rest phase is sufficient to induce disruption of several metabolic parameters, which requires more than eight days for full recovery. PMID:27834804

  7. Alternating phase-shifted mask for logic gate levels, design, and mask manufacturing

    NASA Astrophysics Data System (ADS)

    Liebmann, Lars W.; Graur, Ioana C.; Leipold, William C.; Oberschmidt, James M.; O'Grady, David S.; Regaill, Denis

    1999-07-01

    While the benefits of alternating phase shifted masks in improving lithographic process windows at increased resolution are well known throughout the lithography community, broad implementation of this potentially powerful technique has been slow due to the inherent complexity of the layout design and mask manufacturing process. This paper will review a project undertaken at IBM's Semiconductor Research and Development Center and Mask Manufacturing and Development facility to understand the technical and logistical issues associated with the application of alternating phase shifted mask technology to the gate level of a full microprocessor chip. The work presented here depicts an important milestone toward integration of alternating phase shifted masks into the manufacturing process by demonstrating an automated design solution and yielding a functional alternating phase shifted mask. The design conversion of the microprocessor gate level to a conjugate twin shifter alternating phase shift layout was accomplished with IBM's internal design system that automatically scaled the design, added required phase regions, and resolved phase conflicts. The subsequent fabrication of a nearly defect free phase shifted mask, as verified by SEM based die to die inspection, highlights the maturity of the alternating phase shifted mask manufacturing process in IBM's internal mask facility. Well defined and recognized challenges in mask inspection and repair remain and the layout of alternating phase shifted masks present a design and data preparation overhead, but the data presented here demonstrate the feasibility of designing and building manufacturing quality alternating phase shifted masks for the gate level of a microprocessor.

  8. Mesoscopic effect of spectral modulation for the light transmitted by a SNOM tip

    NASA Astrophysics Data System (ADS)

    Rähn, M.; Pärs, M.; Palm, V.; Jaaniso, R.; Hizhnyakov, V.

    2010-06-01

    The effect of a tapered metal-coated optical fiber terminated by a sub-wavelength aperture (SWA) on the spectrum of the transmitted light is investigated experimentally. Under certain conditions a remarkable spectral modulation of the transmitted light can be observed. This effect is of a mesoscopic origin, occurring only for a certain interval of SWA diameters. One can conclude that a noticeable modulation appears when the number of the transmitted fiber modes is small but exceeds unity, thus indicating the presence of a phase shift between different modes. To discern between two possible sources of such phase shift, the fiber length dependence of the output spectrum has been studied. According to the results obtained for the used sample of 200 nm SNOM tip, the observed phase shift is mostly caused rather by the inherent modal dispersion of the multimode fiber than by the mode-dependent light slowdown in the tapered region close to SWA due to the coupling to surface plasmons of the metal coating. The SWA acts here mainly as an effective mode filter.

  9. Method for the substantial reduction of quenching effects in luminescence spectrometry

    DOEpatents

    Demas, James N.; Jones, Wesley M.; Keller, Richard A.

    1989-01-01

    Method for reducing quenching effects in analytical luminescence measurements. Two embodiments of the present invention are described which relate to a form of time resolution based on the amplitudes and phase shifts of modulated emission signals. In the first embodiment, the measured modulated emission signal is substantially independent of sample quenching at sufficiently high frequenices. In the second embodiment, the modulated amplitude and the phase shift between the emission signal and the excitation source are simultaneously measured. Using either method, the observed modulated amplitude may reduced to tis unquenched value.

  10. Theoretical and Experimental Estimations of Volumetric Inductive Phase Shift in Breast Cancer Tissue

    NASA Astrophysics Data System (ADS)

    González, C. A.; Lozano, L. M.; Uscanga, M. C.; Silva, J. G.; Polo, S. M.

    2013-04-01

    Impedance measurements based on magnetic induction for breast cancer detection has been proposed in some studies. This study evaluates theoretical and experimentally the use of a non-invasive technique based on magnetic induction for detection of patho-physiological conditions in breast cancer tissue associated to its volumetric electrical conductivity changes through inductive phase shift measurements. An induction coils-breast 3D pixel model was designed and tested. The model involves two circular coils coaxially centered and a human breast volume centrally placed with respect to the coils. A time-harmonic numerical simulation study addressed the effects of frequency-dependent electrical properties of tumoral tissue on the volumetric inductive phase shift of the breast model measured with the circular coils as inductor and sensor elements. Experimentally; five female volunteer patients with infiltrating ductal carcinoma previously diagnosed by the radiology and oncology departments of the Specialty Clinic for Women of the Mexican Army were measured by an experimental inductive spectrometer and the use of an ergonomic inductor-sensor coil designed to estimate the volumetric inductive phase shift in human breast tissue. Theoretical and experimental inductive phase shift estimations were developed at four frequencies: 0.01, 0.1, 1 and 10 MHz. The theoretical estimations were qualitatively in agreement with the experimental findings. Important increments in volumetric inductive phase shift measurements were evident at 0.01MHz in theoretical and experimental observations. The results suggest that the tested technique has the potential to detect pathological conditions in breast tissue associated to cancer by non-invasive monitoring. Further complementary studies are warranted to confirm the observations.

  11. Locomotor activity and non-photic influences on circadian clocks.

    PubMed

    Mrosovsky, N

    1996-08-01

    Some of the main themes in this review are as follows. 1. The notion that non-photic zeitgebers are weak needs re-examining. Phase-shifts to some non-photic manipulations can be as large as those to light pulses. 2. As well as being able to phase-shift and entrain free-running rhythms, non-photic events have a number of other effects: these include after-effects of entrainment, period changes, and promotion of splitting. 3. The critical variable for non-photic shifting is unknown. Locomotor activity is more likely to be an index of some other necessary state rather than being causal itself. This index may be better when tendencies to move are channelled into easily measured behaviours like wheel-running. 4. Given ignorance about the critical variable, quantification of activity may be the best presently available measure of zeitgeber intensity. Therefore, the behaviour during non-photic manipulations must be examined as carefully as the shifts themselves. When no phase-shifting follows manipulations such as IGL lesions or serotonin depletion, if the animals are inactive, then little can be inferred. 5. Lack of information on the critical variable(s) for non-photic shifting makes it problematic to compare data from studies using different non-photic manipulations. However, the presence of locomotor activity (or its correlate) does appear to be necessary for triazolam to produce shifts. 6. Novelty-induced wheel-running in hamsters depends on the NPY projection from the IGL to SCN. It remains to be determined how important NPY is in other species or in clock-resetting by other manipulations, but methods are now available to study this. 7. Interactions between photic and non-photic zeitgebers remain virtually unexplored, but it is evident that photic and non-photic stimuli can attenuate the phase-shifting effects of each other. Interactions are not purely additive or predictable from PRCs. 8. The circadian system does more than synchronize free-running rhythms to the solar day. Its non-photic functions and their interactions with photic inputs probably account for some of the anatomical complexity of circadian circuitry.

  12. Observation of FeGe skyrmions by electron phase microscopy with hole-free phase plate

    NASA Astrophysics Data System (ADS)

    Kotani, Atsuhiro; Harada, Ken; Malac, Marek; Salomons, Mark; Hayashida, Misa; Mori, Shigeo

    2018-05-01

    We report application of hole-free phase plate (HFPP) to imaging of magnetic skyrmion lattices. Using HFPP imaging, we observed skyrmions in FeGe, and succeeded in obtaining phase contrast images that reflect the sample magnetization distribution. According to the Aharonov-Bohm effect, the electron phase is shifted by the magnetic flux due to sample magnetization. The differential processing of the intensity in a HFPP image allows us to successfully reconstruct the magnetization map of the skyrmion lattice. Furthermore, the calculated phase shift due to the magnetization of the thin film was consistent with that measured by electron holography experiment, which demonstrates that HFPP imaging can be utilized for analysis of magnetic fields and electrostatic potential distribution at the nanoscale.

  13. Features of Talbot effect on phase diffraction grating

    NASA Astrophysics Data System (ADS)

    Brazhnikov, Denis G.; Danko, Volodymyr P.; Kotov, Myhaylo M.; Kovalenko, Andriy V.

    2018-01-01

    The features of the Talbot effect using the phase diffraction gratings have been considered. A phase grating, unlike an amplitude grating, gives a constant light intensity in the observation plane at a distance multiple to half of the Talbot length ZT. In this case, the subject of interest consists in so-called fractional Talbot effect with the periodic intensity distribution observed in planes shifted from the position nZT/2 (the so-called Fresnel images). Binary phase diffraction gratings with varying phase steps have been investigated. Gratings were made photographically on holographic plates PFG-01. The phase shift was obtained by modulating the emulsion refraction index of the plates. Two types of gratings were used: a square grating with a fill factor of 0.5 and a checkerwise grating (square areas with a bigger and lower refractive index alternate in a checkerboard pattern). By the example of these gratings, the possibility of obtaining in the observation plane an image of a set of equidistant spots with a size smaller than the size of the phase-shifting elements of the grating (the so-called Talbot focusing) has been shown. Clear images of spots with a sufficient signal-to-noise ratio have been obtained for a square grating. Their period was equal to the period of the grating. For a grating with a checkerwise distribution of the refractive index, the spots have been located in positions corresponding to the centres of cells. In addition, the quality of the resulting pattern strongly depended on the magnitude of a grating phase step. As a result of the work, the possibility to obtain Talbot focusing has been shown and the use of this effect to wavefront investigation with a gradient sensor has been demonstrated.

  14. Resonant tidal excitation of oscillation modes in merging binary neutron stars: Inertial-gravity modes

    NASA Astrophysics Data System (ADS)

    Xu, Wenrui; Lai, Dong

    2017-10-01

    In coalescing neutron star (NS) binaries, tidal force can resonantly excite low-frequency (≲500 Hz ) oscillation modes in the NS, transferring energy between the orbit and the NS. This resonant tide can induce phase shift in the gravitational waveforms, and potentially provide a new window of studying NS interior using gravitational waves. Previous works have considered tidal excitations of pure g-modes (due to stable stratification of the star) and pure inertial modes (due to Coriolis force), with the rotational effect treated in an approximate manner. However, for realistic NSs, the buoyancy and rotational effects can be comparable, giving rise to mixed inertial-gravity modes. We develop a nonperturbative numerical spectral code to compute the frequencies and tidal coupling coefficients of these modes. We then calculate the phase shift in the gravitational waveform due to each resonance during binary inspiral. Given the uncertainties in the NS equation of state and stratification property, we adopt polytropic NS models with a parametrized stratification. We derive relevant scaling relations and survey how the phase shift depends on various properties of the NS. We find that for canonical NSs (with mass M =1.4 M⊙ and radius R =10 km ) and modest rotation rates (≲300 Hz ), the gravitational wave phase shift due to a resonance is generally less than 0.01 radian. But the phase shift is a strong function of R and M , and can reach a radian or more for low-mass NSs with larger radii (R ≳15 km ). Significant phase shift can also be produced when the combination of stratification and rotation gives rise to a very low frequency (≲20 Hz in the inertial frame) modified g-mode. As a by-product of our precise calculation of oscillation modes in rotating NSs, we find that some inertial modes can be strongly affected by stratification; we also find that the m =1 r -mode, previously identified to have a small but finite inertial-frame frequency based on the Cowling approximation, in fact has essentially zero frequency, and therefore cannot be excited during the inspiral phase of NS binaries.

  15. Phase advancing human circadian rhythms with morning bright light, afternoon melatonin, and gradually shifted sleep: can we reduce morning bright light duration?

    PubMed Central

    Crowley, Stephanie J.; Eastman, Charmane I.

    2015-01-01

    OBJECTIVE Efficient treatments to phase advance human circadian rhythms are needed to attenuate circadian misalignment and the associated negative health outcomes that accompany early morning shift work, early school start times, jet lag, and delayed sleep phase disorder. This study compared three morning bright light exposure patterns from a single light box (to mimic home treatment) in combination with afternoon melatonin. METHODS Fifty adults (27 males) aged 25.9±5.1 years participated. Sleep/dark was advanced 1 hour/day for 3 treatment days. Participants took 0.5 mg melatonin 5 hours before baseline bedtime on treatment day 1, and an hour earlier each treatment day. They were exposed to one of three bright light (~5000 lux) patterns upon waking each morning: four 30-minute exposures separated by 30 minutes of room light (2 h group); four 15-minute exposures separated by 45 minutes of room light (1 h group), and one 30-minute exposure (0.5 h group). Dim light melatonin onsets (DLMOs) before and after treatment determined the phase advance. RESULTS Compared to the 2 h group (phase shift=2.4±0.8 h), smaller phase advance shifts were seen in the 1 h (1.7±0.7 h) and 0.5 h (1.8±0.8 h) groups. The 2-hour pattern produced the largest phase advance; however, the single 30-minute bright light exposure was as effective as 1 hour of bright light spread over 3.25 h, and produced 75% of the phase shift observed with 2 hours of bright light. CONCLUSIONS A 30-minute morning bright light exposure with afternoon melatonin is an efficient treatment to phase advance human circadian rhythms. PMID:25620199

  16. Phase advancing human circadian rhythms with morning bright light, afternoon melatonin, and gradually shifted sleep: can we reduce morning bright-light duration?

    PubMed

    Crowley, Stephanie J; Eastman, Charmane I

    2015-02-01

    Efficient treatments to phase-advance human circadian rhythms are needed to attenuate circadian misalignment and the associated negative health outcomes that accompany early-morning shift work, early school start times, jet lag, and delayed sleep phase disorder. This study compared three morning bright-light exposure patterns from a single light box (to mimic home treatment) in combination with afternoon melatonin. Fifty adults (27 males) aged 25.9 ± 5.1 years participated. Sleep/dark was advanced 1 h/day for three treatment days. Participants took 0.5 mg of melatonin 5 h before the baseline bedtime on treatment day 1, and an hour earlier each treatment day. They were exposed to one of three bright-light (~5000 lux) patterns upon waking each morning: four 30-min exposures separated by 30 min of room light (2-h group), four 15-min exposures separated by 45 min of room light (1-h group), and one 30-min exposure (0.5-h group). Dim-light melatonin onsets (DLMOs) before and after treatment determined the phase advance. Compared to the 2-h group (phase shift = 2.4 ± 0.8 h), smaller phase-advance shifts were seen in the 1-h (1.7 ± 0.7 h) and 0.5-h (1.8 ± 0.8 h) groups. The 2-h pattern produced the largest phase advance; however, the single 30-min bright-light exposure was as effective as 1 h of bright light spread over 3.25 h, and it produced 75% of the phase shift observed with 2 h of bright light. A 30-min morning bright-light exposure with afternoon melatonin is an efficient treatment to phase-advance human circadian rhythms. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Quantitative phase imaging of human red blood cells using phase-shifting white light interference microscopy with colour fringe analysis

    NASA Astrophysics Data System (ADS)

    Singh Mehta, Dalip; Srivastava, Vishal

    2012-11-01

    We report quantitative phase imaging of human red blood cells (RBCs) using phase-shifting interference microscopy. Five phase-shifted white light interferograms are recorded using colour charge coupled device camera. White light interferograms were decomposed into red, green, and blue colour components. The phase-shifted interferograms of each colour were then processed by phase-shifting analysis and phase maps for red, green, and blue colours were reconstructed. Wavelength dependent refractive index profiles of RBCs were computed from the single set of white light interferogram. The present technique has great potential for non-invasive determination of refractive index variation and morphological features of cells and tissues.

  18. Mutants with Altered Sensitivity to a Calmodulin Antagonist Affect the Circadian Clock in Neurospora Crassa

    PubMed Central

    Suzuki, S.; Katagiri, S.; Nakashima, H.

    1996-01-01

    Two newly isolated mutant strains of Neurospora crassa, cpz-1 and cpz-2, were hypersensitive to chlorpromazine with respect to mycelial growth but responded differently to the drug with respect to the circadian conidiation rhythm. In the wild type, chlorpromazine caused shortening of the period length of the conidiation rhythm. Pulse treatment with the drug shifted the phase and inhibited light-induced phase shifting in Neurospora. By contrast to the wild type, the cpz-2 strain was resistant to these inhibitory effects of chlorpromazine. Inhibition of cpz-2 function by chlorpromazine affected three different parameters of circadian conidiation rhythm, namely, period length, phase and light-induced phase shifting. These results indicate that the cpz-2 gene must be involved in or related closely to the clock mechanism of Neurospora. By contrast, the cpz-1 strain was hypersensitive to chlorpromazine with respect to the circadian conidiation rhythm. PMID:8807291

  19. Phase shifts in the Fourier spectra of phase gratings and phase grids: an application for one-shot phase-shifting interferometry.

    PubMed

    Toto-Arellano, Noel-Ivan; Rodriguez-Zurita, Gustavo; Meneses-Fabian, Cruz; Vazquez-Castillo, Jose F

    2008-11-10

    Among several techniques, phase shifting interferometry can be implemented with a grating used as a beam divider to attain several interference patterns around each diffraction order. Because each pattern has to show a different phase-shift, a suitable shifting technique must be employed. Phase gratings are attractive to perform the former task due to their higher diffraction efficiencies. But as is very well known, the Fourier coefficients of only-phase gratings are integer order Bessel functions of the first kind. The values of these real-valued functions oscillate around zero, so they can adopt negative values, thereby introducing phase shifts of pi at certain diffraction orders. Because this almost trivial fact seems to have been overlooked in the literature regarding its practical implications, in this communication such phase shifts are stressed in the description of interference patterns obtained with grating interferometers. These patterns are obtained by placing two windows in the object plane of a 4f system with a sinusoidal grating/grid in the Fourier plane. It is shown that the corresponding experimental observations of the fringe modulation, as well as the corresponding phase measurements, are all in agreement with the proposed description. A one-shot phase shifting interferometer is finally proposed taking into account these properties after proper incorporation of modulation of polarization.

  20. MWP phase shifters integrated in PbS-SU8 waveguides.

    PubMed

    Hervás, Javier; Suárez, Isaac; Pérez, Joaquín; Cantó, Pedro J Rodríguez; Abargues, Rafael; Martínez-Pastor, Juan P; Sales, Salvador; Capmany, José

    2015-06-01

    We present new kind of microwave phase shifters (MPS) based on dispersion of PbS colloidal quantum dots (QDs) in commercially available photoresist SU8 after a ligand exchange process. Ridge PbS-SU8 waveguides are implemented by integration of the nanocomposite in a silicon platform. When these waveguides are pumped at wavelengths below the band-gap of the PbS QDs, a phase shift in an optically conveyed (at 1550 nm) microwave signal is produced. The strong light confinement produced in the ridge waveguides allows an improvement of the phase shift as compared to the case of planar structures. Moreover, a novel ridge bilayer waveguide composed by a PbS-SU8 nanocomposite and a SU8 passive layer is proposed to decrease the propagation losses of the pump beam and in consequence to improve the microwave phase shift up to 36.5° at 25 GHz. Experimental results are reproduced by a theoretical model based on the slow light effect produced in a semiconductor waveguide due to the coherent population oscillations. The resulting device shows potential benefits respect to the current MPS technologies since it allows a fast tunability of the phase shift and a high level of integration due to its small size.

  1. Broadband Achromatic Phase Shifter for a Nulling Interferometer

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Lyon, Richard G.

    2011-01-01

    Nulling interferometry is a technique for imaging exoplanets in which light from the parent star is suppressed using destructive interference. Light from the star is divided into two beams and a phase shift of radians is introduced into one of the beams. When the beams are recombined, they destructively interfere to produce a deep null. For monochromatic light, this is implemented by introducing an optical path difference (OPD) between the two beams equal to lambda/2, where lambda is the wavelength of the light. For broadband light, however, a different phase shift will be introduced at each wavelength and the two beams will not effectively null when recombined. Various techniques have been devised to introduce an achromatic phase shift a phase shift that is uniform across a particular bandwidth. One popular technique is to use a series of dispersive elements to introduce a wavelength-dependent optical path in one or both of the arms of the interferometer. By intelligently choosing the number, material and thickness of a series of glass plates, a nearly uniform, arbitrary phase shift can be introduced between two arms of an interferometer. There are several constraints that make choosing the number, type, and thickness of materials a difficult problem, such as the size of the bandwidth to be nulled. Several solutions have been found for bandwidths on the order of 20 to 30 percent (Delta(lambda)/lambda(sub c)) in the mid-infrared region. However, uniform phase shifts over a larger bandwidth in the visible regime between 480 to 960 nm (67 percent) remain difficult to obtain at the tolerances necessary for exoplanet detection. A configuration of 10 dispersive glass plates was developed to be used as an achromatic phase shifter in nulling interferometry. Five glass plates were placed in each arm of the interferometer and an additional vacuum distance was also included in the second arm of the interferometer. This configuration creates a phase shift of pi radians with an average error of 5.97 x 10(exp -8) radians and standard deviation of 3.07 x 10(exp -4) radians. To reduce ghost reflections and interference effects from neighboring elements, the glass plates are tilted such that the beam does not strike each plate at normal incidence. Reflections will therefore walk out of the system and not contribute to the intensity when the beams are recombined. Tilting the glass plates, however, introduces several other problems that must be mitigated: (1) the polarization of a beam changes when refracted at an interface at non-normal incidence; (2) the beam experiences lateral chromatic spread as it traverses multiple glass plates; (3) at each surface, wavelength- dependent intensity losses will occur due to reflection. For a fixed angle of incidence, each of these effects must be balanced between each arm of the interferometer in order to ensure a deep null. The solution was found using a nonlinear optimization routine that minimized an objective function relating phase shift, intensity difference, chromatic beam spread, and polarization difference to the desired parameters: glass plate material and thickness. In addition to providing a uniform, broadband phase shift, the configuration achieves an average difference in intensity transmission between the two arms of the interferometer of 0.016 percent with a standard deviation of 3.64 x 10(exp -4) percent, an average difference in polarization between the two arms of the interferometer of 5.47 x 10(exp -5) percent with a standard deviation of 1.57 x 10(exp -6) percent, and an average chromatic beam shift between the two arms of the interferometer of -47.53 microns with a wavelength-by-wavelength spread of 0.389 microns.

  2. Parallel-quadrature phase-shifting digital holographic microscopy using polarization beam splitter

    PubMed Central

    Das, Bhargab; Yelleswarapu, Chandra S; Rao, DVGLN

    2012-01-01

    We present a digital holography microscopy technique based on parallel-quadrature phase-shifting method. Two π/2 phase-shifted holograms are recorded simultaneously using polarization phase-shifting principle, slightly off-axis recording geometry, and two identical CCD sensors. The parallel phase-shifting is realized by combining circularly polarized object beam with a 45° degree polarized reference beam through a polarizing beam splitter. DC term is eliminated by subtracting the two holograms from each other and the object information is reconstructed after selecting the frequency spectrum of the real image. Both amplitude and phase object reconstruction results are presented. Simultaneous recording eliminates phase errors caused by mechanical vibrations and air turbulences. The slightly off-axis recording geometry with phase-shifting allows a much larger dimension of the spatial filter for reconstruction of the object information. This leads to better reconstruction capability than traditional off-axis holography. PMID:23109732

  3. Melatonin and cortisol assessment of circadian shifts in astronauts before flight

    NASA Technical Reports Server (NTRS)

    Whitson, P. A.; Putcha, L.; Chen, Y. M.; Baker, E.

    1995-01-01

    Melatonin and cortisol were measured in saliva and urine samples to assess the effectiveness of a 7-day protocol combining bright-light exposure with sleep shifting in eliciting a 12-hr phase-shift delay in eight U.S. Space Shuttle astronauts before launch. Baseline acrophases for 15 control subjects with normal sleep-wake cycles were as follows: cortisol (saliva) at 0700 (0730 in urine); melatonin (saliva) at 0130 (6-hydroxymelatonin sulfate at 0230 in urine). Acrophases of the astronaut group fell within 2.5 hr of these values before the treatment protocols were begun. During the bright-light and sleep-shifting treatments, both absolute melatonin production and melatonin rhythmicity were diminished during the first 3 treatment days; total daily cortisol levels remained constant throughout the treatment. By the fourth to sixth day of the 7-day protocol, seven of the eight crew members showed phase delays in all four measures that fell within 2 hr of the expected 11- to 12-hr shift. Although cortisol and melatonin rhythms each corresponded with the phase shift, the rhythms in these two hormones did not correspond with each other during the transition.

  4. Melatonin and cortisol assessment of circadian shifts in astronauts before flight.

    PubMed

    Whitson, P A; Putcha, L; Chen, Y M; Baker, E

    1995-04-01

    Melatonin and cortisol were measured in saliva and urine samples to assess the effectiveness of a 7-day protocol combining bright-light exposure with sleep shifting in eliciting a 12-hr phase-shift delay in eight U.S. Space Shuttle astronauts before launch. Baseline acrophases for 15 control subjects with normal sleep-wake cycles were as follows: cortisol (saliva) at 0700 (0730 in urine); melatonin (saliva) at 0130 (6-hydroxymelatonin sulfate at 0230 in urine). Acrophases of the astronaut group fell within 2.5 hr of these values before the treatment protocols were begun. During the bright-light and sleep-shifting treatments, both absolute melatonin production and melatonin rhythmicity were diminished during the first 3 treatment days; total daily cortisol levels remained constant throughout the treatment. By the fourth to sixth day of the 7-day protocol, seven of the eight crew members showed phase delays in all four measures that fell within 2 hr of the expected 11- to 12-hr shift. Although cortisol and melatonin rhythms each corresponded with the phase shift, the rhythms in these two hormones did not correspond with each other during the transition.

  5. The I=2 ππ S-wave Scattering Phase Shift from Lattice QCD

    DOE PAGES

    Beane, S. R.; Chang, E.; Detmold, W.; ...

    2012-02-16

    The π +π + s-wave scattering phase-shift is determined below the inelastic threshold using Lattice QCD. Calculations were performed at a pion mass of m π ≈ 390 MeV with an anisotropic n f = 2+1 clover fermion discretization in four lattice volumes, with spatial extent L ≈ 2.0, 2.5, 3.0 and 3.9 fm, and with a lattice spacing of b s ≈ 0.123 fm in the spatial direction and b t b s/3.5 in the time direction. The phase-shift is determined from the energy-eigenvalues of π +π + systems with both zero and non-zero total momentum in the latticemore » volume using Luscher's method. Our calculations are precise enough to allow for a determination of the threshold scattering parameters, the scattering length a, the effective range r, and the shape-parameter P, in this channel and to examine the prediction of two-flavor chiral perturbation theory: m π 2 a r = 3+O(m π 2/Λ χ 2). Chiral perturbation theory is used, with the Lattice QCD results as input, to predict the scattering phase-shift (and threshold parameters) at the physical pion mass. Our results are consistent with determinations from the Roy equations and with the existing experimental phase shift data.« less

  6. Wave-mixing-induced transparency with zero phase shift in atomic vapors

    NASA Astrophysics Data System (ADS)

    Zhou, F.; Zhu, C. J.; Li, Y.

    2017-12-01

    We present a wave-mixing induced transparency that can lead to a hyper-Raman gain-clamping effect. This new type of transparency is originated from a dynamic gain cancellation effect in a multiphoton process where a highly efficient light field of new frequency is generated and amplified. We further show that this novel dynamic gain cancellation effect not only makes the medium transparent to a probe light field at appropriate frequency but also eliminates the probe field propagation phase shift. This gain-cancellation-based induced transparency holds for many potential applications on optical communication and may lead to effective suppression of parasitic Raman/hyper-Raman noise field generated in high intensity optical fiber transmissions.

  7. Silicon RFIC Techniques for Reconfigurable Military Applications

    DTIC Science & Technology

    2008-12-01

    21 3.2.1 Motivation ...2008-295 21 3.2 Distributed Cascode LNAs at 20 GHz 3.2.1 Motivation Millimetrewave integrated circuits are traditionally implemented using...ZRef=50. Ohm Phase=-45. PhaseShiftSML PS4 ZRef=50. Ohm Phase=-22.5 PhaseShiftSML PS7 ZRef=50. Ohm Phase=-180 PhaseShiftSML PS8 ZRef=50. Ohm Phase=-180

  8. Combination of light and melatonin time cues for phase advancing the human circadian clock.

    PubMed

    Burke, Tina M; Markwald, Rachel R; Chinoy, Evan D; Snider, Jesse A; Bessman, Sara C; Jung, Christopher M; Wright, Kenneth P

    2013-11-01

    Photic and non-photic stimuli have been shown to shift the phase of the human circadian clock. We examined how photic and non-photic time cues may be combined by the human circadian system by assessing the phase advancing effects of one evening dose of exogenous melatonin, alone and in combination with one session of morning bright light exposure. Randomized placebo-controlled double-blind circadian protocol. The effects of four conditions, dim light (∼1.9 lux, ∼0.6 Watts/m(2))-placebo, dim light-melatonin (5 mg), bright light (∼3000 lux, ∼7 Watts/m(2))-placebo, and bright light-melatonin on circadian phase was assessed by the change in the salivary dim light melatonin onset (DLMO) prior to and following treatment under constant routine conditions. Melatonin or placebo was administered 5.75 h prior to habitual bedtime and 3 h of bright light exposure started 1 h prior to habitual wake time. Sleep and chronobiology laboratory environment free of time cues. Thirty-six healthy participants (18 females) aged 22 ± 4 y (mean ± SD). Morning bright light combined with early evening exogenous melatonin induced a greater phase advance of the DLMO than either treatment alone. Bright light alone and melatonin alone induced similar phase advances. Information from light and melatonin appear to be combined by the human circadian clock. The ability to combine circadian time cues has important implications for understanding fundamental physiological principles of the human circadian timing system. Knowledge of such principles is important for designing effective countermeasures for phase-shifting the human circadian clock to adapt to jet lag, shift work, and for designing effective treatments for circadian sleep-wakefulness disorders.

  9. Broadband microwave photonic fully tunable filter using a single heterogeneously integrated III-V/SOI-microdisk-based phase shifter.

    PubMed

    Lloret, Juan; Morthier, Geert; Ramos, Francisco; Sales, Salvador; Van Thourhout, Dries; Spuesens, Thijs; Olivier, Nicolas; Fédéli, Jean-Marc; Capmany, José

    2012-05-07

    A broadband microwave photonic phase shifter based on a single III-V microdisk resonator heterogeneously integrated on and coupled to a nanophotonic silicon-on-insulator waveguide is reported. The phase shift tunability is accomplished by modifying the effective index through carrier injection. A comprehensive semi-analytical model aiming at predicting its behavior is formulated and confirmed by measurements. Quasi-linear and continuously tunable 2π phase shifts at radiofrequencies greater than 18 GHz are experimentally demonstrated. The phase shifter performance is also evaluated when used as a key element in tunable filtering schemes. Distortion-free and wideband filtering responses with a tuning range of ~100% over the free spectral range are obtained.

  10. Method for the substantial reduction of quenching effects in luminescence spectrometry

    DOEpatents

    Demas, J.N.; Jones, W.M.; Keller, R.A.

    1987-06-26

    Method for reducing quenching effects in analytical luminescence measurements. Two embodiments of the present invention are described which relate to a form of time resolution based on the amplitudes and phase shifts of modulated emission signals. In the first embodiment, the measured modulated emission signal is substantially independent of sample quenching at sufficiently high frequencies. In the second embodiment, the modulated amplitude and the phase shift between the emission signal and the excitation source are simultaneously measured. Using either method, the observed modulated amplitude may be reduced to its unquenched value. 3 figs.

  11. Phase shifting two coupled circadian pacemakers - Implications for jet lag

    NASA Technical Reports Server (NTRS)

    Gander, P. H.; Kronauer, R. E.; Graeber, R. C.

    1985-01-01

    Two Van der Pol oscillators with reciprocal linear velocity coupling are utilized to model the response of the human circadian timing system to abrupt displacements of the environmental time cues (zeitgebers). The core temperature rhythm and sleep-wake cycle simulated by the model are examined. The relationship between the masking of circadian rhythms by environmental variables and behavioral and physiological events and the rates of resynchronization is studied. The effects of zeitgeber phase shifts and zeitgeber strength on the resynchronization rates are analyzed. The influence of intrinsic pacemakers periods and coupling strength on resynchronization are investigated. The simulated data reveal that: resynchronization after a time zone shift depends on the magnitude of the shift; the time of day of the shift has little influence on resynchronization; the strength of zeitgebers affects the rate and direction of the resynchronization; the intrinsic pacemaker periods have a significant effect on resynchronization; and increasing the coupling between the oscillators results in an increase in the rate of resynchronization. The model data are compared to transmeridian flight studies data and similar resynchronization patterns are observed.

  12. Fast and robust standard-deviation-based method for bulk motion compensation in phase-based functional OCT.

    PubMed

    Wei, Xiang; Camino, Acner; Pi, Shaohua; Cepurna, William; Huang, David; Morrison, John C; Jia, Yali

    2018-05-01

    Phase-based optical coherence tomography (OCT), such as OCT angiography (OCTA) and Doppler OCT, is sensitive to the confounding phase shift introduced by subject bulk motion. Traditional bulk motion compensation methods are limited by their accuracy and computing cost-effectiveness. In this Letter, to the best of our knowledge, we present a novel bulk motion compensation method for phase-based functional OCT. Bulk motion associated phase shift can be directly derived by solving its equation using a standard deviation of phase-based OCTA and Doppler OCT flow signals. This method was evaluated on rodent retinal images acquired by a prototype visible light OCT and human retinal images acquired by a commercial system. The image quality and computational speed were significantly improved, compared to two conventional phase compensation methods.

  13. Pressure-magnetic field induced phase transformation in Ni{sub 46}Mn{sub 41}In{sub 13} Heusler alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rama Rao, N. V., E-mail: nvrrao@dmrl.drdo.in; Manivel Raja, M.; Pandian, S.

    2014-12-14

    The effect of hydrostatic pressure and magnetic field on the magnetic properties and phase transformation in Ni{sub 46}Mn{sub 41}In{sub 13} Heusler alloy was investigated. Pressure (P)-magnetic field (H)-temperature (T) phase diagram has been constructed from experimental results. In the P–T contour of the phase diagram, the slope of the austenite-martensite phase boundary line appears positive (dT/dP > 0), while it appears negative (dT/dH < 0) in the H–T contour. The results revealed that pressure and magnetic field have opposite effect on phase stabilization. The combined effect of pressure and magnetic field on martensitic transition has led to two important findings: (i) pressure dependent shiftmore » of austenite start temperature (A{sub s}) is higher when larger field is applied, and (ii) field dependent shift of A{sub s} is lowered when a higher pressure is applied. The pressure and magnetic field dependent shift observed in the martensitic transformation has been explained on the basis of thermodynamic calculations. Curie temperature of the phases was found to increase with pressure at a rate of 0.6 K/kbar.« less

  14. Frequency stabilization in nonlinear MEMS and NEMS oscillators

    DOEpatents

    Lopez, Omar Daniel; Antonio, Dario

    2014-09-16

    An illustrative system includes an amplifier operably connected to a phase shifter. The amplifier is configured to amplify a voltage from an oscillator. The phase shifter is operably connected to a driving amplitude control, wherein the phase shifter is configured to phase shift the amplified voltage and is configured to set an amplitude of the phase shifted voltage. The oscillator is operably connected to the driving amplitude control. The phase shifted voltage drives the oscillator. The oscillator is at an internal resonance condition, based at least on the amplitude of the phase shifted voltage, that stabilizes frequency oscillations in the oscillator.

  15. Phase accuracy evaluation for phase-shifting fringe projection profilometry based on uniform-phase coded image

    NASA Astrophysics Data System (ADS)

    Zhang, Chunwei; Zhao, Hong; Zhu, Qian; Zhou, Changquan; Qiao, Jiacheng; Zhang, Lu

    2018-06-01

    Phase-shifting fringe projection profilometry (PSFPP) is a three-dimensional (3D) measurement technique widely adopted in industry measurement. It recovers the 3D profile of measured objects with the aid of the fringe phase. The phase accuracy is among the dominant factors that determine the 3D measurement accuracy. Evaluation of the phase accuracy helps refine adjustable measurement parameters, contributes to evaluating the 3D measurement accuracy, and facilitates improvement of the measurement accuracy. Although PSFPP has been deeply researched, an effective, easy-to-use phase accuracy evaluation method remains to be explored. In this paper, methods based on the uniform-phase coded image (UCI) are presented to accomplish phase accuracy evaluation for PSFPP. These methods work on the principle that the phase value of a UCI can be manually set to be any value, and once the phase value of a UCI pixel is the same as that of a pixel of a corresponding sinusoidal fringe pattern, their phase accuracy values are approximate. The proposed methods provide feasible approaches to evaluating the phase accuracy for PSFPP. Furthermore, they can be used to experimentally research the property of the random and gamma phase errors in PSFPP without the aid of a mathematical model to express random phase error or a large-step phase-shifting algorithm. In this paper, some novel and interesting phenomena are experimentally uncovered with the aid of the proposed methods.

  16. Direct Measurement of Large, Diffuse, Optical Structures

    NASA Technical Reports Server (NTRS)

    Saif, Babak N.; Keski-Kuha, Ritva; Feinberg, Lee; Wyant, J. C.; Atkinson, C.

    2004-01-01

    Digital Speckle Pattern Interferometry (DSPI) is a well-established method for the measurement of diffuse objects in experimental mechanics. DSPIs are phase shifting interferometers. Three or four bucket temporal phase shifting algorithms are commonly used to provide phase shifting. These algorithms are sensitive to vibrations and can not be used to measure large optical structures far away from the interferometer. In this research a simultaneous phase shifted interferometer, PhaseCam product of 4D Technology Corporation in Tucson Arizona, is modified to be a Simultaneous phase shifted Digital Speckle Pattern Interferometer (SDSPI). Repeatability, dynamic range, and accuracy of the SDSPI are characterized by measuring a 5 cm x 5 cm carbon fiber coupon.

  17. NOLM-based all-optical 40 Gbit/s format conversion through sum-frequency generation (SFG) in a PPLN waveguide

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Sun, Junqiang

    2005-11-01

    A novel all-optical format conversion scheme from NRZ to RZ based on sum-frequency generation (SFG) in a periodically poled LiNbO 3 (PPLN) waveguide is proposed, using a nonlinear optical loop mirror (NOLM). The conversion mechanism relies on the combination of attenuation and nonlinear phase shift induced on the clockwise signal field during the SFG process. The SFG between pump, and co- and counter- propagating signals in the PPLN waveguide are numerically studied, showing that counter-propagating SFG can be ignored when quasi-phase matching (QPM) for SFG during co-propagating interaction. The nonlinear phase shift induced on the clockwise signal field is analyzed in detail, showing that it is more effective to yield large values for nonlinear phase shift when appropriately phase mismatched for the SFG process. Two tuning schemes are proposed depend on whether the sum-frequency wavelength is variable or fixed. It is found that the latter has a rather wide 3dB signal conversion bandwidth approximately 154nm. Finally, the influence of reversible process of SFG is discussed and the optimum arrangement of pump and signal peak powers is theoretically demonstrated. The result shows that proper power arrangement, pump width, and waveguide length are necessary for achieving a good conversion effect.

  18. A novel phase retrieval method from three-wavelength in-line phase-shifting interferograms based on positive negative 2π phase shifts

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoqing; Wang, Yawei; Ji, Ying; Xu, Yuanyuan; Xie, Ming

    2018-01-01

    A new method to extract quantitative phases for each wavelength from three-wavelength in-line phase-shifting interferograms is proposed. Firstly, seven interferograms with positive negative 2π phase shifts are sequentially captured by using the phase-shifting technique. Secondly, six dc-term suppressed intensities can be achieved by the use of the algebraic algorithm. Finally, the wrapped phases at the three wavelengths can be acquired simultaneously from these six interferograms add-subtracting by employing the trigonometric function method. The surface morphology with increased ambiguity-free range at synthetic beat wavelength can be obtained, while maintaining the low noise precision of the single wavelength measurement, by combining this method with three-wavelength phase unwrapping method. We illustrate the principle of this algorithm, and the simulated experiments of the spherical cap and the HeLa cell are conducted to prove our proposed method, respectively.

  19. Effects of pharmacological agents on subcortical resistance shifts

    NASA Technical Reports Server (NTRS)

    Klivington, K. A.

    1975-01-01

    Microliter quantities of tetrodotoxin, tetraethylammonium chloride, and picrotoxin injected into the inferior colliculus and superior olive of unanesthetized cats differentially affect the amplitude and waveform of click-evoked potentials and evoked resistance shifts. Tetrodotoxin simultaneously reduces the negative phase of the evoked potential and eliminates the evoked resistance shift. Tetraethylammonium enhances the negative evoked potential component, presumably of postsynaptic origin, without significantly altering evoked resistance shift amplitude. Picrotoxin also enhances the negative evoked potential wave but increases evoked resistance shift amplitude. These findings implicate events associated with postsynaptic membrane depolarization in the production of the evoked resistance shift.

  20. Etched-multilayer phase shifting masks for EUV lithography

    DOEpatents

    Chapman, Henry N.; Taylor, John S.

    2005-04-05

    A method is disclosed for the implementation of phase shifting masks for EUV lithography. The method involves directly etching material away from the multilayer coating of the mask, to cause a refractive phase shift in the mask. By etching into the multilayer (for example, by reactive ion etching), rather than depositing extra material on the top of the multilayer, there will be minimal absorption loss associated with the phase shift.

  1. Research on a novel composite structure Er³⁺-doped DBR fiber laser with a π-phase shifted FBG.

    PubMed

    Zhao, Yanjie; Chang, Jun; Wang, Qingpu; Ni, Jiasheng; Song, Zhiqiang; Qi, Haifeng; Wang, Chang; Wang, Pengpeng; Gao, Liang; Sun, Zhihui; Lv, Guangping; Liu, Tongyu; Peng, Gangding

    2013-09-23

    A simple composite cavity structure Er³⁺-doped fiber laser was proposed and demonstrated experimentally. The resonant cavity consists of a pair of uniform fiber Bragg gratings (FBGs) and a π-phase shifted FBG. By introducing the π-phase shifted FBG into the cavity as the selective wavelength component, it can increase the effective length of the laser cavity and suppress the multi-longitudinal modes simultaneously. The narrow linewidth of 900 Hz and low RIN of -95 dB/Hz were obtained. And the lasing wavelength was rather stable with the pump power changing. The SMRS was more than 67 dB. The results show that the proposed fiber laser has a good performance and considerable potential application for fiber sensor and optical communication.

  2. Probing strong electroweak symmetry breaking dynamics through quantum interferometry at the LHC

    DOE PAGES

    Murayama, Hitoshi; Rentala, Vikram; Shu, Jing

    2015-12-07

    Here, we present a new probe of strongly coupled electroweak symmetry breaking at the 14 TeV LHC by measuring a phase shift in the event distribution of the decay azimuthal angles in massive gauge boson scattering. One generically expects a large phase shift in the longitudinal gauge boson scattering amplitude due to the presence of broad resonances. This phase shift is observable as an interference effect between the strongly interacting longitudinal modes and the transverse modes of the gauge bosons. We find that even very broad resonances of masses up to 900 GeV can be probed at 3σ significance withmore » a 3000 fb -1 run of the LHC by using this technique. We also present the estimated reach for a future 50 TeV proton-proton collider.« less

  3. Constant frequency pulsed phase-locked loop measuring device

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Kushnick, Peter W. (Inventor); Cantrell, John H. (Inventor)

    1993-01-01

    A measuring apparatus is presented that uses a fixed frequency oscillator to measure small changes in the phase velocity ultrasonic sound when a sample is exposed to environmental changes such as changes in pressure, temperature, etc. The invention automatically balances electrical phase shifts against the acoustical phase shifts in order to obtain an accurate measurement of electrical phase shifts.

  4. Relations between Mass Change and Frequency Shift of a QCM Sensor in Contact with Viscoelastic Medium

    NASA Astrophysics Data System (ADS)

    Tan, Feng; Huang, Xian-He

    2013-05-01

    We investigate frequency shift of a quartz crystal microbalance (QCM) sensor introduced by mass effect, and properties of material of its coated viscoelastic film are discussed. The validity of the Sauerbrey relation cannot be held if the viscoelastic properties of the contacting medium are considered. When the QCM sensor with a viscoelastic film works in the gas phase, the viscoelastic properties will introduce an extra mass effect. While in the liquid phase, the missing mass effect can be observed. The experimental results demonstrate that the QCM sensor is sensitive to the viscoelastic properties of the coating film. Properties of the viscoelastic contacting medium should be considered.

  5. Demonstration of Berry Phase in Optical Spectroscopy

    NASA Technical Reports Server (NTRS)

    Xia, Hui-Rong; Zhang, Yong; Jiang, Hong-Ji; Ding, Liang-En

    1996-01-01

    In this paper we demonstrate that the observed phase shift of the RF signal and its intensity dependence under extreme low pump and probe laser field conditions are dominated by Berry phase effect in optical spectroscopy with good adiabatic approximation, which provides all features' agreements between the theoretical and the experimental results.

  6. Ion track etching revisited: II. Electronic properties of aged tracks in polymers

    NASA Astrophysics Data System (ADS)

    Fink, D.; Muñoz Hernández, G.; Cruz, S. A.; Garcia-Arellano, H.; Vacik, J.; Hnatowicz, V.; Kiv, A.; Alfonta, L.

    2018-02-01

    We compile here electronic ion track etching effects, such as capacitive-type currents, current spike emission, phase shift, rectification and background currents that eventually emerge upon application of sinusoidal alternating voltages across thin, aged swift heavy ion-irradiated polymer foils during etching. Both capacitive-type currents and current spike emission occur as long as obstacles still prevent a smooth continuous charge carrier passage across the foils. In the case of sufficiently high applied electric fields, these obstacles are overcome by spike emission. These effects vanish upon etchant breakthrough. Subsequent transmitted currents are usually of Ohmic type, but shortly after breakthrough (during the track' core etching) often still exhibit deviations such as strong positive phase shifts. They stem from very slow charge carrier mobility across the etched ion tracks due to retarding trapping/detrapping processes. Upon etching the track's penumbra, one occasionally observes a split-up into two transmitted current components, one with positive and another one with negative phase shifts. Usually, these phase shifts vanish when bulk etching starts. Current rectification upon track etching is a very frequent phenomenon. Rectification uses to inverse when core etching ends and penumbra etching begins. When the latter ends, rectification largely vanishes. Occasionally, some residual rectification remains which we attribute to the aged polymeric bulk itself. Last not least, we still consider background currents which often emerge transiently during track etching. We could assign them clearly to differences in the electrochemical potential of the liquids on both sides of the etched polymer foils. Transient relaxation effects during the track etching cause their eventually chaotic behaviour.

  7. Absolute Definition of Phase Shift in the Elastic Scattering of a Particle from Compound Systems

    NASA Technical Reports Server (NTRS)

    Temkin, A.

    1961-01-01

    The projection of the target wave function on the total wave function of a scattered particle interacting with the target system is used to define an absolute phase shift including any multiples of pi. With this definition of the absolute phase shift, one can prove rigorously in the limit of zero energy for s-wave electrons scattered from atomic hydrogen that the triplet phase shift must approach a nonzero multiple of pi. One can further show that at least one pi of this phase shift is not connected with the existence of a bound state of the H- ion.

  8. Phase-contrast scanning transmission electron microscopy.

    PubMed

    Minoda, Hiroki; Tamai, Takayuki; Iijima, Hirofumi; Hosokawa, Fumio; Kondo, Yukihito

    2015-06-01

    This report introduces the first results obtained using phase-contrast scanning transmission electron microscopy (P-STEM). A carbon-film phase plate (PP) with a small center hole is placed in the condenser aperture plane so that a phase shift is introduced in the incident electron waves except those passing through the center hole. A cosine-type phase-contrast transfer function emerges when the phase-shifted scattered waves interfere with the non-phase-shifted unscattered waves, which passed through the center hole before incidence onto the specimen. The phase contrast resulting in P-STEM is optically identical to that in phase-contrast transmission electron microscopy that is used to provide high contrast for weak phase objects. Therefore, the use of PPs can enhance the phase contrast of the STEM images of specimens in principle. The phase shift resulting from the PP, whose thickness corresponds to a phase shift of π, has been confirmed using interference fringes displayed in the Ronchigram of a silicon single crystal specimen. The interference fringes were found to abruptly shift at the edge of the PP hole by π. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Influence of OPD in wavelength-shifting interferometry

    NASA Astrophysics Data System (ADS)

    Wang, Hongjun; Tian, Ailing; Liu, Bingcai; Dang, Juanjuan

    2009-12-01

    Phase-shifting interferometry is a powerful tool for high accuracy optical measurement. It operates by change the optical path length in the reference arm or test arm. This method practices by move optical device. So it has much problem when the optical device is very large and heavy. For solve this problem, the wavelength-shifting interferometry was put forwarded. In wavelength-shifting interferometry, the phase shifting angle was achieved by change the wavelength of optical source. The phase shifting angle was decided by wavelength and OPD (Optical Path Difference) between test and reference wavefront. So the OPD is an important factor to measure results. But in measurement, because the positional error and profile error of under testing optical element is exist, the phase shifting angle is different in different test point when wavelength scanning, it will introduce phase shifting angle error, so it will introduce optical surface measure error. For analysis influence of OPD on optical surface error, the relation between surface error and OPD was researched. By simulation, the relation between phase shifting error and OPD was established. By analysis, the error compensation method was put forward. After error compensation, the measure results can be improved to great extend.

  10. Influence of OPD in wavelength-shifting interferometry

    NASA Astrophysics Data System (ADS)

    Wang, Hongjun; Tian, Ailing; Liu, Bingcai; Dang, Juanjuan

    2010-03-01

    Phase-shifting interferometry is a powerful tool for high accuracy optical measurement. It operates by change the optical path length in the reference arm or test arm. This method practices by move optical device. So it has much problem when the optical device is very large and heavy. For solve this problem, the wavelength-shifting interferometry was put forwarded. In wavelength-shifting interferometry, the phase shifting angle was achieved by change the wavelength of optical source. The phase shifting angle was decided by wavelength and OPD (Optical Path Difference) between test and reference wavefront. So the OPD is an important factor to measure results. But in measurement, because the positional error and profile error of under testing optical element is exist, the phase shifting angle is different in different test point when wavelength scanning, it will introduce phase shifting angle error, so it will introduce optical surface measure error. For analysis influence of OPD on optical surface error, the relation between surface error and OPD was researched. By simulation, the relation between phase shifting error and OPD was established. By analysis, the error compensation method was put forward. After error compensation, the measure results can be improved to great extend.

  11. Cocaine Modulates Mammalian Circadian Clock Timing by Decreasing Serotonin Transport in the SCN

    PubMed Central

    Prosser, Rebecca A.; Stowie, Adam; Amicarelli, Mario; Nackenoff, Alex G.; Blakely, Randy D.; Glass, J. David

    2014-01-01

    Cocaine abuse disrupts reward and homeostatic processes through diverse processes, including those involved in circadian clock regulation. Recently we showed that cocaine administration to mice disrupts nocturnal photic phase resetting of the suprachiasmatic (SCN) circadian clock, whereas administration during the day induces non-photic phase shifts. Importantly, the same effects are seen when cocaine is applied to the SCN in vitro, where it blocks photic-like (glutamate-induced) phase shifts at night and induces phase advances during the day. Furthermore, our previous data suggest that cocaine acts in the SCN by enhancing serotonin (5-HT) signaling. For example, the in vitro actions of cocaine mimic those of 5-HT and are blocked by the 5-HT antagonist, metergoline, but not the dopamine receptor antagonist, fluphenazine. Although our data are consistent with cocaine acting through enhance 5-HT signaling, the nonselective actions of cocaine as an antagonist of monoamine transporters raises the question of whether inhibition of the 5-HT transporter (SERT) is key to its circadian effects. Here we investigate this issue using transgenic mice expressing a SERT that exhibits normal 5-HT recognition and transport but significantly reduced cocaine potency (SERT Met172). Circadian patterns of SCN behavioral and neuronal activity did not differ between WT and SERT Met172 mice, nor did they differ in the ability of the 5-HT1A,2,7 receptor agonist, 8-OH-DPAT to reset SCN clock phase, consistent with the normal SERT expression and activity in the transgenic mice. However, 1) cocaine administration does not induce phase advances when administered in vivo or in vitro in SERT Met172 mice; 2) cocaine does not block photic or glutamate-induced (phase shifts in SERT Met172 mice; and 3) cocaine does not induce long-term changes in free-running period in SERT Met172 mice. We conclude that SERT antagonism is required for the phase shifting of the SCN circadian clock induced by cocaine. PMID:24950119

  12. An "unreasonable effectiveness" of Hilbert transform for the transition phase behavior in an Aharonov-Bohm two-path interferometer

    NASA Astrophysics Data System (ADS)

    Englman, R.

    2016-08-01

    The recent phase shift data of Takada et al. (Phys. Rev. Lett. 113 (2014) 126601) for a two level system are reconstructed from their current intensity curves by the method of Hilbert transform, for which the underlying Physics is the principle of causality. An introductory algebraic model illustrates pedagogically the working of the method and leads to newly derived relationships involving phenomenological parameters, in particular for the sign of the phase slope between the resonance peaks. While the parametrization of the experimental current intensity data in terms of a few model parameters shows only a qualitative agreement for the phase shift, due to the strong impact of small, detailed variations in the experimental intensity curve on the phase behavior, the numerical Hilbert transform yields a satisfactory reproduction of the phase.

  13. LY2033298, a positive allosteric modulator at muscarinic M₄ receptors, enhances inhibition by oxotremorine of light-induced phase shifts in hamster circadian activity rhythms.

    PubMed

    Gannon, Robert L; Millan, Mark J

    2012-11-01

    Entrainment of circadian rhythms to the light-dark cycle is essential for restorative sleep, and abnormal sleep timing is implicated in central nervous system (CNS) disorders like depression, schizophrenia, and Alzheimer's disease. Many transmitters, including acetylcholine, that exerts its actions via muscarinic receptors modulate the suprachiasmatic nucleus, the master pacemaker. Since positive allosteric modulators of muscarinic M(4) receptors are candidates for treatment of mood and cognitive deficits of CNS disorders, it is important to evaluate their circadian actions. The effects of intraperitoneally applied muscarinic agents on circadian wheel-running rhythms were measured employing hamsters, a model organism for studying activity rhythms. Systemic administration of the muscarinic receptor agonist oxotremorine (0.01-0.04 mg/kg) inhibited light-induced phase delays and advances of hamster circadian wheel-running rhythms. The M₄ positive allosteric modulator, LY2033298 (10-40 mg/kg), had no effect on light-induced phase shifts when administered alone, yet significantly enhanced (at 20 mg/kg) the inhibitory influence of oxotremorine on light-induced phase delays. In addition, the muscarinic receptor antagonist, scopolamine, which was without effect on light-induced phase shifts when administered alone (0.001-0.1 mg/kg), antagonized (at 0.1 mg/kg) the inhibitory effect of oxotremorine and LY2033298 on light-induced phase delays. These results are the first to demonstrate that systemically applied muscarinic receptor agonists modulate circadian activity rhythms, and they also reveal a specific role for M₄ receptors. It will be of importance to evaluate circadian actions of psychotropic drugs acting via M₄ receptors, since they may display beneficial properties under pathological conditions.

  14. Development and psychometric evaluation of a women shift workers' reproductive health questionnaire: study protocol for a sequential exploratory mixed-method study.

    PubMed

    Nikpour, Maryam; Tirgar, Aram; Ebadi, Abbas; Ghaffari, Fatemeh; Firouzbakht, Mojgan; Hajiahmadi, Mahmod

    2018-02-06

    Although shift works is a certain treat for female reproductive health, but currently, there is no standardized instrument for measuring reproductive health among female shift workers. This study aims to develop and evaluate the psychometric properties of a Women Shift Workers' Reproductive Health Questionnaire (WSW-RHQ). This is a sequential exploratory mixed-method study with a qualitative and a quantitative phase. In the qualitative phase, semi-structured interviews will be held with female shift workers who live in Mazandaran Province, Iran, additionally, the literature review will be performed by searching electronic databases. Sampling will be done in different workplaces and with maximum variation respecting female shift workers' age and job and educational and different economic situation. Interview data will be analyzed using conventional content analysis and then, the primary item pool for the questionnaire will be developed. In the quantitative phase, we will evaluate the psychometric properties of the questionnaire, i.e. its face, content, construct as well as reliability via the internal consistency, stability. Finally, a scoring system will be developed for the questionnaire. The development of WSW-RHQ will facilitate the promotion and implementation of reproductive health interventions and assessment of their effectiveness. Other scholars can cross-culturally adapt and use the questionnaire according to their immediate contexts.

  15. Ps laser pulse induced stimulated Raman scattering of ammonium nitrate dissolved in water

    NASA Astrophysics Data System (ADS)

    Kumar, V. Rakesh; Kiran, P. Prem

    2018-04-01

    An intense picosecond laser pulse focused into a liquid medium generates a shock wave in the focal region. This shock wave while propagating into the medium varies the pressure and temperature of the liquid locally leading to the appearance of novel phases which are manifested by the appearance of Raman peaks. We present the phase changes of ammonium nitrate (AN) dissolved in water by studying the forward and backward stimulated Raman Scattering (FSRS and BSRS) signals due to propagation of 30 ps laser pulse induced shockwaves. The dominant peak corresponding to the NO3- symmetric stretching mode is observed with a Raman shift of 1045 cm-1 which represents phase IV of AN with an orthogonal crystalline structure. Apart from this peak, the dominant mode of liquid phase of water with a Raman shift of 3400 cm-1 and an ice VII peak at a Raman shift of 3050 cm-1 confirming the pressure of 10 GPa is observed. The effect of the concentration and input energy on the appearance of the phases will be presented.

  16. Phase shifting interferometry based on a vibration sensor - feasibility study on elimination of the depth degeneracy

    NASA Astrophysics Data System (ADS)

    Lee, Seung Seok; Kim, Ju Ha; Choi, Eun Seo

    2017-04-01

    We proposed novel phase-shifting interferometry using a fiber-optic vibration sensor. The Doppler shift in the coiled fiber caused by vibrations can be used to detect the vibrations by using a fiber-optic interferometer. The principle can be applied to induce phase shifts. While applying vibrations to the coiled fiber at various vibration frequencies, we recorded the variations in the interference fringes. The interference fringe moved to longer wavelengths when a vibration frequency was increased from 38.00 to 38.40 kHz. Phase variations of 3.59 rad/kHz were obtained. The ability to accurately control the phase by using the vibrations in the coiled fiber was demonstrated by the elimination of the depth degeneracy using the complex signal generated by the phase-shifted interference fringes. Using vibrations to control phase shifting can be an acceptable alternative to conventional methods and can be applied to resolve the depth ambiguity in Fourier domain optical coherence tomography.

  17. Combination of Light and Melatonin Time Cues for Phase Advancing the Human Circadian Clock

    PubMed Central

    Burke, Tina M.; Markwald, Rachel R.; Chinoy, Evan D.; Snider, Jesse A.; Bessman, Sara C.; Jung, Christopher M.; Wright, Kenneth P.

    2013-01-01

    Study Objectives: Photic and non-photic stimuli have been shown to shift the phase of the human circadian clock. We examined how photic and non-photic time cues may be combined by the human circadian system by assessing the phase advancing effects of one evening dose of exogenous melatonin, alone and in combination with one session of morning bright light exposure. Design: Randomized placebo-controlled double-blind circadian protocol. The effects of four conditions, dim light (∼1.9 lux, ∼0.6 Watts/m2)-placebo, dim light-melatonin (5 mg), bright light (∼3000 lux, ∼7 Watts/m2)-placebo, and bright light-melatonin on circadian phase was assessed by the change in the salivary dim light melatonin onset (DLMO) prior to and following treatment under constant routine conditions. Melatonin or placebo was administered 5.75 h prior to habitual bedtime and 3 h of bright light exposure started 1 h prior to habitual wake time. Setting: Sleep and chronobiology laboratory environment free of time cues. Participants: Thirty-six healthy participants (18 females) aged 22 ± 4 y (mean ± SD). Results: Morning bright light combined with early evening exogenous melatonin induced a greater phase advance of the DLMO than either treatment alone. Bright light alone and melatonin alone induced similar phase advances. Conclusion: Information from light and melatonin appear to be combined by the human circadian clock. The ability to combine circadian time cues has important implications for understanding fundamental physiological principles of the human circadian timing system. Knowledge of such principles is important for designing effective countermeasures for phase-shifting the human circadian clock to adapt to jet lag, shift work, and for designing effective treatments for circadian sleep-wakefulness disorders. Citation: Burke TM; Markwald RR; Chinoy ED; Snider JA; Bessman SC; Jung CM; Wright Jr KP. Combination of light and melatonin time cues for phase advancing the human circadian clock. SLEEP 2013;36(11):1617-1624. PMID:24179293

  18. Phase retrieval from the phase-shift moiré fringe patterns in simultaneous dual-wavelength interferometry

    NASA Astrophysics Data System (ADS)

    Cheng, Jinlong; Gao, Zhishan; Bie, Shuyou; Dou, Yimeng; Ni, Ruihu; Yuan, Qun

    2018-02-01

    Simultaneous dual-wavelength interferometry (SDWI) could extend the measured range of each single-wavelength interferometry. The moiré fringe generated in SDWI indirectly represents the information of the measured long synthetic-wavelength ({λ }{{S}}) phase, thus the phase demodulation is rather arduous. To address this issue, we present a method to convert the moiré fringe pattern into a synthetic-wavelength interferogram (moiré to synthetic-wavelength, MTS). After the square of the moiré fringe pattern in the MTS method, the additive moiré pattern is turned into a multiplicative one. And the synthetic-wavelength interferogram could be obtained by a low-pass filtering in spectrum of the multiplicative moiré fringe pattern. Therefore, when the dual-wavelength interferometer is implemented with the π/2 phase shift at {λ }{{S}}, a sequence of synthetic-wavelength phase-shift interferograms with π/2 phase shift could be obtained after the MTS method processing on the captured moiré fringe patterns. And then the synthetic-wavelength phase could be retrieved by the conventional phase-shift algorithm. Compared with other methods in SDWI, the proposed MTS approach could reduce the restriction of the phase shift and frame numbers for the adoption of the conventional phase-shift algorithm. Following, numerical simulations are executed to evaluate the performance of the MTS method in processing time, frames of interferograms and the phase shift error compensation. And the necessary linear carrier for MTS method is less than 0.11 times of the traditional dual-wavelength spatial-domain Fourier transform method. Finally, the deviations for MTS method in experiment are 0.97% for a step with the height of 7.8 μm and 1.11% for a Fresnel lens with the step height of 6.2328 μm.

  19. Micropatterned photoalignment for wavefront controlled switchable optical devices

    NASA Astrophysics Data System (ADS)

    Glazar, Nikolaus

    Photoalignment is a well-established technique for surface alignment of the liquid crystal director. Previously, chrome masks were necessary for patterned photoalignment but were difficult to use, costly, and inflexible. To extend the capabilities of photoalignment we built an automated maskless multi-domain photoalignment device based on a DMD (digital multimirror device) projection system. The device is capable of creating arbitrary photoalignment patterns with micron-sized features. Pancharatnam-Berry phase (PB-phase) is a geometric phase that arises from cyclic change of polarization state. By varying the azimuthal anchoring angle in a hybrid-aligned liquid crystal cell we can control the spatial variation of the PB-phase shift. Using our automated photoalignment device to align the liquid crystal arbitrary wave front manipulations are possible. The PB-phase shift effect is maximized when the cell is tuned to have a half-wave retardation and disappears at full-wave retardation, so the cell can be switched on and off by applying a voltage. Two wavefront controlled devices developed using this technique will be discussed: A switchable liquid crystal phase shift mask for creating sub-diffraction sized photolithographic features, and a transparent diffractive display that utilizes a switchable liquid crystal diffraction grating.

  20. In-line digital holography with phase-shifting Greek-ladder sieves

    NASA Astrophysics Data System (ADS)

    Xie, Jing; Zhang, Junyong; Zhang, Yanli; Zhou, Shenlei; Zhu, Jianqiang

    2018-04-01

    Phase shifting is the key technique in in-line digital holography, but traditional phase shifters have their own limitations in short wavelength regions. Here, phase-shifting Greek-ladder sieves with amplitude-only modulation are introduced into in-line digital holography, which are essentially a kind of diffraction lens with three-dimensional array diffraction-limited foci. In the in-line digital holographic experiment, we design two kinds of sieves by lithography and verify the validity of their phase-shifting function by measuring a 1951 U.S. Air Force resolution test target and three-dimensional array foci. With advantages of high resolving power, low cost, and no limitations at shorter wavelengths, phase-shifting Greek-ladder sieves have great potential in X-ray holography or biochemical microscopy for the next generation of synchrotron light sources.

  1. Phase correction, phase resetting, and phase shifts after subliminal timing perturbations in sensorimotor synchronization.

    PubMed

    Repp, B H

    2001-06-01

    Recent studies of synchronized finger tapping have shown that perceptually subliminal phase shifts in an auditory sequence are rapidly compensated for in the motor activity (B. H. Repp, 2000a). Experiment 1 used a continuation-tapping task to confirm that this compensation is indeed a phase correction, not an adjustment of the central timekeeper period. Experiments 2-5 revealed that this phase correction occurs even when there is no ordinary sensorimotor asynchrony--when the finger taps are in antiphase or arbitrary phase relative to the auditory sequence (Experiments 2 and 3) or when the tap coinciding with the sequence phase shift is withheld (Experiments 4 and 5). The phase correction observed in the latter conditions was instantaneous, which suggests that phase resetting occurs when the motor activity is discontinuous. A prolonged phase shift suggestive of overcompensation was observed in some conditions, which poses a challenge to pure phase correction models.

  2. Photovoltaic dependence of photorefractive grating on the externally applied dc electric field

    NASA Astrophysics Data System (ADS)

    Maurya, M. K.; Yadav, R. A.

    2013-04-01

    Photovoltaic dependence of photorefractive grating (i.e., space-charge field and phase-shift of the index grating) on the externally applied dc electric field in photovoltaic-photorefractive materials has been investigated. The influence of photovoltaic field (EPhN), diffusion field and carrier concentration ratio r (donor/acceptor impurity concentration ratio) on the space-charge field (SCF) and phase-shift of the index grating in the presence and absence of the externally applied dc electric field have also been studied in details. Our results show that, for a given value of EPhN and r, the magnitude of the SCF and phase-shift of the index grating can be enhanced significantly by employing the lower dc electric field (EON<10) across the photovoltaic-photorefractive crystal and higher value of diffusion field (EDN>40). Such an enhancement in the magnitude of the SCF and phase-shift of the index grating are responsible for the strongest beam coupling in photovoltaic-photorefractive materials. This sufficiently strong beam coupling increases the two-beam coupling gain that may be exceed the absorption and reflection losses of the photovoltaic-photorefractive sample, and optical amplification can occur. The higher value of optical amplification in photovoltaic-photorefractive sample is required for the every applications of photorefractive effect so that technology based on the photorefractive effect such as holographic storage devices, optical information processing, acousto-optic tunable filters, gyro-sensors, optical modulators, optical switches, photorefractive-photovoltaic solitons, biomedical applications, and frequency converters could be improved.

  3. Phase-Shift Interferometry with a Digital Photocamera

    ERIC Educational Resources Information Center

    Vannoni, Maurizio; Trivi, Marcelo; Molesini, Giuseppe

    2007-01-01

    A phase-shift interferometry experiment is proposed, working on a Twyman-Green optical configuration with additional polarization components. A guideline is provided to modern phase-shift interferometry, using concepts and laboratory equipment at the level of undergraduate optics courses. (Contains 5 figures.)

  4. Improved detection sensitivity of D-mannitol crystalline phase content using differential spectral phase shift terahertz spectroscopy measurements.

    PubMed

    Allard, Jean-François; Cornet, Alain; Debacq, Christophe; Meurens, Marc; Houde, Daniel; Morris, Denis

    2011-02-28

    We report quantitative measurement of the relative proportion of δ- and β-D-mannitol crystalline phases inserted into polyethylene powder pellets, obtained by time-domain terahertz spectroscopy. Nine absorption bands have been identified from 0.2 THz to 2.2 THz. The best quantification of the δ-phase proportion is made using the 1.01 THz absorption band. Coherent detection allows using the spectral phase shift of the transmitted THz waveform to improve the detection sensitivity of the relative δ-phase proportion. We argue that differential phase shift measurements are less sensitive to samples' defects. Using a linear phase shift compensation for pellets of slightly different thicknesses, we were able to distinguish a 0.5% variation in δ-phase proportion.

  5. Inducing jet-lag in older people: directional asymmetry

    NASA Technical Reports Server (NTRS)

    Monk, T. H.; Buysse, D. J.; Carrier, J.; Kupfer, D. J.

    2000-01-01

    Twenty healthy elderly subjects (12 female, 8 male; mean age 81 years, range 67-87 years) each experienced a 15-day time isolation protocol in which they lived individually in a special laboratory apartment in which sleep and circadian rhythm measures could be taken. There were two experiments: one (6 females, 4 males) involved a 6-h phase advance of the sleep/wake cycle, and the other (6 females, 4 males) a 6-h phase delay. Each started with 5 baseline days, immediately followed by the phase shift. The subject was then held to the phase shifted routine for the remainder of the study. Rectal temperatures were recorded minute-by-minute throughout the entire experiment and each night of sleep was recorded using polysomnography. A directional asymmetry in phase-shift effects was apparent, with significantly more sleep disruption and circadian rhythm amplitude disruption after the phase advance than after the phase delay. Sleep disruption was reflected in reduced time spent asleep, and in changed REM latency, which increased in the phase advance direction but decreased in the phase delay direction. Although the phase advance led to a significant increase in wakefulness in the first half of the night, the phase delay did not lead to an equivalent increase in wakefulness during the second half of the night. Examination of both raw and 'demasked' circadian rectal temperature rhythms confirmed that phase adjustment was slow in both directions, but was less slow (and more monotonic) after the phase delay than after the phase advance. Subjective alertness suffered more disruption after the phase advance than after the phase delay.

  6. Refinement of Global Phase-Shift Analysis for p+^3He Elastic Scattering Using Spin-Correlation Coefficients

    NASA Astrophysics Data System (ADS)

    Daniels, Tim; Arnold, Charles; Cesaratto, John; Clegg, Thomas; Couture, Alexander; Imig, Astrid; Karwowski, Hugon

    2008-10-01

    As part of an investigation of the A=4 system, we measured the spin-correlation coefficients Ayo, Aoy, Ayy, and Axx for p-^3He elastic scattering at Elab of 2.3, 2.7, 4.0, and 5.5 MeV and θlab between 30^o and 150^o. The data were taken using TUNL's atomic beam polarized ion source and our spin-exchange optical pumping polarized ^3He targetootnotetextT. Katabuchi et al., Rev. Sci. Instrum. 76, 033503 (2005). We aim to resolve ambiguities in the phase shifts of George and KnutsonootnotetextE.A. George and L.D. Knutson, Phys Rev C 67, 027001 (2003), which seem most sensitive to Axx and Ayy at the lowest of these energies. Our measurements will be shown with phase-shift-analysis solutions, as well as some discussion of systematic effects related to the steering of charged particles by the target's magnetic field.

  7. Relativistic Quark Model Based Description of Low Energy NN Scattering

    NASA Astrophysics Data System (ADS)

    Antalik, R.; Lyubovitskij, V. E.

    A model describing the NN scattering phase shifts is developed. Two nucleon interactions induced by meson exchange forces are constructed starting from π, η, η‧ pseudoscalar-, the ρ, ϕ, ω vector-, and the ɛ(600), a0, f0(1400) scalar — meson-nucleon coupling constants, which we obtained within a relativistic quantum field theory based quark model. Working within the Blankenbecler-Sugar-Logunov-Tavkhelidze quasipotential dynamics, we describe the NN phase shifts in a relativistically invariant way. In this procedure we use phenomenological form factor cutoff masses and effective ɛ and ω meson-nucleon coupling constants, only. Resulting NN phase shifts are in a good agreement with both, the empirical data, and the entirely phenomenological Bonn OBEP model fit. While the quality of our description, evaluated as a ratio of our results to the Bonn OBEP model χ2 ones is about 1.2, other existing (semi)microscopic results gave qualitative results only.

  8. Aspheric figure generation using feedback from an infrared phase-shifting interferometer

    NASA Astrophysics Data System (ADS)

    Stahl, H. P.; Ketelsen, D.

    An infrared phase-shifting interferometric system has been integrated with a novel optical figure generator at the University of Arizona Optical Sciences Center. This unique generator facility can produce generalized axially symmetric surface figures in a timely and cost-effective manner. The success of this facility depends on both its ability to efficiently remove material while forming the surface figure, and its ability to monitor the surface figure during the generation process to provide feedback to the optician. The facility has been used on several occasions to custom-generate off-axis parabolic segments. Figures to within 0.30 microns rms of the desired figure have been obtained. This paper discusses the usefulness of the infrared phase-shifting interferometric system for providing figure correcting feedback to the optician during the generation of the off-axis parabolic segments, and how it is affected by the surface roughness produced by each generator tool.

  9. Probing the limits of the rigid-intensity-shift model in differential-phase-contrast scanning transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Clark, L.; Brown, H. G.; Paganin, D. M.; Morgan, M. J.; Matsumoto, T.; Shibata, N.; Petersen, T. C.; Findlay, S. D.

    2018-04-01

    The rigid-intensity-shift model of differential-phase-contrast imaging assumes that the phase gradient imposed on the transmitted probe by the sample causes the diffraction pattern intensity to shift rigidly by an amount proportional to that phase gradient. This behavior is seldom realized exactly in practice. Through a combination of experimental results, analytical modeling and numerical calculations, using as case studies electron microscope imaging of the built-in electric field in a p-n junction and nanoscale domains in a magnetic alloy, we explore the breakdown of rigid-intensity-shift behavior and how this depends on the magnitude of the phase gradient and the relative scale of features in the phase profile and the probe size. We present guidelines as to when the rigid-intensity-shift model can be applied for quantitative phase reconstruction using segmented detectors, and propose probe-shaping strategies to further improve the accuracy.

  10. Doppler radar with multiphase modulation of transmitted and reflected signal

    NASA Technical Reports Server (NTRS)

    Shores, Paul W. (Inventor); Griffin, John W. (Inventor); Kobayashi, Herbert S. (Inventor)

    1989-01-01

    A microwave radar signal is generated and split by a circulator. A phase shifter introduces a series of phase shifts into a first part of the split signal which is then transmitted by antenna. A like number of phase shifts is introduced by the phase shifter into the return signal from the target. The circulator delivers the phase shifted return signal and the leakage signal from the circulator to a mixer which generates an IF signal output at the Doppler frequency. The IF signal is amplified, filtered, counted per unit of time, and the result displayed to provide indications of target sense and range rate. An oscillator controls rate of phase shift in the transmitted and received radar signals and provides a time base for the counter. The phase shift magnitude increases may be continuous and linear or discrete functions of time.

  11. Physical exercise accelerates reentrainment of human sleep-wake cycle but not of plasma melatonin rhythm to 8-h phase-advanced sleep schedule.

    PubMed

    Yamanaka, Yujiro; Hashimoto, Satoko; Tanahashi, Yusuke; Nishide, Shin-Ya; Honma, Sato; Honma, Ken-Ichi

    2010-03-01

    Effects of timed physical exercise were examined on the reentrainment of sleep-wake cycle and circadian rhythms to an 8-h phase-advanced sleep schedule. Seventeen male adults spent 12 days in a temporal isolation facility with dim light conditions (<10 lux). The sleep schedule was phase-advanced by 8 h from their habitual sleep times for 4 days, which was followed by a free-run session for 6 days, during which the subjects were deprived of time cues. During the shift schedule, the exercise group (n = 9) performed physical exercise with a bicycle ergometer in the early and middle waking period for 2 h each. The control group (n = 8) sat on a chair at those times. Their sleep-wake cycles were monitored every day by polysomnography and/or weight sensor equipped with a bed. The circadian rhythm in plasma melatonin was measured on the baseline day before phase shift: on the 4th day of shift schedule and the 5th day of free-run. As a result, the sleep-onset on the first day of free-run in the exercise group was significantly phase-advanced from that in the control and from the baseline. On the other hand, the circadian melatonin rhythm was significantly phase-delayed in the both groups, showing internal desynchronization of the circadian rhythms. The sleep-wake cycle resynchronized to the melatonin rhythm by either phase-advance or phase-delay shifts in the free-run session. These findings indicate that the reentrainment of the sleep-wake cycle to a phase-advanced schedule occurs independent of the circadian pacemaker and is accelerated by timed physical exercise.

  12. Circadian rhythm phase shifts and endogenous free-running circadian period differ between African-Americans and European-Americans.

    PubMed

    Eastman, Charmane I; Suh, Christina; Tomaka, Victoria A; Crowley, Stephanie J

    2015-02-11

    Successful adaptation to modern civilization requires the internal circadian clock to make large phase shifts in response to circumstances (e.g., jet travel and shift work) that were not encountered during most of our evolution. We found that the magnitude and direction of the circadian clock's phase shift after the light/dark and sleep/wake/meal schedule was phase-advanced (made earlier) by 9 hours differed in European-Americans compared to African-Americans. European-Americans had larger phase shifts, but were more likely to phase-delay after the 9-hour advance (to phase shift in the wrong direction). The magnitude and direction of the phase shift was related to the free-running circadian period, and European-Americans had a longer circadian period than African-Americans. Circadian period was related to the percent Sub-Saharan African and European ancestry from DNA samples. We speculate that a short circadian period was advantageous during our evolution in Africa and lengthened with northern migrations out of Africa. The differences in circadian rhythms remaining today are relevant for understanding and treating the modern circadian-rhythm-based disorders which are due to a misalignment between the internal circadian rhythms and the times for sleep, work, school and meals.

  13. Canceling the Gravity Gradient Phase Shift in Atom Interferometry.

    PubMed

    D'Amico, G; Rosi, G; Zhan, S; Cacciapuoti, L; Fattori, M; Tino, G M

    2017-12-22

    Gravity gradients represent a major obstacle in high-precision measurements by atom interferometry. Controlling their effects to the required stability and accuracy imposes very stringent requirements on the relative positioning of freely falling atomic clouds, as in the case of precise tests of Einstein's equivalence principle. We demonstrate a new method to exactly compensate the effects introduced by gravity gradients in a Raman-pulse atom interferometer. By shifting the frequency of the Raman lasers during the central π pulse, it is possible to cancel the initial position- and velocity-dependent phase shift produced by gravity gradients. We apply this technique to simultaneous interferometers positioned along the vertical direction and demonstrate a new method for measuring local gravity gradients that does not require precise knowledge of the relative position between the atomic clouds. Based on this method, we also propose an improved scheme to determine the Newtonian gravitational constant G towards the 10 ppm relative uncertainty.

  14. Canceling the Gravity Gradient Phase Shift in Atom Interferometry

    NASA Astrophysics Data System (ADS)

    D'Amico, G.; Rosi, G.; Zhan, S.; Cacciapuoti, L.; Fattori, M.; Tino, G. M.

    2017-12-01

    Gravity gradients represent a major obstacle in high-precision measurements by atom interferometry. Controlling their effects to the required stability and accuracy imposes very stringent requirements on the relative positioning of freely falling atomic clouds, as in the case of precise tests of Einstein's equivalence principle. We demonstrate a new method to exactly compensate the effects introduced by gravity gradients in a Raman-pulse atom interferometer. By shifting the frequency of the Raman lasers during the central π pulse, it is possible to cancel the initial position- and velocity-dependent phase shift produced by gravity gradients. We apply this technique to simultaneous interferometers positioned along the vertical direction and demonstrate a new method for measuring local gravity gradients that does not require precise knowledge of the relative position between the atomic clouds. Based on this method, we also propose an improved scheme to determine the Newtonian gravitational constant G towards the 10 ppm relative uncertainty.

  15. Coriolis effect in optics: unified geometric phase and spin-Hall effect.

    PubMed

    Bliokh, Konstantin Y; Gorodetski, Yuri; Kleiner, Vladimir; Hasman, Erez

    2008-07-18

    We examine the spin-orbit coupling effects that appear when a wave carrying intrinsic angular momentum interacts with a medium. The Berry phase is shown to be a manifestation of the Coriolis effect in a noninertial reference frame attached to the wave. In the most general case, when both the direction of propagation and the state of the wave are varied, the phase is given by a simple expression that unifies the spin redirection Berry phase and the Pancharatnam-Berry phase. The theory is supported by the experiment demonstrating the spin-orbit coupling of electromagnetic waves via a surface plasmon nanostructure. The measurements verify the unified geometric phase, demonstrated by the observed polarization-dependent shift (spin-Hall effect) of the waves.

  16. Reduced Phase-Advance of Plasma Melatonin after Bright Morning Light in the Luteal, but not Follicular, Menstrual Cycle Phase in Premenstrual Dysphoric Disorder: An Extended Study

    PubMed Central

    Parry, Barbara L.; Meliska, Charles J.; Sorenson, Diane L.; Martínez, L. Fernando; López, Ana M.; Elliott, Jeffrey A.; Hauger, Richard L.

    2011-01-01

    We previously observed blunted phase-shift responses to morning bright light in women with Premenstrual Dysphoric Disorder (PMDD). The aim of this study was to determine if we could replicate these findings using a higher intensity, shorter duration light pulse and to compare these results with the effects of an evening bright light pulse. In 17 PMDD patients and 14 normal control (NC) subjects, we measured plasma melatonin at 30 minute intervals from 18:00–10:00 h in dim (< 30 lux) or dark conditions the night before (night 1) and after (night 3) a bright light pulse (administered on night 2) in both follicular and luteal menstrual cycle phases. The bright light (either 3,000 lux for 6 h or 6,000 lux for 3 h) was given either in the AM, 7 h after the Dim Light Melatonin Onset (DLMO) measured the previous month, or in the PM, 3 h after the DLMO. In the luteal, but not in the follicular, phase, AM light advanced melatonin offset between night 1 and night 3 significantly less in PMDD than in NC subjects. The effects of PM light were not significant, nor were there significant effects of the light pulse on melatonin measures of onset, duration, peak or area under the curve. These findings replicated our previous finding of a blunted phase-shift response to morning bright light in the luteal, but not the follicular, menstrual cycle phase in PMDD compared with NC women, using a brighter (6,000 vs. 3,000 lux) light pulse for a shorter duration (3 vs. 6 h). As the effect of PM bright light on melatonin phase-shift responses did not differ between groups or significantly alter other melatonin measures, these results suggest that in PMDD there is a luteal phase subsensitivity or an increased resistance to morning bright light cues which are critical in synchronizing human biological rhythms. The resulting circadian rhythm malsynchonization may contribute to the occurrence of luteal phase depressive symptoms in women with PMDD. PMID:21721857

  17. Modeling nuclear field shift isotope fractionation in crystals

    NASA Astrophysics Data System (ADS)

    Schauble, E. A.

    2013-12-01

    In this study nuclear field shift fractionations in solids (and chemically similar liquids) are estimated using calibrated density functional theory calculations. The nuclear field shift effect is a potential driver of mass independent isotope fractionation(1,2), especially for elements with high atomic number such as Hg, Tl and U. This effect is caused by the different shapes and volumes of isotopic nuclei, and their interactions with electronic structures and energies. Nuclear field shift isotope fractionations can be estimated with first principles methods, but the calculations are computationally difficult, limiting most theoretical studies so far to small gas-phase molecules and molecular clusters. Many natural materials of interest are more complex, and it is important to develop ways to estimate field shift effects that can be applied to minerals, solutions, in biomolecules, and at mineral-solution interfaces. Plane-wave density functional theory, in combination with the projector augmented wave method (DFT-PAW), is much more readily adapted to complex materials than the relativistic all-electron calculations that have been the focus of most previous studies. DFT-PAW is a particularly effective tool for studying crystals with periodic boundary conditions, and may also be incorporated into molecular dynamics simulations of solutions and other disordered phases. Initial calibrations of DFT-PAW calculations against high-level all-electron models of field shift fractionation suggest that there may be broad applicability of this method to a variety of elements and types of materials. In addition, the close relationship between the isomer shift of Mössbauer spectroscopy and the nuclear field shift isotope effect makes it possible, at least in principle, to estimate the volume component of field shift fractionations in some species that are too complex even for DFT-PAW models, so long as there is a Mössbauer isotope for the element of interest. Initial results will be presented for calculations of liquid-vapor fractionation of cadmium and mercury, which indicate an affinity for heavy isotopes in the liquid phase. In the case of mercury the results match well with recent experiments. Mössbauer-calibrated fractionation factors will also be presented for tin and platinum species. Platinum isotope behaviour in metals appears to particularly interesting, with very distinct isotope partitioning behaviour for iron-rich alloys, relative to pure platinum metal. References: 1) Bigeleisen, J. (1996) J. Am. Chem. Soc. 118, 3676-3680. 2) Nomura, M., Higuchi, N., Fujii, Y. (1996) J. Am. Chem. Soc. 118, 9127-9130.

  18. Volume moiré tomography based on projection extraction by spatial phase shifting of double crossed gratings

    NASA Astrophysics Data System (ADS)

    Wang, Jia; Guo, Zhenyan; Song, Yang; Han, Jun

    2018-01-01

    To realize volume moiré tomography (VMT) for the real three-dimensional (3D) diagnosis of combustion fields, according to 3D filtered back projection (FBP) reconstruction algorithm, the radial derivatives of the projected phase should be measured firstly. In this paper, a simple spatial phase-shifting moiré deflectometry with double cross gratings is presented to measure the radial first-order derivative of the projected phase. Based on scalar diffraction theory, the explicit analytical intensity distributions of moiré patterns on different diffracted orders are derived, and the spatial shifting characteristics are analyzed. The results indicate that the first-order derivatives of the projected phase in two mutually perpendicular directions are involved in moiré patterns, which can be combined to compute the radial first-order derivative. And multiple spatial phase-shifted moiré patterns can be simultaneously obtained; the phase-shifted values are determined by the parameters of the system. A four-step phase-shifting algorithm is proposed for phase extraction, and its accuracy is proved by numerical simulations. Finally, the moiré deflectometry is used to measure the radial first-order derivative of projected phase of a propane flame with plane incident wave, and the 3D temperature distribution is reconstructed.

  19. Nonadiabatic conditional geometric phase shift with NMR.

    PubMed

    Xiang-Bin, W; Keiji, M

    2001-08-27

    A conditional geometric phase shift gate, which is fault tolerant to certain types of errors due to its geometric nature, was realized recently via nuclear magnetic resonance (NMR) under adiabatic conditions. However, in quantum computation, everything must be completed within the decoherence time. The adiabatic condition makes any fast conditional Berry phase (cyclic adiabatic geometric phase) shift gate impossible. Here we show that by using a newly designed sequence of simple operations with an additional vertical magnetic field, the conditional geometric phase shift gate can be run nonadiabatically. Therefore geometric quantum computation can be done at the same rate as usual quantum computation.

  20. A POSITIONAL DATA SYSTEM

    DOEpatents

    Forster, G.A.

    1963-09-24

    between master and slave synchros is described. A threephase a-c power source is connected to the stators of the synchros and an error detector is connected to the rotors of the synchros to measure the phasor difference therebetween. A phase shift network shifts the phase of one of the rotors 90 degrees and a demodulator responsive thereto causes the phasor difference signal of the rotors to shift phase 180 degrees whenever the 90 degree phase shifted signal goes negative. The phase shifted difference signal has a waveform which, with the addition of small values of resistance and capacitance, gives a substantially pure d-c output whose amplitude and polarity is proportional to the magnitude and direction of the difference in the angular positions of the synchro's rotors. (AEC)

  1. Multiwavelength digital holography with wavelength-multiplexed holograms and arbitrary symmetric phase shifts.

    PubMed

    Tahara, Tatsuki; Otani, Reo; Omae, Kaito; Gotohda, Takuya; Arai, Yasuhiko; Takaki, Yasuhiro

    2017-05-15

    We propose multiwavelength in-line digital holography with wavelength-multiplexed phase-shifted holograms and arbitrary symmetric phase shifts. We use phase-shifting interferometry selectively extracting wavelength information to reconstruct multiwavelength object waves separately from wavelength-multiplexed monochromatic images. The proposed technique obtains systems of equations for real and imaginary parts of multiwavelength object waves from the holograms by introducing arbitrary symmetric phase shifts. Then, the technique derives each complex amplitude distribution of each object wave selectively and analytically by solving the two systems of equations. We formulate the algorithm in the case of an arbitrary number of wavelengths and confirm its validity numerically and experimentally in the cases where the number of wavelengths is two and three.

  2. Large conditional single-photon cross-phase modulation

    NASA Astrophysics Data System (ADS)

    Beck, Kristin; Hosseini, Mahdi; Duan, Yiheng; Vuletic, Vladan

    2016-05-01

    Deterministic optical quantum logic requires a nonlinear quantum process that alters the phase of a quantum optical state by π through interaction with only one photon. Here, we demonstrate a large conditional cross-phase modulation between a signal field, stored inside an atomic quantum memory, and a control photon that traverses a high-finesse optical cavity containing the atomic memory. This approach avoids fundamental limitations associated with multimode effects for traveling optical photons. We measure a conditional cross-phase shift of up to π / 3 between the retrieved signal and control photons, and confirm deterministic entanglement between the signal and control modes by extracting a positive concurrence. With a moderate improvement in cavity finesse, our system can reach a coherent phase shift of p at low loss, enabling deterministic and universal photonic quantum logic. Preprint: arXiv:1512.02166 [quant-ph

  3. Accurate phase extraction algorithm based on Gram–Schmidt orthonormalization and least square ellipse fitting method

    NASA Astrophysics Data System (ADS)

    Lei, Hebing; Yao, Yong; Liu, Haopeng; Tian, Yiting; Yang, Yanfu; Gu, Yinglong

    2018-06-01

    An accurate algorithm by combing Gram-Schmidt orthonormalization and least square ellipse fitting technology is proposed, which could be used for phase extraction from two or three interferograms. The DC term of background intensity is suppressed by subtraction operation on three interferograms or by high-pass filter on two interferograms. Performing Gram-Schmidt orthonormalization on pre-processing interferograms, the phase shift error is corrected and a general ellipse form is derived. Then the background intensity error and the corrected error could be compensated by least square ellipse fitting method. Finally, the phase could be extracted rapidly. The algorithm could cope with the two or three interferograms with environmental disturbance, low fringe number or small phase shifts. The accuracy and effectiveness of the proposed algorithm are verified by both of the numerical simulations and experiments.

  4. RF power recovery feedback circulator

    DOEpatents

    Sharamentov, Sergey I [Bolingbrook, IL

    2011-03-29

    A device and method for improving the efficiency of RF systems having a Reflective Load. In the preferred embodiment, Reflected Energy from a superconducting resonator of a particle accelerator is reintroduced to the resonator after the phase of the Reflected Energy is aligned with the phase of the Supply Energy from a RF Energy Source. In one embodiment, a Circulator is used to transfer Reflected Energy from the Reflective Load into a Phase Adjuster which aligns the phase of the Reflected Energy with that of the Supply Energy. The phase-aligned energy is then combined with the Supply Energy, and reintroduced into the Reflective Load. In systems having a constant phase shift, the Phase Adjuster may be designed to shift the phase of the Reflected Energy by a constant amount using a Phase Shifter. In systems having a variety (variable) phase shifts, a Phase Shifter controlled by a phase feedback loop comprising a Phase Detector and a Feedback Controller to account for the various phase shifts is preferable.

  5. Sleep Deprivation and Caffeine Treatment Potentiate Photic Resetting of the Master Circadian Clock in a Diurnal Rodent.

    PubMed

    Jha, Pawan Kumar; Bouâouda, Hanan; Gourmelen, Sylviane; Dumont, Stephanie; Fuchs, Fanny; Goumon, Yannick; Bourgin, Patrice; Kalsbeek, Andries; Challet, Etienne

    2017-04-19

    Circadian rhythms in nocturnal and diurnal mammals are primarily synchronized to local time by the light/dark cycle. However, nonphotic factors, such as behavioral arousal and metabolic cues, can also phase shift the master clock in the suprachiasmatic nuclei (SCNs) and/or reduce the synchronizing effects of light in nocturnal rodents. In diurnal rodents, the role of arousal or insufficient sleep in these functions is still poorly understood. In the present study, diurnal Sudanian grass rats, Arvicanthis ansorgei , were aroused at night by sleep deprivation (gentle handling) or caffeine treatment that both prevented sleep. Phase shifts of locomotor activity were analyzed in grass rats transferred from a light/dark cycle to constant darkness and aroused in early night or late night. Early night, but not late night, sleep deprivation induced a significant phase shift. Caffeine on its own induced no phase shifts. Both sleep deprivation and caffeine treatment potentiated light-induced phase delays and phase advances in response to a 30 min light pulse, respectively. Sleep deprivation in early night, but not late night, potentiated light-induced c-Fos expression in the ventral SCN. Caffeine treatment in midnight triggered c-Fos expression in dorsal SCN. Both sleep deprivation and caffeine treatment potentiated light-induced c-Fos expression in calbindin-containing cells of the ventral SCN in early and late night. These findings indicate that, in contrast to nocturnal rodents, behavioral arousal induced either by sleep deprivation or caffeine during the sleeping period potentiates light resetting of the master circadian clock in diurnal rodents, and activation of calbindin-containing suprachiasmatic cells may be involved in this effect. SIGNIFICANCE STATEMENT Arousing stimuli have the ability to regulate circadian rhythms in mammals. Behavioral arousal in the sleeping period phase shifts the master clock in the suprachiasmatic nuclei and/or slows down the photic entrainment in nocturnal animals. How these stimuli act in diurnal species remains to be established. Our study in a diurnal rodent, the Grass rat, indicates that sleep deprivation in the early rest period induces phase delays of circadian locomotor activity rhythm. Contrary to nocturnal rodents, both sleep deprivation and caffeine-induced arousal potentiate the photic entrainment in a diurnal rodent. Such enhanced light-induced circadian responses could be relevant for developing chronotherapeutic strategies. Copyright © 2017 the authors 0270-6474/17/374343-16$15.00/0.

  6. One-shot phase-shifting phase-grating interferometry with modulation of polarization: case of four interferograms.

    PubMed

    Rodriguez-Zurita, Gustavo; Meneses-Fabian, Cruz; Toto-Arellano, Noel-Ivan; Vázquez-Castillo, José F; Robledo-Sánchez, Carlos

    2008-05-26

    An experimental setup for optical phase extraction from 2-D interferograms using a one-shot phase-shifting technique able to achieve four interferograms with 90 degrees phase shifts in between is presented. The system uses a common-path interferometer consisting of two windows in the input plane and a phase grating in Fourier plane as its pupil. Each window has a birefringent wave plate attached in order to achieve nearly circular polarization of opposite rotations one respect to the other after being illuminated with a 45 degrees linear polarized beam. In the output, interference of the fields associated with replicated windows (diffraction orders) is achieved by a proper choice of the windows spacing with respect to the grating period. The phase shifts to achieve four interferograms simultaneously to perform phase-shifting interferometry can be obtained by placing linear polarizers on each diffraction orders before detection at an appropriate angle. Some experimental results are shown.

  7. Femtosecond-pulse inscription of fiber Bragg gratings with single or multiple phase-shifts in the structure

    NASA Astrophysics Data System (ADS)

    Wolf, Alexey; Dostovalov, Alexandr; Skvortsov, Mikhail; Raspopin, Kirill; Parygin, Alexandr; Babin, Sergey

    2018-05-01

    In this work, long high-quality fiber Bragg gratings with phase shifts in the structure are inscribed directly in the optical fiber by point-by-point technique using femtosecond laser pulses. Phase shifts are introduced during the inscription process with a piezoelectric actuator, which rapidly shifts the fiber along the direction of its movement in a chosen point of the grating with a chosen shift value. As examples, single and double π phase shifts are introduced in fiber Bragg gratings with a length up to 34 mm in passive fibers, which provide corresponding transmission peaks with bandwidth less than 1 pm. It is shown that 37 mm π -phase-shifted grating inscribed in an active Er-doped fiber forms high-quality DFB laser cavity generating single-frequency radiation at 1550 nm with bandwidth of 20 kHz and signal-to-noise ratio of >70 dB. The inscription technique has a high degree of performance and flexibility and can be easily implemented in fibers of various types.

  8. Hemiparetic stepping to the beat: asymmetric response to metronome phase shift during treadmill gait.

    PubMed

    Pelton, Trudy A; Johannsen, Leif; Huiya Chen; Wing, Alan M

    2010-06-01

    Walking in time with a metronome is associated with improved spatiotemporal parameters in hemiparetic gait; however, the mechanism linking auditory and motor systems is poorly understood. Hemiparetic cadence control with metronome synchronization was examined to determine specific influences of metronome timing on treadmill walking. A within-participant experiment examined correction processes used to maintain heel strike synchrony with the beat by applying perturbations to the timing of a metronome. Eight chronic hemiparetic participants (mean age = 70 years; standard deviation = 12) were required to synchronize heel strikes with metronome pulses set according to each individual's comfortable speed (mean 0.4 m/s). During five 100-pulse trials, a fixed-phase baseline was followed by 4 unpredictable metronome phase shifts (20% of the interpulse interval), which amounted to 10 phase shifts on each foot. Infrared cameras recorded the motion of bilateral heel markers at 120 Hz. Relative asynchrony between heel strike responses and metronome pulses was used to index compensation for metronome phase shifts. Participants demonstrated compensation for phase shifts with convergence back to pre-phase shift asynchrony. This was significantly slower when the error occurred on the nonparetic side (requiring initial correction with the paretic limb) compared with when the error occurred on the paretic side (requiring initial nonparetic correction). Although phase correction of gait is slowed when the phase shift is delivered to the nonparetic side compared with the paretic side, phase correction is still present. This may underlie the utility of rhythmic auditory cueing in hemiparetic gait rehabilitation.

  9. Measurement of Stress Distribution Around a Circular Hole in a Plate Under Bending Moment Using Phase-shifting Method with Reflective Polariscope Arrangement

    NASA Astrophysics Data System (ADS)

    Baek, Tae Hyun

    Photoelasticity is one of the most widely used whole-field optical methods for stress analysis. The technique of birefringent coatings, also called the method of photoelastic coatings, extends the classical procedures of model photoelasticity to the measurement of surface strains in opaque models made of any structural material. Photoelastic phase-shifting method can be used for the determination of the phase values of isochromatics and isoclinics. In this paper, photoelastic phase-shifting technique and conventional Babinet-Soleil compensation method were utilized to analyze a specimen with a triangular hole and a circular hole under bending. Photoelastic phase-shifting technique is whole-field measurement. On the other hand, conventional compensation method is point measurement. Three groups of results were obtained by phase-shifting method with reflective polariscope arrangement, conventional compensation method and FEM simulation, respectively. The results from the first two methods agree with each other relatively well considering experiment error. The advantage of photoelastic phase-shifting method is that it is possible to measure the stress distribution accurately close to the edge of holes.

  10. Stimulated phase-shift acoustic nanodroplets enhance vancomycin efficacy against methicillin-resistant Staphylococcus aureus biofilms.

    PubMed

    Guo, Hao; Wang, Ziming; Du, Quanyin; Li, Pan; Wang, Zhigang; Wang, Aimin

    2017-01-01

    Bacterial biofilms on the surface of prostheses are becoming a rising concern in managing prosthetic joint infections. The inherent resistant features of biofilms render traditional antimicrobial therapy unproductive and revision surgery outcomes uncertain. This situation has prompted the exploration of novel antimicrobial strategies. The synergy of ultrasound microbubbles and vancomycin has been proposed as an efficient alternative for biofilm eradication. The purpose of this study was to evaluate the anti-biofilm effect of stimulated phase-shift acoustic nanodroplets (NDs) combined with vancomycin. We fabricated lipid phase-shift NDs with a core of liquid perfluoropentane. A new phase change mode for NDs incorporating an initial unfocused low-intensity pulsed ultrasound for 5 minutes and a subsequent incubation at 37°C into a 24-hour duration was developed. Methicillin-resistant Staphylococcus aureus (MRSA) biofilms were incubated with vancomycin and NDs under the hybrid stimulation. Biofilm morphology following treatment was determined using confocal laser scanning microscopy and scanning electron microscopy. Resazurin assay was used to quantify bactericidal efficacy against MRSA biofilm bacteria. NDs treated sequentially with ultrasound and heating at 37°C achieved gradual and substantial ND vaporization and cavitation in a successive process. NDs after stimulation were capable of generating stronger destruction on biofilm structure which was best characterized by residual circular arc margins and more dead bacteria. Furthermore, NDs combined with vancomycin contributed to significantly decreasing the metabolic activity of bacteria in MRSA biofilms ( P <0.05). Phase-shift acoustic NDs could exert a significant bactericidal effect against MRSA biofilms through a new stimulation mode. Acoustic NDs present advantages over microbubbles for biofilm damage. This anti-biofilm strategy could be used either alone or as an enhancer of traditional antibiotics in the control of prosthetic joint infections.

  11. Study of field shifts of Ramsey resonances on ultracold atoms and ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tabatchikova, K. S., E-mail: k.tabatchikova@gmail.com; Taichenachev, A. V.; Dmitriev, A. K.

    2015-02-15

    The effect of the finite laser radiation line width and spontaneous relaxation of levels on the efficiency of the suppression of the field shift of the central resonance for the generalized Ramsey scheme with pulses of different lengths and with a phase jump in the second pulse has been considered. The optimal parameters of the scheme corresponding to the minimum frequency shift and maximum amplitude of the resonance have been determined.

  12. Electro-Optic Modulator and Method

    DTIC Science & Technology

    An optical intensity modulator which uses a Sagnac interferometer having an electro - optic phase modulator therein. An electric modulation signal is...modulating the optical signals by the electrical signal, the electro - optic effect in the modulator phase shifts the optical signals with respect to one another

  13. Resonance fluorescence based two- and three-dimensional atom localization

    NASA Astrophysics Data System (ADS)

    Wahab, Abdul; Rahmatullah; Qamar, Sajid

    2016-06-01

    Two- and three-dimensional atom localization in a two-level atom-field system via resonance fluorescence is suggested. For the two-dimensional localization, the atom interacts with two orthogonal standing-wave fields, whereas for the three-dimensional atom localization, the atom interacts with three orthogonal standing-wave fields. The effect of the detuning and phase shifts associated with the corresponding standing-wave fields is investigated. A precision enhancement in position measurement of the single atom can be noticed via the control of the detuning and phase shifts.

  14. Rigorous diffraction analysis using geometrical theory of diffraction for future mask technology

    NASA Astrophysics Data System (ADS)

    Chua, Gek S.; Tay, Cho J.; Quan, Chenggen; Lin, Qunying

    2004-05-01

    Advanced lithographic techniques such as phase shift masks (PSM) and optical proximity correction (OPC) result in a more complex mask design and technology. In contrast to the binary masks, which have only transparent and nontransparent regions, phase shift masks also take into consideration transparent features with a different optical thickness and a modified phase of the transmitted light. PSM are well-known to show prominent diffraction effects, which cannot be described by the assumption of an infinitely thin mask (Kirchhoff approach) that is used in many commercial photolithography simulators. A correct prediction of sidelobe printability, process windows and linearity of OPC masks require the application of rigorous diffraction theory. The problem of aerial image intensity imbalance through focus with alternating Phase Shift Masks (altPSMs) is performed and compared between a time-domain finite-difference (TDFD) algorithm (TEMPEST) and Geometrical theory of diffraction (GTD). Using GTD, with the solution to the canonical problems, we obtained a relationship between the edge on the mask and the disturbance in image space. The main interest is to develop useful formulations that can be readily applied to solve rigorous diffraction for future mask technology. Analysis of rigorous diffraction effects for altPSMs using GTD approach will be discussed.

  15. Circadian waveform bifurcation, but not phase-shifting, leaves cued fear memory intact.

    PubMed

    Harrison, E M; Carmack, S A; Block, C L; Sun, J; Anagnostaras, S G; Gorman, M R

    2017-02-01

    In mammals, memory acquisition and retrieval can be affected by time of day, as well as by manipulations of the light/dark cycle. Under bifurcation, a manipulation of circadian waveform, two subjective days and nights are experimentally induced in rodents. We examined the effect of bifurcation on Pavlovian fear conditioning, a prominent model of learning and memory. Here we demonstrate that bifurcation of the circadian waveform produces a small deficit in acquisition, but not on retrieval of fear memory. In contrast, repeated phase-shifting in a simulated jet-lag protocol impairs retrieval of memory for cued fear. The results have implications for those attempting to adjust to shift-work or other challenging schedules. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Polymorphism of POPE/cholesterol system: a 2H nuclear magnetic resonance and infrared spectroscopic investigation.

    PubMed Central

    Paré, C; Lafleur, M

    1998-01-01

    It is well established that cholesterol induces the formation of a liquid-ordered phase in phosphatidylcholine (PC) bilayers. The goal of this work is to examine the influence of cholesterol on phosphatidylethanolamine polymorphism. The behavior of 1-palmitoyl-2-oleoyl-phosphatidylethanolamine (POPE)/cholesterol mixtures was characterized using infrared and 2H nuclear magnetic resonance (NMR) spectroscopy (using POPE bearing a perdeuterated palmitoyl chain in the latter case). Our results reveal that cholesterol induces the formation of a liquid-ordered phase in POPE membranes, similar to those observed for various PC/cholesterol systems. However, the coexistence region of the gel and the liquid-ordered phases is different from that proposed for PC/cholesterol systems. The results indicate a progressive broadening of the gel-to-fluid phase transition, suggesting the absence of an eutectic. In addition, there is a progressive downshift of the end of the transition for cholesterol content higher than 10 mol %. Cholesterol has an ordering effect on the acyl chains of POPE, but it is less pronounced than for the PC equivalent. This study also shows that the cholesterol effect on the lamellar-to-hexagonal (L(alpha)-H(II)) phase transition is not monotonous. It shifts the transition toward the low temperatures between 0 and 30 mol % cholesterol but shifts it toward the high temperatures when cholesterol content is higher than 30 mol %. The change in conformational order of the lipid acyl chains, as probed by the shift of the symmetric methylene C-H stretching, shows concerted variations. Finally, we show that cholesterol maintains its chain ordering effect in the hexagonal phase. PMID:9533701

  17. Simple and robust referencing system enables identification of dissolved-phase xenon spectral frequencies.

    PubMed

    Antonacci, Michael A; Zhang, Le; Burant, Alex; McCallister, Drew; Branca, Rosa T

    2018-08-01

    To assess the effect of macroscopic susceptibility gradients on the gas-phase referenced dissolved-phase 129 Xe (DPXe) chemical shift (CS) and to establish the robustness of a water-based referencing system for in vivo DPXe spectra. Frequency shifts induced by spatially varying magnetic susceptibility are calculated by finite-element analysis for the human head and chest. Their effect on traditional gas-phase referenced DPXe CS is then assessed theoretically and experimentally. A water-based referencing system for the DPXe resonances that uses the local water protons as reference is proposed and demonstrated in vivo in rats. Across the human brain, macroscopic susceptibility gradients can induce an apparent variation in the DPXe CS of up to 2.5 ppm. An additional frequency shift as large as 6.5 ppm can exist between DPXe and gas-phase resonances. By using nearby water protons as reference for the DPXe CS, the effect of macroscopic susceptibility gradients is eliminated and consistent CS values are obtained in vivo, regardless of shimming conditions, region of interest analyzed, animal orientation, or lung inflation. Combining in vitro and in vivo spectroscopic measurements finally enables confident assignment of some of the DPXe peaks observed in vivo. To use hyperpolarized xenon as a biological probe in tissues, the DPXe CS in specific organs/tissues must be reliably measured. When the gas-phase is used as reference, variable CS values are obtained for DPXe resonances. Reliable peak assignments in DPXe spectra can be obtained by using local water protons as reference. Magn Reson Med 80:431-441, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  18. Hearing Sensitivity to Shifts of Rippled-Spectrum Sound Signals in Masking Noise.

    PubMed

    Nechaev, Dmitry I; Milekhina, Olga N; Supin, Alexander Ya

    2015-01-01

    The goal of the study was to enlarge knowledge of discrimination of complex sound signals by the auditory system in masking noise. For that, influence of masking noise on detection of shift of rippled spectrum was studied in normal listeners. The signal was a shift of ripple phase within a 0.5-oct wide rippled spectrum centered at 2 kHz. The ripples were frequency-proportional (throughout the band, ripple spacing was a constant proportion of the ripple center frequency). Simultaneous masker was a 0.5-oct noise below-, on-, or above the signal band. Both the low-frequency (center frequency 1 kHz) and on-frequency (the same center frequency as for the signal) maskers increased the thresholds for detecting ripple phase shift. However, the threshold dependence on the masker level was different for these two maskers. For the on-frequency masker, the masking effect primarily depended on the masker/signal ratio: the threshold steeply increased at a ratio of 5 dB, and no shift was detectable at a ratio of 10 dB. For the low-frequency masker, the masking effect primarily depended on the masker level: the threshold increased at a masker level of 80 dB SPL, and no shift was detectable at a masker level of 90 dB (for a signal level of 50 dB) or 100 dB (for a signal level of 80 dB). The high-frequency masker had little effect. The data were successfully simulated using an excitation-pattern model. In this model, the effect of the on-frequency masker appeared to be primarily due to a decrease of ripple depth. The effect of the low-frequency masker appeared due to widening of the auditory filters at high sound levels.

  19. Hearing Sensitivity to Shifts of Rippled-Spectrum Sound Signals in Masking Noise

    PubMed Central

    Nechaev, Dmitry I.; Milekhina, Olga N.; Supin, Alexander Ya.

    2015-01-01

    The goal of the study was to enlarge knowledge of discrimination of complex sound signals by the auditory system in masking noise. For that, influence of masking noise on detection of shift of rippled spectrum was studied in normal listeners. The signal was a shift of ripple phase within a 0.5-oct wide rippled spectrum centered at 2 kHz. The ripples were frequency-proportional (throughout the band, ripple spacing was a constant proportion of the ripple center frequency). Simultaneous masker was a 0.5-oct noise below-, on-, or above the signal band. Both the low-frequency (center frequency 1 kHz) and on-frequency (the same center frequency as for the signal) maskers increased the thresholds for detecting ripple phase shift. However, the threshold dependence on the masker level was different for these two maskers. For the on-frequency masker, the masking effect primarily depended on the masker/signal ratio: the threshold steeply increased at a ratio of 5 dB, and no shift was detectable at a ratio of 10 dB. For the low-frequency masker, the masking effect primarily depended on the masker level: the threshold increased at a masker level of 80 dB SPL, and no shift was detectable at a masker level of 90 dB (for a signal level of 50 dB) or 100 dB (for a signal level of 80 dB). The high-frequency masker had little effect. The data were successfully simulated using an excitation-pattern model. In this model, the effect of the on-frequency masker appeared to be primarily due to a decrease of ripple depth. The effect of the low-frequency masker appeared due to widening of the auditory filters at high sound levels. PMID:26462066

  20. A scattering model for rain depolarization

    NASA Technical Reports Server (NTRS)

    Wiley, P. H.; Stutzman, W. L.; Bostian, C. W.

    1973-01-01

    A method is presented for calculating the amount of depolarization caused by precipitation for a propagation path. In the model the effects of each scatterer and their interactions are accounted for by using a series of simplifying steps. It is necessary only to know the forward scattering properties of a single scatterer. For the case of rain the results of this model for attenuation, differential phase shift, and cross polarization agree very well with the results of the only other model available, that of differential attenuation and differential phase shift. Calculations presented here show that horizontal polarization is more sensitive to depolarization than is vertical polarization for small rain drop canting angle changes. This effect increases with increasing path length.

  1. ac Stark-mediated quantum control with femtosecond two-color laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serrat, Carles

    2005-11-15

    A critical dependence of the quantum interference on the optical Stark spectral shift produced when two-color laser pulses interact with a two-level medium is observed. The four-wave mixing of two ultrashort phase-locked {omega}-3{omega} laser pulses propagating coherently in a two-level system depends on the pulses' relative phase. The phase dominating the efficiency of the coupling to the anti-Stokes Raman component is found to be determined by the sign of the total ac Stark shift induced in the system, in such a way that the phase sensitivity disappears precisely where the ac Stark effect due to both pulses is compensated. Amore » coherent control scheme based on this phenomenon can be contemplated as the basis for nonlinear optical spectroscopy techniques.« less

  2. Optical weak measurements without removing the Goos-Hänchen phase

    NASA Astrophysics Data System (ADS)

    Araújo, Manoel P.; De Leo, Stefano; Maia, Gabriel G.

    2018-04-01

    Optical weak measurements are a powerful tool for measuring small shifts of optical paths. When applied to the measurement of the Goos-Hänchen shift, in particular, a special step must be added to its protocol: the removal of the relative Goos-Hänchen phase, since its presence generates a destructive influence on the measurement. There is, however, a lack of description in the literature of the precise effect of the Goos-Hänchen phase on weak measurements. In this paper we address this issue, developing an analytic study for a Gaussian beam transmitted through a dielectric structure. We obtain analytic expressions for weak measurements as a function of the relative Goos-Hänchen phase and show how to remove it without the aid of waveplates.

  3. Effect of gravitational focusing on annual modulation in dark-matter direct-detection experiments.

    PubMed

    Lee, Samuel K; Lisanti, Mariangela; Peter, Annika H G; Safdi, Benjamin R

    2014-01-10

    The scattering rate in dark-matter direct-detection experiments should modulate annually due to Earth's orbit around the Sun. The rate is typically thought to be extremized around June 1, when the relative velocity of Earth with respect to the dark-matter wind is maximal. We point out that gravitational focusing can alter this modulation phase. Unbound dark-matter particles are focused by the Sun's gravitational potential, affecting their phase-space density in the lab frame. Gravitational focusing can result in a significant overall shift in the annual-modulation phase, which is most relevant for dark matter with low scattering speeds. The induced phase shift for light O(10)  GeV dark matter may also be significant, depending on the threshold energy of the experiment.

  4. Cell separation by immunoaffinity partitioning with polyethylene glycol-modified Protein A in aqueous polymer two-phase systems

    NASA Technical Reports Server (NTRS)

    Karr, Laurel J.; Van Alstine, James M.; Snyder, Robert S.; Shafer, Steven G.; Harris, J. Milton

    1988-01-01

    Previous work has shown that polyethylene glycol (PEG)-bound antibodies can be used as affinity ligands in PEG-dextran two-phase systems to provide selective partitioning of cells to the PEG-rich phase. In the present work it is shown that immunoaffinity partitioning can be simplified by use of PEG-modified Protein A which complexes with unmodified antibody and cells and shifts their partitioning into the PEG-rich phase, thus eliminating the need to prepare a PEG-modified antibody for each cell type. In addition, the paper provides a more rigorous test of the original technique with PEG-bound antibodies by showing that it is effective at shifting the partitioning of either cell type of a mixture of two cell populations.

  5. Dual-wavelength phase-shifting digital holography selectively extracting wavelength information from wavelength-multiplexed holograms.

    PubMed

    Tahara, Tatsuki; Mori, Ryota; Kikunaga, Shuhei; Arai, Yasuhiko; Takaki, Yasuhiro

    2015-06-15

    Dual-wavelength phase-shifting digital holography that selectively extracts wavelength information from five wavelength-multiplexed holograms is presented. Specific phase shifts for respective wavelengths are introduced to remove the crosstalk components and extract only the object wave at the desired wavelength from the holograms. Object waves in multiple wavelengths are selectively extracted by utilizing 2π ambiguity and the subtraction procedures based on phase-shifting interferometry. Numerical results show the validity of the proposed technique. The proposed technique is also experimentally demonstrated.

  6. Phase-shift, stimuli-responsive drug carriers for targeted delivery

    PubMed Central

    O’Neill, Brian E; Rapoport, Natalya

    2011-01-01

    The intersection of particles and directed energy is a rich source of novel and useful technology that is only recently being realized for medicine. One of the most promising applications is directed drug delivery. This review focuses on phase-shift nanoparticles (that is, particles of submicron size) as well as micron-scale particles whose action depends on an external-energy triggered, first-order phase shift from a liquid to gas state of either the particle itself or of the surrounding medium. These particles have tremendous potential for actively disrupting their environment for altering transport properties and unloading drugs. This review covers in detail ultrasound and laser-activated phase-shift nano- and micro-particles and their use in drug delivery. Phase-shift based drug-delivery mechanisms and competing technologies are discussed. PMID:22059114

  7. Phase shift of TE and TM modes in an optical fiber due to axial strain (exact solution)

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio O.; Rogowski, Robert S.

    1992-01-01

    Axial strain may be determined by monitoring the phase shift of modes of a variety of optical fiber sensors. In this paper, the exact solution of a circular optical fiber is used to calculate the phase shift of the TE and TM modes. Whenever an optical fiber is stressed, the optical path length, the index of refraction, and the propagation constants of each fiber mode change. In consequence, the modal phase term, beta(ln)z, of the fields is shifted by an amount Delta phi. In certain cases, it is desirable to control the phase shift term in order to make the fiber either more or less sensitive to certain kinds of strain. It is shown that it can be accomplished by choosing appropriate fiber parameters.

  8. Digital phase shifter synchronizes local oscillators

    NASA Technical Reports Server (NTRS)

    Ali, S. M.

    1978-01-01

    Digital phase-shifting network is used as synchronous frequency multiplier for applications such as phase-locking two signals that may differ in frequency. Circuit has various phase-shift capability. Possible applications include data-communication systems and hybrid digital/analog phase-locked loops.

  9. On-chip programmable ultra-wideband microwave photonic phase shifter and true time delay unit.

    PubMed

    Burla, Maurizio; Cortés, Luis Romero; Li, Ming; Wang, Xu; Chrostowski, Lukas; Azaña, José

    2014-11-01

    We proposed and experimentally demonstrated an ultra-broadband on-chip microwave photonic processor that can operate both as RF phase shifter (PS) and true-time-delay (TTD) line, with continuous tuning. The processor is based on a silicon dual-phase-shifted waveguide Bragg grating (DPS-WBG) realized with a CMOS compatible process. We experimentally demonstrated the generation of delay up to 19.4 ps over 10 GHz instantaneous bandwidth and a phase shift of approximately 160° over the bandwidth 22-29 GHz. The available RF measurement setup ultimately limits the phase shifting demonstration as the device is capable of providing up to 300° phase shift for RF frequencies over a record bandwidth approaching 1 THz.

  10. Method and system of doppler correction for mobile communications systems

    NASA Technical Reports Server (NTRS)

    Georghiades, Costas N. (Inventor); Spasojevic, Predrag (Inventor)

    1999-01-01

    Doppler correction system and method comprising receiving a Doppler effected signal comprising a preamble signal (32). A delayed preamble signal (48) may be generated based on the preamble signal (32). The preamble signal (32) may be multiplied by the delayed preamble signal (48) to generate an in-phase preamble signal (60). The in-phase preamble signal (60) may be filtered to generate a substantially constant in-phase preamble signal (62). A plurality of samples of the substantially constant in-phase preamble signal (62) may be accumulated. A phase-shifted signal (76) may also be generated based on the preamble signal (32). The phase-shifted signal (76) may be multiplied by the delayed preamble signal (48) to generate an out-of-phase preamble signal (80). The out-of-phase preamble signal (80) may be filtered to generate a substantially constant out-of-phase preamble signal (82). A plurality of samples of the substantially constant out-of-phase signal (82) may be accumulated. A sum of the in-phase preamble samples and a sum of the out-of-phase preamble samples may be normalized relative to each other to generate an in-phase Doppler estimator (92) and an out-of-phase Doppler estimator (94).

  11. Effects of hard mask etch on final topography of advanced phase shift masks

    NASA Astrophysics Data System (ADS)

    Hortenbach, Olga; Rolff, Haiko; Lajn, Alexander; Baessler, Martin

    2017-07-01

    Continuous shrinking of the semiconductor device dimensions demands steady improvements of the lithographic resolution on wafer level. These requirements challenge the photomask industry to further improve the mask quality in all relevant printing characteristics. In this paper topography of the Phase Shift Masks (PSM) was investigated. Effects of hard mask etch on phase shift uniformity and mask absorber profile were studied. Design of experiments method (DoE) was used for the process optimization, whereas gas composition, bias power of the hard mask main etch and bias power of the over-etch were varied. In addition, influence of the over-etch time was examined at the end of the experiment. Absorber depth uniformity, sidewall angle (SWA), reactive ion etch lag (RIE lag) and through pitch (TP) dependence were analyzed. Measurements were performed by means of Atomic-force microscopy (AFM) using critical dimension (CD) mode with a boot-shaped tip. Scanning electron microscope (SEM) cross-section images were prepared to verify the profile quality. Finally CD analysis was performed to confirm the optimal etch conditions. Significant dependence of the absorber SWA on hard mask (HM) etch conditions was observed revealing an improvement potential for the mask absorber profile. It was found that hard mask etch can leave a depth footprint in the absorber layer. Thus, the etch depth uniformity of hard mask etch is crucial for achieving a uniform phase shift over the active mask area. The optimized hard mask etch process results in significantly improved mask topography without deterioration of tight CD specifications.

  12. Coupling of conservative and dissipative forces in frequency-modulation atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Sader, John E.; Jarvis, Suzanne P.

    2006-11-01

    Frequency modulation atomic force microscopy (FM-AFM) utilizes the principle of self-excitation to ensure the cantilever probe vibrates at its resonant frequency, regardless of the tip-sample interaction. Practically, this is achieved by fixing the phase difference between tip deflection and driving force at precisely 90° . This, in turn, decouples the frequency shift and excitation amplitude signals, enabling quantitative interpretation in terms of conservative and dissipative tip-sample interaction forces. In this article, we theoretically investigate the effect of phase detuning in the self-excitation mechanism on the coupling between conservative and dissipative forces in FM-AFM. We find that this coupling depends only on the relative difference in the drive and resonant frequencies far from the surface, and is thus very weakly dependent on the actual phase error particularly for high quality factors. This establishes that FM-AFM is highly robust with respect to phase detuning, and enables quantitative interpretation of the measured frequency shift and excitation amplitude, even while operating away from the resonant frequency with the use of appropriate replacements in the existing formalism. We also examine the calibration of phase shifts in FM-AFM measurements and demonstrate that the commonly used approach of minimizing the excitation amplitude can lead to significant phase detuning, particularly in liquid environments.

  13. Large conditional single-photon cross-phase modulation

    PubMed Central

    Hosseini, Mahdi; Duan, Yiheng; Vuletić, Vladan

    2016-01-01

    Deterministic optical quantum logic requires a nonlinear quantum process that alters the phase of a quantum optical state by π through interaction with only one photon. Here, we demonstrate a large conditional cross-phase modulation between a signal field, stored inside an atomic quantum memory, and a control photon that traverses a high-finesse optical cavity containing the atomic memory. This approach avoids fundamental limitations associated with multimode effects for traveling optical photons. We measure a conditional cross-phase shift of π/6 (and up to π/3 by postselection on photons that remain in the system longer than average) between the retrieved signal and control photons, and confirm deterministic entanglement between the signal and control modes by extracting a positive concurrence. By upgrading to a state-of-the-art cavity, our system can reach a coherent phase shift of π at low loss, enabling deterministic and universal photonic quantum logic. PMID:27519798

  14. All-optical simultaneous multichannel quadrature phase shift keying signal regeneration based on phase-sensitive amplification

    NASA Astrophysics Data System (ADS)

    Wang, Hongxiang; Wang, Qi; Bai, Lin; Ji, Yuefeng

    2018-01-01

    A scheme is proposed to realize the all-optical phase regeneration of four-channel quadrature phase shift keying (QPSK) signal based on phase-sensitive amplification. By utilizing conjugate pump and common pump in a highly nonlinear optical fiber, degenerate four-wave mixing process is observed, and QPSK signals are regenerated. The number of waves is reduced to decrease the cross talk caused by undesired nonlinear interaction during the coherent superposition process. In addition, to avoid the effect of overlapping frequency, frequency spans between pumps and signals are set to be nonintegral multiples. Optical signal-to-noise ratio improvement is validated by bit error rate measurements. Compared with single-channel regeneration, multichannel regeneration brings 0.4-dB OSNR penalty when the value of BER is 10-3, which shows the cross talk in regeneration process is negligible.

  15. Topological Phase Transitions in the Photonic Spin Hall Effect

    DOE PAGES

    Kort-Kamp, Wilton Junior de Melo

    2017-10-04

    The recent synthesis of two-dimensional staggered materials opens up burgeoning opportunities to study optical spin-orbit interactions in semiconducting Dirac-like systems. In this work, we unveil topological phase transitions in the photonic spin Hall effect in the graphene family materials. It is shown that an external static electric field and a high frequency circularly polarized laser allow for active on-demand manipulation of electromagnetic beam shifts. The spin Hall effect of light presents a rich dependence with radiation degrees of freedom, and material properties, and features nontrivial topological properties. Finally, we discover that photonic Hall shifts are sensitive to spin and valleymore » properties of the charge carriers, providing an unprecedented pathway to investigate spintronics and valleytronics in staggered 2D semiconductors.« less

  16. A self-reference PRF-shift MR thermometry method utilizing the phase gradient

    NASA Astrophysics Data System (ADS)

    Langley, Jason; Potter, William; Phipps, Corey; Huang, Feng; Zhao, Qun

    2011-12-01

    In magnetic resonance (MR) imaging, the most widely used and accurate method for measuring temperature is based on the shift in proton resonance frequency (PRF). However, inter-scan motion and bulk magnetic field shifts can lead to inaccurate temperature measurements in the PRF-shift MR thermometry method. The self-reference PRF-shift MR thermometry method was introduced to overcome such problems by deriving a reference image from the heated or treated image, and approximates the reference phase map with low-order polynomial functions. In this note, a new approach is presented to calculate the baseline phase map in self-reference PRF-shift MR thermometry. The proposed method utilizes the phase gradient to remove the phase unwrapping step inherent to other self-reference PRF-shift MR thermometry methods. The performance of the proposed method was evaluated using numerical simulations with temperature distributions following a two-dimensional Gaussian function as well as phantom and in vivo experimental data sets. The results from both the numerical simulations and experimental data show that the proposed method is a promising technique for measuring temperature.

  17. Comparison between Phase-Shift Full-Bridge Converters with Noncoupled and Coupled Current-Doubler Rectifier

    PubMed Central

    Tsai, Cheng-Tao; Tseng, Sheng-Yu

    2013-01-01

    This paper presents comparison between phase-shift full-bridge converters with noncoupled and coupled current-doubler rectifier. In high current capability and high step-down voltage conversion, a phase-shift full-bridge converter with a conventional current-doubler rectifier has the common limitations of extremely low duty ratio and high component stresses. To overcome these limitations, a phase-shift full-bridge converter with a noncoupled current-doubler rectifier (NCDR) or a coupled current-doubler rectifier (CCDR) is, respectively, proposed and implemented. In this study, performance analysis and efficiency obtained from a 500 W phase-shift full-bridge converter with two improved current-doubler rectifiers are presented and compared. From their prototypes, experimental results have verified that the phase-shift full-bridge converter with NCDR has optimal duty ratio, lower component stresses, and output current ripple. In component count and efficiency comparison, CCDR has fewer components and higher efficiency at full load condition. For small size and high efficiency requirements, CCDR is relatively suitable for high step-down voltage and high efficiency applications. PMID:24381521

  18. The detection of brain oedema with frequency-dependent phase shift electromagnetic induction.

    PubMed

    González, César A; Rubinsky, Boris

    2006-06-01

    The spectroscopic distribution of inductive phase shift in the brain as a function of the relative volume of oedema was evaluated with theoretical and experimental methods in the frequency range 1 to 8 MHz. The theoretical study employed a simple mathematical model of electromagnetic induction in tissue and brain tissue data available from the literature to calculate the phase shift as a function of oedema in the bulk of the brain. Experimental data were generated from bulk measurements of ex vivo homogenized pig brain tissue mixed with various volumes of physiological saline in a volume sample typical of the human brain. There is good agreement between the analytical and the experimental results. Detectable changes in phase shift begin from a frequency of about 3 MHz to 4 MHz in the tested compositions and volume. The phase shift increases with frequency and fluid content. The results suggest that measuring phase shift in the bulk of the brain has the potential for becoming a robust means for non-contact detection of oedema in the brain.

  19. Comparison between phase-shift full-bridge converters with noncoupled and coupled current-doubler rectifier.

    PubMed

    Tsai, Cheng-Tao; Su, Jye-Chau; Tseng, Sheng-Yu

    2013-01-01

    This paper presents comparison between phase-shift full-bridge converters with noncoupled and coupled current-doubler rectifier. In high current capability and high step-down voltage conversion, a phase-shift full-bridge converter with a conventional current-doubler rectifier has the common limitations of extremely low duty ratio and high component stresses. To overcome these limitations, a phase-shift full-bridge converter with a noncoupled current-doubler rectifier (NCDR) or a coupled current-doubler rectifier (CCDR) is, respectively, proposed and implemented. In this study, performance analysis and efficiency obtained from a 500 W phase-shift full-bridge converter with two improved current-doubler rectifiers are presented and compared. From their prototypes, experimental results have verified that the phase-shift full-bridge converter with NCDR has optimal duty ratio, lower component stresses, and output current ripple. In component count and efficiency comparison, CCDR has fewer components and higher efficiency at full load condition. For small size and high efficiency requirements, CCDR is relatively suitable for high step-down voltage and high efficiency applications.

  20. A phase response curve to single bright light pulses in human subjects

    NASA Technical Reports Server (NTRS)

    Khalsa, Sat Bir S.; Jewett, Megan E.; Cajochen, Christian; Czeisler, Charles A.

    2003-01-01

    The circadian pacemaker is differentially sensitive to the resetting effects of retinal light exposure, depending upon the circadian phase at which the light exposure occurs. Previously reported human phase response curves (PRCs) to single bright light exposures have employed small sample sizes, and were often based on relatively imprecise estimates of circadian phase and phase resetting. In the present study, 21 healthy, entrained subjects underwent pre- and post-stimulus constant routines (CRs) in dim light (approximately 2-7 lx) with maintained wakefulness in a semi-recumbent posture. The 6.7 h bright light exposure stimulus consisted of alternating 6 min fixed gaze (approximately 10 000 lx) and free gaze (approximately 5000-9000 lx) exposures. Light exposures were scheduled across the circadian cycle in different subjects so as to derive a PRC. Plasma melatonin was used to determine the phase of the onset, offset, and midpoint of the melatonin profiles during the CRs. Phase shifts were calculated as the difference in phase between the pre- and post-stimulus CRs. The resultant PRC of the midpoint of the melatonin rhythm revealed a characteristic type 1 PRC with a significant peak-to-trough amplitude of 5.02 h. Phase delays occurred when the light stimulus was centred prior to the critical phase at the core body temperature minimum, phase advances occurred when the light stimulus was centred after the critical phase, and no phase shift occurred at the critical phase. During the subjective day, no prolonged 'dead zone' of photic insensitivity was apparent. Phase shifts derived using the melatonin onsets showed larger magnitudes than those derived from the melatonin offsets. These data provide a comprehensive characterization of the human PRC under highly controlled laboratory conditions.

  1. Advanced Receiver For Phase-Shift-Keyed Signals

    NASA Technical Reports Server (NTRS)

    Hinedi, Sami M.

    1992-01-01

    ARX II is second "breadboard" version of advanced receiver, a hybrid digital/analog receiving subsystem, extracting symbols and Doppler shifts from weak phase-shift-keyed signals. Useful in terrestrial digital communication systems.

  2. Assessing the high frequency behavior of non-polarizable electrodes for spectral induced polarization measurements

    NASA Astrophysics Data System (ADS)

    Abdulsamad, Feras; Florsch, Nicolas; Schmutz, Myriam; Camerlynck, Christian

    2016-12-01

    During the last decades, the usage of spectral induced polarization (SIP) measurements in hydrogeology and detecting environmental problems has been extensively increased. However, the physical mechanisms which are responsible for the induced polarization response over the usual frequency range (typically 1 mHz to 10-20 kHz) require better understanding. The phase shift observed at high frequencies is sometimes attributed to the so-called Maxwell-Wagner polarization which takes place when charges cross an interface. However, SIP measurements of tap water show a phase shift at frequencies higher than 1 kHz, where no Maxwell-Wagner polarization may occur. In this paper, we enlighten the possible origin of this phase shift and deduce its likely relationship with the types of the measuring electrodes. SIP Laboratory measurements of tap water using different types of measuring electrodes (polarizable and non-polarizable electrodes) are carried out to detect the origin of the phase shift at high frequencies and the influence of the measuring electrodes types on the observed complex resistivity. Sodium chloride is used to change the conductivity of the medium in order to quantify the solution conductivity role. The results of these measurements are clearly showing the impact of the measuring electrodes type on the measured phase spectrum while the influence on the amplitude spectrum is negligible. The phenomenon appearing on the phase spectrum at high frequency (> 1 kHz) whatever the electrode type is, the phase shows an increase compared to the theoretical response, and the discrepancy (at least in absolute value) increases with frequency, but it is less severe when medium conductivity is larger. Additionally, the frequency corner is shifted upward in frequency. The dependence of this phenomenon on the conductivity and the measuring electrodes type (electrode-electrolyte interface) seems to be due to some dielectric effects (as an electrical double layer of small relaxation time formed at the electrodes interface). Therefore, this dielectric response should be taken into account at high frequency to better analytically separate the medium own response from that linked to the measuring electrodes used. We modeled this effect by adding a capacitance connected in parallel with the traditional equivalent electric circuit used to describe the dielectric response of medium.

  3. Optical π phase shift created with a single-photon pulse.

    PubMed

    Tiarks, Daniel; Schmidt, Steffen; Rempe, Gerhard; Dürr, Stephan

    2016-04-01

    A deterministic photon-photon quantum logic gate is a long-standing goal. Building such a gate becomes possible if a light pulse containing only one photon imprints a phase shift of π onto another light field. We experimentally demonstrate the generation of such a π phase shift with a single-photon pulse. A first light pulse containing less than one photon on average is stored in an atomic gas. Rydberg blockade combined with electromagnetically induced transparency creates a phase shift for a second light pulse, which propagates through the medium. We measure the π phase shift of the second pulse when we postselect the data upon the detection of a retrieved photon from the first pulse. This demonstrates a crucial step toward a photon-photon gate and offers a variety of applications in the field of quantum information processing.

  4. The Effect of Retrieval Cues on Visual Preferences and Memory in Infancy: Evidence for a Four-Phase Attention Function.

    ERIC Educational Resources Information Center

    Bahrick, Lorraine E.; Hernandez-Reif, Maria; Pickens, Jeffrey N.

    1997-01-01

    Tested hypothesis from Bahrick and Pickens' infant attention model that retrieval cues increase memory accessibility and shift visual preferences toward greater novelty to resemble recent memories. Found that after retention intervals associated with remote or intermediate memory, previous familiarity preferences shifted to null or novelty…

  5. Performance on a strategy set shifting task during adolescence in a genetic model of attention deficit/hyperactivity disorder: Methylphenidate vs. atomoxetine treatments

    PubMed Central

    Harvey, Roxann C; Jordan, Chloe J; Tassin, David H; Moody, Kayla R; Dwoskin, Linda P; Kantak, Kathleen M

    2013-01-01

    Research examining medication effects on set shifting in teens with attention deficit/hyperactivity disorder (ADHD) is lacking. An animal model of ADHD may be useful for exploring this gap. The Spontaneously Hypertensive Rat (SHR) is a commonly used animal model of ADHD. SHR and two comparator strains, Wistar-Kyoto (WKY) and Wistar (WIS), were evaluated during adolescence in a strategy set shifting task under conditions of a 0-sec or 15-sec delay to reinforcer delivery. The task had three phases: initial discrimination, set shift and reversal learning. Under 0-sec delays, SHR performed as well as or better than WKY and WIS. Treatment with 0.3 mg/kg/day atomoxetine had little effect, other than to modestly increase trials to criterion during set shifting in all strains. Under 15-sec delays, SHR had longer lever press reaction times, longer latencies to criterion and more trial omissions than WKY during set shifting and reversal learning. These deficits were not reduced systematically by 1.5 mg/kg/day methylphenidate or 0.3 mg/kg/day atomoxetine. Regarding learning in SHR, methylphenidate improved initial discrimination, whereas atomoxetine improved set shifting but disrupted initial discrimination. During reversal learning, both drugs were ineffective in SHR, and atomoxetine made reaction time and trial omissions greater in WKY. Overall, WIS performance differed from SHR or WKY, depending on phase. Collectively, a genetic model of ADHD in adolescent rats revealed that neither methylphenidate nor atomoxetine mitigated all deficits in SHR during the set shifting task. Thus, methylphenidate or atomoxetine monotherapy may not mitigate all set shift task-related deficits in teens with ADHD. PMID:23376704

  6. Parallel phase-shifting self-interference digital holography with faithful reconstruction using compressive sensing

    NASA Astrophysics Data System (ADS)

    Wan, Yuhong; Man, Tianlong; Wu, Fan; Kim, Myung K.; Wang, Dayong

    2016-11-01

    We present a new self-interference digital holographic approach that allows single-shot capturing three-dimensional intensity distribution of the spatially incoherent objects. The Fresnel incoherent correlation holographic microscopy is combined with parallel phase-shifting technique to instantaneously obtain spatially multiplexed phase-shifting holograms. The compressive-sensing-based reconstruction algorithm is implemented to reconstruct the original object from the under sampled demultiplexed holograms. The scheme is verified with simulations. The validity of the proposed method is experimentally demonstrated in an indirectly way by simulating the use of specific parallel phase-shifting recording device.

  7. Alternating phase-shifting masks: phase determination and impact of quartz defects--theoretical and experimental results

    NASA Astrophysics Data System (ADS)

    Griesinger, Uwe A.; Dettmann, Wolfgang; Hennig, Mario; Heumann, Jan P.; Koehle, Roderick; Ludwig, Ralf; Verbeek, Martin; Zarrabian, Mardjan

    2002-07-01

    In optical lithography balancing the aerial image of an alternating phase shifting mask (alt. PSM) is a major challenge. For the exposure wavelengths (currently 248nm and 193nm) an optimum etching method is necessary to overcome imbalance effects. Defects play an important role in the imbalances of the aerial image. In this contribution defects will be discussed by using the methodology of global phase imbalance control also for local imbalances which are a result of quartz defects. The effective phase error can be determined with an AIMS-system by measuring the CD width between the images of deep- and shallow trenches at different focus settings. The AIMS results are analyzed in comparison to the simulated and lithographic print results of the alternating structures. For the analysis of local aerial image imbalances it is necessary to investigate the capability of detecting these phase defects with state of the art inspection systems. Alternating PSMs containing programmed defects were inspected with different algorithms to investigate the capture rate of special phase defects in dependence on the defect size. Besides inspection also repair of phase defects is an important task. In this contribution we show the effect of repair on the optical behavior of phase defects. Due to the limited accuracy of the repair tools the repaired area still shows a certain local phase error. This error can be caused either by residual quartz material or a substrate damage. The influence of such repair induced phase errors on the aerial image were investigated.

  8. Multimodal pressure-flow method to assess dynamics of cerebral autoregulation in stroke and hypertension.

    PubMed

    Novak, Vera; Yang, Albert C C; Lepicovsky, Lukas; Goldberger, Ary L; Lipsitz, Lewis A; Peng, Chung-Kang

    2004-10-25

    This study evaluated the effects of stroke on regulation of cerebral blood flow in response to fluctuations in systemic blood pressure (BP). The autoregulatory dynamics are difficult to assess because of the nonstationarity and nonlinearity of the component signals. We studied 15 normotensive, 20 hypertensive and 15 minor stroke subjects (48.0 +/- 1.3 years). BP and blood flow velocities (BFV) from middle cerebral arteries (MCA) were measured during the Valsalva maneuver (VM) using transcranial Doppler ultrasound. A new technique, multimodal pressure-flow analysis (MMPF), was implemented to analyze these short, nonstationary signals. MMPF analysis decomposes complex BP and BFV signals into multiple empirical modes, representing their instantaneous frequency-amplitude modulation. The empirical mode corresponding to the VM BP profile was used to construct the continuous phase diagram and to identify the minimum and maximum values from the residual BP (BPR) and BFV (BFVR) signals. The BP-BFV phase shift was calculated as the difference between the phase corresponding to the BPR and BFVR minimum (maximum) values. BP-BFV phase shifts were significantly different between groups. In the normotensive group, the BFVR minimum and maximum preceded the BPR minimum and maximum, respectively, leading to large positive values of BP-BFV shifts. In the stroke and hypertensive groups, the resulting BP-BFV phase shift was significantly smaller compared to the normotensive group. A standard autoregulation index did not differentiate the groups. The MMPF method enables evaluation of autoregulatory dynamics based on instantaneous BP-BFV phase analysis. Regulation of BP-BFV dynamics is altered with hypertension and after stroke, rendering blood flow dependent on blood pressure.

  9. Phase noise optimization in temporal phase-shifting digital holography with partial coherence light sources and its application in quantitative cell imaging.

    PubMed

    Remmersmann, Christian; Stürwald, Stephan; Kemper, Björn; Langehanenberg, Patrik; von Bally, Gert

    2009-03-10

    In temporal phase-shifting-based digital holographic microscopy, high-resolution phase contrast imaging requires optimized conditions for hologram recording and phase retrieval. To optimize the phase resolution, for the example of a variable three-step algorithm, a theoretical analysis on statistical errors, digitalization errors, uncorrelated errors, and errors due to a misaligned temporal phase shift is carried out. In a second step the theoretically predicted results are compared to the measured phase noise obtained from comparative experimental investigations with several coherent and partially coherent light sources. Finally, the applicability for noise reduction is demonstrated by quantitative phase contrast imaging of pancreas tumor cells.

  10. Phase-shifting coronagraph

    NASA Astrophysics Data System (ADS)

    Hénault, François; Carlotti, Alexis; Vérinaud, Christophe

    2017-09-01

    With the recent commissioning of ground instruments such as SPHERE or GPI and future space observatories like WFIRST-AFTA, coronagraphy should probably become the most efficient tool for identifying and characterizing extrasolar planets in the forthcoming years. Coronagraphic instruments such as Phase mask coronagraphs (PMC) are usually based on a phase mask or plate located at the telescope focal plane, spreading the starlight outside the diameter of a Lyot stop that blocks it. In this communication is investigated the capability of a PMC to act as a phase-shifting wavefront sensor for better control of the achieved star extinction ratio in presence of the coronagraphic mask. We discuss the two main implementations of the phase-shifting process, either introducing phase-shifts in a pupil plane and sensing intensity variations in an image plane, or reciprocally. Conceptual optical designs are described in both cases. Numerical simulations allow for better understanding of the performance and limitations of both options, and optimizing their fundamental parameters. In particular, they demonstrate that the phase-shifting process is a bit more efficient when implemented into an image plane, and is compatible with the most popular phase masks currently employed, i.e. fourquadrants and vortex phase masks.

  11. Sleep Loss and Fatigue in Shift Work and Shift Work Disorder

    PubMed Central

    Åkerstedt, Torbjörn; Wright, Kenneth P.

    2010-01-01

    Shift work is highly prevalent in industrialized societies (>20%) but, when it includes night work, it has pronounced negative effects on sleep, subjective and physiological sleepiness, performance, accident risk, as well as on health outcomes such as cardiovascular disease and certain forms of cancer. The reason is the conflict between the day oriented circadian physiology and the requirement for work and sleep at the “wrong” biological time of day. Other factors that negatively impact work shift sleepiness and accident risk include long duration shifts greater than 12 hours and individual vulnerability for phase intolerance that may lead to a diagnosis of shift work disorder; i.e., those shift workers with the greatest sleepiness and performance impairment during the biological night and insomnia during the biological day. Whereas some countermeasures may be used to ameliorate the negative impact of shift work on nighttime sleepiness and daytime insomnia (combined countermeasures may be the best available), there seems at present to be no way to eliminate most of the negative effects of shift work on human physiology and cognition. PMID:20640236

  12. Shot-noise-limited measurement of sub-parts-per-trillion birefringence phase shift in a high-finesse cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durand, Mathieu; Morville, Jerome; Romanini, Daniele

    2010-09-15

    We report on a promising approach to high-sensitivity anisotropy measurements using a high-finesse cavity locked by optical feedback to a diode laser. We provide a simple and effective way to decouple the weak anisotropy of interest from the inherent mirror's birefringence whose drift may be identified as the key limiting parameter in cavity-based techniques. We demonstrate a shot-noise-limited phase shift resolution previously inaccessible in an optical cavity, readily achieving the state-of-the-art level of 3x10{sup -13} rad.

  13. Femtosecond laser pulse distortion in Ti:sapphire multipass amplifier by atomic phase shifts

    NASA Astrophysics Data System (ADS)

    Hwang, Seungjin; Jeong, Jihoon; Cho, Seryeyohan; Lee, Jongmin; Yu, Tae Jun

    2017-11-01

    We have derived modified Frantz-Nodvik equations that simultaneously account for atomic phase shift (APS) and gain depletion as the chirped laser pulse passes through a gain medium, and have analyzed the effect of temporal pulse distortion in a Ti:sapphire multipass amplifier chain. The combination of APS and gain depletion distorted a temporal pulse and decreased the peak power. The pulse width increased from 21.3 fs to 22.8 fs and the peak power reduced to 89% for the PW class Ti:sapphire CPA laser system in the particular conditions.

  14. Resonant Pump-dump Quantum Control of Solvated Dye Molecules with Phase Jumps

    NASA Astrophysics Data System (ADS)

    Konar, Arkaprabha; Lozovoy, Vadim; Dantus, Marcos

    2014-03-01

    Quantum coherent control of two photon and multiphoton excitation processes in atomic and condensed phase systems employing phase jumps has been well studied and understood. Here we demonstrate coherent quantum control of a two photon resonant pump-dump process in a complex solvated dye molecule. Phase jump in the frequency domain via a pulse shaper is employed to coherently enhance the stimulated emission by an order of magnitude when compared to transform limited pulses. Red shifted stimulated emission from successive low energy Stokes shifted excited states leading to narrowband emission are observed upon scanning the pi step across the excitation spectrum. A binary search space routine was also employed to investigate the effects of other types of phase jumps on stimulated emission and to determine the optimum phase that maximizes the emission. Understanding the underlying mechanism of this kind of enhancement will guide us in designing pulse shapes for enhancing stimulated emission, which can be further applied in the field of imaging.

  15. General anesthesia alters time perception by phase shifting the circadian clock.

    PubMed

    Cheeseman, James F; Winnebeck, Eva C; Millar, Craig D; Kirkland, Lisa S; Sleigh, James; Goodwin, Mark; Pawley, Matt D M; Bloch, Guy; Lehmann, Konstantin; Menzel, Randolf; Warman, Guy R

    2012-05-01

    Following general anesthesia, people are often confused about the time of day and experience sleep disruption and fatigue. It has been hypothesized that these symptoms may be caused by general anesthesia affecting the circadian clock. The circadian clock is fundamental to our well-being because it regulates almost all aspects of our daily biochemistry, physiology, and behavior. Here, we investigated the effects of the most common general anesthetic, isoflurane, on time perception and the circadian clock using the honeybee (Apis mellifera) as a model. A 6-h daytime anesthetic systematically altered the time-compensated sun compass orientation of the bees, with a mean anticlockwise shift in vanishing bearing of 87° in the Southern Hemisphere and a clockwise shift in flight direction of 58° in the Northern Hemisphere. Using the same 6-h anesthetic treatment, time-trained bees showed a delay in the start of foraging of 3.3 h, and whole-hive locomotor-activity rhythms were delayed by an average of 4.3 h. We show that these effects are all attributable to a phase delay in the core molecular clockwork. mRNA oscillations of the central clock genes cryptochrome-m and period were delayed by 4.9 and 4.3 h, respectively. However, this effect is dependent on the time of day of administration, as is common for clock effects, and nighttime anesthesia did not shift the clock. Taken together, our results suggest that general anesthesia during the day causes a persistent and marked shift of the clock effectively inducing "jet lag" and causing impaired time perception. Managing this effect in humans is likely to help expedite postoperative recovery.

  16. An arousing, musically enhanced bird song stimulus mediates circadian rhythm phase advances in dim light.

    PubMed

    Goel, Namni

    2006-09-01

    A musically enhanced bird song stimulus presented in the early subjective night phase delays human circadian rhythms. This study determined the phase-shifting effects of the same stimulus in the early subjective day. Eleven subjects (ages 18-63 yr; mean +/- SD: 28.0 +/- 16.6 yr) completed two 4-day laboratory sessions in constant dim light (<20 lux). They received two consecutive presentations of either a 2-h musically enhanced bird song or control stimulus from 0600 to 0800 on the second and third mornings while awake. The 4-day sessions employing either the stimulus or control were counterbalanced. Core body temperature (CBT) was collected throughout the study, and salivary melatonin was obtained every 30 min from 1900 to 2330 on the baseline and poststimulus/postcontrol nights. Dim light melatonin onset and CBT minimum circadian phase before and after stimulus or control presentation was assessed. The musically enhanced bird song stimulus produced significantly larger phase advances of the circadian melatonin (mean +/- SD: 0.87 +/- 0.36 vs. 0.24 +/- 0.22 h) and CBT (1.08 +/- 0.50 vs. 0.43 +/- 0.37 h) rhythms than the control. The stimulus also decreased fatigue and total mood disturbance, suggesting arousing effects. This study shows that a musically enhanced bird song stimulus presented during the early subjective day phase advances circadian rhythms. However, it remains unclear whether the phase shifts are due directly to effects of the stimulus on the clock or are arousal- or dim light-mediated effects. This nonphotic stimulus mediates circadian resynchronization in either the phase advance or delay direction.

  17. 3D motion picture of transparent gas flow by parallel phase-shifting digital holography

    NASA Astrophysics Data System (ADS)

    Awatsuji, Yasuhiro; Fukuda, Takahito; Wang, Yexin; Xia, Peng; Kakue, Takashi; Nishio, Kenzo; Matoba, Osamu

    2018-03-01

    Parallel phase-shifting digital holography is a technique capable of recording three-dimensional (3D) motion picture of dynamic object, quantitatively. This technique can record single hologram of an object with an image sensor having a phase-shift array device and reconstructs the instantaneous 3D image of the object with a computer. In this technique, a single hologram in which the multiple holograms required for phase-shifting digital holography are multiplexed by using space-division multiplexing technique pixel by pixel. We demonstrate 3D motion picture of dynamic and transparent gas flow recorded and reconstructed by the technique. A compressed air duster was used to generate the gas flow. A motion picture of the hologram of the gas flow was recorded at 180,000 frames/s by parallel phase-shifting digital holography. The phase motion picture of the gas flow was reconstructed from the motion picture of the hologram. The Abel inversion was applied to the phase motion picture and then the 3D motion picture of the gas flow was obtained.

  18. RACE and Calculations of Three-dimensional Distributed Cavity Phase Shifts

    NASA Technical Reports Server (NTRS)

    Li, Ruoxin; Gibble, Kurt

    2003-01-01

    The design for RACE, a Rb-clock flight experiment for the ISS, is described. The cold collision shift and multiple launching (juggling) have important implications for the design and the resulting clock accuracy and stability. We present and discuss the double clock design for RACE. This design reduces the noise contributions of the local oscillator and simplifies and enhances an accuracy evaluation of the clock. As we try to push beyond the current accuracies of clocks, new systematic errors become important. The best fountain clocks are using cylindrical TE(sub 011) microwave cavities. We recently pointed out that many atoms pass through a node of the standing wave microwave field in these cavities. Previous studies have shown potentially large frequency shifts for atoms passing through nodes in a TE(sub 013) cavity. The shift occurs because there is a small traveling wave component due to the absorption of the copper cavity walls. The small traveling wave component leads to position dependent phase shifts. To study these effects, we perform Finite Element calculations. Three-dimensional Finite Element calculations require significant computer resources. Here we show that the cylindrical boundary condition can be Fourier decomposed to a short series of two-dimensional problems. This dramatically reduces the time and memory required and we obtain (3D) phase distributions for a variety of cavities. With these results, we will be able to analyze this frequency shift in fountain and future space clocks.

  19. Role of the strange quark in the rho(770) meson

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molina Peralta, Raquel; Guo, Dehua; Hu, B.

    2017-03-01

    Recently, the GWU lattice group has evaluated high-precision phase-shift data formore » $$\\pi\\pi$$ scattering in the $I = 1$, $J = 1$ channel. Unitary Chiral Perturbation Theory describes these data well around the resonance region and for different pion masses. Moreover, it allows to extrapolate to the physical point and estimate the effect of the missing $$K\\bar{K}$$ channel in the two-flavor lattice calculation. The absence of the strange quark in the lattice data leads to a lower $$\\rho$$ mass, and the analysis with U$$\\chi$$PT shows that the $$K \\bar{K}$$ channel indeed pushes the $$\\pi\\pi$$-scattering phase shift upward, having a surprisingly large effect on the $$\\rho$$-mass. The inelasticity is shown to be compatible with the experimental data. The analysis is then extended to all available two-flavor lattice simulations and similar mass shifts are observed. Chiral extrapolations of $$N_f = 2 + 1$$ lattice simulations for the $$\\rho(770)$$ are also reported.« less

  20. Application of confocal surface wave microscope to self-calibrated attenuation coefficient measurement by Goos-Hänchen phase shift modulation.

    PubMed

    Pechprasarn, Suejit; Chow, Terry W K; Somekh, Michael G

    2018-06-04

    In this paper, we present a direct method to measure surface wave attenuation arising from both ohmic and coupling losses using our recently developed phase spatial light modulator (phase-SLM) based confocal surface plasmon microscope. The measurement is carried out in the far-field using a phase-SLM to impose an artificial surface wave phase profile in the back focal plane (BFP) of a microscope objective. In other words, we effectively provide an artificially engineered backward surface wave by modulating the Goos Hänchen (GH) phase shift of the surface wave. Such waves with opposing phase and group velocities are well known in acoustics and electromagnetic metamaterials but usually require structured or layered surfaces, here the effective wave is produced externally in the microscope illumination path. Key features of the technique developed here are that it (i) is self-calibrating and (ii) can distinguish between attenuation arising from ohmic loss (k″ Ω ) and coupling (reradiation) loss (k″ c ). This latter feature has not been achieved with existing methods. In addition to providing a unique measurement the measurement occurs of over a localized region of a few microns. The results were then validated against the surface plasmons (SP) dip measurement in the BFP and a theoretical model based on a simplified Green's function.

  1. Using digital inline holographic microscopy and quantitative phase contrast imaging to assess viability of cultured mammalian cells

    NASA Astrophysics Data System (ADS)

    Missan, Sergey; Hrytsenko, Olga

    2015-03-01

    Digital inline holographic microscopy was used to record holograms of mammalian cells (HEK293, B16, and E0771) in culture. The holograms have been reconstructed using Octopus software (4Deep inwater imaging) and phase shift maps were unwrapped using the FFT-based phase unwrapping algorithm. The unwrapped phase shifts were used to determine the maximum phase shifts in individual cells. Addition of 0.5 mM H2O2 to cell media produced rapid rounding of cultured cells, followed by cell membrane rupture. The cell morphology changes and cell membrane ruptures were detected in real time and were apparent in the unwrapped phase shift images. The results indicate that quantitative phase contrast imaging produced by the digital inline holographic microscope can be used for the label-free real time automated determination of cell viability and confluence in mammalian cell cultures.

  2. White-light diffraction phase microscopy at doubled space-bandwidth product.

    PubMed

    Shan, Mingguang; Kandel, Mikhail E; Majeed, Hassaan; Nastasa, Viorel; Popescu, Gabriel

    2016-12-12

    White light diffraction microscopy (wDPM) is a quantitative phase imaging method that benefits from both temporal and spatial phase sensitivity, granted, respectively, by the common-path geometry and white light illumination. However, like all off-axis quantitative phase imaging methods, wDPM is characterized by a reduced space-bandwidth product compared to phase shifting approaches. This happens essentially because the ultimate resolution of the image is governed by the period of the interferogram and not just the diffraction limit. As a result, off-axis techniques generates single-shot, i.e., high time-bandwidth, phase measurements, at the expense of either spatial resolution or field of view. Here, we show that combining phase-shifting and off-axis, the original space-bandwidth is preserved. Specifically, we developed phase-shifting diffraction phase microscopy with white light, in which we measure and combine two phase shifted interferograms. Due to the white light illumination, the phase images are characterized by low spatial noise, i.e., <1nm pathlength. We illustrate the operation of the instrument with test samples, blood cells, and unlabeled prostate tissue biopsy.

  3. A 2x2 W-Band Reference Time-Shifted Phase-Locked Transmitter Array in 65nm CMOS Technology

    NASA Technical Reports Server (NTRS)

    Tang, Adrian; Virbila, Gabriel; Hsiao, Frank; Wu, Hao; Murphy, David; Mehdi, Imran; Siegel, P. H.; Chang, M-C. Frank

    2013-01-01

    This paper presents a complete 2x2 phased array transmitter system operating at W-band (90-95 GHz) which employs a PLL reference time-shifting approach instead of using traditional mm-wave phase shifters. PLL reference shifting enables a phased array to be distributed over multiple chips without the need for coherent mm-wave signal distribution between chips. The proposed phased array transmitter system consumes 248 mW per array element when implemented in a 65 nm CMOS technology.

  4. Effects of light, food, and methamphetamine on the circadian activity rhythm in mice.

    PubMed

    Pendergast, Julie S; Yamazaki, Shin

    2014-04-10

    The circadian rhythm of locomotor activity in mice is synchronized to environmental factors such as light and food availability. It is well-known that entrainment of the activity rhythm to the light-dark cycle is attained by the circadian pacemaker in the suprachiasmatic nucleus (SCN). Locomotor activity is also controlled by two extra-SCN oscillators; periodic food availability entrains the food-entrainable oscillator (FEO) and constant consumption of low-dose methamphetamine reveals the output of the methamphetamine-sensitive circadian oscillator (MASCO). In this study, we sought to investigate the relationship between the SCN, FEO, and MASCO by examining the combinatorial effects of light, food restriction, and/or methamphetamine on locomotor activity. To investigate coupling between the SCN and FEO, we tested whether food anticipatory activity, which is the output of the FEO, shifted coordinately with phase shifts of the light-dark cycle. We found that the phase of food anticipatory activity was phase-delayed or phase-advanced symmetrically with the respective shift of the light-dark cycle, suggesting that the FEO is strongly coupled to the SCN and the phase angle between the SCN and FEO is maintained during ad libitum feeding. To examine the effect of methamphetamine on the output of the FEO, we administered methamphetamine to mice undergoing restricted feeding and found that food-entrained activity was delayed by methamphetamine treatment. In addition, restricted feeding induced dissociation of the MASCO and SCN activity rhythms during short-term methamphetamine treatment, when these rhythms are typically integrated. In conclusion, our data suggest that the outputs of the SCN, FEO and MASCO collectively drive locomotor activity. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. The effect of the condensed-phase environment on the vibrational frequency shift of a hydrogen molecule inside clathrate hydrates

    NASA Astrophysics Data System (ADS)

    Powers, Anna; Scribano, Yohann; Lauvergnat, David; Mebe, Elsy; Benoit, David M.; Bačić, Zlatko

    2018-04-01

    We report a theoretical study of the frequency shift (redshift) of the stretching fundamental transition of an H2 molecule confined inside the small dodecahedral cage of the structure II clathrate hydrate and its dependence on the condensed-phase environment. In order to determine how much the hydrate water molecules beyond the confining small cage contribute to the vibrational frequency shift, quantum five-dimensional (5D) calculations of the coupled translation-rotation eigenstates are performed for H2 in the v =0 and v =1 vibrational states inside spherical clathrate hydrate domains of increasing radius and a growing number of water molecules, ranging from 20 for the isolated small cage to over 1900. In these calculations, both H2 and the water domains are treated as rigid. The 5D intermolecular potential energy surface (PES) of H2 inside a hydrate domain is assumed to be pairwise additive. The H2-H2O pair interaction, represented by the 5D (rigid monomer) PES that depends on the vibrational state of H2, v =0 or v =1 , is derived from the high-quality ab initio full-dimensional (9D) PES of the H2-H2O complex [P. Valiron et al., J. Chem. Phys. 129, 134306 (2008)]. The H2 vibrational frequency shift calculated for the largest clathrate domain considered, which mimics the condensed-phase environment, is about 10% larger in magnitude than that obtained by taking into account only the small cage. The calculated splittings of the translational fundamental of H2 change very little with the domain size, unlike the H2 j = 1 rotational splittings that decrease significantly as the domain size increases. The changes in both the vibrational frequency shift and the j = 1 rotational splitting due to the condensed-phase effects arise predominantly from the H2O molecules in the first three complete hydration shells around H2.

  6. Phase gradient algorithm based on co-axis two-step phase-shifting interferometry and its application

    NASA Astrophysics Data System (ADS)

    Wang, Yawei; Zhu, Qiong; Xu, Yuanyuan; Xin, Zhiduo; Liu, Jingye

    2017-12-01

    A phase gradient method based on co-axis two-step phase-shifting interferometry, is used to reveal the detailed information of a specimen. In this method, the phase gradient distribution can only be obtained by calculating both the first-order derivative and the radial Hilbert transformation of the intensity difference between two phase-shifted interferograms. The feasibility and accuracy of this method were fully verified by the simulation results for a polystyrene sphere and a red blood cell. The empirical results demonstrated that phase gradient is sensitive to changes in the refractive index and morphology. Because phase retrieval and tedious phase unwrapping are not required, the calculation speed is faster. In addition, co-axis interferometry has high spatial resolution.

  7. A fast two-plus-one phase-shifting algorithm for high-speed three-dimensional shape measurement system

    NASA Astrophysics Data System (ADS)

    Wang, Wenyun; Guo, Yingfu

    2008-12-01

    Phase-shifting methods for 3-D shape measurement have long been employed in optical metrology for their speed and accuracy. For real-time, accurate, 3-D shape measurement, a four-step phase-shifting algorithm which has the advantage of its symmetry is a good choice; however, its measurement error is sensitive to any fringe image errors caused by various sources such as motion blur. To alleviate this problem, a fast two-plus-one phase-shifting algorithm is proposed in this paper. This kind of technology will benefit many applications such as medical imaging, gaming, animation, computer vision, computer graphics, etc.

  8. Relationship of scattering phase shifts to special radiation force conditions for spheres in axisymmetric wave-fields.

    PubMed

    Marston, Philip L; Zhang, Likun

    2017-05-01

    When investigating the radiation forces on spheres in complicated wave-fields, the interpretation of analytical results can be simplified by retaining the s-function notation and associated phase shifts imported into acoustics from quantum scattering theory. For situations in which dissipation is negligible, as taken to be the case in the present investigation, there is an additional simplification in that partial-wave phase shifts become real numbers that vanish when the partial-wave index becomes large and when the wave-number-sphere-radius product vanishes. By restricting attention to monopole and dipole phase shifts, transitions in the axial radiation force for axisymmetric wave-fields are found to be related to wave-field parameters for traveling and standing Bessel wave-fields by considering the ratio of the phase shifts. For traveling waves, the special force conditions concern negative forces while for standing waves, the special force conditions concern vanishing radiation forces. An intermediate step involves considering the functional dependence on phase shifts. An appendix gives an approximation for zero-force plane standing wave conditions. Connections with early investigations of acoustic levitation are mentioned and some complications associated with viscosity are briefly noted.

  9. On the effects of phase jitter on QPSK lock detection

    NASA Technical Reports Server (NTRS)

    Mileant, A.; Hinedi, S.

    1993-01-01

    The performance of a QPSK (quadrature phase-shift keying) lock detector is described, taking into account the degradation due to carrier phase jitter. Such an analysis is necessary for accurate performance prediction purposes in scenarios where both the loop SNR is low and the estimation period is short. The derived formulas are applicable to several QPSK loops and are verified using computer simulations.

  10. Density and spin modes in imbalanced normal Fermi gases from collisionless to hydrodynamic regime

    NASA Astrophysics Data System (ADS)

    Narushima, Masato; Watabe, Shohei; Nikuni, Tetsuro

    2018-03-01

    We study the mass- and population-imbalance effect on density (in-phase) and spin (out-of-phase) collective modes in a two-component normal Fermi gas. By calculating the eigenmodes of the linearized Boltzmann equation as well as the density/spin dynamic structure factor, we show that mass- and population-imbalance effects offer a variety of collective mode crossover behaviors from collisionless to hydrodynamic regimes. The mass-imbalance effect shifts the crossover regime to the higher-temperature, and a significant peak of the spin dynamic structure factor emerges only in the collisionless regime. This is in contrast to the case of mass- and population-balanced normal Fermi gases, where the spin dynamic response is always absent. Although the population-imbalance effect does not shift the crossover regime, the spin dynamic structure factor survives both in the collisionless and hydrodynamic regimes.

  11. Stability Properties and Cross Coupling Performance of the Control Allocation Scheme CAPIO

    NASA Technical Reports Server (NTRS)

    Yildiz, Yildiray; Kolmanovsky, Ilya V.

    2010-01-01

    This paper presents a stability analysis and an application of a recently developed Control Allocator for recovery from Pilot Induced Oscillations (CAPIO). When actuators are rate-saturated due to either aggressive pilot commands, high gain ight control systems or some anomaly in the system, the effective delay in the control loop may increase. This effective delay increase manifests itself as a phase shift between the commanded and actual system signals and can instigate Pilot induced Oscillations (PIO). CAPIO reduces the e ective time delay by minimizing the phase shift between the commanded and the actual attitude accelerations. We present a stability analysis of CAPIO for a scalar system. In addition, we present simulation results for aircraft with cross-coupling which demonstrates the potential of CAPIO serving as an effective PIO handler in adverse conditions.

  12. Relationships between the center of pressure and the movements of the ankle and knee joints during the stance phase in patients with severe medial knee osteoarthritis.

    PubMed

    Fukaya, Takashi; Mutsuzaki, Hirotaka; Okubo, Tomoyuki; Mori, Koichi; Wadano, Yasuyoshi

    2016-08-01

    The knee joint movement during the stance phase is affected by altered ankle movement and the center of pressure (COP). However the relationships between changes in the center of pressure (COP) and the altered kinematics and kinetics of the ankle and knee joints in patients with osteoarthritis (OA) of the knee are not well understood. The purpose of this study was to determine the relationships between changes in the COP and the altered kinematic and kinetic variables in ankle and knee joints during the stance phase in patients with medial knee OA. Fourteen patients with knee OA (21 knees) and healthy subjects were assessed by gait analysis using an eight-camera motion analysis system to record forward and lateral shifts in the COP and the angle and net internal moments of the knee and ankle joint. Spearman rank-correlation coefficients were used to determine the relationship between these results. In knees with medial OA, lateral shifts in the COP were correlated with knee flexion angle. Lateral shifts in the COP were correlated with the second peak of the knee extensor moment and correlated with the knee abductor moment. In patients with medial knee OA, lateral shifts in the COP were negatively correlated with the kinematic and kinetic variables in the sagittal plane of the knee joints. Controlling such lateral shifts in the COP may thus be an effective intervention for mechanical loads on the knee during the stance phase in patients with knee OA. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Gamma model and its analysis for phase measuring profilometry.

    PubMed

    Liu, Kai; Wang, Yongchang; Lau, Daniel L; Hao, Qi; Hassebrook, Laurence G

    2010-03-01

    Phase measuring profilometry is a method of structured light illumination whose three-dimensional reconstructions are susceptible to error from nonunitary gamma in the associated optical devices. While the effects of this distortion diminish with an increasing number of employed phase-shifted patterns, gamma distortion may be unavoidable in real-time systems where the number of projected patterns is limited by the presence of target motion. A mathematical model is developed for predicting the effects of nonunitary gamma on phase measuring profilometry, while also introducing an accurate gamma calibration method and two strategies for minimizing gamma's effect on phase determination. These phase correction strategies include phase corrections with and without gamma calibration. With the reduction in noise, for three-step phase measuring profilometry, analysis of the root mean squared error of the corrected phase will show a 60x reduction in phase error when the proposed gamma calibration is performed versus 33x reduction without calibration.

  14. Health Effects of Shift Work

    PubMed Central

    LaDou, Joseph

    1982-01-01

    More than 13.5 million American workers, close to 20 percent of the work force, are assigned to evening or night shifts. In some industries such as automobile, petrochemical and textile manufacturing the proportion of shift workers is greater than 50 percent. As the popularity of shift work and other “alternative work schedules” grows, concern is increasing over the disturbance created in the lives of workers and their families by these economically and socially useful innovations. Twenty percent of workers are unable to tolerate shift work. Daily physiologic variations termed circadian rhythms are interactive and require a high degree of phase relationship to produce subjective feelings of wellbeing. Disturbance of these activities, circadian desynchronization, whether from passage over time zones or from shift rotation, results in health effects such as disturbance of the quantity and quality of sleep, disturbance of gastrointestinal and other organ system activities, and aggravation of diseases such as diabetes mellitus, epilepsy and thyrotoxicosis. Worker selection can reduce the number of health problems resulting from shift work. The periodic examination of shift workers is recommended. PMID:6962577

  15. Effect of the Gouy phase on the coherent phase control of chemical reactions.

    PubMed

    Gordon, Robert J; Barge, Vishal J

    2007-11-28

    We show how the spatial phase of a focused laser beam may be used as a tool for controlling the branching ratio of a chemical reaction. Guoy discovered [Acad. Sci., Paris, C. R. 110, 1250 (1890)] that when an electromagnetic wave passes through a focus its phase increases by pi. In a coherent control scheme involving the absorption of n photons of frequency omega(m) and m photons of frequency omega(n), the overall phase shift produced by the Gouy phase is (n-m)pi. At any given point in space, this phase shift is identical for all reaction products. Nevertheless, if the yields for different reaction channels have different intensity dependencies, the Gouy phase produces a net phase lag between the products that varies with the axial coordinate of the laser focus. We obtain here analytical and numerical values of this phase as the laser focus is scanned across the diameter of the molecular beam, taking into account the Rayleigh range and astigmatism of the laser beam and saturation of the transition. We also show that the modulation depth of the interference pattern may be increased by optimizing the relative intensities of the two fields.

  16. Analysis of a multi-wavelength multi-camera phase-shifting profilometric system for real-time operation

    NASA Astrophysics Data System (ADS)

    Stoykova, Elena; Gotchev, Atanas; Sainov, Ventseslav

    2011-01-01

    Real-time accomplishment of a phase-shifting profilometry through simultaneous projection and recording of fringe patterns requires a reliable phase retrieval procedure. In the present work we consider a four-wavelength multi-camera system with four sinusoidal phase gratings for pattern projection that implements a four-step algorithm. Successful operation of the system depends on overcoming two challenges which stem out from the inherent limitations of the phase-shifting algorithm, namely the demand for a sinusoidal fringe profile and the necessity to ensure equal background and contrast of fringes in the recorded fringe patterns. As a first task, we analyze the systematic errors due to the combined influence of the higher harmonics and multi-wavelength illumination in the Fresnel diffraction zone considering the case when the modulation parameters of the four gratings are different. As a second task we simulate the system performance to evaluate the degrading effect of the speckle noise and the spatially varying fringe modulation at non-uniform illumination on the overall accuracy of the profilometric measurement. We consider the case of non-correlated speckle realizations in the recorded fringe patterns due to four-wavelength illumination. Finally, we apply a phase retrieval procedure which includes normalization, background removal and denoising of the recorded fringe patterns to both simulated and measured data obtained for a dome surface.

  17. Fabricating fiber Bragg gratings with two phase masks based on reconstruction-equivalent-chirp technique.

    PubMed

    Gao, Liang; Chen, Xiangfei; Xiong, Jintian; Liu, Shengchun; Pu, Tao

    2012-01-30

    Based on reconstruction-equivalent-chirp (REC) technique, a novel solution for fabricating low-cost long fiber Bragg gratings (FBGs) with desired properties is proposed and initially studied. A proof-of-concept experiment is demonstrated with two conventional uniform phase masks and a submicron-precision translation stage, successfully. It is shown that the original phase shift (OPS) caused by phase mismatch of the two phase masks can be compensated by the equivalent phase shift (EPS) at the ±1st channels of sampled FBGs, separately. Furthermore, as an example, a π phase-shifted FBG of about 90 mm is fabricated by using these two 50mm-long uniform phase masks based on the presented method.

  18. Tau-independent Phase Analysis: A Novel Method for Accurately Determining Phase Shifts.

    PubMed

    Tackenberg, Michael C; Jones, Jeff R; Page, Terry L; Hughey, Jacob J

    2018-06-01

    Estimations of period and phase are essential in circadian biology. While many techniques exist for estimating period, comparatively few methods are available for estimating phase. Current approaches to analyzing phase often vary between studies and are sensitive to coincident changes in period and the stage of the circadian cycle at which the stimulus occurs. Here we propose a new technique, tau-independent phase analysis (TIPA), for quantifying phase shifts in multiple types of circadian time-course data. Through comprehensive simulations, we show that TIPA is both more accurate and more precise than the standard actogram approach. TIPA is computationally simple and therefore will enable accurate and reproducible quantification of phase shifts across multiple subfields of chronobiology.

  19. Optical Fibers Would Sense Local Strains

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio O.; Rogowski, Robert S.

    1994-01-01

    Proposed fiber-optic transducers measure local strains. Includes lead-in and lead-out lengths producing no changes in phase shifts, plus short sensing length in which phase shift is sensitive to strain. Phase shifts in single-mode fibers vary with strains. In alternative version, multiple portions of optical fiber sensitive to strains characteristic of specific vibrational mode of object. Same principle also used with two-mode fiber.

  20. Two nucleon systems at m π ~ 450 MeV from lattice QCD

    DOE PAGES

    Orginos, Kostas; Parreño, Assumpta; Savage, Martin J.; ...

    2015-12-23

    Nucleon-nucleon systems are studied with lattice quantum chromodynamics at a pion mass ofmore » $$m_\\pi\\sim 450~{\\rm MeV}$$ in three spatial volumes using $$n_f=2+1$$ flavors of light quarks. At the quark masses employed in this work, the deuteron binding energy is calculated to be $$B_d = 14.4^{+3.2}_{-2.6} ~{\\rm MeV}$$, while the dineutron is bound by $$B_{nn} = 12.5^{+3.0}_{-5.0}~{\\rm MeV}$$. Over the range of energies that are studied, the S-wave scattering phase shifts calculated in the 1S0 and 3S1-3D1 channels are found to be similar to those in nature, and indicate repulsive short-range components of the interactions, consistent with phenomenological nucleon-nucleon interactions. In both channels, the phase shifts are determined at three energies that lie within the radius of convergence of the effective range expansion, allowing for constraints to be placed on the inverse scattering lengths and effective ranges. Thus, the extracted phase shifts allow for matching to nuclear effective field theories, from which low energy counterterms are extracted and issues of convergence are investigated. As part of the analysis, a detailed investigation of the single hadron sector is performed, enabling a precise determination of the violation of the Gell-Mann–Okubo mass relation.« less

  1. Structured Light Based 3d Scanning for Specular Surface by the Combination of Gray Code and Phase Shifting

    NASA Astrophysics Data System (ADS)

    Zhang, Yujia; Yilmaz, Alper

    2016-06-01

    Surface reconstruction using coded structured light is considered one of the most reliable techniques for high-quality 3D scanning. With a calibrated projector-camera stereo system, a light pattern is projected onto the scene and imaged by the camera. Correspondences between projected and recovered patterns are computed in the decoding process, which is used to generate 3D point cloud of the surface. However, the indirect illumination effects on the surface, such as subsurface scattering and interreflections, will raise the difficulties in reconstruction. In this paper, we apply maximum min-SW gray code to reduce the indirect illumination effects of the specular surface. We also analysis the errors when comparing the maximum min-SW gray code and the conventional gray code, which justifies that the maximum min-SW gray code has significant superiority to reduce the indirect illumination effects. To achieve sub-pixel accuracy, we project high frequency sinusoidal patterns onto the scene simultaneously. But for specular surface, the high frequency patterns are susceptible to decoding errors. Incorrect decoding of high frequency patterns will result in a loss of depth resolution. Our method to resolve this problem is combining the low frequency maximum min-SW gray code and the high frequency phase shifting code, which achieves dense 3D reconstruction for specular surface. Our contributions include: (i) A complete setup of the structured light based 3D scanning system; (ii) A novel combination technique of the maximum min-SW gray code and phase shifting code. First, phase shifting decoding with sub-pixel accuracy. Then, the maximum min-SW gray code is used to resolve the ambiguity resolution. According to the experimental results and data analysis, our structured light based 3D scanning system enables high quality dense reconstruction of scenes with a small number of images. Qualitative and quantitative comparisons are performed to extract the advantages of our new combined coding method.

  2. Plasma melatonin circadian rhythms during the menstrual cycle and after light therapy in premenstrual dysphoric disorder and normal control subjects.

    PubMed

    Parry, B L; Berga, S L; Mostofi, N; Klauber, M R; Resnick, A

    1997-02-01

    The aim of this study was to replicate and extend previous work in which the authors observed lower, shorter, and advanced nocturnal melatonin secretion patterns in premenstrually depressed patients compared to those in healthy control women. The authors also sought to test the hypothesis that the therapeutic effect of bright light in patients was associated with corrective effects on the phase, duration, and amplitude of melatonin rhythms. In 21 subjects with premenstrual dysphoric disorder (PMDD) and 11 normal control (NC) subjects, the authors measured the circadian profile of melatonin during follicular and luteal menstrual cycle phases and after 1 week of light therapy administered daily, in a randomized crossover design. During three separate luteal phases, the treatments were either (1) bright (> 2,500 lux) white morning (AM; 06:30 to 08:30 h), (2) bright white evening (PM; 19:00 to 21:00 h), or (3) dim (< 10 lux) red evening light (RED). In PMDD subjects, during the luteal phase compared to the follicular menstrual cycle phase, melatonin onset time was delayed, duration was compressed, and area under the curve, amplitude, and mean levels were decreased. In NC subjects, melatonin rhythms did not change significantly during the menstrual cycle. After AM light in PMDD subjects, onset and offset times were advanced and both duration and midpoint concentration were decreased as compared to RED light. After PM light in PMDD subjects, onset and offset times were delayed, midpoint concentration was increased, and duration was decreased as compared to RED light. By contrast, after light therapy in NC subjects, duration did not change; onset, offset, and midpoint concentration changed as they did in PMDD subjects. When the magnitude of advance and delay phase shifts in onset versus offset time with AM, PM, or RED light were compared, the authors found that in PMDD subjects light shifted offset time more than onset time and that AM light had a greater effect on shifting melatonin offset time (measured the following night in RED light), whereas PM light had a greater effect in shifting melatonin onset time. These findings replicate the authors' previous observation that nocturnal melatonin concentrations are decreased in women with PMDD and suggest specific effects of light therapy on melatonin circadian rhythms that are associated with mood changes in patient versus control groups. The differential changes in onset and offset times during the menstrual cycle, and in response to AM and PM bright light compared with RED light, support a two-oscillator (complex) model of melatonin regulation in humans.

  3. Multimodal pressure-flow method to assess dynamics of cerebral autoregulation in stroke and hypertension

    PubMed Central

    Novak, Vera; Yang, Albert CC; Lepicovsky, Lukas; Goldberger, Ary L; Lipsitz, Lewis A; Peng, Chung-Kang

    2004-01-01

    Background This study evaluated the effects of stroke on regulation of cerebral blood flow in response to fluctuations in systemic blood pressure (BP). The autoregulatory dynamics are difficult to assess because of the nonstationarity and nonlinearity of the component signals. Methods We studied 15 normotensive, 20 hypertensive and 15 minor stroke subjects (48.0 ± 1.3 years). BP and blood flow velocities (BFV) from middle cerebral arteries (MCA) were measured during the Valsalva maneuver (VM) using transcranial Doppler ultrasound. Results A new technique, multimodal pressure-flow analysis (MMPF), was implemented to analyze these short, nonstationary signals. MMPF analysis decomposes complex BP and BFV signals into multiple empirical modes, representing their instantaneous frequency-amplitude modulation. The empirical mode corresponding to the VM BP profile was used to construct the continuous phase diagram and to identify the minimum and maximum values from the residual BP (BPR) and BFV (BFVR) signals. The BP-BFV phase shift was calculated as the difference between the phase corresponding to the BPR and BFVR minimum (maximum) values. BP-BFV phase shifts were significantly different between groups. In the normotensive group, the BFVR minimum and maximum preceded the BPR minimum and maximum, respectively, leading to large positive values of BP-BFV shifts. Conclusion In the stroke and hypertensive groups, the resulting BP-BFV phase shift was significantly smaller compared to the normotensive group. A standard autoregulation index did not differentiate the groups. The MMPF method enables evaluation of autoregulatory dynamics based on instantaneous BP-BFV phase analysis. Regulation of BP-BFV dynamics is altered with hypertension and after stroke, rendering blood flow dependent on blood pressure. PMID:15504235

  4. Achromatic vector vortex beams from a glass cone

    PubMed Central

    Radwell, N.; Hawley, R. D.; Götte, J. B.; Franke-Arnold, S.

    2016-01-01

    The reflection of light is governed by the laws first described by Augustin-Jean Fresnel: on internal reflection, light acquires a phase shift, which depends on its polarization direction with respect to the plane of incidence. For a conical reflector, the cylindrical symmetry is echoed in an angular variation of this phase shift, allowing us to create light modes with phase and polarization singularities. Here we observe the phase and polarization profiles of light that is back reflected from a solid glass cone and, in the case of circular input light, discover that not only does the beam contain orbital angular momentum but can trivially be converted to a radially polarized beam. Importantly, the Fresnel coefficients are reasonably stable across the visible spectrum, which we demonstrate by measuring white light polarization profiles. This discovery provides a highly cost-effective technique for the generation of broadband orbital angular momentum and radially polarized beams. PMID:26861191

  5. Fringe chasing by three-point spatial phase shifting for discrimination of the motion direction in the long-range homodyne laser Doppler vibrometry

    NASA Astrophysics Data System (ADS)

    Daemi, Mohammad Hossein; Rasouli, Saifollah

    2018-07-01

    In this work, a three-point spatial phase shifting (SPS) method is implemented for chasing of the moving interference fringes in the homodyne laser Doppler vibrometry (HoLDV). By the use of SPS method, we remove disability of the HoLDV in the discrimination of the motion direction for long-range displacements. From the phase increments histogram, phase unwrapping tolerance value is selected, and adequacy of the data acquisition rate and required bandwidth limit are determined. Also in this paper, a detailed investigation on the effect of detectors positioning errors and influence of the Gaussian profile of the interfering beams on the measurements are presented. Performance of the method is verified by measuring a given harmonic vibration produced by a loudspeaker. Also, by the proposed method, vibration of mounting system of a disk laser gain medium is characterized.

  6. Cross-phase modulation-induced spectral broadening in silicon waveguides.

    PubMed

    Zhang, Yanbing; Husko, Chad; Lefrancois, Simon; Rey, Isabella H; Krauss, Thomas F; Schröder, Jochen; Eggleton, Benjamin J

    2016-01-11

    We analytically and experimentally investigate cross-phase modulation (XPM) in silicon waveguides. In contrast to the well known result in pure Kerr media, the spectral broadening ratio of XPM to self-phase modulation is not two in the presence of either two-photon absorption (TPA) or free carriers. The physical origin of this change is different for each effect. In the case of TPA, this nonlinear absorption attenuates and slightly modifies the pulse shape due to differential absorption in the pulse peak and wings. When free carriers are present two different mechanisms modify the dynamics. First, free-carrier absorption performs a similar role to TPA, but is additionally asymmetric due to the delayed free-carrier response. Second, free-carrier dispersion induces an asymmetric blue phase shift which competes directly with the symmetric Kerr-induced XPM red shift. We confirm this analysis with pump-probe experiments in a silicon photonic crystal waveguide.

  7. Achromatic vector vortex beams from a glass cone

    NASA Astrophysics Data System (ADS)

    Radwell, N.; Hawley, R. D.; Götte, J. B.; Franke-Arnold, S.

    2016-02-01

    The reflection of light is governed by the laws first described by Augustin-Jean Fresnel: on internal reflection, light acquires a phase shift, which depends on its polarization direction with respect to the plane of incidence. For a conical reflector, the cylindrical symmetry is echoed in an angular variation of this phase shift, allowing us to create light modes with phase and polarization singularities. Here we observe the phase and polarization profiles of light that is back reflected from a solid glass cone and, in the case of circular input light, discover that not only does the beam contain orbital angular momentum but can trivially be converted to a radially polarized beam. Importantly, the Fresnel coefficients are reasonably stable across the visible spectrum, which we demonstrate by measuring white light polarization profiles. This discovery provides a highly cost-effective technique for the generation of broadband orbital angular momentum and radially polarized beams.

  8. Crosstalk Cancellation for a Simultaneous Phase Shifting Interferometer

    NASA Technical Reports Server (NTRS)

    Olczak, Eugene (Inventor)

    2014-01-01

    A method of minimizing fringe print-through in a phase-shifting interferometer, includes the steps of: (a) determining multiple transfer functions of pixels in the phase-shifting interferometer; (b) computing a crosstalk term for each transfer function; and (c) displaying, to a user, a phase-difference map using the crosstalk terms computed in step (b). Determining a transfer function in step (a) includes measuring intensities of a reference beam and a test beam at the pixels, and measuring an optical path difference between the reference beam and the test beam at the pixels. Computing crosstalk terms in step (b) includes computing an N-dimensional vector, where N corresponds to the number of transfer functions, and the N-dimensional vector is obtained by minimizing a variance of a modulation function in phase shifted images.

  9. Regional fringe analysis for improving depth measurement in phase-shifting fringe projection profilometry

    NASA Astrophysics Data System (ADS)

    Chien, Kuang-Che Chang; Tu, Han-Yen; Hsieh, Ching-Huang; Cheng, Chau-Jern; Chang, Chun-Yen

    2018-01-01

    This study proposes a regional fringe analysis (RFA) method to detect the regions of a target object in captured shifted images to improve depth measurement in phase-shifting fringe projection profilometry (PS-FPP). In the RFA method, region-based segmentation is exploited to segment the de-fringed image of a target object, and a multi-level fuzzy-based classification with five presented features is used to analyze and discriminate the regions of an object from the segmented regions, which were associated with explicit fringe information. Then, in the experiment, the performance of the proposed method is tested and evaluated on 26 test cases made of five types of materials. The qualitative and quantitative results demonstrate that the proposed RFA method can effectively detect the desired regions of an object to improve depth measurement in the PS-FPP system.

  10. Canceling the momentum in a phase-shifting algorithm to eliminate spatially uniform errors.

    PubMed

    Hibino, Kenichi; Kim, Yangjin

    2016-08-10

    In phase-shifting interferometry, phase modulation nonlinearity causes both spatially uniform and nonuniform errors in the measured phase. Conventional linear-detuning error-compensating algorithms only eliminate the spatially variable error component. The uniform error is proportional to the inertial momentum of the data-sampling weight of a phase-shifting algorithm. This paper proposes a design approach to cancel the momentum by using characteristic polynomials in the Z-transform space and shows that an arbitrary M-frame algorithm can be modified to a new (M+2)-frame algorithm that acquires new symmetry to eliminate the uniform error.

  11. [INVITED] Nanofabrication of phase-shifted Bragg gratings on the end facet of multimode fiber towards development of optical filters and sensors

    NASA Astrophysics Data System (ADS)

    Gallego, E. E.; Ascorbe, J.; Del Villar, I.; Corres, J. M.; Matias, I. R.

    2018-05-01

    This work describes the process of nanofabrication of phase-shifted Bragg gratings on the end facet of a multimode optical fiber with a pulsed DC sputtering system based on a single target. Several structures have been explored as a function of parameters such as the number of layers or the phase-shift. The experimental results, corroborated with simulations based on plane-wave propagation in a stack of homogeneous layers, indicate that the phase-shift can be controlled with a high degree of accuracy. The device could be used both in communications, as a filter, or in the sensors domain. As an example of application, a humidity sensor with wavelength shifts of 12 nm in the range of 30 to 90% relative humidity (200 pm/% relative humidity) is presented.

  12. Carrier-envelope phase control using linear electro-optic effect.

    PubMed

    Gobert, O; Paul, P M; Hergott, J F; Tcherbakoff, O; Lepetit, F; 'Oliveira, P D; Viala, F; Comte, M

    2011-03-14

    We present a new method to control the Carrier-Envelope Phase of ultra-short laser pulses by using the linear Electro-Optic Effect. Experimental demonstration is carried out on a Chirped Pulse Amplification based laser. Phase shifts greater than π radian can be obtained by applying moderate voltage on a LiNbO3 crystal with practically no changes to all other parameters of the pulse with the exception of its group delay. Time response of the Electro-Optic effect makes possible shaping at a high repetition rate or stabilization of the CEP of ultra short CPA laser systems.

  13. Method, memory media and apparatus for detection of grid disconnect

    DOEpatents

    Ye, Zhihong [Clifton Park, NY; Du, Pengwei [Troy, NY

    2008-09-23

    A phase shift procedure for detecting a disconnect of a power grid from a feeder that is connected to a load and a distributed generator. The phase shift procedure compares a current phase shift of the output voltage of the distributed generator with a predetermined threshold and if greater, a command is issued for a disconnect of the distributed generator from the feeder. To extend the range of detection, the phase shift procedure is used when a power mismatch between the distributed generator and the load exceeds a threshold and either or both of an under/over frequency procedure and an under/over voltage procedure is used when any power mismatch does not exceed the threshold.

  14. Swept-source based, single-shot, multi-detectable velocity range Doppler optical coherence tomography

    PubMed Central

    Meemon, Panomsak; Rolland, Jannick P.

    2010-01-01

    Phase-Resolved Doppler Optical Coherence Tomography (PR-DOCT) allows visualization and characterization of the location, direction, velocity, and profile of flow activity embedded in a static sample structure. The detectable Velocity Dynamic Range (VDR) of each particular PR-DOCT system is governed by a detectable Doppler phase shift, a flow angle, and an acquisition time interval used to determine the Doppler phase shift. In general, the lower boundary of the detectable Doppler phase shift is limited by the phase stability of the system, while the upper boundary is limited by the π phase ambiguity. For a given range of detectable Doppler phase shift, shortening the acquisition duration will increase not only the maximum detectable velocity but unfortunately also the minimum detectable velocity, which may lead to the invisibility of a slow flow. In this paper, we present an alternative acquisition scheme for PR-DOCT that extends the lower limit of the velocity dynamic range, while maintaining the maximum detectable velocity, hence increasing the overall VDR of PR-DOCT system. The essence of the approach is to implement a technique of multi-scale measurement to simultaneously acquire multiple VDRs in a single measurement. We demonstrate an example of implementation of the technique in a dual VDR DOCT, where two Doppler maps having different detectable VDRs were simultaneously detected, processed, and displayed in real time. One was a fixed VDR DOCT capable of measuring axial velocity of up to 10.9 mm/s without phase unwrapping. The other was a variable VDR DOCT capable of adjusting its detectable VDR to reveal slow flow information down to 11.3 μm/s. The technique is shown to effectively extend the overall detectable VDR of the PR-DOCT system. Examples of real time Doppler imaging of an African frog tadpole are demonstrated using the dual-VDR DOCT system. PMID:21258521

  15. Experimental evaluation of a new form of M-ary (M = 8) phase shift keying including design of the transmitter and receiver

    NASA Astrophysics Data System (ADS)

    Thompson, G. E.

    1984-12-01

    For transmitting digital information over bandpass channels, M-ary Phase Shift Keying 8(PSK) schemes are used to conserve bandwidth at the expense of signal power. A block of k bits is used to change the phase of the carrier. These k bits represent M possible phase shifts since M = 2. Common forms of M-ary PSK use equally spaced phase angles. For example, if M = 8 and k=3, 8-ary PSK uses eight phase angles spaced 45 degrees apart. This thesis considers a hybrid form of PSK when M = 8 and k = 3. Each of eight blocks of data with three bits per block are represented by different phase shifts of the carrier. The phase angles are chosen to give an equal distance between states (symbols) when projected onto the sine axis and the cosine axis of a phasor diagram. Thus, when the three bits are recovered, using two coherent phase detectors, the separation of the decision regions (voltage levels) are equal.

  16. Rules for Phase Shifts of Quantum Oscillations in Topological Nodal-Line Semimetals

    NASA Astrophysics Data System (ADS)

    Li, Cequn; Wang, C. M.; Wan, Bo; Wan, Xiangang; Lu, Hai-Zhou; Xie, X. C.

    2018-04-01

    Nodal-line semimetals are topological semimetals in which band touchings form nodal lines or rings. Around a loop that encloses a nodal line, an electron can accumulate a nontrivial π Berry phase, so the phase shift in the Shubnikov-de Haas (SdH) oscillation may give a transport signature for the nodal-line semimetals. However, different experiments have reported contradictory phase shifts, in particular, in the WHM nodal-line semimetals (W =Zr /Hf , H =Si /Ge , M =S /Se /Te ). For a generic model of nodal-line semimetals, we present a systematic calculation for the SdH oscillation of resistivity under a magnetic field normal to the nodal-line plane. From the analytical result of the resistivity, we extract general rules to determine the phase shifts for arbitrary cases and apply them to ZrSiS and Cu3 PdN systems. Depending on the magnetic field directions, carrier types, and cross sections of the Fermi surface, the phase shift shows rich results, quite different from those for normal electrons and Weyl fermions. Our results may help explore transport signatures of topological nodal-line semimetals and can be generalized to other topological phases of matter.

  17. Fast-scale non-linear distortion analysis of peak-current-controlled buck-boost inverters

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Dong, Shuai; Yi, Chuanzhi; Guan, Weimin

    2018-02-01

    This paper deals with fast-scale non-linear distortion behaviours including asymmetrical period-doubling bifurcation and zero-crossing distortion in peak-current-controlled buck-boost inverters. The underlying mechanisms of the fast-scale non-linear distortion behaviours in inverters are revealed. The folded bifurcation diagram is presented to analyse the asymmetrical phenomenon of fast-scale period-doubling bifurcation. In view of the effect of phase shift and current ripple, the analytical expressions for one pair of critical phase angles are derived by using the design-oriented geometrical current approach. It is shown that the phase shift between inductor current and capacitor voltage should be responsible for the zero-crossing distortion phenomenon. These results obtained here are useful to optimise the circuit design and improve the circuit performance.

  18. Rapid resetting of human peripheral clocks by phototherapy during simulated night shift work.

    PubMed

    Cuesta, Marc; Boudreau, Philippe; Cermakian, Nicolas; Boivin, Diane B

    2017-11-24

    A majority of night shift workers have their circadian rhythms misaligned to their atypical schedule. While bright light exposure at night is known to reset the human central circadian clock, the behavior of peripheral clocks under conditions of shift work is more elusive. The aim of the present study was to quantify the resetting effects of bright light exposure on both central (plasma cortisol and melatonin) and peripheral clocks markers (clock gene expression in peripheral blood mononuclear cells, PBMCs) in subjects living at night. Eighteen healthy subjects were enrolled to either a control (dim light) or a bright light group. Blood was sampled at baseline and on the 4 th day of simulated night shift. In response to a night-oriented schedule, the phase of PER1 and BMAL1 rhythms in PBMCs was delayed by ~2.5-3 h (P < 0.05), while no shift was observed for the other clock genes and the central markers. Three cycles of 8-h bright light induced significant phase delays (P < 0.05) of ~7-9 h for central and peripheral markers, except BMAL1 (advanced by +5h29; P < 0.05). Here, we demonstrate in humans a lack of peripheral clock adaptation under a night-oriented schedule and a rapid resetting effect of nocturnal bright light exposure on peripheral clocks.

  19. A Rodent Model of Night-Shift Work Induces Short-Term and Enduring Sleep and Electroencephalographic Disturbances.

    PubMed

    Grønli, Janne; Meerlo, Peter; Pedersen, Torhild T; Pallesen, Ståle; Skrede, Silje; Marti, Andrea R; Wisor, Jonathan P; Murison, Robert; Henriksen, Tone E G; Rempe, Michael J; Mrdalj, Jelena

    2017-02-01

    Millions of people worldwide are working at times that overlap with the normal time for sleep. Sleep problems related to the work schedule may mediate the well-established relationship between shift work and increased risk for disease, occupational errors and accidents. Yet, our understanding of causality and the underlying mechanisms that explain this relationship is limited. We aimed to assess the consequences of night-shift work for sleep and to examine whether night-shift work-induced sleep disturbances may yield electrophysiological markers of impaired maintenance of the waking brain state. An experimental model developed in rats simulated a 4-day protocol of night-work in humans. Two groups of rats underwent 8-h sessions of enforced ambulation, either at the circadian time when the animal was physiologically primed for wakefulness (active-workers, mimicking day-shift) or for sleep (rest-workers, mimicking night-shift). The 4-day rest-work schedule induced a pronounced redistribution of sleep to the endogenous active phase. Rest-work also led to higher electroencephalogram (EEG) slow-wave (1-4 Hz) energy in quiet wakefulness during work-sessions, suggesting a degraded waking state. After the daily work-sessions, being in their endogenous active phase, rest-workers slept less and had higher gamma (80-90 Hz) activity during wake than active-workers. Finally, rest-work induced an enduring shift in the main sleep period and attenuated the accumulation of slow-wave energy during NREM sleep. A comparison of recovery data from 12:12 LD and constant dark conditions suggests that reduced time in NREM sleep throughout the recorded 7-day recovery phase induced by rest-work may be modulated by circadian factors. Our data in rats show that enforced night-work-like activity during the normal resting phase has pronounced acute and persistent effects on sleep and waking behavior. The study also underscores the potential importance of animal models for future studies on the health consequences of night-shift work and the mechanisms underlying increased risk for diseases.

  20. Ultra-wideband microwave photonic phase shifter with a 360° tunable phase shift based on an erbium-ytterbium co-doped linearly chirped FBG.

    PubMed

    Liu, Weilin; Yao, Jianping

    2014-02-15

    A simple photonic approach to implementing an ultra-wideband microwave phase shifter based on an erbium-ytterbium (Er/Yb) co-doped linearly chirped fiber Bragg grating (LCFBG) is proposed and experimentally demonstrated. The LCFBG is designed to have a constant magnitude response over a reflection band, and a phase response that is linear and nonlinear in two sections in the reflection band. When an optical single-sideband with carrier (OSSB+C) signal is sent to the LCFBG, by locating the optical carrier at the section corresponding to the nonlinear phase response and the sideband at the section corresponding to the linear phase response, a phase shift is introduced to the optical carrier, which is then translated to the microwave signal by beating the optical carrier and the sideband at a photodetector. The tuning of the phase shift is realized by optically pumping the Er/Yb co-doped LCFBG by a 980-nm laser diode. The proposed ultra-wideband microwave photonic phase shifter is experimentally demonstrated. A phase shifter with a full 360° phase shift with a bandwidth from 10 to 40 GHz is experimentally demonstrated.

  1. Simultaneous phase-shifting interferometry study based on the common-path Fizeau interferometer

    NASA Astrophysics Data System (ADS)

    Liu, Feng-wei; Wu, Yong-qian

    2014-09-01

    A simultaneous phase-shifting interferometry(SPSI) based on the common-path Fizeau interferometer has been discussed.In this system,two orthogonal polarized beams, using as the reference beam and test beam ,are detached by a particular Wollaston prism at a very small angle,then four equal sub-beams are achieved by a combination of three non-polarizing beam splitters(NPBS),and the phase shifts are introduced by four polarizers whose polarization azimuths are 0°, 45°, 90°, 135° with the horizontal direction respectively,the four phase shift interferograms are collected simultaneously by controlling the CCDs working at the same time .The SPSI principle is studied at first,then is the error analysis, finally we emulate the process of surface recovery by four steps phase shifts algorithm,the results indicate that, to ensure the feasibility of the SPSI system, we have to control the polarization azimuth error of the polarizer in +/- 0.5°.

  2. Shifts of Gamma Phase across Primary Visual Cortical Sites Reflect Dynamic Stimulus-Modulated Information Transfer.

    PubMed

    Besserve, Michel; Lowe, Scott C; Logothetis, Nikos K; Schölkopf, Bernhard; Panzeri, Stefano

    2015-01-01

    Distributed neural processing likely entails the capability of networks to reconfigure dynamically the directionality and strength of their functional connections. Yet, the neural mechanisms that may allow such dynamic routing of the information flow are not yet fully understood. We investigated the role of gamma band (50-80 Hz) oscillations in transient modulations of communication among neural populations by using measures of direction-specific causal information transfer. We found that the local phase of gamma-band rhythmic activity exerted a stimulus-modulated and spatially-asymmetric directed effect on the firing rate of spatially separated populations within the primary visual cortex. The relationships between gamma phases at different sites (phase shifts) could be described as a stimulus-modulated gamma-band wave propagating along the spatial directions with the largest information transfer. We observed transient stimulus-related changes in the spatial configuration of phases (compatible with changes in direction of gamma wave propagation) accompanied by a relative increase of the amount of information flowing along the instantaneous direction of the gamma wave. These effects were specific to the gamma-band and suggest that the time-varying relationships between gamma phases at different locations mark, and possibly causally mediate, the dynamic reconfiguration of functional connections.

  3. Shifts of Gamma Phase across Primary Visual Cortical Sites Reflect Dynamic Stimulus-Modulated Information Transfer

    PubMed Central

    Besserve, Michel; Lowe, Scott C.; Logothetis, Nikos K.; Schölkopf, Bernhard; Panzeri, Stefano

    2015-01-01

    Distributed neural processing likely entails the capability of networks to reconfigure dynamically the directionality and strength of their functional connections. Yet, the neural mechanisms that may allow such dynamic routing of the information flow are not yet fully understood. We investigated the role of gamma band (50–80 Hz) oscillations in transient modulations of communication among neural populations by using measures of direction-specific causal information transfer. We found that the local phase of gamma-band rhythmic activity exerted a stimulus-modulated and spatially-asymmetric directed effect on the firing rate of spatially separated populations within the primary visual cortex. The relationships between gamma phases at different sites (phase shifts) could be described as a stimulus-modulated gamma-band wave propagating along the spatial directions with the largest information transfer. We observed transient stimulus-related changes in the spatial configuration of phases (compatible with changes in direction of gamma wave propagation) accompanied by a relative increase of the amount of information flowing along the instantaneous direction of the gamma wave. These effects were specific to the gamma-band and suggest that the time-varying relationships between gamma phases at different locations mark, and possibly causally mediate, the dynamic reconfiguration of functional connections. PMID:26394205

  4. An analysis of clock-shift experiments: is scatter increased and deflection reduced in clock-shifted homing pigeons?

    PubMed

    Chappell

    1997-01-01

    Clock-shifting (altering the phase of the internal clock) in homing pigeons leads to a deflection in the vanishing bearing of the clock-shifted group relative to controls. However, two unexplained phenomena are common in clock-shift experiments: the vanishing bearings of the clock-shifted group are often more scattered (with a shorter vector length) than those of the control group, and the deflection of the mean bearing of the clock-shifted group from that of the controls is often smaller than expected theoretically. Here, an analysis of 55 clock-shift experiments performed in four countries over 21 years is reported. The bearings of the clock-shifted groups were significantly more scattered than those of controls and less deflected than expected, but these effects were not significantly different at familiar and unfamiliar sites. The possible causes of the effects are discussed and evaluated with reference to this analysis and other experiments. The most likely causes appear to be conflict between the directions indicated by the sun compass and either unshifted familiar visual landmarks (at familiar sites only) or the unshifted magnetic compass (possible at both familiar and unfamiliar sites).

  5. The characteristics of grating structure in magnetic field measurements based on polarization properties of fiber gratings

    NASA Astrophysics Data System (ADS)

    Su, Yang; Peng, Hui; Feng, Kui; Li, Yu-quan

    2009-11-01

    In this paper the characteristics of grating structure in magnetic field measurements based on differential group delay of fiber gratings are analyzed. Theoretical simulations are realized using the coupled-mode theory and transfer matrix method. The effects of grating parameters of uniform Bragg grating on measurement range and sensitivity are analyzed. The impacts of chirped, phase-shifted and apodized gratings on DGD peak values are also monitored. FBG transmitted spectrums and DGD spectrums are recorded by means of an optical vector analyzer (OVA). Both the simulations and experiments demonstrate that the phase-shifted gratings can obviously improve the sensitivity.

  6. Development of Michelson interferometer based spatial phase-shift digital shearography

    NASA Astrophysics Data System (ADS)

    Xie, Xin

    Digital shearography is a non-contact, full field, optical measurement method, which has the capability of directly measuring the gradient of deformation. For high measurement sensitivity, phase evaluation method has to be introduced into digital shearography by phase-shift technique. Catalog by phase-shift method, digital phase-shift shearography can be divided into Temporal Phase-Shift Digital Shearography (TPS-DS) and Spatial Phase-Shift Digital Shearography (SPS-DS). TPS-DS is the most widely used phase-shift shearography system, due to its simple algorithm, easy operation and good phase-map quality. However, the application of TPS-DS is only limited in static/step-by-step loading measurement situation, due to its multi-step shifting process. In order to measure the strain under dynamic/continuous loading situation, a SPS-DS system has to be developed. This dissertation aims to develop a series of Michelson Interferometer based SPS-DS measurement methods to achieve the strain measurement by using only a single pair of speckle pattern images. The Michelson Interferometer based SPS-DS systems utilize special designed optical setup to introduce extra carrier frequency into the laser wavefront. The phase information corresponds to the strain field can be separated on the Fourier domain using a Fourier Transform and can further be evaluated with a Windowed Inverse Fourier Transform. With different optical setups and carrier frequency arrangements, the Michelson Interferometer based SPS-DS method is capable to achieve a variety of measurement tasks using only single pair of speckle pattern images. Catalog by the aimed measurand, these capable measurement tasks can be divided into five categories: 1) measurement of out-of-plane strain field with small shearing amount; 2) measurement of relative out-of-plane deformation field with big shearing amount; 3) simultaneous measurement of relative out-of-plane deformation field and deformation gradient field by using multiple carrier frequencies; 4) simultaneous measurement of two directional strain field using dual measurement channels 5) measurement of pure in-plane strain and pure out-of-plane strain with multiple carrier frequencies. The basic theory, optical path analysis, preliminary studies, results analysis and research plan are shown in detail in this dissertation.

  7. Changes in the diurnal rhythms of cortisol, melatonin, and testosterone after 2, 4, and 7 consecutive night shifts in male police officers.

    PubMed

    Jensen, Marie Aarrebo; Hansen, Åse Marie; Kristiansen, Jesper; Nabe-Nielsen, Kirsten; Garde, Anne Helene

    2016-08-11

    Night work is associated with a large range of acute health problems and possibly also health consequences in the long run. Yet, only very few field studies specifically investigate the effects of consecutive night shift on key physiological regulatory systems. In this field study, we investigated the effects of consecutive night shifts on three hormones, melatonin, cortisol, and testosterone, among police officers at work. More specifically, the aim was to investigate how the diurnal rhythms of melatonin, cortisol, and testosterone responded to two, four, and seven consecutive night shifts and a corresponding number of days for recovery. The study was part of the "In the Middle of the Night" project and included 73 male police officers from five different police districts. The participants were exposed to three intervention conditions: "2+2": two consecutive night shifts followed by two consecutive day recovery days; "4+4": four consecutive night shifts followed by four consecutive recovery days; "7+7": seven consecutive night shifts followed by seven consecutive recovery days. On the last day with night shift and the last recovery day in each intervention, the participants collected saliva samples every 4th hour when awake. The diurnal rhythms of melatonin, cortisol, and testosterone were all affected differently by an increasing number of consecutive night shifts: the amplitude of the melatonin rhythm was suppressed by 4.9% per day (95% CI 1.4-8.2% per day; p = 0.006). The diurnal rhythm of cortisol phase was delayed with an increasing number of night shifts by 33 min/day (95% CI 18-48 min per day; p ≤ 0.001), but did not show any changes in amplitude. For the diurnal rhythm of testosterone, there was no effect of the number of consecutive night shifts and the diurnal rhythm completely followed the sleep/wake cycle. We found that there were no differences in the rhythms of melatonin, cortisol, and testosterone after 2, 4, and 7 recovery days, respectively. In conclusion, we found signs of desynchronization in terms of suppressed amplitude of melatonin and phase delay of salivary cortisol as a consequence of the increasing number of consecutive night shifts among police officers at work. Lack of synchronization has been suggested as a possible mechanism linking night work to disease, but this remains to be determined.

  8. Broadband and high efficiency all-dielectric metasurfaces for wavefront steering with easily obtained phase shift

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Deng, Yan

    2017-12-01

    All-dielectric metasurfaces for wavefront deflecting and optical vortex generating with broadband and high efficiency are demonstrated. The unit cell of the metasurfaces is optimized to function as a half wave-plate with high polarization conversion efficiency (94%) and transmittance (94.5%) at the telecommunication wavelength. Under such a condition, we can get rid of the complicated parameter sweep process for phase shift selecting. Hence, a phase coverage ranges from 0 to 2 π can be easily obtained by introducing the Pancharatnam-Berry phase. Metasurfaces composed of the two pre-designed super cells are demonstrated for optical beam deflecting and vortex beam generating. It is found that the metasurfaces with more phase shift sampling points (small phase shift increment) exhibit better performance. Moreover, optical vortex beams can be generated by the designed metasurfaces within a wavelength range of 200 nm. These results will provide a viable route for designing broadband and high efficiency devices related to phase modulation.

  9. Magnetic susceptibility as a direct measure of oxidation state in LiFePO4 batteries and cyclic water gas shift reactors.

    PubMed

    Kadyk, Thomas; Eikerling, Michael

    2015-08-14

    The possibility of correlating the magnetic susceptibility to the oxidation state of the porous active mass in a chemical or electrochemical reactor was analyzed. The magnetic permeability was calculated using a hierarchical model of the reactor. This model was applied to two practical examples: LiFePO4 batteries, in which the oxidation state corresponds with the state-of-charge, and cyclic water gas shift reactors, in which the oxidation state corresponds to the depletion of the catalyst. In LiFePO4 batteries phase separation of the lithiated and delithiated phases in the LiFePO4 particles in the positive electrode gives rise to a hysteresis effect, i.e. the magnetic permeability depends on the history of the electrode. During fast charge or discharge, non-uniform lithium distributionin the electrode decreases the hysteresis effect. However, the overall sensitivity of the magnetic response to the state-of-charge lies in the range of 0.03%, which makes practical measurement challenging. In cyclic water gas shift reactors, the sensitivity is 4 orders of magnitude higher and without phase separation, no hysteresis occurs. This shows that the method is suitable for such reactors, in which large changes of the magnetic permeability of the active material occurs.

  10. Acute exposure to 2G phase shifts the rat circadian timing system

    NASA Technical Reports Server (NTRS)

    Hoban-Higgins, T. M.; Murakami, D. M.; Tandon, T.; Fuller, C. A.

    1995-01-01

    The circadian timing system (CTS) provides internal and external temporal coordination of an animal's physiology and behavior. In mammals, the generation and coordination of these circadian rhythms is controlled by a neural pacemaker, the suprachiasmatic nucleus (SCN), located within the hypothalamus. The pacemaker is synchronized to the 24 hour day by time cures (zeitgebers) such as the light/dark cycle. When an animal is exposed to an environment without time cues, the circadian rhythms maintain internal temporal coordination, but exhibit a 'free-running' condition in which the period length is determined by the internal pacemaker. Maintenance of internal and external temporal coordination are critical for normal physiological and psychological function in human and non-human primates. Exposure to altered gravitational environments has been shown to affect the amplitude, mean, and timing of circadian rhythms in species ranging from unicellular organisms to man. However, it has not been determined whether altered gravitational fields have a direct effect on the neural pacemaker, or affect peripheral parameters. In previous studies, the ability of a stimulus to phase shift circadian rhythms was used to determine whether a stimulus has a direct effect on the neural pacemaker. The present experiment was performed in order to determine whether acute exposure to a hyperdynamic field could phase shift circadian rhythms.

  11. Stratospheric Sudden Warming Effects on the Ionospheric Migrating Tides during 2008-2010 observed by FORMOSAT-3/COSMIC

    NASA Astrophysics Data System (ADS)

    Lin, J.; Lin, C.; Chang, L. C.; Liu, H.; Chen, W.; Chen, C.; Liu, J. G.

    2013-12-01

    In this paper, ionospheric electron densities obtained from radio occultation soundings of FORMOSAT-3/COSMIC are decomposed into their various constituent tidal components for studying the stratospheric sudden warming (SSW) effects on the ionosphere during 2008-2010. The tidal analysis indicates that the amplitudes of the zonal mean and major migrating tidal components (DW1, SW2 and TW3) decrease around the time of the SSW, with phase/time shifts in the daily time of maximum around EIA and middle latitudes. Meanwhile consistent enhancements of the SW2 and nonmigrating SW1 tides are seen after the stratospheric temperature increase. In addition to the amplitude changes of the tidal components, well matched phase shifts of the ionospheric migrating tides and the stratospheric temperatures are found for the three SSW events, suggesting a good indicator of the ionospheric response. Although the conditions of the planetary waves and the mean winds in the middle atmosphere region during the 2008-2010 SSW events may be different, similar variations of the ionospheric tidal components and their associated phase shifts are found. Futher, these ionospheric responses will be compared with realistic simulations of Thermosphere-Ionosphere-Mesophere-Electrodynamics General Circulation Model (TIME-GCM) by nudging Modern-Era Retrospective analysis for Research and Applications (MERRA) data.

  12. "That was a good shift".

    PubMed

    Johnson, Anya; Nguyen, Helena; Parker, Sharon K; Groth, Markus; Coote, Steven; Perry, Lin; Way, Bruce

    2017-06-19

    Purpose The purpose of this paper is to investigate a boundary spanning, interprofessional collaboration between advanced practice nurses (APNs) and junior doctors to support junior doctors' learning and improve patient management during the overtime shift. Design/methodology/approach A mixed methods evaluation of an intervention in an adult tertiary referral hospital, to enhance interprofessional collaboration on overtime shifts. Phase 1 compared tasks and ward rounds on 86 intervention shifts with 106 "regular" shifts, and examined the effect on junior doctor patient management testing a model using regression techniques. Phase 2 explored the experience of the intervention for stakeholders. 91 junior doctors participated (89 percent response rate) on 192 overtime shifts. Junior doctors, APNs and senior medical professionals/administrators participated in interviews. Findings The intervention was associated with an increase in self-initiated ward rounds by junior doctors, partially explained by junior doctors completing fewer tasks skilled nurses could also complete. The intervention significantly reduced doctors' engagement in tasks carried over from day shifts as well as first year (but not more experienced) junior doctors' total tasks. Interviews suggested the initiative reduced junior doctors' work pressure and promoted a safe team climate, situation awareness, skills, confidence, and well-being. Originality/value Junior doctors overtime shifts (5 p.m. to 11 p.m.) are important, both for hospitals to maintain patient care after hours and for junior doctors to learn and develop independent clinical decision making skills. However, junior doctors frequently report finding overtime shifts challenging and stressful. Redesigning overtime shifts to facilitate interprofessional collaboration can improve patient management and junior doctors' learning and well-being.

  13. The Study of Phase-shift Super-Frequency Induction Heating Power Supply

    NASA Astrophysics Data System (ADS)

    Qi, Hairun; Peng, Yonglong; Li, Yabin

    This paper combines pulse-width phase-shift power modulation with fixed-angle phase-locked-control to adjust the inverter's output power, this method not only meets the work conditions of voltage inverter, but also realizes the large-scale of power modulation, and the main circuit is simple, the switching devices realize soft switching. This paper analyzes the relationship between the output power and phase-shift angle, the control strategy is simulated by Matlab/Simulink, and the results show that the method is feasible and meets the theoretical analysis

  14. FIBER AND INTEGRATED OPTICS: Nonlinearity of a channel-waveguide phase modulator

    NASA Astrophysics Data System (ADS)

    Parygin, V. N.; Zhmakin, I. N.; Baglikov, V. B.

    1993-09-01

    The phase velocity of light in a channel waveguide using a LiNbO3 crystal is analyzed as a function of the voltage applied to the crystal. A refinement of the method of an effective refractive index is proposed. This refinement makes it possible to use the method near the cutoff for a waveguide mode. At voltages on the order of 10 V, the nonlinearity of the phase characteristic amounts to ~ 5 · 10- 4 of the linear phase shift.

  15. Motion-induced error reduction by combining Fourier transform profilometry with phase-shifting profilometry.

    PubMed

    Li, Beiwen; Liu, Ziping; Zhang, Song

    2016-10-03

    We propose a hybrid computational framework to reduce motion-induced measurement error by combining the Fourier transform profilometry (FTP) and phase-shifting profilometry (PSP). The proposed method is composed of three major steps: Step 1 is to extract continuous relative phase maps for each isolated object with single-shot FTP method and spatial phase unwrapping; Step 2 is to obtain an absolute phase map of the entire scene using PSP method, albeit motion-induced errors exist on the extracted absolute phase map; and Step 3 is to shift the continuous relative phase maps from Step 1 to generate final absolute phase maps for each isolated object by referring to the absolute phase map with error from Step 2. Experiments demonstrate the success of the proposed computational framework for measuring multiple isolated rapidly moving objects.

  16. Ab initio calculation of the electronic absorption spectrum of liquid water

    NASA Astrophysics Data System (ADS)

    Martiniano, Hugo F. M. C.; Galamba, Nuno; Cabral, Benedito J. Costa

    2014-04-01

    The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O-H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.

  17. The timing of the human circadian clock is accurately represented by the core body temperature rhythm following phase shifts to a three-cycle light stimulus near the critical zone

    NASA Technical Reports Server (NTRS)

    Jewett, M. E.; Duffy, J. F.; Czeisler, C. A.

    2000-01-01

    A double-stimulus experiment was conducted to evaluate the phase of the underlying circadian clock following light-induced phase shifts of the human circadian system. Circadian phase was assayed by constant routine from the rhythm in core body temperature before and after a three-cycle bright-light stimulus applied near the estimated minimum of the core body temperature rhythm. An identical, consecutive three-cycle light stimulus was then applied, and phase was reassessed. Phase shifts to these consecutive stimuli were no different from those obtained in a previous study following light stimuli applied under steady-state conditions over a range of circadian phases similar to those at which the consecutive stimuli were applied. These data suggest that circadian phase shifts of the core body temperature rhythm in response to a three-cycle stimulus occur within 24 h following the end of the 3-day light stimulus and that this poststimulus temperature rhythm accurately reflects the timing of the underlying circadian clock.

  18. Dynamical manifestation of an evolving Berry phase as a frequency shift of the resonance transition between two eigenstates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toriyama, Koichi; Oguchi, Akihide; Morinaga, Atsuo

    2011-12-15

    We investigate the phenomenon that a Berry phase evolving linearly in time induces a frequency shift of the resonance transition between two eigenstates, regardless of whether or not they are superposed. Using the magnetic-field-insensitive two-photon microwave--radio-frequency transition, which is free of any other dynamical frequency shift, we demonstrate that the frequency shift caused by a uniform rotation of the magnetic field corresponds to the derivative of the Berry phase with respect to time and depends on the direction of rotation of the magnetic field.

  19. Effect of Cr-N codoping on structural phase transition, Raman modes, and optical properties of TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Hassnain Jaffari, G.; Tahir, Adnan; Ali, Naveed Zafar; Ali, Awais; Qurashi, Umar S.

    2018-04-01

    Noncompensated cation-anion codoping in TiO2 nanoparticles has been achieved by a chemical synthesis route. Significant reduction in the optical bandgap and enhancement in the absorption of visible light have been observed. Structural phase transformation has been tracked in detail as a function of doping and heat treatment temperature. Anatase to rutile phase transition temperature for doped samples was higher in comparison to the pure TiO2 nanoparticles. Nitrogen and chromium addition increases the phase transformation barrier, where the effect of the former dopant is of more significance. The Raman results showed an increase in the oxygen content with higher post annealing temperatures. With Cr incorporation, the peak associated with the Eg mode has been found to shift towards a higher wave number, while with nitrogen incorporation, the shift was towards a lower wave number. A decrease in reflectance with N co-doping for all samples, irrespective of phase and annealing temperatures, has been observed. In compositions with nitrogen of the same content, bandgap reduction was higher in the rutile phase in comparison to the anatase phase. In general, overall results revealed that with a higher loading fraction of ammonia, the N content increases, while Cr addition prevents nitrogen loss even up to high post annealing temperatures, i.e., 850 °C.

  20. Application of ANFIS to Phase Estimation for Multiple Phase Shift Keying

    NASA Technical Reports Server (NTRS)

    Drake, Jeffrey T.; Prasad, Nadipuram R.

    2000-01-01

    The paper discusses a novel use of Adaptive Neuro-Fuzzy Inference Systems (ANFIS) for estimating phase in Multiple Phase Shift Keying (M-PSK) modulation. A brief overview of communications phase estimation is provided. The modeling of both general open-loop, and closed-loop phase estimation schemes for M-PSK symbols with unknown structure are discussed. Preliminary performance results from simulation of the above schemes are presented.

  1. Q-band 4-state phase shifter in planar technology: Circuit design and performance analysis.

    PubMed

    Villa, E; Cagigas, J; Aja, B; de la Fuente, L; Artal, E

    2016-09-01

    A 30% bandwidth phase shifter with four phase states is designed to be integrated in a radio astronomy receiver. The circuit has two 90° out-of-phase microwave phase-shifting branches which are combined by Wilkinson power dividers. Each branch is composed of a 180° phase shifter and a band-pass filter. The 180° phase shifter is made of cascaded hybrid rings with microwave PIN diodes as switching devices. The 90° phase shift is achieved with the two band-pass filters. Experimental characterization has shown significant results, with average phase shift values of -90.7°, -181.7°, and 88.5° within the operation band, 35-47 GHz, and mean insertion loss of 7.4 dB. The performance of its integration in a polarimetric receiver for radio astronomy is analyzed, which validates the use of the presented phase shifter in such type of receiver.

  2. Dual-Gated Active Metasurface at 1550 nm with Wide (>300°) Phase Tunability.

    PubMed

    Kafaie Shirmanesh, Ghazaleh; Sokhoyan, Ruzan; Pala, Ragip A; Atwater, Harry A

    2018-05-09

    Active metasurfaces composed of electrically reconfigurable nanoscale subwavelength antenna arrays can enable real-time control of scattered light amplitude and phase. Achievement of widely tunable phase and amplitude in chip-based active metasurfaces operating at or near 1550 nm wavelength has considerable potential for active beam steering, dynamic hologram rendition, and realization of flat optics with reconfigurable focal lengths. Previously, electrically tunable conducting oxide-based reflectarray metasurfaces have demonstrated dynamic phase control of reflected light with a maximum phase shift of 184° ( Nano Lett. 2016 , 16 , 5319 ). Here, we introduce a dual-gated reflectarray metasurface architecture that enables much wider (>300°) phase tunability. We explore light-matter interactions with dual-gated metasurface elements that incorporate two independent voltage-controlled MOS field effect channels connected in series to form a single metasurface element that enables wider phase tunability. Using indium tin oxide (ITO) as the active metasurface material and a composite hafnia/alumina gate dielectric, we demonstrate a prototype dual-gated metasurface with a continuous phase shift from 0 to 303° and a relative reflectance modulation of 89% under applied voltage bias of 6.5 V.

  3. Shifting the Phase Boundary with Electric Fields to Jump In and Out of the Phase Diagram at Constant Temperature

    NASA Astrophysics Data System (ADS)

    Roth, Connie B.; Kriisa, Annika

    Understanding the phase behavior of polymer blends and block copolymers under the presence of electric fields is important for advanced applications containing electrodes such as organic photovoltaics and batteries, as well as for field-directed assembly and alignment of domains. We have recently demonstrated that electric fields enhance the miscibility of polystyrene (PS) / poly(vinyl methyl ether blends) (PVME) blends, shifting the phase separation temperature Ts(E) up by 13.5 +/- 1.4 K for electric field strengths of E = 1.7 MV/m. Experimentally this effect is much larger than the traditional predictions from adding the standard electrostatic energy term for mixtures to the free energy of mixing. However, accounting for the energy penalty of dielectric interfaces between domains created during phase separation, the primary factor that drives alignment of domains, may also be responsible for the change in miscibility. Here we investigate the dynamics of repeatedly jumping the system from the one-phase to the two-phase region and demonstrate that this can be done at a constant temperature simply by turning the electric field on and off, illustrating electric-field-induced remixing in the two-phase region.

  4. Method for the manufacture of phase shifting masks for EUV lithography

    DOEpatents

    Stearns, Daniel G.; Sweeney, Donald W.; Mirkarimi, Paul B.; Barty, Anton

    2006-04-04

    A method for fabricating an EUV phase shift mask is provided that includes a substrate upon which is deposited a thin film multilayer coating that has a complex-valued reflectance. An absorber layer or a buffer layer is attached onto the thin film multilayer, and the thickness of the thin film multilayer coating is altered to introduce a direct modulation in the complex-valued reflectance to produce phase shifting features.

  5. Basic Studies on High Pressure Air Plasmas

    DTIC Science & Technology

    2006-08-30

    which must be added a 1.5 month salary to A. Bugayev for assistance in laser and optic techniques. 2 Part II Technical report Plasma-induced phase shift...two-wavelength heterodyne interferometry applied to atmospheric pressure air plasma 11.1 .A. Plasma-induced phase shift - Electron density...a driver, since the error on the frequency leads to an error on the phase shift. (c) Optical elements Mirrors Protected mirrors must be used to stand

  6. Broadband one-dimensional photonic crystal wave plate containing single-negative materials.

    PubMed

    Chen, Yihang

    2010-09-13

    The properties of the phase shift of wave reflected from one-dimensional photonic crystals consisting of periodic layers of single-negative (permittivity- or permeability-negative) materials are demonstrated. As the incident angle increases, the reflection phase shift of TE wave decreases, while that of TM wave increases. The phase shifts of both polarized waves vary smoothly as the frequency changes across the photonic crystal stop band. Consequently, the difference between the phase shift of TE and that of TM wave could remain constant in a rather wide frequency range inside the stop band. These properties are useful to design wave plate or retarder which can be used in wide spectral band. In addition, a broadband photonic crystal quarter-wave plate is proposed.

  7. Flexible digital modulation and coding synthesis for satellite communications

    NASA Technical Reports Server (NTRS)

    Vanderaar, Mark; Budinger, James; Hoerig, Craig; Tague, John

    1991-01-01

    An architecture and a hardware prototype of a flexible trellis modem/codec (FTMC) transmitter are presented. The theory of operation is built upon a pragmatic approach to trellis-coded modulation that emphasizes power and spectral efficiency. The system incorporates programmable modulation formats, variations of trellis-coding, digital baseband pulse-shaping, and digital channel precompensation. The modulation formats examined include (uncoded and coded) binary phase shift keying (BPSK), quatenary phase shift keying (QPSK), octal phase shift keying (8PSK), 16-ary quadrature amplitude modulation (16-QAM), and quadrature quadrature phase shift keying (Q squared PSK) at programmable rates up to 20 megabits per second (Mbps). The FTMC is part of the developing test bed to quantify modulation and coding concepts.

  8. Frequency Preference Response to Oscillatory Inputs in Two-dimensional Neural Models: A Geometric Approach to Subthreshold Amplitude and Phase Resonance.

    PubMed

    Rotstein, Horacio G

    2014-01-01

    We investigate the dynamic mechanisms of generation of subthreshold and phase resonance in two-dimensional linear and linearized biophysical (conductance-based) models, and we extend our analysis to account for the effect of simple, but not necessarily weak, types of nonlinearities. Subthreshold resonance refers to the ability of neurons to exhibit a peak in their voltage amplitude response to oscillatory input currents at a preferred non-zero (resonant) frequency. Phase-resonance refers to the ability of neurons to exhibit a zero-phase (or zero-phase-shift) response to oscillatory input currents at a non-zero (phase-resonant) frequency. We adapt the classical phase-plane analysis approach to account for the dynamic effects of oscillatory inputs and develop a tool, the envelope-plane diagrams, that captures the role that conductances and time scales play in amplifying the voltage response at the resonant frequency band as compared to smaller and larger frequencies. We use envelope-plane diagrams in our analysis. We explain why the resonance phenomena do not necessarily arise from the presence of imaginary eigenvalues at rest, but rather they emerge from the interplay of the intrinsic and input time scales. We further explain why an increase in the time-scale separation causes an amplification of the voltage response in addition to shifting the resonant and phase-resonant frequencies. This is of fundamental importance for neural models since neurons typically exhibit a strong separation of time scales. We extend this approach to explain the effects of nonlinearities on both resonance and phase-resonance. We demonstrate that nonlinearities in the voltage equation cause amplifications of the voltage response and shifts in the resonant and phase-resonant frequencies that are not predicted by the corresponding linearized model. The differences between the nonlinear response and the linear prediction increase with increasing levels of the time scale separation between the voltage and the gating variable, and they almost disappear when both equations evolve at comparable rates. In contrast, voltage responses are almost insensitive to nonlinearities located in the gating variable equation. The method we develop provides a framework for the investigation of the preferred frequency responses in three-dimensional and nonlinear neuronal models as well as simple models of coupled neurons.

  9. Ab initio 27Al NMR chemical shifts and quadrupolar parameters for Al2O3 phases and their precursors

    NASA Astrophysics Data System (ADS)

    Ferreira, Ary R.; Küçükbenli, Emine; Leitão, Alexandre A.; de Gironcoli, Stefano

    2011-12-01

    The gauge-including projector augmented wave (GIPAW) method, within the density functional theory (DFT) generalized gradient approximation (GGA) framework, is applied to compute solid state NMR parameters for 27Al in the α, θ, and κ aluminium oxide phases and their gibbsite and boehmite precursors. The results for well established crystalline phases compare very well with available experimental data and provide confidence in the accuracy of the method. For γ-alumina, four structural models proposed in the literature are discussed in terms of their ability to reproduce the experimental spectra also reported in the literature. Among the considered models, the Fd3¯m structure proposed by Paglia [Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.71.224115 71, 224115 (2005)] shows the best agreement. We attempt to link the theoretical NMR parameters to the local geometry. Chemical shifts depend on coordination number but no further correlation is found with geometrical parameters. Instead, our calculations reveal that, within a given coordination number, a linear correlation exists between chemical shifts and Born effective charges.

  10. Microfluidic EBG Sensor Based on Phase-Shift Method Realized Using 3D Printing Technology

    PubMed Central

    Radonić, Vasa; Birgermajer, Slobodan; Kitić, Goran

    2017-01-01

    In this article, we propose a novel microfluidic microstrip electromagnetic band gap (EBG) sensor realized using cost-effective 3D printing technology. Microstrip sensor allows monitoring of the fluid properties flowing in the microchannel embedded between the microstrip line and ground plane. The sensor’s operating principle is based on the phase-shift method, which allows the characterization at a single operating frequency of 6 GHz. The defected electromagnetic band gap (EBG) structure is realized as a pattern in the microstrip ground plane to improve sensor sensitivity. The designed microfluidic channel is fabricated using a fused deposition modelling (FDM) 3D printing process without additional supporting layers, while the conductive layers are realized using sticky aluminium tape. The measurement results show that the change of permittivity of the fluid in the microfluidic channel from 1 to 80 results in the phase-shift difference of almost 90°. The potential application is demonstrated through the implementation of a proposed sensor for the detection of toluene concentration in toluene–methanol mixture where various concentrations of toluene were analysed. PMID:28420217

  11. Microfluidic EBG Sensor Based on Phase-Shift Method Realized Using 3D Printing Technology.

    PubMed

    Radonić, Vasa; Birgermajer, Slobodan; Kitić, Goran

    2017-04-18

    In this article, we propose a novel microfluidic microstrip electromagnetic band gap (EBG) sensor realized using cost-effective 3D printing technology. Microstrip sensor allows monitoring of the fluid properties flowing in the microchannel embedded between the microstrip line and ground plane. The sensor's operating principle is based on the phase-shift method, which allows the characterization at a single operating frequency of 6 GHz. The defected electromagnetic band gap (EBG) structure is realized as a pattern in the microstrip ground plane to improve sensor sensitivity. The designed microfluidic channel is fabricated using a fused deposition modelling (FDM) 3D printing process without additional supporting layers, while the conductive layers are realized using sticky aluminium tape. The measurement results show that the change of permittivity of the fluid in the microfluidic channel from 1 to 80 results in the phase-shift difference of almost 90°. The potential application is demonstrated through the implementation of a proposed sensor for the detection of toluene concentration in toluene-methanol mixture where various concentrations of toluene were analysed.

  12. Faigue Avoidance Scheduling Tool (FAST) Phase II SBIR Final Report, Part 1

    DTIC Science & Technology

    2006-05-01

    treatment . This lead us to modify the SAFTE model such that it could predict the slow recovery effects uncovered in the SDR Study. The SAFTE model was...features making the model more accessible and useful to users. The transmeridian phase shift algorithm was added to accommodate aircrews crossing ...sleep treatment . This lead us to modify the SAFTE model such that it could predict the slow recovery effects uncovered in the

  13. Functional decoupling of melatonin suppression and circadian phase resetting in humans.

    PubMed

    Rahman, Shadab A; St Hilaire, Melissa A; Gronfier, Claude; Chang, Anne-Marie; Santhi, Nayantara; Czeisler, Charles A; Klerman, Elizabeth B; Lockley, Steven W

    2018-06-01

    There is assumed to be a monotonic association between melatonin suppression and circadian phase resetting induced by light exposure. We tested the association between melatonin suppression and phase resetting in humans. Sixteen young healthy participants received nocturnal bright light (∼9500 lux) exposure of continuous or intermittent patterns, and different durations ranging from 12 min to 6.5 h. Intermittent exposure patterns showed significant phase shifts with disproportionately less melatonin suppression. Each and every bright light stimulus in an intermittent exposure pattern induced a similar degree of melatonin suppression, but did not appear to cause an equal magnitude of phase shift. These results suggest that phase shifts and melatonin suppression are functionally independent such that one cannot be used as a proxy measure of the other. Continuous experimental light exposures show that, in general, the conditions that produce greater melatonin suppression also produce greater phase shift, leading to the assumption that one can be used as a proxy for the other. We tested this association in 16 healthy individuals who participated in a 9-day inpatient protocol by assessing melatonin suppression and phase resetting in response to a nocturnal light exposure (LE) of different patterns: (i) dim-light control (<3 lux; n = 6) or (ii) two 12-min intermittent bright light pulses (IBL) separated by 36 min of darkness (∼9500 lux; n = 10). We compared these results with historical data from additional LE patterns: (i) dim-light control (<3 lux; n = 11); (ii) single continuous bright light exposure of 12 min (n = 9), 1.0 h (n = 10) or 6.5 h (n = 6); or (iii) an IBL light pattern consisting of six 15-min pulses with 1.0 h dim-light recovery intervals between them during a total of 6.5 h (n = 7). All light exposure groups had significantly greater phase-delay shifts than the dim-light control condition (P < 0.0001). While a monotonic association between melatonin suppression and circadian phase shift was observed, intermittent exposure patterns showed significant phase shifts with disproportionately less melatonin suppression. Each and every IBL stimulus induced a similar degree of melatonin suppression, but did not appear to cause an equal magnitude of phase shift. These results suggest unique specificities in how light-induced phase shifts and melatonin suppression are mediated such that one cannot be used as a proxy measure of the other. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  14. Optimal shifting control strategy in inertia phase of an automatic transmission for automotive applications

    NASA Astrophysics Data System (ADS)

    Meng, Fei; Tao, Gang; Zhang, Tao; Hu, Yihuai; Geng, Peng

    2015-08-01

    Shifting quality is a crucial factor in all parts of the automobile industry. To ensure an optimal gear shifting strategy with best fuel economy for a stepped automatic transmission, the controller should be designed to meet the challenge of lacking of a feedback sensor to measure the relevant variables. This paper focuses on a new kind of automatic transmission using proportional solenoid valve to control the clutch pressure, a speed difference of the clutch based control strategy is designed for the shift control during the inertia phase. First, the mechanical system is shown and the system dynamic model is built. Second, the control strategy is designed based on the characterization analysis of models which are derived from dynamics of the drive line and electro-hydraulic actuator. Then, the controller uses conventional Proportional-Integral-Derivative control theory, and a robust two-degree-of-freedom controller is also carried out to determine the optimal control parameters to further improve the system performance. Finally, the designed control strategy with different controller is implemented on a simulation model. The compared results show that the speed difference of clutch can track the desired trajectory well and improve the shift quality effectively.

  15. The effects of the photomask on multiphase shift test monitors

    NASA Astrophysics Data System (ADS)

    McIntyre, Gregory; Neureuther, Andrew

    2006-10-01

    A series of chromeless multiple-phase shift lithographic test monitors have been previously introduced. This paper investigates various effects that impact the performance of these monitors, focusing primarily on PSM Polarimetry, a technique to monitor illumination polarization. The measurement sensitivities from a variety of scalar and rigorous electromagnetic simulations are compared to experimental results from three industrial quality multi-phase test reticles. This analysis enables the relative importance of the various effects to be identified and offers the industry unique insight into various issues associated with the photomask. First, the unavoidable electromagnetic interaction as light propagates through the multiple phase steps of the mask topography appears to account for about 10 to 20% of the lost sensitivity, when experimental results are compared to an ideal simulated case. The polarization dependence of this effect is analyzed, concluding that the 4-phase topography is more effective at manipulating TM polarization. Second, various difficulties in the fabrication of these complicated mask patterns are described and likely account for an additional 60-80% loss in sensitivity. Smaller effects are also described, associated with the photoresist, mask design and subtle differences in the proximity effect of TE and TM polarization of off-axis light at high numerical aperture. Finally, the question: "How practical is PSM polarimetry?" is considered. It is concluded that, despite many severe limiting factors, an accurately calibrated test reticle promises to monitor polarization in state-of-the-art lithography scanners to within about 2%.

  16. The relative importance of fluid and kinetic frequency shifts of an electron plasma wave

    NASA Astrophysics Data System (ADS)

    Winjum, B. J.; Fahlen, J.; Mori, W. B.

    2007-10-01

    The total nonlinear frequency shift of a plasma wave including both fluid and kinetic effects is estimated when the phase velocity of the wave is much less than the speed of light. Using a waterbag or fluid model, the nonlinear frequency shift due to harmonic generation is calculated for an arbitrary shift in the wavenumber. In the limit where the wavenumber does not shift, the result is in agreement with previously published work [R. L. Dewar and J. Lindl, Phys. Fluids 15, 820 (1972); T. P. Coffey, Phys. Fluids 14, 1402 (1971)]. This shift is compared to the kinetic shift of Morales and O'Neil [G. J. Morales and T. M. O'Neil, Phys. Rev. Lett. 28, 417 (1972)] for wave amplitudes and values of kλD of interest to Raman backscatter of a laser driver in inertial confinement fusion.

  17. Molecular Approach to Hypothalamic Rhythms

    DTIC Science & Technology

    1994-03-14

    in vitro to Targeted Cloning Strategy for reset or phase shift circadian rhythms of neuronal G Protein-Coupled Receptors activity in the SCN (Prosser...Kozak, M. (1984). Compilation and analysis of sequences up- nabe, S. (1992). Phase - resetting effect of 8-OH-DPAT, a seroto- Neuron 458 ninA receptor...JR, Lohse MJ, Kobilka BK. Caron MJ and Medanic M and Gillette MU (1992) Serotonin regulates the Lefkowitz. RJ (1988) The genomic clone G-21 which phase

  18. Light treatment for NASA shiftworkers.

    PubMed

    Stewart, K T; Hayes, B C; Eastman, C I

    1995-04-01

    Intense artificial light can phase-shift circadian rhythms and improve performance, sleep, and well-being during shiftwork simulations. In real shiftworkers, however, exposure to sunlight and other time cues may decrease the efficacy of light treatment, and occupational and family responsibilities may make it impractical. With these considerations in mind, we designed and tested light-treatment protocols for NASA personnel who worked on shifted schedules during two Space Shuttle missions. During the prelaunch week, treatment subjects self-administered light of approximately 10,000 lux at times of day that phase-delay circadian rhythms. Treatment continued during the missions and for several days afterward. No treatment was administered to subjects in the control group. Treatment subjects reported better sleep, performance, and physical and emotional well-being than control subjects and rated the treatment as highly effective for promoting adjustment to their work schedules. Light treatment is both feasible and beneficial for NASA personnel who must work on shifted schedules during Space Shuttle missions.

  19. Effects of sensorineural hearing loss on temporal coding of harmonic and inharmonic tone complexes in the auditory nerve

    PubMed Central

    Kale, Sushrut; Micheyl, Christophe; Heinz, Michael G.

    2013-01-01

    Listeners with sensorineural hearing loss (SNHL) often show poorer thresholds for fundamental-frequency (F0) discrimination, and poorer discrimination between harmonic and frequency-shifted (inharmonic) complex tones, than normal-hearing (NH) listeners—especially when these tones contain resolved or partially resolved components. It has been suggested that these perceptual deficits reflect reduced access to temporal-fine-structure (TFS) information, and could be due to degraded phase-locking in the auditory nerve (AN) with SNHL. In the present study, TFS and temporal-envelope (ENV) cues in single AN-fiber responses to bandpass-filtered harmonic and inharmonic complex tones were measured in chinchillas with either normal hearing or noise-induced SNHL. The stimuli were comparable to those used in recent psychophysical studies of F0 and harmonic/inharmonic discrimination. As in those studies, the rank of the center component was manipulated to produce different resolvability conditions, different phase relationships (cosine and random phase) were tested, and background noise was present. Neural TFS and ENV cues were quantified using cross-correlation coefficients computed using shuffled cross-correlograms between neural responses to REF (harmonic) and TEST (F0- or frequency-shifted) stimuli. In animals with SNHL, AN-fiber tuning curves showed elevated thresholds, broadened tuning, best-frequency shifts, and downward shifts in the dominant TFS response component; however, no significant degradation in the ability of AN fibers to encode TFS or ENV cues was found. Consistent with optimal-observer analyses, the results indicate that TFS and ENV cues depended only on the relevant frequency shift in Hz and thus were not degraded because phase-locking remained intact. These results suggest that perceptual “TFS-processing” deficits do not simply reflect degraded phase-locking at the level of the AN. To the extent that performance in F0 and harmonic/inharmonic discrimination tasks depend on TFS cues, it is likely through a more complicated (sub-optimal) decoding mechanism, which may involve “spatiotemporal” (place-time) neural representations. PMID:23716215

  20. Spatial phase-shift dual-beam speckle interferometry.

    PubMed

    Gao, Xinya; Yang, Lianxiang; Wang, Yonghong; Zhang, Boyang; Dan, Xizuo; Li, Junrui; Wu, Sijin

    2018-01-20

    The spatial phase-shift technique has been successfully applied to an out-of-plane speckle interferometry system. Its application to a pure in-plane sensitive system has not been reported yet. This paper presents a novel optical configuration that enables the application of the spatial phase-shift technique to pure in-plane sensitive dual-beam speckle interferometry. The new spatial phase-shift dual-beam speckle interferometry (SPS-DBSP) uses a dual-beam in-plane electronic speckle pattern interferometry configuration with individual aperture shears, avoiding the interference in the object plane by the use of a low-coherence source, and different optical paths. The measured object is illuminated by two incoherent beams that are generated by a delay line, which is larger than the coherence length of the laser. The two beams reflected from the object surface interfere with each other at the CCD plane because of different optical paths. A spatial phase shift is introduced by the angle between the two apertures when they are mapped to the same optical axis. The phase of the in-plane deformation can directly be extracted from the speckle patterns by the Fourier transform method. The capability of SPS-DBSI is demonstrated by theoretical discussion as well as experiments.

  1. Accounting for phase drifts in SSVEP-based BCIs by means of biphasic stimulation.

    PubMed

    Wu, Hung-Yi; Lee, Po-Lei; Chang, Hsiang-Chih; Hsieh, Jen-Chuen

    2011-05-01

    This study proposes a novel biphasic stimulation technique to solve the issue of phase drifts in steady-state visual evoked potential (SSVEPs) in phase-tagged systems. Phase calibration was embedded in stimulus sequences using a biphasic flicker, which is driven by a sequence with alternating reference and phase-shift states. Nine subjects were recruited to participate in off-line and online tests. Signals were bandpass filtered and segmented by trigger signals into reference and phase-shift epochs. Frequency components of SSVEP in the reference and phase-shift epochs were extracted using the Fourier method with a 50% overlapped sliding window. The real and imaginary parts of the SSVEP frequency components were organized into complex vectors in each epoch. Hotelling's t-square test was used to determine the significances of nonzero mean vectors. The rejection of noisy data segments and the validation of gaze detections were made based on p values. The phase difference between the valid mean vectors of reference and phase-shift epochs was used to identify user's gazed targets in this system. Data showed an average information transfer rate of 44.55 and 38.21 bits/min in off-line and online tests, respectively. © 2011 IEEE

  2. GIAO-DFT calculation of 15 N NMR chemical shifts of Schiff bases: Accuracy factors and protonation effects.

    PubMed

    Semenov, Valentin A; Samultsev, Dmitry O; Krivdin, Leonid B

    2018-02-09

    15 N NMR chemical shifts in the representative series of Schiff bases together with their protonated forms have been calculated at the density functional theory level in comparison with available experiment. A number of functionals and basis sets have been tested in terms of a better agreement with experiment. Complimentary to gas phase results, 2 solvation models, namely, a classical Tomasi's polarizable continuum model (PCM) and that in combination with an explicit inclusion of one molecule of solvent into calculation space to form supermolecule 1:1 (SM + PCM), were examined. Best results are achieved with PCM and SM + PCM models resulting in mean absolute errors of calculated 15 N NMR chemical shifts in the whole series of neutral and protonated Schiff bases of accordingly 5.2 and 5.8 ppm as compared with 15.2 ppm in gas phase for the range of about 200 ppm. Noticeable protonation effects (exceeding 100 ppm) in protonated Schiff bases are rationalized in terms of a general natural bond orbital approach. Copyright © 2018 John Wiley & Sons, Ltd.

  3. A High Resolution Phase Shifting Interferometer.

    NASA Astrophysics Data System (ADS)

    Bayda, Michael; Bartscher, Christoph; Wilkinson, Allen

    1997-03-01

    Configuration, operation, and performance details of a high resolution phase shifting Twyman-Green interferometer are presented. The instrument was used for density relaxation experiments of very compressible liquid-vapor critical fluids.(A companion talk in the Nonequilibrium Phenomena session under Complex Fluids presents density equilibration work.) A sample assembly contained the cell, beam splitter, phase shifter, and mirrors inside a 6 cm diameter by 6 cm long aluminum cylinder. This sample assembly was contained inside a thermostat stable to 50 μK RMS deviation. A thin phase retarding Liquid Crystal Cell (LCC) was placed in the reference arm of the interferometer. The LCC provided four cumulative 90 degree phase shifts to produce four images used in computing each phase map. The Carré technique was used to calculate a phase value for each pixel from the four intensities of each pixel. Four images for one phase map could be acquired in less than two seconds. The spatial resolution was 25 μm. The phase resolution of the interferometer in a six second period was better than λ/400. The phase stability of the interferometer during 25 hours was better than λ/70. Factors affecting timing, resolution, and other phase shifting devices will be discussed. WWW Presentation

  4. Cross-phase modulation spectral shifting: nonlinear phase contrast in a pump-probe microscope

    PubMed Central

    Wilson, Jesse W.; Samineni, Prathyush; Warren, Warren S.; Fischer, Martin C.

    2012-01-01

    Microscopy with nonlinear phase contrast is achieved by a simple modification to a nonlinear pump-probe microscope. The technique measures cross-phase modulation by detecting a pump-induced spectral shift in the probe pulse. Images with nonlinear phase contrast are acquired both in transparent and absorptive media. In paraffin-embedded biopsy sections, cross-phase modulation complements the chemically-specific pump-probe images with structural context. PMID:22567580

  5. Robust dynamic 3-D measurements with motion-compensated phase-shifting profilometry

    NASA Astrophysics Data System (ADS)

    Feng, Shijie; Zuo, Chao; Tao, Tianyang; Hu, Yan; Zhang, Minliang; Chen, Qian; Gu, Guohua

    2018-04-01

    Phase-shifting profilometry (PSP) is a widely used approach to high-accuracy three-dimensional shape measurements. However, when it comes to moving objects, phase errors induced by the movement often result in severe artifacts even though a high-speed camera is in use. From our observations, there are three kinds of motion artifacts: motion ripples, motion-induced phase unwrapping errors, and motion outliers. We present a novel motion-compensated PSP to remove the artifacts for dynamic measurements of rigid objects. The phase error of motion ripples is analyzed for the N-step phase-shifting algorithm and is compensated using the statistical nature of the fringes. The phase unwrapping errors are corrected exploiting adjacent reliable pixels, and the outliers are removed by comparing the original phase map with a smoothed phase map. Compared with the three-step PSP, our method can improve the accuracy by more than 95% for objects in motion.

  6. Dual-phase-shift spherical Fizeau interferometer for reduction of noise due to internally scattered light

    NASA Astrophysics Data System (ADS)

    Kumagai, Toshiki; Hibino, Kenichi; Nagaike, Yasunari

    2017-03-01

    Internally scattered light in a Fizeau interferometer is generated from dust, defects, imperfect coating of the optical components, and multiple reflections inside the collimator lens. It produces additional noise fringes in the observed interference image and degrades the repeatability of the phase measurement. A method to reduce the phase measurement error is proposed, in which the test surface is mechanically translated between each phase measurement in addition to an ordinary phase shift of the reference surface. It is shown that a linear combination of several measured phases at different test surface positions can reduce the phase errors caused by the scattered light. The combination can also compensate for the nonuniformity of the phase shift that occurs in spherical tests. A symmetric sampling of the phase measurements can cancel the additional primary spherical aberrations that occur when the test surface is out of the null position of the confocal configuration.

  7. Real-Time and High-Resolution 3D Face Measurement via a Smart Active Optical Sensor.

    PubMed

    You, Yong; Shen, Yang; Zhang, Guocai; Xing, Xiuwen

    2017-03-31

    The 3D measuring range and accuracy in traditional active optical sensing, such as Fourier transform profilometry, are influenced by the zero frequency of the captured patterns. The phase-shifting technique is commonly applied to remove the zero component. However, this phase-shifting method must capture several fringe patterns with phase difference, thereby influencing the real-time performance. This study introduces a smart active optical sensor, in which a composite pattern is utilized. The composite pattern efficiently combines several phase-shifting fringes and carrier frequencies. The method can remove zero frequency by using only one pattern. Model face reconstruction and human face measurement were employed to study the validity and feasibility of this method. Results show no distinct decrease in the precision of the novel method unlike the traditional phase-shifting method. The texture mapping technique was utilized to reconstruct a nature-appearance 3D digital face.

  8. Real-Time and High-Resolution 3D Face Measurement via a Smart Active Optical Sensor

    PubMed Central

    You, Yong; Shen, Yang; Zhang, Guocai; Xing, Xiuwen

    2017-01-01

    The 3D measuring range and accuracy in traditional active optical sensing, such as Fourier transform profilometry, are influenced by the zero frequency of the captured patterns. The phase-shifting technique is commonly applied to remove the zero component. However, this phase-shifting method must capture several fringe patterns with phase difference, thereby influencing the real-time performance. This study introduces a smart active optical sensor, in which a composite pattern is utilized. The composite pattern efficiently combines several phase-shifting fringes and carrier frequencies. The method can remove zero frequency by using only one pattern. Model face reconstruction and human face measurement were employed to study the validity and feasibility of this method. Results show no distinct decrease in the precision of the novel method unlike the traditional phase-shifting method. The texture mapping technique was utilized to reconstruct a nature-appearance 3D digital face. PMID:28362349

  9. Visual measurement of the evaporation process of a sessile droplet by dual-channel simultaneous phase-shifting interferometry.

    PubMed

    Sun, Peng; Zhong, Liyun; Luo, Chunshu; Niu, Wenhu; Lu, Xiaoxu

    2015-07-16

    To perform the visual measurement of the evaporation process of a sessile droplet, a dual-channel simultaneous phase-shifting interferometry (DCSPSI) method is proposed. Based on polarization components to simultaneously generate a pair of orthogonal interferograms with the phase shifts of π/2, the real-time phase of a dynamic process can be retrieved with two-step phase-shifting algorithm. Using this proposed DCSPSI system, the transient mass (TM) of the evaporation process of a sessile droplet with different initial mass were presented through measuring the real-time 3D shape of a droplet. Moreover, the mass flux density (MFD) of the evaporating droplet and its regional distribution were also calculated and analyzed. The experimental results show that the proposed DCSPSI will supply a visual, accurate, noncontact, nondestructive, global tool for the real-time multi-parameter measurement of the droplet evaporation.

  10. Three-step interferometric method with blind phase shifts by use of interframe correlation between interferograms

    NASA Astrophysics Data System (ADS)

    Muravsky, Leonid I.; Kmet', Arkady B.; Stasyshyn, Ihor V.; Voronyak, Taras I.; Bobitski, Yaroslav V.

    2018-06-01

    A new three-step interferometric method with blind phase shifts to retrieve phase maps (PMs) of smooth and low-roughness engineering surfaces is proposed. Evaluating of two unknown phase shifts is fulfilled by using the interframe correlation between interferograms. The method consists of two stages. The first stage provides recording of three interferograms of a test object and their processing including calculation of unknown phase shifts, and retrieval of a coarse PM. The second stage implements firstly separation of high-frequency and low-frequency PMs and secondly producing of a fine PM consisting of areal surface roughness and waviness PMs. Extraction of the areal surface roughness and waviness PMs is fulfilled by using a linear low-pass filter. The computer simulation and experiments fulfilled to retrieve a gauge block surface area and its areal surface roughness and waviness have confirmed the reliability of the proposed three-step method.

  11. Isochronic carrier-envelope phase-shift compensator.

    PubMed

    Görbe, Mihaly; Osvay, Karoly; Grebing, Christian; Steinmeyer, Günter

    2008-11-15

    A concept for orthogonal control of phase and group delay inside a laser cavity by a specially designed compensator assembly is discussed. Similar to the construction of variable polarization retarder, this assembly consists of two thin wedge prisms made from appropriately chosen optical materials. Being shifted as a whole, the assembly allows changing the phase delay with no influence on the cavity round-trip time, whereas relative shifting of the prisms enables adjustment of the latter. This scheme is discussed theoretically and verified experimentally, indicating a factor 30 reduction of the influence on the repetition rate compared to the commonly used silica wedge pair. For a 2pi adjustment of the carrier-envelope phase shift, single-pass timing differences are reduced to the single-femtosecond regime. With negligible distortions of timing and dispersion, the described compensator device greatly simplifies carrier-envelope phase control and experiments in extreme nonlinear optics. Copyright (c) 2008 Optical Society of America.

  12. The Phase Shift in the Jumping Ring

    NASA Astrophysics Data System (ADS)

    Jeffery, Rondo N.; Amiri, Farhang

    2008-09-01

    The popular physics demonstration experiment known as Thomson's Jumping Ring (JR) has been variously explained as a simple example of Lenz's law, or as the result of a phase shift of the ring current relative to the induced emf. The failure of the first-quadrant Lenz's law explanation is shown by the time the ring takes to jump and by levitation. A method is given for measuring the phase shift with results for aluminum and brass rings.

  13. PHASE-SHIFT, STIMULI-RESPONSIVE PERFLUOROCARBON NANODROPLETS FOR DRUG DELIVERY TO CANCER

    PubMed Central

    2012-01-01

    This review focuses on phase-shift perfluorocarbon nanoemulsions whose action depends on an ultrasound-triggered phase shift from a liquid to gas state. For drug-loaded perfluorocarbon nanoemulsions, microbubbles are formed under the action of tumor-directed ultrasound and drug is released locally into tumor volume in this process. This review covers in detail mechanisms involved in the droplet-to-bubble transition as well as mechanisms of ultrasound-mediated drug delivery. PMID:22730185

  14. Optimized distortion correction technique for echo planar imaging.

    PubMed

    Chen , N K; Wyrwicz, A M

    2001-03-01

    A new phase-shifted EPI pulse sequence is described that encodes EPI phase errors due to all off-resonance factors, including B(o) field inhomogeneity, eddy current effects, and gradient waveform imperfections. Combined with the previously proposed multichannel modulation postprocessing algorithm (Chen and Wyrwicz, MRM 1999;41:1206-1213), the encoded phase error information can be used to effectively remove geometric distortions in subsequent EPI scans. The proposed EPI distortion correction technique has been shown to be effective in removing distortions due to gradient waveform imperfections and phase gradient-induced eddy current effects. In addition, this new method retains advantages of the earlier method, such as simultaneous correction of different off-resonance factors without use of a complicated phase unwrapping procedure. The effectiveness of this technique is illustrated with EPI studies on phantoms and animal subjects. Implementation to different versions of EPI sequences is also described. Magn Reson Med 45:525-528, 2001. Copyright 2001 Wiley-Liss, Inc.

  15. A high accuracy ultrasonic distance measurement system using binary frequency shift-keyed signal and phase detection

    NASA Astrophysics Data System (ADS)

    Huang, S. S.; Huang, C. F.; Huang, K. N.; Young, M. S.

    2002-10-01

    A highly accurate binary frequency shift-keyed (BFSK) ultrasonic distance measurement system (UDMS) for use in isothermal air is described. This article presents an efficient algorithm which combines both the time-of-flight (TOF) method and the phase-shift method. The proposed method can obtain larger range measurement than the phase-shift method and also get higher accuracy compared with the TOF method. A single-chip microcomputer-based BFSK signal generator and phase detector was designed to record and compute the TOF, two phase shifts, and the resulting distance, which were then sent to either an LCD to display or a PC to calibrate. Experiments were done in air using BFSK with the frequencies of 40 and 41 kHz. Distance resolution of 0.05% of the wavelength corresponding to the frequency of 40 kHz was obtained. The range accuracy was found to be within ±0.05 mm at a range of over 6000 mm. The main advantages of this UDMS system are high resolution, low cost, narrow bandwidth requirement, and ease of implementation.

  16. Analytical results for a conditional phase shift between single-photon pulses in a nonlocal nonlinear medium

    NASA Astrophysics Data System (ADS)

    Viswanathan, Balakrishnan; Gea-Banacloche, Julio

    2017-04-01

    We analyze a recent scheme proposed by Xia et al. to induce a conditional phase shift between two single-photon pulses by having them propagate at different speeds through a nonlinear medium with a nonlocal response. We have obtained an analytical solution for the case they considered, which supports their claim that a π phase shift with unit fidelity is possible in principle. We discuss the conditions that have to be met and the challenges and opportunities that this might present to the realization of a single-photon conditional phase gate.

  17. Phase-shifting interference microscope with extendable field of measurement

    NASA Astrophysics Data System (ADS)

    Lin, Shyh-Tsong; Hsu, Wei-Feng; Wang, Ming-Shiang

    2018-04-01

    An innovative phase-shifting interference microscope aimed at extending the field of measurement is proposed in this paper. The microscope comprises a light source module, a phase modulation module, and an interferometric module, which reconstructs the micro-structure contours of samples using the five-step phase-shifting algorithm. This paper discusses the measurement theory and outlines the configuration, experimental setup, and experimental results obtained using the proposed interference microscope. The results confirm the efficacy of the microscope, achieving a standard deviation of 2.4 nm from a step height of 86.2 nm in multiple examinations.

  18. Optimal control of the gear shifting process for shift smoothness in dual-clutch transmissions

    NASA Astrophysics Data System (ADS)

    Li, Guoqiang; Görges, Daniel

    2018-03-01

    The control of the transmission system in vehicles is significant for the driving comfort. In order to design a controller for smooth shifting and comfortable driving, a dynamic model of a dual-clutch transmission is presented in this paper. A finite-time linear quadratic regulator is proposed for the optimal control of the two friction clutches in the torque phase for the upshift process. An integral linear quadratic regulator is introduced to regulate the relative speed difference between the engine and the slipping clutch under the optimization of the input torque during the inertia phase. The control objective focuses on smoothing the upshift process so as to improve the driving comfort. Considering the available sensors in vehicles for feedback control, an observer design is presented to track the immeasurable variables. Simulation results show that the jerk can be reduced both in the torque phase and inertia phase, indicating good shift performance. Furthermore, compared with conventional controllers for the upshift process, the proposed control method can reduce shift jerk and improve shift quality.

  19. Solvation effect on isomer stability and electronic structures of protonated serotonin

    NASA Astrophysics Data System (ADS)

    Omidyan, Reza; Amanollahi, Zohreh; Azimi, Gholamhassan

    2017-07-01

    Microsolvation effect on geometry and transition energies of protonated serotonin has been investigated by MP2 and CC2 quantum chemical methods. Also, conductor-like screening model, implemented recently in the MP2 and ADC(2) methods, was examined to address the bulk water environment's effect on the isomer stability and electronic transition energies of protonated serotonin. It has been predicted that the dipole moment of gas phase isomers plays the main role on the isomer stabilization in water solution and electronic transition shifts. Also, both red- and blue-shift effects have been predicted to take place on electronic transition energies, upon hydration.

  20. Electron microscope phase enhancement

    DOEpatents

    Jin, Jian; Glaeser, Robert M.

    2010-06-15

    A microfabricated electron phase shift element is used for modifying the phase characteristics of an electron beam passing though its center aperture, while not affecting the more divergent portion of an incident beam to selectively provide a ninety-degree phase shift to the unscattered beam in the back focal plan of the objective lens, in order to realize Zernike-type, in-focus phase contrast in an electron microscope. One application of the element is to increase the contrast of an electron microscope for viewing weakly scattering samples while in focus. Typical weakly scattering samples include biological samples such as macromolecules, or perhaps cells. Preliminary experimental images demonstrate that these devices do apply a ninety degree phase shift as expected. Electrostatic calculations have been used to determine that fringing fields in the region of the scattered electron beams will cause a negligible phase shift as long as the ratio of electrode length to the transverse feature-size aperture is about 5:1. Calculations are underway to determine the feasibility of aspect smaller aspect ratios of about 3:1 and about 2:1.

  1. Methods to control phase inversions and enhance mass transfer in liquid-liquid dispersions

    DOEpatents

    Tsouris, Constantinos; Dong, Junhang

    2002-01-01

    The present invention is directed to the effects of applied electric fields on liquid-liquid dispersions. In general, the present invention is directed to the control of phase inversions in liquid-liquid dispersions. Because of polarization and deformation effects, coalescence of aqueous drops is facilitated by the application of electric fields. As a result, with an increase in the applied voltage, the ambivalence region is narrowed and shifted toward higher volume fractions of the dispersed phase. This permits the invention to be used to ensure that the aqueous phase remains continuous, even at a high volume fraction of the organic phase. Additionally, the volume fraction of the organic phase may be increased without causing phase inversion, and may be used to correct a phase inversion which has already occurred. Finally, the invention may be used to enhance mass transfer rates from one phase to another through the use of phase inversions.

  2. Carrier recovery techniques on satellite mobile channels

    NASA Technical Reports Server (NTRS)

    Vucetic, B.; Du, J.

    1990-01-01

    An analytical method and a stored channel model were used to evaluate error performance of uncoded quadrature phase shift keying (QPSK) and M-ary phase shift keying (MPSK) trellis coded modulation (TCM) over shadowed satellite mobile channels in the presence of phase jitter for various carrier recovery techniques.

  3. Relative phase noise induced impairment in M-ary phase-shift-keying coherent optical communication system using distributed fiber Raman amplifier.

    PubMed

    Cheng, Jingchi; Tang, Ming; Fu, Songnian; Shum, Perry Ping; Liu, Deming

    2013-04-01

    We show for the first time, to the best of our knowledge, that, in a coherent communication system that employs a phase-shift-keying signal and Raman amplification, besides the pump relative intensity noise (RIN) transfer to the amplitude, the signal's phase will also be affected by pump RIN through the pump-signal cross-phase modulation. Although the average pump power induced linear phase change can be compensated for by the phase-correction algorithm, a relative phase noise (RPN) parameter has been found to characterize pump RIN induced stochastic phase noise. This extra phase noise brings non-negligible system impairments in terms of the Q-factor penalty. The calculation shows that copumping leads to much more stringent requirements to pump RIN, and relatively larger fiber dispersion helps to suppress the RPN induced impairment. A higher-order phase-shift keying (PSK) signal is less tolerant to noise than a lower-order PSK.

  4. Pixel-by-pixel absolute phase retrieval using three phase-shifted fringe patterns without markers

    NASA Astrophysics Data System (ADS)

    Jiang, Chufan; Li, Beiwen; Zhang, Song

    2017-04-01

    This paper presents a method that can recover absolute phase pixel by pixel without embedding markers on three phase-shifted fringe patterns, acquiring additional images, or introducing additional hardware component(s). The proposed three-dimensional (3D) absolute shape measurement technique includes the following major steps: (1) segment the measured object into different regions using rough priori knowledge of surface geometry; (2) artificially create phase maps at different z planes using geometric constraints of structured light system; (3) unwrap the phase pixel by pixel for each region by properly referring to the artificially created phase map; and (4) merge unwrapped phases from all regions into a complete absolute phase map for 3D reconstruction. We demonstrate that conventional three-step phase-shifted fringe patterns can be used to create absolute phase map pixel by pixel even for large depth range objects. We have successfully implemented our proposed computational framework to achieve absolute 3D shape measurement at 40 Hz.

  5. Motion compensation and noise tolerance in phase-shifting digital in-line holography.

    PubMed

    Stenner, Michael D; Neifeld, Mark A

    2006-05-15

    We present a technique for phase-shifting digital in-line holography which compensates for lateral object motion. By collecting two frames of interference between object and reference fields with identical reference phase, one can estimate the lateral motion that occurred between frames using the cross-correlation. We also describe a very general linear framework for phase-shifting holographic reconstruction which minimizes additive white Gaussian noise (AWGN) for an arbitrary set of reference field amplitudes and phases. We analyze the technique's sensitivity to noise (AWGN, quantization, and shot), errors in the reference fields, errors in motion estimation, resolution, and depth of field. We also present experimental motion-compensated images achieving the expected resolution.

  6. Advanced investigation of two-phase charge-coupled devices

    NASA Technical Reports Server (NTRS)

    Kosonocky, W. F.; Carnes, J. E.

    1973-01-01

    The performance of experimental two phase, charge-coupled shift registers constructed using polysilicon gates overlapped by aluminum gates was studied. Shift registers with 64, 128, and 500 stages were built and operated. Devices were operated at the maximum clock frequency of 20 MHz. Loss per transfer of less than .0001 was demonstrated for fat zero operation. The effect upon transfer efficiency of various structural and materials parameters was investigated including substrate orientation, resistivity, and conductivity type; channel width and channel length; and method of channel confinement. Operation of the devices with and without fat zero was studied as well as operation in the complete charge transfer mode and the bias charge, or bucket brigade mode.

  7. Measurement of edge residual stresses in glass by the phase-shifting method

    NASA Astrophysics Data System (ADS)

    Ajovalasit, A.; Petrucci, G.; Scafidi, M.

    2011-05-01

    Control and measurement of residual stress in glass is of great importance in the industrial field. Since glass is a birefringent material, the residual stress analysis is based mainly on the photoelastic method. This paper considers two methods of automated analysis of membrane residual stress in glass sheets, based on the phase-shifting concept in monochromatic light. In particular these methods are the automated versions of goniometric compensation methods of Tardy and Sénarmont. The proposed methods can effectively replace manual methods of compensation (goniometric compensation of Tardy and Sénarmont, Babinet and Babinet-Soleil compensators) provided by current standards on the analysis of residual stresses in glasses.

  8. Concatenated shift registers generating maximally spaced phase shifts of PN-sequences

    NASA Technical Reports Server (NTRS)

    Hurd, W. J.; Welch, L. R.

    1977-01-01

    A large class of linearly concatenated shift registers is shown to generate approximately maximally spaced phase shifts of pn-sequences, for use in pseudorandom number generation. A constructive method is presented for finding members of this class, for almost all degrees for which primitive trinomials exist. The sequences which result are not normally characterized by trinomial recursions, which is desirable since trinomial sequences can have some undesirable randomness properties.

  9. Compensated second-order recoupling: application to third spin assisted recoupling†

    PubMed Central

    Giffard, Mathilde; Hediger, Sabine; Lewandowski, Józef R.; Bardet, Michel; Simorre, Jean-Pierre; Griffin, Robert G.; De Paëpe, Gaël

    2015-01-01

    We consider the effect of phase shifts in the context of second-order recoupling techniques in solid-state NMR. Notably we highlight conditions leading to significant improvements for the Third Spin Assisted Recoupling (TSAR) mechanism and demonstrate the benefits of resulting techniques for detecting long-distance transfer in biomolecular systems. The modified pulse sequences of PAR and PAIN-CP, Phase-Shifted Proton Assisted Recoupling (AH-PS-PAR) and Phase-Shifted Proton-Assisted Insensitive Nuclei Cross Polarization (ABH-PS-PAIN-CP), still rely on cross terms between heteronuclear dipolar couplings involving assisting protons that mediate zero-quantum polarization transfer between low-γ nuclei (13C–13C, 15N–15N, 15N–13C polarization transfer). Using Average Hamiltonian Theory we show that phase inversion compensates off-resonance contributions and yields improved polarization transfer as well as substantial broadening of the matching conditions. PS-TSAR greatly improves on the standard TSAR based methods because it alleviates their sensitivity to precise RF settings which significantly enhances robustness of the experiments. We demonstrate these new methods on a 19.6 kDa protein (U–[15N, 13C]-YajG) at high magnetic fields (up to 900 MHz 1H frequency) and fast sample spinning (up to 65 kHz MAS frequency). PMID:22513727

  10. Modelling the work to be done by Escherichia coli to adapt to sudden temperature upshifts.

    PubMed

    Swinnen, I A M; Bernaerts, K; Van Impe, J F

    2006-05-01

    This paper studies and models the effect of the amplitude of a sudden temperature upshift DeltaT on the adaptation period of Escherichia coli, in terms of the work to be done by the cells during the subsequent lag phase (i.e., the product of growth rate mumax and lag phase duration lambda). Experimental data are obtained from bioreactor experiments with E. coli K12 MG1655. At a predetermined time instant during the exponential growth phase, a sudden temperature upshift is applied (no other environmental changes take place). The length of the (possibly) induced lag phase and the specific growth rate after the shift are quantified with the growth model of Baranyi and Roberts (Int J Food Microbiol 23, 1994, 277). Different models to describe the evolution of the product lambda x mumax as a function of the amplitude of the temperature shift are statistically compared. The evolution of lambda x mumax is influenced by the amplitude of the temperature shift DeltaT and by the normal physiological temperature range. As some cut-off is observed, the linear model with translation is preferred to describe this evolution. This work contributes to the characterization of microbial lag phenomena, in this case for E. coli K12 MG1655, in view of accurate predictive model building.

  11. Low-power, ultrafast, and dynamic all-optical tunable plasmon induced transparency in two stub resonators side-coupled with a plasmonic waveguide system

    NASA Astrophysics Data System (ADS)

    Wang, Boyun; Zeng, Qingdong; Xiao, Shuyuan; Xu, Chen; Xiong, Liangbin; Lv, Hao; Du, Jun; Yu, Huaqing

    2017-11-01

    We theoretically and numerically investigate a low-power, ultrafast, and dynamic all-optical tunable plasmon induced transparency (PIT) in two stub resonators side-coupled with a metal-dielectric-metal (MDM) plasmonic waveguide system. The optical Kerr effect is enhanced by the local electromagnetic field of surface plasmon polaritons (SPPs) and the plasmonic waveguide based on graphene-Ag composite material structures with large effective Kerr nonlinear coefficient. An ultrafast response time of the order of 1 ps is reached because of ultrafast carrier relaxation dynamics of graphene. With dynamically tuning the propagation phase of the plasmonic waveguide, π-phase shift of the transmission spectrum in the PIT system is achieved under excitation of a pump light with an intensity as low as 5.8 MW cm-2. The group delay is controlled between 0.14 and 0.67 ps. Moreover, the tunable bandwidth of about 42 nm is obtained. For the indirect coupling between two stub cavities or the phase coupling scheme, the phase shift multiplication effect of the PIT effect is found. All observed schemes are analyzed rigorously through finite-difference time-domain simulations and coupled-mode formalism. This work not only paves the way towards the realization of on-chip integrated nanophotonic devices but also opens the possibility of the construction of ultrahigh-speed information processing chips based on plasmonic circuits.

  12. Relative phase shifts for metaplectic isotopies acting on mixed Gaussian states

    NASA Astrophysics Data System (ADS)

    de Gosson, Maurice A.; Nicacio, Fernando

    2018-05-01

    We address in this paper the notion of relative phase shift for mixed quantum systems. We study the Pancharatnam-Sjöqvist phase shift φ (t ) =ArgTr(U^ tρ ^ ) for metaplectic isotopies acting on Gaussian mixed states. We complete and generalize the previous results obtained by one of us, while giving rigorous proofs. The key actor in this study is the theory of the Conley-Zehnder index which is an intersection index related to the Maslov index.

  13. Structural properties of zirconia - in-situ high temperature XRD characterization

    NASA Astrophysics Data System (ADS)

    Kurpaska, Lukasz

    2018-07-01

    In this work, the effect of high temperature on structural properties of pure zirconium have been investigated. In-situ X-ray diffraction analysis of the oxide layer formed at temperature window 25-600 °C on pure zirconium were performed. Conducted experiment aimed at investigation of the zirconia phases developed on surface of the metallic substrate. Based on the conducted studies, possible stress state (during heating, continuous oxidation and cooling), cell parameters and HWHM factor were analyzed. A tetragonal and monoclinic phases peak shifts and intensities change were observed, suggesting that different phases react in different way upon temperature effect.

  14. Digital second-order phase-locked loop

    NASA Technical Reports Server (NTRS)

    Holmes, J. K.; Carl, C. C.; Tagnelia, C. R.

    1975-01-01

    Actual tests with second-order digital phase-locked loop at simulated relative Doppler shift of 1x0.0001 produced phase lock with timing error of 6.5 deg and no appreciable Doppler bias. Loop thus appears to achieve subcarrier synchronization and to remove bias due to Doppler shift in range of interest.

  15. Light-Induced resetting of the circadian pacemaker: quantitative analysis of transient versus steady-state phase shifts.

    PubMed

    Watanabe, K; Deboer, T; Meijer, J H

    2001-12-01

    The suprachiasmatic nuclei of the hypothalamus contain the major circadian pacemaker in mammals, driving circadian rhythms in behavioral and physiological functions. This circadian pacemaker's responsiveness to light allows synchronization to the light-dark cycle. Phase shifting by light often involves several transient cycles in which the behavioral activity rhythm gradually shifts to its steady-state position. In this article, the authors investigate in Syrian hamsters whether a phase-advancing light pulse results in immediate shifts of the PRC at the next circadian cycle. In a first series of experiments, the authors aimed a light pulse at CT 19 to induce a phase advance. It appeared that the steady-state phase advances were highly correlated with activity onset in the first and second transient cycle. This enabled them to make a reliable estimate of the steady-state phase shift induced by a phase-advancing light pulse on the basis of activity onset in the first transient cycle. In the next series of experiments, they presented a light pulse at CT 19, which was followed by a second light pulse aimed at the delay zone of the PRC on the next circadian cycle. The immediate and steady-state phase delays induced by the second light pulse were compared with data from a third experiment in which animals received a phase-delaying light pulse only. The authors observed that the waveform of the phase-delay part of the PRC (CT 12-16) obtained in Experiment 2 was virtually identical to the phase-delay part of the PRC for a single light pulse (obtained in Experiment 3). This finding allowed for a quantitative assessment of the data. The analysis indicates that the delay part of the PRC-between CT 12 and CT 16-is rapidly reset following a light pulse at CT 19. These findings complement earlier findings in the hamster showing that after a light pulse at CT 19, the phase-advancing part of the PRC is immediately shifted. Together, the data indicate that the basis for phase advancing involves rapid resetting of both advance and delay components of the PRC.

  16. The effects of an ion-thruster exhaust plume on S-band carrier transmission

    NASA Technical Reports Server (NTRS)

    Ackerknecht, W. E.; Stanton, P. H.

    1976-01-01

    The study reported here was undertaken (1) to develop models of the effects of an ion-thruster exhaust plume on S-band signals, and (2) to measure the effects. The results show that an S-band signal passing through an ion-thruster plume is reduced in amplitude and advanced in phase. The mathematical models gave reasonable estimates of the average signal attenuation and phase shift. Negligible fluctuations in the signal amplitude and phase were measured during steady-state thruster operation. However, large jumps in phase occurred when changes were made in the thruster operating state. This study confirms that the thruster plume can have a significant effect on S-band communication link performance; hence the plume effects must be considered in S-band link calculations when electric thrusters are used for spacecraft propulsion.

  17. Gouy phase for relativistic quantum particles

    NASA Astrophysics Data System (ADS)

    Ducharme, R.; da Paz, I. G.

    2015-08-01

    Exact Hermite-Gaussian solutions to the Klein-Gordon equation for particle beams are obtained here that depend on the 4-position of the beam waist. These are Bateman-Hillion solutions that are shown to include Gouy phase and preserve their forms under Lorentz transformations. As the wave function contains two time coordinates, the particle current must be interpreted in a constraint space to reduce the number of independent coordinates. The form of the constraint space is not certain except in the nonrelativistic limit, but a trial form is proposed, enabling the observable properties of the beam to be calculated for future comparison to experiment. These results can be relevant in the theoretical development of singular electron optics since it was shown that the Gouy phase is crucial in this field as well as to investigate a possible Gouy phase effect in Zitterbewegung phenomenon of spin-zero particles. Additionally, the traditional argument that beam solutions belong to a complex shifted spacetime is shown to necessitate a corresponding Born reciprocal shift in 4-momentum space.

  18. Double-image storage optimized by cross-phase modulation in a cold atomic system

    NASA Astrophysics Data System (ADS)

    Qiu, Tianhui; Xie, Min

    2017-09-01

    A tripod-type cold atomic system driven by double-probe fields and a coupling field is explored to store double images based on the electromagnetically induced transparency (EIT). During the storage time, an intensity-dependent signal field is applied further to extend the system with the fifth level involved, then the cross-phase modulation is introduced for coherently manipulating the stored images. Both analytical analysis and numerical simulation clearly demonstrate a tunable phase shift with low nonlinear absorption can be imprinted on the stored images, which effectively can improve the visibility of the reconstructed images. The phase shift and the energy retrieving rate of the probe fields are immune to the coupling intensity and the atomic optical density. The proposed scheme can easily be extended to the simultaneous storage of multiple images. This work may be exploited toward the end of EIT-based multiple-image storage devices for all-optical classical and quantum information processings.

  19. The Effects of Changing the Phase and Duration of Sleep

    ERIC Educational Resources Information Center

    Taub, John M.; Berger, Ralph J.

    1976-01-01

    The purpose of the present experiment was to compare the effects on performance and mood of reduced and extended sleep with those following temporal shifts of sleep in a single group of subjects who characteristically sleep 9.5-10.5 hours per night. (Author)

  20. Quantum size effects in the size-temperature phase diagram of gallium: structural characterization of shape-shifting clusters.

    PubMed

    Steenbergen, Krista G; Gaston, Nicola

    2015-02-09

    Finite temperature analysis of cluster structures is used to identify signatures of the low-temperature polymorphs of gallium, based on the results of first-principle Born-Oppenheimer molecular dynamics simulations. Pre-melting structural transitions proceed from either the β- and/or the δ-phase to the γ- or δ-phase, with a size- dependent phase progression. We relate the stability of each isomer to the electronic structures of the different phases, giving new insight into the origin of polymorphism in this complicated element. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Modeling and experimental investigation of an integrated optical microheater in silicon-on-insulator.

    PubMed

    Kaushal, Saket; Das, Bijoy Krishna

    2016-04-10

    A linear piecewise model has been formulated to analyze the performance of a metallic microheater integrated with single-mode waveguides (λ∼1550  nm) in silicon-on-insulator (SOI). The model has been used to evaluate integrated optical microheaters fabricated in a SOI substrate with 2 µm device layer thickness. The Fabry-Perot modulation technique has been used to extract the effective thermo-optic phase shift and response time. The effective thermal power budget of Peff,π∼500  µW (out of actually consumed power Pπ=1.1  mW) for a π phase shift and a switching time of τ∼9  µs, have been recorded for a typical Ti heater stripe of length LH=50  µm, width WH=2  µm, and thickness tH∼150  nm, integrated with a Fabry-Perot waveguide cavity of length ∼20  mm. It has been shown that the performance of a heater improves (in terms of power budget) as the length of a microheater decreases. However, smaller heater size requires higher joule heating to obtain a desired phase shift, which is again found to be dependent on polarization of the guided mode because of thermal stress.

  2. Phase-locked laser array

    NASA Technical Reports Server (NTRS)

    Botez, Dan (Inventor)

    1987-01-01

    A phase-locked laser array comprises a body of semiconductor material having means for defining a plurality of substantially parallel lasing zones which are spaced an effective distance apart so that the modes of the adjacent lasing zones are phase-locked to one another. One of the array electrodes comprises a plurality of electrical contacts to the body between the lasing zones. These contacts provide an enhanced current density profile and thus an increase in the gain in the regions between the lasing zones so that zero degree phase-shift operation between adjacent lasing zones is achievable.

  3. Spacecraft-to-Earth Communications for Juno and Mars Science Laboratory Critical Events

    NASA Technical Reports Server (NTRS)

    Soriano, Melissa; Finley, Susan; Jongeling, Andre; Fort, David; Goodhart, Charles; Rogstad, David; Navarro, Robert

    2012-01-01

    Deep Space communications typically utilize closed loop receivers and Binary Phase Shift Keying (BPSK) or Quadrature Phase Shift Keying (QPSK). Critical spacecraft events include orbit insertion and entry, descent, and landing.---Low gain antennas--> low signal -to-noise-ratio.---High dynamics such as parachute deployment or spin --> Doppler shift. During critical events, open loop receivers and Multiple Frequency Shift Keying (MFSK) used. Entry, Descent, Landing (EDL) Data Analysis (EDA) system detects tones in real-time.

  4. Correction of phase-shifting error in wavelength scanning digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolei; Wang, Jie; Zhang, Xiangchao; Xu, Min; Zhang, Hao; Jiang, Xiangqian

    2018-05-01

    Digital holographic microscopy is a promising method for measuring complex micro-structures with high slopes. A quasi-common path interferometric apparatus is adopted to overcome environmental disturbances, and an acousto-optic tunable filter is used to obtain multi-wavelength holograms. However, the phase shifting error caused by the acousto-optic tunable filter reduces the measurement accuracy and, in turn, the reconstructed topographies are erroneous. In this paper, an accurate reconstruction approach is proposed. It corrects the phase-shifting errors by minimizing the difference between the ideal interferograms and the recorded ones. The restriction on the step number and uniformity of the phase shifting is relaxed in the interferometry, and the measurement accuracy for complex surfaces can also be improved. The universality and superiority of the proposed method are demonstrated by practical experiments and comparison to other measurement methods.

  5. Precise determination of lattice phase shifts and mixing angles

    DOE PAGES

    Lu, Bing -Nan; Lähde, Timo A.; Lee, Dean; ...

    2016-07-09

    Here, we introduce a general and accurate method for determining lattice phase shifts and mixing angles, which is applicable to arbitrary, non-cubic lattices. Our method combines angular momentum projection, spherical wall boundaries and an adjustable auxiliary potential. This allows us to construct radial lattice wave functions and to determine phase shifts at arbitrary energies. For coupled partial waves, we use a complex-valued auxiliary potential that breaks time-reversal invariance. We benchmark our method using a system of two spin-1/2 particles interacting through a finite-range potential with a strong tensor component. We are able to extract phase shifts and mixing angles formore » all angular momenta and energies, with precision greater than that of extant methods. We discuss a wide range of applications from nuclear lattice simulations to optical lattice experiments.« less

  6. Comprehensive time average digital holographic vibrometry

    NASA Astrophysics Data System (ADS)

    Psota, Pavel; Lédl, Vít; Doleček, Roman; Mokrý, Pavel; Vojtíšek, Petr; Václavík, Jan

    2016-12-01

    This paper presents a method that simultaneously deals with drawbacks of time-average digital holography: limited measurement range, limited spatial resolution, and quantitative analysis of the measured Bessel fringe patterns. When the frequency of the reference wave is shifted by an integer multiple of frequency at which the object oscillates, the measurement range of the method can be shifted either to smaller or to larger vibration amplitudes. In addition, phase modulation of the reference wave is used to obtain a sequence of phase-modulated fringe patterns. Such fringe patterns can be combined by means of phase-shifting algorithms, and amplitudes of vibrations can be straightforwardly computed. This approach independently calculates the amplitude values in every single pixel. The frequency shift and phase modulation are realized by proper control of Bragg cells and therefore no additional hardware is required.

  7. The cholinergic forebrain arousal system acts directly on the circadian pacemaker

    PubMed Central

    Yamakawa, Glenn R.; Basu, Priyoneel; Cortese, Filomeno; MacDonnell, Johanna; Whalley, Danica; Smith, Victoria M.

    2016-01-01

    Sleep and wake states are regulated by a variety of mechanisms. One such important system is the circadian clock, which provides temporal structure to sleep and wake. Conversely, changes in behavioral state, such as sleep deprivation (SD) or arousal, can phase shift the circadian clock. Here we demonstrate that the level of wakefulness is critical for this arousal resetting of the circadian clock. Specifically, drowsy animals with significant power in the 7- to 9-Hz band of their EEGs do not exhibit phase shifts in response to a mild SD procedure. We then show that treatments that both produce arousal and reset the phase of circadian clock activate (i.e., induce Fos expression in) the basal forebrain. Many of the activated cells are cholinergic. Using retrograde tract tracing, we demonstrate that cholinergic cells activated by these arousal procedures project to the circadian clock in the suprachiasmatic nuclei (SCN). We then demonstrate that arousal-induced phase shifts are blocked when animals are pretreated with atropine injections to the SCN, demonstrating that cholinergic activity at the SCN is necessary for arousal-induced phase shifting. Finally, we demonstrate that electrical stimulation of the substantia innominata of the basal forebrain phase shifts the circadian clock in a manner similar to that of our arousal procedures and that these shifts are also blocked by infusions of atropine to the SCN. These results establish a functional link between the major forebrain arousal center and the circadian system. PMID:27821764

  8. Unfound Associated Resonant Model and Its Impact on Response of a Quartz Crystal Microbalance in the Liquid Phase.

    PubMed

    Kang, Qi; Shen, Qirui; Zhang, Ping; Wang, Honghai; Sun, Yan; Shen, Dazhong

    2018-02-20

    Quartz crystal microbalance (QCM) is an important tool to detect in real time the mass change at the nanogram level. However, for a QCM operated in the liquid phase, the Sauerbrey equation is usually disturbed by the changes in liquid properties and the longitudinal wave effect. Herein, we report another unfound associated high-frequency resonance (HFR) model for the QCM, with the intensity 2 orders of magnitude higher than that of the fundamental peak in the liquid phase. The HFR model exhibits obvious impact on the response of QCM in the thickness-shear model (TSM), especially for overtones. The frequency of HFR peak is decreased dramatically with increasing conductivity or permittivity of the liquid phase, resulting in considerable additional frequency shifts in the TSM as baseline drift. Compared to that with a faraway HFR peak, the overlapping of HFR peak to a TSM overtone results in the frequency shifts of ±50-70 kHz with its intensity enhancement by 3 orders of magnitude in the later. The HFR behavior is explained by an equivalent circuit model including leading wire inductance, liquid inductance, and static capacitance of QCM. Taking into account the HFR model, the positive frequency shifts of the QCM at high overtones during the cell adhesion process is understandable. Combining the TSM and HFR is an effective way to improve the stability of QCM and provides more reliable information from the responses of QCM. The HFR may have potential application in chemical and biological sensors.

  9. Effect of flow-pressure phase on performance of regenerators in the range of 4 K to 20 K

    NASA Astrophysics Data System (ADS)

    Lewis, M. A.; Taylor, R. P.; Bradley, P. E.; Radebaugh, R.

    2014-01-01

    Modeling with REGEN3.3 has shown that the phase between flow and pressure at the cold end of 4 K regenerators has a large effect on their second-law efficiency. The use of inertance tubes in small 4 K pulse tube cryocoolers has limited phase-shifting ability, and their phase shift cannot be varied unless their dimensions are varied. We report here on the use of a miniature linear compressor, operating at the pulse tube warm end of about 30 K, as a controllable expander that can be used to vary the phase over 360°. We also use the back EMF of the linear motor to measure the acoustic power, flow rate amplitude, and phase between flow and pressure at the piston face. We discuss the measurements of the linear motor parameters that are required to determine the piston velocity from the back EMF as well as the measurement procedures to determine the back EMF when the expander is operating at a temperature around 30 K. Our experimental results on the performance of a regenerator/pulse tube stage operating below 30 K show an optimum performance when the flow at the phase shifter lags the pressure by about 65° to 80°, which is close to the model results of about 60°. Temperatures below 10 K were achieved at the cold end in these measurements. The efficiency of the compressor operating as an expander is also discussed.

  10. Grid cell mechanisms and function: Contributions of entorhinal persistent spiking and phase resetting

    PubMed Central

    Hasselmo, Michael E.

    2008-01-01

    This article presents a model of grid cell firing based on the intrinsic persistent firing shown experimentally in neurons of entorhinal cortex. In this model, the mechanism of persistent firing allows individual neurons to hold a stable baseline firing frequency. Depolarizing input from speed modulated head direction cells transiently shifts the frequency of firing from baseline, resulting in a shift in spiking phase in proportion to the integral of velocity. The convergence of input from different persistent firing neurons causes spiking in a grid cell only when the persistent firing neurons are within similar phase ranges. This model effectively simulates the two-dimensional firing of grid cells in open field environments, as well as the properties of theta phase precession. This model provides an alternate implementation of oscillatory interference models. The persistent firing could also interact on a circuit level with rhythmic inhibition and neurons showing membrane potential oscillations to code position with spiking phase. These mechanisms could operate in parallel with computation of position from visual angle and distance of stimuli. In addition to simulating two-dimensional grid patterns, models of phase interference can account for context-dependent firing in other tasks. In network simulations of entorhinal cortex, hippocampus and postsubiculum, the reset of phase effectively replicates context-dependent firing by entorhinal and hippocampal neurons during performance of a continuous spatial alternation task, a delayed spatial alternation task with running in a wheel during the delay period, and a hairpin maze task. PMID:19021258

  11. Ab initio calculation of the electronic absorption spectrum of liquid water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martiniano, Hugo F. M. C.; Galamba, Nuno; Cabral, Benedito J. Costa, E-mail: ben@cii.fc.ul.pt

    2014-04-28

    The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are inmore » good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O–H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.« less

  12. Different hydraulic responses to the 2008 Wenchuan and 2011 Tohoku earthquakes in two adjacent far-field wells: the effect of shales on aquifer lithology

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Fu, Li-Yun; Ma, Yuchuan; Hu, Junhua

    2016-11-01

    Zuojiazhuang and Baodi are two adjacent wells ( 50 km apart) in northern China. The large 2008 M w 7.9 Wenchuan and 2011 M w 9.1 Tohoku earthquakes induced different co-seismic water-level responses in these far-field (>1000 km) wells. The co-seismic water-level changes in the Zuojiazhuang well exhibited large amplitudes ( 2 m), whereas those in the Baodi well were small and unclear ( 0.05 m). The mechanism of the different co-seismic hydraulic responses in the two wells needs to be revealed. In this study, we used the barometric responses in different frequency domains and the phase shifts and amplitude ratios of the tidal responses (M2 wave), together with the well logs, to explain this inconformity. Our calculations show that the co-seismic phase shifts of the M2 wave decreased or remained unchanged in the Baodi well, which was quite different from the Zuojiazhuang well and from the commonly accepted phenomena. According to the well logs, the lithology of the Baodi well is characterized by the presence of a significant amount of shale. The low porosity/permeability of shale in the Baodi well could be the cause for the unchanged and decreased phase shifts and tiny co-seismic water-level responses. In addition, shale is one of the causes of positive phase shifts and indicates a vertical water-level flow, which may be due to a semi-confined aquifer or the complex and anisotropic fracturing of shale.

  13. Determination of baryon-baryon elastic scattering phase shift from finite volume spectra in elongated boxes

    NASA Astrophysics Data System (ADS)

    Li, Ning; Wu, Ya-Jie; Liu, Zhan-Wei

    2018-01-01

    The relations between the baryon-baryon elastic scattering phase shifts and the two-particle energy spectrum in the elongated box are established. We studied the cases with both the periodic boundary condition and twisted boundary condition in the center of mass frame. The framework is also extended to the system of nonzero total momentum with periodic boundary condition in the moving frame. Moreover, we discussed the sensitivity functions σ (q ) that represent the sensitivity of higher scattering phases. Our analytical results will be helpful to extract the baryon-baryon elastic scattering phase shifts in the continuum from lattice QCD data by using elongated boxes.

  14. The effects of attentional focus in the preparation and execution of a standing long jump.

    PubMed

    Becker, Kevin A; Fairbrother, Jeffrey T; Couvillion, Kaylee F

    2018-04-03

    Attentional focus research suggests an external focus leads to improved motor performance compared to an internal focus (Wulf in Int Rev Sport Exerc Psychol 6:77-104, 2013), but skilled athletes often report using an internal focus (Fairbrother et al., Front Psychol 7:1028, 2016) and sometimes shifting between different foci in the preparation and execution phases of performance (Bernier et al. in J Appl Sport Psychol 23:326-341, 2011; Bernier et al. in Sport Psychol 30:256-266, 2016). To date, focus shifts have been unexplored in experimental research, thus the purpose of this study was to determine the effect of shifting focus between the preparation and execution phases of a standing long jump. Participants (N = 29) completed two jumps in a control condition (CON), followed by two jumps in four experimental conditions presented in a counterbalanced order. Conditions included using an external focus (EF) and internal focus (IF) in both preparation and execution of the skill, as well as shifting from an internal focus in preparation to an external focus in execution (ITE), and an external focus in preparation to an internal focus in execution (ETI). Jump distance was analyzed with a repeated measures ANOVA. The main effect of condition was significant, p < .001, with EF producing longer jumps than all other conditions (p's < 0.05). ITE also generated farther jumps than IF and CON (p's < 0.05). The superiority of the EF and ITE conditions suggests that the focus employed in execution has the strongest impact on performance. Additionally, if an internal focus must be used in preparation, the performance decrement can be ameliorated by shifting to an external focus during execution.

  15. Homodyne Phase-Shift-Keying Systems: Past Challenges and Future Opportunities

    NASA Astrophysics Data System (ADS)

    Kazovsky, Leonid G.; Kalogerakis, Georgios; Shaw, Wei-Tao

    2006-12-01

    Homodyne phase-shift-keying systems can achieve the best receiver sensitivity and the longest transmission distance among all optical communication systems. This paper reviews recent research efforts in the field and examines future possibilities that might lead toward potential practical use of these systems. Additionally, phase estimation techniques based on feed-forward phase recovery and digital delay-lock loop approaches are examined, simulated, and compared.

  16. No Escaping the Rat Race: Simulated Night Shift Work Alters the Time-of-Day Variation in BMAL1 Translational Activity in the Prefrontal Cortex.

    PubMed

    Marti, Andrea R; Patil, Sudarshan; Mrdalj, Jelena; Meerlo, Peter; Skrede, Silje; Pallesen, Ståle; Pedersen, Torhild T; Bramham, Clive R; Grønli, Janne

    2017-01-01

    Millions of people worldwide work during the night, resulting in disturbed circadian rhythms and sleep loss. This may cause deficits in cognitive functions, impaired alertness and increased risk of errors and accidents. Disturbed circadian rhythmicity resulting from night shift work could impair brain function and cognition through disrupted synthesis of proteins involved in synaptic plasticity and neuronal function. Recently, the circadian transcription factor brain-and-muscle arnt-like protein 1 (BMAL1) has been identified as a promoter of mRNA translation initiation, the most highly regulated step in protein synthesis, through binding to the mRNA "cap". In this study we investigated the effects of simulated shift work on protein synthesis markers. Male rats ( n = 40) were exposed to forced activity, either in their rest phase (simulated night shift work) or in their active phase (simulated day shift work) for 3 days. Following the third work shift, experimental animals and time-matched undisturbed controls were euthanized (rest work at ZT12; active work at ZT0). Tissue lysates from two brain regions (prefrontal cortex, PFC and hippocampus) implicated in cognition and sleep loss, were analyzed with m 7 GTP (cap) pull-down to examine time-of-day variation and effects of simulated shift work on cap-bound protein translation. The results show time-of-day variation of protein synthesis markers in PFC, with increased protein synthesis at ZT12. In the hippocampus there was little difference between ZT0 and ZT12. Active phase work did not induce statistically significant changes in protein synthesis markers at ZT0 compared to time-matched undisturbed controls. Rest work, however, resulted in distinct brain-region specific changes of protein synthesis markers compared to time-matched controls at ZT12. While no changes were observed in the hippocampus, phosphorylation of cap-bound BMAL1 and its regulator S6 kinase beta-1 (S6K1) was significantly reduced in the PFC, together with significant reduction in the synaptic plasticity associated protein activity-regulatedcytoskeleton-associated protein (Arc). Our results indicate considerable time-of-day and brain-region specific variation in cap-dependent translation initiation. We concludethat simulated night shift work in rats disrupts the pathways regulating the circadian component of the translation of mRNA in the PFC, and that this may partly explain impaired waking function during night shift work.

  17. Shift Work and Cognitive Flexibility: Decomposing Task Performance.

    PubMed

    Cheng, Philip; Tallent, Gabriel; Bender, Thomas John; Tran, Kieulinh Michelle; Drake, Christopher L

    2017-04-01

    Deficits in cognitive functioning associated with shift work are particularly relevant to occupational performance; however, few studies have examined how cognitive functioning is associated with specific components of shift work. This observational study examined how circadian phase, nocturnal sleepiness, and daytime insomnia in a sample of shift workers ( N = 30) were associated with cognitive flexibility during the night shift. Cognitive flexibility was measured using a computerized task-switching paradigm, which produces 2 indexes of flexibility: switch cost and set inhibition. Switch cost represents the additional cognitive effort required in switching to a different task and can impact performance when multitasking is involved. Set inhibition is the efficiency in returning to previously completed tasks and represents the degree of cognitive perseveration, which can lead to reduced accuracy. Circadian phase was measured via melatonin assays, nocturnal sleepiness was assessed using the Multiple Sleep Latency Test, and daytime insomnia was assessed using the Insomnia Severity Index. Results indicated that those with an earlier circadian phase, insomnia, and sleepiness exhibited reduced cognitive flexibility; however, specific components of cognitive flexibility were differentially associated with circadian phase, insomnia, and sleepiness. Individuals with an earlier circadian phase (thus more misaligned to the night shift) exhibited larger switch costs, which was also associated with reduced task efficiency. Shift workers with more daytime insomnia demonstrated difficulties with cognitive inhibition, whereas nocturnal sleepiness was associated with difficulties in reactivating previous tasks. Deficits in set inhibition were also related to reduced accuracy and increased perseverative errors. Together, this study indicates that task performance deficits in shift work are complex and are variably impacted by different mechanisms. Future research may examine phenotypic differences in shift work and the associated consequences. Results also suggest that fatigue risk management strategies may benefit from increased scope and specificity in assessment of sleep, sleepiness, and circadian rhythms in shift workers.

  18. UV-Vis absorption spectra and electronic structure of merocyanines in the gas phase

    NASA Astrophysics Data System (ADS)

    Ishchenko, Alexander A.; Kulinich, Andrii V.; Bondarev, Stanislav L.; Raichenok, Tamara F.

    2018-02-01

    Gas-phase absorption spectra of a merocyanine vinylogous series have been studied for the first time. In vapour, their long-wavelength absorption bands were found to be considerably shifted hypsochromically, broader, more symmetrical, less intense, and their vinylene shift much smaller than even in low-polarity n-hexane. This indicates that in the gas phase their electronic structure closely approaches the nonpolar polyene limiting structure. The TDDFT calculations of the long-wavelength electronic transitions in the studied merocyanines in vacuo demonstrated good-to-excellent correlation - depending on the functional used - with the obtained experimental data. For comparison, the solvent effects was accounted for using the polarizable continuum model (PCM) with n-hexane and ethanol as low-polarity and high-polarity media, and compared with the UV-Vis spectral data in these solvents. In this case, the discrepancy between theory and experiment was much greater, increasing at that with the polymethine chain length.

  19. Possible daily and seasonal variations in quantum interference induced by Chern-Simons gravity.

    PubMed

    Okawara, Hiroki; Yamada, Kei; Asada, Hideki

    2012-12-07

    Possible effects of Chern-Simons (CS) gravity on a quantum interferometer turn out to be dependent on the latitude and direction of the interferometer on Earth in orbital motion around the Sun. Daily and seasonal variations in phase shifts are predicted with an estimate of the size of the effects, wherefore neutron interferometry with ~5 m arm length and ~10(-4) phase measurement accuracy would place a bound on a CS parameter comparable to the Gravity Probe B satellite.

  20. Simultaneously frequency down-conversion, independent multichannel phase shifting and zero-IF receiving using a phase modulator in a sagnac loop and balanced detection

    NASA Astrophysics Data System (ADS)

    Zhu, Zihang; Zhao, Shanghong; Li, Xuan; Lin, Tao; Hu, Dapeng

    2018-03-01

    Photonic microwave frequency down-conversion with independent multichannel phase shifting and zero-intermediate frequency (IF) receiving is proposed and demonstrated by simulation. By combined use of a phase modulator (PM) in a sagnac loop and an optical bandpass filter (OBPF), orthogonal polarized carrier suppression single sideband (CS-SSB) signals are obtained. By adjusting the polarization controllers (PCs) to introduce the phase difference in the optical domain and using balanced detection to eliminate the direct current components, the phase of the generated IF signal can be arbitrarily tuned. Besides, the radio frequency (RF) vector signal can be also frequency down-converted to baseband directly by choosing two quadrature channels. In the simulation, high gain and continuously tunable phase shifts over the 360 degree range are verified. Furthermore, 2.5 Gbit/s RF vector signals centered at 10 GHz with different modulation formats are successfully demodulated.

  1. Reduction of the Nonlinear Phase Shift Induced by Stimulated Brillouin Scattering for Bi-Directional Pumping Configuration System Using Particle Swarm Optimization Algorithm

    NASA Astrophysics Data System (ADS)

    Al-Asadi, H. A.

    2013-02-01

    We present a theoretical analysis of an additional nonlinear phase shift of backward Stokes wave based on stimulated Brillouin scattering in the system with a bi-directional pumping scheme. We optimize three parameters of the system: the numerical aperture, the optical loss and the pumping wavelength to minimize an additional nonlinear phase shift of backward Stokes waves due to stimulated Brillouin scattering. The optimization is performed with various Brillouin pump powers and the optical reflectivity values are based on the modern, global evolutionary computation algorithm, particle swarm optimization. It is shown that the additional nonlinear phase shift of backward Stokes wave varies with different optical fiber lengths, and can be minimized to less than 0.07 rad according to the particle swarm optimization algorithm for 5 km. The bi-directional pumping configuration system is shown to be efficient when it is possible to transmit the power output to advanced when frequency detuning is negative and delayed when it is positive, with the optimum values of the three parameters to achieve the reduction of an additional nonlinear phase shift.

  2. Channel Acquisition for Massive MIMO-OFDM With Adjustable Phase Shift Pilots

    NASA Astrophysics Data System (ADS)

    You, Li; Gao, Xiqi; Swindlehurst, A. Lee; Zhong, Wen

    2016-03-01

    We propose adjustable phase shift pilots (APSPs) for channel acquisition in wideband massive multiple-input multiple-output (MIMO) systems employing orthogonal frequency division multiplexing (OFDM) to reduce the pilot overhead. Based on a physically motivated channel model, we first establish a relationship between channel space-frequency correlations and the channel power angle-delay spectrum in the massive antenna array regime, which reveals the channel sparsity in massive MIMO-OFDM. With this channel model, we then investigate channel acquisition, including channel estimation and channel prediction, for massive MIMO-OFDM with APSPs. We show that channel acquisition performance in terms of sum mean square error can be minimized if the user terminals' channel power distributions in the angle-delay domain can be made non-overlapping with proper phase shift scheduling. A simplified pilot phase shift scheduling algorithm is developed based on this optimal channel acquisition condition. The performance of APSPs is investigated for both one symbol and multiple symbol data models. Simulations demonstrate that the proposed APSP approach can provide substantial performance gains in terms of achievable spectral efficiency over the conventional phase shift orthogonal pilot approach in typical mobility scenarios.

  3. Phase shifts in I = 2 ππ-scattering from two lattice approaches

    NASA Astrophysics Data System (ADS)

    Kurth, T.; Ishii, N.; Doi, T.; Aoki, S.; Hatsuda, T.

    2013-12-01

    We present a lattice QCD study of the phase shift of I = 2 ππ scattering on the basis of two different approaches: the standard finite volume approach by Lüscher and the recently introduced HAL QCD potential method. Quenched QCD simulations are performed on lattices with extents N s = 16 , 24 , 32 , 48 and N t = 128 as well as lattice spacing a ~ 0 .115 fm and a pion mass of m π ~ 940 MeV. The phase shift and the scattering length are calculated in these two methods. In the potential method, the error is dominated by the systematic uncertainty associated with the violation of rotational symmetry due to finite lattice spacing. In Lüscher's approach, such systematic uncertainty is difficult to be evaluated and thus is not included in this work. A systematic uncertainty attributed to the quenched approximation, however, is not evaluated in both methods. In case of the potential method, the phase shift can be calculated for arbitrary energies below the inelastic threshold. The energy dependence of the phase shift is also obtained from Lüscher's method using different volumes and/or nonrest-frame extension of it. The results are found to agree well with the potential method.

  4. Estimation of vibration frequency of loudspeaker diaphragm by parallel phase-shifting digital holography

    NASA Astrophysics Data System (ADS)

    Kakue, T.; Endo, Y.; Shimobaba, T.; Ito, T.

    2014-11-01

    We report frequency estimation of loudspeaker diaphragm vibrating at high speed by parallel phase-shifting digital holography which is a technique of single-shot phase-shifting interferometry. This technique records multiple phaseshifted holograms required for phase-shifting interferometry by using space-division multiplexing. We constructed a parallel phase-shifting digital holography system consisting of a high-speed polarization-imaging camera. This camera has a micro-polarizer array which selects four linear polarization axes for 2 × 2 pixels. We set a loudspeaker as an object, and recorded vibration of diaphragm of the loudspeaker by the constructed system. By the constructed system, we demonstrated observation of vibration displacement of loudspeaker diaphragm. In this paper, we aim to estimate vibration frequency of the loudspeaker diaphragm by applying the experimental results to frequency analysis. Holograms consisting of 128 × 128 pixels were recorded at a frame rate of 262,500 frames per second by the camera. A sinusoidal wave was input to the loudspeaker via a phone connector. We observed displacement of the loudspeaker diaphragm vibrating by the system. We also succeeded in estimating vibration frequency of the loudspeaker diaphragm by applying frequency analysis to the experimental results.

  5. Joint estimation of phase and phase diffusion for quantum metrology.

    PubMed

    Vidrighin, Mihai D; Donati, Gaia; Genoni, Marco G; Jin, Xian-Min; Kolthammer, W Steven; Kim, M S; Datta, Animesh; Barbieri, Marco; Walmsley, Ian A

    2014-04-14

    Phase estimation, at the heart of many quantum metrology and communication schemes, can be strongly affected by noise, whose amplitude may not be known, or might be subject to drift. Here we investigate the joint estimation of a phase shift and the amplitude of phase diffusion at the quantum limit. For several relevant instances, this multiparameter estimation problem can be effectively reshaped as a two-dimensional Hilbert space model, encompassing the description of an interferometer phase probed with relevant quantum states--split single-photons, coherent states or N00N states. For these cases, we obtain a trade-off bound on the statistical variances for the joint estimation of phase and phase diffusion, as well as optimum measurement schemes. We use this bound to quantify the effectiveness of an actual experimental set-up for joint parameter estimation for polarimetry. We conclude by discussing the form of the trade-off relations for more general states and measurements.

  6. Tilt-effect of holograms and images displayed on a spatial light modulator.

    PubMed

    Harm, Walter; Roider, Clemens; Bernet, Stefan; Ritsch-Marte, Monika

    2015-11-16

    We show that a liquid crystal spatial light modulator (LCOS-SLM) can be used to display amplitude images, or phase holograms, which change in a pre-determined way when the display is tilted, i.e. observed under different angles. This is similar to the tilt-effect (also called "latent image effect") known from various security elements ("kinegrams") on credit cards or bank notes. The effect is achieved without any specialized optical components, simply by using the large phase shifting capability of a "thick" SLM, which extends over several multiples of 2π, in combination with the angular dependence of the phase shift. For hologram projection one can use the fact that the phase of a monochromatic wave is only defined modulo 2π. Thus one can design a phase pattern extending over several multiples of 2π, which transforms at different readout angles into different 2π-wrapped phase structures, due to the angular dependence of the modulo 2π operation. These different beams then project different holograms at the respective readout angles. In amplitude modulation mode (with inserted polarizer) the intensity of each SLM pixel oscillates over several periods when tuning its control voltage. Since the oscillation period depends on the readout angle, it is possible to find a certain control voltage which produces two (or more) selectable gray levels at a corresponding number of pre-determined readout angles. This is done with all SLM pixels individually, thus constructing different images for the selected angles. We experimentally demonstrate the reconstruction of multiple (Fourier- and Fresnel-) holograms, and of different amplitude images, by readout of static diffractive patterns in a variable angular range between 0° and 60°.

  7. Protonated Alcohols Are Examples of Complete Charge-Shift Bonds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Peter; Petit, Alban; Ho, Junming

    2014-10-15

    Accurate gas-phase and solution-phase valence bond calculations reveal that protonation of the hydroxyl group of aliphatic alcohols transforms the C–O bond from a principally covalent bond to a complete charge-shift bond with principally “no-bond” character. All bonding in this charge-shift bond is due to resonance between covalent and ionic structures, which is a different bonding mechanism from that of traditional covalent bonds. Until now, charge-shift bonds have been previously identified in inorganic compounds or in exotic organic compounds. This work showcases that charge-shift bonds can occur in common organic species.

  8. Reaching quantum limits for phase-shift detection with semiclassical states

    NASA Astrophysics Data System (ADS)

    Luis, Alfredo

    2004-01-01

    We present two measuring strategies reaching the Heisenberg limit for phase-shift measurements using semiclassical coherent states exclusively. We examine their performance by assuming practical experimental conditions such as losses and nonideal detectors.

  9. Kinematic markers dissociate error correction from sensorimotor realignment during prism adaptation.

    PubMed

    O'Shea, Jacinta; Gaveau, Valérie; Kandel, Matthieu; Koga, Kazuo; Susami, Kenji; Prablanc, Claude; Rossetti, Yves

    2014-03-01

    This study investigated the motor control mechanisms that enable healthy individuals to adapt their pointing movements during prism exposure to a rightward optical shift. In the prism adaptation literature, two processes are typically distinguished. Strategic motor adjustments are thought to drive the pattern of rapid endpoint error correction typically observed during the early stage of prism exposure. This is distinguished from so-called 'true sensorimotor realignment', normally measured with a different pointing task, at the end of prism exposure, which reveals a compensatory leftward 'prism after-effect'. Here, we tested whether each mode of motor compensation - strategic adjustments versus 'true sensorimotor realignment' - could be distinguished, by analyzing patterns of kinematic change during prism exposure. We hypothesized that fast feedforward versus slower feedback error corrective processes would map onto two distinct phases of the reach trajectory. Specifically, we predicted that feedforward adjustments would drive rapid compensation of the initial (acceleration) phase of the reach, resulting in the rapid reduction of endpoint errors typically observed early during prism exposure. By contrast, we expected visual-proprioceptive realignment to unfold more slowly and to reflect feedback influences during the terminal (deceleration) phase of the reach. The results confirmed these hypotheses. Rapid error reduction during the early stage of prism exposure was achieved by trial-by-trial adjustments of the motor plan, which were proportional to the endpoint error feedback from the previous trial. By contrast, compensation of the terminal reach phase unfolded slowly across the duration of prism exposure. Even after 100 trials of pointing through prisms, adaptation was incomplete, with participants continuing to exhibit a small rightward shift in both the reach endpoints and in the terminal phase of reach trajectories. Individual differences in the degree of adaptation of the terminal reach phase predicted the magnitude of prism after-effects. In summary, this study identifies distinct kinematic signatures of fast strategic versus slow sensorimotor realignment processes, which combine to adjust motor performance to compensate for a prismatic shift. © 2013 Elsevier Ltd. All rights reserved.

  10. The effect of structural design parameters on FPGA-based feed-forward space-time trellis coding-orthogonal frequency division multiplexing channel encoders

    NASA Astrophysics Data System (ADS)

    Passas, Georgios; Freear, Steven; Fawcett, Darren

    2010-08-01

    Orthogonal frequency division multiplexing (OFDM)-based feed-forward space-time trellis code (FFSTTC) encoders can be synthesised as very high speed integrated circuit hardware description language (VHDL) designs. Evaluation of their FPGA implementation can lead to conclusions that help a designer to decide the optimum implementation, given the encoder structural parameters. VLSI architectures based on 1-bit multipliers and look-up tables (LUTs) are compared in terms of FPGA slices and block RAMs (area), as well as in terms of minimum clock period (speed). Area and speed graphs versus encoder memory order are provided for quadrature phase shift keying (QPSK) and 8 phase shift keying (8-PSK) modulation and two transmit antennas, revealing best implementation under these conditions. The effect of number of modulation bits and transmit antennas on the encoder implementation complexity is also investigated.

  11. Accurate reconstruction in digital holographic microscopy using antialiasing shift-invariant contourlet transform

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolei; Zhang, Xiangchao; Xu, Min; Zhang, Hao; Jiang, Xiangqian

    2018-03-01

    The measurement of microstructured components is a challenging task in optical engineering. Digital holographic microscopy has attracted intensive attention due to its remarkable capability of measuring complex surfaces. However, speckles arise in the recorded interferometric holograms, and they will degrade the reconstructed wavefronts. Existing speckle removal methods suffer from the problems of frequency aliasing and phase distortions. A reconstruction method based on the antialiasing shift-invariant contourlet transform (ASCT) is developed. Salient edges and corners have sparse representations in the transform domain of ASCT, and speckles can be recognized and removed effectively. As subsampling in the scale and directional filtering schemes is avoided, the problems of frequency aliasing and phase distortions occurring in the conventional multiscale transforms can be effectively overcome, thereby improving the accuracy of wavefront reconstruction. As a result, the proposed method is promising for the digital holographic measurement of complex structures.

  12. Phase-shifted Solc-type filter based on thin periodically poled lithium niobate in a reflective geometry.

    PubMed

    Ding, Tingting; Zheng, Yuanlin; Chen, Xianfeng

    2018-04-30

    Configurable narrow bandwidth filters are indispensable components in optical communication networks. Here, we present an easily-integrated compact tunable filtering based on polarization-coupling process in a thin periodically poled lithium niobate (PPLN) in a reflective geometry via the transverse electro-optic (EO) effect. The structure, composed of an in-line polarizer and a thinned PPLN chip, forms a phase-shift Solc-type filter with similar mechanism to defected Bragg gratings. The filtering effect can be dynamically switched on and off by a transverse electric filed. Analogy of electromagnetically induced transparency (EIT) transmission spectrum and electrically controllable group delay is experimentally observed. The mechanism features tunable center wavelength in a wide range with respect to temperature and tunable optical delay to the applied voltage, which may offer another way for optical tunable filters or delay lines.

  13. Lithographic performance comparison with various RET for 45-nm node with hyper NA

    NASA Astrophysics Data System (ADS)

    Adachi, Takashi; Inazuki, Yuichi; Sutou, Takanori; Kitahata, Yasuhisa; Morikawa, Yasutaka; Toyama, Nobuhito; Mohri, Hiroshi; Hayashi, Naoya

    2006-05-01

    In order to realize 45 nm node lithography, strong resolution enhancement technology (RET) and water immersion will be needed. In this research, we discussed about various RET performance comparison for 45 nm node using 3D rigorous simulation. As a candidate, we chose binary mask (BIN), several kinds of attenuated phase-shifting mask (att-PSM) and chrome-less phase-shifting lithography mask (CPL). The printing performance was evaluated and compared for each RET options, after the optimizing illumination conditions, mask structure and optical proximity correction (OPC). The evaluation items of printing performance were CD-DOF, contrast-DOF, conventional ED-window and MEEF, etc. It's expected that effect of mask 3D topography becomes important at 45 nm node, so we argued about not only the case of ideal structures, but also the mask topography error effects. Several kinds of mask topography error were evaluated and we confirmed how these errors affect to printing performance.

  14. Stokes' theorem, gauge symmetry and the time-dependent Aharonov-Bohm effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macdougall, James, E-mail: jbm34@mail.fresnostate.edu; Singleton, Douglas, E-mail: dougs@csufresno.edu

    2014-04-15

    Stokes' theorem is investigated in the context of the time-dependent Aharonov-Bohm effect—the two-slit quantum interference experiment with a time varying solenoid between the slits. The time varying solenoid produces an electric field which leads to an additional phase shift which is found to exactly cancel the time-dependent part of the usual magnetic Aharonov-Bohm phase shift. This electric field arises from a combination of a non-single valued scalar potential and/or a 3-vector potential. The gauge transformation which leads to the scalar and 3-vector potentials for the electric field is non-single valued. This feature is connected with the non-simply connected topology ofmore » the Aharonov-Bohm set-up. The non-single valued nature of the gauge transformation function has interesting consequences for the 4-dimensional Stokes' theorem for the time-dependent Aharonov-Bohm effect. An experimental test of these conclusions is proposed.« less

  15. High efficiency x-ray nanofocusing by the blazed stacking of binary zone plates

    NASA Astrophysics Data System (ADS)

    Mohacsi, I.; Karvinen, P.; Vartiainen, I.; Diaz, A.; Somogyi, A.; Kewish, C. M.; Mercere, P.; David, C.

    2013-09-01

    The focusing efficiency of binary Fresnel zone plate lenses is fundamentally limited and higher efficiency requires a multi step lens profile. To overcome the manufacturing problems of high resolution and high efficiency multistep zone plates, we investigate the concept of stacking two different binary zone plates in each other's optical near-field. We use a coarse zone plate with π phase shift and a double density fine zone plate with π/2 phase shift to produce an effective 4- step profile. Using a compact experimental setup with piezo actuators for alignment, we demonstrated 47.1% focusing efficiency at 6.5 keV using a pair of 500 μm diameter and 200 nm smallest zone width. Furthermore, we present a spatially resolved characterization method using multiple diffraction orders to identify manufacturing errors, alignment errors and pattern distortions and their effect on diffraction efficiency.

  16. Direct observation of dopant distribution in GaAs compound semiconductors using phase-shifting electron holography and Lorentz microscopy.

    PubMed

    Sasaki, Hirokazu; Otomo, Shinya; Minato, Ryuichiro; Yamamoto, Kazuo; Hirayama, Tsukasa

    2014-06-01

    Phase-shifting electron holography and Lorentz microscopy were used to map dopant distributions in GaAs compound semiconductors with step-like dopant concentration. Transmission electron microscope specimens were prepared using a triple beam focused ion beam (FIB) system, which combines a Ga ion beam, a scanning electron microscope, and an Ar ion beam to remove the FIB damaged layers. The p-n junctions were clearly observed in both under-focused and over-focused Lorentz microscopy images. A phase image was obtained by using a phase-shifting reconstruction method to simultaneously achieve high sensitivity and high spatial resolution. Differences in dopant concentrations between 1 × 10(19) cm(-3) and 1 × 10(18) cm(-3) regions were clearly observed by using phase-shifting electron holography. We also interpreted phase profiles quantitatively by considering inactive layers induced by ion implantation during the FIB process. The thickness of an inactive layer at different dopant concentration area can be measured from the phase image. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Full-field stress determination in photoelasticity with phase shifting technique

    NASA Astrophysics Data System (ADS)

    Guo, Enhai; Liu, Yonggang; Han, Yongsheng; Arola, Dwayne; Zhang, Dongsheng

    2018-04-01

    Photoelasticity is an effective method for evaluating the stress and its spatial variations within a stressed body. In the present study, a method to determine the stress distribution by means of phase shifting and a modified shear-difference is proposed. First, the orientation of the first principal stress and the retardation between the principal stresses are determined in the full-field through phase shifting. Then, through bicubic interpolation and derivation of a modified shear-difference method, the internal stress is calculated from the point with a free boundary along its normal direction. A method to reduce integration error in the shear difference scheme is proposed and compared to the existing methods; the integration error is reduced when using theoretical photoelastic parameters to calculate the stress component with the same points. Results show that when the value of Δx/Δy approaches one, the error is minimum, and although the interpolation error is inevitable, it has limited influence on the accuracy of the result. Finally, examples are presented for determining the stresses in a circular plate and ring subjected to diametric loading. Results show that the proposed approach provides a complete solution for determining the full-field stresses in photoelastic models.

  18. Universality and tails of long-range interactions in one dimension

    NASA Astrophysics Data System (ADS)

    Valiente, Manuel; Öhberg, Patrik

    2017-07-01

    Long-range interactions and, in particular, two-body potentials with power-law long-distance tails are ubiquitous in nature. For two bosons or fermions in one spatial dimension, the latter case being formally equivalent to three-dimensional s -wave scattering, we show how generic asymptotic interaction tails can be accounted for in the long-distance limit of scattering wave functions. This is made possible by introducing a generalization of the collisional phase shifts to include space dependence. We show that this distance dependence is universal, in that it does not depend on short-distance details of the interaction. The energy dependence is also universal, and is fully determined by the asymptotic tails of the two-body potential. As an important application of our findings, we describe how to eliminate finite-size effects with long-range potentials in the calculation of scattering phase shifts from exact diagonalization. We show that even with moderately small system sizes it is possible to accurately extract phase shifts that would otherwise be plagued with finite-size errors. We also consider multichannel scattering, focusing on the estimation of open channel asymptotic interaction strengths via finite-size analysis.

  19. Electron spin resonance shifts in S=1 antiferromagnetic chains

    NASA Astrophysics Data System (ADS)

    Furuya, Shunsuke C.; Maeda, Yoshitaka; Oshikawa, Masaki

    2013-03-01

    We discuss electron spin resonance (ESR) shifts in spin-1 Heisenberg antiferromagnetic chains with a weak single-ion anisotropy, based on several effective field theories: the O(3) nonlinear sigma model (NLSM) in the Haldane phase, free-fermion theories around the lower and the upper critical fields. In the O(3) NLSM, the single-ion anisotropy corresponds to a composite operator which creates two magnons at the same time and position. Therefore, even inside a parameter range where free magnon approximation is valid for thermodynamics, we have to take interactions among magnons into account in order to include the single-ion anisotropy as a perturbation. Although the O(3) NLSM is only valid in the Haldane phase, an appropriate translation of Faddeev-Zamolodchikov operators of the O(3) NLSM to fermion operators enables one to treat ESR shifts near the lower critical field in a similar manner to discussions in the Haldane phase. Our theory gives quantitative agreements with a numerical evaluation using quantum Monte Carlo simulation, and also with recent ESR experimental results on a spin-1 chain compound Ni(C5H14N2)2N3(PF6).

  20. A Phase-Shifting Zernike Wavefront Sensor for the Palomar P3K Adaptive Optics System

    NASA Technical Reports Server (NTRS)

    Wallace, J. Kent; Crawford, Sam; Loya, Frank; Moore, James

    2012-01-01

    A phase-shifting Zernike wavefront sensor has distinct advantages over other types of wavefront sensors. Chief among them are: 1) improved sensitivity to low-order aberrations and 2) efficient use of photons (hence reduced sensitivity to photon noise). We are in the process of deploying a phase-shifting Zernike wavefront sensor to be used with the realtime adaptive optics system for Palomar. Here we present the current state of the Zernike wavefront sensor to be integrated into the high-order adaptive optics system at Mount Palomar's Hale Telescope.

  1. PT-symmetry of coupled fiber lasers

    NASA Astrophysics Data System (ADS)

    Smirnov, Sergey V.; Churkin, Dmitry V.; Makarenko, Maxim; Vatnik, Ilya; Suchkov, Sergey V.; Sukhorukov, Andrey A.

    2017-10-01

    In this work, we propose a concept of a coupled fiber laser exhibiting PT-symmetry properties. We consider a system operated via Raman gain. The scheme comprises two identical fiber loops (ring cavities) connected by means of two fiber couplers with variable phase shift between them. We show that by changing the phase shift one can switch between generation regimes, realizing either PT-symmetric or PT-broken solution. Furthermore, the paper investigates some peculiarities of the system such as power oscillations and the role of nonlinear phase shift in fiber rings.

  2. Correction of I/Q channel errors without calibration

    DOEpatents

    Doerry, Armin W.; Tise, Bertice L.

    2002-01-01

    A method of providing a balanced demodular output for a signal such as a Doppler radar having an analog pulsed input; includes adding a variable phase shift as a function of time to the input signal, applying the phase shifted input signal to a demodulator; and generating a baseband signal from the input signal. The baseband signal is low-pass filtered and converted to a digital output signal. By removing the variable phase shift from the digital output signal, a complex data output is formed that is representative of the output of a balanced demodulator.

  3. Bright-light mask treatment of delayed sleep phase syndrome.

    PubMed

    Cole, Roger J; Smith, Julian S; Alcalá, Yvonne C; Elliott, Jeffrey A; Kripke, Daniel F

    2002-02-01

    We treated delayed sleep phase syndrome (DSPS) with an illuminated mask that provides light through closed eyelids during sleep. Volunteers received either bright white light (2,700 lux, n = 28) or dim red light placebo (0.1 lux, n = 26) for 26 days at home. Mask lights were turned on (< 0.01 lux) 4 h before arising, ramped up for 1 h, and remained on at full brightness until arising. Volunteers also attempted to systematically advance sleep time, avoid naps, and avoid evening bright light. The light mask was well tolerated and produced little sleep disturbance. The acrophase of urinary 6-sulphatoxymelatonin (6-SMT) excretion advanced significantly from baseline in the bright group (p < 0.0006) and not in the dim group, but final phases were not significantly earlier in the bright group (ANCOVA ns). Bright treatment did produce significantly earlier phases, however, among volunteers whose baseline 6-SMT acrophase was later than the median of 0602 h (bright shift: 0732-0554 h, p < 0.0009; dim shift: 0746-0717 h, ns; ANCOVA p = 0.03). In this subgroup, sleep onset advanced significantly only with bright but not dim treatment (sleep onset shift: bright 0306-0145 h, p < 0.0002; dim 0229-0211 h, ns; ANCOVA p < .05). Despite equal expectations at baseline, participants rated bright treatment as more effective than dim treatment (p < 0.04). We conclude that bright-light mask treatment advances circadian phase and provides clinical benefit in DSPS individuals whose initial circadian delay is relatively severe.

  4. Digital Phase Meter for a Laser Heterodyne Interferometer

    NASA Technical Reports Server (NTRS)

    Loya, Frank

    2008-01-01

    The Digital Phase Meter is based on a modified phase-locked loop. When phase alignment between the reference input and the phase-shifted metrological input is achieved, the loop locks and the phase shift of the digital phase shifter equals the phase difference that one seeks to measure. This digital phase meter is being developed for incorporation into a laser heterodyne interferometer in a metrological apparatus, but could also be adapted to other uses. Relative to prior phase meters of similar capability, including digital ones, this digital phase meter is smaller, less complex, and less expensive. The phase meter has been constructed and tested in the form of a field-programmable gate array (FPGA).

  5. Influence of quantum diffraction and shielding on electron-ion collision in two-component semiclassical plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Woo-Pyo; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 426-791

    2015-01-15

    The influence of quantum diffraction and shielding on the electron-ion collision process is investigated in two-component semiclassical plasmas. The eikonal method and micropotential taking into account the quantum diffraction and shielding are used to obtain the eikonal scattering phase shift and the eikonal collision cross section as functions of the collision energy, density parameter, Debye length, electron de Broglie wavelength, and the impact parameter. The result shows that the quantum diffraction and shielding effects suppress the eikonal scattering phase shift as well as the differential eikonal collision cross section, especially, in small-impact parameter regions. It is also shown that themore » quantum shielding effect on the eikonal collision cross section is more important in low-collision energies. In addition, it is found that the eikonal collision cross section increases with an increase in the density parameter. The variations of the eikonal cross section due to the quantum diffraction and shielding effects are also discussed.« less

  6. Integrated reformer and shift reactor

    DOEpatents

    Bentley, Jeffrey M.; Clawson, Lawrence G.; Mitchell, William L.; Dorson, Matthew H.

    2006-06-27

    A hydrocarbon fuel reformer for producing diatomic hydrogen gas is disclosed. The reformer includes a first reaction vessel, a shift reactor vessel annularly disposed about the first reaction vessel, including a first shift reactor zone, and a first helical tube disposed within the first shift reactor zone having an inlet end communicating with a water supply source. The water supply source is preferably adapted to supply liquid-phase water to the first helical tube at flow conditions sufficient to ensure discharge of liquid-phase and steam-phase water from an outlet end of the first helical tube. The reformer may further include a first catalyst bed disposed in the first shift reactor zone, having a low-temperature shift catalyst in contact with the first helical tube. The catalyst bed includes a plurality of coil sections disposed in coaxial relation to other coil sections and to the central longitudinal axis of the reformer, each coil section extending between the first and second ends, and each coil section being in direct fluid communication with at least one other coil section.

  7. Development of Laser Based Remote Sensing System for Inner-Concrete Defects

    NASA Astrophysics Data System (ADS)

    Shimada, Yoshinori; Kotyaev, Oleg

    Laser-based remote sensing using a vibration detection system has been developed using a photorefractive crystal to reduce the effect of concrete surface-roughness. An electric field was applied to the crystal and the reference beam was phase shifted to increase the detection efficiency (DE). The DE increased by factor of 8.5 times compared to that when no voltage and no phase shifting were applied. Vibration from concrete defects can be detected at a distance of 5 m from the system. A vibration-canceling system has also developed that appears to be promising for canceling vibrations between the laser system and the concrete. Finally, we have constructed a prototype system that can be transported in a small truck.

  8. Light-driven changes in energy metabolism directly entrain the cyanobacterial circadian oscillator

    PubMed Central

    Rust, Michael J.; Golden, Susan S.; O'Shea, Erin K.

    2012-01-01

    Circadian clocks are self-sustained biological oscillators that can be entrained by environmental cues. Though this phenomenon has been studied in many organisms, the molecular mechanisms of entrainment remain unclear. Three cyanobacterial proteins and ATP are sufficient to generate oscillations in phosphorylation in vitro. We show that changes in illumination that induce a phase shift in cultured cyanobacteria also cause changes in the ATP/ADP ratio. When these nucleotide changes are simulated in the in vitro oscillator, they cause phase shifts similar to those observed in vivo. Physiological concentrations of ADP inhibit kinase activity in the oscillator and a mathematical model constrained by data shows that this effect is sufficient to quantitatively explain entrainment of the cyanobacterial circadian clock. PMID:21233390

  9. Threshold secret sharing scheme based on phase-shifting interferometry.

    PubMed

    Deng, Xiaopeng; Shi, Zhengang; Wen, Wei

    2016-11-01

    We propose a new method for secret image sharing with the (3,N) threshold scheme based on phase-shifting interferometry. The secret image, which is multiplied with an encryption key in advance, is first encrypted by using Fourier transformation. Then, the encoded image is shared into N shadow images based on the recording principle of phase-shifting interferometry. Based on the reconstruction principle of phase-shifting interferometry, any three or more shadow images can retrieve the secret image, while any two or fewer shadow images cannot obtain any information of the secret image. Thus, a (3,N) threshold secret sharing scheme can be implemented. Compared with our previously reported method, the algorithm of this paper is suited for not only a binary image but also a gray-scale image. Moreover, the proposed algorithm can obtain a larger threshold value t. Simulation results are presented to demonstrate the feasibility of the proposed method.

  10. Simulated night shift work induces circadian misalignment of the human peripheral blood mononuclear cell transcriptome.

    PubMed

    Kervezee, Laura; Cuesta, Marc; Cermakian, Nicolas; Boivin, Diane B

    2018-05-22

    Misalignment of the endogenous circadian timing system leads to disruption of physiological rhythms and may contribute to the development of the deleterious health effects associated with night shift work. However, the molecular underpinnings remain to be elucidated. Here, we investigated the effect of a 4-day simulated night shift work protocol on the circadian regulation of the human transcriptome. Repeated blood samples were collected over two 24-hour measurement periods from eight healthy subjects under highly controlled laboratory conditions before and 4 days after a 10-hour delay of their habitual sleep period. RNA was extracted from peripheral blood mononuclear cells to obtain transcriptomic data. Cosinor analysis revealed a marked reduction of significantly rhythmic transcripts in the night shift condition compared with baseline at group and individual levels. Subsequent analysis using a mixed-effects model selection approach indicated that this decrease is mainly due to dampened rhythms rather than to a complete loss of rhythmicity: 73% of transcripts rhythmically expressed at baseline remained rhythmic during the night shift condition with a similar phase relative to habitual bedtimes, but with lower amplitudes. Functional analysis revealed that key biological processes are affected by the night shift protocol, most notably the natural killer cell-mediated immune response and Jun/AP1 and STAT pathways. These results show that 4 days of simulated night shifts leads to a loss in temporal coordination between the human circadian transcriptome and the external environment and impacts biological processes related to the adverse health effects associated to night shift work.

  11. The effects of an ion-thruster exhaust plume on S-band carrier transmission

    NASA Technical Reports Server (NTRS)

    Ackerknecht, W. E., III; Stanton, P. H.

    1976-01-01

    The magnitude of the effects of an ion thruster plume on S-band signals is measured. Modeling techniques are developed to predict the effects. Results show that the RF signal transmitted through an ion thruster plume is reduced in amplitude and shifted in phase. An increase in noise is also experienced.

  12. Suppression of contrast-related artefacts in phase-measuring structured light techniques

    NASA Astrophysics Data System (ADS)

    Burke, Jan; Zhong, Liang

    2017-06-01

    Optical metrology using phase measurements has benefited significantly from the introduction of phase-shifting methods, first in interferometry, then also in fringe projection and fringe reflection. As opposed to interferometry, the latter two techniques generally use a spatiotemporal phase-shifting approach: A sequence of fringe patterns with varying spacing is used, and a phase map of each is generated by temporal phase shifting, to allow unique assignments of projector or screen pixels to camera pixels. One ubiquitous problem with phase-shifting structured-light techniques is that phase artefacts appear near regions of the image where the modulation amplitude of the projected or reflected fringes changes abruptly, e.g. near dirt/dust particles on the surface in deflectometry or bright-dark object colour transitions in fringe projection. Near the bright-dark boundaries, responses in the phase maps appear that are not plausible as actual surface features. The phenomenon has been known for a long time but is usually ignored because it does not compromise the overall reliability of results. In deflectometry, however, often the objective is to find and classify small defects, and of course it is then important to distinguish between bogus phase responses caused by fringe modulation changes, and actual surface defects. We present, for what we believe is the first time, an analytical derivation of the error terms, study the parameters influencing the phase artefacts (in particular the fringe period), and suggest some simple algorithms to minimise them.

  13. Phase-shift detection in a Fourier-transform method for temperature sensing using a tapered fiber microknot resonator.

    PubMed

    Larocque, Hugo; Lu, Ping; Bao, Xiaoyi

    2016-04-01

    Phase-shift detection in a fast-Fourier-transform (FFT)-based spectrum analysis technique for temperature sensing using a tapered fiber microknot resonator is proposed and demonstrated. Multiple transmission peaks in the FFT spectrum of the device were identified as optical modes having completed different amounts of round trips within the ring structure. Temperature variation induced phase shifts for each set of peaks were characterized, and experimental results show that different peaks have distinct temperature sensitivities reaching values up to -0.542  rad/°C, which is about 10 times greater than that of a regular adiabatic taper Mach-Zehnder interferometer when using similar phase-tracking schemes.

  14. Concentration-dependent effect of melatonin on DSPC membrane

    NASA Astrophysics Data System (ADS)

    Sahin, Ipek; Bilge, Duygu; Kazanci, Nadide; Severcan, Feride

    2013-11-01

    The concentration-induced effects of melatonin on distearoyl phosphatidylcholine (DSPC) model membranes were investigated by using two different non-invasive techniques, namely Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). An investigation of the Csbnd H, Cdbnd O and PO2- double bond stretching mode in FTIR spectra and DSC studies reveals that the inclusion of melatonin changes the physical properties of the DSPC multilamellar liposomes (MLVs) by shifting the main phase transition to lower temperatures, abolishing the pretransition, ordering the system in the gel phase and slightly disordering the system in the liquid crystalline phase, increasing the dynamics both in the gel phase and liquid crystalline phases. Melatonin also causes strong hydrogen bonding between Cdbnd O and PO2- groups of lipids and the water molecules around.

  15. Pairwise additivity in the nuclear magnetic resonance interactions of atomic xenon.

    PubMed

    Hanni, Matti; Lantto, Perttu; Vaara, Juha

    2009-04-14

    Nuclear magnetic resonance (NMR) of atomic (129/131)Xe is used as a versatile probe of the structure and dynamics of various host materials, due to the sensitivity of the Xe NMR parameters to intermolecular interactions. The principles governing this sensitivity can be investigated using the prototypic system of interacting Xe atoms. In the pairwise additive approximation (PAA), the binary NMR chemical shift, nuclear quadrupole coupling (NQC), and spin-rotation (SR) curves for the xenon dimer are utilized for fast and efficient evaluation of the corresponding NMR tensors in small xenon clusters Xe(n) (n = 2-12). If accurate, the preparametrized PAA enables the analysis of the NMR properties of xenon clusters, condensed xenon phases, and xenon gas without having to resort to electronic structure calculations of instantaneous configurations for n > 2. The binary parameters for Xe(2) at different internuclear distances were obtained at the nonrelativistic Hartree-Fock level of theory. Quantum-chemical (QC) calculations at the corresponding level were used to obtain the NMR parameters of the Xe(n) (n = 2-12) clusters at the equilibrium geometries. Comparison of PAA and QC data indicates that the direct use of the binary property curves of Xe(2) can be expected to be well-suited for the analysis of Xe NMR in the gaseous phase dominated by binary collisions. For use in condensed phases where many-body effects should be considered, effective binary property functions were fitted using the principal components of QC tensors from Xe(n) clusters. Particularly, the chemical shift in Xe(n) is strikingly well-described by the effective PAA. The coordination number Z of the Xe site is found to be the most important factor determining the chemical shift, with the largest shifts being found for high-symmetry sites with the largest Z. This is rationalized in terms of the density of virtual electronic states available for response to magnetic perturbations.

  16. Phase-Shifting Zernike Interferometer Wavefront Sensor

    NASA Technical Reports Server (NTRS)

    Wallace, J. Kent; Rao, Shanti; Jensen-Clemb, Rebecca M.; Serabyn, Gene

    2011-01-01

    The canonical Zernike phase-contrast technique1,2,3,4 transforms a phase object in one plane into an intensity object in the conjugate plane. This is done by applying a static pi/2 phase shift to the central core (approx. lambda/D) of the PSF which is intermediate between the input and output planes. Here we present a new architecture for this sensor. First, the optical system is simple and all reflective. Second, the phase shift in the central core of the PSF is dynamic and or arbitrary size. This common-path, all-reflective design makes it minimally sensitive to vibration, polarization and wavelength. We review the theory of operation, describe the optical system, summarize numerical simulations and sensitivities and review results from a laboratory demonstration of this novel instrument

  17. Phase-Shifting Zernike Interferometer Wavefront Sensor

    NASA Technical Reports Server (NTRS)

    Wallace, J. Kent; Rao, Shanti; Jensen-Clem, Rebecca M.

    2011-01-01

    The canonical Zernike phase-contrast technique transforms a phase object in one plane into an intensity object in the conjugate plane. This is done by applying a static pi/2 phase shift to the central core (approx. lambda/diameter) of the PSF which is intermediate between the input and output plane. Here we present a new architecture for this sensor. First, the optical system is simple and all reflective, and second the phase shift in the central core of the PSF is dynamic and can be made arbitrarily large. This common-path, all-reflective design makes it minimally sensitive to vibration, polarization and wavelength. We review the theory of operation, describe the optical system, summarize numerical simulations and sensitivities and review results from a laboratory demonstration of this novel instrument.

  18. Design of a high-speed optical dark-soliton detector using a phase-shifted waveguide Bragg grating in reflection.

    PubMed

    Ngo, Nam Quoc

    2007-12-01

    A theoretical study of a new application of a simple pi-phase-shifted waveguide Bragg grating (PSWBG) in reflection mode as a high-speed optical dark-soliton detector is presented. The PSWBG consists of two concatenated identical uniform waveguide Bragg gratings with a pi phase shift between them. The reflective PSWBG, with grating reflectivities equal to 0.9, a free spectral range of 1.91 THz, and a nonlinear phase response, can convert a 40 Gbit/s noisy dark-soliton signal into a high-quality 40 Gbit/s return-to-zero signal with a peak power level of approximately 17.5 dB greater than that by the existing Mach-Zehnder interferometer with free spectral range of 1.91 THz and a linear phase response.

  19. Phase shift from a coral to a corallimorph-dominated reef associated with a shipwreck on Palmyra atoll

    USGS Publications Warehouse

    Work, Thierry M.; Aeby, G.S.; Maragos, J.E.

    2008-01-01

    Coral reefs can undergo relatively rapid changes in the dominant biota, a phenomenon referred to as phase shift. Various reasons have been proposed to explain this phenomenon including increased human disturbance, pollution, or changes in coral reef biota that serve a major ecological function such as depletion of grazers. However, pinpointing the actual factors potentially responsible can be problematic. Here we show a phase shift from coral to the corallimorpharian Rhodactis howesii associated with a long line vessel that wrecked in 1991 on an isolated atoll (Palmyra) in the central Pacific Ocean. We documented high densities of R. howesii near the ship that progressively decreased with distance from the ship whereas R. howesii were rare to absent in other parts of the atoll. We also confirmed high densities of R. howesii around several buoys recently installed on the atoll in 2001. This is the first time that a phase shift on a coral leef has been unambiguously associated with man-made structures. This association was made, in part, because of the remoteness of Palmyra and its recent history of minimal human habitation or impact. Phase shifts can have long-term negative ramification for coral reefs, and eradication of organisms responsible for phase shifts in marine ecosystems can be difficult, particularly if such organisms cover a large area. The extensive R. howesii invasion and subsequent loss of coral reef habitat at Palmyra also highlights the importance of rapid removal of shipwrecks on corals reefs to mitigate the potential of reef overgrowth by invasives.

  20. Age-Related Reversals in Neural Recruitment across Memory Retrieval Phases

    PubMed Central

    Kensinger, Elizabeth A.

    2017-01-01

    Over the last several decades, neuroimaging research has identified age-related neural changes that occur during cognitive tasks. These changes are used to help researchers identify functional changes that contribute to age-related impairments in cognitive performance. One commonly reported example of such a change is an age-related decrease in the recruitment of posterior sensory regions coupled with an increased recruitment of prefrontal regions across multiple cognitive tasks. This shift is often described as a compensatory recruitment of prefrontal regions due to age-related sensory-processing deficits in posterior regions. However, age is not only associated with spatial shifts in recruitment, but also with temporal shifts, in which younger and older adults recruit the same neural region at different points in a task trial. The current study examines the possible contribution of temporal modifications in the often-reported posterior–anterior shift. Participants, ages 19–85, took part in a memory retrieval task with a protracted retrieval trial consisting of an initial memory search phase and a subsequent detail elaboration phase. Age-related neural patterns during search replicated prior reports of age-related decreases in posterior recruitment and increases in prefrontal recruitment. However, during the later elaboration phase, the same posterior regions were associated with age-related increases in activation. Further, ROI and functional connectivity results suggest that these posterior regions function similarly during search and elaboration. These results suggest that the often-reported posterior–anterior shift may not reflect the inability of older adults to engage in sensory processing, but rather a change in when they recruit this processing. SIGNIFICANCE STATEMENT The current study provides evidence that the often-reported posterior–anterior shift in aging may not reflect a global sensory-processing deficit, as has often been reported, but rather a temporal modification in this processing in which older adults engage the same neural regions during a detail elaboration phase that younger adults engage during memory search. In other words, older adults may ultimately be able to engage the same processes as younger adults during some cognitive tasks when given the time to do so. Future research should examine the generalizability of this effect and the importance of encouraging older adults to engage in these processes through task instruction or questions. PMID:28442537

  1. Preliminary results for mask metrology using spatial heterodyne interferometry

    NASA Astrophysics Data System (ADS)

    Bingham, Philip R.; Tobin, Kenneth; Bennett, Marylyn H.; Marmillion, Pat

    2003-12-01

    Spatial heterodyne interferometry (SHI) is an imaging technique that captures both the phase and amplitude of a complex wavefront in a single high-speed image. This technology was developed at the Oak Ridge National Laboratory (ORNL) and is currently being implemented for semiconductor wafer inspection by nLine Corporation. As with any system that measures phase, metrology and inspection of surface structures is possible by capturing a wavefront reflected from the surface. The interpretation of surface structure heights for metrology applications can become very difficult with the many layers of various materials used on semiconductor wafers, so inspection (defect detection) has been the primary focus for semiconductor wafers. However, masks used for photolithography typically only contain a couple well-defined materials opening the doors to high-speed mask metrology in 3 dimensions in addition to inspection. Phase shift masks often contain structures etched out of the transparent substrate material for phase shifting. While these structures are difficult to inspect using only intensity, the phase and amplitude images captured with SHI can produce very good resolution of these structures. The phase images also provide depth information that is crucial for these phase shift regions. Preliminary testing has been performed to determine the feasibility of SHI for high-speed non-contact mask metrology using a prototype SHI system with 532 nm wavelength illumination named the Visible Alpha Tool (VAT). These results show that prototype SHI system is capable of performing critical dimension measurements on 400nm lines with a repeatability of 1.4nm and line height measurements with a repeatability of 0.26nm. Additionally initial imaging of an alternating aperture phase shift mask has shown the ability of SHI to discriminate between typical phase shift heights.

  2. Multiple-frequency continuous wave ultrasonic system for accurate distance measurement

    NASA Astrophysics Data System (ADS)

    Huang, C. F.; Young, M. S.; Li, Y. C.

    1999-02-01

    A highly accurate multiple-frequency continuous wave ultrasonic range-measuring system for use in air is described. The proposed system uses a method heretofore applied to radio frequency distance measurement but not to air-based ultrasonic systems. The method presented here is based upon the comparative phase shifts generated by three continuous ultrasonic waves of different but closely spaced frequencies. In the test embodiment to confirm concept feasibility, two low cost 40 kHz ultrasonic transducers are set face to face and used to transmit and receive ultrasound. Individual frequencies are transmitted serially, each generating its own phase shift. For any given frequency, the transmitter/receiver distance modulates the phase shift between the transmitted and received signals. Comparison of the phase shifts allows a highly accurate evaluation of target distance. A single-chip microcomputer-based multiple-frequency continuous wave generator and phase detector was designed to record and compute the phase shift information and the resulting distance, which is then sent to either a LCD or a PC. The PC is necessary only for calibration of the system, which can be run independently after calibration. Experiments were conducted to test the performance of the whole system. Experimentally, ranging accuracy was found to be within ±0.05 mm, with a range of over 1.5 m. The main advantages of this ultrasonic range measurement system are high resolution, low cost, narrow bandwidth requirements, and ease of implementation.

  3. Warming-induced upward migration of the alpine treeline in the Changbai Mountains, northeast China.

    PubMed

    Du, Haibo; Liu, Jie; Li, Mai-He; Büntgen, Ulf; Yang, Yue; Wang, Lei; Wu, Zhengfang; He, Hong S

    2018-03-01

    Treeline responses to environmental changes describe an important phenomenon in global change research. Often conflicting results and generally too short observations are, however, still challenging our understanding of climate-induced treeline dynamics. Here, we use a state-of-the-art dendroecological approach to reconstruct long-term changes in the position of the alpine treeline in relation to air temperature at two sides in the Changbai Mountains in northeast China. Over the past 160 years, the treeline increased by around 80 m, a process that can be divided into three phases of different rates and drives. The first phase was mainly influenced by vegetation recovery after an eruption of the Tianchi volcano in 1702. The slowly upward shift in the second phase was consistent with the slowly increasing temperature. The last phase coincided with rapid warming since 1985, and shows with 33 m per 1°C, the most intense upward shift. The spatial distribution and age structure of trees beyond the current treeline confirm the latest, warming-induced upward shift. Our results suggest that the alpine treeline will continue to rise, and that the alpine tundra may disappear if temperatures will increase further. This study not only enhances mechanistic understanding of long-term treeline dynamics, but also highlights the effects of rising temperatures on high-elevation vegetation dynamics. © 2017 John Wiley & Sons Ltd.

  4. Study of thermospheric and ionospheric tidal responses to the 2009 stratospheric sudden warming by an assimilative atmosphere-ionosphere coupled TIME-GCM with FORMOSAT-3/COSMIC observations

    NASA Astrophysics Data System (ADS)

    Lin, Jia-Ting; Liu, Hanli; Liu, Jann-Yenq; Lin, Charles C. H.; Chen, Chia-Hung; Chang, Loren; Chen, Wei-Han

    In this study, ionospheric peak densities obtained from radio occultation soundings of FORMOSAT-3/COSMIC are decomposed into their various constituent tidal components for studying the stratospheric sudden warming (SSW) effects on the tidal responses during the 2008/2009. The observations are further compared with the results from an atmosphere-ionosphere coupled model, TIME-GCM. The model assimilates MERRA 3D meteorological data between the lower-boundary (~30km) and 0.1h Pa (~62km) by a nudging method. The comparison shows general agreement in the major features of decrease of migrating tidal signatures (DW1, SW2 and TW3) in ionosphere around the growth phase of SSW, with phase/time shifts in the daily time of maximum around EIA and middle latitudes. Both the observation and simulation indicate a pronounced enhancement of the ionospheric SW2 signatures after the stratospheric temperature increase. The model suggest that the typical morning enhancement/afternoon reduction of electron density variation is mainly caused by modification of the ionospheric migrating tidal signatures. The model shows that the thermospheric SW2 tide variation is similar to ionosphere as well as the phase shift. These phases shift of migrating tides are highly related to the present of induced secondary planetary wave 1 in the E region.

  5. Frequency Invariability of (Pb,La)(Zr,Ti)O₃ Antiferroelectric Thick-Film Micro-Cantilevers.

    PubMed

    An, Kun; Jin, Xuechen; Meng, Jiang; Li, Xiao; Ren, Yifeng

    2018-05-13

    Micro-electromechanical systems comprising antiferroelectric layers can offer both actuation and transduction to integrated technologies. Micro-cantilevers based on the (Pb 0.97 La 0.02 )(Zr 0.95 Ti 0.05 )O₃ (PLZT) antiferroelectric thick film are fabricated by the micro-nano manufacturing process, to utilize the effect of phase transition induced strain and sharp phase switch of antiferroelectric materials. When micro-cantilevers made of antiferroelectric thick films were driven by sweep voltages, there were two resonant peaks corresponding to the natural frequency shift from 27.8 to 27.0 kHz, before and after phase transition. This is the compensation principle for the PLZT micro-cantilever to tune the natural frequency by the amplitude modulation of driving voltage, rather than of frequency modulation. Considering the natural frequency shift about 0.8 kHz and the frequency tuning ability about 156 Hz/V before the phase transition, this can compensate the frequency shift caused by increasing temperature by tuning only the amplitude of driving voltage, when the ultrasonic micro-transducer made of antiferroelectric thick films works for such a long period. Therefore, antiferroelectric thick films with hetero-structures incorporated into PLZT micro-cantilevers not only require a lower driving voltage (no more than 40 V) than rival bulk piezoelectric ceramics, but also exhibit better performance of frequency invariability, based on the amplitude modulation.

  6. Statistical Methods for Passive Vehicle Classification in Urban Traffic Surveillance and Control

    DOT National Transportation Integrated Search

    1980-01-01

    A statistical approach to passive vehicle classification using the phase-shift signature from electromagnetic presence-type vehicle detectors is developed with digitized samples of the analog phase-shift signature, the problem of classifying vehicle ...

  7. Analysis on optical heterodyne frequency error of full-field heterodyne interferometer

    NASA Astrophysics Data System (ADS)

    Li, Yang; Zhang, Wenxi; Wu, Zhou; Lv, Xiaoyu; Kong, Xinxin; Guo, Xiaoli

    2017-06-01

    The full-field heterodyne interferometric measurement technology is beginning better applied by employing low frequency heterodyne acousto-optical modulators instead of complex electro-mechanical scanning devices. The optical element surface could be directly acquired by synchronously detecting the received signal phases of each pixel, because standard matrix detector as CCD and CMOS cameras could be used in heterodyne interferometer. Instead of the traditional four-step phase shifting phase calculating, Fourier spectral analysis method is used for phase extracting which brings lower sensitivity to sources of uncertainty and higher measurement accuracy. In this paper, two types of full-field heterodyne interferometer are described whose advantages and disadvantages are also specified. Heterodyne interferometer has to combine two different frequency beams to produce interference, which brings a variety of optical heterodyne frequency errors. Frequency mixing error and beat frequency error are two different kinds of inescapable heterodyne frequency errors. In this paper, the effects of frequency mixing error to surface measurement are derived. The relationship between the phase extraction accuracy and the errors are calculated. :: The tolerance of the extinction ratio of polarization splitting prism and the signal-to-noise ratio of stray light is given. The error of phase extraction by Fourier analysis that caused by beat frequency shifting is derived and calculated. We also propose an improved phase extraction method based on spectrum correction. An amplitude ratio spectrum correction algorithm with using Hanning window is used to correct the heterodyne signal phase extraction. The simulation results show that this method can effectively suppress the degradation of phase extracting caused by beat frequency error and reduce the measurement uncertainty of full-field heterodyne interferometer.

  8. Phase stable RF transport system

    DOEpatents

    Curtin, Michael T.; Natter, Eckard F.; Denney, Peter M.

    1992-01-01

    An RF transport system delivers a phase-stable RF signal to a load, such as an RF cavity of a charged particle accelerator. A circuit generates a calibration signal at an odd multiple frequency of the RF signal where the calibration signal is superimposed with the RF signal on a common cable that connects the RF signal with the load. Signal isolating diplexers are located at both the RF signal source end and load end of the common cable to enable the calibration to be inserted and extracted from the cable signals without any affect on the RF signal. Any phase shift in the calibration signal during traverse of the common cable is then functionally related to the phase shift in the RF signal. The calibration phase shift is used to control a phase shifter for the RF signal to maintain a stable RF signal at the load.

  9. Effect of polishing instruments and polishing regimens on surface topography and phase transformation of monolithic zirconia: An evaluation with XPS and XRD analysis.

    PubMed

    Al-Haj Husain, Nadin; Camilleri, Josette; Özcan, Mutlu

    2016-12-01

    Polishing procedures might alter monolithic zirconia (MZ) surface resulting in phase changes that can be deleterious for clinical performance and antagonist tooth wear. This study investigated the topographical features and phase transformation in MZ after polishing with different regimens simulating the clinical workflow. ​ MZ specimens (Katana Zirconia HT, Kuraray-Noritake) (12×12×1.8 mm(3)) were grinded and polished using one of the five systems assessed: BG: Silicone carbide polishers (Brownie, Greenie, Super Greenie); CG: Diamond impregnated ceramic polisher kit (Ceragloss); EV: Synthetically bonded grinder interspersed with diamond (EVE Kit); SL: Urethane coated paper with aluminium oxide grits (Soflex Finishing and Polishing System Kit) and DB: Diamond bur (8 µm). Polished specimens were initially roughened with 220 µm diamond burs (Grinding Bur-GB) (10 s, 160.000160,000 rpm) and considered for baseline measurements. Polishing regimens were performed for 10 s using a slow-speed hand piece under water-cooling except for SL, in a custom made device (750 g; 5000 and 75,000 rpm). Surface roughnesses, phase changes (XRD) were assessed, surface characterization was performed (SEM, EDS). The highest roughness was obtained with the EV system (1.11 µm) compared to those of other systems (0.13-0.4 µm) (pθ and minor peak at 34.94°2θ. While GB, CG, EV, SL and DB exhibited a peak shift to the left, BG demonstrated a right peak shift on the 2θ scale. Monoclinic phase change was not noted in any of the groups. All polishing methods, except BG, exhibited a peak shift towards the lower angles of the 2-theta scale. Since the peak shifts were in the order of fractions of an angle they are attributed to stress formation rather than a phase change in the material. Thus, all polishing systems tested may not be detrimental for the phase transformation of MZ. EV system resulted in the highest roughness and none of the polishing regimens restored the polishability to the baseline level. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Effects of an Advanced Sleep Schedule and Morning Short Wavelength Light Exposure on Circadian Phase in Young Adults with Late Sleep Schedules

    PubMed Central

    Sharkey, Katherine M.; Carskadon, Mary A.; Figueiro, Mariana G.; Zhu, Yong; Rea, Mark S.

    2011-01-01

    Objective We examined the effects of an advanced sleep/wake schedule and morning short wavelength (blue) light in 25 adults (mean age±SD = 21.8±3 years; 13 women) with late sleep schedules and subclinical features of delayed sleep phase syndrome (DSPD). Methods After a baseline week, participants kept individualized, fixed, advanced 7.5-hour sleep schedules for 6 days. Participants were randomly assigned to groups to receive “blue” (470 nm, ~225 lux, n=12) or “dim” (< 1 lux, n=13) light for one hour after waking each day. Head-worn “Daysimeters” measured light exposure; actigraphs and sleep diaries confirmed schedule compliance. Salivary dim light melatonin onset (DLMO), self-reported sleep, and mood were examined with 2×2 ANOVA. Results After 6 days, both groups showed significant circadian phase advances, but morning blue-light was not associated with larger phase shifts than dim-light exposure. The average DLMO advances (mean±SD) were 1.5±1.1 hours in the dim light group and 1.4±0.7 hours in the blue light group. Conclusions Adherence to a fixed advanced sleep/wake schedule resulted in significant circadian phase shifts in young adults with subclinical DSPD with or without morning blue light exposure. Light/dark exposures associated with fixed early sleep schedules are sufficient to advance circadian phase in young adults. PMID:21704557

  11. Effects of an advanced sleep schedule and morning short wavelength light exposure on circadian phase in young adults with late sleep schedules.

    PubMed

    Sharkey, Katherine M; Carskadon, Mary A; Figueiro, Mariana G; Zhu, Yong; Rea, Mark S

    2011-08-01

    We examined the effects of an advanced sleep/wake schedule and morning short wavelength (blue) light in 25 adults (mean age±SD=21.8±3 years; 13 women) with late sleep schedules and subclinical features of delayed sleep phase disorder (DSPD). After a baseline week, participants kept individualized, fixed, advanced 7.5-h sleep schedules for 6days. Participants were randomly assigned to groups to receive "blue" (470nm, ∼225lux, n=12) or "dim" (<1lux, n=13) light for 1h after waking each day. Head-worn "Daysimeters" measured light exposure; actigraphs and sleep diaries confirmed schedule compliance. Salivary dim light melatonin onset (DLMO), self-reported sleep, and mood were examined with 2×2 ANOVA. After 6days, both groups showed significant circadian phase advances, but morning blue light was not associated with larger phase shifts than dim-light exposure. The average DLMO advances (mean±SD) were 1.5±1.1h in the dim light group and 1.4±0.7h in the blue light group. Adherence to a fixed advanced sleep/wake schedule resulted in significant circadian phase shifts in young adults with subclinical DSPD with or without morning blue light exposure. Light/dark exposures associated with fixed early sleep schedules are sufficient to advance circadian phase in young adults. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Controlled patterns of daytime light exposure improve circadian adjustment in simulated night work.

    PubMed

    Dumont, Marie; Blais, Hélène; Roy, Joanie; Paquet, Jean

    2009-10-01

    Circadian misalignment between the endogenous circadian signal and the imposed rest-activity cycle is one of the main sources of sleep and health troubles in night shift workers. Timed bright light exposure during night work can reduce circadian misalignment in night workers, but this approach is limited by difficulties in incorporating bright light treatment into most workplaces. Controlled light and dark exposure during the daytime also has a significant impact on circadian phase and could be easier to implement in real-life situations. The authors previously described distinctive light exposure patterns in night nurses with and without circadian adaptation. In the present study, the main features of these patterns were used to design daytime light exposure profiles. Profiles were then tested in a laboratory simulation of night work to evaluate their efficacy in reducing circadian misalignment in night workers. The simulation included 2 day shifts followed by 4 consecutive night shifts (2400-0800 h). Healthy subjects (15 men and 23 women; 20-35 years old) were divided into 3 groups to test 3 daytime light exposure profiles designed to produce respectively a phase delay (delay group, n=12), a phase advance (advance group, n=13), or an unchanged circadian phase (stable group, n=13). In all 3 groups, light intensity was set at 50 lux during the nights of simulated night work. Salivary dim light melatonin onset (DLMO) showed a significant phase advance of 2.3 h (+/-1.3 h) in the advance group and a significant phase delay of 4.1 h (+/-1.3 h) in the delay group. The stable group showed a smaller but significant phase delay of 1.7 h (+/-1.6 h). Urinary 6-sulfatoxymelatonin (aMT6s) acrophases were highly correlated to salivary DLMOs. Urinary aMT6s acrophases were used to track daily phase shifts. They showed that phase shifts occurred rapidly and differed between the 3 groups by the 3rd night of simulated night work. These results show that significant phase shifts can be achieved in night workers by controlling daytime light exposure, with no nighttime intervention.

  13. Pre-Combustion Carbon Dioxide Capture by a New Dual Phase Ceramic-Carbonate Membrane Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Jerry Y. S.

    2015-01-31

    This report documents synthesis, characterization and carbon dioxide permeation and separation properties of a new group of ceramic-carbonate dual-phase membranes and results of a laboratory study on their application for water gas shift reaction with carbon dioxide separation. A series of ceramic-carbonate dual phase membranes with various oxygen ionic or mixed ionic and electronic conducting metal oxide materials in disk, tube, symmetric, and asymmetric geometric configurations was developed. These membranes, with the thickness of 10 μm to 1.5 mm, show CO 2 permeance in the range of 0.5-5×10 -7 mol·m -2·s -1·Pa -1 in 500-900°C and measured CO 2/N 2more » selectivity of up to 3000. CO 2 permeation mechanism and factors that affect CO 2 permeation through the dual-phase membranes have been identified. A reliable CO 2 permeation model was developed. A robust method was established for the optimization of the microstructures of ceramic-carbonate membranes. The ceramic-carbonate membranes exhibit high stability for high temperature CO 2 separations and water gas shift reaction. Water gas shift reaction in the dual-phase membrane reactors was studied by both modeling and experiments. It is found that high temperature syngas water gas shift reaction in tubular ceramic-carbonate dual phase membrane reactor is feasible even without catalyst. The membrane reactor exhibits good CO 2 permeation flux, high thermal and chemical stability and high thermal shock resistance. Reaction and separation conditions in the membrane reactor to produce hydrogen of 93% purity and CO 2 stream of >95% purity, with 90% CO 2 capture have been identified. Integration of the ceramic-carbonate dual-phase membrane reactor with IGCC process for carbon dioxide capture was analyzed. A methodology was developed to identify optimum operation conditions for a membrane tube of given dimensions that would treat coal syngas with targeted performance. The calculation results show that the dual-phase membrane reactor could improve IGCC process efficiency but the cost of the membrane reactor with membranes having current CO 2 permeance is high. Further research should be directed towards improving the performance of the membranes and developing cost-effective, scalable methods for fabrication of dual-phase membranes and membrane reactors.« less

  14. Self-marking phase-stepping electronic speckle pattern interfometry (ESPI) for 3D displacement measurement on cathode ray tube (CRT)-panels

    NASA Astrophysics Data System (ADS)

    Huang, M. J.; Liu, Zhao-Cheng; Jhang, Jhen-Huei

    2002-11-01

    This study demonstrates the feasibility of applying phase-shifting electronic speckle pattern interfometry to measure the deformation field of the front panel of a cathode ray tube, to support analysis to enhance the implosion-resistance capacity under violent collapse. Two effects, the air exhaustion and shrink band constraint effects, are comprehensively investigated. The angle of an adjustable mirror is switched, to provide three sensitivity vectors that are required in 3D-displacement measurement. A Fourier filtration is employed to remove speckle noise and establish a noise-free phase map. Inconsistent points are identified and masked to prevent any possible divergence during phase unwrapping. The results show that the accuracy of this method is satisfactory.

  15. Carrier-envelope phase control by a composite plate.

    PubMed

    Ell, Richard; Birge, Jonathan R; Araghchini, Mohammad; Kärtner, Franz X

    2006-06-12

    We demonstrate a new concept to vary the carrier-envelope phase of a mode-locked laser by a composite plate while keeping all other pulse parameters practically unaltered. The effect is verified externally in an interferometric autocorrelator, as well as inside the cavity of an octave-spanning femtosecond oscillator. The carrier-envelope frequency can be shifted by half the repetition rate with negligible impact on pulse spectrum and energy.

  16. Analytical results for a conditional phase shift between single-photon pulses in a nonlocal nonlinear medium

    NASA Astrophysics Data System (ADS)

    Viswanathan, Balakrishnan; Gea-Banacloche, Julio

    2018-03-01

    It has been suggested that second-order nonlinearities could be used for quantum logic at the single-photon level. Specifically, successive two-photon processes in principle could accomplish the phase shift (conditioned on the presence of two photons in the low-frequency modes) |011 〉→i |100 〉→-|011 〉 . We have analyzed a recent scheme proposed by Xia et al. [Phys. Rev. Lett. 116, 023601 (2016)], 10.1103/PhysRevLett.116.023601 to induce such a conditional phase shift between two single-photon pulses propagating at different speeds through a nonlinear medium with a nonlocal response. We present here an analytical solution for the most general case, i.e., for an arbitrary response function, initial state, and pulse velocity, which supports their numerical observation that a π phase shift with unit fidelity is possible, in principle, in an appropriate limit. We also discuss why this is possible in this system, despite the theoretical objections to the possibility of conditional phase shifts on single photons that were raised some time ago by Shapiro [Phys. Rev. A 73, 062305 (2006)], 10.1103/PhysRevA.73.062305 and by Gea-Banacloche [Phys. Rev. A 81, 043823 (2010)], 10.1103/PhysRevA.81.043823 one of us.

  17. Automatic oscillator frequency control system

    NASA Technical Reports Server (NTRS)

    Smith, S. F. (Inventor)

    1985-01-01

    A frequency control system makes an initial correction of the frequency of its own timing circuit after comparison against a frequency of known accuracy and then sequentially checks and corrects the frequencies of several voltage controlled local oscillator circuits. The timing circuit initiates the machine cycles of a central processing unit which applies a frequency index to an input register in a modulo-sum frequency divider stage and enables a multiplexer to clock an accumulator register in the divider stage with a cyclical signal derived from the oscillator circuit being checked. Upon expiration of the interval, the processing unit compares the remainder held as the contents of the accumulator against a stored zero error constant and applies an appropriate correction word to a correction stage to shift the frequency of the oscillator being checked. A signal from the accumulator register may be used to drive a phase plane ROM and, with periodic shifts in the applied frequency index, to provide frequency shift keying of the resultant output signal. Interposition of a phase adder between the accumulator register and phase plane ROM permits phase shift keying of the output signal by periodic variation in the value of a phase index applied to one input of the phase adder.

  18. Mass-stiffness substructuring of an elastic metasurface for full transmission beam steering

    NASA Astrophysics Data System (ADS)

    Lee, Hyuk; Lee, Jun Kyu; Seung, Hong Min; Kim, Yoon Young

    2018-03-01

    The metasurface concept has a significant potential due to its novel wavefront-shaping functionalities that can be critically useful for ultrasonic and solid wave-based applications. To achieve the desired functionalities, elastic metasurfaces should cover full 2π phase shift and also acquire full transmission within subwavelength scale. However, they have not been explored much with respect to the elastic regime, because the intrinsic proportionality of mass-stiffness within the continuum elastic media causes an inevitable trade-off between abrupt phase shift and sufficient transmission. Our goal is to engineer an elastic metasurface that can realize an inverse relation between (amplified) effective mass and (weakened) stiffness in order to satisfy full 2π phase shift as well as full transmission. To achieve this goal, we propose a continuum elastic metasurface unit cell that is decomposed into two substructures, namely a mass-tuning substructure with a local dipolar resonator and a stiffness-tuning substructure composed of non-resonant multiply-perforated slits. We demonstrate analytically, numerically, and experimentally that this unique substructured unit cell can satisfy the required phase shift with high transmission. The substructuring enables independent tuning of the elastic properties over a wide range of values. We use a mass-spring model of the proposed continuum unit cell to investigate the working mechanism of the proposed metasurface. With the designed metasurface consisting of substructured unit cells embedded in an aluminum plate, we demonstrate that our metasurface can successfully realize anomalous steering and focusing of in-plane longitudinal ultrasonic beams. The proposed substructuring concept is expected to provide a new principle for the design of general elastic metasurfaces that can be used to efficiently engineer arbitrary wave profiles.

  19. The Effect of Doppler Frequency Shift, Frequency Offset of the Local Oscillators, and Phase Noise on the Performance of Coherent OFDM Receivers

    NASA Technical Reports Server (NTRS)

    Xiong, Fuqin; Andro, Monty

    2001-01-01

    This paper first shows that the Doppler frequency shift affects the frequencies of the RF carrier, subcarriers, envelope, and symbol timing by the same percentage in an Orthogonal Frequency Division Multiplexing (OFDM) signal or any other modulated signals. Then the SNR degradation of an OFDM system due to Doppler frequency shift, frequency offset of the local oscillators and phase noise is analyzed. Expressions are given and values for 4-, 16-, 64-, and 256-QAM OFDM systems are calculated and plotted. The calculations show that the Doppler shift of the D3 project is about 305 kHz, and the degradation due to it is about 0.01 to 0.04 dB, which is negligible. The degradation due to frequency offset and phase noise of local oscillators will be the main source of degradation. To keep the SNR degradation under 0.1 dB, the relative frequency offset due to local oscillators must be below 0.01 for the 16 QAM-OFDM. This translates to an offset of 1.55 MHz (0.01 x 155 MHz) or a stability of 77.5 ppm (0.01 x 155 MHz/20 GHz) for the DI project. To keep the SNR degradation under 0.1 dB, the relative linewidth (0) due to phase noise of the local oscillators must be below 0.0004 for the 16 QAM-OFDM. This translates to a linewidth of 0.062 MHz (0.0004 x 155 MHz) of the 20 GHz RIF carrier. For a degradation of 1 dB, beta = 0.04, and the linewidth can be relaxed to 6.2 MHz.

  20. Piloted simulator study of allowable time delays in large-airplane response

    NASA Technical Reports Server (NTRS)

    Grantham, William D.; Bert T.?aetingas, Stephen A.dings with ran; Bert T.?aetingas, Stephen A.dings with ran

    1987-01-01

    A piloted simulation was performed to determine the permissible time delay and phase shift in the flight control system of a specific large transport-type airplane. The study was conducted with a six degree of freedom ground-based simulator and a math model similar to an advanced wide-body jet transport. Time delays in discrete and lagged form were incorporated into the longitudinal, lateral, and directional control systems of the airplane. Three experienced pilots flew simulated approaches and landings with random localizer and glide slope offsets during instrument tracking as their principal evaluation task. Results of the present study suggest a level 1 (satisfactory) handling qualities limit for the effective time delay of 0.15 sec in both the pitch and roll axes, as opposed to a 0.10-sec limit of the present specification (MIL-F-8785C) for both axes. Also, the present results suggest a level 2 (acceptable but unsatisfactory) handling qualities limit for an effective time delay of 0.82 sec and 0.57 sec for the pitch and roll axes, respectively, as opposed to 0.20 sec of the present specifications for both axes. In the area of phase shift between cockpit input and control surface deflection,the results of this study, flown in turbulent air, suggest less severe phase shift limitations for the approach and landing task-approximately 50 deg. in pitch and 40 deg. in roll - as opposed to 15 deg. of the present specifications for both axes.

  1. Sensor Drift Compensation Algorithm based on PDF Distance Minimization

    NASA Astrophysics Data System (ADS)

    Kim, Namyong; Byun, Hyung-Gi; Persaud, Krishna C.; Huh, Jeung-Soo

    2009-05-01

    In this paper, a new unsupervised classification algorithm is introduced for the compensation of sensor drift effects of the odor sensing system using a conducting polymer sensor array. The proposed method continues updating adaptive Radial Basis Function Network (RBFN) weights in the testing phase based on minimizing Euclidian Distance between two Probability Density Functions (PDFs) of a set of training phase output data and another set of testing phase output data. The output in the testing phase using the fixed weights of the RBFN are significantly dispersed and shifted from each target value due mostly to sensor drift effect. In the experimental results, the output data by the proposed methods are observed to be concentrated closer again to their own target values significantly. This indicates that the proposed method can be effectively applied to improved odor sensing system equipped with the capability of sensor drift effect compensation

  2. Attenuation analysis of real GPR wavelets: The equivalent amplitude spectrum (EAS)

    NASA Astrophysics Data System (ADS)

    Economou, Nikos; Kritikakis, George

    2016-03-01

    Absorption of a Ground Penetrating Radar (GPR) pulse is a frequency dependent attenuation mechanism which causes a spectral shift on the dominant frequency of GPR data. Both energy variation of GPR amplitude spectrum and spectral shift were used for the estimation of Quality Factor (Q*) and subsequently the characterization of the subsurface material properties. The variation of the amplitude spectrum energy has been studied by Spectral Ratio (SR) method and the frequency shift by the estimation of the Frequency Centroid Shift (FCS) or the Frequency Peak Shift (FPS) methods. The FPS method is more automatic, less robust. This work aims to increase the robustness of the FPS method by fitting a part of the amplitude spectrum of GPR data with Ricker, Gaussian, Sigmoid-Gaussian or Ricker-Gaussian functions. These functions fit different parts of the spectrum of a GPR reference wavelet and the Equivalent Amplitude Spectrum (EAS) is selected, reproducing Q* values used in forward Q* modeling analysis. Then, only the peak frequencies and the time differences between the reference wavelet and the subsequent reflected wavelets are used to estimate Q*. As long as the EAS is estimated, it is used for Q* evaluation in all the GPR section, under the assumption that the selected reference wavelet is representative. De-phasing and constant phase shift, for obtaining symmetrical wavelets, proved useful in the sufficiency of the horizons picking. Synthetic, experimental and real GPR data were examined in order to demonstrate the effectiveness of the proposed methodology.

  3. Approaches for Achieving Broadband Achromatic Phase Shifts for Visible Nulling Coronagraphy

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Lyon, Richard G.

    2012-01-01

    Visible nulling coronagraphy is one of the few approaches to the direct detection and characterization of Jovian and Terrestrial exoplanets that works with segmented aperture telescopes. Jovian and Terrestrial planets require at least 10(exp -9) and 10(exp -10) image plane contrasts, respectively, within the spectral bandpass and thus require a nearly achromatic pi-phase difference between the arms of the interferometer. An achromatic pi-phase shift can be achieved by several techniques, including sequential angled thick glass plates of varying dispersive materials, distributed thin-film multilayer coatings, and techniques that leverage the polarization-dependent phase shift of total-internal reflections. Herein we describe two such techniques: sequential thick glass plates and Fresnel rhomb prisms. A viable technique must achieve the achromatic phase shift while simultaneously minimizing the intensity difference, chromatic beam spread and polarization variation between each arm. In this paper we describe the above techniques and report on efforts to design, model, fabricate, align the trades associated with each technique that will lead to an implementations of the most promising one in Goddard's Visible Nulling Coronagraph (VNC).

  4. Scheduled Evening Sleep and Enhanced Lighting Improve Adaptation to Night Shift Work in Older Adults

    PubMed Central

    Chinoy, Evan D.; Harris, Michael P.; Kim, Min Ju; Wang, Wei; Duffy, Jeanne F.

    2017-01-01

    Objectives We tested whether a sleep and circadian-based treatment shown to improve circadian adaptation to night shifts and attenuate negative effects on alertness, performance, and sleep in young adults would also be effective in older adults. Methods We assessed subjective alertness, sustained attention (psychomotor vigilance task, PVT), sleep duration (actigraphy), and circadian timing (salivary dim-light melatonin onset, DLMO) in eighteen older adults (57.2±3.8 y; mean±SD) in a simulated shift work protocol. Four day shifts were followed by three night shifts in the laboratory. Participants slept at home and were randomized to either the Treatment Group (scheduled evening sleep and enhanced lighting during the latter half of night shifts), or Control Group (ad lib sleep and typical lighting during night shifts). Results Compared to day shifts, alertness and sustained attention declined on the first night shift in both groups, and was worse in the latter half of the night shifts. Alertness and attention improved on nights 2 and 3 for the Treatment Group but remained lower for the Control Group. Sleep duration in the Treatment Group remained similar to baseline (6–7 h) following night shifts, but was shorter (3–5 h) following night shifts in the Control Group. Treatment Group circadian timing advanced by 169.3±16.1 min (mean±SEM) but did not shift (−9.7±9.9 min) in the Control Group. Conclusions The combined treatment of scheduled evening sleep and enhanced lighting increased sleep duration and partially aligned circadian phase with sleep and work timing, resulting in improved night shift alertness and performance. PMID:27566781

  5. Single and two-shot quantitative phase imaging using Hilbert-Huang Transform based fringe pattern analysis

    NASA Astrophysics Data System (ADS)

    Trusiak, Maciej; Micó, Vicente; Patorski, Krzysztof; García-Monreal, Javier; Sluzewski, Lukasz; Ferreira, Carlos

    2016-08-01

    In this contribution we propose two Hilbert-Huang Transform based algorithms for fast and accurate single-shot and two-shot quantitative phase imaging applicable in both on-axis and off-axis configurations. In the first scheme a single fringe pattern containing information about biological phase-sample under study is adaptively pre-filtered using empirical mode decomposition based approach. Further it is phase demodulated by the Hilbert Spiral Transform aided by the Principal Component Analysis for the local fringe orientation estimation. Orientation calculation enables closed fringes efficient analysis and can be avoided using arbitrary phase-shifted two-shot Gram-Schmidt Orthonormalization scheme aided by Hilbert-Huang Transform pre-filtering. This two-shot approach is a trade-off between single-frame and temporal phase shifting demodulation. Robustness of the proposed techniques is corroborated using experimental digital holographic microscopy studies of polystyrene micro-beads and red blood cells. Both algorithms compare favorably with the temporal phase shifting scheme which is used as a reference method.

  6. Electrical system for pulse-width modulated control of a power inverter using phase-shifted carrier signals and related operating methods

    DOEpatents

    Welchko, Brian A [Torrance, CA

    2012-02-14

    Systems and methods are provided for pulse-width modulated control of power inverter using phase-shifted carrier signals. An electrical system comprises an energy source and a motor. The motor has a first set of windings and a second set of windings, which are electrically isolated from each other. An inverter module is coupled between the energy source and the motor and comprises a first set of phase legs coupled to the first set of windings and a second set of phase legs coupled to the second set of windings. A controller is coupled to the inverter module and is configured to achieve a desired power flow between the energy source and the motor by modulating the first set of phase legs using a first carrier signal and modulating the second set of phase legs using a second carrier signal. The second carrier signal is phase-shifted relative to the first carrier signal.

  7. Twilight spectral dynamics and the coral reef invertebrate spawning response.

    PubMed

    Sweeney, Alison M; Boch, Charles A; Johnsen, Sonke; Morse, Daniel E

    2011-03-01

    There are dramatic and physiologically relevant changes in both skylight color and intensity during evening twilight as the pathlength of direct sunlight through the atmosphere increases, ozone increasingly absorbs long wavelengths and skylight becomes increasingly blue shifted. The moon is above the horizon at sunset during the waxing phase of the lunar cycle, on the horizon at sunset on the night of the full moon and below the horizon during the waning phase. Moonlight is red shifted compared with daylight, so the presence, phase and position of the moon in the sky could modulate the blue shifts during twilight. Therefore, the influence of the moon on twilight color is likely to differ somewhat each night of the lunar cycle, and to vary especially rapidly around the full moon, as the moon transitions from above to below the horizon during twilight. Many important light-mediated biological processes occur during twilight, and this lunar effect may play a role. One particularly intriguing biological event tightly correlated with these twilight processes is the occurrence of mass spawning events on coral reefs. Therefore, we measured downwelling underwater hyperspectral irradiance on a coral reef during twilight for several nights before and after the full moon. We demonstrate that shifts in twilight color and intensity on nights both within and between evenings, immediately before and after the full moon, are correlated with the observed times of synchronized mass spawning, and that these optical phenomena are a biologically plausible cue for the synchronization of these mass spawning events.

  8. The experience of being a shift-leader in a hospital ward.

    PubMed

    Goldblatt, Hadass; Granot, Michal; Admi, Hanna; Drach-Zahavy, Anat

    2008-07-01

    This paper is a report of a study to explore the experience of being a shift-leader, and how these nurses view the management of their shift. Professional demands on skilled and capable shift-leaders, who competently handle multi-disciplinary staff and patients, as well as operations and information, call for the development of efficient nursing leadership roles. Nevertheless, knowledge of shift-leaders' perspectives concerning their task management and leadership styles is relatively limited. Twenty-eight Registered Nurses working in an Israeli medical centre participated in this qualitative study. Data were gathered through in-depth interviews conducted in two phases between February and October 2005: three focus group interviews (phase 1) followed by seven individual interviews (phase 2). Content analysis revealed two major themes which constitute the essence of being a shift-leader: (1) a burden of responsibility, where the shift-leader moves between positions of maximum control and delegating some responsibility to other nurses; (2) the role's temporal dimension, expressed as a strong desire to reach the end of the shift safely, and taking managerial perspectives beyond the boundaries of the specific shift. The core of the shift-leader's position is an immense sense of responsibility. However, this managerial role is transient and therefore lacks an established authority. A two-dimensional taxonomy of these themes reveals four types of potential and actual coping among shift-leaders, indicating the need to train them in leadership skills and systemic thinking. Interventions to limit the potential stress hazards should be focused simultaneously on shift-leaders themselves and on job restructuring.

  9. No effect of pinealectomy on the parallel shift in circadain rhythms of adrenocortical activity and food intake in blinded rats.

    PubMed

    Takahashi, K; Inoue, K; Takahashi, Y

    1976-10-01

    Twenty-four-hr patterns of plasma corticosterone levels were determined at 4-hr intervals every 3-4 weeks in sighted and blinded pinealectomized rats of adult age. Through the whole period of the experiment, 24-hr patterns of food intake were also measured weekly. The sighted rats manifested the same 24-hr patterns of plasma corticosterone levels and food intake for 15 weeks after pinealectomy as those observed in the intact control rats. The magnitude of peak levels of plasma corticosterone and the amount of food intake did not differ between the two groups. A phase shift in circadian rhythms of plasma corticosterone levels and food intake was observed in both groups of blinded rats, with and without pinealectomy. Between the two groups, the patterns of phase shift were essentially similar for 10 weeks examined after optic enucleation. The peak elevation of plasma levels took place at 11 p.m. at the end of the 4th week after optic enucleation. Thereafter, 4- to 8-hr delay of peak appearance was observed every 3 weeks. No significant differences were found in peak values between the two groups of blinded rats. Furthermore, the circadian rhythm of food intake shifted in parallel with that of plasma corticosterone levels. A phase reversal of these two activities was observed between the 8th and 10th week after the operation. These results indicate that the pineal gland does not play any important role either in the maintenance of normal circadian periodicities of adrenocortical activity and food intake or in the shift in circadian rhythms of the two activities in the blinded rats.

  10. Velocity encoding with the slice select refocusing gradient for faster imaging and reduced chemical shift-induced phase errors.

    PubMed

    Middione, Matthew J; Thompson, Richard B; Ennis, Daniel B

    2014-06-01

    To investigate a novel phase-contrast MRI velocity-encoding technique for faster imaging and reduced chemical shift-induced phase errors. Velocity encoding with the slice select refocusing gradient achieves the target gradient moment by time shifting the refocusing gradient, which enables the use of the minimum in-phase echo time (TE) for faster imaging and reduced chemical shift-induced phase errors. Net forward flow was compared in 10 healthy subjects (N = 10) within the ascending aorta (aAo), main pulmonary artery (PA), and right/left pulmonary arteries (RPA/LPA) using conventional flow compensated and flow encoded (401 Hz/px and TE = 3.08 ms) and slice select refocused gradient velocity encoding (814 Hz/px and TE = 2.46 ms) at 3 T. Improved net forward flow agreement was measured across all vessels for slice select refocused gradient compared to flow compensated and flow encoded: aAo vs. PA (1.7% ± 1.9% vs. 5.8% ± 2.8%, P = 0.002), aAo vs. RPA + LPA (2.1% ± 1.7% vs. 6.0% ± 4.3%, P = 0.03), and PA vs. RPA + LPA (2.9% ± 2.1% vs. 6.1% ± 6.3%, P = 0.04), while increasing temporal resolution (35%) and signal-to-noise ratio (33%). Slice select refocused gradient phase-contrast MRI with a high receiver bandwidth and minimum in-phase TE provides more accurate and less variable flow measurements through the reduction of chemical shift-induced phase errors and a reduced TE/repetition time, which can be used to increase the temporal/spatial resolution and/or reduce breath hold durations. Copyright © 2013 Wiley Periodicals, Inc.

  11. Moiré deflectometry using the Talbot-Lau interferometer as refraction diagnostic for High Energy Density plasmas at energies below 10 keV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valdivia, M. P.; Stutman, D.; Finkenthal, M.

    2014-07-15

    The highly localized density gradients expected in High Energy Density (HED) plasma experiments can be characterized by x-ray phase-contrast imaging in addition to conventional attenuation radiography. Moiré deflectometry using the Talbot-Lau grating interferometer setup is an attractive HED diagnostic due to its high sensitivity to refraction induced phase shifts. We report on the adaptation of such a system for operation in the sub-10 keV range by using a combination of free standing and ultrathin Talbot gratings. This new x-ray energy explored matches well the current x-ray backlighters used for HED experiments, while also enhancing phase effects at lower electron densities.more » We studied the performance of the high magnification, low energy Talbot-Lau interferometer, for single image phase retrieval using Moiré fringe deflectometry. Our laboratory and simulation studies indicate that such a device is able to retrieve object electron densities from phase shift measurements. Using laboratory x-ray sources from 7 to 15 μm size we obtained accurate simultaneous measurements of refraction and attenuation for both sharp and mild electron density gradients.« less

  12. Moiré deflectometry using the Talbot-Lau interferometer as refraction diagnostic for high energy density plasmas at energies below 10 keV.

    PubMed

    Valdivia, M P; Stutman, D; Finkenthal, M

    2014-07-01

    The highly localized density gradients expected in High Energy Density (HED) plasma experiments can be characterized by x-ray phase-contrast imaging in addition to conventional attenuation radiography. Moiré deflectometry using the Talbot-Lau grating interferometer setup is an attractive HED diagnostic due to its high sensitivity to refraction induced phase shifts. We report on the adaptation of such a system for operation in the sub-10 keV range by using a combination of free standing and ultrathin Talbot gratings. This new x-ray energy explored matches well the current x-ray backlighters used for HED experiments, while also enhancing phase effects at lower electron densities. We studied the performance of the high magnification, low energy Talbot-Lau interferometer, for single image phase retrieval using Moiré fringe deflectometry. Our laboratory and simulation studies indicate that such a device is able to retrieve object electron densities from phase shift measurements. Using laboratory x-ray sources from 7 to 15 μm size we obtained accurate simultaneous measurements of refraction and attenuation for both sharp and mild electron density gradients.

  13. Scheduled meal accelerates entrainment to a 6-h phase advance by shifting central and peripheral oscillations in rats.

    PubMed

    Ubaldo-Reyes, L M; Buijs, R M; Escobar, C; Ángeles-Castellanos, M

    2017-08-01

    Travelling across several time zones requires a fast adjustment of the circadian system and the differential adjustment speeds of organs and systems results in what is commonly referred as jet lag. During this transitory state of circadian disruption, individuals feel discomfort, appetite loss, fatigue, disturbed sleep and deficient performance of multiple tasks. We have demonstrated that after a 6-h phase advance of the light-dark cycle (LD) scheduled food in phase with the new night onset can speed up re-entrainment. In this study, we explored the possible mechanisms underlying the fast re-entrainment due to the feeding schedule. We focused on first- and second-order structures that provide metabolic information to the suprachiasmatic nucleus (SCN). We compared (i) control rats without change in LD cycle; (ii) rats exposed to a 6-h phase advance of the LD cycle with food ad libitum; and (iii) rats exposed to the 6-h phase advance combined with food access in phase with the new night. We found an immediate synchronizing effect of food on stomach distention and on c-Fos expression in the nucleus of the solitary tract, arcuate nucleus of the hypothalamus, dorsomedial hypothalamic nucleus and paraventricular nucleus. These observations indicate that in a model of jet lag, scheduled feeding can favour an immediate shift in first- and second-order relays to the SCN and that by keeping feeding schedules coupled to the new night, a fast re-entrainment may be achieved by shifting peripheral and extra-SCN oscillations. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  14. Adaptation to Experimental Jet-Lag in R6/2 Mice despite Circadian Dysrhythmia

    PubMed Central

    Wood, Nigel I.; McAllister, Catherine J.; Cuesta, Marc; Aungier, Juliet; Fraenkel, Eloise; Morton, A. Jennifer

    2013-01-01

    The R6/2 transgenic mouse model of Huntington’s disease (HD) shows a disintegration of circadian rhythms that can be delayed by pharmacological and non-pharmacological means. Since the molecular machinery underlying the circadian clocks is intact, albeit progressively dysfunctional, we wondered if light phase shifts could modulate the deterioration in daily rhythms in R6/2 mice. Mice were subjected to four x 4 hour advances in light onset. R6/2 mice adapted to phase advances, although angles of entrainment increased with age. A second cohort was subjected to a jet-lag paradigm (6 hour delay or advance in light onset, then reversal after 2 weeks). R6/2 mice adapted to the original shift, but could not adjust accurately to the reversal. Interestingly, phase shifts ameliorated the circadian rhythm breakdown seen in R6/2 mice under normal LD conditions. Our previous finding that the circadian period (tau) of 16 week old R6/2 mice shortens to approximately 23 hours may explain how they adapt to phase advances and maintain regular circadian rhythms. We tested this using a 23 hour period light/dark cycle. R6/2 mice entrained to this cycle, but onsets of activity continued to advance, and circadian rhythms still disintegrated. Therefore, the beneficial effects of phase-shifting are not due solely to the light cycle being closer to the tau of the mice. Our data show that R6/2 mice can adapt to changes in the LD schedule, even beyond the age when their circadian rhythms would normally disintegrate. Nevertheless, they show abnormal responses to changes in light cycles. These might be caused by a shortened tau, impaired photic re-synchronization, impaired light detection and/or reduced masking by evening light. If similar abnormalities are present in HD patients, they may suffer exaggerated jet-lag. Since the underlying molecular clock mechanism remains intact, light may be a useful treatment for circadian dysfunction in HD. PMID:23390510

  15. Ultracompact electro-optic phase modulator based on III-V-on-silicon microdisk resonator.

    PubMed

    Lloret, J; Kumar, R; Sales, S; Ramos, F; Morthier, G; Mechet, P; Spuesens, T; Van Thourhout, D; Olivier, N; Fédéli, J-M; Capmany, J

    2012-06-15

    A novel ultracompact electro-optic phase modulator based on a single 9 μm-diameter III-V microdisk resonator heterogeneously integrated on and coupled to a nanophotonic waveguide is presented. Modulation is enabled by effective index modification through carrier injection. Proof-of-concept implementation involving binary phase shift keying modulation format is assembled. A power imbalance of ∼0.6  dB between both symbols and a modulation rate up to 1.8 Gbps are demonstrated without using any special driving technique.

  16. Monitoring the thinning dynamics of soap films by phase shift interferometry. The case of perfluoropolyether surfactants.

    PubMed

    Gambi, Cecilia M C; Vannoni, Maurizio; Sordini, Andrea; Molesini, Giuseppe

    2014-02-01

    An interferometric method to monitor the thinning process of vertical soap films from a water solution of surfactant materials is reported. Raw data maps of optical path difference introduced by the film are obtained by conventional phase shift interferometry. Off-line re-processing of such raw data taking into account the layered structure of soap films leads to an accurate measurement of the geometrical thickness. As an example of data acquisition and processing, the measuring chain is demonstrated on perfluoropolyether surfactants; the section profile of vertical films is monitored from drawing to black film state, and quantitative data on the dynamics of the thinning process are presented. The interferometric method proves effective to the task, and lends itself to further investigate the physical properties of soap films.

  17. Resurgence and alternative-reinforcer magnitude.

    PubMed

    Craig, Andrew R; Browning, Kaitlyn O; Nall, Rusty W; Marshall, Ciara M; Shahan, Timothy A

    2017-03-01

    Resurgence is defined as an increase in the frequency of a previously reinforced target response when an alternative source of reinforcement is suspended. Despite an extensive body of research examining factors that affect resurgence, the effects of alternative-reinforcer magnitude have not been examined. Thus, the present experiments aimed to fill this gap in the literature. In Experiment 1, rats pressed levers for single-pellet reinforcers during Phase 1. In Phase 2, target-lever pressing was extinguished, and alternative-lever pressing produced either five-pellet, one-pellet, or no alternative reinforcement. In Phase 3, alternative reinforcement was suspended to test for resurgence. Five-pellet alternative reinforcement produced faster elimination and greater resurgence of target-lever pressing than one-pellet alternative reinforcement. In Experiment 2, effects of decreasing alternative-reinforcer magnitude on resurgence were examined. Rats pressed levers and pulled chains for six-pellet reinforcers during Phases 1 and 2, respectively. In Phase 3, alternative reinforcement was decreased to three pellets for one group, one pellet for a second group, and suspended altogether for a third group. Shifting from six-pellet to one-pellet alternative reinforcement produced as much resurgence as suspending alternative reinforcement altogether, while shifting from six pellets to three pellets did not produce resurgence. These results suggest that alternative-reinforcer magnitude has effects on elimination and resurgence of target behavior that are similar to those of alternative-reinforcer rate. Thus, both suppression of target behavior during alternative reinforcement and resurgence when conditions of alternative reinforcement are altered may be related to variables that affect the value of the alternative-reinforcement source. © 2017 Society for the Experimental Analysis of Behavior.

  18. Resurgence and Alternative-Reinforcer Magnitude

    PubMed Central

    Craig, Andrew R.; Browning, Kaitlyn O.; Nall, Rusty W.; Marshall, Ciara M.; Shahan, Timothy A.

    2017-01-01

    Resurgence is defined as an increase in the frequency of a previously reinforced target response when an alternative source of reinforcement is suspended. Despite an extensive body of research examining factors that affect resurgence, the effects of alternative-reinforcer magnitude have not been examined. Thus, the present experiments aimed to fill this gap in the literature. In Experiment 1, rats pressed levers for single-pellet reinforcers during Phase 1. In Phase 2, target-lever pressing was extinguished, and alternative-lever pressing produced either five-pellet, one-pellet, or no alternative reinforcement. In Phase 3, alternative reinforcement was suspended to test for resurgence. Five-pellet alternative reinforcement produced faster elimination and greater resurgence of target-lever pressing than one-pellet alternative reinforcement. In Experiment 2, effects of decreasing alternative-reinforcer magnitude on resurgence were examined. Rats pressed levers and pulled chains for six-pellet reinforcers during Phases 1 and 2, respectively. In Phase 3, alternative reinforcement was decreased to three pellets for one group, one pellet for a second group, and suspended altogether for a third group. Shifting from six-pellet to one-pellet alternative reinforcement produced as much resurgence as suspending alternative reinforcement altogether, while shifting from six pellets to three pellets did not produce resurgence. These results suggest that alternative-reinforcer magnitude has effects on elimination and resurgence of target behavior that are similar to those of alternative-reinforcer rate. Thus, both suppression of target behavior during alternative reinforcement and resurgence when conditions of alternative reinforcement are altered may be related to variables that affect the value of the alternative-reinforcement source. PMID:28194793

  19. Phase Misalignment between Suprachiasmatic Neuronal Oscillators Impairs Photic Behavioral Phase Shifts but not Photic Induction of Gene Expression

    PubMed Central

    Schwartz, Michael D.; Congdon, Seth; de la Iglesia, Horacio O.

    2010-01-01

    The ability of the circadian pacemaker within the suprachiasmatic nucleus (SCN) to respond to light stimulation in a phase-specific manner constitutes the basis for photic entrainment of circadian rhythms. The neural basis for this phase-specificity is unclear. We asked whether a lack of synchrony between SCN neurons, as reflected in phase misalignment between dorsomedial (dmSCN) and ventrolateral (vlSCN) neuronal oscillators in the rat, would impact the pacemaker’s ability to respond to phase-resetting light pulses. Light pulses delivered at maximal phase-misalignment between the vl-and dmSCN oscillators increased expression of Per1 mRNA, irrespective of the circadian phase of the dmSCN. However, phase shifts of locomotor activity were only observed when the vl-and dmSCN were phase-aligned at the time of stimulation. Our results fit a model in which a vlSCN oscillator phase-gates its own response to light and in turn relays light information to a dmSCN oscillator. This model predicts that the phase misalignment that results from circadian internal desynchronization could preserve the ability of light to induce gene expression within the master circadian clock but impair its ability to induce behavioral phase shifts. PMID:20881133

  20. Molecular design of TiO2 for gigantic red shift via sublattice substitution.

    PubMed

    Shao, Guosheng; Deng, Quanrong; Wan, Lin; Guo, Meilan; Xia, Xiaohong; Gao, Yun

    2010-11-01

    The effects of 3d transition metal doping in TiO2 phases have been simulated in detail. The results of modelling indicate that Mn has the biggest potential among 3d transition metals, for the reduction of energy gap and the introduction of effective intermediate bands to allow multi-band optical absorption. On the basis of theoretical formulation, we have incorporated considerable amount of Mn in nano-crystalline TiO2 materials. Mn doped samples demonstrate significant red shift in the optical absorption edge, with a secondary absorption edge corresponding to theoretically predicted intermediate bands/states. The gigantic red shift achievable in Mn-doped TiO2 is expected to extend the useful TiO2 functionalities well beyond the UV threshold via the optical absorption of both visible and infrared photon irradiance.

  1. Influence of night-shift and napping at work on urinary melatonin, 17-β-estradiol and clock gene expression in pre-menopausal nurses.

    PubMed

    Bracci, M; Copertaro, A; Manzella, N; Staffolani, S; Strafella, E; Nocchi, L; Barbaresi, M; Copertaro, B; Rapisarda, V; Valentino, M; Santarelli, L

    2013-01-01

    Night-workers experience disruption of the sleep-wake cycle and light at night which may increase breast cancer risk by suppressing the nocturnal melatonin surge, resulting in higher levels of circulating estrogens. Night-work may also deregulate peripheral clock genes which have been found to be altered in breast cancer. This study investigated urinary 6-sulfatoxymelatonin (aMT6s), serum 17-beta-estradiol levels in premenopausal shift nurses at the end of the night-shift compared to a control group of daytime nurses. Peripheral clock gene expression in lymphocytes were also investigated. All participants were sampled in the follicular phase of the menstrual cycle. The effect of nurses’ ability to take a short nap during the night-shift was also explored. The shift-work group had significantly lower aMT6s levels than daytime nurses independently of a nap. Night-shift napping significantly influences 17-beta-estradiol levels resulting in higher outcomes in nurses who do not take a nap compared to napping group and daytime workers. Peripheral clock genes expression investigated was not significantly different among the groups. Our findings suggest that shift nurses experience changes in aMT6s levels after a night-shift. Napping habits influence 17-beta-estradiol levels at the end of a night-shift. These findings might be related to the increased cancer risk reported in night-shift workers and suggest that a short nap during night-shifts may exert a positive effect.

  2. A Simple Ultrasonic Experiment Using a Phase Shift Detection Technique.

    ERIC Educational Resources Information Center

    Yunus, W. Mahmood Mat; Ahmad, Maulana

    1996-01-01

    Describes a simple ultrasonic experiment that can be used to measure the purity of liquid samples by detecting variations in the velocity of sound. Uses a phase shift detection technique that incorporates the use of logic gates and a piezoelectric transducer. (JRH)

  3. Hybrid Theory of P-Wave Electron-Hydrogen Elastic Scattering

    NASA Technical Reports Server (NTRS)

    Bhatia, Anand

    2012-01-01

    We report on a study of electron-hydrogen scattering, using a combination of a modified method of polarized orbitals and the optical potential formalism. The calculation is restricted to P waves in the elastic region, where the correlation functions are of Hylleraas type. It is found that the phase shifts are not significantly affected by the modification of the target function by a method similar to the method of polarized orbitals and they are close to the phase shifts calculated earlier by Bhatia. This indicates that the correlation function is general enough to include the target distortion (polarization) in the presence of the incident electron. The important fact is that in the present calculation, to obtain similar results only 35-term correlation function is needed in the wave function compared to the 220-term wave function required in the above-mentioned previous calculation. Results for the phase shifts, obtained in the present hybrid formalism, are rigorous lower bounds to the exact phase shifts.

  4. Earth Tide Analysis Specifics in Case of Unstable Aquifer Regime

    NASA Astrophysics Data System (ADS)

    Vinogradov, Evgeny; Gorbunova, Ella; Besedina, Alina; Kabychenko, Nikolay

    2017-06-01

    We consider the main factors that affect underground water flow including aquifer supply, collector state, and distant earthquakes seismic waves' passage. In geodynamically stable conditions underground inflow change can significantly distort hydrogeological response to Earth tides, which leads to the incorrect estimation of phase shift between tidal harmonics of ground displacement and water level variations in a wellbore. Besides an original approach to phase shift estimation that allows us to get one value per day for the semidiurnal M2 wave, we offer the empirical method of excluding periods of time that are strongly affected by high inflow. In spite of rather strong ground motion during earthquake waves' passage, we did not observe corresponding phase shift change against the background on significant recurrent variations due to fluctuating inflow influence. Though inflow variations do not look like the only important parameter that must be taken into consideration while performing phase shift analysis, permeability estimation is not adequate without correction based on background alternations of aquifer parameters due to natural and anthropogenic reasons.

  5. The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts

    PubMed Central

    Vergés, Adriana; Steinberg, Peter D.; Hay, Mark E.; Poore, Alistair G. B.; Campbell, Alexandra H.; Ballesteros, Enric; Heck, Kenneth L.; Booth, David J.; Coleman, Melinda A.; Feary, David A.; Figueira, Will; Langlois, Tim; Marzinelli, Ezequiel M.; Mizerek, Toni; Mumby, Peter J.; Nakamura, Yohei; Roughan, Moninya; van Sebille, Erik; Gupta, Alex Sen; Smale, Dan A.; Tomas, Fiona; Wernberg, Thomas; Wilson, Shaun K.

    2014-01-01

    Climate-driven changes in biotic interactions can profoundly alter ecological communities, particularly when they impact foundation species. In marine systems, changes in herbivory and the consequent loss of dominant habitat forming species can result in dramatic community phase shifts, such as from coral to macroalgal dominance when tropical fish herbivory decreases, and from algal forests to ‘barrens’ when temperate urchin grazing increases. Here, we propose a novel phase-shift away from macroalgal dominance caused by tropical herbivores extending their range into temperate regions. We argue that this phase shift is facilitated by poleward-flowing boundary currents that are creating ocean warming hotspots around the globe, enabling the range expansion of tropical species and increasing their grazing rates in temperate areas. Overgrazing of temperate macroalgae by tropical herbivorous fishes has already occurred in Japan and the Mediterranean. Emerging evidence suggests similar phenomena are occurring in other temperate regions, with increasing occurrence of tropical fishes on temperate reefs. PMID:25009065

  6. Circadian system of mice integrates brief light stimuli.

    PubMed

    Van Den Pol, A N; Cao, V; Heller, H C

    1998-08-01

    Light is the primary sensory stimulus that synchronizes or entrains the internal circadian rhythms of animals to the solar day. In mammals photic entrainment of the circadian pacemaker residing in the suprachiasmatic nuclei is due to the fact that light at certain times of day can phase shift the pacemaker. In this study we show that the circadian system of mice can integrate extremely brief, repeated photic stimuli to produce large phase shifts. A train of 2-ms light pulses delivered as one pulse every 5 or 60 s, with a total light duration of 120 ms, can cause phase shifts of several hours that endure for weeks. Single 2-ms pulses of light were ineffective. Thus these data reveal a property of the mammalian circadian clock: it can integrate and store latent sensory information in such a way that a series of extremely brief photic stimuli, each too small to cause a phase shift individually, together can cause a large and long-lasting change in behavior.

  7. Earth Tide Analysis Specifics in Case of Unstable Aquifer Regime

    NASA Astrophysics Data System (ADS)

    Vinogradov, Evgeny; Gorbunova, Ella; Besedina, Alina; Kabychenko, Nikolay

    2018-05-01

    We consider the main factors that affect underground water flow including aquifer supply, collector state, and distant earthquakes seismic waves' passage. In geodynamically stable conditions underground inflow change can significantly distort hydrogeological response to Earth tides, which leads to the incorrect estimation of phase shift between tidal harmonics of ground displacement and water level variations in a wellbore. Besides an original approach to phase shift estimation that allows us to get one value per day for the semidiurnal M2 wave, we offer the empirical method of excluding periods of time that are strongly affected by high inflow. In spite of rather strong ground motion during earthquake waves' passage, we did not observe corresponding phase shift change against the background on significant recurrent variations due to fluctuating inflow influence. Though inflow variations do not look like the only important parameter that must be taken into consideration while performing phase shift analysis, permeability estimation is not adequate without correction based on background alternations of aquifer parameters due to natural and anthropogenic reasons.

  8. ρ resonance from the I = 1 ππ potential in lattice QCD

    NASA Astrophysics Data System (ADS)

    Kawai, Daisuke

    2018-03-01

    We calculate the phase shift for the I = 1 ππ scattering in 2+1 flavor lattice QCD at mπ = 410 MeV, using all-to-all propagators with the LapH smearing. We first investigate the sink operator independence of the I = 2 ππ scattering phase shift to estimate the systematics in the LapH smearing scheme in the HAL QCD method at mπ = 870 MeV. The difference in the scattering phase shift in this channel between the conventional point sink scheme and the smeared sink scheme is reasonably small as long as the next-toleading analysis is employed in the smeared sink scheme with larger smearing levels. We then extract the I = 1 ππ potential with the smeared sink operator, whose scattering phase shift shows a resonant behavior (ρ resonance). We also examine the pole of the S-matrix corresponding to the ρ resonance in the complex energy plane.

  9. Three-dimensional direct observation of Gouy phase shift in a terajet produced by a dielectric cuboid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen Pham, Hai Huy, E-mail: haihuynguyenpham135@s.ee.es.osaka-u.ac.jp; Hisatake, Shintaro, E-mail: hisatake@ee.es.osaka-u.ac.jp; Nagatsuma, Tadao, E-mail: nagatuma@ee.es.osaka-u.ac.jp

    2016-05-09

    The generation of the terajet at the terahertz (THz) frequency with the capability of subwavelength beam-compression has been attracting increasing research interest, as did the generation of the nanojet at the optical frequency. In particular, a terajet generated from a dielectric cuboid was not previously studied experimentally in the THz region. We here experimentally demonstrate three-dimensional visualizations and characterization of a terajet generated from a dielectric cuboid with a refractive index of n = 1.46 at 125 GHz. The subwavelength compressed beam and the Gouy phase shift phenomena of the terajet are directly observed. It is also found out that a calculation modelmore » of Gouy phase shift based on focused Gaussian beam by a lens cannot explain the Gouy phase shift of compressed beam by the terajet. The intensity enhancement of about 7.4 dB and full width at half maximum of 0.6λ are obtained at the distance 0.5λ from the cuboid.« less

  10. Acoustic radiation force expansions in terms of partial wave phase shifts for scattering: Applications

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.; Zhang, Likun

    2016-11-01

    When evaluating radiation forces on spheres in soundfields (with or without orbital-angular momentum) the interpretation of analytical results is greatly simplified by retaining the use of s-function notation for partial-wave coefficients imported into acoustics from quantum scattering theory in the 1970s. This facilitates easy interpretation of various efficiency factors. For situations in which dissipation is negligible, each partial-wave s-function becomes characterized by a single parameter: a phase shift allowing for all possible situations. These phase shifts are associated with scattering by plane traveling waves and the incident wavefield of interest is separately parameterized. (When considering outcomes, the method of fabricating symmetric objects having a desirable set of phase shifts becomes a separate issue.) The existence of negative radiation force "islands" for beams reported in 2006 by Marston is manifested. This approach and consideration of conservation theorems illustrate the unphysical nature of various claims made by other researchers. This approach is also directly relevant to objects in standing waves. Supported by ONR.

  11. Formation of Fourier phase shifts in the solar Ni I 6768 A line

    NASA Technical Reports Server (NTRS)

    Jones, Harrison P.

    1989-01-01

    A formalism is developed to understand better how Doppler shifts of spectrum lines as inferred from phase shifts in the Fourier transforms of line profiles are related to the underlying velocity structures which they are intended to measure. With a standard model atmosphere and a simplified, quasi-LTE treatment of line formation, the formalism is applied to the Ni I 6768 A line, which has been selected for use with a network of imaging interferometers under development by the Global Oscillations Network Group for research in helioseismology. Fourier phase shifts are found to be a remarkably linear measure of velocity even in the presence of gradients and unresolved lateral variations in the assumed velocity field. An assumed outward increase in amplitude of a model oscillatory velocity is noticeably reflected in the center-to-limb behavior of the simulated velocity measure, and a sample model of solar granulation is found to have a strong influence on the formation of the Fourier phase.

  12. Transportation of single cell and microbubbles by phase-shift introduced to standing leaky surface acoustic waves

    PubMed Central

    Meng, Long; Cai, Feiyan; Zhang, Zidong; Niu, Lili; Jin, Qiaofeng; Yan, Fei; Wu, Junru; Wang, Zhanhui; Zheng, Hairong

    2011-01-01

    A microfluidic device was developed to precisely transport a single cell or multiple microbubbles by introducing phase-shifts to a standing leaky surface acoustic wave (SLSAW). The device consists of a polydimethyl-siloxane (PDMS) microchannel and two phase-tunable interdigital transducers (IDTs) for the generation of the relative phase for the pair of surface acoustic waves (SAW) propagating along the opposite directions forming a standing wave. When the SAW contacts the fluid medium inside the microchannel, some of SAW energy is coupled to the fluid and the SAW becomes the leaky surface wave. By modulating the relative phase between two IDTs, the positions of pressure nodes of the SLSAW in the microchannel change linearly resulting in the transportation of a single cell or microbubbles. The results also reveal that there is a good linear relationship between the relative phase and the displacement of a single cell or microbubbles. Furthermore, the single cell and the microbubbles can be transported over a predetermined distance continuously until they reach the targeted locations. This technique has its distinct advantages, such as precise position-manipulation, simple to implement, miniature size, and noninvasive character, which may provide an effective method for the position-manipulation of a single cell and microbubbles in many biological and biomedical applications. PMID:22662056

  13. Circadian phase resetting in older people by ocular bright light exposure.

    PubMed

    Klerman, E B; Duffy, J F; Dijk, D J; Czeisler, C A

    2001-01-01

    Aging is associated with frequent complaints about earlier bedtimes and waketimes. These changes in sleep timing are associated with an earlier timing of multiple endogenous rhythms, including core body temperature (CBT) and plasma melatonin, driven by the circadian pacemaker. One possible cause of the age-related shift of endogenous circadian rhythms and the timing of sleep relative to clock time is a change in the phase-shifting capacity of the circadian pacemaker in response to the environmental light-dark cycle, the principal synchronizer of the human circadian system. We studied the response of the circadian system of 24 older men and women and 23 young men to scheduled exposure to ocular bright light stimuli. Light stimuli were 5 hours in duration, administered for 3 consecutive days at an illuminance of approximately 10,000 lux. Light stimuli were scheduled 1.5 or 3.5 hours after the CBT nadir to induce shifts of endogenous circadian pacemaker to an earlier hour (phase advances) or were scheduled 1.5 hours before the CBT nadir to induce shifts to a later hour (phase delays). The rhythms of CBT and plasma melatonin assessed under constant conditions served as markers of circadian phase. Bright light stimuli elicited robust responses of the circadian timing system in older people; both phase advances and phase delays were induced. The magnitude of the phase delays did not differ significantly between older and younger individuals, but the phase advances were significantly attenuated in older people. The attenuated response to light stimuli that induce phase advances does not explain the advanced phase of the circadian pacemaker in older people. The maintained responsiveness of the circadian pacemaker to light implies that scheduled bright light exposure can be used to treat circadian phase disturbances in older people.

  14. Nonlinear evolution of baryon acoustic oscillations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crocce, Martin; Institut de Ciencies de l'Espai, IEEC-CSIC, Campus UAB, Facultat de Ciencies, Torre C5 par-2, Barcelona 08193; Scoccimarro, Roman

    2008-01-15

    We study the nonlinear evolution of baryon acoustic oscillations in the dark matter power spectrum and the correlation function using renormalized perturbation theory. In a previous paper we showed that renormalized perturbation theory successfully predicts the damping of acoustic oscillations; here we extend our calculation to the enhancement of power due to mode coupling. We show that mode coupling generates additional oscillations that are out of phase with those in the linear spectrum, leading to shifts in the scales of oscillation nodes defined with respect to a smooth spectrum. When Fourier transformed, these out-of-phase oscillations induce percent-level shifts in themore » acoustic peak of the two-point correlation function. We present predictions for these shifts as a function of redshift; these should be considered as a robust lower limit to the more realistic case that includes, in addition, redshift distortions and galaxy bias. We show that these nonlinear effects occur at very large scales, leading to a breakdown of linear theory at scales much larger than commonly thought. We discuss why virialized halo profiles are not responsible for these effects, which can be understood from basic physics of gravitational instability. Our results are in excellent agreement with numerical simulations, and can be used as a starting point for modeling baryon acoustic oscillations in future observations. To meet this end, we suggest a simple physically motivated model to correct for the shifts caused by mode coupling.« less

  15. Effects of repeated light-dark phase shifts on voluntary ethanol and water intake in male and female Fischer and Lewis rats.

    PubMed

    Rosenwasser, Alan M; Clark, James W; Fixaris, Michael C; Belanger, Gabriel V; Foster, James A

    2010-05-01

    Several lines of evidence implicate reciprocal interactions between excessive alcohol (ethanol) intake and dysregulation of circadian biological rhythms. Thus, chronic alcohol intake leads to widespread circadian disruption in both humans and experimental animals, while in turn, chronobiological disruption has been hypothesized to promote or sustain excessive alcohol intake. Nevertheless, the effects of circadian disruption on voluntary ethanol intake have not been investigated extensively, and prior studies have reported both increased and decreased ethanol intake in rats maintained under "shift-lag" lighting regimens mimicking those experienced by shift workers and transmeridian travelers. In the present study, male and female inbred Fischer and Lewis rats were housed in running wheel cages with continuous free-choice access to both water and 10% (vol/vol) ethanol solution and exposed to repeated 6-h phase advances of the daily light-dark (LD) cycle, whereas controls were kept under standard LD 12:12 conditions. Shift-lag lighting reduced overall ethanol and water intake, and reduced ethanol preference in Fischer rats. Although contrary to the hypothesis that circadian disruption would increase voluntary ethanol intake, these results are consistent with our previous report of reduced ethanol intake in selectively bred high-alcohol-drinking (HAD1) rats housed under a similar lighting regimen. We conclude that chronic circadian disruption is a form of chronobiological stressor that, like other stressors, can either increase or decrease ethanol intake, depending on a variety of poorly understood variables. 2010 Elsevier Inc. All rights reserved.

  16. Illusion optics via one-dimensional ultratransparent photonic crystals with shifted spatial dispersions.

    PubMed

    Yao, Zhongqi; Luo, Jie; Lai, Yun

    2017-12-11

    In this work, we propose that one-dimensional ultratransparent dielectric photonic crystals with wide-angle impedance matching and shifted elliptical equal frequency contours are promising candidate materials for illusion optics. The shift of the equal frequency contour does not affect the refractive behaviors, but enables a new degree of freedom in phase modulation. With such ultratransparent photonic crystals, we demonstrate some applications in illusion optics, including creating illusions of a different-sized scatterer and a shifted source with opposite phase. Such ultratransparent dielectric photonic crystals may establish a feasible platform for illusion optics devices at optical frequencies.

  17. Weighted least-square approach for simultaneous measurement of multiple reflective surfaces

    NASA Astrophysics Data System (ADS)

    Tang, Shouhong; Bills, Richard E.; Freischlad, Klaus

    2007-09-01

    Phase shifting interferometry (PSI) is a highly accurate method for measuring the nanometer-scale relative surface height of a semi-reflective test surface. PSI is effectively used in conjunction with Fizeau interferometers for optical testing, hard disk inspection, and semiconductor wafer flatness. However, commonly-used PSI algorithms are unable to produce an accurate phase measurement if more than one reflective surface is present in the Fizeau interferometer test cavity. Examples of test parts that fall into this category include lithography mask blanks and their protective pellicles, and plane parallel optical beam splitters. The plane parallel surfaces of these parts generate multiple interferograms that are superimposed in the recording plane of the Fizeau interferometer. When using wavelength shifting in PSI the phase shifting speed of each interferogram is proportional to the optical path difference (OPD) between the two reflective surfaces. The proposed method is able to differentiate each underlying interferogram from each other in an optimal manner. In this paper, we present a method for simultaneously measuring the multiple test surfaces of all underlying interferograms from these superimposed interferograms through the use of a weighted least-square fitting technique. The theoretical analysis of weighted least-square technique and the measurement results will be described in this paper.

  18. Phase shifts, herbivory, and the resilience of coral reefs to climate change.

    PubMed

    Hughes, Terence P; Rodrigues, Maria J; Bellwood, David R; Ceccarelli, Daniela; Hoegh-Guldberg, Ove; McCook, Laurence; Moltschaniwskyj, Natalie; Pratchett, Morgan S; Steneck, Robert S; Willis, Bette

    2007-02-20

    Many coral reefs worldwide have undergone phase shifts to alternate, degraded assemblages because of the combined effects of over-fishing, declining water quality, and the direct and indirect impacts of climate change. Here, we experimentally manipulated the density of large herbivorous fishes to test their influence on the resilience of coral assemblages in the aftermath of regional-scale bleaching in 1998, the largest coral mortality event recorded to date. The experiment was undertaken on the Great Barrier Reef, within a no-fishing reserve where coral abundances and diversity had been sharply reduced by bleaching. In control areas, where fishes were abundant, algal abundance remained low, whereas coral cover almost doubled (to 20%) over a 3 year period, primarily because of recruitment of species that had been locally extirpated by bleaching. In contrast, exclusion of large herbivorous fishes caused a dramatic explosion of macroalgae, which suppressed the fecundity, recruitment, and survival of corals. Consequently, management of fish stocks is a key component in preventing phase shifts and managing reef resilience. Importantly, local stewardship of fishing effort is a tractable goal for conservation of reefs, and this local action can also provide some insurance against larger-scale disturbances such as mass bleaching, which are impractical to manage directly.

  19. Bilayer synergetic coupling double negative acoustic metasurface and cloak.

    PubMed

    Ma, Fuyin; Huang, Meng; Xu, Yicai; Wu, Jiu Hui

    2018-04-12

    In this paper, we propose a bilayer plate-type lightweight double negative metasurface based on a new synergetic coupling design concept, by which the perfect absorption, double negative bands, free manipulation of phase shifts with a 2π span and acoustic cloak can be successively realized. Firstly, the synergetic behavior between resonant and anti-resonant plates is presented to construct a bilayer unit in which each component respectively provides a pre-defined function in realizing the perfect absorption. Based on this bilayer structure, a double negative band with simultaneously negative effective mass density and bulk modulus is obtained, which, as a metasurface, can obtain continuous phase shifts almost completely covering a 2π range, thus facilitating the design of a three-dimensional (3D) acoustic cloak. In addition, based on this strong sound absorption concept, a two-dimensional (2D) omnidirectional broadband acoustical dark skin, covering between 800 to 6000 Hz, is also demonstrated through the proposed bilayer plate-type structure form. The proposed design concepts and metasurfaces have widespread potential application values in strong sound attenuation, filtering, superlens, imaging, cloak, and extraordinary wave steering, in which the attributes of strong absorption, double negative parameters or continuous phase shifts with full 2π span are required to realize the expected extraordinary physical features.

  20. Complex conductivity response to microbial growth and biofilm formation on phenanthrene spiked medium

    NASA Astrophysics Data System (ADS)

    Albrecht, Remy; Gourry, Jean Christophe; Simonnot, Marie-Odile; Leyval, Corinne

    2011-11-01

    Several laboratory studies have recently demonstrated the utility of geophysical methods for the investigation of microbial-induced changes over contaminated sites. However, it remains difficult to distinguish the effects due to the new physical properties imparted by microbial processes, to bacterial growth, or to the development of bacterial biofilm. We chose to study the influence of biofilm formation on geophysical response using complex conductivity measurements (0.1-1000 Hz) in phenanthrene-contaminated media. Biotic assays were conducted with two phenanthrene (PHE) degrading bacterial strains: Burkholderia sp (NAH1), which produced biofilm and Stenophomonas maltophilia (MATE10), which did not, and an abiotic control. Results showed that bacterial densities for NAH1 and MATE10 strains continuously increased at the same rate during the experiment. However, the complex conductivity signature showed noticeable differences between the two bacteria, with a phase shift of 50 mrad at 4 Hz for NAH1, which produced biofilm. Biofilm volume was quantified by Scanning Confocal Laser Microscopy (SCLM). Significant correlations were established between phase shift decrease and biofilm volume for NAH1 assays. Results suggest that complex conductivity measurements, specifically phase shift, can be a useful indicator of biofilm formation inside the overall signal of microbial activity on contaminated sites.

  1. Application of the finite-element method and the eigenmode expansion method to investigate the periodic and spectral characteristic of discrete phase-shift fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    He, Yue-Jing; Hung, Wei-Chih; Syu, Cheng-Jyun

    2017-12-01

    The finite-element method (FEM) and eigenmode expansion method (EEM) were adopted to analyze the guided modes and spectrum of phase-shift fiber Bragg grating at five phase-shift degrees (including zero, 1/4π, 1/2π, 3/4π, and π). In previous studies on optical fiber grating, conventional coupled-mode theory was crucial. This theory contains abstruse knowledge about physics and complex computational processes, and thus is challenging for users. Therefore, a numerical simulation method was coupled with a simple and rigorous design procedure to help beginners and users to overcome difficulty in entering the field; in addition, graphical simulation results were presented. To reduce the difference between the simulated context and the actual context, a perfectly matched layer and perfectly reflecting boundary were added to the FEM and the EEM. When the FEM was used for grid cutting, the object meshing method and the boundary meshing method proposed in this study were used to effectively enhance computational accuracy and substantially reduce the time required for simulation. In summary, users can use the simulation results in this study to easily and rapidly design an optical fiber communication system and optical sensors with spectral characteristics.

  2. Circadian phase-shifting effects of a laboratory environment: a clinical trial with bright and dim light.

    PubMed

    Youngstedt, Shawn D; Kripke, Daniel F; Elliott, Jeffrey A; Rex, Katharine M

    2005-09-09

    Our aims were to examine the influence of different bright light schedules on mood, sleep, and circadian organization in older adults (n = 60, ages 60-79 years) with insomnia and/or depression, contrasting with responses of young, healthy controls (n = 30, ages 20-40 years). Volunteers were assessed for one week in their home environments. Urine was collected over two 24-hour periods to establish baseline acrophase of 6-sulphatoxymelatonin (aMT6s) excretion. Immediately following home recording, volunteers spent five nights and four days in the laboratory. Sleep periods were fixed at eight hours in darkness, consistent with the volunteers' usual sleep periods. Volunteers were randomly assigned to one of three light treatments (four hours per day) within the wake period: (A) two hours of 3,000 lux at 1-3 hours and 13-15 hours after arising; (B) four hours of 3,000 lux at 6-10 hours after arising; (C) four hours of dim placebo light at 6-10 hours after arising. Lighting was 50 lux during the remainder of wakefulness. The resulting aMT6s acrophase was determined during the final 30 hours in the laboratory. Neither mood nor total melatonin excretion differed significantly by treatment. For the three light treatments, significant and similar phase-response plots were found, indicating that the shift in aMT6s acrophase was dependent upon the circadian time of treatment. The changes in circadian timing were not significantly correlated to changes in sleep or mood. The trial failed to demonstrate photoperiodic effects. The results suggest that even low levels of illumination and/or fixed timing of behavior had significant phase-shifting effects.

  3. Oral contraceptives positively affect mood in healthy PMS-free women: A longitudinal study.

    PubMed

    Hamstra, Danielle A; de Kloet, E Ronald; de Rover, Mischa; Van der Does, Willem

    2017-12-01

    Menstrual cycle phase and oral contraceptives (OC) use influence mood and cognition and these effects may be moderated by the mineralocorticoid receptor (MR) genotype. The effect of menstrual cycle phase on mood may be increased if participants know that this is the focus of study. We assessed aspects associated with reproductive depression such as mood, interpersonal sensitivity, affect lability and depressive cognitions in MR-genotyped OC-users and naturally cycling (NC) women in a carefully masked design. A homogenous sample of healthy, PMS-free, pre-menopausal MR-genotyped women (n=92) completed online questionnaires eight times during two consecutive cycles. The masking of the research question was successful. OC-users did not differ significantly from NC women in positive and negative affect at the time of assessment, personality characteristics (e.g. neuroticism) or mental and physical health. Both groups reported more shifts in anger in the first cycle week (p<0.001; η p 2 =0.08). Compared to NC women, OC-users reported fewer mood-shifts between depression and elation in the mid-luteal phase of the menstrual cycle (p=0.002; η p 2 =0.10) and had fewer ruminating thoughts at all phases (p=0.003; η p 2 =0.11). Effects of MR-genotype were not significant after correction for multiple comparisons. OC users scored more favorably on measures associated with reproductive depression. OC users also showed a decreased affect variability possibly indicating an emotional blunting effect, which is in line with previous reports on affect-stabilizing effects of OC. Limitations were loss of cases due to irregularities in the menstrual cycle length and possible confounding by the 'survivor effect', since almost all OC-users took OC for more than a year. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Two mechanisms of rephasal of circadian rhythms in response to a 180 deg phase shift /simulated 12-hr time zone change/

    NASA Technical Reports Server (NTRS)

    Deroshia, C. W.; Winget, C. M.; Bond, G. H.

    1976-01-01

    A model developed by Wever (1966) is considered. The model describes the behavior of circadian rhythms in response to photoperiod phase shifts simulating time zone changes, as a function of endogenous periodicity, light intensity, and direction of phase shift. A description is given of an investigation conducted to test the model upon the deep body temperature rhythm in unrestrained subhuman primates. An evaluation is conducted regarding the applicability of the model in predicting the type and duration of desynchronization induced by simulated time zone changes as a function of endogenous periodicity.

  5. Optical Hilbert transform using fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Ge, Jing; Wang, Chinhua; Zhu, Xiaojun

    2010-11-01

    In this paper, we demonstrate that a simple and practical phase-shifted fiber Bragg grating (PSFBG) operated in reflection can provide the required spectral response for implementing an all-optical Hilbert transformer (HT), including both integer and fractional orders. The PSFBG consists of two concatenated identical uniform FBGs with a phase shift between them. It can be proved that the phase shift of the FBG and the apodizing profile of the refractive index modulation determine the order of the transform. The device shows a good accuracy in calculating the Hilbert transform of the complex field of an arbitrary input optical waveforms when compared with the theoretical results.

  6. Applying time-frequency analysis to assess cerebral autoregulation during hypercapnia.

    PubMed

    Placek, Michał M; Wachel, Paweł; Iskander, D Robert; Smielewski, Peter; Uryga, Agnieszka; Mielczarek, Arkadiusz; Szczepański, Tomasz A; Kasprowicz, Magdalena

    2017-01-01

    Classic methods for assessing cerebral autoregulation involve a transfer function analysis performed using the Fourier transform to quantify relationship between fluctuations in arterial blood pressure (ABP) and cerebral blood flow velocity (CBFV). This approach usually assumes the signals and the system to be stationary. Such an presumption is restrictive and may lead to unreliable results. The aim of this study is to present an alternative method that accounts for intrinsic non-stationarity of cerebral autoregulation and the signals used for its assessment. Continuous recording of CBFV, ABP, ECG, and end-tidal CO2 were performed in 50 young volunteers during normocapnia and hypercapnia. Hypercapnia served as a surrogate of the cerebral autoregulation impairment. Fluctuations in ABP, CBFV, and phase shift between them were tested for stationarity using sphericity based test. The Zhao-Atlas-Marks distribution was utilized to estimate the time-frequency coherence (TFCoh) and phase shift (TFPS) between ABP and CBFV in three frequency ranges: 0.02-0.07 Hz (VLF), 0.07-0.20 Hz (LF), and 0.20-0.35 Hz (HF). TFPS was estimated in regions locally validated by statistically justified value of TFCoh. The comparison of TFPS with spectral phase shift determined using transfer function approach was performed. The hypothesis of stationarity for ABP and CBFV fluctuations and the phase shift was rejected. Reduced TFPS was associated with hypercapnia in the VLF and the LF but not in the HF. Spectral phase shift was also decreased during hypercapnia in the VLF and the LF but increased in the HF. Time-frequency method led to lower dispersion of phase estimates than the spectral method, mainly during normocapnia in the VLF and the LF. The time-frequency method performed no worse than the classic one and yet may offer benefits from lower dispersion of phase shift as well as a more in-depth insight into the dynamic nature of cerebral autoregulation.

  7. How to show that unicorn milk is a chronobiotic: the regression-to-the-mean statistical artifact.

    PubMed

    Atkinson, G; Waterhouse, J; Reilly, T; Edwards, B

    2001-11-01

    Few chronobiologists may be aware of the regression-to-the-mean (RTM) statistical artifact, even though it may have far-reaching influences on chronobiological data. With the aid of simulated measurements of the circadian rhythm phase of body temperature and a completely bogus stimulus (unicorn milk), we explain what RTM is and provide examples relevant to chronobiology. We show how RTM may lead to erroneous conclusions regarding individual differences in phase responses to rhythm disturbances and how it may appear as though unicorn milk has phase-shifting effects and can successfully treat some circadian rhythm disorders. Guidelines are provided to ensure RTM effects are minimized in chronobiological investigations.

  8. High resolution laboratory grating-based x-ray phase-contrast CT

    NASA Astrophysics Data System (ADS)

    Viermetz, Manuel P.; Birnbacher, Lorenz J. B.; Fehringer, Andreas; Willner, Marian; Noel, Peter B.; Pfeiffer, Franz; Herzen, Julia

    2017-03-01

    Grating-based phase-contrast computed tomography (gbPC-CT) is a promising imaging method for imaging of soft tissue contrast without the need of any contrast agent. The focus of this study is the increase in spatial resolution without loss in sensitivity to allow visualization of pathologies comparable to the convincing results obtained at the synchrotron. To improve the effective pixel size a super-resolution reconstruction based on subpixel shifts involving a deconvolution of the image is applied on differential phase-contrast data. In our study we could achieve an effective pixel sizes of 28mm without any drawback in terms of sensitivity or the ability to measure quantitative data.

  9. Reward Value Effects on Timing in the Peak Procedure

    ERIC Educational Resources Information Center

    Galtress, Tiffany; Kirkpatrick, Kimberly

    2009-01-01

    Three experiments examined the effect of motivational variables on timing in the peak procedure. In Experiment 1, rats received a 60-s peak procedure that was coupled with long-term, between-phase changes in reinforcer magnitude. Increases in reinforcer magnitude produced a leftward shift in the peak that persisted for 20 sessions of training. In…

  10. Creation of diffraction-limited non-Airy multifocal arrays using a spatially shifted vortex beam

    NASA Astrophysics Data System (ADS)

    Lin, Han; Gu, Min

    2013-02-01

    Diffraction-limited non-Airy multifocal arrays are created by focusing a phase-modulated vortex beam through a high numerical-aperture objective. The modulated phase at the back aperture of the objective resulting from the superposition of two concentric phase-modulated vortex beams allows for the generation of a multifocal array of cylindrically polarized non-Airy patterns. Furthermore, we shift the spatial positions of the phase vortices to manipulate the intensity distribution at each focal spot, leading to the creation of a multifocal array of split-ring patterns. Our method is experimentally validated by generating the predicted phase modulation through a spatial light modulator. Consequently, the spatially shifted circularly polarized vortex beam adopted in a dynamic laser direct writing system facilitates the fabrication of a split-ring microstructure array in a polymer material by a single exposure of a femtosecond laser beam.

  11. Bifurcation study of phase oscillator systems with attractive and repulsive interaction.

    PubMed

    Burylko, Oleksandr; Kazanovich, Yakov; Borisyuk, Roman

    2014-08-01

    We study a model of globally coupled phase oscillators that contains two groups of oscillators with positive (synchronizing) and negative (desynchronizing) incoming connections for the first and second groups, respectively. This model was previously studied by Hong and Strogatz (the Hong-Strogatz model) in the case of a large number of oscillators. We consider a generalized Hong-Strogatz model with a constant phase shift in coupling. Our approach is based on the study of invariant manifolds and bifurcation analysis of the system. In the case of zero phase shift, various invariant manifolds are analytically described and a new dynamical mode is found. In the case of a nonzero phase shift we obtained a set of bifurcation diagrams for various systems with three or four oscillators. It is shown that in these cases system dynamics can be complex enough and include multistability and chaotic oscillations.

  12. Bifurcation study of phase oscillator systems with attractive and repulsive interaction

    NASA Astrophysics Data System (ADS)

    Burylko, Oleksandr; Kazanovich, Yakov; Borisyuk, Roman

    2014-08-01

    We study a model of globally coupled phase oscillators that contains two groups of oscillators with positive (synchronizing) and negative (desynchronizing) incoming connections for the first and second groups, respectively. This model was previously studied by Hong and Strogatz (the Hong-Strogatz model) in the case of a large number of oscillators. We consider a generalized Hong-Strogatz model with a constant phase shift in coupling. Our approach is based on the study of invariant manifolds and bifurcation analysis of the system. In the case of zero phase shift, various invariant manifolds are analytically described and a new dynamical mode is found. In the case of a nonzero phase shift we obtained a set of bifurcation diagrams for various systems with three or four oscillators. It is shown that in these cases system dynamics can be complex enough and include multistability and chaotic oscillations.

  13. Observation of giant Goos-Hänchen and angular shifts at designed metasurfaces

    PubMed Central

    Yallapragada, Venkata Jayasurya; Ravishankar, Ajith P.; Mulay, Gajendra L.; Agarwal, Girish S.; Achanta, Venu Gopal

    2016-01-01

    Metasurfaces with sub-wavelength features are useful in modulating the phase, amplitude or polarization of electromagnetic fields. While several applications are reported for light manipulation and control, the sharp phase changes would be useful in enhancing the beam shifts at reflection from a metasurface. In designed periodic patterns on metal film, at surface plasmon resonance, we demonstrate Goos-Hanchen shift of the order of 70 times the incident wavelength and the angular shifts of several hundred microradians. We have designed the patterns using rigorous coupled wave analysis (RCWA) together with S-matrices and have used a complete vector theory to calculate the shifts as well as demonstrate a versatile experimental setup to directly measure the shifts. The giant shifts demonstrated could prove to be useful in enhancing the sensitivity of experiments ranging from atomic force microscopy to gravitational wave detection. PMID:26758471

  14. Measurement of grain wall contact forces in a granular bed using frequency-scanning interferometry

    NASA Astrophysics Data System (ADS)

    Osman, M. S.; Huntley, J. M.; Wildman, R. D.

    2005-07-01

    Micro-mechanical theories have recently been developed to model the propagation of force through a granular material based on single grain interactions. We describe here an experimental technique, developed to validate such theories, that is able to measure the individual contact forces between the grains and the wall of the containing vessel, thereby avoiding the spatial averaging effect of conventional pressure transducers. The method involves measuring interferometrically the deflection of an interface within a triple-layer elastic substrate consisting of epoxy, silicone rubber, and glass. A thin coating of gold between the epoxy and rubber acts as a reflective film, with the reference wave provided by the glass/air interface. Phase shifting is carried out by means of a tunable laser. Phase difference maps are calculated using a 15-frame phase-shifting formula based on a Hanning window. The resulting displacement resolution of order 1 nm allows the wall stiffness to be increased by some two orders of magnitude compared to previously described methods in the literature.

  15. Magnetosonic waves interactions in a spin-1/2 degenerate quantum plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Sheng-Chang, E-mail: lsc1128lsc@126.com; Han, Jiu-Ning

    2014-03-15

    We investigate the magnetosonic waves and their interactions in a spin-1/2 degenerate quantum plasma. With the help of the extended Poincaré-Lighthill-Kuo perturbation method, we derive two Korteweg-de Vries-Burgers equations to describe the magnetosonic waves. The parameter region where exists magnetosonic waves and the phase diagram of the compressive and rarefactive solitary waves with different plasma parameters are shown. We further explore the effects of quantum diffraction, quantum statistics, and electron spin magnetization on the head-on collisions of magnetosonic solitary waves. We obtain the collision-induced phase shifts (trajectory changes) analytically. Both for the compressive and rarefactive solitary waves, it is foundmore » that the collisions only lead to negative phase shifts. Our present study should be useful to understand the collective phenomena related to the magnetosonic wave collisions in degenerate plasmas like those in the outer shell of massive white dwarfs as well as to the potential applications of plasmas.« less

  16. Amplification of a bi-phase shift-key modulated signal by a mm-wave FEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prosnitz, D.; Scharlemann, E.T.; Sheaffer, M.K.

    Bi-phase shift keying (BPSK) is a modulation scheme used in communications and radar in which the phase of a transmitted rf signal is switched in a coded pattern between discrete values differing by {pi} radians. The transmitted information rate (in communications) or resolution (in imaging radar) depends on the rate at which the transmitted signal can be modulated. Modulation rates of greater than 1 GHz are generally desired. Although the instantaneous gain bandwidth of a mm-wave FEL amplifier can be much greater than 10 GHz, slippage may limit the BPSK modulation rate that can be amplified. Qualitative slippage arguments wouldmore » limit the modulation rate to relatively low values; nevertheless, simulations with a time-dependent FEL code (GINGER) indicate that rates of 2 GHz or more are amplified without much loss in modulation integrity. In this paper we describe the effects of slippage in the simulations and discuss the limits of simple arguments.« less

  17. Aspheric figure generation using feedback from an infrared phase-shifting interferometer.

    NASA Astrophysics Data System (ADS)

    Stahl, H. P.; Ketelsen, D.

    This paper discusses the usefulness of the infrared phase-shifting interferometric system for providing figure correcting feedback to the optician during the generation of the off-axis parabolic segments and how it is affected by the surface roughness produced by each generator tool.

  18. Effect of phase lag on cyclic durability of laminated composite

    NASA Astrophysics Data System (ADS)

    Andersons, Janis; Limonov, V.; Tamuzs, Vitants

    1992-07-01

    Theoretical and experimental results on fatigue of laminated fiber reinforced composites under out-of-phase, biaxial cyclic loading are presented. Experiments were carried out on tubular filament wound samples of epoxy matrix/organic (Kevlar type) fiber composites. Fatigue strength under two different loading modes, namely cyclic torsion combined with axial tension or compression, was investigated for phase lags psi = 0, pi/2, and pi. Durability was shown to decrease with increasing phase shift both for axial tension (R = 0.1) and compression (R = 10). A matrix failure criterion was proposed for a unidirectionally reinforced ply, and the ply discount method was modified to account for phase lag. Calculated S-N curves agree reasonably well with experimental data.

  19. Simulation and analysis of OOK-to-BPSK format conversion based on gain-transparent SOA used as optical phase-modulator.

    PubMed

    Hong, Wei; Huang, Dexiu; Zhang, Xinliang; Zhu, Guangxi

    2007-12-24

    All-optical on-off keying (OOK) to binary phase-shift keying (BPSK) modulation format conversion based on gain-transparent semiconductor optical amplifier (GT-SOA) is simulated and analyzed, where GT-SOA is used as an all-optical phase-modulator (PM). Numerical simulation of the phase modulation effect of GT-SOA is performed using a wideband dynamic model of GT-SOA and the quality of the BPSK signal is evaluated using the differential-phase-Q factor. Performance improvement by holding light injection is analyzed and non-return-to-zero (NRZ) and return-to-zero (RZ) modulation formats of the OOK signal are considered.

  20. Enhanced cavitation and heating of flowing polymer- and lipid-shelled microbubbles and phase-shift nanodroplets during focused ultrasound exposures

    NASA Astrophysics Data System (ADS)

    Zhang, Siyuan; Cui, Zhiwei; Li, Chong; Zhou, Fanyu; Zong, Yujin; Wang, Supin; Wan, Mingxi

    2017-03-01

    Cavitation and heating are the primary mechanisms of numerous therapeutic applications of ultrasound. Various encapsulated microbubbles (MBs) and phase-shift nanodroplets (NDs) have been used to enhance local cavitation and heating, creating interests in developing ultrasound therapy using these encapsulated MBs and NDs. This work compared the efficiency of flowing polymer- and lipid-shelled MBs and phase-shift NDs in cavitation and heating during focused ultrasound (FUS) exposures. Cavitation activity and temperature were investigated when the solution of polymer- and lipid-shelled MBs and NDs flowed through the vessel in a tissue-mimicking phantom with varying flow velocities when exposed to FUS at various acoustic power levels. The inertial cavitation dose (ICD) for the encapsulated MBs and NDs were higher than those for the saline. Temperature initially increased with increasing flow velocities of the encapsulated MBs, followed by a decrease of the temperature with increasing flow velocities when the velocity was much higher. Meanwhile, ICD showed a trend of increases with increasing flow velocity. For the phase-shift NDs, ICD after the first FUS exposure was lower than those after the second FUS exposure. For the encapsulated MBs, ICD after the first FUS exposure was higher than those after the second FUS exposure. Further studies are necessary to investigate the treatment efficiency of different encapsulated MBs and phase-shift NDs in cavitation and heating.

Top