Nonadiabatic conditional geometric phase shift with NMR.
Xiang-Bin, W; Keiji, M
2001-08-27
A conditional geometric phase shift gate, which is fault tolerant to certain types of errors due to its geometric nature, was realized recently via nuclear magnetic resonance (NMR) under adiabatic conditions. However, in quantum computation, everything must be completed within the decoherence time. The adiabatic condition makes any fast conditional Berry phase (cyclic adiabatic geometric phase) shift gate impossible. Here we show that by using a newly designed sequence of simple operations with an additional vertical magnetic field, the conditional geometric phase shift gate can be run nonadiabatically. Therefore geometric quantum computation can be done at the same rate as usual quantum computation.
Alternating phase-shifted mask for logic gate levels, design, and mask manufacturing
NASA Astrophysics Data System (ADS)
Liebmann, Lars W.; Graur, Ioana C.; Leipold, William C.; Oberschmidt, James M.; O'Grady, David S.; Regaill, Denis
1999-07-01
While the benefits of alternating phase shifted masks in improving lithographic process windows at increased resolution are well known throughout the lithography community, broad implementation of this potentially powerful technique has been slow due to the inherent complexity of the layout design and mask manufacturing process. This paper will review a project undertaken at IBM's Semiconductor Research and Development Center and Mask Manufacturing and Development facility to understand the technical and logistical issues associated with the application of alternating phase shifted mask technology to the gate level of a full microprocessor chip. The work presented here depicts an important milestone toward integration of alternating phase shifted masks into the manufacturing process by demonstrating an automated design solution and yielding a functional alternating phase shifted mask. The design conversion of the microprocessor gate level to a conjugate twin shifter alternating phase shift layout was accomplished with IBM's internal design system that automatically scaled the design, added required phase regions, and resolved phase conflicts. The subsequent fabrication of a nearly defect free phase shifted mask, as verified by SEM based die to die inspection, highlights the maturity of the alternating phase shifted mask manufacturing process in IBM's internal mask facility. Well defined and recognized challenges in mask inspection and repair remain and the layout of alternating phase shifted masks present a design and data preparation overhead, but the data presented here demonstrate the feasibility of designing and building manufacturing quality alternating phase shifted masks for the gate level of a microprocessor.
Optical π phase shift created with a single-photon pulse.
Tiarks, Daniel; Schmidt, Steffen; Rempe, Gerhard; Dürr, Stephan
2016-04-01
A deterministic photon-photon quantum logic gate is a long-standing goal. Building such a gate becomes possible if a light pulse containing only one photon imprints a phase shift of π onto another light field. We experimentally demonstrate the generation of such a π phase shift with a single-photon pulse. A first light pulse containing less than one photon on average is stored in an atomic gas. Rydberg blockade combined with electromagnetically induced transparency creates a phase shift for a second light pulse, which propagates through the medium. We measure the π phase shift of the second pulse when we postselect the data upon the detection of a retrieved photon from the first pulse. This demonstrates a crucial step toward a photon-photon gate and offers a variety of applications in the field of quantum information processing.
Quantum phase gate based on electromagnetically induced transparency in optical cavities
NASA Astrophysics Data System (ADS)
Borges, Halyne S.; Villas-Bôas, Celso J.
2016-11-01
We theoretically investigate the implementation of a quantum controlled-phase gate in a system constituted by a single atom inside an optical cavity, based on the electromagnetically induced transparency effect. First we show that a probe pulse can experience a π phase shift due to the presence or absence of a classical control field. Considering the interplay of the cavity-EIT effect and the quantum memory process, we demonstrated a controlled-phase gate between two single photons. To this end, first one needs to store a (control) photon in the ground atomic states. In the following, a second (target) photon must impinge on the atom-cavity system. Depending on the atomic state, this second photon will be either transmitted or reflected, acquiring different phase shifts. This protocol can then be easily extended to multiphoton systems, i.e., keeping the control photon stored, it may induce phase shifts in several single photons, thus enabling the generation of multipartite entangled states. We explore the relevant parameter space in the atom-cavity system that allows the implementation of quantum controlled-phase gates using the recent technologies. In particular, we have found a lower bound for the cooperativity of the atom-cavity system which enables the implementation of phase shift on single photons. The induced shift on the phase of a photonic qubit and the controlled-phase gate between single photons, combined with optical devices, enable one to perform universal quantum computation.
Two-phase charge-coupled device
NASA Technical Reports Server (NTRS)
Kosonocky, W. F.; Carnes, J. E.
1973-01-01
A charge-transfer efficiency of 99.99% per stage was achieved in the fat-zero mode of operation of 64- and 128-stage two-phase charge-coupled shift registers at 1.0-MHz clock frequency. The experimental two-phase charge-coupled shift registers were constructed in the form of polysilicon gates overlapped by aluminum gates. The unidirectional signal flow was accomplished by using n-type substrates with 0.5 to 1.0 ohm-cm resistivity in conjunction with a channel oxide thickness of 1000 A for the polysilicon gates and 3000 A for the aluminum gates. The operation of the tested shift registers with fat zero is in good agreement with the free-charge transfer characteristics expected for the tested structures. The charge-transfer losses observed when operating the experimental shift registers without the fat zero are attributed to fast interface state trapping. The analytical part of the report contains a review backed up by an extensive appendix of the free-charge transfer characteristics of CCD's in terms of thermal diffusion, self-induced drift, and fringing field drift. Also, a model was developed for the charge-transfer losses resulting from charge trapping by fast interface states. The proposed model was verified by the operation of the experimental two-phase charge-coupled shift registers.
Zheng, Shi-Biao
2005-08-19
We propose a new approach to quantum phase gates via the adiabatic evolution. The conditional phase shift is neither of dynamical nor geometric origin. It arises from the adiabatic evolution of the dark state itself. Taking advantage of the adiabatic passage, this kind of quantum logic gates is robust against moderate fluctuations of experimental parameters. In comparison with the geometric phase gates, it is unnecessary to drive the system to undergo a desired cyclic evolution to obtain a desired solid angle. Thus, the procedure is simplified, and the fidelity may be further improved since the errors in obtaining the required solid angle are avoided. We illustrate such a kind of quantum logic gates in the ion trap system. The idea can also be realized in other systems, opening a new perspective for quantum information processing.
Dual-Gated Active Metasurface at 1550 nm with Wide (>300°) Phase Tunability.
Kafaie Shirmanesh, Ghazaleh; Sokhoyan, Ruzan; Pala, Ragip A; Atwater, Harry A
2018-05-09
Active metasurfaces composed of electrically reconfigurable nanoscale subwavelength antenna arrays can enable real-time control of scattered light amplitude and phase. Achievement of widely tunable phase and amplitude in chip-based active metasurfaces operating at or near 1550 nm wavelength has considerable potential for active beam steering, dynamic hologram rendition, and realization of flat optics with reconfigurable focal lengths. Previously, electrically tunable conducting oxide-based reflectarray metasurfaces have demonstrated dynamic phase control of reflected light with a maximum phase shift of 184° ( Nano Lett. 2016 , 16 , 5319 ). Here, we introduce a dual-gated reflectarray metasurface architecture that enables much wider (>300°) phase tunability. We explore light-matter interactions with dual-gated metasurface elements that incorporate two independent voltage-controlled MOS field effect channels connected in series to form a single metasurface element that enables wider phase tunability. Using indium tin oxide (ITO) as the active metasurface material and a composite hafnia/alumina gate dielectric, we demonstrate a prototype dual-gated metasurface with a continuous phase shift from 0 to 303° and a relative reflectance modulation of 89% under applied voltage bias of 6.5 V.
Pradhan, Rajib
2014-06-10
This work proposes a scheme of all-optical XNOR/NOT logic gates based on a reflective vertical cavity semiconductor (quantum wells, QWs) saturable absorber (VCSSA). In a semiconductor Fabry-Perot cavity operated with a low-intensity resonance wavelength, both intensity-dependent saturating phase-shift and thermal phase-shift occur, which are considered in the proposed logic operations. The VCSSA-based logics are possible using the saturable behavior of reflectivity under the typical operating conditions. The low-intensity saturable reflectivity is reported for all-optical logic operations where all possible nonlinear phase-shifts are ignored. Here, saturable absorption (SA) and the nonlinear phase-shift-based all-optical XNOR/NOT gates and one-bit memory or LATCH are proposed under new operating conditions. All operations are demonstrated for a VCSSA based on InGaAs/InP QWs. These types of SA-based logic devices can be comfortably used for a signal bit rate of about 10 GHz corresponding to the carrier recovery time of the semiconductor material.
Deterministic quantum controlled-PHASE gates based on non-Markovian environments
NASA Astrophysics Data System (ADS)
Zhang, Rui; Chen, Tian; Wang, Xiang-Bin
2017-12-01
We study the realization of the quantum controlled-PHASE gate in an atom-cavity system beyond the Markovian approximation. The general description of the dynamics for the atom-cavity system without any approximation is presented. When the spectral density of the reservoir has the Lorentz form, by making use of the memory backflow from the reservoir, we can always construct the deterministic quantum controlled-PHASE gate between a photon and an atom, no matter the atom-cavity coupling strength is weak or strong. While, the phase shift in the output pulse hinders the implementation of quantum controlled-PHASE gates in the sub-Ohmic, Ohmic or super-Ohmic reservoirs.
NASA Astrophysics Data System (ADS)
Ohnuma, Hidetoshi; Kawahira, Hiroichi
1998-09-01
An automatic alternative phase shift mask (PSM) pattern layout tool has been newly developed. This tool is dedicated for embedded DRAM in logic device to shrink gate line width with improving line width controllability in lithography process with a design rule below 0.18 micrometers by the KrF excimer laser exposure. The tool can crete Levenson type PSM used being coupled with a binary mask adopting a double exposure method for positive photo resist. By using graphs, this tool automatically creates alternative PSM patterns. Moreover, it does not give any phase conflicts. By adopting it to actual embedded DRAM in logic cells, we have provided 0.16 micrometers gate resist patterns at both random logic and DRAM areas. The patterns were fabricated using two masks with the double exposure method. Gate line width has been well controlled under a practical exposure-focus window.
Monolithic GaAs dual-gate FET phase shifter
NASA Astrophysics Data System (ADS)
Kumar, M.; Subbarao, S. N.; Menna, R.
1981-09-01
The objective of this program is to develop a monolithic GaAs dual-gate FET phase shifter, operating over the 4- to 8-GHz frequency band and capable of a continuously programmable phase shift from 0 deg through N times 360 deg where N is an integer. The phase shift is to be controllable to within +3 deg. This phase shifter will be capable of delivering an output power up to 0 dBm with an input and output VSWR of less than 1.5:1. Progress 1: The photomask of a 0 to 90 deg monolithic GaAs dual-gate FET phase shifter has been procured, and we are in the process of fabricating the phase shifter. 2: We have designed and fabricated a 50 ohm, 4-line interdigitated coupler. Also, we have designed and fabricated a 25-ohm, 6-line interdigitated coupler. The performance of both couplers agrees quite well with the theoretical results. Technical Problems: there was no major problem during this period.
Room temperature high-fidelity holonomic single-qubit gate on a solid-state spin.
Arroyo-Camejo, Silvia; Lazariev, Andrii; Hell, Stefan W; Balasubramanian, Gopalakrishnan
2014-09-12
At its most fundamental level, circuit-based quantum computation relies on the application of controlled phase shift operations on quantum registers. While these operations are generally compromised by noise and imperfections, quantum gates based on geometric phase shifts can provide intrinsically fault-tolerant quantum computing. Here we demonstrate the high-fidelity realization of a recently proposed fast (non-adiabatic) and universal (non-Abelian) holonomic single-qubit gate, using an individual solid-state spin qubit under ambient conditions. This fault-tolerant quantum gate provides an elegant means for achieving the fidelity threshold indispensable for implementing quantum error correction protocols. Since we employ a spin qubit associated with a nitrogen-vacancy colour centre in diamond, this system is based on integrable and scalable hardware exhibiting strong analogy to current silicon technology. This quantum gate realization is a promising step towards viable, fault-tolerant quantum computing under ambient conditions.
A Simple Ultrasonic Experiment Using a Phase Shift Detection Technique.
ERIC Educational Resources Information Center
Yunus, W. Mahmood Mat; Ahmad, Maulana
1996-01-01
Describes a simple ultrasonic experiment that can be used to measure the purity of liquid samples by detecting variations in the velocity of sound. Uses a phase shift detection technique that incorporates the use of logic gates and a piezoelectric transducer. (JRH)
Thouta, Samrat; Hull, Christina M; Shi, Yu Patrick; Sergeev, Valentine; Young, James; Cheng, Yen M; Claydon, Thomas W
2017-01-24
Slow deactivation of hERG channels is critical for preventing cardiac arrhythmia yet the mechanistic basis for the slow gating transition is unclear. Here, we characterized the temporal sequence of events leading to voltage sensor stabilization upon membrane depolarization. Progressive increase in step depolarization duration slowed voltage-sensor return in a biphasic manner (τ fast = 34 ms, τ slow = 2.5 s). The faster phase of voltage-sensor return slowing correlated with the kinetics of pore opening. The slower component occurred over durations that exceeded channel activation and was consistent with voltage sensor relaxation. The S4-S5 linker mutation, G546L, impeded the faster phase of voltage sensor stabilization without attenuating the slower phase, suggesting that the S4-S5 linker is important for communications between the pore gate and the voltage sensor during deactivation. These data also demonstrate that the mechanisms of pore gate-opening-induced and relaxation-induced voltage-sensor stabilization are separable. Deletion of the distal N-terminus (Δ2-135) accelerated off-gating current, but did not influence the relative contribution of either mechanism of stabilization of the voltage sensor. Lastly, we characterized mode-shift behavior in hERG channels, which results from stabilization of activated channel states. The apparent mode-shift depended greatly on recording conditions. By measuring slow activation and deactivation at steady state we found the "true" mode-shift to be ∼15 mV. Interestingly, the "true" mode-shift of gating currents was ∼40 mV, much greater than that of the pore gate. This demonstrates that voltage sensor return is less energetically favorable upon repolarization than pore gate closure. We interpret this to indicate that stabilization of the activated voltage sensor limits the return of hERG channels to rest. The data suggest that this stabilization occurs as a result of reconfiguration of the pore gate upon opening by a mechanism that is influenced by the S4-S5 linker, and by a separable voltage-sensor intrinsic relaxation mechanism. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Phase-modulated decoupling and error suppression in qubit-oscillator systems.
Green, Todd J; Biercuk, Michael J
2015-03-27
We present a scheme designed to suppress the dominant source of infidelity in entangling gates between quantum systems coupled through intermediate bosonic oscillator modes. Such systems are particularly susceptible to residual qubit-oscillator entanglement at the conclusion of a gate period that reduces the fidelity of the target entangling operation. We demonstrate how the exclusive use of discrete shifts in the phase of the field moderating the qubit-oscillator interaction is sufficient to both ensure multiple oscillator modes are decoupled and to suppress the effects of fluctuations in the driving field. This approach is amenable to a wide variety of technical implementations including geometric phase gates in superconducting qubits and the Molmer-Sorensen gate for trapped ions. We present detailed example protocols tailored to trapped-ion experiments and demonstrate that our approach has the potential to enable multiqubit gate implementation with a significant reduction in technical complexity relative to previously demonstrated protocols.
A photon-photon quantum gate based on a single atom in an optical resonator.
Hacker, Bastian; Welte, Stephan; Rempe, Gerhard; Ritter, Stephan
2016-08-11
That two photons pass each other undisturbed in free space is ideal for the faithful transmission of information, but prohibits an interaction between the photons. Such an interaction is, however, required for a plethora of applications in optical quantum information processing. The long-standing challenge here is to realize a deterministic photon-photon gate, that is, a mutually controlled logic operation on the quantum states of the photons. This requires an interaction so strong that each of the two photons can shift the other's phase by π radians. For polarization qubits, this amounts to the conditional flipping of one photon's polarization to an orthogonal state. So far, only probabilistic gates based on linear optics and photon detectors have been realized, because "no known or foreseen material has an optical nonlinearity strong enough to implement this conditional phase shift''. Meanwhile, tremendous progress in the development of quantum-nonlinear systems has opened up new possibilities for single-photon experiments. Platforms range from Rydberg blockade in atomic ensembles to single-atom cavity quantum electrodynamics. Applications such as single-photon switches and transistors, two-photon gateways, nondestructive photon detectors, photon routers and nonlinear phase shifters have been demonstrated, but none of them with the ideal information carriers: optical qubits in discriminable modes. Here we use the strong light-matter coupling provided by a single atom in a high-finesse optical resonator to realize the Duan-Kimble protocol of a universal controlled phase flip (π phase shift) photon-photon quantum gate. We achieve an average gate fidelity of (76.2 ± 3.6) per cent and specifically demonstrate the capability of conditional polarization flipping as well as entanglement generation between independent input photons. This photon-photon quantum gate is a universal quantum logic element, and therefore could perform most existing two-photon operations. The demonstrated feasibility of deterministic protocols for the optical processing of quantum information could lead to new applications in which photons are essential, especially long-distance quantum communication and scalable quantum computing.
NASA Astrophysics Data System (ADS)
Viswanathan, Balakrishnan; Gea-Banacloche, Julio
2017-04-01
We analyze a recent scheme proposed by Xia et al. to induce a conditional phase shift between two single-photon pulses by having them propagate at different speeds through a nonlinear medium with a nonlocal response. We have obtained an analytical solution for the case they considered, which supports their claim that a π phase shift with unit fidelity is possible in principle. We discuss the conditions that have to be met and the challenges and opportunities that this might present to the realization of a single-photon conditional phase gate.
Advanced investigation of two-phase charge-coupled devices
NASA Technical Reports Server (NTRS)
Kosonocky, W. F.; Carnes, J. E.
1973-01-01
The performance of experimental two phase, charge-coupled shift registers constructed using polysilicon gates overlapped by aluminum gates was studied. Shift registers with 64, 128, and 500 stages were built and operated. Devices were operated at the maximum clock frequency of 20 MHz. Loss per transfer of less than .0001 was demonstrated for fat zero operation. The effect upon transfer efficiency of various structural and materials parameters was investigated including substrate orientation, resistivity, and conductivity type; channel width and channel length; and method of channel confinement. Operation of the devices with and without fat zero was studied as well as operation in the complete charge transfer mode and the bias charge, or bucket brigade mode.
Goos-Hänchen-like shift in biased silicene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Bang-Shan; Wang, Yu, E-mail: ywang@semi.ac.cn; Lou, Yi-Yi
2016-04-28
We have theoretically studied the Goos-Hänchen-like shift of spinor-unpolarized beams tunneling through various gate-biased silicene nanostructures. Following the stationary-phase method, lateral displacement in single-, dual-, and multiple-gated silicene systems has been systematically demonstrated. It is shown for simple single-gated silicene that lateral displacement can be generally enhanced by Fabry-Perot interference, and near the transition point turning on the evanescent mode a very large lateral shift could be observed. For the dual-gated structure, we have also shown the crucial role of localized modes like quantum well states in enhancing the beam lateral displacement, while for the multiple gate-biased systems the resultingmore » superlattice subbands are also favorable for lateral displacement enhancement. Importantly, including the degeneracy-broken mechanisms such as gate-field and magnetic modulations, a fully spinor-resolved beam can be distinguished from the rest counterparts by aligning the incident beam with a proper spinor-resolved transition point, localized state, and subband, all of which can be flexibly modulated via electric means, offering the very desirable strategies to achieve the fully spinor-polarized beam for functional electronic applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali, I; Hossain, S; Algan, O
Purpose: To investigate quantitatively positioning and dosimetric uncertainties due to 4D-CT intra-phase motion in the internal-target-volume (ITV) associated with radiation therapy using respiratory-gating for patients setup with image-guidance-radiation-therapy (IGRT) using free-breathing or average-phase CT-images. Methods: A lung phantom with an embedded tissue-equivalent target is imaged with CT while it is stationary and moving. Four-sets of structures are outlined: (a) the actual target on CT-images of the stationary-target, (b) ITV on CT-images for the free-moving phantom, (c) ITV’s from the ten different phases (10–100%) and (d) ITV on the CT-images generated from combining 3 phases: 40%–50%–60%. The variations in volume, lengthmore » and center-position of the ITV’s and their effects on dosimetry during dose delivery for patients setup with image-guidance are investigated. Results: Intra-phase motion due to breathing affects the volume, center position and length of the ITVs from different respiratory-phases. The ITV’s vary by about 10% from one phase to another. The largest ITV is measured on the free breathing CT images and the smallest is on the stationary CT-images. The ITV lengths vary by about 4mm where it may shrink or elongated depending on the motion-phase. The center position of the ITV varies between the different motion-phases which shifts upto 10mm from the stationary-position which is nearly equal to motion-amplitude. This causes systematic shifts during dose delivery with beam gating using certain phases (40%–50%–60%) for patients setup with IGRT using free-breathing or average-phase CT-images. The dose coverage of the ITV depends on the margins used for treatment-planning-volume where margins larger than the motion-amplitudes are needed to ensure dose coverage of the ITV. Conclusion: Volume, length, and center position of the ITV’s change between the different motion phases. Large systematic shifts are induced by respiratory-gating with ITVs on certain phases when patients are setup with IGRT using free-breathing or average-phase CT-images.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Gorman, T.; Gibson, K. J.; Snape, J. A.
2012-10-15
A real-time system has been developed to trigger both the MAST Thomson scattering (TS) system and the plasma control system on the phase and amplitude of neoclassical tearing modes (NTMs), extending the capabilities of the original system. This triggering system determines the phase and amplitude of a given NTM using magnetic coils at different toroidal locations. Real-time processing of the raw magnetic data occurs on a low cost field programmable gate array (FPGA) based unit which permits triggering of the TS lasers on specific amplitudes and phases of NTM evolution. The MAST plasma control system can receive a separate triggermore » from the FPGA unit that initiates a vertical shift of the MAST magnetic axis. Such shifts have fully removed m/n= 2/1 NTMs instabilities on a number of MAST discharges.« less
Digital Phase Meter for a Laser Heterodyne Interferometer
NASA Technical Reports Server (NTRS)
Loya, Frank
2008-01-01
The Digital Phase Meter is based on a modified phase-locked loop. When phase alignment between the reference input and the phase-shifted metrological input is achieved, the loop locks and the phase shift of the digital phase shifter equals the phase difference that one seeks to measure. This digital phase meter is being developed for incorporation into a laser heterodyne interferometer in a metrological apparatus, but could also be adapted to other uses. Relative to prior phase meters of similar capability, including digital ones, this digital phase meter is smaller, less complex, and less expensive. The phase meter has been constructed and tested in the form of a field-programmable gate array (FPGA).
MULTIPLE INPUT BINARY ADDER EMPLOYING MAGNETIC DRUM DIGITAL COMPUTING APPARATUS
Cooke-Yarborough, E.H.
1960-12-01
A digital computing apparatus is described for adding a plurality of multi-digit binary numbers. The apparatus comprises a rotating magnetic drum, a recording head, first and second reading heads disposed adjacent to the first and second recording tracks, and a series of timing signals recorded on the first track. A series of N groups of digit-representing signals is delivered to the recording head at time intervals corresponding to the timing signals, each group consisting of digits of the same significance in the numbers, and the signal series is recorded on the second track of the drum in synchronism with the timing signals on the first track. The multistage registers are stepped cyclically through all positions, and each of the multistage registers is coupled to the control lead of a separate gate circuit to open the corresponding gate at only one selected position in each cycle. One of the gates has its input coupled to the bistable element to receive the sum digit, and the output lead of this gate is coupled to the recording device. The inputs of the other gates receive the digits to be added from the second reading head, and the outputs of these gates are coupled to the adding register. A phase-setting pulse source is connected to each of the multistage registers individually to step the multistage registers to different initial positions in the cycle, and the phase-setting pulse source is actuated each N time interval to shift a sum digit to the bistable element, where the multistage register coupled to bistable element is operated by the phase- setting pulse source to that position in its cycle N steps before opening the first gate, so that this gate opens in synchronism with each of the shifts to pass the sum digits to the recording head.
Memory operations in Au nanoparticle single-electron transistors with floating gate electrodes
NASA Astrophysics Data System (ADS)
Azuma, Yasuo; Sakamoto, Masanori; Teranishi, Toshiharu; Majima, Yutaka
2016-11-01
Floating gate memory operations are demonstrated in a single-electron transistor (SET) fabricated by a chemical assembly using the Au nanogap electrodes and the chemisorbed Au nanoparticles. By applying pulse voltages to the control gate, phase shifts were clearly and stably observed both in the Coulomb oscillations and in the Coulomb diamonds. Writing and erasing operations on the floating gate memory were reproducibly observed, and the charges on the floating gate electrodes were maintained for at least 12 h. By considering the capacitance of the floating gate electrode, the number of electrons in the floating gate electrode was estimated as 260. Owing to the stability of the fabricated SET, these writing and erasing operations on the floating gate memory can be applied to reconfigurable SET circuits fabricated by a chemically assembled technique.
Poly-Si TFTs integrated gate driver circuit with charge-sharing structure
NASA Astrophysics Data System (ADS)
Chen, Meng; Lei, Jiefeng; Huang, Shengxiang; Liao, Congwei; Deng, Lianwen
2017-06-01
A p-type low-temperature poly-Si thin film transistors (LTPS TFTs) integrated gate driver using 2 non-overlapped clocks is proposed. This gate driver features charge-sharing structure to turn off buffer TFT and suppresses voltage feed-through effects. It is analyzed that the conventional gate driver suffers from waveform distortions due to voltage uncertainty of internal nodes for the initial period. The proposed charge-sharing structure also helps to suppress the unexpected pulses during the initialization phases. The proposed gate driver shows a simple circuit, as only 6 TFTs and 1 capacitor are used for single-stage, and the buffer TFT is used for both pulling-down and pulling-up of output electrode. Feasibility of the proposed gate driver is proven through detailed analyses. Investigations show that voltage bootrapping can be maintained once the bootrapping capacitance is larger than 0.8 pF, and pulse of gate driver outputs can be reduced to 5 μs. The proposed gate driver can still function properly with positive {V}{TH} shift within 0.4 V and negative {V}{TH} shift within -1.2 V and it is robust and promising for high-resolution display. Project supported by the Science and Technology Project of Hunan Province, China (No. 2015JC3401)
NASA Astrophysics Data System (ADS)
Zhang, Yan; Wang, Xiaorui; Zhe Zhang, Yun
2018-07-01
By employing the different topological charges of a Laguerre–Gaussian beam as a qubit, we experimentally demonstrate a controlled-NOT (CNOT) gate with light beams carrying orbital angular momentum via a photonic band gap structure in a hot atomic ensemble. Through a degenerate four-wave mixing process, the spatial distribution of the CNOT gate including splitting and spatial shift can be affected by the Kerr nonlinear effect in multilevel atomic systems. Moreover, the intensity variations of the CNOT gate can be controlled by the relative phase modulation. This research can be useful for applications in quantum information processing.
Single-shot detection and direct control of carrier phase drift of midinfrared pulses.
Manzoni, Cristian; Först, Michael; Ehrke, Henri; Cavalleri, Andrea
2010-03-01
We introduce a scheme for single-shot detection and correction of the carrier-envelope phase (CEP) drift of femtosecond pulses at mid-IR wavelengths. Difference frequency mixing between the mid-IR field and a near-IR gate pulse generates a near-IR frequency-shifted pulse, which is then spectrally interfered with a replica of the gate pulse. The spectral interference pattern contains shot-to-shot information of the CEP of the mid-IR field, and it can be used for simultaneous correction of its slow drifts. We apply this technique to detect and compensate long-term phase drifts at 17 microm wavelength, reducing fluctuations to only 110 mrad over hours of operation.
Lu, Guo-Wei; Qin, Jun; Wang, Hongxiang; Ji, XuYuefeng; Sharif, Gazi Mohammad; Yamaguchi, Shigeru
2016-02-08
Optical logic gate, especially exclusive-or (XOR) gate, plays important role in accomplishing photonic computing and various network functionalities in future optical networks. On the other hand, optical multicast is another indispensable functionality to efficiently deliver information in optical networks. In this paper, for the first time, we propose and experimentally demonstrate a flexible optical three-input XOR gate scheme for multiple input phase-modulated signals with a 1-to-2 multicast functionality for each XOR operation using four-wave mixing (FWM) effect in single piece of highly-nonlinear fiber (HNLF). Through FWM in HNLF, all of the possible XOR operations among input signals could be simultaneously realized by sharing a single piece of HNLF. By selecting the obtained XOR components using a followed wavelength selective component, the number of XOR gates and the participant light in XOR operations could be flexibly configured. The re-configurability of the proposed XOR gate and the function integration of the optical logic gate and multicast in single device offer the flexibility in network design and improve the network efficiency. We experimentally demonstrate flexible 3-input XOR gate for four 10-Gbaud binary phase-shift keying signals with a multicast scale of 2. Error-free operations for the obtained XOR results are achieved. Potential application of the integrated XOR and multicast function in network coding is also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chun, Minkyu; Um, Jae Gwang; Park, Min Sang
We report the abnormal behavior of the threshold voltage (V{sub TH}) shift under positive bias Temperature stress (PBTS) and negative bias temperature stress (NBTS) at top/bottom gate in dual gate amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs). It is found that the PBTS at top gate shows negative transfer shift and NBTS shows positive transfer shift for both top and bottom gate sweep. The shift of bottom/top gate sweep is dominated by top gate bias (V{sub TG}), while bottom gate bias (V{sub BG}) is less effect than V{sub TG}. The X-ray photoelectron spectroscopy (XPS) depth profile provides the evidence of Inmore » metal diffusion to the top SiO{sub 2}/a-IGZO and also the existence of large amount of In{sup +} under positive top gate bias around top interfaces, thus negative transfer shift is observed. On the other hand, the formation of OH{sup −} at top interfaces under the stress of negative top gate bias shows negative transfer shift. The domination of V{sub TG} both on bottom/top gate sweep after PBTS/NBTS is obviously occurred due to thin active layer.« less
All-optical XOR logic gate using intersubband transition in III-V quantum well materials.
Feng, Jijun; Akimoto, Ryoichi; Gozu, Shin-ichiro; Mozume, Teruo
2014-06-02
A monolithically integrated all-optical exclusive-OR (XOR) logic gate is experimentally demonstrated based on a Michelson interferometer (MI) gating device in InGaAs/AlAsSb coupled double quantum wells (CDQWs). The MI arms can convert the pump data with return-to-zero ON-OFF keying (RZ OOK) to binary phase-shift keying (BPSK) format, then two BPSK signals can interfere with each other for realizing a desired logical operation. All-optical format conversion from the RZ OOK to BPSK is based on the cross-phase modulation to the transverse electric (TE) probe wave, which is caused by the intersubband transition excited by the transverse magnetic (TM) pump light. Bit error rate measurements show that error free operation for both BPSK format conversion and XOR logical operation can be achieved.
NASA Astrophysics Data System (ADS)
Sim, Jai S.; Zhou, You; Ramanathan, Shriram
2012-10-01
We demonstrate a robust lithographic patterning method to fabricate self-supported sub-50 nm VO2 membranes that undergo a phase transition. Utilizing such self-supported membranes, we directly observed a shift in the metal-insulator transition temperature arising from stress relaxation and consistent opening of the hysteresis. Electric double layer transistors were then fabricated with the membranes and compared to thin film devices. The ionic liquid allowed reversible modulation of channel resistance and distinguishing bulk processes from the surface effects. From the shift in the metal-insulator transition temperature, the carrier density doped through electrolyte gating is estimated to be 1 × 1020 cm-3. Hydrogen annealing studies showed little difference in resistivity between the film and the membrane indicating rapid diffusion of hydrogen in the vanadium oxide rutile lattice consistent with previous observations. The ability to fabricate electrically-wired, suspended VO2 ultra-thin membranes creates new opportunities to study mesoscopic size effects on phase transitions and may also be of interest in sensor devices.
100-nm gate lithography for double-gate transistors
NASA Astrophysics Data System (ADS)
Krasnoperova, Azalia A.; Zhang, Ying; Babich, Inna V.; Treichler, John; Yoon, Jung H.; Guarini, Kathryn; Solomon, Paul M.
2001-09-01
The double gate field effect transistor (FET) is an exploratory device that promises certain performance advantages compared to traditional CMOS FETs. It can be scaled down further than the traditional devices because of the greater electrostatic control by the gates on the channel (about twice as short a channel length for the same gate oxide thickness), has steeper sub-threshold slope and about double the current for the same width. This paper presents lithographic results for double gate FET's developed at IBM's T. J. Watson Research Center. The device is built on bonded wafers with top and bottom gates self-aligned to each other. The channel is sandwiched between the top and bottom polysilicon gates and the gate length is defined using DUV lithography. An alternating phase shift mask was used to pattern gates with critical dimensions of 75 nm, 100 nm and 125 nm in photoresist. 50 nm gates in photoresist have also been patterned by 20% over-exposure of nominal 100 nm lines. No trim mask was needed because of a specific way the device was laid out. UV110 photoresist from Shipley on AR-3 antireflective layer were used. Process windows, developed and etched patterns are presented.
NASA Astrophysics Data System (ADS)
Kwon, Dae Woong; Kim, Jang Hyun; Chang, Ji Soo; Kim, Sang Wan; Sun, Min-Chul; Kim, Garam; Kim, Hyun Woo; Park, Jae Chul; Song, Ihun; Kim, Chang Jung; Jung, U. In; Park, Byung-Gook
2010-11-01
A comprehensive study is done regarding stabilities under simultaneous stress of light and dc-bias in amorphous hafnium-indium-zinc-oxide thin film transistors. The positive threshold voltage (Vth) shift is observed after negative gate bias and light stress, and it is completely different from widely accepted phenomenon which explains that negative-bias stress results in Vth shift in the left direction by bias-induced hole-trapping. Gate current measurement is performed to explain the unusual positive Vth shift under simultaneous application of light and negative gate bias. As a result, it is clearly found that the positive Vth shift is derived from electron injection from gate electrode to gate insulator.
Channel sialic acids limit hERG channel activity during the ventricular action potential.
Norring, Sarah A; Ednie, Andrew R; Schwetz, Tara A; Du, Dongping; Yang, Hui; Bennett, Eric S
2013-02-01
Activity of human ether-a-go-go-related gene (hERG) 1 voltage-gated K(+) channels is responsible for portions of phase 2 and phase 3 repolarization of the human ventricular action potential. Here, we questioned whether and how physiologically and pathophysiologically relevant changes in surface N-glycosylation modified hERG channel function. Voltage-dependent hERG channel gating and activity were evaluated as expressed in a set of Chinese hamster ovary (CHO) cell lines under conditions of full glycosylation, no sialylation, no complex N-glycans, and following enzymatic deglycosylation of surface N-glycans. For each condition of reduced glycosylation, hERG channel steady-state activation and inactivation relationships were shifted linearly by significant depolarizing ∼9 and ∼18 mV, respectively. The hERG window current increased significantly by 50-150%, and the peak shifted by a depolarizing ∼10 mV. There was no significant change in maximum hERG current density. Deglycosylated channels were significantly more active (20-80%) than glycosylated controls during phases 2 and 3 of action potential clamp protocols. Simulations of hERG current and ventricular action potentials corroborated experimental data and predicted reduced sialylation leads to a 50-70-ms decrease in action potential duration. The data describe a novel mechanism by which hERG channel gating is modulated through physiologically and pathophysiologically relevant changes in N-glycosylation; reduced channel sialylation increases hERG channel activity during the action potential, thereby increasing the rate of action potential repolarization.
Clark, Susan M; Fu, Kai-Mei C; Ladd, Thaddeus D; Yamamoto, Yoshihisa
2007-07-27
We describe a fast quantum computer based on optically controlled electron spins in charged quantum dots that are coupled to microcavities. This scheme uses broadband optical pulses to rotate electron spins and provide the clock signal to the system. Nonlocal two-qubit gates are performed by phase shifts induced by electron spins on laser pulses propagating along a shared waveguide. Numerical simulations of this scheme demonstrate high-fidelity single-qubit and two-qubit gates with operation times comparable to the inverse Zeeman frequency.
Tan, Peter S; Perry, Matthew D; Ng, Chai Ann; Vandenberg, Jamie I; Hill, Adam P
2012-09-01
Human ether-a-go-go-related gene (hERG) potassium channels exhibit unique gating kinetics characterized by unusually slow activation and deactivation. The N terminus of the channel, which contains an amphipathic helix and an unstructured tail, has been shown to be involved in regulation of this slow deactivation. However, the mechanism of how this occurs and the connection between voltage-sensing domain (VSD) return and closing of the gate are unclear. To examine this relationship, we have used voltage-clamp fluorometry to simultaneously measure VSD motion and gate closure in N-terminally truncated constructs. We report that mode shifting of the hERG VSD results in a corresponding shift in the voltage-dependent equilibrium of channel closing and that at negative potentials, coupling of the mode-shifted VSD to the gate defines the rate of channel closure. Deletion of the first 25 aa from the N terminus of hERG does not alter mode shifting of the VSD but uncouples the shift from closure of the cytoplasmic gate. Based on these observations, we propose the N-terminal tail as an adaptor that couples voltage sensor return to gate closure to define slow deactivation gating in hERG channels. Furthermore, because the mode shift occurs on a time scale relevant to the cardiac action potential, we suggest a physiological role for this phenomenon in maximizing current flow through hERG channels during repolarization.
Fast, optically controlled Kerr phase shifter for digital signal processing.
Li, R B; Deng, L; Hagley, E W; Payne, M G; Bienfang, J C; Levine, Z H
2013-05-01
We demonstrate an optically controlled Kerr phase shifter using a room-temperature 85Rb vapor operating in a Raman gain scheme. Phase shifts from zero to π relative to an unshifted reference wave are observed, and gated operations are demonstrated. We further demonstrate the versatile digital manipulation of encoded signal light with an encoded phase-control light field using an unbalanced Mach-Zehnder interferometer. Generalizations of this scheme should be capable of full manipulation of a digitized signal field at high speed, opening the door to future applications.
Dual-gate polysilicon nanoribbon biosensors enable high sensitivity detection of proteins.
Zeimpekis, I; Sun, K; Hu, C; Ditshego, N M J; Thomas, O; de Planque, M R R; Chong, H M H; Morgan, H; Ashburn, P
2016-04-22
We demonstrate the advantages of dual-gate polysilicon nanoribbon biosensors with a comprehensive evaluation of different measurement schemes for pH and protein sensing. In particular, we compare the detection of voltage and current changes when top- and bottom-gate bias is applied. Measurements of pH show that a large voltage shift of 491 mV pH(-1) is obtained in the subthreshold region when the top-gate is kept at a fixed potential and the bottom-gate is varied (voltage sweep). This is an improvement of 16 times over the 30 mV pH(-1) measured using a top-gate sweep with the bottom-gate at a fixed potential. A similar large voltage shift of 175 mV is obtained when the protein avidin is sensed using a bottom-gate sweep. This is an improvement of 20 times compared with the 8.8 mV achieved from a top-gate sweep. Current measurements using bottom-gate sweeps do not deliver the same signal amplification as when using bottom-gate sweeps to measure voltage shifts. Thus, for detecting a small signal change on protein binding, it is advantageous to employ a double-gate transistor and to measure a voltage shift using a bottom-gate sweep. For top-gate sweeps, the use of a dual-gate transistor enables the current sensitivity to be enhanced by applying a negative bias to the bottom-gate to reduce the carrier concentration in the nanoribbon. For pH measurements, the current sensitivity increases from 65% to 149% and for avidin sensing it increases from 1.4% to 2.5%.
Dual-gate polysilicon nanoribbon biosensors enable high sensitivity detection of proteins
NASA Astrophysics Data System (ADS)
Zeimpekis, I.; Sun, K.; Hu, C.; Ditshego, N. M. J.; Thomas, O.; de Planque, M. R. R.; Chong, H. M. H.; Morgan, H.; Ashburn, P.
2016-04-01
We demonstrate the advantages of dual-gate polysilicon nanoribbon biosensors with a comprehensive evaluation of different measurement schemes for pH and protein sensing. In particular, we compare the detection of voltage and current changes when top- and bottom-gate bias is applied. Measurements of pH show that a large voltage shift of 491 mV pH-1 is obtained in the subthreshold region when the top-gate is kept at a fixed potential and the bottom-gate is varied (voltage sweep). This is an improvement of 16 times over the 30 mV pH-1 measured using a top-gate sweep with the bottom-gate at a fixed potential. A similar large voltage shift of 175 mV is obtained when the protein avidin is sensed using a bottom-gate sweep. This is an improvement of 20 times compared with the 8.8 mV achieved from a top-gate sweep. Current measurements using bottom-gate sweeps do not deliver the same signal amplification as when using bottom-gate sweeps to measure voltage shifts. Thus, for detecting a small signal change on protein binding, it is advantageous to employ a double-gate transistor and to measure a voltage shift using a bottom-gate sweep. For top-gate sweeps, the use of a dual-gate transistor enables the current sensitivity to be enhanced by applying a negative bias to the bottom-gate to reduce the carrier concentration in the nanoribbon. For pH measurements, the current sensitivity increases from 65% to 149% and for avidin sensing it increases from 1.4% to 2.5%.
Triple-mode single-transistor graphene amplifier and its applications.
Yang, Xuebei; Liu, Guanxiong; Balandin, Alexander A; Mohanram, Kartik
2010-10-26
We propose and experimentally demonstrate a triple-mode single-transistor graphene amplifier utilizing a three-terminal back-gated single-layer graphene transistor. The ambipolar nature of electronic transport in graphene transistors leads to increased amplifier functionality as compared to amplifiers built with unipolar semiconductor devices. The ambipolar graphene transistors can be configured as n-type, p-type, or hybrid-type by changing the gate bias. As a result, the single-transistor graphene amplifier can operate in the common-source, common-drain, or frequency multiplication mode, respectively. This in-field controllability of the single-transistor graphene amplifier can be used to realize the modulation necessary for phase shift keying and frequency shift keying, which are widely used in wireless applications. It also offers new opportunities for designing analog circuits with simpler structure and higher integration densities for communications applications.
Schwartz, Michael D.; Congdon, Seth; de la Iglesia, Horacio O.
2010-01-01
The ability of the circadian pacemaker within the suprachiasmatic nucleus (SCN) to respond to light stimulation in a phase-specific manner constitutes the basis for photic entrainment of circadian rhythms. The neural basis for this phase-specificity is unclear. We asked whether a lack of synchrony between SCN neurons, as reflected in phase misalignment between dorsomedial (dmSCN) and ventrolateral (vlSCN) neuronal oscillators in the rat, would impact the pacemaker’s ability to respond to phase-resetting light pulses. Light pulses delivered at maximal phase-misalignment between the vl-and dmSCN oscillators increased expression of Per1 mRNA, irrespective of the circadian phase of the dmSCN. However, phase shifts of locomotor activity were only observed when the vl-and dmSCN were phase-aligned at the time of stimulation. Our results fit a model in which a vlSCN oscillator phase-gates its own response to light and in turn relays light information to a dmSCN oscillator. This model predicts that the phase misalignment that results from circadian internal desynchronization could preserve the ability of light to induce gene expression within the master circadian clock but impair its ability to induce behavioral phase shifts. PMID:20881133
Detection of ionized gas molecules in air by graphene and carbon nanotube networks
NASA Astrophysics Data System (ADS)
Hao, Ji; Li, Bo; Yung, Hyun Young; Liu, Fangze; Hong, Sanghyung; Jung, Yung Joon; Kar, Swastik
The liquid phase ions sensing by graphene and carbon nanotube has been demonstrated in many publications due to the minimum gate voltage easily shift induced by ionic gating effect, but it is still unclear for vapor phase ions sensing. Here we want to report that the ionized gas molecules in air can be also very sensitively detected by graphene and carbon nanotube networks under very low applied voltage, which shows the very high charge to current amplification factor, the value can be up to 108 A/C, and the direction of current-change can be used to differentiate the positive and negative ions. In further, the field effect of graphene device induced by vapor phase ions was discussed. NSF ECCS 1202376, NSF ECCS CAREER 1351424 and NSF DMREF 1434824, a Northeastern University Provost's Tier-1 seed Grant for interdisciplinary research, Technology Innovation Program (10050481) from Ministry of Trade, Industry & Energy of Republic of Korea.
Akimoto, Ryoichi; Gozu, Shin-ichiro; Mozume, Teruo; Ishikawa, Hiroshi
2011-07-04
We have developed a compact all-optical gate switch with a footprint less than 1 mm2, in which an optical nonlinear waveguide using cross-phase-modulation associated with intersubband transition in InGaAs/AlGaAs/AlAsSb coupled double quantum wells and a Michelson interferometer (MI) are monolithically integrated on an InP chip. The MI configuration allows a transverse magnetic pump light direct access to an MI arm for phase modulation while passive photonic integrated circuits serve a transverse electric signal light. Full switching of the π-rad nonlinear phase shift is achieved with a pump pulse energy of 8.6 pJ at a 10-GHz repetition rate. We also demonstrate all-optical demultiplexing of a 160-Gb/s signal to a 40-Gb/s signal.
Electric-field-induced magnetic domain writing in a Co wire
NASA Astrophysics Data System (ADS)
Tanaka, Yuki; Hirai, Takamasa; Koyama, Tomohiro; Chiba, Daichi
2018-05-01
We have demonstrated that the local magnetization in a Co microwire can be switched by an application of a gate voltage without using any external magnetic fields. The electric-field-induced reversible ferromagnetic phase transition was used to realize this. An internal stray field from a ferromagnetic gate electrode assisted the local domain reversal in the Co wire. This new concept of electrical domain switching may be useful for dramatically reducing the power consumption of writing information in a magnetic racetrack memory, in which a shift of a magnetic domain by electric current is utilized.
Bias-free spin-wave phase shifter for magnonic logic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Louis, Steven; Tyberkevych, Vasyl; Slavin, Andrei
2016-06-15
A design of a magnonic phase shifter operating without an external bias magnetic field is proposed. The phase shifter uses a localized collective spin wave mode propagating along a domain wall “waveguide” in a dipolarly-coupled magnetic dot array with a chessboard antiferromagnetic (CAFM) ground state. It is demonstrated numerically that the remagnetization of a single magnetic dot adjacent to the domain wall waveguide introduces a controllable phase shift in the propagating spin wave mode without significant change to the mode amplitude. It is also demonstrated that a logic XOR gate can be realized in the same system.
Magnetic quantum phase transition in Cr-doped Bi 2(Se xTe 1-x) 3 driven by the Stark effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zuocheng; Feng, Xiao; Wang, Jing
The interplay between magnetism and topology, as exemplified in the magnetic skyrmion systems, has emerged as a rich playground for finding novel quantum phenomena and applications in future information technology. Magnetic topological insulators (TI) have attracted much recent attention, especially after the experimental realization of quantum anomalous Hall effect. Future applications of magnetic TI hinge on the accurate manipulation of magnetism and topology by external perturbations, preferably with a gate electric field. In this work, we investigate the magneto transport properties of Cr doped Bi 2(Se xTe 1-x) 3 TI across the topological quantum critical point (QCP). We find thatmore » the external gate voltage has negligible effect on the magnetic order for samples far away from the topological QCP. However, for the sample near the QCP, we observe a ferromagnetic (FM) to paramagnetic (PM) phase transition driven by the gate electric field. Theoretical calculations show that a perpendicular electric field causes a shift of electronic energy levels due to the Stark effect, which induces a topological quantum phase transition and consequently a magnetic phase transition. Finally, the in situ electrical control of the topological and magnetic properties of TI shed important new lights on future topological electronic or spintronic device applications.« less
Magnetic quantum phase transition in Cr-doped Bi 2(Se xTe 1-x) 3 driven by the Stark effect
Zhang, Zuocheng; Feng, Xiao; Wang, Jing; ...
2017-08-07
The interplay between magnetism and topology, as exemplified in the magnetic skyrmion systems, has emerged as a rich playground for finding novel quantum phenomena and applications in future information technology. Magnetic topological insulators (TI) have attracted much recent attention, especially after the experimental realization of quantum anomalous Hall effect. Future applications of magnetic TI hinge on the accurate manipulation of magnetism and topology by external perturbations, preferably with a gate electric field. In this work, we investigate the magneto transport properties of Cr doped Bi 2(Se xTe 1-x) 3 TI across the topological quantum critical point (QCP). We find thatmore » the external gate voltage has negligible effect on the magnetic order for samples far away from the topological QCP. However, for the sample near the QCP, we observe a ferromagnetic (FM) to paramagnetic (PM) phase transition driven by the gate electric field. Theoretical calculations show that a perpendicular electric field causes a shift of electronic energy levels due to the Stark effect, which induces a topological quantum phase transition and consequently a magnetic phase transition. Finally, the in situ electrical control of the topological and magnetic properties of TI shed important new lights on future topological electronic or spintronic device applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zuocheng; Feng, Xiao; Wang, Jing
The interplay between magnetism and topology, as exemplified in the magnetic skyrmion systems, has emerged as a rich playground for finding novel quantum phenomena and applications in future information technology. Magnetic topological insulators (TI) have attracted much recent attention, especially after the experimental realization of quantum anomalous Hall effect. Future applications of magnetic TI hinge on the accurate manipulation of magnetism and topology by external perturbations, preferably with a gate electric field. In this work, we investigate the magneto transport properties of Cr doped Bi 2(Se xTe 1-x) 3 TI across the topological quantum critical point (QCP). We find thatmore » the external gate voltage has negligible effect on the magnetic order for samples far away from the topological QCP. However, for the sample near the QCP, we observe a ferromagnetic (FM) to paramagnetic (PM) phase transition driven by the gate electric field. Theoretical calculations show that a perpendicular electric field causes a shift of electronic energy levels due to the Stark effect, which induces a topological quantum phase transition and consequently a magnetic phase transition. Finally, the in situ electrical control of the topological and magnetic properties of TI shed important new lights on future topological electronic or spintronic device applications.« less
Magnetic quantum phase transition in Cr-doped Bi2(SexTe1-x)3 driven by the Stark effect
NASA Astrophysics Data System (ADS)
Zhang, Zuocheng; Feng, Xiao; Wang, Jing; Lian, Biao; Zhang, Jinsong; Chang, Cuizu; Guo, Minghua; Ou, Yunbo; Feng, Yang; Zhang, Shou-Cheng; He, Ke; Ma, Xucun; Xue, Qi-Kun; Wang, Yayu
2017-10-01
The recent experimental observation of the quantum anomalous Hall effect has cast significant attention on magnetic topological insulators. In these magnetic counterparts of conventional topological insulators such as Bi2Te3, a long-range ferromagnetic state can be established by chemical doping with transition-metal elements. However, a much richer electronic phase diagram can emerge and, in the specific case of Cr-doped Bi2(SexTe1-x)3, a magnetic quantum phase transition tuned by the actual chemical composition has been reported. From an application-oriented perspective, the relevance of these results hinges on the possibility to manipulate magnetism and electronic band topology by external perturbations such as an electric field generated by gate electrodes—similar to what has been achieved in conventional diluted magnetic semiconductors. Here, we investigate the magneto-transport properties of Cr-doped Bi2(SexTe1-x)3 with different compositions under the effect of a gate voltage. The electric field has a negligible effect on magnetic order for all investigated compositions, with the remarkable exception of the sample close to the topological quantum critical point, where the gate voltage reversibly drives a ferromagnetic-to-paramagnetic phase transition. Theoretical calculations show that a perpendicular electric field causes a shift in the electronic energy levels due to the Stark effect, which induces a topological quantum phase transition and, in turn, a magnetic phase transition.
Ultrafast entanglement of trapped ions
NASA Astrophysics Data System (ADS)
Neyenhuis, Brian; Mizrahi, Jonathan; Johnson, Kale; Monroe, Christopher
2013-05-01
We have demonstrated ultrafast spin-motion entanglement of a single atomic ion using a short train of intense laser pulses. This pulse train gives the ion a spin-dependent kick where each spin state receives a discrete momentum kick in opposite directions. Using a series of these spin-dependent kicks we can realize a two qubit gate. In contrast to gates using spectroscopically resolved motional sidebands, these gates may be performed faster than the trap oscillation period, making them potentially less sensitive to noise, independent of temperature, and more easily scalable to large crystals of ions. We show that multiple kicks can be strung together to create a ``Schrodinger cat'' like state, where the large separation between the two parts of the wavepacket allow us to accumulate the phase shift necessary for a gate in a shorter amount of time. We will present a realistic pulse scheme for a two ion gate, and our progress towards its realization. This work is supported by grants from the U.S. Army Research Office with funding from the DARPA OLE program, IARPA, and the MURI program; and the NSF Physics Frontier Center at JQI.
Ultrafast entanglement of trapped ions
NASA Astrophysics Data System (ADS)
Neyenhuis, Brian; Johnson, Kale; Mizrahi, Jonathan; Wong-Campos, David; Monroe, Christopher
2014-05-01
We have demonstrated ultrafast spin-motion entanglement of a single atomic ion using a short train of intense laser pulses. This pulse train gives the ion a spin-dependent kick where each spin state receives a discrete momentum kick in opposite directions. Using a series of these spin-dependent kicks we can realize a two qubit gate. In contrast to gates using spectroscopically resolved motional sidebands, these gates may be performed faster than the trap oscillation period, making them potentially less sensitive to noise. Additionally this gate is temperature insensitive and does not require the ions to be cooled to the Lamb-Dicke limit. We show that multiple kicks can be strung together to create a ``Schrodinger cat'' like state, where the large separation between the two parts of the wavepacket allow us to accumulate the phase shift necessary for a gate in a shorter amount of time. We will present a realistic pulse scheme for a two ion gate, and our progress towards its realization. This work is supported by grants from the U.S. Army Research Office with funding from the DARPA OLE program, IARPA, and the MURI program; and the NSF Physics Frontier Center at JQI.
Side-gate modulation effects on high-quality BN-Graphene-BN nanoribbon capacitors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yang; Chen, Xiaolong; Ye, Weiguang
High-quality BN-Graphene-BN nanoribbon capacitors with double side-gates of graphene have been experimentally realized. The double side-gates can effectively modulate the electronic properties of graphene nanoribbon capacitors. By applying anti-symmetric side-gate voltages, we observed significant upward shifting and flattening of the V-shaped capacitance curve near the charge neutrality point. Symmetric side-gate voltages, however, only resulted in tilted upward shifting along the opposite direction of applied gate voltages. These modulation effects followed the behavior of graphene nanoribbons predicted theoretically for metallic side-gate modulation. The negative quantum capacitance phenomenon predicted by numerical simulations for graphene nanoribbons modulated by graphene side-gates was not observed,more » possibly due to the weakened interactions between the graphene nanoribbon and side-gate electrodes caused by the Ga{sup +} beam etching process.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tachibana, Hidenobu; Kitamura, Nozomi; Ito, Yasushi
2011-07-15
Purpose: In respiratory-gated radiation therapy, a baseline shift decreases the accuracy of target coverage and organs at risk (OAR) sparing. The effectiveness of audio-feedback and audio-visual feedback in correcting the baseline shift in the breathing pattern of the patient has been demonstrated previously. However, the baseline shift derived from the intrafraction motion of the patient's body cannot be corrected by these methods. In the present study, the authors designed and developed a simple and flexible system. Methods: The system consisted of a web camera and a computer running our in-house software. The in-house software was adapted to template matching andmore » also to no preimage processing. The system was capable of monitoring the baseline shift in the intrafraction motion of the patient's body. Another marker box was used to monitor the baseline shift due to the flexible setups required of a marker box for gated signals. The system accuracy was evaluated by employing a respiratory motion phantom and was found to be within AAPM Task Group 142 tolerance (positional accuracy <2 mm and temporal accuracy <100 ms) for respiratory-gated radiation therapy. Additionally, the effectiveness of this flexible and independent system in gated treatment was investigated in healthy volunteers, in terms of the results from the differences in the baseline shift detectable between the marker positions, which the authors evaluated statistically. Results: The movement of the marker on the sternum [1.599 {+-} 0.622 mm (1 SD)] was substantially decreased as compared with the abdomen [6.547 {+-} 0.962 mm (1 SD)]. Additionally, in all of the volunteers, the baseline shifts for the sternum [-0.136 {+-} 0.868 (2 SD)] were in better agreement with the nominal baseline shifts than was the case for the abdomen [-0.722 {+-} 1.56 mm (2 SD)]. The baseline shifts could be accurately measured and detected using the monitoring system, which could acquire the movement of the marker on the sternum. The baseline shift-monitoring system with the displacement-based methods for highly accurate respiratory-gated treatments should be used to make most of the displacement-based gating methods. Conclusions: The advent of intensity modulated radiation therapy and volumetric modulated radiation therapy facilitates margin reduction for the planning target volumes and the OARs, but highly accurate irradiation is needed to achieve target coverage and OAR sparing with a small margin. The baseline shifts can affect treatment not only with the respiratory gating system but also without the system. Our system can manage the baseline shift and also enables treatment irradiation to be undertaken with high accuracy.« less
NASA Astrophysics Data System (ADS)
Yun, Ho-Jin; Kim, Young-Su; Jeong, Kwang-Seok; Kim, Yu-Mi; Yang, Seung-dong; Lee, Hi-Deok; Lee, Ga-Won
2014-01-01
In this study, we fabricated dual-gate zinc oxide thin film transistors (ZnO TFTs) without additional processes and analyzed their stability characteristics under a negative gate bias stress (NBS) by comparison with conventional bottom-gate structures. The dual-gate device shows superior electrical parameters, such as subthreshold swing (SS) and on/off current ratio. NBS of VGS = -20 V with VDS = 0 was applied, resulting in a negative threshold voltage (Vth) shift. After applying stress for 1000 s, the Vth shift is 0.60 V in a dual-gate ZnO TFT, while the Vth shift is 2.52 V in a bottom-gate ZnO TFT. The stress immunity of the dual-gate device is caused by the change in field distribution in the ZnO channel by adding another gate as the technology computer aided design (TCAD) simulation shows. Additionally, in flicker noise analysis, a lower noise level with a different mechanism is observed in the dual-gate structure. This can be explained by the top side of the ZnO film having a larger crystal and fewer grain boundaries than the bottom side, which is revealed by the enhanced SS and XRD results. Therefore, the improved stability of the dual-gate ZnO TFT is greatly related to the E-field cancellation effect and crystal quality of the ZnO film.
Rotstein, Horacio G
2014-01-01
We investigate the dynamic mechanisms of generation of subthreshold and phase resonance in two-dimensional linear and linearized biophysical (conductance-based) models, and we extend our analysis to account for the effect of simple, but not necessarily weak, types of nonlinearities. Subthreshold resonance refers to the ability of neurons to exhibit a peak in their voltage amplitude response to oscillatory input currents at a preferred non-zero (resonant) frequency. Phase-resonance refers to the ability of neurons to exhibit a zero-phase (or zero-phase-shift) response to oscillatory input currents at a non-zero (phase-resonant) frequency. We adapt the classical phase-plane analysis approach to account for the dynamic effects of oscillatory inputs and develop a tool, the envelope-plane diagrams, that captures the role that conductances and time scales play in amplifying the voltage response at the resonant frequency band as compared to smaller and larger frequencies. We use envelope-plane diagrams in our analysis. We explain why the resonance phenomena do not necessarily arise from the presence of imaginary eigenvalues at rest, but rather they emerge from the interplay of the intrinsic and input time scales. We further explain why an increase in the time-scale separation causes an amplification of the voltage response in addition to shifting the resonant and phase-resonant frequencies. This is of fundamental importance for neural models since neurons typically exhibit a strong separation of time scales. We extend this approach to explain the effects of nonlinearities on both resonance and phase-resonance. We demonstrate that nonlinearities in the voltage equation cause amplifications of the voltage response and shifts in the resonant and phase-resonant frequencies that are not predicted by the corresponding linearized model. The differences between the nonlinear response and the linear prediction increase with increasing levels of the time scale separation between the voltage and the gating variable, and they almost disappear when both equations evolve at comparable rates. In contrast, voltage responses are almost insensitive to nonlinearities located in the gating variable equation. The method we develop provides a framework for the investigation of the preferred frequency responses in three-dimensional and nonlinear neuronal models as well as simple models of coupled neurons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vedam, S.; Archambault, L.; Starkschall, G.
2007-11-15
Four-dimensional (4D) computed tomography (CT) imaging has found increasing importance in the localization of tumor and surrounding normal structures throughout the respiratory cycle. Based on such tumor motion information, it is possible to identify the appropriate phase interval for respiratory gated treatment planning and delivery. Such a gating phase interval is determined retrospectively based on tumor motion from internal tumor displacement. However, respiratory-gated treatment is delivered prospectively based on motion determined predominantly from an external monitor. Therefore, the simulation gate threshold determined from the retrospective phase interval selected for gating at 4D CT simulation may not correspond to the deliverymore » gate threshold that is determined from the prospective external monitor displacement at treatment delivery. The purpose of the present work is to establish a relationship between the thresholds for respiratory gating determined at CT simulation and treatment delivery, respectively. One hundred fifty external respiratory motion traces, from 90 patients, with and without audio-visual biofeedback, are analyzed. Two respiratory phase intervals, 40%-60% and 30%-70%, are chosen for respiratory gating from the 4D CT-derived tumor motion trajectory. From residual tumor displacements within each such gating phase interval, a simulation gate threshold is defined based on (a) the average and (b) the maximum respiratory displacement within the phase interval. The duty cycle for prospective gated delivery is estimated from the proportion of external monitor displacement data points within both the selected phase interval and the simulation gate threshold. The delivery gate threshold is then determined iteratively to match the above determined duty cycle. The magnitude of the difference between such gate thresholds determined at simulation and treatment delivery is quantified in each case. Phantom motion tests yielded coincidence of simulation and delivery gate thresholds to within 0.3%. For patient data analysis, differences between simulation and delivery gate thresholds are reported as a fraction of the total respiratory motion range. For the smaller phase interval, the differences between simulation and delivery gate thresholds are 8{+-}11% and 14{+-}21% with and without audio-visual biofeedback, respectively, when the simulation gate threshold is determined based on the mean respiratory displacement within the 40%-60% gating phase interval. For the longer phase interval, corresponding differences are 4{+-}7% and 8{+-}15% with and without audio-visual biofeedback, respectively. Alternatively, when the simulation gate threshold is determined based on the maximum average respiratory displacement within the gating phase interval, greater differences between simulation and delivery gate thresholds are observed. A relationship between retrospective simulation gate threshold and prospective delivery gate threshold for respiratory gating is established and validated for regular and nonregular respiratory motion. Using this relationship, the delivery gate threshold can be reliably estimated at the time of 4D CT simulation, thereby improving the accuracy and efficiency of respiratory-gated radiation delivery.« less
Vedam, S; Archambault, L; Starkschall, G; Mohan, R; Beddar, S
2007-11-01
Four-dimensional (4D) computed tomography (CT) imaging has found increasing importance in the localization of tumor and surrounding normal structures throughout the respiratory cycle. Based on such tumor motion information, it is possible to identify the appropriate phase interval for respiratory gated treatment planning and delivery. Such a gating phase interval is determined retrospectively based on tumor motion from internal tumor displacement. However, respiratory-gated treatment is delivered prospectively based on motion determined predominantly from an external monitor. Therefore, the simulation gate threshold determined from the retrospective phase interval selected for gating at 4D CT simulation may not correspond to the delivery gate threshold that is determined from the prospective external monitor displacement at treatment delivery. The purpose of the present work is to establish a relationship between the thresholds for respiratory gating determined at CT simulation and treatment delivery, respectively. One hundred fifty external respiratory motion traces, from 90 patients, with and without audio-visual biofeedback, are analyzed. Two respiratory phase intervals, 40%-60% and 30%-70%, are chosen for respiratory gating from the 4D CT-derived tumor motion trajectory. From residual tumor displacements within each such gating phase interval, a simulation gate threshold is defined based on (a) the average and (b) the maximum respiratory displacement within the phase interval. The duty cycle for prospective gated delivery is estimated from the proportion of external monitor displacement data points within both the selected phase interval and the simulation gate threshold. The delivery gate threshold is then determined iteratively to match the above determined duty cycle. The magnitude of the difference between such gate thresholds determined at simulation and treatment delivery is quantified in each case. Phantom motion tests yielded coincidence of simulation and delivery gate thresholds to within 0.3%. For patient data analysis, differences between simulation and delivery gate thresholds are reported as a fraction of the total respiratory motion range. For the smaller phase interval, the differences between simulation and delivery gate thresholds are 8 +/- 11% and 14 +/- 21% with and without audio-visual biofeedback, respectively, when the simulation gate threshold is determined based on the mean respiratory displacement within the 40%-60% gating phase interval. For the longer phase interval, corresponding differences are 4 +/- 7% and 8 +/- 15% with and without audiovisual biofeedback, respectively. Alternatively, when the simulation gate threshold is determined based on the maximum average respiratory displacement within the gating phase interval, greater differences between simulation and delivery gate thresholds are observed. A relationship between retrospective simulation gate threshold and prospective delivery gate threshold for respiratory gating is established and validated for regular and nonregular respiratory motion. Using this relationship, the delivery gate threshold can be reliably estimated at the time of 4D CT simulation, thereby improving the accuracy and efficiency of respiratory-gated radiation delivery.
NASA Astrophysics Data System (ADS)
Maity, H.; Biswas, A.; Bhattacharjee, A. K.; Pal, A.
In this paper, we have proposed the design of quantum cost (QC) optimized 4-bit reversible universal shift register (RUSR) using reduced number of reversible logic gates. The proposed design is very useful in quantum computing due to its low QC, less no. of reversible logic gate and less delay. The QC, no. of gates, garbage outputs (GOs) are respectively 64, 8 and 16 for proposed work. The improvement of proposed work is also presented. The QC is 5.88% to 70.9% improved, no. of gate is 60% to 83.33% improved with compared to latest reported result.
Bernatowicz, K; Keall, P; Mishra, P; Knopf, A; Lomax, A; Kipritidis, J
2015-01-01
Prospective respiratory-gated 4D CT has been shown to reduce tumor image artifacts by up to 50% compared to conventional 4D CT. However, to date no studies have quantified the impact of gated 4D CT on normal lung tissue imaging, which is important in performing dose calculations based on accurate estimates of lung volume and structure. To determine the impact of gated 4D CT on thoracic image quality, the authors developed a novel simulation framework incorporating a realistic deformable digital phantom driven by patient tumor motion patterns. Based on this framework, the authors test the hypothesis that respiratory-gated 4D CT can significantly reduce lung imaging artifacts. Our simulation framework synchronizes the 4D extended cardiac torso (XCAT) phantom with tumor motion data in a quasi real-time fashion, allowing simulation of three 4D CT acquisition modes featuring different levels of respiratory feedback: (i) "conventional" 4D CT that uses a constant imaging and couch-shift frequency, (ii) "beam paused" 4D CT that interrupts imaging to avoid oversampling at a given couch position and respiratory phase, and (iii) "respiratory-gated" 4D CT that triggers acquisition only when the respiratory motion fulfills phase-specific displacement gating windows based on prescan breathing data. Our framework generates a set of ground truth comparators, representing the average XCAT anatomy during beam-on for each of ten respiratory phase bins. Based on this framework, the authors simulated conventional, beam-paused, and respiratory-gated 4D CT images using tumor motion patterns from seven lung cancer patients across 13 treatment fractions, with a simulated 5.5 cm(3) spherical lesion. Normal lung tissue image quality was quantified by comparing simulated and ground truth images in terms of overall mean square error (MSE) intensity difference, threshold-based lung volume error, and fractional false positive/false negative rates. Averaged across all simulations and phase bins, respiratory-gating reduced overall thoracic MSE by 46% compared to conventional 4D CT (p ∼ 10(-19)). Gating leads to small but significant (p < 0.02) reductions in lung volume errors (1.8%-1.4%), false positives (4.0%-2.6%), and false negatives (2.7%-1.3%). These percentage reductions correspond to gating reducing image artifacts by 24-90 cm(3) of lung tissue. Similar to earlier studies, gating reduced patient image dose by up to 22%, but with scan time increased by up to 135%. Beam paused 4D CT did not significantly impact normal lung tissue image quality, but did yield similar dose reductions as for respiratory-gating, without the added cost in scanning time. For a typical 6 L lung, respiratory-gated 4D CT can reduce image artifacts affecting up to 90 cm(3) of normal lung tissue compared to conventional acquisition. This image improvement could have important implications for dose calculations based on 4D CT. Where image quality is less critical, beam paused 4D CT is a simple strategy to reduce imaging dose without sacrificing acquisition time.
NASA Astrophysics Data System (ADS)
Caraveo-Frescas, J. A.; Hedhili, M. N.; Wang, H.; Schwingenschlögl, U.; Alshareef, H. N.
2012-03-01
It is shown that the well-known negative flatband voltage (VFB) shift, induced by rare-earth oxide capping in metal gate stacks, can be completely reversed in the absence of the silicon overlayer. Using TaN metal gates and Gd2O3-doped dielectric, we measure a ˜350 mV negative shift with the Si overlayer present and a ˜110 mV positive shift with the Si overlayer removed. This effect is correlated to a positive change in the average electrostatic potential at the TaN/dielectric interface which originates from an interfacial dipole. The dipole is created by the replacement of interfacial oxygen atoms in the HfO2 lattice with nitrogen atoms from TaN.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Croft, Stephen; Santi, Peter A.; Henzlova, Daniela
The Feynman-Y statistic is a type of autocorrelation analysis. It is defined as the excess variance-to-mean ratio, Y = VMR - 1, of the number count distribution formed by sampling a pulse train using a series of non-overlapping gates. It is a measure of the degree of correlation present on the pulse train with Y = 0 for Poisson data. In the context of neutron coincidence counting we show that the same information can be obtained from the accidentals histogram acquired using the multiplicity shift-register method, which is currently the common autocorrelation technique applied in nuclear safeguards. In the casemore » of multiplicity shift register analysis however, overlapping gates, either triggered by the incoming pulse stream or by a periodic clock, are used. The overlap introduces additional covariance but does not alter the expectation values. In this paper we discuss, for a particular data set, the relative merit of the Feynman and shift-register methods in terms of both precision and dead time correction. Traditionally the Feynman approach is applied with a relatively long gate width compared to the dieaway time. The main reason for this is so that the gate utilization factor can be taken as unity rather than being treated as a system parameter to be determined at characterization/calibration. But because the random trigger interval gate utilization factor is slow to saturate this procedure requires a gate width many times the effective 1/e dieaway time. In the traditional approach this limits the number of gates that can be fitted into a given assay duration. We empirically show that much shorter gates, similar in width to those used in traditional shift register analysis can be used. Because the way in which the correlated information present on the pulse train is extracted is different for the moments based method of Feynman and the various shift register based approaches, the dead time losses are manifested differently for these two approaches. The resulting estimates for the dead time corrected first and second order reduced factorial moments should be independent of the method however and this allows the respective dead time formalism to be checked. We discuss how to make dead time corrections in both the shift register and the Feynman approaches.« less
Simulation study of reticle enhancement technology applications for 157-nm lithography
NASA Astrophysics Data System (ADS)
Schurz, Dan L.; Flack, Warren W.; Karklin, Linard
2002-03-01
The acceleration of the International Technology Roadmap for Semiconductors (ITRS) is placing significant pressure on the industry's infrastructure, particularly the lithography equipment. As recently as 1997, there was no optical solution offered past the 130 nm design node. The current roadmap has the 65 nm node (reduced from 70 nm) pulled in one year to 2007. Both 248 nm and 193 nm wavelength lithography tools will be pushed to their practical resolution limits in the near term. Very high numerical aperture (NA) 193 nm exposure tools in conjunction with resolution enhancement techniques (RET) will postpone the requirement for 157 nm lithography in manufacturing. However, ICs produced at 70 nm design rules with manufacturable k 1 values will require that 157 nm wavelength lithography tools incorporate the same RETs utilized in 248nm, and 193 nm tools. These enhancements will include Alternating Phase Shifting Masks (AltPSM) and Optical Proximity Correction (OPC) on F 2 doped quartz reticle substrates. This study investigates simulation results when AltPSM is applied to sub-100 nm test patterns in 157 nm lithography in order to maintain Critical Dimension (CD) control for both nested and isolated geometries. Aerial image simulations are performed for a range of numerical apertures, chrome regulators, gate pitches and gate widths. The relative performance for phase shifted versus binary structures is also compared. Results are demonstrated in terms of aerial image contrast and process window changes. The results clearly show that a combination of high NA and RET is necessary to achieve usable process windows for 70 nm line/space structures. In addition, it is important to consider two-dimensional proximity effects for sub-100 nm gate structures.
Beard, B B; Stewart, J R; Shiavi, R G; Lorenz, C H
1995-01-01
Gating methods developed for electrocardiographic-triggered radionuclide ventriculography are being used with nonimaging detectors. These methods have not been compared on the basis of their real-time performance or suitability for determination of load-independent indexes of left ventricular function. This work evaluated the relative merits of different gating methods for nonimaging radionuclude ventriculographic studies, with particular emphasis on their suitability for real-time measurements and the determination of pressure-volume loops. A computer model was used to investigate the relative accuracy of forward gating, backward gating, and phase-mode gating. The durations of simulated left ventricular time-activity curves were randomly varied. Three acquisition parameters were considered: frame rate, acceptance window, and sample size. Twenty-five studies were performed for each combination of acquisition parameters. Hemodynamic and shape parameters from each study were compared with reference parameters derived directly from the random time-activity curves. Backward gating produced the largest errors under all conditions. For both forward gating and phase-mode gating, ejection fraction was underestimated and time to end systole and normalized peak ejection rate were overestimated. For the hemodynamic parameters, forward gating was marginally superior to phase-mode gating. The mean difference in errors between forward and phase-mode gating was 1.47% (SD 2.78%). However, for root mean square shape error, forward gating was several times worse in every case and seven times worse than phase-mode gating on average. Both forward and phase-mode gating are suitable for real-time hemodynamic measurements by nonimaging techniques. The small statistical difference between the methods is not clinically significant. The true shape of the time-activity curve is maintained most accurately by phase-mode gating.
Beard, Brian B.; Stewart, James R.; Shiavi, Richard G.; Lorenz, Christine H.
2018-01-01
Background Gating methods developed for electrocardiographic-triggered radionuclide ventriculography are being used with nonimaging detectors. These methods have not been compared on the basis of their real-time performance or suitability for determination of load-independent indexes of left ventricular function. This work evaluated the relative merits of different gating methods for nonimaging radionuclude ventriculographic studies, with particular emphasis on their suitability for real-time measurements and the determination of pressure-volume loops. Methods and Results A computer model was used to investigate the relative accuracy of forward gating, backward gating, and phase-mode gating. The durations of simulated left ventricular time-activity curves were randomly varied. Three acquisition parameters were considered: frame rate, acceptance window, and sample size. Twenty-five studies were performed for each combination of acquisition parameters. Hemodynamic and shape parameters from each study were compared with reference parameters derived directly from the random time-activity curves. Backward gating produced the largest errors under all conditions. For both forward gating and phase-mode gating, ejection fraction was underestimated and time to end systole and normalized peak ejection rate were overestimated. For the hemodynamic parameters, forward gating was marginally superior to phase-mode gating. The mean difference in errors between forward and phase-mode gating was 1.47% (SD 2.78%). However, for root mean square shape error, forward gating was several times worse in every case and seven times worse than phase-mode gating on average. Conclusions Both forward and phase-mode gating are suitable for real-time hemodynamic measurements by nonimaging techniques. The small statistical difference between the methods is not clinically significant. The true shape of the time-activity curve is maintained most accurately by phase-mode gating. PMID:9420820
Irradiation of MOS-FET devices to provide desired logic functions
NASA Technical Reports Server (NTRS)
Danchenko, V.; Schaefer, D. H.
1972-01-01
Gamma, X-ray, electron, or other radiation is used to shift threshold potentials of MOS devices on logic circuits. Before irradiation MOS gates to be shifted are biased positive and other gates are grounded to substrate. Threshold lasts 10 years. Thermal annealing brings circuit back to original configuration.
TH-CD-207A-04: Optimized Respiratory Gating for Abnormal Breathers in Pancreatic SBRT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, W; Miften, M; Schefter, T
Purpose: Pancreatic SBRT is uniquely challenging due to both the erratic/unstable motion of the pancreas and the close proximity of the radiosensitive small bowel. Respiratory gating can mitigate this effect, but the irregularity of motion severely affects traditional phase-based gating. The purpose of this study was to analyze real-time motion data of pancreatic tumors to optimize the efficacy and accuracy of respiratory gating, with the overall goal of enabling dose escalated pancreatic SBRT. Methods: Fifteen pancreatic SBRT patients received 30–33 Gy in 5 fractions on a Varian TrueBeam STx unit. Abdominal compression was used to reduce the amplitude of tumormore » motion, and daily cone-beam computed tomography (CBCT) scans were acquired prior to each treatment for target localization purposes. For this study, breathing data (phase and amplitude) were collected during each CBCT scan using Varian’s Real-Time Position Management system. An in-house template matching technique was used to track the superior-inferior motion of implanted fiducial markers in CBCT projection images. Using tumor motion and breathing data, phase-based or amplitude-based respiratory gating was simulated for all 75 fractions, targeting either end-exhalation or end-inhalation phases of breathing. Results: For the average patient, gating at end-exhalation offered the best reductions in effective motion for equal duty cycles. However, optimal central phase angle varied widely (range: 0–92%, mean±SD: 49±12%), and phase-based gating windows typically associated with end-exhalation (i.e., “30–70%”) were rarely ideal. Amplitude-based gating significantly outperformed phase-based gating, with average effective ranges for amplitude-based gating 25% lower than phase-based gating ranges (as much as 73% lower). Amplitude-based gating was consistently better suited to accommodate abnormal breathing patterns. For both phase-based and amplitude-based gating, end-exhalation provided significantly better results than end-inhalation. Conclusion: Amplitude-based gating reliably outperformed phase-based gating, and end-exhalation was more suitable than end-inhalation. These results will be used to guide future dose-escalation trials. Research funding provided by Varian Medical Systems to Miften and Jones.« less
Robust quantum logic in neutral atoms via adiabatic Rydberg dressing
Keating, Tyler; Cook, Robert L.; Hankin, Aaron M.; ...
2015-01-28
We study a scheme for implementing a controlled-Z (CZ) gate between two neutral-atom qubits based on the Rydberg blockade mechanism in a manner that is robust to errors caused by atomic motion. By employing adiabatic dressing of the ground electronic state, we can protect the gate from decoherence due to random phase errors that typically arise because of atomic thermal motion. In addition, the adiabatic protocol allows for a Doppler-free configuration that involves counterpropagating lasers in a σ +/σ - orthogonal polarization geometry that further reduces motional errors due to Doppler shifts. The residual motional error is dominated by dipole-dipolemore » forces acting on doubly-excited Rydberg atoms when the blockade is imperfect. As a result, for reasonable parameters, with qubits encoded into the clock states of 133Cs, we predict that our protocol could produce a CZ gate in < 10 μs with error probability on the order of 10 -3.« less
Park, Yang-Kyun; Son, Tae-geun; Kim, Hwiyoung; Lee, Jaegi; Sung, Wonmo; Kim, Il Han; Lee, Kunwoo; Bang, Young-bong; Ye, Sung-Joon
2013-09-06
Phase-based respiratory-gated radiotherapy relies on the reproducibility of patient breathing during the treatment. To monitor the positional reproducibility of patient breathing against a 4D CT simulation, we developed a real-time motion verification system (RMVS) using an optical tracking technology. The system in the treatment room was integrated with a real-time position management system. To test the system, an anthropomorphic phantom that was mounted on a motion platform moved on a programmed breathing pattern and then underwent a 4D CT simulation with RPM. The phase-resolved anterior surface lines were extracted from the 4D CT data to constitute 4D reference lines. In the treatment room, three infrared reflective markers were attached on the superior, middle, and inferior parts of the phantom along with the body midline and then RMVS could track those markers using an optical camera system. The real-time phase information extracted from RPM was delivered to RMVS via in-house network software. Thus, the real-time anterior-posterior positions of the markers were simultaneously compared with the 4D reference lines. The technical feasibility of RMVS was evaluated by repeating the above procedure under several scenarios such as ideal case (with identical motion parameters between simulation and treatment), cycle change, baseline shift, displacement change, and breathing type changes (abdominal or chest breathing). The system capability for operating under irregular breathing was also investigated using real patient data. The evaluation results showed that RMVS has a competence to detect phase-matching errors between patient's motion during the treatment and 4D CT simulation. Thus, we concluded that RMVS could be used as an online quality assurance tool for phase-based gating treatments.
Applications of CPL mask technology for sub-65nm gate imaging
NASA Astrophysics Data System (ADS)
Litt, Lloyd C.; Conley, Will; Wu, Wei; Peters, Richie; Parker, Colita; Cobb, Jonathan; Kasprowicz, Bryan S.; van den Broeke, Doug; Park, J. C.; Karur-Shanmugam, Ramkumar
2005-05-01
The requirements for critical dimension control on gate layer for high performance products are increasingly demanding. Phase shift techniques provide aerial image enhancement, which can translate into improved process window performance and greater critical dimension (CD) control if properly applied. Unfortunately, the application of hard shifter technology to production requires significant effort in layout and optical proximity correction (OPC) application. Chromeless Phase Lithography (CPL) has several advantages over complementary phase mask (c:PSM) such as use of a single mask, and lack of phase placement 'coloring' conflicts and phase imbalance issues. CPL does have implementation issues that must be resolved before it can be used in full-scale production. CPL mask designs can be approached by separating features into three zones based on several parameters, including size relative to the lithographic resolution of the stepper lens, wavelength, and illumination conditions defined. Features are placed into buckets for different treatment zones. Zone 1 features are constructed with 100% transmission phase shifted structures and Zone 3 features are chrome (binary) structures. Features that fall into Zone 2, which are too wide to be defined using the 100% transmission of pure CPL (i.e. have negative mask error factor, MEEF) are the most troublesome and can be approached in several ways. The authors have investigated the application of zebra structures of various sizes to product type layouts. Previous work to investigate CPL using test structures set the groundwork for the more difficult task of applying CPL rules to actual random logic design layouts, which include many zone transitions. Mask making limitations have been identified that play a role in the zebra sizing that can be applied to Zone 2 features. The elimination of Zone 2 regions was also investigated in an effort to simplify the application of CPL and improve manufacturability of reticle through data enhancements.
Optical DC overlay measurement in the 2nd level process of 65 nm alternating phase shift mask
NASA Astrophysics Data System (ADS)
Ma, Jian; Han, Ke; Lee, Kyung; Korobko, Yulia; Silva, Mary; Chavez, Joas; Irvine, Brian; Henrichs, Sven; Chakravorty, Kishore; Olshausen, Robert; Chandramouli, Mahesh; Mammen, Bobby; Padmanaban, Ramaswamy
2005-11-01
Alternating phase shift mask (APSM) techniques help bridge the significant gap between the lithography wavelength and the patterning of minimum features, specifically, the poly line of 35 nm gate length (1x) in Intel's 65 nm technology. One of key steps in making APSM mask is to pattern to within the design tolerances the 2nd level resist so that the zero-phase apertures will be protected by the resist and the pi-phase apertures will be wide open for quartz etch. The ability to align the 2nd level to the 1st level binary pattern, i.e. the 2nd level overlay capability is very important, so is the capability of measuring the overlay accurately. Poor overlay could cause so-called the encroachment after quartz etch, producing undesired quartz bumps in the pi-apertures or quartz pits in the zero-apertures. In this paper, a simple, low-cost optical setup for the 2nd level DC (develop check) overlay measurements in the high volume manufacturing (HVM) of APSM masks is presented. By removing systematic errors in overlay associated with TIS and MIS (tool-induced shift and Mask-process induced shift), it is shown that this setup is capable of supporting the measurement of DC overlay with a tolerance as small as +/- 25 nm. The outstanding issues, such as DC overlay error component analysis, DC - FC (final check) overlay correlation and the overlay linearity (periphery vs. indie), are discussed.
SU-C-210-03: Impact of Breathing Irregularities On Gated Treatments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schiuma, D; Arheit, M; Schmelzer, P
2015-06-15
Purpose: To evaluate the effect of breathing irregularities on target location in gated treatments using amplitude and phase gating. Methods: 111 breathing patterns acquired using RPM system were categorized based on period and amplitude STD as regular (STD period ≤ 0.5 s, STD amplitude ≤ 1.5 mm), medium (0.5 s < STD period ≤ 1 s, 1.5 mm < STD amplitude ≤ 3 mm) and irregular (STD period > 1 s, STD amplitude > 3 mm). One pattern representative of the average defined population was selected per category and corresponding target motion reproduced using Quasar Respiratory Motion Phantom. Phantom inmore » motion underwent 4D-CT scan with phase reconstruction. Gated window was defined at end of exhale and DRRs reconstructed in treatment planning at 40% (beam on) and 60% phase (beam off). Target location uncertainty was assessed by comparing gated kV triggered images continuously acquired at beam on/off on a True Beam 2.0 with corresponding DRRs. Results: Average target uncertainty with amplitude gating was in [0.4 – 1.9] mm range for the different scenarios with maximum STD of 1.2 mm for the irregular pattern. Average target uncertainty with phase gating was [1.1 – 2.2] mm for regular and medium patterns, while it increased to [3.6 – 9.6] mm for the irregular pattern. Live gated motion was stable with amplitude gating, while increasing with phase gating for the irregular pattern. Treatment duration range was [68 – 160] s with amplitude and [70 – 74] s with phase gating. Conclusion: Breathing irregularities were found to affect gated treatments only when using phase gating. For regular and medium patterns no significant difference was found between the two gating strategies. Amplitude gating ensured stable gated motion within the different patterns, thus reducing intra-fraction target location variability for the irregular pattern and resulting in longer treatment duration.« less
Yu, Alec; Zhu, Wandi; Silva, Jonathan R.; Ruben, Peter C.
2017-01-01
E1784K is the most common mixed long QT syndrome/Brugada syndrome mutant in the cardiac voltage-gated sodium channel NaV1.5. E1784K shifts the midpoint of the channel conductance-voltage relationship to more depolarized membrane potentials and accelerates the rate of channel fast inactivation. The depolarizing shift in the midpoint of the conductance curve in E1784K is exacerbated by low extracellular pH. We tested whether the E1784K mutant shifts the channel conductance curve to more depolarized membrane potentials by affecting the channel voltage-sensors. We measured ionic currents and gating currents at pH 7.4 and pH 6.0 in Xenopus laevis oocytes. Contrary to our expectation, the movement of gating charges is shifted to more hyperpolarized membrane potentials by E1784K. Voltage-clamp fluorimetry experiments show that this gating charge shift is due to the movement of the DIVS4 voltage-sensor being shifted to more hyperpolarized membrane potentials. Using a model and experiments on fast inactivation-deficient channels, we show that changes to the rate and voltage-dependence of fast inactivation are sufficient to shift the conductance curve in E1784K. Our results localize the effects of E1784K to DIVS4, and provide novel insight into the role of the DIV-VSD in regulating the voltage-dependencies of activation and fast inactivation. PMID:28898267
Peters, Colin H; Yu, Alec; Zhu, Wandi; Silva, Jonathan R; Ruben, Peter C
2017-01-01
E1784K is the most common mixed long QT syndrome/Brugada syndrome mutant in the cardiac voltage-gated sodium channel NaV1.5. E1784K shifts the midpoint of the channel conductance-voltage relationship to more depolarized membrane potentials and accelerates the rate of channel fast inactivation. The depolarizing shift in the midpoint of the conductance curve in E1784K is exacerbated by low extracellular pH. We tested whether the E1784K mutant shifts the channel conductance curve to more depolarized membrane potentials by affecting the channel voltage-sensors. We measured ionic currents and gating currents at pH 7.4 and pH 6.0 in Xenopus laevis oocytes. Contrary to our expectation, the movement of gating charges is shifted to more hyperpolarized membrane potentials by E1784K. Voltage-clamp fluorimetry experiments show that this gating charge shift is due to the movement of the DIVS4 voltage-sensor being shifted to more hyperpolarized membrane potentials. Using a model and experiments on fast inactivation-deficient channels, we show that changes to the rate and voltage-dependence of fast inactivation are sufficient to shift the conductance curve in E1784K. Our results localize the effects of E1784K to DIVS4, and provide novel insight into the role of the DIV-VSD in regulating the voltage-dependencies of activation and fast inactivation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernatowicz, K., E-mail: kingab@student.ethz.ch; Knopf, A.; Lomax, A.
Purpose: Prospective respiratory-gated 4D CT has been shown to reduce tumor image artifacts by up to 50% compared to conventional 4D CT. However, to date no studies have quantified the impact of gated 4D CT on normal lung tissue imaging, which is important in performing dose calculations based on accurate estimates of lung volume and structure. To determine the impact of gated 4D CT on thoracic image quality, the authors developed a novel simulation framework incorporating a realistic deformable digital phantom driven by patient tumor motion patterns. Based on this framework, the authors test the hypothesis that respiratory-gated 4D CTmore » can significantly reduce lung imaging artifacts. Methods: Our simulation framework synchronizes the 4D extended cardiac torso (XCAT) phantom with tumor motion data in a quasi real-time fashion, allowing simulation of three 4D CT acquisition modes featuring different levels of respiratory feedback: (i) “conventional” 4D CT that uses a constant imaging and couch-shift frequency, (ii) “beam paused” 4D CT that interrupts imaging to avoid oversampling at a given couch position and respiratory phase, and (iii) “respiratory-gated” 4D CT that triggers acquisition only when the respiratory motion fulfills phase-specific displacement gating windows based on prescan breathing data. Our framework generates a set of ground truth comparators, representing the average XCAT anatomy during beam-on for each of ten respiratory phase bins. Based on this framework, the authors simulated conventional, beam-paused, and respiratory-gated 4D CT images using tumor motion patterns from seven lung cancer patients across 13 treatment fractions, with a simulated 5.5 cm{sup 3} spherical lesion. Normal lung tissue image quality was quantified by comparing simulated and ground truth images in terms of overall mean square error (MSE) intensity difference, threshold-based lung volume error, and fractional false positive/false negative rates. Results: Averaged across all simulations and phase bins, respiratory-gating reduced overall thoracic MSE by 46% compared to conventional 4D CT (p ∼ 10{sup −19}). Gating leads to small but significant (p < 0.02) reductions in lung volume errors (1.8%–1.4%), false positives (4.0%–2.6%), and false negatives (2.7%–1.3%). These percentage reductions correspond to gating reducing image artifacts by 24–90 cm{sup 3} of lung tissue. Similar to earlier studies, gating reduced patient image dose by up to 22%, but with scan time increased by up to 135%. Beam paused 4D CT did not significantly impact normal lung tissue image quality, but did yield similar dose reductions as for respiratory-gating, without the added cost in scanning time. Conclusions: For a typical 6 L lung, respiratory-gated 4D CT can reduce image artifacts affecting up to 90 cm{sup 3} of normal lung tissue compared to conventional acquisition. This image improvement could have important implications for dose calculations based on 4D CT. Where image quality is less critical, beam paused 4D CT is a simple strategy to reduce imaging dose without sacrificing acquisition time.« less
State-conditional coherent charge qubit oscillations in a Si/SiGe quadruple quantum dot
NASA Astrophysics Data System (ADS)
Ward, Daniel R.; Kim, Dohun; Savage, Donald E.; Lagally, Max G.; Foote, Ryan H.; Friesen, Mark; Coppersmith, Susan N.; Eriksson, Mark A.
2016-10-01
Universal quantum computation requires high-fidelity single-qubit rotations and controlled two-qubit gates. Along with high-fidelity single-qubit gates, strong efforts have been made in developing robust two-qubit logic gates in electrically gated quantum dot systems to realise a compact and nanofabrication-compatible architecture. Here we perform measurements of state-conditional coherent oscillations of a charge qubit. Using a quadruple quantum dot formed in a Si/SiGe heterostructure, we show the first demonstration of coherent two-axis control of a double quantum dot charge qubit in undoped Si/SiGe, performing Larmor and Ramsey oscillation measurements. We extract the strength of the capacitive coupling between a pair of double quantum dots by measuring the detuning energy shift (≈75 μeV) of one double dot depending on the excess charge configuration of the other double dot. We further demonstrate that the strong capacitive coupling allows fast, state-conditional Landau-Zener-Stückelberg oscillations with a conditional π phase flip time of about 80 ps, showing a promising pathway towards multi-qubit entanglement and control in semiconductor quantum dots.
State-conditional coherent charge qubit oscillations in a Si/SiGe quadruple quantum dot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, Daniel R.; Kim, Dohun; Savage, Donald E.
Universal quantum computation requires high-fidelity single-qubit rotations and controlled two-qubit gates. Along with high-fidelity single-qubit gates, strong efforts have been made in developing robust two-qubit logic gates in electrically gated quantum dot systems to realise a compact and nanofabrication-compatible architecture. Here we perform measurements of state-conditional coherent oscillations of a charge qubit. Using a quadruple quantum dot formed in a Si/SiGe heterostructure, we show the first demonstration of coherent two-axis control of a double quantum dot charge qubit in undoped Si/SiGe, performing Larmor and Ramsey oscillation measurements. We extract the strength of the capacitive coupling between a pair of doublemore » quantum dots by measuring the detuning energy shift (≈75 μeV) of one double dot depending on the excess charge configuration of the other double dot. Finally, we further demonstrate that the strong capacitive coupling allows fast, state-conditional Landau–Zener–Stückelberg oscillations with a conditional π phase flip time of about 80 ps, showing a promising pathway towards multi-qubit entanglement and control in semiconductor quantum dots.« less
State-conditional coherent charge qubit oscillations in a Si/SiGe quadruple quantum dot
Ward, Daniel R.; Kim, Dohun; Savage, Donald E.; ...
2016-10-18
Universal quantum computation requires high-fidelity single-qubit rotations and controlled two-qubit gates. Along with high-fidelity single-qubit gates, strong efforts have been made in developing robust two-qubit logic gates in electrically gated quantum dot systems to realise a compact and nanofabrication-compatible architecture. Here we perform measurements of state-conditional coherent oscillations of a charge qubit. Using a quadruple quantum dot formed in a Si/SiGe heterostructure, we show the first demonstration of coherent two-axis control of a double quantum dot charge qubit in undoped Si/SiGe, performing Larmor and Ramsey oscillation measurements. We extract the strength of the capacitive coupling between a pair of doublemore » quantum dots by measuring the detuning energy shift (≈75 μeV) of one double dot depending on the excess charge configuration of the other double dot. Finally, we further demonstrate that the strong capacitive coupling allows fast, state-conditional Landau–Zener–Stückelberg oscillations with a conditional π phase flip time of about 80 ps, showing a promising pathway towards multi-qubit entanglement and control in semiconductor quantum dots.« less
Bias stress instability of double-gate a-IGZO TFTs on polyimide substrate
NASA Astrophysics Data System (ADS)
Cho, Won-Ju; Ahn, Min-Ju
2017-09-01
In this study, flexible double-gate thin-film transistor (TFT)-based amorphous indium-galliumzinc- oxide (a-IGZO) was fabricated on a polyimide substrate. Double-gate operation with connected front and back gates was compared with a single-gate operation. As a result, the double-gate a- IGZO TFT exhibited enhanced electrical characteristics as well as improved long-term reliability. Under positive- and negative-bias temperature stress, the threshold voltage shift of the double-gate operation was much smaller than that of the single-gate operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yonggang, E-mail: wangyg@ustc.edu.cn; Hui, Cong; Liu, Chong
The contribution of this paper is proposing a new entropy extraction mechanism based on sampling phase jitter in ring oscillators to make a high throughput true random number generator in a field programmable gate array (FPGA) practical. Starting from experimental observation and analysis of the entropy source in FPGA, a multi-phase sampling method is exploited to harvest the clock jitter with a maximum entropy and fast sampling speed. This parametrized design is implemented in a Xilinx Artix-7 FPGA, where the carry chains in the FPGA are explored to realize the precise phase shifting. The generator circuit is simple and resource-saving,more » so that multiple generation channels can run in parallel to scale the output throughput for specific applications. The prototype integrates 64 circuit units in the FPGA to provide a total output throughput of 7.68 Gbps, which meets the requirement of current high-speed quantum key distribution systems. The randomness evaluation, as well as its robustness to ambient temperature, confirms that the new method in a purely digital fashion can provide high-speed high-quality random bit sequences for a variety of embedded applications.« less
Wang, Yonggang; Hui, Cong; Liu, Chong; Xu, Chao
2016-04-01
The contribution of this paper is proposing a new entropy extraction mechanism based on sampling phase jitter in ring oscillators to make a high throughput true random number generator in a field programmable gate array (FPGA) practical. Starting from experimental observation and analysis of the entropy source in FPGA, a multi-phase sampling method is exploited to harvest the clock jitter with a maximum entropy and fast sampling speed. This parametrized design is implemented in a Xilinx Artix-7 FPGA, where the carry chains in the FPGA are explored to realize the precise phase shifting. The generator circuit is simple and resource-saving, so that multiple generation channels can run in parallel to scale the output throughput for specific applications. The prototype integrates 64 circuit units in the FPGA to provide a total output throughput of 7.68 Gbps, which meets the requirement of current high-speed quantum key distribution systems. The randomness evaluation, as well as its robustness to ambient temperature, confirms that the new method in a purely digital fashion can provide high-speed high-quality random bit sequences for a variety of embedded applications.
Dual-Phase Lock-In Amplifier Based on FPGA for Low-Frequencies Experiments
Macias-Bobadilla, Gonzalo; Rodríguez-Reséndiz, Juvenal; Mota-Valtierra, Georgina; Soto-Zarazúa, Genaro; Méndez-Loyola, Maurino; Garduño-Aparicio, Mariano
2016-01-01
Photothermal techniques allow the detection of characteristics of material without invading it. Researchers have developed hardware for some specific Phase and Amplitude detection (Lock-In Function) applications, eliminating space and unnecessary electronic functions, among others. This work shows the development of a Digital Lock-In Amplifier based on a Field Programmable Gate Array (FPGA) for low-frequency applications. This system allows selecting and generating the appropriated frequency depending on the kind of experiment or material studied. The results show good frequency stability in the order of 1.0 × 10−9 Hz, which is considered good linearity and repeatability response for the most common Laboratory Amplitude and Phase Shift detection devices, with a low error and standard deviation. PMID:26999138
Dual-Phase Lock-In Amplifier Based on FPGA for Low-Frequencies Experiments.
Macias-Bobadilla, Gonzalo; Rodríguez-Reséndiz, Juvenal; Mota-Valtierra, Georgina; Soto-Zarazúa, Genaro; Méndez-Loyola, Maurino; Garduño-Aparicio, Mariano
2016-03-16
Photothermal techniques allow the detection of characteristics of material without invading it. Researchers have developed hardware for some specific Phase and Amplitude detection (Lock-In Function) applications, eliminating space and unnecessary electronic functions, among others. This work shows the development of a Digital Lock-In Amplifier based on a Field Programmable Gate Array (FPGA) for low-frequency applications. This system allows selecting and generating the appropriated frequency depending on the kind of experiment or material studied. The results show good frequency stability in the order of 1.0 × 10(-9) Hz, which is considered good linearity and repeatability response for the most common Laboratory Amplitude and Phase Shift detection devices, with a low error and standard deviation.
Role of AlGaN/GaN interface traps on negative threshold voltage shift in AlGaN/GaN HEMT
NASA Astrophysics Data System (ADS)
Malik, Amit; Sharma, Chandan; Laishram, Robert; Bag, Rajesh Kumar; Rawal, Dipendra Singh; Vinayak, Seema; Sharma, Rajesh Kumar
2018-04-01
This article reports negative shift in the threshold-voltage in AlGaN/GaN high electron mobility transistor (HEMT) with application of reverse gate bias stress. The device is biased in strong pinch-off and low drain to source voltage condition for a fixed time duration (reverse gate bias stress), followed by measurement of transfer characteristics. Negative threshold voltage shift after application of reverse gate bias stress indicates the presence of more carriers in channel as compared to the unstressed condition. We propose the presence of AlGaN/GaN interface states to be the reason of negative threshold voltage shift, and developed a process to electrically characterize AlGaN/GaN interface states. We verified the results with Technology Computer Aided Design (TCAD) ATLAS simulation and got a good match with experimental measurements.
Deterministic nonlinear phase gates induced by a single qubit
NASA Astrophysics Data System (ADS)
Park, Kimin; Marek, Petr; Filip, Radim
2018-05-01
We propose deterministic realizations of nonlinear phase gates by repeating a finite sequence of non-commuting Rabi interactions between a harmonic oscillator and only a single two-level ancillary qubit. We show explicitly that the key nonclassical features of the ideal cubic phase gate and the quartic phase gate are generated in the harmonic oscillator faithfully by our method. We numerically analyzed the performance of our scheme under realistic imperfections of the oscillator and the two-level system. The methodology is extended further to higher-order nonlinear phase gates. This theoretical proposal completes the set of operations required for continuous-variable quantum computation.
NASA Astrophysics Data System (ADS)
Qin, Su-Juan; Gao, Fei; Wen, Qiao-Yan; Zhu, Fu-Chen
2008-11-01
The security of a multiparty quantum secret sharing protocol [L.F. Han, Y.M. Liu, J. Liu, Z.J. Zhang, Opt. Commun. 281 (2008) 2690] is reexamined. It is shown that any one dishonest participant can obtain all the transmitted secret bits by a special attack, where the controlled- (-iσy) gate is employed to invalidate the role of the random phase shift operation. Furthermore, a possible way to resist this attack is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tournadre, Grégoire de, E-mail: gregoire.de-tournadre@univ-reims.fr; Reisdorffer, Frédéric; Simonetti, Olivier
A scanning surface potential measurement technique suited for thin-film devices operating under high voltages is reported. A commercial atomic force microscope has been customized to enable a feedback-controlled and secure surface potential measurement based on phase-shift detection under ambient conditions. Measurements of the local potential profile along the channel of bottom-gate organic thin-film transistors (TFTs) are shown to be useful to disentangle the contributions from the channel and contacts to the device performance. Intrinsic contact current-voltage characteristics have been measured on bottom-gate, top-contact (staggered) TFTs based on the small-molecule semiconductor dinaphtho[2,3-b:2′,3-f]thieno[3,2-b]thiophene (DNTT) and on bottom-gate, bottom-contact (coplanar) TFTs based onmore » the semiconducting polymer polytriarylamine (PTAA). Injection has been found to be linear in the staggered DNTT TFTs and nonlinear in the coplanar PTAA TFTs. In both types of TFT, the injection efficiency has been found to improve with increasing gate bias in the accumulation regime. Contact resistances as low as 130 Ω cm have been measured in the DNTT TFTs. A method that eliminates the influence of bias-stress-induced threshold-voltage shifts when measuring the local charge-carrier mobility in the channel is also introduced, and intrinsic channel mobilities of 1.5 cm{sup 2} V{sup −1} s{sup −1} and 1.1 × 10{sup −3} cm{sup 2} V{sup −1} s{sup −1} have been determined for DNTT and PTAA. In both semiconductors, the mobility has been found to be constant with respect to the gate bias. Despite its simplicity, the Kelvin probe force microscopy method reported here provides robust and accurate surface potential measurements on thin-film devices under operation and thus paves the way towards more extensive studies of particular interest in emerging fields of solid-state electronics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Tian-Li, E-mail: Tian-Li.Wu@imec.be; Groeseneken, Guido; Department of Electrical Engineering, KU Leuven, Leuven
2015-08-31
In this paper, three electrical techniques (frequency dependent conductance analysis, AC transconductance (AC-g{sub m}), and positive gate bias stress) were used to evaluate three different gate dielectrics (Plasma-Enhanced Atomic Layer Deposition Si{sub 3}N{sub 4}, Rapid Thermal Chemical Vapor Deposition Si{sub 3}N{sub 4}, and Atomic Layer Deposition (ALD) Al{sub 2}O{sub 3}) for AlGaN/GaN Metal-Insulator-Semiconductor High-Electron-Mobility Transistors. From these measurements, the interface state density (D{sub it}), the amount of border traps, and the threshold voltage (V{sub TH}) shift during a positive gate bias stress can be obtained. The results show that the V{sub TH} shift during a positive gate bias stress ismore » highly correlated to not only interface states but also border traps in the dielectric. A physical model is proposed describing that electrons can be trapped by both interface states and border traps. Therefore, in order to minimize the V{sub TH} shift during a positive gate bias stress, the gate dielectric needs to have a lower interface state density and less border traps. However, the results also show that the commonly used frequency dependent conductance analysis technique to extract D{sub it} needs to be cautiously used since the resulting value might be influenced by the border traps and, vice versa, i.e., the g{sub m} dispersion commonly attributed to border traps might be influenced by interface states.« less
Du, Baoqiang; Dong, Shaofeng; Wang, Yanfeng; Guo, Shuting; Cao, Lingzhi; Zhou, Wei; Zuo, Yandi; Liu, Dan
2013-11-01
A wide-frequency and high-resolution frequency measurement method based on the quantized phase step law is presented in this paper. Utilizing a variation law of the phase differences, the direct different frequency phase processing, and the phase group synchronization phenomenon, combining an A/D converter and the adaptive phase shifting principle, a counter gate is established in the phase coincidences at one-group intervals, which eliminates the ±1 counter error in the traditional frequency measurement method. More importantly, the direct phase comparison, the measurement, and the control between any periodic signals have been realized without frequency normalization in this method. Experimental results show that sub-picosecond resolution can be easily obtained in the frequency measurement, the frequency standard comparison, and the phase-locked control based on the phase quantization processing technique. The method may be widely used in navigation positioning, space techniques, communication, radar, astronomy, atomic frequency standards, and other high-tech fields.
NASA Astrophysics Data System (ADS)
Wei, Hai-Rui; Long, Gui Lu
2015-03-01
We propose two compact, economic, and scalable schemes for implementing optical controlled-phase-flip and controlled-controlled-phase-flip gates by using the input-output process of a single-sided cavity strongly coupled to a single nitrogen-vacancy-center defect in diamond. Additional photonic qubits, necessary for procedures based on the parity-check measurement or controlled-path and merging gates, are not employed in our schemes. In the controlled-path gate, the paths of the target photon are conditionally controlled by the control photon, and these two paths can be merged back into one by using a merging gate. Only one half-wave plate is employed in our scheme for the controlled-phase-flip gate. Compared with the conventional synthesis procedures for constructing a controlled-controlled-phase-flip gate, the cost of which is two controlled-path gates and two merging gates, or six controlled-not gates, our scheme is more compact and simpler. Our schemes could be performed with a high fidelity and high efficiency with current achievable experimental techniques.
Investigation of interface property in Al/SiO2/ n-SiC structure with thin gate oxide by illumination
NASA Astrophysics Data System (ADS)
Chang, P. K.; Hwu, J. G.
2017-04-01
The reverse tunneling current of Al/SiO2/ n-SiC structure employing thin gate oxide is introduced to examine the interface property by illumination. The gate current at negative bias decreases under blue LED illumination, yet increases under UV lamp illumination. Light-induced electrons captured by interface states may be emitted after the light sources are off, leading to the recovery of gate currents. Based on transient characteristics of gate current, the extracted trap level is close to the light energy for blue LED, indicating that electron capture induced by lighting may result in the reduction of gate current. Furthermore, bidirectional C- V measurements exhibit a positive voltage shift caused by electron trapping under blue LED illumination, while a negative voltage shift is observed under UV lamp illumination. Distinct trapping and detrapping behaviors can be observed from variations in I- V and C- V curves utilizing different light sources for 4H-SiC MOS capacitors with thin insulators.
Universal Faraday Rotation in HgTe Wells with Critical Thickness.
Shuvaev, A; Dziom, V; Kvon, Z D; Mikhailov, N N; Pimenov, A
2016-09-09
The universal value of the Faraday rotation angle close to the fine structure constant (α≈1/137) is experimentally observed in thin HgTe quantum wells with a thickness on the border between trivial insulating and the topologically nontrivial Dirac phases. The quantized value of the Faraday angle remains robust in the broad range of magnetic fields and gate voltages. Dynamic Hall conductivity of the holelike carriers extracted from the analysis of the transmission data shows a theoretically predicted universal value of σ_{xy}=e^{2}/h, which is consistent with the doubly degenerate Dirac state. On shifting the Fermi level by the gate voltage, the effective sign of the charge carriers changes from positive (holes) to negative (electrons). The electronlike part of the dynamic response does not show quantum plateaus and is well described within the classical Drude model.
Witzel, Wayne; Montano, Ines; Muller, Richard P.; ...
2015-08-19
In this paper, we present a strategy for producing multiqubit gates that promise high fidelity with minimal tuning requirements. Our strategy combines gap protection from the adiabatic theorem with dynamical decoupling in a complementary manner. Energy-level transition errors are protected by adiabaticity and remaining phase errors are mitigated via dynamical decoupling. This is a powerful way to divide and conquer the various error channels. In order to accomplish this without violating a no-go theorem regarding black-box dynamically corrected gates [Phys. Rev. A 80, 032314 (2009)], we require a robust operating point (sweet spot) in control space where the qubits interactmore » with little sensitivity to noise. There are also energy gap requirements for effective adiabaticity. We apply our strategy to an architecture in Si with P donors where we assume we can shuttle electrons between different donors. Electron spins act as mobile ancillary qubits and P nuclear spins act as long-lived data qubits. Furthermore, this system can have a very robust operating point where the electron spin is bound to a donor in the quadratic Stark shift regime. High fidelity single qubit gates may be performed using well-established global magnetic resonance pulse sequences. Single electron-spin preparation and measurement has also been demonstrated. Thus, putting this all together, we present a robust universal gate set for quantum computation.« less
A pH sensor with a double-gate silicon nanowire field-effect transistor
NASA Astrophysics Data System (ADS)
Ahn, Jae-Hyuk; Kim, Jee-Yeon; Seol, Myeong-Lok; Baek, David J.; Guo, Zheng; Kim, Chang-Hoon; Choi, Sung-Jin; Choi, Yang-Kyu
2013-02-01
A pH sensor composed of a double-gate silicon nanowire field-effect transistor (DG Si-NW FET) is demonstrated. The proposed DG Si-NW FET allows the independent addressing of the gate voltage and hence improves the sensing capability through an application of asymmetric gate voltage between the two gates. One gate is a driving gate which controls the current flow, and the other is a supporting gate which amplifies the shift of the threshold voltage, which is a sensing metric, and which arises from changes in the pH. The pH signal is also amplified through modulation of the gate oxide thickness.
Phase matching as a gate for photon entanglement
Zheltikov, A. M.
2017-01-01
Phase matching is shown to provide a tunable gate that helps discriminate entangled states of light generated by four-wave mixing (FWM) in optical fibers against uncorrelated photons originating from Raman scattering. Two types of such gates are discussed. Phase-matching gates of the first type are possible in the normal dispersion regime, where FWM sidebands can be widely tuned by high-order dispersion management, enhancing the ratio of the entangled-photon output to the Raman noise. The photon-entanglement gates of the second type are created by dual-pump cross-phase-modulation-induced FWM sideband generation and can be tuned by group-velocity mismatch of the pump fields. PMID:28703217
Cheng, Lan; Sanguinetti, Michael C
2009-05-01
Niflumic acid, 2-[[3-(trifluoromethyl)phenyl]amino]pyridine-3-carboxylic acid (NFA), is a nonsteroidal anti-inflammatory drug that also blocks or modifies the gating of many ion channels. Here, we investigated the effects of NFA on hyperpolarization-activated cyclic nucleotide-gated cation (HCN) pacemaker channels expressed in X. laevis oocytes using site-directed mutagenesis and the two-electrode voltage-clamp technique. Extracellular NFA acted rapidly and caused a slowing of activation and deactivation and a hyperpolarizing shift in the voltage dependence of HCN2 channel activation (-24.5 +/- 1.2 mV at 1 mM). Slowed channel gating and reduction of current magnitude was marked in oocytes treated with NFA, while clamped at 0 mV but minimal in oocytes clamped at -100 mV, indicating the drug preferentially interacts with channels in the closed state. NFA at 0.1 to 3 mM shifted the half-point for channel activation in a concentration-dependent manner, with an EC(50) of 0.54 +/- 0.068 mM and a predicted maximum shift of -38 mV. NFA at 1 mM also reduced maximum HCN2 conductance by approximately 20%, presumably by direct block of the pore. The rapid onset and state-dependence of NFA-induced changes in channel gating suggests an interaction with the extracellular region of the S4 transmembrane helix, the primary voltage-sensing domain of HCN2. Neutralization (by mutation to Gln) of any three of the outer four basic charged residues in S4, but not single mutations, abrogated the NFA-induced shift in channel activation. We conclude that NFA alters HCN2 gating by interacting with the extracellular end of the S4 voltage sensor domains.
Hughes, Simon; McClelland, James; Tarte, Segolene; Lawrence, David; Ahmad, Shahreen; Hawkes, David; Landau, David
2009-06-01
In selected patients with NSCLC the therapeutic index of radical radiotherapy can be improved with gating/tracking technology. Both techniques require real-time information on target location. This is often derived from a surrogate ventilatory signal. We assessed the correlation of two novel surrogate ventilatory signals with a spirometer-derived signal. The novel signals were obtained using the VisionRT stereoscopic camera system. The VisionRT-Tracked-Point (VRT-TP) signal was derived from tracking a point located midway between the umbilicus and xiphisternum. The VisionRT-Surface-Derived-Volume (VRT-SDV) signal was derived from 3D body surface imaging of the torso. Both have potential advantages over the current surrogate signals. Eleven subjects with NSCLC were recruited. Each was positioned as for radiotherapy treatment, and then instructed to breathe in five different modes: normal, abdominal, thoracic, deep and shallow breathing. Synchronous ventilatory signals were recorded for later analysis. The signals were analysed for correlation across all modes of breathing, and phase shifts. The VRT-SDV was also assessed for its ability to determine the mode of breathing. Both novel respiratory signals showed good correlation (r>0.80) with spirometry in 9 of 11 subjects. For all subjects the correlation with spirometry was better for the VRT-SDV signal than for the VRT-TP signal. Only one subject displayed a phase shift between the VisionRT-derived signals and spirometry. The VRT-SDV signal could also differentiate between different modes of breathing. Unlike the spirometer-derived signal, neither VisionRT-derived signal was subject to drift. Both the VRT-TP and VRT-SDV signals have potential applications in ventilatory-gated and tracked radiotherapy. They can also be used as a signal for sorting 4DCT images, and to drive 4DCT single- and multiple-parameter motion models.
NASA Astrophysics Data System (ADS)
Wang, Wenwu; Akiyama, Koji; Mizubayashi, Wataru; Nabatame, Toshihide; Ota, Hiroyuki; Toriumi, Akira
2009-03-01
We systematically studied what effect Al diffusion from high-k dielectrics had on the flatband voltage (Vfb) of Al-incorporated high-k gate stacks. An anomalous positive shift fin Vfb with the decreasing equivalent oxide thickness (EOT) of high-k gate stacks is reported. As the SiO2 interfacial layer is aggressively thinned in Al-incorporated HfxAl1-xOy gate stacks with a metal-gate electrode, the Vfb first lies on the well known linear Vfb-EOT plot and deviates toward the positive-voltage direction (Vfb roll-up), followed by shifting toward negative voltage (Vfb roll-off). We demonstrated that the Vfb roll-up behavior remarkably decreases the threshold voltage (Vth) of p-type metal-oxide-semiconductor field-effect transistors (p-MOSFETs), and does not cause severe degradation in the characteristics of hole mobility. The Vfb roll-up behavior, which is independent of gate materials but strongly dependent on high-k dielectrics, was ascribed to variations in fixed charges near the SiO2/Si interface, which are caused by Al diffusion from HfxAl1-xOy through SiO2 to the SiO2/Si interface. These results indicate that anomalous positive shift in Vfb, i.e., Vfb roll-up, should be taken into consideration in quantitatively adjusting Vfb in thin EOT regions and that it could be used to further tune Vth in p-MOSFETs.
A CMOS matrix for extracting MOSFET parameters before and after irradiation
NASA Technical Reports Server (NTRS)
Blaes, B. R.; Buehler, M. G.; Lin, Y.-S.; Hicks, K. A.
1988-01-01
An addressable matrix of 16 n- and 16 p-MOSFETs was designed to extract the dc MOSFET parameters for all dc gate bias conditions before and after irradiation. The matrix contains four sets of MOSFETs, each with four different geometries that can be biased independently. Thus the worst-case bias scenarios can be determined. The MOSFET matrix was fabricated at a silicon foundry using a radiation-soft CMOS p-well LOCOS process. Co-60 irradiation results for the n-MOSFETs showed a threshold-voltage shift of -3 mV/krad(Si), whereas the p-MOSFETs showed a shift of 21 mV/krad(Si). The worst-case threshold-voltage shift occurred for the n-MOSFETs, with a gate bias of 5 V during the anneal. For the p-MOSFETs, biasing did not affect the shift in the threshold voltage. A parasitic MOSFET dominated the leakage of the n-MOSFET biased with 5 V on the gate during irradiation. Co-60 test results for other parameters are also presented.
Data-driven gating in PET: Influence of respiratory signal noise on motion resolution.
Büther, Florian; Ernst, Iris; Frohwein, Lynn Johann; Pouw, Joost; Schäfers, Klaus Peter; Stegger, Lars
2018-05-21
Data-driven gating (DDG) approaches for positron emission tomography (PET) are interesting alternatives to conventional hardware-based gating methods. In DDG, the measured PET data themselves are utilized to calculate a respiratory signal, that is, subsequently used for gating purposes. The success of gating is then highly dependent on the statistical quality of the PET data. In this study, we investigate how this quality determines signal noise and thus motion resolution in clinical PET scans using a center-of-mass-based (COM) DDG approach, specifically with regard to motion management of target structures in future radiotherapy planning applications. PET list mode datasets acquired in one bed position of 19 different radiotherapy patients undergoing pretreatment [ 18 F]FDG PET/CT or [ 18 F]FDG PET/MRI were included into this retrospective study. All scans were performed over a region with organs (myocardium, kidneys) or tumor lesions of high tracer uptake and under free breathing. Aside from the original list mode data, datasets with progressively decreasing PET statistics were generated. From these, COM DDG signals were derived for subsequent amplitude-based gating of the original list mode file. The apparent respiratory shift d from end-expiration to end-inspiration was determined from the gated images and expressed as a function of signal-to-noise ratio SNR of the determined gating signals. This relation was tested against additional 25 [ 18 F]FDG PET/MRI list mode datasets where high-precision MR navigator-like respiratory signals were available as reference signal for respiratory gating of PET data, and data from a dedicated thorax phantom scan. All original 19 high-quality list mode datasets demonstrated the same behavior in terms of motion resolution when reducing the amount of list mode events for DDG signal generation. Ratios and directions of respiratory shifts between end-respiratory gates and the respective nongated image were constant over all statistic levels. Motion resolution d/d max could be modeled as d/dmax=1-e-1.52(SNR-1)0.52, with d max as the actual respiratory shift. Determining d max from d and SNR in the 25 test datasets and the phantom scan demonstrated no significant differences to the MR navigator-derived shift values and the predefined shift, respectively. The SNR can serve as a general metric to assess the success of COM-based DDG, even in different scanners and patients. The derived formula for motion resolution can be used to estimate the actual motion extent reasonably well in cases of limited PET raw data statistics. This may be of interest for individualized radiotherapy treatment planning procedures of target structures subjected to respiratory motion. © 2018 American Association of Physicists in Medicine.
Multi-target-qubit unconventional geometric phase gate in a multi-cavity system
NASA Astrophysics Data System (ADS)
Liu, Tong; Cao, Xiao-Zhi; Su, Qi-Ping; Xiong, Shao-Jie; Yang, Chui-Ping
2016-02-01
Cavity-based large scale quantum information processing (QIP) may involve multiple cavities and require performing various quantum logic operations on qubits distributed in different cavities. Geometric-phase-based quantum computing has drawn much attention recently, which offers advantages against inaccuracies and local fluctuations. In addition, multiqubit gates are particularly appealing and play important roles in QIP. We here present a simple and efficient scheme for realizing a multi-target-qubit unconventional geometric phase gate in a multi-cavity system. This multiqubit phase gate has a common control qubit but different target qubits distributed in different cavities, which can be achieved using a single-step operation. The gate operation time is independent of the number of qubits and only two levels for each qubit are needed. This multiqubit gate is generic, e.g., by performing single-qubit operations, it can be converted into two types of significant multi-target-qubit phase gates useful in QIP. The proposal is quite general, which can be used to accomplish the same task for a general type of qubits such as atoms, NV centers, quantum dots, and superconducting qubits.
Multi-target-qubit unconventional geometric phase gate in a multi-cavity system.
Liu, Tong; Cao, Xiao-Zhi; Su, Qi-Ping; Xiong, Shao-Jie; Yang, Chui-Ping
2016-02-22
Cavity-based large scale quantum information processing (QIP) may involve multiple cavities and require performing various quantum logic operations on qubits distributed in different cavities. Geometric-phase-based quantum computing has drawn much attention recently, which offers advantages against inaccuracies and local fluctuations. In addition, multiqubit gates are particularly appealing and play important roles in QIP. We here present a simple and efficient scheme for realizing a multi-target-qubit unconventional geometric phase gate in a multi-cavity system. This multiqubit phase gate has a common control qubit but different target qubits distributed in different cavities, which can be achieved using a single-step operation. The gate operation time is independent of the number of qubits and only two levels for each qubit are needed. This multiqubit gate is generic, e.g., by performing single-qubit operations, it can be converted into two types of significant multi-target-qubit phase gates useful in QIP. The proposal is quite general, which can be used to accomplish the same task for a general type of qubits such as atoms, NV centers, quantum dots, and superconducting qubits.
Song, Chao; Zheng, Shi-Biao; Zhang, Pengfei; Xu, Kai; Zhang, Libo; Guo, Qiujiang; Liu, Wuxin; Xu, Da; Deng, Hui; Huang, Keqiang; Zheng, Dongning; Zhu, Xiaobo; Wang, H
2017-10-20
Geometric phase, associated with holonomy transformation in quantum state space, is an important quantum-mechanical effect. Besides fundamental interest, this effect has practical applications, among which geometric quantum computation is a paradigm, where quantum logic operations are realized through geometric phase manipulation that has some intrinsic noise-resilient advantages and may enable simplified implementation of multi-qubit gates compared to the dynamical approach. Here we report observation of a continuous-variable geometric phase and demonstrate a quantum gate protocol based on this phase in a superconducting circuit, where five qubits are controllably coupled to a resonator. Our geometric approach allows for one-step implementation of n-qubit controlled-phase gates, which represents a remarkable advantage compared to gate decomposition methods, where the number of required steps dramatically increases with n. Following this approach, we realize these gates with n up to 4, verifying the high efficiency of this geometric manipulation for quantum computation.
Holonomic Quantum Control with Continuous Variable Systems.
Albert, Victor V; Shu, Chi; Krastanov, Stefan; Shen, Chao; Liu, Ren-Bao; Yang, Zhen-Biao; Schoelkopf, Robert J; Mirrahimi, Mazyar; Devoret, Michel H; Jiang, Liang
2016-04-08
Universal computation of a quantum system consisting of superpositions of well-separated coherent states of multiple harmonic oscillators can be achieved by three families of adiabatic holonomic gates. The first gate consists of moving a coherent state around a closed path in phase space, resulting in a relative Berry phase between that state and the other states. The second gate consists of "colliding" two coherent states of the same oscillator, resulting in coherent population transfer between them. The third gate is an effective controlled-phase gate on coherent states of two different oscillators. Such gates should be realizable via reservoir engineering of systems that support tunable nonlinearities, such as trapped ions and circuit QED.
Clock and carrier recovery in high-speed coherent optical communication systems
NASA Astrophysics Data System (ADS)
Amado, Sofia B.; Ferreira, Ricardo; Costa, Pedro S.; Guiomar, Fernando P.; Ziaie, Somayeh; Teixeira, António L.; Muga, Nelson J.; Pinto, Armando N.
2014-08-01
In this paper, the implementations of clock and carrier recovery in digital domain are analyzed. Hardware implementation details, resources estimation and real-time results are presented. Analog-to-Digital Converters (ADC), operating at 1.25Gsa/s, and a Virtex-6 Field-Programmable Gate Array (FPGA), have been used, allowing the implementation of a real-time Quadrature Phase Shift Keying (QPSK) system operating at 1.25Gb/s. The real-time mode operation is successfully demonstrated over 80 km of Standard Single Mode Fiber (SSMF).
Defense.gov Special Report: Travels with Gates - March 2011
in the U.S.-Israel relationship and the implications of dramatic Middle East political shifts were Barak. Story Gates: U.S.-Israeli Defense Relationship Never Stronger TEL AVIV, Israel, March 24, 2011 - Noting that their military relationship has never been stronger, Defense Secretary Robert M. Gates said
2D Quantum Transport Modeling in Nanoscale MOSFETs
NASA Technical Reports Server (NTRS)
Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, Bryan
2001-01-01
With the onset of quantum confinement in the inversion layer in nanoscale MOSFETs, behavior of the resonant level inevitably determines all device characteristics. While most classical device simulators take quantization into account in some simplified manner, the important details of electrostatics are missing. Our work addresses this shortcoming and provides: (a) a framework to quantitatively explore device physics issues such as the source-drain and gate leakage currents, DIBL, and threshold voltage shift due to quantization, and b) a means of benchmarking quantum corrections to semiclassical models (such as density- gradient and quantum-corrected MEDICI). We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions, oxide tunneling and phase-breaking scattering are treated on equal footing. Electrons in the ellipsoids of the conduction band are treated within the anisotropic effective mass approximation. Quantum simulations are focused on MIT 25, 50 and 90 nm "well- tempered" MOSFETs and compared to classical and quantum corrected models. The important feature of quantum model is smaller slope of Id-Vg curve and consequently higher threshold voltage. These results are quantitatively consistent with I D Schroedinger-Poisson calculations. The effect of gate length on gate-oxide leakage and sub-threshold current has been studied. The shorter gate length device has an order of magnitude smaller current at zero gate bias than the longer gate length device without a significant trade-off in on-current. This should be a device design consideration.
Realization of quantum gates with multiple control qubits or multiple target qubits in a cavity
NASA Astrophysics Data System (ADS)
Waseem, Muhammad; Irfan, Muhammad; Qamar, Shahid
2015-06-01
We propose a scheme to realize a three-qubit controlled phase gate and a multi-qubit controlled NOT gate of one qubit simultaneously controlling n-target qubits with a four-level quantum system in a cavity. The implementation time for multi-qubit controlled NOT gate is independent of the number of qubit. Three-qubit phase gate is generalized to n-qubit phase gate with multiple control qubits. The number of steps reduces linearly as compared to conventional gate decomposition method. Our scheme can be applied to various types of physical systems such as superconducting qubits coupled to a resonator and trapped atoms in a cavity. Our scheme does not require adjustment of level spacing during the gate implementation. We also show the implementation of Deutsch-Joza algorithm. Finally, we discuss the imperfections due to cavity decay and the possibility of physical implementation of our scheme.
Optimal superadiabatic population transfer and gates by dynamical phase corrections
NASA Astrophysics Data System (ADS)
Vepsäläinen, A.; Danilin, S.; Paraoanu, G. S.
2018-04-01
In many quantum technologies adiabatic processes are used for coherent quantum state operations, offering inherent robustness to errors in the control parameters. The main limitation is the long operation time resulting from the requirement of adiabaticity. The superadiabatic method allows for faster operation, by applying counterdiabatic driving that corrects for excitations resulting from the violation of the adiabatic condition. In this article we show how to construct the counterdiabatic Hamiltonian in a system with forbidden transitions by using two-photon processes and how to correct for the resulting time-dependent ac-Stark shifts in order to enable population transfer with unit fidelity. We further demonstrate that superadiabatic stimulated Raman passage can realize a robust unitary NOT-gate between the ground state and the second excited state of a three-level system. The results can be readily applied to a three-level transmon with the ladder energy level structure.
Universal Faraday Rotation in HgTe Wells with Critical Thickness
NASA Astrophysics Data System (ADS)
Shuvaev, A.; Dziom, V.; Kvon, Z. D.; Mikhailov, N. N.; Pimenov, A.
2016-09-01
The universal value of the Faraday rotation angle close to the fine structure constant (α ≈1 /137 ) is experimentally observed in thin HgTe quantum wells with a thickness on the border between trivial insulating and the topologically nontrivial Dirac phases. The quantized value of the Faraday angle remains robust in the broad range of magnetic fields and gate voltages. Dynamic Hall conductivity of the holelike carriers extracted from the analysis of the transmission data shows a theoretically predicted universal value of σx y=e2/h , which is consistent with the doubly degenerate Dirac state. On shifting the Fermi level by the gate voltage, the effective sign of the charge carriers changes from positive (holes) to negative (electrons). The electronlike part of the dynamic response does not show quantum plateaus and is well described within the classical Drude model.
Interfacial phenomena in high-kappa dielectrics
NASA Astrophysics Data System (ADS)
Mathew, Anoop
The introduction of novel high-kappa dielectric materials to replace the traditional SiO2 insulating layer in CMOS transistors is a watershed event in the history of transistor development. Further, replacement of the traditional highly-doped polycrystalline silicon gate electrode with a new set of materials for metal gates complicates the transition and introduces further integration challenges. A whole variety of new material surfaces and interfaces are thus introduced that merit close investigation to determine parameters for optimal device performance. Nitrogen is a key component that improves the performance of a variety of materials for the next generation of these CMOS transistors. Nitrogen is introduced into new gate dielectric materials such as hafnium silicates as well as in potential metal gate materials such as hafnium nitride. A photoemission study of the binding energies of the various atoms in these systems using photoemission reveals the nature of the atomic bonding. The current study compares hafnium silicates of various compositions which were thermally nitrided at different temperatures in ammonia, hafnium nitrides, and thin HfO2 films using photoelectron spectroscopy. A recurring theme that is explored is the competition between oxygen and nitrogen atoms in bonding with hafnium and other atoms. The N 1s photoemission peak is seen to have contributions from its bonding with hafnium, oxygen, and silicon atoms. The Hf 4f and O 1s spectra similarly exhibit signatures of their bonding environment with their neighboring atoms. Angle resolved photoemission and in-situ annealing/argon sputtering experiments are used to elucidate the nature of the bonding and its evolution with processing. A nondestructive profilitng of nitrogen distribution as a function of composition in nitrided hafnium silicates is also constructed using angle resolved photoemission as a function of the take-off angle. These results are corroborated with depth reconstruction obtained using medium energy ion scattering (MEIS). A comparison of samples nitrided at progressively increasing temperatures in an ammonia environment shows substitution of oxygen with nitrogen atoms and increasing penetration of nitrogen into the gate stack. Trends in the binding energy of the the as-prepared hafnium silicates suggest that they are non-phase separated, and the binding energy of the hafnium and silicon track the relative composition. Upon being subject to rapid thermal annealing, the samples are observed to show behavior consistent with phase separation. There is also the evidence of charges at the oxide/Si interface that modify the expected behavior of the shifts in binding energy. In another set of experiments, a one-cycle atomic layer deposition (ALD) growth reaction on the water terminated Si(100) -- (2x1) surface is shown to lead to successful nucleation, high metal oxide coverage, and an abrupt metal-oxide/silicon interface as confirmed by photoemission, reflection high energy electron diffraction (RHEED), and Rutherford back scattering (RBS) measurements. Photoemission results confirm the coordination states of the hafnium and oxygen atoms. A Hf 4f core level shift is observed and assigned to the presence of the Si-O-Hf bonding environment with the more electronegative Si atom inducing the binding energy shift. This Hf 4f shift is smaller than that reported previously for silicates because of the difference of the semiconductor bonding environment. The subspecies *(O)2HfCl2 and *OHfCl3 are seen to be the predominant intermediate species in these reactions and photoemission results provide corroborative evidence for their presence. Experiments indicate that the hydroxyl sites bound to Si(100) are active for adsorption. The abrupt interface could be useful for aggressive Effective Oxide Thickness (EOT) scaling.
Intelligent Gate Drive for Fast Switching and Crosstalk Suppression of SiC Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zheyu; Dix, Jeffery; Wang, Fei Fred
This study presents an intelligent gate drive for silicon carbide (SiC) devices to fully utilize their potential of high switching-speed capability in a phase-leg configuration. Based on the SiC device's intrinsic properties, a gate assist circuit consisting of two auxiliary transistors with two diodes is introduced to actively control gate voltages and gate loop impedances of both devices in a phase-leg configuration during different switching transients. Compared to conventional gate drives, the proposed circuit has the capability of accelerating the switching speed of the phase-leg power devices and suppressing the crosstalk to below device limits. Based on Wolfspeed 1200-V SiCmore » MOSFETs, the test results demonstrate the effectiveness of this intelligent gate drive under varying operating conditions. More importantly, the proposed intelligent gate assist circuitry is embedded into a gate drive integrated circuit, offering a simple, compact, and reliable solution for end-users to maximize benefits of SiC devices in actual power electronics applications.« less
Intelligent Gate Drive for Fast Switching and Crosstalk Suppression of SiC Devices
Zhang, Zheyu; Dix, Jeffery; Wang, Fei Fred; ...
2017-01-19
This study presents an intelligent gate drive for silicon carbide (SiC) devices to fully utilize their potential of high switching-speed capability in a phase-leg configuration. Based on the SiC device's intrinsic properties, a gate assist circuit consisting of two auxiliary transistors with two diodes is introduced to actively control gate voltages and gate loop impedances of both devices in a phase-leg configuration during different switching transients. Compared to conventional gate drives, the proposed circuit has the capability of accelerating the switching speed of the phase-leg power devices and suppressing the crosstalk to below device limits. Based on Wolfspeed 1200-V SiCmore » MOSFETs, the test results demonstrate the effectiveness of this intelligent gate drive under varying operating conditions. More importantly, the proposed intelligent gate assist circuitry is embedded into a gate drive integrated circuit, offering a simple, compact, and reliable solution for end-users to maximize benefits of SiC devices in actual power electronics applications.« less
Han, Su-Ting; Zhou, Ye; Yang, Qing Dan; Zhou, Li; Huang, Long-Biao; Yan, Yan; Lee, Chun-Sing; Roy, Vellaisamy A L
2014-02-25
Tunable memory characteristics are used in multioperational mode circuits where memory cells with various functionalities are needed in one combined device. It is always a challenge to obtain control over threshold voltage for multimode operation. On this regard, we use a strategy of shifting the work function of reduced graphene oxide (rGO) in a controlled manner through doping gold chloride (AuCl3) and obtained a gradient increase of rGO work function. By inserting doped rGO as floating gate, a controlled threshold voltage (Vth) shift has been achieved in both p- and n-type low voltage flexible memory devices with large memory window (up to 4 times for p-type and 8 times for n-type memory devices) in comparison with pristine rGO floating gate memory devices. By proper energy band engineering, we demonstrated a flexible floating gate memory device with larger memory window and controlled threshold voltage shifts.
Source-Coupled, N-Channel, JFET-Based Digital Logic Gate Structure Using Resistive Level Shifters
NASA Technical Reports Server (NTRS)
Krasowski, Michael J.
2011-01-01
A circuit topography is used to create usable, digital logic gates using N (negatively doped) channel junction field effect transistors (JFETs), load resistors, level shifting resistors, and supply rails whose values are based on the DC parametric distributions of these JFETs. This method has direct application to the current state-of-the-art in high-temperature (300 to 500 C and higher) silicon carbide (SiC) device production, and defines an adaptation to the logic gate described in U.S. Patent 7,688,117 in that, by removing the level shifter from the output of the gate structure described in the patent (and applying it to the input of the same gate), a source-coupled gate topography is created. This structure allows for the construction AND/OR (sum of products) arrays that use far fewer transistors and resistors than the same array as constructed from the gates described in the aforementioned patent. This plays a central role when large multiplexer constructs are necessary; for example, as in the construction of memory. This innovation moves the resistive level shifter from the output of the basic gate structure to the front as if the input is now configured as what would be the output of the preceding gate, wherein the output is the two level shifting resistors. The output of this innovation can now be realized as the lone follower transistor with its source node as the gate output. Additionally, one may leave intact the resistive level shifter on the new gate topography. A source-coupled to direct-coupled logic translator will be the result.
Competition between SFG and two SHGs in broadband type-I QPM
NASA Astrophysics Data System (ADS)
Dang, Weirui; Chen, Yuping; Gong, Mingjun; Chen, Xianfeng
2013-03-01
In this paper, we have studied the characteristics of second-order nonlinear interactions with band-overlapped type-I quasi-phase-matching (QPM) second harmonic generation (SHG) and sum-frequency generation (SFG), and predicted a blue-shift with a band-narrowing of their bands and a sunken response in the SFG curve, which are due to the phase-matching-dependent competition between band-overlapped SHG and SFG processes. This prediction is then verified by the experiment in an 18-mm-long bulk MgO-doped periodically poled lithium niobate crystal (MgO:PPLN) and may provide the candidate solution to output controlling for flexible broadcast wavelength conversion, channel-selective wavelength conversion and all-optical logic gates by cascaded QPM second-order nonlinear processes.
NASA Astrophysics Data System (ADS)
Xu, Wangying; Dai, Mingzhi; Liang, Lingyan; Liu, Zhimin; Sun, Xilian; Wan, Qing; Cao, Hongtao
2012-05-01
InZnO thin-film transistors using high-κ Ta2O5 gate dielectric are presented and analysed. The large capacitance coupling effect of amorphous Ta2O5 results in fabricated devices with good electrical properties. However, an anomalous negative threshold voltage (Vth) shift under positive bias stress is observed. It is suggested that electron detrapping from the high-κ Ta2O5 dielectric to the gate electrode is responsible for this Vth shift, which is supported both by the logarithmical dependence of the Vth change on the duration of the bias stress and device simulation extracted trapped charges involved.
NASA Astrophysics Data System (ADS)
Singh, Sujay; Horrocks, Gregory; Marley, Peter; Banerjee, Sarbajit; Sambandamurthy, G.
2014-03-01
Vanadium oxide (VO2) undergoes a first order metal to insulator transition (MIT) and a structural phase transition (monoclinic insulator to rutile metal) near 340 K. Over the past few years, several attempts are made to trigger the MIT in VO2 using ionic liquids (IL). Parkin's group has recently showed that IL gating leads to the creation of oxygen vacancies in VO2 and stabilizes the metallic phase. Our goal is to study the electronic properties, changes in the stoichiometry and structure of this metallic phase created by oxygen vacancies. Electrical transport measurements on single crystal nanobeams show that the metallic phase has a higher resistance while IL gating is applied and results from Raman spectroscopy studies on any structural change during IL gating will be presented. The role of substitutional dopants (such as W, Mo) on the creation of oxygen vacancies and subsequent stabilization of metallic phase in IL gated experiments will also be discussed. The work is supported by NSF DMR 0847324 and 0847169.
Laranjeiro, Ricardo; Tamai, T Katherine; Letton, William; Hamilton, Noémie; Whitmore, David
2018-04-01
Studies from a number of model systems have shown that the circadian clock controls expression of key cell cycle checkpoints, thus providing permissive or inhibitory windows in which specific cell cycle events can occur. However, a major question remains: Is the clock actually regulating the cell cycle through such a gating mechanism or, alternatively, is there a coupling process that controls the speed of cell cycle progression? Using our light-responsive zebrafish cell lines, we address this issue directly by synchronizing the cell cycle in culture simply by changing the entraining light-dark (LD) cycle in the incubator without the need for pharmacological intervention. Our results show that the cell cycle rapidly reentrains to a shifted LD cycle within 36 h, with changes in p21 expression and subsequent S phase timing occurring within the first few hours of resetting. Reentrainment of mitosis appears to lag S phase resetting by 1 circadian cycle. The range of entrainment of the zebrafish clock to differing LD cycles is large, from 16 to 32 hour periods. We exploited this feature to explore cell cycle entrainment at both the population and single cell levels. At the population level, cell cycle length is shortened or lengthened under corresponding T-cycles, suggesting that a 1:1 coupling mechanism is capable of either speeding up or slowing down the cell cycle. However, analysis at the single cell level reveals that this, in fact, is not true and that a gating mechanism is the fundamental method of timed cell cycle regulation in zebrafish. Cell cycle length at the single cell level is virtually unaltered with varying T-cycles.
Tamai, T. Katherine; Letton, William; Hamilton, Noémie; Whitmore, David
2018-01-01
Studies from a number of model systems have shown that the circadian clock controls expression of key cell cycle checkpoints, thus providing permissive or inhibitory windows in which specific cell cycle events can occur. However, a major question remains: Is the clock actually regulating the cell cycle through such a gating mechanism or, alternatively, is there a coupling process that controls the speed of cell cycle progression? Using our light-responsive zebrafish cell lines, we address this issue directly by synchronizing the cell cycle in culture simply by changing the entraining light-dark (LD) cycle in the incubator without the need for pharmacological intervention. Our results show that the cell cycle rapidly reentrains to a shifted LD cycle within 36 h, with changes in p21 expression and subsequent S phase timing occurring within the first few hours of resetting. Reentrainment of mitosis appears to lag S phase resetting by 1 circadian cycle. The range of entrainment of the zebrafish clock to differing LD cycles is large, from 16 to 32 hour periods. We exploited this feature to explore cell cycle entrainment at both the population and single cell levels. At the population level, cell cycle length is shortened or lengthened under corresponding T-cycles, suggesting that a 1:1 coupling mechanism is capable of either speeding up or slowing down the cell cycle. However, analysis at the single cell level reveals that this, in fact, is not true and that a gating mechanism is the fundamental method of timed cell cycle regulation in zebrafish. Cell cycle length at the single cell level is virtually unaltered with varying T-cycles. PMID:29444612
Flow-gated radial phase-contrast imaging in the presence of weak flow.
Peng, Hsu-Hsia; Huang, Teng-Yi; Wang, Fu-Nien; Chung, Hsiao-Wen
2013-01-01
To implement a flow-gating method to acquire phase-contrast (PC) images of carotid arteries without use of an electrocardiography (ECG) signal to synchronize the acquisition of imaging data with pulsatile arterial flow. The flow-gating method was realized through radial scanning and sophisticated post-processing methods including downsampling, complex difference, and correlation analysis to improve the evaluation of flow-gating times in radial phase-contrast scans. Quantitatively comparable results (R = 0.92-0.96, n = 9) of flow-related parameters, including mean velocity, mean flow rate, and flow volume, with conventional ECG-gated imaging demonstrated that the proposed method is highly feasible. The radial flow-gating PC imaging method is applicable in carotid arteries. The proposed flow-gating method can potentially avoid the setting up of ECG-related equipment for brain imaging. This technique has potential use in patients with arrhythmia or weak ECG signals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Won Lee, Sang; Suh, Dongseok, E-mail: energy.suh@skku.edu; Department of Energy Science and Department of Physics, Sungkyunkwan University, Suwon 440-746
A prior requirement of any developed transistor for practical use is the stability test. Random network carbon nanotube-thin film transistor (CNT-TFT) was fabricated on SiO{sub 2}/Si. Gate bias stress stability was investigated with various passivation layers of HfO{sub 2} and Al{sub 2}O{sub 3}. Compared to the threshold voltage shift without passivation layer, the measured values in the presence of passivation layers were reduced independent of gate bias polarity except HfO{sub 2} under positive gate bias stress (PGBS). Al{sub 2}O{sub 3} capping layer was found to be the best passivation layer to prevent ambient gas adsorption, while gas adsorption on HfO{submore » 2} layer was unavoidable, inducing surface charges to increase threshold voltage shift in particular for PGBS. This high performance in the gate bias stress test of CNT-TFT even superior to that of amorphous silicon opens potential applications to active TFT industry for soft electronics.« less
Addressable Inverter Matrix Tests Integrated-Circuit Wafer
NASA Technical Reports Server (NTRS)
Buehler, Martin G.
1988-01-01
Addressing elements indirectly through shift register reduces number of test probes. With aid of new technique, complex test structure on silicon wafer tested with relatively small number of test probes. Conserves silicon area by reduction of area devoted to pads. Allows thorough evaluation of test structure characteristics and of manufacturing process parameters. Test structure consists of shift register and matrix of inverter/transmission-gate cells connected to two-by-ten array of probe pads. Entire pattern contained in square area having only 1.6-millimeter sides. Shift register is conventional static CMOS device using inverters and transmission gates in master/slave D flip-flop configuration.
NASA Astrophysics Data System (ADS)
Sometani, Mitsuru; Okamoto, Mitsuo; Hatakeyama, Tetsuo; Iwahashi, Yohei; Hayashi, Mariko; Okamoto, Dai; Yano, Hiroshi; Harada, Shinsuke; Yonezawa, Yoshiyuki; Okumura, Hajime
2018-04-01
We investigated methods of measuring the threshold voltage (V th) shift of 4H-silicon carbide (SiC) metal–oxide–semiconductor field-effect transistors (MOSFETs) under positive DC, negative DC, and AC gate bias stresses. A fast measurement method for V th shift under both positive and negative DC stresses revealed the existence of an extremely large V th shift in the short-stress-time region. We then examined the effect of fast V th shifts on drain current (I d) changes within a pulse under AC operation. The fast V th shifts were suppressed by nitridation. However, the I d change within one pulse occurred even in commercially available SiC MOSFETs. The correlation between I d changes within one pulse and V th shifts measured by a conventional method is weak. Thus, a fast and in situ measurement method is indispensable for the accurate evaluation of I d changes under AC operation.
Structural and electronic phase transitions of MoTe2 induced by Li ionic gating
NASA Astrophysics Data System (ADS)
Hwang, Jeongwoon; Zhang, Chenxi; Cho, Kyeongjae
2017-12-01
Monolayer MoTe2 has semiconducting and semimetallic phases with small energy difference, and the relative stability is readily reversed by gating. By first-principles calculations, we investigate the changes in atomic structure, electronic structure, and relative stability of two phases induced by Li ionic gating. To model Li ionic gating, we employ two approaches; one is direct adsorption of Li on MoTe2 and the other is introducing non-contacting Li plate over MoTe2. We show phonon instability in H-phase of MoTe2 with increasing the amount of charge transfer from Li, which implies a large electron-phonon coupling in the system resulting in a charge density wave state. Structural distortion is also observed in highly doped T d phase. The transition energy barrier from distorted H phase to distorted T d phase is reduced considerably compared to that of pristine MoTe2.
Visible-light-induced instability in amorphous metal-oxide based TFTs for transparent electronics
NASA Astrophysics Data System (ADS)
Ha, Tae-Jun
2014-10-01
We investigate the origin of visible-light-induced instability in amorphous metal-oxide based thin film transistors (oxide-TFTs) for transparent electronics by exploring the shift in threshold voltage (Vth). A large hysteresis window in amorphous indium-gallium-zinc-oxide (a-IGZO) TFTs possessing large optical band-gap (≈3 eV) was observed in a visible-light illuminated condition whereas no hysteresis window was shown in a dark measuring condition. We also report the instability caused by photo irradiation and prolonged gate bias stress in oxide-TFTs. Larger Vth shift was observed after photo-induced stress combined with a negative gate bias than the sum of that after only illumination stress and only negative gate bias stress. Such results can be explained by trapped charges at the interface of semiconductor/dielectric and/or in the gate dielectric which play a role in a screen effect on the electric field applied by gate voltage, for which we propose that the localized-states-assisted transitions by visible-light absorption can be responsible.
Gate sequence for continuous variable one-way quantum computation
Su, Xiaolong; Hao, Shuhong; Deng, Xiaowei; Ma, Lingyu; Wang, Meihong; Jia, Xiaojun; Xie, Changde; Peng, Kunchi
2013-01-01
Measurement-based one-way quantum computation using cluster states as resources provides an efficient model to perform computation and information processing of quantum codes. Arbitrary Gaussian quantum computation can be implemented sufficiently by long single-mode and two-mode gate sequences. However, continuous variable gate sequences have not been realized so far due to an absence of cluster states larger than four submodes. Here we present the first continuous variable gate sequence consisting of a single-mode squeezing gate and a two-mode controlled-phase gate based on a six-mode cluster state. The quantum property of this gate sequence is confirmed by the fidelities and the quantum entanglement of two output modes, which depend on both the squeezing and controlled-phase gates. The experiment demonstrates the feasibility of implementing Gaussian quantum computation by means of accessible gate sequences.
Implementing N-quantum phase gate via circuit QED with qubit-qubit interaction
NASA Astrophysics Data System (ADS)
Said, T.; Chouikh, A.; Essammouni, K.; Bennai, M.
2016-02-01
We propose a method for realizing a quantum phase gate of one qubit simultaneously controlling N target qubits based on the qubit-qubit interaction. We show how to implement the proposed gate with one transmon qubit simultaneously controlling N transmon qubits in a circuit QED driven by a strong microwave field. In our scheme, the operation time of this phase gate is independent of the number N of qubits. On the other hand, this gate can be realized in a time of nanosecond-scale much smaller than the decoherence time and dephasing time both being the time of microsecond-scale. Numerical simulation of the occupation probabilities of the second excited lever shows that the scheme could be achieved efficiently within current technology.
Driving qubit phase gates with sech shaped pulses
NASA Astrophysics Data System (ADS)
Long, Junling; Ku, Hsiang-Sheng; Wu, Xian; Lake, Russell; Barnes, Edwin; Economou, Sophia; Pappas, David
As shown in 1932 by Rozen and Zener, the Rabi model has a unique solution whereby, for a given pulse length or amplitude, a sech(t/sigma) shaped pulse can be used to drive complete oscillations around the Bloch sphere that are independent of detuning with only a resultant detuning-dependent phase accumulation. Using this property, single qubit phase gates and two-qubit CZ gates have been proposed. In this work we explore the effect of different drive pulse shapes, i.e. square, Gaussian, and sech, as a function of detuning for Rabi oscillations of a superconducting transmon qubit. An arbitrary, single-qubit phase gate is demonstrated with the sech(t/sigma) pulse, and full tomography is performed to extract the fidelity. This is the first step towards high fidelity, low leakage two qubit CZ gates, and illustrates the efficacy of using analytic solutions of the qubit drive prior to optimal pulse shaping.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niang, K. M.; Flewitt, A. J., E-mail: ajf@eng.cam.ac.uk; Barquinha, P. M. C.
Thin film transistors (TFTs) employing an amorphous indium gallium zinc oxide (a-IGZO) channel layer exhibit a positive shift in the threshold voltage under the application of positive gate bias stress (PBS). The time and temperature dependence of the threshold voltage shift was measured and analysed using the thermalization energy concept. The peak energy barrier to defect conversion is extracted to be 0.75 eV and the attempt-to-escape frequency is extracted to be 10{sup 7} s{sup −1}. These values are in remarkable agreement with measurements in a-IGZO TFTs under negative gate bias illumination stress (NBIS) reported recently (Flewitt and Powell, J. Appl. Phys.more » 115, 134501 (2014)). This suggests that the same physical process is responsible for both PBS and NBIS, and supports the oxygen vacancy defect migration model that the authors have previously proposed.« less
Gating of tactile information through gamma band during passive arm movement in awake primates
Song, Weiguo; Francis, Joseph T.
2015-01-01
To make precise and prompt action in a dynamic environment, the sensorimotor system needs to integrate all related information. The inflow of somatosensory information to the cerebral cortex is regulated and mostly suppressed by movement, which is commonly referred to as sensory gating or gating. Sensory gating plays an important role in preventing redundant information from reaching the cortex, which should be considered when designing somatosensory neuroprosthetics. Gating can occur at several levels within the sensorimotor pathway, while the underlying mechanism is not yet fully understood. The average sensory evoked potential is commonly used to assess sensory information processing, however the assumption of a stereotyped response to each stimulus is still an open question. Event related spectral perturbation (ERSP), which is the power spectrum after time-frequency decomposition on single trial evoked potentials (total power), could overcome this limitation of averaging and provide additional information for understanding the underlying mechanism. To this aim, neural activities in primary somatosensory cortex (S1), primary motor cortex (M1), and ventral posterolateral (VPL) nucleus of thalamus were recorded simultaneously in two areas (S1 and M1 or S1 and VPL) during passive arm movement and rest in awake monkeys. Our results showed that neural activity at different recording areas demonstrated specific and unique response frequency characteristics. Tactile input induced early high frequency responses followed by low frequency oscillations within sensorimotor circuits, and passive movement suppressed these oscillations either in a phase-locked or non-phase-locked manner. Sensory gating by movement was non-phase-locked in M1, and complex in sensory areas. VPL showed gating of non-phase-locked at gamma band and mix of phase-locked and non-phase-locked at low frequency, while S1 showed gating of phase-locked and non-phase-locked at gamma band and an early phase-locked elevation followed by non-phase-locked gating at low frequency. Granger causality (GC) analysis showed bidirectional coupling between VPL and S1, while GC between M1 and S1 was not responsive to tactile input. Thus, these results suggest that tactile input is dominantly transmitted along the ascending direction from VPL to S1, and the sensory input is suppressed during movement through a bottom-up strategy within the gamma-band during passive movement. PMID:26578892
Chen, Chun; Li, Dianfu; Miao, Changqing; Feng, Jianlin; Zhou, Yanli; Cao, Kejiang; Lloyd, Michael S; Chen, Ji
2012-07-01
The purpose of this study was to evaluate left ventricular (LV) mechanical dyssynchrony in patients with Wolff-Parkinson-White (WPW) syndrome pre- and post-radiofrequency catheter ablation (RFA) using phase analysis of gated single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI). Forty-five WPW patients were enrolled and had gated SPECT MPI pre- and 2-3 days post-RFA. Electrophysiological study (EPS) was used to locate accessory pathways (APs) and categorize the patients according to the AP locations (septal, left and right free wall). Electrocardiography (ECG) was performed pre- and post-RFA to confirm successful elimination of the APs. Phase analysis of gated SPECT MPI was used to assess LV dyssynchrony pre- and post-RFA. Among the 45 patients, 3 had gating errors, and thus 42 had SPECT phase analysis. Twenty-two patients (52.4%) had baseline LV dyssynchrony. Baseline LV dyssynchrony was more prominent in the patients with septal APs than in the patients with left or right APs (p < 0.05). RFA improved LV synchrony in the entire cohort and in the patients with septal APs (p < 0.01). Phase analysis of gated SPECT MPI demonstrated that LV mechanical dyssynchrony can be present in patients with WPW syndrome. Septal APs result in the greatest degree of LV mechanical dyssynchrony and afford the most benefit after RFA. This study supports further investigation in the relationship between electrical and mechanical activation using EPS and phase analysis of gated SPECT MPI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, S; Kim, D; Kim, T
2015-06-15
Purpose: End-of-exhale (EOE) phase is generally preferred for gating window because tumor position is more reproducible. However, other gating windows might be more appropriate for dose distribution perspective. In this pilot study, we proposed to utilize overlap volume histogram (OVH) to search optimized gating window and demonstrated its feasibility. Methods: We acquired 4DCT of 10 phases for 3 lung patients (2 with a target at right middle lobe and 1 at right upper lobe). After structures were defined in every phase, the OVH of each OAR was generated to quantify the three dimensional spatial relationship between the PTV and OARsmore » (bronchus, esophagus, heart and cord etc.) at each phase. OVH tells the overlap volume of an OAR according to outward distance from the PTV. Relative overlap volume at 20 mm outward distance from the PTV (ROV-20) was also defined as a metric for measuring overlap volume and obtained. For dose calculation, 3D CRT plans were made for all phases under the same beam angles and objectives (e.g., 95% of the PTV coverage with at least 100% of the prescription dose of 50 Gy). The gating window phase was ranked according to ROV-20, and the relationship between the OVH and dose distribution at each phase was evaluated by comparing the maximum dose, mean dose, and equivalent uniform dose of OAR. Results: OVHs showed noticeable difference from phase to phase, implying it is possible to find optimal phases for gating window. For 2 out of 3 patients (both with a target at RML), maximum dose, mean dose, and EUD increased as ROV-20 increased. Conclusion: It is demonstrated that optimal phases (in dose distribution perspective) for gating window could exist and OVH can be a useful tool for determining such phases without performing dose optimization calculations in all phases. This work was supported by the Radiation Technology R&D program (No. 2013M2A2A7043498) and the Mid-career Researcher Program (2012-007883) through the National Research Foundation (NRF) funded by the Ministry of Science, ICT & Future Planning (MSIP) of Korea.« less
NASA Astrophysics Data System (ADS)
Liu, A.-Peng; Cheng, Liu-Yong; Guo, Qi; Zhang, Shou
2018-02-01
We first propose a scheme for controlled phase-flip gate between a flying photon qubit and the collective spin wave (magnon) of an atomic ensemble assisted by double-sided cavity quantum systems. Then we propose a deterministic controlled-not gate on magnon qubits with parity-check building blocks. Both the gates can be accomplished with 100% success probability in principle. Atomic ensemble is employed so that light-matter coupling is remarkably improved by collective enhancement. We assess the performance of the gates and the results show that they can be faithfully constituted with current experimental techniques.
Effects of negative gate-bias stress on the performance of solution-processed zinc-oxide transistors
NASA Astrophysics Data System (ADS)
Kim, Dongwook; Lee, Woo-Sub; Shin, Hyunji; Choi, Jong Sun; Zhang, Xue; Park, Jaehoon; Hwang, Jaeeun; Kim, Hongdoo; Bae, Jin-Hyuk
2014-08-01
We studied the effects of negative gate-bias stress on the electrical characteristics of top-contact zinc-oxide (ZnO) thin-film transistors (TFTs), which were fabricated by spin coating a ZnO solution onto a silicon-nitride gate dielectric layer. The negative gate-bias stress caused characteristic degradations in the on-state currents and the field-effect mobility of the fabricated ZnO TFTs. Additionally, a decrease in the off-state currents and a positive shift in the threshold voltage occurred with increasing stress time. These results indicate that the negative gate-bias stress caused an injection of electrons into the gate dielectric, thereby deteriorating the TFT's performance.
NASA Astrophysics Data System (ADS)
Yu, Kyeong Min; Bae, Byung Seong; Jung, Myunghee; Yun, Eui-Jung
2016-06-01
We investigate the effects of high temperatures in the range of 292 - 393 K on the electrical properties of solution-processed amorphous zinc-tin-oxide (a-ZTO) thin-film transistors (TFTs) operated in the saturation region. The fabricated a-ZTO TFTs have a non-patterned bottom gate and top contact structure, and they use a heavily-doped Si wafer and SiO2 as a gate electrode and a gate insulator layer, respectively. In a-ZTO TFTs, the trap release energy ( E TR ) was deduced by using Maxwell-Boltzmann statistics. The decreasing E TR toward zero with increasing gate voltage (the density of trap states ( n s )) in the a-ZTO active layer can be attributed to a shift of the Fermi level toward the mobility edge with increasing gate voltage. The TFTs with low gate voltage (low n s ) exhibit multiple trap and release characteristics and show thermally-activated behavior. In TFTs with a high gate voltage (high n s ), however, we observe decreasing mobility and conductivity with increasing temperature at temperatures ranging from 303 to 363 K. This confirms that the E TR can drop to zero, indicating a shift of the Fermi level beyond the mobility edge. Hence, the mobility edge is detected at the cusp between thermally-activated transport and band transport.
Charge movement in gating-locked HCN channels reveals weak coupling of voltage sensors and gate.
Ryu, Sujung; Yellen, Gary
2012-11-01
HCN (hyperpolarization-activated cyclic nucleotide gated) pacemaker channels have an architecture similar to that of voltage-gated K(+) channels, but they open with the opposite voltage dependence. HCN channels use essentially the same positively charged voltage sensors and intracellular activation gates as K(+) channels, but apparently these two components are coupled differently. In this study, we examine the energetics of coupling between the voltage sensor and the pore by using cysteine mutant channels for which low concentrations of Cd(2+) ions freeze the open-closed gating machinery but still allow the sensors to move. We were able to lock mutant channels either into open or into closed states by the application of Cd(2+) and measure the effect on voltage sensor movement. Cd(2+) did not immobilize the gating charge, as expected for strict coupling, but rather it produced shifts in the voltage dependence of voltage sensor charge movement, consistent with its effect of confining transitions to either closed or open states. From the magnitude of the Cd(2+)-induced shifts, we estimate that each voltage sensor produces a roughly three- to sevenfold effect on the open-closed equilibrium, corresponding to a coupling energy of ∼1.3-2 kT per sensor. Such coupling is not only opposite in sign to the coupling in K(+) channels, but also much weaker.
Niemeyer, María Isabel; Cid, L. Pablo; Peña-Münzenmayer, Gaspar; Sepúlveda, Francisco V.
2010-01-01
TASK-2 (KCNK5 or K2P5.1) is a background K+ channel that is opened by extracellular alkalinization and plays a role in renal bicarbonate reabsorption and central chemoreception. Here, we demonstrate that in addition to its regulation by extracellular protons (pHo) TASK-2 is gated open by intracellular alkalinization. The following pieces of evidence suggest that the gating process controlled by intracellular pH (pHi) is independent from that under the command of pHo. It was not possible to overcome closure by extracellular acidification by means of intracellular alkalinization. The mutant TASK-2-R224A that lacks sensitivity to pHo had normal pHi-dependent gating. Increasing extracellular K+ concentration acid shifts pHo activity curve of TASK-2 yet did not affect pHi gating of TASK-2. pHo modulation of TASK-2 is voltage-dependent, whereas pHi gating was not altered by membrane potential. These results suggest that pHo, which controls a selectivity filter external gate, and pHi act at different gating processes to open and close TASK-2 channels. We speculate that pHi regulates an inner gate. We demonstrate that neutralization of a lysine residue (Lys245) located at the C-terminal end of transmembrane domain 4 by mutation to alanine abolishes gating by pHi. We postulate that this lysine acts as an intracellular pH sensor as its mutation to histidine acid-shifts the pHi-dependence curve of TASK-2 as expected from its lower pKa. We conclude that intracellular pH, together with pHo, is a critical determinant of TASK-2 activity and therefore of its physiological function. PMID:20351106
Coulomb coupling effects in the gigahertz complex admittance of a quantum R–L circuit
NASA Astrophysics Data System (ADS)
Song, L.; Yin, J. Z.; Chen, S. W.
2018-05-01
We report on the gigahertz admittance measurements of a quantum conductor, i.e. a quantum R–L circuit, to probe the intrinsic dynamic of the conductor. The magnetic field dependence of the admittance phase provides us with an effective way to study the role of Coulomb interaction between counterpropagating edge channels. In addition, there is a small jump in the admittance phase when the transmitted modes are changed. This is because the gate voltage leads to a static potential shift of the quantum channel, then a quantum capacitance related to the density of states of the edge channels are influenced. Our study has made new discoveries of the dynamic transport in a quantum conductor, finding evidence for the deviations from quantum chiral transport associated with Coulomb interactions.
Zhang, Kai; Nusran, N. M.; Slezak, B. R.; ...
2016-05-17
While it is often thought that the geometric phase is less sensitive to fluctuations in the control fields, a very general feature of adiabatic Hamiltonians is the unavoidable dynamic phase that accompanies the geometric phase. The effect of control field noise during adiabatic geometric quantum gate operations has not been probed experimentally, especially in the canonical spin qubit system that is of interest for quantum information. We present measurement of the Berry phase and carry out adiabatic geometric phase gate in a single solid-state spin qubit associated with the nitrogen-vacancy center in diamond. We manipulate the spin qubit geometrically bymore » careful application of microwave radiation that creates an effective rotating magnetic field, and observe the resulting Berry phase signal via spin echo interferometry. Our results show that control field noise at frequencies higher than the spin echo clock frequency causes decay of the quantum phase, and degrades the fidelity of the geometric phase gate to the classical threshold after a few (~10) operations. This occurs in spite of the geometric nature of the state preparation, due to unavoidable dynamic contributions. In conclusion, we have carried out systematic analysis and numerical simulations to study the effects of the control field noise and imperfect driving waveforms on the quantum phase gate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Kai; Nusran, N. M.; Slezak, B. R.
While it is often thought that the geometric phase is less sensitive to fluctuations in the control fields, a very general feature of adiabatic Hamiltonians is the unavoidable dynamic phase that accompanies the geometric phase. The effect of control field noise during adiabatic geometric quantum gate operations has not been probed experimentally, especially in the canonical spin qubit system that is of interest for quantum information. We present measurement of the Berry phase and carry out adiabatic geometric phase gate in a single solid-state spin qubit associated with the nitrogen-vacancy center in diamond. We manipulate the spin qubit geometrically bymore » careful application of microwave radiation that creates an effective rotating magnetic field, and observe the resulting Berry phase signal via spin echo interferometry. Our results show that control field noise at frequencies higher than the spin echo clock frequency causes decay of the quantum phase, and degrades the fidelity of the geometric phase gate to the classical threshold after a few (~10) operations. This occurs in spite of the geometric nature of the state preparation, due to unavoidable dynamic contributions. In conclusion, we have carried out systematic analysis and numerical simulations to study the effects of the control field noise and imperfect driving waveforms on the quantum phase gate.« less
de la Peña, Pilar; Domínguez, Pedro; Barros, Francisco
2018-03-01
Kv11.1 (hERG, KCNH2) is a voltage-gated potassium channel crucial in setting the cardiac rhythm and the electrical behaviour of several non-cardiac cell types. Voltage-dependent gating of Kv11.1 can be reconstructed from non-covalently linked voltage sensing and pore modules (split channels), challenging classical views of voltage-dependent channel activation based on a S4-S5 linker acting as a rigid mechanical lever to open the gate. Progressive displacement of the split position from the end to the beginning of the S4-S5 linker induces an increasing negative shift in activation voltage dependence, a reduced z g value and a more negative ΔG 0 for current activation, an almost complete abolition of the activation time course sigmoid shape and a slowing of the voltage-dependent deactivation. Channels disconnected at the S4-S5 linker near the S4 helix show a destabilization of the closed state(s). Furthermore, the isochronal ion current mode shift magnitude is clearly reduced in the different splits. Interestingly, the progressive modifications of voltage dependence activation gating by changing the split position are accompanied by a shift in the voltage-dependent availability to a methanethiosulfonate reagent of a Cys introduced at the upper S4 helix. Our data demonstrate for the first time that alterations in the covalent connection between the voltage sensor and the pore domains impact on the structural reorganizations of the voltage sensor domain. Also, they support the hypothesis that the S4-S5 linker integrates signals coming from other cytoplasmic domains that constitute either an important component or a crucial regulator of the gating machinery in Kv11.1 and other KCNH channels.
Effect of gate bias sweep rate on the threshold voltage of in-plane gate nanowire transistor
NASA Astrophysics Data System (ADS)
Liu, H. X.; Li, J.; Tan, R. R.
2018-01-01
In2O3 nanowire electric-double-layer (EDL) transistors with in-plane gate gated by SiO2 solid-electrolyte are fabricated on transparent glass substrates. The gate voltage sweep rates can effectively modulate the threshold voltage (Vth) of nanowire device. Both depletion mode and enhancement mode are realized, and the Vth shift of the nanowire transistors is estimated to be 0.73V (without light). This phenomenon is due to increased adsorption of oxygen on the nanowire surface by the slower gate voltage sweep rates. Adsorbed oxygens capture electrons and cause a surface of nanowire channel was depleted. The operation voltage of transistor was 1.0 V, because the EDL gate dielectric can lead to high gate dielectric capacitance. These transparent in-plane gate nanowire transistors are promising for “see-through” nanoscale sensors.
3. ONE OF SIX SPUR GEARS AND CABLE SPOOLS INSTALLED ...
3. ONE OF SIX SPUR GEARS AND CABLE SPOOLS INSTALLED IN THE UPPER FALLS GATE HOUSE. THE SHIFTING LEVER IS VISIBLE IN FOREGROUND, AS IS THE 3X3 1/16 SHAFT, LOOKING EAST, NORTHEAST. - Washington Water Power Spokane River Upper Falls Hydroelectric Development, Gates & Gate-Lifting Mechanisms, Spokane River, approximately 0.5 mile northeast of intersection of Spokane Falls Boulevard & Post Street, Spokane, Spokane County, WA
Temporal and voltage stress stability of high performance indium-zinc-oxide thin film transistors
NASA Astrophysics Data System (ADS)
Song, Yang; Katsman, Alexander; Butcher, Amy L.; Paine, David C.; Zaslavsky, Alexander
2017-10-01
Thin film transistors (TFTs) based on transparent oxide semiconductors, such as indium zinc oxide (IZO), are of interest due to their improved characteristics compared to traditional a-Si TFTs. Previously, we reported on top-gated IZO TFTs with an in-situ formed HfO2 gate insulator and IZO active channel, showing high performance: on/off ratio of ∼107, threshold voltage VT near zero, extracted low-field mobility μ0 = 95 cm2/V·s, and near-perfect subthreshold slope at 62 mV/decade. Since device stability is essential for technological applications, in this paper we report on the temporal and voltage stress stability of IZO TFTs. Our devices exhibit a small negative VT shift as they age, consistent with an increasing carrier density resulting from an increasing oxygen vacancy concentration in the channel. Under gate bias stress, freshly annealed TFTs show a negative VT shift during negative VG gate bias stress, while aged (>1 week) TFTs show a positive VT shift during negative VG stress. This indicates two competing mechanisms, which we identify as the field-enhanced generation of oxygen vacancies and the field-assisted migration of oxygen vacancies, respectively. A simplified kinetic model of the vacancy concentration evolution in the IZO channel under electrical stress is provided.
Qin, Jun; Lu, Guo-Wei; Sakamoto, Takahide; Akahane, Kouichi; Yamamoto, Naokatsu; Wang, Danshi; Wang, Cheng; Wang, Hongxiang; Zhang, Min; Kawanishi, Tetsuya; Ji, Yuefeng
2014-12-01
In this paper, we experimentally demonstrate simultaneous multichannel wavelength multicasting (MWM) and exclusive-OR logic gate multicasting (XOR-LGM) for three 10Gbps non-return-to-zero differential phase-shift-keying (NRZ-DPSK) signals in quantum-dot semiconductor optical amplifier (QD-SOA) by exploiting the four-wave mixing (FWM) process. No additional pump is needed in the scheme. Through the interaction of the input three 10Gbps DPSK signal lights in QD-SOA, each channel is successfully multicasted to three wavelengths (1-to-3 for each), totally 3-to-9 MWM, and at the same time, three-output XOR-LGM is obtained at three different wavelengths. All the new generated channels are with a power penalty less than 1.2dB at a BER of 10(-9). Degenerate and non-degenerate FWM components are fully used in the experiment for data and logic multicasting.
Yang, Shiqian; Wang, Qin; Zhang, Manhong; Long, Shibing; Liu, Jing; Liu, Ming
2010-06-18
Titanium-tungsten nanocrystals (NCs) were fabricated by a self-assembly rapid thermal annealing (RTA) process. Well isolated Ti(0.46)W(0.54) NCs were embedded in the gate dielectric stack of SiO(2)/Al(2)O(3). A metal-oxide-semiconductor (MOS) capacitor was fabricated to investigate its application in a non-volatile memory (NVM) device. It demonstrated a large memory window of 6.2 V in terms of flat-band voltage (V(FB)) shift under a dual-directional sweeping gate voltage of - 10 to 10 V. A 1.1 V V(FB) shift under a low dual-directional sweeping gate voltage of - 4 to 4 V was also observed. The retention characteristic of this MOS capacitor was demonstrated by a 0.5 V memory window after 10(4) s of elapsed time at room temperature. The endurance characteristic was demonstrated by a program/erase cycling test.
Nonadiabatic Josephson current pumping by chiral microwave irradiation
NASA Astrophysics Data System (ADS)
Venitucci, B.; Feinberg, D.; Mélin, R.; Douçot, B.
2018-05-01
Irradiating a Josephson junction with microwaves can operate not only on the amplitude but also on the phase of the Josephson current. This requires breaking time-inversion symmetry, which is achieved by introducing a phase lapse between the microwave components acting on the two sides of the junction. General symmetry arguments and the solution of a specific single-level quantum dot model show that this induces chirality in the Cooper pair dynamics due to the topology of the Andreev bound-state wave function. Another essential condition is to break electron-hole symmetry within the junction. A shift of the current-phase relation is obtained, which is controllable in sign and amplitude with the microwave phase and an electrostatic gate, thus producing a "chiral" Josephson transistor. The dot model is solved in the infinite-gap limit by Floquet theory and in the general case with Keldysh nonequilibrium Green's functions. The chiral current is nonadiabatic: it is extremal and changes sign close to resonant chiral transitions between the Andreev bound states.
Chen, Chun; Miao, Changqing; Feng, Jianlin; Zhou, Yanli; Cao, Kejiang; Lloyd, Michael S.; Chen, Ji
2013-01-01
Purpose The purpose of this study was to evaluate left ventricular (LV) mechanical dyssynchrony in patients with Wolff-Parkinson-White (WPW) syndrome pre- and post-radiofrequency catheter ablation (RFA) using phase analysis of gated single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI). Methods Forty-five WPW patients were enrolled and had gated SPECT MPI pre- and 2–3 days post-RFA. Electrophysiological study (EPS) was used to locate accessory pathways (APs) and categorize the patients according to the AP locations (septal, left and right free wall). Electrocardiography (ECG) was performed pre- and post-RFA to confirm successful elimination of the APs. Phase analysis of gated SPECT MPI was used to assess LV dyssynchrony pre- and post-RFA. Results Among the 45 patients, 3 had gating errors, and thus 42 had SPECT phase analysis. Twenty-two patients (52.4 %) had baseline LV dyssynchrony. Baseline LV dyssynchrony was more prominent in the patients with septal APs than in the patients with left or right APs (p<0.05). RFA improved LV synchrony in the entire cohort and in the patients with septal APs (p<0.01). Conclusion Phase analysis of gated SPECT MPI demonstrated that LV mechanical dyssynchrony can be present in patients with WPW syndrome. Septal APs result in the greatest degree of LV mechanical dyssynchrony and afford the most benefit after RFA. This study supports further investigation in the relationship between electrical and mechanical activation using EPS and phase analysis of gated SPECT MPI. PMID:22532253
Hua, Ming; Tao, Ming-Jie; Deng, Fu-Guo; Lu Long, Gui
2015-01-01
We propose a scheme to construct the controlled-phase (c-phase) gate on distant transmon qutrits hosted in different resonators inter-coupled by a connected transmon qutrit. Different from previous works for entanglement generation and information transfer on two distant qubits in a dispersive regime in the similar systems, our gate is constructed in the resonant regime with one step. The numerical simulation shows that the fidelity of our c-phase gate is 99.5% within 86.3 ns. As an interesting application of our c-phase gate, we propose an effective scheme to complete a conventional square lattice of two-dimensional surface code layout for fault-tolerant quantum computing on the distant transmon qutrits. The four-step coupling between the nearest distant transmon qutrits, small coupling strengths of the distant transmon qutrits, and the non-population on the connection transmon qutrit can reduce the interactions among different parts of the layout effectively, which makes the layout be integrated with a large scale in an easier way. PMID:26486426
MO-FG-BRA-08: Swarm Intelligence-Based Personalized Respiratory Gating in Lung SAbR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Modiri, A; Sabouri, P; Sawant, A
Purpose: Respiratory gating is widely deployed as a clinical motion-management strategy in lung radiotherapy. In conventional gating, the beam is turned on during a pre-determined phase window; typically, around end-exhalation. In this work, we challenge the notion that end-exhalation is always the optimal gating phase. Specifically, we use a swarm-intelligence-based, inverse planning approach to determine the optimal respiratory phase and MU for each beam with respect to (i) the state of the anatomy at each phase and (ii) the time spent in that state, estimated from long-term monitoring of the patient’s breathing motion. Methods: In a retrospective study of fivemore » lung cancer patients, we compared the dosimetric performance of our proposed personalized gating (PG) with that of conventional end-of-exhale gating (CEG) and a previously-developed, fully 4D-optimized plan (combined with MLC tracking delivery). For each patient, respiratory phase probabilities (indicative of the time duration of the phase) were estimated over 2 minutes from lung tumor motion traces recorded previously using the Synchrony system (Accuray Inc.). Based on this information, inverse planning optimization was performed to calculate the optimal respiratory gating phase and MU for each beam. To ensure practical deliverability, each PG beam was constrained to deliver the assigned MU over a time duration comparable to that of CEG delivery. Results: Maximum OAR sparing for the five patients achieved by the PG and the 4D plans compared to CEG plans was: Esophagus Dmax [PG:57%, 4D:37%], Heart Dmax [PG:71%, 4D:87%], Spinal cord Dmax [PG:18%, 4D:68%] and Lung V13 [PG:16%, 4D:31%]. While patients spent the most time in exhalation, the PG-optimization chose end-exhale only for 28% of beams. Conclusion: Our novel gating strategy achieved significant dosimetric improvements over conventional gating, and approached the upper limit represented by fully 4D optimized planning while being significantly simpler and more clinically translatable. This work was partially supported through research funding from National Institutes of Health (R01CA169102) and Varian Medical Systems, Palo Alto, CA, USA.« less
Phase control and fast start-up of a magnetron using modulation of an addressable faceted cathode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Browning, J., E-mail: JimBrowning@BoiseState.edu; Fernandez-Gutierrez, S.; Lin, M. C.
The use of an addressable, faceted cathode has been proposed as a method of modulating current injection in a magnetron to improve performance and control phase. To implement the controllable electron emission, five-sided and ten-sided faceted planar cathodes employing gated field emitters are considered as these emitters could be fabricated on flat substrates. For demonstration, the conformal finite-difference time-domain particle-in-cell simulation, as implemented in VORPAL, has been used to model a ten-cavity, rising sun magnetron using the modulated current sources and benchmarked against a typical continuous current source. For the modulated, ten-sided faceted cathode case, the electrons are injected frommore » three emitter elements on each of the ten facets. Each emitter is turned ON and OFF in sequence at the oscillating frequency with five emitters ON at one time to drive the five electron spokes of the π-mode. The emitter duty cycle is then 1/6th the Radio-Frequency (RF) period. Simulations show a fast start-up time as low as 35 ns for the modulated case compared to 100 ns for the continuous current cases. Analysis of the RF phase using the electron spoke locations and the RF magnetic field components shows that the phase is controlled for the modulated case while it is random, as typical, for the continuous current case. Active phase control during oscillation was demonstrated by shifting the phase of the electron injection 180° after oscillations started. The 180° phase shift time was approximately 25 RF cycles.« less
Mashiko, Hiroki; Gilbertson, Steve; Li, Chengquan; Khan, Sabih D; Shakya, Mahendra M; Moon, Eric; Chang, Zenghu
2008-03-14
We demonstrated a novel optical switch to control the high-order harmonic generation process so that single attosecond pulses can be generated with multiple-cycle pulses. The technique combines two powerful optical gating methods: polarization gating and two-color gating. An extreme ultraviolet supercontinuum supporting 130 as was generated with neon gas using 9 fs laser pulses. We discovered a unique dependence of the harmonic spectra on the carrier-envelope phase of the laser fields, which repeats every 2 pi radians.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mashiko, Hiroki; Gilbertson, Steve; Li, Chengquan
2008-03-14
We demonstrated a novel optical switch to control the high-order harmonic generation process so that single attosecond pulses can be generated with multiple-cycle pulses. The technique combines two powerful optical gating methods: polarization gating and two-color gating. An extreme ultraviolet supercontinuum supporting 130 as was generated with neon gas using 9 fs laser pulses. We discovered a unique dependence of the harmonic spectra on the carrier-envelope phase of the laser fields, which repeats every 2{pi} radians.
Attention Gating in Short-Term Visual Memory.
ERIC Educational Resources Information Center
Reeves, Adam; Sperling, George
1986-01-01
An experiment is conducted showing that an attention shift to a stream of numerals presented in rapid serial visual presentation mode produces not a total loss, but a systematic distortion of order. An attention gating model (AGM) is developed from a more general attention model. (Author/LMO)
TU-E-BRB-08: Dual Gated Volumetric Modulated Arc Therapy.
Wu, J; Fahimian, B; Wu, H; Xing, L
2012-06-01
Gated Volumetric Modulated Arc Therapy (VMAT) is an emerging treatment modality for Stereotactic Body Radiotherapy (SBRT). However, gating significantly prolongs treatment time. In order to enhance treatment efficiency, a novel dual gated VMAT, in which dynamic arc deliveries are executed sequentially in alternating exhale and inhale phases, is proposed and evaluated experimentally. The essence of dual gated VMAT is to take advantage of the natural pauses that occur at inspiration and exhalation by alternatively delivering the dose at the two phases, instead of the exhale window only. The arc deliveries at the two phases are realized by rotating gantry forward at the exhale window and backward at the inhale in an alternative fashion. Custom XML scripts were developed in Varian's TrueBeam STx Developer Mode to enable dual gated VMAT delivery. RapidArc plans for a lung case were generated for both inhale and exhale phases. The two plans were then combined into a dual gated arc by interleaving the arc treatment nodes of the two RapidArc plans. The dual gated plan was delivered in the development mode of TrueBeam LINAC onto a motion phantom and the delivery was measured by using pinpoint chamber/film/diode array (delta 4). The measured dose distribution was compared with that computed using Eclipse AAA algorithm. The treatment delivery time was recorded and compared with the corresponding single gated plans. Relative to the corresponding single gated delivery, it was found that treatment time efficiency was improved by 95.5% for the case studied here. Pinpoint chamber absolute dose measurement agreed the calculation to within 0.7%. Diode chamber array measurements revealed that 97.5% of measurement points of dual gated RapidArc delivery passed the 3% and 3mm gamma-test criterion. A dual gated VMAT treatment has been developed and implemented successfully with nearly doubled treatment delivery efficiency. © 2012 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Kim, Jong Beom; Lee, Dong Ryeol
2018-04-01
We studied the effect of the addition of free hole- and electron-rich organic molecules to organic semiconductors (OSCs) in organic field effect transistors (OFETs) on the gate voltage-dependent mobility. The drain current versus gate voltage characteristics were quantitatively analyzed using an OFET mobility model of power law behavior based on hopping transport in an OSC. This analysis distinguished the threshold voltage shifts, depending on the materials and structures of the OFET device, and properly estimated the hopping transport of the charge carriers induced by the gate bias within the OSC from the power law exponent parameter. The addition of pentacene or C60 molecules to a one-monolayer pentacene-based OFET shifted the threshold voltages negatively or positively, respectively, due to the structural changes that occurred in the OFET device. On the other hand, the power law parameters revealed that the addition of charge carriers of the same or opposite polarity enhanced or hindered hopping transport, respectively. This study revealed the need for a quantitative analysis of the gate voltage-dependent mobility while distinguishing this effect from the threshold voltage effect in order to understand OSC hopping transport in OFETs.
Aghamohammadi, Mahdieh; Rödel, Reinhold; Zschieschang, Ute; Ocal, Carmen; Boschker, Hans; Weitz, R Thomas; Barrena, Esther; Klauk, Hagen
2015-10-21
The mechanisms behind the threshold-voltage shift in organic transistors due to functionalizing of the gate dielectric with self-assembled monolayers (SAMs) are still under debate. We address the mechanisms by which SAMs determine the threshold voltage, by analyzing whether the threshold voltage depends on the gate-dielectric capacitance. We have investigated transistors based on five oxide thicknesses and two SAMs with rather diverse chemical properties, using the benchmark organic semiconductor dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene. Unlike several previous studies, we have found that the dependence of the threshold voltage on the gate-dielectric capacitance is completely different for the two SAMs. In transistors with an alkyl SAM, the threshold voltage does not depend on the gate-dielectric capacitance and is determined mainly by the dipolar character of the SAM, whereas in transistors with a fluoroalkyl SAM the threshold voltages exhibit a linear dependence on the inverse of the gate-dielectric capacitance. Kelvin probe force microscopy measurements indicate this behavior is attributed to an electronic coupling between the fluoroalkyl SAM and the organic semiconductor.
Bak, Jun Yong; Kang, Youngho; Yang, Shinhyuk; Ryu, Ho-Jun; Hwang, Chi-Sun; Han, Seungwu; Yoon, Sung-Min
2015-01-01
Top-gate structured thin film transistors (TFTs) using In-Ga-Zn-O (IGZO) and In-Ga-O (IGO) channel compositions were investigated to reveal a feasible origin for degradation phenomenon under drain bias stress (DBS). DBS-driven instability in terms of VTH shift, deviation of the SS value, and increase in the on-state current were detected only for the IGZO-TFT, in contrast to the IGO-TFT, which did not demonstrate VTH shift. These behaviors were visually confirmed via nanoscale transmission electron microscopy and energy-dispersive x-ray spectroscopy observations. To understand the degradation mechanism, we performed ab initio molecular dynamic simulations on the liquid phases of IGZO and IGO. The diffusivities of Ga and In atoms were enhanced in IGZO, confirming the degradation mechanism to be increased atomic diffusion. PMID:25601183
Bak, Jun Yong; Kang, Youngho; Yang, Shinhyuk; Ryu, Ho-Jun; Hwang, Chi-Sun; Han, Seungwu; Yoon, Sung-Min
2015-01-20
Top-gate structured thin film transistors (TFTs) using In-Ga-Zn-O (IGZO) and In-Ga-O (IGO) channel compositions were investigated to reveal a feasible origin for degradation phenomenon under drain bias stress (DBS). DBS-driven instability in terms of V(TH) shift, deviation of the SS value, and increase in the on-state current were detected only for the IGZO-TFT, in contrast to the IGO-TFT, which did not demonstrate V(TH) shift. These behaviors were visually confirmed via nanoscale transmission electron microscopy and energy-dispersive x-ray spectroscopy observations. To understand the degradation mechanism, we performed ab initio molecular dynamic simulations on the liquid phases of IGZO and IGO. The diffusivities of Ga and In atoms were enhanced in IGZO, confirming the degradation mechanism to be increased atomic diffusion.
Calmodulin regulates Cav3 T-type channels at their gating brake
Taiakina, Valentina; Monteil, Arnaud; Piazza, Michael; Guan, Wendy; Stephens, Robert F.; Dieckmann, Thorsten; Guillemette, Joseph Guy; Spafford, J. David
2017-01-01
Calcium (Cav1 and Cav2) and sodium channels possess homologous CaM-binding motifs, known as IQ motifs in their C termini, which associate with calmodulin (CaM), a universal calcium sensor. Cav3 T-type channels, which serve as pacemakers of the mammalian brain and heart, lack a C-terminal IQ motif. We illustrate that T-type channels associate with CaM using co-immunoprecipitation experiments and single particle cryo-electron microscopy. We demonstrate that protostome invertebrate (LCav3) and human Cav3.1, Cav3.2, and Cav3.3 T-type channels specifically associate with CaM at helix 2 of the gating brake in the I–II linker of the channels. Isothermal titration calorimetry results revealed that the gating brake and CaM bind each other with high-nanomolar affinity. We show that the gating brake assumes a helical conformation upon binding CaM, with associated conformational changes to both CaM lobes as indicated by amide chemical shifts of the amino acids of CaM in 1H-15N HSQC NMR spectra. Intact Ca2+-binding sites on CaM and an intact gating brake sequence (first 39 amino acids of the I–II linker) were required in Cav3.2 channels to prevent the runaway gating phenotype, a hyperpolarizing shift in voltage sensitivities and faster gating kinetics. We conclude that the presence of high-nanomolar affinity binding sites for CaM at its universal gating brake and its unique form of regulation via the tuning of the voltage range of activity could influence the participation of Cav3 T-type channels in heart and brain rhythms. Our findings may have implications for arrhythmia disorders arising from mutations in the gating brake or CaM. PMID:28972185
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbertson, Steve; Khan, Sabih D.; Wu Yi
2010-08-27
Single isolated attosecond pulses can be extracted from a pulse train with an ultrafast gate in the generation target. By setting the gate width sufficiently narrow with the generalized double optical gating, we demonstrate that single isolated attosecond pulses can be generated with any arbitrary carrier-envelope phase value of the driving laser. The carrier-envelope phase only affects the photon flux, not the pulse duration or contrast. Our results show that isolated attosecond pulses can be generated using carrier-envelope phase unstabilized 23 fs pulses directly from chirped pulse amplifiers.
Implementing universal nonadiabatic holonomic quantum gates with transmons
NASA Astrophysics Data System (ADS)
Hong, Zhuo-Ping; Liu, Bao-Jie; Cai, Jia-Qi; Zhang, Xin-Ding; Hu, Yong; Wang, Z. D.; Xue, Zheng-Yuan
2018-02-01
Geometric phases are well known to be noise resilient in quantum evolutions and operations. Holonomic quantum gates provide us with a robust way towards universal quantum computation, as these quantum gates are actually induced by non-Abelian geometric phases. Here we propose and elaborate how to efficiently implement universal nonadiabatic holonomic quantum gates on simpler superconducting circuits, with a single transmon serving as a qubit. In our proposal, an arbitrary single-qubit holonomic gate can be realized in a single-loop scenario by varying the amplitudes and phase difference of two microwave fields resonantly coupled to a transmon, while nontrivial two-qubit holonomic gates may be generated with a transmission-line resonator being simultaneously coupled to the two target transmons in an effective resonant way. Moreover, our scenario may readily be scaled up to a two-dimensional lattice configuration, which is able to support large scalable quantum computation, paving the way for practically implementing universal nonadiabatic holonomic quantum computation with superconducting circuits.
A magnetic phase-transition graphene transistor with tunable spin polarization
NASA Astrophysics Data System (ADS)
Vancsó, Péter; Hagymási, Imre; Tapasztó, Levente
2017-06-01
Graphene nanoribbons (GNRs) have been proposed as potential building blocks for field effect transistor (FET) devices due to their quantum confinement bandgap. Here, we propose a novel GNR device concept, enabling the control of both charge and spin signals, integrated within the simplest three-terminal device configuration. In a conventional FET device, a gate electrode is employed to tune the Fermi level of the system in and out of a static bandgap. By contrast, in the switching mechanism proposed here, the applied gate voltage can dynamically open and close an interaction gap, with only a minor shift of the Fermi level. Furthermore, the strong interplay of the band structure and edge spin configuration in zigzag ribbons enables such transistors to carry spin polarized current without employing an external magnetic field or ferromagnetic contacts. Using an experimentally validated theoretical model, we show that such transistors can switch at low voltages and high speed, and the spin polarization of the current can be tuned from 0% to 50% by using the same back gate electrode. Furthermore, such devices are expected to be robust against edge irregularities and can operate at room temperature. Controlling both charge and spin signal within the simplest FET device configuration could open up new routes in data processing with graphene based devices.
Parallel-Processing CMOS Circuitry for M-QAM and 8PSK TCM
NASA Technical Reports Server (NTRS)
Gray, Andrew; Lee, Dennis; Hoy, Scott; Fisher, Dave; Fong, Wai; Ghuman, Parminder
2009-01-01
There has been some additional development of parts reported in "Multi-Modulator for Bandwidth-Efficient Communication" (NPO-40807), NASA Tech Briefs, Vol. 32, No. 6 (June 2009), page 34. The focus was on 1) The generation of M-order quadrature amplitude modulation (M-QAM) and octonary-phase-shift-keying, trellis-coded modulation (8PSK TCM), 2) The use of square-root raised-cosine pulse-shaping filters, 3) A parallel-processing architecture that enables low-speed [complementary metal oxide/semiconductor (CMOS)] circuitry to perform the coding, modulation, and pulse-shaping computations at a high rate; and 4) Implementation of the architecture in a CMOS field-programmable gate array.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jo, Jeong-Wan; Park, Sung Kyu, E-mail: yhkim76@skku.edu, E-mail: skpark@cau.ac.kr; Kim, Yong-Hoon, E-mail: yhkim76@skku.edu, E-mail: skpark@cau.ac.kr
2014-07-28
In this report, photo-induced hysteresis, threshold voltage (V{sub T}) shift, and recovery behaviors in photochemically activated solution-processed indium-gallium-zinc oxide (IGZO) thin-film transistors (TFTs) are investigated. It was observed that a white light illumination caused negative V{sub T} shift along with creation of clockwise hysteresis in electrical characteristics which can be attributed to photo-generated doubly ionized oxygen vacancies at the semiconductor/gate dielectric interface. More importantly, the photochemically activated IGZO TFTs showed much reduced overall V{sub T} shift compared to thermally annealed TFTs. Reduced number of donor-like interface states creation under light illumination and more facile neutralization of ionized oxygen vacancies bymore » electron capture under positive gate potential are claimed to be the origin of the less V{sub T} shift in photochemically activated TFTs.« less
da Silva, Thiago Ferreira; Xavier, Guilherme B; Temporão, Guilherme P; von der Weid, Jean Pierre
2012-08-13
By employing real-time monitoring of single-photon avalanche photodiodes we demonstrate how two types of practical eavesdropping strategies, the after-gate and time-shift attacks, may be detected. Both attacks are identified with the detectors operating without any special modifications, making this proposal well suited for real-world applications. The monitoring system is based on accumulating statistics of the times between consecutive detection events, and extracting the afterpulse and overall efficiency of the detectors in real-time using mathematical models fit to the measured data. We are able to directly observe changes in the afterpulse probabilities generated from the after-gate and faint after-gate attacks, as well as different timing signatures in the time-shift attack. We also discuss the applicability of our scheme to other general blinding attacks.
NASA Astrophysics Data System (ADS)
Mativenga, Mallory; Kang, Dong Han; Lee, Ung Gi; Jang, Jin
2012-09-01
Bias instability of top-gate amorphous-indium-gallium-zinc-oxide thin-film transistors with source- and drain-offsets is reported. Positive and negative gate bias-stress (VG_STRESS) respectively induce reversible negative threshold-voltage shift (ΔVTH) and reduction in on-current. Migration of positive charges towards the offsets lowers the local resistance of the offsets, resulting in the abnormal negative ΔVTH under positive VG_STRESS. The reduction in on-current under negative VG_STRESS is due to increase in resistance of the offsets when positive charges migrate away from the offsets. Appropriate drain and source bias-stresses applied simultaneously with VG_STRESS either suppress or enhance the instability, verifying lateral ion migration to be the instability mechanism.
Investigation of AlGaN/GaN HEMTs degradation with gate pulse stressing at cryogenic temperature
NASA Astrophysics Data System (ADS)
Wang, Ning; Wang, Hui; Lin, Xinpeng; Qi, Yongle; Duan, Tianli; Jiang, Lingli; Iervolino, Elina; Cheng, Kai; Yu, Hongyu
2017-09-01
Degradation on DC characteristics of AlGaN/GaN high electron mobility transistors (HEMTs) after applying pulsed gate stress at cryogenic temperatures is presented in this paper. The nitrogen vacancy near to the AlGaN/GaN interface leads to threshold voltage of stress-free sample shifting positively at low temperature. The anomalous behavior of threshold voltage variation (decrease first and then increase) under gate stressing as compared to stress-free sample is observed when lowing temperature. This can be correlated with the pre-existing electron traps in SiNX layer or at SiNX/AlGaN interface which can be de-activated and the captured electrons inject back to channel with lowering temperature, which counterbalances the influence of nitrogen vacancy on threshold voltage shift.
High-Fidelity Trapped-Ion Quantum Logic Using Near-Field Microwaves.
Harty, T P; Sepiol, M A; Allcock, D T C; Ballance, C J; Tarlton, J E; Lucas, D M
2016-09-30
We demonstrate a two-qubit logic gate driven by near-field microwaves in a room-temperature microfabricated surface ion trap. We introduce a dynamically decoupled gate method, which stabilizes the qubits against fluctuating energy shifts and avoids the need to null the microwave field. We use the gate to produce a Bell state with fidelity 99.7(1)%, after accounting for state preparation and measurement errors. The gate is applied directly to ^{43}Ca^{+} hyperfine "atomic clock" qubits (coherence time T_{2}^{*}≈50 s) using the oscillating magnetic field gradient produced by an integrated microwave electrode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, S; Zhu, X; Zhang, M
Purpose: Randomness in patient internal organ motion phase at the beginning of non-gated radiotherapy delivery may introduce uncertainty to dose received by the patient. Concerns of this dose deviation from the planned one has motivated many researchers to study this phenomenon although unified theoretical framework for computing it is still missing. This study was conducted to develop such framework for analyzing the effect. Methods: Two reasonable assumptions were made: a) patient internal organ motion is stationary and periodic; b) no special arrangement is made to start a non -gated radiotherapy delivery at any specific phase of patient internal organ motion.more » A statistical ensemble was formed consisting of patient’s non-gated radiotherapy deliveries at all equally possible initial organ motion phases. To characterize the patient received dose, statistical ensemble average method is employed to derive formulae for two variables: expected value and variance of dose received by a patient internal point from a non-gated radiotherapy delivery. Fourier Series was utilized to facilitate our analysis. Results: According to our formulae, the two variables can be computed from non-gated radiotherapy generated dose rate time sequences at the point’s corresponding locations on fixed phase 3D CT images sampled evenly in time over one patient internal organ motion period. The expected value of point dose is simply the average of the doses to the point’s corresponding locations on the fixed phase CT images. The variance can be determined by time integration in terms of Fourier Series coefficients of the dose rate time sequences on the same fixed phase 3D CT images. Conclusion: Given a non-gated radiotherapy delivery plan and patient’s 4D CT study, our novel approach can predict the expected value and variance of patient radiation dose. We expect it to play a significant role in determining both quality and robustness of patient non-gated radiotherapy plan.« less
Ko, Michael L.; Shi, Liheng; Huang, Cathy Chia-Yu; Grushin, Kirill; Park, So-Young; Ko, Gladys Y.-P.
2014-01-01
Nitric oxide (NO) plays an important role in phase-shifting of circadian neuronal activities in the suprachiasmatic nucleus and circadian behavior activity rhythms. In the retina, NO production is increased in a light-dependent manner. While endogenous circadian oscillators in retinal photoreceptors regulate their physiological states, it is not clear whether NO also participates in the circadian regulation of photoreceptors. In the present study, we demonstrate that NO is involved in the circadian phase-dependent regulation of L-type voltage-gated calcium channels (L-VGCCs). In chick cone photoreceptors, the L-VGCCα1 subunit expression and the maximal L-VGCC currents are higher at night, and both Ras-MAPK (mitogen-activated protein kinase)-Erk (extracellular-signal-regulated kinase) and Ras-phosphatidylinositol 3 kinase (PI3K)-protein kinase B (Akt) are part of the circadian output pathways regulating L-VGCCs. The NO-cGMP-protein kinase G (PKG) pathway decreases L-VGCCα1 subunit expression and L-VGCC currents at night, but not during the day, and exogenous NO donor or cGMP decreases the phosphorylation of Erk and Akt at night. The protein expression of neural NO synthase (nNOS) is also under circadian control, with both nNOS and NO production being higher during the day. Taken together, NO/cGMP/PKG signaling is involved as part of the circadian output pathway to regulate L-VGCCs in cone photoreceptors. PMID:23895452
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, J.E.; Bourret, S.C.; Krick, M.S.
1996-09-01
Neutron coincidence counting (NCC) is used routinely around the world for nondestructive mass assay of uranium and plutonium in many forms, including waste. Compared with other methods, NCC is generally the most flexible, economic, and rapid. Many applications of NCC would benefit from a reduction in counting time required for a fixed random error. We have developed and tested the first prototype of a dual- gated, shift-register-based electronics unit that offers the potential of decreased measurement time for all passive and active NCC applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, J.E.; Bourret, S.C.; Krick, M.S.
1996-12-31
Neutron coincidence counting (NCC) is used routinely around the world for nondestructive mass assay of uranium and plutonium in many forms, including waste. Compared with other methods, NCC is generally the most flexible, economic, and rapid. Many applications of NCC would benefit from a reduction in counting time required for a fixed random error. The authors have developed and tested the first prototype of a dual-gated, shift-register-based electronics unit that offers the potential of decreased measurement time for all passive and active NCC applications.
Multi-Modulator for Bandwidth-Efficient Communication
NASA Technical Reports Server (NTRS)
Gray, Andrew; Lee, Dennis; Lay, Norman; Cheetham, Craig; Fong, Wai; Yeh, Pen-Shu; King, Robin; Ghuman, Parminder; Hoy, Scott; Fisher, Dave
2009-01-01
A modulator circuit board has recently been developed to be used in conjunction with a vector modulator to generate any of a large number of modulations for bandwidth-efficient radio transmission of digital data signals at rates than can exceed 100 Mb/s. The modulations include quadrature phaseshift keying (QPSK), offset quadrature phase-shift keying (OQPSK), Gaussian minimum-shift keying (GMSK), and octonary phase-shift keying (8PSK) with square-root raised-cosine pulse shaping. The figure is a greatly simplified block diagram showing the relationship between the modulator board and the rest of the transmitter. The role of the modulator board is to encode the incoming data stream and to shape the resulting pulses, which are fed as inputs to the vector modulator. The combination of encoding and pulse shaping in a given application is chosen to maximize the bandwidth efficiency. The modulator board includes gallium arsenide serial-to-parallel converters at its input end. A complementary metal oxide/semiconductor (CMOS) field-programmable gate array (FPGA) performs the coding and modulation computations and utilizes parallel processing in doing so. The results of the parallel computation are combined and converted to pulse waveforms by use of gallium arsenide parallel-to-serial converters integrated with digital-to-analog converters. Without changing the hardware, one can configure the modulator to produce any of the designed combinations of coding and modulation by loading the appropriate bit configuration file into the FPGA.
Universal quantum computation with temporal-mode bilayer square lattices
NASA Astrophysics Data System (ADS)
Alexander, Rafael N.; Yokoyama, Shota; Furusawa, Akira; Menicucci, Nicolas C.
2018-03-01
We propose an experimental design for universal continuous-variable quantum computation that incorporates recent innovations in linear-optics-based continuous-variable cluster state generation and cubic-phase gate teleportation. The first ingredient is a protocol for generating the bilayer-square-lattice cluster state (a universal resource state) with temporal modes of light. With this state, measurement-based implementation of Gaussian unitary gates requires only homodyne detection. Second, we describe a measurement device that implements an adaptive cubic-phase gate, up to a random phase-space displacement. It requires a two-step sequence of homodyne measurements and consumes a (non-Gaussian) cubic-phase state.
Repeat-until-success cubic phase gate for universal continuous-variable quantum computation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, Kevin; Pooser, Raphael; Siopsis, George
2015-03-24
We report that to achieve universal quantum computation using continuous variables, one needs to jump out of the set of Gaussian operations and have a non-Gaussian element, such as the cubic phase gate. However, such a gate is currently very difficult to implement in practice. Here we introduce an experimentally viable “repeat-until-success” approach to generating the cubic phase gate, which is achieved using sequential photon subtractions and Gaussian operations. Ultimately, we find that our scheme offers benefits in terms of the expected time until success, as well as the fact that we do not require any complex off-line resource state,more » although we require a primitive quantum memory.« less
Reversibility and energy dissipation in adiabatic superconductor logic.
Takeuchi, Naoki; Yamanashi, Yuki; Yoshikawa, Nobuyuki
2017-03-06
Reversible computing is considered to be a key technology to achieve an extremely high energy efficiency in future computers. In this study, we investigated the relationship between reversibility and energy dissipation in adiabatic superconductor logic. We analyzed the evolution of phase differences of Josephson junctions in the reversible quantum-flux-parametron (RQFP) gate and confirmed that the phase differences can change time reversibly, which indicates that the RQFP gate is physically, as well as logically, reversible. We calculated energy dissipation required for the RQFP gate to perform a logic operation and numerically demonstrated that the energy dissipation can fall below the thermal limit, or the Landauer bound, by lowering operation frequencies. We also investigated the 1-bit-erasure gate as a logically irreversible gate and the quasi-RQFP gate as a physically irreversible gate. We calculated the energy dissipation of these irreversible gates and showed that the energy dissipation of these gate is dominated by non-adiabatic state changes, which are induced by unwanted interactions between gates due to logical or physical irreversibility. Our results show that, in reversible computing using adiabatic superconductor logic, logical and physical reversibility are required to achieve energy dissipation smaller than the Landauer bound without non-adiabatic processes caused by gate interactions.
Developing ICALL Tools Using GATE
ERIC Educational Resources Information Center
Wood, Peter
2008-01-01
This article discusses the use of the General Architecture for Text Engineering (GATE) as a tool for the development of ICALL and NLP applications. It outlines a paradigm shift in software development, which is mainly influenced by projects such as the Free Software Foundation. It looks at standards that have been proposed to facilitate the…
Interpreting anomalies observed in oxide semiconductor TFTs under negative and positive bias stress
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Jong Woo; Nathan, Arokia, E-mail: an299@cam.ac.uk; Barquinha, Pedro
2016-08-15
Oxide semiconductor thin-film transistors can show anomalous behavior under bias stress. Two types of anomalies are discussed in this paper. The first is the shift in threshold voltage (V{sub TH}) in a direction opposite to the applied bias stress, and highly dependent on gate dielectric material. We attribute this to charge trapping/detrapping and charge migration within the gate dielectric. We emphasize the fundamental difference between trapping/detrapping events occurring at the semiconductor/dielectric interface and those occurring at gate/dielectric interface, and show that charge migration is essential to explain the first anomaly. We model charge migration in terms of the non-instantaneous polarizationmore » density. The second type of anomaly is negative V{sub TH} shift under high positive bias stress, with logarithmic evolution in time. This can be argued as electron-donating reactions involving H{sub 2}O molecules or derived species, with a reaction rate exponentially accelerated by positive gate bias and exponentially decreased by the number of reactions already occurred.« less
ON states as resource units for universal quantum computation with photonic architectures
NASA Astrophysics Data System (ADS)
Sabapathy, Krishna Kumar; Weedbrook, Christian
2018-06-01
Universal quantum computation using photonic systems requires gates the Hamiltonians of which are of order greater than quadratic in the quadrature operators. We first review previous proposals to implement such gates, where specific non-Gaussian states are used as resources in conjunction with entangling gates such as the continuous-variable versions of controlled-phase and controlled-not gates. We then propose ON states which are superpositions of the vacuum and the N th Fock state, for use as non-Gaussian resource states. We show that ON states can be used to implement the cubic and higher-order quadrature phase gates to first order in gate strength. There are several advantages to this method such as reduced number of superpositions in the resource state preparation and greater control over the final gate. We also introduce useful figures of merit to characterize gate performance. Utilizing a supply of on-demand resource states one can potentially scale up implementation to greater accuracy, by repeated application of the basic circuit.
Experimental Demonstration of Microwave Signal/Electric Thruster Plasma Interaction Effects
NASA Technical Reports Server (NTRS)
Zaman, Afroz J.; Lambert, Kevin M.; Curran, Frank M.
1995-01-01
An experiment was designed and conducted in the Electric Propulsion Laboratory of NASA Lewis Research Center to assess the impact of ion thruster exhaust plasma plume on electromagnetic signal propagation. A microwave transmission experiment was set up inside the propulsion test bed using a pair of broadband horn antennas and a 30 cm 2.3 kW ion thruster. Frequency of signal propagation covered from 6.5 to 18 GHz range. The stainless steel test bed when enclosed can be depressurized to simulate a near vacuum environment. A pulsed CW system with gating hardware was utilized to eliminate multiple chamber reflections from the test signal. Microwave signal was transmitted and received between the two hours when the thruster was operating at a given power level in such a way that the signal propagation path crossed directly through the plume volume. Signal attenuation and phase shift due to the plume was measured for the entire frequency band. Results for this worst case configuration simulation indicate that the effects of the ion thruster plume on microwave signals is a negligible attenuation (within 0.15 dB) and a small phase shift (within 8 deg.). This paper describes the detailed experiment and presents some of the results.
NASA Astrophysics Data System (ADS)
Jing, Hailong; Su, Xianyu; You, Zhisheng
2017-03-01
A uniaxial three-dimensional shape measurement system with multioperation modes for different modulation algorithms is proposed. To provide a general measurement platform that satisfies the specific measurement requirements in different application scenarios, a measuring system with multioperation modes based on modulation measuring profilometry (MMP) is presented. Unlike the previous solutions, vertical scanning by focusing control of an electronic focus (EF) lens is implemented. The projection of a grating pattern is based on a digital micromirror device, which means fast phase-shifting with high precision. A field programmable gate array-based master control center board acts as the coordinator of the MMP system; it harmonizes the workflows, such as grating projection, focusing control of the EF lens, and fringe pattern capture. Fourier transform, phase-shifting technique, and temporary Fourier transform are used for modulation analysis in different operation modes. The proposed system features focusing control, speed, programmability, compactness, and availability. This paper details the principle of MMP for multioperation modes and the design of the proposed system. The performances of different operation modes are analyzed and compared, and a work piece with steep holes is measured to verify this multimode MMP system.
Soe, We-Hyo; Manzano, Carlos; Renaud, Nicolas; de Mendoza, Paula; De Sarkar, Abir; Ample, Francisco; Hliwa, Mohamed; Echavarren, Antonio M; Chandrasekhar, Natarajan; Joachim, Christian
2011-02-22
Quantum states of a trinaphthylene molecule were manipulated by putting its naphthyl branches in contact with single Au atoms. One Au atom carries 1-bit of classical information input that is converted into quantum information throughout the molecule. The Au-trinaphthylene electronic interactions give rise to measurable energy shifts of the molecular electronic states demonstrating a NOR logic gate functionality. The NOR truth table of the single molecule logic gate was characterized by means of scanning tunnelling spectroscopy.
Realization of a quantum Hamiltonian Boolean logic gate on the Si(001):H surface.
Kolmer, Marek; Zuzak, Rafal; Dridi, Ghassen; Godlewski, Szymon; Joachim, Christian; Szymonski, Marek
2015-08-07
The design and construction of the first prototypical QHC (Quantum Hamiltonian Computing) atomic scale Boolean logic gate is reported using scanning tunnelling microscope (STM) tip-induced atom manipulation on an Si(001):H surface. The NOR/OR gate truth table was confirmed by dI/dU STS (Scanning Tunnelling Spectroscopy) tracking how the surface states of the QHC quantum circuit on the Si(001):H surface are shifted according to the input logical status.
Motion vector field phase-to-amplitude resampling for 4D motion-compensated cone-beam CT
NASA Astrophysics Data System (ADS)
Sauppe, Sebastian; Kuhm, Julian; Brehm, Marcus; Paysan, Pascal; Seghers, Dieter; Kachelrieß, Marc
2018-02-01
We propose a phase-to-amplitude resampling (PTAR) method to reduce motion blurring in motion-compensated (MoCo) 4D cone-beam CT (CBCT) image reconstruction, without increasing the computational complexity of the motion vector field (MVF) estimation approach. PTAR is able to improve the image quality in reconstructed 4D volumes, including both regular and irregular respiration patterns. The PTAR approach starts with a robust phase-gating procedure for the initial MVF estimation and then switches to a phase-adapted amplitude gating method. The switch implies an MVF-resampling, which makes them amplitude-specific. PTAR ensures that the MVFs, which have been estimated on phase-gated reconstructions, are still valid for all amplitude-gated reconstructions. To validate the method, we use an artificially deformed clinical CT scan with a realistic breathing pattern and several patient data sets acquired with a TrueBeamTM integrated imaging system (Varian Medical Systems, Palo Alto, CA, USA). Motion blurring, which still occurs around the area of the diaphragm or at small vessels above the diaphragm in artifact-specific cyclic motion compensation (acMoCo) images based on phase-gating, is significantly reduced by PTAR. Also, small lung structures appear sharper in the images. This is demonstrated both for simulated and real patient data. A quantification of the sharpness of the diaphragm confirms these findings. PTAR improves the image quality of 4D MoCo reconstructions compared to conventional phase-gated MoCo images, in particular for irregular breathing patterns. Thus, PTAR increases the robustness of MoCo reconstructions for CBCT. Because PTAR does not require any additional steps for the MVF estimation, it is computationally efficient. Our method is not restricted to CBCT but could rather be applied to other image modalities.
Two stage dual gate MESFET monolithic gain control amplifier for Ka-band
NASA Technical Reports Server (NTRS)
Sokolov, V.; Geddes, J.; Contolatis, A.
1987-01-01
A monolithic two stage gain control amplifier has been developed using submicron gate length dual gate MESFETs fabricated on ion implanted material. The amplifier has a gain of 12 dB at 30 GHz with a gain control range of over 30 dB. This ion implanted monolithic IC is readily integrable with other phased array receiver functions such as low noise amplifiers and phase shifters.
NASA Astrophysics Data System (ADS)
Uedono, A.; Inumiya, S.; Matsuki, T.; Aoyama, T.; Nara, Y.; Ishibashi, S.; Ohdaira, T.; Suzuki, R.; Miyazaki, S.; Yamada, K.
2007-09-01
Vacancy-fluorine complexes in metal-oxide semiconductors (MOS) with high-k gate dielectrics were studied using a positron annihilation technique. F+ ions were implanted into Si substrates before the deposition of gate dielectrics (HfSiON). The shift of threshold voltage (Vth) in MOS capacitors and an increase in Fermi level position below the HfSiON/Si interface were observed after F+ implantation. Doppler broadening spectra of the annihilation radiation and positron lifetimes were measured before and after HfSiON fabrication processes. From a comparison between Doppler broadening spectra and those obtained by first-principles calculation, the major defect species in Si substrates after annealing treatment (1050 °C, 5 s) was identified as vacancy-fluorine complexes (V3F2). The origin of the Vth shift in the MOS capacitors was attributed to V3F2 located in channel regions.
NASA Astrophysics Data System (ADS)
Kim, Youngjun; Cho, Seongeun; Kim, Hyeran; Seo, Soonjoo; Lee, Hyun Uk; Lee, Jouhahn; Ko, Hyungduk; Chang, Mincheol; Park, Byoungnam
2017-09-01
Electric field-induced charge trapping and exciton dissociation were demonstrated at a penatcene/grapheme quantum dot (GQD) interface using a bottom contact bi-layer field effect transistor (FET) as an electrical nano-probe. Large threshold voltage shift in a pentacene/GQD FET in the dark arises from field-induced carrier trapping in the GQD layer or GQD-induced trap states at the pentacene/GQD interface. As the gate electric field increases, hysteresis characterized by the threshold voltage shift depending on the direction of the gate voltage scan becomes stronger due to carrier trapping associated with the presence of a GQD layer. Upon illumination, exciton dissociation and gate electric field-induced charge trapping simultaneously contribute to increase the threshold voltage window, which can potentially be exploited for photoelectric memory and/or photovoltaic devices through interface engineering.
Metal-oxide thin-film transistor-based pH sensor with a silver nanowire top gate electrode
NASA Astrophysics Data System (ADS)
Yoo, Tae-Hee; Sang, Byoung-In; Wang, Byung-Yong; Lim, Dae-Soon; Kang, Hyun Wook; Choi, Won Kook; Lee, Young Tack; Oh, Young-Jei; Hwang, Do Kyung
2016-04-01
Amorphous InGaZnO (IGZO) metal-oxide-semiconductor thin-film transistors (TFTs) are one of the most promising technologies to replace amorphous and polycrystalline Si TFTs. Recently, TFT-based sensing platforms have been gaining significant interests. Here, we report on IGZO transistor-based pH sensors in aqueous medium. In order to achieve stable operation in aqueous environment and enhance sensitivity, we used Al2O3 grown by using atomic layer deposition (ALD) and a porous Ag nanowire (NW) mesh as the top gate dielectric and electrode layers, respectively. Such devices with a Ag NW mesh at the top gate electrode rapidly respond to the pH of solutions by shifting the turn-on voltage. Furthermore, the output voltage signals induced by the voltage shifts can be directly extracted by implantation of a resistive load inverter.
NASA Astrophysics Data System (ADS)
Kunii, Masafumi
2009-11-01
An analysis is presented of the hot-carrier degradation in a polycrystalline silicon (poly-Si) thin film transistor (TFT) with a silicon oxynitride gate dielectric formed with plasma-enhanced chemical vapor deposition. An introduction of silicon oxynitride into a gate dielectric significantly improves hot-carrier immunity even under the severe stressing mode of drain avalanche hot carriers. To compensate the initial negative shift of threshold voltage for TFTs with a silicon oxynitride gate dielectric, high-pressure water vapor annealing (HWA) is applied. A comparison of TFTs with and without HWA reveals that the improvement in hot-carrier immunity is mainly attributed to the introduction of Si≡N bonds into a gate dielectric.
SU-C-9A-06: The Impact of CT Image Used for Attenuation Correction in 4D-PET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Y; Bowsher, J; Yan, S
2014-06-01
Purpose: To evaluate the appropriateness of using 3D non-gated CT image for attenuation correction (AC) in a 4D-PET (gated PET) imaging protocol used in radiotherapy treatment planning simulation. Methods: The 4D-PET imaging protocol in a Siemens PET/CT simulator (Biograph mCT, Siemens Medical Solutions, Hoffman Estates, IL) was evaluated. CIRS Dynamic Thorax Phantom (CIRS Inc., Norfolk, VA) with a moving glass sphere (8 mL) in the middle of its thorax portion was used in the experiments. The glass was filled with {sup 18}F-FDG and was in a longitudinal motion derived from a real patient breathing pattern. Varian RPM system (Varian Medicalmore » Systems, Palo Alto, CA) was used for respiratory gating. Both phase-gating and amplitude-gating methods were tested. The clinical imaging protocol was modified to use three different CT images for AC in 4D-PET reconstruction: first is to use a single-phase CT image to mimic actual clinical protocol (single-CT-PET); second is to use the average intensity projection CT (AveIP-CT) derived from 4D-CT scanning (AveIP-CT-PET); third is to use 4D-CT image to do the phase-matched AC (phase-matching- PET). Maximum SUV (SUVmax) and volume of the moving target (glass sphere) with threshold of 40% SUVmax were calculated for comparison between 4D-PET images derived with different AC methods. Results: The SUVmax varied 7.3%±6.9% over the breathing cycle in single-CT-PET, compared to 2.5%±2.8% in AveIP-CT-PET and 1.3%±1.2% in phasematching PET. The SUVmax in single-CT-PET differed by up to 15% from those in phase-matching-PET. The target volumes measured from single- CT-PET images also presented variations up to 10% among different phases of 4D PET in both phase-gating and amplitude-gating experiments. Conclusion: Attenuation correction using non-gated CT in 4D-PET imaging is not optimal process for quantitative analysis. Clinical 4D-PET imaging protocols should consider phase-matched 4D-CT image if available to achieve better accuracy.« less
Vawter, G Allen [Corrales, NM
2010-08-31
An optical data latch is formed on a substrate from a pair of optical logic gates in a cross-coupled arrangement in which optical waveguides are used to couple an output of each gate to an photodetector input of the other gate. This provides an optical bi-stability which can be used to store a bit of optical information in the latch. Each optical logic gate, which can be an optical NOT gate (i.e. an optical inverter) or an optical NOR gate, includes a waveguide photodetector electrically connected in series with a waveguide electroabsorption modulator. The optical data latch can be formed on a III-V compound semiconductor substrate (e.g. an InP or GaAs substrate) from III-V compound semiconductor layers. A number of optical data latches can be cascaded to form a clocked optical data shift register.
Wang, Qiaoming; Yang, Liangliang; Zhou, Shengwen; Ye, Xianjun; Wang, Zhe; Zhu, Wenguang; McCluskey, Matthew D; Gu, Yi
2017-07-06
We demonstrate a van der Waals Schottky junction defined by crystalline phases of multilayer In 2 Se 3 . Besides ideal diode behaviors and the gate-tunable current rectification, the thermoelectric power is significantly enhanced in these junctions by more than three orders of magnitude compared with single-phase multilayer In 2 Se 3 , with the thermoelectric figure-of-merit approaching ∼1 at room temperature. Our results suggest that these significantly improved thermoelectric properties are not due to the 2D quantum confinement effects but instead are a consequence of the Schottky barrier at the junction interface, which leads to hot carrier transport and shifts the balance between thermally and field-driven currents. This "bulk" effect extends the advantages of van der Waals materials beyond the few-layer limit. Adopting such an approach of using energy barriers between van der Waals materials, where the interface states are minimal, is expected to enhance the thermoelectric performance in other 2D materials as well.
NASA Astrophysics Data System (ADS)
Yamamoto, Makoto; Shinohara, Shuhei; Tamada, Kaoru; Ishii, Hisao; Noguchi, Yutaka
2016-03-01
Ambipolar switching behavior was observed in a silver nanoparticle (AgNP)-based single-electron transistor (SET) with tetra-tert-butyl copper phthalocyanine (ttbCuPc) as a molecular floating gate. Depending on the wavelength of the incident light, the stability diagram shifted to the negative and positive directions along the gate voltage axis. These results were explained by the photoinduced charging of ttbCuPc molecules in the vicinity of AgNPs. Moreover, multiple device states were induced by the light irradiation at a wavelength of 600 nm, suggesting that multiple ttbCuPc molecules individually worked as a floating gate.
Universal holonomic single quantum gates over a geometric spin with phase-modulated polarized light.
Ishida, Naoki; Nakamura, Takaaki; Tanaka, Touta; Mishima, Shota; Kano, Hiroki; Kuroiwa, Ryota; Sekiguchi, Yuhei; Kosaka, Hideo
2018-05-15
We demonstrate universal non-adiabatic non-abelian holonomic single quantum gates over a geometric electron spin with phase-modulated polarized light and 93% average fidelity. This allows purely geometric rotation around an arbitrary axis by any angle defined by light polarization and phase using a degenerate three-level Λ-type system in a negatively charged nitrogen-vacancy center in diamond. Since the control light is completely resonant to the ancillary excited state, the demonstrated holonomic gate not only is fast with low power, but also is precise without the dynamical phase being subject to control error and environmental noise. It thus allows pulse shaping for further fidelity.
Technical Note: High temporal resolution characterization of gating response time.
Wiersma, Rodney D; McCabe, Bradley P; Belcher, Andrew H; Jensen, Patrick J; Smith, Brett; Aydogan, Bulent
2016-06-01
Low temporal latency between a gating ON/OFF signal and the LINAC beam ON/OFF during respiratory gating is critical for patient safety. Here the authors describe a novel method to precisely measure gating lag times at high temporal resolutions. A respiratory gating simulator with an oscillating platform was modified to include a linear potentiometer for position measurement. A photon diode was placed at linear accelerator isocenter for beam output measurement. The output signals of the potentiometer and diode were recorded simultaneously at 2500 Hz with an analog to digital converter for four different commercial respiratory gating systems. The ON and OFF of the beam signal were located and compared to the expected gating window for both phase and position based gating and the temporal lag times extracted. For phase based gating, a real-time position management (RPM) infrared marker tracking system with a single camera and a RPM system with a stereoscopic camera were measured to have mean gate ON/OFF lag times of 98/90 and 86/44 ms, respectively. For position based gating, an AlignRT 3D surface system and a Calypso magnetic fiducial tracking system were measured to have mean gate ON/OFF lag times of 356/529 and 209/60 ms, respectively. Temporal resolution of the method was high enough to allow characterization of individual gate cycles and was primary limited by the sampling speed of the data recording device. Significant variation of mean gate ON/OFF lag time was found between different gating systems. For certain gating devices, individual gating cycle lag times can vary significantly.
Technical Note: High temporal resolution characterization of gating response time
Wiersma, Rodney D.; McCabe, Bradley P.; Belcher, Andrew H.; Jensen, Patrick J.; Smith, Brett; Aydogan, Bulent
2016-01-01
Purpose: Low temporal latency between a gating ON/OFF signal and the LINAC beam ON/OFF during respiratory gating is critical for patient safety. Here the authors describe a novel method to precisely measure gating lag times at high temporal resolutions. Methods: A respiratory gating simulator with an oscillating platform was modified to include a linear potentiometer for position measurement. A photon diode was placed at linear accelerator isocenter for beam output measurement. The output signals of the potentiometer and diode were recorded simultaneously at 2500 Hz with an analog to digital converter for four different commercial respiratory gating systems. The ON and OFF of the beam signal were located and compared to the expected gating window for both phase and position based gating and the temporal lag times extracted. Results: For phase based gating, a real-time position management (RPM) infrared marker tracking system with a single camera and a RPM system with a stereoscopic camera were measured to have mean gate ON/OFF lag times of 98/90 and 86/44 ms, respectively. For position based gating, an AlignRT 3D surface system and a Calypso magnetic fiducial tracking system were measured to have mean gate ON/OFF lag times of 356/529 and 209/60 ms, respectively. Conclusions: Temporal resolution of the method was high enough to allow characterization of individual gate cycles and was primary limited by the sampling speed of the data recording device. Significant variation of mean gate ON/OFF lag time was found between different gating systems. For certain gating devices, individual gating cycle lag times can vary significantly. PMID:27277028
The National Council on Crime and Delinquency NewGate Resource Center. Final Report.
ERIC Educational Resources Information Center
Herron, Rex; Muir, John
The origin and development of Project NewGate are described from 1971-74. (The project presents a model program of higher education for incarcerated offenders, consisting of the in-prison phase, transitional phase, and release phase.) Specific project characteristics are discussed and include a 4-year academic program for prison inmates; an…
Experimental Demonstration of a Resonator-Induced Phase Gate in a Multiqubit Circuit-QED System.
Paik, Hanhee; Mezzacapo, A; Sandberg, Martin; McClure, D T; Abdo, B; Córcoles, A D; Dial, O; Bogorin, D F; Plourde, B L T; Steffen, M; Cross, A W; Gambetta, J M; Chow, Jerry M
2016-12-16
The resonator-induced phase (RIP) gate is an all-microwave multiqubit entangling gate that allows a high degree of flexibility in qubit frequencies, making it attractive for quantum operations in large-scale architectures. We experimentally realize the RIP gate with four superconducting qubits in a three-dimensional circuit-QED architecture, demonstrating high-fidelity controlled-z (cz) gates between all possible pairs of qubits from two different 4-qubit devices in pair subspaces. These qubits are arranged within a wide range of frequency detunings, up to as large as 1.8 GHz. We further show a dynamical multiqubit refocusing scheme in order to isolate out 2-qubit interactions, and combine them to generate a 4-qubit Greenberger-Horne-Zeilinger state.
Experimental Demonstration of a Resonator-Induced Phase Gate in a Multiqubit Circuit-QED System
NASA Astrophysics Data System (ADS)
Paik, Hanhee; Mezzacapo, A.; Sandberg, Martin; McClure, D. T.; Abdo, B.; Córcoles, A. D.; Dial, O.; Bogorin, D. F.; Plourde, B. L. T.; Steffen, M.; Cross, A. W.; Gambetta, J. M.; Chow, Jerry M.
2016-12-01
The resonator-induced phase (RIP) gate is an all-microwave multiqubit entangling gate that allows a high degree of flexibility in qubit frequencies, making it attractive for quantum operations in large-scale architectures. We experimentally realize the RIP gate with four superconducting qubits in a three-dimensional circuit-QED architecture, demonstrating high-fidelity controlled-z (cz) gates between all possible pairs of qubits from two different 4-qubit devices in pair subspaces. These qubits are arranged within a wide range of frequency detunings, up to as large as 1.8 GHz. We further show a dynamical multiqubit refocusing scheme in order to isolate out 2-qubit interactions, and combine them to generate a 4-qubit Greenberger-Horne-Zeilinger state.
The flash memory battle: How low can we go?
NASA Astrophysics Data System (ADS)
van Setten, Eelco; Wismans, Onno; Grim, Kees; Finders, Jo; Dusa, Mircea; Birkner, Robert; Richter, Rigo; Scherübl, Thomas
2008-03-01
With the introduction of the TWINSCAN XT:1900Gi the limit of the water based hyper-NA immersion lithography has been reached in terms of resolution. With a numerical aperture of 1.35 a single expose resolution of 36.5nm half pitch has been demonstrated. However the practical resolution limit in production will be closer to 40nm half pitch, without having to go to double patterning alike strategies. In the relentless Flash memory market the performance of the exposure tool is stretched to the limit for a competitive advantage and cost-effective product. In this paper we will present the results of an experimental study of the resolution limit of the NAND-Flash Memory Gate layer for a production-worthy process on the TWINSCAN XT:1900Gi. The entire gate layer will be qualified in terms of full wafer CD uniformity, aberration sensitivities for the different wordlines and feature-center placement errors for 38, 39, 40 and 43nm half pitch design rule. In this study we will also compare the performance of a binary intensity mask to a 6% attenuated phase shift mask and look at strategies to maximize Depth of Focus, and to desensitize the gate layer for lens aberrations and placement errors. The mask is one of the dominant contributors to the CD uniformity budget of the flash gate layer. Therefore the wafer measurements are compared to aerial image measurements of the mask using AIMSTM 45-193i to separate the mask contribution from the scanner contribution to the final imaging performance.
Respiration Gates Sensory Input Responses in the Mitral Cell Layer of the Olfactory Bulb
Short, Shaina M.; Morse, Thomas M.; McTavish, Thomas S.; Shepherd, Gordon M.; Verhagen, Justus V.
2016-01-01
Respiration plays an essential role in odor processing. Even in the absence of odors, oscillating excitatory and inhibitory activity in the olfactory bulb synchronizes with respiration, commonly resulting in a burst of action potentials in mammalian mitral/tufted cells (MTCs) during the transition from inhalation to exhalation. This excitation is followed by inhibition that quiets MTC activity in both the glomerular and granule cell layers. Odor processing is hypothesized to be modulated by and may even rely on respiration-mediated activity, yet exactly how respiration influences sensory processing by MTCs is still not well understood. By using optogenetics to stimulate discrete sensory inputs in vivo, it was possible to temporally vary the stimulus to occur at unique phases of each respiration. Single unit recordings obtained from the mitral cell layer were used to map spatiotemporal patterns of glomerular evoked responses that were unique to stimulations occurring during periods of inhalation or exhalation. Sensory evoked activity in MTCs was gated to periods outside phasic respiratory mediated firing, causing net shifts in MTC activity across the cycle. In contrast, odor evoked inhibitory responses appear to be permitted throughout the respiratory cycle. Computational models were used to further explore mechanisms of inhibition that can be activated by respiratory activity and influence MTC responses. In silico results indicate that both periglomerular and granule cell inhibition can be activated by respiration to internally gate sensory responses in the olfactory bulb. Both the respiration rate and strength of lateral connectivity influenced inhibitory mechanisms that gate sensory evoked responses. PMID:28005923
Impact of Data-driven Respiratory Gating in Clinical PET.
Büther, Florian; Vehren, Thomas; Schäfers, Klaus P; Schäfers, Michael
2016-10-01
Purpose To study the feasibility and impact of respiratory gating in positron emission tomographic (PET) imaging in a clinical trial comparing conventional hardware-based gating with a data-driven approach and to describe the distribution of determined parameters. Materials and Methods This prospective study was approved by the ethics committee of the University Hospital of Münster (AZ 2014-217-f-N). Seventy-four patients suspected of having abdominal or thoracic fluorine 18 fluorodeoxyglucose (FDG)-positive lesions underwent clinical whole-body FDG PET/computed tomographic (CT) examinations. Respiratory gating was performed by using a pressure-sensitive belt system (belt gating [BG]) and an automatic data-driven approach (data-driven gating [DDG]). PET images were analyzed for lesion uptake, metabolic volumes, respiratory shifts of lesions, and diagnostic image quality. Results Forty-eight patients had at least one lesion in the field of view, resulting in a total of 164 lesions analyzed (range of number of lesions per patient, one to 13). Both gating methods revealed respiratory shifts of lesions (4.4 mm ± 3.1 for BG vs 4.8 mm ± 3.6 for DDG, P = .76). Increase in uptake of the lesions compared with nongated values did not differ significantly between both methods (maximum standardized uptake value [SUVmax], +7% ± 13 for BG vs +8% ± 16 for DDG, P = .76). Similarly, gating significantly decreased metabolic lesion volumes with both methods (-6% ± 26 for BG vs -7% ± 21 for DDG, P = .44) compared with nongated reconstructions. Blinded reading revealed significant improvements in diagnostic image quality when using gating, without significant differences between the methods (DDG was judged to be inferior to BG in 22 cases, equal in 12 cases, and superior in 15 cases; P = .32). Conclusion Respiratory gating increases diagnostic image quality and uptake values and decreases metabolic volumes compared with nongated acquisitions. Data-driven approaches are clinically applicable alternatives to belt-based methods and might help establishing routine respiratory gating in clinical PET/CT. (©) RSNA, 2016 Online supplemental material is available for this article.
NASA Astrophysics Data System (ADS)
Tang, Lan-Feng; Yu, Guang; Lu, Hai; Wu, Chen-Fei; Qian, Hui-Min; Zhou, Dong; Zhang, Rong; Zheng, You-Dou; Huang, Xiao-Ming
2015-08-01
The influence of white light illumination on the stability of an amorphous InGaZnO thin film transistor is investigated in this work. Under prolonged positive gate bias stress, the device illuminated by white light exhibits smaller positive threshold voltage shift than the device stressed under dark. There are simultaneous degradations of field-effect mobility for both stressed devices, which follows a similar trend to that of the threshold voltage shift. The reduced threshold voltage shift under illumination is explained by a competition between bias-induced interface carrier trapping effect and photon-induced carrier detrapping effect. It is further found that white light illumination could even excite and release trapped carriers originally exiting at the device interface before positive gate bias stress, so that the threshold voltage could recover to an even lower value than that in an equilibrium state. The effect of photo-excitation of oxygen vacancies within the a-IGZO film is also discussed. Project supported by the State Key Program for Basic Research of China (Grant Nos. 2011CB301900 and 2011CB922100) and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.
Toward Quantifying the Electrostatic Transduction Mechanism in Carbon Nanotube Biomolecular Sensors
NASA Astrophysics Data System (ADS)
Lerner, Mitchell; Kybert, Nicholas; Mendoza, Ryan; Dailey, Jennifer; Johnson, A. T. Charlie
2013-03-01
Despite the great promise of carbon nanotube field-effect transistors (CNT FETs) for applications in chemical and biochemical detection, a quantitative understanding of sensor responses is lacking. To explore the role of electrostatics in sensor transduction, experiments were conducted with a set of similar compounds designed to adsorb onto the CNT FET via a pyrene linker group and take on a set of known charge states under ambient conditions. Acidic and basic species were observed to induce threshold voltage shifts of opposite sign, consistent with gating of the CNT FET by local charges due to protonation or deprotonation of the pyrene compounds by interfacial water. The magnitude of the gate voltage shift was controlled by the distance between the charged group and the CNT. Additionally, functionalization with an uncharged pyrene compound showed a threshold shift ascribed to its molecular dipole moment. This work illustrates a method for producing CNT FETs with controlled values of the turnoff gate voltage, and more generally, these results will inform the development of quantitative models for the response of CNT FET chemical and biochemical sensors. As an example, the results of an experiment detecting biomarkers of Lyme disease will be discussed in the context of this model.
NASA Astrophysics Data System (ADS)
Kawamura, Yumi; Tani, Mai; Hattori, Nozomu; Miyatake, Naomasa; Horita, Masahiro; Ishikawa, Yasuaki; Uraoka, Yukiharu
2012-02-01
We investigated zinc oxide (ZnO) thin films prepared by plasma assisted atomic layer deposition (PA-ALD), and thin-film transistors (TFTs) with the ALD ZnO channel layer for application to next-generation displays. We deposited the ZnO channel layer by PA-ALD at 100 or 300 °C, and fabricated TFTs. The transfer characteristic of the 300 °C-deposited ZnO TFT exhibited high mobility (5.7 cm2 V-1 s-1), although the threshold voltage largely shifted toward the negative (-16 V). Furthermore, we deposited Al2O3 thin film as a gate insulator by PA-ALD at 100 °C for the low-temperature TFT fabrication process. In the case of ZnO TFTs with the Al2O3 gate insulator, the shift of the threshold voltage improved (-0.1 V). This improvement of the negative shift seems to be due to the negative charges of the Al2O3 film deposited by PA-ALD. On the basis of the experimental results, we confirmed that the threshold voltage of ZnO TFTs is controlled by PA-ALD for the deposition of the gate insulator.
Experimental state control by fast non-Abelian holonomic gates with a superconducting qutrit
NASA Astrophysics Data System (ADS)
Danilin, S.; Vepsäläinen, A.; Paraoanu, G. S.
2018-05-01
Quantum state manipulation with gates based on geometric phases acquired during cyclic operations promises inherent fault-tolerance and resilience to local fluctuations in the control parameters. Here we create a general non-Abelian and non-adiabatic holonomic gate acting in the (∣0〉, ∣2〉) subspace of a three-level (qutrit) transmon device fabricated in a fully coplanar design. Experimentally, this is realized by simultaneously coupling the first two transitions by microwave pulses with amplitudes and phases defined such that the condition of parallel transport is fulfilled. We demonstrate the creation of arbitrary superpositions in this subspace by changing the amplitudes of the pulses and the relative phase between them. We use two-photon pulses acting in the holonomic subspace to reveal the coherence of the state created by the geometric gate pulses and to prepare different superposition states. We also test the action of holonomic NOT and Hadamard gates on superpositions in the (| 0> ,| 2> ) subspace.
NASA Astrophysics Data System (ADS)
Qin, Wei; Wang, Xin; Miranowicz, Adam; Zhong, Zhirong; Nori, Franco
2017-07-01
Heralded near-deterministic multiqubit controlled-phase gates with integrated error detection have recently been proposed by Borregaard et al. [Phys. Rev. Lett. 114, 110502 (2015), 10.1103/PhysRevLett.114.110502]. This protocol is based on a single four-level atom (a heralding quartit) and N three-level atoms (operational qutrits) coupled to a single-resonator mode acting as a cavity bus. Here we generalize this method for two distant resonators without the cavity bus between the heralding and operational atoms. Specifically, we analyze the two-qubit controlled-Z gate and its multiqubit-controlled generalization (i.e., a Toffoli-like gate) acting on the two-lowest levels of N qutrits inside one resonator, with their successful actions being heralded by an auxiliary microwave-driven quartit inside the other resonator. Moreover, we propose a circuit-quantum-electrodynamics realization of the protocol with flux and phase qudits in linearly coupled transmission-line resonators with dissipation. These methods offer a quadratic fidelity improvement compared to cavity-assisted deterministic gates.
Combinational logic for generating gate drive signals for phase control rectifiers
NASA Technical Reports Server (NTRS)
Dolland, C. R.; Trimble, D. W. (Inventor)
1982-01-01
Control signals for phase-delay rectifiers, which require a variable firing angle that ranges from 0 deg to 180 deg, are derived from line-to-line 3-phase signals and both positive and negative firing angle control signals which are generated by comparing current command and actual current. Line-to-line phases are transformed into line-to-neutral phases and integrated to produce 90 deg phase delayed signals that are inverted to produce three cosine signals, such that for each its maximum occurs at the intersection of positive half cycles of the other two phases which are inputs to other inverters. At the same time, both positive and negative (inverted) phase sync signals are generated for each phase by comparing each with the next and producing a square wave when it is greater. Ramp, sync and firing angle controls signals are than used in combinational logic to generate the gate firing control signals SCR gate drives which fire SCR devices in a bridge circuit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malhotra, H; Gomez, J
Purpose: Conventional definition of respiratory gates relies on tumor motion determination in limited planes. We are proposing a new method to define the RPM gates in a consistent manner ensuring that the tumor motion is restricted to 4 mm in 3D for lung SBRT patients. The method relies on studying the ratio of volumes obtained by GTVnn intersection with GTV50+2mm margin and GTVnn where GTVnn is the GTV volume in phase nn (=0,10,30.) while GTV50+2mm is a pseudo structure created by adding an isotropic margin of 2mm to GTV50. If for any phase nn, above ratio equals 1, it ensuresmore » that the tumor motion is ≤ ±2 mm in 3D from GTV50. Methods: This method was tested for 50 patients (14-Central, 36-peripheral) to determine the RPM gates which were then compared with the gates used clinically. The minimum cut-off value of the above coefficient for its inclusion of a phase in RPM gate was taken as 0.97 for central and 0.95 for peripheral tumors. Results: 15 (30%) of the patients did not require any change in the RPM gates w.r.t. gates defined using conventional motion assessment methods. In 15(30%) cases, the RPM gates could have been smaller while in remaining 20 patients, gates could have been larger. 5(/14) patient’s central tumors and 10 (/36) peripheral tumors did not need any gate change. 8(/50) patients could have RPM gate change of 30% while 10(/50) could have a gate change of up to 20%. 10, 20 & 30% RPM gate change could have happened for 11, 10 & 9 patients, respectively. Conclusion: Proposed volumetric indices based method allows a consistent, scientific and objective method to decide optimal RPM gates which is free from any inter or intra person variability and satisfies the tumor motion limits as defined by AAPM TG-76 in totality.« less
SU-E-T-436: Accelerated Gated IMRT: A Feasibility Study for Lung Cancer Patients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilles, M; Boussion, N; Visvikis, D
Purpose: To evaluate the feasibility of delivering a gated Intensity Modulated Radiotherapy (IMRT) treatment using multiple respiratory phases in order to account for all anatomic changes during free breathing and accelerate the gated treatment without increasing the dose per fraction. Methods: For 7 patients with lung cancer, IMRT treatment plans were generated on a full inspiration (FI) Computed Tomography (CT) and a Mid Intensity Position (MIP) CT. Moreover, in order to achieve an accelerated gated IMRT, multiple respiratory phase plans were calculated: 2-phase plans including the FI and the full expiration phases, and 3-phase plans by adding the mid-inspiration phase.more » In order to assess the tolerance limits, plans' doses were registered and summed to the FI-based plan. Mean dose received by Organs at Risk (OARs) and target volumes were used to compare obtained plans. Results: The mean dose differences between the FI plans and the multi-phase plans never exceeded 0.4 Gy (Fig. 1). Concerning the clinical target volume these differences were even smaller: less than 0.1 Gy for both the 2-phase and 3-phase plans. Regarding the MIP treatment plan, higher doses in different healthy structures were observed, with a relative mean increase of 0.4 to 1.5 Gy. Finally, compared to the prescribed dose, the FI as well as the multi-phase plans were associated with a mean difference of 0.4 Gy, whereas in the case of MIP a higher mean difference of 0.6 Gy was observed. Conclusion: The doses obtained while planning a multi-phase gated IMRT treatment were within the tolerance limits. Compared to MIP, a better healthy tissue sparing was observed in the case of treatment planning based on one or multiple phases. Future work will consist in testing the multi-phase treatment delivery while accounting for the multileaf collimator speed constraints.« less
A fast-locking all-digital delay-locked loop for phase/delay generation in an FPGA
NASA Astrophysics Data System (ADS)
Zhujia, Chen; Haigang, Yang; Fei, Liu; Yu, Wang
2011-10-01
A fast-locking all-digital delay-locked loop (ADDLL) is proposed for the DDR SDRAM controller interface in a field programmable gate array (FPGA). The ADDLL performs a 90° phase-shift so that the data strobe (DQS) can enlarge the data valid window in order to minimize skew. In order to further reduce the locking time and to prevent the harmonic locking problem, a time-to-digital converter (TDC) is proposed. A duty cycle corrector (DCC) is also designed in the ADDLL to adjust the output duty cycle to 50%. The ADDLL, implemented in a commercial 0.13 μm CMOS process, occupies a total of 0.017 mm2 of active area. Measurement results show that the ADDLL has an operating frequency range of 75 to 350 MHz and a total delay resolution of 15 ps. The time interval error (TIE) of the proposed circuit is 60.7 ps.
Performance characteristics of a nanoscale double-gate reconfigurable array
NASA Astrophysics Data System (ADS)
Beckett, Paul
2008-12-01
The double gate transistor is a promising device applicable to deep sub-micron design due to its inherent resistance to short-channel effects and superior subthreshold performance. Using both TCAD and SPICE circuit simulation, it is shown that the characteristics of fully depleted dual-gate thin-body Schottky barrier silicon transistors will not only uncouple the conflicting requirements of high performance and low standby power in digital logic, but will also allow the development of a locally-connected reconfigurable computing mesh. The magnitude of the threshold shift effect will scale with device dimensions and will remain compatible with oxide reliability constraints. A field-programmable architecture based on the double gate transistor is described in which the operating point of the circuit is biased via one gate while the other gate is used to form the logic array, such that complex heterogeneous computing functions may be developed from this homogeneous, mesh-connected organization.
Coherent molecular transistor: control through variation of the gate wave function.
Ernzerhof, Matthias
2014-03-21
In quantum interference transistors (QUITs), the current through the device is controlled by variation of the gate component of the wave function that interferes with the wave function component joining the source and the sink. Initially, mesoscopic QUITs have been studied and more recently, QUITs at the molecular scale have been proposed and implemented. Typically, in these devices the gate lead is subjected to externally adjustable physical parameters that permit interference control through modifications of the gate wave function. Here, we present an alternative model of a molecular QUIT in which the gate wave function is directly considered as a variable and the transistor operation is discussed in terms of this variable. This implies that we specify the gate current as well as the phase of the gate wave function component and calculate the resulting current through the source-sink channel. Thus, we extend on prior works that focus on the phase of the gate wave function component as a control parameter while having zero or certain discrete values of the current. We address a large class of systems, including finite graphene flakes, and obtain analytic solutions for how the gate wave function controls the transistor.
The 30-GHz monolithic receive module
NASA Technical Reports Server (NTRS)
Sokolov, V.; Geddes, J.; Bauhahn, P.
1983-01-01
Key requirements for a 30 GHz GaAs monolithic receive module for spaceborne communication antenna feed array applications include an overall receive module noise figure of 5 dB, a 30 dB RF to IF gain with six levels of intermediate gain control, a five-bit phase shifter, and a maximum power consumption of 250 mW. The RF designs for each of the four submodules (low noise amplifier, some gain control, phase shifter, and RF to IF sub-module) are presented. Except for the phase shifter, high frequency, low noise FETs with sub-half micron gate lengths are employed in the submodules. For the gain control, a two stage dual gate FET amplifier is used. The phase shifter is of the passive switched line type and consists of 5-bits. It uses relatively large gate width FETs (with zero drain to source bias) as the switching elements. A 20 GHz local oscillator buffer amplifier, a FET compatible balanced mixer, and a 5-8 GHz IF amplifier constitute the RF/IF sub-module. Phase shifter fabrication using ion implantation and a self-aligned gate technique is described. Preliminary RF results obtained on such phase shifters are included.
Yamada, Takahiro; Miyamoto, Naoki; Matsuura, Taeko; Takao, Seishin; Fujii, Yusuke; Matsuzaki, Yuka; Koyano, Hidenori; Umezawa, Masumi; Nihongi, Hideaki; Shimizu, Shinichi; Shirato, Hiroki; Umegaki, Kikuo
2016-07-01
To find the optimum parameter of a new beam control function installed in a synchrotron-based proton therapy system. A function enabling multiple gated irradiation in the flat top phase has been installed in a real-time-image gated proton beam therapy (RGPT) system. This function is realized by a waiting timer that monitors the elapsed time from the last gate-off signal in the flat top phase. The gated irradiation efficiency depends on the timer value, Tw. To find the optimum Tw value, gated irradiation efficiency was evaluated for each configurable Tw value. 271 gate signal data sets from 58 patients were used for the simulation. The highest mean efficiency 0.52 was obtained in TW=0.2s. The irradiation efficiency was approximately 21% higher than at TW=0s, which corresponds to ordinary synchrotron operation. The irradiation efficiency was improved in 154 (57%) of the 271 cases. The irradiation efficiency was reduced in 117 cases because the TW value was insufficient or the function introduced an unutilized wait time for the next gate-on signal in the flat top phase. In the actual treatment of a patient with a hepatic tumor at Tw=0.2s, 4.48GyE irradiation was completed within 250s. In contrast, the treatment time of ordinary synchrotron operation was estimated to be 420s. The results suggest that the multiple gated-irradiation function has potential to improve the gated irradiation efficiency and to reduce the treatment time. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Technical Note: High temporal resolution characterization of gating response time
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiersma, Rodney D., E-mail: rwiersma@uchicago.edu; McCabe, Bradley P.; Belcher, Andrew H.
2016-06-15
Purpose: Low temporal latency between a gating ON/OFF signal and the LINAC beam ON/OFF during respiratory gating is critical for patient safety. Here the authors describe a novel method to precisely measure gating lag times at high temporal resolutions. Methods: A respiratory gating simulator with an oscillating platform was modified to include a linear potentiometer for position measurement. A photon diode was placed at linear accelerator isocenter for beam output measurement. The output signals of the potentiometer and diode were recorded simultaneously at 2500 Hz with an analog to digital converter for four different commercial respiratory gating systems. The ONmore » and OFF of the beam signal were located and compared to the expected gating window for both phase and position based gating and the temporal lag times extracted. Results: For phase based gating, a real-time position management (RPM) infrared marker tracking system with a single camera and a RPM system with a stereoscopic camera were measured to have mean gate ON/OFF lag times of 98/90 and 86/44 ms, respectively. For position based gating, an AlignRT 3D surface system and a Calypso magnetic fiducial tracking system were measured to have mean gate ON/OFF lag times of 356/529 and 209/60 ms, respectively. Conclusions: Temporal resolution of the method was high enough to allow characterization of individual gate cycles and was primary limited by the sampling speed of the data recording device. Significant variation of mean gate ON/OFF lag time was found between different gating systems. For certain gating devices, individual gating cycle lag times can vary significantly.« less
Beyl, Stanislav; Depil, Katrin; Hohaus, Annette; Stary-Weinzinger, Anna; Linder, Tobias; Timin, Eugen; Hering, Steffen
2012-10-01
Voltage sensors trigger the closed-open transitions in the pore of voltage-gated ion channels. To probe the transmission of voltage sensor signalling to the channel pore of Ca(V)1.2, we investigated how elimination of positive charges in the S4 segments (charged residues were replaced by neutral glutamine) modulates gating perturbations induced by mutations in pore-lining S6 segments. Neutralisation of all positively charged residues in IIS4 produced a functional channel (IIS4(N)), while replacement of the charged residues in IS4, IIIS4 and IVS4 segments resulted in nonfunctional channels. The IIS4(N) channel displayed activation kinetics similar to wild type. Mutations in a highly conserved structure motif on S6 segments ("GAGA ring": G432W in IS6, A780T in IIS6, G1193T in IIIS6 and A1503G in IVS6) induce strong left-shifted activation curves and decelerated channel deactivation kinetics. When IIS4(N) was combined with these mutations, the activation curves were shifted back towards wild type and current kinetics were accelerated. In contrast, 12 other mutations adjacent to the GAGA ring in IS6-IVS6, which also affect activation gating, were not rescued by IIS4(N). Thus, the rescue of gating distortions in segments IS6-IVS6 by IIS4(N) is highly position-specific. Thermodynamic cycle analysis supports the hypothesis that IIS4 is energetically coupled with the distantly located GAGA residues. We speculate that conformational changes caused by neutralisation of IIS4 are not restricted to domain II (IIS6) but are transmitted to gating structures in domains I, III and IV via the GAGA ring.
Gate length variation effect on performance of gate-first self-aligned In₀.₅₃Ga₀.₄₇As MOSFET.
Mohd Razip Wee, Mohd F; Dehzangi, Arash; Bollaert, Sylvain; Wichmann, Nicolas; Majlis, Burhanuddin Y
2013-01-01
A multi-gate n-type In₀.₅₃Ga₀.₄₇As MOSFET is fabricated using gate-first self-aligned method and air-bridge technology. The devices with different gate lengths were fabricated with the Al2O3 oxide layer with the thickness of 8 nm. In this letter, impact of gate length variation on device parameter such as threshold voltage, high and low voltage transconductance, subthreshold swing and off current are investigated at room temperature. Scaling the gate length revealed good enhancement in all investigated parameters but the negative shift in threshold voltage was observed for shorter gate lengths. The high drain current of 1.13 A/mm and maximum extrinsic transconductance of 678 mS/mm with the field effect mobility of 364 cm(2)/Vs are achieved for the gate length and width of 0.2 µm and 30 µm, respectively. The source/drain overlap length for the device is approximately extracted about 51 nm with the leakage current in order of 10(-8) A. The results of RF measurement for cut-off and maximum oscillation frequency for devices with different gate lengths are compared.
Gate Length Variation Effect on Performance of Gate-First Self-Aligned In0.53Ga0.47As MOSFET
Mohd Razip Wee, Mohd F.; Dehzangi, Arash; Bollaert, Sylvain; Wichmann, Nicolas; Majlis, Burhanuddin Y.
2013-01-01
A multi-gate n-type In0.53Ga0.47As MOSFET is fabricated using gate-first self-aligned method and air-bridge technology. The devices with different gate lengths were fabricated with the Al2O3 oxide layer with the thickness of 8 nm. In this letter, impact of gate length variation on device parameter such as threshold voltage, high and low voltage transconductance, subthreshold swing and off current are investigated at room temperature. Scaling the gate length revealed good enhancement in all investigated parameters but the negative shift in threshold voltage was observed for shorter gate lengths. The high drain current of 1.13 A/mm and maximum extrinsic transconductance of 678 mS/mm with the field effect mobility of 364 cm2/Vs are achieved for the gate length and width of 0.2 µm and 30µm, respectively. The source/drain overlap length for the device is approximately extracted about 51 nm with the leakage current in order of 10−8 A. The results of RF measurement for cut-off and maximum oscillation frequency for devices with different gate lengths are compared. PMID:24367548
Measurement of time delay for a prospectively gated CT simulator.
Goharian, M; Khan, R F H
2010-04-01
For the management of mobile tumors, respiratory gating is the ideal option, both during imaging and during therapy. The major advantage of respiratory gating during imaging is that it is possible to create a single artifact-free CT data-set during a selected phase of the patient's breathing cycle. The purpose of the present work is to present a simple technique to measure the time delay during acquisition of a prospectively gated CT. The time delay of a Philips Brilliance BigBore (Philips Medical Systems, Madison, WI) scanner attached to a Varian Real-Time Position Management (RPM) system (Varian Medical Systems, Palo Alto, CA) was measured. Two methods were used to measure the CT time delay: using a motion phantom and using a recorded data file from the RPM system. In the first technique, a rotating wheel phantom was altered by placing two plastic balls on its axis and rim, respectively. For a desired gate, the relative positions of the balls were measured from the acquired CT data and converted into corresponding phases. Phase difference was calculated between the measured phases and the desired phases. Using period of motion, the phase difference was converted into time delay. The Varian RPM system provides an external breathing signal; it also records transistor-transistor logic (TTL) 'X-Ray ON' status signal from the CT scanner in a text file. The TTL 'X-Ray ON' indicates the start of CT image acquisition. Thus, knowledge of the start time of CT acquisition, combined with the real-time phase and amplitude data from the external respiratory signal, provides time-stamping of all images in an axial CT scan. The TTL signal with time-stamp was used to calculate when (during the breathing cycle) a slice was recorded. Using the two approaches, the time delay between the prospective gating signal and CT simulator has been determined to be 367 +/- 40 ms. The delay requires corrections both at image acquisition and while setting gates for the treatment delivery; otherwise the simulation and treatment may not be correlated with the patient's breathing.
NASA Astrophysics Data System (ADS)
Furuta, Mamoru; Kamada, Yudai; Hiramatsu, Takahiro; Li, Chaoyang; Kimura, Mutsumi; Fujita, Shizuo; Hirao, Takashi
2011-03-01
The positive bias instabilities of the zinc oxide thin-film transistors (ZnO TFTs) with a SiOx/SiNx-stacked gate insulator have been investigated. The film quality of a gate insulator of SiOx, which forms an interface with the ZnO channel, was varied by changing the gas mixture ratio of SiH4/N2O/N2 during plasma-enhanced chemical vapor deposition. The positive bias stress endurance of ZnO TFT strongly depended on the deposition condition of the SiOx gate insulator. From the relaxations of the transfer curve shift after imposition of positive bias stress, transfer curves could not be recovered completely without any thermal annealing. A charge trapping in a gate insulator rather than that in bulk ZnO and its interface with a gate insulator is a dominant instability mechanism of ZnO TFTs under positive bias stress.
NASA Astrophysics Data System (ADS)
Itoh, Takuro; Toyota, Taro; Higuchi, Hiroyuki; Matsushita, Michio M.; Suzuki, Kentaro; Sugawara, Tadashi
2017-03-01
A tetracyanoquaterthienoquinoid (TCT4Q)-based field effect transistor is characterized by the ambipolar transfer characteristics and the facile shift of the threshold voltage induced by the bias stress. The trapping and detrapping kinetics of charge carriers was investigated in detail by the temperature dependence of the decay of source-drain current (ISD). We found a repeatable formation of a molecular floating gate is derived from a 'charge carrier-and-gate' cycle comprising four stages, trapping of mobile carriers, formation of a floating gate, induction of oppositely charged mobile carriers, and recombination between mobile and trapped carriers to restore the initial state.
Coherent ultra dense wavelength division multiplexing passive optical networks
NASA Astrophysics Data System (ADS)
Shahpari, Ali; Ferreira, Ricardo; Ribeiro, Vitor; Sousa, Artur; Ziaie, Somayeh; Tavares, Ana; Vujicic, Zoran; Guiomar, Fernando P.; Reis, Jacklyn D.; Pinto, Armando N.; Teixeira, António
2015-12-01
In this paper, we firstly review the progress in ultra-dense wavelength division multiplexing passive optical network (UDWDM-PON), by making use of the key attributes of this technology in the context of optical access and metro networks. Besides the inherit properties of coherent technology, we explore different modulation formats and pulse shaping. The performance is experimentally demonstrated through a 12 × 10 Gb/s bidirectional UDWDM-PON over hybrid 80 km standard single mode fiber (SSMF) and optical wireless link. High density, 6.25 GHz grid, Nyquist shaped 16-ary quadrature amplitude modulation (16QAM) and digital frequency shifting are some of the properties exploited together in the tests. Also, bidirectional transmission in fiber, relevant in the context, is analyzed in terms of nonlinear and back-reflection effects on receiver sensitivity. In addition, as a basis for the discussion on market readiness, we experimentally demonstrate real-time detection of a Nyquist-shaped quaternary phase-shift keying (QPSK) signal using simple 8-bit digital signal processing (DSP) on a field-programmable gate array (FPGA).
MEMS Gate Structures for Electric Propulsion Applications
2006-07-12
distance between gates of dual gate system V = grid voltage Dsheath = sheath thickness Va = anode voltage E = electric field Vemitter = emitter voltage Es...minutes. A hot pressed boron nitride target (4N) in the hexagonal phase (h- BN) was sputtered in a RF magnetron sputtering gun. To promote the nucleation...and nanoFETs. This paper concludes with a discussion on using MEMS gates for dual -grid electron field emission applications. II. Gate Design I I
NASA Technical Reports Server (NTRS)
Krasowski, Michael J. (Inventor); Prokop, Norman F. (Inventor)
2017-01-01
A current source logic gate with depletion mode field effect transistor ("FET") transistors and resistors may include a current source, a current steering switch input stage, and a resistor divider level shifting output stage. The current source may include a transistor and a current source resistor. The current steering switch input stage may include a transistor to steer current to set an output stage bias point depending on an input logic signal state. The resistor divider level shifting output stage may include a first resistor and a second resistor to set the output stage point and produce valid output logic signal states. The transistor of the current steering switch input stage may function as a switch to provide at least two operating points.
Fast optical cooling of a nanomechanical cantilever by a dynamical Stark-shift gate.
Yan, Leilei; Zhang, Jian-Qi; Zhang, Shuo; Feng, Mang
2015-10-12
The efficient cooling of nanomechanical resonators is essential to exploration of quantum properties of the macroscopic or mesoscopic systems. We propose such a laser-cooling scheme for a nanomechanical cantilever, which works even for the low-frequency mechanical mode and under weak cooling lasers. The cantilever is coupled by a diamond nitrogen-vacancy center under a strong magnetic field gradient and the cooling is assisted by a dynamical Stark-shift gate. Our scheme can effectively enhance the desired cooling efficiency by avoiding the off-resonant and undesired carrier transitions, and thereby cool the cantilever down to the vicinity of the vibrational ground state in a fast fashion.
Fast optical cooling of a nanomechanical cantilever by a dynamical Stark-shift gate
Yan, Leilei; Zhang, Jian-Qi; Zhang, Shuo; Feng, Mang
2015-01-01
The efficient cooling of nanomechanical resonators is essential to exploration of quantum properties of the macroscopic or mesoscopic systems. We propose such a laser-cooling scheme for a nanomechanical cantilever, which works even for the low-frequency mechanical mode and under weak cooling lasers. The cantilever is coupled by a diamond nitrogen-vacancy center under a strong magnetic field gradient and the cooling is assisted by a dynamical Stark-shift gate. Our scheme can effectively enhance the desired cooling efficiency by avoiding the off-resonant and undesired carrier transitions, and thereby cool the cantilever down to the vicinity of the vibrational ground state in a fast fashion. PMID:26455901
Engineering integrated photonics for heralded quantum gates
NASA Astrophysics Data System (ADS)
Meany, Thomas; Biggerstaff, Devon N.; Broome, Matthew A.; Fedrizzi, Alessandro; Delanty, Michael; Steel, M. J.; Gilchrist, Alexei; Marshall, Graham D.; White, Andrew G.; Withford, Michael J.
2016-06-01
Scaling up linear-optics quantum computing will require multi-photon gates which are compact, phase-stable, exhibit excellent quantum interference, and have success heralded by the detection of ancillary photons. We investigate the design, fabrication and characterisation of the optimal known gate scheme which meets these requirements: the Knill controlled-Z gate, implemented in integrated laser-written waveguide arrays. We show device performance to be less sensitive to phase variations in the circuit than to small deviations in the coupler reflectivity, which are expected given the tolerance values of the fabrication method. The mode fidelity is also shown to be less sensitive to reflectivity and phase errors than the process fidelity. Our best device achieves a fidelity of 0.931 ± 0.001 with the ideal 4 × 4 unitary circuit and a process fidelity of 0.680 ± 0.005 with the ideal computational-basis process.
NASA Astrophysics Data System (ADS)
Guo, Qi; Cheng, Liu-Yong; Chen, Li; Wang, Hong-Fu; Zhang, Shou
2014-10-01
The existing distributed quantum gates required physical particles to be transmitted between two distant nodes in the quantum network. We here demonstrate the possibility to implement distributed quantum computation without transmitting any particles. We propose a scheme for a distributed controlled-phase gate between two distant quantum-dot electron-spin qubits in optical microcavities. The two quantum-dot-microcavity systems are linked by a nested Michelson-type interferometer. A single photon acting as ancillary resource is sent in the interferometer to complete the distributed controlled-phase gate, but it never enters the transmission channel between the two nodes. Moreover, we numerically analyze the effect of experimental imperfections and show that the present scheme can be implemented with high fidelity in the ideal asymptotic limit. The scheme provides further evidence of quantum counterfactuality and opens promising possibilities for distributed quantum computation.
Engineering integrated photonics for heralded quantum gates
Meany, Thomas; Biggerstaff, Devon N.; Broome, Matthew A.; Fedrizzi, Alessandro; Delanty, Michael; Steel, M. J.; Gilchrist, Alexei; Marshall, Graham D.; White, Andrew G.; Withford, Michael J.
2016-01-01
Scaling up linear-optics quantum computing will require multi-photon gates which are compact, phase-stable, exhibit excellent quantum interference, and have success heralded by the detection of ancillary photons. We investigate the design, fabrication and characterisation of the optimal known gate scheme which meets these requirements: the Knill controlled-Z gate, implemented in integrated laser-written waveguide arrays. We show device performance to be less sensitive to phase variations in the circuit than to small deviations in the coupler reflectivity, which are expected given the tolerance values of the fabrication method. The mode fidelity is also shown to be less sensitive to reflectivity and phase errors than the process fidelity. Our best device achieves a fidelity of 0.931 ± 0.001 with the ideal 4 × 4 unitary circuit and a process fidelity of 0.680 ± 0.005 with the ideal computational-basis process. PMID:27282928
Engineering integrated photonics for heralded quantum gates.
Meany, Thomas; Biggerstaff, Devon N; Broome, Matthew A; Fedrizzi, Alessandro; Delanty, Michael; Steel, M J; Gilchrist, Alexei; Marshall, Graham D; White, Andrew G; Withford, Michael J
2016-06-10
Scaling up linear-optics quantum computing will require multi-photon gates which are compact, phase-stable, exhibit excellent quantum interference, and have success heralded by the detection of ancillary photons. We investigate the design, fabrication and characterisation of the optimal known gate scheme which meets these requirements: the Knill controlled-Z gate, implemented in integrated laser-written waveguide arrays. We show device performance to be less sensitive to phase variations in the circuit than to small deviations in the coupler reflectivity, which are expected given the tolerance values of the fabrication method. The mode fidelity is also shown to be less sensitive to reflectivity and phase errors than the process fidelity. Our best device achieves a fidelity of 0.931 ± 0.001 with the ideal 4 × 4 unitary circuit and a process fidelity of 0.680 ± 0.005 with the ideal computational-basis process.
Phase-matching of attosecond XUV supercontinuum
NASA Astrophysics Data System (ADS)
Gilbertson, Steve; Mashiko, Hiroki; Li, Chengquan; Khan, Sabih; Shakya, Mahendra; Moon, Eric; Chang, Zenghu
2008-05-01
Adding a weak second harmonic field to an ellipticity dependent polarization gating field allowed for the production of XUV supercontinua from longer (˜10 fs) input pulses in argon. The spectra support 200 as single isolated pulses. This technique, dubbed double optical gating (DOG), demonstrated a large enhancement of the harmonic yield as compared with polarization gating. These results can be attributed to the reduced depletion of the ground state of the target from the leading edge of the pulse and the increased intensity inside the polarization gate width. Through optimization of the harmonic generation process under the phase matching conditions, we were able to further increase the harmonic flux. The parameters included the target gas pressure, laser focus position, input pulse duration, and polarization gate width. By varying the CE phase of the pulse, we were able to verify that the results were indeed from DOG due to its unique 2 pi dependence on the harmonic spectrum. We were able to extend our results to neon. Its higher ionization potential allowed an extension of the harmonic cutoff for the production of even shorter pulses.
Biomolecular Doping of Single-Walled Carbon Nanotubes by Thyroid Hormone
NASA Astrophysics Data System (ADS)
Rojas, Enrique; Paulson, Scott; Stern, Mike; Staii, Cristian; Dratman, Mary; Johnson, Alan
2004-03-01
Electron doping of semiconducting single-walled carbon nanotubes (SWNTs) by the thyroid hormone triiodothyronine (T3) is observed. T3 is applied locally, in solution, to SWNT field effect transistors (FETs) and binds along the length of the nanotube. T3 acts as an electron donor, shifting the I-V gate characteristics towards negative values of gate voltage. Shifts in the characteristics are measured as a function of the concentration of the solution. The effect is nearly reversible by rinsing the FETs with the solvent. Several days after application of T3, with no solvent rinsing, the gate characteristics are also nearly reversed. Experiments with a similar molecule for which the phenol ring is brominated as well as experiments with the de-iodinated molecule (T0) are performed to inform the effect of the iodine. The interaction of T3 with SWNTs may suggest a electronic interaction of T3 with other one-dimensional systems such as DNA.
A two-qubit logic gate in silicon.
Veldhorst, M; Yang, C H; Hwang, J C C; Huang, W; Dehollain, J P; Muhonen, J T; Simmons, S; Laucht, A; Hudson, F E; Itoh, K M; Morello, A; Dzurak, A S
2015-10-15
Quantum computation requires qubits that can be coupled in a scalable manner, together with universal and high-fidelity one- and two-qubit logic gates. Many physical realizations of qubits exist, including single photons, trapped ions, superconducting circuits, single defects or atoms in diamond and silicon, and semiconductor quantum dots, with single-qubit fidelities that exceed the stringent thresholds required for fault-tolerant quantum computing. Despite this, high-fidelity two-qubit gates in the solid state that can be manufactured using standard lithographic techniques have so far been limited to superconducting qubits, owing to the difficulties of coupling qubits and dephasing in semiconductor systems. Here we present a two-qubit logic gate, which uses single spins in isotopically enriched silicon and is realized by performing single- and two-qubit operations in a quantum dot system using the exchange interaction, as envisaged in the Loss-DiVincenzo proposal. We realize CNOT gates via controlled-phase operations combined with single-qubit operations. Direct gate-voltage control provides single-qubit addressability, together with a switchable exchange interaction that is used in the two-qubit controlled-phase gate. By independently reading out both qubits, we measure clear anticorrelations in the two-spin probabilities of the CNOT gate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feister, S., E-mail: feister.7@osu.edu; Orban, C.; Innovative Scientific Solutions, Inc., Dayton, Ohio 45459
Ultra-intense laser-matter interaction experiments (>10{sup 18} W/cm{sup 2}) with dense targets are highly sensitive to the effect of laser “noise” (in the form of pre-pulses) preceding the main ultra-intense pulse. These system-dependent pre-pulses in the nanosecond and/or picosecond regimes are often intense enough to modify the target significantly by ionizing and forming a plasma layer in front of the target before the arrival of the main pulse. Time resolved interferometry offers a robust way to characterize the expanding plasma during this period. We have developed a novel pump-probe interferometry system for an ultra-intense laser experiment that uses two short-pulse amplifiersmore » synchronized by one ultra-fast seed oscillator to achieve 40-fs time resolution over hundreds of nanoseconds, using a variable delay line and other techniques. The first of these amplifiers acts as the pump and delivers maximal energy to the interaction region. The second amplifier is frequency shifted and then frequency doubled to generate the femtosecond probe pulse. After passing through the laser-target interaction region, the probe pulse is split and recombined in a laterally sheared Michelson interferometer. Importantly, the frequency shift in the probe allows strong plasma self-emission at the second harmonic of the pump to be filtered out, allowing plasma expansion near the critical surface and elsewhere to be clearly visible in the interferograms. To aid in the reconstruction of phase dependent imagery from fringe shifts, three separate 120° phase-shifted (temporally sheared) interferograms are acquired for each probe delay. Three-phase reconstructions of the electron densities are then inferred by Abel inversion. This interferometric system delivers precise measurements of pre-plasma expansion that can identify the condition of the target at the moment that the ultra-intense pulse arrives. Such measurements are indispensable for correlating laser pre-pulse measurements with instantaneous plasma profiles and for enabling realistic Particle-in-Cell simulations of the ultra-intense laser-matter interaction.« less
Histidine168 is crucial for ΔpH-dependent gating of the human voltage-gated proton channel, hHV1.
Cherny, Vladimir V; Morgan, Deri; Thomas, Sarah; Smith, Susan M E; DeCoursey, Thomas E
2018-05-09
We recently identified a voltage-gated proton channel gene in the snail Helisoma trivolvis , HtH V 1, and determined its electrophysiological properties. Consistent with early studies of proton currents in snail neurons, HtH V 1 opens rapidly, but it unexpectedly exhibits uniquely defective sensitivity to intracellular pH (pH i ). The H + conductance ( g H )- V relationship in the voltage-gated proton channel (H V 1) from other species shifts 40 mV when either pH i or pH o (extracellular pH) is changed by 1 unit. This property, called ΔpH-dependent gating, is crucial to the functions of H V 1 in many species and in numerous human tissues. The HtH V 1 channel exhibits normal pH o dependence but anomalously weak pH i dependence. In this study, we show that a single point mutation in human hH V 1-changing His 168 to Gln 168 , the corresponding residue in HtH V 1-compromises the pH i dependence of gating in the human channel so that it recapitulates the HtH V 1 response. This location was previously identified as a contributor to the rapid gating kinetics of H V 1 in Strongylocentrotus purpuratus His 168 mutation in human H V 1 accelerates activation but accounts for only a fraction of the species difference. H168Q, H168S, or H168T mutants exhibit normal pH o dependence, but changing pH i shifts the g H - V relationship on average by <20 mV/unit. Thus, His 168 is critical to pH i sensing in hH V 1. His 168 , located at the inner end of the pore on the S3 transmembrane helix, is the first residue identified in H V 1 that significantly impairs pH sensing when mutated. Because pH o dependence remains intact, the selective erosion of pH i dependence supports the idea that there are distinct internal and external pH sensors. Although His 168 may itself be a pH i sensor, the converse mutation, Q229H, does not normalize the pH i sensitivity of the HtH V 1 channel. We hypothesize that the imidazole group of His 168 interacts with nearby Phe 165 or other parts of hH V 1 to transduce pH i into shifts of voltage-dependent gating. © 2018 Cherny et al.
Ultrafast quantum computation in ultrastrongly coupled circuit QED systems.
Wang, Yimin; Guo, Chu; Zhang, Guo-Qiang; Wang, Gangcheng; Wu, Chunfeng
2017-03-10
The latest technological progress of achieving the ultrastrong-coupling regime in circuit quantum electrodynamics (QED) systems has greatly promoted the developments of quantum physics, where novel quantum optics phenomena and potential computational benefits have been predicted. Here, we propose a scheme to accelerate the nontrivial two-qubit phase gate in a circuit QED system, where superconducting flux qubits are ultrastrongly coupled to a transmission line resonator (TLR), and two more TLRs are coupled to the ultrastrongly-coupled system for assistant. The nontrivial unconventional geometric phase gate between the two flux qubits is achieved based on close-loop displacements of the three-mode intracavity fields. Moreover, as there are three resonators contributing to the phase accumulation, the requirement of the coupling strength to realize the two-qubit gate can be reduced. Further reduction in the coupling strength to achieve a specific controlled-phase gate can be realized by adding more auxiliary resonators to the ultrastrongly-coupled system through superconducting quantum interference devices. We also present a study of our scheme with realistic parameters considering imperfect controls and noisy environment. Our scheme possesses the merits of ultrafastness and noise-tolerance due to the advantages of geometric phases.
Ultrafast quantum computation in ultrastrongly coupled circuit QED systems
Wang, Yimin; Guo, Chu; Zhang, Guo-Qiang; Wang, Gangcheng; Wu, Chunfeng
2017-01-01
The latest technological progress of achieving the ultrastrong-coupling regime in circuit quantum electrodynamics (QED) systems has greatly promoted the developments of quantum physics, where novel quantum optics phenomena and potential computational benefits have been predicted. Here, we propose a scheme to accelerate the nontrivial two-qubit phase gate in a circuit QED system, where superconducting flux qubits are ultrastrongly coupled to a transmission line resonator (TLR), and two more TLRs are coupled to the ultrastrongly-coupled system for assistant. The nontrivial unconventional geometric phase gate between the two flux qubits is achieved based on close-loop displacements of the three-mode intracavity fields. Moreover, as there are three resonators contributing to the phase accumulation, the requirement of the coupling strength to realize the two-qubit gate can be reduced. Further reduction in the coupling strength to achieve a specific controlled-phase gate can be realized by adding more auxiliary resonators to the ultrastrongly-coupled system through superconducting quantum interference devices. We also present a study of our scheme with realistic parameters considering imperfect controls and noisy environment. Our scheme possesses the merits of ultrafastness and noise-tolerance due to the advantages of geometric phases. PMID:28281654
Rastgou, Fereydoon; Shojaeifard, Maryam; Amin, Ahmad; Ghaedian, Tahereh; Firoozabadi, Hasan; Malek, Hadi; Yaghoobi, Nahid; Bitarafan-Rajabi, Ahmad; Haghjoo, Majid; Amouzadeh, Hedieh; Barati, Hossein
2014-12-01
Recently, the phase analysis of gated single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) has become feasible via several software packages for the evaluation of left ventricular mechanical dyssynchrony. We compared two quantitative software packages, quantitative gated SPECT (QGS) and Emory cardiac toolbox (ECTb), with tissue Doppler imaging (TDI) as the conventional method for the evaluation of left ventricular mechanical dyssynchrony. Thirty-one patients with severe heart failure (ejection fraction ≤35%) and regular heart rhythm, who referred for gated-SPECT MPI, were enrolled. TDI was performed within 3 days after MPI. Dyssynchrony parameters derived from gated-SPECT MPI were analyzed by QGS and ECTb and were compared with the Yu index and septal-lateral wall delay measured by TDI. QGS and ECTb showed a good correlation for assessment of phase histogram bandwidth (PHB) and phase standard deviation (PSD) (r = 0.664 and r = 0.731, P < .001, respectively). However, the mean value of PHB and PSD by ECTb was significantly higher than that of QGS. No significant correlation was found between ECTb and QGS and the Yu index. Nevertheless, PHB, PSD, and entropy derived from QGS revealed a significant (r = 0.424, r = 0.478, r = 0.543, respectively; P < .02) correlation with septal-lateral wall delay. Despite a good correlation between QGS and ECTb software packages, different normal cut-off values of PSD and PHB should be defined for each software package. There was only a modest correlation between phase analysis of gated-SPECT MPI and TDI data, especially in the population of heart failure patients with both narrow and wide QRS complex.
NASA Astrophysics Data System (ADS)
Zhang, Chun-Ling; Liu, Wen-Wu
2018-05-01
In this paper, combining transitionless quantum driving and quantum Zeno dynamics, we propose an efficient scheme to fast implement a two-qubit quantum phase gate which can be used to generate cluster state of atoms trapped in distant cavities. The influence of various of various error sources including spontaneous emission and photon loss on the fidelity is analyzed via numerical simulation. The results show that this scheme not only takes less time than adiabatic scheme but also is not sensitive to both error sources. Additionally, a creation of N-atom cluster states is put forward as a typical example of the applications of the phase gates.
Towards a controlled-phase gate using Rydberg-dressed atoms
NASA Astrophysics Data System (ADS)
Hankin, Aaron; Jau, Yuan-Yu; Biedermann, Grant
2014-05-01
We are implementing a controlled-phase gate based on singly trapped neutral atoms whose coupling is mediated by the dipole-dipole interaction of Rydberg states. An off-resonant laser field dresses ground state cesium atoms in a manner conditional on the Rydberg blockade mechanism, providing the required entangling interaction. We will present our progress toward implementing the controlled-phase gate with an analysis of possible sources of decoherence such as RF radiation from wireless communication devices. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
New PSM optimized for stable resolution of fine holes in FPD
NASA Astrophysics Data System (ADS)
Imashiki, Nobuhisa; Yoshikawa, Yutaka; Hayase, Michihiko
2017-07-01
Recently, due to increases in the definition of high function panels for mobile devices such as smartphones and tablets, LCD panel TFT and OLED (organic electro luminescence display) circuits are becoming increasingly denser and more miniaturized by the year. TFT and OLED circuits are composed of several layers, such as gate, semiconductor and contact hole (C / H). It is particularly difficult to obtain a stable resolution for C/H due to the decrease in the C/H process margin (EL, DOF, MEEF) as a result of increases in the density of the circuit. Moreover, C/H productivity has also markedly decreased due to an increase in the exposure dose. In response to this, attenuated phase shift mask (Att. PSM) for large size photomasks have been proposed as a means to improve the process margin in FPD. We have developed new PSM that can further improve the process margin and the productivity of C/H via the effective positioning of a high transmittance phase shift film. Using a 1.5um sized hole as the target, we confirmed the improvement effect of the optimized PSM via a software simulation and an exposure test. Hereafter it is necessary for us to optimize the new PSM for each panel process so as to allow us to use this mask in actual processes.
Coupling two spin qubits with a high-impedance resonator
NASA Astrophysics Data System (ADS)
Harvey, S. P.; Bøttcher, C. G. L.; Orona, L. A.; Bartlett, S. D.; Doherty, A. C.; Yacoby, A.
2018-06-01
Fast, high-fidelity single and two-qubit gates are essential to building a viable quantum information processor, but achieving both in the same system has proved challenging for spin qubits. We propose and analyze an approach to perform a long-distance two-qubit controlled phase (CPHASE) gate between two singlet-triplet qubits using an electromagnetic resonator to mediate their interaction. The qubits couple longitudinally to the resonator, and by driving the qubits near the resonator's frequency, they can be made to acquire a state-dependent geometric phase that leads to a CPHASE gate independent of the initial state of the resonator. Using high impedance resonators enables gate times of order 10 ns while maintaining long coherence times. Simulations show average gate fidelities of over 96% using currently achievable experimental parameters and over 99% using state-of-the-art resonator technology. After optimizing the gate fidelity in terms of parameters tuneable in situ, we find it takes a simple power-law form in terms of the resonator's impedance and quality and the qubits' noise bath.
Computational Power of Symmetry-Protected Topological Phases.
Stephen, David T; Wang, Dong-Sheng; Prakash, Abhishodh; Wei, Tzu-Chieh; Raussendorf, Robert
2017-07-07
We consider ground states of quantum spin chains with symmetry-protected topological (SPT) order as resources for measurement-based quantum computation (MBQC). We show that, for a wide range of SPT phases, the computational power of ground states is uniform throughout each phase. This computational power, defined as the Lie group of executable gates in MBQC, is determined by the same algebraic information that labels the SPT phase itself. We prove that these Lie groups always contain a full set of single-qubit gates, thereby affirming the long-standing conjecture that general SPT phases can serve as computationally useful phases of matter.
Computational Power of Symmetry-Protected Topological Phases
NASA Astrophysics Data System (ADS)
Stephen, David T.; Wang, Dong-Sheng; Prakash, Abhishodh; Wei, Tzu-Chieh; Raussendorf, Robert
2017-07-01
We consider ground states of quantum spin chains with symmetry-protected topological (SPT) order as resources for measurement-based quantum computation (MBQC). We show that, for a wide range of SPT phases, the computational power of ground states is uniform throughout each phase. This computational power, defined as the Lie group of executable gates in MBQC, is determined by the same algebraic information that labels the SPT phase itself. We prove that these Lie groups always contain a full set of single-qubit gates, thereby affirming the long-standing conjecture that general SPT phases can serve as computationally useful phases of matter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Chao-Yi; Hsieh, Ching-Heng; Lee, Ching-Wei
2015-02-02
ZrTiO{sub 4} crystallized in orthorhombic (o-) phase was stacked with an amorphous Yb{sub 2}O{sub 3} interfacial layer as the gate dielectric for Si-based p-MOSFETs. With thermal annealing after gate electrode, the gate stack with equivalent oxide thickness (EOT) of 0.82 nm achieves high dielectric quality by showing a low interface trap density (D{sub it}) of 2.75 × 10{sup 11 }cm{sup −2}eV{sup −1} near the midgap and low oxide traps. Crystallization of ZrTiO{sub 4} and post metal annealing are also proven to introduce very limited amount of metal induced gap states or interfacial dipole. The p-MOSFETs exhibit good sub-threshold swing of 75 mV/dec which is ascribedmore » to the low D{sub it} value and small EOT. Owing to the Y{sub 2}O{sub 3} interfacial layer and smooth interface with Si substrate that, respectively, suppress phonon and surface roughness scattering, the p-MOSFETs also display high hole mobility of 49 cm{sup 2}/V-s at 1 MV/cm. In addition, I{sub on}/I{sub off} ratio larger than 10{sup 6} is also observed. From the reliability evaluation by negative bias temperature instability test, after stressing with an electric field of −10 MV/cm at 85 °C for 1000 s, satisfactory threshold voltage shift of 12 mV and sub-threshold swing degradation of 3% were obtained. With these promising characteristics, the Yb{sub 2}O{sub 3}/o-ZrTiO{sub 4} gate stack holds the great potential for next-generation electronics.« less
NASA Astrophysics Data System (ADS)
Hu, Quanli; Ha, Sang-Hyub; Lee, Hyun Ho; Yoon, Tae-Sik
2011-12-01
A nanocrystal (NC) floating gate memory with solution-processed indium-zinc-tin-oxide (IZTO) channel and silver (Ag) NCs embedded in thin gate dielectric layer (SiO2(30 nm)/Al2O3(3 nm)) was fabricated. Both the IZTO channel and colloidal Ag NC layers were prepared by spin-coating and subsequent annealing, and dip-coating process, respectively. A threshold voltage shift up to ~0.9 V, corresponding to the electron density of 6.5 × 1011 cm-2, at gate pulsing <=10 V was achieved by the charging of high density NCs. These results present the successful non-volatile memory characteristics of an oxide-semiconductor transistor fabricated through solution processes.
A SONOS device with a separated charge trapping layer for improvement of charge injection
NASA Astrophysics Data System (ADS)
Ahn, Jae-Hyuk; Moon, Dong-Il; Ko, Seung-Won; Kim, Chang-Hoon; Kim, Jee-Yeon; Kim, Moon-Seok; Seol, Myeong-Lok; Moon, Joon-Bae; Choi, Ji-Min; Oh, Jae-Sub; Choi, Sung-Jin; Choi, Yang-Kyu
2017-03-01
A charge trapping layer that is separated from the primary gate dielectric is implemented on a FinFET SONOS structure. By virtue of the reduced effective oxide thickness of the primary gate dielectric, a strong gate-to-channel coupling is obtained and thus short-channel effects in the proposed device are effectively suppressed. Moreover, a high program/erase speed and a large shift in the threshold voltage are achieved due to the improved charge injection by the reduced effective oxide thickness. The proposed structure has potential for use in high speed flash memory.
Extended-gate organic field-effect transistor for the detection of histamine in water
NASA Astrophysics Data System (ADS)
Minamiki, Tsukuru; Minami, Tsuyoshi; Yokoyama, Daisuke; Fukuda, Kenjiro; Kumaki, Daisuke; Tokito, Shizuo
2015-04-01
As part of our ongoing research program to develop health care sensors based on organic field-effect transistor (OFET) devices, we have attempted to detect histamine using an extended-gate OFET. Histamine is found in spoiled or decayed fish, and causes foodborne illness known as scombroid food poisoning. The new OFET device possesses an extended gate functionalized by carboxyalkanethiol that can interact with histamine. As a result, we have succeeded in detecting histamine in water through a shift in OFET threshold voltage. This result indicates the potential utility of the designed OFET devices in food freshness sensing.
NASA Astrophysics Data System (ADS)
Häusermann, R.; Batlogg, B.
2011-08-01
Gate bias stress instability in organic field-effect transistors (OFETs) is a major conceptual and device issue. This effect manifests itself by an undesirable shift of the transfer characteristics and is associated with long term charge trapping. We study the role of the dielectric and the semiconductor separately by producing OFETs with the same semiconductor (pentacene) combined with different dielectrics (SiO2 and Cytop). We show that it is possible to fabricate devices which are immune to gate bias stress. For other material combinations, charge trapping occurs in the semiconductor alone or in the dielectric.
Lawrenson, Charlotte L.; Watson, Thomas C.
2016-01-01
Pathways arising from the periphery that target the inferior olive [spino-olivocerebellar pathways (SOCPs)] are a vital source of information to the cerebellum and are modulated (gated) during active movements. This limits their ability to forward signals to climbing fibers in the cerebellar cortex. We tested the hypothesis that the temporal pattern of gating is related to the predictability of a sensory signal. Low-intensity electrical stimulation of the ipsilateral hindlimb in awake rats evoked field potentials in the C1 zone in the copula pyramidis of the cerebellar cortex. Responses had an onset latency of 12.5 ± 0.3 ms and were either short or long duration (8.7 ± 0.1 vs 31.2 ± 0.3 ms, respectively). Both types of response were shown to be mainly climbing fiber in origin and therefore evoked by transmission in hindlimb SOCPs. Changes in response size (area of field, millivolts per millisecond) were used to monitor differences in transmission during rest and three phases of rearing: phase 1, rearing up; phase 2, upright; and phase 3, rearing down. Responses evoked during phase 2 were similar in size to rest but were smaller during phases 1 and 3, i.e., transmission was reduced during active movement when self-generated (predictable) sensory signals from the hindlimbs are likely to occur. To test whether the pattern of gating was related to the predictability of the sensory signal, some animals received the hindlimb stimulation only during phase 2. Over ∼10 d, the responses became progressively smaller in size, consistent with gating-out transmission of predictable sensory signals relayed via SOCPs. SIGNIFICANCE STATEMENT A major route for peripheral information to gain access to the cerebellum is via ascending climbing fiber pathways. During active movements, gating of transmission in these pathways controls when climbing fiber signals can modify cerebellar activity. We investigated this phenomenon in rats during their exploratory behavior of rearing. During rearing up and down, transmission was reduced at a time when self-generated, behaviorally irrelevant (predictable) signals occur. However, during the upright phase of rearing, transmission was increased when behaviorally relevant (unpredictable) signals may occur. When the peripheral stimulation was delivered only during the upright phase, so its occurrence became predictable over time, transmission was reduced. Therefore, the results indicate that the gating is related to the level of predictability of a sensory signal. PMID:27466330
Lawrenson, Charlotte L; Watson, Thomas C; Apps, Richard
2016-07-27
Pathways arising from the periphery that target the inferior olive [spino-olivocerebellar pathways (SOCPs)] are a vital source of information to the cerebellum and are modulated (gated) during active movements. This limits their ability to forward signals to climbing fibers in the cerebellar cortex. We tested the hypothesis that the temporal pattern of gating is related to the predictability of a sensory signal. Low-intensity electrical stimulation of the ipsilateral hindlimb in awake rats evoked field potentials in the C1 zone in the copula pyramidis of the cerebellar cortex. Responses had an onset latency of 12.5 ± 0.3 ms and were either short or long duration (8.7 ± 0.1 vs 31.2 ± 0.3 ms, respectively). Both types of response were shown to be mainly climbing fiber in origin and therefore evoked by transmission in hindlimb SOCPs. Changes in response size (area of field, millivolts per millisecond) were used to monitor differences in transmission during rest and three phases of rearing: phase 1, rearing up; phase 2, upright; and phase 3, rearing down. Responses evoked during phase 2 were similar in size to rest but were smaller during phases 1 and 3, i.e., transmission was reduced during active movement when self-generated (predictable) sensory signals from the hindlimbs are likely to occur. To test whether the pattern of gating was related to the predictability of the sensory signal, some animals received the hindlimb stimulation only during phase 2. Over ∼10 d, the responses became progressively smaller in size, consistent with gating-out transmission of predictable sensory signals relayed via SOCPs. A major route for peripheral information to gain access to the cerebellum is via ascending climbing fiber pathways. During active movements, gating of transmission in these pathways controls when climbing fiber signals can modify cerebellar activity. We investigated this phenomenon in rats during their exploratory behavior of rearing. During rearing up and down, transmission was reduced at a time when self-generated, behaviorally irrelevant (predictable) signals occur. However, during the upright phase of rearing, transmission was increased when behaviorally relevant (unpredictable) signals may occur. When the peripheral stimulation was delivered only during the upright phase, so its occurrence became predictable over time, transmission was reduced. Therefore, the results indicate that the gating is related to the level of predictability of a sensory signal. Copyright © 2016 Lawrenson et al.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Eunji; Chowdhury, Md Delwar Hossain; Park, Min Sang
We have studied the effect of top gate bias (V{sub TG}) on the generation of photocurrent and the decay of photocurrent for back channel etched inverted staggered dual gate structure amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film-transistors. Upon 5 min of exposure of 365 nm wavelength and 0.7 mW/cm{sup 2} intensity light with negative bottom gate bias, the maximum photocurrent increases from 3.29 to 322 pA with increasing the V{sub TG} from −15 to +15 V. By changing V{sub TG} from negative to positive, the Fermi level (E{sub F}) shifts toward conduction band edge (E{sub C}), which substantially controls the conversion of neutral vacancy to charged one (V{submore » O} → V{sub O}{sup +}/V{sub O}{sup 2+} + e{sup −}/2e{sup −}), peroxide (O{sub 2}{sup 2−}) formation or conversion of ionized interstitial (O{sub i}{sup 2−}) to neutral interstitial (O{sub i}), thus electron concentration at conduction band. With increasing the exposure time, more carriers are generated, and thus, maximum photocurrent increases until being saturated. After negative bias illumination stress, the transfer curve shows −2.7 V shift at V{sub TG} = −15 V, which gradually decreases to −0.42 V shift at V{sub TG} = +15 V. It clearly reveals that the position of electron quasi-Fermi level controls the formation of donor defects (V{sub O}{sup +}/V{sub O}{sup 2+}/O{sub 2}{sup 2−}/O{sub i}) and/or hole trapping in the a-IGZO /interfaces.« less
Quantum entanglement properties of geometrical and topological quantum gates
NASA Astrophysics Data System (ADS)
Sezer, Hasan Cavit; Duy, Hoang Ngoc; Heydari, Hoshang
2011-03-01
In this paper we will investigate the action of holonomic and topological quantum gates on different classes of four qubit states. In particular, we review the construction of holonomic quantum gate based on geometric phase and topological quantum gate based on braid group. Then, we investigate the entanglement properties of three different classes of four-qubit states based on geometric invariants. The result shows that entanglement properties of the two most generic classes of four-qubit states can be controlled by holonomic and topological quantum gate..
Pulsed phase locked loop strain monitor
NASA Technical Reports Server (NTRS)
Froggatt, Mark E. (Inventor)
1995-01-01
A pulse phase locked loop system according to the present invention is described. A frequency generator such as a voltage controlled oscillator (VCO) generates an output signal and a reference signal having a frequency equal to that of the output signal. A transmitting gate gates the output frequency signal and this gated signal drives a transmitting transducer which transmits an acoustic wave through a material. A sample/hold samples a signal indicative of the transmitted wave which is received by a receiving transducer. Divide-by-n counters control these gating and sampling functions in response to the reference signal of the frequency generator. Specifically, the output signal is gated at a rate of F/h, wherein F is the frequency of the output signal and h is an integer; and the received signal is sampled at a delay of F/n wherein n is an integer.
Quiescent period respiratory gating for PET∕CT
Liu, Chi; Alessio, Adam; Pierce, Larry; Thielemans, Kris; Wollenweber, Scott; Ganin, Alexander; Kinahan, Paul
2010-01-01
Purpose: To minimize respiratory motion artifacts, this work proposes quiescent period gating (QPG) methods that extract PET data from the end-expiration quiescent period and form a single PET frame with reduced motion and improved signal-to-noise properties. Methods: Two QPG methods are proposed and evaluated. Histogram-based quiescent period gating (H-QPG) extracts a fraction of PET data determined by a window of the respiratory displacement signal histogram. Cycle-based quiescent period gating (C-QPG) extracts data with a respiratory displacement signal below a specified threshold of the maximum amplitude of each individual respiratory cycle. Performances of both QPG methods were compared to ungated and five-bin phase-gated images across 21 FDG-PET∕CT patient data sets containing 31 thorax and abdomen lesions as well as with computer simulations driven by 1295 different patient respiratory traces. Image quality was evaluated in terms of the lesion SUVmax and the fraction of counts included in each gate as a surrogate for image noise. Results: For all the gating methods, image noise artifactually increases SUVmax when the fraction of counts included in each gate is less than 50%. While simulation data show that H-QPG is superior to C-QPG, the H-QPG and C-QPG methods lead to similar quantification-noise tradeoffs in patient data. Compared to ungated images, both QPG methods yield significantly higher lesion SUVmax. Compared to five-bin phase gating, the QPG methods yield significantly larger fraction of counts with similar SUVmax improvement. Both QPG methods result in increased lesion SUVmax for patients whose lesions have longer quiescent periods. Conclusions: Compared to ungated and phase-gated images, the QPG methods lead to images with less motion blurring and an improved compromise between SUVmax and fraction of counts. The QPG methods for respiratory motion compensation could effectively improve tumor quantification with minimal noise increase. PMID:20964223
Rapidly reconfigurable all-optical universal logic gate
Goddard, Lynford L.; Bond, Tiziana C.; Kallman, Jeffrey S.
2010-09-07
A new reconfigurable cascadable all-optical on-chip device is presented. The gate operates by combining the Vernier effect with a novel effect, the gain-index lever, to help shift the dominant lasing mode from a mode where the laser light is output at one facet to a mode where it is output at the other facet. Since the laser remains above threshold, the speed of the gate for logic operations as well as for reprogramming the function of the gate is primarily limited to the small signal optical modulation speed of the laser, which can be on the order of up to about tens of GHz. The gate can be rapidly and repeatedly reprogrammed to perform any of the basic digital logic operations by using an appropriate analog optical or electrical signal at the gate selection port. Other all-optical functionality includes wavelength conversion, signal duplication, threshold switching, analog to digital conversion, digital to analog conversion, signal routing, and environment sensing. Since each gate can perform different operations, the functionality of such a cascaded circuit grows exponentially.
Digital microfluidics: Droplet based logic gates
NASA Astrophysics Data System (ADS)
Cheow, Lih Feng; Yobas, Levent; Kwong, Dim-Lee
2007-01-01
The authors present microfluidic logic gates based on two-phase flows at low Reynold's number. The presence and the absence of a dispersed phase liquid (slug) in a continuous phase liquid represent 1 and 0, respectively. The working principle of these devices is based on the change in hydrodynamic resistance for a channel containing droplets. Logical operations including AND, OR, and NOT are demonstrated, and may pave the way for microfludic system automation and computation.
Molecular mechanism of pharmacological activation of BK channels
Gessner, Guido; Cui, Yong-Mei; Otani, Yuko; Ohwada, Tomohiko; Soom, Malle; Hoshi, Toshinori; Heinemann, Stefan H.
2012-01-01
Large-conductance voltage- and Ca2+-activated K+ (Slo1 BK) channels serve numerous cellular functions, and their dysregulation is implicated in various diseases. Drugs activating BK channels therefore bear substantial therapeutic potential, but their deployment has been hindered in part because the mode of action remains obscure. Here we provide mechanistic insight into how the dehydroabietic acid derivative Cym04 activates BK channels. As a representative of NS1619-like BK openers, Cym04 reversibly left-shifts the half-activation voltage of Slo1 BK channels. Using an established allosteric BK gating model, the Cym04 effect can be simulated by a shift of the voltage sensor and the ion conduction gate equilibria toward the activated and open state, respectively. BK activation by Cym04 occurs in a splice variant-specific manner; it does not occur in such Slo1 BK channels using an alternative neuronal exon 9, which codes for the linker connecting the transmembrane segment S6 and the cytosolic RCK1 domain—the S6/RCK linker. In addition, Cym04 does not affect Slo1 BK channels with a two-residue deletion within this linker. Mutagenesis and model-based gating analysis revealed that BK openers, such as Cym04 and NS1619 but not mallotoxin, activate BK channels by functionally interacting with the S6/RCK linker, mimicking site-specific shortening of this purported passive spring, which transmits force from the cytosolic gating ring structure to open the channel's gate. PMID:22331907
Voltage gating of mechanosensitive PIEZO channels.
Moroni, Mirko; Servin-Vences, M Rocio; Fleischer, Raluca; Sánchez-Carranza, Oscar; Lewin, Gary R
2018-03-15
Mechanosensitive PIEZO ion channels are evolutionarily conserved proteins whose presence is critical for normal physiology in multicellular organisms. Here we show that, in addition to mechanical stimuli, PIEZO channels are also powerfully modulated by voltage and can even switch to a purely voltage-gated mode. Mutations that cause human diseases, such as xerocytosis, profoundly shift voltage sensitivity of PIEZO1 channels toward the resting membrane potential and strongly promote voltage gating. Voltage modulation may be explained by the presence of an inactivation gate in the pore, the opening of which is promoted by outward permeation. Older invertebrate (fly) and vertebrate (fish) PIEZO proteins are also voltage sensitive, but voltage gating is a much more prominent feature of these older channels. We propose that the voltage sensitivity of PIEZO channels is a deep property co-opted to add a regulatory mechanism for PIEZO activation in widely different cellular contexts.
Disturb-Free Three-Dimensional Vertical Floating Gate NAND with Separated-Sidewall Control Gate
NASA Astrophysics Data System (ADS)
Seo, Moon-Sik; Endoh, Tetsuo
2012-02-01
Recently, the three-dimensional (3D) vertical floating gate (FG) type NAND cell arrays with the sidewall control gate (SCG) structure are receiving attention to overcome the reliability issues of charge trap (CT) type 3D NAND. In order to achieve the multilevel cell (MLC) operation for lower bit cost in 3D NAND, it is important to eliminate reliability issues, such as the Vth distribution with interference and disturbance problems and Vth shift with retention issues. In this paper, we intensively investigated the disturbance problems of the 3D vertical FG type NAND cell with separated-sidewall control gate (S-SCG) structure for the reliable MLC operation. Above all, we successfully demonstrate the fully suppressed disturbance problems, such as indirect programming of the unselected cells, hot electron injection of the edge cells and direct influence to the neighboring passing cells, by using the S-SCG with 30 nm pillar size.
Lee, Sunwoo; Chung, Keum Jee; Park, In-Sung; Ahn, Jinho
2009-12-01
We report the characteristics of the organic field effect transistor (OFET) after electrical and time stress. Aluminum oxide (Al2O3) was used as a gate dielectric layer. The surface of the gate oxide layer was treated with hydrogen (H2) and nitrogen (N2) mixed gas to minimize the dangling bond at the interface layer of gate oxide. According to the two stress parameters of electrical and time stress, threshold voltage shift was observed. In particular, the mobility and subthreshold swing of OFET were significantly decreased due to hole carrier localization and degradation of the channel layer between gate oxide and pentacene by electrical stress. Electrical stress is a more critical factor in the degradation of mobility than time stress caused by H2O and O2 in the air.
Shear horizontal surface acoustic wave microsensor for Class A viral and bacterial detection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Branch, Darren W.; Huber, Dale L.; Brozik, Susan Marie
The rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms is critical to human health and safety. To achieve a high level of sensitivity for fluidic detection applications, we have developed a 330 MHz Love wave acoustic biosensor on 36{sup o} YX Lithium Tantalate (LTO). Each die has four delay-line detection channels, permitting simultaneous measurement of multiple analytes or for parallel detection of single analyte containing samples. Crucial to our biosensor was the development of a transducer that excites the shear horizontal (SH) mode, through optimization of the transducer, minimizing propagation losses and reducing undesirable modes. Detectionmore » was achieved by comparing the reference phase of an input signal to the phase shift from the biosensor using an integrated electronic multi-readout system connected to a laptop computer or PDA. The Love wave acoustic arrays were centered at 330 MHz, shifting to 325-328 MHz after application of the silicon dioxide waveguides. The insertion loss was -6 dB with an out-of-band rejection of 35 dB. The amplitude and phase ripple were 2.5 dB p-p and 2-3{sup o} p-p, respectively. Time-domain gating confirmed propagation of the SH mode while showing suppression of the triple transit. Antigen capture and mass detection experiments demonstrate a sensitivity of 7.19 {+-} 0.74{sup o} mm{sup 2}/ng with a detection limit of 6.7 {+-} 0.40 pg/mm{sup 2} for each channel.« less
Effect of respiratory and cardiac gating on the major diffusion-imaging metrics
Hamaguchi, Hiroyuki; Sugimori, Hiroyuki; Nakanishi, Mitsuhiro; Nakagawa, Shin; Fujiwara, Taro; Yoshida, Hirokazu; Takamori, Sayaka; Shirato, Hiroki
2016-01-01
The effect of respiratory gating on the major diffusion-imaging metrics and that of cardiac gating on mean kurtosis (MK) are not known. For evaluation of whether the major diffusion-imaging metrics—MK, fractional anisotropy (FA), and mean diffusivity (MD) of the brain—varied between gated and non-gated acquisitions, respiratory-gated, cardiac-gated, and non-gated diffusion-imaging of the brain were performed in 10 healthy volunteers. MK, FA, and MD maps were constructed for all acquisitions, and the histograms were constructed. The normalized peak height and location of the histograms were compared among the acquisitions by use of Friedman and post hoc Wilcoxon tests. The effect of the repetition time (TR) on the diffusion-imaging metrics was also tested, and we corrected for its variation among acquisitions, if necessary. The results showed a shift in the peak location of the MK and MD histograms to the right with an increase in TR (p ≤ 0.01). The corrected peak location of the MK histograms, the normalized peak height of the FA histograms, the normalized peak height and the corrected peak location of the MD histograms varied significantly between the gated and non-gated acquisitions (p < 0.05). These results imply an influence of respiration and cardiac pulsation on the major diffusion-imaging metrics. The gating conditions must be kept identical if reproducible results are to be achieved. PMID:27073115
Heo, Jae Sang; Choi, Seungbeom; Jo, Jeong-Wan; Kang, Jingu; Park, Ho-Hyun; Kim, Yong-Hoon; Park, Sung Kyu
2017-01-01
In this paper, we demonstrate high mobility solution-processed metal-oxide thin-film transistors (TFTs) by using a high-frequency-stable ionic-type hybrid gate dielectric (HGD). The HGD gate dielectric, a blend of sol-gel aluminum oxide (AlOx) and poly(4-vinylphenol) (PVP), exhibited high dielectric constant (ε~8.15) and high-frequency-stable characteristics (1 MHz). Using the ionic-type HGD as a gate dielectric layer, an minimal electron-double-layer (EDL) can be formed at the gate dielectric/InOx interface, enhancing the field-effect mobility of the TFTs. Particularly, using the ionic-type HGD gate dielectrics annealed at 350 °C, InOx TFTs having an average field-effect mobility of 16.1 cm2/Vs were achieved (maximum mobility of 24 cm2/Vs). Furthermore, the ionic-type HGD gate dielectrics can be processed at a low temperature of 150 °C, which may enable their applications in low-thermal-budget plastic and elastomeric substrates. In addition, we systematically studied the operational stability of the InOx TFTs using the HGD gate dielectric, and it was observed that the HGD gate dielectric effectively suppressed the negative threshold voltage shift during the negative-illumination-bias stress possibly owing to the recombination of hole carriers injected in the gate dielectric with the negatively charged ionic species in the HGD gate dielectric. PMID:28772972
Implementation of adiabatic geometric gates with superconducting phase qubits.
Peng, Z H; Chu, H F; Wang, Z D; Zheng, D N
2009-01-28
We present an adiabatic geometric quantum computation strategy based on the non-degenerate energy eigenstates in (but not limited to) superconducting phase qubit systems. The fidelity of the designed quantum gate was evaluated in the presence of simulated thermal fluctuations in a superconducting phase qubits circuit and was found to be quite robust against random errors. In addition, it was elucidated that the Berry phase in the designed adiabatic evolution may be detected directly via the quantum state tomography developed for superconducting qubits. We also analyze the effects of control parameter fluctuations on the experimental detection of the Berry phase.
Quantum logic gates based on ballistic transport in graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dragoman, Daniela; Academy of Romanian Scientists, Splaiul Independentei 54, 050094 Bucharest; Dragoman, Mircea, E-mail: mircea.dragoman@imt.ro
2016-03-07
The paper presents various configurations for the implementation of graphene-based Hadamard, C-phase, controlled-NOT, and Toffoli gates working at room temperature. These logic gates, essential for any quantum computing algorithm, involve ballistic graphene devices for qubit generation and processing and can be fabricated using existing nanolithographical techniques. All quantum gate configurations are based on the very large mean-free-paths of carriers in graphene at room temperature.
Oh, Se An; Yea, Ji Woon; Kim, Sung Kyu
2016-01-01
Respiratory-gated radiation therapy (RGRT) is used to minimize the radiation dose to normal tissue in lung-cancer patients. Although determining the gating window in the respiratory phase of patients is important in RGRT, it is not easy. Our aim was to determine the optimal gating window when using a visible guiding system for RGRT. Between April and October 2014, the breathing signals of 23 lung-cancer patients were recorded with a real-time position management (RPM) respiratory gating system (Varian, USA). We performed statistical analysis with breathing signals to find the optimal gating window for guided breathing in RGRT. When we compared breathing signals before and after the breathing training, 19 of the 23 patients showed statistically significant differences (p < 0.05). The standard deviation of the respiration signals after breathing training was lowest for phases of 30%-70%. The results showed that the optimal gating window in RGRT is 40% (30%-70%) with respect to repeatability for breathing after respiration training with the visible guiding system. RGRT was performed with the RPM system to confirm the usefulness of the visible guiding system. The RPM system and our visible guiding system improve the respiratory regularity, which in turn should improve the accuracy and efficiency of RGRT.
Current–phase relations of few-mode InAs nanowire Josephson junctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spanton, Eric M.; Deng, Mingtang; Vaitiekėnas, Saulius
Gate-tunable semiconductor nanowires with superconducting leads have great potential for quantum computation and as model systems for mesoscopic Josephson junctions. The supercurrent, I, versus the phase, Φ, across the junction is called the current–phase relation (CPR). It can reveal not only the amplitude of the critical current, but also the number of modes and their transmission. Here, we measured the CPR of many individual InAs nanowire Josephson junctions, one junction at a time. Both the amplitude and shape of the CPR varied between junctions, with small critical currents and skewed CPRs indicating few-mode junctions with high transmissions. In a gate-tunablemore » junction, we found that the CPR varied with gate voltage: near the onset of supercurrent, we observed behaviour consistent with resonant tunnelling through a single, highly transmitting mode. The gate dependence is consistent with modelled subband structure that includes an effective tunnelling barrier due to an abrupt change in the Fermi level at the boundary of the gate-tuned region. These measurements of skewed, tunable, few-mode CPRs are promising both for applications that require anharmonic junctions and for Majorana readout proposals.« less
Current–phase relations of few-mode InAs nanowire Josephson junctions
Spanton, Eric M.; Deng, Mingtang; Vaitiekėnas, Saulius; ...
2017-08-14
Gate-tunable semiconductor nanowires with superconducting leads have great potential for quantum computation and as model systems for mesoscopic Josephson junctions. The supercurrent, I, versus the phase, Φ, across the junction is called the current–phase relation (CPR). It can reveal not only the amplitude of the critical current, but also the number of modes and their transmission. Here, we measured the CPR of many individual InAs nanowire Josephson junctions, one junction at a time. Both the amplitude and shape of the CPR varied between junctions, with small critical currents and skewed CPRs indicating few-mode junctions with high transmissions. In a gate-tunablemore » junction, we found that the CPR varied with gate voltage: near the onset of supercurrent, we observed behaviour consistent with resonant tunnelling through a single, highly transmitting mode. The gate dependence is consistent with modelled subband structure that includes an effective tunnelling barrier due to an abrupt change in the Fermi level at the boundary of the gate-tuned region. These measurements of skewed, tunable, few-mode CPRs are promising both for applications that require anharmonic junctions and for Majorana readout proposals.« less
Mori, Shinichiro; Yanagi, Takeshi; Hara, Ryusuke; Sharp, Gregory C; Asakura, Hiroshi; Kumagai, Motoki; Kishimoto, Riwa; Yamada, Shigeru; Kato, Hirotoshi; Kandatsu, Susumu; Kamada, Tadashi
2010-01-01
We compared respiratory-gated and respiratory-ungated treatment strategies using four-dimensional (4D) scattered carbon ion beam distribution in pancreatic 4D computed tomography (CT) datasets. Seven inpatients with pancreatic tumors underwent 4DCT scanning under free-breathing conditions using a rapidly rotating cone-beam CT, which was integrated with a 256-slice detector, in cine mode. Two types of bolus for gated and ungated treatment were designed to cover the planning target volume (PTV) using 4DCT datasets in a 30% duty cycle around exhalation and a single respiratory cycle, respectively. Carbon ion beam distribution for each strategy was calculated as a function of respiratory phase by applying the compensating bolus to 4DCT at the respective phases. Smearing was not applied to the bolus, but consideration was given to drill diameter. The accumulated dose distributions were calculated by applying deformable registration and calculating the dose-volume histogram. Doses to normal tissues in gated treatment were minimized mainly on the inferior aspect, which thereby minimized excessive doses to normal tissues. Over 95% of the dose, however, was delivered to the clinical target volume at all phases for both treatment strategies. Maximum doses to the duodenum and pancreas averaged across all patients were 43.1/43.1 GyE (ungated/gated) and 43.2/43.2 GyE (ungated/gated), respectively. Although gated treatment minimized excessive dosing to normal tissue, the difference between treatment strategies was small. Respiratory gating may not always be required in pancreatic treatment as long as dose distribution is assessed. Any application of our results to clinical use should be undertaken only after discussion with oncologists, particularly with regard to radiotherapy combined with chemotherapy.
Graphene-ferroelectric metadevices for nonvolatile memory and reconfigurable logic-gate operations.
Kim, Woo Young; Kim, Hyeon-Don; Kim, Teun-Teun; Park, Hyun-Sung; Lee, Kanghee; Choi, Hyun Joo; Lee, Seung Hoon; Son, Jaehyeon; Park, Namkyoo; Min, Bumki
2016-01-27
Memory metamaterials are artificial media that sustain transformed electromagnetic properties without persistent external stimuli. Previous memory metamaterials were realized with phase-change materials, such as vanadium dioxide or chalcogenide glasses, which exhibit memory behaviour with respect to electrically/optically induced thermal stimuli. However, they require a thermally isolated environment for longer retention or strong optical pump for phase-change. Here we demonstrate electrically programmable nonvolatile memory metadevices realised by the hybridization of graphene, a ferroelectric and meta-atoms/meta-molecules, and extend the concept further to establish reconfigurable logic-gate metadevices. For a memory metadevice having a single electrical input, amplitude, phase and even the polarization multi-states were clearly distinguishable with a retention time of over 10 years at room temperature. Furthermore, logic-gate functionalities were demonstrated with reconfigurable logic-gate metadevices having two electrical inputs, with each connected to separate ferroelectric layers that act as the multi-level controller for the doping level of the sandwiched graphene layer.
Graphene-ferroelectric metadevices for nonvolatile memory and reconfigurable logic-gate operations
NASA Astrophysics Data System (ADS)
Kim, Woo Young; Kim, Hyeon-Don; Kim, Teun-Teun; Park, Hyun-Sung; Lee, Kanghee; Choi, Hyun Joo; Lee, Seung Hoon; Son, Jaehyeon; Park, Namkyoo; Min, Bumki
2016-01-01
Memory metamaterials are artificial media that sustain transformed electromagnetic properties without persistent external stimuli. Previous memory metamaterials were realized with phase-change materials, such as vanadium dioxide or chalcogenide glasses, which exhibit memory behaviour with respect to electrically/optically induced thermal stimuli. However, they require a thermally isolated environment for longer retention or strong optical pump for phase-change. Here we demonstrate electrically programmable nonvolatile memory metadevices realised by the hybridization of graphene, a ferroelectric and meta-atoms/meta-molecules, and extend the concept further to establish reconfigurable logic-gate metadevices. For a memory metadevice having a single electrical input, amplitude, phase and even the polarization multi-states were clearly distinguishable with a retention time of over 10 years at room temperature. Furthermore, logic-gate functionalities were demonstrated with reconfigurable logic-gate metadevices having two electrical inputs, with each connected to separate ferroelectric layers that act as the multi-level controller for the doping level of the sandwiched graphene layer.
Anesthetics lower Tc of a 2D miscibility critical point in the plasma membrane
NASA Astrophysics Data System (ADS)
Machta, Benjamin; Gray, Elly; Veatch, Sarah
2014-03-01
Many small hydrophobic molecules induce general anesthesia. Their efficacy as anesthetics has been shown to correlate both with their hydrophobicity and with their potency in inhibiting certain ligand gated ion channels. I will first report on our experiments on the effects that these molecules have on the two-dimensional miscibility critical point observed in cell derived vesicles (GPMVs). We show that anesthetics depress the critical temperature (Tc) of these GPMVs but do not strongly affect the ratio of phases found below Tc. The magnitude of this affect is consistent across the n-alcohols only when their concentration is rescaled by the median anesthetic concentration (AC50) for tadpole anesthesia and at AC50 we see a 4K downward shift in Tc. I will next present a model in which anesthetics interfere with native allosteric regulation of ligand gated channels by the critical membrane, showing that our observed change in critical properties could lead to the previously observed changes in channel conductance without a direct interaction between anesthetic molecules and their target proteins. Finally, I will discuss ongoing experiments that will clarify the role of this membrane effect in mediating the organism level anesthetic response.
Triple voltage dc-to-dc converter and method
Su, Gui-Jia
2008-08-05
A circuit and method of providing three dc voltage buses and transforming power between a low voltage dc converter and a high voltage dc converter, by coupling a primary dc power circuit and a secondary dc power circuit through an isolation transformer; providing the gating signals to power semiconductor switches in the primary and secondary circuits to control power flow between the primary and secondary circuits and by controlling a phase shift between the primary voltage and the secondary voltage. The primary dc power circuit and the secondary dc power circuit each further comprising at least two tank capacitances arranged in series as a tank leg, at least two resonant switching devices arranged in series with each other and arranged in parallel with the tank leg, and at least one voltage source arranged in parallel with the tank leg and the resonant switching devices, said resonant switching devices including power semiconductor switches that are operated by gating signals. Additional embodiments having a center-tapped battery on the low voltage side and a plurality of modules on both the low voltage side and the high voltage side are also disclosed for the purpose of reducing ripple current and for reducing the size of the components.
Monolithic GaAs Dual-Gate FET Phase Shifter.
1981-01-01
r ADAO 6 8 CA LABS PRINCETON NJ F/6 9/5 MNOLC4ITHIC SAAS DUAL-GATE FET PHASE SHIFTER.(U) UNC AN 81 M KUMAR, R HENNA, S N SUBBARAO NOOOI’-79-C-0568...PHASNT NUMBERls) M./Kumar S. N./ Subbarao G. T./Taylor -N 4 C 8 R./Menna H./Huang . 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT...PROGRESS ........................................................... 1 A. Development of Discrete 3600 Phase Shifter ....................... 2 B . Development
Brushless DC motor control system responsive to control signals generated by a computer or the like
NASA Technical Reports Server (NTRS)
Packard, D. T. (Inventor)
1985-01-01
A control system for a brushless DC motor responsive to digital control signals is disclosed. The motor includes a multiphase wound stator and a permanent magnet rotor. The motor is arranged so that each phase winding, when energized from a DC source, will drive the rotor through a predetermined angular position or step. A commutation signal generator responsive to the shaft position provides a commutation signal for each winding. A programmable control signal generator such as a computer or microprocessor produces individual digital control signals for each phase winding. The control signals and commutation signals associated with each winding are applied to an AND gate for that phase winding. Each gate controls a switch connected in series with the associated phase winding and the DC source so that each phase winding is energized only when the commutation signal and the control signal associated with that phase winding are present. The motor shaft may be advanced one step at a time to a desired position by applying a predetermined number of control signals in the proper sequence to the AND gates and the torque generated by the motor be regulated by applying a separate control signal and each AND gate which is pulse width modulated to control the total time that each switch connects its associated winding to the DC source during each commutation period.
Brushless DC motor control system responsive to control signals generated by a computer or the like
NASA Technical Reports Server (NTRS)
Packard, Douglas T. (Inventor); Schmitt, Donald E. (Inventor)
1987-01-01
A control system for a brushless DC motor responsive to digital control signals is disclosed. The motor includes a multiphase wound stator and a permanent magnet rotor. The rotor is arranged so that each phase winding, when energized from a DC source, will drive the rotor through a predetermined angular position or step. A commutation signal generator responsive to the shaft position provides a commutation signal for each winding. A programmable control signal generator such as a computer or microprocessor produces individual digital control signals for each phase winding. The control signals and commutation signals associated with each winding are applied to an AND gate for that phase winding. Each gate controls a switch connected in series with the associated phase winding and the DC source so that each phase winding is energized only when the commutation signal and the control signal associated with that phase winding are present. The motor shaft may be advanced one step at a time to a desired position by applying a predetermined number of control signals in the proper sequence to the AND gates and the torque generated by the motor may be regulated by applying a separate control signal to each AND gate which is pulse width modulated to control the total time that each switch connects its associated winding to the DC source during each commutation period.
Oh, S K; Song, C G; Jang, T; Kim, Kwang-Choong; Jo, Y J; Kwak, J S
2013-03-01
This study examined the effect of electron-beam (E-beam) irradiation on the AIGaN/GaN HEMTs for the reduction of gate leakage. After E-beam irradiation, the gate leakage current significantly decreased from 2.68 x 10(-8) A to 4.69 x 10(-9) A at a drain voltage of 10 V. The maximum drain current density of the AIGaN/GaN HEMTs with E-beam irradiation increased 14%, and the threshold voltage exhibited a negative shift, when compared to that of the AIGaN/GaN HEMTs before E-beam irradiation. These results strongly suggest that the reduction of gate leakage current resulted from neutralization nitrogen vacancies and removing of oxygen impurities.
Polarization entangled cluster state generation in a lithium niobate chip
NASA Astrophysics Data System (ADS)
Szep, Attila; Kim, Richard; Shin, Eunsung; Fanto, Michael L.; Osman, Joseph; Alsing, Paul M.
2016-10-01
We present a design of a quantum information processing C-phase (Controlled-phase) gate applicable for generating cluster states that has a form of integrated photonic circuits assembled with cascaded directional couplers on a Ti in-diffused Lithium Niobate (Ti-LN) platform where directional couplers as the integrated optical analogue of bulk beam splitters are used as fundamental building blocks. Based on experimentally optimized fabrication parameters of Ti-LN optical waveguides operating at an 810nm wavelength, an integrated Ti-LN quantum C-phase gate is designed and simulated. Our proposed C-phase gate consists of three tunable directional couplers cascaded together with having different weighted switching ratios for providing a tool of routing vertically- and horizontally-polarized photons independently. Its operation mechanism relies on selectively controlling the optical coupling of orthogonally polarized modes via the change in the index of refraction, and its operation is confirmed by the BPM simulation.
Formation of low resistivity titanium silicide gates in semiconductor integrated circuits
Ishida, Emi [Sunnyvale, CA
1999-08-10
A method of forming a titanium silicide (69) includes the steps of forming a transistor having a source region (58), a drain region (60) and a gate structure (56) and forming a titanium layer (66) over the transistor. A first anneal is performed with a laser anneal at an energy level that causes the titanium layer (66) to react with the gate structure (56) to form a high resistivity titanium silicide phase (68) having substantially small grain sizes. The unreacted portions of the titanium layer (66) are removed and a second anneal is performed, thereby causing the high resistivity titanium silicide phase (68) to convert to a low resistivity titanium silicide phase (69). The small grain sizes obtained by the first anneal allow low resistivity titanium silicide phase (69) to be achieved at device geometries less than about 0.25 micron.
Fast non-Abelian geometric gates via transitionless quantum driving.
Zhang, J; Kyaw, Thi Ha; Tong, D M; Sjöqvist, Erik; Kwek, Leong-Chuan
2015-12-21
A practical quantum computer must be capable of performing high fidelity quantum gates on a set of quantum bits (qubits). In the presence of noise, the realization of such gates poses daunting challenges. Geometric phases, which possess intrinsic noise-tolerant features, hold the promise for performing robust quantum computation. In particular, quantum holonomies, i.e., non-Abelian geometric phases, naturally lead to universal quantum computation due to their non-commutativity. Although quantum gates based on adiabatic holonomies have already been proposed, the slow evolution eventually compromises qubit coherence and computational power. Here, we propose a general approach to speed up an implementation of adiabatic holonomic gates by using transitionless driving techniques and show how such a universal set of fast geometric quantum gates in a superconducting circuit architecture can be obtained in an all-geometric approach. Compared with standard non-adiabatic holonomic quantum computation, the holonomies obtained in our approach tends asymptotically to those of the adiabatic approach in the long run-time limit and thus might open up a new horizon for realizing a practical quantum computer.
Fast non-Abelian geometric gates via transitionless quantum driving
Zhang, J.; Kyaw, Thi Ha; Tong, D. M.; Sjöqvist, Erik; Kwek, Leong-Chuan
2015-01-01
A practical quantum computer must be capable of performing high fidelity quantum gates on a set of quantum bits (qubits). In the presence of noise, the realization of such gates poses daunting challenges. Geometric phases, which possess intrinsic noise-tolerant features, hold the promise for performing robust quantum computation. In particular, quantum holonomies, i.e., non-Abelian geometric phases, naturally lead to universal quantum computation due to their non-commutativity. Although quantum gates based on adiabatic holonomies have already been proposed, the slow evolution eventually compromises qubit coherence and computational power. Here, we propose a general approach to speed up an implementation of adiabatic holonomic gates by using transitionless driving techniques and show how such a universal set of fast geometric quantum gates in a superconducting circuit architecture can be obtained in an all-geometric approach. Compared with standard non-adiabatic holonomic quantum computation, the holonomies obtained in our approach tends asymptotically to those of the adiabatic approach in the long run-time limit and thus might open up a new horizon for realizing a practical quantum computer. PMID:26687580
Ji, Hyunjin; Joo, Min-Kyu; Yi, Hojoon; Choi, Homin; Gul, Hamza Zad; Ghimire, Mohan Kumar; Lim, Seong Chu
2017-08-30
There is a general consensus that the carrier mobility in a field-effect transistor (FET) made of semiconducting transition-metal dichalcogenides (s-TMDs) is severely degraded by the trapping/detrapping and Coulomb scattering of carriers by ionic charges in the gate oxides. Using a double-gated (DG) MoTe 2 FET, we modulated and enhanced the carrier mobility by adjusting the top- and bottom-gate biases. The relevant mechanism for mobility tuning in this device was explored using static DC and low-frequency (LF) noise characterizations. In the investigations, LF-noise analysis revealed that for a strong back-gate bias the Coulomb scattering of carriers by ionized traps in the gate dielectrics is strongly screened by accumulation charges. This significantly reduces the electrostatic scattering of channel carriers by the interface trap sites, resulting in increased mobility. The reduction of the number of effective trap sites also depends on the gate bias, implying that owing to the gate bias, the carriers are shifted inside the channel. Thus, the number of active trap sites decreases as the carriers are repelled from the interface by the gate bias. The gate-controlled Coulomb-scattering parameter and the trap-site density provide new handles for improving the carrier mobility in TMDs, in a fundamentally different way from dielectric screening observed in previous studies.
NASA Astrophysics Data System (ADS)
Wang, Q.; Song, Z. T.; Liu, W. L.; Lin, C. L.; Wang, T. H.
2004-05-01
Monolayer-isolated silver (Ag) nanodots with the average diameter down to 7 nm are synthesized on Al 2O 3/Si substrate by vacuum electron-beam evaporation followed by annealing at 400 °C in N 2 ambient. Metal-insulator-silicon (MIS) structures with Ag nanodots embedded in Al 2O 3 gate dielectric are fabricated. Clear electron storage effect with the flatband voltage shift of 1.3 eV is observed through capacitance-conductance and conductance-voltage measurements. Our results demonstrate the feasibility of applying Ag nanodots for nanocrystal floating-gate memory devices.
Muroi, Yukiko; Chanda, Baron
2009-01-01
Local anesthetics block sodium channels in a state-dependent fashion, binding with higher affinity to open and/or inactivated states. Gating current measurements show that local anesthetics immobilize a fraction of the gating charge, suggesting that the movement of voltage sensors is modified when a local anesthetic binds to the pore of the sodium channel. Here, using voltage clamp fluorescence measurements, we provide a quantitative description of the effect of local anesthetics on the steady-state behavior of the voltage-sensing segments of a sodium channel. Lidocaine and QX-314 shifted the midpoints of the fluorescence-voltage (F-V) curves of S4 domain III in the hyperpolarizing direction by 57 and 65 mV, respectively. A single mutation in the S6 of domain IV (F1579A), a site critical for local anesthetic block, abolished the effect of QX-314 on the voltage sensor of domain III. Both local anesthetics modestly shifted the F-V relationships of S4 domain IV toward hyperpolarized potentials. In contrast, the F-V curve of the S4 domain I was shifted by 11 mV in the depolarizing direction upon QX-314 binding. These antagonistic effects of the local anesthetic indicate that the drug modifies the coupling between the voltage-sensing domains of the sodium channel. Our findings suggest a novel role of local anesthetics in modulating the gating apparatus of the sodium channel.
NASA Astrophysics Data System (ADS)
Lükens, G.; Yacoub, H.; Kalisch, H.; Vescan, A.
2016-05-01
The interface charge density between the gate dielectric and an AlGaN/GaN heterostructure has a significant impact on the absolute value and stability of the threshold voltage Vth of metal-insulator-semiconductor (MIS) heterostructure field effect transistor. It is shown that a dry-etching step (as typically necessary for normally off devices engineered by gate-recessing) before the Al2O3 gate dielectric deposition introduces a high positive interface charge density. Its origin is most likely donor-type trap states shifting Vth to large negative values, which is detrimental for normally off devices. We investigate the influence of oxygen plasma annealing techniques of the dry-etched AlGaN/GaN surface by capacitance-voltage measurements and demonstrate that the positive interface charge density can be effectively compensated. Furthermore, only a low Vth hysteresis is observable making this approach suitable for threshold voltage engineering. Analysis of the electrostatics in the investigated MIS structures reveals that the maximum Vth shift to positive voltages achievable is fundamentally limited by the onset of accumulation of holes at the dielectric/barrier interface. In the case of the Al2O3/Al0.26Ga0.74N/GaN material system, this maximum threshold voltage shift is limited to 2.3 V.
Feng, Jijun; Akimoto, Ryoichi; Gozu, Shin-ichiro; Mozume, Teruo; Hasama, Toshifumi; Ishikawa, Hiroshi
2013-07-01
We demonstrate a compact all-optical Michelson interferometer (MI) gating switch with monolithic integration of two different bandgap energies. Based on the ion-induced intermixing in InGaAs/AlAsSb coupled double quantum wells, the blueshift of the band edge can be tailored. Through phosphorus ion implantation with a dose of 5 × 10(14) cm(-2) and subsequent annealing at 720 °C for 60 s, an implanted sample can acquire a high transmittance compared with the as-grown one. Meanwhile, the cross-phase modulation (XPM) efficiency of a non-implanted sample undergoing the same annealing process decreases little. An implanted part for signal propagation and a non-implanted section for XPM are thus monolithically integrated for an MI switch by an area-selective manner. Full switching of a π-rad nonlinear phase shift is achieved with pump pulse energy of 5.6 pJ at a 10-GHz repetition rate.
Effects of protein inter-layers on cell-diamond FET characteristics.
Rezek, Bohuslav; Krátká, Marie; Kromka, Alexander; Kalbacova, Marie
2010-12-15
Diamond is recognized as an attractive material for merging solid-state and biological systems. The advantage of diamond field-effect transistors (FET) is that they are chemically resistant, bio-compatible, and can operate without gate oxides. Solution-gated FETs based on H-terminated nanocrystalline diamond films exhibiting surface conductivity are employed here for studying effects of fetal bovine serum (FBS) proteins and osteoblastic SAOS-2 cells on diamond electronic properties. FBS proteins adsorbed on the diamond FETs permanently decrease diamond conductivity as reflected by the -45 mV shift of the FET transfer characteristics. Cell cultivation for 2 days results in a further shift by another -78 mV. We attribute it to a change of diamond material properties rather than purely to the field-effect. Increase in gate leakage currents (by a factor of 4) indicates that the FBS proteins also decrease the diamond-electrolyte electronic barrier induced by C-H surface dipoles. We propose a model where the proteins replace ions in the very vicinity of the H-terminated diamond surface. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Han, Chang-Wook; Han, Min-Koo; Choi, Nack-Bong; Kim, Chang-Dong; Kim, Ki-Yong; Chung, In-Jae
2007-07-01
Hydrogenated amorphous silicon (a-Si:H) thin-film transistors (TFTs) were fabricated on a flexible stainless-steel (SS) substrate. The stability of the a-Si:H TFT is a key issue for active matrix organic light-emitting diodes (AMOLEDs). The drain current decreases because of the threshold voltage shift (Δ VTH) during OLED driving. A negative voltage at a floated gate can be induced by a negative substrate bias through a capacitor between the substrate and the gate electrode without additional circuits. The negative voltage biased at the SS substrate can recover Δ VTH and reduced drain current of the driving TFT. The VTH of the TFT increased by 2.3 V under a gate bias of +15 V and a drain bias of +15 V at 65 °C applied for 3,500 s. The VTH decreased by -2.3 V and the drain current recovered 97% of its initial value under a substrate bias of -23 V at 65 °C applied for 3,500 s.
Fabrication of arrayed Si nanowire-based nano-floating gate memory devices on flexible plastics.
Yoon, Changjoon; Jeon, Youngin; Yun, Junggwon; Kim, Sangsig
2012-01-01
Arrayed Si nanowire (NW)-based nano-floating gate memory (NFGM) devices with Pt nanoparticles (NPs) embedded in Al2O3 gate layers are successfully constructed on flexible plastics by top-down approaches. Ten arrayed Si NW-based NFGM devices are positioned on the first level. Cross-linked poly-4-vinylphenol (PVP) layers are spin-coated on them as isolation layers between the first and second level, and another ten devices are stacked on the cross-linked PVP isolation layers. The electrical characteristics of the representative Si NW-based NFGM devices on the first and second levels exhibit threshold voltage shifts, indicating the trapping and detrapping of electrons in their NPs nodes. They have an average threshold voltage shift of 2.5 V with good retention times of more than 5 x 10(4) s. Moreover, most of the devices successfully retain their electrical characteristics after about one thousand bending cycles. These well-arrayed and stacked Si NW-based NFGM devices demonstrate the potential of nanowire-based devices for large-scale integration.
NASA Astrophysics Data System (ADS)
Georgiev, Lachezar S.
2006-12-01
We extend the topological quantum computation scheme using the Pfaffian quantum Hall state, which has been recently proposed by Das Sarma , in a way that might potentially allow for the topologically protected construction of a universal set of quantum gates. We construct, for the first time, a topologically protected controlled-NOT gate, which is entirely based on quasihole braidings of Pfaffian qubits. All single-qubit gates, except for the π/8 gate, are also explicitly implemented by quasihole braidings. Instead of the π/8 gate we try to construct a topologically protected Toffoli gate, in terms of the controlled-phase gate and CNOT or by a braid-group-based controlled-controlled- Z precursor. We also give a topologically protected realization of the Bravyi-Kitaev two-qubit gate g3 .
SU-F-T-634: Feasibility Study of Respiratory Gated RapidArc SBRT Using a 6MV FFF Photon Beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dou, K; Safaraz, M; Rodgers, J
Purpose: To conduct a feasibility study on retrospective respiratory gating and marker tracking for lung stereotactic body radiotherapy (SBRT) with a gated RapidArc delivery using a 6MV flattened filter free photon mode. Methods: A CIRS dynamic thorax phantom Model 008A with different inserts was used for treatment planning and respiratory gating. 4D CT had a free breathing simulation followed by a respiration gated, ten phased CT using a Philips Brilliance CT with a Varian RPM respiratory gating system. The internal target volume was created from the ten phase gated CT images, followed by exporting to a Varian Eclipse TPS v11more » for treatment planning on the free breath images. Both MIP and AIP were also generated for comparison of planning and target motion tracking. The planned dose was delivered with a 6MV FFF photon beam from a Varian TrueBeam accelerator. Gated target motion was also verified by tracking the implanted makers during delivery using continuous kV imaging in addition to CBCT, kV and MV localization and verification. Results: Gating was studied in three situations of lower, normal, and faster breathing at a respiratory cycle of 5, 15 and 25 breaths per minute, respectively. 4D treatment planning was performed at a normal breathing of 15 breaths per minute. The gated patterns obtained using the TrueBeam IR camera were compared with the planned ones while gating operation was added prior to delivery . Gating was realized only when the measured respiratory patterns matched to the planned ones. The gated target motion was verified within the tolerance by kV and MV imaging. Either free breathing CT or averaged CT images were studied to be good for image guidance to align the target. Conclusion: Gated RapidArc SBRT delivered with a 6MV FFF photon beam is realized using a dynamic lung phantom.« less
Effect of respiratory and cardiac gating on the major diffusion-imaging metrics.
Hamaguchi, Hiroyuki; Tha, Khin Khin; Sugimori, Hiroyuki; Nakanishi, Mitsuhiro; Nakagawa, Shin; Fujiwara, Taro; Yoshida, Hirokazu; Takamori, Sayaka; Shirato, Hiroki
2016-08-01
The effect of respiratory gating on the major diffusion-imaging metrics and that of cardiac gating on mean kurtosis (MK) are not known. For evaluation of whether the major diffusion-imaging metrics-MK, fractional anisotropy (FA), and mean diffusivity (MD) of the brain-varied between gated and non-gated acquisitions, respiratory-gated, cardiac-gated, and non-gated diffusion-imaging of the brain were performed in 10 healthy volunteers. MK, FA, and MD maps were constructed for all acquisitions, and the histograms were constructed. The normalized peak height and location of the histograms were compared among the acquisitions by use of Friedman and post hoc Wilcoxon tests. The effect of the repetition time (TR) on the diffusion-imaging metrics was also tested, and we corrected for its variation among acquisitions, if necessary. The results showed a shift in the peak location of the MK and MD histograms to the right with an increase in TR (p ≤ 0.01). The corrected peak location of the MK histograms, the normalized peak height of the FA histograms, the normalized peak height and the corrected peak location of the MD histograms varied significantly between the gated and non-gated acquisitions (p < 0.05). These results imply an influence of respiration and cardiac pulsation on the major diffusion-imaging metrics. The gating conditions must be kept identical if reproducible results are to be achieved. © The Author(s) 2016.
Molecular interactions involved in proton-dependent gating in KcsA potassium channels
Posson, David J.; Thompson, Ameer N.; McCoy, Jason G.
2013-01-01
The bacterial potassium channel KcsA is gated open by the binding of protons to amino acids on the intracellular side of the channel. We have identified, via channel mutagenesis and x-ray crystallography, two pH-sensing amino acids and a set of nearby residues involved in molecular interactions that influence gating. We found that the minimal mutation of one histidine (H25) and one glutamate (E118) near the cytoplasmic gate completely abolished pH-dependent gating. Mutation of nearby residues either alone or in pairs altered the channel’s response to pH. In addition, mutations of certain pairs of residues dramatically increased the energy barriers between the closed and open states. We proposed a Monod–Wyman–Changeux model for proton binding and pH-dependent gating in KcsA, where H25 is a “strong” sensor displaying a large shift in pKa between closed and open states, and E118 is a “weak” pH sensor. Modifying model parameters that are involved in either the intrinsic gating equilibrium or the pKa values of the pH-sensing residues was sufficient to capture the effects of all mutations. PMID:24218397
Gate-Variable Mid-Infrared Optical Transitions in a (Bi1-xSbx)2Te3 Topological Insulator.
Whitney, William S; Brar, Victor W; Ou, Yunbo; Shao, Yinming; Davoyan, Artur R; Basov, D N; He, Ke; Xue, Qi-Kun; Atwater, Harry A
2017-01-11
We report mid-infrared spectroscopy measurements of ultrathin, electrostatically gated (Bi 1-x Sb x ) 2 Te 3 topological insulator films in which we observe several percent modulation of transmittance and reflectance as gating shifts the Fermi level. Infrared transmittance measurements of gated films were enabled by use of an epitaxial lift-off method for large-area transfer of topological insulator films from infrared-absorbing SrTiO 3 growth substrates to thermal oxidized silicon substrates. We combine these optical experiments with transport measurements and angle-resolved photoemission spectroscopy to identify the observed spectral modulation as a gate-driven transfer of spectral weight between both bulk and 2D topological surface channels and interband and intraband channels. We develop a model for the complex permittivity of gated (Bi 1-x Sb x ) 2 Te 3 and find a good match to our experimental data. These results open the path for layered topological insulator materials as a new candidate for tunable, ultrathin infrared optics and highlight the possibility of switching topological optoelectronic phenomena between bulk and spin-polarized surface regimes.
NASA Astrophysics Data System (ADS)
Kunii, M.; Iino, H.; Hanna, J.
2017-06-01
Bias-stress effects in solution-processed, 2-decyl-7-phenyl-[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-10) field effect transistors (FETs) are studied under negative and positive direct current bias. The bottom gate, bottom contact polycrystalline Ph-BTBT-10 FET with a hybrid gate dielectric of polystyrene and SiO2 shows high field effect mobility as well as a steep subthreshold slope when fabricated with a highly ordered smectic E liquid crystalline (SmE) film as a precursor. Negative gate bias-stress causes negative threshold voltage shift (ΔVth) for Ph-BTBT-10 FET in ambient air, but ΔVth rapidly decreases as the gate bias decreases and approaches to near zero when the gate bias goes down to 9 V in amplitude. In contrast, positive gate bias-stress causes negligible ΔVth even with a relatively high bias voltage. These results conclude that Ph-BTBT-10 FET has excellent bias-stress stability in ambient air in the range of low to moderate operating voltages.
Universal quantum computation using all-optical hybrid encoding
NASA Astrophysics Data System (ADS)
Guo, Qi; Cheng, Liu-Yong; Wang, Hong-Fu; Zhang, Shou
2015-04-01
By employing displacement operations, single-photon subtractions, and weak cross-Kerr nonlinearity, we propose an alternative way of implementing several universal quantum logical gates for all-optical hybrid qubits encoded in both single-photon polarization state and coherent state. Since these schemes can be straightforwardly implemented only using local operations without teleportation procedure, therefore, less physical resources and simpler operations are required than the existing schemes. With the help of displacement operations, a large phase shift of the coherent state can be obtained via currently available tiny cross-Kerr nonlinearity. Thus, all of these schemes are nearly deterministic and feasible under current technology conditions, which makes them suitable for large-scale quantum computing. Project supported by the National Natural Science Foundation of China (Grant Nos. 61465013, 11465020, and 11264042).
Pänkäälä, Mikko; Paasio, Ari
2014-01-01
Both respiratory and cardiac motions reduce the quality and consistency of medical imaging specifically in nuclear medicine imaging. Motion artifacts can be eliminated by gating the image acquisition based on the respiratory phase and cardiac contractions throughout the medical imaging procedure. Electrocardiography (ECG), 3-axis accelerometer, and respiration belt data were processed and analyzed from ten healthy volunteers. Seismocardiography (SCG) is a noninvasive accelerometer-based method that measures accelerations caused by respiration and myocardial movements. This study was conducted to investigate the feasibility of the accelerometer-based method in dual gating technique. The SCG provides accelerometer-derived respiratory (ADR) data and accurate information about quiescent phases within the cardiac cycle. The correct information about the status of ventricles and atria helps us to create an improved estimate for quiescent phases within a cardiac cycle. The correlation of ADR signals with the reference respiration belt was investigated using Pearson correlation. High linear correlation was observed between accelerometer-based measurement and reference measurement methods (ECG and Respiration belt). Above all, due to the simplicity of the proposed method, the technique has high potential to be applied in dual gating in clinical cardiac positron emission tomography (PET) to obtain motion-free images in the future. PMID:25120563
Probing spin helical surface states in topological HgTe nanowires
NASA Astrophysics Data System (ADS)
Ziegler, J.; Kozlovsky, R.; Gorini, C.; Liu, M.-H.; Weishäupl, S.; Maier, H.; Fischer, R.; Kozlov, D. A.; Kvon, Z. D.; Mikhailov, N.; Dvoretsky, S. A.; Richter, K.; Weiss, D.
2018-01-01
Nanowires with helical surface states represent key prerequisites for observing and exploiting phase-coherent topological conductance phenomena, such as spin-momentum locked quantum transport or topological superconductivity. We demonstrate in a joint experimental and theoretical study that gated nanowires fabricated from high-mobility strained HgTe, known as a bulk topological insulator, indeed preserve the topological nature of the surface states, that moreover extend phase-coherently across the entire wire geometry. The phase-coherence lengths are enhanced up to 5 μ m when tuning the wires into the bulk gap, so as to single out topological transport. The nanowires exhibit distinct conductance oscillations, both as a function of the flux due to an axial magnetic field and of a gate voltage. The observed h /e -periodic Aharonov-Bohm-type modulations indicate surface-mediated quasiballistic transport. Furthermore, an in-depth analysis of the scaling of the observed gate-dependent conductance oscillations reveals the topological nature of these surface states. To this end we combined numerical tight-binding calculations of the quantum magnetoconductance with simulations of the electrostatics, accounting for the gate-induced inhomogeneous charge carrier densities around the wires. We find that helical transport prevails even for strongly inhomogeneous gating and is governed by flux-sensitive high-angular momentum surface states that extend around the entire wire circumference.
Inhibitory effects of magnolol on voltage-gated Na+ and K+ channels of NG108-15 cells.
Gong, Chi-Li; Wong, Kar-Lok; Cheng, Ka-Shun; Kuo, Chang-Shin; Chao, Chia-Chia; Tsai, Min-Fan; Leung, Yuk-Man
2012-05-05
Magnolol, a polyphenolic compound isolated from Houpu, a Chinese herb from the bark of Magnolia officinalis, has been reported to have in vitro and in vivo neuroprotective effects. In spite of these reported beneficial effects, studies on the direct impact of magnolol on neuronal ion channels have been scarce. Whether magnolol affects voltage-gated Na(+) channels (VGSC) and voltage-gated K(+) (Kv) channels is unknown. Using the whole-cell voltage-clamp method, we studied the effects of magnolol on voltage-gated ion channels in neuronal NG108-15 cells. Magnolol inhibited VGSC channels with mild state-dependence (IC(50) of 15 and 30 μM, at holding potentials of -70 and -100 mV, respectively). No frequency-dependence was observed in magnolol block. Magnolol caused a left-shift of 18 mV in the steady-state inactivation curve but did not affect the voltage-dependence of activation. Magnolol inhibited Kv channels with an IC(50) of 21 μM, and it caused a 20-mV left-shift in the steady-state inactivation curve without affecting the voltage-dependence of activation. In conclusion, magnolol is an inhibitor of both VGSC and Kv channels and these inhibitory effects may in part contribute to some of the reported neuroprotective effects of magnolol. Copyright © 2012 Elsevier B.V. All rights reserved.
Carvacrol modulates voltage-gated sodium channels kinetics in dorsal root ganglia.
Joca, Humberto Cavalcante; Vieira, Daiana Cardoso Oliveira; Vasconcelos, Aliny Perreira; Araújo, Demetrius Antônio Machado; Cruz, Jader Santos
2015-06-05
Recent studies have shown that many of plant-derived compounds interact with specific ion channels and thereby modulate many sensing mechanisms, such as nociception. The monoterpenoid carvacrol (5-isopropyl-2-methylphenol) has an anti-nociceptive effect related to a reduction in neuronal excitability and voltage-gated Na(+) channels (NaV) inhibition in peripheral neurons. However, the detailed mechanisms of carvacrol-induced inhibition of neuronal NaV remain elusive. This study explores the interaction between carvacrol and NaV in isolated dorsal root ganglia neurons. Carvacrol reduced the total voltage-gated Na(+) current and tetrodotoxin-resistant (TTX-R) Na(+) current component in a concentration-dependent manner. Carvacrol accelerates current inactivation and induced a negative-shift in voltage-dependence of steady-state fast inactivation in total and TTX-R Na(+) current. Furthermore, carvacrol slowed the recovery from inactivation. Carvacrol provoked a leftward shift in both the voltage-dependence of steady-state inactivation and activation of the TTX-R Na(+) current component. In addition, carvacrol-induced inhibition of TTX-R Na(+) current was enhanced by an increase in stimulation frequency and when neurons were pre-conditioned with long depolarization pulse (5s at -50 mV). Taken all results together, we herein demonstrated that carvacrol affects NaV gating properties. The present findings would help to explain the mechanisms underlying the analgesic activity of carvacrol. Copyright © 2015 Elsevier B.V. All rights reserved.
A high performance DAC /DDS daughter module for the RHIC LLRF platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes, T.; Harvey, M.; Narayan, G.
The RHIC LLRF upgrade is a flexible, modular system. Output signals are generated by a custom designed XMC card with 4 high speed digital to analog (DAC) converters interfaced to a high performance field programmable gate array (FPGA). This paper discusses the hardware details of the XMC DAC board as well as the implementation of a low noise rf synthesizer with digital IQ modulation. This synthesizer also provides injection phase cogging and frequency hop rebucketing capabilities. A new modular RHIC LLRF system was recently designed and commissioned based on custom designed XMC cards. As part of that effort a highmore » speed, four channel DAC board was designed. The board uses Maxim MAX5891 16 bit DACs with a maximum update rate of 600 Msps. Since this module is intended to be used for many different systems throughout the Collider Accelerator complex, it was designed to be as generic as possible. One major application of this DAC card is to implement digital synthesizers to provide drive signals to the various cavities at RHIC. Since RHIC is a storage ring with stores that typically last many hours, extremely low RF noise is a critical requirement. Synchrotron frequencies at RHIC range from a few hertz to several hundred hertz depending on the species and point in the acceleration cycle so close in phase noise is a major concern. The RHIC LLRF system uses the Update Link, a deterministic, high speed data link that broadcasts the revolution frequency and the synchronous phase angle. The digital synthesizers use this data to generate a properly phased analog drive signal. The synthesizers must also provide smooth phase shifts for cogging and support frequency shift rebucketing. One additional feature implemented in the FPGA is a digital waveform generator (WFG) that generates I and Q data pairs based on a user selected amplitude and phase profile as a function of time.« less
High-mobility solution-processed copper phthalocyanine-based organic field-effect transistors.
Chaure, Nandu B; Cammidge, Andrew N; Chambrier, Isabelle; Cook, Michael J; Cain, Markys G; Murphy, Craig E; Pal, Chandana; Ray, Asim K
2011-04-01
Solution-processed films of 1,4,8,11,15,18,22,25-octakis(hexyl) copper phthalocyanine (CuPc 6 ) were utilized as an active semiconducting layer in the fabrication of organic field-effect transistors (OFETs) in the bottom-gate configurations using chemical vapour deposited silicon dioxide (SiO 2 ) as gate dielectrics. The surface treatment of the gate dielectric with a self-assembled monolayer of octadecyltrichlorosilane (OTS) resulted in values of 4×10 -2 cm 2 V -1 s -1 and 10 6 for saturation mobility and on/off current ratio, respectively. This improvement was accompanied by a shift in the threshold voltage from 3 V for untreated devices to -2 V for OTS treated devices. The trap density at the interface between the gate dielectric and semiconductor decreased by about one order of magnitude after the surface treatment. The transistors with the OTS treated gate dielectrics were more stable over a 30-day period in air than untreated ones.
High-mobility solution-processed copper phthalocyanine-based organic field-effect transistors
Chaure, Nandu B; Cammidge, Andrew N; Chambrier, Isabelle; Cook, Michael J; Cain, Markys G; Murphy, Craig E; Pal, Chandana; Ray, Asim K
2011-01-01
Solution-processed films of 1,4,8,11,15,18,22,25-octakis(hexyl) copper phthalocyanine (CuPc6) were utilized as an active semiconducting layer in the fabrication of organic field-effect transistors (OFETs) in the bottom-gate configurations using chemical vapour deposited silicon dioxide (SiO2) as gate dielectrics. The surface treatment of the gate dielectric with a self-assembled monolayer of octadecyltrichlorosilane (OTS) resulted in values of 4×10−2 cm2 V−1 s−1 and 106 for saturation mobility and on/off current ratio, respectively. This improvement was accompanied by a shift in the threshold voltage from 3 V for untreated devices to -2 V for OTS treated devices. The trap density at the interface between the gate dielectric and semiconductor decreased by about one order of magnitude after the surface treatment. The transistors with the OTS treated gate dielectrics were more stable over a 30-day period in air than untreated ones. PMID:27877383
NASA Astrophysics Data System (ADS)
Chattopadhyay, Avik; Mallik, Abhijit; Omura, Yasuhisa
2015-06-01
A gate-on-germanium source (GoGeS) tunnel field-effect transistor (TFET) shows great promise for low-power (sub-0.5 V) applications. A detailed investigation, with the help of a numerical device simulator, on the effects of variation in different structural parameters of a GoGeS TFET on its electrical performance is reported in this paper. Structural parameters such as κ-value of the gate dielectric, length and κ-value of the spacer, and doping concentrations of both the substrate and source are considered. A low-κ symmetric spacer and a high-κ gate dielectric are found to yield better device performance. The substrate doping influences only the p-i-n leakage floor. The source doping is found to significantly affect performance parameters such as OFF-state current, ON-state current and subthreshold swing, in addition to a threshold voltage shift. Results of the investigation on the gate length scaling of such devices are also reported in this paper.
NASA Astrophysics Data System (ADS)
Ma, Yun-Ming; Wang, Tie-Jun
2017-10-01
Higher-dimensional quantum system is of great interest owing to the outstanding features exhibited in the implementation of novel fundamental tests of nature and application in various quantum information tasks. High-dimensional quantum logic gate is a key element in scalable quantum computation and quantum communication. In this paper, we propose a scheme to implement a controlled-phase gate between a 2 N -dimensional photon and N three-level artificial atoms. This high-dimensional controlled-phase gate can serve as crucial components of the high-capacity, long-distance quantum communication. We use the high-dimensional Bell state analysis as an example to show the application of this device. Estimates on the system requirements indicate that our protocol is realizable with existing or near-further technologies. This scheme is ideally suited to solid-state integrated optical approaches to quantum information processing, and it can be applied to various system, such as superconducting qubits coupled to a resonator or nitrogen-vacancy centers coupled to a photonic-band-gap structures.
Sci-Thur PM: YIS - 03: Comparing 4D-VMAT, Gated-VMAT and 3D-VMAT in SBRT treatment of lung cancer.
Chin, E; Loewen, S; Nichol, A; Otto, K
2012-07-01
To evaluate the treatment plan qualities of 4D-VMAT, gated-VMAT and 3D-VMAT in the treatment of non-small cell lung cancer (NSCLC) in stereotactic body radiation therapy (SBRT). 4D-VMAT is a motion compensation strategy that aims to exploit relative target and OAR motion to increase OAR sparing over 3D-VMAT without the long treatment times associated with gated-VMAT. The 4D-VMAT algorithm incorporates the entire patient respiratory cycle and 4D-CT in the optimization process. Resulting treatment plans synchronize the delivery of each MLC aperture to a specific phase of the target motion. Using software developed in Matlab™, SBRT treatment plans for 4D-VMAT, gated-VMAT and 3D-VMAT were generated on 3 patients with NSCLC. Tumour motion ranged from 1.4-3.4 cm. The fractionation scheme was 48Gy in 4 fractions with the GTV receiving 100% of the prescribed dose. For gated-VMAT, the treatment window constrained residual tumour motion to 3 mm or less corresponding to duty cycles of 40-60%. In 3D-VMAT, the ITV was generated by merging the GTV from all phases. A b-spline transformation model was used to register the 4D-CT images and DVHs were calculated from total dose accumulated on the max expiration phase. For the majority of OARs, gated-VMAT provided the greatest radiation sparing but significantly extended treatment times (25-35 gantry interruptions/arc). For 3D-VMAT, only 2 patients had clinically acceptable plans that met all the strict dose limits. OAR sparing in 4D-VMAT was comparable to gated-VMAT but with significantly improved delivery efficiency. © 2012 American Association of Physicists in Medicine.
Nonvolatile memory with graphene oxide as a charge storage node in nanowire field-effect transistors
NASA Astrophysics Data System (ADS)
Baek, David J.; Seol, Myeong-Lok; Choi, Sung-Jin; Moon, Dong-Il; Choi, Yang-Kyu
2012-02-01
Through the structural modification of a three-dimensional silicon nanowire field-effect transistor, i.e., a double-gate FinFET, a structural platform was developed which allowed for us to utilize graphene oxide (GO) as a charge trapping layer in a nonvolatile memory device. By creating a nanogap between the gate and the channel, GO was embedded after the complete device fabrication. By applying a proper gate voltage, charge trapping, and de-trapping within the GO was enabled and resulted in large threshold voltage shifts. The employment of GO with FinFET in our work suggests that graphitic materials can potentially play a significant role for future nanoelectronic applications.
Photocurrent spectroscopy of pentacene thin film transistors
NASA Astrophysics Data System (ADS)
Breban, Mihaela
We demonstrate the application of photocurrent modulation spectroscopy in characterizing the performance of organic thin-film transistors. A parallel analysis of the direct current and photocurrent voltage characteristics provides a model free determination of the field-effect mobility and the density of free carriers in the transistor channel as a function of the applied gate voltage. Applying this technique to pentacene thin-film transistors demonstrates that the mobility increases as V1/3g . The free-carrier density is approximately 1/10 of the expected capacitive charge, and the mobility increases monotonically with the free carrier density, consistent with the trap and release model of transport. Also, the modulated photocurrent spectroscopy can be used as a probe of defect states in pentacene thin film transistors, measuring simultaneously the magnitude and the phase of the photocurrent as a function of the modulation frequency. This is accomplished by modeling the photo-carrier generation process as exciton dissociation via interaction with localized traps. Experimental data reveal a Gaussian distribution of localized states centered around 0.3 eV above the highest occupied molecular orbital. We also investigated the effect of the gate dielectric material with our probe and found that the position of the extracted Gaussian slightly shifts, consistent with the expected image charge effect for Pn through the dielectric substrate. Also shifts in the Gaussian position for samples fabricated with variable deposition conditions are correlated with changes in Pn morphology. The morphological differences between Pn films were also detected in current-voltage characteristics and photocurrent spectra. However, the origin of the ubiquitous 0.3 eV defect in Pn seems to be unrelated to structural differences in Pn films.
Maureen E. Puettmann; Richard Bergman; Steve Hubbard; Leonard Johnson; Bruce Lippke; Elaine Oneil; Francis G. Wagner
2010-01-01
This article documents cradle-to-gate life-cycle inventories for softwood lumber, hardwood lumber, and solid-strip hardwood flooring manufacturing from the Inland Northwest and the NortheastâNorth Central regions of the US. Environmental impacts were measured based on emissions to air and water, solid waste, energy consumption, and resource use. The manufacturing stage...
Effect of laser pulse shaping parameters on the fidelity of quantum logic gates.
Zaari, Ryan R; Brown, Alex
2012-09-14
The effect of varying parameters specific to laser pulse shaping instruments on resulting fidelities for the ACNOT(1), NOT(2), and Hadamard(2) quantum logic gates are studied for the diatomic molecule (12)C(16)O. These parameters include varying the frequency resolution, adjusting the number of frequency components and also varying the amplitude and phase at each frequency component. A time domain analytic form of the original discretized frequency domain laser pulse function is derived, providing a useful means to infer the resulting pulse shape through variations to the aforementioned parameters. We show that amplitude variation at each frequency component is a crucial requirement for optimal laser pulse shaping, whereas phase variation provides minimal contribution. We also show that high fidelity laser pulses are dependent upon the frequency resolution and increasing the number of frequency components provides only a small incremental improvement to quantum gate fidelity. Analysis through use of the pulse area theorem confirms the resulting population dynamics for one or two frequency high fidelity laser pulses and implies similar dynamics for more complex laser pulse shapes. The ability to produce high fidelity laser pulses that provide both population control and global phase alignment is attributed greatly to the natural evolution phase alignment of the qubits involved within the quantum logic gate operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mori, Shinichiro, E-mail: shinshin@nirs.go.j; Yanagi, Takeshi; Hara, Ryusuke
2010-01-15
Purpose: We compared respiratory-gated and respiratory-ungated treatment strategies using four-dimensional (4D) scattered carbon ion beam distribution in pancreatic 4D computed tomography (CT) datasets. Methods and Materials: Seven inpatients with pancreatic tumors underwent 4DCT scanning under free-breathing conditions using a rapidly rotating cone-beam CT, which was integrated with a 256-slice detector, in cine mode. Two types of bolus for gated and ungated treatment were designed to cover the planning target volume (PTV) using 4DCT datasets in a 30% duty cycle around exhalation and a single respiratory cycle, respectively. Carbon ion beam distribution for each strategy was calculated as a function ofmore » respiratory phase by applying the compensating bolus to 4DCT at the respective phases. Smearing was not applied to the bolus, but consideration was given to drill diameter. The accumulated dose distributions were calculated by applying deformable registration and calculating the dose-volume histogram. Results: Doses to normal tissues in gated treatment were minimized mainly on the inferior aspect, which thereby minimized excessive doses to normal tissues. Over 95% of the dose, however, was delivered to the clinical target volume at all phases for both treatment strategies. Maximum doses to the duodenum and pancreas averaged across all patients were 43.1/43.1 GyE (ungated/gated) and 43.2/43.2 GyE (ungated/gated), respectively. Conclusions: Although gated treatment minimized excessive dosing to normal tissue, the difference between treatment strategies was small. Respiratory gating may not always be required in pancreatic treatment as long as dose distribution is assessed. Any application of our results to clinical use should be undertaken only after discussion with oncologists, particularly with regard to radiotherapy combined with chemotherapy.« less
Negative gate bias and light illumination-induced hump in amorphous InGaZnO thin film transistor.
Jeon, Jae-Hong; Seo, Seung-Bum; Park, Han-Sung; Choe, Hee-Hwan; Seo, Jong-Hyun; Park, Kee-Chan; Park, Sang-Hee Ko
2013-11-01
While observing the transfer characteristics of a-IGZO TFTs, it was noticed that a hump occurred in the subthreshold regime after light and bias stress. This study analyzes the mechanism of the hump occurrence. It was determined that hump characteristics were related with parasitic TFTs which formed at the peripheral edges parallel with the channel direction. It seems that the negative shift of the transfer characteristics of parasitic TFTs was larger than that of the main TFT under light and bias stress. Therefore, the difference in the negative shift between the main TFT and the parasitic TFT was the origin of the hump occurrence. We investigated the instability of a-IGZO TFTs under negative gate bias with light illumination for various channel structures in order to verify the above mechanism.
Charge state manipulation of qubits in diamond
Grotz, Bernhard; Hauf, Moritz V.; Dankerl, Markus; Naydenov, Boris; Pezzagna, Sébastien; Meijer, Jan; Jelezko, Fedor; Wrachtrup, Jörg; Stutzmann, Martin; Reinhard, Friedemann; Garrido, Jose A.
2012-01-01
The nitrogen-vacancy (NV) centre in diamond is a promising candidate for a solid-state qubit. However, its charge state is known to be unstable, discharging from the qubit state NV− into the neutral state NV0 under various circumstances. Here we demonstrate that the charge state can be controlled by an electrolytic gate electrode. This way, single centres can be switched from an unknown non-fluorescent state into the neutral charge state NV0, and the population of an ensemble of centres can be shifted from NV0 to NV−. Numerical simulations confirm the manipulation of the charge state to be induced by the gate-controlled shift of the Fermi level at the diamond surface. This result opens the way to a dynamic control of transitions between charge states and to explore hitherto inaccessible states, such as NV+. PMID:22395620
Towards fluoroscopic respiratory gating for lung tumours without radiopaque markers
NASA Astrophysics Data System (ADS)
Berbeco, Ross I.; Mostafavi, Hassan; Sharp, Gregory C.; Jiang, Steve B.
2005-10-01
Due to the risk of pneumothorax, many clinicians are reluctant to implant radiopaque markers within patients' lungs for the purpose of radiographic or fluoroscopic tumour localization. We propose a method of gated therapy using fluoroscopic information without the implantation of radiopaque markers. The method presented here does not rely on any external motion signal either. Breathing phase information is found by analysing the fluoroscopic intensity fluctuations in the lung. As the lungs fill/empty, the radiological pathlength through them shortens/lengthens, giving brighter/darker fluoroscopic intensities. The phase information is combined with motion-enhanced template matching to turn the beam on when the tumour is in the desired location. A study based on patient data is presented to demonstrate the feasibility of this procedure. The resulting beam-on pattern is similar to that produced by an external gating system. The only discrepancies occur briefly and at the gate edges.
Sánchez-Rodríguez, Jorge E; De Santiago-Castillo, José A; Contreras-Vite, Juan Antonio; Nieto-Delgado, Pablo G; Castro-Chong, Alejandra; Arreola, Jorge
2012-01-01
The interaction of either H+ or Cl− ions with the fast gate is the major source of voltage (Vm) dependence in ClC Cl− channels. However, the mechanism by which these ions confer Vm dependence to the ClC-2 Cl− channel remains unclear. By determining the Vm dependence of normalized conductance (Gnorm(Vm)), an index of open probability, ClC-2 gating was studied at different [H+]i, [H+]o and [Cl−]i. Changing [H+]i by five orders of magnitude whilst [Cl−]i/[Cl−]o = 140/140 or 10/140 mm slightly shifted Gnorm(Vm) to negative Vm without altering the onset kinetics; however, channel closing was slower at acidic pHi. A similar change in [H+]o with [Cl−]i/[Cl−]o = 140/140 mm enhanced Gnorm in a bell-shaped manner and shifted Gnorm(Vm) curves to positive Vm. Importantly, Gnorm was >0 with [H+]o = 10−10 m but channel closing was slower when [H+]o or [Cl−]i increased implying that ClC-2 was opened without protonation and that external H+ and/or internal Cl− ions stabilized the open conformation. The analysis of kinetics and steady-state properties at different [H+]o and [Cl−]i was carried out using a gating Scheme coupled to Cl− permeation. Unlike previous results showing Vm-dependent protonation, our analysis revealed that fast gate protonation was Vm and Cl− independent and the equilibrium constant for closed–open transition of unprotonated channels was facilitated by elevated [Cl−]i in a Vm-dependent manner. Hence a Vm dependence of pore occupancy by Cl− induces a conformational change in unprotonated closed channels, before the pore opens, and the open conformation is stabilized by Cl− occupancy and Vm-independent protonation. PMID:22753549
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wei, E-mail: wwei99@jlu.edu.cn; Han, Jinhua; Ying, Jun
2014-09-22
Two types of floating-gate based organic thin-film transistor nonvolatile memories (FG-OTFT-NVMs) were demonstrated, with poly(methyl methacrylate co glycidyl methacrylate) (P(MMA-GMA)) and tetratetracontane (TTC) as the tunneling layer, respectively. Their device performances were measured and compared. In the memory with a P(MMA-GMA) tunneling layer, typical unipolar hole transport was obtained with a relatively small mobility of 0.16 cm{sup 2}/V s. The unidirectional shift of turn-on voltage (V{sub on}) due to only holes trapped/detrapped in/from the floating gate resulted in a small memory window of 12.5 V at programming/erasing voltages (V{sub P}/V{sub E}) of ±100 V and a nonzero reading voltage. Benefited from the well-ordered moleculemore » orientation and the trap-free surface of TTC layer, a considerably high hole mobility of 1.7 cm{sup 2}/V s and a visible feature of electrons accumulated in channel and trapped in floating-gate were achieved in the memory with a TTC tunneling layer. High hole mobility resulted in a high on current and a large memory on/off ratio of 600 at the V{sub P}/V{sub E} of ±100 V. Both holes and electrons were injected into floating-gate and overwritten each other, which resulted in a bidirectional V{sub on} shift. As a result, an enlarged memory window of 28.6 V at the V{sub P}/V{sub E} of ±100 V and a zero reading voltage were achieved. Based on our results, a strategy is proposed to optimize FG-OTFT-NVMs by choosing a right tunneling layer to improve the majority carrier mobility and realize ambipolar carriers injecting and trapping in the floating-gate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, K.-S.; Green, M. L.; Suehle, J.
2006-10-02
The authors have fabricated combinatorial Ni-Ti-Pt ternary metal gate thin film libraries on HfO{sub 2} using magnetron co-sputtering to investigate flatband voltage shift ({delta}V{sub fb}), work function ({phi}{sub m}), and leakage current density (J{sub L}) variations. A more negative {delta}V{sub fb} is observed close to the Ti-rich corner than at the Ni- and Pt-rich corners, implying smaller {phi}{sub m} near the Ti-rich corners and higher {phi}{sub m} near the Ni- and Pt-rich corners. In addition, measured J{sub L} values can be explained consistently with the observed {phi}{sub m} variations. Combinatorial methodologies prove to be useful in surveying the large compositionalmore » space of ternary alloy metal gate electrode systems.« less
Radiation sensors based on the generation of mobile protons in organic dielectrics.
Kapetanakis, Eleftherios; Douvas, Antonios M; Argitis, Panagiotis; Normand, Pascal
2013-06-26
A sensing scheme based on mobile protons generated by radiation, including ionizing radiation (IonR), in organic gate dielectrics is investigated for the development of metal-insulator-semiconductor (MIS)-type dosimeters. Application of an electric field to the gate dielectric moves the protons and thereby alters the flat band voltage (VFB) of the MIS device. The shift in the VFB is proportional to the IonR-generated protons and, therefore, to the IonR total dose. Triphenylsulfonium nonaflate (TPSNF) photoacid generator (PAG)-containing poly(methyl methacrylate) (PMMA) polymeric films was selected as radiation-sensitive gate dielectrics. The effects of UV (249 nm) and gamma (Co-60) irradiations on the high-frequency capacitance versus the gate voltage (C-VG) curves of the MIS devices were investigated for different total dose values. Systematic improvements in sensitivity can be accomplished by increasing the concentration of the TPSNF molecules embedded in the polymeric matrix.
Investigation of the novel attributes in double recessed gate SiC MESFETs at drain side
NASA Astrophysics Data System (ADS)
Orouji, Ali A.; Razavi, S. M.; Ebrahim Hosseini, Seyed; Amini Moghadam, Hamid
2011-11-01
In this paper, the potential impact of drain side-double recessed gate (DS-DRG) on silicon carbide (SiC)-based metal semiconductor field effect transistors (MESFETs) is studied. We investigate the device performance focusing on breakdown voltage, threshold voltage, drain current and dc output conductance with two-dimensional and two-carrier device simulation. Our simulation results demonstrate that the channel thickness under the gate in the drain side is an important factor in the breakdown voltage. Also, the positive shift in the threshold voltage for the DS-DRG structure is larger in comparison with that for the source side-double recessed gate (SS-DRG) SiC MESFET. The saturated drain current for the DS-DRG structure is larger compared to that for the SS-DRG structure. The maximum dc output conductance in the DS-DRG structure is smaller than that in the SS-DRG structure.
The voltage-sensing domain of a phosphatase gates the pore of a potassium channel.
Arrigoni, Cristina; Schroeder, Indra; Romani, Giulia; Van Etten, James L; Thiel, Gerhard; Moroni, Anna
2013-03-01
The modular architecture of voltage-gated K(+) (Kv) channels suggests that they resulted from the fusion of a voltage-sensing domain (VSD) to a pore module. Here, we show that the VSD of Ciona intestinalis phosphatase (Ci-VSP) fused to the viral channel Kcv creates Kv(Synth1), a functional voltage-gated, outwardly rectifying K(+) channel. Kv(Synth1) displays the summed features of its individual components: pore properties of Kcv (selectivity and filter gating) and voltage dependence of Ci-VSP (V(1/2) = +56 mV; z of ~1), including the depolarization-induced mode shift. The degree of outward rectification of the channel is critically dependent on the length of the linker more than on its amino acid composition. This highlights a mechanistic role of the linker in transmitting the movement of the sensor to the pore and shows that electromechanical coupling can occur without coevolution of the two domains.
Ding, Ziqian; Abbas, Gamal; Assender, Hazel E; Morrison, John J; Yeates, Stephen G; Patchett, Eifion R; Taylor, D Martin
2014-09-10
We report a systemic study of the stability of organic thin film transistors (OTFTs) both in storage and under operation. Apart from a thin polystyrene buffer layer spin-coated onto the gate dielectric, the constituent parts of the OTFTs were all prepared by vacuum evaporation. The OTFTs are based on the semiconducting small molecule dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT) deposited onto the surface of a polystyrene-buffered in situ polymerized diacrylate gate insulator. Over a period of 9 months, no degradation of the hole mobility occurred in devices stored either in the dark in dry air or in uncontrolled air and normal laboratory fluorescent lighting conditions. In the latter case, rather than decreasing, the mobility actually increased almost 2-fold to 1.5 cm(2)/(V · s). The devices also showed good stability during repeat on/off cycles in the dark in dry air. Exposure to oxygen and light during the on/off cycles led to a positive shift of the transfer curves due to electron trapping when the DNTT was biased into depletion by the application of positive gate voltage. When operated in accumulation, negative gate voltage under the same conditions, the transfer curves were stable. When voltage cycling in moist air in the dark, the transfer curves shifted to negative voltages, thought to be due to the generation of hole traps either in the semiconductor or its interface with the dielectric layer. When subjected to gate bias stress in dry air in the dark for at least 144 h, the device characteristics remained stable.
Nonvolatile “AND,” “OR,” and “NOT” Boolean logic gates based on phase-change memory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y.; Zhong, Y. P.; Deng, Y. F.
2013-12-21
Electronic devices or circuits that can implement both logic and memory functions are regarded as the building blocks for future massive parallel computing beyond von Neumann architecture. Here we proposed phase-change memory (PCM)-based nonvolatile logic gates capable of AND, OR, and NOT Boolean logic operations verified in SPICE simulations and circuit experiments. The logic operations are parallel computing and results can be stored directly in the states of the logic gates, facilitating the combination of computing and memory in the same circuit. These results are encouraging for ultralow-power and high-speed nonvolatile logic circuit design based on novel memory devices.
Controllable 0–π Josephson junctions containing a ferromagnetic spin valve
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gingrich, E. C.; Niedzielski, Bethany M.; Glick, Joseph A.
Superconductivity and ferromagnetism are antagonistic forms of order, and rarely coexist. Many interesting new phenomena occur, however, in hybrid superconducting/ferromagnetic systems. For example, a Josephson junction containing a ferromagnetic material can exhibit an intrinsic phase shift of π in its ground state for certain thicknesses of the material. Such ‘π-junctions’ were first realized experimentally in 2001, and have been proposed as circuit elements for both high-speed classical superconducting computing and for quantum computing. Here we demonstrate experimentally that the phase state of a Josephson junction containing two ferromagnetic layers can be toggled between 0 and pi by changing the relativemore » orientation of the two magnetizations. These controllable 0–π junctions have immediate applications in cryogenic memory, where they serve as a necessary component to an ultralow power superconducting computer. Such a fully superconducting computer is estimated to be orders of magnitude more energy-efficient than current semiconductor-based supercomputers. Here, phase-controllable junctions also open up new possibilities for superconducting circuit elements such as superconducting ‘programmable logic’, where they could function in superconducting analogues to field-programmable gate arrays.« less
Controllable 0–π Josephson junctions containing a ferromagnetic spin valve
Gingrich, E. C.; Niedzielski, Bethany M.; Glick, Joseph A.; ...
2016-03-14
Superconductivity and ferromagnetism are antagonistic forms of order, and rarely coexist. Many interesting new phenomena occur, however, in hybrid superconducting/ferromagnetic systems. For example, a Josephson junction containing a ferromagnetic material can exhibit an intrinsic phase shift of π in its ground state for certain thicknesses of the material. Such ‘π-junctions’ were first realized experimentally in 2001, and have been proposed as circuit elements for both high-speed classical superconducting computing and for quantum computing. Here we demonstrate experimentally that the phase state of a Josephson junction containing two ferromagnetic layers can be toggled between 0 and pi by changing the relativemore » orientation of the two magnetizations. These controllable 0–π junctions have immediate applications in cryogenic memory, where they serve as a necessary component to an ultralow power superconducting computer. Such a fully superconducting computer is estimated to be orders of magnitude more energy-efficient than current semiconductor-based supercomputers. Here, phase-controllable junctions also open up new possibilities for superconducting circuit elements such as superconducting ‘programmable logic’, where they could function in superconducting analogues to field-programmable gate arrays.« less
Research on effects of phase error in phase-shifting interferometer
NASA Astrophysics Data System (ADS)
Wang, Hongjun; Wang, Zhao; Zhao, Hong; Tian, Ailing; Liu, Bingcai
2007-12-01
Referring to phase-shifting interferometry technology, the phase shifting error from the phase shifter is the main factor that directly affects the measurement accuracy of the phase shifting interferometer. In this paper, the resources and sorts of phase shifting error were introduction, and some methods to eliminate errors were mentioned. Based on the theory of phase shifting interferometry, the effects of phase shifting error were analyzed in detail. The Liquid Crystal Display (LCD) as a new shifter has advantage as that the phase shifting can be controlled digitally without any mechanical moving and rotating element. By changing coded image displayed on LCD, the phase shifting in measuring system was induced. LCD's phase modulation characteristic was analyzed in theory and tested. Based on Fourier transform, the effect model of phase error coming from LCD was established in four-step phase shifting interferometry. And the error range was obtained. In order to reduce error, a new error compensation algorithm was put forward. With this method, the error can be obtained by process interferogram. The interferogram can be compensated, and the measurement results can be obtained by four-step phase shifting interferogram. Theoretical analysis and simulation results demonstrate the feasibility of this approach to improve measurement accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Guludec, D.; Bourguignon, M.; Sebag, C.
1987-01-01
Accuracy of Fourier phase mapping of radionuclide gated biventriculograms in detecting the origin of abnormal ventricular activation was studied during ventricular tachycardia or preexcitation. Group I included six patients suffering from clinical recurrent VT; 3 gated blood pool studies were acquired for each patient: during sinus rhythm, right ventricular pacing, and induced sustained VT-Group II included seven patients with Wolff-Parkinson-White syndrome and recurrent paroxysmal tachycardia; 3 gated blood pool studies were acquired for each patient: during sinus rhythm, right atrial pacing and orthodromic reciprocating tachycardia. Each acquisition lasted 5 min, in 30 degrees-40 degrees left anterior oblique projection. In Groupmore » I, the Fourier phase mapping was consistent with QRS morphology and axis during VT (5/6), except in one patient with LV aneurysm and LBBB electrical pattern during VT. Origin of VT on phase mapping was located in the right ventricle (n = 2) or in left ventricle (n = 4), at the border of wall motion abnormalities each time they existed (5/6). In Group II, the phase advance correlated with the location of the accessory pathway determined by ECG and endocardial mapping (n = 6) and per-operative epicardial mapping (n = 1). Discrimination between anterior and posterior localization of paraseptal pathways and location of intermittent preexcitation was not possible. We conclude that Fourier phase mapping is an accurate method for locating the origin of VT and determining its etiology. It can help locate the site of ventricular preexcitation in patients with only one accessory pathway; its accuracy in locating multiple accessory pathways remains unknown.« less
Bekar, L K; Loewen, M E; Forsyth, G W; Walz, W
2005-09-30
Chloride concentration has been shown to have a dramatic impact on protein folding and subsequent tertiary conformation [K.D. Collins, Ions from the Hofmeister series and osmolytes: effects on proteins in solution and in the crystallization process, Methods 34 (2004) 300-311; I. Jelesarov, E. Durr, R.M. Thomas, H.R. Bosshard, Salt effects on hydrophobic interaction and charge screening in the folding of a negatively charged peptide to a coiled coil (leucine zipper), Biochemistry 37 (1998) 7539-7550]. As it is known that Kv channel gating is linked to the stability of the cytoplasmic T1 multimerization domain conformation [D.L. Minor, Y.F. Lin, B.C. Mobley, A. Avelar, Y.N. Jan, L.Y. Jan, J.M. Berger, The polar T1 interface is linked to conformational changes that open the voltage-gated potassium channel, Cell 102 (2000) 657-670; B.A. Yi, D.L. Minor Jr., Y.F. Lin, Y.N. Jan, L.Y. Jan, Controlling potassium channel activities: interplay between the membrane and intracellular factors, Proc. Natl. Acad. Sci. U.S.A. 98 (2001) 11016-11023] and that intracellular chloride concentration has been linked to Kv channel kinetics [L.K. Bekar, W. Walz, Intracellular chloride modulates A-type potassium currents in astrocytes, Glia 39 (2002) 207-216; W.B. Thoreson, S.L. Stella, Anion modulation of calcium current voltage dependence and amplitude in salamander rods, Biochim. Biophys. Acta 1464 (2000) 142-150], the objective of the present study was to address how chloride concentration changes affect Kv channel kinetics more closely in an isolated expression system. Initially, no significant chloride concentration-dependent effects on channel steady-state gating kinetics were observed. Only after disruption of the cytoskeleton with cytochalasin-D did we see significant chloride concentration-dependent shifts in gating kinetics. This suggests that the shift in gating kinetics is mediated through effects of intracellular chloride concentration on cytoplasmic domain tertiary conformation as cytoskeletal interaction appears to mask the effect. Furthermore, as cytoskeletal disruption only impacts channel gating kinetics at low physiological intracellular chloride concentrations, these studies highlight the importance of paying close attention to anion concentrations used under experimental conditions.
Zou, Xiao; Xu, Jingping; Huang, Hao; Zhu, Ziqang; Wang, Hongjiu; Li, Borui; Liao, Lei; Fang, Guojia
2018-06-15
Top-gated and bottom-gated transistors with multilayer MoS 2 channel fully encapsulated by stacked Al 2 O 3 /HfO 2 (9 nm/6 nm) were fabricated and comparatively studied. Excellent electrical properties are demonstrated for the TG transistors with high on-off current ratio of 10 8 , high field-effect mobility of 10 2 cm 2 V -1 s -1 , and low subthreshold swing of 93 mV dec -1 . Also, enhanced reliability has been achieved for the TG transistors with threshold voltage shift of 10 -3 -10 -2 V MV -1 cm -1 after 6 MV cm -1 gate-biased stressing. All improvement for the TG device can be ascribed to the formed device structure and dielectric environment. Degradation of the performance for the BG transistors should be attributed to reduced gate capacitance density and deteriorated interface properties related to vdW gap with a thickness about 0.4 nm. So, the TG transistor with MoS 2 channel fully encapsulated by stacked Al 2 O 3 /HfO 2 is a promising way to fabricate high-performance ML MoS 2 field-effect transistors for practical electron device applications.
NASA Astrophysics Data System (ADS)
Zou, Xiao; Xu, Jingping; Huang, Hao; Zhu, Ziqang; Wang, Hongjiu; Li, Borui; Liao, Lei; Fang, Guojia
2018-06-01
Top-gated and bottom-gated transistors with multilayer MoS2 channel fully encapsulated by stacked Al2O3/HfO2 (9 nm/6 nm) were fabricated and comparatively studied. Excellent electrical properties are demonstrated for the TG transistors with high on–off current ratio of 108, high field-effect mobility of 102 cm2 V‑1 s‑1, and low subthreshold swing of 93 mV dec–1. Also, enhanced reliability has been achieved for the TG transistors with threshold voltage shift of 10‑3–10‑2 V MV–1 cm–1 after 6 MV cm‑1 gate-biased stressing. All improvement for the TG device can be ascribed to the formed device structure and dielectric environment. Degradation of the performance for the BG transistors should be attributed to reduced gate capacitance density and deteriorated interface properties related to vdW gap with a thickness about 0.4 nm. So, the TG transistor with MoS2 channel fully encapsulated by stacked Al2O3/HfO2 is a promising way to fabricate high-performance ML MoS2 field-effect transistors for practical electron device applications.
GaN HEMTs with p-GaN gate: field- and time-dependent degradation
NASA Astrophysics Data System (ADS)
Meneghesso, G.; Meneghini, M.; Rossetto, I.; Canato, E.; Bartholomeus, J.; De Santi, C.; Trivellin, N.; Zanoni, E.
2017-02-01
GaN-HEMTs with p-GaN gate have recently demonstrated to be excellent normally-off devices for application in power conversion systems, thanks to the high and robust threshold voltage (VTH>1 V), the high breakdown voltage, and the low dynamic Ron increase. For this reason, studying the stability and reliability of these devices under high stress conditions is of high importance. This paper reports on our most recent results on the field- and time-dependent degradation of GaN-HEMTs with p-GaN gate submitted to stress with positive gate bias. Based on combined step-stress experiments, constant voltage stress and electroluminescence testing we demonstrated that: (i) when submitted to high/positive gate stress, the transistors may show a negative threshold voltage shift, that is ascribed to the injection of holes from the gate metal towards the p-GaN/AlGaN interface; (ii) in a step-stress experiment, the analyzed commercial devices fail at gate voltages higher than 9-10 V, due to the extremely high electric field over the p-GaN/AlGaN stack; (iii) constant voltage stress tests indicate that the failure is also time-dependent and Weibull distributed. The several processes that can explain the time-dependent failure are discussed in the following.
Gate control of spin-polarized conductance in alloyed transitional metal nanocontacts
NASA Astrophysics Data System (ADS)
Sivkov, Ilia N.; Brovko, Oleg O.; Rungger, Ivan; Stepanyuk, Valeri S.
2017-03-01
To date, endeavors in nanoscale spintronics are dominated by the use of single-electron or single-spin transistors having at their heart a semiconductor, metallic, or molecular quantum dot whose localized states are non-spin-degenerate and can be controlled by an external bias applied via a gate electrode. Adjusting the bias of the gate one can realign those states with respect to the chemical potentials of the leads and thus tailor the spin-polarized transmission properties of the device. Here we show that similar functionality can be achieved in a purely metallic junction comprised of a metallic magnetic chain attached to metallic paramagnetic leads and biased by a gate electrode. Our ab initio calculations of electron transport through mixed Pt-Fe (Fe-Pd and Fe-Rh) atomic chains suspended between Pt (Pd and Rh) electrodes show that spin-polarized confined states of the chain can be shifted by the gate bias causing a change in the relative contributions of majority and minority channels to the nanocontact's conductance. As a result, we observe strong dependence of conductance spin polarization on the applied gate potential. In some cases the spin polarization of conductance can even be reversed in sign upon gate potential application, which is a remarkable and promising trait for spintronic applications.
Stability study of solution-processed zinc tin oxide thin-film transistors
NASA Astrophysics Data System (ADS)
Zhang, Xue; Ndabakuranye, Jean Pierre; Kim, Dong Wook; Choi, Jong Sun; Park, Jaehoon
2015-11-01
In this study, the environmental dependence of the electrical stability of solution-processed n-channel zinc tin oxide (ZTO) thin-film transistors (TFTs) is reported. Under a prolonged negative gate bias stress, a negative shift in threshold voltage occurs in atmospheric air, whereas a negligible positive shift in threshold voltage occurs under vacuum. In the positive bias-stress experiments, a positive shift in threshold voltage was invariably observed both in atmospheric air and under vacuum. In this study, the negative gate-bias-stress-induced instability in atmospheric air is explained through an internal potential in the ZTO semiconductor, which can be generated owing to the interplay between H2O molecules and majority carrier electrons at the surface of the ZTO film. The positive bias-stress-induced instability is ascribed to electron-trapping phenomenon in and around the TFT channel region, which can be further augmented in the presence of air O2 molecules. These results suggest that the interaction between majority carriers and air molecules will have crucial implications for a reliable operation of solution-processed ZTO TFTs. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Lee, Jae-Seung; Im, In-Chul; Kang, Su-Man; Goo, Eun-Hoe; Baek, Seong-Min
2013-11-01
The aim of this study was to quantitatively analyze the changes in the planning target volume (PTV) and liver volume dose based on the respiratory phase to identify the optimal respiratory phase for respiratory-gated radiation therapy for a hepatocellular carcinoma (HCC). Based on the standardized procedure for respiratory-gated radiation therapy, we performed a 4-dimensional computed tomography simulation for 0 ˜ 90%, 30 ˜ 70%, and 40 ˜ 60% respiratory phases to assess the respiratory stability (S R ) and the defined PTV i for each respiratory phase i. A treatment plan was established, and the changes in the PTV i and dose volume of the liver were quantitatively analyzed. Most patients (91.5%) passed the respiratory stability test (S R = 0.111 ± 0.015). With standardized respiration training exercises, we were able to minimize the overall systematic error caused by irregular respiration. Furthermore, a quantitative analysis to identify the optimal respiratory phase revealed that when a short respiratory phase (40 ˜ 60%) was used, the changes in the PTV were concentrated inside the center line; thus, we were able to obtain both a PTV margin accounting for respiration and a uniform radiation dose within the PTV.
NASA Astrophysics Data System (ADS)
Cannon, Brice M.
This thesis investigates the all-optical combination of amplitude and phase modulated signals into one unified multi-level phase modulated signal, utilizing the Kerr nonlinearity of cross-phase modulation (XPM). Predominantly, the first experimental demonstration of simultaneous polarization-insensitive phase-transmultiplexing and multicasting (PI-PTMM) will be discussed. The PI-PTMM operation combines the data of a single 10-Gbaud carrier-suppressed return-to-zero (CSRZ) on-off keyed (OOK) pump signal and 4x10-Gbaud return-to-zero (RZ) binary phase-shift keyed (BPSK) probe signals to generate 4x10-GBd RZ-quadrature phase-shift keyed (QPSK) signals utilizing a highly nonlinear, birefringent photonic crystal fiber (PCF). Since XPM is a highly polarization dependent nonlinearity, a polarization sensitivity reduction technique was used to alleviate the fluctuations due to the remotely generated signals' unpredictable states of polarization (SOP). The measured amplified spontaneous emission (ASE) limited receiver sensitivity optical signal-to-noise ratio (OSNR) penalty of the PI-PTMM signal relative to the field-programmable gate array (FPGA) pre-coded RZ-DQPSK baseline at a forward-error correction (FEC) limit of 10-3 BER was ≈ 0.3 dB. In addition, the OSNR of the remotely generated CSRZ-OOK signal could be degraded to ≈ 29 dB/0.1nm, before the bit error rate (BER) performance of the PI-PTMM operation began to exponentially degrade. A 138-km dispersion-managed recirculating loop system with a 100-GHz, 13-channel mixed-format dense-wavelength-division multiplexed (DWDM) transmitter was constructed to investigate the effect of metro/long-haul transmission impairments. The PI-PTMM DQPSK and the FPGA pre-coded RZ-DQPSK baseline signals were transmitted 1,900 km and 2,400 km in the nonlinearity-limited transmission regime before reaching the 10-3 BER FEC limit. The relative reduction in transmission distance for the PI-PTMM signal was due to the additional transmitter impairments in the PCF that interact negatively with the transmission fiber.
Novel Quantum Dot Gate FETs and Nonvolatile Memories Using Lattice-Matched II-VI Gate Insulators
NASA Astrophysics Data System (ADS)
Jain, F. C.; Suarez, E.; Gogna, M.; Alamoody, F.; Butkiewicus, D.; Hohner, R.; Liaskas, T.; Karmakar, S.; Chan, P.-Y.; Miller, B.; Chandy, J.; Heller, E.
2009-08-01
This paper presents the successful use of ZnS/ZnMgS and other II-VI layers (lattice-matched or pseudomorphic) as high- k gate dielectrics in the fabrication of quantum dot (QD) gate Si field-effect transistors (FETs) and nonvolatile memory structures. Quantum dot gate FETs and nonvolatile memories have been fabricated in two basic configurations: (1) monodispersed cladded Ge nanocrystals (e.g., GeO x -cladded-Ge quantum dots) site-specifically self-assembled over the lattice-matched ZnMgS gate insulator in the channel region, and (2) ZnTe-ZnMgTe quantum dots formed by self-organization, using metalorganic chemical vapor-phase deposition (MOCVD), on ZnS-ZnMgS gate insulator layers grown epitaxially on Si substrates. Self-assembled GeO x -cladded Ge QD gate FETs, exhibiting three-state behavior, are also described. Preliminary results on InGaAs-on-InP FETs, using ZnMgSeTe/ZnSe gate insulator layers, are presented.
Room-Temperature-Processed Flexible Amorphous InGaZnO Thin Film Transistor.
Xiao, Xiang; Zhang, Letao; Shao, Yang; Zhou, Xiaoliang; He, Hongyu; Zhang, Shengdong
2017-12-13
A room-temperature flexible amorphous indium-gallium-zinc oxide thin film transistor (a-IGZO TFT) technology is developed on plastic substrates, in which both the gate dielectric and passivation layers of the TFTs are formed by an anodic oxidation (anodization) technique. While the gate dielectric Al 2 O 3 is grown with a conventional anodization on an Al:Nd gate electrode, the channel passivation layer Al 2 O 3 is formed using a localized anodization technique. The anodized Al 2 O 3 passivation layer shows a superior passivation effect to that of PECVD SiO 2 . The room-temperature-processed flexible a-IGZO TFT exhibits a field-effect mobility of 7.5 cm 2 /V·s, a subthreshold swing of 0.44 V/dec, an on-off ratio of 3.1 × 10 8 , and an acceptable gate-bias stability with threshold voltage shifts of 2.65 and -1.09 V under positive gate-bias stress and negative gate-bias stress, respectively. Bending and fatigue tests confirm that the flexible a-IGZO TFT also has a good mechanical reliability, with electrical performances remaining consistent up to a strain of 0.76% as well as after 1200 cycles of fatigue testing.
Design, fabrication, and evaluation of charge-coupled devices with aluminum-anodized-aluminum gates
NASA Technical Reports Server (NTRS)
Gassaway, J. D.; Causey, W. H., Jr.
1977-01-01
A 4-phase, 49 1/2 bit CCD shift register was designed and fabricated using two levels of aluminum metallization with anodic Al2O3 insulation separating the layers. Test circuitry was also designed and constructed. A numerical analysis of an MOS-RC transmission line was made and results are given to characterize performance for various conductivities. The electrical design of the CCD included a low-noise dual-gate input and a balanced floating diffusion output circuit. Metallization was accomplished both by low voltage DC sputtering and thermal evaporation. The audization was according to published procedures using a buffered tartaric acid bath. Approximately 20 wafers were processed with 50 complete chips per wafer. All devices failed by shorting between the metal levels at some point. Experimental procedures eliminated temperature effects from sintering and drying, anodic oxide thickness, edge effects, photoresist stripping procedures, and metallization techniques as the primary causes of failure. It was believed from a study of SEM images that protuberances (hillocks) grow up from the first level metal through the oxide either causing a direct short or producing a weak, highly stressed insulation point which fails at low voltage. The cause of these hillocks is unknown; however, they have been observed to grow during temperature excursions to 470 C.
Controlling the mode of operation of organic transistors through side-chain engineering.
Giovannitti, Alexander; Sbircea, Dan-Tiberiu; Inal, Sahika; Nielsen, Christian B; Bandiello, Enrico; Hanifi, David A; Sessolo, Michele; Malliaras, George G; McCulloch, Iain; Rivnay, Jonathan
2016-10-25
Electrolyte-gated organic transistors offer low bias operation facilitated by direct contact of the transistor channel with an electrolyte. Their operation mode is generally defined by the dimensionality of charge transport, where a field-effect transistor allows for electrostatic charge accumulation at the electrolyte/semiconductor interface, whereas an organic electrochemical transistor (OECT) facilitates penetration of ions into the bulk of the channel, considered a slow process, leading to volumetric doping and electronic transport. Conducting polymer OECTs allow for fast switching and high currents through incorporation of excess, hygroscopic ionic phases, but operate in depletion mode. Here, we show that the use of glycolated side chains on a thiophene backbone can result in accumulation mode OECTs with high currents, transconductance, and sharp subthreshold switching, while maintaining fast switching speeds. Compared with alkylated analogs of the same backbone, the triethylene glycol side chains shift the mode of operation of aqueous electrolyte-gated transistors from interfacial to bulk doping/transport and show complete and reversible electrochromism and high volumetric capacitance at low operating biases. We propose that the glycol side chains facilitate hydration and ion penetration, without compromising electronic mobility, and suggest that this synthetic approach can be used to guide the design of organic mixed conductors.
Klink, P Christiaan; Jeurissen, Danique; Theeuwes, Jan; Denys, Damiaan; Roelfsema, Pieter R
2017-08-22
The richness of sensory input dictates that the brain must prioritize and select information for further processing and storage in working memory. Stimulus salience and reward expectations influence this prioritization but their relative contributions and underlying mechanisms are poorly understood. Here we investigate how the quality of working memory for multiple stimuli is determined by priority during encoding and later memory phases. Selective attention could, for instance, act as the primary gating mechanism when stimuli are still visible. Alternatively, observers might still be able to shift priorities across memories during maintenance or retrieval. To distinguish between these possibilities, we investigated how and when reward cues determine working memory accuracy and found that they were only effective during memory encoding. Previously learned, but currently non-predictive, color-reward associations had a similar influence, which gradually weakened without reinforcement. Finally, we show that bottom-up salience, manipulated through varying stimulus contrast, influences memory accuracy during encoding with a fundamentally different time-course than top-down reward cues. While reward-based effects required long stimulus presentation, the influence of contrast was strongest with brief presentations. Our results demonstrate how memory resources are distributed over memory targets and implicates selective attention as a main gating mechanism between sensory and memory systems.
Controlling the mode of operation of organic transistors through side-chain engineering
Giovannitti, Alexander; Sbircea, Dan-Tiberiu; Inal, Sahika; Nielsen, Christian B.; Bandiello, Enrico; Hanifi, David A.; Sessolo, Michele; Malliaras, George G.; McCulloch, Iain; Rivnay, Jonathan
2016-01-01
Electrolyte-gated organic transistors offer low bias operation facilitated by direct contact of the transistor channel with an electrolyte. Their operation mode is generally defined by the dimensionality of charge transport, where a field-effect transistor allows for electrostatic charge accumulation at the electrolyte/semiconductor interface, whereas an organic electrochemical transistor (OECT) facilitates penetration of ions into the bulk of the channel, considered a slow process, leading to volumetric doping and electronic transport. Conducting polymer OECTs allow for fast switching and high currents through incorporation of excess, hygroscopic ionic phases, but operate in depletion mode. Here, we show that the use of glycolated side chains on a thiophene backbone can result in accumulation mode OECTs with high currents, transconductance, and sharp subthreshold switching, while maintaining fast switching speeds. Compared with alkylated analogs of the same backbone, the triethylene glycol side chains shift the mode of operation of aqueous electrolyte-gated transistors from interfacial to bulk doping/transport and show complete and reversible electrochromism and high volumetric capacitance at low operating biases. We propose that the glycol side chains facilitate hydration and ion penetration, without compromising electronic mobility, and suggest that this synthetic approach can be used to guide the design of organic mixed conductors. PMID:27790983
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakajima, K.; Bunko, H.; Tada, A.
1984-01-01
Phase analysis has been applied to Wolff-Parkinson-White syndrome (WPW) to detect the site of accessory conduction pathway (ACP); however, there was a limitation to estimate the precise location of ACP by planar phase analysis. In this study, the authors applied phase analysis to gated blood pool tomography. Twelve patients with WPW who underwent epicardial mapping and surgical division of ACP were studied by both of gated emission computed tomography (GECT) and routine gated blood pool study (GBPS). The GBPS was performed with Tc-99m red blood cells in multiple projections; modified left anterior oblique, right anterior oblique and/or left lateral views.more » In GECT, short axial, horizontal and vertical long axial blood pool images were reconstructed. Phase analysis was performed using fundamental frequency of the Fourier transform in both GECT and GBPS images, and abnormal initial contractions on both the planar and tomographic phase analysis were compared with the location of surgically confirmed ACPs. In planar phase analysis, abnormal initial phase was identified in 7 out of 12 (58%) patients, while in tomographic phase analysis, the localization of ACP was predicted in 11 out of 12 (92%) patients. Tomographic phase analysis is superior to planar phase images in 8 out of 12 patients to estimate the location of ACP. Phase analysis by GECT can avoid overlap of blood pool in cardiac chambers and has advantage to identify the propagation of phase three-dimensionally. Tomographic phase analysis is a good adjunctive method for patients with WPW to estimate the site of ACP.« less
Experimental demonstration of cheap and accurate phase estimation
NASA Astrophysics Data System (ADS)
Rudinger, Kenneth; Kimmel, Shelby; Lobser, Daniel; Maunz, Peter
We demonstrate experimental implementation of robust phase estimation (RPE) to learn the phases of X and Y rotations on a trapped Yb+ ion qubit.. Unlike many other phase estimation protocols, RPE does not require ancillae nor near-perfect state preparation and measurement operations. Additionally, its computational requirements are minimal. Via RPE, using only 352 experimental samples per phase, we estimate phases of implemented gates with errors as small as 10-4 radians, as validated using gate set tomography. We also demonstrate that these estimates exhibit Heisenberg scaling in accuracy. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Yoon, Jeong Hee; Lee, Jeong Min; Yu, Mi Hye; Hur, Bo Yun; Grimm, Robert; Block, Kai Tobias; Chandarana, Hersh; Kiefer, Berthold; Son, Yohan
2018-01-01
The aims of this study were to observe the pattern of transient motion after gadoxetic acid administration including incidence, onset, and duration, and to evaluate the clinical feasibility of free-breathing gadoxetic acid-enhanced liver magnetic resonance imaging using golden-angle radial sparse parallel (GRASP) imaging with respiratory gating. In this institutional review board-approved prospective study, 59 patients who provided informed consents were analyzed. Free-breathing dynamic T1-weighted images (T1WIs) were obtained using GRASP at 3 T after a standard dose of gadoxetic acid (0.025 mmol/kg) administration at a rate of 1 mL/s, and development of transient motion was monitored, which is defined as a distinctive respiratory frequency alteration of the self-gating MR signals. Early arterial, late arterial, and portal venous phases retrospectively reconstructed with and without respiratory gating and with different temporal resolutions (nongated 13.3-second, gated 13.3-second, gated 6-second T1WI) were evaluated for image quality and motion artifacts. Diagnostic performance in detecting focal liver lesions was compared among the 3 data sets. Transient motion (mean duration, 21.5 ± 13.0 seconds) was observed in 40.0% (23/59) of patients, 73.9% (17/23) of which developed within 15 seconds after gadoxetic acid administration. On late arterial phase, motion artifacts were significantly reduced on gated 13.3-second and 6-second T1WI (3.64 ± 0.34, 3.61 ± 0.36, respectively), compared with nongated 13.3-second T1WI (3.12 ± 0.51, P < 0.0001). Overall, image quality was the highest on gated 13.3-second T1WI (3.76 ± 0.39) followed by gated 6-second and nongated 13.3-second T1WI (3.39 ± 0.55, 2.57 ± 0.57, P < 0.0001). Only gated 6-second T1WI showed significantly higher detection performance than nongated 13.3-second T1WI (figure of merit, 0.69 [0.63-0.76]) vs 0.60 [0.56-0.65], P = 0.004). Transient motion developed in 40% (23/59) of patients shortly after gadoxetic acid administration, and gated free-breathing T1WI using GRASP was able to consistently provide acceptable arterial phase imaging in patients who exhibited transient motion.
Valley Phase and Voltage Control of Coherent Manipulation in Si Quantum Dots.
Zimmerman, Neil M; Huang, Peihao; Culcer, Dimitrie
2017-07-12
With any roughness at the interface of an indirect-bandgap semiconducting dot, the phase of the valley-orbit coupling can take on a random value. This random value, in double quantum dots, causes a large change in the exchange splitting. We demonstrate a simple analytical method to calculate the phase, and thus the exchange splitting and singlet-triplet qubit frequency, for an arbitrary interface. We then show that, with lateral control of the position of a quantum dot using a gate voltage, the valley-orbit phase can be controlled over a wide range, so that variations in the exchange splitting can be controlled for individual devices. Finally, we suggest experiments to measure the valley phase and the concomitant gate voltage control.
High sensitivity pH sensing on the BEOL of industrial FDSOI transistors
NASA Astrophysics Data System (ADS)
Rahhal, Lama; Ayele, Getenet Tesega; Monfray, Stéphane; Cloarec, Jean-Pierre; Fornacciari, Benjamin; Pardoux, Eric; Chevalier, Celine; Ecoffey, Serge; Drouin, Dominique; Morin, Pierre; Garnier, Philippe; Boeuf, Frederic; Souifi, Abdelkader
2017-08-01
In this work we demonstrate the use of Fully Depleted Silicon On Insulator (FDSOI) transistors as pH sensors with a 23 nm silicon nitride sensing layer built in the Back-End-Of-Line (BEOL). The back end process to deposit the sensing layer and fabricate the electrical structures needed for testing is detailed. A series of tests employing different pH buffer solutions has been performed on transistors of different geometries, controlled via the back gate. The main findings show a shift of the drain current (ID) as a function of the back gate voltage (VB) when different pH buffer solutions are probed in the range of pH 6 to pH 8. This shift is observed at VB voltages swept from 0 V to 3 V, demonstrating the sensor operation at low voltage. A high sensitivity of up to 250 mV/pH unit (more than 4-fold larger than Nernstian response) is observed on FDSOI MOS transistors of 0.06 μm gate length and 0.08 μm gate width. She is currently working as a Postdoctoral researcher at Institut des nanotechnologies de Lyon in collaboration with STMicroelectronics and Université de Sherbrook (Canada) working on ;Integration of ultra-low-power gas and pH sensors with advanced technologies;. Her research interest includes selection, machining, optimisation and electrical characterisation of the sensitive layer for a low power consumption gas sensor based on advanced MOS transistors.
NASA Astrophysics Data System (ADS)
Li, Jun; Fu, Yi-Zhou; Huang, Chuan-Xin; Zhang, Jian-Hua; Jiang, Xue-Yin; Zhang, Zhi-Lin
2016-04-01
This work presents a strategy of nitrogen anion doping to suppress negative gate-bias illumination instability. The electrical performance and negative gate-bias illumination stability of the ZnSnON thin film transistors (TFTs) are investigated. Compared with ZnSnO-TFT, ZnSnON-TFT has a 53% decrease in the threshold voltage shift under negative bias illumination stress and electrical performance also progresses obviously. The stability improvement of ZnSnON-TFT is attributed to the reduction in ionized oxygen vacancy defects and the photodesorption of oxygen-related molecules. It suggests that anion doping can provide an effective solution to the adverse tradeoff between field effect mobility and negative bias illumination stability.
Transport Signatures of Quasiparticle Poisoning in a Majorana Island.
Albrecht, S M; Hansen, E B; Higginbotham, A P; Kuemmeth, F; Jespersen, T S; Nygård, J; Krogstrup, P; Danon, J; Flensberg, K; Marcus, C M
2017-03-31
We investigate effects of quasiparticle poisoning in a Majorana island with strong tunnel coupling to normal-metal leads. In addition to the main Coulomb blockade diamonds, "shadow" diamonds appear, shifted by 1e in gate voltage, consistent with transport through an excited (poisoned) state of the island. Comparison to a simple model yields an estimate of parity lifetime for the strongly coupled island (∼1 μs) and sets a bound for a weakly coupled island (>10 μs). Fluctuations in the gate-voltage spacing of Coulomb peaks at high field, reflecting Majorana hybridization, are enhanced by the reduced lever arm at strong coupling. When converted from gate voltage to energy units, fluctuations are consistent with previous measurements.
NASA Astrophysics Data System (ADS)
Beterov, I. I.; Hamzina, G. N.; Yakshina, E. A.; Tretyakov, D. B.; Entin, V. M.; Ryabtsev, I. I.
2018-03-01
High-fidelity entangled Bell states are of great interest in quantum physics. Entanglement of ultracold neutral atoms in two spatially separated optical dipole traps is promising for implementation of quantum computing and quantum simulation and for investigation of Bell states of material objects. We propose a method to entangle two atoms via long-range Rydberg-Rydberg interaction. Alternative to previous approaches, based on Rydberg blockade, we consider radio-frequency-assisted Stark-tuned Förster resonances in Rb Rydberg atoms. To reduce the sensitivity of the fidelity of Bell states to the fluctuations of interatomic distance, we propose to use the double adiabatic passage across the radio-frequency-assisted Stark-tuned Förster resonances, which results in a deterministic phase shift of the collective two-atom state.
Nitabach, Michael N.; Wu, Ying; Sheeba, Vasu; Lemon, William C.; Strumbos, John; Zelensky, Paul K.; White, Benjamin H.; Holmes, Todd C.
2008-01-01
Coupling of autonomous cellular oscillators is an essential aspect of circadian clock function but little is known about its circuit requirements. Functional ablation of the pigment-dispersing factor-expressing lateral ventral subset (LNV ) of Drosophila clock neurons abolishes circadian rhythms of locomotor activity. The hypothesis that LNVs synchronize oscillations in downstream clock neurons was tested by rendering the LNVs hyperexcitable via transgenic expression of a low activation threshold voltage-gated sodium channel. When the LNVs are made hyperexcitable, free-running behavioral rhythms decompose into multiple independent superimposed oscillations and the clock protein oscillations in the dorsal neuron 1 and 2 subgroups of clock neurons are phase-shifted. Thus, regulated electrical activity of the LNVs synchronize multiple oscillators in the fly circadian pacemaker circuit. PMID:16407545
Quantifying the effect of ionic screening with protein-decorated graphene transistors
Ping, Jinglei; Xi, Jin; Saven, Jeffery G.; Liu, Renyu; Charlie Johnson, A. T.
2015-01-01
Liquid-based applications of biomolecule-decorated field-effect transistors (FETs) range from biosensors to in vivo implants. A critical scientific challenge is to develop a quantitative understanding of the gating effect of charged biomolecules in ionic solution and how this influences the readout of the FETs. To address this issue, we fabricated protein-decorated graphene FETs and measured their electrical properties, specifically the shift in Dirac voltage, in solutions of varying ionic strength. We found excellent quantitative agreement with a model that accounts for both the graphene polarization charge and ionic screening of ions adsorbed on the graphene as well as charged amino acids associated with the immobilized protein. The technique and analysis presented here directly couple the charging status of bound biomolecules to readout of liquid-phase FETs fabricated with graphene or other two-dimensional materials. PMID:26626969
Bubbles, Gating, and Anesthetics in Ion Channels
Roth, Roland; Gillespie, Dirk; Nonner, Wolfgang; Eisenberg, Robert E.
2008-01-01
We suggest that bubbles are the bistable hydrophobic gates responsible for the on-off transitions of single channel currents. In this view, many types of channels gate by the same physical mechanism—dewetting by capillary evaporation—but different types of channels use different sensors to modulate hydrophobic properties of the channel wall and thereby trigger and control bubbles and gating. Spontaneous emptying of channels has been seen in many simulations. Because of the physics involved, such phase transitions are inherently sensitive, unstable threshold phenomena that are difficult to simulate reproducibly and thus convincingly. We present a thermodynamic analysis of a bubble gate using morphometric density functional theory of classical (not quantum) mechanics. Thermodynamic analysis of phase transitions is generally more reproducible and less sensitive to details than simulations. Anesthetic actions of inert gases—and their interactions with hydrostatic pressure (e.g., nitrogen narcosis)—can be easily understood by actions on bubbles. A general theory of gas anesthesia may involve bubbles in channels. Only experiments can show whether, or when, or which channels actually use bubbles as hydrophobic gates: direct observation of bubbles in channels is needed. Existing experiments show thin gas layers on hydrophobic surfaces in water and suggest that bubbles nearly exist in bulk water. PMID:18234836
Programmable Schottky Junctions Based on Ferroelectric Gated MoS2 Transistors
NASA Astrophysics Data System (ADS)
Xiao, Zhiyong; Song, Jingfeng; Drcharme, Stephen; Hong, Xia
We report a programmable Schottky junction based on MoS2 field effect transistors with a SiO2 back gate and a ferroelectric copolymer poly(vinylidene-fluoride-trifluorethylene) (PVDF) top gate. We fabricated mechanically exfoliated single layer MoS2 flakes into two point devices via e-beam lithography, and deposited on the top of the devices ~20 nm PVDF thin films. The polarization of the PVDF layer is controlled locally by conducting atomic force microscopy. The devices exhibit linear ID-VD characteristics when the ferroelectric gate is uniformly polarized in one direction. We then polarized the gate into two domains with opposite polarization directions, and observed that the ID-VD characteristics of the MoS2 channel can be modulated between linear and rectified behaviors depending on the back gate voltage. The nonlinear ID-VD relation emerges when half of the channel is in the semiconductor phase while the other half is in the metallic phase, and it can be well described by the thermionic emission model with a Schottky barrier of ~0.5 eV. The Schottky junction can be erased by re-write the entire channel in the uniform polarization state. Our study facilitates the development of programmable, multifunctional nanoelectronics based on layered 2D TMDs..
Holonomic Quantum Control by Coherent Optical Excitation in Diamond.
Zhou, Brian B; Jerger, Paul C; Shkolnikov, V O; Heremans, F Joseph; Burkard, Guido; Awschalom, David D
2017-10-06
Although geometric phases in quantum evolution are historically overlooked, their active control now stimulates strategies for constructing robust quantum technologies. Here, we demonstrate arbitrary single-qubit holonomic gates from a single cycle of nonadiabatic evolution, eliminating the need to concatenate two separate cycles. Our method varies the amplitude, phase, and detuning of a two-tone optical field to control the non-Abelian geometric phase acquired by a nitrogen-vacancy center in diamond over a coherent excitation cycle. We demonstrate the enhanced robustness of detuned gates to excited-state decoherence and provide insights for optimizing fast holonomic control in dissipative quantum systems.
Holonomic Quantum Control by Coherent Optical Excitation in Diamond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Brian B.; Jerger, Paul C.; Shkolnikov, V. O.
Although geometric phases in quantum evolution are historically overlooked, their active control now stimulates strategies for constructing robust quantum technologies. Here, we demonstrate arbitrary singlequbit holonomic gates from a single cycle of nonadiabatic evolution, eliminating the need to concatenate two separate cycles. Our method varies the amplitude, phase, and detuning of a two-tone optical field to control the non-Abelian geometric phase acquired by a nitrogen-vacancy center in diamond over a coherent excitation cycle. We demonstrate the enhanced robustness of detuned gates to excited-state decoherence and provide insights for optimizing fast holonomic control in dissipative quantum systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cover, Keith S.; Lagerwaard, Frank J.; Senan, Suresh
2006-03-01
Purpose: Four-dimensional computerized tomography scans (4DCT) enable intrafractional motion to be determined. Because more than 1500 images can be generated with each 4DCT study, tools for efficient data visualization and evaluation are needed. We describe the use of color intensity projections (CIP) for visualizing mobility. Methods: Four-dimensional computerized tomography images of each patient slice were combined into a CIP composite image. Pixels largely unchanged over the component images appear unchanged in the CIP image. However, pixels whose intensity changes over the phases of the 4DCT appear in the CIP image as colored pixels, and the hue encodes the percentage ofmore » time the tissue was in each location. CIPs of 18 patients were used to study tumor and surrogate markers, namely the diaphragm and an abdominal marker block. Results: Color intensity projections permitted mobility of high-contrast features to be quickly visualized and measured. In three selected expiratory phases ('gating phases') that were reviewed in the sagittal plane, gating would have reduced mean tumor mobility from 6.3 {+-} 2.0 mm to 1.4 {+-} 0.5 mm. Residual tumor mobility in gating phases better correlated with residual mobility of the marker block than that of the diaphragm. Conclusion: CIPs permit immediate visualization of mobility in 4DCT images and simplify the selection of appropriate surrogates for gated radiotherapy.« less
NASA Astrophysics Data System (ADS)
Kim, Hunho; Kwack, Young-Jin; Yun, Eui-Jung; Choi, Woon-Seop
2016-09-01
Solution-processed gate dielectrics were fabricated with the combined ZrO2 and Al2O3 (ZAO) in the form of mixed and stacked types for oxide thin film transistors (TFTs). ZAO thin films prepared with double coatings for solid gate dielectrics were characterized by analytical tools. For the first time, the capacitance of the oxide semiconductor was extracted from the capacitance-voltage properties of the zinc-tin oxide (ZTO) TFTs with the combined ZAO dielectrics by using the proposed metal-insulator-semiconductor (MIS) structure model. The capacitance evolution of the semiconductor from the TFT model structure described well the threshold voltage shift observed in the ZTO TFT with the ZAO (1:2) gate dielectric. The electrical properties of the ZTO TFT with a ZAO (1:2) gate dielectric showed low voltage driving with a field effect mobility of 37.01 cm2/Vs, a threshold voltage of 2.00 V, an on-to-off current ratio of 1.46 × 105, and a subthreshold slope of 0.10 V/dec.
Kim, Hunho; Kwack, Young-Jin; Yun, Eui-Jung; Choi, Woon-Seop
2016-01-01
Solution-processed gate dielectrics were fabricated with the combined ZrO2 and Al2O3 (ZAO) in the form of mixed and stacked types for oxide thin film transistors (TFTs). ZAO thin films prepared with double coatings for solid gate dielectrics were characterized by analytical tools. For the first time, the capacitance of the oxide semiconductor was extracted from the capacitance-voltage properties of the zinc-tin oxide (ZTO) TFTs with the combined ZAO dielectrics by using the proposed metal-insulator-semiconductor (MIS) structure model. The capacitance evolution of the semiconductor from the TFT model structure described well the threshold voltage shift observed in the ZTO TFT with the ZAO (1:2) gate dielectric. The electrical properties of the ZTO TFT with a ZAO (1:2) gate dielectric showed low voltage driving with a field effect mobility of 37.01 cm2/Vs, a threshold voltage of 2.00 V, an on-to-off current ratio of 1.46 × 105, and a subthreshold slope of 0.10 V/dec. PMID:27641430
Multichannel analyzers at high rates of input
NASA Technical Reports Server (NTRS)
Rudnick, S. J.; Strauss, M. G.
1969-01-01
Multichannel analyzer, used with a gating system incorporating pole-zero compensation, pile-up rejection, and baseline-restoration, achieves good resolution at high rates of input. It improves resolution, reduces tailing and rate-contributed continuum, and eliminates spectral shift.
Effect of substrate thinning on the electronic transport characteristics of AlGaN/GaN HEMTs
NASA Astrophysics Data System (ADS)
Zhu, Hui; Meng, Xiao; Zheng, Xiang; Yang, Ying; Feng, Shiwei; Zhang, Yamin; Guo, Chunsheng
2018-07-01
We studied how substrate thinning affected the electronic transport characteristics of AlGaN/GaN HEMTs. By thinning their sapphire substrate from 460 μm to 80 μm, we varied the residual stress in these HEMTs. The thinned sample showed decreased drain-source current and occurrence of kink effect. Furthermore, shown by current transient measurements and time constant analysis, the detrapping behaviors of trap states shifted toward a larger time constant, and the detrapping behavior under the gate and in the gate-drain access region showed increased amplitude. By using pulsed current-voltage measurements, the thinned sample showed a positive shift of the threshold voltage, a decrease in peak transconductance, and an aggravation in current collapse, as compared with the thick one. The degradation of electrical behavior were associated with the structural degradation, as confirmed by the increase of pit density on the thinned sample surface.
Choi, Sungjin; Lee, Junhyuk; Kim, Donghyoun; Oh, Seulki; Song, Wangyu; Choi, Seonjun; Choi, Eunsuk; Lee, Seung-Beck
2011-12-01
We report on the fabrication and capacitance-voltage characteristics of double layer nickel-silicide nanocrystals with Si3N4 interlayer tunnel barrier for nano-floating gate memory applications. Compared with devices using SiO2 interlayer, the use of Si3N4 interlayer separation reduced the average size (4 nm) and distribution (+/- 2.5 nm) of NiSi2 nanocrystal (NC) charge traps by more than 50% and giving a two fold increase in NC density to 2.3 x 10(12) cm(-2). The increased density and reduced NC size distribution resulted in a significantly decrease in the distribution of the device C-V characteristics. For each program voltage, the distribution of the shift in the threshold voltage was reduced by more than 50% on average to less than 0.7 V demonstrating possible multi-level-cell operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Um, Jae Gwang; Mativenga, Mallory; Jang, Jin, E-mail: jjang@khu.ac.kr
2014-04-07
We report on the generation and characterization of a hump in the transfer characteristics of amorphous indium gallium zinc-oxide thin-film transistors by positive bias temperature stress. The hump depends strongly on the gate bias stress at 100 °C. Due to the hump, the positive shift of the transfer characteristic in deep depletion is always smaller that in accumulation. Since, the latter shift is twice the former, with very good correlation, we conclude that the effect is due to creation of a double acceptor, likely to be a cation vacancy. Our results indicate that these defects are located near the gate insulator/activemore » layer interface, rather than in the bulk. Migration of donor defects from the interface towards the bulk may also occur under PBST at 100 °C.« less
NASA Technical Reports Server (NTRS)
Brucker, G. J.; Van Gunten, O.; Stassinopoulos, E. G.; Shapiro, P.; August, L. S.; Jordan, T. M.
1983-01-01
This paper reports on the recovery properties of rad-hard MOS devices during and after irradiation by electrons, protons, alphas, and gamma rays. The results indicated that complex recovery properties controlled the damage sensitivities of the tested parts. The results also indicated that damage sensitivities depended on dose rate, total dose, supply bias, gate bias, transistor type, radiation source, and particle energy. The complex nature of these dependencies make interpretation of LSI device performance in space (exposure to entire electron and proton spectra) difficult, if not impossible, without respective ground tests and analyses. Complete recovery of n-channel shifts was observed, in some cases within hours after irradiation, with equilibrium values of threshold voltages greater than their pre-irradiation values. This effect depended on total dose, radiation source, and gate bias during exposure. In contrast, the p-channel shifts recovered only 20 percent within 30 days after irradiation.
Haddad, Georges A.
2011-01-01
The voltage sensors of voltage-gated ion channels undergo a conformational change upon depolarization of the membrane that leads to pore opening. This conformational change can be measured as gating currents and is thought to be transferred to the pore domain via an annealing of the covalent link between voltage sensor and pore (S4-S5 linker) and the C terminus of the pore domain (S6). Upon prolonged depolarizations, the voltage dependence of the charge movement shifts to more hyperpolarized potentials. This mode shift had been linked to C-type inactivation but has recently been suggested to be caused by a relaxation of the voltage sensor itself. In this study, we identified two ShakerIR mutations in the S4-S5 linker (I384N) and S6 (F484G) that, when mutated, completely uncouple voltage sensor movement from pore opening. Using these mutants, we show that the pore transfers energy onto the voltage sensor and that uncoupling the pore from the voltage sensor leads the voltage sensors to be activated at more negative potentials. This uncoupling also eliminates the mode shift occurring during prolonged depolarizations, indicating that the pore influences entry into the mode shift. Using voltage-clamp fluorometry, we identified that the slow conformational change of the S4 previously correlated with the mode shift disappears when uncoupling the pore. The effects can be explained by a mechanical load that is imposed upon the voltage sensors by the pore domain and allosterically modulates its conformation. Mode shift is caused by the stabilization of the open state but leads to a conformational change in the voltage sensor. PMID:21518834
An Ultra-Sensitive Electrometer based on the Cavity-Embedded Cooper-Pair Transistor
NASA Astrophysics Data System (ADS)
Li, Juliang; Miller, Marco; Rimberg, Alex
2015-03-01
We discuss use of a cavity-embedded Cooper-pair transistor (cCPT) as a potentially quantum-limited electrometer. The cCPT consists of a Cooper pair transistor placed at the voltage antinode of a 5.7 GHz shorted quarter-wave resonator so that the CPT provides a galvanic connection between the cavity's central conductor and ground plane. The quantum inductance of the CPT, which appears in parallel with the effective inductance of the cavity resonance, can be modulated by application of either a gate voltage to the CPT island or a flux bias to the CPT/cavity loop. Changes in the CPT inductance shift the cavity resonant frequency, and therefore the phase of a microwave signal reflected from the cavity. The reflected wave is amplified by both SLUG and HEMT amplifiers before its phase is measured. Results of recent measurements on the cCPT electrometer will be compared with theoretical predictions. This work was supported by the NSF under Grant No. DMR-1104821, by the ARO under Contract No, W911NF-13-1-0377 and by AFOSR/DARPA under Agreement No. FA8750-12-2-0339.
NASA Astrophysics Data System (ADS)
Didierlaurent, D.; Ribes, S.; Batatia, H.; Jaudet, C.; Dierickx, L. O.; Zerdoud, S.; Brillouet, S.; Caselles, O.; Courbon, F.
2012-12-01
This study assesses the accuracy of prospective phase-gated PET/CT data binning and presents a retrospective data binning method that improves image quality and consistency. Respiratory signals from 17 patients who underwent 4D PET/CT were analysed to evaluate the reproducibility of temporal triggers used for the standard phase-based gating method. Breathing signals were reprocessed to implement retrospective PET data binning. The mean and standard deviation of time lags between automatic triggers provided by the Real-time Position Management (RPM, Varian) gating device and inhalation peaks derived from respiratory curves were computed for each patient. The total number of respiratory cycles available for 4D PET/CT according to the binning mode (prospective versus retrospective) was compared. The maximum standardized uptake value (SUVmax), biological tumour volume (BTV) and tumour trajectory measures were determined from the PET/CT images of five patients. Compared to retrospective binning (RB), prospective gating approach led to (i) a significant loss in breathing cycles (15%) and (ii) the inconsistency of data binning due to temporal dispersion of triggers (average 396 ms). Consequently, tumour characterization could be impacted. In retrospective mode, SUVmax was up to 27% higher, where no significant difference appeared in BTV. In addition, prospective mode gave an inconsistent spatial location of the tumour throughout the bins. Improved consistency with breathing patterns and greater motion amplitude of the tumour centroid were observed with retrospective mode. The detection of the tumour motion and trajectory was improved also for small temporal dispersion of triggers. This study shows that the binning mode could have a significant impact on 4D PET images. The consistency of triggers with breathing signals should be checked before clinical use of gated PET/CT images, and our RB method improves 4D PET/CT image quantification.
Echocardiography as an indication of continuous-time cardiac quiescence
NASA Astrophysics Data System (ADS)
Wick, C. A.; Auffermann, W. F.; Shah, A. J.; Inan, O. T.; Bhatti, P. T.; Tridandapani, S.
2016-07-01
Cardiac computed tomography (CT) angiography using prospective gating requires that data be acquired during intervals of minimal cardiac motion to obtain diagnostic images of the coronary vessels free of motion artifacts. This work is intended to assess B-mode echocardiography as a continuous-time indication of these quiescent periods to determine if echocardiography can be used as a cost-efficient, non-ionizing modality to develop new prospective gating techniques for cardiac CT. These new prospective gating approaches will not be based on echocardiography itself but on CT-compatible modalities derived from the mechanics of the heart (e.g. seismocardiography and impedance cardiography), unlike the current standard electrocardiogram. To this end, echocardiography and retrospectively-gated CT data were obtained from ten patients with varied cardiac conditions. CT reconstructions were made throughout the cardiac cycle. Motion of the interventricular septum (IVS) was calculated from both echocardiography and CT reconstructions using correlation-based, deviation techniques. The IVS was chosen because it (1) is visible in echocardiography images, whereas the coronary vessels generally are not, and (2) has been shown to be a suitable indicator of cardiac quiescence. Quiescent phases were calculated as the minima of IVS motion and CT volumes were reconstructed for these phases. The diagnostic quality of the CT reconstructions from phases calculated from echocardiography and CT data was graded on a four-point Likert scale by a board-certified radiologist fellowship-trained in cardiothoracic radiology. Using a Wilcoxon signed-rank test, no significant difference in the diagnostic quality of the coronary vessels was found between CT volumes reconstructed from echocardiography- and CT-selected phases. Additionally, there was a correlation of 0.956 between the echocardiography- and CT-selected phases. This initial work suggests that B-mode echocardiography can be used as a tool to develop CT-compatible gating techniques based on modalities derived from cardiac mechanics rather than relying on the ECG alone.
Efficient Z gates for quantum computing
NASA Astrophysics Data System (ADS)
McKay, David C.; Wood, Christopher J.; Sheldon, Sarah; Chow, Jerry M.; Gambetta, Jay M.
2017-08-01
For superconducting qubits, microwave pulses drive rotations around the Bloch sphere. The phase of these drives can be used to generate zero-duration arbitrary virtual Z gates, which, combined with two Xπ /2 gates, can generate any SU(2) gate. Here we show how to best utilize these virtual Z gates to both improve algorithms and correct pulse errors. We perform randomized benchmarking using a Clifford set of Hadamard and Z gates and show that the error per Clifford is reduced versus a set consisting of standard finite-duration X and Y gates. Z gates can correct unitary rotation errors for weakly anharmonic qubits as an alternative to pulse-shaping techniques such as derivative removal by adiabatic gate (DRAG). We investigate leakage and show that a combination of DRAG pulse shaping to minimize leakage and Z gates to correct rotation errors realizes a 13.3 ns Xπ /2 gate characterized by low error [1.95 (3 ) ×10-4] and low leakage [3.1 (6 ) ×10-6] . Ultimately leakage is limited by the finite temperature of the qubit, but this limit is two orders of magnitude smaller than pulse errors due to decoherence.
Upsets in Erased Floating Gate Cells With High-Energy Protons
Gerardin, S.; Bagatin, M.; Paccagnella, A.; ...
2017-01-01
We discuss upsets in erased floating gate cells, due to large threshold voltage shifts, using statistical distributions collected on a large number of memory cells. The spread in the neutral threshold voltage appears to be too low to quantitatively explain the experimental observations in terms of simple charge loss, at least in SLC devices. The possibility that memories exposed to high energy protons and heavy ions exhibit negative charge transfer between programmed and erased cells is investigated, although the analysis does not provide conclusive support to this hypothesis.
UWB dual burst transmit driver
Dallum, Gregory E [Livermore, CA; Pratt, Garth C [Discovery Bay, CA; Haugen, Peter C [Livermore, CA; Zumstein, James M [Livermore, CA; Vigars, Mark L [Livermore, CA; Romero, Carlos E [Livermore, CA
2012-04-17
A dual burst transmitter for ultra-wideband (UWB) communication systems generates a pair of precisely spaced RF bursts from a single trigger event. An input trigger pulse produces two oscillator trigger pulses, an initial pulse and a delayed pulse, in a dual trigger generator. The two oscillator trigger pulses drive a gated RF burst (power output) oscillator. A bias driver circuit gates the RF output oscillator on and off and sets the RF burst packet width. The bias driver also level shifts the drive signal to the level that is required for the RF output device.
New design of a passive type RADFET reader for enhanced sensitivity
NASA Astrophysics Data System (ADS)
Lee, Dae-Hee
2016-07-01
We present a new design of a passive type RADFET reader with enhanced radiation sensitivity. Using a electostatic plate, we have applied a static electric field to the gate voltage, which impacts a positive biasing on the p-type MOSFET. The resultant effect shows that 1.8 times of radiation sensitivity increased when we measured the threshold voltage shift of the RADFET exposed to 30 krad irradiation. We discuss further about the characteristic changes of a RADFET according to the positive biasing on the gate voltage.
Quantum computation with trapped ions in an optical cavity.
Pachos, Jiannis; Walther, Herbert
2002-10-28
Two-qubit logical gates are proposed on the basis of two atoms trapped in a cavity setup and commonly addressed by laser fields. Losses in the interaction by spontaneous transitions are efficiently suppressed by employing adiabatic transitions and the quantum Zeno effect. Dynamical and geometrical conditional phase gates are suggested. This method provides fidelity and a success rate of its gates very close to unity. Hence, it is suitable for performing quantum computation.
Shipboard Elevator Magnetic Sensor Development. Phase I, Laboratory Investigations.
1981-08-19
greater detail. The principles studied were those of the flux-meter and the flux-gate magnetometer . Of these two, the flux-gate magnetometer principle was...Abstract (Continued) Flux-gate magnetometers continuously sense the component of a stationary or slowly varying magnetic field along a chosen axis. The...distance of the sensor from the target’s line of travel, while precisely indicating displacements along the line. The modes of detection include level
External protons destabilize the activated voltage sensor in hERG channels.
Shi, Yu Patrick; Cheng, Yen May; Van Slyke, Aaron C; Claydon, Tom W
2014-03-01
Extracellular acidosis shifts hERG channel activation to more depolarized potentials and accelerates channel deactivation; however, the mechanisms underlying these effects are unclear. External divalent cations, e.g., Ca(2+) and Cd(2+), mimic these effects and coordinate within a metal ion binding pocket composed of three acidic residues in hERG: D456 and D460 in S2 and D509 in S3. A common mechanism may underlie divalent cation and proton effects on hERG gating. Using two-electrode voltage clamp, we show proton sensitivity of hERG channel activation (pKa = 5.6), but not deactivation, was greatly reduced in the presence of Cd(2+) (0.1 mM), suggesting a common binding site for the Cd(2+) and proton effect on activation and separable effects of protons on activation and deactivation. Mutational analysis confirmed that D509 plays a critical role in the pH dependence of activation, as shown previously, and that cooperative actions involving D456 and D460 are also required. Importantly, neutralization of all three acidic residues abolished the proton-induced shift of activation, suggesting that the metal ion binding pocket alone accounts for the effects of protons on hERG channel activation. Voltage-clamp fluorimetry measurements demonstrated that protons shifted the voltage dependence of S4 movement to more depolarized potentials. The data indicate a site and mechanism of action for protons on hERG activation gating; protonation of D456, D460 and D509 disrupts interactions between these residues and S4 gating charges to destabilize the activated configuration of S4.
All optical logic for optical pattern recognition and networking applications
NASA Astrophysics Data System (ADS)
Khoury, Jed
2017-05-01
In this paper, we propose architectures for the implementation 16 Boolean optical gates from two inputs using externally pumped phase- conjugate Michelson interferometer. Depending on the gate to be implemented, some require single stage interferometer and others require two stages interferometer. The proposed optical gates can be used in several applications in optical networks including, but not limited to, all-optical packet routers switching, and all-optical error detection. The optical logic gates can also be used in recognition of noiseless rotation and scale invariant objects such as finger prints for home land security applications.
Influence of emotional states on inhibitory gating: Animals models to clinical neurophysiology
Cromwell, Howard C.; Atchley, Rachel M.
2014-01-01
Integrating research efforts using a cross-domain approach could redefine traditional constructs used in behavioral and clinical neuroscience by demonstrating that behavior and mental processes arise not from functional isolation but from integration. Our research group has been examining the interface between cognitive and emotional processes by studying inhibitory gating. Inhibitory gating can be measured via changes in behavior or neural signal processing. Sensorimotor gating of the startle response is a well-used measure. To study how emotion and cognition interact during startle modulation in the animal model, we examined ultrasonic vocalization (USV) emissions during acoustic startle and prepulse inhibition. We found high rates of USV emission during the sensorimotor gating paradigm and revealed links between prepulse inhibition (PPI) and USV emission that could reflect emotional and cognitive influences. Measuring inhibitory gating as P50 event-related potential suppression has also revealed possible connections between emotional states and cognitive processes. We have examined the single unit responses during the traditional gating paradigm and found that acute and chronic stress can alter gating of neural signals in regions such as amygdala, striatum and medial prefrontal cortex. Our findings point to the need for more cross-domain research on how shifting states of emotion can impact basic mechanisms of information processing. Results could inform clinical work with the development of tools that depend upon cross-domain communication, and enable a better understanding and evaluation of psychological impairment. PMID:24861710
Trimble, Mark A.; Borges-Neto, Salvador; Honeycutt, Emily F.; Shaw, Linda K.; Pagnanelli, Robert; Chen, Ji; Iskandrian, Ami E.; Garcia, Ernest V.; Velazquez, Eric J.
2010-01-01
Background Using phase analysis of gated single photon emission computed tomography (SPECT) imaging, we examined the relation between myocardial perfusion, degree of electrical dyssynchrony, and degree of SPECT-derived mechanical dyssynchrony in patients with left ventricular (LV) dysfunction. Methods and Results We retrospectively examined 125 patients with LV dysfunction and ejection fraction of 35% or lower. Fourier analysis converts regional myocardial counts into a continuous thickening function, allowing resolution of phase of onset of myocardial thickening. The SD of LV phase distribution (phase SD) and histogram bandwidth describe LV phase dispersion as a measure of dyssynchrony. Heart failure (HF) patients with perfusion abnormalities ities have higher degrees of dyssynchrony measured by median phase SD (45.5° vs 27.7°, P < .0001) and bandwidth (117.0° vs 73.0°, P = .0006). HF patients with prolonged QRS durations have higher degrees of dyssynchrony measured by median phase SD (54.1° vs 34.7°, P < .0001) and bandwidth (136.5° vs 99.0°, P = .0005). Mild to moderate correlations exist between QRS duration and phase analysis indices of phase SD (r = 0.50) and bandwidth (r = 0.40). Mechanical dyssynchrony (phase SD >43°) was 43.2%. Conclusions HF patients with perfusion abnormalities or prolonged QRS durations QRS durations have higher degrees of mechanical dyssynchrony. Gated SPECT myocardial perfusion imaging can quantify myocardial function, perfusion, and dyssynchrony and may help in evaluating patients for cardiac resynchronization therapy. PMID:18761269
PRB CHEMISTRY CASE STUDY: DENVER FEDERAL CENTER
The Denver Federal Center permeable reactive barrier is a funnel-and-gate system with four reactive gates, each separated by up to about 120 m of metal sheet pile. In this study, ground water sampling, core collection, and solid phase characterization studies were carried out in...
Fabry-Pérot Interference in Gapped Bilayer Graphene with Broken Anti-Klein Tunneling
NASA Astrophysics Data System (ADS)
Varlet, Anastasia; Liu, Ming-Hao; Krueckl, Viktor; Bischoff, Dominik; Simonet, Pauline; Watanabe, Kenji; Taniguchi, Takashi; Richter, Klaus; Ensslin, Klaus; Ihn, Thomas
2014-09-01
We report the experimental observation of Fabry-Pérot interference in the conductance of a gate-defined cavity in a dual-gated bilayer graphene device. The high quality of the bilayer graphene flake, combined with the device's electrical robustness provided by the encapsulation between two hexagonal boron nitride layers, allows us to observe ballistic phase-coherent transport through a 1-μm-long cavity. We confirm the origin of the observed interference pattern by comparing to tight-binding calculations accounting for the gate-tunable band gap. The good agreement between experiment and theory, free of tuning parameters, further verifies that a gap opens in our device. The gap is shown to destroy the perfect reflection for electrons traversing the barrier with normal incidence (anti-Klein tunneling). The broken anti-Klein tunneling implies that the Berry phase, which is found to vary with the gate voltages, is always involved in the Fabry-Pérot oscillations regardless of the magnetic field, in sharp contrast with single-layer graphene.
Optimized pulse shaping for trapped ion quantum computing
NASA Astrophysics Data System (ADS)
Manning, T.; Debnath, Shantanu; Choi, Taeyoung; Figgatt, Caroline; Monroe, Chris
2013-05-01
We perform entangling phase gates between pairs of qubits in a chain of trapped atomic ytterbium ions. Beat notes between frequency comb lines of a pulsed laser coherently drive Raman transitions that couple the hyperfine qubits to multiple collective transverse modes of motion. By optimizing the phase and amplitude of segmented laser pulses, we demonstrate a five-segment scheme to entangle two qubits with high fidelity over a range of detunings. We compare this special case of full control of spin-motion entanglement to a traditional single-segment gate. We extend this scheme to selectively entangle pairs of qubits in larger chains using individual optical addressing, where we couple to all the motional modes. We show how these robust gates can achieve high fidelities for practical gate times in an approach that scales realistically to much larger numbers of qubits. This work is supported by grants from the U.S. Army Research Office with funding from the DARPA OLE program, IARPA, and the MURI program; and the NSF Physics Frontier Center at JQI.
Plasmon-shaped polarization gating for high-order-harmonic generation
NASA Astrophysics Data System (ADS)
Wang, Feng; He, Lixin; Chen, Jiawei; Wang, Baoning; Zhu, Xiaosong; Lan, Pengfei; Lu, Peixiang
2017-12-01
We present a plasmon-shaped polarization gating for high-order-harmonic generation by using a linearly polarized laser field to illuminate two orthogonal bow-tie nanostructures. The results show that when these two bow-tie nanostructures have nonidentical geometrical sizes, the transverse and longitudinal components of the incident laser field will experience different phase responses, thus leading to a time-dependent ellipticity of laser field. For the polarizing angle of incident laser field in the range from 45∘ to 60∘, the dominant harmonic emission is gated within the few optical cycles where the laser ellipticity is below 0.3. Then sub-50-as isolated attosecond pulses (IAPs) can be generated. Such a plasmon-shaped polarization gating is robust for IAP generation against the variations of the carrier-envelope phases of the laser pulse. Moreover, by changing the geometrical size of one of the bow-tie nanostructures, the electron dynamics can be effectively controlled and the more efficient supercontinuum as well as IAP can be generated.
Quantum circuit dynamics via path integrals: Is there a classical action for discrete-time paths?
NASA Astrophysics Data System (ADS)
Penney, Mark D.; Enshan Koh, Dax; Spekkens, Robert W.
2017-07-01
It is straightforward to compute the transition amplitudes of a quantum circuit using the sum-over-paths methodology when the gates in the circuit are balanced, where a balanced gate is one for which all non-zero transition amplitudes are of equal magnitude. Here we consider the question of whether, for such circuits, the relative phases of different discrete-time paths through the configuration space can be defined in terms of a classical action, as they are for continuous-time paths. We show how to do so for certain kinds of quantum circuits, namely, Clifford circuits where the elementary systems are continuous-variable systems or discrete systems of odd-prime dimension. These types of circuit are distinguished by having phase-space representations that serve to define their classical counterparts. For discrete systems, the phase-space coordinates are also discrete variables. We show that for each gate in the generating set, one can associate a symplectomorphism on the phase-space and to each of these one can associate a generating function, defined on two copies of the configuration space. For discrete systems, the latter association is achieved using tools from algebraic geometry. Finally, we show that if the action functional for a discrete-time path through a sequence of gates is defined using the sum of the corresponding generating functions, then it yields the correct relative phases for the path-sum expression. These results are likely to be relevant for quantizing physical theories where time is fundamentally discrete, characterizing the classical limit of discrete-time quantum dynamics, and proving complexity results for quantum circuits.
Chen, Yi-Ching; Lin, Yen-Ting; Chang, Gwo-Ching; Hwang, Ing-Shiou
2017-01-01
The detection of error information is an essential prerequisite of a feedback-based movement. This study investigated the differential behavior and neurophysiological mechanisms of a cyclic force-tracking task using error-reducing and error-enhancing feedback. The discharge patterns of a relatively large number of motor units (MUs) were assessed with custom-designed multi-channel surface electromyography following mathematical decomposition of the experimentally-measured signals. Force characteristics, force-discharge relation, and phase-locking cortical activities in the contralateral motor cortex to individual MUs were contrasted among the low (LSF), normal (NSF), and high scaling factor (HSF) conditions, in which the sizes of online execution errors were displayed with various amplification ratios. Along with a spectral shift of the force output toward a lower band, force output with a more phase-lead became less irregular, and tracking accuracy was worse in the LSF condition than in the HSF condition. The coherent discharge of high phasic (HP) MUs with the target signal was greater, and inter-spike intervals were larger, in the LSF condition than in the HSF condition. Force-tracking in the LSF condition manifested with stronger phase-locked EEG activity in the contralateral motor cortex to discharge of the (HP) MUs (LSF > NSF, HSF). The coherent discharge of the (HP) MUs during the cyclic force-tracking predominated the force-discharge relation, which increased inversely to the error scaling factor. In conclusion, the size of visualized error gates motor unit discharge, force-discharge relation, and the relative influences of the feedback and feedforward processes on force control. A smaller visualized error size favors voluntary force control using a feedforward process, in relation to a selective central modulation that enhance the coherent discharge of (HP) MUs. PMID:28348530
Chen, Yi-Ching; Lin, Yen-Ting; Chang, Gwo-Ching; Hwang, Ing-Shiou
2017-01-01
The detection of error information is an essential prerequisite of a feedback-based movement. This study investigated the differential behavior and neurophysiological mechanisms of a cyclic force-tracking task using error-reducing and error-enhancing feedback. The discharge patterns of a relatively large number of motor units (MUs) were assessed with custom-designed multi-channel surface electromyography following mathematical decomposition of the experimentally-measured signals. Force characteristics, force-discharge relation, and phase-locking cortical activities in the contralateral motor cortex to individual MUs were contrasted among the low (LSF), normal (NSF), and high scaling factor (HSF) conditions, in which the sizes of online execution errors were displayed with various amplification ratios. Along with a spectral shift of the force output toward a lower band, force output with a more phase-lead became less irregular, and tracking accuracy was worse in the LSF condition than in the HSF condition. The coherent discharge of high phasic (HP) MUs with the target signal was greater, and inter-spike intervals were larger, in the LSF condition than in the HSF condition. Force-tracking in the LSF condition manifested with stronger phase-locked EEG activity in the contralateral motor cortex to discharge of the (HP) MUs (LSF > NSF, HSF). The coherent discharge of the (HP) MUs during the cyclic force-tracking predominated the force-discharge relation, which increased inversely to the error scaling factor. In conclusion, the size of visualized error gates motor unit discharge, force-discharge relation, and the relative influences of the feedback and feedforward processes on force control. A smaller visualized error size favors voluntary force control using a feedforward process, in relation to a selective central modulation that enhance the coherent discharge of (HP) MUs.
Advanced p-MOSFET Ionizing-Radiation Dosimeter
NASA Technical Reports Server (NTRS)
Buehler, Martin G.; Blaes, Brent R.
1994-01-01
Circuit measures total dose of ionizing radiation in terms of shift in threshold gate voltage of doped-channel metal oxide/semiconductor field-effect transistor (p-MOSFET). Drain current set at temperature-independent point to increase accuracy in determination of radiation dose.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wasser, M.N.; Schultze Kool, L.J.; Roos, A. de
Our goal was to assess the value of MRA for detecting stenoses in the celiac (CA) and superior mesenteric (SMA) arteries in patients suspected of having chronic mesenteric ischemia, using an optimized systolically gated 3D phase contrast technique. In an initial study in 24 patients who underwent conventional angiography of the abdominal vessels for different clinical indications, a 3D phase contrast MRA technique (3D-PCA) was evaluated and optimized to image the CAs and SMAs. Subsequently, a prospective study was performed to assess the value of systolically gated 3D-PCA in evaluation of the mesenteric arteries in 10 patients with signs andmore » symptoms of chronic mesenteric ischemia. Intraarterial digital subtraction angiography and surgical findings were used as the reference standard. In the initial study, systolic gating appeared to be essential in imaging the SMA on 3D-PCA. In 10 patients suspected of mesenteric ischemia, systolically gated 3D-PCA identified significant proximal disease in the two mesenteric vessels in 4 patients. These patients underwent successful reconstruction of their stenotic vessels. Cardiac-gated MRA may become a useful tool in selection of patients suspected of having mesenteric ischemia who may benefit from surgery. 16 refs., 6 figs., 4 tabs.« less
Henzlova, Daniela; Menlove, Howard Olsen; Croft, Stephen; ...
2015-06-15
In the field of nuclear safeguards, passive neutron multiplicity counting (PNMC) is a method typically employed in non-destructive assay (NDA) of special nuclear material (SNM) for nonproliferation, verification and accountability purposes. PNMC is generally performed using a well-type thermal neutron counter and relies on the detection of correlated pairs or higher order multiplets of neutrons emitted by an assayed item. To assay SNM, a set of parameters for a given well-counter is required to link the measured multiplicity rates to the assayed item properties. Detection efficiency, die-away time, gate utilization factors (tightly connected to die-away time) as well as optimummore » gate width setting are among the key parameters. These parameters along with the underlying model assumptions directly affect the accuracy of the SNM assay. In this paper we examine the role of gate utilization factors and the single exponential die-away time assumption and their impact on the measurements for a range of plutonium materials. In addition, we examine the importance of item-optimized coincidence gate width setting as opposed to using a universal gate width value. Finally, the traditional PNMC based on multiplicity shift register electronics is extended to Feynman-type analysis and application of this approach to Pu mass assay is demonstrated.« less
Acidic pH modulation of Na+ channels in trigeminal mesencephalic nucleus neurons.
Kang, In-Sik; Cho, Jin-Hwa; Choi, In-Sun; Kim, Do-Yeon; Jang, Il-Sung
2016-12-07
Cell bodies of trigeminal mesencephalic nucleus (Vmes) neurons are located within the central nervous system, and therefore, peripheral as well as central acidosis can modulate the excitability of Vmes neurons. Here, we report the effect of acidic pH on voltage-gated Na channels in acutely isolated rat Vmes neurons using a conventional whole-cell patch clamp technique. Acidic pH (pH 6.0) slightly but significantly shifted both the activation and steady-state fast inactivation relationships toward depolarized potentials. However, acidic pH (pH 6.0) had a minor effect on the inactivation kinetics of voltage-gated Na channels. Less sensitivity of voltage-gated Na channels to acidic pH may allow Vmes neurons to transduce the precise proprioceptive information even under acidic pH conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurishima, Kazunori, E-mail: ce41034@meiji.ac.jp; Nabatame, Toshihide, E-mail: NABATAME.Toshihide@nims.go.jp; Shimizu, Maki
To investigate the influence of ionic/covalent interface of Al{sub 2}O{sub 3}/SiO{sub 2} gate insulator on the electrical properties of thin-film transistors (TFTs) with ionic Ga-In-Zn-O (GIZO) semiconducting channel layers, Al{sub 2}O{sub 3} layers of different thickness were introduced between SiO{sub 2} and GIZO using plasma-enhanced atomic layer deposition. The GIZO layers were obtained by DC magnetron sputtering using a GIZO target (Ga:In:Zn = 1:1:1 mol. %). The GIZO TFTs with an Al{sub 2}O{sub 3}/SiO{sub 2} gate insulator exhibited positive threshold voltage (V{sub th}) shift (about 1.1 V), V{sub th} hysteresis suppression (0.23 V), and electron mobility degradation (about 13%) compared with thosemore » of a GIZO TFT with SiO{sub 2} gate insulator by the influence of ionic/ionic and ionic/covalent interface at Al{sub 2}O{sub 3}/GIZO and Al{sub 2}O{sub 3}/SiO{sub 2}, respectively. To clarify the origin of the positive V{sub th} shift, the authors estimated the shifts of flatband voltage (0.4 V) due to the dipole and the fixed charge (−1.1 × 10{sup 11}/cm{sup 2}) at Al{sub 2}O{sub 3}/SiO{sub 2} interface, from capacitance–voltage data for Pt/Al{sub 2}O{sub 3}/SiO{sub 2}/p-Si capacitors. Based on these experimental data, the authors found that the positive V{sub th} shift (1.1 V) could be divided into three components: the dipole (−0.4 V) and fixed charge (0.15 V) at the SiO{sub 2}/Al{sub 2}O{sub 3} interface, and the fixed charge (1.35 V) at the Al{sub 2}O{sub 3}/GIZO interface. Finally, it is noted that heterointerface of SiO{sub 2}/Al{sub 2}O{sub 3}/GIZO stacks is important not only to recognize mechanism of V{sub th} shift but also to design future TFTs with high-k dielectrics and low operating voltage.« less
NASA Astrophysics Data System (ADS)
Xu, Xiaoqing; Wang, Yawei; Ji, Ying; Xu, Yuanyuan; Xie, Ming; Han, Hao
2018-05-01
A new approach of quantitative phase imaging using four interferograms with special phase shifts in dual-wavelength in-line phase-shifting interferometry is presented. In this method, positive negative 2π phase shifts are employed to easily separate the incoherent addition of two single-wavelength interferograms by combining the phase-shifting technique with the subtraction procedure, then the quantitative phase at one of both wavelengths can be achieved based on two intensities without the corresponding dc terms by the use of the character of the trigonometric function. The quantitative phase of the other wavelength can be retrieved from two dc-term suppressed intensities obtained by employing the two-step phase-shifting technique or the filtering technique in the frequency domain. The proposed method is illustrated with theory, and its effectiveness is demonstrated by simulation experiments of the spherical cap and the HeLa cell, respectively.
First-principles study of amorphous Ga4Sb6Te3 phase-change alloys
NASA Astrophysics Data System (ADS)
Bouzid, Assil; Gabardi, Silvia; Massobrio, Carlo; Boero, Mauro; Bernasconi, Marco
2015-05-01
First-principles molecular dynamics simulations within the density functional theory framework were performed to generate amorphous models of the Ga4Sb6Te3 phase change alloy by quenching from the melt. We find that Ga-Sb and Ga-Te are the most abundant bonds with only a minor amount of Sb-Te bonds participating to the alloy network. Ga and four-coordinated Sb atoms present a tetrahedral-like geometry, whereas three-coordinated Sb atoms are in a pyramidal configuration. The tetrahedral-like geometries are similar to those of the crystalline phase of the two binary compounds GaTe and GaSb. A sizable fraction of Sb-Sb bonds is also present, indicating a partial nanoscale segregation of Sb. Despite the fact that the composition Ga4Sb6Te3 lies on the pseudobinary Ga Sb -Sb2Te3 tie line, the amorphous network can be seen as a mixture of the two binary compounds GaTe and GaSb with intertwined elemental Sb.
Transparent conducting oxide induced by liquid electrolyte gating
NASA Astrophysics Data System (ADS)
ViolBarbosa, Carlos; Karel, Julie; Kiss, Janos; Gordan, Ovidiu-dorin; Altendorf, Simone G.; Utsumi, Yuki; Samant, Mahesh G.; Wu, Yu-Han; Tsuei, Ku-Ding; Felser, Claudia; Parkin, Stuart S. P.
2016-10-01
Optically transparent conducting materials are essential in modern technology. These materials are used as electrodes in displays, photovoltaic cells, and touchscreens; they are also used in energy-conserving windows to reflect the infrared spectrum. The most ubiquitous transparent conducting material is tin-doped indium oxide (ITO), a wide-gap oxide whose conductivity is ascribed to n-type chemical doping. Recently, it has been shown that ionic liquid gating can induce a reversible, nonvolatile metallic phase in initially insulating films of WO3. Here, we use hard X-ray photoelectron spectroscopy and spectroscopic ellipsometry to show that the metallic phase produced by the electrolyte gating does not result from a significant change in the bandgap but rather originates from new in-gap states. These states produce strong absorption below ˜1 eV, outside the visible spectrum, consistent with the formation of a narrow electronic conduction band. Thus WO3 is metallic but remains colorless, unlike other methods to realize tunable electrical conductivity in this material. Core-level photoemission spectra show that the gating reversibly modifies the atomic coordination of W and O atoms without a substantial change of the stoichiometry; we propose a simple model relating these structural changes to the modifications in the electronic structure. Thus we show that ionic liquid gating can tune the conductivity over orders of magnitude while maintaining transparency in the visible range, suggesting the use of ionic liquid gating for many applications.
NASA Astrophysics Data System (ADS)
Li, Min; Lan, Linfeng; Xu, Miao; Wang, Lei; Xu, Hua; Luo, Dongxiang; Zou, Jianhua; Tao, Hong; Yao, Rihui; Peng, Junbiao
2011-11-01
Thin-film transistors (TFTs) using indium zinc oxide as the active layer and anodic aluminium oxide (Al2O3) as the gate dielectric layer were fabricated. The device showed an electron mobility of as high as 10.1 cm2 V-1 s-1, an on/off current ratio of as high as ~108, and a turn-on voltage (Von) of only -0.5 V. Furthermore, this kind of TFTs was very stable under positive bias illumination stress. However, when the device experienced negative bias illumination stress, the threshold voltage shifted to the positive direction. It was found that the instability under negative bias illumination stress (NBIS) was due to the electrons from the Al gate trapping into the Al2O3 dielectric when exposed to the illuminated light. Using a stacked structure of Al2O3/SiO2 dielectrics, the device became more stable under NBIS.
The voltage-sensing domain of a phosphatase gates the pore of a potassium channel
Arrigoni, Cristina; Schroeder, Indra; Romani, Giulia; Van Etten, James L.; Thiel, Gerhard
2013-01-01
The modular architecture of voltage-gated K+ (Kv) channels suggests that they resulted from the fusion of a voltage-sensing domain (VSD) to a pore module. Here, we show that the VSD of Ciona intestinalis phosphatase (Ci-VSP) fused to the viral channel Kcv creates KvSynth1, a functional voltage-gated, outwardly rectifying K+ channel. KvSynth1 displays the summed features of its individual components: pore properties of Kcv (selectivity and filter gating) and voltage dependence of Ci-VSP (V1/2 = +56 mV; z of ∼1), including the depolarization-induced mode shift. The degree of outward rectification of the channel is critically dependent on the length of the linker more than on its amino acid composition. This highlights a mechanistic role of the linker in transmitting the movement of the sensor to the pore and shows that electromechanical coupling can occur without coevolution of the two domains. PMID:23440279
Segers, Laurent; Van Bavegem, David; De Winne, Sam; Braeken, An; Touhafi, Abdellah; Steenhaut, Kris
2015-01-01
This paper describes a new approach and implementation methodology for indoor ranging based on the time difference of arrival using code division multiple access with ultrasound signals. A novel implementation based on a field programmable gate array using finite impulse response filters and an optimized correlation demodulator implementation for ultrasound orthogonal signals is developed. Orthogonal codes are modulated onto ultrasound signals using frequency shift keying with carrier frequencies of 24.5 kHz and 26 kHz. This implementation enhances the possibilities for real-time, embedded and low-power tracking of several simultaneous transmitters. Due to the high degree of parallelism offered by field programmable gate arrays, up to four transmitters can be tracked simultaneously. The implementation requires at most 30% of the available logic gates of a Spartan-6 XC6SLX45 device and is evaluated on accuracy and precision through several ranging topologies. In the first topology, the distance between one transmitter and one receiver is evaluated. Afterwards, ranging analyses are applied between two simultaneous transmitters and one receiver. Ultimately, the position of the receiver against four transmitters using trilateration is also demonstrated. Results show enhanced distance measurements with distances ranging from a few centimeters up to 17 m, while keeping a centimeter-level accuracy. PMID:26263986
High-speed optical phase-shifting apparatus
Zortman, William A.
2016-11-08
An optical phase shifter includes an optical waveguide, a plurality of partial phase shifting elements arranged sequentially, and control circuitry electrically coupled to the partial phase shifting elements. The control circuitry is adapted to provide an activating signal to each of the N partial phase shifting elements such that the signal is delayed by a clock cycle between adjacent partial phase shifting elements in the sequence. The transit time for a guided optical pulse train between the input edges of consecutive partial phase shifting elements in the sequence is arranged to be equal to a clock cycle, thereby enabling pipelined processing of the optical pulses.
Beam shuttering interferometer and method
Deason, V.A.; Lassahn, G.D.
1993-07-27
A method and apparatus resulting in the simplification of phase shifting interferometry by eliminating the requirement to know the phase shift between interferograms or to keep the phase shift between interferograms constant. The present invention provides a simple, inexpensive means to shutter each independent beam of the interferometer in order to facilitate the data acquisition requirements for optical interferometry and phase shifting interferometry. By eliminating the requirement to know the phase shift between interferograms or to keep the phase shift constant, a simple, economical means and apparatus for performing the technique of phase shifting interferometry is provide which, by thermally expanding a fiber optical cable changes the optical path distance of one incident beam relative to another.
Beam shuttering interferometer and method
Deason, Vance A.; Lassahn, Gordon D.
1993-01-01
A method and apparatus resulting in the simplification of phase shifting interferometry by eliminating the requirement to know the phase shift between interferograms or to keep the phase shift between interferograms constant. The present invention provides a simple, inexpensive means to shutter each independent beam of the interferometer in order to facilitate the data acquisition requirements for optical interferometry and phase shifting interferometry. By eliminating the requirement to know the phase shift between interferograms or to keep the phase shift constant, a simple, economical means and apparatus for performing the technique of phase shifting interferometry is provide which, by thermally expanding a fiber optical cable changes the optical path distance of one incident beam relative to another.
King, M. P.; Wu, X.; Eller, Manfred; ...
2016-12-07
Here, total ionizing dose results are provided, showing the effects of different threshold adjust implant processes and irradiation bias conditions of 14-nm FinFETs. Minimal radiation-induced threshold voltage shift across a variety of transistor types is observed. Off-state leakage current of nMOSFET transistors exhibits a strong gate bias dependence, indicating electrostatic gate control of the sub-fin region and the corresponding parasitic conduction path are the largest concern for radiation hardness in FinFET technology. The high-Vth transistors exhibit the best irradiation performance across all bias conditions, showing a reasonably small change in off-state leakage current and Vth, while the low-Vth transistors exhibitmore » a larger change in off-state leakage current. The “worst-case” bias condition during irradiation for both pull-down and pass-gate nMOSFETs in static random access memory is determined to be the on-state (Vgs = Vdd). We find the nMOSFET pull-down and pass-gate transistors of the SRAM bit-cell show less radiation-induced degradation due to transistor geometry and channel doping differences than the low-Vth transistor. Near-threshold operation is presented as a methodology for reducing radiation-induced increases in off-state device leakage current. In a 14-nm FinFET technology, the modeling indicates devices with high channel stop doping show the most robust response to TID allowing stable operation of ring oscillators and the SRAM bit-cell with minimal shift in critical operating characteristics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, M. P.; Wu, X.; Eller, Manfred
Here, total ionizing dose results are provided, showing the effects of different threshold adjust implant processes and irradiation bias conditions of 14-nm FinFETs. Minimal radiation-induced threshold voltage shift across a variety of transistor types is observed. Off-state leakage current of nMOSFET transistors exhibits a strong gate bias dependence, indicating electrostatic gate control of the sub-fin region and the corresponding parasitic conduction path are the largest concern for radiation hardness in FinFET technology. The high-Vth transistors exhibit the best irradiation performance across all bias conditions, showing a reasonably small change in off-state leakage current and Vth, while the low-Vth transistors exhibitmore » a larger change in off-state leakage current. The “worst-case” bias condition during irradiation for both pull-down and pass-gate nMOSFETs in static random access memory is determined to be the on-state (Vgs = Vdd). We find the nMOSFET pull-down and pass-gate transistors of the SRAM bit-cell show less radiation-induced degradation due to transistor geometry and channel doping differences than the low-Vth transistor. Near-threshold operation is presented as a methodology for reducing radiation-induced increases in off-state device leakage current. In a 14-nm FinFET technology, the modeling indicates devices with high channel stop doping show the most robust response to TID allowing stable operation of ring oscillators and the SRAM bit-cell with minimal shift in critical operating characteristics.« less
Yao, Jingting; Tridandapani, Srini; Wick, Carson A; Bhatti, Pamela T
2017-01-01
To more accurately trigger cardiac computed tomography angiography (CTA) than electrocardiography (ECG) alone, a sub-system is proposed as an intermediate step toward fusing ECG with seismocardiography (SCG). Accurate prediction of quiescent phases is crucial to prospectively gating CTA, which is susceptible to cardiac motion and, thus, can affect the diagnostic quality of images. The key innovation of this sub-system is that it identifies the SCG waveform corresponding to heart sounds and determines their phases within the cardiac cycles. Furthermore, this relationship is modeled as a linear function with respect to heart rate. For this paper, B-mode echocardiography is used as the gold standard for identifying the quiescent phases. We analyzed synchronous ECG, SCG, and echocardiography data acquired from seven healthy subjects (mean age: 31; age range: 22-48; males: 4) and 11 cardiac patients (mean age: 56; age range: 31-78; males: 6). On average, the proposed algorithm was able to successfully identify 79% of the SCG waveforms in systole and 68% in diastole. The simulated results show that SCG-based prediction produced less average phase error than that of ECG. It was found that the accuracy of ECG-based gating is more susceptible to increases in heart rate variability, while SCG-based gating is susceptible to high cycle to cycle variability in morphology. This pilot work of prediction using SCG waveforms enriches the framework of a comprehensive system with multiple modalities that could potentially, in real time, improve the image quality of CTA.
Brächer, T.; Heussner, F.; Pirro, P.; Meyer, T.; Fischer, T.; Geilen, M.; Heinz, B.; Lägel, B.; Serga, A. A.; Hillebrands, B.
2016-01-01
Magnonic spin currents in the form of spin waves and their quanta, magnons, are a promising candidate for a new generation of wave-based logic devices beyond CMOS, where information is encoded in the phase of travelling spin-wave packets. The direct readout of this phase on a chip is of vital importance to couple magnonic circuits to conventional CMOS electronics. Here, we present the conversion of the spin-wave phase into a spin-wave intensity by local non-adiabatic parallel pumping in a microstructure. This conversion takes place within the spin-wave system itself and the resulting spin-wave intensity can be conveniently transformed into a DC voltage. We also demonstrate how the phase-to-intensity conversion can be used to extract the majority information from an all-magnonic majority gate. This conversion method promises a convenient readout of the magnon phase in future magnon-based devices. PMID:27905539
NASA Astrophysics Data System (ADS)
Jing, Chao; Liu, Zhongling; Zhou, Ge; Zhang, Yimo
2011-11-01
The nanometer-level precise phase-shift system is designed to realize the phase-shift interferometry in electronic speckle shearography pattern interferometry. The PZT is used as driving component of phase-shift system and translation component of flexure hinge is developed to realize micro displacement of non-friction and non-clearance. Closed-loop control system is designed for high-precision micro displacement, in which embedded digital control system is developed for completing control algorithm and capacitive sensor is used as feedback part for measuring micro displacement in real time. Dynamic model and control model of the nanometer-level precise phase-shift system is analyzed, and high-precision micro displacement is realized with digital PID control algorithm on this basis. It is proved with experiments that the location precision of the precise phase-shift system to step signal of displacement is less than 2nm and the location precision to continuous signal of displacement is less than 5nm, which is satisfied with the request of the electronic speckle shearography and phase-shift pattern interferometry. The stripe images of four-step phase-shift interferometry and the final phase distributed image correlated with distortion of objects are listed in this paper to prove the validity of nanometer-level precise phase-shift system.
2014-07-17
frequency-shifted shearing interferometry technique for probing pre-plasma expansion in ultra-intense laser experimentsa) Ultra-intense laser -matter...interaction experiments (>1018 W/cm2) with dense targets are highly sensitive to the effect of laser “noise” (in the form of pre-pulses) preceding the...interferometry technique for probing pre- plasma expansion in ultra-intense laser experimentsa) Report Title Ultra-intense laser -matter interaction
A multimode electromechanical parametric resonator array
Mahboob, I.; Mounaix, M.; Nishiguchi, K.; Fujiwara, A.; Yamaguchi, H.
2014-01-01
Electromechanical resonators have emerged as a versatile platform in which detectors with unprecedented sensitivities and quantum mechanics in a macroscopic context can be developed. These schemes invariably utilise a single resonator but increasingly the concept of an array of electromechanical resonators is promising a wealth of new possibilities. In spite of this, experimental realisations of such arrays have remained scarce due to the formidable challenges involved in their fabrication. In a variation to this approach, we identify 75 harmonic vibration modes in a single electromechanical resonator of which 7 can also be parametrically excited. The parametrically resonating modes exhibit vibrations with only 2 oscillation phases which are used to build a binary information array. We exploit this array to execute a mechanical byte memory, a shift-register and a controlled-NOT gate thus vividly illustrating the availability and functionality of an electromechanical resonator array by simply utilising higher order vibration modes. PMID:24658349
NASA Astrophysics Data System (ADS)
Benjamin, Colin
2015-03-01
A Josepshon qubit is designed via the application of a tensile strain to a topological insulator surface, sandwiched between two s-wave superconductors. The strain applied leads to a shift in Dirac point without changing the conducting states existing on the surface of a topological insulator. This strain applied can be tuned to form a π-junction in such a structure. Combining two such junctions in a ring architecture leads to the ground state of the ring being in a doubly degenerate state- ``0'' and ``1'' states of the qubit. A qubit designed this way is easily controlled via the tunable strain. We report on the conditions necessary to design such a qubit. Finally the operating time of a single qubit phase gate is derived. This work was supported by funds from Dept. of Science and Technology (Nanomission), Govt. of India, Grant No. SR/NM/NS-1101/2011.
Crystal oscillators using negative voltage gain, single pole response amplifiers
NASA Technical Reports Server (NTRS)
Kleinberg, Leonard L. (Inventor)
1989-01-01
A simple and inexpensive crystal oscillator is provided which employs negative voltage gain, single pole response amplifiers. The amplifiers may include such configurations as gate inverters, operational amplifiers and conventional bipolar transistor amplifiers, all of which operate at a frequency which is on the roll-off portion of their gain versus frequency curve. Several amplifier feedback circuit variations are employed to set desired bias levels and to allow the oscillator to operate at the crystal's fundamental frequency or at an overtone of the fundamental frequency. The oscillator is made less expensive than comparable oscillators by employing relatively low frequency amplifiers and operating them at roll-off, at frequencies beyond which they are customarily used. Simplicity is provided because operation at roll-off eliminates components ordinarily required in similar circuits to provide sufficient phase-shift in the feedback circuitry for oscillation to occur.
Tunable Graphene Metasurface Reflectarray for Cloaking, Illusion, and Focusing
NASA Astrophysics Data System (ADS)
Biswas, Sudipta Romen; Gutiérrez, Cristian E.; Nemilentsau, Andrei; Lee, In-Ho; Oh, Sang-Hyun; Avouris, Phaedon; Low, Tony
2018-03-01
This paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. We present a graphene-based metasurface that can be actively tuned between different regimes of operation, such as anomalous beam steering and focusing, cloaking, and illusion optics, by applying electrostatic gating without modifying the geometry of the metasurface. The metasurface is designed by placing graphene ribbons on a dielectric cavity resonator, where interplay between geometric plasmon resonances in the ribbons and Fabry-Perot resonances in the cavity is used to achieve a 2 π phase shift. As a proof of concept, we demonstrate that the wave front of the field reflected from a triangular bump covered by the metasurface can be tuned by applying electric bias so as to resemble that of a bare plane and of a spherical object. Moreover, reflective focusing and the change of the reflection direction for the above mentioned cases are also shown.
Ahn, Cheol Hyoun; Lee, Ju Ho; Lee, Jeong Yong; Cho, Hyung Koun
2014-12-01
Binary ZnO active layers possessing a polycrystalline structure were deposited with various argon/oxygen flow ratios at 250 degrees C via sputtering. Then ZnO thin-film-transistors (TFTs) were fabricated without additional thermal treatments. As the oxygen content increased during the deposition, the preferred orientation along the (0002) was weakened and the rotation of the grains increased, and furthermore, less conducting films were observed. On the other hand, the reduced oxygen flow rate induced the formation of amorphous-like transition layers during the initial growth due to a high growth rate and high energetic bombardment of the adatoms. As a result, the amorphous phases at the gate dielectric/channel interface were responsible for the formation of a hump shape in the subthreshold region of the TFT transfer curve. In addition, the relationship between the crystal properties and the shift in the threshold voltage was experimentally confirmed by a hysteresis test.
Wang, Yi-Ting; Kim, Gil-Ho; Huang, C F; Lo, Shun-Tsung; Chen, Wei-Jen; Nicholls, J T; Lin, Li-Hung; Ritchie, D A; Chang, Y H; Liang, C-T; Dolan, B P
2012-10-10
We study the temperature flow of conductivities in a gated GaAs two-dimensional electron gas (2DEG) containing self-assembled InAs dots and compare the results with recent theoretical predictions. By changing the gate voltage, we are able to tune the 2DEG density and thus vary disorder and spin-splitting. Data for both the spin-resolved and spin-degenerate phase transitions are presented, the former collapsing to the latter with decreasing gate voltage and/or decreasing spin-splitting. The experimental results support a recent theory, based on modular symmetry, which predicts how the critical Hall conductivity varies with spin-splitting.
A critical examination of the dual system theory in Ostrinia nubilalis.
Skopik, S D; Takeda, M; Holyoke, C W
1981-11-01
Beck's dual system theory (DST) is examined theoretically and experimentally by investigating the oviposition rhythm of Ostrinia nubilalis and its entrainment by light cycles. Several well-known circadian phenomena are not accounted for by the DST. 1) It does not generate transient cycles when light pulses fall during the advance portion of the circadian cycle. This is also reflected in DST-predicted phase-response curves (PRC's) for both Drosophila pseudoobscura and O. nubilalis. Steady-state phase advances are predicted to occur on day 1 after the light pulses by the DST, not several cycles later as has been observed in many cases. 2) It does not account for the observation that the magnitude of a phase shift (delta phi) is often a function of pulse duration of both delays and advances. The DST predicts the same + delta phi, for example, for a 0.5-h and a 6.0-h light pulse beginning 5.0 h after dusk. 3) The DST does not accurately predict steady-state phase relationships between the light cycle and the gating oscillation (P-system) in non-24-h light cycles. 4) The driver (S-system) is given the property of being temperature sensitive whereas the driven rhythm (P-system) is temperature compensated. This is contrary to accumulated data suggesting that the circadian pacemaker is temperature compensated.
Stone, Julia E; Sletten, Tracey L; Magee, Michelle; Ganesan, Saranea; Mulhall, Megan D; Collins, Allison; Howard, Mark; Lockley, Steven W; Rajaratnam, Shantha M W
2018-06-01
Shift work is highly prevalent and is associated with significant adverse health impacts. There is substantial inter-individual variability in the way the circadian clock responds to changing shift cycles. The mechanisms underlying this variability are not well understood. We tested the hypothesis that light-dark exposure is a significant contributor to this variability; when combined with diurnal preference, the relative timing of light exposure accounted for 71% of individual variability in circadian phase response to night shift work. These results will drive development of personalised approaches to manage circadian disruption among shift workers and other vulnerable populations to potentially reduce the increased risk of disease in these populations. Night shift workers show highly variable rates of circadian adaptation. This study examined the relationship between light exposure patterns and the magnitude of circadian phase resetting in response to night shift work. In 21 participants (nursing and medical staff in an intensive care unit) circadian phase was measured using 6-sulphatoxymelatonin at baseline (day/evening shifts or days off) and after 3-4 consecutive night shifts. Daily light exposure was examined relative to individual circadian phase to quantify light intensity in the phase delay and phase advance portions of the light phase response curve (PRC). There was substantial inter-individual variability in the direction and magnitude of phase shift after three or four consecutive night shifts (mean phase delay -1:08 ± 1:31 h; range -3:43 h delay to +3:07 h phase advance). The relative difference in the distribution of light relative to the PRC combined with diurnal preference accounted for 71% of the variability in phase shift. Regression analysis incorporating these factors estimated phase shift to within ±60 min in 85% of participants. No participants met criteria for partial adaptation to night work after three or four consecutive night shifts. Our findings provide evidence that the phase resetting that does occur is based on individual light exposure patterns relative to an individual's baseline circadian phase. Thus, a 'one size fits all' approach to promoting adaptation to shift work using light therapy, implemented without knowledge of circadian phase, may not be efficacious for all individuals. © 2018 Monash University. The Journal of Physiology © 2018 The Physiological Society.
Meta-gated channel for the discrete control of electromagnetic fields
NASA Astrophysics Data System (ADS)
Yang, Rui; Wang, Hui; Shi, Ayuan; Zhang, Aofang; Wang, Jing; Gao, Dongxing; Lei, Zhenya; Hu, Bowei
2016-08-01
We demonstrate the meta-gate controlled wave propagation through multiple metallic plates with properly devised sub-wavelength defect apertures. Different from using gradient refractive-index meta-materials or phase-discontinuity meta-surfaces to produce the discrepancy between the incident angle and the refractive angle, our technique redirects electromagnetic fields by setting-up discrete transmission gateways between adjacent meta-gates and creates the perfect channels for the wave propagation. Electromagnetic fields can be assigned in the response of the driving frequency of meta-gates with extraordinary transmissions and propagate simply relying on their pre-set locations as illustrated by the meta-gate guided electromagnetic fields travelling in the paths of the Silk-Road and the contour line of Xi'an city where the Silk-Road starts. The meta-gate concept, offering the feasibility of the discrete control of electromagnetic fields with gating routes, may pave an alternative way for precisely transmitting of signals and efficiently sharing of resource in the communication.
Efficient quantum circuits for one-way quantum computing.
Tanamoto, Tetsufumi; Liu, Yu-Xi; Hu, Xuedong; Nori, Franco
2009-03-13
While Ising-type interactions are ideal for implementing controlled phase flip gates in one-way quantum computing, natural interactions between solid-state qubits are most often described by either the XY or the Heisenberg models. We show an efficient way of generating cluster states directly using either the imaginary SWAP (iSWAP) gate for the XY model, or the sqrt[SWAP] gate for the Heisenberg model. Our approach thus makes one-way quantum computing more feasible for solid-state devices.
In-line phase shift tomosynthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammonds, Jeffrey C.; Price, Ronald R.; Pickens, David R.
2013-08-15
Purpose: The purpose of this work is to (1) demonstrate laboratory measurements of phase shift images derived from in-line phase-contrast radiographs using the attenuation-partition based algorithm (APBA) of Yan et al.[Opt. Express 18(15), 16074–16089 (2010)], (2) verify that the APBA reconstructed images obey the linearity principle, and (3) reconstruct tomosynthesis phase shift images from a collection of angularly sampled planar phase shift images.Methods: An unmodified, commercially available cabinet x-ray system (Faxitron LX-60) was used in this experiment. This system contains a tungsten anode x-ray tube with a nominal focal spot size of 10 μm. The digital detector uses CsI/CMOS withmore » a pixel size of 50 × 50 μm. The phantoms used consisted of one acrylic plate, two polystyrene plates, and a habanero pepper. Tomosynthesis images were reconstructed from 51 images acquired over a ±25° arc. All phase shift images were reconstructed using the APBA.Results: Image contrast derived from the planar phase shift image of an acrylic plate of uniform thickness exceeded the contrast of the traditional attenuation image by an approximate factor of two. Comparison of the planar phase shift images from a single, uniform thickness polystyrene plate with two polystyrene plates demonstrated an approximate linearity of the estimated phase shift with plate thickness (−1600 rad vs −2970 rad). Tomographic phase shift images of the habanero pepper exhibited acceptable spatial resolution and contrast comparable to the corresponding attenuation image.Conclusions: This work demonstrated the feasibility of laboratory-based phase shift tomosynthesis and suggests that phase shift imaging could potentially provide a new imaging biomarker. Further investigation will be needed to determine if phase shift contrast will be able to provide new tissue contrast information or improved clinical performance.« less
Fast quantum logic gates with trapped-ion qubits
NASA Astrophysics Data System (ADS)
Schäfer, V. M.; Ballance, C. J.; Thirumalai, K.; Stephenson, L. J.; Ballance, T. G.; Steane, A. M.; Lucas, D. M.
2018-03-01
Quantum bits (qubits) based on individual trapped atomic ions are a promising technology for building a quantum computer. The elementary operations necessary to do so have been achieved with the required precision for some error-correction schemes. However, the essential two-qubit logic gate that is used to generate quantum entanglement has hitherto always been performed in an adiabatic regime (in which the gate is slow compared with the characteristic motional frequencies of the ions in the trap), resulting in logic speeds of the order of 10 kilohertz. There have been numerous proposals of methods for performing gates faster than this natural ‘speed limit’ of the trap. Here we implement one such method, which uses amplitude-shaped laser pulses to drive the motion of the ions along trajectories designed so that the gate operation is insensitive to the optical phase of the pulses. This enables fast (megahertz-rate) quantum logic that is robust to fluctuations in the optical phase, which would otherwise be an important source of experimental error. We demonstrate entanglement generation for gate times as short as 480 nanoseconds—less than a single oscillation period of an ion in the trap and eight orders of magnitude shorter than the memory coherence time measured in similar calcium-43 hyperfine qubits. The power of the method is most evident at intermediate timescales, at which it yields a gate error more than ten times lower than can be attained using conventional techniques; for example, we achieve a 1.6-microsecond-duration gate with a fidelity of 99.8 per cent. Faster and higher-fidelity gates are possible at the cost of greater laser intensity. The method requires only a single amplitude-shaped pulse and one pair of beams derived from a continuous-wave laser. It offers the prospect of combining the unrivalled coherence properties, operation fidelities and optical connectivity of trapped-ion qubits with the submicrosecond logic speeds that are usually associated with solid-state devices.
Fast quantum logic gates with trapped-ion qubits.
Schäfer, V M; Ballance, C J; Thirumalai, K; Stephenson, L J; Ballance, T G; Steane, A M; Lucas, D M
2018-02-28
Quantum bits (qubits) based on individual trapped atomic ions are a promising technology for building a quantum computer. The elementary operations necessary to do so have been achieved with the required precision for some error-correction schemes. However, the essential two-qubit logic gate that is used to generate quantum entanglement has hitherto always been performed in an adiabatic regime (in which the gate is slow compared with the characteristic motional frequencies of the ions in the trap), resulting in logic speeds of the order of 10 kilohertz. There have been numerous proposals of methods for performing gates faster than this natural 'speed limit' of the trap. Here we implement one such method, which uses amplitude-shaped laser pulses to drive the motion of the ions along trajectories designed so that the gate operation is insensitive to the optical phase of the pulses. This enables fast (megahertz-rate) quantum logic that is robust to fluctuations in the optical phase, which would otherwise be an important source of experimental error. We demonstrate entanglement generation for gate times as short as 480 nanoseconds-less than a single oscillation period of an ion in the trap and eight orders of magnitude shorter than the memory coherence time measured in similar calcium-43 hyperfine qubits. The power of the method is most evident at intermediate timescales, at which it yields a gate error more than ten times lower than can be attained using conventional techniques; for example, we achieve a 1.6-microsecond-duration gate with a fidelity of 99.8 per cent. Faster and higher-fidelity gates are possible at the cost of greater laser intensity. The method requires only a single amplitude-shaped pulse and one pair of beams derived from a continuous-wave laser. It offers the prospect of combining the unrivalled coherence properties, operation fidelities and optical connectivity of trapped-ion qubits with the submicrosecond logic speeds that are usually associated with solid-state devices.
Lipiäinen, Tiina; Pessi, Jenni; Movahedi, Parisa; Koivistoinen, Juha; Kurki, Lauri; Tenhunen, Mari; Yliruusi, Jouko; Juppo, Anne M; Heikkonen, Jukka; Pahikkala, Tapio; Strachan, Clare J
2018-04-03
Raman spectroscopy is widely used for quantitative pharmaceutical analysis, but a common obstacle to its use is sample fluorescence masking the Raman signal. Time-gating provides an instrument-based method for rejecting fluorescence through temporal resolution of the spectral signal and allows Raman spectra of fluorescent materials to be obtained. An additional practical advantage is that analysis is possible in ambient lighting. This study assesses the efficacy of time-gated Raman spectroscopy for the quantitative measurement of fluorescent pharmaceuticals. Time-gated Raman spectroscopy with a 128 × (2) × 4 CMOS SPAD detector was applied for quantitative analysis of ternary mixtures of solid-state forms of the model drug, piroxicam (PRX). Partial least-squares (PLS) regression allowed quantification, with Raman-active time domain selection (based on visual inspection) improving performance. Model performance was further improved by using kernel-based regularized least-squares (RLS) regression with greedy feature selection in which the data use in both the Raman shift and time dimensions was statistically optimized. Overall, time-gated Raman spectroscopy, especially with optimized data analysis in both the spectral and time dimensions, shows potential for sensitive and relatively routine quantitative analysis of photoluminescent pharmaceuticals during drug development and manufacturing.
NASA Astrophysics Data System (ADS)
Wang, Lei; Li, Liuan; Xie, Tian; Wang, Xinzhi; Liu, Xinke; Ao, Jin-Ping
2018-04-01
In present study, copper oxide films were prepared at different sputtering powers (10-100 W) using magnetron reactive sputtering. The crystalline structure, surface morphologies, composition, and optical band gap of the as-grown films are dependent on sputtering power. As the sputtering power decreasing from 100 to 10 W, the composition of films changed from CuO to quasi Cu2O domination. Moreover, when the sputtering power is 10 W, a relative high hole carrier density and high-surface-quality quasi Cu2O thin film can be achieved. AlGaN/GaN HFETs were fabricated with the optimized p-type quasi Cu2O film as gate electrode, the threshold voltage of the device shows a 0.55 V positive shift, meanwhile, a lower gate leakage current, a higher ON/OFF drain current ratio of ∼108, a higher electron mobility (1465 cm2/Vs), and a lower subthreshold slope of 74 mV/dec are also achieved, compared with the typical Ni/Au-gated HFETs. Therefore, Cu2O have a great potential to develop high performance p-type gate AlGaN/GaN HFETs.
Self-Organization of Ions at the Interface between Graphene and Ionic Liquid DEME-TFSI.
Hu, Guangliang; Pandey, Gaind P; Liu, Qingfeng; Anaredy, Radhika S; Ma, Chunrui; Liu, Ming; Li, Jun; Shaw, Scott K; Wu, Judy
2017-10-11
Electrochemical effects manifest as nonlinear responses to an applied electric field in electrochemical devices, and are linked intimately to the molecular orientation of ions in the electric double layer (EDL). Herein, we probe the origin of the electrochemical effect using a double-gate graphene field effect transistor (GFET) of ionic liquid N,N-diethyl-N-(2-methoxyethyl)-N-methylammonium bis(trifluoromethylsulfonyl)imide (DEME-TFSI) top-gate, paired with a ferroelectric Pb 0.92 La 0.08 Zr 0.52 Ti 0.48 O 3 (PLZT) back-gate of compatible gating efficiency. The orientation of the interfacial molecular ions can be extracted by measuring the GFET Dirac point shift, and their dynamic response to ultraviolet-visible light and a gate electric field was quantified. We have observed that the strong electrochemical effect is due to the TFSI anions self-organizing on a treated GFET surface. Moreover, a reversible order-disorder transition of TFSI anions self-organized on the GFET surface can be triggered by illuminating the interface with ultraviolet-visible light, revealing that it is a useful method to control the surface ion configuration and the overall performance of the device.
Niemeyer, María Isabel; González-Nilo, Fernando D.; Zúñiga, Leandro; González, Wendy; Cid, L. Pablo; Sepúlveda, Francisco V.
2007-01-01
Potassium channels share a common selectivity filter that determines the conduction characteristics of the pore. Diversity in K+ channels is given by how they are gated open. TASK-2, TALK-1, and TALK-2 are two-pore region (2P) KCNK K+ channels gated open by extracellular alkalinization. We have explored the mechanism for this alkalinization-dependent gating using molecular simulation and site-directed mutagenesis followed by functional assay. We show that the side chain of a single arginine residue (R224) near the pore senses pH in TASK-2 with an unusual pKa of 8.0, a shift likely due to its hydrophobic environment. R224 would block the channel through an electrostatic effect on the pore, a situation relieved by its deprotonation by alkalinization. A lysine residue in TALK-2 fulfills the same role but with a largely unchanged pKa, which correlates with an environment that stabilizes its positive charge. In addition to suggesting unified alkaline pH-gating mechanisms within the TALK subfamily of channels, our results illustrate in a physiological context the principle that hydrophobic environment can drastically modulate the pKa of charged amino acids within a protein. PMID:17197424
Flagg, Thomas P; Yoo, Dana; Sciortino, Christopher M; Tate, Margaret; Romero, Michael F; Welling, Paul A
2002-01-01
The ROMK subtypes of inward-rectifier K+ channels mediate potassium secretion and regulate NaCl reabsorption in the kidney. Loss-of-function mutations in this pH-sensitive K+ channel cause Bartter's disease, a familial salt wasting nephropathy. One disease-causing mutation truncates the extreme COOH-terminus and induces a closed gating conformation. Here we identify a region within the deleted domain that plays an important role in pH-dependent gating. The domain contains a structural element that functionally interacts with the pH sensor in the cytoplasmic NH2-terminus to set a physiological range of pH sensitivity. Removal of the domain shifts the pKa towards alkaline pH values, causing channel inactivation under physiological conditions. Suppressor mutations within the pH sensor rescued channel gating and trans addition of the cognate peptide restored pH sensitivity. A specific interdomain interaction was revealed in an in vitro protein-protein binding assay between the NH2- and COOH-terminal cytoplasmic domains expressed as bacterial fusion proteins. These results provide new insights into the molecular mechanisms underlying Kir channel regulation and channel gating defects that are associated with Bartter's disease. PMID:12381810
State memory in solution gated epitaxial graphene
NASA Astrophysics Data System (ADS)
Butko, A. V.; Butko, V. Y.; Lebedev, S. P.; Lebedev, A. A.; Davydov, V. Y.; Smirnov, A. N.; Eliseyev, I. A.; Dunaevskiy, M. S.; Kumzerov, Y. A.
2018-06-01
We studied electrical transport in transistors fabricated on a surface of high quality epitaxial graphene with density of defects as low as 5·1010 cm-2 and observed quasistatic hysteresis with a time constant in a scale of hours. This constant is in a few orders of magnitude greater than the constant previously reported in CVD graphene. The hysteresis observed here can be described as a shift of ∼+2V of the Dirac point measured during a gate voltage increase from the position of the Dirac point measured during a gate voltage decrease. This hysteresis can be characterized as a nonvolatile quasistatic state memory effect in which the state of the gated graphene is determined by its initial state prior to entering the hysteretic region. Due to this effect the difference in resistance of the gated graphene measured in the hysteretic region at the same applied voltages can be as high as 70%. The observed effect can be explained by assuming that charge carriers in graphene and oppositely charged molecular ions from the solution form quasistable interfacial complexes at the graphene interface. These complexes likely preserve the initial state by preventing charge carriers in graphene from discharging in the hysteretic region.
Gregorio-Teruel, Lucia; Valente, Pierluigi; González-Ros, José Manuel; Fernández-Ballester, Gregorio; Ferrer-Montiel, Antonio
2014-03-01
The transient receptor potential vanilloid receptor subtype I (TRPV1) channel acts as a polymodal sensory receptor gated by chemical and physical stimuli. Like other TRP channels, TRPV1 contains in its C terminus a short, conserved domain called the TRP box, which is necessary for channel gating. Substitution of two TRP box residues-I696 and W697-with Ala markedly affects TRPV1's response to all activating stimuli, which indicates that these two residues play a crucial role in channel gating. We systematically replaced I696 and W697 with 18 native l-amino acids (excluding cysteine) and evaluated the effect on voltage- and capsaicin-dependent gating. Mutation of I696 decreased channel activation by either voltage or capsaicin; furthermore, gating was only observed with substitution of hydrophobic amino acids. Substitution of W697 with any of the 18 amino acids abolished gating in response to depolarization alone, shifting the threshold to unreachable voltages, but not capsaicin-mediated gating. Moreover, vanilloid-activated responses of W697X mutants showed voltage-dependent gating along with a strong voltage-independent component. Analysis of the data using an allosteric model of activation indicates that mutation of I696 and W697 primarily affects the allosteric coupling constants of the ligand and voltage sensors to the channel pore. Together, our findings substantiate the notion that inter- and/or intrasubunit interactions at the level of the TRP box are critical for efficient coupling of stimulus sensing and gate opening. Perturbation of these interactions markedly reduces the efficacy and potency of the activating stimuli. Furthermore, our results identify these interactions as potential sites for pharmacological intervention.
Four-dimensional layer-stacking carbon-ion beam dose distribution by use of a lung numeric phantom.
Mori, Shinichiro; Kumagai, Motoki; Miki, Kentaro
2015-07-01
To extend layer-stacking irradiation to accommodate intrafractional organ motion, we evaluated the carbon-ion layer-stacking dose distribution using a numeric lung phantom. We designed several types of range compensators. The planning target volume was calculated from the respective respiratory phases for consideration of intrafractional beam range variation. The accumulated dose distribution was calculated by registering of the dose distributions at respective phases to that at the reference phase. We evaluated the dose distribution based on the following six parameters: motion displacement, direction, gating window, respiratory cycle, range-shifter change time, and prescribed dose. All parameters affected the dose conformation to the moving target. By shortening of the gating window, dose metrics for superior-inferior (SI) and anterior-posterior (AP) motions were decreased from a D95 of 94 %, Dmax of 108 %, and homogeneity index (HI) of 23 % at T00-T90, to a D95 of 93 %, Dmax of 102 %, and HI of 20 % at T40-T60. In contrast, all dose metrics except the HI were independent of respiratory cycle. All dose metrics in SI motion were almost the same in respective motion displacement, with a D95 of 94 %, Dmax of 108 %, Dmin of 89 %, and HI of 23 % for the ungated phase, and D95 of 93 %, Dmax of 102 %, Dmin of 85 %, and HI of 20 % for the gated phase. The dose conformation to a moving target was improved by the gating strategy and by an increase in the prescribed dose. A combination of these approaches is a practical means of adding them to existing treatment protocols without modifications.
Imaging the Gouy phase shift in photonic jets with a wavefront sensor.
Bon, Pierre; Rolly, Brice; Bonod, Nicolas; Wenger, Jérôme; Stout, Brian; Monneret, Serge; Rigneault, Hervé
2012-09-01
A wavefront sensor is used as a direct observation tool to image the Gouy phase shift in photonic nanojets created by micrometer-sized dielectric spheres. The amplitude and phase distributions of light are found in good agreement with a rigorous electromagnetic computation. Interestingly the observed phase shift when travelling through the photonic jet is a combination of the awaited π Gouy shift and a phase shift induced by the bead refraction. Such direct spatial phase shift observation using wavefront sensors would find applications in microscopy, diffractive optics, optical trapping, and point spread function engineering.
Genetic Circuit Performance under Conditions Relevant for Industrial Bioreactors
Moser, Felix; Broers, Nicolette J.; Hartmans, Sybe; Tamsir, Alvin; Kerkman, Richard; Roubos, Johannes A.; Bovenberg, Roel; Voigt, Christopher A.
2014-01-01
Synthetic genetic programs promise to enable novel applications in industrial processes. For such applications, the genetic circuits that compose programs will require fidelity in varying and complex environments. In this work, we report the performance of two synthetic circuits in Escherichia coli under industrially relevant conditions, including the selection of media, strain, and growth rate. We test and compare two transcriptional circuits: an AND and a NOR gate. In E. coli DH10B, the AND gate is inactive in minimal media; activity can be rescued by supplementing the media and transferring the gate into the industrial strain E. coli DS68637 where normal function is observed in minimal media. In contrast, the NOR gate is robust to media composition and functions similarly in both strains. The AND gate is evaluated at three stages of early scale-up: 100 ml shake-flask experiments, a 1 ml MTP microreactor, and a 10 L bioreactor. A reference plasmid that constitutively produces a GFP reporter is used to make comparisons of circuit performance across conditions. The AND gate function is quantitatively different at each scale. The output deteriorates late in fermentation after the shift from exponential to constant feed rates, which induces rapid resource depletion and changes in growth rate. In addition, one of the output states of the AND gate failed in the bioreactor, effectively making it only responsive to a single input. Finally, cells carrying the AND gate show considerably less accumulation of biomass. Overall, these results highlight challenges and suggest modified strategies for developing and characterizing genetic circuits that function reliably during fermentation. PMID:23656232
Validation of the Spatial Accuracy of the ExacTracRTM Adaptive Gating System
NASA Astrophysics Data System (ADS)
Twork, Gregory
Stereotactic body radiation therapy (SBRT) is a method of treatment that is used in extracranial locations, including the abdominal and thoracic cavities, as well as spinal and paraspinal locations. At the McGill University Health Centre, liver SBRT treatments include gating, which places the treatment beam on a duty cycle controlled by tracking of fiducial markers moving with the patient's breathing cycle. Respiratory gated treatments aim to spare normal tissue, while delivering a dose properly to a moving target. The ExacTracRTM system (BrainLAB AG Germany) is an image-guided radiotherapy system consisting of a combination of infra-red (IR) cameras and dual kilovoltage (kV) X-ray tubes. The IR system is used to track patient positioning and respiratory motion, while the kV X-rays are used to determine a positional shift based on internal anatomy or fiducial markers. In order to validate the system's ability to treat under gating conditions, each step of the SBRT process was evaluated quantitatively. Initially the system was tested under ideal static conditions, followed by a study including gated parameters. The uncertainties of the isocenters, positioning algorithm, planning computed tomography (CT) and four dimensional CT (4DCT) scans, gating window size and tumor motion were evaluated for their contributions to the total uncertainty in treatment. The mechanical isocenter and 4DCT were found to be the largest sources of uncertainty. However, for tumors with large internal amplitudes (>2.25 cm) that are treated with large gating windows (>30%) the gating parameters can contribute more than 1.1 +/- 1.8 mm.
Non-iterative characterization of few-cycle laser pulses using flat-top gates.
Selm, Romedi; Krauss, Günther; Leitenstorfer, Alfred; Zumbusch, Andreas
2012-03-12
We demonstrate a method for broadband laser pulse characterization based on a spectrally resolved cross-correlation with a narrowband flat-top gate pulse. Excellent phase-matching by collinear excitation in a microscope focus is exploited by degenerate four-wave mixing in a microscope slide. Direct group delay extraction of an octave spanning spectrum which is generated in a highly nonlinear fiber allows for spectral phase retrieval. The validity of the technique is supported by the comparison with an independent second-harmonic fringe-resolved autocorrelation measurement for an 11 fs laser pulse.
GaAs circuits for monolithic optical controller
NASA Technical Reports Server (NTRS)
Gustafson, G.; Bendett, M.; Carney, J.; Mactaggart, R.; Palmquist, S.
1988-01-01
GaAs circuits for use in a fully monolithic 1 Gb/s optical controller have been developed and tested. The circuits include photodetectors, transimpedance amplifiers and 1:16 demultiplexers that can directly control the phase of MMIC phase shifters. The entire chip contains approximately 300 self-aligned gate E/D-mode MESFETs. The MESFETs have one micron-wide gate and the E-mode FETs typically have transconductance of 200 ms/mm. Results of simulations and tests are reported. Also, the design and layout of the fully monolithic chip is discussed.
Richard Bergman; Scott A. Bowe
2008-01-01
The goal of this study was to find the environmental impact of hardwood lumber production through a gate-to-gate Life-Cycle Inventory (LCI) on hardwood sawmills in the northeast and northcentral (NE/NC) United States. Primary mill data was collected per CORRIM Research Guidelines (CORRIM 2001). Life-cycle analysis is beyond the scope of the study.
Richard D. Bergman; Scott A. Bowe
2010-01-01
The goal of this study was to gain an understanding of the environmental impact of hardwood lumber production through a gate-to-gate life-cycle inventory (LCI) of hardwood sawmills in the Southeastern United States (SE). Primary mill data were collected per Consortium on Research for Renewable Industrial Materials (CORRIM) Research Guidelines. Life-cycle impact...
Richard D. Bergman; Scott A. Bowe
2009-01-01
The goal of this study was to gain an understanding of the environmental impact for softwood lumber production through a gate-to-gate life-cycle inventory (LCI) of softwood sawmills in the northeastern and north central United States (NE/NC). Primary mill data were collected per Consortium on Research for Renewable Industrial Material (CORRIM) Research Guidelines (...
Braids and phase gates through high-frequency virtual tunneling of Majorana zero modes
NASA Astrophysics Data System (ADS)
Gorantla, Pranay; Sensarma, Rajdeep
2018-05-01
Braiding of non-Abelian Majorana anyons is a first step towards using them in quantum computing. We propose a protocol for braiding Majorana zero modes formed at the edges of nanowires with strong spin-orbit coupling and proximity-induced superconductivity. Our protocol uses high-frequency virtual tunneling between the ends of the nanowires in a trijunction, which leads to an effective low-frequency coarse-grained dynamics for the system, to perform the braid. The braiding operation is immune to amplitude noise in the drives and depends only on relative phase between the drives, which can be controlled by the usual phase-locking techniques. We also show how a phase gate, which is necessary for universal quantum computation, can be implemented with our protocol.
Pessia, Mauro; Servettini, Ilenio; Panichi, Roberto; Guasti, Leonardo; Grassi, Silvarosa; Arcangeli, Annarosa; Wanke, Enzo; Pettorossi, Vito Enrico
2008-01-01
The discharge properties of the medial vestibular nucleus neurones (MVNn) critically depend on the activity of several ion channel types. In this study we show, immunohistochemically, that the voltage-gated K+ channels ERG1A, ERG1B, ERG2 and ERG3 are highly expressed within the vestibular nuclei of P10 and P60 mice. The role played by these channels in the spike-generating mechanisms of the MVNn and in temporal information processing was investigated electrophysiologically from mouse brain slices, in vitro, by analysing the spontaneous discharge and the response to square-, ramp- and sinusoid-like intracellular DC current injections in extracellular and whole-cell patch-clamp studies. We show that more than half of the recorded MVNn were responsive to ERG channel block (WAY-123,398, E4031), displaying an increase in spontaneous activity and discharge irregularity. The response to step and ramp current injection was also modified by ERG block showing a reduction of first spike latency, enhancement of discharge rate and reduction of the slow spike-frequency adaptation process. ERG channels influence the interspike slope without affecting the spike shape. Moreover, in response to sinusoid-like current, ERG channel block caused frequency-dependent gain enhancement and phase-lead shift. Taken together, the data demonstrate that ERG channels control the excitability of MVNn, their discharge regularity and probably their resonance properties. PMID:18718985
Pessia, Mauro; Servettini, Ilenio; Panichi, Roberto; Guasti, Leonardo; Grassi, Silvarosa; Arcangeli, Annarosa; Wanke, Enzo; Pettorossi, Vito Enrico
2008-10-15
The discharge properties of the medial vestibular nucleus neurones (MVNn) critically depend on the activity of several ion channel types. In this study we show, immunohistochemically, that the voltage-gated K(+) channels ERG1A, ERG1B, ERG2 and ERG3 are highly expressed within the vestibular nuclei of P10 and P60 mice. The role played by these channels in the spike-generating mechanisms of the MVNn and in temporal information processing was investigated electrophysiologically from mouse brain slices, in vitro, by analysing the spontaneous discharge and the response to square-, ramp- and sinusoid-like intracellular DC current injections in extracellular and whole-cell patch-clamp studies. We show that more than half of the recorded MVNn were responsive to ERG channel block (WAY-123,398, E4031), displaying an increase in spontaneous activity and discharge irregularity. The response to step and ramp current injection was also modified by ERG block showing a reduction of first spike latency, enhancement of discharge rate and reduction of the slow spike-frequency adaptation process. ERG channels influence the interspike slope without affecting the spike shape. Moreover, in response to sinusoid-like current, ERG channel block caused frequency-dependent gain enhancement and phase-lead shift. Taken together, the data demonstrate that ERG channels control the excitability of MVNn, their discharge regularity and probably their resonance properties.
Resource quality of a symmetry-protected topologically ordered phase for quantum computation.
Miller, Jacob; Miyake, Akimasa
2015-03-27
We investigate entanglement naturally present in the 1D topologically ordered phase protected with the on-site symmetry group of an octahedron as a potential resource for teleportation-based quantum computation. We show that, as long as certain characteristic lengths are finite, all its ground states have the capability to implement any unit-fidelity one-qubit gate operation asymptotically as a key computational building block. This feature is intrinsic to the entire phase, in that perfect gate fidelity coincides with perfect string order parameters under a state-insensitive renormalization procedure. Our approach may pave the way toward a novel program to classify quantum many-body systems based on their operational use for quantum information processing.
Resource Quality of a Symmetry-Protected Topologically Ordered Phase for Quantum Computation
NASA Astrophysics Data System (ADS)
Miller, Jacob; Miyake, Akimasa
2015-03-01
We investigate entanglement naturally present in the 1D topologically ordered phase protected with the on-site symmetry group of an octahedron as a potential resource for teleportation-based quantum computation. We show that, as long as certain characteristic lengths are finite, all its ground states have the capability to implement any unit-fidelity one-qubit gate operation asymptotically as a key computational building block. This feature is intrinsic to the entire phase, in that perfect gate fidelity coincides with perfect string order parameters under a state-insensitive renormalization procedure. Our approach may pave the way toward a novel program to classify quantum many-body systems based on their operational use for quantum information processing.
Modeling Proton Irradiation in AlGaN/GaN HEMTs: Understanding the Increase of Critical Voltage
NASA Astrophysics Data System (ADS)
Patrick, Erin; Law, Mark E.; Liu, Lu; Cuervo, Camilo Velez; Xi, Yuyin; Ren, Fan; Pearton, Stephen J.
2013-12-01
A combination of TRIM and FLOODS models the effect of radiation damage on AlGaN/GaN HEMTs. While excellent fits are obtained for threshold voltage shift, the models do not fully explain the increased reliability observed experimentally. In short, the addition of negatively-charged traps in the GaN buffer layer does not significantly change the electric field at the gate edges at radiation fluence levels seen in this study. We propose that negative trapped charge at the nitride/AlGaN interface actually produces the virtual-gate effect that results in decreasing the magnitude of the electric field at the gate edges and thus the increase in critical voltage. Simulation results including nitride interface charge show significant changes in electric field profiles while the I-V device characteristics do not change.
NASA Astrophysics Data System (ADS)
Chien, Feng-Tso; Chen, Jian-Liang; Chen, Chien-Ming; Chen, Chii-Wen; Cheng, Ching-Hwa; Chiu, Hsien-Chin
2017-11-01
In this paper, a novel step gate-overlapped lightly doped drain (GOLDD) with raised source/drain (RSD) structure (SGORSD) is proposed for TFT electronic device application. The new SGORSD structure could obtain a low electric field at channel near the drain side owing to a step GOLDD design. Compared to the conventional device, the SGORSD TFT exhibits a better kink effect and higher breakdown performance due to the reduced drain electric field (D-EF). In addition, the leakage current also can be suppressed. Moreover, the device stability, such as the threshold voltage shift and drain current degradation under a high gate bias, is improved by the design of SGORSD structure. Therefore, this novel step GOLDD structure can be a promising design to be used in active-matrix flat panel electronics.
Proposal for nanoscale cascaded plasmonic majority gates for non-Boolean computation.
Dutta, Sourav; Zografos, Odysseas; Gurunarayanan, Surya; Radu, Iuliana; Soree, Bart; Catthoor, Francky; Naeemi, Azad
2017-12-19
Surface-plasmon-polariton waves propagating at the interface between a metal and a dielectric, hold the key to future high-bandwidth, dense on-chip integrated logic circuits overcoming the diffraction limitation of photonics. While recent advances in plasmonic logic have witnessed the demonstration of basic and universal logic gates, these CMOS oriented digital logic gates cannot fully utilize the expressive power of this novel technology. Here, we aim at unraveling the true potential of plasmonics by exploiting an enhanced native functionality - the majority voter. Contrary to the state-of-the-art plasmonic logic devices, we use the phase of the wave instead of the intensity as the state or computational variable. We propose and demonstrate, via numerical simulations, a comprehensive scheme for building a nanoscale cascadable plasmonic majority logic gate along with a novel referencing scheme that can directly translate the information encoded in the amplitude and phase of the wave into electric field intensity at the output. Our MIM-based 3-input majority gate displays a highly improved overall area of only 0.636 μm 2 for a single-stage compared with previous works on plasmonic logic. The proposed device demonstrates non-Boolean computational capability and can find direct utility in highly parallel real-time signal processing applications like pattern recognition.
NASA Technical Reports Server (NTRS)
Sewell, James S.; Bozada, Christopher A.
1994-01-01
Advanced radar and communication systems rely heavily on state-of-the-art microelectronics. Systems such as the phased-array radar require many transmit/receive (T/R) modules which are made up of many millimeter wave - microwave integrated circuits (MMIC's). The heart of a MMIC chip is the Gallium Arsenide (GaAs) field-effect transistor (FET). The transistor gate length is the critical feature that determines the operating frequency of the radar system. A smaller gate length will typically result in a higher frequency. In order to make a phased array radar system economically feasible, manufacturers must be capable of producing very large quantities of small-gate-length MMIC chips at a relatively low cost per chip. This requires the processing of a large number of wafers with a large number of chips per wafer, minimum processing time, and a very high chip yield. One of the bottlenecks in the fabrication of MIMIC chips is the transistor gate definition. The definition of sub-half-micron gates for GaAs-based field-effect transistors is generally performed by direct-write electron beam lithography (EBL). Because of the throughput limitations of EBL, the gate-layer fabrication is conventionally divided into two lithographic processes where EBL is used to generate the gate fingers and optical lithography is used to generate the large-area gate pads and interconnects. As a result, two complete sequences of resist application, exposure, development, metallization and lift-off are required for the entire gate structure. We have baselined a hybrid process, referred to as EBOL (electron beam/optical lithography), in which a single application of a multi-level resist is used for both exposures. The entire gate structure, (gate fingers, interconnects and pads), is then formed with a single metallization and lift-off process. The EBOL process thus retains the advantages of the high-resolution E-beam lithography and the high throughput of optical lithography while essentially eliminating an entire lithography/metallization/lift-off process sequence. This technique has been proven to be reliable for both trapezoidal and mushroom gates and has been successfully applied to metal-semiconductor and high-electron-mobility field-effect transistor (MESFET and HEMT) wafers containing devices with gate lengths down to 0.10 micron and 75 x 75 micron gate pads. The yields and throughput of these wafers have been very high with no loss in device performance. We will discuss the entire EBOL process technology including the multilayer resist structure, exposure conditions, process sensitivities, metal edge definition, device results, comparison to the standard gate-layer process, and its suitability for manufacturing.
NASA Astrophysics Data System (ADS)
Sewell, James S.; Bozada, Christopher A.
1994-02-01
Advanced radar and communication systems rely heavily on state-of-the-art microelectronics. Systems such as the phased-array radar require many transmit/receive (T/R) modules which are made up of many millimeter wave - microwave integrated circuits (MMIC's). The heart of a MMIC chip is the Gallium Arsenide (GaAs) field-effect transistor (FET). The transistor gate length is the critical feature that determines the operating frequency of the radar system. A smaller gate length will typically result in a higher frequency. In order to make a phased array radar system economically feasible, manufacturers must be capable of producing very large quantities of small-gate-length MMIC chips at a relatively low cost per chip. This requires the processing of a large number of wafers with a large number of chips per wafer, minimum processing time, and a very high chip yield. One of the bottlenecks in the fabrication of MIMIC chips is the transistor gate definition. The definition of sub-half-micron gates for GaAs-based field-effect transistors is generally performed by direct-write electron beam lithography (EBL). Because of the throughput limitations of EBL, the gate-layer fabrication is conventionally divided into two lithographic processes where EBL is used to generate the gate fingers and optical lithography is used to generate the large-area gate pads and interconnects. As a result, two complete sequences of resist application, exposure, development, metallization and lift-off are required for the entire gate structure. We have baselined a hybrid process, referred to as EBOL (electron beam/optical lithography), in which a single application of a multi-level resist is used for both exposures. The entire gate structure, (gate fingers, interconnects and pads), is then formed with a single metallization and lift-off process. The EBOL process thus retains the advantages of the high-resolution E-beam lithography and the high throughput of optical lithography while essentially eliminating an entire lithography/metallization/lift-off process sequence. This technique has been proven to be reliable for both trapezoidal and mushroom gates and has been successfully applied to metal-semiconductor and high-electron-mobility field-effect transistor (MESFET and HEMT) wafers containing devices with gate lengths down to 0.10 micron and 75 x 75 micron gate pads. The yields and throughput of these wafers have been very high with no loss in device performance. We will discuss the entire EBOL process technology including the multilayer resist structure, exposure conditions, process sensitivities, metal edge definition, device results, comparison to the standard gate-layer process, and its suitability for manufacturing.
PSK Shift Timing Information Detection Using Image Processing and a Matched Filter
2009-09-01
phase shifts are enhanced. Develop, design, and test the resulting phase shift identification scheme. xx Develop, design, and test an optional...and the resulting phase shift identification algorithm is investigated for SNR levels in the range -2dB to 12 dB. Detection performances are derived...test the resulting phase shift identification scheme. Develop, design, and test an optional analysis window overlapping technique to improve phase
Disengagement Operations: Context, Violence, and Spoilers in a New Phase IV Construct
2010-05-21
disengagement from Operation 4 Robert M. Gates, “Gates Calls European Mood a Danger to Peace,” The New York Times, February 23, 2010; and Noam Chomsky ...September 2009. Chomsky , Noam. Failed States. New York: Metropolitan Books, 2006. Citino, Robert M. Blitzkrieg to Desert Storm: The Evolution of
Role of Oxygen in Ionic Liquid Gating on Two-Dimensional Cr2Ge2Te6: A Non-oxide Material.
Chen, Yangyang; Xing, Wenyu; Wang, Xirui; Shen, Bowen; Yuan, Wei; Su, Tang; Ma, Yang; Yao, Yunyan; Zhong, Jiangnan; Yun, Yu; Xie, X C; Jia, Shuang; Han, Wei
2018-01-10
Ionic liquid gating can markedly modulate a material's carrier density so as to induce metallization, superconductivity, and quantum phase transitions. One of the main issues is whether the mechanism of ionic liquid gating is an electrostatic field effect or an electrochemical effect, especially for oxide materials. Recent observation of the suppression of the ionic liquid gate-induced metallization in the presence of oxygen for oxide materials suggests the electrochemical effect. However, in more general scenarios, the role of oxygen in the ionic liquid gating effect is still unclear. Here, we perform ionic liquid gating experiments on a non-oxide material: two-dimensional ferromagnetic Cr 2 Ge 2 Te 6 . Our results demonstrate that despite the large increase of the gate leakage current in the presence of oxygen, the oxygen does not affect the ionic liquid gating effect on the channel resistance of Cr 2 Ge 2 Te 6 devices (<5% difference), which suggests the electrostatic field effect as the mechanism on non-oxide materials. Moreover, our results show that ionic liquid gating is more effective on the modulation of the channel resistances compared to the back gating across the 300 nm thick SiO 2 .
Method and apparatus for measuring the intensity and phase of an ultrashort light pulse
Kane, Daniel J.; Trebino, Rick P.
1998-01-01
The pulse shape I(t) and phase evolution x(t) of ultrashort light pulses are obtained using an instantaneously responding nonlinear optical medium to form a signal pulse. A light pulse, such a laser pulse, is split into a gate pulse and a probe pulse, where the gate pulse is delayed relative to the probe pulse. The gate pulse and the probe pulse are combined within an instantaneously responding optical medium to form a signal pulse functionally related to a temporal slice of the gate pulse corresponding to the time delay of the probe pulse. The signal pulse is then input to a wavelength-selective device to output pulse field information comprising intensity vs. frequency for a first value of the time delay. The time delay is varied over a range of values effective to yield an intensity plot of signal intensity vs. wavelength and delay. In one embodiment, the beams are overlapped at an angle so that a selected range of delay times is within the intersection to produce a simultaneous output over the time delays of interest.
Retrospective respiration-gated whole-body photoacoustic computed tomography of mice
NASA Astrophysics Data System (ADS)
Xia, Jun; Chen, Wanyi; Maslov, Konstantin; Anastasio, Mark A.; Wang, Lihong V.
2014-01-01
Photoacoustic tomography (PAT) is an emerging technique that has a great potential for preclinical whole-body imaging. To date, most whole-body PAT systems require multiple laser shots to generate one cross-sectional image, yielding a frame rate of <1 Hz. Because a mouse breathes at up to 3 Hz, without proper gating mechanisms, acquired images are susceptible to motion artifacts. Here, we introduce, for the first time to our knowledge, retrospective respiratory gating for whole-body photoacoustic computed tomography. This new method involves simultaneous capturing of the animal's respiratory waveform during photoacoustic data acquisition. The recorded photoacoustic signals are sorted and clustered according to the respiratory phase, and an image of the animal at each respiratory phase is reconstructed subsequently from the corresponding cluster. The new method was tested in a ring-shaped confocal photoacoustic computed tomography system with a hardware-limited frame rate of 0.625 Hz. After respiratory gating, we observed sharper vascular and anatomical images at different positions of the animal body. The entire breathing cycle can also be visualized at 20 frames/cycle.
Buheitel, Johannes; Stemmann, Olaf
2013-01-01
Faithful transmission of chromosomes during eukaryotic cell division requires sister chromatids to be paired from their generation in S phase until their separation in M phase. Cohesion is mediated by the cohesin complex, whose Smc1, Smc3 and Scc1 subunits form a tripartite ring that entraps both DNA double strands. Whereas centromeric cohesin is removed in late metaphase by Scc1 cleavage, metazoan cohesin at chromosome arms is displaced already in prophase by proteolysis-independent signalling. Which of the three gates is triggered by the prophase pathway to open has remained enigmatic. Here, we show that displacement of human cohesin from early mitotic chromosomes requires dissociation of Smc3 from Scc1 but no opening of the other two gates. In contrast, loading of human cohesin onto chromatin in telophase occurs through the Smc1–Smc3 hinge. We propose that the use of differently regulated gates for loading and release facilitates unidirectionality of DNA's entry into and exit from the cohesin ring. PMID:23361318
Ferroelectric control of a Mott insulator
Yamada, Hiroyuki; Marinova, Maya; Altuntas, Philippe; Crassous, Arnaud; Bégon-Lours, Laura; Fusil, Stéphane; Jacquet, Eric; Garcia, Vincent; Bouzehouane, Karim; Gloter, Alexandre; Villegas, Javier E.; Barthélémy, Agnès; Bibes, Manuel
2013-01-01
The electric field control of functional properties is an important goal in oxide-based electronics. To endow devices with memory, ferroelectric gating is interesting, but usually weak compared to volatile electrolyte gating. Here, we report a very large ferroelectric field-effect in perovskite heterostructures combining the Mott insulator CaMnO3 and the ferroelectric BiFeO3 in its “supertetragonal” phase. Upon polarization reversal of the BiFeO3 gate, the CaMnO3 channel resistance shows a fourfold variation around room temperature, and a tenfold change at ~200 K. This is accompanied by a carrier density modulation exceeding one order of magnitude. We have analyzed the results for various CaMnO3 thicknesses and explain them by the electrostatic doping of the CaMnO3 layer and the presence of a fixed dipole at the CaMnO3/BiFeO3 interface. Our results suggest the relevance of ferroelectric gates to control orbital- or spin-ordered phases, ubiquitous in Mott systems, and pave the way toward efficient Mott-tronics devices. PMID:24089020
Combine Flash-Based FPGA TID and Long-Term Retention Reliabilities Through VT Shift
NASA Astrophysics Data System (ADS)
Wang, Jih-Jong; Rezzak, Nadia; Dsilva, Durwyn; Xue, Fengliang; Samiee, Salim; Singaraju, Pavan; Jia, James; Nguyen, Victor; Hawley, Frank; Hamdy, Esmat
2016-08-01
Reliability test results of data retention and total ionizing dose (TID) in 65 nm Flash-based field programmable gate array (FPGA) are presented. Long-chain inverter design is recommended for reliability evaluation because it is the worst case design for both effects. Based on preliminary test data, both issues are unified and modeled by one natural decay equation. The relative contributions of TID induced threshold-voltage shift and retention mechanisms are evaluated by analyzing test data.
Periodic binary sequence generators: VLSI circuits considerations
NASA Technical Reports Server (NTRS)
Perlman, M.
1984-01-01
Feedback shift registers are efficient periodic binary sequence generators. Polynomials of degree r over a Galois field characteristic 2(GF(2)) characterize the behavior of shift registers with linear logic feedback. The algorithmic determination of the trinomial of lowest degree, when it exists, that contains a given irreducible polynomial over GF(2) as a factor is presented. This corresponds to embedding the behavior of an r-stage shift register with linear logic feedback into that of an n-stage shift register with a single two-input modulo 2 summer (i.e., Exclusive-OR gate) in its feedback. This leads to Very Large Scale Integrated (VLSI) circuit architecture of maximal regularity (i.e., identical cells) with intercell communications serialized to a maximal degree.
Instantons in Self-Organizing Logic Gates
NASA Astrophysics Data System (ADS)
Bearden, Sean R. B.; Manukian, Haik; Traversa, Fabio L.; Di Ventra, Massimiliano
2018-03-01
Self-organizing logic is a recently suggested framework that allows the solution of Boolean truth tables "in reverse"; i.e., it is able to satisfy the logical proposition of gates regardless to which terminal(s) the truth value is assigned ("terminal-agnostic logic"). It can be realized if time nonlocality (memory) is present. A practical realization of self-organizing logic gates (SOLGs) can be done by combining circuit elements with and without memory. By employing one such realization, we show, numerically, that SOLGs exploit elementary instantons to reach equilibrium points. Instantons are classical trajectories of the nonlinear equations of motion describing SOLGs and connect topologically distinct critical points in the phase space. By linear analysis at those points, we show that these instantons connect the initial critical point of the dynamics, with at least one unstable direction, directly to the final fixed point. We also show that the memory content of these gates affects only the relaxation time to reach the logically consistent solution. Finally, we demonstrate, by solving the corresponding stochastic differential equations, that, since instantons connect critical points, noise and perturbations may change the instanton trajectory in the phase space but not the initial and final critical points. Therefore, even for extremely large noise levels, the gates self-organize to the correct solution. Our work provides a physical understanding of, and can serve as an inspiration for, models of bidirectional logic gates that are emerging as important tools in physics-inspired, unconventional computing.
Effect of Phase Shift from Corals to Zoantharia on Reef Fish Assemblages
Cruz, Igor C. S.; Loiola, Miguel; Albuquerque, Tiago; Reis, Rodrigo; de Anchieta C. C. Nunes, José; Reimer, James D.; Mizuyama, Masaru; Kikuchi, Ruy K. P.; Creed, Joel C.
2015-01-01
Consequences of reef phase shifts on fish communities remain poorly understood. Studies on the causes, effects and consequences of phase shifts on reef fish communities have only been considered for coral-to-macroalgae shifts. Therefore, there is a large information gap regarding the consequences of novel phase shifts and how these kinds of phase shifts impact on fish assemblages. This study aimed to compare the fish assemblages on reefs under normal conditions (relatively high cover of corals) to those which have shifted to a dominance of the zoantharian Palythoa cf. variabilis on coral reefs in Todos os Santos Bay (TSB), Brazilian eastern coast. We examined eight reefs, where we estimated cover of corals and P. cf. variabilis and coral reef fish richness, abundance and body size. Fish richness differed significantly between normal reefs (48 species) and phase-shift reefs (38 species), a 20% reduction in species. However there was no difference in fish abundance between normal and phase shift reefs. One fish species, Chaetodon striatus, was significantly less abundant on normal reefs. The differences in fish assemblages between different reef phases was due to differences in trophic groups of fish; on normal reefs carnivorous fishes were more abundant, while on phase shift reefs mobile invertivores dominated. PMID:25629532
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devereux, Thomas, E-mail: thomas.devereux@petermac.org; Pham, Daniel; Kron, Tomas
2015-04-01
This is a planning study investigating the dosimetric advantages of gated volumetric-modulated arc therapy (VMAT) to the end-exhale and end-inhale breathing phases for patients undergoing stereotactic treatment of primary renal cell carcinoma. VMAT plans were developed from the end-inhale (VMATinh) and the end-exhale (VMATexh) phases of the breathing cycle as well as a VMAT plan and 3-dimensional conformal radiation therapy plan based on an internal target volume (ITV) (VMATitv). An additional VMAT plan was created by giving the respective gated VMAT plan a 50% weighting and summing the inhale and exhale plans together to create a summed gated plan. Dosemore » to organs at risk (OARs) as well as comparison of intermediate and low-dose conformity was evaluated. There was no difference in the volume of healthy tissue receiving the prescribed dose for the planned target volume (PTV) (CI100%) for all the VMAT plans; however, the mean volume of healthy tissue receiving 50% of the prescribed dose for the PTV (CI50%) values were 4.7 (± 0.2), 4.6 (± 0.2), and 4.7 (± 0.6) for the VMATitv, VMATinh, and VMATexh plans, respectively. The VMAT plans based on the exhale and inhale breathing phases showed a 4.8% and 2.4% reduction in dose to 30 cm{sup 3} of the small bowel, respectively, compared with that of the ITV-based VMAT plan. The summed gated VMAT plans showed a 6.2% reduction in dose to 30 cm{sup 3} of the small bowel compared with that of the VMAT plans based on the ITV. Additionally, when compared with the inhale and the exhale VMAT plans, a 4% and 1.5%, respectively, reduction was observed. Gating VMAT was able to reduce the amount of prescribed, intermediate, and integral dose to healthy tissue when compared with VMAT plans based on an ITV. When summing the inhale and exhale plans together, dose to healthy tissue and OARs was optimized. However, gating VMAT plans would take longer to treat and is a factor that needs to be considered.« less
Beyond CMOS computing with spin and polarization
NASA Astrophysics Data System (ADS)
Manipatruni, Sasikanth; Nikonov, Dmitri E.; Young, Ian A.
2018-04-01
Spintronic and multiferroic systems are leading candidates for achieving attojoule-class logic gates for computing, thereby enabling the continuation of Moore's law for transistor scaling. However, shifting the materials focus of computing towards oxides and topological materials requires a holistic approach addressing energy, stochasticity and complexity.
Interface band alignment in high-k gate stacks
NASA Astrophysics Data System (ADS)
Eric, Bersch; Hartlieb, P.
2005-03-01
In order to successfully implement alternate high-K dielectric materials into MOS structures, the interface properties of MOS gate stacks must be better understood. Dipoles that may form at the metal/dielectric and dielectric/semiconductor interfaces make the band offsets difficult to predict. We have measured the conduction and valence band densities of states for a variety MOS stacks using in situ using inverse photoemission (IPE) and photoemission spectroscopy (PES), respectively. Results obtained from clean and metallized (with Ru or Al) HfO2/Si, SiO2/Si and mixed silicate films will be presented. IPE indicates a shift of the conduction band minimum (CBM) to higher energy (i.e. away from EF) with increasing SiO2. The effect of metallization on the location of band edges depends upon the metal species. The addition of N to the dielectrics shifts the CBM in a way that is thickness dependent. Possible mechanisms for these observed effects will be discussed.
Colcombet, Jean; Lelièvre, Françoise; Thomine, Sébastien; Barbier-Brygoo, Hélène; Frachisse, Jean-Marie
2005-07-01
Variations in both intracellular and extracellular pH are known to be involved in a wealth of physiological responses. Using the patch-clamp technique on Arabidopsis hypocotyl cells, it is shown that rapid-type and slow-type anion channels at the plasma membrane are both regulated by pH via distinct mechanisms. Modifications of pH modulate the voltage-dependent gating of the rapid channel. While intracellular alkalinization facilitates channel activation by shifting the voltage gate towards negative potentials, extracellular alkalinization shifts the activation threshold to more positive potentials, away from physiological resting membrane potentials. By contrast, pH modulates slow anion channel activity in a voltage-independent manner. Intracellular acidification and extracellular alkalinization increase slow anion channel currents. The possible role of these distinct modulations in physiological processes involving anion efflux and modulation of extracellular and/or intracellular pH, such as elicitor and ABA signalling, are discussed.
SU-E-T-217: Intrinsic Respiratory Gating in Small Animal CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Y; Smith, M; Mistry, N
Purpose: Preclinical animal models of lung cancer can provide a controlled test-bed for testing dose escalation or function-based-treatment-planning studies. However, to extract lung function, i.e. ventilation, one needs to be able to image the lung at different phases of ventilation (in-hale / ex-hale). Most respiratory-gated imaging using micro-CT involves using an external ventilator and surgical intervention limiting the utility in longitudinal studies. A new intrinsic respiratory retrospective gating method was developed and tested in mice. Methods: A fixed region of interest (ROI) that covers the diaphragm was selected on all projection images to estimate the mean intensity (M). The meanmore » intensity depends on the projection angle and diaphragm position. A 3-point moving average (A) of consecutive M values: Mpre, Mcurrent and Mpost, was calculated to be subtracted from Mcurrent. A fixed threshold was used to enable amplitude based sorting into 4 different phases of respiration. Images at full-inhale and end-exhale phases of respiration were reconstructed using the open source OSCaR. Lung volumes estimated at the 2 phases of respiration were validated against literature values. Results: Intrinsic retrospective gating was accomplished without the use of any external breathing waveform. While projection images were acquired at 360 different angles. Only 138 and 104 projections were used to reconstruct images at full-inhale and end-exhale. This often results in non-uniform under-sampled angular projections leading to some minor streaking artifacts. The calculated expiratory, inspiratory and tidal lung volumes correlated well with the values known from the literature. Conclusion: Our initial result demonstrates an intrinsic gating method that is suitable for flat panel cone beam small animal CT systems. Reduction in streaking artifacts can be accomplished by oversampling the data or using iterative reconstruction methods. This initial experience will enable freebreathing small animal micro-CT imaging to fuel longitudinal studies of lung function.« less
NASA Astrophysics Data System (ADS)
Asoka-Kumar, P.; Leung, T. C.; Lynn, K. G.; Nielsen, B.; Forcier, M. P.; Weinberg, Z. A.; Rubloff, G. W.
1992-06-01
The centroid shifts of positron annihilation spectra are reported from the depletion regions of metal-oxide-semiconductor (MOS) capacitors at room temperature and at 35 K. The centroid shift measurement can be explained using the variation of the electric field strength and depletion layer thickness as a function of the applied gate bias. An estimate for the relevant MOS quantities is obtained by fitting the centroid shift versus beam energy data with a steady-state diffusion-annihilation equation and a derivative-gaussian positron implantation profile. Inadequacy of the present analysis scheme is evident from the derived quantities and alternate methods are required for better predictions.
NASA Astrophysics Data System (ADS)
Zheng, Donghui; Chen, Lei; Li, Jinpeng; Sun, Qinyuan; Zhu, Wenhua; Anderson, James; Zhao, Jian; Schülzgen, Axel
2018-03-01
Circular carrier squeezing interferometry (CCSI) is proposed and applied to suppress phase shift error in simultaneous phase-shifting point-diffraction interferometer (SPSPDI). By introducing a defocus, four phase-shifting point-diffraction interferograms with circular carrier are acquired, and then converted into linear carrier interferograms by a coordinate transform. Rearranging the transformed interferograms into a spatial-temporal fringe (STF), so the error lobe will be separated from the phase lobe in the Fourier spectrum of the STF, and filtering the phase lobe to calculate the extended phase, when combined with the corresponding inverse coordinate transform, exactly retrieves the initial phase. Both simulations and experiments validate the ability of CCSI to suppress the ripple error generated by the phase shift error. Compared with carrier squeezing interferometry (CSI), CCSI is effective on some occasions in which a linear carrier is difficult to introduce, and with the added benefit of eliminating retrace error.
DOE Office of Scientific and Technical Information (OSTI.GOV)
George, Rohini; Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA; Chung, Theodore D.
2006-07-01
Purpose: Respiratory gating is a commercially available technology for reducing the deleterious effects of motion during imaging and treatment. The efficacy of gating is dependent on the reproducibility within and between respiratory cycles during imaging and treatment. The aim of this study was to determine whether audio-visual biofeedback can improve respiratory reproducibility by decreasing residual motion and therefore increasing the accuracy of gated radiotherapy. Methods and Materials: A total of 331 respiratory traces were collected from 24 lung cancer patients. The protocol consisted of five breathing training sessions spaced about a week apart. Within each session the patients initially breathedmore » without any instruction (free breathing), with audio instructions and with audio-visual biofeedback. Residual motion was quantified by the standard deviation of the respiratory signal within the gating window. Results: Audio-visual biofeedback significantly reduced residual motion compared with free breathing and audio instruction. Displacement-based gating has lower residual motion than phase-based gating. Little reduction in residual motion was found for duty cycles less than 30%; for duty cycles above 50% there was a sharp increase in residual motion. Conclusions: The efficiency and reproducibility of gating can be improved by: incorporating audio-visual biofeedback, using a 30-50% duty cycle, gating during exhalation, and using displacement-based gating.« less
Frequency-resolved optical gating with the use of second-harmonic generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeLong, K.W.; Trebino, R.; Hunter, J.
1994-11-01
We discuss the use of second-harmonic generation (SHG) as the nonlinearity in the technique of frequency-resolved optical gating (FROG) for measuring the full intensity and phase evolution of an arbitrary ultrashort pulse. FROG that uses a third-order nonlinearity in the polarization-gate geometry has proved extremely successful, and the algorithm required for extraction of the intensity and the phase from the experimental data is quite robust. However, for pulse intensities less than [similar to] 1 MW, third-order nonlinearities generate insufficient signal strength, and therefore SHG FROG appears necessary. We discuss the theoretical, algorithmic, and experimental considerations of SHG FROG in detail.more » SHG FROG has an ambiguity in the direction of time, and its traces are somewhat unintuitive. Also, previously published algorithms are generally ineffective at extracting the intensity and the phase of an arbitrary laser pulse from the SHG FROG trace. We present an improved pulse-retrieval algorithm, based on the method of generalized projections, that is far superior to the previously published algorithms, although it is still not so robust as the polarization-gate algorithm. We discuss experimental sources of error such as pump depletion and group-velocity mismatch. We also present several experimental examples of pulses measured with SHG FROG and show that the derived intensities and phases are in agreement with more conventional diagnostic techniques, and we demonstrate the high-dynamic-range capability of SHG FROG. We conclude that, despite the above drawbacks, SHG FROG should be useful in measuring low-energy pulses.« less
Yao, Jingting; Tridandapani, Srini; Wick, Carson A.
2017-01-01
To more accurately trigger cardiac computed tomography angiography (CTA) than electrocardiography (ECG) alone, a sub-system is proposed as an intermediate step toward fusing ECG with seismocardiography (SCG). Accurate prediction of quiescent phases is crucial to prospectively gating CTA, which is susceptible to cardiac motion and, thus, can affect the diagnostic quality of images. The key innovation of this sub-system is that it identifies the SCG waveform corresponding to heart sounds and determines their phases within the cardiac cycles. Furthermore, this relationship is modeled as a linear function with respect to heart rate. For this paper, B-mode echocardiography is used as the gold standard for identifying the quiescent phases. We analyzed synchronous ECG, SCG, and echocardiography data acquired from seven healthy subjects (mean age: 31; age range: 22–48; males: 4) and 11 cardiac patients (mean age: 56; age range: 31–78; males: 6). On average, the proposed algorithm was able to successfully identify 79% of the SCG waveforms in systole and 68% in diastole. The simulated results show that SCG-based prediction produced less average phase error than that of ECG. It was found that the accuracy of ECG-based gating is more susceptible to increases in heart rate variability, while SCG-based gating is susceptible to high cycle to cycle variability in morphology. This pilot work of prediction using SCG waveforms enriches the framework of a comprehensive system with multiple modalities that could potentially, in real time, improve the image quality of CTA. PMID:28845370
A universal steady state I-V relationship for membrane current
NASA Technical Reports Server (NTRS)
Chernyak, Y. B.; Cohen, R. J. (Principal Investigator)
1995-01-01
A purely electrical mechanism for the gating of membrane ionic channel gives rise to a simple I-V relationship for membrane current. Our approach is based on the known presence of gating charge, which is an established property of the membrane channel gating. The gating charge is systematically treated as a polarization of the channel protein which varies with the external electric field and modifies the effective potential through which the ions migrate in the channel. Two polarization effects have been considered: 1) the up or down shift of the whole potential function, and 2) the change in the effective electric field inside the channel which is due to familiar effect of the effective reduction of the electric field inside a dielectric body because of the presence of surface charges on its surface. Both effects are linear in the channel polarization. The ionic current is described by a steady state solution of the Nernst-Planck equation with the potential directly controlled by the gating charge system. The solution describes reasonably well the steady state and peak-current I-V relationships for different channels, and when applied adiabatically, explains the time lag between the gating charge current and the rise of the ionic current. The approach developed can be useful as an effective way to model the ionic currents in axons, cardiac cells and other excitable tissues.
Voltage-Gated Sodium Channels: Evolutionary History and Distinctive Sequence Features.
Kasimova, M A; Granata, D; Carnevale, V
2016-01-01
Voltage-gated sodium channels (Nav) are responsible for the rising phase of the action potential. Their role in electrical signal transmission is so relevant that their emergence is believed to be one of the crucial factors enabling development of nervous system. The presence of voltage-gated sodium-selective channels in bacteria (BacNav) has raised questions concerning the evolutionary history of the ones in animals. Here we review some of the milestones in the field of Nav phylogenetic analysis and discuss some of the most important sequence features that distinguish these channels from voltage-gated potassium channels and transient receptor potential channels. Copyright © 2016 Elsevier Inc. All rights reserved.
Lin, Yu-Chih; Tu, Han-Yen; Wu, Xin-Ru; Lai, Xin-Ji; Cheng, Chau-Jern
2018-05-14
This paper proposes one-shot synthetic aperture digital holographic microscopy using a combination of angular-multiplexing and coherence gating. The proposed angular-multiplexing technique uses multiple noncoplanar incident beams into the synthetic aperture to create tight packed passbands so as to extend spatial frequency spectrum. Coherence gating is performed to prevent the self-interference among the multiple beams. Based on the design guideline proposed herein, a phase-only spatial light modulator is employed as an adjustable blazed grating to split multiple noncoplanar beams and perform angular-multiplexing, and then using coherence gating based on low-coherence-light, superresolution imaging is achieved after one-shot acquisition.
NASA Astrophysics Data System (ADS)
Chavarrías, C.; Vaquero, J. J.; Sisniega, A.; Rodríguez-Ruano, A.; Soto-Montenegro, M. L.; García-Barreno, P.; Desco, M.
2008-09-01
We propose a retrospective respiratory gating algorithm to generate dynamic CT studies. To this end, we compared three different methods of extracting the respiratory signal from the projections of small-animal cone-beam computed tomography (CBCT) scanners. Given a set of frames acquired from a certain axial angle, subtraction of their average image from each individual frame produces a set of difference images. Pixels in these images have positive or negative values (according to the respiratory phase) in those areas where there is lung movement. The respiratory signals were extracted by analysing the shape of the histogram of these difference images: we calculated the first four central and non-central moments. However, only odd-order moments produced the desired breathing signal, as the even-order moments lacked information about the phase. Each of these curves was compared to a reference signal recorded by means of a pneumatic pillow. Given the similar correlation coefficients yielded by all of them, we selected the mean to implement our retrospective protocol. Respiratory phase bins were separated, reconstructed independently and included in a dynamic sequence, suitable for cine playback. We validated our method in five adult rat studies by comparing profiles drawn across the diaphragm dome, with and without retrospective respiratory gating. Results showed a sharper transition in the gated reconstruction, with an average slope improvement of 60.7%.
Improvement of cardiac CT reconstruction using local motion vector fields.
Schirra, Carsten Oliver; Bontus, Claas; van Stevendaal, Udo; Dössel, Olaf; Grass, Michael
2009-03-01
The motion of the heart is a major challenge for cardiac imaging using CT. A novel approach to decrease motion blur and to improve the signal to noise ratio is motion compensated reconstruction which takes motion vector fields into account in order to correct motion. The presented work deals with the determination of local motion vector fields from high contrast objects and their utilization within motion compensated filtered back projection reconstruction. Image registration is applied during the quiescent cardiac phases. Temporal interpolation in parameter space is used in order to estimate motion during strong motion phases. The resulting motion vector fields are during image reconstruction. The method is assessed using a software phantom and several clinical cases for calcium scoring. As a criterion for reconstruction quality, calcium volume scores were derived from both, gated cardiac reconstruction and motion compensated reconstruction throughout the cardiac phases using low pitch helical cone beam CT acquisitions. The presented technique is a robust method to determine and utilize local motion vector fields. Motion compensated reconstruction using the derived motion vector fields leads to superior image quality compared to gated reconstruction. As a result, the gating window can be enlarged significantly, resulting in increased SNR, while reliable Hounsfield units are achieved due to the reduced level of motion artefacts. The enlargement of the gating window can be translated into reduced dose requirements.
Quantification of liver fat with respiratory-gated quantitative chemical shift encoded MRI.
Motosugi, Utaroh; Hernando, Diego; Bannas, Peter; Holmes, James H; Wang, Kang; Shimakawa, Ann; Iwadate, Yuji; Taviani, Valentina; Rehm, Jennifer L; Reeder, Scott B
2015-11-01
To evaluate free-breathing chemical shift-encoded (CSE) magnetic resonance imaging (MRI) for quantification of hepatic proton density fat-fraction (PDFF). A secondary purpose was to evaluate hepatic R2* values measured using free-breathing quantitative CSE-MRI. Fifty patients (mean age, 56 years) were prospectively recruited and underwent the following four acquisitions to measure PDFF and R2*; 1) conventional breath-hold CSE-MRI (BH-CSE); 2) respiratory-gated CSE-MRI using respiratory bellows (BL-CSE); 3) respiratory-gated CSE-MRI using navigator echoes (NV-CSE); and 4) single voxel MR spectroscopy (MRS) as the reference standard for PDFF. Image quality was evaluated by two radiologists. MRI-PDFF measured from the three CSE-MRI methods were compared with MRS-PDFF using linear regression. The PDFF and R2* values were compared using two one-sided t-test to evaluate statistical equivalence. There was no significant difference in the image quality scores among the three CSE-MRI methods for either PDFF (P = 1.000) or R2* maps (P = 0.359-1.000). Correlation coefficients (95% confidence interval [CI]) for the PDFF comparisons were 0.98 (0.96-0.99) for BH-, 0.99 (0.97-0.99) for BL-, and 0.99 (0.98-0.99) for NV-CSE. The statistical equivalence test revealed that the mean difference in PDFF and R2* between any two of the three CSE-MRI methods was less than ±1 percentage point (pp) and ±5 s(-1) , respectively (P < 0.046). Respiratory-gated CSE-MRI with respiratory bellows or navigator echo are feasible methods to quantify liver PDFF and R2* and are as valid as the standard breath-hold technique. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Ying, Yutong; Lin, Fujiang; Bai, Xuefei
2018-03-01
This paper explores an energy-efficient pulsed ultra-wideband (UWB) radio-frequency (RF) front-end chip fabricated in 0.18-μm CMOS technology, including a transmitter, receiver, and fractional synthesizer. The transmitter adopts a digital offset quadrature phase-shift keying (O-QPSK) modulator and passive direct-phase multiplexing technology, which are energy- and hardware-efficient, to enhance the data rate for a given spectrum. A passive mixer and a capacitor cross-coupled (CCC) source-follower driving amplifier (DA) are also designed for the transmitter to further reduce the low power consumption. For the receiver, a power-aware low-noise amplifier (LNA) and a quadrature mixer are applied. The LNA adopts a CCC boost common-gate amplifier as the input stage, and its current is reused for the second stage to save power. The mixer uses a shared amplification stage for the following passive IQ mixer. Phase noise suppression of the phase-locked loop (PLL) is achieved by utilizing an even-harmonics-nulled series-coupled quadrature oscillator (QVCO) and an in-band noise-aware charge pump (CP) design. The transceiver achieves a measured data rate of 0.8 Gbps with power consumption of 16 mW and 31.5 mW for the transmitter and the receiver, respectively. The optimized integrated phase noise of the PLL is 0.52° at 4.025 GHz. Project supported by the National Science and Technology Major Project of China (No. 2011ZX03004-002-01).
A Controlled-Phase Gate via Adiabatic Rydberg Dressing of Neutral Atoms
NASA Astrophysics Data System (ADS)
Keating, Tyler; Deutsch, Ivan; Cook, Robert; Biederman, Grant; Jau, Yuan-Yu
2014-05-01
The dipole blockade effect between Rydberg atoms is a promising tool for quantum information processing in neutral atoms. So far, most efforts to perform a quantum logic gate with this effect have used resonant laser pulses to excite the atoms, which makes the system particularly susceptible to decoherence through thermal motional effects. We explore an alternative scheme in which the atomic ground states are adiabatically ``dressed'' by turning on an off-resonant laser. We analyze the implementation of a CPHASE gate using this mechanism and find that fidelities of >99% should be possible with current technology, owing primarily to the suppression of motional errors. We also discuss how such a scheme could be generalized to perform more complicated, multi-qubit gates; in particular, a simple generalization would allow us to perform a Toffoli gate in a single step.
NASA Astrophysics Data System (ADS)
Singh Mehta, Dalip; Srivastava, Vishal
2012-11-01
We report quantitative phase imaging of human red blood cells (RBCs) using phase-shifting interference microscopy. Five phase-shifted white light interferograms are recorded using colour charge coupled device camera. White light interferograms were decomposed into red, green, and blue colour components. The phase-shifted interferograms of each colour were then processed by phase-shifting analysis and phase maps for red, green, and blue colours were reconstructed. Wavelength dependent refractive index profiles of RBCs were computed from the single set of white light interferogram. The present technique has great potential for non-invasive determination of refractive index variation and morphological features of cells and tissues.
A phantom evaluation of a stereo-vision surface imaging system for radiotherapy patient setup
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bert, Christoph; Metheany, Katherine G.; Doppke, Karen
2005-09-15
External beam irradiation requires precise positioning of the target relative to the treatment planning coordinate system. A three-dimensional (3D) surface imaging system for patient positioning has recently been installed in one of our linear accelerator (linac) rooms. The device utilizes close-range photogrammetry to generate a 3D model of the patient's surface. This geometric model can be made to look like a digital camera image if wrapped with a gray-level image (texture mapping) that shows surface coloration. The system is calibrated to the linac coordinate system and has been designed as a patient setup device. To reproduce patient position in fractionatedmore » radiotherapy, the daily patient surface model is registered to a previously recorded reference surface. Using surface registration, the system calculates the rigid-body transformation that minimizes the distance between the treatment and the reference surface models in a region-of-interest (ROI). This transformation is expressed as a set of new couch coordinates at which the patient position best matches with the reference data. If respiratory motion is a concern, the surface can be obtained with a gated acquisition at a specified phase of the respiratory cycle. To analyze the accuracy of the system, we performed several experiments with phantoms to assess stability, alignment accuracy, precision of the gating function, and surface topology. The reproducibility of surface measurements was tested for periods up to 57 h. Each recorded frame was registered to the reference surface to calculate the required couch adjustment. The system stability over this time period was better than 0.5 mm. To measure the accuracy of the system to detect and quantify patient shift relative to a reference image, we compared the shift detected by the surface imaging system with known couch transitions in a phantom study. The maximum standard deviation was 0.75 mm for the three translational degrees of freedom, and less than 0.1 deg. for each rotation. Surface model precision was tested against computed tomography (CT)-derived surface topology. The root-mean-square rms of the distance between the surfaces was 0.65 mm, excluding regions where beam hardening caused artifacts in the CT data. Measurements were made to test the gated acquisition mode. The time-dependent amplitude was measured with the surface imaging system and an established respiratory gating system based on infrared (IR)-marker detection. The measured motion trajectories from both systems were compared to the known trajectory of the stage. The standard deviations of the amplitude differences to the motor trajectory were 0.04 and 0.15 mm for the IR-marker system and the 3D surface imaging system, respectively. A limitation of the surface-imaging device is the frame rate of 6.5 Hz, because rapid changes of the motion trajectory cannot be detected. In conclusion, the system is accurate and sufficiently stable to be used in the clinic. The errors computed when comparing the surface model with CT geometry were submillimeter, and deviations in the alignment and gating-signal tests were of the same magnitude.« less
Energetic mapping of oxide traps in MoS2 field-effect transistors
NASA Astrophysics Data System (ADS)
Illarionov, Yury Yu; Knobloch, Theresia; Waltl, Michael; Rzepa, Gerhard; Pospischil, Andreas; Polyushkin, Dmitry K.; Furchi, Marco M.; Mueller, Thomas; Grasser, Tibor
2017-06-01
The performance of MoS2 transistors is strongly affected by charge trapping in oxide traps with very broad distributions of time constants. These defects degrade the mobility and additionally lead to the hysteresis of the gate transfer characteristics, which presents a crucial performance and reliability issue for these new technologies. Here we perform a detailed study of the hysteresis in double-gated MoS2 FETs and show that this issue is nothing else than a combination of threshold voltage shifts resulting from positive and negative bias-temperature instabilities. While these instabilities are well known from silicon devices, they are even more important in 2D devices given the considerably larger defect densities. Most importantly, the magnitudes of these threshold voltage shifts depend strongly on the density and energetic alignment of the active oxide traps. Based on this, we introduce the incremental hysteresis sweep method which allows for an accurate mapping of these defects and extract their energy distributions from simulations. By applying our method to analyze the impact of oxide traps situated in the Al2O3 top gate of several devices, we confirm its versatility. Since all 2D devices investigated so far suffer from a similar hysteresis behavior, the incremental hysteresis sweep method provides a unique and powerful way for the detailed characterization of their defect bands.
NASA Astrophysics Data System (ADS)
Zhu, Jie-Jie; Ma, Xiao-Hua; Hou, Bin; Chen, Li-Xiang; Zhu, Qing; Hao, Yue
2017-02-01
This paper demonstrated the comparative study on interface engineering of AlN/AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistors (MIS-HEMTs) by using plasma interface pre-treatment in various ambient gases. The 15 nm AlN gate dielectric grown by plasma-enhanced atomic layer deposition significantly suppressed the gate leakage current by about two orders of magnitude and increased the peak field-effect mobility by more than 50%. NH3/N2 nitridation plasma treatment (NPT) was used to remove the 3 nm poor-quality interfacial oxide layer and N2O/N2 oxidation plasma treatment (OPT) to improve the quality of interfacial layer, both resulting in improved dielectric/barrier interface quality, positive threshold voltage (V th) shift larger than 0.9 V, and negligible dispersion. In comparison, however, NPT led to further decrease in interface charges by 3.38 × 1012 cm-2 and an extra positive V th shift of 1.3 V. Analysis with fat field-effect transistors showed that NPT resulted in better sub-threshold characteristics and transconductance linearity for MIS-HEMTs compared with OPT. The comparative study suggested that direct removing the poor interfacial oxide layer by nitridation plasma was superior to improving the quality of interfacial layer by oxidation plasma for the interface engineering of GaN-based MIS-HEMTs.
Electronics. Module 3: Digital Logic Application. Instructor's Guide.
ERIC Educational Resources Information Center
Carter, Ed; Murphy, Mark
This guide contains instructor's materials for a 10-unit secondary school course on digital logic application. The units are introduction to digital, logic gates, digital integrated circuits, combination logic, flip-flops, counters and shift registers, encoders and decoders, arithmetic circuits, memory, and analog/digital and digital/analog…
Knocking at the Schoolhouse Gate.
ERIC Educational Resources Information Center
Stader, David L.; Francis, Dannie B.
2003-01-01
Examines litigation involving academic freedom, expressive freedom, and drug testing as examples of the shifting balance between teacher rights and school board authority. Concludes that balancing teacher rights with community expectations is difficult, and the scales of justice may not always tip in favor of a teacher's rights. (SG)
Low-dose cardio-respiratory phase-correlated cone-beam micro-CT of small animals.
Sawall, Stefan; Bergner, Frank; Lapp, Robert; Mronz, Markus; Karolczak, Marek; Hess, Andreas; Kachelriess, Marc
2011-03-01
Micro-CT imaging of animal hearts typically requires a double gating procedure because scans during a breath-hold are not possible due to the long scan times and the high respiratory rates, Simultaneous respiratory and cardiac gating can either be done prospectively or retrospectively. True five-dimensional information can be either retrieved with retrospective gating or with prospective gating if several prospective gates are acquired. In any case, the amount of information available to reconstruct one volume for a given respiratory and cardiac phase is orders of magnitud lower than the total amount of information acquired. For example, the reconstruction of a volume from a 10% wide respiratory and a 20% wide cardiac window uses only 2% of the data acquired. Achieving a similar image quality as a nongated scan would therefore require to increase the amount of data and thereby the dose to the animal by up to a factor of 50. To achieve the goal of low-dose phase-correlated (LDPC) imaging, the authors propose to use a highly efficient combination of slightly modified existing algorithms. In particular, the authors developed a variant of the McKinnon-Bates image reconstruction algorithm and combined it with bilateral filtering in up to five dimensions to significantly reduce image noise without impairing spatial or temporal resolution. The preliminary results indicate that the proposed LDPC reconstruction method typically reduces image noise by a factor of up to 6 (e.g., from 170 to 30 HU), while the dose values lie in a range from 60 to 500 mGy. Compared to other publications that apply 250-1800 mGy for the same task [C. T. Badea et al., "4D micro-CT of the mouse heart," Mol. Imaging 4(2), 110-116 (2005); M. Drangova et al., "Fast retrospectively gated quantitative four-dimensional (4D) cardiac micro computed tomography imaging of free-breathing mice," Invest. Radiol. 42(2), 85-94 (2007); S. H. Bartling et al., "Retrospective motion gating in small animal CT of mice and rats," Invest. Radiol. 42(10), 704-714 (2007)], the authors' LDPC approach therefore achieves a more than tenfold dose usage improvement. The LDPC reconstruction method improves phase-correlated imaging from highly undersampled data. Artifacts caused by sparse angular sampling are removed and the image noise is decreased, while spatial and temporal resolution are preserved. Thus, the administered dose per animal can be decreased allowing for long-term studies with reduced metabolic inference.
Detection of Objects Hidden in Highly Scattering Media Using Time-Gated Imaging Methods
NASA Technical Reports Server (NTRS)
Galland, Pierre A.; Wang, L.; Liang, X.; Ho, P. P.; Alfano, R. R.
2000-01-01
Non-intrusive and non-invasive optical imaging techniques has generated great interest among researchers for their potential applications to biological study, device characterization, surface defect detection, and jet fuel dynamics. Non-linear optical parametric amplification gate (NLOPG) has been used to detect back-scattered images of objects hidden in diluted Intralipid solutions. To directly detect objects hidden in highly scattering media, the diffusive component of light needs to be sorted out from early arrived ballistic and snake photons. In an optical imaging system, images are collected in transmission or back-scattered geometry. The early arrival photons in the transmission approach, always carry the direct information of the hidden object embedded in the turbid medium. In the back-scattered approach, the result is not so forth coming. In the presence of a scattering host, the first arrival photons in back-scattered approach will be directly photons from the host material. In the presentation, NLOPG was applied to acquire time resolved back-scattered images under the phase matching condition. A time-gated amplified signal was obtained through this NLOPG process. The system's gain was approximately 100 times. The time-gate was achieved through phase matching condition where only coherent photons retain their phase. As a result, the diffusive photons, which were the primary contributor to the background, were removed. With a large dynamic range and high resolution, time-gated early light imaging has the potential for improving rocket/aircraft design by determining jets shape and particle sizes. Refinements to these techniques may enable drop size measurements in the highly scattering, optically dense region of multi-element rocket injectors. These types of measurements should greatly enhance the design of stable, and higher performing rocket engines.
NASA Astrophysics Data System (ADS)
Chou, Kuan-Yu; Hsu, Nai-Wen; Su, Yi-Hsin; Chou, Chung-Tao; Chiu, Po-Yuan; Chuang, Yen; Li, Jiun-Yun
2018-02-01
We investigate DC characteristics of a two-dimensional electron gas (2DEG) in an undoped Si/SiGe heterostructure and its temperature dependence. An insulated-gate field-effect transistor was fabricated, and transfer characteristics were measured at 4 K-300 K. At low temperatures (T < 45 K), source electrons are injected into the buried 2DEG channel first and drain current increases with the gate voltage. By increasing the gate voltage further, the current saturates followed by a negative transconductance observed, which can be attributed to electron tunneling from the buried channel to the surface channel. Finally, the drain current is saturated again at large gate biases due to parallel conduction of buried and surface channels. By increasing the temperature, an abrupt increase in threshold voltage is observed at T ˜ 45 K and it is speculated that negatively charged impurities at the Al2O3/Si interface are responsible for the threshold voltage shift. At T > 45 K, the current saturation and negative transconductance disappear and the device acts as a normal transistor.
NASA Astrophysics Data System (ADS)
Ishii, Hajime; Ueno, Hiroaki; Ueda, Tetsuzo; Endoh, Tetsuo
2018-06-01
In this paper, the current–voltage (I–V) characteristics of a 600-V-class normally off GaN gate injection transistor (GIT) from 25 to 200 °C are analyzed, and it is revealed that the drain current of the GIT increases during high-temperature operation. It is found that the maximum drain current (I dmax) of the GIT is 86% higher than that of a conventional 600-V-class normally off GaN metal insulator semiconductor hetero-FET (MIS-HFET) at 150 °C, whereas the GIT obtains 56% I dmax even at 200 °C. Moreover, the mechanism of the drain current increase of the GIT is clarified by examining the relationship between the temperature dependence of the I–V characteristics of the GIT and the gate hole injection effect determined from the shift of the second transconductance (g m) peak of the g m–V g characteristic. From the above, the GIT is a promising device with enough drivability for future power switching applications even under high-temperature conditions.
Ambipolar nonvolatile memory based on a quantum-dot transistor with a nanoscale floating gate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Che, Yongli; Zhang, Yating, E-mail: yating@tju.edu.cn; Song, Xiaoxian
2016-07-04
Using only solution processing methods, we developed ambipolar quantum-dot (QD) transistor floating-gate memory (FGM) that uses Au nanoparticles as a floating gate. Because of the bipolarity of the active channel of PbSe QDs, the memory could easily trap holes or electrons in the floating gate by programming/erasing (P/E) operations, which could shift the threshold voltage both up and down. As a result, the memory exhibited good programmable memory characteristics: a large memory window (ΔV{sub th} ∼ 15 V) and a long retention time (>10{sup 5 }s). The magnitude of ΔV{sub th} depended on both P/E voltages and the bias voltage (V{sub DS}): ΔV{sub th}more » was a cubic function to V{sub P/E} and linearly depended on V{sub DS}. Therefore, this FGM based on a QD transistor is a promising alternative to its inorganic counterparts owing to its advantages of bipolarity, high mobility, low cost, and large-area production.« less
Scalable entanglement in trapped ions using optimal control of multimode couplings
NASA Astrophysics Data System (ADS)
Debnath, Shantanu; Choi, Taeyoung; Manning, T. Andrew; Figgatt, Caroline; Monroe, Chris
2014-05-01
We perform high fidelity multipartite entanglement of ion subsets in a chain of five Yb+ qubits using optimal pulse shaping. A focused mode-locked laser beam individually addresses qubits to couple them to multiple collective transverse modes of motion to perform entangling phase gates on pairs of adjacent qubits. Pulse shaping by modulating the amplitude and phase of the laser can drive high fidelity gates for certain pulse solutions that are relatively insensitive to detuning errors. We create entangled states in the GHZ class and witness genuine tripartite entanglement using individual state detection. This method of engineering the evolution of multiple modes scales well for large qubit registers by keeping gate times short. This work is supported by grants from the U.S. Army Research Office with funding from the DARPA OLE program, IARPA, and the MURI program; and the NSF Physics Frontier Center at JQI.
A novel dual gating approach using joint inertial sensors: implications for cardiac PET imaging
NASA Astrophysics Data System (ADS)
Jafari Tadi, Mojtaba; Teuho, Jarmo; Lehtonen, Eero; Saraste, Antti; Pänkäälä, Mikko; Koivisto, Tero; Teräs, Mika
2017-10-01
Positron emission tomography (PET) is a non-invasive imaging technique which may be considered as the state of art for the examination of cardiac inflammation due to atherosclerosis. A fundamental limitation of PET is that cardiac and respiratory motions reduce the quality of the achieved images. Current approaches for motion compensation involve gating the PET data based on the timing of quiescent periods of cardiac and respiratory cycles. In this study, we present a novel gating method called microelectromechanical (MEMS) dual gating which relies on joint non-electrical sensors, i.e. tri-axial accelerometer and gyroscope. This approach can be used for optimized selection of quiescent phases of cardiac and respiratory cycles. Cardiomechanical activity according to echocardiography observations was investigated to confirm whether this dual sensor solution can provide accurate trigger timings for cardiac gating. Additionally, longitudinal chest motions originating from breathing were measured by accelerometric- and gyroscopic-derived respiratory (ADR and GDR) tracking. The ADR and GDR signals were evaluated against Varian real-time position management (RPM) signals in terms of amplitude and phase. Accordingly, high linear correlation and agreement were achieved between the reference electrocardiography, RPM, and measured MEMS signals. We also performed a Ge-68 phantom study to evaluate possible metal artifacts caused by the integrated read-out electronics including mechanical sensors and semiconductors. The reconstructed phantom images did not reveal any image artifacts. Thus, it was concluded that MEMS-driven dual gating can be used in PET studies without an effect on the quantitative or visual accuracy of the PET images. Finally, the applicability of MEMS dual gating for cardiac PET imaging was investigated with two atherosclerosis patients. Dual gated PET images were successfully reconstructed using only MEMS signals and both qualitative and quantitative assessments revealed encouraging results that warrant further investigation of this method.
NASA Astrophysics Data System (ADS)
Blume-Kohout, Robin
2014-03-01
Quantum information technology is built on (1) physical qubits and (2) precise, accurate quantum logic gates that transform their states. Developing quantum logic gates requires good characterization - both in the development phase, where we need to identify a device's flaws so as to fix them, and in the production phase, where we need to make sure that the device works within specs and predict residual error rates and types. This task falls to quantum state and process tomography. But until recently, protocols for tomography relied on a pre-existing and perfectly calibrated reference frame comprising the measurements (and, for process tomography, input states) used to characterize the device. In practice, these measurements are neither independent nor perfectly known - they are usually implemented via exactly the same gates that we are trying to characterize! In the past year, several partial solutions to this self-consistency problem have been proposed. I will present a framework (gate set tomography, or GST) that addresses and resolves this problem, by self-consistently characterizing an entire set of quantum logic gates on a black-box quantum device. In particular, it contains an explicit closed-form protocol for linear-inversion gate set tomography (LGST), which is immune to both calibration error and technical pathologies like local maxima of the likelihood (which plagued earlier methods). GST also demonstrates significant (multiple orders of magnitude) improvements in efficiency over standard tomography by using data derived from long sequences of gates (much like randomized benchmarking). GST has now been applied to qubit devices in multiple technologies. I will present and discuss results of GST experiments in technologies including a single trapped-ion qubit and a silicon quantum dot qubit. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL850.
2015-01-01
The structural similarity between the primary molecules of voltage-gated Na and K channels (alpha subunits) and activation gating in the Hodgkin-Huxley model is brought into full agreement by increasing the model's sodium kinetics to fourth order (m3 → m4). Both structures then virtually imply activation gating by four independent subprocesses acting in parallel. The kinetics coalesce in four-dimensional (4D) cubic diagrams (16 states, 32 reversible transitions) that show the structure to be highly failure resistant against significant partial loss of gating function. Rate constants, as fitted in phase plot data of retinal ganglion cell excitation, reflect the molecular nature of the gating transitions. Additional dimensions (6D cubic diagrams) accommodate kinetically coupled sodium inactivation and gating processes associated with beta subunits. The gating transitions of coupled sodium inactivation appear to be thermodynamically irreversible; response to dielectric surface charges (capacitive displacement) provides a potential energy source for those transitions and yields highly energy-efficient excitation. A comparison of temperature responses of the squid giant axon (apparently Arrhenius) and mammalian channel gating yields kinetic Q10 = 2.2 for alpha unit gating, whose transitions are rate-limiting at mammalian temperatures; beta unit kinetic Q10 = 14 reproduces the observed non-Arrhenius deviation of mammalian gating at low temperatures; the Q10 of sodium inactivation gating matches the rate-limiting component of activation gating at all temperatures. The model kinetics reproduce the physiologically large frequency range for repetitive firing in ganglion cells and the physiologically observed strong temperature dependence of recovery from inactivation. PMID:25867741
Origin of positive fixed charge at insulator/AlGaN interfaces and its control by AlGaN composition
NASA Astrophysics Data System (ADS)
Matys, M.; Stoklas, R.; Blaho, M.; Adamowicz, B.
2017-06-01
The key feature for the precise tuning of Vth in GaN-based metal-insulator-semiconductor (MIS) high electron mobility transistors is the control of the positive fixed charge (Qf) at the insulator/III-N interfaces, whose amount is often comparable to the negative surface polarization charge ( Qp o l -). In order to clarify the origin of Qf, we carried out a comprehensive capacitance-voltage (C-V) characterization of SiO2/AlxGa1-xN/GaN and SiN/AlxGa1-xN/GaN structures with Al composition (x) varying from 0.15 to 0.4. For both types of structures, we observed a significant Vth shift in C-V curves towards the positive gate voltage with increasing x. On the contrary, the Schottky gate structures exhibited Vth shift towards the more negative biases. From the numerical simulations of C-V curves using the Poisson's equation supported by the analytical calculations of Vth, we showed that the Vth shift in the examined MIS structures is due to a significant decrease in the positive Qf with rising x. Finally, we examined this result with respect to various hypotheses developed in the literature to explain the origin of the positive Qf at insulator/III-N interfaces.
NASA Astrophysics Data System (ADS)
Kim, Youngjun; Cho, Seongeun; Park, Byoungnam
2018-03-01
We report ultraviolet (UV)-induced optical gating in a Zn1-x Mg x O nanocrystal solid solution (NCSS) field effect transistor (FET) through a systematic study in which UV-induced charge transport properties are probed as a function of Mg composition. Change in the electrical properties of Zn1-x Mg x O NCSS associated with electronic traps is investigated by field effect-modulated current-voltage characteristic curves in the dark and under illumination. Under UV illumination, significant threshold voltage shift to a more negative value in an n-channel Zn1-x Mg x O NCSS FET is observed. Importantly, as the Mg composition increases, the effect of UV illumination on the threshold voltage shift is alleviated. We found that threshold voltage shift as a function of Mg composition in the dark and under illumination is due to difference in the deep trap density in the Zn1-x Mg x O NCSS. This is supported by Mg composition dependent photoluminescence intensity in the visible range and reduced FET mobility with Mg addition. The presence of the deep traps and the corresponding trap energy levels in the Zn1-x Mg x O NCSS are ensured by photoelectron spectroscopy in air.
Toto-Arellano, Noel-Ivan; Rodriguez-Zurita, Gustavo; Meneses-Fabian, Cruz; Vazquez-Castillo, Jose F
2008-11-10
Among several techniques, phase shifting interferometry can be implemented with a grating used as a beam divider to attain several interference patterns around each diffraction order. Because each pattern has to show a different phase-shift, a suitable shifting technique must be employed. Phase gratings are attractive to perform the former task due to their higher diffraction efficiencies. But as is very well known, the Fourier coefficients of only-phase gratings are integer order Bessel functions of the first kind. The values of these real-valued functions oscillate around zero, so they can adopt negative values, thereby introducing phase shifts of pi at certain diffraction orders. Because this almost trivial fact seems to have been overlooked in the literature regarding its practical implications, in this communication such phase shifts are stressed in the description of interference patterns obtained with grating interferometers. These patterns are obtained by placing two windows in the object plane of a 4f system with a sinusoidal grating/grid in the Fourier plane. It is shown that the corresponding experimental observations of the fringe modulation, as well as the corresponding phase measurements, are all in agreement with the proposed description. A one-shot phase shifting interferometer is finally proposed taking into account these properties after proper incorporation of modulation of polarization.
NASA Astrophysics Data System (ADS)
Wang, Ruo Zheng; Wu, Sheng Li; Li, Xin Yu; Zhang, Jin Tao
2017-07-01
In this study, we set out to fabricate an amorphous indium gallium zinc oxide (a-IGZO) thin-film transistor (TFT) with SiNx/HfO2/SiNx (SHS) sandwiched dielectrics. The J-V and C-V of this SHS film were extracted by the Au/p-Si/SHS/Ti structure. At room temperature the a-IGZO with SHS dielectrics showed the following electrical properties: a threshold voltage of 2.9 V, a subthreshold slope of 0.35 V/decade, an on/off current ratio of 3.5 × 107, and a mobility of 12.8 cm2 V-1 s-1. Finally, we tested the influence of gate bias stress on the TFT, and the result showed that the threshold voltage shifted to a positive voltage when applying a positive gate voltage to the TFT.
Tuning charge and correlation effects for a single molecule on a graphene device
Wickenburg, Sebastian; Lu, Jiong; Lischner, Johannes; ...
2016-11-25
The ability to understand and control the electronic properties of individual molecules in a device environment is crucial for developing future technologies at the nanometre scale and below. Achieving this, however, requires the creation of three-terminal devices that allow single molecules to be both gated and imaged at the atomic scale. We have accomplished this by integrating a graphene field effect transistor with a scanning tunnelling microscope, thus allowing gate-controlled charging and spectroscopic interrogation of individual tetrafluoro-tetracyanoquinodimethane molecules. We observe a non-rigid shift in the molecule’s lowest unoccupied molecular orbital energy (relative to the Dirac point) as a function ofmore » gate voltage due to graphene polarization effects. Our results show that electron–electron interactions play an important role in how molecular energy levels align to the graphene Dirac point, and may significantly influence charge transport through individual molecules incorporated in graphene-based nanodevices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Edward Namkyu; Shin, Yong Hyeon; Yun, Ilgu, E-mail: iyun@yonsei.ac.kr
2014-11-07
A compact quantum correction model for a symmetric double gate (DG) metal-oxide-semiconductor field-effect transistor (MOSFET) is investigated. The compact quantum correction model is proposed from the concepts of the threshold voltage shift (ΔV{sub TH}{sup QM}) and the gate capacitance (C{sub g}) degradation. First of all, ΔV{sub TH}{sup QM} induced by quantum mechanical (QM) effects is modeled. The C{sub g} degradation is then modeled by introducing the inversion layer centroid. With ΔV{sub TH}{sup QM} and the C{sub g} degradation, the QM effects are implemented in previously reported classical model and a comparison between the proposed quantum correction model and numerical simulationmore » results is presented. Based on the results, the proposed quantum correction model can be applicable to the compact model of DG MOSFET.« less
Irie, Katsumasa; Haga, Yukari; Shimomura, Takushi; Fujiyoshi, Yoshinori
2018-01-01
Voltage-gated sodium channels are crucial for electro-signalling in living systems. Analysis of the molecular mechanism requires both fine electrophysiological evaluation and high-resolution channel structures. Here, we optimized a dual expression system of NavAb, which is a well-established standard of prokaryotic voltage-gated sodium channels, for E. coli and insect cells using a single plasmid vector to analyse high-resolution protein structures and measure large ionic currents. Using this expression system, we evaluated the voltage dependence and determined the crystal structures of NavAb wild-type and two mutants, E32Q and N49K, whose voltage dependence were positively shifted and essential interactions were lost in voltage sensor domain. The structural and functional comparison elucidated the molecular mechanisms of the voltage dependence of prokaryotic voltage-gated sodium channels. © 2017 Federation of European Biochemical Societies.
Structural basis of lipid-driven conformational transitions in the KvAP voltage-sensing domain.
Li, Qufei; Wanderling, Sherry; Sompornpisut, Pornthep; Perozo, Eduardo
2014-02-01
Voltage-gated ion channels respond to transmembrane electric fields through reorientations of the positively charged S4 helix within the voltage-sensing domain (VSD). Despite a wealth of structural and functional data, the details of this conformational change remain controversial. Recent electrophysiological evidence showed that equilibrium between the resting ('down') and activated ('up') conformations of the KvAP VSD from Aeropyrum pernix can be biased through reconstitution in lipids with or without phosphate groups. We investigated the structural transition between these functional states, using site-directed spin-labeling and EPR spectroscopic methods. Solvent accessibility and interhelical distance determinations suggest that KvAP gates through S4 movements involving an ∼3-Å upward tilt and simultaneous ∼2-Å axial shift. This motion leads to large accessibly changes in the intracellular water-filled crevice and supports a new model of gating that combines structural rearrangements and electric-field remodeling.
Extraction method of interfacial injected charges for SiC power MOSFETs
NASA Astrophysics Data System (ADS)
Wei, Jiaxing; Liu, Siyang; Li, Sheng; Song, Haiyang; Chen, Xin; Li, Ting; Fang, Jiong; Sun, Weifeng
2018-01-01
An improved novel extraction method which can characterize the injected charges along the gate oxide interface for silicon carbide (SiC) power metal-oxide-semiconductor field-effect transistors (MOSFETs) is proposed. According to the different interface situations of the channel region and the junction FET (JFET) region, the gate capacitance versus gate voltage (Cg-Vg) curve of the device can be divided into three relatively independent parts, through which the locations and the types of the charges injected in to the oxide above the interface can be distinguished. Moreover, the densities of these charges can also be calculated by the amplitudes of the shifts in the Cg-Vg curve. The correctness of this method is proved by TCAD simulations. Moreover, experiments on devices stressed by unclamped-inductive-switching (UIS) stress and negative bias temperature stress (NBTS) are performed to verify the validity of this method.
Cusp-related Pc3-5 Wave Activity
NASA Astrophysics Data System (ADS)
Pilipenko, V.; Engebretson, M. J.; Kozlovsky, A.; Belakhovsky, V.; Lessard, M.; Yeoman, T. K.
2009-12-01
Pc3-5 pulsations were found to be an ubiquitous element of dayside ULF wave activity at the cusp region. We examine observations of Pc3-5 wave activity by search coil and flux-gate magnetometers at three locations on Svalbard, covering geomagnetic latitudes 74o-76o. To identify the ionospheric projections of the cusp, we use the width of the return signal from the SuperDARN Finland radar covering the Svalbard archipelago. The ULF meridional spatial structure is examined using the amplitude-phase gradient technique. This analysis shows no specific mode conversion pattern near the cusp region. The amplitude gradient mainly has the same direction at all frequencies, and only during periods when the cusp is shifted to very high latitudes, the gradient may change sign. The phase delay is chaotic and does not show any consistent pattern. This behavior corresponds to the occurrence of a localized peak in the latitudinal distribution of Pc3-5 power, but not under the cusp proper as was previously thought, but about several degrees southward from the equatorward cusp boundary. We suppose that compressional Pc3 fluctuations leaking from the magnetosheath into the entry layer of the magnetosphere can modulate the precipitating electron fluxes, which produce the ground response.
Parallel-quadrature phase-shifting digital holographic microscopy using polarization beam splitter
Das, Bhargab; Yelleswarapu, Chandra S; Rao, DVGLN
2012-01-01
We present a digital holography microscopy technique based on parallel-quadrature phase-shifting method. Two π/2 phase-shifted holograms are recorded simultaneously using polarization phase-shifting principle, slightly off-axis recording geometry, and two identical CCD sensors. The parallel phase-shifting is realized by combining circularly polarized object beam with a 45° degree polarized reference beam through a polarizing beam splitter. DC term is eliminated by subtracting the two holograms from each other and the object information is reconstructed after selecting the frequency spectrum of the real image. Both amplitude and phase object reconstruction results are presented. Simultaneous recording eliminates phase errors caused by mechanical vibrations and air turbulences. The slightly off-axis recording geometry with phase-shifting allows a much larger dimension of the spatial filter for reconstruction of the object information. This leads to better reconstruction capability than traditional off-axis holography. PMID:23109732