NASA Astrophysics Data System (ADS)
Afshordi, Niayesh; Mohayaee, Roya; Bertschinger, Edmund
2009-04-01
Most of the mass content of dark matter haloes is expected to be in the form of tidal debris. The density of debris is not constant, but rather can grow due to formation of caustics at the apocenters and pericenters of the orbit, or decay as a result of phase mixing. In the phase space, the debris assemble in a hierarchy that is truncated by the primordial temperature of dark matter. Understanding this phase structure can be of significant importance for the interpretation of many astrophysical observations and, in particular, dark matter detection experiments. With this purpose in mind, we develop a general theoretical framework to describe the hierarchical structure of the phase space of cold dark matter haloes. We do not make any assumption of spherical symmetry and/or smooth and continuous accretion. Instead, working with correlation functions in the action-angle space, we can fully account for the hierarchical structure (predicting a two-point correlation function ∝ΔJ-1.6 in the action space), as well as the primordial discreteness of the phase space. As an application, we estimate the boost to the dark matter annihilation signal due to the structure of the phase space within virial radius: the boost due to the hierarchical tidal debris is of order unity, whereas the primordial discreteness of the phase structure can boost the total annihilation signal by up to an order of magnitude. The latter is dominated by the regions beyond 20% of the virial radius, and is largest for the recently formed haloes with the least degree of phase mixing. Nevertheless, as we argue in a companion paper, the boost due to small gravitationally-bound substructure can dominate this effect at low redshifts.
Phase-space networks of geometrically frustrated systems.
Han, Yilong
2009-11-01
We illustrate a network approach to the phase-space study by using two geometrical frustration models: antiferromagnet on triangular lattice and square ice. Their highly degenerated ground states are mapped as discrete networks such that the quantitative network analysis can be applied to phase-space studies. The resulting phase spaces share some comon features and establish a class of complex networks with unique Gaussian spectral densities. Although phase-space networks are heterogeneously connected, the systems are still ergodic due to the random Poisson processes. This network approach can be generalized to phase spaces of some other complex systems.
Uncovering the nonadiabatic response of geosynchronous electrons to geomagnetic disturbance
Gannon, Jennifer; Elkington, Scot R.; Onsager, Terrance G.
2012-01-01
We describe an energy spectrum method for scaling electron integral flux, which is measured at a constant energy, to phase space density at a constant value of the first adiabatic invariant which removes much of the variation due to reversible adiabatic effects. Applying this method to nearly a solar cycle (1995 - 2006) of geosynchronous electron integral flux (E>2.0MeV) from the GOES satellites, we see that much of the diurnal variation in electron phase space density at constant energy can be removed by the transformation to phase space density at constant μ (4000 MeV/G). This allows us a clearer picture of underlying non-adiabatic electron population changes due to geomagnetic activity. Using scaled phase space density, we calculate the percentage of geomagnetic storms resulting in an increase, decrease or no change in geosynchronous electrons as 38%, 7%, and 55%, respectively. We also show examples of changes in the electron population that may be different than the unscaled fluxes alone suggest. These examples include sudden electron enhancements during storms which appear during the peak of negative Dst for μ-scaled phase space density, contrary to the slow increase seen during the recovery phase for unscaled phase space density for the same event.
Phase A design study of microgravity fluoride fiber puller
NASA Technical Reports Server (NTRS)
Workman, Gary L.; Smith, Guy A.; Kosten, Susan
1994-01-01
Improved transmission properties for fluoride fibers due to space processing has great potential for commercial benefits. Phase A design study will determine conceptual feasibility and provide initial definition of the technical requirements and design issues for space.
Phase-space topography characterization of nonlinear ultrasound waveforms.
Dehghan-Niri, Ehsan; Al-Beer, Helem
2018-03-01
Fundamental understanding of ultrasound interaction with material discontinuities having closed interfaces has many engineering applications such as nondestructive evaluation of defects like kissing bonds and cracks in critical structural and mechanical components. In this paper, to analyze the acoustic field nonlinearities due to defects with closed interfaces, the use of a common technique in nonlinear physics, based on a phase-space topography construction of ultrasound waveform, is proposed. The central idea is to complement the "time" and "frequency" domain analyses with the "phase-space" domain analysis of nonlinear ultrasound waveforms. A nonlinear time series method known as pseudo phase-space topography construction is used to construct equivalent phase-space portrait of measured ultrasound waveforms. Several nonlinear models are considered to numerically simulate nonlinear ultrasound waveforms. The phase-space response of the simulated waveforms is shown to provide different topographic information, while the frequency domain shows similar spectral behavior. Thus, model classification can be substantially enhanced in the phase-space domain. Experimental results on high strength aluminum samples show that the phase-space transformation provides a unique detection and classification capabilities. The Poincaré map of the phase-space domain is also used to better understand the nonlinear behavior of ultrasound waveforms. It is shown that the analysis of ultrasound nonlinearities is more convenient and informative in the phase-space domain than in the frequency domain. Copyright © 2017 Elsevier B.V. All rights reserved.
Requirement Generation for Space Infrastructure Systems
NASA Astrophysics Data System (ADS)
Hempsell, M.
Despite heavy investment, in the half-century period between 1970 and 2020 there will almost no progress in the capability provided by the space infrastructure. It is argued that this is due to a failure during the requirement generation phase of the infrastructure's elements, a failure that is primarily due to following the accepted good practice of involving stakeholders while establishing a mission based set of technical requirements. This argument is supported by both a consideration of the history of the requirement generation phase of past space infrastructure projects, in particular the Space Shuttle, and an analysis of the interactions of the stakeholders during this phase. Traditional stakeholder involvement only works well in mature infrastructures where investment aims to make minor improvements, whereas space activity is still in the early experimental stages and is open to major new initiatives that aim to radically change the way we work in space. A new approach to requirement generation is proposed, which is more appropriate to these current circumstances. This uses a methodology centred on the basic functions the system is intended to perform rather than its expected missions.
Amplitude and Wavelength Measurement of Sound Waves in Free Space using a Sound Wave Phase Meter
NASA Astrophysics Data System (ADS)
Ham, Sounggil; Lee, Kiwon
2018-05-01
We developed a sound wave phase meter (SWPM) and measured the amplitude and wavelength of sound waves in free space. The SWPM consists of two parallel metal plates, where the front plate was operated as a diaphragm. An aluminum perforated plate was additionally installed in front of the diaphragm, and the same signal as that applied to the sound source was applied to the perforated plate. The SWPM measures both the sound wave signal due to the diaphragm vibration and the induction signal due to the electric field of the aluminum perforated plate. Therefore, the two measurement signals interfere with each other due to the phase difference according to the distance between the sound source and the SWPM, and the amplitude of the composite signal that is output as a result is periodically changed. We obtained the wavelength of the sound wave from this periodic amplitude change measured in the free space and compared it with the theoretically calculated values.
Berry phase for spin-1/2 particles moving in a space-time with torsion
NASA Astrophysics Data System (ADS)
Alimohammadi, M.; Shariati, A.
Berry phase for a spin-1/2 particle moving in a flat space-time with torsion is investigated in the context of the Einstein-Cartan-Dirac model. It is shown that if the torsion is due to a dense polarized background, then there is a Berry phase only if the fermion is massless and its momentum is perpendicular to the direction of the background polarization. The order of magnitude of this Berry phase is discussed in other theoretical frameworks.
Self-dual phase space for (3 +1 )-dimensional lattice Yang-Mills theory
NASA Astrophysics Data System (ADS)
Riello, Aldo
2018-01-01
I propose a self-dual deformation of the classical phase space of lattice Yang-Mills theory, in which both the electric and magnetic fluxes take value in the compact gauge Lie group. A local construction of the deformed phase space requires the machinery of "quasi-Hamiltonian spaces" by Alekseev et al., which is reviewed here. The results is a full-fledged finite-dimensional and gauge-invariant phase space, the self-duality properties of which are largely enhanced in (3 +1 ) spacetime dimensions. This enhancement is due to a correspondence with the moduli space of an auxiliary noncommutative flat connection living on a Riemann surface defined from the lattice itself, which in turn equips the duality between electric and magnetic fluxes with a neat geometrical interpretation in terms of a Heegaard splitting of the space manifold. Finally, I discuss the consequences of the proposed deformation on the quantization of the phase space, its quantum gravitational interpretation, as well as its relevance for the construction of (3 +1 )-dimensional topological field theories with defects.
NASA Technical Reports Server (NTRS)
Fabris, Gracio
1992-01-01
Two-phase energy conversion systems could be liquid metal magnetohydrodynamic (LMMHD) with no moving parts or two-phase turbines. Both of them are inherently simple and reliable devices which can operate in a wide range of temperatures. Their thermal efficiency is significantly higher than for conventional cycles due to reheat of vapor by liquid phase during the energy converting expansion. Often they can be more easily coupled to heat sources. These features make two-phase systems particularly promising for space application. Insufficient research has been done in the past. So far achieved LMMHD generator and two-phase turbine efficiencies are in the 40 to 45 percent range. However if certain fluid dynamic and design problems are resolved these efficiencies could be brought into the range of 70 percent. This would make two-phase systems extremely competitive as compared to present or other proposed conversion system for space. Accordingly, well directed research effort on potential space applications of two-phase conversion systems would be a wise investment.
Inhibition of quantum transport due to 'scars' of unstable periodic orbits
NASA Technical Reports Server (NTRS)
Jensen, R. V.; Sanders, M. M.; Saraceno, M.; Sundaram, B.
1989-01-01
A new quantum mechanism for the suppression of chaotic ionization of highly excited hydrogen atoms explains the appearance of anomalously stable states in the microwave ionization experiments of Koch et al. A novel phase-space representation of the perturbed wave functions reveals that the inhibition of quantum transport is due to the selective excitation of wave functions that are highly localized near unstable periodic orbits in the chaotic classical phase space. The 'scarred' wave functions provide a new basis for the quantum description of a variety of classically chaotic systems.
Geometrical Series and Phase Space in a Finite Oscillatory Motion
ERIC Educational Resources Information Center
Mareco, H. R. Olmedo
2006-01-01
This article discusses some interesting physical properties of oscillatory motion of a particle on two joined inclined planes. The geometrical series demonstrates that the particle will oscillate during a finite time. Another detail is the converging path to the origin of the phase space. Due to its simplicity, this motion may be used as a…
Suppression of Space Charge Induced Beam Halo in Nonlinear Focusing Channel
Batygin, Yuri Konstantinovich; Scheinker, Alexander; Kurennoy, Sergey; ...
2016-01-29
An intense non-uniform particle beam exhibits strong emittance growth and halo formation in focusing channels due to nonlinear space charge forces of the beam. This phenomenon limits beam brightness and results in particle losses. The problem is connected with irreversible distortion of phase space volume of the beam in conventional focusing structures due to filamentation in phase space. Emittance growth is accompanied by halo formation in real space, which results in inevitable particle losses. We discuss a new approach for solving a self-consistent problem for a matched non-uniform beam in two-dimensional geometry. The resulting solution is applied to the problemmore » of beam transport, while avoiding emittance growth and halo formation by the use of nonlinear focusing field. Conservation of a beam distribution function is demonstrated analytically and by particle-in-cell simulation for a beam with a realistic beam distribution.« less
Development of a passive phase separator for space and earth applications
Wu, Xiongjun; Loraine, Greg; Hsiao, Chao-Tsung; Chahine, Georges L.
2018-01-01
The limited amount of liquids and gases that can be carried to space makes it imperative to recycle and reuse these fluids for extended human operations. During recycling processes gas and liquid phases are often intermixed. In the absence of gravity, separating gases from liquids is challenging due to the absence of buoyancy. This paper describes development of a passive phase separator that is capable of efficiently and reliably separating gas–liquid mixtures of both high and low void fractions in a wide range of flow rates that is applicable to for both space and earth applications. PMID:29628785
Suppression of phase mixing in drift-kinetic plasma turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, J. T., E-mail: joseph.parker@stfc.ac.uk; OCIAM, Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG; Brasenose College, Radcliffe Square, Oxford OX1 4AJ
2016-07-15
Transfer of free energy from large to small velocity-space scales by phase mixing leads to Landau damping in a linear plasma. In a turbulent drift-kinetic plasma, this transfer is statistically nearly canceled by an inverse transfer from small to large velocity-space scales due to “anti-phase-mixing” modes excited by a stochastic form of plasma echo. Fluid moments (density, velocity, and temperature) are thus approximately energetically isolated from the higher moments of the distribution function, so phase mixing is ineffective as a dissipation mechanism when the plasma collisionality is small.
Probing noncommutativities of phase space by using persistent charged current and its asymmetry
NASA Astrophysics Data System (ADS)
Ma, Kai; Ren, Ya-Jie; Wang, Ya-Hui
2018-06-01
Nontrivial algebra structures of the coordinate and momentum operators are potentially important for describing possible new physics. The persistent charged current in a metal ring is expected to be sensitive to the nontrivial dynamics due to noncommutativities of phase space. In this paper, we propose a new asymmetric observable for probing the noncommutativity of momentum operators. We also analyzed the temperature dependence of this observable, and we find that the asymmetry holds at a finite temperature. The critical temperature, above which the correction due to coordinate noncommutativity is negligible, is also derived.
A fourth gradient to overcome slice dependent phase effects of voxel-sized coils in planar arrays.
Bosshard, John C; Eigenbrodt, Edwin P; McDougall, Mary P; Wright, Steven M
2010-01-01
The signals from an array of densely spaced long and narrow receive coils for MRI are complicated when the voxel size is of comparable dimension to the coil size. The RF coil causes a phase gradient across each voxel, which is dependent on the distance from the coil, resulting in a slice dependent shift of k-space. A fourth gradient coil has been implemented and used with the system's gradient set to create a gradient field which varies with slice. The gradients are pulsed together to impart a slice dependent phase gradient to compensate for the slice dependent phase due to the RF coils. However the non-linearity in the fourth gradient which creates the desired slice dependency also results in a through-slice phase ramp, which disturbs normal slice refocusing and leads to additional signal cancelation and reduced field of view. This paper discusses the benefits and limitations of using a fourth gradient coil to compensate for the phase due to RF coils.
Transverse emittance and phase space program developed for use at the Fermilab A0 Photoinjector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thurman-Keup, R.; Johnson, A.S.; Lumpkin, A.H.
2011-03-01
The Fermilab A0 Photoinjector is a 16 MeV high intensity, high brightness electron linac developed for advanced accelerator R&D. One of the key parameters for the electron beam is the transverse beam emittance. Here we report on a newly developed MATLAB based GUI program used for transverse emittance measurements using the multi-slit technique. This program combines the image acquisition and post-processing tools for determining the transverse phase space parameters with uncertainties. An integral part of accelerator research is a measurement of the beam phase space. Measurements of the transverse phase space can be accomplished by a variety of methods includingmore » multiple screens separated by drift spaces, or by sampling phase space via pepper pots or slits. In any case, the measurement of the phase space parameters, in particular the emittance, can be drastically simplified and sped up by automating the measurement in an intuitive fashion utilizing a graphical interface. At the A0 Photoinjector (A0PI), the control system is DOOCS, which originated at DESY. In addition, there is a library for interfacing to MATLAB, a graphically capable numerical analysis package sold by The Mathworks. It is this graphical package which was chosen as the basis for a graphical phase space measurement system due to its combination of analysis and display capabilities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosales-Zarate, Laura E. C.; Drummond, P. D.
We calculate the quantum Renyi entropy in a phase-space representation for either fermions or bosons. This can also be used to calculate purity and fidelity, or the entanglement between two systems. We show that it is possible to calculate the entropy from sampled phase-space distributions in normally ordered representations, although this is not possible for all quantum states. We give an example of the use of this method in an exactly soluble thermal case. The quantum entropy cannot be calculated at all using sampling methods in classical symmetric (Wigner) or antinormally ordered (Husimi) phase spaces, due to inner-product divergences. Themore » preferred method is to use generalized Gaussian phase-space methods, which utilize a distribution over stochastic Green's functions. We illustrate this approach by calculating the reduced entropy and entanglement of bosonic or fermionic modes coupled to a time-evolving, non-Markovian reservoir.« less
Reducing environmental risk associated with laboratory decommissioning and property transfer.
Dufault, R; Abelquist, E; Crooks, S; Demers, D; DiBerardinis, L; Franklin, T; Horowitz, M; Petullo, C; Sturchio, G
2000-12-01
The need for more or less space is a common laboratory problem. Solutions may include renovating existing space, leaving or demolishing old space, or acquiring new space or property for building. All of these options carry potential environmental risk. Such risk can be the result of activities related to the laboratory facility or property (e.g., asbestos, underground storage tanks, lead paint), or the research associated with it (e.g., radioactive, microbiological, and chemical contamination). Regardless of the option chosen to solve the space problem, the potential environmental risk must be mitigated and the laboratory space and/or property must be decommissioned or rendered safe prior to any renovation, demolition, or property transfer activities. Not mitigating the environmental risk through a decommissioning process can incur significant financial liability for any costs associated with future decommissioning cleanup activities. Out of necessity, a functioning system, environmental due diligence auditing, has evolved over time to assess environmental risk and reduce associated financial liability. This system involves a 4-phase approach to identify, document, manage, and clean up areas of environmental concern or liability, including contamination. Environmental due diligence auditing includes a) historical site assessment, b) characterization assessment, c) remedial effort and d) final status survey. General practice standards from the American Society for Testing and Materials are available for conducting the first two phases. However, standards have not yet been developed for conducting the third and final phases of the environmental due diligence auditing process. Individuals involved in laboratory decommissioning work in the biomedical research industry consider this a key weakness.
Reducing environmental risk associated with laboratory decommissioning and property transfer.
Dufault, R; Abelquist, E; Crooks, S; Demers, D; DiBerardinis, L; Franklin, T; Horowitz, M; Petullo, C; Sturchio, G
2000-01-01
The need for more or less space is a common laboratory problem. Solutions may include renovating existing space, leaving or demolishing old space, or acquiring new space or property for building. All of these options carry potential environmental risk. Such risk can be the result of activities related to the laboratory facility or property (e.g., asbestos, underground storage tanks, lead paint), or the research associated with it (e.g., radioactive, microbiological, and chemical contamination). Regardless of the option chosen to solve the space problem, the potential environmental risk must be mitigated and the laboratory space and/or property must be decommissioned or rendered safe prior to any renovation, demolition, or property transfer activities. Not mitigating the environmental risk through a decommissioning process can incur significant financial liability for any costs associated with future decommissioning cleanup activities. Out of necessity, a functioning system, environmental due diligence auditing, has evolved over time to assess environmental risk and reduce associated financial liability. This system involves a 4-phase approach to identify, document, manage, and clean up areas of environmental concern or liability, including contamination. Environmental due diligence auditing includes a) historical site assessment, b) characterization assessment, c) remedial effort and d) final status survey. General practice standards from the American Society for Testing and Materials are available for conducting the first two phases. However, standards have not yet been developed for conducting the third and final phases of the environmental due diligence auditing process. Individuals involved in laboratory decommissioning work in the biomedical research industry consider this a key weakness. PMID:11121365
White-light diffraction phase microscopy at doubled space-bandwidth product.
Shan, Mingguang; Kandel, Mikhail E; Majeed, Hassaan; Nastasa, Viorel; Popescu, Gabriel
2016-12-12
White light diffraction microscopy (wDPM) is a quantitative phase imaging method that benefits from both temporal and spatial phase sensitivity, granted, respectively, by the common-path geometry and white light illumination. However, like all off-axis quantitative phase imaging methods, wDPM is characterized by a reduced space-bandwidth product compared to phase shifting approaches. This happens essentially because the ultimate resolution of the image is governed by the period of the interferogram and not just the diffraction limit. As a result, off-axis techniques generates single-shot, i.e., high time-bandwidth, phase measurements, at the expense of either spatial resolution or field of view. Here, we show that combining phase-shifting and off-axis, the original space-bandwidth is preserved. Specifically, we developed phase-shifting diffraction phase microscopy with white light, in which we measure and combine two phase shifted interferograms. Due to the white light illumination, the phase images are characterized by low spatial noise, i.e., <1nm pathlength. We illustrate the operation of the instrument with test samples, blood cells, and unlabeled prostate tissue biopsy.
TU-AB-BRC-07: Efficiency of An IAEA Phase-Space Source for a Low Energy X-Ray Tube Using Egs++
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watson, PGF; Renaud, MA; Seuntjens, J
Purpose: To extend the capability of the EGSnrc C++ class library (egs++) to write and read IAEA phase-space files as a particle source, and to assess the relative efficiency gain in dose calculation using an IAEA phase-space source for modelling a miniature low energy x-ray source. Methods: We created a new ausgab object to score particles exiting a user-defined geometry and write them to an IAEA phase-space file. A new particle source was created to read from IAEA phase-space data. With these tools, a phase-space file was generated for particles exiting a miniature 50 kVp x-ray tube (The INTRABEAM System,more » Carl Zeiss). The phase-space source was validated by comparing calculated PDDs with a full electron source simulation of the INTRABEAM. The dose calculation efficiency gain of the phase-space source was determined relative to the full simulation. The efficiency gain as a function of i) depth in water, and ii) job parallelization was investigated. Results: The phase-space and electron source PDDs were found to agree to 0.5% RMS, comparable to statistical uncertainties. The use of a phase-space source for the INTRABEAM led to a relative efficiency gain of greater than 20 over the full electron source simulation, with an increase of up to a factor of 196. The efficiency gain was found to decrease with depth in water, due to the influence of scattering. Job parallelization (across 2 to 256 cores) was not found to have any detrimental effect on efficiency gain. Conclusion: A set of tools has been developed for writing and reading IAEA phase-space files, which can be used with any egs++ user code. For simulation of a low energy x-ray tube, the use of a phase-space source was found to increase the relative dose calculation efficiency by factor of up to 196. The authors acknowledge partial support by the CREATE Medical Physics Research Training Network grant of the Natural Sciences and Engineering Research Council (Grant No. 432290).« less
Space station/base food system study. Book 1: Element concept data sheets
NASA Technical Reports Server (NTRS)
1970-01-01
The detail engineering data sheets are presented for all concepts considered in the final phase of the study as well as those only carried through the interim phase due to non-applicability or deleted missions.
Multispacecraft Observations and 3D Structure of Electromagnetic Electron Phase-Space Holes
NASA Astrophysics Data System (ADS)
Holmes, J.; Ahmadi, N.; Ergun, R.; Wilder, F. D.; Newman, D. L.; Le Contel, O.; Torbert, R. B.; Burch, J. L.
2017-12-01
Electron phase-space holes are nonlinear plasma structures characterized by a unipolar trapping potential with a radial electric field. They commonly form from beam instabilities and other turbulent processes in many plasma environments. Due to their strong fields and long lifetimes, it has been hypothesized that phase-space holes can carry energy over long distances, contribute to large-scale currents, and accelerate individual particles to high energies. With electromagnetic field measurements at high cadence and precision on more than two spacecraft, we can compare the real 3D structure of electron phase-space holes to the models suggested by Andersson et al. (2009) and Treumann and Baumjohann (2012). In this case study, we consider a train of correlated electron phase-space holes observed by all four MMS spacecraft on the dusk flank within the magnetosphere. A number of the holes appear to pass directly through the 7 km tetrahedron formation. We use this data to compute the holes' phase velocity vector relative to the background magnetic field, and quantify their internal currents and associated magnetic moments. For these weak magnetic signatures, we find that the contribution from internal E×B0 currents is comparable to the v×E effect. This study will be interesting to compare with MMS observations in the magnetotail, which are expected to capture large, semi-relativistic phase-space holes with a strong magnetic component.
General post-Minkowskian expansion and application of the phase function
NASA Astrophysics Data System (ADS)
Qin, Cheng-Gang; Shao, Cheng-Gang
2017-07-01
The phase function is a useful tool to study all observations of space missions, since it can give all the information about light propagation in a gravitational field. For the extreme accuracy of the modern space missions, a precise relativistic modeling of observations is required. So, we develop a recursive procedure enabling us to expand the phase function into a perturbative series of ascending powers of the Newtonian gravitational constant. Any n th-order perturbation of the phase function can be determined by the integral along the straight line connecting two point events. To illustrate the result, we carry out the calculation of the phase function outside a static, spherically symmetric body up to the order of G2. Then, we develop a precise relativistic model that is able to calculate the phase function and the derivatives of the phase function in the gravitational field of rotating and uniformly moving bodies. This model allows the computing of the Doppler, radio science, and astrometric observables of the space missions in the Solar System. With the development of space technology, the relativistic corrections due to the motion of a planet's spin must be considered in the high-precision space missions in the near future. As an example, we give the estimates of the relativistic corrections on the observables about the space missions TianQin and BEACON.
In-plane "superresolution" MRI with phaseless sub-pixel encoding.
Hennel, Franciszek; Tian, Rui; Engel, Maria; Pruessmann, Klaas P
2018-04-15
Acquisition of high-resolution imaging data using multiple excitations without the sensitivity to fluctuations of the transverse magnetization phase, which is a major problem of multi-shot MRI. The concept of superresolution MRI based on microscopic tagging is analyzed using an analogy with the optical method of structured illumination. Sinusoidal tagging is shown to provide subpixel resolution by mixing of neighboring spatial frequency (k-space) bands. It represents a phaseless modulation added on top of the standard Fourier encoding, which allows the phase fluctuations to be discarded at an intermediate reconstruction step. Improvements are proposed to correct for tag distortions due to magnetic field inhomogeneity and to avoid the propagation of Gibbs ringing from intermediate low-resolution images to the final image. The method was applied to diffusion-weighted EPI. Artifact-free superresolution images can be obtained despite a finite duration of the tagging sequence and related pattern distortions by a field map based phase correction of band-wise reconstructed images. The ringing effect present in the intermediate images can be suppressed by partial overlapping of the mixed k-space bands in combination with an adapted filter. High-resolution diffusion-weighted images of the human head were obtained with a three-shot EPI sequence despite motion-related phase fluctuations between the shots. Due to its phaseless character, tagging-based sub-pixel encoding is an alternative to k-space segmenting in the presence of unknown phase fluctuations, in particular those due to motion under strong diffusion gradients. Proposed improvements render the method practicable in realistic conditions. © 2018 International Society for Magnetic Resonance in Medicine.
SPM and XPM crosstalk in WDM systems with DRA: Channel spacing and attenuation effects
NASA Astrophysics Data System (ADS)
Morsy, Emadeldeen; Fayed, Heba A.; Abd El Aziz, Ahmed; Aly, Moustafa H.
2018-06-01
This paper presents a theoretical analysis of a closed formula for nonlinear crosstalk due to self-phase modulation (SPM) and cross phase modulation (XPM) in wavelength division multiplexing (WDM) systems. The influence of channel spacing and attenuation on the system behavior is modeled and investigated. The system under consideration is a standard single-mode fiber (SSMF) with a single-span distributed Raman amplifier (DRA) and is operating at 100 Gbps.
NASA Technical Reports Server (NTRS)
Pool, Kirby V.
1989-01-01
This volume summarizes the analysis used to assess the structural life of the Space Shuttle Main Engine (SSME) High Pressure Fuel Turbo-Pump (HPFTP) Third Stage Impeller. This analysis was performed in three phases, all using the DIAL finite element code. The first phase was a static stress analysis to determine the mean (non-varying) stress and static margin of safety for the part. The loads involved were steady state pressure and centrifugal force due to spinning. The second phase of the analysis was a modal survey to determine the vibrational modes and natural frequencies of the impeller. The third phase was a dynamic response analysis to determine the alternating component of the stress due to time varying pressure impulses at the outlet (diffuser) side of the impeller. The results of the three phases of the analysis show that the Third Stage Impeller operates very near the upper limits of its capability at full power level (FPL) loading. The static loading alone creates stresses in some areas of the shroud which exceed the yield point of the material. Additional cyclic loading due to the dynamic force could lead to a significant reduction in the life of this part. The cyclic stresses determined in the dynamic response phase of this study are based on an assumption regarding the magnitude of the forcing function.
Rayleigh-type waves in nonlocal micropolar solid half-space.
Khurana, Aarti; Tomar, S K
2017-01-01
Propagation of Rayleigh type surface waves in nonlocal micropolar elastic solid half-space has been investigated. Two modes of Rayleigh-type waves are found to propagate under certain approximations. Frequency equations of these Rayleigh type modes and their conditions of existence have been derived. These frequency equations are found to be dispersive in character due to the presence of micropolarity and nonlocality parameters in the medium. One of the frequency equations is a counterpart of the classical Rayleigh waves and the other is new and has appeared due to micropolarity of the medium. Phase speeds of these waves are computed numerically for Magnesium crystal and their variation against wavenumber are presented graphically. Comparisons have been made between the phase speeds of Rayleigh type waves through nonlocal micropolar, local micropolar and elastic solid half-spaces. Copyright © 2016 Elsevier B.V. All rights reserved.
Non-geometric fluxes, quasi-Hopf twist deformations, and nonassociative quantum mechanics
NASA Astrophysics Data System (ADS)
Mylonas, Dionysios; Schupp, Peter; Szabo, Richard J.
2014-12-01
We analyse the symmetries underlying nonassociative deformations of geometry in non-geometric R-flux compactifications which arise via T-duality from closed strings with constant geometric fluxes. Starting from the non-abelian Lie algebra of translations and Bopp shifts in phase space, together with a suitable cochain twist, we construct the quasi-Hopf algebra of symmetries that deforms the algebra of functions and the exterior differential calculus in the phase space description of nonassociative R-space. In this setting, nonassociativity is characterised by the associator 3-cocycle which controls non-coassociativity of the quasi-Hopf algebra. We use abelian 2-cocycle twists to construct maps between the dynamical nonassociative star product and a family of associative star products parametrized by constant momentum surfaces in phase space. We define a suitable integration on these nonassociative spaces and find that the usual cyclicity of associative noncommutative deformations is replaced by weaker notions of 2-cyclicity and 3-cyclicity. Using this star product quantization on phase space together with 3-cyclicity, we formulate a consistent version of nonassociative quantum mechanics, in which we calculate the expectation values of area and volume operators, and find coarse-graining of the string background due to the R-flux.
An Analytical Singularity-Free Solution to the J2 Perturbation Problem
NASA Technical Reports Server (NTRS)
Bond, V. R.
1979-01-01
The development of a singularity-free solution of the J2 problem in satellite theory is presented. The procedure resembles that of Lyndane who rederives Brouwer's satellite theory using Poincare elements. A comparable procedure is used in this report in which the satellite theory of Scheifele, who used elements similar to the Delaunay elements but in the extended phase space, is rederived using Poincare elements also in the extended phase space. Only the short-period effects due to J2 are included.
NASA Technical Reports Server (NTRS)
Quan, M.
1976-01-01
Model information and data from wind tunnel tests conducted on 0.04 scale 50 percent forebody models of the Space Shuttle Orbiter were presented. These tests were conducted using the phase change paint technique to determine aerodynamic heating rates due to various proturberances and recessions. Angles of attack from 20 deg through 45 deg were investigated at Mach 8.
Phase mixing versus nonlinear advection in drift-kinetic plasma turbulence
NASA Astrophysics Data System (ADS)
Schekochihin, A. A.; Parker, J. T.; Highcock, E. G.; Dellar, P. J.; Dorland, W.; Hammett, G. W.
2016-04-01
> A scaling theory of long-wavelength electrostatic turbulence in a magnetised, weakly collisional plasma (e.g. drift-wave turbulence driven by ion temperature gradients) is proposed, with account taken both of the nonlinear advection of the perturbed particle distribution by fluctuating flows and of its phase mixing, which is caused by the streaming of the particles along the mean magnetic field and, in a linear problem, would lead to Landau damping. It is found that it is possible to construct a consistent theory in which very little free energy leaks into high velocity moments of the distribution function, rendering the turbulent cascade in the energetically relevant part of the wavenumber space essentially fluid-like. The velocity-space spectra of free energy expressed in terms of Hermite-moment orders are steep power laws and so the free-energy content of the phase space does not diverge at infinitesimal collisionality (while it does for a linear problem); collisional heating due to long-wavelength perturbations vanishes in this limit (also in contrast with the linear problem, in which it occurs at the finite rate equal to the Landau damping rate). The ability of the free energy to stay in the low velocity moments of the distribution function is facilitated by the `anti-phase-mixing' effect, whose presence in the nonlinear system is due to the stochastic version of the plasma echo (the advecting velocity couples the phase-mixing and anti-phase-mixing perturbations). The partitioning of the wavenumber space between the (energetically dominant) region where this is the case and the region where linear phase mixing wins its competition with nonlinear advection is governed by the `critical balance' between linear and nonlinear time scales (which for high Hermite moments splits into two thresholds, one demarcating the wavenumber region where phase mixing predominates, the other where plasma echo does).
NASA Astrophysics Data System (ADS)
Chen, Yuanchen; Shen, Guofeng; Liu, Weijian; Du, Wei; Su, Shu; Duan, Yonghong; Lin, Nan; Zhuo, Shaojie; Wang, Xilong; Xing, Baoshan; Tao, Shu
2016-01-01
Pollutant emissions into outdoor air from cooking and space heating processes with various solid fuels were measured, and daily household emissions were estimated from the kitchen performance tests. The burning of honeycomb briquette had the lowest emission factors, while the use of wood produced the highest pollutants. Daily emissions from space heating were significantly higher than those from cooking, and the use of honeycomb briquette for cooking and raw coal chunk for space heating reduces 28%, 24% and 25% for CO, PM10 and PM2.5, compared to wood for cooking and peat for space heating. Much higher emissions were observed during the initial phase than the stable phase due to insufficient air supply and lower combustion temperature at the beginning of burning processes. However, more mass percent of fine particles formed in the later high temperature stable burning phase may increase potential inhalation exposure risks.
Baseline antenna design for space exploration initiative
NASA Technical Reports Server (NTRS)
Chen, Y. L.; Nasir, M. A.; Lee, S. W.; Zaman, Afroz
1993-01-01
A key element of the future NASA Space Exploration Initiative (SEI) mission is the lunar and Mars telecommunication system. This system will provide voice, image, and data transmission to monitor unmanned missions to conduct experiments, and to provide radiometric data for navigation. In the later half of 1991, a study was conducted on antennas for the Mars Exploration Communication. Six antenna configurations were examined: three reflector and three phased array. The conclusion was that due to wide-angle scan requirement, and multiple simultaneous tracking beams, phased arrays are more suitable. For most part, this report studies phased array antenna designs for two different applications for Space Exploration Initiative. It also studies one design for a tri-reflector type antenna. These antennas will be based on a Mars orbiting satellite.
NASA Astrophysics Data System (ADS)
Mehta, Shalin B.; Sheppard, Colin J. R.
2010-05-01
Various methods that use large illumination aperture (i.e. partially coherent illumination) have been developed for making transparent (i.e. phase) specimens visible. These methods were developed to provide qualitative contrast rather than quantitative measurement-coherent illumination has been relied upon for quantitative phase analysis. Partially coherent illumination has some important advantages over coherent illumination and can be used for measurement of the specimen's phase distribution. However, quantitative analysis and image computation in partially coherent systems have not been explored fully due to the lack of a general, physically insightful and computationally efficient model of image formation. We have developed a phase-space model that satisfies these requirements. In this paper, we employ this model (called the phase-space imager) to elucidate five different partially coherent systems mentioned in the title. We compute images of an optical fiber under these systems and verify some of them with experimental images. These results and simulated images of a general phase profile are used to compare the contrast and the resolution of the imaging systems. We show that, for quantitative phase imaging of a thin specimen with matched illumination, differential phase contrast offers linear transfer of specimen information to the image. We also show that the edge enhancement properties of spiral phase contrast are compromised significantly as the coherence of illumination is reduced. The results demonstrate that the phase-space imager model provides a useful framework for analysis, calibration, and design of partially coherent imaging methods.
Processing FeB03 glass-ceramics in space
NASA Technical Reports Server (NTRS)
Li, C. T.
1976-01-01
The possibility of preparing FeBO3 glass-ceramic in space is explored. A transparent glass-ceramic of FeBO3, due to its unique properties could be an excellent material for magneto-optic applications which currently utilize high price materials such as single crystals of Ga-YIG. The unique magneto-optic properties of FeBO3 were found to come from glass-ceramic but not from the glass form. It was anticipated and later confirmed that the FeBO3 glass-ceramics could not be prepared on earth. Phase separation and iron valence reduction, were identified as the two terrestrial manufacturing obstacles. Since the phase separation problem could be overcome by space processing, the preparation of FeBO3 glass-ceramic in space appears attractive.
Pettorossi, V E; Manni, E; Errico, P; Ferraresi, A; Bortolami, R
1997-03-01
The cervico-ocular reflex (COR) was studied alone or in combination with the vestibulo-ocular reflex (VOR) in the rabbit. Step stimulations of the body with respect to the fixed head induced small slow compensatory responses followed by large compensatory quick phases (QP). These responses remained aligned with the horizon at different head pitch angles. The QP reorientation in space was due to the gravity influence on the otolithic receptors. The vestibular induced QPs exhibit a similar pattern. Because of this reorientation, the reduction of the amplitude of the vestibular induced QPs, due to the addition of the COR, was maintained even at different static head positions. The electrolytic lesion of the ophthalmic branch of the trigeminal nerve deeply affected the space orientation of the COR. In particular, the cervically induced compensatory QPs of the eye ipsilateral to the lesion showed a remarkable variability of their trajectories and they lost space reorientation. These findings suggest that the coordinate system controlling the QPs is influenced by signals originating from both head position in space and eye position in the orbit.
Rayleigh-wave diffractions due to a void in the layered half space
Xia, J.; Xu, Y.; Miller, R.D.; Nyquist, Jonathan E.
2006-01-01
Void detection is challenging due to the complexity of near-surface materials and the limited resolution of geophysical methods. Although multichannel, high-frequency, surface-wave techniques can provide reliable shear (S)-wave velocities in different geological settings, they are not suitable for detecting voids directly based on anomalies of the S-wave velocity because of limitations on the resolution of S-wave velocity profiles inverted from surface-wave phase velocities. Xia et al. (2006a) derived a Rayleigh-wave diffraction traveltime equation due to a void in the homogeneous half space. Encouraging results of directly detecting a void from Rayleigh-wave diffractions were presented (Xia et al., 2006a). In this paper we used four two-dimensional square voids in the layered half space to demonstrate the feasibility of detecting a void with Rayleigh-wave diffractions. Rayleigh-wave diffractions were recognizable for all these models after removing direct surface waves by F-K filtering. We evaluate the feasibility of applying the Rayleigh-wave diffraction traveltime equation to a void in the layered earth model. The phase velocity of diffracted Rayleigh waves is predominately determined by surrounding materials of a void. The modeling results demonstrate that the Rayleigh-wave diffraction traveltime equation due to a void in the homogeneous half space can be applied to the case of a void in the layered half space. In practice, only two diffraction times are necessary to define the depth to the top of a void and the average velocity of diffracted Rayleigh waves. ?? 2005 Society of Exploration Geophysicists.
Geometrical Phases in Quantum Mechanics
NASA Astrophysics Data System (ADS)
Christian, Joy Julius
In quantum mechanics, the path-dependent geometrical phase associated with a physical system, over and above the familiar dynamical phase, was initially discovered in the context of adiabatically changing environments. Subsequently, Aharonov and Anandan liberated this phase from the original formulation of Berry, which used Hamiltonians, dependent on curves in a classical parameter space, to represent the cyclic variations of the environments. Their purely quantum mechanical treatment, independent of Hamiltonians, instead used the non-trivial topological structure of the projective space of one-dimensional subspaces of an appropriate Hilbert space. The geometrical phase, in their treatment, results from a parallel transport of the time-dependent pure quantum states along a curve in this space, which is endowed with an abelian connection. Unlike Berry, they were able to achieve this without resort to an adiabatic approximation or to a time-independent eigenvalue equation. Prima facie, these two approaches are conceptually quite different. After a review of both approaches, an exposition bridging this apparent conceptual gap is given; by rigorously analyzing a model composite system, it is shown that, in an appropriate correspondence limit, the Berry phase can be recovered as a special case from the Aharonov-Anandan phase. Moreover, the model composite system is used to show that Berry's correction to the traditional Born-Oppenheimer energy spectra indeed brings the spectra closer to the exact results. Then, an experimental arrangement to measure geometrical phases associated with cyclic and non-cyclic variations of quantum states of an entangled composite system is proposed, utilizing the fundamental ideas of the recently opened field of two-particle interferometry. This arrangement not only resolves the controversy regarding the true nature of the phases associated with photon states, but also unequivocally predicts experimentally accessible geometrical phases in a truly quantum regime, and allows, for the first time, the measurements of such phases associated with arbitrary non-cyclic evolutions of entangled linear-momentum photon -states. This non-classical manifestation of the geometrical phases is due to the entangled character of linear-momentum photon-states of two correlated photons produced by parametric down-conversion in non-linear crystals. Finally, the non-local aspect of the geometrical phase is contrasted with the fundamental non-locality of quantum mechanics due to the entangled character of quantum states.
Berry phases for Landau Hamiltonians on deformed tori
NASA Astrophysics Data System (ADS)
Lévay, Péter
1995-06-01
Parametrized families of Landau Hamiltonians are introduced, where the parameter space is the Teichmüller space (topologically the complex upper half plane) corresponding to deformations of tori. The underlying SO(2,1) symmetry of the families enables an explicit calculation of the Berry phases picked up by the eigenstates when the torus is slowly deformed. It is also shown that apart from these phases that are local in origin, there are global non-Abelian ones too, related to the hidden discrete symmetry group Γϑ (the theta group, which is a subgroup of the modular group) of the families. The induced Riemannian structure on the parameter space is the usual Poincare metric on the upper half plane of constant negative curvature. Due to the discrete symmetry Γϑ the geodesic motion restricted to the fundamental domain of this group is chaotic.
The role of chemical engineering in space manufacturing
NASA Technical Reports Server (NTRS)
Waldron, R. D.; Criswell, D. R.; Erstfeld, T. E.
1979-01-01
A survey of factors involved in space manufacturing is presented. It is shown that it will be more economical to obtain the necessary raw materials from the moon than from earth due to earth's greater gravity and atmosphere. Discussion covers what resources can be mined and recovered from the moon and what ranges of industrial feedstock can be provided from lunar materials, noting that metallurgy will be different in space due to the lack of key elements such as H, C, Na, Cl, etc. Also covered are chemical plant design, space environmental factors such as vacuum and zero gravity, recycling requirments, reagent and equipment mass, and unit operations such as materials handling and phase separation. It is concluded that a pilot plant in space could be an economic boon to mankind.
Thermal management of high power space based systems
NASA Technical Reports Server (NTRS)
Hwangbo, H.; Mcever, W. S.
1985-01-01
Conventional techniques of using a portion of the spacecraft skin for radiation of waste heat will be inadequate for high powered payloads (50 to 100 kWe) due to the lack of sufficient area. A Shuttle type system using a pumped single phase fluid loop could be scaled up to higher power but this type of system would require excessive pump power and weight. A pumped two-phase heat transfer loop has a much lower pumping requirement due to the higher latent heat of vaporization of the fluid in comparison to the sensible heat it can absorb through a temperature change. Concepts for an evaporator and a condenser for a pumped two-phase system are described. The condenser uses capillary grooves and a separate pumped condensate return line to achieve high heat transfer coefficients and stable operation due to the separation of the vapor and liquid flows. The cold plate evaporator uses wicks to contain the liquid and transport it to the heated surface. It can also function as a condenser for warming components. Control concepts for the cold plate are discussed. Concepts for deployment or erection of large space radiators are also considered.
Independence and totalness of subspaces in phase space methods
NASA Astrophysics Data System (ADS)
Vourdas, A.
2018-04-01
The concepts of independence and totalness of subspaces are introduced in the context of quasi-probability distributions in phase space, for quantum systems with finite-dimensional Hilbert space. It is shown that due to the non-distributivity of the lattice of subspaces, there are various levels of independence, from pairwise independence up to (full) independence. Pairwise totalness, totalness and other intermediate concepts are also introduced, which roughly express that the subspaces overlap strongly among themselves, and they cover the full Hilbert space. A duality between independence and totalness, that involves orthocomplementation (logical NOT operation), is discussed. Another approach to independence is also studied, using Rota's formalism on independent partitions of the Hilbert space. This is used to define informational independence, which is proved to be equivalent to independence. As an application, the pentagram (used in discussions on contextuality) is analysed using these concepts.
Kinetic field theory: exact free evolution of Gaussian phase-space correlations
NASA Astrophysics Data System (ADS)
Fabis, Felix; Kozlikin, Elena; Lilow, Robert; Bartelmann, Matthias
2018-04-01
In recent work we developed a description of cosmic large-scale structure formation in terms of non-equilibrium ensembles of classical particles, with time evolution obtained in the framework of a statistical field theory. In these works, the initial correlations between particles sampled from random Gaussian density and velocity fields have so far been treated perturbatively or restricted to pure momentum correlations. Here we treat the correlations between all phase-space coordinates exactly by adopting a diagrammatic language for the different forms of correlations, directly inspired by the Mayer cluster expansion. We will demonstrate that explicit expressions for phase-space density cumulants of arbitrary n-point order, which fully capture the non-linear coupling of free streaming kinematics due to initial correlations, can be obtained from a simple set of Feynman rules. These cumulants will be the foundation for future investigations of perturbation theory in particle interactions.
Wigner functions defined with Laplace transform kernels.
Oh, Se Baek; Petruccelli, Jonathan C; Tian, Lei; Barbastathis, George
2011-10-24
We propose a new Wigner-type phase-space function using Laplace transform kernels--Laplace kernel Wigner function. Whereas momentum variables are real in the traditional Wigner function, the Laplace kernel Wigner function may have complex momentum variables. Due to the property of the Laplace transform, a broader range of signals can be represented in complex phase-space. We show that the Laplace kernel Wigner function exhibits similar properties in the marginals as the traditional Wigner function. As an example, we use the Laplace kernel Wigner function to analyze evanescent waves supported by surface plasmon polariton. © 2011 Optical Society of America
Adiabatic description of long range frequency sweeping
NASA Astrophysics Data System (ADS)
Breizman, Boris; Nyqvist, Robert; Lilley, Matthew
2012-10-01
A theoretical framework is developed to describe long range frequency sweeping events in the 1D electrostatic bump-on-tail model with fast particle sources and collisions. The model includes three collision operators (Krook, drag (dynamical friction) and velocity space diffusion), and allows for a general shape of the fast particle distribution function. The behavior of phase space holes and clumps is analyzed, and the effect of particle trapping due to separatrix expansion is discussed. With a fast particle distribution function whose slope decays above the resonant phase velocity, hooked frequency sweeping is found for holes in the presence of drag collisions alone.
Clustering of neural code words revealed by a first-order phase transition
NASA Astrophysics Data System (ADS)
Huang, Haiping; Toyoizumi, Taro
2016-06-01
A network of neurons in the central nervous system collectively represents information by its spiking activity states. Typically observed states, i.e., code words, occupy only a limited portion of the state space due to constraints imposed by network interactions. Geometrical organization of code words in the state space, critical for neural information processing, is poorly understood due to its high dimensionality. Here, we explore the organization of neural code words using retinal data by computing the entropy of code words as a function of Hamming distance from a particular reference codeword. Specifically, we report that the retinal code words in the state space are divided into multiple distinct clusters separated by entropy-gaps, and that this structure is shared with well-known associative memory networks in a recallable phase. Our analysis also elucidates a special nature of the all-silent state. The all-silent state is surrounded by the densest cluster of code words and located within a reachable distance from most code words. This code-word space structure quantitatively predicts typical deviation of a state-trajectory from its initial state. Altogether, our findings reveal a non-trivial heterogeneous structure of the code-word space that shapes information representation in a biological network.
NASA Technical Reports Server (NTRS)
Kuan, Gary M.; Dekens, Frank G.
2006-01-01
The Space Interferometry Mission (SIM) is a microarcsecond interferometric space telescope that requires picometer level precision measurements of its truss and interferometer baselines. Single-gauge metrology errors due to non-ideal physical characteristics of corner cubes reduce the angular measurement capability of the science instrument. Specifically, the non-common vertex error (NCVE) of a shared vertex, double corner cube introduces micrometer level single-gauge errors in addition to errors due to dihedral angles and reflection phase shifts. A modified SIM Kite Testbed containing an articulating double corner cube is modeled and the results are compared to the experimental testbed data. The results confirm modeling capability and viability of calibration techniques.
Real-space and reciprocal-space Berry phases in the Hall effect of Mn(1-x)Fe(x)Si.
Franz, C; Freimuth, F; Bauer, A; Ritz, R; Schnarr, C; Duvinage, C; Adams, T; Blügel, S; Rosch, A; Mokrousov, Y; Pfleiderer, C
2014-05-09
We report an experimental and computational study of the Hall effect in Mn(1-x)Fe(x)Si, as complemented by measurements in Mn(1-x)Co(x)Si, when helimagnetic order is suppressed under substitutional doping. For small x the anomalous Hall effect (AHE) and the topological Hall effect (THE) change sign. Under larger doping the AHE remains small and consistent with the magnetization, while the THE grows by over a factor of 10. Both the sign and the magnitude of the AHE and the THE are in excellent agreement with calculations based on density functional theory. Our study provides the long-sought material-specific microscopic justification that, while the AHE is due to the reciprocal-space Berry curvature, the THE originates in real-space Berry phases.
History by history statistical estimators in the BEAM code system.
Walters, B R B; Kawrakow, I; Rogers, D W O
2002-12-01
A history by history method for estimating uncertainties has been implemented in the BEAMnrc and DOSXYznrc codes replacing the method of statistical batches. This method groups scored quantities (e.g., dose) by primary history. When phase-space sources are used, this method groups incident particles according to the primary histories that generated them. This necessitated adding markers (negative energy) to phase-space files to indicate the first particle generated by a new primary history. The new method greatly reduces the uncertainty in the uncertainty estimate. The new method eliminates one dimension (which kept the results for each batch) from all scoring arrays, resulting in memory requirement being decreased by a factor of 2. Correlations between particles in phase-space sources are taken into account. The only correlations with any significant impact on uncertainty are those introduced by particle recycling. Failure to account for these correlations can result in a significant underestimate of the uncertainty. The previous method of accounting for correlations due to recycling by placing all recycled particles in the same batch did work. Neither the new method nor the batch method take into account correlations between incident particles when a phase-space source is restarted so one must avoid restarts.
Altered astronaut lower limb and mass center kinematics in downward jumping following space flight
NASA Technical Reports Server (NTRS)
Newman, D. J.; Jackson, D. K.; Bloomberg, J. J.
1997-01-01
Astronauts exposed to the microgravity conditions encountered during space flight exhibit postural and gait instabilities upon return to earth that could impair critical postflight performance. The aim of the present study was to determine the effects of microgravity exposure on astronauts' performance of two-footed jump landings. Nine astronauts from several Space Shuttle missions were tested both preflight and postflight with a series of voluntary, two-footed downward hops from a 30-cm-high step. A video-based, three-dimensional motion-analysis system permitted calculation of body segment positions and joint angular displacements. Phase-plane plots of knee, hip, and ankle angular velocities compared with the corresponding joint angles were used to describe the lower limb kinematics during jump landings. The position of the whole-body center of mass (COM) was also estimated in the sagittal plane using an eight-segment body model. Four of nine subjects exhibited expanded phase-plane portraits postflight, with significant increases in peak joint flexion angles and flexion rates following space flight. In contrast, two subjects showed significant contractions of their phase-plane portraits postflight and three subjects showed insignificant overall changes after space flight. Analysis of the vertical COM motion generally supported the joint angle results. Subjects with expanded joint angle phase-plane portraits postflight exhibited larger downward deviations of the COM and longer times from impact to peak deflection, as well as lower upward recovery velocities. Subjects with postflight joint angle phase-plane contraction demonstrated opposite effects in the COM motion. The joint kinematics results indicated the existence of two contrasting response modes due to microgravity exposure. Most subjects exhibited "compliant" impact absorption postflight, consistent with decreased limb stiffness and damping, and a reduction in the bandwidth of the postural control system. Fewer subjects showed "stiff" behavior after space flight, where contractions in the phase-plane portraits pointed to an increase in control bandwidth. The changes appeared to result from adaptive modifications in the control of lower limb impedance. A simple 2nd-order model of the vertical COM motion indicated that changes in the effective vertical stiffness of the legs can predict key features of the postflight performance. Compliant responses may reflect inflight adaptation due to altered demands on the postural control system in microgravity, while stiff behavior may result from overcompensation postflight for the presumed reduction in limb stiffness inflight.
Visualization and quantification of two-phase flow in transparent miniature packed beds
NASA Astrophysics Data System (ADS)
Zhu, Peixi; Papadopoulos, Kyriakos D.
2012-10-01
Optical microscopy was used to visualize the flow of two phases [British Petroleum (BP) oil and an aqueous surfactant phase] in confined space, three-dimensional, transparent, natural porous media. The porous media consisted of water-wet cryolite grains packed inside cylindrical, glass microchannels, thus producing microscopic packed beds. Primary drainage of BP oil displacing an aqueous surfactant phase was studied at capillary numbers that varied between 10-6 and 10-2. The confinement space had a significant effect on the flow behavior. Phenomena of burst motion and capillary fingering were observed for low capillary numbers due to the domination of capillary forces. It was discovered that breakthrough time and capillary number bear a log-log scale linear relationship, based on which a generalized correlation between oil travel distance x and time t was found empirically.
Visualization and quantification of two-phase flow in transparent miniature packed beds.
Zhu, Peixi; Papadopoulos, Kyriakos D
2012-10-01
Optical microscopy was used to visualize the flow of two phases [British Petroleum (BP) oil and an aqueous surfactant phase] in confined space, three-dimensional, transparent, natural porous media. The porous media consisted of water-wet cryolite grains packed inside cylindrical, glass microchannels, thus producing microscopic packed beds. Primary drainage of BP oil displacing an aqueous surfactant phase was studied at capillary numbers that varied between 10(-6) and 10(-2). The confinement space had a significant effect on the flow behavior. Phenomena of burst motion and capillary fingering were observed for low capillary numbers due to the domination of capillary forces. It was discovered that breakthrough time and capillary number bear a log-log scale linear relationship, based on which a generalized correlation between oil travel distance x and time t was found empirically.
NASA Technical Reports Server (NTRS)
Bykat, Alex
1993-01-01
The Space Station Freedom will offer facilities for experimentation and testing not available and not feasible or possible on earth. Due to a restricted space availability on board, the experimentation equipment and its organization will be frequently changing. This requires careful attention to electromagnetic compatibility between experimentation and other SSF equipment. To analyze the interactions between different equipment modules, a software system ISEAS is under development. Development of ISEAS was approached in two phases. In the 1st phase a PC version prototype of ISEAS was developed. In the 2nd phase, the PC prototype will be adapted to a VAX range of computers. The purpose of this paper is to review the design of the VAX version of ISEAS, and to recommend any suitable changes.
NASA Technical Reports Server (NTRS)
2004-01-01
Industry spends billions of dollars each year on machine tools to manufacture products out of metal. This includes tools for cutting every kind of metal part from engine blocks to Shuttle main engine components. Cutting tool tips often break because of weak spots or defects in their composition. Based on a new concept called defect trapping, space offers a novel environment to study defect formation in molten metal materials as they solidify. After the return of these materials from space, researchers can evaluate the source of the defect and seek ways to eliminate them in products prepared on Earth. A widely used process for cutting tip manufacturing is liquid phase sintering. Compared to Earth-sintered samples which slump due to buoyancy induced by gravity, space samples are uniformly shaped and defects remain where they are formed. By studying metals sintered in space the US tool industry can potentially enhance its worldwide competitiveness. The Consortium for Materials Development in Space along with Wyle Labs, Teledyne Advanced Materials, and McDornell Douglas have conducted experiments in space.
Space time neural networks for tether operations in space
NASA Technical Reports Server (NTRS)
Lea, Robert N.; Villarreal, James A.; Jani, Yashvant; Copeland, Charles
1993-01-01
A space shuttle flight scheduled for 1992 will attempt to prove the feasibility of operating tethered payloads in earth orbit. due to the interaction between the Earth's magnetic field and current pulsing through the tether, the tethered system may exhibit a circular transverse oscillation referred to as the 'skiprope' phenomenon. Effective damping of skiprope motion depends on rapid and accurate detection of skiprope magnitude and phase. Because of non-linear dynamic coupling, the satellite attitude behavior has characteristic oscillations during the skiprope motion. Since the satellite attitude motion has many other perturbations, the relationship between the skiprope parameters and attitude time history is very involved and non-linear. We propose a Space-Time Neural Network implementation for filtering satellite rate gyro data to rapidly detect and predict skiprope magnitude and phase. Training and testing of the skiprope detection system will be performed using a validated Orbital Operations Simulator and Space-Time Neural Network software developed in the Software Technology Branch at NASA's Lyndon B. Johnson Space Center.
Spaced-antenna wind estimation using an X-band active phased-array weather radar
NASA Astrophysics Data System (ADS)
Venkatesh, Vijay
Over the past few decades, several single radar methods have been developed to probe the kinematic structure of storms. All these methods trade angular-resolution to retrieve the wind-field. To date, the spaced-antenna method has been employed for profiling the ionosphere and the precipitation free lower atmosphere. This work focuses on applying the spaced-antenna method on an X-band active phased-array radar for high resolution horizontal wind-field retrieval from precipitation echoes. The ability to segment the array face into multiple displaced apertures allows for flexible spaced-antenna implementations. The methodology employed herein comprises of Monte-Carlo simulations to optimize the spaced-antenna system design and analysis of real data collected with the designed phased-array system. The contribution that underpins this dissertation is the demonstration of qualitative agreement between spaced-antenna and Doppler beam swinging retrievals based on real data. First, simulations of backscattered electric fields at the antenna array elements are validated using theoretical expressions. Based on the simulations, the degrees of freedom in the spaced-antenna system design are optimized for retrieval of mean baseline wind. We show that the designed X-band spaced-antenna system has lower retrieval uncertainty than the existing S-band spaced-antenna implementation on the NWRT. This is because of the flexibility to synthesize small overlapping apertures and the ability to obtain statistically independent samples at a faster rate at X-band. We then demonstrate a technique to make relative phase-center displacement measurements based on simulations and real data from the phased-array spaced-antenna system. This simple method uses statistics of precipitation echoes and apriori beamwidth measurements to make field repeatable phase-center displacement measurements. Finally, we test the hypothesis that wind-field curvature effects are common to both the spaced-antenna and Doppler beam swinging methods. Based on a close-range winter storm data set, we find that the spaced-antenna and fine-resolution Doppler beam swinging retrievals are in qualitative agreement. The correlation between the spaced-antenna and fine-resolution Doppler beam swinging retrievals was 0.57. The lowered correlation coefficient was, in part, due to the high standard deviation of the DBS retrievals. At high wind-speeds, the spaced-antenna retrievals significantly departed from variational retrievals of mean baseline wind.
Mixed semiclassical-classical propagators for the Wigner phase space representation
NASA Astrophysics Data System (ADS)
Koda, Shin-ichi
2016-04-01
We formulate mixed semiclassical-classical (SC-Cl) propagators by adding a further approximation to the phase-space SC propagators, which have been formulated in our previous paper [S. Koda, J. Chem. Phys. 143, 244110 (2015)]. We first show that the stationary phase approximation over the operation of the phase-space van Vleck propagator on initial distribution functions results in the classical mechanical time propagation. Then, after dividing the degrees of freedom (DOFs) of the total system into the semiclassical DOFs and the classical DOFs, the SC-Cl van Vleck propagator and the SC-Cl Herman-Kluk (HK) propagator are derived by performing the stationary phase approximation only with respect to the classical DOFs. These SC-Cl propagators are naturally decomposed to products of the phase-space SC propagators and the classical mechanical propagators when the system does not have any interaction between the semiclassical and the classical DOFs. In addition, we also numerically compare the original phase-space HK (full HK) propagator and the SC-Cl HK propagator in terms of accuracy and efficiency to find that the accuracy of the SC-Cl HK propagator can be comparable to that of the full HK propagator although the latter is more accurate than the former in general. On the other hand, we confirm that the convergence speed of the SC-Cl HK propagator is faster than that of the full HK propagator. The present numerical tests indicate that the SC-Cl HK propagator can be more accurate than the full HK propagator when they use a same and finite number of classical trajectories due to the balance of the accuracy and the efficiency.
Mixed semiclassical-classical propagators for the Wigner phase space representation.
Koda, Shin-Ichi
2016-04-21
We formulate mixed semiclassical-classical (SC-Cl) propagators by adding a further approximation to the phase-space SC propagators, which have been formulated in our previous paper [S. Koda, J. Chem. Phys. 143, 244110 (2015)]. We first show that the stationary phase approximation over the operation of the phase-space van Vleck propagator on initial distribution functions results in the classical mechanical time propagation. Then, after dividing the degrees of freedom (DOFs) of the total system into the semiclassical DOFs and the classical DOFs, the SC-Cl van Vleck propagator and the SC-Cl Herman-Kluk (HK) propagator are derived by performing the stationary phase approximation only with respect to the classical DOFs. These SC-Cl propagators are naturally decomposed to products of the phase-space SC propagators and the classical mechanical propagators when the system does not have any interaction between the semiclassical and the classical DOFs. In addition, we also numerically compare the original phase-space HK (full HK) propagator and the SC-Cl HK propagator in terms of accuracy and efficiency to find that the accuracy of the SC-Cl HK propagator can be comparable to that of the full HK propagator although the latter is more accurate than the former in general. On the other hand, we confirm that the convergence speed of the SC-Cl HK propagator is faster than that of the full HK propagator. The present numerical tests indicate that the SC-Cl HK propagator can be more accurate than the full HK propagator when they use a same and finite number of classical trajectories due to the balance of the accuracy and the efficiency.
NASA Astrophysics Data System (ADS)
Csordás, A.; Graham, R.; Szépfalusy, P.; Vattay, G.
1994-01-01
One wall of an Artin's billiard on the Poincaré half-plane is replaced by a one-parameter (cp) family of nongeodetic walls. A brief description of the classical phase space of this system is given. In the quantum domain, the continuous and gradual transition from the Poisson-like to Gaussian-orthogonal-ensemble (GOE) level statistics due to the small perturbations breaking the symmetry responsible for the ``arithmetic chaos'' at cp=1 is studied. Another GOE-->Poisson transition due to the mixed phase space for large perturbations is also investigated. A satisfactory description of the intermediate level statistics by the Brody distribution was found in both cases. The study supports the existence of a scaling region around cp=1. A finite-size scaling relation for the Brody parameter as a function of 1-cp and the number of levels considered can be established.
Ghost imaging for three-dimensional optical security
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Wen, E-mail: elechenw@nus.edu.sg; Chen, Xudong
2013-11-25
Ghost imaging has become increasingly popular in quantum and optical application fields. Here, we report three-dimensional (3D) optical security using ghost imaging. The series of random phase-only masks are sparsified, which are further converted into particle-like distributions placed in 3D space. We show that either an optical or digital approach can be employed for the encoding. The results illustrate that a larger key space can be generated due to the application of 3D space compared with previous works.
On the primary spacing and microsegregation of cellular dendrites in laser deposited Ni-Nb alloys
NASA Astrophysics Data System (ADS)
Ghosh, Supriyo; Ma, Li; Ofori-Opoku, Nana; Guyer, Jonathan E.
2017-09-01
In this study, an alloy phase-field model is used to simulate solidification microstructures at different locations within a solidified molten pool. The temperature gradient G and the solidification velocity V are obtained from a macroscopic heat transfer finite element simulation and provided as input to the phase-field model. The effects of laser beam speed and the location within the melt pool on the primary arm spacing and on the extent of Nb partitioning at the cell tips are investigated. Simulated steady-state primary spacings are compared with power law and geometrical models. Cell tip compositions are compared to a dendrite growth model. The extent of non-equilibrium interface partitioning of the phase-field model is investigated. Although the phase-field model has an anti-trapping solute flux term meant to maintain local interface equilibrium, we have found that during simulations it was insufficient at maintaining equilibrium. This is due to the fact that the additive manufacturing solidification conditions fall well outside the allowed limits of this flux term.
Direct-phase and amplitude digitalization based on free-space interferometry
NASA Astrophysics Data System (ADS)
Kleiner, Vladimir; Rudnitsky, Arkady; Zalevsky, Zeev
2017-12-01
A novel ADC configuration that can be characterized as a photonic-domain flash analog-to-digital convertor operating based upon free-space interferometry is proposed and analysed. The structure can be used as the front-end of a coherent receiver as well as for other applications. Two configurations are considered: the first, ‘direct free-space interference’, allows simultaneous measuring of the optical phase and amplitude; the second, ‘extraction of the ac component of interference by means of pixel-by-pixel balanced photodetection’, allows only phase digitization but with significantly higher sensitivity. For both proposed configurations, we present Monte Carlo estimations of the performance limitations, due to optical noise and photo-current noise, at sampling rates of 60 giga-samples per second. In terms of bit resolution, we simulated multiple cases with growing complexity of up to 4 bits for the amplitude and up to 6 bits for the phase. The simulations show that the digitization errors in the optical domain can be reduced to levels close to the quantization noise limits. Preliminary experimental results validate the fundamentals of the proposed idea.
Slowing hot-carrier relaxation in graphene using a magnetic field
NASA Astrophysics Data System (ADS)
Plochocka, P.; Kossacki, P.; Golnik, A.; Kazimierczuk, T.; Berger, C.; de Heer, W. A.; Potemski, M.
2009-12-01
A degenerate pump-probe technique is used to investigate the nonequilibrium carrier dynamics in multilayer graphene. Two distinctly different dynamics of the carrier relaxation are observed. A fast relaxation (˜50fs) of the carriers after the initial effect of phase-space filling followed by a slower relaxation (˜4ps) due to thermalization. Both relaxation processes are less efficient when a magnetic field is applied at low temperatures which is attributed to the suppression of the electron-electron Auger scattering due to the nonequidistant Landau-level spacing of the Dirac fermions in graphene.
Pore-scale mechanisms of gas flow in tight sand reservoirs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silin, D.; Kneafsey, T.J.; Ajo-Franklin, J.B.
2010-11-30
Tight gas sands are unconventional hydrocarbon energy resource storing large volume of natural gas. Microscopy and 3D imaging of reservoir samples at different scales and resolutions provide insights into the coaredo not significantly smaller in size than conventional sandstones, the extremely dense grain packing makes the pore space tortuous, and the porosity is small. In some cases the inter-granular void space is presented by micron-scale slits, whose geometry requires imaging at submicron resolutions. Maximal Inscribed Spheres computations simulate different scenarios of capillary-equilibrium two-phase fluid displacement. For tight sands, the simulations predict an unusually low wetting fluid saturation threshold, at whichmore » the non-wetting phase becomes disconnected. Flow simulations in combination with Maximal Inscribed Spheres computations evaluate relative permeability curves. The computations show that at the threshold saturation, when the nonwetting fluid becomes disconnected, the flow of both fluids is practically blocked. The nonwetting phase is immobile due to the disconnectedness, while the permeability to the wetting phase remains essentially equal to zero due to the pore space geometry. This observation explains the Permeability Jail, which was defined earlier by others. The gas is trapped by capillarity, and the brine is immobile due to the dynamic effects. At the same time, in drainage, simulations predict that the mobility of at least one of the fluids is greater than zero at all saturations. A pore-scale model of gas condensate dropout predicts the rate to be proportional to the scalar product of the fluid velocity and pressure gradient. The narrowest constriction in the flow path is subject to the highest rate of condensation. The pore-scale model naturally upscales to the Panfilov's Darcy-scale model, which implies that the condensate dropout rate is proportional to the pressure gradient squared. Pressure gradient is the greatest near the matrix-fracture interface. The distinctive two-phase flow properties of tight sand imply that a small amount of gas condensate can seriously affect the recovery rate by blocking gas flow. Dry gas injection, pressure maintenance, or heating can help to preserve the mobility of gas phase. A small amount of water can increase the mobility of gas condensate.« less
Survival probability of a truncated radial oscillator subject to periodic kicks
NASA Astrophysics Data System (ADS)
Tanabe, Seiichi; Watanabe, Shinichi; Saif, Farhan; Matsuzawa, Michio
2002-03-01
Classical and quantum survival probabilities are compared for a truncated radial oscillator undergoing impulsive interactions with periodic laser pulses represented here as kicks. The system is truncated in the sense that the harmonic potential is made valid only within a finite range; the rest of the space is treated as a perfect absorber. Exploring extended values of the parameters of this model [Phys. Rev. A 63, 052721 (2001)], we supplement discussions on classical and quantum features near resonances. The classical system proves to be quasi-integrable and preserves phase-space area despite the momentum transfered by the kicks, exhibiting simple yet rich phase-space features. A geometrical argument reveals quantum-classical correspondence in the locations of minima in the paired survival probabilities while the ``ionization'' rates differ due to quantum tunneling.
Adiabatic description of long range frequency sweeping
NASA Astrophysics Data System (ADS)
Nyqvist, R. M.; Lilley, M. K.; Breizman, B. N.
2012-09-01
A theoretical framework is developed to describe long range frequency sweeping events in the 1D electrostatic bump-on-tail model with fast particle sources and collisions. The model includes three collision operators (Krook, drag (dynamical friction) and velocity space diffusion), and allows for a general shape of the fast particle distribution function. The behaviour of phase space holes and clumps is analysed in the absence of diffusion, and the effect of particle trapping due to separatrix expansion is discussed. With a fast particle distribution function whose slope decays above the resonant phase velocity, hooked frequency sweeping is found for holes in the presence of drag collisions alone.
NASA Astrophysics Data System (ADS)
Newman, David L.
2006-10-01
Kinetic plasma simulations in which the phase-space distribution functions are advanced directly via the coupled Vlasov and Poisson (or Maxwell) equations---better known simply as Vlasov simulations---provide a valuable low-noise complement to the more commonly employed Particle-in-Cell (PIC) simulations. However, in more than one spatial dimension Vlasov simulations become numerically demanding due to the high dimensionality of x--v phase-space. Methods that can reduce this computational demand are therefore highly desirable. Several such methods will be presented, which treat the phase-space dynamics along a dominant dimension (e.g., parallel to a beam or current) with the full Vlasov propagator, while employing a reduced description, such as moment equations, for the evolution perpendicular to the dominant dimension. A key difference between the moment-based (and other reduced) methods considered here and standard fluid methods is that the moments are now functions of a phase-space coordinate (e.g. moments of vy in z--vz--y phase space, where z is the dominant dimension), rather than functions of spatial coordinates alone. Of course, moment-based methods require closure. For effectively unmagnetized species, new dissipative closure methods inspired by those of Hammett and Perkins [PRL, 64, 3019 (1990)] have been developed, which exactly reproduce the linear electrostatic response for a broad class of distributions with power-law tails, as are commonly measured in space plasmas. The nonlinear response, which requires more care, will also be discussed. For weakly magnetized species (i.e., φs<φs) an alternative algorithm has been developed in which the distributions are assumed to gyrate about the magnetic field with a fixed nominal perpendicular ``thermal'' velocity, thereby reducing the required phase-space dimension by one. These reduced algorithms have been incorporated into 2-D codes used to study the evolution of nonlinear structures such as double layers and electron holes in Earth's auroral zone.
A dynamic model of the radiation-belt electron phase-space density based on POLAR/HIST measurements
NASA Astrophysics Data System (ADS)
Vassiliadis, D.; Green, J. C.
2007-12-01
The response of the energetic-electron phase-space density (PSD) in the radiation belts is subject to a delicate combination of acceleration and loss processes which are strongly determined by the magnetospheric configuration and field disturbance level. We quantify the response of the density to stormtime fields as observed by the HIST detector on board POLAR. Several distinct modes are identified, characterized by peak second- and third- adiabatic invariants and peak delay time. The modes represent quasiadiabatic transport due to ring current activity; high L* (~6), day-long acceleration linked to ULF wave-particle interaction; and low-L* (~3), minute- to hour-long acceleration interpreted to be due to transient inductive fields or VLF wave-particle interaction. The net transport due to these responses is not always or everywhere diffusive, therefore we quantify the degree of departure from diffusive transport for specific storm intervals and radial ranges. Taken together the response modes comprise a dynamic, nonlinear model which allows us to better understand the historic variability of the high-energy tail of the electron distribution in the inner magnetosphere.
Marginal estimator for the aberrations of a space telescope by phase diversity
NASA Astrophysics Data System (ADS)
Blanc, Amandine; Mugnier, Laurent; Idier, Jérôme
2017-11-01
In this communication, we propose a novel method for estimating the aberrations of a space telescope from phase diversity data. The images recorded by such a telescope can be degraded by optical aberrations due to design, fabrication or misalignments. Phase diversity is a technique that allows the estimation of aberrations. The only estimator found in the relevant literature is based on a joint estimation of the aberrated phase and the observed object. We recall this approach and study the behavior of this joint estimator by means of simulations. We propose a novel marginal estimator of the sole phase. it is obtained by integrating the observed object out of the problem; indeed, this object is a nuisance parameter in our problem. This reduces drastically the number of unknown and provides better asymptotic properties. This estimator is implemented and its properties are validated by simulation. its performance is equal or even better than that of the joint estimator for the same computing cost.
Stickiness in Hamiltonian systems: From sharply divided to hierarchical phase space
NASA Astrophysics Data System (ADS)
Altmann, Eduardo G.; Motter, Adilson E.; Kantz, Holger
2006-02-01
We investigate the dynamics of chaotic trajectories in simple yet physically important Hamiltonian systems with nonhierarchical borders between regular and chaotic regions with positive measures. We show that the stickiness to the border of the regular regions in systems with such a sharply divided phase space occurs through one-parameter families of marginally unstable periodic orbits and is characterized by an exponent γ=2 for the asymptotic power-law decay of the distribution of recurrence times. Generic perturbations lead to systems with hierarchical phase space, where the stickiness is apparently enhanced due to the presence of infinitely many regular islands and Cantori. In this case, we show that the distribution of recurrence times can be composed of a sum of exponentials or a sum of power laws, depending on the relative contribution of the primary and secondary structures of the hierarchy. Numerical verification of our main results are provided for area-preserving maps, mushroom billiards, and the newly defined magnetic mushroom billiards.
NASA Technical Reports Server (NTRS)
1972-01-01
The Accident Model Document is one of three documents of the Preliminary Safety Analysis Report (PSAR) - Reactor System as applied to a Space Base Program. Potential terrestrial nuclear hazards involving the zirconium hydride reactor-Brayton power module are identified for all phases of the Space Base program. The accidents/events that give rise to the hazards are defined and abort sequence trees are developed to determine the sequence of events leading to the hazard and the associated probabilities of occurence. Source terms are calculated to determine the magnitude of the hazards. The above data is used in the mission accident analysis to determine the most probable and significant accidents/events in each mission phase. The only significant hazards during the prelaunch and launch ascent phases of the mission are those which arise form criticality accidents. Fission product inventories during this time period were found to be very low due to very limited low power acceptance testing.
NASA Astrophysics Data System (ADS)
Hoffmann, Geoffrey W.; Benson, Maurice W.
1986-08-01
A neural network concept derived from an analogy between the immune system and the central nerous system is outlined. The theory is based on a nervous that is slightly more complicated than the conventional McCullogh-Pitts type of neuron, in that it exhibits hysteresis at the single cell level. This added complication is compensated by the fact that a network of such neurons is able to learn without the necessity for any changes in synaptic connection strengths. The learning occurs as a natural consequence of interactions between the network and its enviornment, with environmental stimuli moving the system around in an N-dimensional phase space, until a point in phase space is reached such that the system's responses are appropriate for dealing with the stimuli. Due to the hysteresis associated with each neuron, the system tends to stay in the region of phase space where it is located. The theory includes a role for sleep in learning.
NASA Technical Reports Server (NTRS)
Keen, Jill M.; DeWeese, Darrell C.; Key, Leigh W.
1997-01-01
At Kennedy Space Center (KSC), Thiokol Corporation provides the engineering to assemble and prepare the Space Shuttle Reusable Solid Rocket Motor (RSRM) for launch. This requires hand cleaning over 86 surfaces including metals, adhesives, rubber and electrical insulations, various painted surfaces and thermal protective materials. Due to the phase-out of certain ozone depleting chemical (ODC) solvents, all RSRM hand wipe operations being performed at KSC using l,l,1-trichloroethane (TCA) were eliminated. This presentation summarizes the approach used and the data gathered in the effort to eliminate TCA from KSC hand wipe operations.
NASA Astrophysics Data System (ADS)
Traon, A. Pavy-le; Roussel, B.
1993-09-01
Manned space flights have shown it is possible to sleep in microgravity. However, some sleep disturbances have been reported which influence performance of the crew and safety of space flight. This paper reviews the main studies of in-flight sleep in animal and man. Most disturbances are related to phase lags due to operational requirements. Factors which can disturb in-flight sleep are analysed: • environmental factors. Some of them are secondary to space flight ergonomics. Conversely, effects of microgravity on light-dark alternance are less known and lead to interesting problems of fundamental research, • psychological factors, especially during long duration flights.
NASA Technical Reports Server (NTRS)
Gomez, Susan F.; Hood, Laura; Panneton, Robert J.; Saunders, Penny E.; Adkins, Antha; Hwu, Shian U.; Lu, Ba P.
1996-01-01
Two computational techniques are used to calculate differential phase errors on Global Positioning System (GPS) carrier war phase measurements due to certain multipath-producing objects. The two computational techniques are a rigorous computati electromagnetics technique called Geometric Theory of Diffraction (GTD) and the other is a simple ray tracing method. The GTD technique has been used successfully to predict microwave propagation characteristics by taking into account the dominant multipath components due to reflections and diffractions from scattering structures. The ray tracing technique only solves for reflected signals. The results from the two techniques are compared to GPS differential carrier phase ns taken on the ground using a GPS receiver in the presence of typical International Space Station (ISS) interference structures. The calculations produced using the GTD code compared to the measured results better than the ray tracing technique. The agreement was good, demonstrating that the phase errors due to multipath can be modeled and characterized using the GTD technique and characterized to a lesser fidelity using the DECAT technique. However, some discrepancies were observed. Most of the discrepancies occurred at lower devations and were either due to phase center deviations of the antenna, the background multipath environment, or the receiver itself. Selected measured and predicted differential carrier phase error results are presented and compared. Results indicate that reflections and diffractions caused by the multipath producers, located near the GPS antennas, can produce phase shifts of greater than 10 mm, and as high as 95 mm. It should be noted tl the field test configuration was meant to simulate typical ISS structures, but the two environments are not identical. The GZ and DECAT techniques have been used to calculate phase errors due to multipath o the ISS configuration to quantify the expected attitude determination errors.
High Resolution Imaging Using Phase Retrieval. Volume 2
1991-10-01
aberrations of the telescope. It will also correct aberrations due to atmospheric turbulence for a ground- based telescope, and can be used with several other...retrieval algorithm, based on the Ayers/Dainty blind deconvolution algorithm, was also developed. A new methodology for exploring the uniqueness of phase...Simulation Experiments ..................... 42 3.3.1 Initial Simulations with Noisy Modulus Data ..... 45 3.3.2 Simulations of a Space- Based Amplitude
Yu, Dunji; An, Ke; Chen, Xu; ...
2015-10-09
Phase-specific thermal expansion and mechanical deformation behaviors of a directionally solidified NiAl–Cr(Mo) lamellar in situ composite were investigated by using real-time in situ neutron diffraction during compression at elevated temperatures up to 800 °C. Tensile and compressive thermal residual stresses were found to exist in the NiAl phase and Crss (solid solution) phase, respectively. Then, based on the evolution of lattice spacings and phase stresses, the phase-specific deformation behavior was analyzed qualitatively and quantitatively. Moreover, estimates of phase stresses were derived by Hooke's law on the basis of a simple method for the determination of stress-free lattice spacing in inmore » situ composites. During compressive loading, the NiAl phase yields earlier than the Crss phase. The Crss phase carries much higher stress than the NiAl phase, and displays consistent strain hardening at all temperatures. The NiAl phase exhibits strain hardening at relatively low temperatures and softening at high temperatures. During unloading, the NiAl phase yields in tension whereas the Crss phase unloads elastically. Additionally, post-test microstructural observations show phase-through cracks at room temperature, micro cracks along phase interfaces at 600 °C and intact lamellae kinks at 800 °C, which is due to the increasing deformability of both phases as temperature rises.« less
Dual Vector Spaces and Physical Singularities
NASA Astrophysics Data System (ADS)
Rowlands, Peter
Though we often refer to 3-D vector space as constructed from points, there is no mechanism from within its definition for doing this. In particular, space, on its own, cannot accommodate the singularities that we call fundamental particles. This requires a commutative combination of space as we know it with another 3-D vector space, which is dual to the first (in a physical sense). The combination of the two spaces generates a nilpotent quantum mechanics/quantum field theory, which incorporates exact supersymmetry and ultimately removes the anomalies due to self-interaction. Among the many natural consequences of the dual space formalism are half-integral spin for fermions, zitterbewegung, Berry phase and a zero norm Berwald-Moor metric for fermionic states.
PLATFORM DEFORMATION PHASE CORRECTION FOR THE AMiBA-13 COPLANAR INTERFEROMETER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, Yu-Wei; Lin, Kai-Yang; Huang, Yau-De
2013-05-20
We present a new way to solve the platform deformation problem of coplanar interferometers. The platform of a coplanar interferometer can be deformed due to driving forces and gravity. A deformed platform will induce extra components into the geometric delay of each baseline and change the phases of observed visibilities. The reconstructed images will also be diluted due to the errors of the phases. The platform deformations of The Yuan-Tseh Lee Array for Microwave Background Anisotropy (AMiBA) were modeled based on photogrammetry data with about 20 mount pointing positions. We then used the differential optical pointing error between two opticalmore » telescopes to fit the model parameters in the entire horizontal coordinate space. With the platform deformation model, we can predict the errors of the geometric phase delays due to platform deformation with a given azimuth and elevation of the targets and calibrators. After correcting the phases of the radio point sources in the AMiBA interferometric data, we recover 50%-70% flux loss due to phase errors. This allows us to restore more than 90% of a source flux. The method outlined in this work is not only applicable to the correction of deformation for other coplanar telescopes but also to single-dish telescopes with deformation problems. This work also forms the basis of the upcoming science results of AMiBA-13.« less
NASA Technical Reports Server (NTRS)
Fragola, Joseph R.; Maggio, Gaspare; Frank, Michael V.; Gerez, Luis; Mcfadden, Richard H.; Collins, Erin P.; Ballesio, Jorge; Appignani, Peter L.; Karns, James J.
1995-01-01
The application of the probabilistic risk assessment methodology to a Space Shuttle environment, particularly to the potential of losing the Shuttle during nominal operation is addressed. The different related concerns are identified and combined to determine overall program risks. A fault tree model is used to allocate system probabilities to the subsystem level. The loss of the vehicle due to failure to contain energetic gas and debris, to maintain proper propulsion and configuration is analyzed, along with the loss due to Orbiter, external tank failure, and landing failure or error.
Infrared Sensor System for Mobile-Robot Positioning in Intelligent Spaces
Gorostiza, Ernesto Martín; Galilea, José Luis Lázaro; Meca, Franciso Javier Meca; Monzú, David Salido; Zapata, Felipe Espinosa; Puerto, Luis Pallarés
2011-01-01
The aim of this work was to position a Mobile Robot in an Intelligent Space, and this paper presents a sensorial system for measuring differential phase-shifts in a sinusoidally modulated infrared signal transmitted from the robot. Differential distances were obtained from these phase-shifts, and the position of the robot was estimated by hyperbolic trilateration. Due to the extremely severe trade-off between SNR, angle (coverage) and real-time response, a very accurate design and device selection was required to achieve good precision with wide coverage and acceptable robot speed. An I/Q demodulator was used to measure phases with one-stage synchronous demodulation to DC. A complete set of results from real measurements, both for distance and position estimations, is provided to demonstrate the validity of the system proposed, comparing it with other similar indoor positioning systems. PMID:22163907
Phase correlation of laser waves with arbitrary frequency spacing.
Huss, A F; Lammegger, R; Neureiter, C; Korsunsky, E A; Windholz, L
2004-11-26
The theoretically predicted correlation of laser phase fluctuations in Lambda-type interaction schemes is experimentally demonstrated. We show that the mechanism of correlation in a Lambda scheme is restricted to high-frequency noise components, whereas in a double-Lambda scheme, due to the laser phase locking in a closed-loop interaction, it extends to all noise frequencies. In this case the correlation is weakly sensitive to coherence losses. Thus the double-Lambda scheme can be used to correlate electromagnetic fields with carrier frequency differences beyond the GHz regime.
Design guidelines for assessing and controlling spacecraft charging effects
NASA Technical Reports Server (NTRS)
Purvis, C. K.; Garrett, H. B.; Whittlesey, A. C.; Stevens, N. J.
1984-01-01
The need for uniform criteria, or guidelines, to be used in all phases of spacecraft design is discussed. Guidelines were developed for the control of absolute and differential charging of spacecraft surfaces by the lower energy space charged particle environment. Interior charging due to higher energy particles is not considered. A guide to good design practices for assessing and controlling charging effects is presented. Uniform design practices for all space vehicles are outlined.
Design guidelines for assessing and controlling spacecraft charging effects
NASA Technical Reports Server (NTRS)
Purvis, C. K.; Garrett, H. B.; Whittlesey, A.; Stevens, N. J.
1985-01-01
The need for uniform criteria, or guidelines, to be used in all phases of spacecraft design is discussed. Guidelines were developed for the control of absolute and differential charging of spacecraft surfaces by the lower energy space charged particle environment. Interior charging due to higher energy particles is not considered. A guide to good design practices for assessing and controlling charging effects is presented. Uniform design practices for all space vehicles are outlined.
Phase transitions in Nowak Sznajd opinion dynamics
NASA Astrophysics Data System (ADS)
Wołoszyn, Maciej; Stauffer, Dietrich; Kułakowski, Krzysztof
2007-05-01
The Nowak modification of the Sznajd opinion dynamics model on the square lattice assumes that with probability β the opinions flip due to mass-media advertising from down to up, and vice versa. Besides, with probability α the Sznajd rule applies that a neighbour pair agreeing in its two opinions convinces all its six neighbours of that opinion. Our Monte Carlo simulations and mean-field theory find sharp phase transitions in the parameter space.
Common Aperture Techniques for Imaging Electro-Optical Sensors (CATIES).
1980-02-01
milliradians ) at the 5.33:1 zoom point. The zoom optics contain five elements with two moveable air -spaced doublets for accomplishing the zoom function...included in the electrical and optical design but due to funding limitations, system safety requirements during the testing phase and lack of long-term...determined during the system testing phase to be conducted by the Air Force. Limited electronic signal processing (split screen and video mix) was
Interference effects in phased beam tracing using exact half-space solutions.
Boucher, Matthew A; Pluymers, Bert; Desmet, Wim
2016-12-01
Geometrical acoustics provides a correct solution to the wave equation for rectangular rooms with rigid boundaries and is an accurate approximation at high frequencies with nearly hard walls. When interference effects are important, phased geometrical acoustics is employed in order to account for phase shifts due to propagation and reflection. Error increases, however, with more absorption, complex impedance values, grazing incidence, smaller volumes and lower frequencies. Replacing the plane wave reflection coefficient with a spherical one reduces the error but results in slower convergence. Frequency-dependent stopping criteria are then applied to avoid calculating higher order reflections for frequencies that have already converged. Exact half-space solutions are used to derive two additional spherical wave reflection coefficients: (i) the Sommerfeld integral, consisting of a plane wave decomposition of a point source and (ii) a line of image sources located at complex coordinates. Phased beam tracing using exact half-space solutions agrees well with the finite element method for rectangular rooms with absorbing boundaries, at low frequencies and for rooms with different aspect ratios. Results are accurate even for long source-to-receiver distances. Finally, the crossover frequency between the plane and spherical wave reflection coefficients is discussed.
"Diffusion" region of magnetic reconnection: electron orbits and the phase space mixing
NASA Astrophysics Data System (ADS)
Kropotkin, Alexey P.
2018-05-01
The nonlinear dynamics of electrons in the vicinity of magnetic field neutral lines during magnetic reconnection, deep inside the diffusion
region where the electron motion is nonadiabatic, has been numerically analyzed. Test particle orbits are examined in that vicinity, for a prescribed planar two-dimensional magnetic field configuration and with a prescribed uniform electric field in the neutral line direction. On electron orbits, a strong particle acceleration occurs due to the reconnection electric field. Local instability of orbits in the neighborhood of the neutral line is pointed out. It combines with finiteness of orbits due to particle trapping by the magnetic field, and this should lead to the effect of mixing in the phase space, and the appearance of dynamical chaos. The latter may presumably be viewed as a mechanism producing finite conductivity
in collisionless plasma near the neutral line. That conductivity is necessary to provide violation of the magnetic field frozen-in condition, i.e., for magnetic reconnection to occur in that region.
A tale of two theories: How the adiabatic response and ULF waves affect relativistic electrons
NASA Astrophysics Data System (ADS)
Green, J. C.; Kivelson, M. G.
2001-11-01
Using data from the Comprehensive Energetic Particle and Pitch Angle Distribution (CEPPAD)-High Sensitivity Telescope (HIST) instrument on the Polar spacecraft and ground magnetometer data from the 210 meridian magnetometer chain, we test the ULF wave drift resonance theory proposed to explain relativistic electron phase space density enhancements. We begin by investigating changes in electron flux due to the ``Dst effect.'' The Dst effect refers to the adiabatic response of relativistic electrons to changes in the magnetic field characterized by the Dst index. The Dst effect, assuming no loss or addition of new electrons, produces reversible order of magnitude changes in relativistic electrons flux measured at fixed energy, but it cannot account for the flux enhancement that occurs in the recovery phase of most storms. Liouville's theorem states that phase space density expressed in terms of constant adiabatic invariants is unaffected by adiabatic field changes and thus is insensitive to the Dst effect. It is therefore useful to express flux measurements in terms of phase space densities at constant first, second and third adiabatic invariants. The phase space density is determined from the CEPPAD-HIST electron detector that measures differential directional flux of electrons from 0.7 to 9 MeV and the Tsyganenko 96 field model. The analysis is done for January to June 1997. The ULF wave drift resonance theory that we test proposes that relativistic electrons are accelerated by an m=2 toroidal or poloidal mode wave whose frequency equals the drift frequency of the electron. The theory is tested by comparing the relativistic electron phase space densities to wave power determined at three ground stations with L* values of 4.0, 5.7 and 6.2. Comparison of the wave data to the phase space densities shows that five out of nine storm events are consistent with the ULF wave drift resonance mechanism, three out of nine give ambiguous support to the model, and one event has high ULF wave power at the drift frequency of the electrons but no corresponding phase space density enhancement suggesting that ULF wave power alone is not sufficient to cause an electron response. Two explanations of the anomalous event are investigated including excessive loss of electrons to the magnetopause and wave duration.
Microwave phase conjugation using artificial nonlinear microwave surfaces
NASA Astrophysics Data System (ADS)
Chang, Yian
1997-09-01
A new technique is developed and demonstrated to simulate nonlinear materials in the microwave and millimeter wave regime. Such materials are required to extend nonlinear optical techniques into longer wavelength areas. Using an array of antenna coupled mixers as an artificial nonlinear surface, we have demonstrated two-dimensional free space microwave phase conjugation at 10 GHz. The basic concept is to replace the weak nonlinearity of electron distribution in a crystal with the strong nonlinear V-I response of a P-N junction. This demnstration uses a three-wave mixing method with the effective nonlinear susceptibility χ(2) provided by an artificial nonlinear surface. The pump signal at 2ω (20 GHz) can be injected to the mixing elements electrically or optically. Electrical injection was first used to prove the concept of artificial nonlinear surfaces. However, due to the loss and size of microwave components, electrical injection is not practical for an array of artificial nonlinear surfaces, as would be needed in a three-dimensional free space phase conjugation setup. Therefore optical injection was implemented to carry the 2ω microwave pump signal in phase to all mixing elements. In both cases, two-dimensional free space phase conjugation was observed by directly measuring the electric field amplitude and phase distribution. The electric field wavefronts exhibited retro-directivity and auto- correction characteristics of phase conjugation. This demonstration surface also shows a power gain of 10 dB, which is desired for potential communication applications.
Application of the phase extension method in virus crystallography.
Reddy, Vijay S
2016-01-01
The procedure for phase extension (PX) involves gradually extending the initial phases from low resolution (e.g., ~8Å) to the high-resolution limit of a diffraction data set. Structural redundancy present in the viral capsids that display icosahedral symmetry results in a high degree of non-crystallographic symmetry (NCS), which in turn translates into higher phasing power and is critical for improving and extending phases to higher resolution. Greater completeness of the diffraction data and determination of a molecular replacement solution, which entails accurately identifying the virus particle orientation(s) and position(s), are important for the smooth progression of the PX procedure. In addition, proper definition of a molecular mask (envelope) around the NCS-asymmetric unit has been found to be important for the success of density modification procedures, such as density averaging and solvent flattening. Regardless of the degree of NCS, the PX method appears to work well in all space groups, provided an accurate molecular mask is used along with reasonable initial phases. However, in the cases with space group P1, in addition to requiring a molecular mask, starting the phase extension at a higher resolution (e.g., 6Å) overcame the previously reported problems due to Babinet phases and phase flipping errors.
Spatio-temporal dynamics of turbulence trapped in geodesic acoustic modes
NASA Astrophysics Data System (ADS)
Sasaki, M.; Kobayashi, T.; Itoh, K.; Kasuya, N.; Kosuga, Y.; Fujisawa, A.; Itoh, S.-I.
2018-01-01
The spatio-temporal dynamics of turbulence with the interaction of geodesic acoustic modes (GAMs) are investigated, focusing on the phase-space structure of turbulence, where the phase-space consists of real-space and wavenumber-space. Based on the wave-kinetic framework, the coupling equation between the GAM and the turbulence is numerically solved. The turbulence trapped by the GAM velocity field is obtained. Due to the trapping effect, the turbulence intensity increases where the second derivative of the GAM velocity (curvature of the GAM) is negative. While, in the positive-curvature region, the turbulence is suppressed. Since the trapped turbulence propagates with the GAMs, this relationship is sustained spatially and temporally. The dynamics of the turbulence in the wavenumber spectrum are converted in the evolution of the frequency spectrum, and the simulation result is compared with the experimental observation in JFT-2M tokamak, where the similar patterns are obtained. The turbulence trapping effect is a key to understand the spatial structure of the turbulence in the presence of sheared flows.
NASA Astrophysics Data System (ADS)
Jaffé, Yara L.; Poggianti, Bianca M.; Moretti, Alessia; Gullieuszik, Marco; Smith, Rory; Vulcani, Benedetta; Fasano, Giovanni; Fritz, Jacopo; Tonnesen, Stephanie; Bettoni, Daniela; Hau, George; Biviano, Andrea; Bellhouse, Callum; McGee, Sean
2018-06-01
It is well known that galaxies falling into clusters can experience gas stripping due to ram pressure by the intra-cluster medium. The most spectacular examples are galaxies with extended tails of optically bright stripped material known as `jellyfish'. We use the first large homogeneous compilation of jellyfish galaxies in clusters from the WINGS and OmegaWINGS surveys, and follow-up MUSE observations from the GASP MUSE programme to investigate the orbital histories of jellyfish galaxies in clusters and reconstruct their stripping history through position versus velocity phase-space diagrams. We construct analytic models to define the regions in phase-space where ram-pressure stripping is at play. We then study the distribution of cluster galaxies in phase-space and find that jellyfish galaxies have on average higher peculiar velocities (and higher cluster velocity dispersion) than the overall population of cluster galaxies at all cluster-centric radii, which is indicative of recent infall into the cluster and radial orbits. In particular, the jellyfish galaxies with the longest gas tails reside very near the cluster cores (in projection) and are moving at very high speeds, which coincides with the conditions of the most intense ram pressure. We conclude that many of the jellyfish galaxies seen in clusters likely formed via fast (˜1-2 Gyr), incremental, outside-in ram-pressure stripping during first infall into the cluster in highly radial orbits.
NASA Astrophysics Data System (ADS)
Mitryk, Shawn; Mueller, Guido
The Laser Interferometer Space Antenna (LISA) is a space-based modified Michelson interfer-ometer designed to measure gravitational radiation in the frequency range from 30 uHz to 1 Hz. The interferometer measurement system (IMS) utilizes one-way laser phase measurements to cancel the laser phase noise, reconstruct the proof-mass motion, and extract the gravitational wave (GW) induced laser phase modulations in post-processing using a technique called time-delay interferometry (TDI). Unfortunately, there exist few hard-ware verification experiments of the IMS. The University of Florida LISA Interferometry Simulator (UFLIS) is designed to perform hardware-in-the-loop simulations of the LISA interferometry system, modeling the characteris-tics of the LISA mission as accurately as possible. This depends, first, on replicating the laser pre-stabilization by locking the laser phase to an ultra-stable Zerodur cavity length reference using the PDH locking method. Phase measurements of LISA-like photodetector beat-notes are taken using the UF-phasemeter (PM) which can measure the laser BN frequency to within an accuracy of 0.22 uHz. The inter-space craft (SC) laser links including the time-delay due to the 5 Gm light travel time along the LISA arms, the laser Doppler shifts due to differential SC motion, and the GW induced laser phase modulations are simulated electronically using the electronic phase delay (EPD) unit. The EPD unit replicates the laser field propagation between SC by measuring a photodetector beat-note frequency with the UF-phasemeter and storing the information in memory. After the requested delay time, the frequency information is added to a Doppler offset and a GW-like frequency modulation. The signal is then regenerated with the inter-SC laser phase affects applied. Utilizing these components, I will present the first complete TDI simulations performed using the UFLIS. The LISA model is presented along-side the simulation, comparing the generation and measurement of LISA-like signals. Phasemeter measurements are used in post-processing and combined in the linear combinations defined by TDI, thus, canceling the laser phase and phase-lock loop noise to extract the applied GW modulation buried under the noise. Nine order of magnitude common mode laser noise cancellation is achieved at a frequency of 1 mHz and the GW signal is clearly visible after the laser and PLL noise cancellation.
Detection and Imaging of Moving Targets with LiMIT SAR Data
2017-03-03
include space time adaptive processing (STAP) or displaced phase center antenna (DPCA) [4]–[7]. Page et al. combined constant acceleration target...motion focusing with space-time adaptive processing (STAP), and included the refocusing parameters in the STAP steering vector. Due to inhomogenous...wavelength λ and slow time t, of a moving target after matched filter and passband equalization processing can be expressed as: P (t) = exp ( −j 4π λ ||~rp
Critical Gradient Behavior of Alfvén Eigenmode Induced Fast-Ion Transport in Phase Space
NASA Astrophysics Data System (ADS)
Collins, C. S.; Pace, D. C.; van Zeeland, M. A.; Heidbrink, W. W.; Stagner, L.; Zhu, Y. B.; Kramer, G. J.; Podesta, M.; White, R. B.
2016-10-01
Experiments on DIII-D have shown that energetic particle (EP) transport suddenly increases when multiple Alfvén eigenmodes (AEs) cause particle orbits to become stochastic. Several key features have been observed; (1) the transport threshold is phase-space dependent and occurs above the AE linear stability threshold, (2) EP losses become intermittent above threshold and appear to depend on the types of AEs present, and (3) stiff transport causes the EP density profile to remain unchanged even if the source increases. Theoretical analysis using the NOVA and ORBIT codes shows that the threshold corresponds to when particle orbits become stochastic due to wave-particle resonances with AEs in the region of phase space measured by the diagnostics. The kick model in NUBEAM (TRANSP) is used to evolve the EP distribution function to study which modes cause the most transport and further characterize intermittent bursts of EP losses, which are associated with large scale redistribution through the domino effect. Work supported by the US DOE under DE-FC02-04ER54698.
Risk Assessment During the Final Phase of an Uncontrolled Re-Entry
NASA Astrophysics Data System (ADS)
Gaudel, A.; Hourtolle, C.; Goester, J. F.; Fuentes, N.
2013-09-01
As French National Space Agency, CNES is empowered to monitor compliance with technical regulations of the French Space Operation Act, FSOA, and to take all necessary measures to ensure the safety of people, property, public health and environment for all space operations involving French responsibility at international level.Therefore, CNES developed ELECTRA that calculates the risk for ground population involved in three types of events: rocket launching, controlled re-entry and uncontrolled re-entry. For the first two cases, ELECTRA takes into account degraded cases due to a premature stop of propulsion.Major evolutions were implemented recently on ELECTRA to meet new users' requirements, like the risk assessment during the final phase of uncontrolled re-entry, that can be combined with the computed risk for each country involved by impacts.The purpose of this paper is to provide an overview of the ELECTRA method and main functionalities, and then to highlight these recent improvements.
Radiation from a space charge dominated linear electron beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswas, Debabrata
2008-01-15
It is commonly known that radiation loss in linear beam transport is largely unimportant. For a space charge dominated linear beam, however, radiation power loss can be an appreciable fraction of the injected beam power [Biswas, Kumar, and Puri, Phys. Plasmas 14, 094702 (2007)]. Exploring this further, the electromagnetic nature of radiation due to the passage of a space charge dominated electron beam in a 'closed' drift tube is explicitly demonstrated by identifying the cavity modes where none existed prior to beam injection. It is further shown that even in an 'open' drift tube from which radiation may leak, themore » modes that escape contribute to the time variation of the electric and magnetic fields in the transient phase. As the window opening increases, the oscillatory transient phase disappears altogether. However, the 'bouncing ball' modes survive and can be observed between the injection and collection plates.« less
1999-07-28
lag phase for Proteus vulgaris (Manko et al., 1987), E. coli, and B. subtilis (Kaceua and Todd, 1997) on orbit. However, due to a limited number of... limitations often precluded the collection of multiple bacterial counts at different times during the relatively short exponential growth phase. This...g, respectively. Because the 50 centriiiige held only 6 FPAs, the number of samples for each experiment was limited . To increase the «-value
The evaluation of phasemeter prototype performance for the space gravitational waves detection.
Liu, He-Shan; Dong, Yu-Hui; Li, Yu-Qiong; Luo, Zi-Ren; Jin, Gang
2014-02-01
Heterodyne laser interferometry is considered as the most promising readout scheme for future space gravitational wave detection missions, in which the gravitational wave signals disguise as small phase variances within the heterodyne beat note. This makes the phasemeter, which extracts the phase information from the beat note, the key device to this system. In this paper, a prototype of phasemeter based on digital phase-locked loop technology is developed, and the major noise sources which may contribute to the noise spectra density are analyzed in detail. Two experiments are also carried out to evaluate the performance of the phasemeter prototype. The results show that the sensitivity is achieved 2π μrad/√Hz in the frequency range of 0.04 Hz-10 Hz. Due to the effect of thermal drift, the noise obviously increases with the frequencies down to 0.1 mHz.
The evaluation of phasemeter prototype performance for the space gravitational waves detection
NASA Astrophysics Data System (ADS)
Liu, He-Shan; Dong, Yu-Hui; Li, Yu-Qiong; Luo, Zi-Ren; Jin, Gang
2014-02-01
Heterodyne laser interferometry is considered as the most promising readout scheme for future space gravitational wave detection missions, in which the gravitational wave signals disguise as small phase variances within the heterodyne beat note. This makes the phasemeter, which extracts the phase information from the beat note, the key device to this system. In this paper, a prototype of phasemeter based on digital phase-locked loop technology is developed, and the major noise sources which may contribute to the noise spectra density are analyzed in detail. Two experiments are also carried out to evaluate the performance of the phasemeter prototype. The results show that the sensitivity is achieved 2π μrad/√Hz in the frequency range of 0.04 Hz-10 Hz. Due to the effect of thermal drift, the noise obviously increases with the frequencies down to 0.1 mHz.
Design of multi-wavelength tunable filter based on Lithium Niobate
NASA Astrophysics Data System (ADS)
Zhang, Ailing; Yao, Yuan; Zhang, Yue; Song, Hongyun
2018-05-01
A multi-wavelength tunable filter is designed. It consists of multiple waveguides among multiple waveguide gratings. A pair of electrodes were placed on both sides of each waveguide. The tunable filter uses the electro-optic effect of Lithium Niobate to tune the phase caused by each waveguide. Consequently, the wavelength and wavelength spacing of the filter are tuned by changing external voltages added on the electrode pairs. The tunable property of the filter is analyzed by phase matching condition and transfer-matrix method. Numerical results show that not only multiple wavelengths with narrow bandwidth are tuned with nearly equal spacing by synchronously changing the voltages added on all electrode pairs, but also the number of wavelengths is determined by the number of phase shifts caused by electrode pairs. Furthermore, due to the electro-optic effect of Lithium Niobate, the tuning speed of the filter can reach the order of ns.
NASA Technical Reports Server (NTRS)
Davidson, Frederic M.; Sun, Xiaoli
1993-01-01
This interim report consists of four separate reports from our research on the receivers of NASA's Gravity And Magnetic Experiment Satellite (GAMES). The first report is entitled 'Analysis of phase estimation bias of GAMES receiver due to Doppler shift.' The second report is 'Background radiation on GAMES fine ranging detector from the moon, the planets, and the stars.' The third report is 'Background radiation on GAMES receivers from the ocean sun glitter and the direct sun.' The fourth report is 'GAMES receiver performance versus background radiation power on the detectors.'
Multidimensional phase space methods for mass measurements and decay topology determination
NASA Astrophysics Data System (ADS)
Altunkaynak, Baris; Kilic, Can; Klimek, Matthew D.
2017-02-01
Collider events with multi-stage cascade decays fill out the kinematically allowed region in phase space with a density that is enhanced at the boundary. The boundary encodes all available information as regards the spectrum and is well populated even with moderate signal statistics due to this enhancement. In previous work, the improvement in the precision of mass measurements for cascade decays with three visible and one invisible particles was demonstrated when the full boundary information is used instead of endpoints of one-dimensional projections. We extend these results to cascade decays with four visible and one invisible particles. We also comment on how the topology of the cascade decay can be determined from the differential distribution of events in these scenarios.
Reanalysis of porous chondritic cosmic dust particles
NASA Astrophysics Data System (ADS)
Kapisinsky, I.; Figusch, V.; Ivan, J.; Izdinsky, K.; Zemankova, M.
2001-10-01
The particles reanalysed in this study were obtained from the NASA Johnson Space Center (JSC) Cosmic Dust Collection. The reanalysis of the particle L2008 P9 indicates typical assemblage of olivine - pyroxene. This sample can be classified as a chondritic porous IDP with the metallic phase grain containing essential amount of nickel and copper (the latter element is most probably due to instrumental artefact). The chemical composition of the particle L2011 S5 corresponds mostly to an assemblage of pyroxene phase - (Mg,Fe,Ni)SiO_3 roughly 75 wt.% and a sulphide phase - probably pyrrhotite (Fe,Ni)S about 25 wt.%.
Sensitivity of a Wave Structure to Initial Conditions
NASA Technical Reports Server (NTRS)
Duval, Walter M. B.; Duval, Walter M. B. (Technical Monitor)
2000-01-01
Microgravity experiments aimed at quantifying effects of gentler via controlled sinusoidal forcing transmitted on the interface between two miscible liquids have shown the evolution of a quasi -stationary four-mode wave structure oriented vertically. The sensitivity of the wave structure to phase angle variation is investigated computationally. We show that a slight variation of the phase angle is sufficient to cause a bifurcation to a two-mode structure. The dependence of phase angle on wave structure is attributed to sensitivity on initial conditions due to the strong nonlinearity of the coupled field equations for the parametric space of interest.
Ruan, Hang; Li, Jian; Zhang, Lei; Long, Teng
2015-01-01
For vehicle positioning with Global Navigation Satellite System (GNSS) in urban areas, open-loop tracking shows better performance because of its high sensitivity and superior robustness against multipath. However, no previous study has focused on the effects of the code search grid size on the code phase measurement accuracy of open-loop tracking. Traditional open-loop tracking methods are performed by the batch correlators with fixed correlation space. The code search grid size, which is the correlation space, is a constant empirical value and the code phase measuring accuracy will be largely degraded due to the improper grid size, especially when the signal carrier-to-noise density ratio (C/N0) varies. In this study, the Adaptive Correlation Space Adjusted Open-Loop Tracking Approach (ACSA-OLTA) is proposed to improve the code phase measurement dependent pseudo range accuracy. In ACSA-OLTA, the correlation space is adjusted according to the signal C/N0. The novel Equivalent Weighted Pseudo Range Error (EWPRE) is raised to obtain the optimal code search grid sizes for different C/N0. The code phase measuring errors of different measurement calculation methods are analyzed for the first time. The measurement calculation strategy of ACSA-OLTA is derived from the analysis to further improve the accuracy but reduce the correlator consumption. Performance simulation and real tests confirm that the pseudo range and positioning accuracy of ASCA-OLTA are better than the traditional open-loop tracking methods in the usual scenarios of urban area. PMID:26343683
How well does voice interaction work in space?
NASA Technical Reports Server (NTRS)
Morris, Randy B.; Whitmore, Mihriban; Adam, Susan C.
1993-01-01
The methods and results of an evaluation of the Voice Navigator software package are discussed. The first phase or ground phase of the study consisted of creating, or training, computer voice files of specific commands. This consisted of repeating each of six commands eight times. The files were then tested for recognition accuracy by the software aboard the microgravity aircraft. During the second phase, both voice training and testing were performed in microgravity. Inflight training was done due to problems encountered in phase one which were believed to be caused by ambient noise levels. Both quantitative and qualitative data were collected. Only one of the commands was found to offer consistently high recognition rates across subjects during the second phase.
NASA Astrophysics Data System (ADS)
Cancio, A.; Colazo, M.; García, B.
2017-10-01
In December 2012, the European Space Agency opened its third Deep Space Station in Malargüe, province of Mendoza, Argentina. Due to the nature of its operations, the antenna has requirements for the stability of reference signals and low phase noise equipment that makes it a candidate for use in radio astronomy applications. The present work evaluates the first experience of observation of astronomical sources.
NASA Technical Reports Server (NTRS)
Farley, David R.
1987-01-01
The Cal Poly Space Project is an effort on the part of several highly motivated students to deploy a space canister which will examine the effects of microgravity on electroplating and immiscible metals. The experiments will be controlled and monitored by a specialized triple redundancy system developed to defer the possible electronic errors due to uncontrollable factors such as photons from the Sun. With the finalization of the payload design and the near completion of the data control system, the integration phase of the project is anticipated to be completed and the project ready for launching by early 1987. It is hoped that the experiments will lead to new insights in space research and also prove profitable to industry.
NASA Astrophysics Data System (ADS)
Speicher, Andy; Matin, Mohammad; Tippets, Roger; Chun, Francis; Strong, David
2015-05-01
In order to protect critical military and commercial space assets, the United States Space Surveillance Network must have the ability to positively identify and characterize all space objects. Unfortunately, positive identification and characterization of space objects is a manual and labor intensive process today since even large telescopes cannot provide resolved images of most space objects. The objective of this study was to collect and analyze visible-spectrum polarization data from unresolved images of geosynchronous satellites taken over various solar phase angles. Different collection geometries were used to evaluate the polarization contribution of solar arrays, thermal control materials, antennas, and the satellite bus as the solar phase angle changed. Since materials on space objects age due to the space environment, their polarization signature may change enough to allow discrimination of identical satellites launched at different times. Preliminary data suggests this optical signature may lead to positive identification or classification of each satellite by an automated process on a shorter timeline. The instrumentation used in this experiment was a United States Air Force Academy (USAFA) Department of Physics system that consists of a 20-inch Ritchey-Chrétien telescope and a dual focal plane optical train fed with a polarizing beam splitter. Following a rigorous calibration, polarization data was collected during two nights on eight geosynchronous satellites built by various manufacturers and launched several years apart. When Stokes parameters were plotted against time and solar phase angle, the data indicates that a polarization signature from unresolved images may have promise in classifying specific satellites.
On-Orbit Prospective Echocardiography on International Space Station Crew
NASA Technical Reports Server (NTRS)
Hamilton, Douglas R.; Sargsyan, Ashot E.; Martin, David S.; Garcia, Kathleen M.; Melton, Shannon L.; Feiveson, Alan; Dulchavsky, Scott A.
2010-01-01
Introduction A prospective trial of echocardiography was conducted on of six crewmembers onboard the International Space Station. The main objective was to determine the efficacy of remotely guided tele-echocardiography, including just-in-time e-training methods and determine what "space normal" echocardiographic data is. Methods Each crewmember operator (n=6) had 2-hour preflight training. Baseline echocardiographic data were collected 55 to 167days preflight. Similar equipment was used in each 60-minute in-flight session (mean microgravity exposure - 114 days (34 -- 190)). On Orbit ultrasound operators used an e-learning system within 24h of these sessions. Expert assistance was provided using ultrasound video downlink and two-way voice. Testing was repeated 5 to 16 days after landing. Separate ANOVA was used on each echocardiographic variable (n=33). Within each ANOVA, three tests were made: a) effect of mission phase (preflight, in-flight, post flight); b) effect of echo technician (two technicians independently analyzed the data); c) interaction between mission phase and technician. Results Nine rejections of the null hypothesis (mission phase or technician or both had no effect) were discovered and considered for follow up. Of these, six rejections were for significant technician effects, not as a result of space flight. Three rejections of the null hypothesis (Aortic Valve time velocity integral, Mitral E wave Velocity and heart rate) were attributable to space flight, however determined not to be clinically significant. No rejections were due to the interaction between technician and space flight. Conclusion No consistent clinically significant effects of long-duration space flight were seen in echocardiographic variables of the given group of subjects.
Tachyon condensation due to domain-wall annihilation in Bose-Einstein condensates.
Takeuchi, Hiromitsu; Kasamatsu, Kenichi; Tsubota, Makoto; Nitta, Muneto
2012-12-14
We show theoretically that a domain-wall annihilation in two-component Bose-Einstein condensates causes tachyon condensation accompanied by spontaneous symmetry breaking in a two-dimensional subspace. Three-dimensional vortex formation from domain-wall annihilations is considered a kink formation in subspace. Numerical experiments reveal that the subspatial dynamics obey the dynamic scaling law of phase-ordering kinetics. This model is experimentally feasible and provides insights into how the extra dimensions influence subspatial phase transition in higher-dimensional space.
Linearization of the longitudinal phase space without higher harmonic field
NASA Astrophysics Data System (ADS)
Zeitler, Benno; Floettmann, Klaus; Grüner, Florian
2015-12-01
Accelerator applications like free-electron lasers, time-resolved electron diffraction, and advanced accelerator concepts like plasma acceleration desire bunches of ever shorter longitudinal extent. However, apart from space charge repulsion, the internal bunch structure and its development along the beam line can limit the achievable compression due to nonlinear phase space correlations. In order to improve such a limited longitudinal focus, a correction by properly linearizing the phase space is required. At large scale facilities like Flash at Desy or the European Xfel, a higher harmonic cavity is installed for this purpose. In this paper, another method is described and evaluated: Expanding the beam after the electron source enables a higher order correction of the longitudinal focus by a subsequent accelerating cavity which is operated at the same frequency as the electron gun. The elaboration of this idea presented here is based on a ballistic bunching scheme, but can be extended to bunch compression based on magnetic chicanes. The core of this article is an analytic model describing this approach, which is verified by simulations, predicting possible bunch length below 1 fs at low bunch charge. Minimizing the energy spread down to σE/E <1 0-5 while keeping the bunch long is another interesting possibility, which finds applications, e.g., in time resolved transmission electron microscopy concepts.
Discrete-Time Quantum Walk with Phase Disorder: Localization and Entanglement Entropy.
Zeng, Meng; Yong, Ee Hou
2017-09-20
Quantum Walk (QW) has very different transport properties to its classical counterpart due to interference effects. Here we study the discrete-time quantum walk (DTQW) with on-site static/dynamic phase disorder following either binary or uniform distribution in both one and two dimensions. For one dimension, we consider the Hadamard coin; for two dimensions, we consider either a 2-level Hadamard coin (Hadamard walk) or a 4-level Grover coin (Grover walk) for the rotation in coin-space. We study the transport properties e.g. inverse participation ratio (IPR) and the standard deviation of the density function (σ) as well as the coin-position entanglement entropy (EE), due to the two types of phase disorders and the two types of coins. Our numerical simulations show that the dimensionality, the type of coins, and whether the disorder is static or dynamic play a pivotal role and lead to interesting behaviors of the DTQW. The distribution of the phase disorder has very minor effects on the quantum walk.
Bioinspired Non-iridescent Structural Color from Polymer Blend Thin Films
NASA Astrophysics Data System (ADS)
Nallapaneni, Asritha; Shawkey, Matthew; Karim, Alamgir
Colors exhibited in biological species are either due to natural pigments, sub-micron structural variation or both. Structural colors thus exhibited can be iridescent (ID) or non-iridescent (NID) in nature. NID colors originate due to interference and coherent scattering of light with quasi-ordered micro- and nano- structures. Specifically, in Eastern Bluebird (Sialia sialis) these nanostructures develop as a result of phase separation of β-keratin from cytoplasm present in cells. We replicate these structures via spinodal blend phase separation of PS-PMMA thin films. Colors of films vary from ultraviolet to blue. Scattering of UV-visible light from selectively leeched phase separated blends are studied in terms of varying domain spacing (200nm to 2 μm) of film. We control these parameters by tuning annealing time and temperature. Angle-resolved spectroscopy studies suggest that the films are weakly iridescent and scattering from phase-separated films is more diffused when compared to well-mixed films. This study offers solutions to several color-based application in paints and coatings industry.
NASA Astrophysics Data System (ADS)
Pustil'nik, L.; Yom Din, G.
2013-01-01
We present the results of study of a possible relationship between the space weather and terrestrial markets of agricultural products. It is shown that to implement the possible effect of space weather on the terrestrial harvests and prices, a simultaneous fulfillment of three conditions is required: 1) sensitivity of local weather (cloud cover, atmospheric circulation) to the state of space weather; 2) sensitivity of the area-specific agricultural crops to the weather anomalies (belonging to the area of risk farming); 3) relative isolation of the market, making it difficult to damp the price hikes by the external food supplies. Four possible scenarios of the market response to the modulations of local terrestrial weather via the solar activity are described. The data sources and analysismethods applied to detect this relationship are characterized. We describe the behavior of 22 European markets during the medieval period, in particular, during the Maunder minimum (1650-1715). We demonstrate a reliable manifestation of the influence of space weather on prices, discovered in the statistics of intervals between the price hikes and phase price asymmetry. We show that the effects of phase price asymmetry persist even during the early modern period in the U.S. in the production of the durum wheat. Within the proposed approach, we analyze the statistics of depopulation in the eighteenth and nineteenth century Iceland, induced by the famine due to a sharp livestock reduction owing to, in its turn, the lack of foodstuff due to the local weather anomalies. A high statistical significance of temporal matching of these events with the periods of extreme solar activity is demonstrated. We discuss the possible consequences of the observed global climate change in the formation of new areas of risk farming, sensitive to space weather.
Kumar, S Santhosh; Shankaranarayanan, S
2017-11-17
In a bipartite set-up, the vacuum state of a free Bosonic scalar field is entangled in real space and satisfies the area-law- entanglement entropy scales linearly with area of the boundary between the two partitions. In this work, we show that the area law is violated in two spatial dimensional model Hamiltonian having dynamical critical exponent z = 3. The model physically corresponds to next-to-next-to-next nearest neighbour coupling terms on a lattice. The result reported here is the first of its kind of violation of area law in Bosonic systems in higher dimensions and signals the evidence of a quantum phase transition. We provide evidence for quantum phase transition both numerically and analytically using quantum Information tools like entanglement spectra, quantum fidelity, and gap in the energy spectra. We identify the cause for this transition due to the accumulation of large number of angular zero modes around the critical point which catalyses the change in the ground state wave function due to the next-to-next-to-next nearest neighbor coupling. Lastly, using Hubbard-Stratanovich transformation, we show that the effective Bosonic Hamiltonian can be obtained from an interacting fermionic theory and provide possible implications for condensed matter systems.
NASA Astrophysics Data System (ADS)
Elfasi, Roei; Elimelech, Yossef; Gat, Amir D.
2018-04-01
This work examines the effect of hydrodynamic interaction between two closely spaced waving elastic filaments on the propulsion and maneuvering of an artificial microswimmer. The filaments are actuated by a forced oscillation of the slope at their clamped end and are free at the opposite end. We obtain an expression for the interaction force and apply an asymptotic expansion based on a small parameter representing the ratio between the elastic deflections and the distance between the filaments. The leading-order interaction forces yield asymmetric oscillation patterns at the two frequencies (ω1,ω2 ) in which the filaments are actuated. Higher orders oscillate at frequencies which are combinations of the actuation frequencies, where the first order includes the 2 ω1,2 ω2,ω1+ω2 , and ω1-ω2 harmonics. For configurations with ω1≈ω2 , the ω1-ω2 mode represents the dominant first-order interaction effect due to significantly smaller effective Sperm number. For in-phase actuation with ω1=ω2 , the deflection dynamics are identical to an isolated filament with a modified Sperm number. Phase difference between the filaments is shown to have significant effect on the time-averaged forces. Optimal Sperm numbers for in-phase and antiphase actuation are calculated. Turning moments due to phase difference between the filaments are presented, yielding optimal maneuvering for phase of 90∘. Calculation of the effect of hydrodynamic interaction on the propulsive forces yielded that antiphase beating is more efficient than the in-phase scenario, in contrast with the commonly used assumption of maximal efficiency of the synchronized state. Experiments are conducted to verify and illustrate some of the theoretical predictions.
Structure Evolution of BaTiO3 on Co Doping: X-ray diffraction and Raman study
NASA Astrophysics Data System (ADS)
Mansuri, Amantulla; Mishra, Ashutosh
2016-10-01
In the present study, we have synthesize polycrystalline samples of BaTi1-xCoxO3 (x = 0, 0.05 and 0.1) with standard solid state reaction technique. The obtained samples are characterized by X-ray diffraction (XRD) and Raman spectroscopy. The detail structural analysis has been performed by Rietveld refinement using Fullprof program. The structural analysis reveal the samples are chemical pure and crystallize in tetragonal phase with space group Pm3m. We observe an increase in lattice parameters which results due to substitution of Co2+ with large ionic radii (0.9) for smaller ionic radii (0.6) Ti4+. Moreover peak at 45.5° shift to 45° on Co doping, which is due to structure phase transition from tetragonal to cubic. Raman study infers that the intensity of characteristic peaks decreases and linewidth increases with Co doping. The bands linked with the tetragonal structure (307 cm1) decreased due to the tetragonal-towards-cubic phase transition with Co doping. Our structural study reveals the expansion of BTO unit cell and tetragonal-to-cubic phase transformation takes place, results from different characterization techniques are conclusive and show structural evolution with Co doping.
The concept of a Space-Space interferometer for observations in mm and sub-mm wavebands
NASA Astrophysics Data System (ADS)
Andreyanov, V. V.
2007-12-01
At present, space radio astronomers and engineers study the prospects of design of the second-generation ground-space interferometers for astrophysical research with the microsecond angular resolution of sources. The implemented Japanese VSOP project (1998 2003) and the Russian Radioastron project (under preparation for space flight) are related to the first generation. In this paper, the ideology and configuration of the Space-Space interferometer are considered. It would allow one to obtain principally new capabilities: to exclude the Earth’s atmosphere influence, to realize a quasi-phase-stable interferometer, and to remove the problems of electromagnetic compatibility with other services. Moreover, a capability will appear to carry out preliminary correlation processing onboard the spacecraft due to achievement of small residual uncertainties in signal delay and frequency and, owing to this, to realize onboard data compression in order to transmit data to the Earth by usual space communication channel.
In-Band Asymmetry Compensation for Accurate Time/Phase Transport over Optical Transport Network
Siu, Sammy; Hu, Hsiu-fang; Lin, Shinn-Yan; Liao, Chia-Shu; Lai, Yi-Liang
2014-01-01
The demands of precise time/phase synchronization have been increasing recently due to the next generation of telecommunication synchronization. This paper studies the issues that are relevant to distributing accurate time/phase over optical transport network (OTN). Each node and link can introduce asymmetry, which affects the adequate time/phase accuracy over the networks. In order to achieve better accuracy, protocol level full timing support is used (e.g., Telecom-Boundary clock). Due to chromatic dispersion, the use of different wavelengths consequently causes fiber link delay asymmetry. The analytical result indicates that it introduces significant time error (i.e., phase offset) within 0.3397 ns/km in C-band or 0.3943 ns/km in L-band depending on the wavelength spacing. With the proposed scheme in this paper, the fiber link delay asymmetry can be compensated relying on the estimated mean fiber link delay by the Telecom-Boundary clock, while the OTN control plane is responsible for processing the fiber link delay asymmetry to determine the asymmetry compensation in the timing chain. PMID:24982948
Internet Technology on Spacecraft
NASA Technical Reports Server (NTRS)
Rash, James; Parise, Ron; Hogie, Keith; Criscuolo, Ed; Langston, Jim; Powers, Edward I. (Technical Monitor)
2000-01-01
The Operating Missions as Nodes on the Internet (OMNI) project has shown that Internet technology works in space missions through a demonstration using the UoSAT-12 spacecraft. An Internet Protocol (IP) stack was installed on the orbiting UoSAT-12 spacecraft and tests were run to demonstrate Internet connectivity and measure performance. This also forms the basis for demonstrating subsequent scenarios. This approach provides capabilities heretofore either too expensive or simply not feasible such as reconfiguration on orbit. The OMNI project recognized the need to reduce the risk perceived by mission managers and did this with a multi-phase strategy. In the initial phase, the concepts were implemented in a prototype system that includes space similar components communicating over the TDRS (space network) and the terrestrial Internet. The demonstration system includes a simulated spacecraft with sample instruments. Over 25 demonstrations have been given to mission and project managers, National Aeronautics and Space Administration (NASA), Department of Defense (DoD), contractor technologists and other decisions makers, This initial phase reached a high point with an OMNI demonstration given from a booth at the Johnson Space Center (JSC) Inspection Day 99 exhibition. The proof to mission managers is provided during this second phase with year 2000 accomplishments: testing the use of Internet technologies onboard an actual spacecraft. This was done with a series of tests performed using the UoSAT-12 spacecraft. This spacecraft was reconfigured on orbit at very low cost. The total period between concept and the first tests was only 6 months! On board software was modified to add an IP stack to support basic IP communications. Also added was support for ping, traceroute and network timing protocol (NTP) tests. These tests show that basic Internet functionality can be used onboard spacecraft. The performance of data was measured to show no degradation from current approaches. The cost to implement is much less than current approaches due to the availability of highly reliable and standard Internet tools. Use of standard Internet applications onboard reduces the risk of obsolescence inherent in custom protocols due to extremely wide use across all domains. These basic building blocks provide the framework for building onboard software to support direct user communication with payloads including payload control. Other benefits are payload to payload communication from dissimilar spacecraft, constellations of spacecraft, and reconfigurability on orbit. This work is funded through contract with the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC).
Phase transition studies of Na3Bi system under uniaxial strain
NASA Astrophysics Data System (ADS)
Nie, Tiaoping; Meng, Lijun; Li, Yanru; Luan, Yanhua; Yu, Jun
2018-03-01
We investigated the electronic properties and phase transitions of Na3Bi in four structural phases (space groups P63/mmc, P \\overline{3} c1, Fm \\overline{3} m and Cmcm) under constant-volume uniaxial strain using the first-principles method. For P63/mmc and P \\overline{3} c1-Na3Bi, an important phase transition from a topological Dirac semimetal (TDS) to a topological insulator appears under compression strain around 4.5%. The insulating gap increases with the increasing compressive strain and up to around 0.1 eV at a strain of 10%. However, both P63/mmc and P \\overline{3} c1-Na3Bi still keep the properties of a TDS within a tensile strain of 0-10%, although the Dirac points move away from the Γ point along Γ-A in reciprocal space as the tensile strain increases. The Na3Bi with space group Fm \\overline{3} m is identified as a topological semimetal with the inverted bands between Na-3s and Bi-6p and a parabolic dispersion in the vicinity of Γ point. Interestingly, for Fm \\overline{3} m-Na3Bi, both compression and tensile strain lead to a TDS which is identified by calculating surface Fermi arcs and topological invariants at time-reversal planes (k z = 0 and k z = π/c) in reciprocal space. Additionally, we confirmed the high pressure phase Cmcm-Na3Bi is an ordinary insulator with a gap of about 0.62 eV. It is noteworthy that its gap almost keeps constant around 0.60 eV within a compression strain of 0-10%. In contrast, a remarkable phase transition from an insulator to a metal phase appears under tensile strain. Moreover, this phase transition is highly sensitive to tensile strain and takes place only at a strain 1.0%. These strain-induced electronic structures and phase transitions of the Na3Bi system in various phases are important due to their possible applications under high pressure in future electronic devices.
Belosi, Maria F; Rodriguez, Miguel; Fogliata, Antonella; Cozzi, Luca; Sempau, Josep; Clivio, Alessandro; Nicolini, Giorgia; Vanetti, Eugenio; Krauss, Harald; Khamphan, Catherine; Fenoglietto, Pascal; Puxeu, Josep; Fedele, David; Mancosu, Pietro; Brualla, Lorenzo
2014-05-01
Phase-space files for Monte Carlo simulation of the Varian TrueBeam beams have been made available by Varian. The aim of this study is to evaluate the accuracy of the distributed phase-space files for flattening filter free (FFF) beams, against experimental measurements from ten TrueBeam Linacs. The phase-space files have been used as input in PRIMO, a recently released Monte Carlo program based on the PENELOPE code. Simulations of 6 and 10 MV FFF were computed in a virtual water phantom for field sizes 3 × 3, 6 × 6, and 10 × 10 cm(2) using 1 × 1 × 1 mm(3) voxels and for 20 × 20 and 40 × 40 cm(2) with 2 × 2 × 2 mm(3) voxels. The particles contained in the initial phase-space files were transported downstream to a plane just above the phantom surface, where a subsequent phase-space file was tallied. Particles were transported downstream this second phase-space file to the water phantom. Experimental data consisted of depth doses and profiles at five different depths acquired at SSD = 100 cm (seven datasets) and SSD = 90 cm (three datasets). Simulations and experimental data were compared in terms of dose difference. Gamma analysis was also performed using 1%, 1 mm and 2%, 2 mm criteria of dose-difference and distance-to-agreement, respectively. Additionally, the parameters characterizing the dose profiles of unflattened beams were evaluated for both measurements and simulations. Analysis of depth dose curves showed that dose differences increased with increasing field size and depth; this effect might be partly motivated due to an underestimation of the primary beam energy used to compute the phase-space files. Average dose differences reached 1% for the largest field size. Lateral profiles presented dose differences well within 1% for fields up to 20 × 20 cm(2), while the discrepancy increased toward 2% in the 40 × 40 cm(2) cases. Gamma analysis resulted in an agreement of 100% when a 2%, 2 mm criterion was used, with the only exception of the 40 × 40 cm(2) field (∼95% agreement). With the more stringent criteria of 1%, 1 mm, the agreement reduced to almost 95% for field sizes up to 10 × 10 cm(2), worse for larger fields. Unflatness and slope FFF-specific parameters are in line with the possible energy underestimation of the simulated results relative to experimental data. The agreement between Monte Carlo simulations and experimental data proved that the evaluated Varian phase-space files for FFF beams from TrueBeam can be used as radiation sources for accurate Monte Carlo dose estimation, especially for field sizes up to 10 × 10 cm(2), that is the range of field sizes mostly used in combination to the FFF, high dose rate beams.
Turner, Drew Lawson; O'Brien, T. P.; Fennell, J. F.; ...
2017-01-30
Using observations from NASA's Van Allen Probes, we study the role of sudden particle enhancements at low L shells (SPELLS) as a source of inner radiation belt electrons. SPELLS events are characterized by electron intensity enhancements of approximately an order of magnitude or more in less than 1 day at L < 3. During quiet and average geomagnetic conditions, the phase space density radial distributions for fixed first and second adiabatic invariants are peaked at 2 < L < 3 for electrons ranging in energy from ~50 keV to ~1 MeV, indicating that slow inward radial diffusion is not themore » dominant source of inner belt electrons under quiet/average conditions. During SPELLS events, the evolution of electron distributions reveals an enhancement of phase space density that can exceed 3 orders of magnitude in the slot region and continues into the inner radiation belt, which is evidence that these events are an important—and potentially dominant—source of inner belt electrons. Electron fluxes from September 2012 through February 2016 reveal that SPELLS occur frequently (~2.5/month at 200 keV), but the number of observed events decreases exponentially with increasing electron energy for ≥100 keV. After SPELLS events, the slot region reforms due to slow energy-dependent decay over several day time scales, consistent with losses due to interactions with plasmaspheric hiss. Altogether, these results indicate that the peaked phase space density distributions in the inner electron radiation belt result from an “on/off,” geomagnetic-activity-dependent source from higher radial distances.« less
Phase-space dependent critical gradient behavior of fast-ion transport due to Alfvén eigenmodes
Collins, C. S.; Heidbrink, W. W.; Podestà, M.; ...
2017-06-09
Experiments in the DIII-D tokamak show that many overlapping small-amplitude Alfv en eigenmodes (AEs) cause fast-ion transport to sharply increase above a critical threshold, leading to fast-ion density profile resilience and reduced fusion performance. The threshold is above the AE linear stability limit and varies between diagnostics that are sensitive to different parts of fast-ion phase-space. A comparison with theoretical analysis using the nova and orbit codes shows that, for the neutral particle diagnostic, the threshold corresponds to the onset of stochastic particle orbits due to wave-particle resonances with AEs in the measured region of phase space. We manipulated themore » bulk fast-ion distribution and instability behavior through variations in beam deposition geometry, and no significant differences in the onset threshold outside of measurement uncertainties were found, in agreement with the theoretical stochastic threshold analysis. Simulations using the `kick model' produce beam ion density gradients consistent with the empirically measured radial critical gradient and highlight the importance of including the energy and pitch dependence of the fast-ion distribution function in critical gradient models. The addition of electron cyclotron heating changes the types of AEs present in the experiment, comparatively increasing the measured fast-ion density and radial gradient. Our studies provide the basis for understanding how to avoid AE transport that can undesirably redistribute current and cause fast-ion losses, and the measurements are being used to validate AE-induced transport models that use the critical gradient paradigm, giving greater confidence when applied to ITER.« less
Phase-space dependent critical gradient behavior of fast-ion transport due to Alfvén eigenmodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, C. S.; Heidbrink, W. W.; Podestà, M.
Experiments in the DIII-D tokamak show that many overlapping small-amplitude Alfv en eigenmodes (AEs) cause fast-ion transport to sharply increase above a critical threshold, leading to fast-ion density profile resilience and reduced fusion performance. The threshold is above the AE linear stability limit and varies between diagnostics that are sensitive to different parts of fast-ion phase-space. A comparison with theoretical analysis using the nova and orbit codes shows that, for the neutral particle diagnostic, the threshold corresponds to the onset of stochastic particle orbits due to wave-particle resonances with AEs in the measured region of phase space. We manipulated themore » bulk fast-ion distribution and instability behavior through variations in beam deposition geometry, and no significant differences in the onset threshold outside of measurement uncertainties were found, in agreement with the theoretical stochastic threshold analysis. Simulations using the `kick model' produce beam ion density gradients consistent with the empirically measured radial critical gradient and highlight the importance of including the energy and pitch dependence of the fast-ion distribution function in critical gradient models. The addition of electron cyclotron heating changes the types of AEs present in the experiment, comparatively increasing the measured fast-ion density and radial gradient. Our studies provide the basis for understanding how to avoid AE transport that can undesirably redistribute current and cause fast-ion losses, and the measurements are being used to validate AE-induced transport models that use the critical gradient paradigm, giving greater confidence when applied to ITER.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, Drew Lawson; O'Brien, T. P.; Fennell, J. F.
Using observations from NASA's Van Allen Probes, we study the role of sudden particle enhancements at low L shells (SPELLS) as a source of inner radiation belt electrons. SPELLS events are characterized by electron intensity enhancements of approximately an order of magnitude or more in less than 1 day at L < 3. During quiet and average geomagnetic conditions, the phase space density radial distributions for fixed first and second adiabatic invariants are peaked at 2 < L < 3 for electrons ranging in energy from ~50 keV to ~1 MeV, indicating that slow inward radial diffusion is not themore » dominant source of inner belt electrons under quiet/average conditions. During SPELLS events, the evolution of electron distributions reveals an enhancement of phase space density that can exceed 3 orders of magnitude in the slot region and continues into the inner radiation belt, which is evidence that these events are an important—and potentially dominant—source of inner belt electrons. Electron fluxes from September 2012 through February 2016 reveal that SPELLS occur frequently (~2.5/month at 200 keV), but the number of observed events decreases exponentially with increasing electron energy for ≥100 keV. After SPELLS events, the slot region reforms due to slow energy-dependent decay over several day time scales, consistent with losses due to interactions with plasmaspheric hiss. Altogether, these results indicate that the peaked phase space density distributions in the inner electron radiation belt result from an “on/off,” geomagnetic-activity-dependent source from higher radial distances.« less
Models of primary runaway electron distribution in the runaway vortex regime
Guo, Zehua; Tang, Xian-Zhu; McDevitt, Christopher J.
2017-11-01
Generation of runaway electrons (RE) beams can possibly induce the most deleterious effect of tokamak disruptions. A number of recent numerical calculations have confirmed the formation of a RE bump in their energy distribution by taking into account Synchrontron radiational damping force due to RE’s gyromotions. Here, we present a detailed examination on how the bump location changes at different pitch-angle and the characteristics of the RE pitch-angle distribution. Although REs moving along the magnetic field are preferably accelerated and then populate the phase-space of larger pitch-angle mainly through diffusions, an off-axis peak can still form due to the presencemore » of the vortex structure which causes accumulation of REs at low pitch-angle. A simplified Fokker- Planck model and its semi-analytical solutions based on local expansions around the O point is used to illustrate the characteristics of RE distribution around the O point of the runaway vortex in phase-space. The calculated energy location of the O point together with the local energy and pitch-angle distributions agree with the full numerical solution.« less
Long-term, correlated emittance decrease in intense, high-brightness induction linacs
NASA Astrophysics Data System (ADS)
Carlsten, Bruce E.
1999-09-01
Simulations of high-brightness induction linacs often show a slow, long-term emittance decrease as the beam is matched from the electron gun into the linac. Superimposed on this long-term decrease are rapid emittance oscillations. These effects can be described in terms of correlations in the beam's radial phase space. The rapid emittance oscillations are due to transverse plasma oscillations, which stay nearly in phase for different radial positions within the beam. The initial emittance, just after the electron gun, is dominated by nonlinear focusing within the gun introduced by the anode exit hole. Due to the large space-charge force of an intense electron beam, the focusing of the beam through the matching section introduces an effective nonlinear force (from the change in the particles' potential energies) which counteracts the nonlinearities from the electron gun, leading to an average, long-term emittance decrease. Not all of the initial nonlinearity is removed by the matching procedure, and there are important consequences both for emittance measurements using solenoid focal length scans and for focusing the electron beam to a target.
BRST Quantization of the Proca Model Based on the BFT and the BFV Formalism
NASA Astrophysics Data System (ADS)
Kim, Yong-Wan; Park, Mu-In; Park, Young-Jai; Yoon, Sean J.
The BRST quantization of the Abelian Proca model is performed using the Batalin-Fradkin-Tyutin and the Batalin-Fradkin-Vilkovisky formalism. First, the BFT Hamiltonian method is applied in order to systematically convert a second class constraint system of the model into an effectively first class one by introducing new fields. In finding the involutive Hamiltonian we adopt a new approach which is simpler than the usual one. We also show that in our model the Dirac brackets of the phase space variables in the original second class constraint system are exactly the same as the Poisson brackets of the corresponding modified fields in the extended phase space due to the linear character of the constraints comparing the Dirac or Faddeev-Jackiw formalisms. Then, according to the BFV formalism we obtain that the desired resulting Lagrangian preserving BRST symmetry in the standard local gauge fixing procedure naturally includes the Stückelberg scalar related to the explicit gauge symmetry breaking effect due to the presence of the mass term. We also analyze the nonstandard nonlocal gauge fixing procedure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Zehua; Tang, Xian-Zhu; McDevitt, Christopher J.
Generation of runaway electrons (RE) beams can possibly induce the most deleterious effect of tokamak disruptions. A number of recent numerical calculations have confirmed the formation of a RE bump in their energy distribution by taking into account Synchrontron radiational damping force due to RE’s gyromotions. Here, we present a detailed examination on how the bump location changes at different pitch-angle and the characteristics of the RE pitch-angle distribution. Although REs moving along the magnetic field are preferably accelerated and then populate the phase-space of larger pitch-angle mainly through diffusions, an off-axis peak can still form due to the presencemore » of the vortex structure which causes accumulation of REs at low pitch-angle. A simplified Fokker- Planck model and its semi-analytical solutions based on local expansions around the O point is used to illustrate the characteristics of RE distribution around the O point of the runaway vortex in phase-space. The calculated energy location of the O point together with the local energy and pitch-angle distributions agree with the full numerical solution.« less
Sensitivity of Atom Interferometry to Ultralight Scalar Field Dark Matter.
Geraci, Andrew A; Derevianko, Andrei
2016-12-23
We discuss the use of atom interferometry as a tool to search for dark matter (DM) composed of virialized ultralight fields (VULFs). Previous work on VULF DM detection using accelerometers has considered the possibility of equivalence-principle-violating effects whereby gradients in the dark matter field can directly produce relative accelerations between media of differing composition. In atom interferometers, we find that time-varying phase signals induced by coherent oscillations of DM fields can also arise due to changes in the atom rest mass that can occur between light pulses throughout the interferometer sequence as well as changes in Earth's gravitational field. We estimate that several orders of magnitude of unexplored phase space for VULF DM couplings can be probed due to these new effects.
A microwave interferometer for small and tenuous plasma density measurements.
Tudisco, O; Lucca Fabris, A; Falcetta, C; Accatino, L; De Angelis, R; Manente, M; Ferri, F; Florean, M; Neri, C; Mazzotta, C; Pavarin, D; Pollastrone, F; Rocchi, G; Selmo, A; Tasinato, L; Trezzolani, F; Tuccillo, A A
2013-03-01
The non-intrusive density measurement of the thin plasma produced by a mini-helicon space thruster (HPH.com project) is a challenge, due to the broad density range (between 10(16) m(-3) and 10(19) m(-3)) and the small size of the plasma source (2 cm of diameter). A microwave interferometer has been developed for this purpose. Due to the small size of plasma, the probing beam wavelength must be small (λ = 4 mm), thus a very high sensitivity interferometer is required in order to observe the lower density values. A low noise digital phase detector with a phase noise of 0.02° has been used, corresponding to a density of 0.5 × 10(16) m(-3).
Is There a Space-Based Technology Solution to Problems with Preclinical Drug Toxicity Testing?
Hammond, Timothy; Allen, Patricia; Birdsall, Holly
2016-07-01
Even the finest state-of-the art preclinical drug testing, usually in primary hepatocytes, remains an imperfect science. Drugs continue to be withdrawn from the market due to unforeseen toxicity, side effects, and drug interactions. The space program may be able to provide a lifeline. Best known for rockets, space shuttles, astronauts and engineering, the space program has also delivered some serious medical science. Optimized suspension culture in NASA's specialized suspension culture devices, known as rotating wall vessels, uniquely maintains Phase I and Phase II drug metabolizing pathways in hepatocytes for weeks in cell culture. Previously prohibitively expensive, new materials and 3D printing techniques have the potential to make the NASA rotating wall vessel available inexpensively on an industrial scale. Here we address the tradeoffs inherent in the rotating wall vessel, limitations of alternative approaches for drug metabolism studies, and the market to be addressed. Better pre-clinical drug testing has the potential to significantly reduce the morbidity and mortality of one of the most common problems in modern medicine: adverse events related to pharmaceuticals.
Transport of a high brightness proton beam through the Munich tandem accelerator
NASA Astrophysics Data System (ADS)
Moser, M.; Greubel, C.; Carli, W.; Peeper, K.; Reichart, P.; Urban, B.; Vallentin, T.; Dollinger, G.
2015-04-01
Basic requirement for ion microprobes with sub-μm beam focus is a high brightness beam to fill the small phase space usually accepted by the ion microprobe with enough ion current for the desired application. We performed beam transport simulations to optimize beam brightness transported through the Munich tandem accelerator. This was done under the constraint of a maximum ion current of 10 μA that is allowed to be injected due to radiation safety regulations and beam power constrains. The main influence of the stripper foil in conjunction with intrinsic astigmatism in the beam transport on beam brightness is discussed. The calculations show possibilities for brightness enhancement by using astigmatism corrections and asymmetric filling of the phase space volume in the x- and y-direction.
NASA Astrophysics Data System (ADS)
Fox, W.; Porkolab, M.; Egedal, J.; Katz, N.; Le, A.
2012-03-01
This work presents detailed experimental observations of electron phase-space holes driven during magnetic reconnection events on the Versatile Toroidal Facility. The holes are observed to travel on the order of or faster than the electron thermal speed, and are of large size scale, with diameter of order 60 Debye lengths. In addition, they have 3D spheroidal structure with approximately unity aspect ratio. We estimate the direct anomalous resistivity due to ion interaction with the holes and find it to be too small to affect the reconnection rate; however, the holes may play a role in reining in a tail of accelerated electrons and they indicate the presence of other processes in the reconnection layer, such as electron energization and electron beam formation.
Optical Interface States Protected by Synthetic Weyl Points
NASA Astrophysics Data System (ADS)
Wang, Qiang; Xiao, Meng; Liu, Hui; Zhu, Shining; Chan, C. T.
2017-07-01
Weyl fermions have not been found in nature as elementary particles, but they emerge as nodal points in the band structure of electronic and classical wave crystals. Novel phenomena such as Fermi arcs and chiral anomaly have fueled the interest in these topological points which are frequently perceived as monopoles in momentum space. Here, we report the experimental observation of generalized optical Weyl points inside the parameter space of a photonic crystal with a specially designed four-layer unit cell. The reflection at the surface of a truncated photonic crystal exhibits phase vortexes due to the synthetic Weyl points, which in turn guarantees the existence of interface states between photonic crystals and any reflecting substrates. The reflection phase vortexes have been confirmed for the first time in our experiments, which serve as an experimental signature of the generalized Weyl points. The existence of these interface states is protected by the topological properties of the Weyl points, and the trajectories of these states in the parameter space resembles those of Weyl semimetal "Fermi arc surface states" in momentum space. Tracing the origin of interface states to the topological character of the parameter space paves the way for a rational design of strongly localized states with enhanced local field.
A comparative study of the Aurivillius phase ferroelectrics CaBi 4Ti 4O 15 and BaBi 4Ti 4O 15
NASA Astrophysics Data System (ADS)
Tellier, J.; Boullay, Ph.; Manier, M.; Mercurio, D.
2004-06-01
The room temperature structures of the four-layer Aurivillius phase ferroelectrics CaBi 4Ti 4O 15 and BaBi 4Ti 4O 15 are determined by means of single crystal X-ray diffraction. Regarding the CaBi 4Ti 4O 15 phase, in agreement with the tolerance factor, a significant deformation of the perovskite blocks is observed. The rotation system of the octahedra is typical from even layer Aurivillius phases and leads to the use of the space group A2 1am. For the BaBi 4Ti 4O 15 phase, only a weak variation with respect to the F2 mm space group can be suggested from single crystal X-ray diffraction. A significant presence of Ba atoms in the [ M2O 2] slabs is confirmed in agreement with the previous works but specific Ba 2+ and Bi 3+ sites have to be considered due to the large difference in bounding requirement of these cations. Possible origins for the ferroelectric relaxor behavior of the Ba-based compound are discussed in view of the presented structural analyses.
Park, Hyun Soon; Yu, Xiuzhen; Aizawa, Shinji; Tanigaki, Toshiaki; Akashi, Tetsuya; Takahashi, Yoshio; Matsuda, Tsuyoshi; Kanazawa, Naoya; Onose, Yoshinori; Shindo, Daisuke; Tonomura, Akira; Tokura, Yoshinori
2014-05-01
Skyrmions are nanoscale spin textures that are viewed as promising candidates as information carriers in future spintronic devices. Skyrmions have been observed using neutron scattering and microscopy techniques. Real-space imaging using electrons is a straightforward way to interpret spin configurations by detecting the phase shifts due to electromagnetic fields. Here, we report the first observation by electron holography of the magnetic flux and the three-dimensional spin configuration of a skyrmion lattice in Fe(0.5)Co(0.5)Si thin samples. The magnetic flux inside and outside a skyrmion was directly visualized and the handedness of the magnetic flux flow was found to be dependent on the direction of the applied magnetic field. The electron phase shifts φ in the helical and skyrmion phases were determined using samples with a stepped thickness t (from 55 nm to 510 nm), revealing a linear relationship (φ = 0.00173 t). The phase measurements were used to estimate the three-dimensional structures of both the helical and skyrmion phases, demonstrating that electron holography is a useful tool for studying complex magnetic structures and for three-dimensional, real-space mapping of magnetic fields.
Phase shifts in I = 2 ππ-scattering from two lattice approaches
NASA Astrophysics Data System (ADS)
Kurth, T.; Ishii, N.; Doi, T.; Aoki, S.; Hatsuda, T.
2013-12-01
We present a lattice QCD study of the phase shift of I = 2 ππ scattering on the basis of two different approaches: the standard finite volume approach by Lüscher and the recently introduced HAL QCD potential method. Quenched QCD simulations are performed on lattices with extents N s = 16 , 24 , 32 , 48 and N t = 128 as well as lattice spacing a ~ 0 .115 fm and a pion mass of m π ~ 940 MeV. The phase shift and the scattering length are calculated in these two methods. In the potential method, the error is dominated by the systematic uncertainty associated with the violation of rotational symmetry due to finite lattice spacing. In Lüscher's approach, such systematic uncertainty is difficult to be evaluated and thus is not included in this work. A systematic uncertainty attributed to the quenched approximation, however, is not evaluated in both methods. In case of the potential method, the phase shift can be calculated for arbitrary energies below the inelastic threshold. The energy dependence of the phase shift is also obtained from Lüscher's method using different volumes and/or nonrest-frame extension of it. The results are found to agree well with the potential method.
Phase-space mass bound for fermionic dark matter from dwarf spheroidal galaxies
NASA Astrophysics Data System (ADS)
Di Paolo, Chiara; Nesti, Fabrizio; Villante, Francesco L.
2018-04-01
We reconsider the lower bound on the mass of a fermionic dark matter (DM) candidate resulting from the existence of known small dwarf spheroidal galaxies, in the hypothesis that their DM halo is constituted by degenerate fermions, with phase-space density limited by the Pauli exclusion principle. By relaxing the common assumption that the DM halo scale radius is tied to that of the luminous stellar component and by marginalizing on the unknown stellar velocity dispersion anisotropy, we prove that observations lead to rather weak constraints on the DM mass, which could be as low as tens of eV. In this scenario, however, the DM haloes would be quite large and massive, so that a bound stems from the requirement that the time of orbital decay due to dynamical friction in the hosting Milky Way DM halo is longer than their lifetime. The smallest and nearest satellites Segue I and Willman I lead to a final lower bound of m ≳ 100 eV, still weaker than previous estimates but robust and independent on the model of DM formation and decoupling. We thus show that phase-space constraints do not rule out the possibility of sub-keV fermionic DM.
Phased array ghost elimination.
Kellman, Peter; McVeigh, Elliot R
2006-05-01
Parallel imaging may be applied to cancel ghosts caused by a variety of distortion mechanisms, including distortions such as off-resonance or local flow, which are space variant. Phased array combining coefficients may be calculated that null ghost artifacts at known locations based on a constrained optimization, which optimizes SNR subject to the nulling constraint. The resultant phased array ghost elimination (PAGE) technique is similar to the method known as sensitivity encoding (SENSE) used for accelerated imaging; however, in this formulation is applied to full field-of-view (FOV) images. The phased array method for ghost elimination may result in greater flexibility in designing acquisition strategies. For example, in multi-shot EPI applications ghosts are typically mitigated by the use of an interleaved phase encode acquisition order. An alternative strategy is to use a sequential, non-interleaved phase encode order and cancel the resultant ghosts using PAGE parallel imaging. Cancellation of ghosts by means of phased array processing makes sequential, non-interleaved phase encode acquisition order practical, and permits a reduction in repetition time, TR, by eliminating the need for echo-shifting. Sequential, non-interleaved phase encode order has benefits of reduced distortion due to off-resonance, in-plane flow and EPI delay misalignment. Furthermore, the use of EPI with PAGE has inherent fat-water separation and has been used to provide off-resonance correction using a technique referred to as lipid elimination with an echo-shifting N/2-ghost acquisition (LEENA), and may further generalized using the multi-point Dixon method. Other applications of PAGE include cancelling ghosts which arise due to amplitude or phase variation during the approach to steady state. Parallel imaging requires estimates of the complex coil sensitivities. In vivo estimates may be derived by temporally varying the phase encode ordering to obtain a full k-space dataset in a scheme similar to the autocalibrating TSENSE method. This scheme is a generalization of the UNFOLD method used for removing aliasing in undersampled acquisitions. The more general scheme may be used to modulate each EPI ghost image to a separate temporal frequency as described in this paper. Copyright (c) 2006 John Wiley & Sons, Ltd.
Phased array ghost elimination
Kellman, Peter; McVeigh, Elliot R.
2007-01-01
Parallel imaging may be applied to cancel ghosts caused by a variety of distortion mechanisms, including distortions such as off-resonance or local flow, which are space variant. Phased array combining coefficients may be calculated that null ghost artifacts at known locations based on a constrained optimization, which optimizes SNR subject to the nulling constraint. The resultant phased array ghost elimination (PAGE) technique is similar to the method known as sensitivity encoding (SENSE) used for accelerated imaging; however, in this formulation is applied to full field-of-view (FOV) images. The phased array method for ghost elimination may result in greater flexibility in designing acquisition strategies. For example, in multi-shot EPI applications ghosts are typically mitigated by the use of an interleaved phase encode acquisition order. An alternative strategy is to use a sequential, non-interleaved phase encode order and cancel the resultant ghosts using PAGE parallel imaging. Cancellation of ghosts by means of phased array processing makes sequential, non-interleaved phase encode acquisition order practical, and permits a reduction in repetition time, TR, by eliminating the need for echo-shifting. Sequential, non-interleaved phase encode order has benefits of reduced distortion due to off-resonance, in-plane flow and EPI delay misalignment. Furthermore, the use of EPI with PAGE has inherent fat-water separation and has been used to provide off-resonance correction using a technique referred to as lipid elimination with an echo-shifting N/2-ghost acquisition (LEENA), and may further generalized using the multi-point Dixon method. Other applications of PAGE include cancelling ghosts which arise due to amplitude or phase variation during the approach to steady state. Parallel imaging requires estimates of the complex coil sensitivities. In vivo estimates may be derived by temporally varying the phase encode ordering to obtain a full k-space dataset in a scheme similar to the autocalibrating TSENSE method. This scheme is a generalization of the UNFOLD method used for removing aliasing in undersampled acquisitions. The more general scheme may be used to modulate each EPI ghost image to a separate temporal frequency as described in this paper. PMID:16705636
NASA Astrophysics Data System (ADS)
Baba, S.; Sakai, T.; Sawada, K.; Kubota, C.; Wada, Y.; Shinmoto, Y.; Ohta, H.; Asano, H.; Kawanami, O.; Suzuki, K.; Imai, R.; Kawasaki, H.; Fujii, K.; Takayanagi, M.; Yoda, S.
2011-12-01
Boiling is one of the efficient modes of heat transfer due to phase change, and is regarded as promising means to be applied for the thermal management systems handling a large amount of waste heat under high heat flux. However, gravity effects on the two-phase flow phenomena and corresponding heat transfer characteristics have not been clarified in detail. The experiments onboard Japanese Experiment Module "KIBO" in International Space Station on boiling two-phase flow under microgravity conditions are proposed to clarify both of heat transfer and flow characteristics under microgravity conditions. To verify the feasibility of ISS experiments on boiling two-phase flow, the Bread Board Model is assembled and its performance and the function of components installed in a test loop are examined.
Pore-scale Simulation and Imaging of Multi-phase Flow and Transport in Porous Media (Invited)
NASA Astrophysics Data System (ADS)
Crawshaw, J.; Welch, N.; Daher, I.; Yang, J.; Shah, S.; Grey, F.; Boek, E.
2013-12-01
We combine multi-scale imaging and computer simulation of multi-phase flow and reactive transport in rock samples to enhance our fundamental understanding of long term CO2 storage in rock formations. The imaging techniques include Confocal Laser Scanning Microscopy (CLSM), micro-CT and medical CT scanning, with spatial resolutions ranging from sub-micron to mm respectively. First, we report a new sample preparation technique to study micro-porosity in carbonates using CLSM in 3 dimensions. Second, we use micro-CT scanning to generate high resolution 3D pore space images of carbonate and cap rock samples. In addition, we employ micro-CT to image the processes of evaporation in fractures and cap rock degradation due to exposure to CO2 flow. Third, we use medical CT scanning to image spontaneous imbibition in carbonate rock samples. Our imaging studies are complemented by computer simulations of multi-phase flow and transport, using the 3D pore space images obtained from the scanning experiments. We have developed a massively parallel lattice-Boltzmann (LB) code to calculate the single phase flow field in these pore space images. The resulting flow fields are then used to calculate hydrodynamic dispersion using a novel scheme to predict probability distributions for molecular displacements using the LB method and a streamline algorithm, modified for optimal solid boundary conditions. We calculate solute transport on pore-space images of rock cores with increasing degree of heterogeneity: a bead pack, Bentheimer sandstone and Portland carbonate. We observe that for homogeneous rock samples, such as bead packs, the displacement distribution remains Gaussian with time increasing. In the more heterogeneous rocks, on the other hand, the displacement distribution develops a stagnant part. We observe that the fraction of trapped solute increases from the beadpack (0 %) to Bentheimer sandstone (1.5 %) to Portland carbonate (8.1 %), in excellent agreement with PFG-NMR experiments. We then use our preferred multi-phase model to directly calculate flow in pore space images of two different sandstones and observe excellent agreement with experimental relative permeabilities. Also we calculate cluster size distributions in good agreement with experimental studies. Our analysis shows that the simulations are able to predict both multi-phase flow and transport properties directly on large 3D pore space images of real rocks. Pore space images, left and velocity distributions, right (Yang and Boek, 2013)
Cell separations and the demixing of aqueous two phase polymer solutions in microgravity
NASA Technical Reports Server (NTRS)
Brooks, Donald E.; Bamberger, Stephan; Harris, J. M.; Van Alstine, James M.
1991-01-01
Partition in phase separated aqueous polymer solutions is a cell separation procedure thought to be adversely influenced by gravity. In preparation for performing cell partitioning experiments in space, and to provide general information concerning the demixing of immiscible liquids in low gravity, a series of phase separated aqueous polymer solutions have been flown on two shuttle flights. Fluorocarbon oil and water emulsions were also flown on the second flight. The aqueous polymer emulsions, which in one g demix largely by sedimentation and convection due to the density differences between the phases, demixed more slowly than on the ground and the final disposition of the phases was determined by the wetting of the container wall by the phases. The demixing behavior and kinetics were influenced by the phase volume ratio, physical properties of the systems and chamber wall interaction. The average domain size increased linearly with time as the systems demixed.
Learning phase transitions by confusion
NASA Astrophysics Data System (ADS)
van Nieuwenburg, Evert P. L.; Liu, Ye-Hua; Huber, Sebastian D.
2017-02-01
Classifying phases of matter is key to our understanding of many problems in physics. For quantum-mechanical systems in particular, the task can be daunting due to the exponentially large Hilbert space. With modern computing power and access to ever-larger data sets, classification problems are now routinely solved using machine-learning techniques. Here, we propose a neural-network approach to finding phase transitions, based on the performance of a neural network after it is trained with data that are deliberately labelled incorrectly. We demonstrate the success of this method on the topological phase transition in the Kitaev chain, the thermal phase transition in the classical Ising model, and the many-body-localization transition in a disordered quantum spin chain. Our method does not depend on order parameters, knowledge of the topological content of the phases, or any other specifics of the transition at hand. It therefore paves the way to the development of a generic tool for identifying unexplored phase transitions.
The eigenvalue problem in phase space.
Cohen, Leon
2018-06-30
We formulate the standard quantum mechanical eigenvalue problem in quantum phase space. The equation obtained involves the c-function that corresponds to the quantum operator. We use the Wigner distribution for the phase space function. We argue that the phase space eigenvalue equation obtained has, in addition to the proper solutions, improper solutions. That is, solutions for which no wave function exists which could generate the distribution. We discuss the conditions for ascertaining whether a position momentum function is a proper phase space distribution. We call these conditions psi-representability conditions, and show that if these conditions are imposed, one extracts the correct phase space eigenfunctions. We also derive the phase space eigenvalue equation for arbitrary phase space distributions functions. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karamatskos, E. T.; Stockhofe, J.; Kevrekidis, P. G.
In this study, we consider a binary repulsive Bose-Einstein condensate in a harmonic trap in one spatial dimension and investigate particular solutions consisting of two dark-bright solitons. There are two different stationary solutions characterized by the phase difference in the bright component, in-phase and out-of-phase states. We show that above a critical particle number in the bright component, a symmetry-breaking bifurcation of the pitchfork type occurs that leads to a new asymmetric solution whereas the parental branch, i.e., the out-of-phase state, becomes unstable. These three different states support different small amplitude oscillations, characterized by an almost stationary density of themore » dark component and a tunneling of the bright component between the two dark solitons. Within a suitable effective double-well picture, these can be understood as the characteristic features of a bosonic Josephson junction (BJJ), and we show within a two-mode approach that all characteristic features of the BJJ phase space are recovered. For larger deviations from the stationary states, the simplifying double-well description breaks down due to the feedback of the bright component onto the dark one, causing the solitons to move. In this regime we observe intricate anharmonic and aperiodic dynamics, exhibiting remnants of the BJJ phase space.« less
Latent heat of vehicular motion
NASA Astrophysics Data System (ADS)
Ahmadi, Farzad; Berrier, Austin; Habibi, Mohammad; Boreyko, Jonathan
2016-11-01
We have used the thermodynamic concept of latent heat, where a system loses energy due to a solid-to-liquid phase transition, to study the flow of a group of vehicles moving from rest. During traffic flow, drivers keep a large distance from the car in front of them to ensure safe driving. When a group of cars comes to a stop, for example at a red light, drivers voluntarily induce a "phase transition" from this "liquid phase" to a close-packed "solid phase." This phase transition is motivated by the intuition that maximizing displacement before stopping will minimize the overall travel time. To test the effects of latent heat on flow efficiency, a drone captured the dynamics of cars flowing through an intersection on a Smart Road where the initial spacing between cars at the red light was systematically varied. By correlating the experimental results with the Optimal Velocity Model (OVM), we find that the convention of inducing phase transitions at intersections offers no benefit, as the lag time (latent heat) of resumed flow offsets the initial increase in displacement. These findings suggest that in situations where gridlock is not an issue, drivers should not decrease their spacing during stoppages in order to maximize safety with no loss in flow efficiency.
Stability and tunneling dynamics of a dark-bright soliton pair in a harmonic trap
Karamatskos, E. T.; Stockhofe, J.; Kevrekidis, P. G.; ...
2015-04-30
In this study, we consider a binary repulsive Bose-Einstein condensate in a harmonic trap in one spatial dimension and investigate particular solutions consisting of two dark-bright solitons. There are two different stationary solutions characterized by the phase difference in the bright component, in-phase and out-of-phase states. We show that above a critical particle number in the bright component, a symmetry-breaking bifurcation of the pitchfork type occurs that leads to a new asymmetric solution whereas the parental branch, i.e., the out-of-phase state, becomes unstable. These three different states support different small amplitude oscillations, characterized by an almost stationary density of themore » dark component and a tunneling of the bright component between the two dark solitons. Within a suitable effective double-well picture, these can be understood as the characteristic features of a bosonic Josephson junction (BJJ), and we show within a two-mode approach that all characteristic features of the BJJ phase space are recovered. For larger deviations from the stationary states, the simplifying double-well description breaks down due to the feedback of the bright component onto the dark one, causing the solitons to move. In this regime we observe intricate anharmonic and aperiodic dynamics, exhibiting remnants of the BJJ phase space.« less
Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers.
Consolino, L; Taschin, A; Bartolini, P; Bartalini, S; Cancio, P; Tredicucci, A; Beere, H E; Ritchie, D A; Torre, R; Vitiello, M S; De Natale, P
2012-01-01
Optical frequency comb synthesizers have represented a revolutionary approach to frequency metrology, providing a grid of frequency references for any laser emitting within their spectral coverage. Extending the metrological features of optical frequency comb synthesizers to the terahertz domain would be a major breakthrough, due to the widespread range of accessible strategic applications and the availability of stable, high-power and widely tunable sources such as quantum cascade lasers. Here we demonstrate phase-locking of a 2.5 THz quantum cascade laser to a free-space comb, generated in a LiNbO(3) waveguide and covering the 0.1-6 THz frequency range. We show that even a small fraction (<100 nW) of the radiation emitted from the quantum cascade laser is sufficient to generate a beat note suitable for phase-locking to the comb, paving the way to novel metrological-grade terahertz applications, including high-resolution spectroscopy, manipulation of cold molecules, astronomy and telecommunications.
LOADED WAVE GUIDES FOR LINEAR ACCELERATORS
Walkinshaw, W.; Mullett, L.B.
1959-12-01
A periodically loaded waveguide having substantially coaxially arranged elements which provide an axial field for the acceleration of electrons is described. Radiofrequency energy will flow in the space between the inner wall of an outer guide and the peripheries of equally spaced irises or washes arranged coaxially with each other and with the outer guide, where the loading due to the geometry of the irises is such as to reduce the phase velocity of the r-f energy flowing in the guide from a value greater than that of light to the velocity of light or less.
Ground systems and operations concepts for the Space Infrared Telescope Facility (SIRTF)
NASA Technical Reports Server (NTRS)
Miller, Richard B.
1991-01-01
Key requirements and ground systems implementation strategy for SIRTF which presents a significant challenge in the operational phase of the mission are discussed. The facility is aimed at reliably integrating a guaranteed time program, requests from about 200 guest observer teams per year, and observatory maintenance. SIRFT is characterized by the five-year life time due to cryogen boil-off which means that the ground system must be fully operational at launch and must operate with an efficiency and timeliness rarely achieved in previous space missions.
DNS of flow in stenosed carotid artery
NASA Astrophysics Data System (ADS)
Grinberg, Leopold; Yakhot, Alexander; Karniadakis, George
2006-11-01
Direct numerical simulation (DNS) of a three-dimensional flow through a stenosed carotid artery has been performed. Onset of turbulence downstream of the occlusion has been observed. The developing turbulence is characterized by an alternating spatio-temporal transitional regime. The transition to turbulence occurs during the systolic phase approximately five throat-diameters downstream of the throat, while laminarization occurs during the diastolic phase. Transition in space is first enhanced and subsequently decays downstream. The wall shear stress increases in the stenosed internal carotid artery due to the vessel occlusion and as the result of turbulence.
Wither the Jasmine: China’s Two-Phase Operation for Cyber Control-in-Depth
2012-01-01
issued a directive requesting all websites to “con- duct strict searches of interactive spaces such as online forums, blogs, micro - blogs, instant message...February 2011, the area in front of the Wangfujing McDonald’s was sealed off with signs saying that the area was under construction due to sinking pavement
NASA Astrophysics Data System (ADS)
Ahmed, Abdullahi; Mateo-Garcia, Monica; McGough, Danny; Caratella, Kassim; Ure, Zafer
2018-02-01
Indoor Environmental Quality (IEQ) is essential for the health and productivity of building users. The risk of overheating in buildings is increasing due to increased density of occupancy of people and heat emitting equipment, increase in ambient temperature due to manifestation of climate change or changes in urban micro-climate. One of the solutions to building overheating is to inject some exposed thermal mass into the interior of the building. There are many different types of thermal storage materials which typically includes sensible heat storage materials such as concrete, bricks, rocks etc. It is very difficult to increase the thermal mass of existing buildings using these sensible heat storage materials. Alternative to these, there are latent heat storage materials called Phase Change Materials (PCM), which have high thermal storage capacity per unit volume of materials making them easy to implement within retrofit project. The use of Passive Cooling Thermal Energy Storage (TES) systems in the form of PCM PlusICE Solutions has been investigated in occupied spaces to improve indoor environmental quality. The work has been carried out using experimental set-up in existing spaces and monitored through the summer the months. The rooms have been monitored using wireless temperature and humidity sensors. There appears to be significant improvement in indoor temperature of up to 5°K in the room with the PCM compared to the monitored control spaces. The success of PCM for passive cooling is strongly dependent on the ventilation strategy employed in the spaces. The use of night time cooling to purge the stored thermal energy is essential for improved efficacy of the systems to reduce overheating in the spaces. The investigation is carried within the EU funded RESEEPEE project.
Anharmonic quantum mechanical systems do not feature phase space trajectories
NASA Astrophysics Data System (ADS)
Oliva, Maxime; Kakofengitis, Dimitris; Steuernagel, Ole
2018-07-01
Phase space dynamics in classical mechanics is described by transport along trajectories. Anharmonic quantum mechanical systems do not allow for a trajectory-based description of their phase space dynamics. This invalidates some approaches to quantum phase space studies. We first demonstrate the absence of trajectories in general terms. We then give an explicit proof for all quantum phase space distributions with negative values: we show that the generation of coherences in anharmonic quantum mechanical systems is responsible for the occurrence of singularities in their phase space velocity fields, and vice versa. This explains numerical problems repeatedly reported in the literature, and provides deeper insight into the nature of quantum phase space dynamics.
Yu Pomjakushin, V; Krzton-Maziopa, A; Pomjakushina, E V; Conder, K; Chernyshov, D; Svitlyk, V; Bosak, A
2012-10-31
The crystal and magnetic structures of the superconducting iron-based chalcogenides Rb(y)Fe(2-x)Se(2) have been studied by means of single-crystal synchrotron x-ray and high-resolution neutron powder diffraction in the temperature range 2-570 K. The ground state of the crystal is an intrinsically phase-separated state with two distinct-by-symmetry phases. The main phase has the iron vacancy ordered √5 × √5 superstructure (I4/m space group) with AFM ordered Fe spins. The minority phase does not have √5 × √5-type of ordering and has a smaller in-plane lattice constant a and larger tetragonal c-axis and can be well described by assuming the parent average vacancy disordered structure (I4/mmm space group) with the refined stoichiometry Rb(0.60(5))(Fe(1.10(5))Se)(2). The minority phase amounts to 8-10% mass fraction. The unit cell volume of the minority phase is 3.2% smaller than the one of the main phase at T = 2 K and has quite different temperature dependence. The minority phase merges with the main vacancy ordered phase on heating above the phase separation temperature T(P) = 475 K. The spatial dimensions of the phase domains strongly increase above T(P) from 1000 to >2500 Å due to the integration of the regions of the main phase that were separated by the second phase at low temperatures. Additional annealing of the crystals at a temperature T = 488 K, close to T(P), for a long time drastically reduces the amount of the minority phase.
Dust environment of an airless object: A phase space study with kinetic models
NASA Astrophysics Data System (ADS)
Kallio, E.; Dyadechkin, S.; Fatemi, S.; Holmström, M.; Futaana, Y.; Wurz, P.; Fernandes, V. A.; Álvarez, F.; Heilimo, J.; Jarvinen, R.; Schmidt, W.; Harri, A.-M.; Barabash, S.; Mäkelä, J.; Porjo, N.; Alho, M.
2016-01-01
The study of dust above the lunar surface is important for both science and technology. Dust particles are electrically charged due to impact of the solar radiation and the solar wind plasma and, therefore, they affect the plasma above the lunar surface. Dust is also a health hazard for crewed missions because micron and sub-micron sized dust particles can be toxic and harmful to the human body. Dust also causes malfunctions in mechanical devices and is therefore a risk for spacecraft and instruments on the lunar surface. Properties of dust particles above the lunar surface are not fully known. However, it can be stated that their large surface area to volume ratio due to their irregular shape, broken chemical bonds on the surface of each dust particle, together with the reduced lunar environment cause the dust particles to be chemically very reactive. One critical unknown factor is the electric field and the electric potential near the lunar surface. We have developed a modelling suite, Dusty Plasma Environments: near-surface characterisation and Modelling (DPEM), to study globally and locally dust environments of the Moon and other airless bodies. The DPEM model combines three independent kinetic models: (1) a 3D hybrid model, where ions are modelled as particles and electrons are modelled as a charged neutralising fluid, (2) a 2D electrostatic Particle-in-Cell (PIC) model where both ions and electrons are treated as particles, and (3) a 3D Monte Carlo (MC) model where dust particles are modelled as test particles. The three models are linked to each other unidirectionally; the hybrid model provides upstream plasma parameters to be used as boundary conditions for the PIC model which generates the surface potential for the MC model. We have used the DPEM model to study properties of dust particles injected from the surface of airless objects such as the Moon, the Martian moon Phobos and the asteroid RQ36. We have performed a (v0, m/q)-phase space study where the property of dust particles at different initial velocity (v0) and initial mass per charge (m/q) ratio were analysed. The study especially identifies regions in the phase space where the electric field within a non-quasineutral plasma region above the surface of the object, the Debye layer, becomes important compared with the gravitational force. Properties of the dust particles in the phase space region where the electric field plays an important role are studied by a 3D Monte Carlo model. The current DPEM modelling suite does not include models of how dust particles are initially injected from the surface. Therefore, the presented phase space study cannot give absolute 3D dust density distributions around the analysed airless objects. For that, an additional emission model is necessary, which determines how many dust particles are emitted at various places on the analysed (v0, m/q)-phase space. However, this study identifies phase space regions where the electric field within the Debye layer plays an important role for dust particles. Overall, the initial results indicate that when a realistic dust emission model is available, the unified lunar based DPEM modelling suite is a powerful tool to study globally and locally the dust environments of airless bodies such as planetary moons, Mercury, asteroids and non-active comets far from the Sun.
Dynamical properties and extremes of Northern Hemisphere climate fields over the past 60 years
NASA Astrophysics Data System (ADS)
Faranda, Davide; Messori, Gabriele; Alvarez-Castro, M. Carmen; Yiou, Pascal
2017-12-01
Atmospheric dynamics are described by a set of partial differential equations yielding an infinite-dimensional phase space. However, the actual trajectories followed by the system appear to be constrained to a finite-dimensional phase space, i.e. a strange attractor. The dynamical properties of this attractor are difficult to determine due to the complex nature of atmospheric motions. A first step to simplify the problem is to focus on observables which affect - or are linked to phenomena which affect - human welfare and activities, such as sea-level pressure, 2 m temperature, and precipitation frequency. We make use of recent advances in dynamical systems theory to estimate two instantaneous dynamical properties of the above fields for the Northern Hemisphere: local dimension and persistence. We then use these metrics to characterize the seasonality of the different fields and their interplay. We further analyse the large-scale anomaly patterns corresponding to phase-space extremes - namely time steps at which the fields display extremes in their instantaneous dynamical properties. The analysis is based on the NCEP/NCAR reanalysis data, over the period 1948-2013. The results show that (i) despite the high dimensionality of atmospheric dynamics, the Northern Hemisphere sea-level pressure and temperature fields can on average be described by roughly 20 degrees of freedom; (ii) the precipitation field has a higher dimensionality; and (iii) the seasonal forcing modulates the variability of the dynamical indicators and affects the occurrence of phase-space extremes. We further identify a number of robust correlations between the dynamical properties of the different variables.
Image inversion analysis of the HST OTA (Hubble Space Telescope Optical Telescope Assembly), phase A
NASA Technical Reports Server (NTRS)
Litvak, M. M.
1991-01-01
Technical work during September-December 1990 consisted of: (1) analyzing HST point source images obtained from JPL; (2) retrieving phase information from the images by a direct (noniterative) technique; and (3) characterizing the wavefront aberration due to the errors in the Hubble Space Telescope (HST) mirrors, in a preliminary manner. This work was in support of JPL design of compensating optics for the next generation wide-field planetary camera on HST. This digital technique for phase retrieval from pairs of defocused images, is based on the energy transport equation between these image planes. In addition, an end-to-end wave optics routine, based on the JPL Code 5 prescription of the unaberrated HST and WFPC, was derived for output of the reference phase front when mirror error is absent. Also, the Roddier routine unwrapped the retrieved phase by inserting the required jumps of +/- 2(pi) radians for the sake of smoothness. A least-squares fitting routine, insensitive to phase unwrapping, but nonlinear, was used to obtain estimates of the Zernike polynomial coefficients that describe the aberration. The phase results were close to, but higher than, the expected error in conic constant of the primary mirror suggested by the fossil evidence. The analysis of aberration contributed by the camera itself could be responsible for the small discrepancy, but was not verified by analysis.
Relativistic electron flux dropout due to field line curvature during the storm on 1 June 2013
NASA Astrophysics Data System (ADS)
Kang, S. B.; Fok, M. C. H.; Engebretson, M. J.; Li, W.; Glocer, A.
2017-12-01
Significant electron flux depletion over a wide range of L-shell and energy, referred as a dropout, was observed by Van Allen Probes during the storm main phase on June 1, 2013. During the same period, MeV electron precipitation with isotropic pitch-angle distribution was also observed in the evening sector from POES but no EMIC waves were detected from either space- or ground-based magnetometers. Based on Tsyganenko empirical magnetic field model, magnetic field lines are highly non-dipolar and stretched at the night side in the inner magnetosphere. This condition can break the first adiabatic invariant (conservation of magnetic moment) and generate pitch-angle scattering of relativistic electron to the loss cone. To understand the relative roles of different physical mechanisms on this dropout event, we simulate flux and phase space density of relativistic electrons with event specific plasma wave intensities using the Comprehensive Inner Magnetosphere and Ionosphere (CIMI) model, as a global 4-D inner magnetosphere model. We also employ pitch-angle scattering due to field line curvature in the CIMI model. We re-configure magnetic field every minute and update electric field every 20 seconds to capture radial transport. CIMI-simulation with pitch-angle scattering due to field line curvature shows more depletion of relativistic electron fluxes and better agreement to observation than CIMI-simulation with radial transport only. We conclude that pitch-angle scattering due to field line curvature is one of the dominant processes for the relativistic electron flux dropout.
Study of two-phase flows in reduced gravity
NASA Astrophysics Data System (ADS)
Roy, Tirthankar
Study of gas-liquid two-phase flows under reduced gravity conditions is extremely important. One of the major applications of gas-liquid two-phase flows under reduced gravity conditions is in the design of active thermal control systems for future space applications. Previous space crafts were characterized by low heat generation within the spacecraft which needed to be redistributed within the craft or rejected to space. This task could easily have been accomplished by pumped single-phase loops or passive systems such as heat pipes and so on. However with increase in heat generation within the space craft as predicted for future missions, pumped boiling two-phase flows are being considered. This is because of higher heat transfer co-efficients associated with boiling heat transfer among other advantages. Two-phase flows under reduced gravity conditions also find important applications in space propulsion as in space nuclear power reactors as well as in many other life support systems of space crafts. Two-fluid model along with Interfacial Area Transport Equation (IATE) is a useful tool available to predict the behavior of gas-liquid two-phase flows under reduced gravity conditions. It should be noted that considerable differences exist between two-phase flows under reduced and normal gravity conditions especially for low inertia flows. This is because due to suppression of the gravity field the gas-liquid two-phase flows take a considerable time to develop under reduced gravity conditions as compared to normal gravity conditions. Hence other common methods of analysis applicable for fully developed gas-liquid two-phase flows under normal gravity conditions, like flow regimes and flow regime transition criteria, will not be applicable to gas-liquid two-phase flows under reduced gravity conditions. However the two-fluid model and the IATE need to be evaluated first against detailed experimental data obtained under reduced gravity conditions. Although lot of studies have been done in the past to understand the global structure of gas-liquid two-phase flows under reduced gravity conditions, using experimental setups aboard drop towers or aircrafts flying parabolic flights, detailed data on local structure of such two-phase flows are extremely rare. Hence experiments were carried out in a 304 mm inner diameter (ID) test facility on earth. Keeping in mind the detailed experimental data base that needs to be generated to evaluate two-fluid model along with IATE, ground based simulations provide the only economic path. Here the reduced gravity condition is simulated using two-liquids of similar densities (water and Therminol 59 RTM in the present case). Only adiabatic two-phase flows were concentrated on at this initial stage. Such a large diameter test section was chosen to study the development of drops to their full extent (it is to be noted that under reduced gravity conditions the stable bubble size in gas-liquid two-phase flows is much larger than that at normal gravity conditions). Twelve flow conditions were chosen around predicted bubbly flow to cap-bubbly flow transition region. Detailed local data was obtained at ten radial locations for each of three axial locations using state-of-the art multi-sensor conductivity probes. The results are presented and discussed. Also one-group as well as two-group, steady state, one-dimensional IATE was evaluated against data obtained here and by other researchers, and the results presented and discussed.
Messina, Piero; Vennemann, Dietrich
2005-01-01
After a large consultation with the scientific and industrial communities in Europe, the Aurora Space Exploration Programme was unanimously approved at the European Space Agency (ESA) Council at ministerial level in Edinburgh in 2001. This marked the start of the programme's preparation phase that was due to finish by the end of 2004. Aurora features technology development robotic and crewed rehearsal missions aimed at preparing a human mission to Mars by 2033. Due to the evolving context, both international and European, ESA has undertaken a review of the goals and approach of its exploration programme. While maintaining the main robotic missions that had been conceived during Aurora, the European Space Exploration Programme that is currently being proposed to the Aurora participating states and other ESA Member States has a reviewed approach and will feature a greater synergy with other ESA programmes. The paper will present the process that led to the revision of ESA's plans in the field of exploration and will give the current status of the programme. c2005 Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Ferreira, Maria Teodora; Follmann, Rosangela; Domingues, Margarete O.; Macau, Elbert E. N.; Kiss, István Z.
2017-08-01
Phase synchronization may emerge from mutually interacting non-linear oscillators, even under weak coupling, when phase differences are bounded, while amplitudes remain uncorrelated. However, the detection of this phenomenon can be a challenging problem to tackle. In this work, we apply the Discrete Complex Wavelet Approach (DCWA) for phase assignment, considering signals from coupled chaotic systems and experimental data. The DCWA is based on the Dual-Tree Complex Wavelet Transform (DT-CWT), which is a discrete transformation. Due to its multi-scale properties in the context of phase characterization, it is possible to obtain very good results from scalar time series, even with non-phase-coherent chaotic systems without state space reconstruction or pre-processing. The method correctly predicts the phase synchronization for a chemical experiment with three locally coupled, non-phase-coherent chaotic processes. The impact of different time-scales is demonstrated on the synchronization process that outlines the advantages of DCWA for analysis of experimental data.
GPS Space Service Volume: Ensuring Consistent Utility Across GPS Design Builds for Space Users
NASA Technical Reports Server (NTRS)
Bauer, Frank H.; Parker, Joel Jefferson Konkl; Valdez, Jennifer Ellen
2015-01-01
GPS availability and signal strength originally specified for users on or near surface of Earth with transmitted power levels specified at edge-of-Earth, 14.3 degrees. Prior to the SSV specification, on-orbit performance of GPS varied from block build to block build (IIA, IIRM, IIF) due to antenna gain and beam width variances. Unstable on-orbit performance results in significant risk to space users. Side-lobe signals, although not specified, were expected to significantly boost GPS signal availability for users above the constellation. During GPS III Phase A, NASA noted significant discrepancies in power levels specified in GPS III specification documents, and measured on-orbit performance. To stabilize the signal for high altitude space users, NASA DoD team in 2003-2005 led the creation of new Space Service Volume (SSV) definition and specifications.
State-space prediction model for chaotic time series
NASA Astrophysics Data System (ADS)
Alparslan, A. K.; Sayar, M.; Atilgan, A. R.
1998-08-01
A simple method for predicting the continuation of scalar chaotic time series ahead in time is proposed. The false nearest neighbors technique in connection with the time-delayed embedding is employed so as to reconstruct the state space. A local forecasting model based upon the time evolution of the topological neighboring in the reconstructed phase space is suggested. A moving root-mean-square error is utilized in order to monitor the error along the prediction horizon. The model is tested for the convection amplitude of the Lorenz model. The results indicate that for approximately 100 cycles of the training data, the prediction follows the actual continuation very closely about six cycles. The proposed model, like other state-space forecasting models, captures the long-term behavior of the system due to the use of spatial neighbors in the state space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belosi, Maria F.; Fogliata, Antonella, E-mail: antonella.fogliata-cozzi@eoc.ch, E-mail: afc@iosi.ch; Cozzi, Luca
2014-05-15
Purpose: Phase-space files for Monte Carlo simulation of the Varian TrueBeam beams have been made available by Varian. The aim of this study is to evaluate the accuracy of the distributed phase-space files for flattening filter free (FFF) beams, against experimental measurements from ten TrueBeam Linacs. Methods: The phase-space files have been used as input in PRIMO, a recently released Monte Carlo program based on thePENELOPE code. Simulations of 6 and 10 MV FFF were computed in a virtual water phantom for field sizes 3 × 3, 6 × 6, and 10 × 10 cm{sup 2} using 1 × 1more » × 1 mm{sup 3} voxels and for 20 × 20 and 40 × 40 cm{sup 2} with 2 × 2 × 2 mm{sup 3} voxels. The particles contained in the initial phase-space files were transported downstream to a plane just above the phantom surface, where a subsequent phase-space file was tallied. Particles were transported downstream this second phase-space file to the water phantom. Experimental data consisted of depth doses and profiles at five different depths acquired at SSD = 100 cm (seven datasets) and SSD = 90 cm (three datasets). Simulations and experimental data were compared in terms of dose difference. Gamma analysis was also performed using 1%, 1 mm and 2%, 2 mm criteria of dose-difference and distance-to-agreement, respectively. Additionally, the parameters characterizing the dose profiles of unflattened beams were evaluated for both measurements and simulations. Results: Analysis of depth dose curves showed that dose differences increased with increasing field size and depth; this effect might be partly motivated due to an underestimation of the primary beam energy used to compute the phase-space files. Average dose differences reached 1% for the largest field size. Lateral profiles presented dose differences well within 1% for fields up to 20 × 20 cm{sup 2}, while the discrepancy increased toward 2% in the 40 × 40 cm{sup 2} cases. Gamma analysis resulted in an agreement of 100% when a 2%, 2 mm criterion was used, with the only exception of the 40 × 40 cm{sup 2} field (∼95% agreement). With the more stringent criteria of 1%, 1 mm, the agreement reduced to almost 95% for field sizes up to 10 × 10 cm{sup 2}, worse for larger fields. Unflatness and slope FFF-specific parameters are in line with the possible energy underestimation of the simulated results relative to experimental data. Conclusions: The agreement between Monte Carlo simulations and experimental data proved that the evaluated Varian phase-space files for FFF beams from TrueBeam can be used as radiation sources for accurate Monte Carlo dose estimation, especially for field sizes up to 10 × 10 cm{sup 2}, that is the range of field sizes mostly used in combination to the FFF, high dose rate beams.« less
System testing of a production Ada (trademark) project: The GRODY study
NASA Technical Reports Server (NTRS)
Seigle, Jeffrey; Esker, Linda; Shi, Ying-Liang
1990-01-01
The use of the Ada language and design methodologies that utilize its features has a strong impact on all phases of the software development project lifecycle. At the National Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSFC), the Software Engineering Laboratory (SEL) conducted an experiment in parallel development of two flight dynamics systems in FORTRAN and Ada. The teams found some qualitative differences between the system test phases of the two projects. Although planning for system testing and conducting of tests were not generally affected by the use of Ada, the solving of problems found in system testing was generally facilitated by Ada constructs and design methodology. Most problems found in system testing were not due to difficulty with the language or methodology but to lack of experience with the application.
Space tug geosynchronous mission simulation
NASA Technical Reports Server (NTRS)
Lang, T. J.
1973-01-01
Near-optimal three dimensional trajectories from a low earth park orbit inclined at 28.5 deg to a synchronous-equatorial mission orbit were developed for both the storable (thrust = 28,912 N (6,500 lbs), I sub sp = 339 sec) and cryogenic (thrust = 44,480 N (10,000 lbs), I sub sp = 470 sec) space tug using the iterative cost function minimization technique contained within the modularized vehicle simulation (MVS) program. The finite burn times, due to low thrust-to-weight ratios, and the associated gravity losses are accounted for in the trajectory simulation and optimization. The use of an ascent phasing orbit to achieve burnout in synchronous orbit at any longitude is investigated. The ascent phasing orbit is found to offer the additional advantage of significantly reducing the overall delta velocity by splitting the low altitude burn into two parts and thereby reducing gravity losses.
Viterbi decoding for satellite and space communication.
NASA Technical Reports Server (NTRS)
Heller, J. A.; Jacobs, I. M.
1971-01-01
Convolutional coding and Viterbi decoding, along with binary phase-shift keyed modulation, is presented as an efficient system for reliable communication on power limited satellite and space channels. Performance results, obtained theoretically and through computer simulation, are given for optimum short constraint length codes for a range of code constraint lengths and code rates. System efficiency is compared for hard receiver quantization and 4 and 8 level soft quantization. The effects on performance of varying of certain parameters relevant to decoder complexity and cost are examined. Quantitative performance degradation due to imperfect carrier phase coherence is evaluated and compared to that of an uncoded system. As an example of decoder performance versus complexity, a recently implemented 2-Mbit/sec constraint length 7 Viterbi decoder is discussed. Finally a comparison is made between Viterbi and sequential decoding in terms of suitability to various system requirements.
Phased array ghost elimination (PAGE) for segmented SSFP imaging with interrupted steady-state.
Kellman, Peter; Guttman, Michael A; Herzka, Daniel A; McVeigh, Elliot R
2002-12-01
Steady-state free precession (SSFP) has recently proven to be valuable for cardiac imaging due to its high signal-to-noise ratio and blood-myocardium contrast. Data acquired using ECG-triggered, segmented sequences during the approach to steady-state, or return to steady-state after interruption, may have ghost artifacts due to periodic k-space distortion. Schemes involving several preparatory RF pulses have been proposed to restore steady-state, but these consume imaging time during early systole. Alternatively, the phased-array ghost elimination (PAGE) method may be used to remove ghost artifacts from the first several frames. PAGE was demonstrated for cardiac cine SSFP imaging with interrupted steady-state using a simple alpha/2 magnetization preparation and storage scheme and a spatial tagging preparation.
Kruger, David G; Riederer, Stephen J; Rossman, Phillip J; Mostardi, Petrice M; Madhuranthakam, Ananth J; Hu, Houchun H
2005-09-01
MR images formed using extended FOV continuously moving table data acquisition can have signal falloff and loss of lateral spatial resolution at localized, periodic positions along the direction of table motion. In this work we identify the origin of these artifacts and provide a means for correction. The artifacts are due to a mismatch of the phase of signals acquired from contiguous sampling fields of view and are most pronounced when the central k-space views are being sampled. Correction can be performed using the phase information from a periodically sampled central view to adjust the phase of all other views of that view cycle, making the net phase uniform across each axial plane. Results from experimental phantom and contrast-enhanced peripheral MRA studies show that the correction technique substantially eliminates the artifact for a variety of phase encode orders. Copyright (c) 2005 Wiley-Liss, Inc.
Jeong, Juyoung; Yang, Ilkyu; Yang, Jinho; ...
2015-08-17
Here, we report a magnetic force microscopy study of the magnetic domain evolution in the layered manganite La 2–2xSr 1+2xMn 2O 7 (with x = 0.32). This strongly correlated electron compound is known to exhibit a wide range of magnetic phases, including a recently uncovered biskyrmion phase. We observe a continuous transition from dendritic to stripelike domains, followed by the formation of magnetic bubbles due to a field- and temperature-dependent competition between in-plane and out-of-plane spin alignments. The magnetic bubble phase appears at comparable field and temperature ranges as the biskyrmion phase, suggesting a close relation between both phases. Basedmore » on our real-space images we construct a temperature-field phase diagram for this composition.« less
NASA Astrophysics Data System (ADS)
Fagundes, P. R.; Cardoso, F. A.; Fejer, B. G.; Kavutarapu, V.; Ribeiro, B. A.; Pillat, V. G.
2015-12-01
Fagundes PR, Cardoso FA and Venkatesh KPhysics and Astronomy Laboratory, Universidade do Vale do Paraiba (UNIVAP), Sao Jose dos Campos, Sao Paulo, Brazil In the present investigation we discuss the results on the response of the ionosphere (F-region) in the Brazilian sector, during extreme space weather event of March 2015. This geomagnetic storm has been considered as one of strongest storms in the solar cycle 24 where, the Dst index reached a minimum of -227 nT at 23:00 UT (17/03/2015) with KP reaching to 8-, and the monthly mean F10.7 solar flux was 125 sfu. This space weather event was studied using a large network of 110 GPS stations. It has been noticed that the Total Electron Content (TEC) was severely disturbed during the geomagnetic storm main and recovery phases. A wavelike oscillation with three peaks is observed from equator to low latitudes during the storm main phase on 17th and 18th March, 2015. Using a latitudinal chain of 8 GPS stations from equatorial region to low latitudes the storm time behavior of the Equatorial Ionization Anomaly (EIA) is investigated. It was noticed that the wavelike oscillation peak latitudinal extent decreases from the beginning of main phase to the recovery phase. The first maximum extends beyond from 2oS to 20oS, the second one from 8oS to 18oS and the third one from 13oS to 17oS. In addition, a strong negative phase in TEC variations is observed during the recovery phase on March 18, 2015. This negative phase is found to be stronger at low-latitude compared to the equatorial region. An anomalous behavior of EIA caused by the wavelike oscillations is observed during the main phase on March 17, 2015. Also, due to the strong negative phase in TEC resulted in strong EIA suppression on March 18, 2015.
Columnar jointing in vapor-phase-altered, non-welded Cerro Galán Ignimbrite, Paycuqui, Argentina
Wright, Heather M.; Lesti, Chiara; Cas, Ray A.F.; Porreca, Massimiliano; Viramonte, Jose G.; Folkes, Christopher B.; Giordano, Guido
2011-01-01
Columnar jointing is thought to occur primarily in lavas and welded pyroclastic flow deposits. However, the non-welded Cerro Galán Ignimbrite at Paycuqui, Argentina, contains well-developed columnar joints that are instead due to high-temperature vapor-phase alteration of the deposit, where devitrification and vapor-phase crystallization have increased the density and cohesion of the upper half of the section. Thermal remanent magnetization analyses of entrained lithic clasts indicate high emplacement temperatures, above 630°C, but the lack of welding textures indicates temperatures below the glass transition temperature. In order to remain below the glass transition at 630°C, the minimum cooling rate prior to deposition was 3.0 × 10−3–8.5 × 10−2°C/min (depending on the experimental data used for comparison). Alternatively, if the deposit was emplaced above the glass transition temperature, conductive cooling alone was insufficient to prevent welding. Crack patterns (average, 4.5 sides to each polygon) and column diameters (average, 75 cm) are consistent with relatively rapid cooling, where advective heat loss due to vapor fluxing increases cooling over simple conductive heat transfer. The presence of regularly spaced, complex radiating joint patterns is consistent with fumarolic gas rise, where volatiles originated in the valley-confined drainage system below. Joint spacing is a proxy for cooling rates and is controlled by depositional thickness/valley width. We suggest that the formation of joints in high-temperature, non-welded deposits is aided by the presence of underlying external water, where vapor transfer causes crystallization in pore spaces, densifies the deposit, and helps prevent welding.
NASA Astrophysics Data System (ADS)
Li, Z.; Hudson, M.; Paral, J.; Wiltberger, M. J.; Boyd, A. J.; Turner, D. L.
2016-12-01
The 17 March 2015 `St. Patrick's Day Storm' is the largest geomagnetic storm to date of Solar Cycle 24, with a Dst of -223 nT. The magnetopause moved inside geosynchronous orbit under high solar wind dynamic pressure and strong southward IMF Bz causing loss, however a subsequent drop in pressure allowed for rapid rebuilding of the radiation belts. Local heating has been modeled by other groups for this and the 17 March 2013 storm, only slightly weaker and showing a similar effect on electrons: first a rapid dropout due to inward motion of the magnetopause followed by rapid increase in flux above the pre-storm level and an even greater slow increase likely due to radial diffusion. The latter can be seen in temporal evolution of the electron phase space density measured by the Energetic Particle, Composition, and Thermal Plasma Suite (ECT) instrument on Van Allen Probes. Using the Lyon-Fedder-Mobarry global MHD model driven by upstream solar wind measurements with the Magneotsphere-Ionosphere Coupler (MIX), we have simulated both `St. Patrick's Day'events, analyzing LFM electric and magnetic fields to calculate radial diffusion coefficients. These coefficients have been implemented in a radial diffusion code using the measured electron phase space density profile following the local heating and as the outer boundary condition for subsequent temporally evolution over the next 12 days, beginning 18 March 2015. Agreement with electron phase space density at 1000 MeV/G measured by the MagEIS component of the ECT instrument on Van Allen Probes (30 keV - 4 MeV) was much improved using radial diffusion coefficients from the MHD simulations relative to coefficients parametrized by a global geomagnetic activity index.
Space radiation test model study. Report for 20 May 1985-20 February 1986
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nightingale, R.W.; Chiu, Y.T.; Davidson, G.T.
1986-03-14
Dynamic models of the energetic populations in the outer radiation belts are being developed to better understand the extreme variations of particle flux in response to magnetospheric and solar activity. The study utilizes the SCATHA SC3 high-energy electron data, covering energies from 47 keV to 5 MeV with fine pitch-angle measurements (3 deg field of view) over the L-shell range of 5.3 to 8.7. Butter-fly distributions in the dusk sector signify particle losses due to L shell splitting of the particle-drift orbits and the subsequent scattering of the particles from the orbits by the magnetopause. To model the temporal variationsmore » and diffusion procsses of the particle populations, the data were organized into phase-space distributions, binned according to altitude (L shell), energy, pitch angle, and time. These distributions can then be mapped to the equator and plotted for fixed first and second adiabatic invariants of the inherent particle motion. A new and efficient method for calculating the third adiabatic invariant using a line integral of the relevant magnetic potential at the particle mirror points has been developed and is undergoing testing. This method will provide a useful means of displaying the radial diffusion signatures of the outer radiation belts during the more-active periods when the L shell parameter is not a good concept due to severe drift-shell splitting. The first phase of fitting the energetic-electron phase-space distributions with a combined radial and pitch-angle diffusion formulation is well underway. Bessel functions are being fit to the data in an eigenmode expansion method to determine the diffusion coefficients.« less
NASA Astrophysics Data System (ADS)
Dong, T.; Lin, J. F.; Gu, J. T.; Polito, P. J.; O'Connell, J.; Flemings, P. B.
2017-12-01
We used Raman spectroscopy to monitor methane hydrates transforming from structure II to structure I at the pore scale as a function of space and time. It is well documented that structure I hydrate is the thermodynamically stable phase for pure methane hydrate (<100 MPa, < 20 °C), but due to kinetic limitation, initial methane hydrate formation produces a mixture of structure I and structure II hydrates. We observed that the structure transformation originated around the porous medium grains and over time slowly migrated into the pore space. We synthesized methane hydrates in spherical glass beads (210-297 µm in diameter) in a pressure cell with a sapphire window to integrate optical observations with Raman measurements. We injected CH4 vapor into the cell and supplied only deionized water thereafter to maintain a constant pressure of 14.6 MPa at 3.5 °C, with 14.5 °C subcooling. We used Raman spectroscopy to map the methane hydrates in pore spaces at 5-25 µm resolution, in order to monitor the occupancy ratio of CH4 in large cages to CH4 in small cages, by their Raman peak intensity ratio, i.e., I( 2905 cm-1)/I( 2915 cm-1). We identified 3 stages of hydrate formation at the pore scale: (1) after the initial hydrate formation, Raman mapping revealed that the occupancy ratio ranged from 0.5 to 3, indicating a mixture of structure I and II hydrates; (2) within 1 week, we observed that all structure I hydrates occurred on the glass bead surfaces and structure II hydrates occupied the pore spaces; (3) over the following 2 weeks, structure II hydrates gradually recrystallized into structure I hydrates from glass bead surfaces towards the pore space. These results imply that (1) due to kinetics, the formation of methane hydrate in porous media is more complex than previously thought, and (2) the bulk physical and chemical properties of laboratory-synthesized methane hydrates in porous media may drift over time, as methane hydrates recrystallize from a metastable phase (structure II) to the thermodynamically stable phase (structure I).
Optically controlled phased-array antenna technology for space communication systems
NASA Technical Reports Server (NTRS)
Kunath, Richard R.; Bhasin, Kul B.
1988-01-01
Using MMICs in phased-array applications above 20 GHz requires complex RF and control signal distribution systems. Conventional waveguide, coaxial cable, and microstrip methods are undesirable due to their high weight, high loss, limited mechanical flexibility and large volume. An attractive alternative to these transmission media, for RF and control signal distribution in MMIC phased-array antennas, is optical fiber. Presented are potential system architectures and their associated characteristics. The status of high frequency opto-electronic components needed to realize the potential system architectures is also discussed. It is concluded that an optical fiber network will reduce weight and complexity, and increase reliability and performance, but may require higher power.
NASA Astrophysics Data System (ADS)
Levan, P.
2010-09-01
Geosynchronous objects appear as unresolved blurs even when observed with the largest ground-based telescopes. Due to the lack of any spatial detail, two or more objects appearing at similar brightness levels within the spectral bandpass they are observed are difficult to distinguish. Observing a changing pattern of such objects from one time epoch to another showcases the deficiencies in associating individual objects before and after the configuration change. This paper explores solutions to this deficiency in the form of spectral (under small business innovative research) and phase curve analyses. The extension of the technique to phase curves proves to be a powerful new capability.
2009-12-14
CAPE CANAVERAL, Fla. - In Orbiter Processing Facility Bay 1 at NASA's Kennedy Space Center in Florida, United Space Alliance technician Jeff Holmes uses heat lamps in a putty repair on some of the high-temperature reusable surface insulation tiles, or HRSI tiles, on the lower forward fuselage of space shuttle Atlantis. An average of 125 tiles are replaced after each mission either due to handling damage or accumulated repairs. These black tiles are optimized for maximum emissivity, which means they lose heat faster than white tiles. This property is required to maximize heat rejection during the hot phase of reentry. Atlantis next is slated to deliver an Integrated Cargo Carrier and Russian-built Mini Research Module to the International Space Station on the STS-132 mission. Launch is targeted for May 14, 2010. Photo credit: NASA/Jack Pfaller
2009-12-14
CAPE CANAVERAL, Fla. - In Orbiter Processing Facility Bay 1 at NASA's Kennedy Space Center in Florida, heat lamps assist United Space Alliance technician Jeff Holmes in a putty repair on some of the high-temperature reusable surface insulation tiles, or HRSI tiles, on the lower forward fuselage of space shuttle Atlantis. An average of 125 tiles are replaced after each mission either due to handling damage or accumulated repairs. These black tiles are optimized for maximum emissivity, which means they lose heat faster than white tiles. This property is required to maximize heat rejection during the hot phase of reentry. Atlantis next is slated to deliver an Integrated Cargo Carrier and Russian-built Mini Research Module to the International Space Station on the STS-132 mission. Launch is targeted for May 14, 2010. Photo credit: NASA/Jack Pfaller
2009-12-14
CAPE CANAVERAL, Fla. - In Orbiter Processing Facility Bay 1 at NASA's Kennedy Space Center in Florida, United Space Alliance technician Jeff Holmes makes a putty repair on some of the high-temperature reusable surface insulation tiles, or HRSI tiles, on the lower forward fuselage of space shuttle Atlantis. An average of 125 tiles are replaced after each mission either due to handling damage or accumulated repairs. These black tiles are optimized for maximum emissivity, which means they lose heat faster than white tiles. This property is required to maximize heat rejection during the hot phase of reentry. Atlantis next is slated to deliver an Integrated Cargo Carrier and Russian-built Mini Research Module to the International Space Station on the STS-132 mission. Launch is targeted for May 14, 2010. Photo credit: NASA/Jack Pfaller
Library of Giant Planet Reflection Spectra for WFirst and Future Space Telescopes
NASA Astrophysics Data System (ADS)
Smith, Adam J. R. W.; Fortney, Jonathan; Morley, Caroline; Batalha, Natasha E.; Lewis, Nikole K.
2018-01-01
Future large space space telescopes will be able to directly image exoplanets in optical light. The optical light of a resolved planet is due to stellar flux reflected by Rayleigh scattering or cloud scattering, with absorption features imprinted due to molecular bands in the planetary atmosphere. To aid in the design of such missions, and to better understand a wide range of giant planet atmospheres, we have built a library of model giant planet reflection spectra, for the purpose of determining effective methods of spectral analysis as well as for comparison with actual imaged objects. This library covers a wide range of parameters: objects are modeled at ten orbital distances between 0.5 AU and 5.0 AU, which ranges from planets too warm for water clouds, out to those that are true Jupiter analogs. These calculations include six metalicities between solar and 100x solar, with a variety of different cloud thickness parameters, and across all possible phase angles.
Molecular Structure and Sequence in Complex Coacervates
NASA Astrophysics Data System (ADS)
Sing, Charles; Lytle, Tyler; Madinya, Jason; Radhakrishna, Mithun
Oppositely-charged polyelectrolytes in aqueous solution can undergo associative phase separation, in a process known as complex coacervation. This results in a polyelectrolyte-dense phase (coacervate) and polyelectrolyte-dilute phase (supernatant). There remain challenges in understanding this process, despite a long history in polymer physics. We use Monte Carlo simulation to demonstrate that molecular features (charge spacing, size) play a crucial role in governing the equilibrium in coacervates. We show how these molecular features give rise to strong monomer sequence effects, due to a combination of counterion condensation and correlation effects. We distinguish between structural and sequence-based correlations, which can be designed to tune the phase diagram of coacervation. Sequence effects further inform the physical understanding of coacervation, and provide the basis for new coacervation models that take monomer-level features into account.
NASA Astrophysics Data System (ADS)
Vanderbemden, P.; Rivas-Murias, B.; Lovchinov, V.; Vertruyen, B.
2010-11-01
In this paper, we report low temperature dielectric measurements of bulk composite electroceramic samples containing a colossal magnetoresistive (CMR) manganite phase (La0.7Ca0.3MnO3 [abbreviated LCMO]) and an insulating phase (Mn3O4). Details of the experimental system are given and possible experimental artefacts due to moisture are outlined. For a LCMO volume fraction of ~ 16%, the permittivity of the LCMO/ Mn3O4 composite at T = 50 K is found to be much higher than that of pure Mn3O4 and magnetic field dependent. This effect is related to an extrinsic space charge polarization mechanism between the insulating phase (Mn3O4) and the conducting magnetoresistive phase (LCMO).
Effect of gravitational focusing on annual modulation in dark-matter direct-detection experiments.
Lee, Samuel K; Lisanti, Mariangela; Peter, Annika H G; Safdi, Benjamin R
2014-01-10
The scattering rate in dark-matter direct-detection experiments should modulate annually due to Earth's orbit around the Sun. The rate is typically thought to be extremized around June 1, when the relative velocity of Earth with respect to the dark-matter wind is maximal. We point out that gravitational focusing can alter this modulation phase. Unbound dark-matter particles are focused by the Sun's gravitational potential, affecting their phase-space density in the lab frame. Gravitational focusing can result in a significant overall shift in the annual-modulation phase, which is most relevant for dark matter with low scattering speeds. The induced phase shift for light O(10) GeV dark matter may also be significant, depending on the threshold energy of the experiment.
A study of quantification of aortic compliance in mice using radial acquisition phase contrast MRI
NASA Astrophysics Data System (ADS)
Zhao, Xuandong
Spatiotemporal changes in blood flow velocity measured using Phase contrast Magnetic Resonance Imaging (MRI) can be used to quantify Pulse Wave Velocity (PWV) and Wall Shear Stress (WSS), well known indices of vessel compliance. A study was conducted to measure the PWV in the aortic arch in young healthy children using conventional phase contrast MRI and a post processing algorithm that automatically track the peak velocity in phase contrast images. It is shown that the PWV calculated using peak velocity-time data has less variability compared to that using mean velocity and flow. Conventional MR data acquisition techniques lack both the spatial and temporal resolution needed to accurately calculate PWV and WSS in in vivo studies using transgenic animal models of arterial diseases. Radial k-space acquisition can improve both spatial and temporal resolution. A major part of this thesis was devoted to developing technology for Radial Phase Contrast Magnetic Resonance (RPCMR) cine imaging on a 7 Tesla Animal scanner. A pulse sequence with asymmetric radial k-space acquisition was designed and implemented. Software developed to reconstruct the RPCMR images include gridding, density compensation and centering of k-Space that corrects the image ghosting introduced by hardware response time. Image processing software was developed to automatically segment the vessel lumen and correct for phase offset due to eddy currents. Finally, in vivo and ex vivo aortic compliance measurements were conducted in a well-established mouse model for atherosclerosis: Apolipoprotein E-knockout (ApoE-KO). Using RPCMR technique, a significantly higher PWV value as well as a higher average WSS was detected among 9 months old ApoE-KO mice compare to in wild type mice. A follow up ex-vivo test of tissue elasticity confirmed the impaired distensibility of aortic arteries among ApoE-KO mice.
NASA Technical Reports Server (NTRS)
Flemings, Merton C.; Matson, Douglas M.; Hyers, Robert W.; Rogers, Jan R.
2003-01-01
During rapid solidification, a molten sample is cooled below its equilibrium solidification temperature to form a metastable liquid. Once nucleation is initiated, growth of the solid phase proceeds and can be seen as a sudden rise in temperature. The heat of fusion is rejected ahead of the growing dendrites into the undercooled liquid in a process known as recalescence. Fe-Cr-Ni alloys may form several equilibrium phases and the hypoeutectic alloys, with compositions near the commercially important 316 stainless steel alloy, are observed to solidify by way of a two-step process known as double recalescence. During double recalescence, the first temperature rise is associated with formation of the metastable ferritic solid phase with subsequent conversion to the stable austenitic phase during the second temperature rise. Selection of which phase grows into the undercooled melt during primary solidification may be accomplished by choice of the appropriate nucleation trigger material or by control of the processing parameters during rapid solidification. Due to the highly reactive nature of the molten sample material and in order to avoid contamination of the undercooled melt, a containerless electromagnetic levitation (EML) processing technique is used. In ground-based EML, the same forces that support the weight of the sample against gravity also drive convection in the liquid sample. However, in microgravity, the force required to position the sample is greatly reduced, so convection may be controlled over a wide range of internal flows. Space Shuttle experiments have shown that the double recalescence behavior of Fe-Cr-Ni alloys changes between ground and space EML experiments. This program is aimed at understanding how melt convection influences phase selection and the evolution of rapid solidification microstructures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pittman, Jeffery P.; Cassidy, Stephen R.; Mosey, Whitney LC
2013-07-31
Pacific Northwest National Laboratory (PNNL) and the Pacific Northwest Site Office (PNSO) have recently completed an effort to identify the current state of the campus and gaps that exist with regards to space needs, facilities and infrastructure. This effort has been used to establish a campus strategy to ensure PNNL is ready to further the United States (U.S.) Department of Energy (DOE) mission. Ten-year business projections and the impacts on space needs were assessed and incorporated into the long-term facility plans. In identifying/quantifying the space needs for PNNL, the following categories were addressed: Multi-purpose Programmatic (wet chemistry and imaging laboratorymore » space), Strategic (Systems Engineering and Computation Analytics, and Collaboration space), Remediation (space to offset the loss of the Research Technology Laboratory [RTL] Complex due to decontamination and demolition), and Optimization (the exit of older and less cost-effective facilities). The findings of the space assessment indicate a need for wet chemistry space, imaging space, and strategic space needs associated with systems engineering and collaboration space.« less
NASA Astrophysics Data System (ADS)
Cecchini, Micael A.; Machado, Luiz A. T.; Wendisch, Manfred; Costa, Anja; Krämer, Martina; Andreae, Meinrat O.; Afchine, Armin; Albrecht, Rachel I.; Artaxo, Paulo; Borrmann, Stephan; Fütterer, Daniel; Klimach, Thomas; Mahnke, Christoph; Martin, Scot T.; Minikin, Andreas; Molleker, Sergej; Pardo, Lianet H.; Pöhlker, Christopher; Pöhlker, Mira L.; Pöschl, Ulrich; Rosenfeld, Daniel; Weinzierl, Bernadett
2017-12-01
The behavior of tropical clouds remains a major open scientific question, resulting in poor representation by models. One challenge is to realistically reproduce cloud droplet size distributions (DSDs) and their evolution over time and space. Many applications, not limited to models, use the gamma function to represent DSDs. However, even though the statistical characteristics of the gamma parameters have been widely studied, there is almost no study dedicated to understanding the phase space of this function and the associated physics. This phase space can be defined by the three parameters that define the DSD intercept, shape, and curvature. Gamma phase space may provide a common framework for parameterizations and intercomparisons. Here, we introduce the phase space approach and its characteristics, focusing on warm-phase microphysical cloud properties and the transition to the mixed-phase layer. We show that trajectories in this phase space can represent DSD evolution and can be related to growth processes. Condensational and collisional growth may be interpreted as pseudo-forces that induce displacements in opposite directions within the phase space. The actually observed movements in the phase space are a result of the combination of such pseudo-forces. Additionally, aerosol effects can be evaluated given their significant impact on DSDs. The DSDs associated with liquid droplets that favor cloud glaciation can be delimited in the phase space, which can help models to adequately predict the transition to the mixed phase. We also consider possible ways to constrain the DSD in two-moment bulk microphysics schemes, in which the relative dispersion parameter of the DSD can play a significant role. Overall, the gamma phase space approach can be an invaluable tool for studying cloud microphysical evolution and can be readily applied in many scenarios that rely on gamma DSDs.
International Heliophysical Year SCINDA Workshop/Abstract
2006-10-01
aid in the specification and prediction of satellite communication degradation due to ionospheric scintillation in the equatorial region...Ionospheric disturbances can cause rapid phase and amplitude fluctuations of satellite signals observed at or near the earth’s surface; these fluctuations are...time, satellite -linked, magnetometer network (http://www.intermagnet.org/). A review paper that describes space research activities in Ethiopia and
Wessels, Philipp; Vogel, Andreas; Tödt, Jan-Niklas; Wieland, Marek; Meier, Guido; Drescher, Markus
2016-01-01
The analysis of isolated spin-wave packets is crucial for the understanding of magnetic transport phenomena and is particularly interesting for applications in spintronic and magnonic devices, where isolated spin-wave packets implement an information processing scheme with negligible residual heat loss. We have captured microscale magnetization dynamics of single spin-wave packets in metallic ferromagnets in space and time. Using an optically driven high-current picosecond pulse source in combination with time-resolved scanning Kerr microscopy probed by femtosecond laser pulses, we demonstrate phase-sensitive real-space observation of spin-wave packets in confined permalloy (Ni80Fe20) microstripes. Impulsive excitation permits extraction of the dynamical parameters, i.e. phase- and group velocities, frequencies and wave vectors. In addition to well-established Damon-Eshbach modes our study reveals waves with counterpropagating group- and phase-velocities. Such unusual spin-wave motion is expected for backward volume modes where the phase fronts approach the excitation volume rather than emerging out of it due to the negative slope of the dispersion relation. These modes are difficult to excite and observe directly but feature analogies to negative refractive index materials, thus enabling model studies of wave propagation inside metamaterials. PMID:26906113
NASA Astrophysics Data System (ADS)
Trivailo, O.; Sippel, M.; Şekercioğlu, Y. A.
2012-08-01
The primary purpose of this paper is to review currently existing cost estimation methods, models, tools and resources applicable to the space sector. While key space sector methods are outlined, a specific focus is placed on hardware cost estimation on a system level, particularly for early mission phases during which specifications and requirements are not yet crystallised, and information is limited. For the space industry, cost engineering within the systems engineering framework is an integral discipline. The cost of any space program now constitutes a stringent design criterion, which must be considered and carefully controlled during the entire program life cycle. A first step to any program budget is a representative cost estimate which usually hinges on a particular estimation approach, or methodology. Therefore appropriate selection of specific cost models, methods and tools is paramount, a difficult task given the highly variable nature, scope as well as scientific and technical requirements applicable to each program. Numerous methods, models and tools exist. However new ways are needed to address very early, pre-Phase 0 cost estimation during the initial program research and establishment phase when system specifications are limited, but the available research budget needs to be established and defined. Due to their specificity, for vehicles such as reusable launchers with a manned capability, a lack of historical data implies that using either the classic heuristic approach such as parametric cost estimation based on underlying CERs, or the analogy approach, is therefore, by definition, limited. This review identifies prominent cost estimation models applied to the space sector, and their underlying cost driving parameters and factors. Strengths, weaknesses, and suitability to specific mission types and classes are also highlighted. Current approaches which strategically amalgamate various cost estimation strategies both for formulation and validation of an estimate, and techniques and/or methods to attain representative and justifiable cost estimates are consequently discussed. Ultimately, the aim of the paper is to establish a baseline for development of a non-commercial, low cost, transparent cost estimation methodology to be applied during very early program research phases at a complete vehicle system level, for largely unprecedented manned launch vehicles in the future. This paper takes the first step to achieving this through the identification, analysis and understanding of established, existing techniques, models, tools and resources relevant within the space sector.
Phase Space Exchange in Thick Wedge Absorbers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neuffer, David
The problem of phase space exchange in wedge absorbers with ionization cooling is discussed. The wedge absorber exchanges transverse and longitudinal phase space by introducing a position-dependent energy loss. In this paper we note that the wedges used with ionization cooling are relatively thick, so that single wedges cause relatively large changes in beam phase space. Calculation methods adapted to such “thick wedge” cases are presented, and beam phase-space transformations through such wedges are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chao, Alexander Wu; /SLAC
2012-03-01
As accelerator technology advances, the requirements on accelerator beam quality become increasingly demanding. Facing these new demands, the topic of phase space gymnastics is becoming a new focus of accelerator physics R&D. In a phase space gymnastics, the beam's phase space distribution is manipulated and precision tailored to meet the required beam qualities. On the other hand, all realization of such gymnastics will have to obey accelerator physics principles as well as technological limitations. Recent examples of phase space gymnastics include Emittance exchanges, Phase space exchanges, Emittance partitioning, Seeded FELs and Microbunched beams. The emittance related topics of this listmore » are reviewed in this report. The accelerator physics basis, the optics design principles that provide these phase space manipulations, and the possible applications of these gymnastics, are discussed. This fascinating new field promises to be a powerful tool of the future.« less
NASA Astrophysics Data System (ADS)
Buelke, Chris
Freshwater available for human consumption has declined in recent years due to many factors. Additionally, NASA has made it known that missions into deep space will require advances in water purification systems. Graphene oxide (GO) membranes have been demonstrated to be an effective purifier of water due to their unique architecture. Holey-graphene oxide (hGO), developed at NASA Langley Research Center, is similar to GO but hosts a more porous structure. Lignin-based membranes were also analyzed. This thesis investigates the membrane performances of these three membrane architectures to purify water. The membranes were prepared in varying thicknesses via vacuum filtration. Experiments were done in two phases. Phase I used a forward osmosis setup to examine membranes' ion rejection. Phase II used dead-end filtration and examined ion rejection, organic molecule rejection and water flux. GO showed a significant increase in ion rejection for NaCl, but showed decreased water flux. hGO showed a significant increase in ion rejection for MgCl2. Organic molecule was increased by 15.8% for hGO over the control. Poor overall performance for ion rejection for both membranes is attributable to an increase in the intersheet distance inside the membranes due to hydration.
Laser guide stars for optical free-space communications
NASA Astrophysics Data System (ADS)
Mata-Calvo, Ramon; Bonaccini Calia, Domenico; Barrios, Ricardo; Centrone, Mauro; Giggenbach, Dirk; Lombardi, Gianluca; Becker, Peter; Zayer, Igor
2017-02-01
The German Aerospace Center (DLR) and the European Southern Observatory (ESO) performed a measurement campaign together in April and July 2016 at Teide-Observatory (Tenerife), with the support of the European Space Agency (ESA), to investigate the use of laser guide stars (LGS) in ground to space optical communications. Atmospheric turbulence causes strong signal fluctuations in the uplink, due to scintillation and beam wander. In space communications, the use of the downlink channel as reference for pointing and for pre-distortion adaptive optics is limited by the size of the isokinetic and isoplanatic angle in relation to the required point-ahead angle. Pointing and phase errors due to the decorrelation between downward and upward beam due to the point-ahead angle may have a severe impact on the required transmit power and the stability of the communications link. LGSs provide a self-tailored reference to any optical ground-to-space link, independently of turbulence conditions and required point-ahead angle. In photon-starved links, typically in deep-space scenarios, LGSs allow dedicating all downlink received signal to communications purposes, increasing the available link margin. The scope of the joint DLR-ESO measurement campaign was, first, to measure the absolute value of the beam wander (uplink-tilt) using a LGS, taking a natural star as a reference, and, second, to characterize the decrease of correlation between uplink-tilt and downlink-tilt with respect to the angular separation between both sources. This paper describes the experiments performed during the measurement campaigns, providing an overview of the measured data and the first outcomes of the data post-processing.
Phase-space evolution of x-ray coherence in phase-sensitive imaging.
Wu, Xizeng; Liu, Hong
2008-08-01
X-ray coherence evolution in the imaging process plays a key role for x-ray phase-sensitive imaging. In this work we present a phase-space formulation for the phase-sensitive imaging. The theory is reformulated in terms of the cross-spectral density and associated Wigner distribution. The phase-space formulation enables an explicit and quantitative account of partial coherence effects on phase-sensitive imaging. The presented formulas for x-ray spectral density at the detector can be used for performing accurate phase retrieval and optimizing the phase-contrast visibility. The concept of phase-space shearing length derived from this phase-space formulation clarifies the spatial coherence requirement for phase-sensitive imaging with incoherent sources. The theory has been applied to x-ray Talbot interferometric imaging as well. The peak coherence condition derived reveals new insights into three-grating-based Talbot-interferometric imaging and gratings-based x-ray dark-field imaging.
NASA Astrophysics Data System (ADS)
Ginzburg, V. N.; Kochetkov, A. A.; Potemkin, A. K.; Khazanov, E. A.
2018-04-01
It has been experimentally confirmed that self-cleaning of a laser beam from spatial noise during propagation in free space makes it possible to suppress efficiently the self-focusing instability without applying spatial filters. Measurements of the instability increment by two independent methods have demonstrated quantitative agreement with theory and high efficiency of small-scale self-focusing suppression. This opens new possibilities for using optical elements operating in transmission (frequency doublers, phase plates, beam splitters, polarisers, etc.) in beams with intensities on the order of a few TW cm‑2.
8-PSK Signaling over non-linear satellite channels
NASA Technical Reports Server (NTRS)
Horan, Sheila B.; Caballero, Ruben B. Eng.
1996-01-01
Space agencies are under pressure to utilize better bandwidth-efficient communication methods due to the actual allocated frequency bands becoming more congested. Also budget reductions is another problem that the space agencies must deal with. This budget constraint results in simpler spacecraft carrying less communication capabilities and also the reduction in staff to capture data in the earth stations. It is then imperative that the most bandwidth efficient communication methods be utilized. This thesis presents a study of 8-ary Phase Shift Keying (8PSK) modulation with respect to bandwidth, power efficiency, spurious emissions and interference susceptibility over a non-linear satellite channel.
Sun Radio Interferometer Space Experiment (SunRISE)
NASA Astrophysics Data System (ADS)
Kasper, Justin C.; SunRISE Team
2018-06-01
The Sun Radio Interferometer Space Experiment (SunRISE) is a NASA Heliophysics Explorer Mission of Opportunity currently in Phase A. SunRISE is a constellation of spacecraft flying in a 10-km diameter formation and operating as the first imaging radio interferometer in space. The purpose of SunRISE is to reveal critical aspects of solar energetic particle (SEP) acceleration at coronal mass ejections (CMEs) and transport into space by making the first spatially resolved observations of coherent Type II and III radio bursts produced by electrons accelerated at CMEs or released from flares. SunRISE will focus on solar Decametric-Hectometric (DH, 0.1 < f < 15 MHz) radio bursts that always are detected from space before major SEP events, but cannot be seen on Earth due to ionospheric absorption. This talk will describe SunRISE objectives and implementation. Presented on behalf of the entire SunRISE team.
1987-04-03
Using Cr KO Radiation 3-20 Smaary of Residual Stress for Navy Pensacola Nickel-Plated 3-64 Camshaft 75 £51 3-21 Surface Residual Stresses in Nickel-Plated...NAN - Pensacola. The data obtained from the H-3 camshafts produced perplexing results due to sLn 2 * splitting and non-linear d-spacing versus sin2...com- pressive stress values on one of the nickel-plated camshafts . An additional objective of the Phase II nickel-plating study was to under- stand the
Optical Parametric Amplification of Single Photon: Statistical Properties and Quantum Interference
NASA Astrophysics Data System (ADS)
Xu, Xue-Xiang; Yuan, Hong-Chun
2014-05-01
By using phase space method, we theoretically investigate the quantum statistical properties and quantum interference of optical parametric amplification of single photon. The statistical properties, such as the Wigner function (WF), average photon number, photon number distribution and parity, are derived analytically for the fields of the two output ports. The results indicate that the fields in the output ports are multiphoton states rather than single photon state due to the amplification of the optical parametric amplifiers (OPA). In addition, the phase sensitivity is also examined by using the detection scheme of parity measurement.
Bergeon, N; Tourret, D; Chen, L; Debierre, J-M; Guérin, R; Ramirez, A; Billia, B; Karma, A; Trivedi, R
2013-05-31
We report results of directional solidification experiments conducted on board the International Space Station and quantitative phase-field modeling of those experiments. The experiments image for the first time in situ the spatially extended dynamics of three-dimensional cellular array patterns formed under microgravity conditions where fluid flow is suppressed. Experiments and phase-field simulations reveal the existence of oscillatory breathing modes with time periods of several 10's of minutes. Oscillating cells are usually noncoherent due to array disorder, with the exception of small areas where the array structure is regular and stable.
A space radiation shielding model of the Martian radiation environment experiment (MARIE)
NASA Technical Reports Server (NTRS)
Atwell, W.; Saganti, P.; Cucinotta, F. A.; Zeitlin, C. J.
2004-01-01
The 2001 Mars Odyssey spacecraft was launched towards Mars on April 7, 2001. Onboard the spacecraft is the Martian radiation environment experiment (MARIE), which is designed to measure the background radiation environment due to galactic cosmic rays (GCR) and solar protons in the 20-500 MeV/n energy range. We present an approach for developing a space radiation-shielding model of the spacecraft that includes the MARIE instrument in the current mapping phase orientation. A discussion is presented describing the development and methodology used to construct the shielding model. For a given GCR model environment, using the current MARIE shielding model and the high-energy particle transport codes, dose rate values are compared with MARIE measurements during the early mapping phase in Mars orbit. The results show good agreement between the model calculations and the MARIE measurements as presented for the March 2002 dataset. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.
Costa, Cecília M; Silva, Ittalo S; de Sousa, Rafael D; Hortegal, Renato A; Regis, Carlos Danilo M
Myocardial infarction is one of the leading causes of death worldwide. As it is life threatening, it requires an immediate and precise treatment. Due to this, a growing number of research and innovations in the field of biomedical signal processing is in high demand. This paper proposes the association of Reconstructed Phase Space and Artificial Neural Networks for Vectorcardiography Myocardial Infarction Recognition. The algorithm promotes better results for the box size 10 × 10 and the combination of four parameters: box counting (Vx), box counting (Vz), self-similarity method (Vx) and self-similarity method (Vy) with sensitivity = 92%, specificity = 96% and accuracy = 94%. The topographic diagnosis presented different performances for different types of infarctions with better results for anterior wall infarctions and less accurate results for inferior infarctions. Copyright © 2018 Elsevier Inc. All rights reserved.
A space radiation shielding model of the Martian radiationenvironment experiment (MARIE)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atwell, William; Saganti, Premkumar; Cucinotta, Francis A.
2004-12-01
The 2001 Mars Odyssey spacecraft was launched towards Mars on April 7, 2001. On board the spacecraft is the Martian radiation environment experiment (MARIE), which is designed to measure the background radiation environment due to galactic cosmic rays (GCR) and solar protons in the 20 500 MeV/n energy range. We present an approach for developing a space radiation-shielding model of the spacecraft that includes the MARIE instrument in the current mapping phase orientation. A discussion is presented describing the development and methodology used to construct the shielding model. For a given GCR model environment, using the current MARIE shielding modelmore » and the high-energy particle transport codes, dose rate values are compared with MARIE measurements during the early mapping phase in Mars orbit. The results show good agreement between the model calculations and the MARIE measurements as presented for the March 2002 dataset.« less
Competition between anisotropic viscous fingers
NASA Astrophysics Data System (ADS)
Pecelerowicz, M.; Budek, A.; Szymczak, P.
2014-09-01
We consider viscous fingers created by injection of low viscosity fluid into the network of capillaries initially filled with a more viscous fluid (motor oil). Due to the anisotropy of the system and its geometry, such a setup promotes the formation of long-and-thin fingers which then grow and compete for the available flow, interacting through the pressure field. The interaction between the fingers is analyzed using the branched growth formalism of Halsey and Leibig (Phys. Rev. A 46, 7723, 1992) using a number of simple, analytically tractable models. It is shown that as soon as the fingers are allowed to capture the flow from one another, the fixed point appears in the phase space, corresponding to the asymptotic state in which the growth of one of the fingers in hindered by the other. The properties of phase space flows in such systems are shown to be remarkably insensitive to the details of the dynamics.
Phase Space Approach to Dynamics of Interacting Fermions
NASA Astrophysics Data System (ADS)
Davidson, Shainen; Sels, Dries; Kasper, Valentin; Polkovnikov, Anatoli
Understanding the behavior of interacting fermions is of fundamental interest in many fields ranging from condensed matter to high energy physics. Developing numerically efficient and accurate simulation methods is an indispensable part of this. Already in equilibrium, fermions are notoriously hard to handle due to the sign problem. Out of equilibrium, an important outstanding problem is the efficient numerical simulation of the dynamics of these systems. In this work we develop a new semiclassical phase-space approach (a.k.a. the truncated Wigner approximation) for simulating the dynamics of interacting lattice fermions in arbitrary dimensions. We demonstrate the strength of the method by comparing the results to exact diagonalization (ED) on small 1D and 2D systems. We furthermore present results on Many-Body Localized (MBL) systems in 1D and 2D, and demonstrate how the method can be used to determine the MBL transition.
Intermittent Fermi-Pasta-Ulam Dynamics at Equilibrium
NASA Astrophysics Data System (ADS)
Campbell, David; Danieli, Carlo; Flach, Sergej
The equilibrium value of an observable defines a manifold in the phase space of an ergodic and equipartitioned many-body syste. A typical trajectory pierces that manifold infinitely often as time goes to infinity. We use these piercings to measure both the relaxation time of the lowest frequency eigenmode of the Fermi-Pasta-Ulam chain, as well as the fluctuations of the subsequent dynamics in equilibrium. We show that previously obtained scaling laws for equipartition times are modified at low energy density due to an unexpected slowing down of the relaxation. The dynamics in equilibrium is characterized by a power-law distribution of excursion times far off equilibrium, with diverging variance. The long excursions arise from sticky dynamics close to regular orbits in the phase space. Our method is generalizable to large classes of many-body systems. The authors acknowledge financial support from IBS (Project Code IBS-R024-D1).
NASA Astrophysics Data System (ADS)
Valous, N. A.; Delgado, A.; Drakakis, K.; Sun, D.-W.
2014-02-01
The study of plant tissue parenchyma's intercellular air spaces contributes to the understanding of anatomy and physiology. This is challenging due to difficulty in making direct measurements of the pore space and the complex mosaic of parenchymatous tissue. The architectural complexity of pore space has shown that single geometrical measurements are not sufficient for characterization. The inhomogeneity of distribution depends not only on the percentage content of phase, but also on how the phase fills the space. The lacunarity morphometric, as multiscale measure, provides information about the distribution of gaps that correspond to degree of spatial organization in parenchyma. Additionally, modern theories have suggested strategies, where the focus has shifted from the study of averages and histograms to the study of patterns in data fluctuations. Detrended fluctuation analysis provides information on the correlation properties of the parenchyma at different spatial scales. The aim is to quantify (with the aid of the aforementioned metrics), the mesostructural changes—that occur from one cycle of freezing and thawing—in the void phase of pome fruit parenchymatous tissue, acquired with X-ray microcomputed tomography. Complex systems methods provide numerical indices and detailed insights regarding the freezing-induced modifications upon the arrangement of cells and voids. These structural changes have the potential to lead to physiological disorders. The work can further stimulate interest for the analysis of internal plant tissue structures coupled with other physico-chemical processes or phenomena.
Room temperature metastable monoclinic phase in BaTiO3 crystals
NASA Astrophysics Data System (ADS)
Lummen, Tom; Wang, Jianjun; Holt, Martin; Kumar, Amit; Vlahos, Eftihia; Denev, Sava; Chen, Long-Qing; Gopalan, Venkatraman
2011-03-01
Low-symmetry monoclinic phases in ferroelectric materials are of considerable interest, due to their associated enhanced electromechanical coupling. Such phases have been found in Pb-based perovskite solid solutions such as lead zirconate titanate (PZT), where they form structural bridges between the rhombohedral and tetragonal ground states in compositional space. In this work, we directly image such a monoclinic phase in BaTi O3 crystals at room-temperature, using optical second harmonic generation, Raman, and X-ray microscopic imaging techniques. Phase-field modeling indicates that ferroelectric domain microstructures in BaTi O3 induce local inhomogeneous stresses in the crystals, which can effectively trap the transient intermediate monoclinic structure that occurs across the thermal orthorhombic-tetragonal phase boundary. The induced metastable monoclinic domains are ferroelectrically soft, being easily moved by electric fields as low as 0.5 kV cm-1 . Stabilizing such intermediate low-symmetry phases could very well lead to Pb-free materials with enhanced piezoelectric properties.
Prieto-Blanco, Xesús; Montero-Orille, Carlos; Moreno, Vicente; Mateo, Eduardo F; Liñares, Jesús
2015-04-10
Mode-division multiplexing (MDM) in few-mode fibers is regarded as a promising candidate to increase optical network capacity. A fundamental element for MDM is a modal transformer to LP modes which can be implemented in a free-space basis by using multiregion phase plates, that is, LP plates. Likewise, several wavelengths have to be used due to wavelength multiplexing purposes, optical amplification tasks, and so on. In this work we show that efficient monolithic binary phase plates for different wavelengths can be fabricated by ion-exchange in glass and used for MDM tasks. We introduce an optical characterization method of the chromatic properties of such phase plates which combines the inverse Wentzel-Kramers-Brillouin (IWKB) together with Mach-Zehnder and Michelson-based interferometric techniques. The interferometric method provides a measurement of the phase step for several wavelengths, which characterizes the chromatic properties of the phase plate. Consequently, it is shown that the IWKB method allows us to design and characterize the phase plates in an easy and fast way.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Pawan; Kar, Manoranjan, E-mail: mano@iitp.ac.in; Shankhwar, Nisha
2015-05-21
The co-doping of Ca and Mn in respective Bi and Fe-sites of BiFeO{sub 3} lattice leads to structural transition from rhombohedral (R3c space group) to orthorhombic (Pbnm space group) crystal symmetry. The tilt angle for anti-phase rotation of the oxygen octahedra of BiFeO{sub 3} at room temperature is observed to be ∼13.8°. It decreases with the increase in the co-doping percentage which suggests the composition-driven structural phase transition. The remnant magnetization for sample with 15% of co-doping becomes about 16 times that of BiFeO{sub 3}. It may be attributed to the suppression of cycloid spin structure and uncompensated spins atmore » the surface of nanocrystallites. Further increase in co-doping percentage results in the sharp reduction of remnant magnetization due to the dominant contribution from the collinear antiferromagnetic ordering in the Pbnm space group. The Arrott plot analysis clearly indicates the composition-driven crossover from the antiferromagnetic to weak ferromagnetic ordering and vice versa. Electron spin resonance results provide the evidence for the composition-driven phase transitions from an incommensurate spin cycloidal modulated state to one with nearly homogeneous spin order. The band gap (2.17 eV) of BiFeO{sub 3} measured using UV-Vis spectra was supported by the resonance Raman spectra.« less
Strain manipulation of Majorana fermions in graphene armchair nanoribbons
NASA Astrophysics Data System (ADS)
Wang, Zhen-Hua; Castro, Eduardo V.; Lin, Hai-Qing
2018-01-01
Graphene nanoribbons with armchair edges are studied for externally enhanced but realistic parameter values: enhanced Rashba spin-orbit coupling due to proximity to a transition-metal dichalcogenide, such as WS2, and enhanced Zeeman field due to exchange coupling with a magnetic insulator, such as EuS under an applied magnetic field. The presence of s -wave superconductivity, induced either by proximity or by decoration with alkali-metal atoms, such as Ca or Li, leads to a topological superconducting phase with Majorana end modes. The topological phase is highly sensitive to the application of uniaxial strain with a transition to the trivial state above a critical strain well below 0.1%. This sensitivity allows for real-space manipulation of Majorana fermions by applying nonuniform strain profiles. Similar manipulation is also possible by applying an inhomogeneous Zeeman field or chemical potential.
NASA Astrophysics Data System (ADS)
Zhang, Lu; Ming, Yi; Li, Jin
2017-11-01
Due to the unique phase noise (PN) characteristics in direct-detection optical OFDM (DDO-OFDM) systems, the design of PN compensator is considered as a difficult task. In this paper, a laser PN suppression scheme with low complexity for DDO-OFDM based on coherent superposition of data carrying subcarriers and their phase conjugates is proposed. Through theoretical derivation, the obvious PN suppression is observed. The effectiveness of this technique is demonstrated by simulation of a 4-QAM DDO-OFDM system over 1000 km transmission length at different laser line-width and subcarrier frequency spacing. The results show that the proposed scheme can significantly suppress both varied phase rotation term (PTR) and inter-carrier interference (ICI), and the laser line-width can be relaxed with up to 9 dB OSNR saving or even breakthrough of performance floor.
Denoised Wigner distribution deconvolution via low-rank matrix completion
Lee, Justin; Barbastathis, George
2016-08-23
Wigner distribution deconvolution (WDD) is a decades-old method for recovering phase from intensity measurements. Although the technique offers an elegant linear solution to the quadratic phase retrieval problem, it has seen limited adoption due to its high computational/memory requirements and the fact that the technique often exhibits high noise sensitivity. Here, we propose a method for noise suppression in WDD via low-rank noisy matrix completion. Our technique exploits the redundancy of an object’s phase space to denoise its WDD reconstruction. We show in model calculations that our technique outperforms other WDD algorithms as well as modern iterative methods for phasemore » retrieval such as ptychography. Here, our results suggest that a class of phase retrieval techniques relying on regularized direct inversion of ptychographic datasets (instead of iterative reconstruction techniques) can provide accurate quantitative phase information in the presence of high levels of noise.« less
Denoised Wigner distribution deconvolution via low-rank matrix completion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Justin; Barbastathis, George
Wigner distribution deconvolution (WDD) is a decades-old method for recovering phase from intensity measurements. Although the technique offers an elegant linear solution to the quadratic phase retrieval problem, it has seen limited adoption due to its high computational/memory requirements and the fact that the technique often exhibits high noise sensitivity. Here, we propose a method for noise suppression in WDD via low-rank noisy matrix completion. Our technique exploits the redundancy of an object’s phase space to denoise its WDD reconstruction. We show in model calculations that our technique outperforms other WDD algorithms as well as modern iterative methods for phasemore » retrieval such as ptychography. Here, our results suggest that a class of phase retrieval techniques relying on regularized direct inversion of ptychographic datasets (instead of iterative reconstruction techniques) can provide accurate quantitative phase information in the presence of high levels of noise.« less
Compact seaweed growth of peritectic phase on confined, flat properitectic dendrites
NASA Astrophysics Data System (ADS)
Ludwig, A.; Mogeritsch, J.
2016-12-01
Peritectic alloys form a variety of different solidification morphologies at low growth rates. An alloy with a concentration that corresponds to the hyper-peritectic limit should show a cellular/dendritic solidification of the peritectic phase for growth velocities above the corresponding constitutional undercooling limit. However, due to nucleation retardation of the peritectic phase we observed growth of properitectic dendrites before cellular growth of the peritectic could established. The transition happened via an overgrowth of dendrites with a thin layer of peritectic phase. The observations were made using a transparent, metal-like solidifying peritectic system that was solidified directionally in thin samples. In the gap between the flat dendrites and the tubing walls, the peritectic phase grew with a compact seaweed morphology, whereas in the interdendritic spacing it formed small-curved bumps. At same distance behind the tip region, more and more polycrystalline-like objects appeared at the elongated traces of the compact seaweed morphology.
Cryogenic Two-Phase Flight Experiment: Results overview
NASA Technical Reports Server (NTRS)
Swanson, T.; Buchko, M.; Brennan, P.; Bello, M.; Stoyanof, M.
1995-01-01
This paper focuses on the flight results of the Cryogenic Two-Phase Flight Experiment (CRYOTP), which was a Hitchhiker based experiment that flew on the space shuttle Columbia in March of 1994 (STS-62). CRYOTP tested two new technologies for advanced cryogenic thermal control; the Space Heat Pipe (SHP), which was a constant conductance cryogenic heat pipe, and the Brilliant Eyes Thermal Storage Unit (BETSU), which was a cryogenic phase-change thermal storage device. These two devices were tested independently during the mission. Analysis of the flight data indicated that the SHP was unable to start in either of two attempts, for reasons related to the fluid charge, parasitic heat leaks, and cryocooler capacity. The BETSU test article was successfully operated with more than 250 hours of on-orbit testing including several cooldown cycles and 56 freeze/thaw cycles. Some degradation was observed with the five tactical cryocoolers used as thermal sinks, and one of the cryocoolers failed completely after 331 hours of operation. Post-flight analysis indicated that this problem was most likely due to failure of an electrical controller internal to the unit.
Error catastrophe and phase transition in the empirical fitness landscape of HIV
NASA Astrophysics Data System (ADS)
Hart, Gregory R.; Ferguson, Andrew L.
2015-03-01
We have translated clinical sequence databases of the p6 HIV protein into an empirical fitness landscape quantifying viral replicative capacity as a function of the amino acid sequence. We show that the viral population resides close to a phase transition in sequence space corresponding to an "error catastrophe" beyond which there is lethal accumulation of mutations. Our model predicts that the phase transition may be induced by drug therapies that elevate the mutation rate, or by forcing mutations at particular amino acids. Applying immune pressure to any combination of killer T-cell targets cannot induce the transition, providing a rationale for why the viral protein can exist close to the error catastrophe without sustaining fatal fitness penalties due to adaptive immunity.
Classical and quantum entropy of parton distributions
NASA Astrophysics Data System (ADS)
Hagiwara, Yoshikazu; Hatta, Yoshitaka; Xiao, Bo-Wen; Yuan, Feng
2018-05-01
We introduce the semiclassical Wehrl entropy for the nucleon as a measure of complexity of the multiparton configuration in phase space. This gives a new perspective on the nucleon tomography. We evaluate the entropy in the small-x region and compare with the quantum von Neumann entropy. We also argue that the growth of entropy at small x is eventually slowed down due to the Pomeron loop effect.
From space weather toward space climate time scales: Substorm analysis from 1993 to 2008
NASA Astrophysics Data System (ADS)
Tanskanen, E. I.; Pulkkinen, T. I.; Viljanen, A.; Mursula, K.; Partamies, N.; Slavin, J. A.
2011-05-01
Magnetic activity in the Northern Hemisphere auroral region was examined during solar cycles 22 and 23 (1993-2008). Substorms were identified from ground-based magnetic field measurements by an automated search engine. On average, 550 substorms were observed per year, which gives in total about 9000 substorms. The interannual, seasonal and solar cycle-to-cycle variations of the substorm number (Rss), substorm duration (Tss), and peak amplitude (Ass) were examined. The declining phases of both solar cycles 22 and 23 were more active than the other solar cycle phases due to the enhanced solar wind speed. The spring substorms during the declining solar cycle phase (∣Ass,decl∣ = 500 nT) were 25% larger than the spring substorms during the ascending solar cycle years (∣Ass,acs∣ = 400 nT). The following seasonal variation was found: the most intense substorms occurred during spring and fall, the largest substorm frequency in the Northern Hemisphere winter, and the longest-duration substorms in summer. Furthermore, we found a winter-summer asymmetry in the substorm number and duration, which is speculated to be due to the variations in the ionospheric conductivity. The solar cycle-to-cycle variation was found in the yearly substorm number and peak amplitude. The decline from the peak substorm activity in 1994 and 2003 to the following minima took 3 years during solar cycle 22, while it took 6 years during solar cycle 23.
A general formalism for phase space calculations
NASA Technical Reports Server (NTRS)
Norbury, John W.; Deutchman, Philip A.; Townsend, Lawrence W.; Cucinotta, Francis A.
1988-01-01
General formulas for calculating the interactions of galactic cosmic rays with target nuclei are presented. Methods for calculating the appropriate normalization volume elements and phase space factors are presented. Particular emphasis is placed on obtaining correct phase space factors for 2-, and 3-body final states. Calculations for both Lorentz-invariant and noninvariant phase space are presented.
Phase space explorations in time dependent density functional theory
NASA Astrophysics Data System (ADS)
Rajam, Aruna K.
Time dependent density functional theory (TDDFT) is one of the useful tools for the study of the dynamic behavior of correlated electronic systems under the influence of external potentials. The success of this formally exact theory practically relies on approximations for the exchange-correlation potential which is a complicated functional of the co-ordinate density, non-local in space and time. Adiabatic approximations (such as ALDA), which are local in time, are most commonly used in the increasing applications of the field. Going beyond ALDA, has been proved difficult leading to mathematical inconsistencies. We explore the regions where the theory faces challenges, and try to answer some of them via the insights from two electron model systems. In this thesis work we propose a phase-space extension of the TDDFT. We want to answer the challenges the theory is facing currently by exploring the one-body phase-space. We give a general introduction to this theory and its mathematical background in the first chapter. In second chapter, we carryout a detailed study of instantaneous phase-space densities and argue that the functionals of distributions can be a better alternative to the nonlocality issue of the exchange-correlation potentials. For this we study in detail the interacting and the non-interacting phase-space distributions for Hookes atom model. The applicability of ALDA-based TDDFT for the dynamics in strongfields can become severely problematic due to the failure of single-Slater determinant picture.. In the third chapter, we analyze how the phase-space distributions can shine some light into this problem. We do a comparative study of Kohn-Sham and interacting phase-space and momentum distributions for single ionization and double ionization systems. Using a simple model of two-electron systems, we have showed that the momentum distribution computed directly from the exact KS system contains spurious oscillations: a non-classical description of the essentially classical two-electron dynamics. In Time dependent density matrix functional theory (TDDMFT), the evolution scheme of the 1RDM (first order reduced density matrix) contains second-order reduced density matrix (2RDM), which has to be expressed in terms of 1RDMs. Any non-correlated approximations (Hartree-Fock) for 2RDM would fail to capture the natural occupations of the system. In our fourth chapter, we show that by applying the quasi-classical and semi-classical approximations one can capture the natural occupations of the excited systems. We study a time-dependent Moshinsky atom model for this. The fifth chapter contains a comparative work on the existing non-local exchange-correlation kernels that are based on current density response frame work and the co-moving frame work. We show that the two approaches though coinciding with each other in linear response regime, actually turn out to be different in non-linear regime.
Nonequilibrium life-cycles in Ocean Heat Content
NASA Astrophysics Data System (ADS)
Weiss, Jeffrey B.; Fox-Kemper, Baylor; Mandal, Dibyendu; Zia, Royce K. P.
2014-03-01
Natural climate variability can be considered as fluctuations in a nonequilibrium steady state. A fundamental property of nonequilibrium steady states is the phase space current which provides a preferred direction for fluctuations, and is manifested as preferred life-cycles for climate fluctuations. We propose a new quantity, the phase space angular momentum, to quantify the phase space rotation. In analogy with traditional angular momentum, which quantifies the rotation of mass in physical space, the phase space angular momentum quantifies the rotation of probability in phase space. It has the additional advantage that it is straightforward to calculate from a time series. We investigate the phase space angular momentum for fluctuations in ocean heat content in both observations and ocean general circulation models. We gratefully acknowledge financial support from the National Science Foundation (USA) under grant OCE 1245944.
Quantum mechanics on phase space: The hydrogen atom and its Wigner functions
NASA Astrophysics Data System (ADS)
Campos, P.; Martins, M. G. R.; Fernandes, M. C. B.; Vianna, J. D. M.
2018-03-01
Symplectic quantum mechanics (SQM) considers a non-commutative algebra of functions on a phase space Γ and an associated Hilbert space HΓ, to construct a unitary representation for the Galilei group. From this unitary representation the Schrödinger equation is rewritten in phase space variables and the Wigner function can be derived without the use of the Liouville-von Neumann equation. In this article the Coulomb potential in three dimensions (3D) is resolved completely by using the phase space Schrödinger equation. The Kustaanheimo-Stiefel(KS) transformation is applied and the Coulomb and harmonic oscillator potentials are connected. In this context we determine the energy levels, the amplitude of probability in phase space and correspondent Wigner quasi-distribution functions of the 3D-hydrogen atom described by Schrödinger equation in phase space.
NASA Technical Reports Server (NTRS)
1971-01-01
The design plan requirements define the design implementation and control requirements for Phase C/D of the Modular Space Station Project and specifically address the Initial Space Station phase of the Space Station Program (modular). It is based primarily on the specific objective of translating the requirements of the Space Station Program, Project, Interface, and Support Requirements and preliminary contract end x item specifications into detail design of the operational systems which comprise the initial space station. This document is designed to guide aerospace contractors in the planning and bidding for Phase C/D.
2004-04-15
Industry spends billions of dollars each year on machine tools to manufacture products out of metal. This includes tools for cutting every kind of metal part from engine blocks to Shuttle main engine components. Cutting tool tips often break because of weak spots or defects in their composition. Based on a new concept called defect trapping, space offers a novel environment to study defect formation in molten metal materials as they solidify. After the return of these materials from space, researchers can evaluate the source of the defect and seek ways to eliminate them in products prepared on Earth. A widely used process for cutting tip manufacturing is liquid phase sintering. Compared to Earth-sintered samples which slump due to buoyancy induced by gravity, space samples are uniformly shaped and defects remain where they are formed. By studying metals sintered in space the US tool industry can potentially enhance its worldwide competitiveness. The Consortium for Materials Development in Space along with Wyle Labs, Teledyne Advanced Materials, and McDornell Douglas have conducted experiments in space.
NASA Astrophysics Data System (ADS)
Li, Zhao; Hudson, Mary; Patel, Maulik; Wiltberger, Michael; Boyd, Alex; Turner, Drew
2017-07-01
The 17 March 2015 St. Patrick's Day Storm is the largest geomagnetic storm to date of Solar Cycle 24, with a Dst of -223 nT. The magnetopause moved inside geosynchronous orbit under high solar wind dynamic pressure and strong southward interplanetary magnetic field Bz causing loss; however, a subsequent drop in pressure allowed for rapid rebuilding of the radiation belts. The 17 March 2013 storm also shows similar effects on outer zone electrons: first, a rapid dropout due to inward motion of the magnetopause followed by rapid increase in flux above the prestorm level early in the recovery phase and a slow increase over the next 12 days. These phases can be seen in temporal evolution of the electron phase space density measured by the Energetic Particle, Composition, and Thermal Plasma Suite (ECT) instruments on Van Allen Probes. Using the Lyon-Fedder-Mobarry global MHD model driven by upstream solar wind measurements, we simulated both St. Patrick's Day 2013 and 2015 events, analyzing Lyon-Fedder-Mobarry electric and magnetic fields to calculate radial diffusion coefficients. These coefficients have been implemented in a radial diffusion code, using the measured electron phase space density following the local heating as the initial radial profile and outer boundary condition for subsequent temporal evolution over the next 12 days, beginning 18 March. Agreement with electron phase space density at 1000 MeV/G measured by the MagEIS component of the ECT instrument suite on Van Allen Probes was much improved using radial diffusion coefficients from the MHD simulations relative to coefficients parameterized by a global geomagnetic activity index.
Dynamic Monte Carlo simulations of radiatively accelerated GRB fireballs
NASA Astrophysics Data System (ADS)
Chhotray, Atul; Lazzati, Davide
2018-05-01
We present a novel Dynamic Monte Carlo code (DynaMo code) that self-consistently simulates the Compton-scattering-driven dynamic evolution of a plasma. We use the DynaMo code to investigate the time-dependent expansion and acceleration of dissipationless gamma-ray burst fireballs by varying their initial opacities and baryonic content. We study the opacity and energy density evolution of an initially optically thick, radiation-dominated fireball across its entire phase space - in particular during the Rph < Rsat regime. Our results reveal new phases of fireball evolution: a transition phase with a radial extent of several orders of magnitude - the fireball transitions from Γ ∝ R to Γ ∝ R0, a post-photospheric acceleration phase - where fireballs accelerate beyond the photosphere and a Thomson-dominated acceleration phase - characterized by slow acceleration of optically thick, matter-dominated fireballs due to Thomson scattering. We quantify the new phases by providing analytical expressions of Lorentz factor evolution, which will be useful for deriving jet parameters.
NASA Technical Reports Server (NTRS)
Sheth, Rubik B.; Makinen, Janice; Le, Hung V.
2016-01-01
The primary objective of the Phase Change HX payload on the International Space Station (ISS) is to test and demonstrate the viability and performance of Phase Change Material Heat Exchangers (PCM HX). The system was required to pump a working fluid through a PCM HX to promote the phase change material to freeze and thaw as expected on Orion's Multipurpose Crew Vehicle. Due to limitations on ISS's Internal Thermal Control System, a heat pump was needed on the Phase Change HX payload to help with reducing the working fluid's temperature to below 0degC (32degF). This paper will review the design and development of a TEC based liquid-liquid heat exchanger as a way to vary to fluid temperature for the freeze and thaw phase of the PCM HX. Specifically, the paper will review the design of custom coldplates and sizing for the required heat removal of the HX.
NASA Astrophysics Data System (ADS)
Qi, Chenkun; Gao, Feng; Zhao, Xianchao; Wang, Qian; Ren, Anye
2018-06-01
On the ground the hardware-in-the-loop (HIL) simulation is a good approach to test the contact dynamics of spacecraft docking process in space. Unfortunately, due to the time delay in the system the HIL contact simulation becomes divergent. However, the traditional first-order phase lead compensation approach still result in a small divergence for the pure time delay. The serial Smith predictor and phase lead compensation approach proposed by the authors recently will lead to an over-compensation and an obvious convergence. In this study, a hybrid Smith predictor and phase lead compensation approach is proposed. The hybrid Smith predictor and phase lead compensation can achieve a higher simulation fidelity with a little convergence. The phase angle of the compensator is analyzed and the stability condition of the HIL simulation system is given. The effectiveness of the proposed compensation approach is tested by simulations on an undamped elastic contact process.
Cost and Economics for Advanced Launch Vehicles
NASA Technical Reports Server (NTRS)
Whitfield, Jeff
1998-01-01
Market sensitivity and weight-based cost estimating relationships are key drivers in determining the financial viability of advanced space launch vehicle designs. Due to decreasing space transportation budgets and increasing foreign competition, it has become essential for financial assessments of prospective launch vehicles to be performed during the conceptual design phase. As part of this financial assessment, it is imperative to understand the relationship between market volatility, the uncertainty of weight estimates, and the economic viability of an advanced space launch vehicle program. This paper reports the results of a study that evaluated the economic risk inherent in market variability and the uncertainty of developing weight estimates for an advanced space launch vehicle program. The purpose of this study was to determine the sensitivity of a business case for advanced space flight design with respect to the changing nature of market conditions and the complexity of determining accurate weight estimations during the conceptual design phase. The expected uncertainty associated with these two factors drives the economic risk of the overall program. The study incorporates Monte Carlo simulation techniques to determine the probability of attaining specific levels of economic performance when the market and weight parameters are allowed to vary. This structured approach toward uncertainties allows for the assessment of risks associated with a launch vehicle program's economic performance. This results in the determination of the value of the additional risk placed on the project by these two factors.
Super-dense teleportation for space applications
NASA Astrophysics Data System (ADS)
Zeitler, Chris; Graham, Trent M.; Chapman, Joseph; Bernstein, Herbert; Kwiat, Paul G.
2016-03-01
Establishing a quantum communication network would provide advantages in areas such as security and information processing. Such a network would require the implementation of quantum teleportation between remote parties. However, for photonic "qudits" of dimension greater than two, this teleportation always fails due to the inability to carry out the required quantum Bell-state measurement. A quantum communication protocol called Superdense Teleportation (SDT) can allow the reconstruction of a state without the usual 2-photon Bell-state measurements, enabling the protocol to succeed deterministically even for high dimensional qudits. This technique restricts the class of states transferred to equimodular states, a type of superposition state where each term can differ from the others in phase but not in amplitude; this restricted space of transmitted states allows the transfer to occur deterministically. We report on our implementation of SDT using photon pairs that are entangled in both polarization and temporal mode. After encoding the phases of the desired equimodular state on the signal photon, we perform a complete tomography on the idler photon to verify that we properly prepared the chosen state. Beyond our tabletop demonstration, we are working towards an implementation between a space platform in low earth orbit and a ground telescope, to demonstrate the feasibility of space-based quantum communication. We will discuss the various challenges presented by moving the experiment out of the laboratory, and our proposed solutions to make Superdense Teleportation realizable in the space setting.
NASA Astrophysics Data System (ADS)
Jonusas, Mindaugas; Krim, Lahouari
2016-06-01
The presence of NH2OH, one of the main precursors in the formation of amino-acids, on dust grain mantles, may be the most obvious elucidation for the creation of large pre-biotic molecules in the interstellar medium. However, while many laboratory experimental studies, to simulate the icy grain chemistry in space, found that NH2OH molecules may be easily formed in solid phase with high abundances and then they should desorb, through a temperature-induced desorption into the gas phase, with the same high abundances; all the spatial observations conclude that NH2OH is not detected in gas phase within any of the explored astronomical sources. Such inconsistencies between laboratory experiment simulations and spatial observations lead our investigations towards this experimental study to see if there is any chemical transformation of NH2OH, occurring in the solid phase before the desorption processes of NH2OH from the mantle of interstellar icy grains. Our experimental results show that the heating of NH2OH-H2O ices lead to a decomposition of NH2OH into HNO, NH3 and O2, even before reaching its desorption temperature. We show through this work that the NH2OH non-detection from previous examined astronomical sources could mainly due to its high reactivity in solid phase on the icy interstellar grains.
NASA Astrophysics Data System (ADS)
Warren, T. J.; Bowles, N. E.; Donaldson Hanna, K.; Thomas, I. R.
2017-12-01
Measurements of the light scattering behaviour of the regoliths of airless bodies via remote sensing techniques in the Solar System, across wavelengths from the visible to the far infrared, are essential in understanding their surface properties. A key parameter is knowledge of the angular behaviour of scattered light, usually represented mathematically by a phase function. The phase function is believed to be dependent on many factors including the following: surface composition, surface roughness across all length scales, and the wavelength of radiation. Although there have been many phase function measurements of regolith analog materials across visible wavelengths, there have been no equivalent measurements made in the thermal infrared (TIR). This may have been due to a lack of TIR instruments as part of planetary remote sensing payloads. However, since the launch of Diviner to the Moon in 2009, OSIRIS-Rex to the asteroid Bennu in 2016, and the planned launch of BepiColombo to Mercury in 2018, there is now a large quantity of TIR remote sensing data that need to be interpreted. It is therefore important to extend laboratory phase function measurements to the TIR. This paper describes the design, build, calibration, and initial measurements from a new laboratory instrument that is able to make phase function measurements of analog planetary regoliths across wavelengths from the visible to the TIR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Besse, Nicolas; Latu, Guillaume; Ghizzo, Alain
In this paper we present a new method for the numerical solution of the relativistic Vlasov-Maxwell system on a phase-space grid using an adaptive semi-Lagrangian method. The adaptivity is performed through a wavelet multiresolution analysis, which gives a powerful and natural refinement criterion based on the local measurement of the approximation error and regularity of the distribution function. Therefore, the multiscale expansion of the distribution function allows to get a sparse representation of the data and thus save memory space and CPU time. We apply this numerical scheme to reduced Vlasov-Maxwell systems arising in laser-plasma physics. Interaction of relativistically strongmore » laser pulses with overdense plasma slabs is investigated. These Vlasov simulations revealed a rich variety of phenomena associated with the fast particle dynamics induced by electromagnetic waves as electron trapping, particle acceleration, and electron plasma wavebreaking. However, the wavelet based adaptive method that we developed here, does not yield significant improvements compared to Vlasov solvers on a uniform mesh due to the substantial overhead that the method introduces. Nonetheless they might be a first step towards more efficient adaptive solvers based on different ideas for the grid refinement or on a more efficient implementation. Here the Vlasov simulations are performed in a two-dimensional phase-space where the development of thin filaments, strongly amplified by relativistic effects requires an important increase of the total number of points of the phase-space grid as they get finer as time goes on. The adaptive method could be more useful in cases where these thin filaments that need to be resolved are a very small fraction of the hyper-volume, which arises in higher dimensions because of the surface-to-volume scaling and the essentially one-dimensional structure of the filaments. Moreover, the main way to improve the efficiency of the adaptive method is to increase the local character in phase-space of the numerical scheme, by considering multiscale reconstruction with more compact support and by replacing the semi-Lagrangian method with more local - in space - numerical scheme as compact finite difference schemes, discontinuous-Galerkin method or finite element residual schemes which are well suited for parallel domain decomposition techniques.« less
Thin metal film and multilayers experiment (A0138-3)
NASA Technical Reports Server (NTRS)
Delaboudiniere, J. P.; Berset, J. M.
1984-01-01
The sources of degradation of in state of the art and newly developed components and testing the usefulness of the concept of storing experiment samples in dry nitrogen under launch and space vacuum conditions during reentry mission phase were investigated. Ultraviolet (UV) and extreme ultraviolet (EUV) experiments suffer degradations during space missions of even 1 month duration. It is suggested that the degradation is due to condensation of outgassing products, followed by solar induced polymerization, however, penetrating charged particles are also known to produce volume effects. Degradation may also start immediately after manufacturing of the component due to oxidation, moisture, or chemical corrosion by atmospheric constituents such as CO2 and SO2. When the filters are used as windows for gas absorption cells or gas filters, or when they define the instrumental bandwidth by themselves. The effects of mechanical degradation by thermal cycling and/or dust may cause a dramatic impact.
Self-Bound Quantum Droplets of Atomic Mixtures in Free Space
NASA Astrophysics Data System (ADS)
Semeghini, G.; Ferioli, G.; Masi, L.; Mazzinghi, C.; Wolswijk, L.; Minardi, F.; Modugno, M.; Modugno, G.; Inguscio, M.; Fattori, M.
2018-06-01
Self-bound quantum droplets are a newly discovered phase in the context of ultracold atoms. In this Letter, we report their experimental realization following the original proposal by Petrov [Phys. Rev. Lett. 115, 155302 (2015), 10.1103/PhysRevLett.115.155302], using an attractive bosonic mixture. In this system, spherical droplets form due to the balance of competing attractive and repulsive forces, provided by the mean-field energy close to the collapse threshold and the first-order correction due to quantum fluctuations. Thanks to an optical levitating potential with negligible residual confinement, we observe self-bound droplets in free space, and we characterize the conditions for their formation as well as their size and composition. This work sets the stage for future studies on quantum droplets, from the measurement of their peculiar excitation spectrum to the exploration of their superfluid nature.
Space Weather Effects on the Dynamics of Equatorial F Region Irregularities
NASA Astrophysics Data System (ADS)
Bhattacharyya, A.; Basu, S.; Groves, K.; Valladares, C.; Sheehan, R.
Space weather effects on transionospheric radio waves used for navigation and communication may be divided into two categories depending on the spatial scale size of the ionospheric perturbation produced by such effects. For large-scale (> 10 km) perturbations in the ionospheric plasma density, there are changes in the excess time delay for a radio wave signal, which propagates through the ionosphere, while small scale (< 1 m) structures or irregularities in the ionosphere may give rise tok amplitude and phase scintillations on UHF/L-band radio waves, resulting in loss of data, cycle slips and loss of phase lock for signals used in communication/navigation systems. In the equatorial region, where such effects may be severe, space weather effects on the dynamics of equatorial spread F (ESF) irregularities are studied from two different angles. The first one deals with the effect of magnetic activity on the generation of ESF irregularities by helping or hindering the growth of the Rayleigh Taylor (R-T) instability in the post-sunset equatorial F region. For this purpose, spaced receiver observations of scintillations on a UHF signal transmitted from a geostationary satellite and recorded near the dip equator, are used to establish the `age' of the irregularities. This is necessary because the occurrence of scintillations, particularly in the post midnight period, may also be due to irregularities which drift into the path of the radio wave signal, after having been generated more than 3 hours before the actual observation of scintillations. In order to associate the generation of irregularities with major changes in space weather, a parameter that is a measure of random variations in irregularity drift speed is computed from spaced receiver scintillation data. A large value of this parameter is usually a signature of random variations in irregularity drift due to polarization electric fields associated with freshly generated irregularities. Once these electric fields decay, the irregularities drift with the background plasma. This allows a study of the other effect of space weather on the dynamics of equatorial F region irregularities, viz. magnetically disturbed ionospheric drifts in the equatorial region. The drifts estimated for magnetically quiet days with ESF, within a period of a month, display far less variability than the quiet time variability for non-ESF days, thus making it possible to quantify perturbations in irregularity drift due to disturbance dynamo electric fields and/or prompt penetration of transient magnetospheric electric fields.
Optimization of stress relief heat treatment of PHWR pressure tubes (Zr 2.5Nb alloy)
NASA Astrophysics Data System (ADS)
Choudhuri, Gargi; Srivastava, D.; Gurumurthy, K. R.; Shah, B. K.
2008-12-01
The micro-structure of cold worked Zr-2.5%Nb pressure tube material consists of elongated grains of α-zirconium enclosed by a thin film of β-zirconium phase. This β-Zr phase is unstable and on heating, progressively decomposes to α-Zr phase and β-phase enriched with Nb and ultimately form β Nb. Meta-stable ω-phase precipitates as an intermediate step during decomposition depending on the heat treatment schedule, β→α+β→α+ω+β→α+β→α+β Morphological changes occur in the β-zirconium phase during the decomposition. The continuous ligaments of β Zr phase turn into a discontinuous array of particles followed by globulization of the β-phase. The morphological changes impose a significant effect on the creep rate and on the delayed hydride cracking velocity due to reduction in the hydrogen diffusion coefficient in α Zr. If the continuity of β-phase is disrupted by heat treatment, the effective diffusion coefficient decreases with a concomitant reduction in DHC velocity. The pressure tubes for the Indian PHWRs are made by a process of hot extrusion followed by cold pilgering in two stages and an intermediate annealing. Autoclaving at 400 °C for 36 h ensures stress relieving of the finished tubes. In the present studies, autoclaving duration at 400 °C was varied from 24 h to 96 h at 12 h-steps and the micro-structural changes in the β-phase were observed by TEM. Dislocation density, hardness and the micro-structural features such as thickness of β-phase, inter-particle spacing and volume fraction of the phases were measured at each stage. Autoclaving for a longer duration was found to change the morphology of β-phase and increase the inter-particle spacing. Progressive changes in the aspect ratio of the β-phase and their size and distribution are documented and reported. These micro-structural modifications are expected to decrease DHC velocity during reactor operation.
How to disentangle the Cosmic Web?
NASA Astrophysics Data System (ADS)
Shandarin, Sergei; Medvedev, Mikhail
2015-04-01
The Cosmic Web is a complicated highly-entangled geometrical object formed from remarkably simple - Gaussian - initial conditions. The full complexity of the Web can be fully appreciated in the six-dimensional phase space only, which study is, however, impractical due to numerous reasons. Instead, we suggest to use Lagrangian submanifold, i.e., the mapping x = x(q) , where x and q are three dimensional vectors representing Eulerian and Lagrangian coordinates. Being fully equivalent in dynamical sense to the phase space, it has the advantage of being a single valued and also metric space. In addition, we propose a new computational paradigm for the analysis of substructure of the Cosmic Web in cosmological cold dark matter (CDM) simulations. We introduce a new data-field - the flip-flop field - which carries wealth of information about the history and dynamics of the structure formation in the universe. The flip-flop (FF) field is an ordered data set in Lagrangian space representing the number of sign reversals of an elementary volume of each collisionless fluid element represented by a computational particle in a N-body simulation. This FF-field is effectively a multi-stream counter of each substructure element of the Cosmic Web. We demonstrate that the very rich subst Partially supported by DOE Grant DE-FG02-07ER54940 and NSF Grant AST-1209665.
Tunable resistivity due to kinetic arrest of antiferro-ferromagnetic transition in FeRh0.46Pd0.54
NASA Astrophysics Data System (ADS)
Saha, Pampi; Rawat, R.
2018-05-01
We show a large negative magnetoresistance (MR) of ≈10% near room temperature in FeRh0.46Pd0.54, which increases to more than 60% at low temperatures. The magnitude of resistivity and, hence, MR depend on the history of the sample in HT (magnetic field-temperature) space, e.g., resistivity at 5 K changes by more than 70% with thermal cycling. These results are explained due to slow kinetics of the transformation from austenite antiferromagnetic (AF) to martensite ferromagnetic (FM) state with the decrease in temperature. As a result, AF to FM transformation remains incomplete on experimental time scales and non-ergodic AF phase co-exists with a low temperature equilibrium FM phase. In the present system, the kinetics of the transition is shown to dominate up to 150 K, which is significantly high in comparison to other kinetically arrested systems.
Two-dimensional model of a Space Station Freedom thermal energy storage canister
NASA Astrophysics Data System (ADS)
Kerslake, Thomas W.; Ibrahim, Mounir B.
1990-08-01
The Solar Dynamic Power Module being developed for Space Station Freedom uses a eutectic mixture of LiF-CaF2 phase change salt contained in toroidal canisters for thermal energy storage. Results are presented from heat transfer analyses of the phase change salt containment canister. A 2-D, axisymmetric finite difference computer program which models the canister walls, salt, void, and heat engine working fluid coolant was developed. Analyses included effects of conduction in canister walls and solid salt, conduction and free convection in liquid salt, conduction and radiation across salt vapor filled void regions and forced convection in the heat engine working fluid. Void shape, location, growth or shrinkage (due to density difference between the solid and liquid salt phases) were prescribed based on engineering judgement. The salt phase change process was modeled using the enthalpy method. Discussion of results focuses on the role of free-convection in the liquid salt on canister heat transfer performance. This role is shown to be important for interpreting the relationship between ground based canister performance (in l-g) and expected on-orbit performance (in micro-g). Attention is also focused on the influence of void heat transfer on canister wall temperature distributions. The large thermal resistance of void regions is shown to accentuate canister hot spots and temperature gradients.
Two-dimensional model of a Space Station Freedom thermal energy storage canister
NASA Astrophysics Data System (ADS)
Kerslake, Thomas W.; Ibrahim, Mounir B.
The Solar Dynamic Power Module being developed for Space Station Freedom uses a eutectic mixture of LiF-CaF2 phase change salt contained in toroidal canisters for thermal energy storage. Results are presented from heat transfer analyses of the phase-change salt containment canister. A 2-D, axisymmetric finite-difference computer program which models the canister walls, salt, void, and heat engine working fluid coolant was developed. Analyses included effects of conduction in canister walls and solid salt, conduction and free convection in liquid salt, conduction and radiation across salt vapor filled void regions, and forced convection in the heat engine working fluid. Void shape, location, and growth or shrinkage (due to density difference between the solid and liquid salt phases) were prescribed based on engineering judgement. The salt phase change process was modeled using the enthalpy method. Discussion of results focuses on the role of free-convection in the liquid salt on canister heat transfer performance. This role is shown to be important for interpreting the relationship between groundbased canister performance (in 1-g) and expected on-orbit performance (in micro-g). Attention is also focused on the influence of void heat transfer on canister wall temperature distributions. The large thermal resistance of void regions is shown to accentuate canister hot spots and temperature gradients.
Effect of vision angle on the phase transition in flocking behavior of animal groups
NASA Astrophysics Data System (ADS)
Nguyen, P. The; Lee, Sang-Hee; Ngo, V. Thanh
2015-09-01
The nature of the phase transition in a system of self-propelling particles has been extensively studied during the past few decades. A theoretical model was proposed by [T. Vicsek et al. Phys. Rev. Lett. 75, 1226 (1995), 10.1103/PhysRevLett.75.1226] with a simple rule for updating the direction of motion of each particle. Based on the model of Vicsek et al., in this paper, we consider a group of animals as particles moving freely in a two-dimensional space. Due to the fact that the viewable area of animals depends on the species, we consider the motion of each individual within an angle φ =ϕ /2 (ϕ is called the angle of view) of a circle centered at its position of radius R . We obtained a phase diagram in the space (φ ,ηc ) with ηc being the critical noise. We show that the phase transition exists only in the case of a wide view's angle φ ≥0.5 π . The flocking of animals is a universal behavior of the species of prey but not the one of the predator. Our simulation results are in good agreement with experimental observation [C. Beccoa et al., Physica A 367, 487 (2006), 10.1016/j.physa.2005.11.041].
Two-dimensional model of a Space Station Freedom thermal energy storage canister
NASA Technical Reports Server (NTRS)
Kerslake, Thomas W.; Ibrahim, Mounir B.
1990-01-01
The Solar Dynamic Power Module being developed for Space Station Freedom uses a eutectic mixture of LiF-CaF2 phase change salt contained in toroidal canisters for thermal energy storage. Results are presented from heat transfer analyses of the phase-change salt containment canister. A 2-D, axisymmetric finite-difference computer program which models the canister walls, salt, void, and heat engine working fluid coolant was developed. Analyses included effects of conduction in canister walls and solid salt, conduction and free convection in liquid salt, conduction and radiation across salt vapor filled void regions, and forced convection in the heat engine working fluid. Void shape, location, and growth or shrinkage (due to density difference between the solid and liquid salt phases) were prescribed based on engineering judgement. The salt phase change process was modeled using the enthalpy method. Discussion of results focuses on the role of free-convection in the liquid salt on canister heat transfer performance. This role is shown to be important for interpreting the relationship between groundbased canister performance (in 1-g) and expected on-orbit performance (in micro-g). Attention is also focused on the influence of void heat transfer on canister wall temperature distributions. The large thermal resistance of void regions is shown to accentuate canister hot spots and temperature gradients.
Two-dimensional model of a Space Station Freedom thermal energy storage canister
NASA Technical Reports Server (NTRS)
Kerslake, Thomas W.; Ibrahim, Mounir B.
1990-01-01
The Solar Dynamic Power Module being developed for Space Station Freedom uses a eutectic mixture of LiF-CaF2 phase change salt contained in toroidal canisters for thermal energy storage. Results are presented from heat transfer analyses of the phase change salt containment canister. A 2-D, axisymmetric finite difference computer program which models the canister walls, salt, void, and heat engine working fluid coolant was developed. Analyses included effects of conduction in canister walls and solid salt, conduction and free convection in liquid salt, conduction and radiation across salt vapor filled void regions and forced convection in the heat engine working fluid. Void shape, location, growth or shrinkage (due to density difference between the solid and liquid salt phases) were prescribed based on engineering judgement. The salt phase change process was modeled using the enthalpy method. Discussion of results focuses on the role of free-convection in the liquid salt on canister heat transfer performance. This role is shown to be important for interpreting the relationship between ground based canister performance (in l-g) and expected on-orbit performance (in micro-g). Attention is also focused on the influence of void heat transfer on canister wall temperature distributions. The large thermal resistance of void regions is shown to accentuate canister hot spots and temperature gradients.
Discrete Fourier Transform in a Complex Vector Space
NASA Technical Reports Server (NTRS)
Dean, Bruce H. (Inventor)
2015-01-01
An image-based phase retrieval technique has been developed that can be used on board a space based iterative transformation system. Image-based wavefront sensing is computationally demanding due to the floating-point nature of the process. The discrete Fourier transform (DFT) calculation is presented in "diagonal" form. By diagonal we mean that a transformation of basis is introduced by an application of the similarity transform of linear algebra. The current method exploits the diagonal structure of the DFT in a special way, particularly when parts of the calculation do not have to be repeated at each iteration to converge to an acceptable solution in order to focus an image.
Natural convection in low-g environments
NASA Technical Reports Server (NTRS)
Grodzka, P. G.; Bannister, T. C.
1974-01-01
The present state of knowledge in the area of low-g natural convection is reviewed, taking into account a number of experiments conducted during the Apollo 14, 16, and 17 space flights. Convections due to steady low-g accelerations are considered. Steady g-levels result from spacecraft rotation, gravity gradients, solar wind, and solar pressure. Varying g-levels are produced by engine burns, attitude control maneuvers, and onboard vibrations from machinery or astronaut movement. Thermoacoustic convection in a low-g environment is discussed together with g-jitter convection, surface tension-driven convection, electrohydrodynamics under low-g conditions, phase change convection, and approaches for the control and the utilization of convection in space.
Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off.
Li, Zhiming; Pradeep, Konda Gokuldoss; Deng, Yun; Raabe, Dierk; Tasan, Cemal Cem
2016-06-09
Metals have been mankind's most essential materials for thousands of years; however, their use is affected by ecological and economical concerns. Alloys with higher strength and ductility could alleviate some of these concerns by reducing weight and improving energy efficiency. However, most metallurgical mechanisms for increasing strength lead to ductility loss, an effect referred to as the strength-ductility trade-off. Here we present a metastability-engineering strategy in which we design nanostructured, bulk high-entropy alloys with multiple compositionally equivalent high-entropy phases. High-entropy alloys were originally proposed to benefit from phase stabilization through entropy maximization. Yet here, motivated by recent work that relaxes the strict restrictions on high-entropy alloy compositions by demonstrating the weakness of this connection, the concept is overturned. We decrease phase stability to achieve two key benefits: interface hardening due to a dual-phase microstructure (resulting from reduced thermal stability of the high-temperature phase); and transformation-induced hardening (resulting from the reduced mechanical stability of the room-temperature phase). This combines the best of two worlds: extensive hardening due to the decreased phase stability known from advanced steels and massive solid-solution strengthening of high-entropy alloys. In our transformation-induced plasticity-assisted, dual-phase high-entropy alloy (TRIP-DP-HEA), these two contributions lead respectively to enhanced trans-grain and inter-grain slip resistance, and hence, increased strength. Moreover, the increased strain hardening capacity that is enabled by dislocation hardening of the stable phase and transformation-induced hardening of the metastable phase produces increased ductility. This combined increase in strength and ductility distinguishes the TRIP-DP-HEA alloy from other recently developed structural materials. This metastability-engineering strategy should thus usefully guide design in the near-infinite compositional space of high-entropy alloys.
Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off
NASA Astrophysics Data System (ADS)
Li, Zhiming; Pradeep, Konda Gokuldoss; Deng, Yun; Raabe, Dierk; Tasan, Cemal Cem
2016-06-01
Metals have been mankind’s most essential materials for thousands of years; however, their use is affected by ecological and economical concerns. Alloys with higher strength and ductility could alleviate some of these concerns by reducing weight and improving energy efficiency. However, most metallurgical mechanisms for increasing strength lead to ductility loss, an effect referred to as the strength-ductility trade-off. Here we present a metastability-engineering strategy in which we design nanostructured, bulk high-entropy alloys with multiple compositionally equivalent high-entropy phases. High-entropy alloys were originally proposed to benefit from phase stabilization through entropy maximization. Yet here, motivated by recent work that relaxes the strict restrictions on high-entropy alloy compositions by demonstrating the weakness of this connection, the concept is overturned. We decrease phase stability to achieve two key benefits: interface hardening due to a dual-phase microstructure (resulting from reduced thermal stability of the high-temperature phase); and transformation-induced hardening (resulting from the reduced mechanical stability of the room-temperature phase). This combines the best of two worlds: extensive hardening due to the decreased phase stability known from advanced steels and massive solid-solution strengthening of high-entropy alloys. In our transformation-induced plasticity-assisted, dual-phase high-entropy alloy (TRIP-DP-HEA), these two contributions lead respectively to enhanced trans-grain and inter-grain slip resistance, and hence, increased strength. Moreover, the increased strain hardening capacity that is enabled by dislocation hardening of the stable phase and transformation-induced hardening of the metastable phase produces increased ductility. This combined increase in strength and ductility distinguishes the TRIP-DP-HEA alloy from other recently developed structural materials. This metastability-engineering strategy should thus usefully guide design in the near-infinite compositional space of high-entropy alloys.
DiBona, Donald R.; Chen, Lincoln C.; Sharp, Geoffrey W. G.
1974-01-01
The effects of acute volume expansion and of intraluminal administration of cholera toxin have been examined in rabbit jejunum. Acute volume expansion was shown to reverse the normal reabsorptive flux of water and cause significant fluid secretion. Phase and electronmicroscopic examination of the jejunal epithelium showed that marked distension of the intercellular spaces had occurred. Examination of the jejunal epithelium after treatment with cholera toxin showed that, in association with high rates of fluid secretion, the intercellular spaces were extremely small and lateral membranes of adjacent cells were in close apposition to one another. Thus the mechanisms of fluid secretion in these two situations would appear to be quite different. The secretion associated with volume expansion, and accompanied by a rise in venous pressure and bullous deformations of terminal junctions, could well be due to hydrostatic pressure applied through intercellular channels. The secretion of cholera appears to be unrelated to hydrostatic pressure and is more likely due to body-to-lumen active ion transport. Images PMID:4596506
Simulations of Instabilities in Tidal Tails
NASA Astrophysics Data System (ADS)
Comparetta, Justin N.; Quillen, A. C.
2010-05-01
We use graphics cards to run a hybrid test particle/N-body simulation to integrate 4 million massless particle trajectories within fully self-consistent N-body simulations of 128,000 - 256,000 particles. The number of massless particles allows us to resolve fine structure in the spatial distribution and phase space of a dwarf galaxy that is disrupted in the tidal field of a Milky Way type galaxy. The tidal tails exhibit clumping or a smoke-like appearance. By running simulations with different satellite particle mass, number of massive vs massless particles and with and without a galaxy disk, we have determined that the instabilities are not due to numerical noise or shocking as the satellite passes through the disk of the Galaxy. The instability is possibly a result of self-gravity which indicates it may be due to Jeans instabilities. Simulations involving different halo particle mass may suggest limitations on dark matter halo substructure. We find that the instabilities are visible in velocity space as well as real space and thus could be identified from velocity surveys as well as number counts.
Enhancement of thermal blooming effect on free space propagation of high power CW laser beam
NASA Astrophysics Data System (ADS)
Kashef, Tamer M.; Mokhtar, Ayman M.; Ghoniemy, Samy A.
2018-02-01
In this paper, we present an enhanced model to predict the effect of thermal blooming and atmospheric turbulence, on high energy laser beams free space propagation. We introduce an implementation technique for the proposed mathematical models describing the effect of thermal blooming and atmospheric turbulence including wind blowing, and how it effect high power laser beam power, far field pattern, phase change effect and beam quality . An investigated model of adaptive optics was introduced to study how to improve the wave front and phase distortion caused by thermal blooming and atmospheric turbulence, the adaptive optics model with Actuator influence spacing 3 cm the that shows observed improvement in the Strehl ratio and in wave front and phase of the beam. These models was implemented using cooperative agents relying on GLAD software package. Without taking in consideration the effect of thermal blooming It was deduced that the beam at the source takes the Gaussian shape with uniform intensity distribution, we found that the beam converge on the required distance 4 km using converging optics, comparing to the laser beam under the effect of thermal blooming the far field pattern shows characteristic secondary blip and "sugar scoop" effect which is characteristic of thermal blooming. It was found that the thermal blooming causes the beam to steer many centimeters and to diverge beyond about 1.8 km than come to a focus at 4 km where the beam assumed to be focused on the required target. We assume that this target is moving at v = (4,-4) m/sec at distance 4 km and the wind is moving at v = (-10,-10) m/sec, it was found that the effect will be strongest when wind and target movement are at the same velocity. GLAD software is used to calculate the attenuation effects of the atmosphere as well as the phase perturbations due to temperature change in the air and effects caused as the beam crosses through the air due to wind and beam steering.
Detecting Trends in Tropical Rainfall Characteristics, 1979-2003
NASA Technical Reports Server (NTRS)
Lau, K. M.; Wu, H. T.
2006-01-01
From analyses of blended space-based and ground-based global rainfall data, we found increasing trends in the occurrence of extreme heavy and light rain events, coupled to a decreasing trend in moderate rain events in the tropics during 1979-2003. The trends are consistent with a shift in the large-scale circulation associated with a) a relatively uniform increase in warm rain over the tropical oceans, b) enhanced ice-phase rain over the near-equatorial oceans, and c) reduced mixed-phase rain over the tropical ocean and land regions. Due to the large compensation among different rain categories, the total tropical rainfall trend remained undetectable.
Baryonic impact on the dark matter orbital properties of Milky Way-sized haloes
NASA Astrophysics Data System (ADS)
Zhu, Qirong; Hernquist, Lars; Marinacci, Federico; Springel, Volker; Li, Yuexing
2017-04-01
We study the orbital properties of dark matter haloes by combining a spectral method and cosmological simulations of Milky Way-sized Galaxies. We compare the dynamics and orbits of individual dark matter particles from both hydrodynamic and N-body simulations, and find that the fraction of box, tube and resonant orbits of the dark matter halo decreases significantly due to the effects of baryons. In particular, the central region of the dark matter halo in the hydrodynamic simulation is dominated by regular, short-axis tube orbits, in contrast to the chaotic, box and thin orbits dominant in the N-body run. This leads to a more spherical dark matter halo in the hydrodynamic run compared to a prolate one as commonly seen in the N-body simulations. Furthermore, by using a kernel-based density estimator, we compare the coarse-grained phase-space densities of dark matter haloes in both simulations and find that it is lower by ˜0.5 dex in the hydrodynamic run due to changes in the angular momentum distribution, which indicates that the baryonic process that affects the dark matter is irreversible. Our results imply that baryons play an important role in determining the shape, kinematics and phase-space density of dark matter haloes in galaxies.
Abe, Takayuki
2013-03-01
To improve the slice profile of the half radiofrequency (RF) pulse excitation and image quality of ultrashort echo time (UTE) imaging by compensating for an eddy current effect. The dedicated prescan has been developed to measure the phase accumulation due to eddy currents induced by the slice-selective gradient. The prescan measures two one-dimensional excitation k-space profiles, which can be acquired with a readout gradient in the slice-selection direction by changing the polarity of the slice-selective gradient. The time shifts due to the phase accumulation in the excitation k-space were calculated. The time shift compensated for the start time of the slice-selective gradient. The total prescan time was 6-15 s. The slice profile and the UTE image with the half RF pulse excitation were acquired to evaluate the slice selectivity and the image quality. Improved slice selectivity was obtained. The simple method proposed in this paper can eliminate eddy current effect. Good UTE images were obtained. The slice profile of the half RF pulse excitation and the image quality of UTE images have been improved by using a dedicated prescan. This method has a possibility that can improve the image quality of a clinical UTE imaging.
Optimal perturbations for nonlinear systems using graph-based optimal transport
NASA Astrophysics Data System (ADS)
Grover, Piyush; Elamvazhuthi, Karthik
2018-06-01
We formulate and solve a class of finite-time transport and mixing problems in the set-oriented framework. The aim is to obtain optimal discrete-time perturbations in nonlinear dynamical systems to transport a specified initial measure on the phase space to a final measure in finite time. The measure is propagated under system dynamics in between the perturbations via the associated transfer operator. Each perturbation is described by a deterministic map in the measure space that implements a version of Monge-Kantorovich optimal transport with quadratic cost. Hence, the optimal solution minimizes a sum of quadratic costs on phase space transport due to the perturbations applied at specified times. The action of the transport map is approximated by a continuous pseudo-time flow on a graph, resulting in a tractable convex optimization problem. This problem is solved via state-of-the-art solvers to global optimality. We apply this algorithm to a problem of transport between measures supported on two disjoint almost-invariant sets in a chaotic fluid system, and to a finite-time optimal mixing problem by choosing the final measure to be uniform. In both cases, the optimal perturbations are found to exploit the phase space structures, such as lobe dynamics, leading to efficient global transport. As the time-horizon of the problem is increased, the optimal perturbations become increasingly localized. Hence, by combining the transfer operator approach with ideas from the theory of optimal mass transportation, we obtain a discrete-time graph-based algorithm for optimal transport and mixing in nonlinear systems.
NASA Astrophysics Data System (ADS)
Singh, Anar; Kaifeng, Dong; Chen, Jing-Sheng
2018-03-01
Epitaxial BiFeO3 thin films of 130nm were deposited by pulsed laser deposition (PLD) technique on La0.67Sr0.33MnO3 buffered SrTiO3 (001) substrate at various temperatures under different ambient oxygen pressures. Reciprocal space mapping reveals that, with decreasing temperature and oxygen pressure, the broadly reported monoclinic phase (MA) of BiFeO3 thin film initially transforms to a tetragonal phase (T1) with c/a =1.05 (1) in a narrow girth of deposition condition and then to a super-tetragonal phase (T2) with giant c/a = 1.24 (1), as confirmed by reciprocal space mapping using high resolution x-ray diffraction. The surface morphology of the films reveals the island growth of the BiFeO3 films deposited at low temperatures. We propose that the transformation from monoclinic to the super-tetragonal phase is essentially due to the manifestation of excess local strain as a result of the island growth. This study offers a recipe to grow the super-tetragonal phase of BiFeO3, with giant c/a =1.24 (1) which exhibits exceptionally large ferroelectric polarization, on ferromagnetic layer La0.67Sr0.33MnO3. This phase of BiFeO3 can be utilized for the ferroelectric control of magnetism at the interface of BiFeO3 and La0.67Sr0.33MnO3.
Intermittent many-body dynamics at equilibrium
NASA Astrophysics Data System (ADS)
Danieli, C.; Campbell, D. K.; Flach, S.
2017-06-01
The equilibrium value of an observable defines a manifold in the phase space of an ergodic and equipartitioned many-body system. A typical trajectory pierces that manifold infinitely often as time goes to infinity. We use these piercings to measure both the relaxation time of the lowest frequency eigenmode of the Fermi-Pasta-Ulam chain, as well as the fluctuations of the subsequent dynamics in equilibrium. The dynamics in equilibrium is characterized by a power-law distribution of excursion times far off equilibrium, with diverging variance. Long excursions arise from sticky dynamics close to q -breathers localized in normal mode space. Measuring the exponent allows one to predict the transition into nonergodic dynamics. We generalize our method to Klein-Gordon lattices where the sticky dynamics is due to discrete breathers localized in real space.
Trajectory optimization for A S.S.T.O. using in-flight LOX collection
NASA Astrophysics Data System (ADS)
Saint-Mard, M.; Hendrick, P.
A key point for a space mission (launch of a satellite, earth observation,…) is the optimization of the vehicle trajectory in order to burn the smallest quantity of propelant and then maximize the payload. This is true for evay space vehicle, but especially it is a crucial point for a Single-Stage-To-Orbit (SSTO) where the choice of a bad trajectory can result in an unrealizable vehicle due to the large airbreathing part of the flight In this study, we discuss the trajectory optimization for a Vertical Take-Off and Horizontal Landing (VTOHL) SSTO using supersonic in-flight atmospheric oxygen collection during a cruise phase (constant speed & constant altitude). This collected oxygen is stored in the LOX tanks and reused in the final rocket phase. This SSTO bas a Blended Body aerodynamic configuration as the one chosen by Lockheed Martin for its new space launcher (VentureStar and X-33). This SSTO uses rocket engines from take-off to Mach 1.7 and also for the exoatmospheric flight phase (that means for an altitude higher than 30km and a Mach number evolution from 6.8 to about 20). Between these two rocket phases, the SSTO is propelled by a subsonic ramjet. To perform this study, we use 2 computer programs (running on a home Computer): the first one allows to estimate the SSTO performances (TOGW, dry weight, hydrogen and oxygen consumptions) for a fixed payload mass and the second one permits the evaluation of the payload mass for a fixed TOGW.
Kumar, Krishan; Moudgil, R K
2012-10-17
We have studied symmetric electron-electron and electron-hole bilayers to explore the stable homogeneous spin phase and the feasibility of inhomogeneous charge-/spin-density ground states. The former is resolved by comparing the ground-state energies in states of different spin polarizations, while the latter is resolved by searching for a divergence in the wavevector-dependent static charge/spin susceptibility. For this endeavour, we have used the dielectric approach within the self-consistent mean-field theory of Singwi et al. We find that the inter-layer interactions tend to change an abrupt spin-polarization transition of an isolated layer into a nearly gradual one, even though the partially spin-polarized phases are not clearly stable within the accuracy of our calculation. The transition density is seen to decrease with a reduction in layer spacing, implying a suppression of spin polarization by inter-layer interactions. Indeed, the suppression shows up distinctly in the spin susceptibility computed from the spin-polarization dependence of the ground-state energy. However, below a critical layer spacing, the unpolarized liquid becomes unstable against a charge-density-wave (CDW) ground state at a density preceding full spin polarization, with the transition density for the CDW state increasing on further reduction in the layer spacing. Due to attractive e-h correlations, the CDW state is found to be more pronounced in the e-h bilayer. On the other hand, the static spin susceptibility diverges only in the long-wavelength limit, which simply represents a transition to the homogeneous spin-polarized phase.
Impact of subgrid fluid turbulence on inertial particles subject to gravity
NASA Astrophysics Data System (ADS)
Rosa, Bogdan; Pozorski, Jacek
2017-07-01
Two-phase turbulent flows with the dispersed phase in the form of small, spherical particles are increasingly often computed with the large-eddy simulation (LES) of the carrier fluid phase, coupled to the Lagrangian tracking of particles. To enable further model development for LES with inertial particles subject to gravity, we consider direct numerical simulations of homogeneous isotropic turbulence with a large-scale forcing. Simulation results, both without filtering and in the a priori LES setting, are reported and discussed. A full (i.e. a posteriori) LES is also performed with the spectral eddy viscosity. Effects of gravity on the dispersed phase include changes in the average settling velocity due to preferential sweeping, impact on the radial distribution function and radial relative velocity, as well as direction-dependent modification of the particle velocity variance. The filtering of the fluid velocity, performed in spectral space, is shown to have a non-trivial impact on these quantities.
NASA Astrophysics Data System (ADS)
Beltran, Mario A.; Paganin, David M.; Pelliccia, Daniele
2018-05-01
A simple method of phase-and-amplitude extraction is derived that corrects for image blurring induced by partially spatially coherent incident illumination using only a single intensity image as input. The method is based on Fresnel diffraction theory for the case of high Fresnel number, merged with the space-frequency description formalism used to quantify partially coherent fields and assumes the object under study is composed of a single-material. A priori knowledge of the object’s complex refractive index and information obtained by characterizing the spatial coherence of the source is required. The algorithm was applied to propagation-based phase-contrast data measured with a laboratory-based micro-focus x-ray source. The blurring due to the finite spatial extent of the source is embedded within the algorithm as a simple correction term to the so-called Paganin algorithm and is also numerically stable in the presence of noise.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akkelin, S.V.; Sinyukov, Yu.M.
A method allowing analysis of the overpopulation of phase space in heavy ion collisions in a model-independent way is proposed within the hydrodynamic approach. It makes it possible to extract a chemical potential of thermal pions at freeze-out, irrespective of the form of freeze-out (isothermal) hypersurface in Minkowski space and transverse flows on it. The contributions of resonance (with masses up to 2 GeV) decays to spectra, interferometry volumes, and phase-space densities are calculated and discussed in detail. The estimates of average phase-space densities and chemical potentials of thermal pions are obtained for SPS and RHIC energies. They demonstrate thatmore » multibosonic phenomena at those energies might be considered as a correction factor rather than as a significant physical effect. The analysis of the evolution of the pion average phase-space density in chemically frozen hadron systems shows that it is almost constant or slightly increases with time while the particle density and phase-space density at each space point decreases rapidly during the system's expansion. We found that, unlike the particle density, the average phase-space density has no direct link to the freeze-out criterion and final thermodynamic parameters, being connected rather to the initial phase-space density of hadronic matter formed in relativistic nucleus-nucleus collisions.« less
NASA Astrophysics Data System (ADS)
Chang, Huan; Yin, Xiao-li; Cui, Xiao-zhou; Zhang, Zhi-chao; Ma, Jian-xin; Wu, Guo-hua; Zhang, Li-jia; Xin, Xiang-jun
2017-12-01
Practical orbital angular momentum (OAM)-based free-space optical (FSO) communications commonly experience serious performance degradation and crosstalk due to atmospheric turbulence. In this paper, we propose a wave-front sensorless adaptive optics (WSAO) system with a modified Gerchberg-Saxton (GS)-based phase retrieval algorithm to correct distorted OAM beams. We use the spatial phase perturbation (SPP) GS algorithm with a distorted probe Gaussian beam as the only input. The principle and parameter selections of the algorithm are analyzed, and the performance of the algorithm is discussed. The simulation results show that the proposed adaptive optics (AO) system can significantly compensate for distorted OAM beams in single-channel or multiplexed OAM systems, which provides new insights into adaptive correction systems using OAM beams.
Disentangling the Cosmic Web with Lagrangian Submanifold
NASA Astrophysics Data System (ADS)
Shandarin, Sergei F.; Medvedev, Mikhail V.
2016-10-01
The Cosmic Web is a complicated highly-entangled geometrical object. Remarkably it has formed from practically Gaussian initial conditions, which may be regarded as the simplest departure from exactly uniform universe in purely deterministic mapping. The full complexity of the web is revealed neither in configuration no velocity spaces considered separately. It can be fully appreciated only in six-dimensional (6D) phase space. However, studies of the phase space is complicated by the fact that every projection of it on a three-dimensional (3D) space is multivalued and contained caustics. In addition phase space is not a metric space that complicates studies of geometry. We suggest to use Lagrangian submanifold i.e., x = x(q), where both x and q are 3D vectors instead of the phase space for studies the complexity of cosmic web in cosmological N-body dark matter simulations. Being fully equivalent in dynamical sense to the phase space it has an advantage of being a single valued and also metric space.
Novel High Efficient Organic Photovoltaic Materials
NASA Technical Reports Server (NTRS)
Sun, Sam; Haliburton, James; Wang, Yi-Qing; Fan, Zhen; Taft, Charles; Maaref, Shahin; Bailey, Sheila (Technical Monitor)
2003-01-01
Solar energy is a renewable, nonpolluting, and most abundant energy source for human exploration of a remote site or outer space. In order to generate appreciable electrical power in space or on the earth, it is necessary to collect sunlight from large areas and with high efficiency due to the low density of sunlight. Future organic or polymer (plastic) solar cells appear very attractive due to their unique features such as light weight, flexible shape, tunability of energy band-gaps via versatile molecular or supramolecular design, synthesis, processing and device fabrication schemes, and much lower cost on large scale industrial production. It has been predicted that supramolecular and nano-phase separated block copolymer systems containing electron rich donor blocks and electron deficient acceptor blocks may facilitate the charge carrier separation and migration due to improved electronic ultrastructure and morphology in comparison to polymer composite system. This presentation will describe our recent progress in the design, synthesis and characterization of a novel block copolymer system containing donor and acceptor blocks covalently attached. Specifically, the donor block contains an electron donating alkyloxy derivatized polyphenylenevinylene (RO-PPV), the acceptor block contains an electron withdrawing alkyl-sulfone derivatized polyphenylenevinylene (SF-PPV). The key synthetic strategy includes the synthesis of each individual block first, then couple the blocks together. While the donor block has a strong PL emission at around 560 nm, and acceptor block has a strong PL emission at around 520 nm, the PL emissions of final block copolymers are severely quenched. This verifies the expected electron transfer and charge separation due to interfaces of donor and acceptor nano phase separated blocks. The system therefore has potential for variety light harvesting applications, including high efficient photovoltaic applications.
Phase space methods in HMD systems
NASA Astrophysics Data System (ADS)
Babington, James
2017-06-01
We consider using phase space techniques and methods in analysing optical ray propagation in head mounted display systems. Two examples are considered that illustrate the concepts and methods. Firstly, a shark tooth freeform geometry, and secondly, a waveguide geometry that replicates a pupil in one dimension. Classical optics and imaging in particular provide a natural stage to employ phase space techniques, albeit as a constrained system. We consider how phase space provides a global picture of the physical ray trace data. As such, this gives a complete optical world history of all of the rays propagating through the system. Using this data one can look at, for example, how aberrations arise on a surface by surface basis. These can be extracted numerically from phase space diagrams in the example of a freeform imaging prism. For the waveguide geometry, phase space diagrams provide a way of illustrating how replicated pupils behave and what these imply for design considerations such as tolerances.
Evidence-based design in an intensive care unit: end-user perceptions.
Ferri, Mauricio; Zygun, David A; Harrison, Alexandra; Stelfox, Henry T
2015-04-25
The objective of this study was to describe end-user impressions and experiences in a new intensive care unit built using evidence-based design. This qualitative study was comprised of early (2-3 months after opening) and late (12-15 months after opening) phase individual interviews with end-users (healthcare providers, support staff, and patient family members) of the newly constructed Foothills Medical Centre intensive care unit in Calgary, Canada. The study unit was the recipient of the Society of Critical Care Medicine Design Citation award in 2012. We conducted interviews with thirty-nine ICU end-users, twenty-four in the early phase and fifteen in the late phase. We identified four themes (eleven sub-themes): atmosphere (abundant natural light and low noise levels), physical spaces (single occupancy rooms, rooms clustered into clinical pods, medication rooms, and tradeoffs of larger spaces), family participation in care (family support areas and social networks), and equipment (usability, storage, and providers connectivity). Abundant natural light was the design feature most frequently associated with a pleasant atmosphere. Participants emphasized the tradeoffs of size and space, and reported that the benefits of additional space (e.g., fewer interruptions due to less noise) out-weighed the disadvantages (e.g., greater distances between patients, families and providers). End-users advised that local patient care policies (e.g., number of visitors allowed at a time) and staffing needed to be updated to reflect the characteristics of the new facility design. End-users identified design elements for creating a pleasant atmosphere, attention to the tradeoffs of space and size, designing family support areas to encourage family participation in care, and updating patient care policies and staffing to reflect the new physical space as important aspects to consider when building intensive care units. Evidence-based design may optimize ICU structure for patients, patient families and providers.
Kuan, Hui-Shun; Betterton, Meredith D.
2016-01-01
Motor protein motion on biopolymers can be described by models related to the totally asymmetric simple exclusion process (TASEP). Inspired by experiments on the motion of kinesin-4 motors on antiparallel microtubule overlaps, we analyze a model incorporating the TASEP on two antiparallel lanes with binding kinetics and lane switching. We determine the steady-state motor density profiles using phase-plane analysis of the steady-state mean field equations and kinetic Monte Carlo simulations. We focus on the density-density phase plane, where we find an analytic solution to the mean field model. By studying the phase-space flows, we determine the model’s fixed points and their changes with parameters. Phases previously identified for the single-lane model occur for low switching rate between lanes. We predict a multiple coexistence phase due to additional fixed points that appear as the switching rate increases: switching moves motors from the higher-density to the lower-density lane, causing local jamming and creating multiple domain walls. We determine the phase diagram of the model for both symmetric and general boundary conditions. PMID:27627345
Yao, Xiayuan; Liang, Bingyuan; Bai, Ming
2017-09-18
In space-borne quasi-optical feed system, frequency selective surface (FSS) should meet both electrical properties and mechanical requirements. In the paper, we design and fabricate three FSSs to achieve these goals. We present a novel FFS with phase compensation structure correcting the beam distortion. The phase compensation structure consists of short-ended circular waveguide array, inspired by the idea of reflect array antenna. The first FSS meets the need of electrical performance, however, which is too weak to pass the mechanical test. The second one overcomes the former problem, but brings the aberration in reflection beam, due to the discontinuity of the reflection phase. The third one with phase compensation structure meets all the demands. The insertion phase of the unit cell compensates 119 and 183 GHz two reflection bands, reconfigures the field distributions on the cross section of beam waist simultaneously. What' more, this FSS extends the functionality of the original FSS. To some extent, the FSS with phase compensation structure shares the ellipsoidal reflector's pressure to adjust the beam.
Identification of geostationary satellites using polarization data from unresolved images
NASA Astrophysics Data System (ADS)
Speicher, Andy
In order to protect critical military and commercial space assets, the United States Space Surveillance Network must have the ability to positively identify and characterize all space objects. Unfortunately, positive identification and characterization of space objects is a manual and labor intensive process today since even large telescopes cannot provide resolved images of most space objects. Since resolved images of geosynchronous satellites are not technically feasible with current technology, another method of distinguishing space objects was explored that exploits the polarization signature from unresolved images. The objective of this study was to collect and analyze visible-spectrum polarization data from unresolved images of geosynchronous satellites taken over various solar phase angles. Different collection geometries were used to evaluate the polarization contribution of solar arrays, thermal control materials, antennas, and the satellite bus as the solar phase angle changed. Since materials on space objects age due to the space environment, it was postulated that their polarization signature may change enough to allow discrimination of identical satellites launched at different times. The instrumentation used in this experiment was a United States Air Force Academy (USAFA) Department of Physics system that consists of a 20-inch Ritchey-Chretien telescope and a dual focal plane optical train fed with a polarizing beam splitter. A rigorous calibration of the system was performed that included corrections for pixel bias, dark current, and response. Additionally, the two channel polarimeter was calibrated by experimentally determining the Mueller matrix for the system and relating image intensity at the two cameras to Stokes parameters S0 and S1. After the system calibration, polarization data was collected during three nights on eight geosynchronous satellites built by various manufacturers and launched several years apart. Three pairs of the eight satellites were identical buses to determine if identical buses could be correctly differentiated. When Stokes parameters were plotted against time and solar phase angle, the data indicates that there were distinguishing features in S0 (total intensity) and S1 (linear polarization) that may lead to positive identification or classification of each satellite.
Husimi function and phase-space analysis of bilayer quantum Hall systems at ν = 2/λ
NASA Astrophysics Data System (ADS)
Calixto, M.; Peón-Nieto, C.
2018-05-01
We propose localization measures in phase space of the ground state of bilayer quantum Hall systems at fractional filling factors , to characterize the three quantum phases (shortly denoted by spin, canted and ppin) for arbitrary -isospin λ. We use a coherent state (Bargmann) representation of quantum states, as holomorphic functions in the 8-dimensional Grassmannian phase-space (a higher-dimensional generalization of the Haldane’s 2-dimensional sphere ). We quantify the localization (inverse volume) of the ground state wave function in phase-space throughout the phase diagram (i.e. as a function of Zeeman, tunneling, layer distance, etc, control parameters) with the Husimi function second moment, a kind of inverse participation ratio that behaves as an order parameter. Then we visualize the different ground state structure in phase space of the three quantum phases, the canted phase displaying a much higher delocalization (a Schrödinger cat structure) than the spin and ppin phases, where the ground state is highly coherent. We find a good agreement between analytic (variational) and numeric diagonalization results.
Thermodynamics of confined gallium clusters.
Chandrachud, Prachi
2015-11-11
We report the results of ab initio molecular dynamics simulations of Ga13 and Ga17 clusters confined inside carbon nanotubes with different diameters. The cluster-tube interaction is simulated by the Lennard-Jones (LJ) potential. We discuss the geometries, the nature of the bonding and the thermodynamics under confinement. The geometries as well as the isomer spectra of both the clusters are significantly affected. The degree of confinement decides the dimensionality of the clusters. We observe that a number of low-energy isomers appear under moderate confinement while some isomers seen in the free space disappear. Our finite-temperature simulations bring out interesting aspects, namely that the heat capacity curve is flat, even though the ground state is symmetric. Such a flat nature indicates that the phase change is continuous. This effect is due to the restricted phase space available to the system. These observations are supported by the mean square displacement of individual atoms, which are significantly smaller than in free space. The nature of the bonding is found to be approximately jellium-like. Finally we note the relevance of the work to the problem of single file diffusion for the case of the highest confinement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carey, D.C.
1999-12-09
TURTLE is a computer program useful for determining many characteristics of a particle beam once an initial design has been achieved, Charged particle beams are usually designed by adjusting various beam line parameters to obtain desired values of certain elements of a transfer or beam matrix. Such beam line parameters may describe certain magnetic fields and their gradients, lengths and shapes of magnets, spacings between magnetic elements, or the initial beam accepted into the system. For such purposes one typically employs a matrix multiplication and fitting program such as TRANSPORT. TURTLE is designed to be used after TRANSPORT. For conveniencemore » of the user, the input formats of the two programs have been made compatible. The use of TURTLE should be restricted to beams with small phase space. The lumped element approximation, described below, precludes the inclusion of the effect of conventional local geometric aberrations (due to large phase space) or fourth and higher order. A reading of the discussion below will indicate clearly the exact uses and limitations of the approach taken in TURTLE.« less
Wetting Transitions Displayed by Persistent Active Particles
NASA Astrophysics Data System (ADS)
Sepúlveda, Néstor; Soto, Rodrigo
2017-08-01
A lattice model for active matter is studied numerically, showing that it displays wetting transitions between three distinctive phases when in contact with an impenetrable wall. The particles in the model move persistently, tumbling with a small rate α , and interact via exclusion volume only. When increasing the tumbling rates α , the system transits from total wetting to partial wetting and unwetting phases. In the first phase, a wetting film covers the wall, with increasing heights when α is reduced. The second phase is characterized by wetting droplets on the wall with a periodic spacing between them. Finally, the wall dries with few particles in contact with it. These phases present nonequilibrium transitions. The first transition, from partial to total wetting, is continuous and the fraction of dry sites vanishes continuously when decreasing the tumbling rate α . For the second transition, from partial wetting to dry, the mean droplet distance diverges logarithmically when approaching the critical tumbling rate, with saturation due to finite-size effects.
Recursion equations in predicting band width under gradient elution.
Liang, Heng; Liu, Ying
2004-06-18
The evolution of solute zone under gradient elution is a typical problem of non-linear continuity equation since the local diffusion coefficient and local migration velocity of the mass cells of solute zones are the functions of position and time due to space- and time-variable mobile phase composition. In this paper, based on the mesoscopic approaches (Lagrangian description, the continuity theory and the local equilibrium assumption), the evolution of solute zones in space- and time-dependent fields is described by the iterative addition of local probability density of the mass cells of solute zones. Furthermore, on macroscopic levels, the recursion equations have been proposed to simulate zone migration and spreading in reversed-phase high-performance liquid chromatography (RP-HPLC) through directly relating local retention factor and local diffusion coefficient to local mobile phase concentration. This new approach differs entirely from the traditional theories on plate concept with Eulerian description, since band width recursion equation is actually the accumulation of local diffusion coefficients of solute zones to discrete-time slices. Recursion equations and literature equations were used in dealing with same experimental data in RP-HPLC, and the comparison results show that the recursion equations can accurately predict band width under gradient elution.
Resolving Confined 7Li Dynamics of Uranyl Peroxide Capsule U 24
Xie, Jing; Neal, Harrison A.; Szymanowski, Jennifer; ...
2018-04-18
Here, we obtained a kerosene-soluble form of the lithium salt [UO 2(O 2)(OH) 2] 24 phase (Li-U 24), by adding cetyltrimethylammonium bromide surfactant to aqueous Li-U 24. Interestingly, its variable-temperature solution 7Li NMR spectroscopy resolves two narrowly spaced resonances down to –10 °C, which shift upfield with increasing temperature, and finally coalesce at temperatures > 85 °C. Comparison with solid-state NMR demonstrates that the Li dynamics in the Li-U 24-CTA phase involves only exchange between different local encapsulated environments. This behavior is distinct from the rapid Li exchange dynamics observed between encapsulated and external Li environments for Li-U 24 inmore » both the aqueous and the solid-state phases. Density functional theory calculations suggest that the two experimental 7Li NMR chemical shifts are due to Li cations coordinated within the square and hexagonal faces of the U 24 cage, and they can undergo exchange within the confined environment, as the solution is heated. Very different than U 24 in aqueous media, there is no evidence that the Li cations exit the cage, and therefore, this represents a truly confined space.« less
New mesoscopic constitutive model for deformation of pearlitic steels up to moderate strains
NASA Astrophysics Data System (ADS)
Alkorta, J.; Martínez-Esnaola, J. M.; de Jaeger, P.; Gil Sevillano, J.
2017-07-01
A new constitutive model for deformation of pearlitic steels has been developed that describes the mechanical behaviour and microstructural evolution of lamellar multi-colony pearlite. The model, a two-phase continuum model, considers the plastic anisotropy of ferrite derived from its lamellar structure but ignores any anisotropy associated with cementite and does not consider the crystal structure of either constituent. The resulting plastic constitutive equation takes into account a dependence on both the pearlitic spacing (arising from the confined slip of dislocations in the lamellae) and on strengthening from the evolving intra-lamellar dislocation density. A Kocks-Mecking strain hardening/recovery model is used for the lamellar ferrite, whereas perfect-plastic behaviour is assumed for cementite. The model naturally captures the microstructural evolution and the internal micro-stresses developed due to the different mechanical behaviour of both phases. The model is also able to describe the lamellar evolution (orientation and interlamellar spacing) with good accuracy. The role of plastic anisotropy in the ferritic phase has also been studied, and the results show that anisotropy has an important impact on both microstructural evolution and strengthening of heavily drawn wires.
NASA Astrophysics Data System (ADS)
Gadelrab, Karim; Alexander-Katz, Alfredo; LaboratoryTheoretical Soft Materials Team
The self-assembly of block copolymers BCP has provided an impressive control over the nanoscale structure of soft matter. While the main focus of the research in the field has been directed towards simple linear diblocks, the development of advanced polymer architecture provided improved performance and access to new structures. In particular, bottlebrush BCPs (BBCPs) have interesting characteristics due to their dense functionality, high molecular weight, low levels of entanglement, and tendency to efficiently undergo rapid bulk phase separation. In this work, we are interested in theoretically studying the self-assembly of Janus-type ``A-branch-B'' BBCPs where A and B blocks can phase separate with the bottlebrush polymer backbone serving as the interface between the two blocks. Hence, the polymer backbone adds an extra constraint on the equilibrium spacing between neighboring linear diblock chains. In this regard, the segment length of the backbone separating the AB junctions has a direct effect of the observed domain spacing and effective segregation strength of the AB blocks. We employ self-consistent field theoretic SCFT simulations to capture the effect of volume fraction of different constituents and construct a phase diagram of the accessible morphologies of these BBCPs.
Resolving Confined 7Li Dynamics of Uranyl Peroxide Capsule U 24
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Jing; Neal, Harrison A.; Szymanowski, Jennifer
Here, we obtained a kerosene-soluble form of the lithium salt [UO 2(O 2)(OH) 2] 24 phase (Li-U 24), by adding cetyltrimethylammonium bromide surfactant to aqueous Li-U 24. Interestingly, its variable-temperature solution 7Li NMR spectroscopy resolves two narrowly spaced resonances down to –10 °C, which shift upfield with increasing temperature, and finally coalesce at temperatures > 85 °C. Comparison with solid-state NMR demonstrates that the Li dynamics in the Li-U 24-CTA phase involves only exchange between different local encapsulated environments. This behavior is distinct from the rapid Li exchange dynamics observed between encapsulated and external Li environments for Li-U 24 inmore » both the aqueous and the solid-state phases. Density functional theory calculations suggest that the two experimental 7Li NMR chemical shifts are due to Li cations coordinated within the square and hexagonal faces of the U 24 cage, and they can undergo exchange within the confined environment, as the solution is heated. Very different than U 24 in aqueous media, there is no evidence that the Li cations exit the cage, and therefore, this represents a truly confined space.« less
NASA Astrophysics Data System (ADS)
García-Vela, A.
2000-05-01
A definition of a quantum-type phase-space distribution is proposed in order to represent the initial state of the system in a classical dynamics simulation. The central idea is to define an initial quantum phase-space state of the system as the direct product of the coordinate and momentum representations of the quantum initial state. The phase-space distribution is then obtained as the square modulus of this phase-space state. The resulting phase-space distribution closely resembles the quantum nature of the system initial state. The initial conditions are sampled with the distribution, using a grid technique in phase space. With this type of sampling the distribution of initial conditions reproduces more faithfully the shape of the original phase-space distribution. The method is applied to generate initial conditions describing the three-dimensional state of the Ar-HCl cluster prepared by ultraviolet excitation. The photodissociation dynamics is simulated by classical trajectories, and the results are compared with those of a wave packet calculation. The classical and quantum descriptions are found in good agreement for those dynamical events less subject to quantum effects. The classical result fails to reproduce the quantum mechanical one for the more strongly quantum features of the dynamics. The properties and applicability of the phase-space distribution and the sampling technique proposed are discussed.
Renormalization group equations and the Lifshitz point in noncommutative Landau-Ginsburg theory
NASA Astrophysics Data System (ADS)
Chen, Guang-Hong; Wu, Yong-Shi
2002-02-01
A one-loop renormalization group (RG) analysis is performed for noncommutative Landau-Ginsburg theory in an arbitrary dimension. We adopt a modern version of the Wilsonian RG approach, in which a shell integration in momentum space bypasses the potential IR singularities due to UV-IR mixing. The momentum-dependent trigonometric factors in interaction vertices, characteristic of noncommutative geometry, are marginal under RG transformations, and their marginality is preserved at one loop. A negative Θ-dependent anomalous dimension is discovered as a novel effect of the UV-IR mixing. We also found a noncommutative Wilson-Fisher (NCWF) fixed point in less than four dimensions. At large noncommutativity, a momentum space instability is induced by quantum fluctuations, and a consequential first-order phase transition is identified together with a Lifshitz point in the phase diagram. In the vicinity of the Lifshitz point, we introduce two critical exponents νm and βk, whose values are determined to be 1/4 and 1/2, respectively, at mean-field level.
Structural study of polymorphism in methylprednisolone aceponate
NASA Astrophysics Data System (ADS)
Knyazev, A. V.; Somov, N. V.; Shipilova, A. S.; Gusarova, E. V.; Knyazeva, S. S.; Stepanova, O. V.; Chuprunov, E. V.
2017-08-01
The crystal structures of methylprednisolone aceponate were determined by X-ray diffraction analysis at temperatures 90 K and 150 K: space group P212121, a = 14.8592(2), b = 19.6844(5), c = 26.1626(4) Å, Z = 12; R = 0.0598 (T = 90 K); space group P212121, a = 6.57348(14), b = 14.8295(3), c = 26.2214(5) Å, Z = 4; R = 0.0518 (T = 150 K). Features of structural changes in the phase transition were revealed. The abrupt change in the unit cell parameters in the phase transition was shown by low-temperature X-ray powder. The methods of degree of invariance of crystal electron density and molecular Voronoi-Dirichlet polyhedra were used for the analysis of polymorphism in methylprednisolone aceponate. The atomic structure at 90 K have a translational pseudosymmetry of electron density η = 0.329(1). The decrease of number of intermolecular contacts in the high-temperature modification due to rupture of intermolecular non-valence contacts C/O was observed.
NASA Technical Reports Server (NTRS)
1981-01-01
This phase consists of the engineering design, fabrication, assembly, operation, economic analysis, and process support R&D for an Experimental Process System Development Unit (EPSDU). The mechanical bid package was issued and the bid responses are under evaluation. Similarly, the electrical bid package was issued, however, responses are not yet due. The majority of all equipment is on order or has been received at the EPSDU site. The pyrolysis/consolidation process design package was issued. Preparation of process and instrumentation diagram for the free-space reactor was started. In the area of melting/consolidation, Kayex successfully melted chunk silicon and have produced silicon shot. The free-space reactor powder was successfully transported pneumatically from a storage bin to the auger feeder twenty-five feet up and was melted. The fluid-bed PDU has successfully operated at silane feed concentrations up to 21%. The writing of the operating manual has started. Overall, the design phase is nearing completion.
Thermodynamic efficiency of nonimaging concentrators
NASA Astrophysics Data System (ADS)
Shatz, Narkis; Bortz, John; Winston, Roland
2009-08-01
The purpose of a nonimaging concentrator is to transfer maximal flux from the phase space of a source to that of a target. A concentrator's performance can be expressed relative to a thermodynamic reference. We discuss consequences of Fermat's principle of geometrical optics. We review étendue dilution and optical loss mechanisms associated with nonimaging concentrators, especially for the photovoltaic (PV) role. We introduce the concept of optical thermodynamic efficiency which is a performance metric combining the first and second laws of thermodynamics. The optical thermodynamic efficiency is a comprehensive metric that takes into account all loss mechanisms associated with transferring flux from the source to the target phase space, which may include losses due to inadequate design, non-ideal materials, fabrication errors, and less than maximal concentration. As such, this metric is a gold standard for evaluating the performance of nonimaging concentrators. Examples are provided to illustrate the use of this new metric. In particular we discuss concentrating PV systems for solar power applications.
Quantum to classical transition in the Hořava-Lifshitz quantum cosmology
NASA Astrophysics Data System (ADS)
Bernardini, A. E.; Leal, P.; Bertolami, O.
2018-02-01
A quasi-Gaussian quantum superposition of Hořava-Lifshitz (HL) stationary states is built in order to describe the transition of the quantum cosmological problem to the related classical dynamics. The obtained HL phase-space superposed Wigner function and its associated Wigner currents describe the conditions for the matching between classical and quantum phase-space trajectories. The matching quantum superposition parameter is associated to the total energy of the classical trajectory which, at the same time, drives the engendered Wigner function to the classical stationary regime. Through the analysis of the Wigner flows, the quantum fluctuations that distort the classical regime can be quantified as a measure of (non)classicality. Finally, the modifications to the Wigner currents due to the inclusion of perturbative potentials are computed in the HL quantum cosmological context. In particular, the inclusion of a cosmological constant provides complementary information that allows for connecting the age of the Universe with the overall stiff matter density profile.
Exploring phase space using smartphone acceleration and rotation sensors simultaneously
NASA Astrophysics Data System (ADS)
Monteiro, Martín; Cabeza, Cecilia; Martí, Arturo C.
2014-07-01
A paradigmatic physical system as the physical pendulum is experimentally studied using the acceleration and rotation (gyroscope) sensors available on smartphones and other devices such as iPads and tablets. A smartphone is fixed to the outside of a bicycle wheel whose axis is kept horizontal and fixed. The compound system, wheel plus smartphone, defines a physical pendulum which can rotate, giving full turns in one direction, or oscillate about the equilibrium position (performing either small or large oscillations). Measurements of the radial and tangential acceleration and the angular velocity obtained with smartphone sensors allow a deep insight into the dynamics of the system to be gained. In addition, thanks to the simultaneous use of the acceleration and rotation sensors, trajectories in the phase space are directly obtained. The coherence of the measures obtained with the different sensors and by traditional methods is remarkable. Indeed, due to their low cost and increasing availability, smartphone sensors are valuable tools that can be used in most undergraduate laboratories.
On the relevance of chaos for halo stars in the solar neighbourhood II
NASA Astrophysics Data System (ADS)
Maffione, Nicolas P.; Gómez, Facundo A.; Cincotta, Pablo M.; Giordano, Claudia M.; Grand, Robert J. J.; Marinacci, Federico; Pakmor, Rüdiger; Simpson, Christine M.; Springel, Volker; Frenk, Carlos S.
2018-05-01
In a previous paper based on dark matter only simulations we show that, in the approximation of an analytic and static potential describing the strongly triaxial and cuspy shape of Milky Way-sized haloes, diffusion due to chaotic mixing in the neighbourhood of the Sun does not efficiently erase phase space signatures of past accretion events. In this second paper we further explore the effect of chaotic mixing using multicomponent Galactic potential models and solar neighbourhood-like volumes extracted from fully cosmological hydrodynamic simulations, thus naturally accounting for the gravitational potential associated with baryonic components, such as the bulge and disc. Despite the strong change in the global Galactic potentials with respect to those obtained in dark matter only simulations, our results confirm that a large fraction of halo particles evolving on chaotic orbits exhibit their chaotic behaviour after periods of time significantly larger than a Hubble time. In addition, significant diffusion in phase space is not observed on those particles that do exhibit chaotic behaviour within a Hubble time.
Near-Earth asteroid satellite spins under spin-orbit coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naidu, Shantanu P.; Margot, Jean-Luc
We develop a fourth-order numerical integrator to simulate the coupled spin and orbital motions of two rigid bodies having arbitrary mass distributions under the influence of their mutual gravitational potential. We simulate the dynamics of components in well-characterized binary and triple near-Earth asteroid systems and use surface of section plots to map the possible spin configurations of the satellites. For asynchronous satellites, the analysis reveals large regions of phase space where the spin state of the satellite is chaotic. For synchronous satellites, we show that libration amplitudes can reach detectable values even for moderately elongated shapes. The presence of chaoticmore » regions in the phase space has important consequences for the evolution of binary asteroids. It may substantially increase spin synchronization timescales, explain the observed fraction of asychronous binaries, delay BYORP-type evolution, and extend the lifetime of binaries. The variations in spin rate due to large librations also affect the analysis and interpretation of light curve and radar observations.« less
NASA Technical Reports Server (NTRS)
Kwon, Jin H.; Lee, Ja H.
1989-01-01
The far-field beam pattern and the power-collection efficiency are calculated for a multistage laser-diode-array amplifier consisting of about 200,000 5-W laser diode arrays with random distributions of phase and orientation errors and random diode failures. From the numerical calculation it is found that the far-field beam pattern is little affected by random failures of up to 20 percent of the laser diodes with reference of 80 percent receiving efficiency in the center spot. The random differences in phases among laser diodes due to probable manufacturing errors is allowed to about 0.2 times the wavelength. The maximum allowable orientation error is about 20 percent of the diffraction angle of a single laser diode aperture (about 1 cm). The preliminary results indicate that the amplifier could be used for space beam-power transmission with an efficiency of about 80 percent for a moderate-size (3-m-diameter) receiver placed at a distance of less than 50,000 km.
Experimental Evidence for a Structural-Dynamical Transition in Trajectory Space.
Pinchaipat, Rattachai; Campo, Matteo; Turci, Francesco; Hallett, James E; Speck, Thomas; Royall, C Patrick
2017-07-14
Among the key insights into the glass transition has been the identification of a nonequilibrium phase transition in trajectory space which reveals phase coexistence between the normal supercooled liquid (active phase) and a glassy state (inactive phase). Here, we present evidence that such a transition occurs in experiments. In colloidal hard spheres, we find a non-Gaussian distribution of trajectories leaning towards those rich in locally favored structures (LFSs), associated with the emergence of slow dynamics. This we interpret as evidence for a nonequilibrium transition to an inactive LFS-rich phase. Reweighting trajectories reveals a first-order phase transition in trajectory space between a normal liquid and a LFS-rich phase. We also find evidence for a purely dynamical transition in trajectory space.
Reversible Control of Anisotropic Electrical Conductivity using Colloidal Microfluidic Networks
2007-04-17
field with the induced charges on each electrode result in AC electroosmotic force and steady fluid flow (nonzero time averaged) with a velocity...direction of the AC electroosmotic force (flow is unidirectional). From the work of Green and co- workers, we can write the particle displacement due to... AC voltage-frequency phase space allows us to probe a wide range of colloidal configurations that resemble “capacitive” and “resistive” networks in
NASA Astrophysics Data System (ADS)
Thangavelu, Karthik; Asthana, Saket
2015-09-01
The effect of magnetic cation substitution on the phase stabilization, ferroelectric, dielectric and magnetic properties of a lead free Na0.5Bi0.5TiO3 (NBT) system prepared by O2 atmosphere solid state sintering were studied extensively. Cobalt (Co) was chosen as the magnetic cation to substitute at the Ti-site of NBT with optimized 2.5 mol%. Rietveld analysis of x-ray diffraction data favours the monoclinic Cc phase stabilization strongly rather than the parent R3c phase. FE-SEM micrograph supports the single phase characteristics without phase segregation at the grain boundaries. The stabilized Cc space group was explained based on the collective local distortion effects due to spin-orbit stabilization at Co3+ and Co2+ functional centres. The phonon mode changes as observed in the TiO6 octahedral modes also support the Cc phase stabilization. The major Co3+-ion presence was revealed from corresponding crystal field transitions observed through solid state diffuse reflectance spectroscopy. The enhanced spontaneous polarization (Ps) from ≅38 μC cm-2 to 45 μC cm-2 could be due to the easy rotation of polarization vector along the {(1\\bar{1}0)}{{pc}} in Cc phase. An increase in static dielectric response (ɛ) from ɛ ≅ 42 to 60 along with enhanced diffusivity from γ ≅ 1.53 to 1.75 was observed. Magneto-thermal irreversibility and their magnetic field dependent ZFC/FC curves suggest the possibility of a spin glass like behaviour below 50 K. The monoclinic Cc phase stabilization as confirmed from structural studies was well correlated with the observed ferroic properties in magnetically diluted NBT.
Phase-locked laser array having a non-uniform spacing between lasing regions
NASA Technical Reports Server (NTRS)
Ackley, Donald E. (Inventor)
1986-01-01
A phase-locked semiconductor array wherein the lasing regions of the array are spaced an effective distance apart such that the modes of oscillation of the different lasing regions are phase-locked to one another. The center-to-center spacing between the lasing regions is non-uniform. This variation in spacing perturbs the preferred 180.degree. phase difference between adjacent lasing regions thereby providing an increased yield of arrays exhibiting a single-lobed, far-field radiation pattern.
An effective method to accurately calculate the phase space factors for β - β - decay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neacsu, Andrei; Horoi, Mihai
2016-01-01
Accurate calculations of the electron phase space factors are necessary for reliable predictions of double-beta decay rates and for the analysis of the associated electron angular and energy distributions. Here, we present an effective method to calculate these phase space factors that takes into account the distorted Coulomb field of the daughter nucleus, yet it allows one to easily calculate the phase space factors with good accuracy relative to the most exact methods available in the recent literature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clarke, Samantha M.; Amsler, Maximilian; Walsh, James P. S.
Exploration beyond the known phase space of thermodynamically stable compounds into the realm of metastable materials is a frontier of materials chemistry. The application of high pressure in experiment and theory provides a powerful vector by which to explore this uncharted phase space, allowing discovery of complex new structures and bonding in the solid state. We harnessed this approach for the Cu–Bi system, where the realization of new phases offers potential for exotic properties such as superconductivity. This potential is due to the presence of bismuth, which, by virtue of its status as one of the heaviest stable elements, formsmore » a critical component in emergent materials such as superconductors and topological insulators. To fully investigate and understand the Cu–Bi system, we welded theoretical predictions with experiment to probe the Cu–Bi system under high pressures. By employing the powerful approach of in situ X-ray diffraction in a laser-heated diamond anvil cell (LHDAC), we thoroughly explored the high-pressure and high-temperature (high-PT) phase space to gain insight into the formation of intermetallic compounds at these conditions. We employed density functional theory (DFT) calculations to calculate a pressure versus temperature phase diagram, which correctly predicts that CuBi is stabilized at lower pressures than Cu11Bi7, and allows us to uncover the thermodynamic contributions responsible for the stability of each phase. Detailed comparisons between the NiAs structure type and the two high-pressure Cu–Bi phases, Cu11Bi7 and CuBi, reveal the preference for elemental segregation within the Cu–Bi phases, and highlight the unique channels and layers formed by ordered Cu vacancies. The electron localization function from DFT calculations account for the presence of these “voids” as a manifestation of the lone pair orientation on the Bi atoms. Our study demonstrates the power of joint experimental–computational work in exploring the chemistry occurring at high-PT conditions. The existence of multiple high-pressure-stabilized phases in the Cu–Bi binary system, which can be readily identified with in situ techniques, offers promise for other systems in which no ambient pressure phases are known to exist.« less
NASA Technical Reports Server (NTRS)
1984-01-01
The Executive Summary volume 1, includes an overview of both phases of the Definition of Technology Development Missions for Early Space Station Satellite Servicing. The primary purpose of Phase 1 of the Marshall Space Flight Center (MSFC) Satellite Servicing Phase 1 study was to establish requirements for demonstrating the capability of performing satellite servicing activities on a permanently manned Space Station in the early 1990s. The scope of Phase 1 included TDM definition, outlining of servicing objectives, derivation of initial Space Station servicing support requirements, and generation of the associated programmatic schedules and cost. The purpose of phase 2 of the satellite servicing study was to expand and refine the overall understanding of how best to use the manned space station as a test bed for demonstration of satellite servicing capabilities.
Energy content of stormtime ring current from phase space mapping simulations
NASA Technical Reports Server (NTRS)
Chen, Margaret W.; Schulz, Michael; Lyons, Larry R.
1993-01-01
We perform a phase space mapping study to estimate the enhancement in energy content that results from stormtime particle transport in the equatorial magnetosphere. Our pre-storm phase space distribution is based on a steady-state transport model. Using results from guiding-center simulations of ion transport during model storms having main phases of 3 hr, 6 hr, and 12 hr, we map phase space distributions of ring current protons from the pre-storm distribution in accordance with Liouville's theorem. We find that transport can account for the entire ten to twenty-fold increase in magnetospheric particle energy content typical of a major storm if a realistic stormtime enhancement of the phase space density f is imposed at the nightside tail plasma sheet (represented by an enhancement of f at the neutral line in our model).
NASA Technical Reports Server (NTRS)
Gomez-Rosa, Carlos; Cifuentes, Juan; Wasiak, Francis; Alfonzo, Agustin
2015-01-01
The mission readiness environment is where spacecraft and ground systems converge to form the entire as built flight system for the final phase of operationally-themed testing. For most space missions, this phase starts between nine to twelve months prior to the planned launch. In the mission readiness environment, the goal is to perform sufficient testing to exercise the flight teams and systems through all mission phases in order to demonstrate that all elements are ready to support. As part of the maturation process, a mission rehearsal program is introduced to focus on team processes within the final flight system, in a more realistic operational environment. The overall goal for a mission rehearsal program is to: 1) ensure all flight system elements are able to meet mission objectives as a cohesive team; 2) reduce the risk in space based operations due to deficiencies in people, processes, procedures, or systems; and 3) instill confidence in the teams that will execute these first time flight activities. A good rehearsal program ensures critical events are exercised, discovers team or flight system nuances whose impact were previously unknown, and provides a real-time environment in which to interact with the various teams and systems. For flight team members, the rehearsal program provides experience and training in the event of planned (or unplanned) flight contingencies. To preserve the essence for team based rehearsals, this paper will explore the important elements necessary for a successful rehearsal program, document differences driven by Earth Orbiting (Aqua, Aura, Suomi-National Polar-orbiting Partnership (NPP)) and Deep Space missions (New Horizons, Mars Atmosphere and Volatile EvolutioN (MAVEN)) and discuss common challenges to both mission types. In addition, large scale program considerations and enhancements or additional steps for developing a rehearsal program will also be considered. For NASA missions, the mission rehearsal phase is a key milestone for predicting and ensuring on-orbit success.
NASA Technical Reports Server (NTRS)
Lingo, Robert; Cadogan, Dave; Sanner, Rob; Sorenson, Beth
1997-01-01
The main goal of this program was to develop an unobtrusive power-assisted EVA glove metacarpalphalangeal (MCP) joint that could provide the crew member with as close to nude body performance as possible, and to demonstrate the technology feasibility of power assisted space suit components in general. The MCP joint was selected due to its being representative of other space suit joints, such as the shoulder, hip and carpometacarpal joint, that would also greatly benefit from this technology. In order to meet this objective, a development team of highly skilled and experienced personnel was assembled. The team consisted of two main entities. The first was comprised of ILC's experienced EVA space suit glove designers, who had the responsibility of designing and fabricating a low torque MCP joint which would be compatible with power assisted technology. The second part of the team consisted of space robotics experts from the University of Maryland's Space Systems Laboratory. This team took on the responsibility of designing and building the robotics aspects of the power-assist system. Both parties addressed final system integration responsibilities.
Nondestructive Evaluation of Advanced Materials with X-ray Phase Mapping
NASA Technical Reports Server (NTRS)
Hu, Zhengwei
2005-01-01
X-ray radiation has been widely used for imaging applications since Rontgen first discovered X-rays over a century ago. Its large penetration depth makes it ideal for the nondestructive visualization of the internal structure and/or defects of materials unobtainable otherwise. Currently used nondestructive evaluation (NDE) tools, X-ray radiography and tomography, are absorption-based, and work well in heavy-element materials where density or composition variations due to internal structure or defects are high enough to produce appreciable absorption contrast. However, in many cases where materials are light-weight and/or composites that have similar mass absorption coefficients, the conventional absorption-based X-ray methods for NDE become less useful. Indeed, the light-weight and ultra-high-strength requirements for the most advanced materials used or developed for current flight mission and future space exploration pose a great challenge to the standard NDE tools in that the absorption contrast arising from the internal structure of these materials is often too weak to be resolved. In this presentation, a solution to the problem, the use of phase information of X-rays for phase contrast X-ray imaging, will be discussed, along with a comparison between the absorption-based and phase-contrast imaging methods. Latest results on phase contrast X-ray imaging of lightweight Space Shuttle foam in 2D and 3D will be presented, demonstrating new opportunities to solve the challenging issues encountered in advanced materials development and processing.
NASA Institute for Advanced Concepts
NASA Technical Reports Server (NTRS)
Cassanova, Robert A.
1999-01-01
The purpose of NASA Institute for Advanced Concepts (NIAC) is to provide an independent, open forum for the external analysis and definition of space and aeronautics advanced concepts to complement the advanced concepts activities conducted within the NASA Enterprises. The NIAC will issue Calls for Proposals during each year of operation and will select revolutionary advanced concepts for grant or contract awards through a peer review process. Final selection of awards will be with the concurrence of NASA's Chief Technologist. The operation of the NIAC is reviewed biannually by the NIAC Science, Exploration and Technology Council (NSETC) whose members are drawn from the senior levels of industry and universities. The process of defining the technical scope of the initial Call for Proposals was begun with the NIAC "Grand Challenges" workshop conducted on May 21-22, 1998 in Columbia, Maryland. These "Grand Challenges" resulting from this workshop became the essence of the technical scope for the first Phase I Call for Proposals which was released on June 19, 1998 with a due date of July 31, 1998. The first Phase I Call for Proposals attracted 119 proposals. After a thorough peer review, prioritization by NIAC and technical concurrence by NASA, sixteen subgrants were awarded. The second Phase I Call for Proposals was released on November 23, 1998 with a due date of January 31, 1999. Sixty-three (63) proposals were received in response to this Call. On December 2-3, 1998, the NSETC met to review the progress and future plans of the NIAC. The next NSETC meeting is scheduled for August 5-6, 1999. The first Phase II Call for Proposals was released to the current Phase I grantees on February 3,1999 with a due date of May 31, 1999. Plans for the second year of the contract include a continuation of the sequence of Phase I and Phase II Calls for Proposals and hosting the first NIAC Annual Meeting and USRA/NIAC Technical Symposium in NASA HQ.
Lenné, Thomas; Garvey, Christopher J; Koster, Karen L; Bryant, Gary
2009-02-26
We present an X-ray scattering study of the effects of dehydration on the bilayer and chain-chain repeat spacings of dipalmitoylphosphatidylcholine bilayers in the presence of sugars. The presence of sugars has no effect on the average spacing between the phospholipid chains in either the fluid or gel phase. Using this finding, we establish that for low sugar concentrations only a small amount of sugar exclusion occurs. Under these conditions, the effects of sugars on the membrane transition temperatures can be explained quantitatively by the reduction in hydration repulsion between bilayers due to the presence of the sugars. Specific bonding of sugars to lipid headgroups is not required to explain this effect.
Structural, dielectric and impedance studies of polycrystalline La0.6Dy0.2Ca0.2MnO3
NASA Astrophysics Data System (ADS)
Nandan, K. R.; Kumar, A. Ruban
2017-05-01
Polycrystalline materials of Dy doped La1-xCaxMnO3 were prepared by Sol-Gel technique using citric acid as a chelating agent at 900°C. The compound was analyzed by powder X-ray diffraction technique and confirmed to be single phased orthorhombic perovskite structure with space group Pnma. From the dielectric and impedance studies confirmed the existence of dielectric relaxation and presence of space charge were observed from the dielectric constant and impedance plots respectively and confirms the existence of relaxation due to oxygen vacancy. Cole-cole plot confirms the presence of dielectric relaxation and grain contribution in the synthesized sample.
Sidelobe-modulated optical vortices for free-space communication.
Jia, P; Yang, Y; Min, C J; Fang, H; Yuan, X-C
2013-02-15
We propose and experimentally demonstrate a new method for free-space optical (FSO) communication, where the transmitter encodes data into a composite computer-generated hologram and the receiver decodes through a retrieved array of sidelobe-modulated optical vortices (SMOVs). By employing the SMOV generation and detection technique, the usual stringent alignment and phase-matching requirement of the detection of optical vortices is released. In transmitting a gray-scale picture with 180×180 pixels, a bit error rate as low as 3.01×10(-3) has been achieved. Due to the orbital angular momentum multiplexing and spatial paralleling, this FSO communication method possesses the ability to greatly increase the capacity of data transmission.
Emerging Communication Technologies (ECT) Phase 3 Final Report
NASA Technical Reports Server (NTRS)
Bastin, Gary L.; Harris, William G.; Bates, Lakesha D.; Nelson, Richard A.
2004-01-01
The Emerging Communication Technology (ECT) project investigated three First Mile communication technologies in support of NASA s Second Generation Reusable Launch Vehicle (2nd Gen RLV), Orbital Space Plane, Advanced Range Technology Working Group (ARTWG) and the Advanced Spaceport Technology Working Group (ASTWG). These First Mile technologies have the purpose of interconnecting mobile users with existing Range Communication infrastructures. ECT was a continuation of the Range Information System Management (RISM) task started in 2002. RISM identified the three advance communication technologies investigated under ECT. These were Wireless Ethernet (Wi-Fi), Free Space Optics (FSO), and Ultra Wideband (UWB). Due to the report s size, it has been broken into three volumes: 1) Main Report 2) Appendices 3) UWB.
An Improved Wavefront Control Algorithm for Large Space Telescopes
NASA Technical Reports Server (NTRS)
Sidick, Erkin; Basinger, Scott A.; Redding, David C.
2008-01-01
Wavefront sensing and control is required throughout the mission lifecycle of large space telescopes such as James Webb Space Telescope (JWST). When an optic of such a telescope is controlled with both surface-deforming and rigid-body actuators, the sensitivity-matrix obtained from the exit pupil wavefront vector divided by the corresponding actuator command value can sometimes become singular due to difference in actuator types and in actuator command values. In this paper, we propose a simple approach for preventing a sensitivity-matrix from singularity. We also introduce a new "minimum-wavefront and optimal control compensator". It uses an optimal control gain matrix obtained by feeding back the actuator commands along with the measured or estimated wavefront phase information to the estimator, thus eliminating the actuator modes that are not observable in the wavefront sensing process.
Space-Based Telemetry and Range Safety Project Ku-Band and Ka-Band Phased Array Antenna
NASA Technical Reports Server (NTRS)
Whiteman, Donald E.; Valencia, Lisa M.; Birr, Richard B.
2005-01-01
The National Aeronautics and Space Administration Space-Based Telemetry and Range Safety study is a multiphase project to increase data rates and flexibility and decrease costs by using space-based communications assets for telemetry during launches and landings. Phase 1 used standard S-band antennas with the Tracking and Data Relay Satellite System to obtain a baseline performance. The selection process and available resources for Phase 2 resulted in a Ku-band phased array antenna system. Several development efforts are under way for a Ka-band phased array antenna system for Phase 3. Each phase includes test flights to demonstrate performance and capabilities. Successful completion of this project will result in a set of communications requirements for the next generation of launch vehicles.
Ku- and Ka-Band Phased Array Antenna for the Space-Based Telemetry and Range Safety Project
NASA Technical Reports Server (NTRS)
Whiteman, Donald E.; Valencia, Lisa M.; Birr, Richard B.
2005-01-01
The National Aeronautics and Space Administration Space-Based Telemetry and Range Safety study is a multiphase project to increase data rates and flexibility and decrease costs by using space-based communications assets for telemetry during launches and landings. Phase 1 used standard S-band antennas with the Tracking and Data Relay Satellite System to obtain a baseline performance. The selection process and available resources for Phase 2 resulted in a Ku-band phased array antenna system. Several development efforts are under way for a Ka-band phased array antenna system for Phase 3. Each phase includes test flights to demonstrate performance and capabilities. Successful completion of this project will result in a set of communications requirements for the next generation of launch vehicles.
Interstellar Processes Leading to Molecular Deuterium Enrichment and Their Detection
NASA Technical Reports Server (NTRS)
Sandford, Scott A.; Kliss, Mark (Technical Monitor)
2001-01-01
Large deuterium (D) enrichments in meteoritic materials indicate that interstellar organic materials survived incorporation into parent bodies within the forming Solar System. These enrichments are likelier due to one or more of four distinct astrochemical processes. These are (1) low temperature gas phase ion-molecule reactions; (2) low temperature gas-grain reactions; (3) gas phase unimolecular photodissociation, and (4) ultraviolet photolysis in D-enriched ice mantles. Each of these processes should be associated with molecular carriers having, distinct regiochemical signatures (D placement on the product molecules, correlation with specific chemical functionalities, etc.). These processes are reviewed and specific spectroscopic signatures for the detection of these processes in space are identified and described.
Tao, Hua; Veetil, Suhas P; Pan, Xingchen; Liu, Cheng; Zhu, Jianqiang
2015-08-01
Air conditioning systems can lead to dynamic phase change in the laser beams of high-power laser facilities for the inertial confinement fusion, and this kind of phase change cannot be measured by most of the commonly employed Hartmann wavefront sensor or interferometry due to some uncontrollable factors, such as too large laser beam diameters and the limited space of the facility. It is demonstrated that this problem can be solved using a scheme based on modulation coherent imaging, and thus the influence of the air conditioning system on the performance of the high-power facility can be evaluated directly.
Going clean: structure and dynamics of peptides in the gas phase and paths to solvation.
Baldauf, Carsten; Rossi, Mariana
2015-12-16
The gas phase is an artificial environment for biomolecules that has gained much attention both experimentally and theoretically due to its unique characteristic of providing a clean room environment for the comparison between theory and experiment. In this review we give an overview mainly on first-principles simulations of isolated peptides and the initial steps of their interactions with ions and solvent molecules: a bottom up approach to the complexity of biological environments. We focus on the accuracy of different methods to explore the conformational space, the connections between theory and experiment regarding collision cross section evaluations and (anharmonic) vibrational spectra, and the challenges faced in this field.
An investigation during the system test phase of the GOES spacecraft
NASA Technical Reports Server (NTRS)
Mallette, L. A.
1983-01-01
Spurious RF oscillations were noted during the system test phase of the Geostationary Operational Environmental Satellite (GOES). A space qualified data collection platform report (DCPR) transmitter was subsequently found to have a cracked load resistor in its output isolator. The failure mechanism was caused by heat from the output power of a 20 watt transmitter being reflected into the DCPR transmitter through a sneak path. The reflection from a high VSWR at the rotary joint was not part of the normal operation but was due to unusual circumstances. The reliability of the load resistor under normal operation (low VSWR) over the life of the satellite was determined to be high.
Composite Overwrapped Pressure Vessels (COPV) Stress Rupture Test: Part 2. Part 2
NASA Technical Reports Server (NTRS)
Russell, Richard; Flynn, Howard; Forth, Scott; Greene, Nathanael; Kezirian, Michael; Varanauski, Don; Leifeste, Mark; Yoder, Tommy; Woodworth, Warren
2010-01-01
One of the major concerns for the aging Space Shuttle fleet is the stress rupture life of composite overwrapped pressure vessels (COPVs). Stress rupture life of a COPY has been defined as the minimum time during which the composite maintains structural integrity considering the combined effects of stress levels and time. To assist in the evaluation of the aging COPVs in the Orbiter fleet an analytical reliability model was developed. The actual data used to construct this model was from testing of COPVs constructed of similar, but not exactly same materials and pressure cycles as used on Orbiter vessels. Since no actual Orbiter COPV stress rupture data exists the Space Shuttle Program decided to run a stress rupture test to compare to model predictions. Due to availability of spares, the testing was unfortunately limited to one 40" vessel. The stress rupture test was performed at maximum operating pressure at an elevated temperature to accelerate aging. The test was performed in two phases. The first phase, 130 F, a moderately accelerated test designed to achieve the midpoint of the model predicted point reliability. A more aggressive second phase, performed at 160 F, was designed to determine if the test article will exceed the 95% confidence interval ofthe model. In phase 3, the vessel pressure was increased to above maximum operating pressure while maintaining the phase 2 temperature. After reaching enough effectives hours to reach the 99.99% confidence level of the model phase 4 testing began when the temperature was increased to greater than 170 F. The vessel was maintained at phase 4 conditions until it failed after over 3 million effect hours. This paper will discuss the results of this test, it's implications and possible follow-on testing.
Henriques, M.S.; Gorbunov, D.I.; Kriegner, D.; Vališka, M.; Andreev, A.V.; Matěj, Z.
2018-01-01
Structural changes through the first-order paramagnetic-antiferromagnetic phase transition of Dy3Ru4Al12 at 7 K have been studied by means of X-ray diffraction and thermal expansion measurements. The compound crystallizes in a hexagonal crystal structure of Gd3Ru4Al12 type (P63/mmc space group), and no structural phase transition has been found in the temperature interval between 2.5 and 300 K. Nevertheless, due to the spin-lattice coupling the crystal volume undergoes a small orthorhombic distortion of the order of 2×10-5 as the compound enters the antiferromagnetic state. We propose that the first-order phase transition is not driven by the structural changes but rather by the exchange interactions present in the system. PMID:29445250
Phthalimide Copolymer Solar Cells
NASA Astrophysics Data System (ADS)
Xin, Hao; Guo, Xugang; Ren, Guoqiang; Kim, Felix; Watson, Mark; Jenekhe, Samson
2010-03-01
Photovoltaic properties of bulk heterojunction solar cells based on phthalimide donor-acceptor copolymers have been investigated. Due to the strong π-π stacking of the polymers, the state-of-the-art thermal annealing approach resulted in micro-scale phase separation and thus negligible photocurrent. To achieve ideal bicontinuous morphology, different strategies including quickly film drying and mixed solvent for film processing have been explored. In these films, nano-sale phase separation was achieved and a power conversion efficiency of 3.0% was obtained. Absorption and space-charge limited current mobility measurements reveal similar light harvesting and hole mobilities in all the films, indicating that the morphology is the dominant factor determining the photovoltaic performance. Our results demonstrate that for highly crystalline and/or low-solubility polymers, finding a way to prevent polymer aggregation and large scale phase separation is critical to realizing high performance solar cells.
Trade Space Assessment for Human Exploration Mission Design
NASA Technical Reports Server (NTRS)
Joosten, B. Kent
2006-01-01
Many human space exploration mission architecture assessments have been performed over the years by diverse organizations and individuals. Direct comparison of metrics among these studies is extremely difficult due to widely varying assumptions involving projected technology readiness, mission goals, acceptable risk criteria, and socio-political environments. However, constant over the years have been the physical laws of celestial dynamics and rocket propulsion systems. A finite diverse yet finite architecture trade space should exist which captures methods of human exploration - particularly of the Moon and Mars - by delineating technical trades and cataloging the physically realizable options of each. A particular architectural approach should then have a traceable path through this "trade tree". It should be pointed out that not every permutation of paths will result in a physically realizable mission approach, but cataloging options that have been examined by past studies should help guide future analysis. This effort was undertaken in two phases by multi-center NASA working groups in the spring and summer of 2004 using more than thirty years of past studies to "flesh out" the Moon-Mars human exploration trade space. The results are presented, not as a "trade tree", which would be unwieldy, but as a "menu" of potential technical options as a function of mission phases. This is envisioned as a tool to aid future mission designers by offering guidance to relevant past analyses.
Scintillation Effects on Space Shuttle GPS Data
NASA Technical Reports Server (NTRS)
Goodman, John L.; Kramer, Leonard
2001-01-01
Irregularities in ionospheric electron density result in variation in amplitude and phase of Global Positioning System (GPS) signals, or scintillation. GPS receivers tracking scintillated signals may lose carrier phase or frequency lock in the case of phase sc intillation. Amplitude scintillation can cause "enhancement" or "fading" of GPS signals and result in loss of lock. Scintillation can occur over the equatorial and polar regions and is a function of location, time of day, season, and solar and geomagnetic activity. Mid latitude regions are affected only very rarely, resulting from highly disturbed auroral events. In the spring of 1998, due to increasing concern about scintillation of GPS signals during the upcoming solar maximum, the Space Shuttle Program began to assess the impact of scintillation on Collins Miniaturized Airborne GPS Receiver (MAGR) units that are to replace Tactical Air Control and Navigation (TACAN) units on the Space Shuttle orbiters. The Shuttle Program must determine if scintillation effects pose a threat to safety of flight and mission success or require procedural and flight rule changes. Flight controllers in Mission Control must understand scintillation effects on GPS to properly diagnose "off nominal" GPS receiver performance. GPS data from recent Space Shuttle missions indicate that the signals tracked by the Shuttle MAGR manifest scintillation. Scintillation is observed as anomalous noise in velocity measurements lasting for up to 20 minutes on Shuttle orbit passes and are not accounted for in the error budget of the MAGR accuracy parameters. These events are typically coincident with latitude and local time occurrence of previously identified equatorial spread F within about 20 degrees of the magnetic equator. The geographic and seasonal history of these events from ground-based observations and a simple theoretical model, which have potential for predicting events for operational purposes, are reviewed.
NASA Astrophysics Data System (ADS)
Castro Marín, J. M.; Brown, V. J. G.; López Jiménez, A. C.; Rodríguez Gómez, J.; Rodrigo, R.
2001-05-01
The optical, spectroscopic infrared remote imaging system (OSIRIS) is an instrument carried on board the European Space Agency spacecraft Rosetta that will be launched in January 2003 to study in situ the comet Wirtanen. The electronic design of the mechanism controller board (MCB) system of the two OSIRIS optical cameras, the narrow angle camera, and the wide angle camera, is described here. The system is comprised of two boards mounted on an aluminum frame as part of an electronics box that contains the power supply and the digital processor unit of the instrument. The mechanisms controlled by the MCB for each camera are the front door assembly and a filter wheel assembly. The front door assembly for each camera is driven by a four phase, permanent magnet stepper motor. Each filter wheel assembly consists of two, eight filter wheels. Each wheel is driven by a four phase, variable reluctance stepper motor. Each motor, for all the assemblies, also contains a redundant set of four stator phase windings that can be energized separately or in parallel with the main windings. All stepper motors are driven in both directions using the full step unipolar mode of operation. The MCB also performs general housekeeping data acquisition of the OSIRIS instrument, i.e., mechanism position encoders and temperature measurements. The electronic design application used is quite new due to use of a field programmable gate array electronic devices that avoid the use of the now traditional system controlled by microcontrollers and software. Electrical tests of the engineering model have been performed successfully and the system is ready for space qualification after environmental testing. This system may be of interest to institutions involved in future space experiments with similar needs for mechanisms control.
Penteriani, Vincenzo; del Mar Delgado, Maria; Campioni, Letizia
2015-06-01
To date, animal movement studies have mostly analysed the movement behaviours of individuals at specific times of their lives, but we lack detailed information on how individual movements may be affected by the various and different changes that individuals experience throughout their life (e.g. life history phases, experience, age). Here, we attempt to identify differences in home range and movement behaviour between two different statuses, disperser vs. breeder, of a long-lived species (the eagle owl Bubo bubo). Information on home range and movement behaviour between different stages of an individual life are crucial for species conservation and management, as well as for basic knowledge on space use and rhythm of activity. Does the transition from an exploratory stage to moving within more familiar surroundings call for changes in the movement behaviour? We observed notable differences during the two stages of the owls' lives, with individuals having different home range behaviours and rhythms of activity depending on their social status. Significant differences in home range behaviour between the sexes began only with the acquisition of a breeding site. Breeders showed larger home ranges than dispersing individuals, although nightly variation of home ranges size was higher for dispersers than for breeders. Finally, dispersers were active throughout the night, whereas breeders displayed a less active movement phase at both the beginning and end of the night. Our results demonstrate it is important to consider individual variations in space use and movement behaviour due to the different life history phases that they attain during their lifetime. The knowledge of the different needs of a species across life stages may represent an important tool for species conservation because each phase of an individual life may need different requirements.
NASA Astrophysics Data System (ADS)
Penteriani, Vincenzo; del Mar Delgado, Maria; Campioni, Letizia
2015-06-01
To date, animal movement studies have mostly analysed the movement behaviours of individuals at specific times of their lives, but we lack detailed information on how individual movements may be affected by the various and different changes that individuals experience throughout their life (e.g. life history phases, experience, age). Here, we attempt to identify differences in home range and movement behaviour between two different statuses, disperser vs. breeder, of a long-lived species (the eagle owl Bubo bubo). Information on home range and movement behaviour between different stages of an individual life are crucial for species conservation and management, as well as for basic knowledge on space use and rhythm of activity. Does the transition from an exploratory stage to moving within more familiar surroundings call for changes in the movement behaviour? We observed notable differences during the two stages of the owls' lives, with individuals having different home range behaviours and rhythms of activity depending on their social status. Significant differences in home range behaviour between the sexes began only with the acquisition of a breeding site. Breeders showed larger home ranges than dispersing individuals, although nightly variation of home ranges size was higher for dispersers than for breeders. Finally, dispersers were active throughout the night, whereas breeders displayed a less active movement phase at both the beginning and end of the night. Our results demonstrate it is important to consider individual variations in space use and movement behaviour due to the different life history phases that they attain during their lifetime. The knowledge of the different needs of a species across life stages may represent an important tool for species conservation because each phase of an individual life may need different requirements.
Thermal transport properties in helium near the superfluid transition. I.4He in the normal phase
NASA Astrophysics Data System (ADS)
Dingus, M.; Zhong, F.; Meyer, H.
1986-11-01
The thermal conductivity κ and the associated relaxation time τ to reach steady-state conditions are reported for the normal phase of several very dilute mixtures of3He in4He ( X<4 × 10-6) at saturated vapor pressure near Tλ. The measurements were made over the reduced temperature range 2.5 × 10-6<ɛ<2×10-1, where ɛ ≡ (T-Tλ)/Tλ, and are representative for pure4He. The spacing between the cell plates was 0.147 cm. The systematic uncertainty in the conductivity data is estimated to increase from ˜2% for ɛ=0.2 to ˜4% for ɛ=3 × 10-6. The random scatter due to finite temperature resolution increases to ˜7% at the smallest ɛ. The data are in agreement within the combined uncertainty with recent ones by Tam and Ahlers (cell F, spacing 0.20 cm) and with previous ones in this laboratory taken with a different plate spacing. The thermal diffusivity coefficient D T = κ / ϱ C p obtained from τ is found to agree within better than 15% with the calculated one using data for κ, the density ϱ, and the specific heat C p . Measurements of the effective boundary resistivity R b in the superfluid phase are described. R b is found to depend on the thermal history of the cell when cycled up to 77 K and above. Also, R b shows the beginning of an anomalous increase for ¦ɛ¦≲10-4. The possible reasons for this anomaly are discussed, and their impact on the analysis of conductivity data in the normal phase is appraised.
Phase space quantum mechanics - Direct
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nasiri, S.; Sobouti, Y.; Taati, F.
2006-09-15
Conventional approach to quantum mechanics in phase space (q,p), is to take the operator based quantum mechanics of Schroedinger, or an equivalent, and assign a c-number function in phase space to it. We propose to begin with a higher level of abstraction, in which the independence and the symmetric role of q and p is maintained throughout, and at once arrive at phase space state functions. Upon reduction to the q- or p-space the proposed formalism gives the conventional quantum mechanics, however, with a definite rule for ordering of factors of noncommuting observables. Further conceptual and practical merits of themore » formalism are demonstrated throughout the text.« less
Classical-Quantum Correspondence by Means of Probability Densities
NASA Technical Reports Server (NTRS)
Vegas, Gabino Torres; Morales-Guzman, J. D.
1996-01-01
Within the frame of the recently introduced phase space representation of non relativistic quantum mechanics, we propose a Lagrangian from which the phase space Schrodinger equation can be derived. From that Lagrangian, the associated conservation equations, according to Noether's theorem, are obtained. This shows that one can analyze quantum systems completely in phase space as it is done in coordinate space, without additional complications.
Effects of Weightlessness on Vestibular Development: Summary of Research on NIH.R1
NASA Technical Reports Server (NTRS)
Fritzsch, Bernd; Bruce, L. L.
1998-01-01
In our original application we proposed to investigate the effects of gravity on the formation of connections between the gravity receptors of the ear and the brain in rat pups raised in space beginning at an age before these connections are made until near the time of birth, when they are to some extent functional. We used the neuronal tracer, Dil, which could be applied to tissue obtained immediately after landing of the space shuttle, thus minimizing changes due to the earth's gravity. We hoped to determine whether the vestibular system develops in two phases, as do other sensory systems (such as the visual system). In these other systems the first phase of development is controlled genetically and the second phase is controlled by environmental stimulation. Our data collected strongly supports the idea that the vestibular system has these same two phases of development. The tissue obtained from the NIH.R1 experiment was of exceptionally high quality for our analysis. Therefore, we expanded our investigation into the ultrastructural effects of microgravity on vestibular development. For the sake of clarity we will subdivide our summary into two categories: (1) analysis of the branching pattern of axons between the vestibular nerve and the gravistatic receptors of the ear in flight and control animals, and (2) analysis of the branching pattern of axons between the vestibular nerve and the brain in flight and control animals.
Space Phase III - The commercial era dawns
NASA Technical Reports Server (NTRS)
Allnutt, R. F.
1983-01-01
After the 'Phase I' of space activities, the period bounded by Sputnik and Apollo, 'Phase II', has been entered, a phase in which concerns over the use and the protection of space assets which support national security predominate. However, it is only when the commercial motive becomes prominent that human activity in new regions truly prospers and enters periods of exponential growth. It is believed that there are increasing signs that such a period, called 'Space Phase III', may be coming soon. A description is presented of developments and results upon which this conclusion is based. Since 1980, there have been three developments of great importance for the future of space activities. Six highly successful flights have demonstrated that the Space Shuttle concept works. A series of Soviet missions are related to the emergence of a capability to construct and service modular space stations. Successful tests of the European Ariane 1 indicate an end to U.S. monopoly with respect to the provision of launch services to the Western World.
Phase-space reaction network on a multisaddle energy landscape: HCN isomerization.
Li, Chun-Biu; Matsunaga, Yasuhiro; Toda, Mikito; Komatsuzaki, Tamiki
2005-11-08
By using the HCN/CNH isomerization reaction as an illustrative vehicle of chemical reactions on multisaddle energy landscapes, we give explicit visualizations of molecular motions associated with a straight-through reaction tube in the phase space inside which all reactive trajectories pass from one basin to another, with eliminating recrossing trajectories in the configuration space. This visualization provides us with a chemical intuition of how chemical species "walk along" the reaction-rate slope in the multidimensional phase space compared with the intrinsic reaction path in the configuration space. The distinct nonergodic features in the two different HCN and CNH wells can be easily demonstrated by a section of Poincare surface of section in those potential minima, which predicts in a priori the pattern of trajectories residing in the potential well. We elucidate the global phase-space structure which gives rise to the non-Markovian dynamics or the dynamical correlation of sequential multisaddle chemical reactions. The phase-space structure relevant to the controllability of the product state in chemical reactions is also discussed.
Expanding the term "Design Space" in high performance liquid chromatography (I).
Monks, K E; Rieger, H-J; Molnár, I
2011-12-15
The current article presents a novel approach to applying Quality by Design (QbD) principles to the development of high pressure reversed phase liquid chromatography (HPLC) methods. Four common critical parameters in HPLC--gradient time, temperature, pH of the aqueous eluent, and stationary phase--are evaluated within the Quality by Design framework by the means of computer modeling software and a column database, to a satisfactory degree. This work proposes the establishment of two mutually complimentary Design Spaces to fully depict a chromatographic method; one Column Design Space (CDS) and one Eluent Design Space (EDS) to describe the influence of the stationary phase and of the mobile phase on the separation selectivity, respectively. The merge of both Design Spaces into one is founded on the continuous nature of the mobile phase influence on retention and the great variety of the stationary phases available. Copyright © 2011 Elsevier B.V. All rights reserved.
Aydin, Ilhan; Karakose, Mehmet; Akin, Erhan
2014-03-01
Although reconstructed phase space is one of the most powerful methods for analyzing a time series, it can fail in fault diagnosis of an induction motor when the appropriate pre-processing is not performed. Therefore, boundary analysis based a new feature extraction method in phase space is proposed for diagnosis of induction motor faults. The proposed approach requires the measurement of one phase current signal to construct the phase space representation. Each phase space is converted into an image, and the boundary of each image is extracted by a boundary detection algorithm. A fuzzy decision tree has been designed to detect broken rotor bars and broken connector faults. The results indicate that the proposed approach has a higher recognition rate than other methods on the same dataset. © 2013 ISA Published by ISA All rights reserved.
NASA Technical Reports Server (NTRS)
Cadogan, Dave; Lingo, Bob
1996-01-01
In July of 1996, ILC Dover was awarded Phase 1 of a contract for NASA to develop a prototype Power Assisted Space Suit glove to enhance the performance of astronauts during Extra-Vehicular Activity (EVA). This report summarizes the work performed to date on Phase 1, and details the work to be conducted on Phase 2 of the program. Phase 1 of the program consisted of research and review of related technical sources, concept brainstorming, baseline design development, modeling and analysis, component mock-up testing, and test data analysis. ILC worked in conjunction with the University of Maryland's Space Systems Laboratory (SSL) to develop the power assisted glove. Phase 2 activities will focus on the design maturation and the manufacture of a working prototype system. The prototype will be tested and evaluated in conjunction with existing space suit glove technology to determine the performance enhancement anticipated with the implementation of the power assisted joint technology in space suit gloves.
Efficient characterization of phase space mapping in axially symmetric optical systems
NASA Astrophysics Data System (ADS)
Barbero, Sergio; Portilla, Javier
2018-01-01
Phase space mapping, typically between an object and image plane, characterizes an optical system within a geometrical optics framework. We propose a novel conceptual frame to characterize the phase mapping in axially symmetric optical systems for arbitrary object locations, not restricted to a specific object plane. The idea is based on decomposing the phase mapping into a set of bivariate equations corresponding to different values of the radial coordinate on a specific object surface (most likely the entrance pupil). These equations are then approximated through bivariate Chebyshev interpolation at Chebyshev nodes, which guarantees uniform convergence. Additionally, we propose the use of a new concept (effective object phase space), defined as the set of points of the phase space at the first optical element (typically the entrance pupil) that are effectively mapped onto the image surface. The effective object phase space provides, by means of an inclusion test, a way to avoid tracing rays that do not reach the image surface.
Families of vector-like deformations of relativistic quantum phase spaces, twists and symmetries
NASA Astrophysics Data System (ADS)
Meljanac, Daniel; Meljanac, Stjepan; Pikutić, Danijel
2017-12-01
Families of vector-like deformed relativistic quantum phase spaces and corresponding realizations are analyzed. A method for a general construction of the star product is presented. The corresponding twist, expressed in terms of phase space coordinates, in the Hopf algebroid sense is presented. General linear realizations are considered and corresponding twists, in terms of momenta and Poincaré-Weyl generators or gl(n) generators are constructed and R-matrix is discussed. A classification of linear realizations leading to vector-like deformed phase spaces is given. There are three types of spaces: (i) commutative spaces, (ii) κ -Minkowski spaces and (iii) κ -Snyder spaces. The corresponding star products are (i) associative and commutative (but non-local), (ii) associative and non-commutative and (iii) non-associative and non-commutative, respectively. Twisted symmetry algebras are considered. Transposed twists and left-right dual algebras are presented. Finally, some physical applications are discussed.
Daneshmand, Saeed; Jahromi, Ali Jafarnia; Broumandan, Ali; Lachapelle, Gérard
2015-01-01
The use of Space-Time Processing (STP) in Global Navigation Satellite System (GNSS) applications is gaining significant attention due to its effectiveness for both narrowband and wideband interference suppression. However, the resulting distortion and bias on the cross correlation functions due to space-time filtering is a major limitation of this technique. Employing the steering vector of the GNSS signals in the filter structure can significantly reduce the distortion on cross correlation functions and lead to more accurate pseudorange measurements. This paper proposes a two-stage interference mitigation approach in which the first stage estimates an interference-free subspace before the acquisition and tracking phases and projects all received signals into this subspace. The next stage estimates array attitude parameters based on detecting and employing GNSS signals that are less distorted due to the projection process. Attitude parameters enable the receiver to estimate the steering vector of each satellite signal and use it in the novel distortionless STP filter to significantly reduce distortion and maximize Signal-to-Noise Ratio (SNR). GPS signals were collected using a six-element antenna array under open sky conditions to first calibrate the antenna array. Simulated interfering signals were then added to the digitized samples in software to verify the applicability of the proposed receiver structure and assess its performance for several interference scenarios. PMID:26016909
Daneshmand, Saeed; Jahromi, Ali Jafarnia; Broumandan, Ali; Lachapelle, Gérard
2015-05-26
The use of Space-Time Processing (STP) in Global Navigation Satellite System (GNSS) applications is gaining significant attention due to its effectiveness for both narrowband and wideband interference suppression. However, the resulting distortion and bias on the cross correlation functions due to space-time filtering is a major limitation of this technique. Employing the steering vector of the GNSS signals in the filter structure can significantly reduce the distortion on cross correlation functions and lead to more accurate pseudorange measurements. This paper proposes a two-stage interference mitigation approach in which the first stage estimates an interference-free subspace before the acquisition and tracking phases and projects all received signals into this subspace. The next stage estimates array attitude parameters based on detecting and employing GNSS signals that are less distorted due to the projection process. Attitude parameters enable the receiver to estimate the steering vector of each satellite signal and use it in the novel distortionless STP filter to significantly reduce distortion and maximize Signal-to-Noise Ratio (SNR). GPS signals were collected using a six-element antenna array under open sky conditions to first calibrate the antenna array. Simulated interfering signals were then added to the digitized samples in software to verify the applicability of the proposed receiver structure and assess its performance for several interference scenarios.
Longitudinal phase space tomography using a booster cavity at PITZ
NASA Astrophysics Data System (ADS)
Malyutin, D.; Gross, M.; Isaev, I.; Khojoyan, M.; Kourkafas, G.; Krasilnikov, M.; Marchetti, B.; Otevrel, M.; Stephan, F.; Vashchenko, G.
2017-11-01
The knowledge of the longitudinal phase space (LPS) of electron beams is of great importance for optimizing the performance of high brightness photo injectors. To get the longitudinal phase space of an electron bunch in a linear accelerator a tomographic technique can be used. The method is based on measurements of the bunch momentum spectra while varying the bunch energy chirp. The energy chirp can be varied by one of the RF accelerating structures in the accelerator and the resulting momentum distribution can be measured with a dipole spectrometer further downstream. As a result, the longitudinal phase space can be reconstructed. Application of the tomographic technique for reconstruction of the longitudinal phase space is introduced in detail in this paper. Measurement results from the PITZ facility are shown and analyzed.
A Phase-Space Approach to Collisionless Stellar Systems Using a Particle Method
NASA Astrophysics Data System (ADS)
Hozumi, Shunsuke
1997-10-01
A particle method for reproducing the phase space of collisionless stellar systems is described. The key idea originates in Liouville's theorem, which states that the distribution function (DF) at time t can be derived from tracing necessary orbits back to t = 0. To make this procedure feasible, a self-consistent field (SCF) method for solving Poisson's equation is adopted to compute the orbits of arbitrary stars. As an example, for the violent relaxation of a uniform density sphere, the phase-space evolution generated by the current method is compared to that obtained with a phase-space method for integrating the collisionless Boltzmann equation, on the assumption of spherical symmetry. Excellent agreement is found between the two methods if an optimal basis set for the SCF technique is chosen. Since this reproduction method requires only the functional form of initial DFs and does not require any assumptions to be made about the symmetry of the system, success in reproducing the phase-space evolution implies that there would be no need of directly solving the collisionless Boltzmann equation in order to access phase space even for systems without any special symmetries. The effects of basis sets used in SCF simulations on the reproduced phase space are also discussed.
Effect of organic matters on CO2 hydrate phase equilibrium conditions in Na-montmorillonite clay
NASA Astrophysics Data System (ADS)
Park, T.; Kyung, D.; Lee, W.
2013-12-01
Formation of gas hydrates provides an attractive idea for storing greenhouse gases in a long-term stable geological formation. Since the phase equilibrium conditions of gas hydrates indicate the stability of hydrates, estimation of the phase equilibrium conditions of gas hydrates in marine geological conditions is necessary. In this study, we have identified the effects of organic matters (glycine, glucose, and urea) and solid surface (montmorillonite (MMT)) on the three-phase (liquid-hydrate-vapor) equilibrium conditions of CO2 hydrate. CO2 phase equilibrium experiments were conducted using 0.5mol% organic matter solutions with and without 10g soil mineral were experimentally conducted. Addition of organic matters shifted the phase equilibrium conditions of CO2 hydrate to the higher pressure or lower pressure region because of higher competition of water molecules due to the dissolved organic matters. Presence of MMT also leaded to the higher equilibrium pressure due to the interaction of cations with water molecules. By addition of organic matters to the clay suspension, the hydrate phase equilibrium conditions were less inhibited compared to those of MMT and organic matters independently. The diminished magnitudes by addition of organic matters to the clay suspension (MMT > MMT+urea > MMT+glycine > MMT+glucose > DIW) were different to the order of inhibition degree without MMT (Glucose > glycine > urea > DIW). X-ray diffraction (XRD), scanning electron microscope (SEM), and ion chromatography (IC) analysis were conducted to support the hypothesis that the organic matters interact with cations in MMT interlayer space, and leads to the less inhibition of phase equilibrium conditions. The present study provides basic information for the formation and dissociation of CO2 hydrates in the geological formation when sequestering CO2 as a form of CO2 hydrate.
The CTS 11.7 GHz angle of arrival experiment
NASA Technical Reports Server (NTRS)
Kwan, B. W.; Hodge, D. B.
1981-01-01
The objective of the experiment was to determine the statistical behavior of attenuation and angle of arrival on an Earth-space propagation path using the CTS 11.7 GHz beacon. Measurements performed from 1976 to 1978 form the data base for analysis. The statistics of the signal attenuation and phase variations due to atmospheric disturbances are presented. Rainfall rate distributions are also included to provide a link between the above effects on wave propagation and meteorological conditions.
[Volume Homeostasis and Renal Function in Rats Exposed to Simulated and Actual Microgravity
NASA Technical Reports Server (NTRS)
Tucker, Bryan J.
1993-01-01
This project has investigated mechanisms that influence alterations in compartmental fluid and electrolyte balance in microgravity and evaluates countermeasures to control renal fluid and electrolyte losses. Determining the alterations due to space flight in fluid compartments and renal function is an important component in understanding long term adaptation to spaceflight and the contribution to post-flight orthostatic intolerance. Four definition phase studies and two studies examining neuro-humoral and vascular mechanisms have been completed.
Potential for luminosity improvement for low-energy RHIC operation with long bunches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedotov, A.; Blaskiewicz, M.
Electron cooling was proposed to increase luminosity of the RHIC collider for heavy ion beams at low energies. Luminosity decreases as the square of bunch intensity due to the beam loss from the RF bucket as a result of the longitudinal intra beam scattering (IBS), as well as due to the transverse emittance growth because of the transverse IBS. Both transverse and longitudinal IBS can be counteracted with electron cooling. This would allow one to keep the initial peak luminosity close to constant throughout the store essentially without the beam loss. In addition, the phase-space density of the hadron beamsmore » can be further increased by providing stronger electron cooling. Unfortunately, the defining limitation for low energies in RHIC is expected to be the space charge. Here we explore an idea of additional improvement in luminosity, on top of the one coming from just IBS compensation and longer stores, which may be expected if one can operate with longer bunches at the space-charge limit in a collider. This approach together with electron cooling may result in about 10-fold improvement in total luminosity for low-energy RHIC program.« less
Evolution of Government and Industrial Partnerships to Open the Space Frontier
NASA Technical Reports Server (NTRS)
Martin, Gary L.
2008-01-01
If the logical extension of the current exploration program is to develop self-sustaining settlements on the Moon and Mars over the next few centuries, then there is a path that takes civilization from its current one planet existence to a multi-world future. By considering the far term goal of space settlements as a desired endpoint and using the current state as a starting point, the policy drivers and potential pathways to the goal of sustainable space settlements can be explored. This paper describes a three-phased evolution of government and industrial partnerships from current day relationships to a time when there are sustainable settlements in space. Phase I details the current state government-led exploration while Phase III describes a desired endpoint of self-sufficient settlements in space. Phase II is an important transition phase, which acts as a bridge between now and the future. This paper discusses the critical evolution that must take place in two key areas to ensure a thriving future in space; space transportation and the right to use space property and resources. This paper focuses on the enabling role of government necessary to achieve United States (U.S.) goals for space exploration and open the frontier.
NASA Astrophysics Data System (ADS)
Schleich, Wolfgang P.
2001-04-01
Quantum Optics in Phase Space provides a concise introduction to the rapidly moving field of quantum optics from the point of view of phase space. Modern in style and didactically skillful, Quantum Optics in Phase Space prepares students for their own research by presenting detailed derivations, many illustrations and a large set of workable problems at the end of each chapter. Often, the theoretical treatments are accompanied by the corresponding experiments. An exhaustive list of references provides a guide to the literature. Quantum Optics in Phase Space also serves advanced researchers as a comprehensive reference book. Starting with an extensive review of the experiments that define quantum optics and a brief summary of the foundations of quantum mechanics the author Wolfgang P. Schleich illustrates the properties of quantum states with the help of the Wigner phase space distribution function. His description of waves ala WKB connects semi-classical phase space with the Berry phase. These semi-classical techniques provide deeper insight into the timely topics of wave packet dynamics, fractional revivals and the Talbot effect. Whereas the first half of the book deals with mechanical oscillators such as ions in a trap or atoms in a standing wave the second half addresses problems where the quantization of the radiation field is of importance. Such topics extensively discussed include optical interferometry, the atom-field interaction, quantum state preparation and measurement, entanglement, decoherence, the one-atom maser and atom optics in quantized light fields. Quantum Optics in Phase Space presents the subject of quantum optics as transparently as possible. Giving wide-ranging references, it enables students to study and solve problems with modern scientific literature. The result is a remarkably concise yet comprehensive and accessible text- and reference book - an inspiring source of information and insight for students, teachers and researchers alike.
Transient Flow Dynamics in Optical Micro Well Involving Gas Bubbles
NASA Technical Reports Server (NTRS)
Johnson, B.; Chen, C. P.; Jenkins, A.; Spearing, S.; Monaco, L. A.; Steele, A.; Flores, G.
2006-01-01
The Lab-On-a-Chip Application Development (LOCAD) team at NASA s Marshall Space Flight Center is utilizing Lab-On-a-Chip to support technology development specifically for Space Exploration. In this paper, we investigate the transient two-phase flow patterns in an optic well configuration with an entrapped bubble through numerical simulation. Specifically, the filling processes of a liquid inside an expanded chamber that has bubbles entrapped. Due to the back flow created by channel expansion, the entrapped bubbles tend to stay stationary at the immediate downstream of the expansion. Due to the huge difference between the gas and liquid densities, mass conservation issues associated with numerical diffusion need to be specially addressed. The results are presented in terms of the movement of the bubble through the optic well. Bubble removal strategies are developed that involve only pressure gradients across the optic well. Results show that for the bubble to be moved through the well, pressure pulsations must be utilized in order to create pressure gradients across the bubble itself.
Revisiting directed flow in relativistic heavy-ion collisions from a multiphase transport model
NASA Astrophysics Data System (ADS)
Guo, Chong-Qiang; Zhang, Chun-Jian; Xu, Jun
2017-12-01
We have revisited several interesting questions on how the rapidity-odd directed flow is developed in relativistic 197Au+197Au collisions at √{s_{NN}} = 200 and 39 GeV based on a multiphase transport model. As the partonic phase evolves with time, the slope of the parton directed flow at midrapidity region changes from negative to positive as a result of the later dynamics at 200 GeV, while it remains negative at 39 GeV due to the shorter life time of the partonic phase. The directed flow splitting for various quark species due to their different initial eccentricities is observed at 39 GeV, while the splitting is very small at 200GeV. From a dynamical coalescence algorithm with Wigner functions, we found that the directed flow of hadrons is a result of competition between the coalescence in momentum and coordinate space as well as further modifications by the hadronic rescatterings.
Effective increase in beam emittance by phase-space expansion using asymmetric Bragg diffraction.
Chu, Chia-Hung; Tang, Mau-Tsu; Chang, Shih-Lin
2015-08-24
We propose an innovative method to extend the utilization of the phase space downstream of a synchrotron light source for X-ray transmission microscopy. Based on the dynamical theory of X-ray diffraction, asymmetrically cut perfect crystals are applied to reshape the position-angle-wavelength space of the light source, by which the usable phase space of the source can be magnified by over one hundred times, thereby "phase-space-matching" the source with the objective lens of the microscope. The method's validity is confirmed using SHADOW code simulations, and aberration through an optical lens such as a Fresnel zone plate is examined via matrix optics for nano-resolution X-ray images.
Dynamic modeling and Super-Twisting Sliding Mode Control for Tethered Space Robot
NASA Astrophysics Data System (ADS)
Zhao, Yakun; Huang, Panfeng; Zhang, Fan
2018-02-01
Recent years, tethered space capturing systems have been considered as one of the most promising solutions for active space debris removal due to the increasing threat of space debris to spacecraft and astronauts. In this paper, one of the tethered space capturing systems, Tethered Space Robot (TSR), is investigated. TSR includes a space platform, a space tether, and a gripper as the terminal device. Based on the assumptions that the platform and the gripper are point masses and the tether is rigid, inextensible and remaining straight, the dynamic model of TSR is presented, in which the disturbances from space environment is considered. According to the previous study, the in-plane and out-of-plane angles of the tether oscillate periodically although the tether is released to the desired length. A super-twisting adaptive sliding mode control scheme is designed for TSR to eliminate the vibration of the tether to assure a successful capture in station-keeping phase. Both uncontrolled and controlled situations are simulated. The simulation results show that the proposed controller is effective. Additionally, after comparing with normal sliding mode control algorithm, it is verified that the proposed control scheme can avoid the chattering of normal sliding mode control and is robust for unknown boundary perturbations.
NASA Astrophysics Data System (ADS)
Semmling, Maximilian; Leister, Vera; Saynisch, Jan; Zus, Florian; Wickert, Jens
2016-04-01
An ocean altimetry experiment using Earth reflected GNSS signals has been proposed to the European Space Agency (ESA). It is part of the GNSS Reflectometry Radio Occultation Scatterometry (GEROS) mission that is planned aboard the International Space Station (ISS). Altimetric simulations are presented that examine the detection of ocean topography anomalies assuming GNSS phase delay observations. Such delay measurements are well established for positioning and are possible due to a sufficient synchronization of GNSS receiver and transmitter. For altimetric purpose delays of Earth reflected GNSS signals can be observed similar to radar altimeter signals. The advantage of GNSS is the synchronized separation of transmitter and receiver that allow a significantly increased number of observation per receiver due to more than 70 GNSS transmitters currently in orbit. The altimetric concept has already been applied successfully to flight data recorded over the Mediterranean Sea. The presented altimetric simulation considers anomalies in the Agulhas current region which are obtained from the Region Ocean Model System (ROMS). Suitable reflection events in an elevation range between 3° and 30° last about 10min with ground track's length >3000km. Typical along-track footprints (1s signal integration time) have a length of about 5km. The reflection's Fresnel zone limits the footprint of coherent observations to a major axis extention between 1 to 6km dependent on the elevation. The altimetric performance depends on the signal-to-noise ratio (SNR) of the reflection. Simulation results show that precision is better than 10cm for SNR of 30dB. Whereas, it is worse than 0.5m if SNR goes down to 10dB. Precision, in general, improves towards higher elevation angles. Critical biases are introduced by atmospheric and ionospheric refraction. Corresponding correction strategies are still under investigation.
Search for space charge effects in the ICARUS T600 LAr-TPC
NASA Astrophysics Data System (ADS)
Torti, Marta
2016-11-01
Space charge in Liquid Argon Time Projection Chamber is due to the accumu- lation of positive ions, produced by ionizing tracks crossing the detector, which slowly flow toward the cathode. As a consequence, electric field distortions may arise, thus hindering the possibility to produce faithful 3D images of the ionizing events. The presence of space charge becomes relevant for large TPCs operating at surface or at shallow depths, where cosmic ray flux is high. These effects could interest the next phase of the ICARUS T600 detector, which will be deployed at shallow depths as a Far Detector for Short Baseline Neutrino experiment at FNAL dedicated to sterile neutrino searches. In 2001, the first ICARUS T600 module (T300) operated at surface in Pavia (Italy), recording cosmic ray data. In this work, a sample of cosmic muon tracks from the 2001 run was analyzed and results on space charge effects in LAr-TPCs are shown.
NASA Astrophysics Data System (ADS)
Nikadat, Nooraddin; Fatehi Marji, Mohammad; Rahmannejad, Reza; Yarahmadi Bafghi, Alireza
2016-11-01
Different conditions may affect the stability of tunnels by the geometry (spacing and orientation) of joints in the surrounded rock mass. In this study, by comparing the results obtained by the three novel numerical methods i.e. finite element method (Phase2), discrete element method (UDEC) and indirect boundary element method (TFSDDM), the effects of joint spacing and joint dips on the stress distribution around rock tunnels are numerically studied. These comparisons indicate the validity of the stress analyses around circular rock tunnels. These analyses also reveal that for a semi-continuous environment, boundary element method gives more accurate results compared to the results of finite element and distinct element methods. In the indirect boundary element method, the displacements due to joints of different spacing and dips are estimated by using displacement discontinuity (DD) formulations and the total stress distribution around the tunnel are obtained by using fictitious stress (FS) formulations.
Leo P: How Many Metals Can a Very Low Mass, Isolated Galaxy Retain?
NASA Astrophysics Data System (ADS)
McQuinn, Kristen B. W.; Skillman, Evan D.; Dolphin, Andrew; Cannon, John M.; Salzer, John J.; Rhode, Katherine L.; Adams, Elizabeth A. K.; Berg, Danielle; Giovanelli, Riccardo; Haynes, Martha P.
2015-12-01
Leo P is a gas-rich dwarf galaxy with an extremely low gas-phase oxygen abundance (3% solar). The isolated nature of Leo P enables a quantitative measurement of metals lost solely due to star formation feedback. We present an inventory of the oxygen atoms in Leo P based on the gas-phase oxygen abundance measurement, the star formation history (SFH), and the chemical enrichment evolution derived from resolved stellar populations. The SFH also provides the total amount of oxygen produced. Overall, Leo P has retained 5% of its oxygen; 25% of the retained oxygen is in the stars while 75% is in the gas phase. This is considerably lower than the 20%-25% calculated for massive galaxies, supporting the trend for less efficient metal retention for lower-mass galaxies. The retention fraction is higher than that calculated for other alpha elements (Mg, Si, Ca) in dSph Milky Way satellites of similar stellar mass and metallicity. Accounting only for the oxygen retained in stars, our results are consistent with those derived for the alpha elements in dSph galaxies. Thus, under the assumption that the dSph galaxies lost the bulk of their gas mass through an environmental process such as tidal stripping, the estimates of retained metal fractions represent underestimates by roughly a factor of four. Because of its isolation, Leo P provides an important datum for the fraction of metals lost as a function of galaxy mass due to star formation. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.
Koda, Shin-ichi
2015-12-28
We formulate various semiclassical propagators for the Wigner phase space representation from a unified point of view. As is shown in several studies, the Moyal equation, which is an equation of motion for the Wigner distribution function, can be regarded as the Schrödinger equation of an extended Hamiltonian system where its "position" and "momentum" correspond to the middle point of two points of the original phase space and the difference between them, respectively. Then we show that various phase-space semiclassical propagators can be formulated just by applying existing semiclassical propagators to the extended system. As a result, a phase space version of the Van Vleck propagator, the initial-value Van Vleck propagator, the Herman-Kluk propagator, and the thawed Gaussian approximation are obtained. In addition, we numerically compare the initial-value phase-space Van Vleck propagator, the phase-space Herman-Kluk propagator, and the classical mechanical propagation as approximation methods for the time propagation of the Wigner distribution function in terms of both accuracy and convergence speed. As a result, we find that the convergence speed of the Van Vleck propagator is far slower than others as is the case of the Hilbert space, and the Herman-Kluk propagator keeps its accuracy for a long period compared with the classical mechanical propagation while the convergence speed of the latter is faster than the former.
Maintainability Program Requirements for Space Systems
NASA Technical Reports Server (NTRS)
1987-01-01
This document is established to provide common general requirements for all NASA programs to: design maintainability into all systems where maintenance is a factor in system operation and mission success; and ensure that maintainability characteristics are developed through the systems engineering process. These requirements are not new. Design for ease of maintenance and minimization of repair time have always been fundamental requirements of the systems engineering process. However, new or reusable orbital manned and in-flight maintainable unmanned space systems demand special emphasis on maintainability, and this document has been prepared to meet that need. Maintainability requirements on many NASA programs differ in phasing and task emphasis from requirements promulgated by other Government agencies. This difference is due to the research and development nature of NASA programs where quantities produced are generally small; therefore, the depth of logistics support typical of many programs is generally not warranted. The cost of excessive maintenance is very high due to the logistics problems associated with the space environment. The ability to provide timely maintenance often involves safety considerations for manned space flight applications. This document represents a basic set of requirements that will achieve a design for maintenance. These requirements are directed primarily at manned and unmanned orbital space systems. To be effective, maintainability requirements should be tailored to meet specific NASA program and project needs and constraints. NASA activities shall invoke the requirements of this document consistent with program planning in procurements or on inhouse development efforts.
Modeling the Atmospheric Phase Effects of a Digital Antenna Array Communications System
NASA Technical Reports Server (NTRS)
Tkacenko, A.
2006-01-01
In an antenna array system such as that used in the Deep Space Network (DSN) for satellite communication, it is often necessary to account for the effects due to the atmosphere. Typically, the atmosphere induces amplitude and phase fluctuations on the transmitted downlink signal that invalidate the assumed stationarity of the signal model. The degree to which these perturbations affect the stationarity of the model depends both on parameters of the atmosphere, including wind speed and turbulence strength, and on parameters of the communication system, such as the sampling rate used. In this article, we focus on modeling the atmospheric phase fluctuations in a digital antenna array communications system. Based on a continuous-time statistical model for the atmospheric phase effects, we show how to obtain a related discrete-time model based on sampling the continuous-time process. The effects of the nonstationarity of the resulting signal model are investigated using the sample matrix inversion (SMI) algorithm for minimum mean-squared error (MMSE) equalization of the received signal
NASA Astrophysics Data System (ADS)
Guédon, Gaël Raymond; Hyman, Jeffrey De'Haven; Inzoli, Fabio; Riva, Monica; Guadagnini, Alberto
2017-12-01
We investigate and characterize the influence of capillary end effects on steady-state relative permeabilities obtained in pore-scale numerical simulations of two-phase flows. Our study is motivated by the observation that capillary end effects documented in two-phase laboratory-scale experiments can significantly influence permeability estimates. While numerical simulations of two-phase flows in reconstructed pore-spaces are increasingly employed to characterize relative permeabilities, a phenomenon which is akin to capillary end effects can also arise in such analyses due to the constraints applied at the boundaries of the computational domain. We profile the relative strength of these capillary end effects on the calculation of steady-state relative permeabilities obtained within randomly generated porous micro-structures using a finite volume-based two-phase flow solver. We suggest a procedure to estimate the extent of the regions influenced by these capillary end effects, which in turn allows for the alleviation of bias in the estimation of relative permeabilities.
Frustrated spin-1/2 Ising antiferromagnet on a square lattice in a transverse field
NASA Astrophysics Data System (ADS)
Bobák, A.; Jurčišinová, E.; Jurčišin, M.; Žukovič, M.
2018-02-01
We investigate the phase transitions and tricritical behaviors of the frustrated Ising antiferromagnet with first- (J1<0 ) and second- (J2<0 ) nearest-neighbor interactions in a transverse field Ω on the square lattice using an effective-field theory with correlations based on a single-spin approximation. We have proposed a functional for the free energy to obtain the phase diagram in the T -R (R =J2/|J1| ) or T -Ω planes. It is shown that due to the transverse field the phase transition between ordered and disordered phases changes in the tricritical point (TCP) from the second order to the first order. The longitudinal and transverse magnetizations are also studied for selected values of R and Ω . In particular, the variation of TCP at the ground state in the three-dimensional space is constructed. For some special cases, values of the critical temperature and the critical transverse field have been determined analytically.
Pal, Mandira; Banerjee, Chitram; Chandel, Shubham; Bag, Ankan; Majumder, Shovan K.; Ghosh, Nirmalya
2016-01-01
Spin orbit interaction and the resulting Spin Hall effect of light are under recent intensive investigations because of their fundamental nature and potential applications. Here, we report an interesting manifestation of spin Hall effect of light and demonstrate its tunability in an inhomogeneous anisotropic medium exhibiting spatially varying retardance level. In our system, the beam shift occurs only for one circular polarization mode keeping the other orthogonal mode unaffected, which is shown to arise due to the combined spatial gradients of the geometric phase and the dynamical phase of light. The constituent two orthogonal circular polarization modes of an input linearly polarized light evolve in different trajectories, eventually manifesting as a large and tunable spin separation. The spin dependent beam shift and the demonstrated principle of simultaneously tailoring space-varying geometric and dynamical phase of light for achieving its tunability (of both magnitude and direction), may provide an attractive route towards development of spin-optical devices. PMID:28004825
NASA Astrophysics Data System (ADS)
Ling, Chris D.; Rowda, Budwy; Avdeev, Maxim; Pullar, Robert
2009-03-01
We present a complete temperature-composition phase diagram for Ba 3BSb 2O 9, B=Mg, Ca, Sr, Ba, along with their electrical behavior as a function of B. These compounds have long been recognized as 6H-type perovskites, but (with the exception of B=Mg) their exact structures and properties were unknown due to their low symmetries, temperature-dependent phase transitions, and difficulties in synthesizing pure samples. The full range of possible space group symmetries is observed, from ideal hexagonal P6 3/ mmc to monoclinic C2/ c to triclinic P1¯. Direct second-order transitions between these phases are plausible according to group theory, and no evidence was seen for any further intermediate phases. The phase diagram with respect to temperature and the effective ionic radius of B is remarkably symmetrical for B=Mg, Ca, and Sr. For B=Ba, a first-order phase transition to a locally distorted phase allows a metastable hexagonal phase to persist to lower temperatures than expected before decomposing around 600 K. Electrical measurements revealed that dielectric permittivity corrected for porosity does not change significantly as a function of B and is in a good agreement with the values predicted by the Clausius-Mossotti equation.
Space Fence PDR Concept Development Phase
NASA Astrophysics Data System (ADS)
Haines, L.; Phu, P.
2011-09-01
The Space Fence, a major Air Force acquisition program, will become the dominant low-earth orbit uncued sensor in the space surveillance network (SSN). Its primary objective is to provide a 24/7 un-cued capability to find, fix, and track small objects in low earth orbit to include emerging and evolving threats, as well as the rapidly growing population of orbital debris. Composed of up to two geographically dispersed large-scale S-band phased array radars, this new system-of-systems concept will provide comprehensive Space Situational Awareness through net-centric operations and integrated decision support. Additionally, this program will facilitate cost saving force structure changes in the SSN, specifically including the decommissioning of very-high frequency VHF Air Force Space Surveillance System (AFSSS). The Space Fence Program Office entered a Preliminary Design Review (PDR) concept development phase in January 2011 to achieve the delivery of the Initial Operational Capability (IOC) expected in FY17. Two contractors were awarded to perform preliminary system design, conduct radar performance analyses and evaluations, and develop a functional PDR radar system prototype. The key objectives for the Phase A PDR effort are to reduce Space Fence total program technical, cost, schedule, and performance risk. The overall program objective is to achieve a preliminary design that demonstrates sufficient technical and manufacturing maturity and that represents a low risk, affordable approach to meet the Space Fence Technical Requirements Document (TRD) requirements for the final development and production phase to begin in 3QFY12. This paper provides an overview of the revised Space Fence program acquisition strategy for the Phase-A PDR phase to IOC, the overall program milestones and major technical efforts. In addition, the key system trade studies and modeling/simulation efforts undertaken during the System Design Requirement (SDR) phase to address and mitigate technical challenges of the Space Fence System will also be discussed. Examples include radar system optimization studies, modeling and simulation for system performance assessment, investigation of innovative Astrodynamics algorithms for initial orbit determination and observation correlation.
Environmental Studies at the Guiana Space Centre
NASA Astrophysics Data System (ADS)
Richard, Sandrine
2013-09-01
The Environmental Commitment of the French Space Agency at the Guiana Space Centre (CNES / CSG) specifies that the environmental protection is a major stake. Consequently, CNES participates in numerous space programs that contribute significantly to a better knowledge, management and protection of our environment at a global scale.The studies and researches that are done at CNES / CSG meet several objectives:* Assessment of safety and environmental effects and risk related to the effects overflowing due to a pollution caused by ground and flight activities* Improvement of the studies related to the knowledge of the environment (flora and fauna monitoring).* Risk assessment and management which may affect the safety of people , property, and protection of public health and environment * Verification of the compliance of the results of impact studies of launch vehicle in flight phase provided by the launch operator (Technical Regulation) with the French Safety Operational Acts.In this note, study and research programs are presented. They allow a better knowledge of the surrounding environment and of impacts caused by the industrial activities done in Guiana Space Center.
Cañadillas-Delgado, Laura; Fabelo, Oscar; Rodríguez-Velamazán, J Alberto; Lemée-Cailleau, Marie-Hélène; Mason, Sax A; Pardo, Emilio; Lloret, Francesc; Zhao, Jiong-Peng; Bu, Xian-He; Simonet, Virginie; Colin, Claire V; Rodríguez-Carvajal, Juan
2012-12-05
Neutron diffraction studies have been carried out to shed light on the unprecedented order-disorder phase transition (ca. 155 K) observed in the mixed-valence iron(II)-iron(III) formate framework compound [NH(2)(CH(3))(2)](n)[Fe(III)Fe(II)(HCOO)(6)](n). The crystal structure at 220 K was first determined from Laue diffraction data, then a second refinement at 175 K and the crystal structure determination in the low temperature phase at 45 K were done with data from the monochromatic high resolution single crystal diffractometer D19. The 45 K nuclear structure reveals that the phase transition is associated with the order-disorder of the dimethylammonium counterion that is weakly anchored in the cavities of the [Fe(III)Fe(II)(HCOO)(6)](n) framework. In the low-temperature phase, a change in space group from P31c to R3c occurs, involving a tripling of the c-axis due to the ordering of the dimethylammonium counterion. The occurrence of this nuclear phase transition is associated with an electric transition, from paraelectric to antiferroelectric. A combination of powder and single crystal neutron diffraction measurements below the magnetic order transition (ca. 37 K) has been used to determine unequivocally the magnetic structure of this Néel N-Type ferrimagnet, proving that the ferrimagnetic behavior is due to a noncompensation of the different Fe(II) and Fe(III) magnetic moments.
NASA Technical Reports Server (NTRS)
Altino, Karen M.; Burns, K. Lee; Barbre, Robert E., Jr.; Leahy, Frank B.
2014-01-01
The National Aeronautics and Space Administration (NASA) is developing new capabilities for human and scientific exploration beyond Earth orbit. Natural environments information is an important asset for NASA's development of the next generation space transportation system as part of the Exploration Systems Development (ESD) Programs, which includes the Space Launch System (SLS) and Multi-Purpose Crew Vehicle (MPCV) Programs. Natural terrestrial environment conditions - such as wind, lightning and sea states - can affect vehicle safety and performance during multiple mission phases ranging from pre-launch ground processing to landing and recovery operations, including all potential abort scenarios. Space vehicles are particularly sensitive to these environments during the launch/ascent and the entry/landing phases of mission operations. The Marshall Space Flight Center (MSFC) Natural Environments Branch provides engineering design support for NASA space vehicle projects and programs by providing design engineers and mission planners with natural environments definitions as well as performing custom analyses to help characterize the impacts the natural environment may have on vehicle performance. One such analysis involves assessing the impact of natural environments to operational availability. Climatological time series of operational surface weather observations are used to calculate probabilities of meeting/exceeding various sets of hypothetical vehicle-specific parametric constraint thresholds. Outputs are tabulated by month and hour of day to show both seasonal and diurnal variation. This paper will discuss how climate analyses are performed by the MSFC Natural Environments Branch to support the ESD Launch Availability (LA) Technical Performance Measure (TPM), the SLS Launch Availability due to Natural Environments TPM, and several MPCV (Orion) launch and landing availability analyses - including the 2014 Orion Exploration Flight Test 1 (EFT-1) mission.
Space charge induced resonance excitation in high intensity rings
NASA Astrophysics Data System (ADS)
Cousineau, S.; Lee, S. Y.; Holmes, J. A.; Danilov, V.; Fedotov, A.
2003-03-01
We present a particle core model study of the space charge effect on high intensity synchrotron beams, with specific emphasis on the Proton Storage Ring (PSR) at Los Alamos National Laboratory. Our particle core model formulation includes realistic lattice focusing and dispersion. We transport both matched and mismatched beams through real lattice structure and compare the results with those of an equivalent uniform-focusing approximation. The effects of lattice structure and finite momentum spread on the resonance behavior are specifically targeted. Stroboscopic maps of the mismatched envelope are constructed and show high-order resonances and stochastic effects that dominate at high mismatch or high intensity. We observe the evolution of the envelope phase-space structure during a high intensity PSR beam accumulation. Finally, we examine the envelope-particle parametric resonance condition and discuss the possibility for halo growth in synchrotron beams due to this mechanism.
NASA Technical Reports Server (NTRS)
Podboy, Gary; Wernet, Mark; Clem, Michelle; Fagan, Amy
2013-01-01
Phased array noise source localization have been compared with 2 types of flow field data (BOS and PIV). The data show that: 1) the higher frequency noise in a BBSN hump is generated further downstream than the lower frequency noise. This is due to a) the shock spacing decreasing and b) the turbulent structure size increasing with distance downstream. 2) BBSN can be created by very weak shocks. 3) BBSN is not created by the strong shocks just downstream of the nozzle because the turbulent structures have not grown large enough to match the shock spacing. 4) The point in the flow where the shock spacing equals the average size of the turbulent structures is a hot spot for shock noise. 5) Some of the shocks responsible for producing the first hump also produce the second hump.
Development of a composite geodetic structure for space construction, phase 1A
NASA Technical Reports Server (NTRS)
1980-01-01
The development of a geodetic beam and beam builder for on orbit construction of large truss type space structures is discussed. The geodetic beam is a lightweight, open lattice structure composed of an equilateral gridwork of crisscrossing rods. The beam provides a high degree of stiffness and minimizes structural distortion, due to temperature gradients, through the incorporation of a new graphite and glass reinforced thermoplastic composite material with a low coefficient of thermal expansion. A low power consuming, high production rate, beam builder automatically fabricates the geodetic beams in space using rods preprocessed on Earth. Three areas of the development are focused upon; (1) geodetic beam designs for local attachment of equipment or beam to beam joining in a parallel or crossing configurations, (2) evaluation of long life pultruded rods capable of service temperatures higher than possible with the HMS/P1700 rod material, and (3) evalaution of high temperature joint encapsulant materials.
Representation of high frequency Space Shuttle data by ARMA algorithms and random response spectra
NASA Technical Reports Server (NTRS)
Spanos, P. D.; Mushung, L. J.
1990-01-01
High frequency Space Shuttle lift-off data are treated by autoregressive (AR) and autoregressive-moving-average (ARMA) digital algorithms. These algorithms provide useful information on the spectral densities of the data. Further, they yield spectral models which lend themselves to incorporation to the concept of the random response spectrum. This concept yields a reasonably smooth power spectrum for the design of structural and mechanical systems when the available data bank is limited. Due to the non-stationarity of the lift-off event, the pertinent data are split into three slices. Each of the slices is associated with a rather distinguishable phase of the lift-off event, where stationarity can be expected. The presented results are rather preliminary in nature; it is aimed to call attention to the availability of the discussed digital algorithms and to the need to augment the Space Shuttle data bank as more flights are completed.
Explicit methods in extended phase space for inseparable Hamiltonian problems
NASA Astrophysics Data System (ADS)
Pihajoki, Pauli
2015-03-01
We present a method for explicit leapfrog integration of inseparable Hamiltonian systems by means of an extended phase space. A suitably defined new Hamiltonian on the extended phase space leads to equations of motion that can be numerically integrated by standard symplectic leapfrog (splitting) methods. When the leapfrog is combined with coordinate mixing transformations, the resulting algorithm shows good long term stability and error behaviour. We extend the method to non-Hamiltonian problems as well, and investigate optimal methods of projecting the extended phase space back to original dimension. Finally, we apply the methods to a Hamiltonian problem of geodesics in a curved space, and a non-Hamiltonian problem of a forced non-linear oscillator. We compare the performance of the methods to a general purpose differential equation solver LSODE, and the implicit midpoint method, a symplectic one-step method. We find the extended phase space methods to compare favorably to both for the Hamiltonian problem, and to the implicit midpoint method in the case of the non-linear oscillator.
Integrability and nonintegrability of quantum systems. II. Dynamics in quantum phase space
NASA Astrophysics Data System (ADS)
Zhang, Wei-Min; Feng, Da Hsuan; Yuan, Jian-Min
1990-12-01
Based on the concepts of integrability and nonintegrability of a quantum system presented in a previous paper [Zhang, Feng, Yuan, and Wang, Phys. Rev. A 40, 438 (1989)], a realization of the dynamics in the quantum phase space is now presented. For a quantum system with dynamical group scrG and in one of its unitary irreducible-representation carrier spaces gerhΛ, the quantum phase space is a 2MΛ-dimensional topological space, where MΛ is the quantum-dynamical degrees of freedom. This quantum phase space is isomorphic to a coset space scrG/scrH via the unitary exponential mapping of the elementary excitation operator subspace of scrg (algebra of scrG), where scrH (⊂scrG) is the maximal stability subgroup of a fixed state in gerhΛ. The phase-space representation of the system is realized on scrG/scrH, and its classical analogy can be obtained naturally. It is also shown that there is consistency between quantum and classical integrability. Finally, a general algorithm for seeking the manifestation of ``quantum chaos'' via the classical analogy is provided. Illustrations of this formulation in several important quantum systems are presented.
Evolutionary snowdrift game incorporating costly punishment in structured populations
NASA Astrophysics Data System (ADS)
Chan, Nat W. H.; Xu, C.; Tey, Siew Kian; Yap, Yee Jiun; Hui, P. M.
2013-01-01
The role of punishment and the effects of a structured population in promoting cooperation are important issues. Within a recent model of snowdrift game (SG) incorporating a costly punishing strategy (P), we study the effects of a population connected through a square lattice. The punishers, who carry basically a cooperative (C) character, are willing to pay a cost α so as to punish a non-cooperative (D) opponent by β. Depending on α, β, the cost-to-benefit ratio r in SG, and the initial conditions, the system evolves into different phases that could be homogeneous or inhomogeneous. The spatial structure imposes geometrical constraint on how one agent is affected by neighboring agents. Results of extensive numerical simulations, both for the steady state and the dynamics, are presented. Possible phases are identified and discussed, and isolated phases in the r-β space are identified as special local structures of strategies that are stable due to the lattice structure. In contrast to a well-mixed population where punishers are suppressed due to the cost of punishment, the altruistic punishing strategy can flourish and prevail for appropriate values of the parameters, implying an enhancement in cooperation by imposing punishments in a structured population. The system could evolve to a phase corresponding to the coexistence of C, D, and P strategies at some particular payoff parameters, and such a phase is absent in a well-mixed population. The pair approximation, a commonly used analytic approach, is extended from a two-strategy system to a three-strategy system. We show that the pair approximation can, at best, capture the numerical results only qualitatively. Due to the improper way of including spatial correlation imposed by the lattice structure, the approximation does not give the frequencies of C, D, and P accurately and fails to give the homogeneous AllD and AllP phases.
Analysis of space telescope data collection system
NASA Technical Reports Server (NTRS)
Ingels, F. M.; Schoggen, W. O.
1982-01-01
An analysis of the expected performance for the Multiple Access (MA) system is provided. The analysis covers the expected bit error rate performance, the effects of synchronization loss, the problem of self-interference, and the problem of phase ambiguity. The problem of false acceptance of a command word due to data inversion is discussed. A mathematical determination of the probability of accepting an erroneous command word due to a data inversion is presented. The problem is examined for three cases: (1) a data inversion only, (2) a data inversion and a random error within the same command word, and a block (up to 256 48-bit words) containing both a data inversion and a random error.
Phononic heat transport in nanomechanical structures: steady-state and pumping
NASA Astrophysics Data System (ADS)
Sena-Junior, Marcone I.; Lima, Leandro R. F.; Lewenkopf, Caio H.
2017-10-01
We study the heat transport due to phonons in nanomechanical structures using a phase space representation of non-equilibrium Green’s functions. This representation accounts for the atomic degrees of freedom making it particularly suited for the description of small (molecular) junctions systems. We rigorously show that for the steady state limit our formalism correctly recovers the heuristic Landauer-like heat conductance for a quantum coherent molecular system coupled to thermal reservoirs. We find general expressions for the non-stationary heat current due to an external periodic drive. In both cases we discuss the quantum thermodynamic properties of the systems. We apply our formalism to the case of a diatomic molecular junction.
Developing and Applying Synthesis Models of Emerging Space Systems
2016-03-01
enables the exploration of small satellite physical trade -offs early in the conceptual design phase of the DOD space acquisition process. Early...provide trade space insights that can assist DOD space acquisition professionals in making better decisions in the conceptual design phase. More informed
Margalef's mandala and phytoplankton bloom strategies
NASA Astrophysics Data System (ADS)
Wyatt, Timothy
2014-03-01
Margalef's mandala maps phytoplankton species into a phase space defined by turbulence (A) and nutrient concentrations (Ni); these are the hard axes. The permutations of high and low A and high and low Ni divide the space into four domains. Soft axes indicate some ecological dynamics. A main sequence shows the normal course of phytoplankton succession; the r-K axis of MacArthur and Wilson runs parallel to it. An alternative successional sequence leads to the low A-high Ni domain into which many red tide species are mapped. Astronomical and biological time are implicit. A mathematical transformation of the mandala (rotation) links it to the classical bloom models of Sverdrup (time) and Kierstead and Slobodkin (space). Both rarity and the propensity to form red tides are considered to be species characters, meaning that maximum population abundance can be a target of natural selection. Equally, both the unpredictable appearance of bloom species and their short-lived appearances may be species characters. There may be a correlation too between these features and long-lived dormant stages in the life-cycle; then the vegetative planktonic phase is the 'weak link' in the life-cycle. Red tides are thus due to species which have evolved suites of traits which result in specific demographic strategies.
NASA Technical Reports Server (NTRS)
1983-01-01
Science and applications, NOAA environmental observation, commercial resource observations, commercial space processing, commercial communications, national security, technology development, and GEO servicing are addressed. Approach to time phasing of mission requirements, system sizing summary, time-phased user mission payload support, space station facility requirements, and integrated time-phased system requirements are also addressed.
Asymptotically stable phase synchronization revealed by autoregressive circle maps
NASA Astrophysics Data System (ADS)
Drepper, F. R.
2000-11-01
A specially designed of nonlinear time series analysis is introduced based on phases, which are defined as polar angles in spaces spanned by a finite number of delayed coordinates. A canonical choice of the polar axis and a related implicit estimation scheme for the potentially underlying autoregressive circle map (next phase map) guarantee the invertibility of reconstructed phase space trajectories to the original coordinates. The resulting Fourier approximated, invertibility enforcing phase space map allows us to detect conditional asymptotic stability of coupled phases. This comparatively general synchronization criterion unites two existing generalizations of the old concept and can successfully be applied, e.g., to phases obtained from electrocardiogram and airflow recordings characterizing cardiorespiratory interaction.
Stevenson, Paul G; Mnatsakanyan, Mariam; Guiochon, Georges; Shalliker, R Andrew
2010-07-01
An algorithm was developed for 2DHPLC that automated the process of peak recognition, measuring their retention times, and then subsequently plotting the information in a two-dimensional retention plane. Following the recognition of peaks, the software then performed a series of statistical assessments of the separation performance, measuring for example, correlation between dimensions, peak capacity and the percentage of usage of the separation space. Peak recognition was achieved by interpreting the first and second derivatives of each respective one-dimensional chromatogram to determine the 1D retention times of each solute and then compiling these retention times for each respective fraction 'cut'. Due to the nature of comprehensive 2DHPLC adjacent cut fractions may contain peaks common to more than one cut fraction. The algorithm determined which components were common in adjacent cuts and subsequently calculated the peak maximum profile by interpolating the space between adjacent peaks. This algorithm was applied to the analysis of a two-dimensional separation of an apple flesh extract separated in a first dimension comprising a cyano stationary phase and an aqueous/THF mobile phase as the first dimension and a second dimension comprising C18-Hydro with an aqueous/MeOH mobile phase. A total of 187 peaks were detected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piattella, O.F.; Rodrigues, D.C.; Fabris, J.C.
2013-11-01
We discuss solutions of Vlasov-Einstein equation for collisionless dark matter particles in the context of a flat Friedmann universe. We show that, after decoupling from the primordial plasma, the dark matter phase-space density indicator Q = ρ/(σ{sub 1D}{sup 2}){sup 3/2} remains constant during the expansion of the universe, prior to structure formation. This well known result is valid for non-relativistic particles and is not ''observer dependent'' as in solutions derived from the Vlasov-Poisson system. In the linear regime, the inclusion of velocity dispersion effects permits to define a physical Jeans length for collisionless matter as function of the primordial phase-spacemore » density indicator: λ{sub J} = (5π/G){sup 1/2}Q{sup −1/3}ρ{sub dm}{sup −1/6}. The comoving Jeans wavenumber at matter-radiation equality is smaller by a factor of 2-3 than the comoving wavenumber due to free-streaming, contributing to the cut-off of the density fluctuation power spectrum at the lowest scales. We discuss the physical differences between these two scales. For dark matter particles of mass equal to 200 GeV, the derived Jeans mass is 4.3 × 10{sup −6}M{sub ⊙}.« less
Hybrid simulations of Alfvén modes driven by energetic particles
NASA Astrophysics Data System (ADS)
Zhu, J.; Ma, Z. W.; Wang, S.
2016-12-01
A hybrid kinetic-magnetohydrodynamic code (CLT-K) is developed to study nonlinear dynamics of Alfvén modes driven by energetic particles (EP). A n = 2 toroidicity-induced discrete shear Alfvén eigenmode (TAE)-type energetic particle mode (EPM) with two dominant poloidal harmonics (m = 2 and 3) is first excited and its frequency remains unchanged in the early phase. Later, a new branch of the n = 2 frequency with a single dominant poloidal mode (m = 3) splits from the original TAE-type EPM. The new single m EPM (m = 3) slowly moves radially outward with the downward chirping of the frequency and the mode amplitude remains at a higher level. The original EPM remains at its original position without the frequency chirping, but its amplitude decays with time. Finally, the m = 3 EPM becomes dominant and the frequency falls into the β-induced gap of the Alfvén continuum. The redistribution of the δf in the phase space is consistent with the mode frequency downward chirping and the drifting direction of the resonance region is mainly due to the biased free energy profile. The transition from a TAE-type EPM to a single m EPM is mainly caused by extension of the p = 0 trapped particle resonance in the phase space.
Contamination Control and Hardware Processing Solutions at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Burns, DeWitt H.; Hampton, Tammy; Huey, LaQuieta; Mitchell, Mark; Norwood, Joey; Lowrey, Nikki
2012-01-01
The Contamination Control Team of Marshall Space Flight Center's Materials and Processes Laboratory supports many Programs/ Projects that design, manufacture, and test a wide range of hardware types that are sensitive to contamination and foreign object damage (FOD). Examples where contamination/FOD concerns arise include sensitive structural bondline failure, critical orifice blockage, seal leakage, and reactive fluid compatibility (liquid oxygen, hydrazine) as well as performance degradation of sensitive instruments or spacecraft surfaces such as optical elements and thermal control systems. During the design phase, determination of the sensitivity of a hardware system to different types or levels of contamination/FOD is essential. A contamination control and FOD control plan must then be developed and implemented through all phases of ground processing, and, sometimes, on-orbit use, recovery, and refurbishment. Implementation of proper controls prevents cost and schedule impacts due to hardware damage or rework and helps assure mission success. Current capabilities are being used to support recent and on-going activities for multiple Mission Directorates / Programs such as International Space Station (ISS), James Webb Space Telescope (JWST), Space Launch System (SLS) elements (tanks, engines, booster), etc. The team also advances Green Technology initiatives and addresses materials obsolescence issues for NASA and external customers, most notably in the area of solvent replacement (e.g. aqueous cleaners containing hexavalent chrome, ozone depleting chemicals (CFC s and HCFC's), suspect carcinogens). The team evaluates new surface cleanliness inspection and cleaning technologies (e.g. plasma cleaning), and maintains databases for processing support materials as well as outgassing and optical compatibility test results for spaceflight environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braszczyńska-Malik, K.N., E-mail: kacha@wip.pcz.pl; Grzybowska, A.
2016-05-15
The microstructure and mechanical properties investigations of two AME503 and AME505 experimental alloys in as-cast conditions were presented. The investigated materials were fabricated on the basis of the AM50 commercial magnesium alloy with 3 and 5 wt.% cerium rich mischmetal. In the as-cast condition, both experimental alloys were mainly composed of α-Mg, Al{sub 11}RE{sub 3} and Al{sub 10}RE{sub 2}Mn{sub 7} intermetallic phases. Additionally, due to non-equilibrium solidification conditions, a small amount of α + γ divorced eutectic and Al{sub 2}RE intermetallic phase were revealed. The obtained results also show a significant influence of rare earth elements on Brinell hardness, tensilemore » and compression properties at ambient temperature and especially on creep properties at 473 K. Improved alloy properties with a rise in rare earth elements mass fraction results from an increase in Al{sub 11}RE{sub 3} phase volume fraction and suppression of α + γ eutectic volume fraction in the alloy microstructure. Additionally, the influence of rare earth elements on the dendrite arm space value was discussed. The presented results also proved the thermal stability of the intermetallic phases during creep testing. - Highlights: • Two different Mg-5Al-0.4Mn alloys containing 3 and 5 wt.% of rare earth elements were fabricated. • Addition of rare earth elements leads to a reduction of dendrite arm spaces. • Mechanical properties depend on the phase composition of the alloys. • The increase of the rare earth elements content causes rise of the creep resistance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berastegui, P.; Hull, S., E-mail: stephen.hull@stfc.ac.u; Eriksson, S.G.
The compound CsSn{sub 2}F{sub 5} has been investigated over the temperature range from ambient to 545 K using differential scanning calorimetry, impedance spectroscopy and neutron powder diffraction methods. A first-order phase transition is observed from DSC measurements at 510(2) K, to a phase possessing a high ionic conductivity ({sigma}{approx}2.5x10{sup -2} {Omega}{sup -1} cm{sup -1} at 520 K). The crystal structure of the high temperature superionic phase (labelled {alpha}) has been determined to be tetragonal (space group I4/mmm, a=4.2606(10) A, c=19.739(5) A and Z=2) in which the cations form layers perpendicular to the [001] direction, with a stacking sequence CsSnSnCsSnSn... Allmore » the anions are located in two partially occupied sites in the gap between the Cs and Sn layers, whilst the space between the Sn cations is empty, due to the orientation of the lone-pair electrons associated with the Sn{sup 2+}. The structure of {alpha}-CsSn{sub 2}F{sub 5} is discussed in relation to two other layered F{sup -} conducting superionic phases containing Sn{sup 2+} cations, {alpha}-RbSn{sub 2}F{sub 5} and {alpha}-PbSnF{sub 4} and, to facilitate this comparison, an improved structural characterisation of the former is also presented. The wider issue of the role of lone-pair cations such as Sn{sup 2+} in promoting dynamic disorder within an anion substructure is also briefly addressed. - Graphical abstract: CsSn{sub 2}F{sub 5} is shown to undergo a first order phase transition at 510(2) K to a superionic phase in which the specific electronic configuration of the Sn{sup 2+} plays a key role in promoting extensive disorder of the anions.« less
Updated constraints on the light-neutrino exchange mechanisms of the 0νββ-decay
NASA Astrophysics Data System (ADS)
Štefánik, Dušan; Dvornický, Rastislav; Šimkovic, Fedor
2015-10-01
The neutrinoless double-beta (0νββ) decay associated with light neutrino exchange mechanisms, which are due to both left-handed V-A and right-handed V+A leptonic and hadronic currents, is discussed by using the recent progress achieved by the GERDA, EXO and KamlandZen experiments. The upper limits for effective neutrino mass mββ and the parameters <λ> and <η> characterizing the right handed current mechanisms are deduced from the data on the 0νββ-decay of 76Ge and 136Xe using nuclear matrix elements calculated within the nuclear shell model and quasiparticle random phase approximation and phase-space factors calculated with exact Dirac wave functions with finite nuclear size and electron screening. The careful analysis of upper constraints on effective lepton number violating parameters assumes a competition of the above mechanisms and arbitrary values of involved CP violating phases.
Weakly Nonergodic Dynamics in the Gross-Pitaevskii Lattice
NASA Astrophysics Data System (ADS)
Mithun, Thudiyangal; Kati, Yagmur; Danieli, Carlo; Flach, Sergej
2018-05-01
The microcanonical Gross-Pitaevskii (also known as the semiclassical Bose-Hubbard) lattice model dynamics is characterized by a pair of energy and norm densities. The grand canonical Gibbs distribution fails to describe a part of the density space, due to the boundedness of its kinetic energy spectrum. We define Poincaré equilibrium manifolds and compute the statistics of microcanonical excursion times off them. The tails of the distribution functions quantify the proximity of the many-body dynamics to a weakly nonergodic phase, which occurs when the average excursion time is infinite. We find that a crossover to weakly nonergodic dynamics takes place inside the non-Gibbs phase, being unnoticed by the largest Lyapunov exponent. In the ergodic part of the non-Gibbs phase, the Gibbs distribution should be replaced by an unknown modified one. We relate our findings to the corresponding integrable limit, close to which the actions are interacting through a short range coupling network.
Phase locked multiple rings in the radiation pressure ion acceleration process
NASA Astrophysics Data System (ADS)
Wan, Y.; Hua, J. F.; Pai, C.-H.; Li, F.; Wu, Y. P.; Lu, W.; Zhang, C. J.; Xu, X. L.; Joshi, C.; Mori, W. B.
2018-04-01
Laser contrast plays a crucial role for obtaining high quality ion beams in the radiation pressure ion acceleration (RPA) process. Through one- and two-dimensional particle-in-cell (PIC) simulations, we show that a plasma with a bi-peak density profile can be produced from a thin foil on the effects of a picosecond prepulse, and it can then lead to distinctive modulations in the ion phase space (phase locked double rings) when the main pulse interacts with the target. These fascinating ion dynamics are mainly due to the trapping effect from the ponderomotive potential well of a formed moving standing wave (i.e. the interference between the incoming pulse and the pulse reflected by a slowly moving surface) at nodes, quite different from the standard RPA process. A theoretical model is derived to explain the underlying mechanism, and good agreements have been achieved with PIC simulations.
Phase locked multiple rings in the radiation pressure ion acceleration process
Wan, Y.; Hua, J. F.; Pai, C. -H.; ...
2018-03-05
Laser contrast plays a crucial role for obtaining high quality ion beams in the radiation pressure ion acceleration (RPA) process. Through one- and two-dimensional particle-in-cell (PIC) simulations, we show that a plasma with a bi-peak density profile can be produced from a thin foil on the effects of a picosecond prepulse, and it can then lead to distinctive modulations in the ion phase space (phase locked double rings) when the main pulse interacts with the target. These fascinating ion dynamics are mainly due to the trapping effect from the ponderomotive potential well of a formed moving standing wave (i.e. themore » interference between the incoming pulse and the pulse reflected by a slowly moving surface) at nodes, quite different from the standard RPA process. Here, a theoretical model is derived to explain the underlying mechanism, and good agreements have been achieved with PIC simulations.« less
Ghost artifact cancellation using phased array processing.
Kellman, P; McVeigh, E R
2001-08-01
In this article, a method for phased array combining is formulated which may be used to cancel ghosts caused by a variety of distortion mechanisms, including space variant distortions such as local flow or off-resonance. This method is based on a constrained optimization, which optimizes SNR subject to the constraint of nulling ghost artifacts at known locations. The resultant technique is similar to the method known as sensitivity encoding (SENSE) used for accelerated imaging; however, in this formulation it is applied to full field-of-view (FOV) images. The method is applied to multishot EPI with noninterleaved phase encode acquisition. A number of benefits, as compared to the conventional interleaved approach, are reduced distortion due to off-resonance, in-plane flow, and EPI delay misalignment, as well as eliminating the need for echo-shifting. Experimental results demonstrate the cancellation for both phantom as well as cardiac imaging examples.
Ghost Artifact Cancellation Using Phased Array Processing
Kellman, Peter; McVeigh, Elliot R.
2007-01-01
In this article, a method for phased array combining is formulated which may be used to cancel ghosts caused by a variety of distortion mechanisms, including space variant distortions such as local flow or off-resonance. This method is based on a constrained optimization, which optimizes SNR subject to the constraint of nulling ghost artifacts at known locations. The resultant technique is similar to the method known as sensitivity encoding (SENSE) used for accelerated imaging; however, in this formulation it is applied to full field-of-view (FOV) images. The method is applied to multishot EPI with noninterleaved phase encode acquisition. A number of benefits, as compared to the conventional interleaved approach, are reduced distortion due to off-resonance, in-plane flow, and EPI delay misalignment, as well as eliminating the need for echo-shifting. Experimental results demonstrate the cancellation for both phantom as well as cardiac imaging examples. PMID:11477638
Realization of quantum gates with multiple control qubits or multiple target qubits in a cavity
NASA Astrophysics Data System (ADS)
Waseem, Muhammad; Irfan, Muhammad; Qamar, Shahid
2015-06-01
We propose a scheme to realize a three-qubit controlled phase gate and a multi-qubit controlled NOT gate of one qubit simultaneously controlling n-target qubits with a four-level quantum system in a cavity. The implementation time for multi-qubit controlled NOT gate is independent of the number of qubit. Three-qubit phase gate is generalized to n-qubit phase gate with multiple control qubits. The number of steps reduces linearly as compared to conventional gate decomposition method. Our scheme can be applied to various types of physical systems such as superconducting qubits coupled to a resonator and trapped atoms in a cavity. Our scheme does not require adjustment of level spacing during the gate implementation. We also show the implementation of Deutsch-Joza algorithm. Finally, we discuss the imperfections due to cavity decay and the possibility of physical implementation of our scheme.
Artymowski, Michal; Lewicki, Marek; Wells, James D.
2017-03-13
Here, we consider various models realizing baryogenesis during the electroweak phase transition (EWBG). Our focus is their possible detection in future collider experiments and possible observation of gravitational waves emitted during the phase transition. We also discuss the possibility of a non-standard cosmological history which can facilitate EWBG. We show how acceptable parameter space can be extended due to such a modification and conclude that next generation precision experiments such as the ILC will be able to confirm or falsify many models realizing EWBG. We also show that, in general, collider searches are a more powerful probe than gravitational wavemore » searches. However, observation of a deviation from the SM without any hints of gravitational waves can point to models with modified cosmological history that generically enable EWBG with weaker phase transition and thus, smaller GW signals.« less
Phase locked multiple rings in the radiation pressure ion acceleration process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, Y.; Hua, J. F.; Pai, C. -H.
Laser contrast plays a crucial role for obtaining high quality ion beams in the radiation pressure ion acceleration (RPA) process. Through one- and two-dimensional particle-in-cell (PIC) simulations, we show that a plasma with a bi-peak density profile can be produced from a thin foil on the effects of a picosecond prepulse, and it can then lead to distinctive modulations in the ion phase space (phase locked double rings) when the main pulse interacts with the target. These fascinating ion dynamics are mainly due to the trapping effect from the ponderomotive potential well of a formed moving standing wave (i.e. themore » interference between the incoming pulse and the pulse reflected by a slowly moving surface) at nodes, quite different from the standard RPA process. Here, a theoretical model is derived to explain the underlying mechanism, and good agreements have been achieved with PIC simulations.« less
Solar power satellite system definition study, phase 2.
NASA Technical Reports Server (NTRS)
1979-01-01
A program plan for the Solar Power Satellite Program is presented. The plan includes research, development, and evaluation phase, engineering and development and cost verification phase, prototype construction, and commercialization. Cost estimates and task requirements are given for the following technology areas: (1) solar arrays; (2) thermal engines and thermal systems; (3) power transmission (to earth); (4) large space structures; (5) materials technology; (6) system control; (7) space construction; (8) space transportation; (9) power distribution, and space environment effects.
Analysis of thermal energy storage material with change-of-phase volumetric effects
NASA Technical Reports Server (NTRS)
Kerslake, Thomas W.; Ibrahim, Mounir B.
1990-01-01
NASA's Space Station Freedom proposed hybrid power system includes photovoltaic arrays with nickel hydrogen batteries for energy storage and solar dynamic collectors driving Brayton heat engines with change-of-phase Thermal Energy Storage (TES) devices. A TES device is comprised of multiple metallic, annular canisters which contain a eutectic composition LiF-CaF2 Phase Change Material (PCM) that melts at 1040 K. A moderately sophisticated LiF-CaF2 PCM computer model is being developed in three stages considering 1-D, 2-D, and 3-D canister geometries, respectively. The 1-D model results indicate that the void has a marked effect on the phase change process due to PCM displacement and dynamic void heat transfer resistance. Equally influential are the effects of different boundary conditions and liquid PCM natural convection. For the second stage, successful numerical techniques used in the 1-D phase change model are extended to a 2-D (r,z) PCM containment canister model. A prototypical PCM containment canister is analyzed and the results are discussed.
Real-space Berry phases: Skyrmion soccer (invited)
NASA Astrophysics Data System (ADS)
Everschor-Sitte, Karin; Sitte, Matthias
2014-05-01
Berry phases occur when a system adiabatically evolves along a closed curve in parameter space. This tutorial-like article focuses on Berry phases accumulated in real space. In particular, we consider the situation where an electron traverses a smooth magnetic structure, while its magnetic moment adjusts to the local magnetization direction. Mapping the adiabatic physics to an effective problem in terms of emergent fields reveals that certain magnetic textures, skyrmions, are tailormade to study these Berry phase effects.
Real-space Berry phases: Skyrmion soccer (invited)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Everschor-Sitte, Karin, E-mail: karin@physics.utexas.edu; Sitte, Matthias
Berry phases occur when a system adiabatically evolves along a closed curve in parameter space. This tutorial-like article focuses on Berry phases accumulated in real space. In particular, we consider the situation where an electron traverses a smooth magnetic structure, while its magnetic moment adjusts to the local magnetization direction. Mapping the adiabatic physics to an effective problem in terms of emergent fields reveals that certain magnetic textures, skyrmions, are tailormade to study these Berry phase effects.
Comment on ``Nonlinear gyrokinetic theory with polarization drift'' [Phys. Plasmas 17, 082304 (2010)
NASA Astrophysics Data System (ADS)
Leerink, S.; Parra, F. I.; Heikkinen, J. A.
2010-12-01
In this comment, we show that by using the discrete particle distribution function the changes of the phase-space volume of gyrocenter coordinates due to the fluctuating E ×B velocity do not explicitly appear in the Poisson equation and the [Sosenko et al., Phys. Scr. 64, 264 (2001)] result is recovered. It is demonstrated that there is no contradiction between the work presented by Sosenko et al. and the work presented by [Wang et al., Phys. Plasmas 17, 082304 (2010)].
Current Fluctuations in Stochastic Lattice Gases
NASA Astrophysics Data System (ADS)
Bertini, L.; de Sole, A.; Gabrielli, D.; Jona-Lasinio, G.; Landim, C.
2005-01-01
We study current fluctuations in lattice gases in the macroscopic limit extending the dynamic approach for density fluctuations developed in previous articles. More precisely, we establish a large deviation theory for the space-time fluctuations of the empirical current which include the previous results. We then estimate the probability of a fluctuation of the average current over a large time interval. It turns out that recent results by Bodineau and Derrida [Phys. Rev. Lett.922004180601] in certain cases underestimate this probability due to the occurrence of dynamical phase transitions.
BFV-BRST analysis of equivalence between noncommutative and ordinary gauge theories
NASA Astrophysics Data System (ADS)
Dayi, O. F.
2000-05-01
Constrained hamiltonian structure of noncommutative gauge theory for the gauge group /U(1) is discussed. Constraints are shown to be first class, although, they do not give an Abelian algebra in terms of Poisson brackets. The related BFV-BRST charge gives a vanishing generalized Poisson bracket by itself due to the associativity of /*-product. Equivalence of noncommutative and ordinary gauge theories is formulated in generalized phase space by using BFV-BRST charge and a solution is obtained. Gauge fixing is discussed.
The use of interleaving for reducing radio loss in trellis-coded modulation systems
NASA Technical Reports Server (NTRS)
Divsalar, D.; Simon, M. K.
1989-01-01
It is demonstrated how the use of interleaving/deinterleaving in trellis-coded modulation (TCM) systems can reduce the signal-to-noise ratio loss due to imperfect carrier demodulation references. Both the discrete carrier (phase-locked loop) and suppressed carrier (Costas loop) cases are considered and the differences between the two are clearly demonstrated by numerical results. These results are of great importance for future communication links to the Deep Space Network (DSN), especially from high Earth orbiters, which may be bandwidth limited.
1984-05-23
the disorder was accurately known. Inverse Transform To isolate the EAFS contribution due to a single feature in the Fourier transform, the inverse ...is associated with setting the "fold" components to 27 zero in r-space. An inverse transform (real part) of the major feature of the Fig. 4 Fourier...phase of the resulting inverse transform represents only any differences between the material being studied and the reference. This residual is
Llinas’ Phase Reset Mechanism Delays the Onset of Chaos in Shark and Dolphin Wall Turbulence
2014-02-10
eruption due to plate tectonics . (The plate becomes locally thin and is unable to prevent the high-pressure hot magma from erupting.) The vorticity...flat plate value. The spacing between riblet peaks s+= 10 is used unless noted. KM gives the "strength" of the riblets, where the terms "weak" and...exhibit spanwise variations in skin friction coefficients and integral boundary layer properties, even in flat plate experiments where great care has
Orbital Tori Construction Using Trajectory Following Spectral Methods
2010-09-01
a Walker delta pattern scheme of 18/6/2. Explicitly, this means the 18 satellites were equally spaced in six planes , each inclined at 55 degrees, with...a relative phasing angle parameter of 2 [65]. The planes ’ inclinations were reduced from the original specification of 63 degrees to 55 degrees due...navigation performance specification for the SPS was ≤ 100 meters 8 in the horizontal plane , 95 percent of the time and ≤ 156 meters in the vertical plane
Emerging Communication Technologies (ECT) Phase 2 Report. Volume 2; Appendices
NASA Technical Reports Server (NTRS)
Bastin, Gary L.; Harris, William G.; Chiodini, Robert; Nelson, Richard A.; Huang, PoTien; Kruhm, David A.
2003-01-01
The Emerging Communication Technology (ECT) project investigated three First Mile communication technologies in support of NASA s Second Generation Reusable Launch Vehicle (2nd Gen RLV), Orbital Space Plane, Advanced Range Technology Working Group (ARTWG) and the Advanced Spaceport Technology Working Group (ASTWG). These First Mile technologies have the purpose of interconnecting mobile users with existing Range Communication infrastructures. ECT was a continuation of the Range Information System Management (RISM) task started in 2002. RISM identified the three advance communication technologies investigated under ECT. These were Wireless Ethernet (Wi-Fi), Free Space Optics (FSO), and Ultra Wideband (UWB). Due to the report s size, it has been broken into three volumes: 1) Main Report 2) Appendices 3) UWB
Emerging Communication Technologies (ECT) Phase 2 Report. Volume 3; Ultra Wideband (UWB) Technology
NASA Technical Reports Server (NTRS)
Bastin, Gary L.; Harris, William G.; Chiodini, Robert; Nelson, Richard A.; Huang, PoTien; Kruhm, David A.
2003-01-01
The Emerging Communication Technology (ECT) project investigated three First Mile communication technologies in support of NASA s Second Generation Reusable Launch Vehicle (2nd Gen RLV), Orbital Space Plane, Advanced Range Technology Working Group (ARTWG) and the Advanced Spaceport Technology Working Group (ASTWG). These First Mile technologies have the purpose of interconnecting mobile users with existing Range Communication infrastructures. ECT was a continuation of the Range Information System Management (RISM) task started in 2002. RISM identified the three advance communication technologies investigated under ECT. These were Wireless Ethernet (Wi-Fi), Free Space Optics (FSO), and Ultra Wideband (UWB). Due to the report s size, it has been broken into three volumes: 1) Main Report 2) Appendices 3) UWB
Emerging Communication Technologies (ECT) Phase 2 Report. Volume 1; Main Report
NASA Technical Reports Server (NTRS)
Bastin, Gary L.; Harris, William G.; Chiodini, Robert; Nelson, Richard A.; Huang, PoTien; Kruhm, David A.
2003-01-01
The Emerging Communication Technology (ECT) project investigated three First Mile communication technologies in support of NASA s Second Generation Reusable Launch Vehicle (2nd Gen RLV), Orbital Space Plane, Advanced Range Technology Working Group (ARTWG) and the Advanced Spaceport Technology Working Group (ASTWG). These First Mile technologies have the purpose of interconnecting mobile users with existing Range Communication infrastructures. ECT was a continuation of the Range Information System Management (RISM) task started in 2002. RISM identified the three advance communication technologies investigated under ECT. These were Wireless Ethernet (Wi-Fi), Free Space Optics (FSO), and Ultra Wideband (UWB). Due to the report s size, it has been broken into three volumes: 1) Main Report 2) Appendices 3) UWB.
Hamiltonian flow over saddles for exploring molecular phase space structures
NASA Astrophysics Data System (ADS)
Farantos, Stavros C.
2018-03-01
Despite using potential energy surfaces, multivariable functions on molecular configuration space, to comprehend chemical dynamics for decades, the real happenings in molecules occur in phase space, in which the states of a classical dynamical system are completely determined by the coordinates and their conjugate momenta. Theoretical and numerical results are presented, employing alanine dipeptide as a model system, to support the view that geometrical structures in phase space dictate the dynamics of molecules, the fingerprints of which are traced by following the Hamiltonian flow above saddles. By properly selecting initial conditions in alanine dipeptide, we have found internally free rotor trajectories the existence of which can only be justified in a phase space perspective. This article is part of the theme issue `Modern theoretical chemistry'.
NASA Astrophysics Data System (ADS)
Harnew, Samuel; Naik, Paras; Prouve, Claire; Rademacker, Jonas; Asner, David
2018-01-01
For the first time, the strong phase difference between D 0 and {\\overline{D}}^0\\to {π}+{π}-{π}+{π}- amplitudes is determined in bins of the decay phase space. The measurement uses 818 pb-1 of e + e - collision data that is taken at the ψ(3770) resonance and collected by the CLEO-c experiment. The measurement is important for the determination of the CP -violating phase γ in B ± → DK ± (and similar) decays, where the D meson (which represents a superposition of D 0 and {\\overline{D}}^0 ) subsequently decays to π + π - π + π -. To obtain optimal sensitivity to γ, the phase space of the D → π + π - π + π - decay is divided into bins based on a recent amplitude model of the decay. Although an amplitude model is used to define the bins, the measurements obtained are model-independent. The CP -even fraction of the D → π + π - π + π - decay is determined to be F + 4 π = 0.769 ± 0.021 ± 0.010, where the uncertainties are statistical and systematic, respectively. Using simulated B ± → DK ±, D → π + π - π + π - decays, it is estimated that by the end of the current LHC run, the LHCb experiment could determine γ from this decay mode with an uncertainty of (±10 ± 7)°, where the first uncertainty is statistical based on estimated LHCb event yields, and the second is due to the uncertainties on the parameters determined in this paper.
NASA Astrophysics Data System (ADS)
Pashitskii, E. A.; Pentegov, V. I.
We suggest that the "Big Bang" may be a result of the first-order phase transition driven by changing scalar curvature of the 4D space-time in the expanding cold Universe, filled with nonlinear scalar field φ and neutral matter with equation of state p = vɛ (where p and ɛ are pressure and energy density of matter). We consider a Lagrangian for scalar field in curved space-time with nonlinearity φ, which along with the quadratic term -ΣR|φ|2 (where Σ is interaction constant and R is scalar curvature) contains a term ΣR(φ +φ+) linear in φ. Due to this term the condition for the extrema of the potential energy of the scalar field is given by a cubic equation. Provided v > 1/3 the scalar curvature R = [κ(3v-1)ɛ - 4Γ (where κ and Γ are Einstein's gravitational and cosmological constants) decreases along with decreasing " in the process of the Universe's expansion, and at some critical value Rc < 0 a first-order phase transition occurs, driven by an "external field" parameter proportional to R. Given certain conditions the critical radius of the early Universe at the point of the first-order phase transition may reach arbitrary large values, so this scenario of unrestricted "inflation" of the Universe may be called "hyperinflation". Beyond the point of phase transition the system is rolling down into the potential minimum releasing the potential energy of scalar field with subsequent powerful heating of the Universe playing the role of "Big Bang".
An extensive phase space for the potential martian biosphere.
Jones, Eriita G; Lineweaver, Charles H; Clarke, Jonathan D
2011-12-01
We present a comprehensive model of martian pressure-temperature (P-T) phase space and compare it with that of Earth. Martian P-T conditions compatible with liquid water extend to a depth of ∼310 km. We use our phase space model of Mars and of terrestrial life to estimate the depths and extent of the water on Mars that is habitable for terrestrial life. We find an extensive overlap between inhabited terrestrial phase space and martian phase space. The lower martian surface temperatures and shallower martian geotherm suggest that, if there is a hot deep biosphere on Mars, it could extend 7 times deeper than the ∼5 km depth of the hot deep terrestrial biosphere in the crust inhabited by hyperthermophilic chemolithotrophs. This corresponds to ∼3.2% of the volume of present-day Mars being potentially habitable for terrestrial-like life.
Mutually unbiased coarse-grained measurements of two or more phase-space variables
NASA Astrophysics Data System (ADS)
Paul, E. C.; Walborn, S. P.; Tasca, D. S.; Rudnicki, Łukasz
2018-05-01
Mutual unbiasedness of the eigenstates of phase-space operators—such as position and momentum, or their standard coarse-grained versions—exists only in the limiting case of infinite squeezing. In Phys. Rev. Lett. 120, 040403 (2018), 10.1103/PhysRevLett.120.040403, it was shown that mutual unbiasedness can be recovered for periodic coarse graining of these two operators. Here we investigate mutual unbiasedness of coarse-grained measurements for more than two phase-space variables. We show that mutual unbiasedness can be recovered between periodic coarse graining of any two nonparallel phase-space operators. We illustrate these results through optics experiments, using the fractional Fourier transform to prepare and measure mutually unbiased phase-space variables. The differences between two and three mutually unbiased measurements is discussed. Our results contribute to bridging the gap between continuous and discrete quantum mechanics, and they could be useful in quantum-information protocols.
Phase space manipulation in high-brightness electron beams
NASA Astrophysics Data System (ADS)
Rihaoui, Marwan M.
Electron beams have a wide range of applications, including discovery science, medicine, and industry. Electron beams can also be used to power next-generation, high-gradient electron accelerators. The performances of some of these applications could be greatly enhanced by precisely tailoring the phase space distribution of the electron beam. The goal of this dissertation is to explore some of these phase space manipulations. We especially focus on transformations capable of tailoring the beam current distribution. Specifically, we investigate a beamline exchanging phase space coordinates between the horizontal and longitudinal degrees of freedom. The key components necessary for this beamline were constructed and tested. The preliminary beamline was used as a singleshot phase space diagnostics and to produce a train of picoseconds electron bunches. We also investigate the use of multiple electron beams to control the transverse focusing. Our numerical and analytical studies are supplemented with experiments performed at the Argonne Wakefield Accelerator.
NASA Astrophysics Data System (ADS)
Yasumoto, M.; Ohta, M.; Kawamura, Y.; Hatayama, A.
2014-02-01
Numerical simulations become useful for the developing RF-ICP (Radio Frequency Inductively Coupled Plasma) negative ion sources. We are developing and parallelizing a two-dimensional three velocity electromagnetic Particle-In-Cell code. The result shows rapid increase in the electron density during the density ramp-up phase. A radial electric field due to the space charge is produced with increase in the electron density and the electron transport in the radial direction is suppressed. As a result, electrons stay for a long period in the region where the inductive electric field is strong, and this leads efficient electron acceleration and a rapid increasing of the electron density.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carbajal Arizaga, Gregorio Guadalupe, E-mail: gregoriocarbajal@yahoo.com.m; Wypych, Fernando; Castillon Barraza, Felipe
2010-10-15
A zinc/aluminum LDH was precipitated with recycled ammonia from a chemical vapor deposition reaction. The LDH presented a crystalline phase with basal distance of 8.9 A, typical for nitrate-containing LDHs, and another phase with a basal distance of 13.9 A. Thermal treatment at 150 {sup o}C eliminated the phase with the bigger basal distance leaving only the anhydrous nitrate-intercalated LDH structure with 8.9 A. Intense N-H stretching modes in the FTIR spectra suggested that the expansion was due to intercalation of ammonia in the form of [NH{sub 4}(NH{sub 3}){sub n}]{sup +} species. When additional samples were precipitated with pure ammonia,more » the conventional LDH nitrate structure was obtained (8.9 A basal distance) at pH=7, as well as a pure crystalline phase with 13.9 A basal distance at pH=10 due to ammonia intercalation that can be removed by heating at 150 {sup o}C or by stirring in acetone, confirming a unusual sensu stricto intercalation process into a LDH without exchanging nitrate ions. - Graphical abstract: LDH-nitrate precipitated with ammonia expands the interlayer space if ammonia is bubbled up to pH 10. The basal distance decreased when the compound was heated at 150 {sup o}C or stirred in acetone. Nitrate ions are not exchanged.« less
Rhodes, Samhita S; Camara, Amadou KS; Ropella, Kristina M; Audi, Said H; Riess, Matthias L; Pagel, Paul S; Stowe, David F
2006-01-01
Background The phase-space relationship between simultaneously measured myoplasmic [Ca2+] and isovolumetric left ventricular pressure (LVP) in guinea pig intact hearts is altered by ischemic and inotropic interventions. Our objective was to mathematically model this phase-space relationship between [Ca2+] and LVP with a focus on the changes in cross-bridge kinetics and myofilament Ca2+ sensitivity responsible for alterations in Ca2+-contraction coupling due to inotropic drugs in the presence and absence of ischemia reperfusion (IR) injury. Methods We used a four state computational model to predict LVP using experimentally measured, averaged myoplasmic [Ca2+] transients from unpaced, isolated guinea pig hearts as the model input. Values of model parameters were estimated by minimizing the error between experimentally measured LVP and model-predicted LVP. Results We found that IR injury resulted in reduced myofilament Ca2+ sensitivity, and decreased cross-bridge association and dissociation rates. Dopamine (8 μM) reduced myofilament Ca2+ sensitivity before, but enhanced it after ischemia while improving cross-bridge kinetics before and after IR injury. Dobutamine (4 μM) reduced myofilament Ca2+ sensitivity while improving cross-bridge kinetics before and after ischemia. Digoxin (1 μM) increased myofilament Ca2+ sensitivity and cross-bridge kinetics after but not before ischemia. Levosimendan (1 μM) enhanced myofilament Ca2+ affinity and cross-bridge kinetics only after ischemia. Conclusion Estimated model parameters reveal mechanistic changes in Ca2+-contraction coupling due to IR injury, specifically the inefficient utilization of Ca2+ for contractile function with diastolic contracture (increase in resting diastolic LVP). The model parameters also reveal drug-induced improvements in Ca2+-contraction coupling before and after IR injury. PMID:16512898
Temperature induced phase transition of CaMn{sub 0.5}Zr{sub 1.5}(PO{sub 4}){sub 3} phosphate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orlova, Maria, E-mail: maria.p.orlova@gmail.com; Perfler, Lukas; Tribus, Martina
2016-03-15
In this work we investigated the structural behaviour of a CaMn{sub 0.5}Zr{sub 1.5}(PO{sub 4}){sub 3}. Due to the presence of divalent Mn{sup 2+} cations this compound can possess interesting luminescence properties. It was recently understood that this phosphate undergoes a temperature induced irreversible phase transition in the range of 800–875 °C. It has also been shown that the 3d–3d luminescence of Mn{sup 2+} increases 10 fold for the high temperature polymorph. To determine the Mn environment structural investigations of both phases have been performed by the X-ray powder diffraction and Raman spectroscopy methods. The low temperature modification adopts the trigonalmore » NZP structure type with a slightly lower symmetry (space group R32, a=8.7850(2) Å, c=22.6496(7) Å, V=1514.8(1) Å{sup 3}). The high temperature form in turn has orthorhombic symmetry (space group Pnma, a=6.2350(3) Å, b=6.6281(3) Å, c=14.4731(6) Å, V=598.13(5) Å{sup 3}). Both structures were solved ab-initio from powder data and structural analysis was performed. In-situ and RT Raman spectra are consistent with the XRD derived structural model. Mn{sup 2+} cations occupy different types of positions in these structures and a change in Mn coordination number (6 for LT phase, 7 for HT phase) results in different Mn–O bond lengths. These differences may explain the change in the optical properties between the polymorphs. - Graphical abstract: The compound CaMn{sub 0.5}Zr{sub 1.5}(PO{sub 4}){sub 3} was synthesized in order to create a material with enhanced luminescent properties. The goal of present studies is to define Mn{sup 2+} environment and its changes due to the structural transformations of the phosphate along phase transition at the T range of 800–875 °C. It was found that LT modification adopts the trigonal NZP structure type, sp.gr. R32, the HT form in turn exhibits orthorhombic symmetry sp.gr. Pnma. Mn2+ cations occupy different types of positions in those structures and a change in coordination number of Mn (6 for LT phase, 7 for HT phase) results in a change in Mn–O bond lengths.« less
BFV-BRST analysis of the classical and quantum q-deformations of the sl(2) algebra
NASA Astrophysics Data System (ADS)
Dayi, O. F.
1994-01-01
BFV--BRST charge for q-deformed algebras is not unique. Different constructions of it in the classical as well as in the quantum phase space for the $q$-deformed algebra sl_q(2) are discussed. Moreover, deformation of the phase space without deforming the generators of sl(2) is considered. $\\hbar$-q-deformation of the phase space is shown to yield the Witten's second deformation. To study the BFV--BRST cohomology problem when both the quantum phase space and the group are deformed, a two parameter deformation of sl(2) is proposed, and its BFV-BRST charge is given.
NASA Astrophysics Data System (ADS)
Feng, Xianglian; Wu, Zhihang; Wang, Tianshu; Zhang, Peng; Li, Xiaoyan; Jiang, Huilin; Su, Yuwei; He, Hongwei; Wang, Xiaoyan; Gao, Shiming
2018-03-01
Advanced multi-level modulation formats have shown their great potential in high-speed and high-spectral-efficiency optical communications. Using quadrature phase-shift keying (QPSK) modulation format for free-space optical (FSO) communication, a bidirectional high-speed FSO transmission link with the bit rates of up to 40 Gbit/s over ∼1 km, between two buildings in the campus of Changchun University of Science and Technology, Changchun, China, is experimentally demonstrated cooperating by capture and tracking systems. The eye-diagrams and constellation diagrams of the transmitted QPSK signals are clearly observed. By comparing the bit error rate (BER) curves before and after transmission, one can find that the receiving powers are both less than -16.5 dBm for the forward and backward transmissions of the bidirectional 20, 30, and 40 Gbit/s FSO links, and their power penalties due to the phase fluctuation of the atmospheric channel are both less than 2.6 dB, at the BER of 3.8 ×10-3.
NASA Astrophysics Data System (ADS)
Nithya, V. D.; Kalai Selvan, R.; Vasylechko, Leonid
2015-11-01
The well defined microstructures of BiPO4 were successfully synthesized by the facile hexamethylenetetramine (HMT) assisted hydrothermal method. The low temperature monoclinic BiPO4 structure with space group P21/n, were obtained from X-ray diffraction (XRD) for the pristine and HMT-assisted BiPO4 with 1, 3, 5 and 10 mmole concentration. A transformation from low temperature monazite-type phase to the high temperature SbPO4-type phase of BiPO4 was observed at the 10 mmole concentration. There was a variation in the morphology from polyhedron to octahedra-like and finally into cube shape upon an increase in concentration of HMT. The role of reaction time in the morphology of BiPO4 particles was investigated. The selected area electron diffraction (SAED) pattern elucidated the ordered dot pattern and the calculated d-spacing revealed the formation of BiPO4. An increased specific capacitance of HMT assisted materials (202 F/g) compared with pristine BiPO4 (89 F/g) at 5 mA/cm2 was observed upon morphological variation due to HMT addition.
NASA Astrophysics Data System (ADS)
Gao, Peter; Marley, Mark S.; Morley, Caroline; Fortney, Jonathan J.
2017-10-01
Clouds have been readily inferred from observations of exoplanet atmospheres, and there exists great variability in cloudiness between planets, such that no clear trend in exoplanet cloudiness has so far been discerned. Equilibrium condensation calculations suggest a myriad of species - salts, sulfides, silicates, and metals - could condense in exoplanet atmospheres, but how they behave as clouds is uncertain. The behavior of clouds - their formation, evolution, and equilibrium size distribution - is controlled by cloud microphysics, which includes processes such as nucleation, condensation, and evaporation. In this work, we explore the cloudy exoplanet phase space by using a cloud microphysics model to simulate a suite of cloud species ranging from cooler condensates such as KCl/ZnS, to hotter condensates like perovskite and corundum. We investigate how the cloudiness and cloud particle sizes of exoplanets change due to variations in temperature, metallicity, gravity, and cloud formation mechanisms, and how these changes may be reflected in current and future observations. In particular, we will evaluate where in phase space could cloud spectral features be observable using JWST MIRI at long wavelengths, which will be dependent on the cloud particle size distribution and cloud species.
Space tug propulsion system failure mode, effects and criticality analysis
NASA Technical Reports Server (NTRS)
Boyd, J. W.; Hardison, E. P.; Heard, C. B.; Orourke, J. C.; Osborne, F.; Wakefield, L. T.
1972-01-01
For purposes of the study, the propulsion system was considered as consisting of the following: (1) main engine system, (2) auxiliary propulsion system, (3) pneumatic system, (4) hydrogen feed, fill, drain and vent system, (5) oxygen feed, fill, drain and vent system, and (6) helium reentry purge system. Each component was critically examined to identify possible failure modes and the subsequent effect on mission success. Each space tug mission consists of three phases: launch to separation from shuttle, separation to redocking, and redocking to landing. The analysis considered the results of failure of a component during each phase of the mission. After the failure modes of each component were tabulated, those components whose failure would result in possible or certain loss of mission or inability to return the Tug to ground were identified as critical components and a criticality number determined for each. The criticality number of a component denotes the number of mission failures in one million missions due to the loss of that component. A total of 68 components were identified as critical with criticality numbers ranging from 1 to 2990.
Planetary Radar Imaging with the Deep-Space Network's 34 Meter Uplink Array
NASA Technical Reports Server (NTRS)
Vilnrotter, V.; Tsao, P.; Lee, D.; Cornish, T.; Jao, J.; Slade, M.
2011-01-01
A coherent uplink array consisting of up to three 34-meter antennas of NASA's Deep Space Network has been developed for the primary purpose of increasing EIRP at the spacecraft. Greater EIRP ensures greater reach, higher uplink data rates for command and configuration control, as well as improved search and recovery capabilities during spacecraft emergencies. It has been conjectured that Doppler-delay radar imaging of lunar targets can be extended to planetary imaging, where the long baseline of the uplink array can provide greater resolution than a single antenna, as well as potentially higher EIRP. However, due to the well known R-4 loss in radar links, imaging of distant planets is a very challenging endeavor, requiring accurate phasing of the Uplink Array antennas, cryogenically cooled low-noise receiver amplifiers, and sophisticated processing of the received data to extract the weak echoes characteristic of planetary radar. This article describes experiments currently under way to image the planets Mercury and Venus, highlights improvements in equipment and techniques, and presents planetary images obtained to date with two 34 meter antennas configured as a coherently phased Uplink Array.
Planetary Radar Imaging with the Deep-Space Network's 34 Meter Uplink Array
NASA Technical Reports Server (NTRS)
Vilnrotter, Victor; Tsao, P.; Lee, D.; Cornish, T.; Jao, J.; Slade, M.
2011-01-01
A coherent Uplink Array consisting of two or three 34-meter antennas of NASA's Deep Space Network has been developed for the primary purpose of increasing EIRP at the spacecraft. Greater EIRP ensures greater reach, higher uplink data rates for command and configuration control, as well as improved search and recovery capabilities during spacecraft emergencies. It has been conjectured that Doppler-delay radar imaging of lunar targets can be extended to planetary imaging, where the long baseline of the uplink array can provide greater resolution than a single antenna, as well as potentially higher EIRP. However, due to the well known R4 loss in radar links, imaging of distant planets is a very challenging endeavor, requiring accurate phasing of the Uplink Array antennas, cryogenically cooled low-noise receiver amplifiers, and sophisticated processing of the received data to extract the weak echoes characteristic of planetary radar. This article describes experiments currently under way to image the planets Mercury and Venus, highlights improvements in equipment and techniques, and presents planetary images obtained to date with two 34 meter antennas configured as a coherently phased Uplink Array.
Sensitivity of Space Shuttle Weight and Cost to Structure Subsystem Weights
NASA Technical Reports Server (NTRS)
Wedge, T. E.; Williamson, R. P.
1973-01-01
Quantitative relationships between changes in space shuttle weights and costs with changes in weight of various portions of space shuttle structural subsystems are investigated. These sensitivity relationships, as they apply at each of three points in the development program (preliminary design phase, detail design phase, and test/operational phase) have been established for five typical space shuttle designs, each of which was responsive to the missions in the NASA Shuttle RFP, and one design was that selected by NASA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
ALTIC, NICK A
In March 2011, the USNS Bridge was deployed off northeastern Honshu, Japan with the carrier USS Ronald Reagan to assist with relief efforts after the 2011 Tōhoku earthquake and tsunami. During that time, the Bridge was exposed to air-borne radioactive materials leaking from the damaged Fukushima I Nuclear Power Plant. The proximity of the Bridge to the air-borne impacted area resulted in the contamination of the ship’s air-handling systems and the associated components, as well as potential contamination of other ship surfaces due to either direct intake/deposition or inadvertent spread from crew/operational activities. Preliminary surveys in the weeks after themore » event confirmed low-level contamination within the heating, ventilation, and air conditioning (HVAC) ductwork and systems, and engine and other auxiliary air intake systems. Some partial decontamination was performed at that time. In response to the airborne contamination event, Military Sealift Fleet Support Command (MSFSC) contracted Oak Ridge Associated Universities (ORAU), under provisions of the Oak Ridge Institute for Science and Education (ORISE) contract, to assess the radiological condition of the Bridge. Phase I identified contamination within the CPS filters, ventilation systems, miscellaneous equipment, and other suspect locations that could not accessed at that time (ORAU 2011b). Because the Bridge was underway during the characterization, all the potentially impacted systems/spaces could not be investigated. As a result, MSFSC contracted with ORAU to perform Phase II of the characterization, specifically to survey systems/spaces previously inaccessible. During Phase II of the characterization, the ship was in port to perform routine maintenance operations, allowing access to the previously inaccessible systems/spaces.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clarke, A. J.; Tourret, D.; Song, Y.
We study microstructure selection during during directional solidification of a thin metallic sample. We combine in situ X-ray radiography of a dilute Al-Cu alloy solidification experiments with three-dimensional phase-field simulations. Here we explore a range of temperature gradient G and growth velocity V and build a microstructure selection map for this alloy. We investigate the selection of the primary dendritic spacing Λ and tip radius ρ. While ρ shows a good agreement between experimental measurements and dendrite growth theory, with ρ~V $-$1/2, Λ is observed to increase with V (∂Λ/∂V > 0), in apparent disagreement with classical scaling laws formore » primary dendritic spacing, which predict that ∂Λ/∂V<0. We show through simulations that this trend inversion for Λ(V) is due to liquid convection in our experiments, despite the thin sample configuration. We use a classical diffusion boundary-layer approximation to semi-quantitatively incorporate the effect of liquid convection into phase-field simulations. This approximation is implemented by assuming complete solute mixing outside a purely diffusive zone of constant thickness that surrounds the solid-liquid interface. This simple method enables us to quantitatively match experimental measurements of the planar morphological instability threshold and primary spacings over an order of magnitude in V. Lastly, we explain the observed inversion of ∂Λ/∂V by a combination of slow transient dynamics of microstructural homogenization and the influence of the sample thickness.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clarke, A. J.; Tourret, D.; Song, Y.
We study microstructure selection during directional solidification of a thin metallic sample. We combine in situ X-ray radiography of a dilute Al-Cu alloy solidification experiments with three-dimensional phase-field simulations. We explore a range of temperature gradient G and growth velocity V and build a microstructure selection map for this alloy. We investigate the selection of the primary dendritic spacing Lambda and tip radius rho. While rho shows a good agreement between experimental measurements and dendrite growth theory, with rho similar to V-1/2, Lambda is observed to increase with V (partial derivative Lambda/partial derivative V > 0), in apparent disagreement withmore » classical scaling laws for primary dendritic spacing, which predict that partial derivative Lambda/partial derivative V <0. We show through simulations that this trend inversion for Lambda(V) is due to liquid convection in our experiments, despite the thin sample configuration. We use a classical diffusion boundary-layer approximation to semi-quantitatively incorporate the effect of liquid convection into phase-field simulations. This approximation is implemented by assuming complete solute mixing outside a purely diffusive zone of constant thickness that surrounds the solid-liquid interface. This simple method enables us to quantitatively match experimental measurements of the planar morphological instability threshold and primary spacings over an order of magnitude in V. We explain the observed inversion of partial derivative Lambda/partial derivative V by a combination of slow transient dynamics of microstructural homogenization and the influence of the sample thickness.« less
Clarke, A. J.; Tourret, D.; Song, Y.; ...
2017-05-01
We study microstructure selection during during directional solidification of a thin metallic sample. We combine in situ X-ray radiography of a dilute Al-Cu alloy solidification experiments with three-dimensional phase-field simulations. Here we explore a range of temperature gradient G and growth velocity V and build a microstructure selection map for this alloy. We investigate the selection of the primary dendritic spacing Λ and tip radius ρ. While ρ shows a good agreement between experimental measurements and dendrite growth theory, with ρ~V $-$1/2, Λ is observed to increase with V (∂Λ/∂V > 0), in apparent disagreement with classical scaling laws formore » primary dendritic spacing, which predict that ∂Λ/∂V<0. We show through simulations that this trend inversion for Λ(V) is due to liquid convection in our experiments, despite the thin sample configuration. We use a classical diffusion boundary-layer approximation to semi-quantitatively incorporate the effect of liquid convection into phase-field simulations. This approximation is implemented by assuming complete solute mixing outside a purely diffusive zone of constant thickness that surrounds the solid-liquid interface. This simple method enables us to quantitatively match experimental measurements of the planar morphological instability threshold and primary spacings over an order of magnitude in V. Lastly, we explain the observed inversion of ∂Λ/∂V by a combination of slow transient dynamics of microstructural homogenization and the influence of the sample thickness.« less
Moore, M H; Hudson, R L; Gerakines, P A
2001-03-15
Infrared (IR) studies of laboratory ices can provide information on the evolution of cosmic-type ices as a function of different simulated space environments involving thermal, ultraviolet (UV), or ion processing. Laboratory radiation experiments can lead to the formation of complex organic molecules. However, because of our lack of knowledge about UV photon and ion fluxes, and exposure lifetimes, it is not certain how well our simulations represent space conditions. Appropriate laboratory experiments are also limited by the absence of knowledge about the composition, density, and temperature of ices in different regions of space. Our current understanding of expected doses due to UV photons and cosmic rays is summarized here, along with an inventory of condensed-phase molecules identified on outer solar system surfaces, comets and interstellar grains. Far-IR spectra of thermally cycled H2O are discussed since these results reflect the dramatic difference between the amorphous and crystalline phases of H2O ice, the most dominant condensed-phase molecule in cosmic ices. A comparison of mid-IR spectra of products in proton-irradiated and UV-photolyzed ices shows that few differences are observed for these two forms of processing for the simple binary mixtures studied to date. IR identification of radiation products and experiments to determine production rates of new molecules in ices during processing are discussed. A new technique for measuring intrinsic IR band strengths of several unstable molecules is presented. An example of our laboratory results applied to Europa observations is included.
Space Station - An integrated approach to operational logistics support
NASA Technical Reports Server (NTRS)
Hosmer, G. J.
1986-01-01
Development of an efficient and cost effective operational logistics system for the Space Station will require logistics planning early in the program's design and development phase. This paper will focus on Integrated Logistics Support (ILS) Program techniques and their application to the Space Station program design, production and deployment phases to assure the development of an effective and cost efficient operational logistics system. The paper will provide the methodology and time-phased programmatic steps required to establish a Space Station ILS Program that will provide an operational logistics system based on planned Space Station program logistics support.
Wavelets and the squeezed states of quantum optics
NASA Technical Reports Server (NTRS)
Defacio, B.
1992-01-01
Wavelets are new mathematical objects which act as 'designer trigonometric functions.' To obtain a wavelet, the original function space of finite energy signals is generalized to a phase-space, and the translation operator in the original space has a scale change in the new variable adjoined to the translation. Localization properties in the phase-space can be improved and unconditional bases are obtained for a broad class of function and distribution spaces. Operators in phase space are 'almost diagonal' instead of the traditional condition of being diagonal in the original function space. These wavelets are applied to the squeezed states of quantum optics. The scale change required for a quantum wavelet is shown to be a Yuen squeeze operator acting on an arbitrary density operator.
Surface Wave Propagation on a Laterally Heterogeneous Earth
NASA Astrophysics Data System (ADS)
Tromp, Jeroen
1992-01-01
Love and Rayleigh waves propagating on the surface of the Earth exhibit path, phase and amplitude anomalies as a result of the lateral heterogeneity of the mantle. In the JWKB approximation, these anomalies can be determined by tracing surface wave trajectories, and calculating phase and amplitude anomalies along them. A time- or frequency -domain JWKB analysis yields local eigenfunctions, local dispersion relations, and conservation laws for the surface wave energy. The local dispersion relations determine the surface wave trajectories, and the energy equations determine the surface wave amplitudes. On an anisotrophic Earth model the local dispersion relation and the local vertical eigenfunctions depend explicitly on the direction of the local wavevector. Apart from the usual dynamical phase, which is the integral of the local wavevector along a raypath, there is an additional variation is phase. This additional phase, which is an analogue of the Berry phase in adiabatic quantum mechanics, vanishes in a waveguide with a local vertical two-fold symmetry axis or a local horizontal mirror plane. JWKB theory breaks down in the vicinity of caustics, where neighboring rays merge and the surface wave amplitude diverges. Based upon a potential representation of the surface wave field, a uniformly valid Maslov theory can be obtained. Surface wave trajectories are determined by a system of four ordinary differential equations which define a three-dimensional manifold in four-dimensional phase space (theta,phi,k_theta,k _phi), where theta is colatitude, phi is longitude, and k_theta and k _phi are the covariant components of the wavevector. There are no caustics in phase space; it is only when the rays in phase space are projected onto configuration space (theta,phi), the mixed spaces (k_theta,phi ) and (theta,k_phi), or onto momentum space (k_theta,k _phi), that caustics occur. The essential strategy is to employ a mixed or momentum space representation of the wavefield in the vicinity of a configuration space caustic.
The taming of the screw: Or how I learned to stop worrying and love elliptic functions
NASA Astrophysics Data System (ADS)
Matsumoto, Elisabetta A.
2011-12-01
Nonlinear elastic phenomena appear time and again in the world around us. This work considers two separate soft matter systems, instabilities in an elastic membrane perforated by a lattice of circular holes and defect textures in smectic liquid crystals. By studying the set of singularities characterizing each system, not only do the analytics become tractable, we gain intuition and insight into complex structures. Under hydrostatic compression, the holes decorating an elastic sheet undergo a buckling instability and collapse. By modeling each of the buckled holes as a pair of dislocation singularities, linear elasticity theory accurately captures the interactions between holes and predicts the pattern transformation they undergo. The diamond plate pattern generated by a square lattice of holes achieves long ranged order due to the broken symmetry of the underlying lattice. The limited number of two dimensional lattices restricts the classes of patterns that can be produced by a at sheet. By changing the topology of the membrane to a cylinder the types of accessible patterns vastly increases, from a chiral wrapped cylinder to pairs of holes alternating orientations to even more complex structures. Equally spaced layered smectics introduce a plethora of geometric constraints yielding novel textures based upon topological defects. The frustration due to the incompatibility of molecular chirality and layers drives the formation of both the venerable twist-grain-boundary phase and the newly discovered helical nanofilament (HN) phase. The HN phase is a newly found solution of the chiral Landau-de Gennes free energy. Finally, we consider two limiting cases of the achiral Landau-de Gennes free energy, bending energy dominated allows defects in the layers and compression energy dominated enforces equally spaced layers. In order to minimize bending energy, smectic layers assume the morphology of minimal surfaces. Riemann's minimal surface is composed of a nonlinear sum of two oppositely handed screw dislocations and has the morphology of a pore. Likewise, focal conic domains result from enforcing the equal spacing condition. We develop an approach to the study of focal sets in smectics which exploits a hidden Poincare symmetry revealed only by viewing the smectic layers as projections from one-higher dimension.
Conservative bin-to-bin fractional collisions
NASA Astrophysics Data System (ADS)
Martin, Robert
2016-11-01
Particle methods such as direct simulation Monte Carlo (DSMC) and particle-in-cell (PIC) are commonly used to model rarefied kinetic flows for engineering applications because of their ability to efficiently capture non-equilibrium behavior. The primary drawback to these methods relates to the poor convergence properties due to the stochastic nature of the methods which typically rely heavily on high degrees of non-equilibrium and time averaging to compensate for poor signal to noise ratios. For standard implementations, each computational particle represents many physical particles which further exacerbate statistical noise problems for flow with large species density variation such as encountered in flow expansions and chemical reactions. The stochastic weighted particle method (SWPM) introduced by Rjasanow and Wagner overcome this difficulty by allowing the ratio of real to computational particles to vary on a per particle basis throughout the flow. The DSMC procedure must also be slightly modified to properly sample the Boltzmann collision integral accounting for the variable particle weights and to avoid the creation of additional particles with negative weight. In this work, the SWPM with necessary modification to incorporate the variable hard sphere (VHS) collision cross section model commonly used in engineering applications is first incorporated into an existing engineering code, the Thermophysics Universal Research Framework. The results and computational efficiency are compared to a few simple test cases using a standard validated implementation of the DSMC method along with the adapted SWPM/VHS collision using an octree based conservative phase space reconstruction. The SWPM method is then further extended to combine the collision and phase space reconstruction into a single step which avoids the need to create additional computational particles only to destroy them again during the particle merge. This is particularly helpful when oversampling the collision integral when compared to the standard DSMC method. However, it is found that the more frequent phase space reconstructions can cause added numerical thermalization with low particle per cell counts due to the coarseness of the octree used. However, the methods are expected to be of much greater utility in transient expansion flows and chemical reactions in the future.
Reagentless chemiluminescence-based fiber optic sensors for regenerative life support in space
NASA Astrophysics Data System (ADS)
Atwater, James E.; Akse, James R.; DeHart, Jeffrey; Wheeler, Richard R., Jr.
1995-04-01
The initial feasibility demonstration of a reagentless chemiluminescence based fiber optic sensor technology for use in advanced regenerative life support applications in space and planetary outposts is described. The primary constraints for extraterrestrial deployment of any technology are compatibility with microgravity and hypogravity environments; minimal size, weight, and power consumption; and minimal use of expendables due to the great expense and difficulty inherent to resupply logistics. In the current research, we report the integration of solid state flow through modules for the production of aqueous phase reagents into an integrated system for the detection of important analytes by chemiluminescence, with fiber optic light transmission. By minimizing the need for resupply expendables, the use of solid phase modules makes complex chemical detection schemes practical. For the proof of concept, hydrogen peroxide and glucose were chosen as analytes. The reaction is catalyzed by glucose oxidase, an immobilized enzyme. The aqueous phase chemistry required for sensor operation is implemented using solid phase modules which adjust the pH of the influent stream, catalyze the oxidation of analyte, and provide the controlled addition of the luminophore to the flowing aqueous stream. Precise control of the pH has proven essential for the long-term sustained release of the luminophore. Electrocatalysis is achieved using a controlled potential across gold mesh and gold foil electrodes which undergo periodic polarity reversals. The development and initial characterization of performance of the reagentless fiber optic chemiluminescence sensors are presented in this paper.
NASA Technical Reports Server (NTRS)
Stark, Christopher C.; Schneider, Glenn; Weinberger, Alycia J.; Debes, John H.; Grady, Carol A.; Jang-Condell, Hannah; Kuchner, Marc J.
2014-01-01
New multi-roll coronagraphic images of the HD181327 debris disk obtained using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope reveal the debris ring in its entirety at high signal-to-noise ratio and unprecedented spatial resolution. We present and apply a new multi-roll image processing routine to identify and further remove quasi-static point-spread function-subtraction residuals and quantify systematic uncertainties. We also use a new iterative image deprojection technique to constrain the true disk geometry and aggressively remove any surface brightness asymmetries that can be explained without invoking dust density enhancements/ deficits. The measured empirical scattering phase function for the disk is more forward scattering than previously thought and is not well-fit by a Henyey-Greenstein function. The empirical scattering phase function varies with stellocentric distance, consistent with the expected radiation pressured-induced size segregation exterior to the belt. Within the belt, the empirical scattering phase function contradicts unperturbed debris ring models, suggesting the presence of an unseen planet. The radial profile of the flux density is degenerate with a radially varying scattering phase function; therefore estimates of the ring's true width and edge slope may be highly uncertain.We detect large scale asymmetries in the disk, consistent with either the recent catastrophic disruption of a body with mass greater than 1% the mass of Pluto, or disk warping due to strong interactions with the interstellar medium.
Space Mission Concept Development Using Concept Maturity Levels
NASA Technical Reports Server (NTRS)
Wessen, Randii R.; Borden, Chester; Ziemer, John; Kwok, Johnny
2013-01-01
Over the past five years, pre-project formulation experts at the Jet Propulsion Laboratory (JPL) has developed and implemented a method for measuring and communicating the maturity of space mission concepts. Mission concept development teams use this method, and associated tools, prior to concepts entering their Formulation Phases (Phase A/B). The organizing structure is Concept Maturity Level (CML), which is a classification system for characterizing the various levels of a concept's maturity. The key strength of CMLs is the ability to evolve mission concepts guided by an incremental set of assessment needs. The CML definitions have been expanded into a matrix form to identify the breadth and depth of analysis needed for a concept to reach a specific level of maturity. This matrix enables improved assessment and communication by addressing the fundamental dimensions (e.g., science objectives, mission design, technical risk, project organization, cost, export compliance, etc.) associated with mission concept evolution. JPL's collaborative engineering, dedicated concept development, and proposal teams all use these and other CML-appropriate design tools to advance their mission concept designs. This paper focuses on mission concept's early Pre-Phase A represented by CMLs 1- 4. The scope was limited due to the fact that CMLs 5 and 6 are already well defined based on the requirements documented in specific Announcement of Opportunities (AO) and Concept Study Report (CSR) guidelines, respectively, for competitive missions; and by NASA's Procedural Requirements NPR 7120.5E document for Projects in their Formulation Phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stark, Christopher C.; Kuchner, Marc J.; Schneider, Glenn
New multi-roll coronagraphic images of the HD 181327 debris disk obtained using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope reveal the debris ring in its entirety at high signal-to-noise ratio and unprecedented spatial resolution. We present and apply a new multi-roll image processing routine to identify and further remove quasi-static point-spread function-subtraction residuals and quantify systematic uncertainties. We also use a new iterative image deprojection technique to constrain the true disk geometry and aggressively remove any surface brightness asymmetries that can be explained without invoking dust density enhancements/deficits. The measured empirical scattering phase function for themore » disk is more forward scattering than previously thought and is not well-fit by a Henyey-Greenstein function. The empirical scattering phase function varies with stellocentric distance, consistent with the expected radiation pressured-induced size segregation exterior to the belt. Within the belt, the empirical scattering phase function contradicts unperturbed debris ring models, suggesting the presence of an unseen planet. The radial profile of the flux density is degenerate with a radially varying scattering phase function; therefore estimates of the ring's true width and edge slope may be highly uncertain. We detect large scale asymmetries in the disk, consistent with either the recent catastrophic disruption of a body with mass >1% the mass of Pluto, or disk warping due to strong interactions with the interstellar medium.« less
NASA Astrophysics Data System (ADS)
Stark, Christopher C.; Schneider, Glenn; Weinberger, Alycia J.; Debes, John H.; Grady, Carol A.; Jang-Condell, Hannah; Kuchner, Marc J.
2014-07-01
New multi-roll coronagraphic images of the HD 181327 debris disk obtained using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope reveal the debris ring in its entirety at high signal-to-noise ratio and unprecedented spatial resolution. We present and apply a new multi-roll image processing routine to identify and further remove quasi-static point-spread function-subtraction residuals and quantify systematic uncertainties. We also use a new iterative image deprojection technique to constrain the true disk geometry and aggressively remove any surface brightness asymmetries that can be explained without invoking dust density enhancements/deficits. The measured empirical scattering phase function for the disk is more forward scattering than previously thought and is not well-fit by a Henyey-Greenstein function. The empirical scattering phase function varies with stellocentric distance, consistent with the expected radiation pressured-induced size segregation exterior to the belt. Within the belt, the empirical scattering phase function contradicts unperturbed debris ring models, suggesting the presence of an unseen planet. The radial profile of the flux density is degenerate with a radially varying scattering phase function; therefore estimates of the ring's true width and edge slope may be highly uncertain. We detect large scale asymmetries in the disk, consistent with either the recent catastrophic disruption of a body with mass >1% the mass of Pluto, or disk warping due to strong interactions with the interstellar medium.
Operations and support cost modeling using Markov chains
NASA Technical Reports Server (NTRS)
Unal, Resit
1989-01-01
Systems for future missions will be selected with life cycle costs (LCC) as a primary evaluation criterion. This reflects the current realization that only systems which are considered affordable will be built in the future due to the national budget constaints. Such an environment calls for innovative cost modeling techniques which address all of the phases a space system goes through during its life cycle, namely: design and development, fabrication, operations and support; and retirement. A significant portion of the LCC for reusable systems are generated during the operations and support phase (OS). Typically, OS costs can account for 60 to 80 percent of the total LCC. Clearly, OS costs are wholly determined or at least strongly influenced by decisions made during the design and development phases of the project. As a result OS costs need to be considered and estimated early in the conceptual phase. To be effective, an OS cost estimating model needs to account for actual instead of ideal processes by associating cost elements with probabilities. One approach that may be suitable for OS cost modeling is the use of the Markov Chain Process. Markov chains are an important method of probabilistic analysis for operations research analysts but they are rarely used for life cycle cost analysis. This research effort evaluates the use of Markov Chains in LCC analysis by developing OS cost model for a hypothetical reusable space transportation vehicle (HSTV) and suggests further uses of the Markov Chain process as a design-aid tool.
NASA Astrophysics Data System (ADS)
Upadhyay, Ashutosh; Singh, Akhilesh Kumar
2015-04-01
Results of the room temperature structural studies on (1-x)Bi(Mg1/2Ti1/2)O3-xPbTiO3 ceramics using Rietveld analysis of the powder x-ray diffraction data in the composition range 0.28 ≤ x ≤ 0.45 are presented. The morphotropic phase boundary region exhibits coexistence of monoclinic (space group Pm) and tetragonal (space group P4 mm) phases in the composition range 0.33 ≤ x ≤ 0.40. The structure is nearly single phase monoclinic (space group Pm) in the composition range 0.28 ≤ x ≤ 0.32. The structure for the compositions with x ≥ 0.45 is found to be predominantly tetragonal with space group P4 mm. Rietveld refinement of the structure rules out the coexistence of rhombohedral and tetragonal phases in the morphotropic phase boundary region reported by earlier authors. The Rietveld structure analysis for the sample x = .35 calcined at various temperatures reveals that phase fraction of the coexisting phases in the morphotropic phase boundary region varies with grain size. The structural parameters of the two coexisting phases also change slightly with changing grain size.
The U.S. Space Grant College and Fellowship Program
NASA Technical Reports Server (NTRS)
Dasch, E. Julius; Schwartz, Elaine T.; Keffer, Lynne
1990-01-01
The U.S. NASA Space Grant College and Fellowship Program, congressionally mandated in 1987, consists of two phases. Phase I consisted of the designation of 21 university consortia as 'Space Grant Colleges/Consortia' which received support from NASA to conduct programs to achieve, maintain, and advance a balanced program of research capability, curriculum, and public service. Program descriptions for phase II are given. This phase is designed to broaden participation in the Space Grant Program by targeting states that currently are not as involved in NASA programs as are the states for which phase I was constructed. Under phase II, states will compete in either the Programs Grants or the Capability Enhancement Grants category. Only one proposal per state will be accepted with the state determining in which category it will compete. The amount of total award, $150,000, is the same in both categories and includes funds for university-administered fellowship programs.
Nature of metastable amorphous-to-crystalline reversible phase transformations in GaSb
NASA Astrophysics Data System (ADS)
Kalkan, B.; Edwards, T. G.; Raoux, S.; Sen, S.
2013-08-01
The structural, thermodynamic, and kinetic aspects of the transformations between the metastable amorphous and crystalline phases of GaSb are investigated as a function of pressure at ambient temperature using synchrotron x-ray diffraction experiments in a diamond anvil cell. The results are consistent with the hypothesis that the pressure induced crystallization of amorphous GaSb into the β-Sn crystal structure near ˜5 GPa is possibly a manifestation of an underlying polyamorphic phase transition between a semiconducting, low density and a metallic, high density amorphous (LDA and HDA, respectively) phases. In this scenario, the large differences in the thermal crystallization kinetics between amorphous GaSb deposited in thin film form by sputtering and that prepared by laser melt quenching may be related to the relative location of the glass transition temperature of the latter in the pressure-temperature (P-T) space with respect to the location of the critical point that terminate the LDA ↔ HDA transition. The amorphous → β-Sn phase transition is found to be hysteretically reversible as the β-Sn phase undergoes decompressive amorphization near ˜2 GPa due to the lattice instabilities that give rise to density fluctuations in the crystal upon decompression.
Novel High Efficient Organic Photovoltaic Materials
NASA Technical Reports Server (NTRS)
Sun, Sam; Haliburton, James; Fan, Zben; Taft, Charles; Wang, Yi-Qing; Maaref, Shahin; Mackey, Willie R. (Technical Monitor)
2001-01-01
In man's mission to the outer space or a remote site, the most abundant, renewable, nonpolluting, and unlimited external energy source is light. Photovoltaic (PV) materials can convert light into electrical power. In order to generate appreciable electrical power in space or on the Earth, it is necessary to collect sunlight from large areas due to the low density of sunlight, and this would be very costly using current commercially available inorganic solar cells. Future organic or polymer based solar cells seemed very attractive due to several reasons. These include lightweight, flexible shape, ultra-fast optoelectronic response time (this also makes organic PV materials attractive for developing ultra-fast photo detectors), tunability of energy band-gaps via molecular design, versatile materials synthesis and device fabrication schemes, and much lower cost on large-scale industrial production. It has been predicted that nano-phase separated block copolymer systems containing electron rich donor blocks and electron deficient acceptor blocks will facilitate the charge separation and migration due to improved electronic ultrastructure and morphology in comparison to current polymer composite photovoltaic system. This presentation will describe our recent progress in the design, synthesis and characterization of a novel donor-bridge-acceptor block copolymer system for potential high-efficient organic optoelectronic applications. Specifically, the donor block contains an electron donating alkyloxy derivatized polyphenylenevinylene, the acceptor block contains an electron withdrawing alkyl-sulfone derivatized polyphenylenevinylene, and the bridge block contains an electronically neutral non-conjugated aliphatic hydrocarbon chain. The key synthetic strategy includes the synthesis of each individual block first, then couple the blocks together. While the donor block stabilizes the holes, the acceptor block stabilizes the electrons. The bridge block is designed to hinder the electron-hole recombination. Thus, improved charge separation is expected. In addition, charge migration will also be facilitated due to the expected nano-phase separated and highly ordered block copolymer ultrastructural. The combination of all these factors will result in significant overall enhancement of photovoltaic power conversion efficiency.
Space station experiment definition: Long-term cryogenic fluid storage
NASA Technical Reports Server (NTRS)
Jetley, R. L.; Scarlotti, R. D.
1987-01-01
The conceptual design of a space station Technology Development Mission (TDM) experiment to demonstrate and evaluate cryogenic fluid storage and transfer technologies is presented. The experiment will be deployed on the initial operational capability (IOC) space station for a four-year duration. It is modular in design, consisting of three phases to test the following technologies: passive thermal technologies (phase 1), fluid transfer (phase 2), and active refrigeration (phase 3). Use of existing hardware was a primary consideration throughout the design effort. A conceptual design of the experiment was completed, including configuration sketches, system schematics, equipment specifications, and space station resources and interface requirements. These requirements were entered into the NASA Space Station Mission Data Base. A program plan was developed defining a twelve-year development and flight plan. Program cost estimates are given.
Disequilibrium condensation environments in space - A frontier in thermodynamics
NASA Technical Reports Server (NTRS)
De, B. R.
1979-01-01
The thermal-disequilibrium aspect of the problem of dust-particle formation from a gas phase in an open space environment is discussed in an effort to draw attention to the space condensation environment as an interesting arena for application and extension of the ideas and formalisms of nonequilibrium thermodynamics. It is shown that quasi-steady states with a disequilibrium between the gas-phase kinetic temperature and the condensed-phase internal temperature appear to be the norm of condensation environments in space. Consideration of the case of condensation onto a bulk condensed phase indicates that these quasi-steady states may constitute Prigogine dissipative structures. It is suggested that a proper study of the process of condensation in a space environment should include any effects arising from thermal disequilibrium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heiblum, Reuven H.; Altaratz, Orit; Koren, Ilan
We study the evolution of warm convective cloud fields using large eddy simulations of continental and trade cumulus. Individual clouds are tracked a posteriori from formation to dissipation using a 3D cloud tracking algorithm and results are presented in the phase- space of center of gravity altitude versus cloud liquid water mass (CvM space). The CvM space is shown to contain rich information on cloud field characteristics, cloud morphology, and common cloud development pathways, together facilitating a comprehensive understanding of the cloud field. In this part we show how the meteorological (thermodynamic) conditions that determine the cloud properties are projectedmore » on the CvM phase space and how changes in the initial conditions affect the clouds' trajectories in this space. This part sets the stage for a detailed microphysical analysis that will be shown in part II.« less
NASA Astrophysics Data System (ADS)
Li, F.; Nie, Z.; Wu, Y. P.; Guo, B.; Zhang, X. H.; Huang, S.; Zhang, J.; Cheng, Z.; Ma, Y.; Fang, Y.; Zhang, C. J.; Wan, Y.; Xu, X. L.; Hua, J. F.; Pai, C. H.; Lu, W.; Mori, W. B.
2018-04-01
We report the transverse phase space diagnostics for electron beams generated through ionization injection in a laser-plasma accelerator. Single-shot measurements of both ultimate emittance and Twiss parameters are achieved by means of permanent magnetic quadrupole. Beams with emittance of μm rad level are obtained in a typical ionization injection scheme, and the dependence on nitrogen concentration and charge density is studied experimentally and confirmed by simulations. A key feature of the transverse phase space, matched beams with Twiss parameter α T ≃ 0, is identified according to the measurement. Numerical simulations that are in qualitative agreement with the experimental results reveal that a sufficient phase mixing induced by an overlong injection length leads to the matched phase space distribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, F.; Nie, Z.; Wu, Y. P.
We report the transverse phase space diagnostics for electron beams generated through ionization injection in a laser-plasma accelerator. Single-shot measurements of both ultimate emittance and Twiss parameters are achieved by means of permanent magnetic quadrupole. Beams with emittance of μm rad level are obtained in a typical ionization injection scheme, and the dependence on nitrogen concentration and charge density is studied experimentally and confirmed by simulations. A key feature of the transverse phase space, matched beams with Twiss parameter α T ≃ 0, is identified according to the measurement. Lastly, numerical simulations that are in qualitative agreement with the experimentalmore » results reveal that a sufficient phase mixing induced by an overlong injection length leads to the matched phase space distribution.« less
Solid-solid phase change thermal storage application to space-suit battery pack
NASA Astrophysics Data System (ADS)
Son, Chang H.; Morehouse, Jeffrey H.
1989-01-01
High cell temperatures are seen as the primary safety problem in the Li-BCX space battery. The exothermic heat from the chemical reactions could raise the temperature of the lithium electrode above the melting temperature. Also, high temperature causes the cell efficiency to decrease. Solid-solid phase-change materials were used as a thermal storage medium to lower this battery cell temperature by utilizing their phase-change (latent heat storage) characteristics. Solid-solid phase-change materials focused on in this study are neopentyl glycol and pentaglycerine. Because of their favorable phase-change characteristics, these materials appear appropriate for space-suit battery pack use. The results of testing various materials are reported as thermophysical property values, and the space-suit battery operating temperature is discussed in terms of these property results.
Li, F.; Nie, Z.; Wu, Y. P.; ...
2018-02-22
We report the transverse phase space diagnostics for electron beams generated through ionization injection in a laser-plasma accelerator. Single-shot measurements of both ultimate emittance and Twiss parameters are achieved by means of permanent magnetic quadrupole. Beams with emittance of μm rad level are obtained in a typical ionization injection scheme, and the dependence on nitrogen concentration and charge density is studied experimentally and confirmed by simulations. A key feature of the transverse phase space, matched beams with Twiss parameter α T ≃ 0, is identified according to the measurement. Lastly, numerical simulations that are in qualitative agreement with the experimentalmore » results reveal that a sufficient phase mixing induced by an overlong injection length leads to the matched phase space distribution.« less
Explaining Gibbsean phase space to second year students
NASA Astrophysics Data System (ADS)
Vesely, Franz J.
2005-03-01
A new approach to teaching introductory statistical physics is presented. We recommend making extensive use of the fact that even systems with a very few degrees of freedom may display chaotic behaviour. This permits a didactic 'bottom-up' approach, starting out with toy systems whose phase space may be depicted on a screen or blackboard, then proceeding to ever higher dimensions in Gibbsean phase space.
Multiplexed phase-space imaging for 3D fluorescence microscopy.
Liu, Hsiou-Yuan; Zhong, Jingshan; Waller, Laura
2017-06-26
Optical phase-space functions describe spatial and angular information simultaneously; examples of optical phase-space functions include light fields in ray optics and Wigner functions in wave optics. Measurement of phase-space enables digital refocusing, aberration removal and 3D reconstruction. High-resolution capture of 4D phase-space datasets is, however, challenging. Previous scanning approaches are slow, light inefficient and do not achieve diffraction-limited resolution. Here, we propose a multiplexed method that solves these problems. We use a spatial light modulator (SLM) in the pupil plane of a microscope in order to sequentially pattern multiplexed coded apertures while capturing images in real space. Then, we reconstruct the 3D fluorescence distribution of our sample by solving an inverse problem via regularized least squares with a proximal accelerated gradient descent solver. We experimentally reconstruct a 101 Megavoxel 3D volume (1010×510×500µm with NA 0.4), demonstrating improved acquisition time, light throughput and resolution compared to scanning aperture methods. Our flexible patterning scheme further allows sparsity in the sample to be exploited for reduced data capture.
NASA Astrophysics Data System (ADS)
Wei, Shao-Wen; Liu, Yu-Xiao
2014-08-01
We study the triple points and phase diagrams in the extended phase space of the charged Gauss-Bonnet black holes in d-dimensional anti-de Sitter space, where the cosmological constant appears as a dynamical pressure of the system and its conjugate quantity is the thermodynamic volume of the black holes. Employing the equation of state T=T(v,P), we demonstrate that the information of the phase transition and behavior of the Gibbs free energy are potential encoded in the T-v (T-rh) line with fixed pressure P. We get the phase diagrams for the charged Gauss-Bonnet black holes with different values of the charge Q and dimension d. The result shows that the small/large black hole phase transitions appear for any d, which is reminiscent of the liquid/gas transition of a Van der Waals type. Moreover, the interesting thermodynamic phenomena, i.e., the triple points and the small/intermediate/large black hole phase transitions are observed for d=6 and Q ∈(0.1705,0.1946).
Jang, J C; Jin, X H; Hong, J S; Kim, Y Y
2017-12-01
This experiment was conducted to evaluate the optimal space allowance on growth performance, blood profile and pork quality of growing-finishing pigs. A total of ninety crossbred pigs [(Yorkshire×Landrace)×Duroc, 30.25±1.13 kg] were allocated into three treatments (0.96: four pigs/pen, 0.96 m2/pig; 0.80: five pigs/pen, 0.80 m2/pig; 0.69: six pigs/pen, 0.69 m2/pig) in a randomized complete block design. Pigs were housed in balanced sex and had free access to feed in all phases for 14 weeks (growing phase I, growing phase II, finishing phase I, and finishing phase II). There was no statistical difference in growing phase, but a linear decrease was observed on average daily gain (ADG, p<0.01), average daily feed intake (ADFI, p<0.01), and body weight (BW, p<0.01) with decreasing space allowance in late finishing phase. On the other hand, a quadratic effect was observed on gain to feed ratio in early finishing phase (p<0.03). Consequently, overall ADG, ADFI, and final BW linearly declined in response to decreased space allowance (p<0.01). The pH of pork had no significant difference in 1 hour after slaughter, whereas there was a linear decrease in 24 h after slaughter with decreasing space allowance. Floor area allowance did not affect pork colors, but shear force linearly increased as floor space decreased (p<0.01). There was a linear increase in serum cortisol concentration on 14 week (p<0.05) with decreased space allocation. Serum IgG was linearly ameliorated as space allowance increased on 10 week (p<0.05) and 14 week (p<0.01). Data from current study indicated that stress derived from reduced space allowance deteriorates the immune system as well as growth performance of pigs, resulting in poor pork quality. Recommended adequate space allowance in a grow-to-finish production system is more than 0.80 m2/pig for maximizing growth performance and production efficiency.
Lattice QCD Thermodynamics and RHIC-BES Particle Production within Generic Nonextensive Statistics
NASA Astrophysics Data System (ADS)
Tawfik, Abdel Nasser
2018-05-01
The current status of implementing Tsallis (nonextensive) statistics on high-energy physics is briefly reviewed. The remarkably low freezeout-temperature, which apparently fails to reproduce the firstprinciple lattice QCD thermodynamics and the measured particle ratios, etc. is discussed. The present work suggests a novel interpretation for the so-called " Tsallis-temperature". It is proposed that the low Tsallis-temperature is due to incomplete implementation of Tsallis algebra though exponential and logarithmic functions to the high-energy particle-production. Substituting Tsallis algebra into grand-canonical partition-function of the hadron resonance gas model seems not assuring full incorporation of nonextensivity or correlations in that model. The statistics describing the phase-space volume, the number of states and the possible changes in the elementary cells should be rather modified due to interacting correlated subsystems, of which the phase-space is consisting. Alternatively, two asymptotic properties, each is associated with a scaling function, are utilized to classify a generalized entropy for such a system with large ensemble (produced particles) and strong correlations. Both scaling exponents define equivalence classes for all interacting and noninteracting systems and unambiguously characterize any statistical system in its thermodynamic limit. We conclude that the nature of lattice QCD simulations is apparently extensive and accordingly the Boltzmann-Gibbs statistics is fully fulfilled. Furthermore, we found that the ratios of various particle yields at extreme high and extreme low energies of RHIC-BES is likely nonextensive but not necessarily of Tsallis type.
NASA Technical Reports Server (NTRS)
1985-01-01
Technology payoffs of representative ground based (Phase 1) and space based (Phase 2) mid lift/drag ratio aeroassisted orbit transfer vehicles (AOTV) were assessed and prioritized. A narrative summary of the cost estimates and work breakdown structure/dictionary for both study phases is presented. Costs were estimated using the Grumman Space Programs Algorithm for Cost Estimating (SPACE) computer program and results are given for four AOTV configurations. The work breakdown structure follows the standard of the joint government/industry Space Systems Cost Analysis Group (SSCAG). A table is provided which shows cost estimates for each work breakdown structure element.
Selforganization of modular activity of grid cells
Urdapilleta, Eugenio; Si, Bailu
2017-01-01
Abstract A unique topographical representation of space is found in the concerted activity of grid cells in the rodent medial entorhinal cortex. Many among the principal cells in this region exhibit a hexagonal firing pattern, in which each cell expresses its own set of place fields (spatial phases) at the vertices of a triangular grid, the spacing and orientation of which are typically shared with neighboring cells. Grid spacing, in particular, has been found to increase along the dorso‐ventral axis of the entorhinal cortex but in discrete steps, that is, with a modular structure. In this study, we show that such a modular activity may result from the self‐organization of interacting units, which individually would not show discrete but rather continuously varying grid spacing. Within our “adaptation” network model, the effect of a continuously varying time constant, which determines grid spacing in the isolated cell model, is modulated by recurrent collateral connections, which tend to produce a few subnetworks, akin to magnetic domains, each with its own grid spacing. In agreement with experimental evidence, the modular structure is tightly defined by grid spacing, but also involves grid orientation and distortion, due to interactions across modules. Thus, our study sheds light onto a possible mechanism, other than simply assuming separate networks a priori, underlying the formation of modular grid representations. PMID:28768062
Space shuttle system program definition. Volume 2: Technical report
NASA Technical Reports Server (NTRS)
1972-01-01
The Phase B Extension of the Space Shuttle System Program Definition study was redirected to apply primary effort to consideration of space shuttle systems utilizing either recoverable pressure fed liquids or expendable solid rocket motor boosters. Two orbiter configurations were to be considered, one with a 15x60 foot payload bay with a 65,000 lb, due East, up-payload capability and the other with a 14x45 payload bay with 45,000 lb, of due East, up-payload. Both were to use three SSME engines with 472,000 lb of vacuum thrust each. Parallel and series burn ascent modes were to be considered for the launch configurations of primary interest. A recoverable pump-fed booster is included in the study in a series burn configuration with the 15x60 orbiter. To explore the potential of the swing engine orbiter configuration in the pad abort case, it is included in the study matrix in two launch configurations, a series burn pressure fed BRB and a parallel burn SRM. The resulting matrix of configuration options is shown. The principle objectives of this study are to evaluate the cost and technical differences between the liquid and solid propellant booster systems and to assess the development and operational cost savings available with a smaller orbiter.
3D imaging of translucent media with a plenoptic sensor based on phase space optics
NASA Astrophysics Data System (ADS)
Zhang, Xuanzhe; Shu, Bohong; Du, Shaojun
2015-05-01
Traditional stereo imaging technology is not working for dynamical translucent media, because there are no obvious characteristic patterns on it and it's not allowed using multi-cameras in most cases, while phase space optics can solve the problem, extracting depth information directly from "space-spatial frequency" distribution of the target obtained by plenoptic sensor with single lens. This paper discussed the presentation of depth information in phase space data, and calculating algorithms with different transparency. A 3D imaging example of waterfall was given at last.
ERIC Educational Resources Information Center
Nicolaides, Cleanthes A.; Constantoudis, Vasilios
2009-01-01
In Planck's model of the harmonic oscillator (HO) a century ago, both the energy and the phase space were quantized according to epsilon[subscript n] = nhv, n = 0, 1, 2..., and [double integral]dp[subscript x] dx = h. By referring to just these two relations, we show how the adoption of "cycle-averaged phase-space states" (CAPSSs) leads to the…
Kim, Hwi; Min, Sung-Wook; Lee, Byoungho; Poon, Ting-Chung
2008-07-01
We propose a novel optical sectioning method for optical scanning holography, which is performed in phase space by using Wigner distribution functions together with the fractional Fourier transform. The principle of phase-space optical sectioning for one-dimensional signals, such as slit objects, and two-dimensional signals, such as rectangular objects, is first discussed. Computer simulation results are then presented to substantiate the proposed idea.
Analysis of remote operating systems for space-based servicing operations, volume 1
NASA Technical Reports Server (NTRS)
1985-01-01
A two phase study was conducted to analyze and develop the requirements for remote operating systems as applied to space based operations for the servicing, maintenance, and repair of satellites. Phase one consisted of the development of servicing requirements to establish design criteria for remote operating systems. Phase two defined preferred system concepts and development plans which met the requirements established in phase one. The specific tasks in phase two were to: (1) identify desirable operational and conceptual approaches for selected mission scenarios; (2) examine the potential impact of remote operating systems incorporated into the design of the space station; (3) address remote operating systems design issues, such as mobility, which are effected by the space station configuration; and (4) define the programmatic approaches for technology development, testing, simulation, and flight demonstration.
Co-composting of two-phase olive-mill pomace and poultry manure with tomato harvest stalks.
Sülük, Kemal; Tosun, İsmail; Ekinci, Kamil
2017-04-01
In this study, two-phase olive-mill pomace with poultry manure and chopped tomato harvest stalks were composted at different initial carbon/nitrogen (C/N) ratios with fixed free air space of 35%. Composting experiment was carried out in the 15 aerobic reactors made of stainless steel and was monitored for 28 days. During the composting process, temperature, moisture content, organic matter (OM), pH, electrical conductivity, oxygen and carbon dioxide concentrations, total carbon, total nitrogen, ammonium nitrogen ([Formula: see text]), nitrate nitrogen ([Formula: see text]), and total phosphorus were monitored. Compost mass and volume changes were determined at the beginning, during remixings, and at the end of composting. While the stabilization period took less time for the mixtures containing a high amount of poultry manure, the mixtures having the high portion of two-phase olive-mill pomace took a longer time due to the structure of olive stone and its lignin content. Dry matter loss (range: 18.1-34.0%.) in the mixtures increased with an increase in the share of poultry manure and tomato stalks in the initial mixture. OM loss (range: 21.7-46.1%) for tomato stalks (measured separately) during composting increased due to an increase in the ratio of poultry manure in the initial mixtures.
Sheeran, Paul S.; Matsunaga, Terry O.; Dayton, Paul A.
2015-01-01
Ultrasonically activated phase-change contrast agents (PCCAs) based on perfluorocarbon droplets have been proposed for a variety of therapeutic and diagnostic clinical applications. When generated at the nanoscale, droplets may be small enough to exit the vascular space and then be induced to vaporize with high spatial and temporal specificity by externally-applied ultrasound. The use of acoustical techniques for optimizing ultrasound parameters for given applications can be a significant challenge for nanoscale PCCAs due to the contributions of larger outlier droplets. Similarly, optical techniques can be a challenge due to the sub-micron size of nanodroplet agents and resolution limits of optical microscopy. In this study, an optical method for determining activation thresholds of nanoscale emulsions based on the in vitro distribution of bubbles resulting from vaporization of PCCAs after single, short (<10 cycles) ultrasound pulses is evaluated. Through ultra-high-speed microscopy it is shown that the bubbles produced early in the pulse from vaporized droplets are strongly affected by subsequent cycles of the vaporization pulse, and these effects increase with pulse length. Results show that decafluorobutane nanoemulsions with peak diameters on the order of 200 nm can be optimally vaporized with short pulses using pressures amenable to clinical diagnostic ultrasound machines. PMID:23760161
Mechanism of γ-irradiation induced phase transformations in nanocrystalline Mn0.5Zn0.5Fe2O4 ceramics
NASA Astrophysics Data System (ADS)
Jagadeesha Angadi, V.; Anupama, A. V.; Choudhary, Harish K.; Kumar, R.; Somashekarappa, H. M.; Mallappa, M.; Rudraswamy, B.; Sahoo, B.
2017-02-01
The structural, infrared absorption and magnetic property transformations in nanocrystalline Mn0.5Zn0.5Fe2O4 samples irradiated with different doses (0, 15, 25 and 50 kGy) of γ-irradiation were investigated in this work and a mechanism of phase transformation/decomposition is provided based on the metastable nature of the Mn-atoms in the spinel lattice. The nano-powder sample was prepared by solution combustion route and the pellets of the sample were exposed to γ-radiation. Up to a dose of 25 kGy of γ-radiation, the sample retained the single phase cubic spinel (Fd-3m) structure, but the disorder in the sample increased. On irradiating the sample with 50 kGy γ-radiation, the spinel phase decomposed into new stable phases such as α-Fe2O3 and ZnFe2O4 phases along with amorphous MnO phase, leading to a change in the surface morphology of the sample. Along with the structural transformations the magnetic properties deteriorated due to breakage of the ferrimagnetic order with higher doses of γ-irradiation. Our results are important for the understanding of the stability, durability and performance of the Mn-Zn ferrite based devices used in space applications.
NASA's Plans for Developing Life Support and Environmental Monitoring and Control Systems
NASA Technical Reports Server (NTRS)
Lawson, B. Michael; Jan, Darrell
2006-01-01
Life Support and Monitoring have recently been reworked in response to the Vision for Space Exploration. The Exploration Life Support (ELS) Project has replaced the former Advanced Life Support Element of the Human Systems Research and Technology Office. Major differences between the two efforts include: the separation of thermal systems into a new stand alone thermal project, deferral of all work in the plant biological systems, relocation of food systems to another organization, an addition of a new project called habitation systems, and overall reduction in the number of technology options due to lower funding. The Advanced Environmental Monitoring and Control (AEMC) Element is retaining its name but changing its focus. The work planned in the ELS and AEMC projects is organized around the three major phases of the Exploration Program. The first phase is the Crew Exploration Vehicle (CEV). The ELS and AEMC projects will develop hardware for this short duration orbital and trans-lunar vehicle. The second phase is sortie landings on the moon. Life support hardware for lunar surface access vehicles including upgrades of the CEV equipment and technologies which could not be pursued in the first phase due to limited time and budget will be developed. Monitoring needs will address lunar dust issues, not applicable to orbital needs. The ELS and AEMC equipment is of short duration, but has different environmental considerations. The third phase will be a longer duration lunar outpost. This will consist of a new set of hardware developments better suited for long duration life support and associated monitoring needs on the lunar surface. The presentation will show the planned activities and technologies that are expected to be developed by the ELS and AEMC projects for these program phases.
Space Environments and Effects Concept: Transitioning Research to Operations and Applications
NASA Technical Reports Server (NTRS)
Edwards, David L.; Spann, James; Burns, Howard D.; Schumacher, Dan
2012-01-01
The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while expanding its mission to explore the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. NASA has established numerous offices specializing in specific space environments disciplines that will serve to enable these missions. To complement these existing discipline offices, a concept focusing on the development of space environment and effects application is presented. This includes space climate, space weather, and natural and induced space environments. This space environment and effects application is composed of 4 topic areas; characterization and modeling, engineering effects, prediction and operation, and mitigation and avoidance. These topic areas are briefly described below. Characterization and modeling of space environments will primarily focus on utilization during Program mission concept, planning, and design phases. Engineering effects includes materials testing and flight experiments producing data to be used in mission planning and design phases. Prediction and operation pulls data from existing sources into decision-making tools and empirical data sets to be used during the operational phase of a mission. Mitigation and avoidance will develop techniques and strategies used in the design and operations phases of the mission. The goal of this space environment and effects application is to develop decision-making tools and engineering products to support the mission phases of mission concept through operations by focusing on transitioning research to operations. Products generated by this space environments and effects application are suitable for use in anomaly investigations. This paper will outline the four topic areas, describe the need, and discuss an organizational structure for this space environments and effects application.
NASA Astrophysics Data System (ADS)
Arponen, J. S.; Bishop, R. F.
1993-11-01
In this third paper of a series we study the structure of the phase spaces of the independent-cluster methods. These phase spaces are classical symplectic manifolds which provide faithful descriptions of the quantum mechanical pure states of an arbitrary system. They are "superspaces" in the sense that the full physical many-body or field-theoretic system is described by a point of the space, in contrast to "ordinary" spaces for which the state of the physical system is described rather by the whole space itself. We focus attention on the normal and extended coupled-cluster methods (NCCM and ECCM). Both methods provide parametrizations of the Hilbert space which take into account in increasing degrees of completeness the connectivity properties of the associated perturbative diagram structure. This corresponds to an increasing incorporation of locality into the description of the quantum system. As a result the degree of nonlinearity increases in the dynamical equations that govern the temporal evolution and determine the equilibrium state. Because of the nonlinearity, the structure of the manifold becomes geometrically complicated. We analyse the neighbourhood of the ground state of the one-mode anharmonic bosonic field theory and derive the nonlinear expansion beyond the linear response regime. The expansion is given in terms of normal-mode amplitudes, which provide the best local coordinate system close to the ground state. We generalize the treatment to other nonequilibrium states by considering the similarly defined normal coordinates around the corresponding phase space point. It is pointed out that the coupled-cluster method (CCM) maps display such features as (an)holonomy, or geometric phase. For example, a physical state may be represented by a number of different points on the CCM manifold. For this reason the whole phase spaces in the NCCM or ECCM cannot be covered by a single chart. To account for this non-Euclidean nature we introduce a suitable pseudo-Riemannian metric structure which is compatible with an important subset of all canonical transformations. It is then shown that the phase space of the configuration-interaction method is flat, namely the complex Euclidean space; that the NCCM manifold has zero curvature even though its Reimann tensor does not vanish; and that the ECCM manifold is intrinsically curved. It is pointed out that with the present metrization many of the dimensions of the ECCM phase space are effectively compactified and that the overall topological structure of the space is related to the distribution of the zeros of the Bargmann wave function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-02-10
The project establishes the necessary experiment and laboratory facilities at Xavier University. This phase of the work has taken a considerable amount of time, due to the limited laboratory space and the involved administrative policies and procedures in procuring the necessary chemicals, glassware and auxiliary supplies. Though there still remain some minor problems with space, the laboratory is now equipped for preparation of catalysts. During this period, the authors focused their attention toward analyzing the magnetic nature of extensively used trimetallic catalyst system Cu-Co-Cr for the production of higher alcohols. The authors decided to investigate the effect of method ofmore » preparation and intermetallic ratio on the magnetic behavior of the system.« less
Castellano, Julen; Silva, Pedro; Usabiaga, Oidui; Barreira, Daniel
2016-06-01
The effect of altered game formats on team performances during soccer practice can be harnessed by coaches to stimulate specific tactical behaviours. The aim of the present study was to analyse the influence of using (i) small goals [SG], (ii) goalkeepers [7G] and (iii) floaters [7GF] on the dispersion, shape and available space of teams during small-sided games (SSGs). Twenty-four male soccer players were distributed into four teams composed of five players, two goalkeepers and two floaters that performed six SSG bouts of 6 min, interspersed with 6 min of passive recovery. Offensive and defensive phases were also analysed separately in order to verify the preservation of basic principles of attacking (teams more stretched to create free space) and defending (teams more compact to tie-up space) during SSGs. The variables used to characterize the collective behaviour were: length [L], width [W], team shape [Sh], and team separateness [TS]. Results revealed that the teams showed different collective behaviours depending on SSG format and a playing phase: a) L and W were higher in attack than in defence in all SSGs; b) team shapes were more elongated in defence in all SSGs except SG; c) the space separating players from their closest opponents (TS) was shorter in 7G; and d) SG and 7GF elicited greater defensive openness due to increased team width. The results suggest that manipulating task constraints, such as goal size, presence or absence of goalkeepers and floaters can be harnessed by coaches to shape distinct team tactical behaviours in SSGs while preserving the basic principles of attacking and defending.
Silva, Pedro; Usabiaga, Oidui; Barreira, Daniel
2016-01-01
Abstract The effect of altered game formats on team performances during soccer practice can be harnessed by coaches to stimulate specific tactical behaviours. The aim of the present study was to analyse the influence of using (i) small goals [SG], (ii) goalkeepers [7G] and (iii) floaters [7GF] on the dispersion, shape and available space of teams during small-sided games (SSGs). Twenty-four male soccer players were distributed into four teams composed of five players, two goalkeepers and two floaters that performed six SSG bouts of 6 min, interspersed with 6 min of passive recovery. Offensive and defensive phases were also analysed separately in order to verify the preservation of basic principles of attacking (teams more stretched to create free space) and defending (teams more compact to tie-up space) during SSGs. The variables used to characterize the collective behaviour were: length [L], width [W], team shape [Sh], and team separateness [TS]. Results revealed that the teams showed different collective behaviours depending on SSG format and a playing phase: a) L and W were higher in attack than in defence in all SSGs; b) team shapes were more elongated in defence in all SSGs except SG; c) the space separating players from their closest opponents (TS) was shorter in 7G; and d) SG and 7GF elicited greater defensive openness due to increased team width. The results suggest that manipulating task constraints, such as goal size, presence or absence of goalkeepers and floaters can be harnessed by coaches to shape distinct team tactical behaviours in SSGs while preserving the basic principles of attacking and defending. PMID:28149378
Grassmann phase space theory and the Jaynes–Cummings model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalton, B.J., E-mail: bdalton@swin.edu.au; Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Melbourne, Victoria 3122; Garraway, B.M.
2013-07-15
The Jaynes–Cummings model of a two-level atom in a single mode cavity is of fundamental importance both in quantum optics and in quantum physics generally, involving the interaction of two simple quantum systems—one fermionic system (the TLA), the other bosonic (the cavity mode). Depending on the initial conditions a variety of interesting effects occur, ranging from ongoing oscillations of the atomic population difference at the Rabi frequency when the atom is excited and the cavity is in an n-photon Fock state, to collapses and revivals of these oscillations starting with the atom unexcited and the cavity mode in a coherentmore » state. The observation of revivals for Rydberg atoms in a high-Q microwave cavity is key experimental evidence for quantisation of the EM field. Theoretical treatments of the Jaynes–Cummings model based on expanding the state vector in terms of products of atomic and n-photon states and deriving coupled equations for the amplitudes are a well-known and simple method for determining the effects. In quantum optics however, the behaviour of the bosonic quantum EM field is often treated using phase space methods, where the bosonic mode annihilation and creation operators are represented by c-number phase space variables, with the density operator represented by a distribution function of these variables. Fokker–Planck equations for the distribution function are obtained, and either used directly to determine quantities of experimental interest or used to develop c-number Langevin equations for stochastic versions of the phase space variables from which experimental quantities are obtained as stochastic averages. Phase space methods have also been developed to include atomic systems, with the atomic spin operators being represented by c-number phase space variables, and distribution functions involving these variables and those for any bosonic modes being shown to satisfy Fokker–Planck equations from which c-number Langevin equations are often developed. However, atomic spin operators satisfy the standard angular momentum commutation rules rather than the commutation rules for bosonic annihilation and creation operators, and are in fact second order combinations of fermionic annihilation and creation operators. Though phase space methods in which the fermionic operators are represented directly by c-number phase space variables have not been successful, the anti-commutation rules for these operators suggest the possibility of using Grassmann variables—which have similar anti-commutation properties. However, in spite of the seminal work by Cahill and Glauber and a few applications, the use of phase space methods in quantum optics to treat fermionic systems by representing fermionic annihilation and creation operators directly by Grassmann phase space variables is rather rare. This paper shows that phase space methods using a positive P type distribution function involving both c-number variables (for the cavity mode) and Grassmann variables (for the TLA) can be used to treat the Jaynes–Cummings model. Although it is a Grassmann function, the distribution function is equivalent to six c-number functions of the two bosonic variables. Experimental quantities are given as bosonic phase space integrals involving the six functions. A Fokker–Planck equation involving both left and right Grassmann differentiations can be obtained for the distribution function, and is equivalent to six coupled equations for the six c-number functions. The approach used involves choosing the canonical form of the (non-unique) positive P distribution function, in which the correspondence rules for the bosonic operators are non-standard and hence the Fokker–Planck equation is also unusual. Initial conditions, such as those above for initially uncorrelated states, are discussed and used to determine the initial distribution function. Transformations to new bosonic variables rotating at the cavity frequency enable the six coupled equations for the new c-number functions–that are also equivalent to the canonical Grassmann distribution function–to be solved analytically, based on an ansatz from an earlier paper by Stenholm. It is then shown that the distribution function is exactly the same as that determined from the well-known solution based on coupled amplitude equations. In quantum–atom optics theories for many atom bosonic and fermionic systems are needed. With large atom numbers, treatments must often take into account many quantum modes—especially for fermions. Generalisations of phase space distribution functions of phase space variables for a few modes to phase space distribution functionals of field functions (which represent the field operators, c-number fields for bosons, Grassmann fields for fermions) are now being developed for large systems. For the fermionic case, the treatment of the simple two mode problem represented by the Jaynes–Cummings model is a useful test case for the future development of phase space Grassmann distribution functional methods for fermionic applications in quantum–atom optics. -- Highlights: •Novel phase space theory of the Jaynes–Cummings model using Grassmann variables. •Fokker–Planck equations solved analytically. •Results agree with the standard quantum optics treatment. •Grassmann phase space theory applicable to fermion many-body problems.« less
Full complex spatial filtering with a phase mostly DMD. [Deformable Mirror Device
NASA Technical Reports Server (NTRS)
Florence, James M.; Juday, Richard D.
1991-01-01
A new technique for implementing fully complex spatial filters with a phase mostly deformable mirror device (DMD) light modulator is described. The technique combines two or more phase-modulating flexure-beam mirror elements into a single macro-pixel. By manipulating the relative phases of the individual sub-pixels within the macro-pixel, the amplitude and the phase can be independently set for this filtering element. The combination of DMD sub-pixels into a macro-pixel is accomplished by adjusting the optical system resolution, thereby trading off system space bandwidth product for increased filtering flexibility. Volume in the larger dimensioned space, space bandwidth-complex axes count, is conserved. Experimental results are presented mapping out the coupled amplitude and phase characteristics of the individual flexure-beam DMD elements and demonstrating the independent control of amplitude and phase in a combined macro-pixel. This technique is generally applicable for implementation with any type of phase modulating light modulator.
Criteria for Yielding of Dispersion-Strengthened Alloys
NASA Technical Reports Server (NTRS)
Ansell, G. S.; Lenel, F. V.
1960-01-01
A dislocation model is presented in order to account for the yield behavior of alloys with a finely dispersed second-phase. The criteria for yielding used in the model, is that appreciable yielding occurs in these alloys when the shear stress due to piled-up groups of dislocations is sufficient to fracture or plastically deform the dispersed second-phase particles, relieving the back stress on the dislocation sources. Equations derived on the basis of this model, predict that the yield stress of the alloys varies as the reciprocal square root of the mean free path between dispersed particles. Experimental data is presented for several SAP-Type alloys, precipitation-hardened alloys and steels which are in good agreement with the yield strength variation as a function of dispersion spacing predicted by this theoretical treatment.
NASA Technical Reports Server (NTRS)
Baker, John G.
2012-01-01
We consider a class of proposed gravitational wave detectors based on multiple atomic interferometers separated by large baselines and referenced by common laser systems. We compute the sensitivity limits of these detectors due to intrinsic phase noise of the light sources, non-inertial motion of the light sources, and atomic shot noise and compare them to sensitivity limits for traditional light interferometers. We find that atom interferometers and light interferometers are limited in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies (e.g. multiple arm instruments) to reach interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and favors the atom interferometers in the low-frequency limit, although the limit in both cases is severe.
Crypto-periodicity in Mansonella ozzardi.
Pichon, G
1983-01-01
Studying nycthemeral microfilarial density in eight carriers of Mansonella ozzardi, Nathan et al. concluded that there is an absence of periodicity in M. ozzardi in Trinidad. Re-examination of the results obtained shows evidence of crypto-periodicity. Two of the eight patients showed highly significant periodicity but the biorhythms appear to be almost out of phase, the respective peaks being at 18.00 hours and 02.00 hours. The six other patients showed no obvious periodicity; the calculated acrophases (peak hours), instead of being randomly spaced, regrouped with the preceding ones: late afternoon in two subjects and in the second half of the night for the other four. It is concluded that the apparent non-periodicity is due to the co-existence of two periodic forms, but these are markedly out of phase.
Baker, John G; Thorpe, J I
2012-05-25
We consider a class of proposed gravitational-wave detectors based on multiple atomic interferometers separated by large baselines and referenced by common laser systems. We compute the sensitivity limits of these detectors due to intrinsic phase noise of the light sources, noninertial motion of the light sources, and atomic shot noise and compare them to sensitivity limits for traditional light interferometers. We find that atom interferometers and light interferometers are limited in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies (e.g., multiple-arm instruments) to reach interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and, in principle, favors the atom interferometers in the low-frequency limit, although the limit in both cases is severe.
NASA Astrophysics Data System (ADS)
Xie, Changjian; Malbon, Christopher L.; Yarkony, David R.; Guo, Hua
2017-07-01
The incorporation of the geometric phase in single-state adiabatic dynamics near a conical intersection (CI) seam has so far been restricted to molecular systems with high symmetry or simple model Hamiltonians. This is due to the fact that the ab initio determined derivative coupling (DC) in a multi-dimensional space is not curl-free, thus making its line integral path dependent. In a recent work [C. L. Malbon et al., J. Chem. Phys. 145, 234111 (2016)], we proposed a new and general approach based on an ab initio determined diabatic representation consisting of only two electronic states, in which the DC is completely removable, so that its line integral is path independent in the simply connected domains that exclude the CI seam. Then with the CIs included, the line integral of the single-valued DC can be used to construct the complex geometry-dependent phase needed to exactly eliminate the double-valued character of the real-valued adiabatic electronic wavefunction. This geometry-dependent phase gives rise to a vector potential which, when included in the adiabatic representation, rigorously accounts for the geometric phase in a system with an arbitrary locus of the CI seam and an arbitrary number of internal coordinates. In this work, we demonstrate this approach in a three-dimensional treatment of the tunneling facilitated dissociation of the S1 state of phenol, which is affected by a Cs symmetry allowed but otherwise accidental seam of CI. Here, since the space is three-dimensional rather than two-dimensional, the seam is a curve rather than a point. The nodal structure of the ground state vibronic wavefunction is shown to map out the seam of CI.
NASA Astrophysics Data System (ADS)
Stratakis, D.; Kishek, R. A.; Li, H.; Bernal, S.; Walter, M.; Tobin, J.; Quinn, B.; Reiser, M.; O'Shea, P. G.
2006-11-01
Tomography is the technique of reconstructing an image from its projections. It is widely used in the medical community to observe the interior of the human body by processing multiple x-ray images taken at different angles, A few pioneering researchers have adapted tomography to reconstruct detailed phase space maps of charged particle beams. Some questions arise regarding the limitations of tomography technique for space charge dominated beams. For instance is the linear space charge force a valid approximation? Does tomography equally reproduce phase space for complex, experimentally observed, initial particle distributions? Does tomography make any assumptions about the initial distribution? This study explores the use of accurate modeling with the particle-in-cell code WARP to address these questions, using a wide range of different initial distributions in the code. The study also includes a number of experimental results on tomographic phase space mapping performed on the University of Maryland Electron Ring (UMER).
NASA Astrophysics Data System (ADS)
Awwadi, Firas F.; Hodali, Hamdallah A.
2018-02-01
Syntheses and crystal structures of two polymorphs of the complex [Co(II)(L)], where H2L = 2,2'-[cis-1,2-diaminocyclohexanediylbis (nitrilo-methylidyne)]bis (5-dimethyl-amino]phenol, have been studied. The two polymorphs concomitantly crystallized by vapour diffusion of solvent. The first polymorph (I) crystallized as a racemate in the centrosymmetric tetragonal I41/a space group. The second polymorph (II) crystallized in the chiral orthorhombic space group P212121. The chiral conformers of symmetrical cis-1,2-disubstituted cyclohexane molecules cannot be resolved in the liquid or gas phases, due to the rapid ring inversion. In the present study, the two chiral conformers are present in crystals of polymorph I, whereas, only one chiral conformer is present in crystals of polymorph II. Crystal structure analysis indicated that the formation of two different polymorphs of [Co(II)(L)] complex can be rationalized based on Csbnd H⋯Co anagostic interactions. Density Functional Theory (DFT) calculations indicated that Csbnd H⋯Co interactions are due to HOMO-LUMO interactions.
Statistical and dynamical properties of a dissipative kicked rotator
NASA Astrophysics Data System (ADS)
Oliveira, Diego F. M.; Leonel, Edson D.
2014-11-01
Some dynamical and statistical properties for a conservative as well as the dissipative problem of relativistic particles in a waveguide are considered. For the first time, two different types of dissipation namely: (i) due to viscosity and; (ii) due to inelastic collision (upon the kick) are considered individually and acting together. For the first case, and contrary to what is expected for the original Zaslavsky’s relativistic model, we show there is a critical parameter where a transition from local to global chaos occurs. On the other hand, after considering the introduction of dissipation also on the kick, the structure of the phase space changes in the sense that chaotic and periodic attractors appear. We study also the chaotic sea by using scaling arguments and we proposed an analytical argument to reinforce the validity of the scaling exponents obtained numerically. In principle such an approach can be extended to any two-dimensional map. Finally, based on the Lyapunov exponent, we show that the parameter space exhibits infinite families of self-similar shrimp-shape structures, corresponding to periodic attractors, embedded in a large region corresponding to chaotic attractors.
NASA Technical Reports Server (NTRS)
Balas, Gary J.
1992-01-01
The use is studied of active control to attenuate structural vibrations of the NASA Langley Phase Zero Evolutionary Structure due to external disturbance excitations. H sub infinity and structured singular value (mu) based control techniques are used to analyze and synthesize control laws for the NASA Langley Controls Structures Interaction (CSI) Evolutionary Model (CEM). The CEM structure experiment provides an excellent test bed to address control design issues for large space structures. Specifically, control design for structures with numerous lightly damped, coupled flexible modes, collocated and noncollocated sensors and actuators and stringent performance specifications. The performance objectives are to attenuate the vibration of the structure due to external disturbances, and minimize the actuator control force. The control design problem formulation for the CEM Structure uses a mathematical model developed with finite element techniques. A reduced order state space model for the control design is formulated from the finite element model. It is noted that there are significant variations between the design model and the experimentally derived transfer function data.
Quantum phase space with a basis of Wannier functions
NASA Astrophysics Data System (ADS)
Fang, Yuan; Wu, Fan; Wu, Biao
2018-02-01
A quantum phase space with Wannier basis is constructed: (i) classical phase space is divided into Planck cells; (ii) a complete set of Wannier functions are constructed with the combination of Kohn’s method and Löwdin method such that each Wannier function is localized at a Planck cell. With these Wannier functions one can map a wave function unitarily onto phase space. Various examples are used to illustrate our method and compare it to Wigner function. The advantage of our method is that it can smooth out the oscillations in wave functions without losing any information and is potentially a better tool in studying quantum-classical correspondence. In addition, we point out that our method can be used for time-frequency analysis of signals.
Multivariable Hermite polynomials and phase-space dynamics
NASA Technical Reports Server (NTRS)
Dattoli, G.; Torre, Amalia; Lorenzutta, S.; Maino, G.; Chiccoli, C.
1994-01-01
The phase-space approach to classical and quantum systems demands for advanced analytical tools. Such an approach characterizes the evolution of a physical system through a set of variables, reducing to the canonically conjugate variables in the classical limit. It often happens that phase-space distributions can be written in terms of quadratic forms involving the above quoted variables. A significant analytical tool to treat these problems may come from the generalized many-variables Hermite polynomials, defined on quadratic forms in R(exp n). They form an orthonormal system in many dimensions and seem the natural tool to treat the harmonic oscillator dynamics in phase-space. In this contribution we discuss the properties of these polynomials and present some applications to physical problems.
Gauging Spatial Symmetries and the Classification of Topological Crystalline Phases
NASA Astrophysics Data System (ADS)
Thorngren, Ryan; Else, Dominic V.
2018-01-01
We put the theory of interacting topological crystalline phases on a systematic footing. These are topological phases protected by space-group symmetries. Our central tool is an elucidation of what it means to "gauge" such symmetries. We introduce the notion of a crystalline topological liquid and argue that most (and perhaps all) phases of interest are likely to satisfy this criterion. We prove a crystalline equivalence principle, which states that in Euclidean space, crystalline topological liquids with symmetry group G are in one-to-one correspondence with topological phases protected by the same symmetry G , but acting internally, where if an element of G is orientation reversing, it is realized as an antiunitary symmetry in the internal symmetry group. As an example, we explicitly compute, using group cohomology, a partial classification of bosonic symmetry-protected topological phases protected by crystalline symmetries in (3 +1 ) dimensions for 227 of the 230 space groups. For the 65 space groups not containing orientation-reversing elements (Sohncke groups), there are no cobordism invariants that may contribute phases beyond group cohomology, so we conjecture that our classification is complete.
The role of space techniques in the understanding of solar variability
NASA Astrophysics Data System (ADS)
Bonnet, R. M.
1981-12-01
The advantages of using space for solar observations are discussed, and include avoidance of atmospheric effects, continuous observations by satellites, and the possibilities of solar studies from other planets or from above the ecliptic plane. Space-based viewing has allowed energy spectra studies from 310 nm down to gamma ray range, although instrument degradation due to radiation has often resulted in less precise instrument performance. Hands-on calibration on the Shuttle or the Salyut space station is seen as ameliorating the problem. Solar seismology, the design of a solar probe, solar magnetic measurement, and X-ray observations of coronal holes are outlined; the Solar Polar Mission is designed to carry UV, X-ray, and gamma ray measuring equipment. X-ray points (XRP), discovered from magnetic measurements on board Skylab, revealed that XRP varies 180 deg out of phase with respect to the sunspot number. Features and origins of the UV spectra are reviewed, and the necessity for precise measurement of the absolute intensity of the chromosphere is stressed as the means of understanding solar variability.
Phase operator problem and macroscopic extension of quantum mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozawa, M.
1997-06-01
To find the Hermitian phase operator of a single-mode electromagnetic field in quantum mechanics, the Schr{umlt o}dinger representation is extended to a larger Hilbert space augmented by states with infinite excitation by nonstandard analysis. The Hermitian phase operator is shown to exist on the extended Hilbert space. This operator is naturally considered as the controversial limit of the approximate phase operators on finite dimensional spaces proposed by Pegg and Barnett. The spectral measure of this operator is a Naimark extension of the optimal probability operator-valued measure for the phase parameter found by Helstrom. Eventually, the two promising approaches to themore » statistics of the phase in quantum mechanics are synthesized by means of the Hermitian phase operator in the macroscopic extension of the Schr{umlt o}dinger representation. {copyright} 1997 Academic Press, Inc.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erokhin, A. N., E-mail: nerokhin@mx.iki.rssi.ru; Zol’nikova, N. N.; Erokhin, N. S.
Based on the numerical solution of the nonlinear nonstationary second-order equation for the wave phase on the particle trajectory, the dynamics of surfatron acceleration of electrons by an electromagnetic wave propagating across the external magnetic field in space plasma is analyzed as a function of the electron momentum along the wave front. Numerical calculations show that, for strongly relativistic initial values of the electron momentum component along the wave front g{sub y}(0) (the other parameters of the problem being the same), electrons are trapped into the regime of ultrarelativistic surfatron acceleration within a certain interval of the initial wave phasemore » Ψ(0) on the particle trajectory. It is assumed in the calculations that vertical bar Ψ(0) vertical bar ≤ π. For strongly relativistic values of g{sub y}(0), electrons are immediately trapped by the wave for 19% of the initial values of the phase Ψ(0) (favorable phases). For the rest of the values of Ψ(0), trapping does not occur even at long times. This circumstance substantially simplifies estimations of the wave damping due to particle acceleration in subsequent calculations. The dynamics of the relativistic factor and the components of the electron velocity and momentum under surfatron acceleration is also analyzed. The obtained results are of interest for the development of modern concepts of possible mechanisms of generation of ultrarelativistic particle fluxes in relatively calm space plasma, as well as for correct interpretation of observational data on the fluxes of such particles and explanation of possible reasons for the deviation of ultrarelativistic particle spectra detected in the heliosphere from the standard power-law scalings and the relation of these variations to space weather and large-scale atmospheric processes similar to tropical cyclones.« less
1969-01-01
This 1969 artist's concept illustrates the use of three major elements of NASA's Integrated program, as proposed by President Nixon's Space Task Group. In Phases I and II, a Space Tug with a manipulator-equipped crew module removes a cargo module from an early Space Shuttle Orbiter and docks with it. In Phases III and IV, the Space Tug with attached cargo module flys toward a Nuclear Shuttle. As a result of the Space Task Group's recommendations for more commonality and integration in the American space program, Marshall Space Flight Center engineers studied many of the spacecraft depicted here.
Magnetic field shift due to mechanical vibration in functional magnetic resonance imaging.
Foerster, Bernd U; Tomasi, Dardo; Caparelli, Elisabeth C
2005-11-01
Mechanical vibrations of the gradient coil system during readout in echo-planar imaging (EPI) can increase the temperature of the gradient system and alter the magnetic field distribution during functional magnetic resonance imaging (fMRI). This effect is enhanced by resonant modes of vibrations and results in apparent motion along the phase encoding direction in fMRI studies. The magnetic field drift was quantified during EPI by monitoring the resonance frequency interleaved with the EPI acquisition, and a novel method is proposed to correct the apparent motion. The knowledge on the frequency drift over time was used to correct the phase of the k-space EPI dataset. Since the resonance frequency changes very slowly over time, two measurements of the resonance frequency, immediately before and after the EPI acquisition, are sufficient to remove the field drift effects from fMRI time series. The frequency drift correction method was tested "in vivo" and compared to the standard image realignment method. The proposed method efficiently corrects spurious motion due to magnetic field drifts during fMRI. (c) 2005 Wiley-Liss, Inc.