Sample records for phase space plotter

  1. Linking of the BENSON graph-plotter with the Elektronika-1001 computer

    NASA Technical Reports Server (NTRS)

    Valtts, I. Y.; Nilolaev, N. Y.; Popov, M. V.; Soglasnov, V. A.

    1980-01-01

    A device, developed by the Institute of Space Research of the Academy of Sciences of the USSR, for linking the Elektronika-100I computer with the BENSON graph-plotter is described. Programs are compiled which provide display of graphic and alphanumeric information. Instructions for their utilization are given.

  2. OverPlotter: A Utility for Herschel Data Processing

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Mei, Y.; Schulz, B.

    2008-08-01

    The OverPlotter utility is a GUI tool written in Java to support interactive data processing (DP) and analysis for the Herschel Space Observatory within the framework of the Herschel Common Science System (HCSS)(Wieprecht et al 2004). The tool expands upon the capabilities of the TableViewer (Zhang & Schulz 2005), providing now also the means to create additional overlays of several X/Y scatter plots within the same display area. These layers can be scaled and panned, either individually, or together as one graph. Visual comparison of data with different origins and units becomes much easier. The number of available layers is not limited, except by computer memory and performance. Presentation images can be easily created by adding annotations, labeling layers and setting colors. The tool will be very helpful especially in the early phases of Herschel data analysis, when a quick access to contents of data products is important.

  3. Rapid Prototyping: State of the Art

    DTIC Science & Technology

    2003-10-23

    Rapid Prototyping SCS Solid Creation System SLM Selective Laser Melting SLP Solid Laser diode Plotter SLS Selective Laser Sintering SOAR State of the...121,000, respectively. SLP stands for Sold Laser Diode Plotter. The machines are relatively slow and parts are small, so, to date, the products have been...Gigerenzer, H., “Directed Laser Welding of Metal Matrix Composite Structures for Space Based Applications,“ Triton Systems Inc., Chelmsford, MA., 1

  4. Subroutines GEORGE and DRASTC simplify operation of automatic digital plotter

    NASA Technical Reports Server (NTRS)

    Englel, F., III; Gray, W. H.; Richard, P. J.

    1967-01-01

    FORTRAN language subroutines enable the production of a tape for a 360-30 tape unit that controls the CALCOMP 566 Digital Incremental Plotter. This provides the plotter with instructions for graphically displaying data points with the proper scaling of axes, numbering, lettering, and tic marking.

  5. American Jihadist Terrorism: Combating a Complex Threat

    DTIC Science & Technology

    2010-12-07

    Esposito, “Terror Raids at JFK Airport Net American Alleged Terror Plotters Headed for Somalia,” abcnews.com, June 6, 2010, http://abcnews.go.com...Blotter/terror-raids- jfk - airport -net-alleged-terror-plotters/story?id= 10839045. 186 U.S. v. Mohamed Alessa and Carlos E. Almonte, Criminal Complaint... Airport Net American Alleged Terror Plotters Headed for Somalia,” ABC News, June 6, 2010, http://abcnews.go.com/Blotter/terror-raids- jfk - airport -net

  6. American Jihadist Terrorism: Combating a Complex Threat

    DTIC Science & Technology

    2010-09-20

    www.nytimes.com/2010/07/30/us/30fbi.html. 177 Richard Esposito, “Terror Raids at JFK Airport Net American Alleged Terror Plotters Headed for Somalia...abcnews.com, June 6, 2010, http://abcnews.go.com/Blotter/terror-raids- jfk - airport -net-alleged-terror-plotters/story?id= 10839045. 178 U.S. v. Mohamed... Airport Net American Alleged Terror Plotters Headed for Somalia,” ABC News, June 6, 2010, http://abcnews.go.com/Blotter/terror-raids- jfk - airport -net

  7. Effect of support flexibilty and damping on the dynamic response of a single mass flexible rotor in elastic bearings

    NASA Technical Reports Server (NTRS)

    Kirk, R. G.; Gunter, E. J.

    1972-01-01

    A steady state analysis of the shaft and the bearing housing motion was made by assuming synchronous precession of the system. The conditions under which the support system would act as a dynamic vibration absorber at the rotor critical speed were studied; plots of the rotor and support amplitudes, phase angles, and forces transmitted were evaluated by the computer, and the performance curves were automatically plotted by a CalComp plotter unit. Curves are presented on the optimization of the support housing characteristics to attenuate the rotor unbalance response over the entire rotor speed range. The complete transient motion including rotor unbalance was examined by integrating the equations of motion numerically using a modified fourth order Runge-Kutta procedure, and the resulting whirl orbits were plotted by the CalComp plotter unit. The results of the transient analysis are discussed with regards to the design optimization procedure derived from the steady-state analysis.

  8. Oscilloscope used as X-Y plotter or two-dimensional analyzer

    NASA Technical Reports Server (NTRS)

    Hansen, D.; Roy, N.

    1967-01-01

    Oscilloscope used as an X-Y plotter or two-dimensional analyzer tags each point with a yes or no, depending on a third parameter. The usual square-wave pulse is replaced on the scope by a single information-bearing dot which lengthens to a dash in response to a simultaneous event.

  9. Circuit board routing attachment for Fermilab Gerber plotter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindenmeyer, C.

    1984-05-10

    A new and potentially important method of producing large circuit boards has been developed at Fermilab. A Gerber Flat Bed Plotter with an active area of 5' x 16' has been fitted with a machining head to produce a circuit board without the use of photography or chemicals. The modifications of the Gerber Plotter do not impair its use as a photoplotter or pen plotter, the machining head is merely exchanged with the standard attachments. The modifications to the program are minimal; this will be described in another report. The machining head is fitted with an air bearing motorized spindlemore » driven at a speed of 40,000 rpm to 90,000 rpm. The spindle also is provided with air bearings on its outside diameter, offering frictionless vertical travel guidance. Vertical travel of the spindle is driven by a spring return single acting air cylinder. An adjustable hydraulic damper slows the spindle travel near the end of its downward stroke. Two programmable stops control spindle down stroke position, and limit switches are provided for position feedback to the control system. A vacuum system collects chips at the cutter head. No lubrication or regular maintenance is required. The circuit board to be fabricated is supported on a porous plastic mat which allows table vacuum to hold the board in place while allowing the cutters or drills to cut through the board without damaging the rubber platen of the plotter. The perimeter of the board must be covered to the limits of the table vacuum area used to prevent excessive leakage.« less

  10. Function Plotters for Secondary Math Teachers. A MicroSIFT Quarterly Report.

    ERIC Educational Resources Information Center

    Weaver, Dave; And Others

    This report examines mathematical graphing utilities or function plotters for use in introductory algebra classes of more advanced courses. Each product selected for inclusion in this report is able to construct the graph of a given equation on the screen and serves as a utility which may be used by the student for an open-ended exploration of a…

  11. Development of Low-cost plotter for educational purposes using Arduino

    NASA Astrophysics Data System (ADS)

    Karthik, Siriparapu; Thirumal Reddy, Palwai; Marimuthu, K. Prakash

    2017-08-01

    With the development of CAD/CAM/CAE concept to product realization time has reduced drastically. Most of the activities such as design, drafting, and visualizations are carried out using high-end computers and commercial software. This has reduced the overall lead-time to market. It is important in the current scenario to equip the students with knowledge of advanced technological developments in order to use them effectively. However, the cost associated with the systems are very high which is not affordable to students. The present work is an attempt to build a low-cost plotter integrating some of the software that are available and components got from scrapped electronic devices. Here the authors are introducing G-code plotter with 3-axis which can implement the given g-code in 2D plane (X-Y). Lifting pen and adjusting to the base component is in the Z-axis. All conventional plotting devices existing until date are costly and need basic knowledge before operating. Our aim is to make students understand the working of plotter and the usage of G-code, achieving this at a much affordable cost. Arduino Uno controls the stepper motors, which can accurately plot the given dimensions.

  12. WCPP-THE WOLF PLOTTING AND CONTOURING PACKAGE

    NASA Technical Reports Server (NTRS)

    Masaki, G. T.

    1994-01-01

    The WOLF Contouring and Plotting Package provides the user with a complete general purpose plotting and contouring capability. This package is a complete system for producing line printer, SC4020, Gerber, Calcomp, and SD4060 plots. The package has been designed to be highly flexible and easy to use. Any plot from a quick simple plot (which requires only one call to the package) to highly sophisticated plots (including motion picture plots) can be easily generated with only a basic knowledge of FORTRAN and the plot commands. Anyone designing a software system that requires plotted output will find that this package offers many advantages over the standard hardware support packages available. The WCPP package is divided into a plot segment and a contour segment. The plot segment can produce output for any combination of line printer, SC4020, Gerber, Calcomp, and SD4060 plots. The line printer plots allow the user to have plots available immediately after a job is run at a low cost. Although the resolution of line printer plots is low, the quick results allows the user to judge if a high resolution plot of a particular run is desirable. The SC4020 and SD4060 provide high speed high resolution cathode ray plots with film and hard copy output available. The Gerber and Calcomp plotters provide very high quality (of publishable quality) plots of good resolution. Being bed or drum type plotters, the Gerber and Calcomp plotters are usually slow and not suited for large volume plotting. All output for any or all of the plotters can be produced simultaneously. The types of plots supported are: linear, semi-log, log-log, polar, tabular data using the FORTRAN WRITE statement, 3-D perspective linear, and affine transformations. The labeling facility provides for horizontal labels, vertical labels, diagonal labels, vector characters of a requested size (special character fonts are easily implemented), and rotated letters. The gridding routines label the grid lines according to user specification. Special line features include multiple lines, dashed lines, and tic marks. The contour segment of this package is a collection of subroutines which can be used to produce contour plots and perform related functions. The package can contour any data which can be placed on a grid or data which is regularly spaced, including any general affine or polar grid data. The package includes routines which will grid random data. Contour levels can be specified at any values desired. Input data can be smoothed with undefined points being acceptable where data is unreliable or unknown. Plots which are extremely large or detailed can be automatically output in parts to improve resolution or overcome plotter size limitations. The contouring segment uses the plot segment for actual plotting, thus all the features described for the plotting segment are available to the user of the contouring segment. Included with this package are two data bases for producing world map plots in Mercator projection. One data base provides just continent outlines and another provides continent outlines and national borders in great detail. This package is written in FORTRAN IV and IBM OS ASSEMBLER and has been implemented on an IBM 360 with a central memory requirement of approximately 140K of 8 bit bytes. The ASSEMBLER routines are basic plotter interface routines. The WCPP package was developed in 1972.

  13. Selected Tether Applications Cost Model

    NASA Technical Reports Server (NTRS)

    Keeley, Michael G.

    1988-01-01

    Diverse cost-estimating techniques and data combined into single program. Selected Tether Applications Cost Model (STACOM 1.0) is interactive accounting software tool providing means for combining several independent cost-estimating programs into fully-integrated mathematical model capable of assessing costs, analyzing benefits, providing file-handling utilities, and putting out information in text and graphical forms to screen, printer, or plotter. Program based on Lotus 1-2-3, version 2.0. Developed to provide clear, concise traceability and visibility into methodology and rationale for estimating costs and benefits of operations of Space Station tether deployer system.

  14. Experimental and Computational Modeling of Rarefaction Wave Eliminators Suitable for the BRL 2.44 m Shock Tube

    DTIC Science & Technology

    1983-06-01

    made directly from the oscilloscope. Finai data processing was completed with the computer, printer , and plotter. Tables and plots of pressure-time...BASIC DATA ACQUISITION PRINTER FINAL DATA REDUCTION TEKTRONIX 4641 HARD COPY[ TEKTRONIX 4631 PLOTTER COMPUTER TEKTRONIX TEKTRONIX I 4662 4052 DIGITAL...79409 Columbus, OH 43201 1 University of Arkansas 1 Director Department of Physics Applied Physics Laboratory ATTN: Prof 0. Zinke The Johns Hopkins

  15. Simple and fast polydimethylsiloxane (PDMS) patterning using a cutting plotter and vinyl adhesives to achieve etching results.

    PubMed

    Hyun Kim; Sun-Young Yoo; Ji Sung Kim; Zihuan Wang; Woon Hee Lee; Kyo-In Koo; Jong-Mo Seo; Dong-Il Cho

    2017-07-01

    Inhibition of polydimethylsiloxane (PDMS) polymerization could be observed when spin-coated over vinyl substrates. The degree of polymerization, partially curing or fully curing, depended on the PDMS thickness coated over the vinyl substrate. This characteristic was exploited to achieve simple and fast PDMS patterning method using a vinyl adhesive layer patterned through a cutting plotter. The proposed patterning method showed results resembling PDMS etching. Therefore, patterning PDMS over PDMS, glass, silicon, and gold substrates were tested to compare the results with conventional etching methods. Vinyl stencils with widths ranging from 200μm to 1500μm were used for the procedure. To evaluate the accuracy of the cutting plotter, stencil designed on the AutoCAD software and the actual stencil widths were compared. Furthermore, this method's accuracy was also evaluated by comparing the widths of the actual stencils and etched PDMS results.

  16. Particle parameter analyzing system. [x-y plotter circuits and display

    NASA Technical Reports Server (NTRS)

    Hansen, D. O.; Roy, N. L. (Inventor)

    1969-01-01

    An X-Y plotter circuit apparatus is described which displays an input pulse representing particle parameter information, that would ordinarily appear on the screen of an oscilloscope as a rectangular pulse, as a single dot positioned on the screen where the upper right hand corner of the input pulse would have appeared. If another event occurs, and it is desired to display this event, the apparatus is provided to replace the dot with a short horizontal line.

  17. Towards Standardization in Terminal Ballistics Testing: Velocity Representation

    DTIC Science & Technology

    1976-01-01

    d vd vr does not exist at vV, it is true that -. Also avs rd s t d v s approximates...29 3b. Sample of plotter output: v versus v s -r.. ....... .. 30s S 3c. Sample of plotter output: v /vs versus vr/avs. ...... 31 I ’ i Li- Preceding...implicit in sets of ( v s , v r) data. A form is proposed as being sufficiently simple and versatile to usefully and realistically model

  18. High Energy Electron Radiation Degradation of Gallium Arsenide Solar Cells.

    DTIC Science & Technology

    1986-03-01

    Subroutine Print Instruct ions Print / Completed/ Sample Ch . 0 Return Calculate C1 6 Print C1 IISample Ch . 2 70 -j.. .,.1-I.,.... ,.L.L...PLOTTER * 270 * AND THE CONNECTION DIAGRAM FOR THE SYSTEM MAY * 280 " * MAY BE FOUND IN CH 2, FIGURE (3). THE GPIB * 290’ * DRIVER IS REPRODUCED FROM REF...PLOT I-V CURVE ON HP 7845 PLOTTER." 2180 PRINT 2190 PRINT ř. PLOT I-V CURVE ON RGB MONITOR." 2200 PRINT 2210 PRINT Ś. WRITE I-V DATA TO FLOPPY DISK

  19. Mission Operations Control Room Activities during STS-2 mission

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Mission Operations Control Room (MOCR) activities during STS-2 mission. President Ronald Reagan is briefed by Dr. Christopher C. Kraft, Jr., JSC Director, who points toward the orbiter spotter on the projection plotter at the front of the MOCR (39499); President Reagan joking with STS-2 astronauts during space to ground conversation (39500); Mission Specialist/Astronaut Sally K. Ride communicates with the STS-2 crew from the spacecraft communicator console (39501); Charles R. Lewis, bronze team Flight Director, monitors activity from the STS-2 crew. He is seated at the flight director console in MOCR (39502); Eugene F. Kranz, Deputy Director of Flight Operations at JSC answers a question during a press conference on Nov. 13, 1981. He is flanked by Glynn S. Lunney, Manager, Space Shuttle Program Office, JSC; and Dr. Christopher C. Kraft, Jr., Director of JSC (39503).

  20. LANDSAT digital data for water pollution and water quality studies in Southern Scandinavia

    NASA Technical Reports Server (NTRS)

    Hellden, U.; Akersten, I.

    1977-01-01

    Spectral diagrams, illustrating the spectral characteristics of different water types, were constructed by means of simple statistical analysis of the various reflectance properties of water areas in Southern Scandinavia as registered by LANDSAT-1. There were indications that water whose spectral reproduction is dominated by chlorophyllous matter (phytoplankton) can be distinguished from water dominated by nonchlorophyllous matter. Differences between lakes, as well as the patchiness of individual lakes, concerning secchi disc transparency could be visualized after classification and reproduction in black and white and in color by means of line printer, calcomp plotter (CRT), and ink jet plotter respectively.

  1. Van Allen Probes Science Gateway and Space Weather Data Processing

    NASA Astrophysics Data System (ADS)

    Romeo, G.; Barnes, R. J.; Weiss, M.; Fox, N. J.; Mauk, B.; Potter, M.; Kessel, R.

    2014-12-01

    The Van Allen Probes Science Gateway acts as a centralized interface to the instrument Science Operation Centers (SOCs), provides mission planning tools, and hosts a number of science related activities such as the mission bibliography. Most importantly, the Gateway acts as the primary site for processing and delivering the VAP Space Weather data to users. Over the past year, the web-site has been completely redesigned with the focus on easier navigation and improvements of the existing tools such as the orbit plotter, position calculator and magnetic footprint tool. In addition, a new data plotting facility has been added. Based on HTML5, which allows users to interactively plot Van Allen Probes summary and space weather data. The user can tailor the tool to display exactly the plot they wish to see and then share this with other users via either a URL or by QR code. Various types of plots can be created, including simple time series, data plotted as a function of orbital location, and time versus L-Shell. We discuss the new Van Allen Probes Science Gateway and the Space Weather Data Pipeline.

  2. Analysis of a dual-reflector antenna system using physical optics and digital computers

    NASA Technical Reports Server (NTRS)

    Schmidt, R. F.

    1972-01-01

    The application of physical-optics diffraction theory to a deployable dual-reflector geometry is discussed. The methods employed are not restricted to the Conical-Gregorian antenna, but apply in a general way to dual and even multiple reflector systems. Complex vector wave methods are used in the Fresnel and Fraunhofer regions of the reflectors. Field amplitude, phase, polarization data, and time average Poynting vectors are obtained via an IBM 360/91 digital computer. Focal region characteristics are plotted with the aid of a CalComp plotter. Comparison between the GSFC Huygens wavelet approach, JPL measurements, and JPL computer results based on the near field spherical wave expansion method are made wherever possible.

  3. A high precision ultrasonic system for vibration measurements

    NASA Astrophysics Data System (ADS)

    Young, M. S.; Li, Y. C.

    1992-11-01

    A microcomputer-aided ultrasonic system that can be used to measure the vibratory displacements of an object is presented. A pair of low cost 40-kHz ultrasonic transducers is used to transmit ultrasound toward an object and receive the ultrasound reflected from the object. The relative motion of the object modulates the phase angle difference between the transmitted and received ultrasound signals. A single-chip microcomputer-based phase detector was designed to record and analyze the phase shift information which is then sent to a PC-AT microcomputer for processing. We have developed an ingenious method to reconstruct the relative motion of an object from the acquired data of the phase difference changes. A digital plotter based experiment was also designed for testing the performance of the whole system. The measured accuracy of the system in the reported experiments is within +/- 0.4 mm and the theoretical maximal measurable speed of the object is 89.6 cm/s. The main advantages of this ultrasonic vibration measurement system are high resolution, low cost, noncontact measurement, and easy installation.

  4. Computer-assisted photogrammetric mapping systems for geologic studies-A progress report

    USGS Publications Warehouse

    Pillmore, C.L.; Dueholm, K.S.; Jepsen, H.S.; Schuch, C.H.

    1981-01-01

    Photogrammetry has played an important role in geologic mapping for many years; however, only recently have attempts been made to automate mapping functions for geology. Computer-assisted photogrammetric mapping systems for geologic studies have been developed and are currently in use in offices of the Geological Survey of Greenland at Copenhagen, Denmark, and the U.S. Geological Survey at Denver, Colorado. Though differing somewhat, the systems are similar in that they integrate Kern PG-2 photogrammetric plotting instruments and small desk-top computers that are programmed to perform special geologic functions and operate flat-bed plotters by means of specially designed hardware and software. A z-drive capability, in which stepping motors control the z-motions of the PG-2 plotters, is an integral part of both systems. This feature enables the computer to automatically position the floating mark on computer-calculated, previously defined geologic planes, such as contacts or the base of coal beds, throughout the stereoscopic model in order to improve the mapping capabilities of the instrument and to aid in correlation and tracing of geologic units. The common goal is to enhance the capabilities of the PG-2 plotter and provide a means by which geologists can make conventional geologic maps more efficiently and explore ways to apply computer technology to geologic studies. ?? 1981.

  5. Developments in analytical instrumentation

    NASA Astrophysics Data System (ADS)

    Petrie, G.

    The situation regarding photogrammetric instrumentation has changed quite dramatically over the last 2 or 3 years with the withdrawal of most analogue stereo-plotting machines from the market place and their replacement by analytically based instrumentation. While there have been few new developments in the field of comparators, there has been an explosive development in the area of small, relatively inexpensive analytical stereo-plotters based on the use of microcomputers. In particular, a number of new instruments have been introduced by manufacturers who mostly have not been associated previously with photogrammetry. Several innovative concepts have been introduced in these small but capable instruments, many of which are aimed at specialised applications, e.g. in close-range photogrammetry (using small-format cameras); for thematic mapping (by organisations engaged in environmental monitoring or resources exploitation); for map revision, etc. Another innovative and possibly significant development has been the production of conversion kits to convert suitable analogue stereo-plotting machines such as the Topocart, PG-2 and B-8 into fully fledged analytical plotters. The larger and more sophisticated analytical stereo-plotters are mostly being produced by the traditional mainstream photogrammetric systems suppliers with several new instruments and developments being introduced at the top end of the market. These include the use of enlarged photo stages to handle images up to 25 × 50 cm format; the complete integration of graphics workstations into the analytical plotter design; the introduction of graphics superimposition and stereo-superimposition; the addition of correlators for the automatic measurement of height, etc. The software associated with this new analytical instrumentation is now undergoing extensive re-development with the need to supply photogrammetric data as input to the more sophisticated G.I.S. systems now being installed by clients, instead of the data being used mostly in the digital mapping systems operated in-house by mapping organisations. These various new hardware and software developments are reported upon and analysed in this Invited Paper presented to ISPRS Commission II at the 1988 Kyoto Congress.

  6. The effect of support flexibility and damping on the dynamic response of a single mass flexible rotor in elastic bearings

    NASA Technical Reports Server (NTRS)

    Kirk, R. G.; Gunter, E. J.

    1972-01-01

    The dynamic unabalance response and transient motion of the single mass Jeffcott rotor in elastic bearings mounted on damped, flexible supports are discussed. A steady state analysis of the shaft and the bearing housing motion was made by assuming synchronous precession of the system. The conditions under which the support system would act as a dynamic vibration absorber at the rotor critical speed were studied. Plots of the rotor and support amplitudes, phase angles, and forces transmitted were evaluated by the computer and the performance curves were plotted by an automatic plotter unit. Curves are presented on the optimization of the support housing characteristics of attenuate the rotor synchronous unbalance response.

  7. LION4; LION; three-dimensional temperature distribution program. [CDC6600,7600; UNIVAC1108; IBM360,370; FORTRAN IV and ASCENT (CDC6600,7600), FORTRAN IV (UNIVAC1108A,B and IBM360,370)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Binney, E.J.

    LION4 is a computer program for calculating one-, two-, or three-dimensional transient and steady-state temperature distributions in reactor and reactor plant components. It is used primarily for thermal-structural analyses. It utilizes finite difference techniques with first-order forward difference integration and is capable of handling a wide variety of bounding conditions. Heat transfer situations accommodated include forced and free convection in both reduced and fully-automated temperature dependent forms, coolant flow effects, a limited thermal radiation capability, a stationary or stagnant fluid gap, a dual dependency (temperature difference and temperature level) heat transfer, an alternative heat transfer mode comparison and selection facilitymore » combined with heat flux direction sensor, and any form of time-dependent boundary temperatures. The program, which handles time and space dependent internal heat generation, can also provide temperature dependent material properties with limited non-isotropic properties. User-oriented capabilities available include temperature means with various weightings and a complete heat flow rate surveillance system.CDC6600,7600;UNIVAC1108;IBM360,370; FORTRAN IV and ASCENT (CDC6600,7600), FORTRAN IV (UNIVAC1108A,B and IBM360,370); SCOPE (CDC6600,7600), EXEC8 (UNIVAC1108A,B), OS/360,370 (IBM360,370); The CDC6600 version plotter routine LAPL4 is used to produce the input required by the associated CalComp plotter for graphical output. The IBM360 version requires 350K for execution and one additional input/output unit besides the standard units.« less

  8. A simulation model for wind energy storage systems. Volume 3: Program descriptions

    NASA Technical Reports Server (NTRS)

    Warren, A. W.; Edsinger, R. W.; Burroughs, J. D.

    1977-01-01

    Program descriptions, flow charts, and program listings for the SIMWEST model generation program, the simulation program, the file maintenance program, and the printer plotter program are given. For Vol 2, see .

  9. A study of digital holographic filter generation

    NASA Technical Reports Server (NTRS)

    Calhoun, M.; Ingels, F.

    1976-01-01

    Problems associated with digital computer generation of holograms are discussed along with a criteria for producing optimum digital holograms. This criteria revolves around amplitude resolution and spatial frequency limitations induced by the computer and plotter process.

  10. Computerized Machine for Cutting Space Shuttle Thermal Tiles

    NASA Technical Reports Server (NTRS)

    Ramirez, Luis E.; Reuter, Lisa A.

    2009-01-01

    A report presents the concept of a machine aboard the space shuttle that would cut oversized thermal-tile blanks to precise sizes and shapes needed to replace tiles that were damaged or lost during ascent to orbit. The machine would include a computer-controlled jigsaw enclosed in a clear acrylic shell that would prevent escape of cutting debris. A vacuum motor would collect the debris into a reservoir and would hold a tile blank securely in place. A database stored in the computer would contain the unique shape and dimensions of every tile. Once a broken or missing tile was identified, its identification number would be entered into the computer, wherein the cutting pattern associated with that number would be retrieved from the database. A tile blank would be locked into a crib in the machine, the shell would be closed (proximity sensors would prevent activation of the machine while the shell was open), and a "cut" command would be sent from the computer. A blade would be moved around the crib like a plotter, cutting the tile to the required size and shape. Once the tile was cut, an astronaut would take a space walk for installation.

  11. Using Geocoded Databases in Teaching Urban Historical Geography.

    ERIC Educational Resources Information Center

    Miller, Roger P.

    1986-01-01

    Provides information regarding hardware and software requirements for using geocoded databases in urban historical geography. Reviews 11 IBM and Apple Macintosh database programs and describes the pen plotter and digitizing table interface used with the databases. (JDH)

  12. Astronomy Graphics.

    ERIC Educational Resources Information Center

    Hubin, W. N.

    1982-01-01

    Various microcomputer-generated astronomy graphs are presented, including those of constellations and planetary motions. Graphs were produced on a computer-driver plotter and then reproduced for class use. Copies of the programs that produced the graphs are available from the author. (Author/JN)

  13. A Simple Huckel Molecular Orbital Plotter

    ERIC Educational Resources Information Center

    Ramakrishnan, Raghunathan

    2013-01-01

    A program is described and presented to readily plot the molecular orbitals from a Huckel calculation. The main features of the program and the scope of its applicability are discussed through some example organic molecules. (Contains 2 figures.)

  14. VAX-Gerber node link. Revision 1. 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isobe, G.W.

    1985-12-01

    A communications link between the CADDE VAX 11/750 and the Gerber Photo-Plotter 4135 was desired at LLNL. The process of creating this link is discussed and the features of this project are described. 4 figs.

  15. Three-dimensional plotter technology for fabricating polymeric scaffolds with micro-grooved surfaces.

    PubMed

    Son, JoonGon; Kim, GeunHyung

    2009-01-01

    Various mechanical techniques have been used to fabricate biomedical scaffolds, including rapid prototyping (RP) devices that operate from CAD files of the target feature information. The three-dimensional (3-D) bio-plotter is one RP system that can produce design-based scaffolds with good mechanical properties for mimicking cartilage and bones. However, the scaffolds fabricated by RP have very smooth surfaces, which tend to discourage initial cell attachment. Initial cell attachment, migration, differentiation and proliferation are strongly dependent on the chemical and physical characteristics of the scaffold surface. In this study, we propose a new 3-D plotting method supplemented with a piezoelectric system for fabricating surface-modified scaffolds. The effects of the physically-modified surface on the mechanical and hydrophilic properties were investigated, and the results of cell culturing of chondrocytes indicate that this technique is a feasible new method for fabricating high-quality 3-D polymeric scaffolds.

  16. HEATPLOT: a temperature distribution plotting program for heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elrod, D.C.; Turner, W.D.

    1977-07-01

    HEATPLOT is a temperature distribution plotting program that may be used with HEATING5, a generalized heat conduction code. HEATPLOT is capable of drawing temperature contours (isotherms), temperature-time profiles, and temperature-distance profiles from the current HEATING5 temperature distribution or from temperature changes relative to the initial temperature distribution. Contour plots may be made for two- or three-dimensional models. Temperature-time profiles and temperature-distance profiles may be made for one-, two-, and three-dimensional models. HEATPLOT is an IBM 360/370 computer code which uses the DISSPLA plotting package. Plots may be created on the CALCOMP pen-and-ink, and CALCOMP cathode ray tube (CRT), or themore » EAI pen-and-ink plotters. Printer plots may be produced or a compressed data set that may be routed to any of the available plotters may be made.« less

  17. LOFT data acquisition and visual display system (DAVDS) presentation program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bullock, M.G.; Miyasaki, F.S.

    1976-03-01

    The Data Acquisition and Visual Display System (DAVDS) at the Loss-of-Fluid Test Facility (LOFT) has 742 data channel recording capability of which 576 are recorded digitally. The purpose of this computer program is to graphically present the data acquired and/or processed by the LOFT DAVDS. This program takes specially created plot data buffers of up to 1024 words and generates time history plots on the system electrostatic printer-plotter. The data can be extracted from two system input devices: Magnetic disk or digital magnetic tape. Versatility has been designed in the program by providing the user three methods of scaling plots:more » Automatic, control record, and manual. Time required to produce a plot on the system electrostatic printer-plotter varies from 30 to 90 seconds depending on the options selected. The basic computer and program details are described.« less

  18. Observing campaign on 5 variables in Cygnus

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2015-10-01

    Dr. George Wallerstein (University of Washington) has requested AAVSO assistance in monitoring 5 variable stars in Cygnus now through December 2015. He is working to complete the radial velocity curves for these stars, and needs optical light curves for correlation with the spectra he will be obtaining. Wallerstein writes: "I need to know the time of max or min so I can assign a phase to each spectrum. Most classical Cepheids are quite regular so once a time of max or min can be established I can derive the phase of each observation even if my obs are several cycles away from the established max or min. MZ Cyg is a type II Cepheid and they are less regular than their type I cousins." SZ Cyg, X Cyg, VX Cyg, and TX Cyg are all classical Cepheids. V and visual observations are requested. These are long-period Cepheids, so nightly observations are sufficient. Finder charts with sequence may be created using the AAVSO Variable Star Plotter (https://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details.

  19. Development of medical data information systems

    NASA Technical Reports Server (NTRS)

    Anderson, J.

    1971-01-01

    Computerized storage and retrieval of medical information is discussed. Tasks which were performed in support of the project are: (1) flight crew health stabilization computer system, (2) medical data input system, (3) graphic software development, (4) lunar receiving laboratory support, and (5) Statos V printer/plotter software development.

  20. Some Automated Cartography Developments at the Defense Mapping Agency.

    DTIC Science & Technology

    1981-01-01

    on a pantographic router creating a laminate step model which was moulded in plaster for carving Into a terrain model. This section will trace DMA’s...offering economical automation. Precision flatbed Concord plotters were brought into DMA with sufficiently programmable control computers to perform these

  1. Laboratory Connections: Review of Two Commercial Interfacing Packages.

    ERIC Educational Resources Information Center

    Powers, Michael H.

    1989-01-01

    Evaluates two Apple II interfacing packages designed to measure pH: (1) "Experiments in Chemistry" by HRM Software and (2) "Voltage Plotter III" by Vernier Software. Provides characteristics and screen dumps of each package. Reports both systems are suitable for high school or beginning college laboratories. (MVL)

  2. Computer Graphics.

    ERIC Educational Resources Information Center

    Halpern, Jeanne W.

    1970-01-01

    Computer graphics have been called the most exciting development in computer technology. At the University of Michigan, three kinds of graphics output equipment are now being used: symbolic printers, line plotters or drafting devices, and cathode-ray tubes (CRT). Six examples are given that demonstrate the range of graphics use at the University.…

  3. Non Contacting Evaluation of Strains and Cracking Using Optical and Infrared Imaging Techniques

    DTIC Science & Technology

    1988-08-22

    Compatible Zenith Z-386 microcomputer with plotter II. 3-D Motion Measurinq System 1. Complete OPTOTRAK three dimensional digitizing system. System includes...acquisition unit - 16 single ended analog input channels 3. Data Analysis Package software (KINEPLOT) 4. Extra OPTOTRAK Camera (max 224 per system

  4. Oklahoma's Mobile Computer Graphics Laboratory.

    ERIC Educational Resources Information Center

    McClain, Gerald R.

    This Computer Graphics Laboratory houses an IBM 1130 computer, U.C.C. plotter, printer, card reader, two key punch machines, and seminar-type classroom furniture. A "General Drafting Graphics System" (GDGS) is used, based on repetitive use of basic coordinate and plot generating commands. The system is used by 12 institutions of higher education…

  5. Quality Improvement: Does the Air Force Systems Command Practice What It Preaches

    DTIC Science & Technology

    1990-03-01

    without his assistance in getting supplies, computers, and plotters. Another special thanks goes to my committee chairman. Dr Stephen Blank. who provided...N.J.: Prentice-Hall. 1986). 166. 5. Ibid.. 181. 6. Sidney Siegel. Nonparametric Statistics for the Behavioral Sciences (New York: Mc- Graw -Hill. 1956

  6. Project Solo; Newsletter Number Seven.

    ERIC Educational Resources Information Center

    Pittsburgh Univ., PA. Project Solo.

    The current curriculum modules under development at Project Solo are listed. The modules are grouped under the subject matter that they are designed to teach--algebra II, biology, calculus, chemistry, computer science, 12th grade math, physics, social science. Special programs written for use on the Hewlett-Packard Plotter are listed that may be…

  7. CERC Field Research Facility Environmental Data Summary, 1977-79.

    DTIC Science & Technology

    1982-12-01

    Motorola "Mini-Ranger," coupled to a Hewlett-Packard Mini-Computer and flatbed plotter. This positioning system was put together and operated by Prank... laminations within the core. While one diver collected the sample, the second diver recorded conditions on the bottom. This description included sediment

  8. U.S. Strategic Communication Policy Toward the South American Andean Ridge

    DTIC Science & Technology

    2012-02-17

    military’s links to paramilitary groups. Nonetheless, just before President Alvaro Uribe visited President Bush in August 2005, the State...coup plotters only to find that Chavez was back in power. In Colombia, Uribe successfully moved to change the Colombian constitution to allow for his

  9. Topoclimatic aspects of developmental suitability in the metropolitan landscape

    Treesearch

    Spencer A., Jr. Joyner; Raymond S. Bradley; Robert E., Jr. Reiter

    1977-01-01

    A computer-based procedure for geographically identifying rating, and ranking topoclimatic characteristics is described. The influences of topography, land use, and soils are considered and combined into a single composite topoclimate developmental suitability map drawn by a Cal Comp plotter. By allocating development to the most suitable topoclimate areas, the long-...

  10. Credibility of the threat from a radiological dispersal device by terrorists within the United States

    DTIC Science & Technology

    2016-06-10

    on assessing the probability of an RDD attack, otherwise known as a “dirty bomb ,” within the US and its territories. Currently, there is an...officials arrested plotters planning to employ a dirty bomb utilizing americium obtained from smoke detectors.7 Officials thought it extremely unlikely

  11. Simulating forest pictures by impact printers

    Treesearch

    Elliot L. Amidon; E. Joyce Dye

    1978-01-01

    Two mechanical devices that are mainly used to print computer output in text form can simulate pictures of terrain and forests. The line printer, which is available for batch processing at many computer installations, can approximate halftones by using overstruck characters to produce successively larger "dots." The printer/plotter, which is normally used as...

  12. An Architectural Design System Based on Computer Graphics.

    ERIC Educational Resources Information Center

    MacDonald, Stephen L.; Wehrli, Robert

    The recent developments in computer hardware and software are presented to inform architects of this design tool. Technical advancements in equipment include--(1) cathode ray tube displays, (2) light pens, (3) print-out and photo copying attachments, (4) controls for comparison and selection of images, (5) chording keyboards, (6) plotters, and (7)…

  13. Cool-and Unusual-CAD Applications

    ERIC Educational Resources Information Center

    Calhoun, Ken

    2004-01-01

    This article describes several very useful applications of AutoCAD that may lie outside the normal scope of application. AutoCAD commands used in this article are based on AutoCAD 2000I. The author and his students used a Hewlett Packard 750C DesignJet plotter for plotting. (Contains 5 figures and 5 photos.)

  14. Circuit For Current-vs.-Voltage Tests Of Semiconductors

    NASA Technical Reports Server (NTRS)

    Huston, Steven W.

    1991-01-01

    Circuit designed for measurement of dc current-versus-voltage characteristics of semiconductor devices. Operates in conjunction with x-y pen plotter or digital storage oscilloscope, which records data. Includes large feedback resistors to prevent high currents damaging device under test. Principal virtues: low cost, simplicity, and compactness. Also used to evaluate diodes and transistors.

  15. Rarefaction Wave Eliminator Concepts For A Large Blast/Thermal Simulator.

    DTIC Science & Technology

    1985-02-01

    hard copies of the pressure-time records. Final data process- ing was completed with the computer, printer , and plotter. Plots of pressure- time records...F ATTN: Prof 0. Zinke Fayetteville, AR 72701 Cdr, CRDC, AMCCOM ATTI: 4O-SPS-IL University of California PM=-J Lawrence Livermore Lab SOM-RSP-A ATTN

  16. Computer Exercises in Systems and Fields Experiments

    ERIC Educational Resources Information Center

    Bacon, C. M.; McDougal, J. R.

    1971-01-01

    Laboratory activities give students an opportunity to interact with computers in modes ranging from remote terminal use in laboratory experimentation to the direct hands-on use of a small digital computer with disk memory and on-line plotter, and finally to the use of a large computer under closed-shop operation. (Author/TS)

  17. Radar, target and ranging

    NASA Astrophysics Data System (ADS)

    1984-09-01

    This Test Operations Procedure (TOP) provides conventional test methods employing conventional test instrumentation for testing conventional radars. Single tests and subtests designed to test radar components, transmitters, receivers, antennas, etc., and system performance are conducted with single item instruments such as meters, generators, attenuators, counters, oscillators, plotters, etc., and with adequate land areas for conducting field tests.

  18. Development and Implementation of Efficiency-Improving Analysis Methods for the SAGE III on ISS Thermal Model Originating

    NASA Technical Reports Server (NTRS)

    Liles, Kaitlin; Amundsen, Ruth; Davis, Warren; Scola, Salvatore; Tobin, Steven; McLeod, Shawn; Mannu, Sergio; Guglielmo, Corrado; Moeller, Timothy

    2013-01-01

    The Stratospheric Aerosol and Gas Experiment III (SAGE III) instrument is the fifth in a series of instruments developed for monitoring aerosols and gaseous constituents in the stratosphere and troposphere. SAGE III will be delivered to the International Space Station (ISS) via the SpaceX Dragon vehicle in 2015. A detailed thermal model of the SAGE III payload has been developed in Thermal Desktop (TD). Several novel methods have been implemented to facilitate efficient payload-level thermal analysis, including the use of a design of experiments (DOE) methodology to determine the worst-case orbits for SAGE III while on ISS, use of TD assemblies to move payloads from the Dragon trunk to the Enhanced Operational Transfer Platform (EOTP) to its final home on the Expedite the Processing of Experiments to Space Station (ExPRESS) Logistics Carrier (ELC)-4, incorporation of older models in varying unit sets, ability to change units easily (including hardcoded logic blocks), case-based logic to facilitate activating heaters and active elements for varying scenarios within a single model, incorporation of several coordinate frames to easily map to structural models with differing geometries and locations, and streamlined results processing using an Excel-based text file plotter developed in-house at LaRC. This document presents an overview of the SAGE III thermal model and describes the development and implementation of these efficiency-improving analysis methods.

  19. Experiences with semiautomatic aerotriangulation on digital photogrammetric stations

    NASA Astrophysics Data System (ADS)

    Kersten, Thomas P.; Stallmann, Dirk

    1995-12-01

    With the development of higher-resolution scanners, faster image-handling capabilities, and higher-resolution screens, digital photogrammetric workstations promise to rival conventional analytical plotters in functionality, i.e. in the degree of automation in data capture and processing, and in accuracy. The availability of high quality digital image data and inexpensive high capacity fast mass storage offers the capability to perform accurate semi- automatic or automatic triangulation of digital aerial photo blocks on digital photogrammetric workstations instead of analytical plotters. In this paper, we present our investigations and results on two photogrammetric triangulation blocks, the OEEPE (European Organisation for Experimental Photogrammetric Research) test block (scale 1;4'000) and a Swiss test block (scale 1:12'000) using digitized images. Twenty-eight images of the OEEPE test block were scanned on the Zeiss/Intergraph PS1 and the digital images were delivered with a resolution of 15 micrometer and 30 micrometer, while 20 images of the Swiss test block were scanned on the Desktop Publishing Scanner Agfa Horizon with a resolution of 42 micrometer and on the PS1 with 15 micrometer. Measurements in the digital images were performed on the commercial Digital photogrammetric Station Leica/Helava DPW770 and with basic hard- and software components of the Digital Photogrammetric Station DIPS II, an experimental system of the Institute of Geodesy and Photogrammetry, ETH Zurich. As a reference, the analog images of both photogrammetric test blocks were measured at analytical plotters. On DIPS II measurements of fiducial marks, signalized and natural tie points were performed by least squares template and image matching, while on DPW770 all points were measured by the cross correlation technique. The observations were adjusted in a self-calibrating bundle adjustment. The comparisons between these results and the experiences with the functionality of the commercial and the experimental system are presented.

  20. MOLECULAR DESIGNER: an interactive program for the display of protein structure on the IBM-PC.

    PubMed

    Hannon, G J; Jentoft, J E

    1985-09-01

    A BASIC interactive graphics program has been developed for the IBM-PC which utilizes the graphics capabilities of that computer to display and manipulate protein structure from coordinates. Structures may be generated from typed files, or from Brookhaven National Laboratories' Protein Data Bank data tapes. Once displayed, images may be rotated, translated and expanded to any desired size. Figures may be viewed as ball-and-stick or space-filling models. Calculated multiple-point perspective may also be added to the display. Docking manipulations are possible since more than a single figure may be displayed and manipulated simultaneously. Further, stereo images and red/blue three-dimensional images may be generated using the accompanying DESIPLOT program and an HP-7475A plotter. A version of the program is also currently available for the Apple Macintosh. Full implementation on the Macintosh requires 512 K and at least one disk drive. Otherwise this version is essentially identical to the IBM-PC version described herein.

  1. Introduction to the LRAPP Environmental-Acoustic Data Bank

    DTIC Science & Technology

    1979-06-01

    those provided by tte Data 3ank are also possible via the CRE&T! module. 3-. W _ý REGIONAL DATA BASE COMPONENT DATA FILES PLOTTER TABULR CHRTSNAAPS...stems Group 7600 C"lhire Drive McLean, VA 22101• ~ATTN: R T. Brown I. Gereben Undersea Res,.arch Corp. 7777 Leesburg !ulke Suite 306 Falls Church, VA

  2. [The development of an intelligent four-channel aggregometer].

    PubMed

    Guan, X; Wang, M

    1998-07-01

    The paper introduces the hardware and software design of the instrument. We use 89C52 single-chip computer as the microprocessor to control the amplifier, AD and DA conversion chip to realize the sampling, data process, printout and supervision. The final result is printed out in form of data and aggregation curve from PP40 plotter.

  3. An Infrared Data Acquisition and Processing System

    DTIC Science & Technology

    1977-09-01

    Display Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Terminai High Speed Printer/Plotter . . . . Digital Tape Unit...In addition to the recently procured Honeywell Model 96 analog re- corder, a High Density digital tape unit is planned. This unit will increase the...diagram of Figure 1 we see that a Digital Equipment Corp. (DEC) PDP-11/15 minicomputer with 28K of core memory drives the digital section of IRDAPS

  4. U.S. Army Natick Soldier Research, Development & Engineering Center Testing Facilities And Equipment. Second Edition

    DTIC Science & Technology

    2011-04-01

    30 Freeze Dryer ................................................. 30 High-Pressure Processing ............................... 30 Microwave Digestive...PP1 Power Platform Energy Analyzer ..... 41 Quintox Gas Combustion Analyzer .................... 41 FLIR Systems SC2000 Thermacam Handheld IR ...electronically directly to the contractor or printed on plotter paper , oak tag, or on CD. alloy steel, stainless steel, aluminum, copper and copper alloys

  5. A Comparison of Product Realization Frameworks

    DTIC Science & Technology

    1993-10-01

    software (integrated FrameMaker ). Also included are BOLD for on-line documentation delivery, printer/plotter support, and 18 network licensing support. AMPLE...are built with DSS. Documentation tools include an on-line information system (BOLD), text editing (Notepad), word processing (integrated FrameMaker ...within an application. FrameMaker is fully integrated with the Falcon Framework to provide consistent documentation capabilities within engineering

  6. HP-9810A calculator programs for plotting the 2-dimensional motion of cyclindrical payloads relative to the shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Wilson, S. W.

    1976-01-01

    The HP-9810A calculator programs described provide the capability to generate HP-9862A plotter displays which depict the apparent motion of a free-flying cyclindrical payload relative to the shuttle orbiter body axes by projecting the payload geometry into the orbiter plane of symmetry at regular time intervals.

  7. User's manual for the VAX-Gerber link software package. Revision 1. 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isobe, G.W.

    1985-10-01

    This manual provides a user the information necessary to run the VAX-Gerber link software package. It is expected that the user already knows how to login to the VAX, and is familiar with the Gerber Photo Plotter. It is also highly desirable that the user be familiar with the full screen editor on the VAX, EDT.

  8. QUICK - AN INTERACTIVE SOFTWARE ENVIRONMENT FOR ENGINEERING DESIGN

    NASA Technical Reports Server (NTRS)

    Schlaifer, R. S.

    1994-01-01

    QUICK provides the computer user with the facilities of a sophisticated desk calculator which can perform scalar, vector and matrix arithmetic, propagate conic orbits, determine planetary and satellite coordinates and perform other related astrodynamic calculations within a Fortran-like environment. QUICK is an interpreter, therefore eliminating the need to use a compiler or a linker to run QUICK code. QUICK capabilities include options for automated printing of results, the ability to submit operating system commands on some systems, and access to a plotting package (MASL)and a text editor without leaving QUICK. Mathematical and programming features of QUICK include the ability to handle arbitrary algebraic expressions, the capability to define user functions in terms of other functions, built-in constants such as pi, direct access to useful COMMON areas, matrix capabilities, extensive use of double precision calculations, and the ability to automatically load user functions from a standard library. The MASL (The Multi-mission Analysis Software Library) plotting package, included in the QUICK package, is a set of FORTRAN 77 compatible subroutines designed to facilitate the plotting of engineering data by allowing programmers to write plotting device independent applications. Its universality lies in the number of plotting devices it puts at the user's disposal. The MASL package of routines has proved very useful and easy to work with, yielding good plots for most new users on the first or second try. The functions provided include routines for creating histograms, "wire mesh" surface plots and contour plots as well as normal graphs with a large variety of axis types. The library has routines for plotting on cartesian, polar, log, mercator, cyclic, calendar, and stereographic axes, and for performing automatic or explicit scaling. The lengths of the axes of a plot are completely under the control of the program using the library. Programs written to use the MASL subroutines can be made to output to the Calcomp 1055 plotter, the Hewlett-Packard 2648 graphics terminal, the HP 7221, 7475 and 7550 pen plotters, the Tektronix 40xx and 41xx series graphics terminals, the DEC VT125/VT240 graphics terminals, the QMS 800 laser printer, the Sun Microsystems monochrome display, the Ridge Computers monochrome display, the IBM/PC color display, or a "dumb" terminal or printer. Programs using this library can be written so that they always use the same type of plotter or they can allow the choice of plotter type to be deferred until after program execution. QUICK is written in RATFOR for use on Sun4 series computers running SunOS. No source code is provided. The standard distribution medium for this program is a .25 inch streaming magnetic tape cartridge in UNIX tar format. An electronic copy of the documentation in ASCII format is included on the distribution medium. QUICK was developed in 1991 and is a copyrighted work with all copyright vested in NASA.

  9. Power and Energy Considerations at Forward Operating Bases (FOBs)

    DTIC Science & Technology

    2010-06-16

    systems • Anticipated additional plug loads by users – Personal Computers and Gaming Devices – Coffee Pots – Refrigerators – Lights – Personal Heaters...effort was made to account for the significant amount of equipment that consumes power not on the unit’s MTOE (printers, plotters, coffee pots, etc...50 Warfighters including billeting, kitchen, laundry, shower, latrines, and new wastewater treatment system Capability/impact: Compact, lightweight

  10. Computer program for calculating and plotting fire direction and rate of spread.

    Treesearch

    James E. Eenigenburg

    1987-01-01

    Presents an analytical procedure that uses a FORTRAN 77 program to estimate fire direction and rate of spread. The program also calculates the variability of these parameters, both for subsections of the fire and for the fires as a whole. An option in the program allows users with a CALCOMP plotter to obtain a map of the fire with spread vectors.

  11. Space shuttle: Aerodynamic characteristics of a composite booster/040A orbiter launch configuration with fin and booster body configuration effect contribution

    NASA Technical Reports Server (NTRS)

    Ainsworth, R. W.; Johnson, J. C.; Watts, L. L.

    1972-01-01

    An investigation was made of the fin configuration and booster body configuration effects on a composite booster/040A orbiter launch configuration. Aerodynamic performance and stability characteristics in pitch and yaw were obtained. Configurations tested included two stepped cylindrical bodies of different lengths with a conical nose, four fin shapes of various sizes and aspect ratios mounted in different positions around the base of the bodies, two base flare angles and three 040A orbiter configurations. The orbiter variations included a tailless configuration and two tail sizes. A tailless booster launch configuration with deflected petals (expanded flare sectors) was also tested. The model scale was 0.003366. Data were converted to coefficient form in near real time, punched on cards, and tabulated. The cards used in conjunction with a Benson-Lehner plotter were used to provide plotted data. At the end of the test, tabulated input forms were completed for the SADSAC computer program to aid in publishing the final test data report.

  12. IM Nor monitoring requested for HST COS observations

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2017-02-01

    Dr. Ed Sion (Villanova University) and colleagues have requested AAVSO observers' assistance in monitoring the symbiotic-type recurrent nova IM Nor in support of observations with the Hubble Space Telescope Cosmic Origins Spectrograph scheduled for 2017 February 13 - 17 UT. These observations are part of a study on short orbital period recurrent novae as Supernovae Type Ia progenitors. It is essential to know 24 hours prior to the HST COS observations that IM Nor is not in outburst, in order to protect the instrumentation. Also, photometry is needed throughout the HST window to insure knowledge of the brightness of the system. Observers are asked to monitor IM Nor with nightly snapshot images (V preferred) from now through February 20, and to report their observations promptly. It will be especially important to know the brightness of IM Nor each night through February 17 UT. Finder charts with sequence may be created using the AAVSO Variable Star Plotter (https://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details.

  13. Photogrammetry of Apollo 15 photography, part C

    NASA Technical Reports Server (NTRS)

    Wu, S. S. C.; Schafer, F. J.; Jordan, R.; Nakata, G. M.; Derick, J. L.

    1972-01-01

    In the Apollo 15 mission, a mapping camera system and a 61 cm optical bar, high resolution panoramic camera, as well as a laser altimeter were used. The panoramic camera is described, having several distortion sources, such as cylindrical shape of the negative film surface, the scanning action of the lens, the image motion compensator, and the spacecraft motion. Film products were processed on a specifically designed analytical plotter.

  14. Tactile communication using a CO(2) flux stimulation for blind or deafblind people.

    PubMed

    da Cunha, Jose Carlos; Bordignon, Luiz Alberto; Nohama, Percy

    2010-01-01

    This paper describes a tactile stimulation system for producing nonvisual image patterns to blind or deafblind people. The stimulator yields a CO(2) pulsatile flux directed to the user's skin throughout a needle that is coupled to a 2-D tactile plotter. The fluxtactile plotter operates with two step motor mounted on a wood structure, controlled by a program developed to produce alphanumerical characters and geometric figures of different size and speed, which will be used to investigate the psychophysical properties of this kind of tactile communication. CO(2) is provided by a cylinder that delivers a stable flux, which is converted to a pulsatile mode through a high frequency solenoid valve that can chop it up to 1 kHz. Also, system temperature is controlled by a Peltier based device. Tests on the prototype indicate that the system is a valuable tool to investigate the psychophysical properties of the skin in response to stimulation by CO(2) jet, allowing a quantitative and qualitative analysis as a function of stimulation parameters. With the system developed, it was possible to plot the geometric figures proposed: triangles, rectangles and octagons, in different sizes and speeds, and verify the control of the frequency of CO(2) jet stimuli.

  15. Van Allen Probes Science Gateway: A Centralized Data Access Point

    NASA Astrophysics Data System (ADS)

    Romeo, G.; Barnes, R. J.; Ukhorskiy, A. Y.; Sotirelis, T.; Stephens, G. K.; Kessel, R.; Potter, M.

    2015-12-01

    The Van Allen Probes Science Gateway acts a centralized interface to the instrument Science Operation Centers (SOCs), provides mission planning tools, and hosts a number of science related activities such as the mission bibliography. Most importantly, the Gateway acts as the primary site for processing and delivering the Van Allen Probes Space Weather data to users. Over the past years, the web-site has been completely redesigned with the focus on easier navigation and improvements of the existing tools such as the orbit plotter, position calculator and magnetic footprint tool. In addition, a new data plotting facility has been added. Based on HTML5, which allows users to interactively plot Van Allen Probes science and space weather data. The user can tailor the tool to display exactly the plot they wish to see and then share this with other users via either a URL or by QR code. Various types of plots can be created, including, simple time series, data plotted as a function of orbital location, and time versus L-Shell, capability of visualizing data from both probes (A & B) on the same plot. In cooperation with all Van Allen Probes Instrument SOCs, the Science Gateway will soon be able to serve higher level data products (Level 3), and to visualize them via the above mentioned HTML5 interface. Users will also be able to create customized CDF files on the fly.

  16. Immigrant Integration: A Missing Component of Homeland Security Strategy and Policy

    DTIC Science & Technology

    2010-03-01

    Kobach, 2007). JFK airport in New York (Kobach, 2007) The four JFK terrorists include two nationals of Guyana, one of Trinidad, and one former...words of the terrorist themselves. In one conversation taped by the FBI, Defreitas (the lead plotter of the thwarted attack at JFK airport in...another recorded conversation with his conspirators in May 2007, Defreitas compared the plot to attack JFK airport with the September 11, 2001

  17. U.S.-China Counterterrorism Cooperation: Issues for U.S. Policy

    DTIC Science & Technology

    2010-07-08

    2005 and 2006 raised U.S. concerns, despite the SCO’s claim to be a counterterrorism group. In addition to Mongolia, the countries of India , Pakistan ... Pakistan to counter terrorists and the Taliban increased after the attack in Mumbai, India , in November 2008. Pakistan’s Interior Minister confirmed...in February 2009 that some of plotters were in Pakistan . The CIA reportedly brokered intelligence-sharing between India and Pakistan .130 Also in

  18. CASPER: A GENERALIZED PROGRAM FOR PLOTTING AND SCALING DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lietzke, M.P.; Smith, R.E.

    A Fortran subroutine was written to scale floating-point data and generate a magnetic tape to plot it on the Calcomp 570 digital plotter. The routine permits a great deal of flexibility, and may be used with any type of FORTRAN or FAP calling program. A simple calling program was also written to permit the user to read in data from cards and plot it without any additional programming. Both the Fortran and binary decks are available. (auth)

  19. CI Aql monitoring needed to support HST observations

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2016-10-01

    Dr. Edward Sion (Villanova University) has requested AAVSO observers' assistance in monitoring the recurrent nova CI Aql in support of observations with the Hubble Space Telescope Cosmic Origins Spectrograph scheduled for October 31 - November 2, 2016, and November 3 - November 5, 2016. These observations are part of a study on short orbital period recurrent novae as Supernovae Type Ia progenitors. It is essential to know 24 hours prior to the HST COS observations that CI Aql is not in outburst, in order to protect the instrumentation. Observers are asked to keep an eye on CI Aql with nightly snapshot images (V preferred) from now until November 12, and to report their observations promptly. It will be especially important to know the brightness of CI Aql each night for October 28 through November 7 UT. Visual observations are welcome. CI Aql (Nova Aql 1917) has had recurrent outbursts in 1941 and 2000, brightening to V 8.5. At minimum it is V 16-16.5 or fainter. Finder charts with sequence may be created using the AAVSO Variable Star Plotter (https://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details.

  20. Photogrammetry of the Viking-Lander imagery.

    USGS Publications Warehouse

    Wu, S.S.C.; Schafer, F.J.

    1982-01-01

    We have solved the problem of photogrammetric mapping from the Viking Lander photography in two ways: 1) by converting the azimuth and elevation scanning imagery to the equivalent of a frame picture by means of computerized rectification; and 2) by interfacing a high-speed, general-purpose computer to the AS-11A analytical plotter so that all computations of corrections can be performed in real time during the process of model orientation and map compilation. Examples are presented of photographs and maps of Earth and Mars. -from Authors

  1. Blast Noise Prediction. Volume II. BNOISE 3.2 Computer Program Description and Program Listing.

    DTIC Science & Technology

    1981-03-01

    tttim itit) k cii he sCli h I Apptif 4\\1111,1C’ I Lin ~Ist I Itis is tj ’it. hi ilti Ituitph inlI N’ skiLl I ink, hi k I i e II it,~ 11it I Mi...to which the point (XMIN,YMIN) will correspond SCLE Card cc 1 SCLI - PS( A L Format (A4,2X,G8.3) where. PSCALF (col 7-14t is the plotter scale factor

  2. An Assessment of the Shipboard Training Effectiveness of the Integrated Damage Control Training Technology (IDCTT) Version 3.0

    DTIC Science & Technology

    1998-03-01

    damage control actions in an assigned area of the ship. Reports are received from the On Scene Leader ( OSL ) and Investigators. Simultaneously, the RPL...control location. A phone talker and plotter will perform in unison with their counterparts in DCC. Key members of the repair party, the OSL and...the obligation of the On Scene Leader ( OSL ). This experienced petty officer is tasked with directing the ATL’s actions and informing the RPL of repair

  3. The Cooperative Engagement Capability CEC Transforming Naval Anti-air Warfare

    DTIC Science & Technology

    2007-01-01

    E-2C Aircraft Acquisition Options,” MR-1517-NAVY (Santa Monica: RAND, 2002), 10. 33 Aegis is not an acronym. The ὰιγίς ( Greek ) or ægis (Latin) was...the shield of the mythological god Zeus (Jupiter) and thus represents a sure defense. 34 For an overview of USN surface (not air) AAW...real time, without significant delay. In World War II CICs, radar operators, plotters, CIC evaluators, and FDOs acted as “ animation artists

  4. Operating System For Numerically Controlled Milling Machine

    NASA Technical Reports Server (NTRS)

    Ray, R. B.

    1992-01-01

    OPMILL program is operating system for Kearney and Trecker milling machine providing fast easy way to program manufacture of machine parts with IBM-compatible personal computer. Gives machinist "equation plotter" feature, which plots equations that define movements and converts equations to milling-machine-controlling program moving cutter along defined path. System includes tool-manager software handling up to 25 tools and automatically adjusts to account for each tool. Developed on IBM PS/2 computer running DOS 3.3 with 1 MB of random-access memory.

  5. Multi-model stereo restitution

    USGS Publications Warehouse

    Dueholm, K.S.

    1990-01-01

    Methods are described that permit simultaneous orientation of many small-frame photogrammetric models in an analytical plotter. The multi-model software program enables the operator to move freely between the oriented models during interpretation and mapping. Models change automatically when the measuring mark is moved from one frame to another, moving to the same ground coordinates in the neighboring model. Thus, data collection and plotting can be performed continuously across model boundaries. The orientation of the models is accomplished by a bundle block adjustment. -from Author

  6. A close-range photogrammetric technique for mapping neotectonic features in trenches

    USGS Publications Warehouse

    Fairer, G.M.; Whitney, J.W.; Coe, J.A.

    1989-01-01

    Close-range photogrammetric techniques and newly available computerized plotting equipment were used to map exploratory trench walls that expose Quaternary faults in the vicinity of Yucca Mountain, Nevada. Small-scale structural, lithologic, and stratigraphic features can be rapidly mapped by the photogrammetric method. This method is more accurate and significantly more rapid than conventional trench-mapping methods, and the analytical plotter is capable of producing cartographic definition of high resolution when detailed trench maps are necessary. -from Authors

  7. Supernova 2011fe in M101 (NGC 5457) = PSN J14030581+5416254

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2011-08-01

    The discovery is reported of Supernova 2011fe in NGC 5457 = PSN J14030581+5416254 by the Type Ia supernova science working group of the Palomar Transient Factory, Peter Nugent et al., on 2011 Aug. 24 UT at magnitude 17.2 (g-band, calibrated with respect to the USNO catalog. (Credit for an independent discovery by Mathew Marulla and Tavi Grenier was later rescinded by D. Green, Gentral Bureau for Astronomical Telegrams.) A spectrum obtained on 2011 Aug. 24 UT indicates that SN 2011fe is probably a Type Ia supernova at a very early phase. SN 2011fe was initially announced in ATEL #3581 (Peter Nugent et al.), AAVSO Special Notice #250 (Matthew Templeton), and Central Bureau for Astronomical Telegrams (CBAT) Electronic Telegram 2792 (Daniel W. E. Green, ed.). According to Green, the object was designated PSN J14030581+5416254 when posted on the CBAT Transient Objects Confirmation Page (TOCP) webpage. Finder charts with sequence may be created using the AAVSO Variable Star Plotter (http://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details, observations, and links to images.

  8. FLOWCHART; a computer program for plotting flowcharts

    USGS Publications Warehouse

    Bender, Bernice

    1982-01-01

    The computer program FLOWCHART can be used to very quickly and easily produce flowcharts of high quality for publication. FLOWCHART centers each element or block of text that it processes on one of a set of (imaginary) vertical lines. It can enclose a text block in a rectangle, circle or other selected figure. It can draw a 'line connecting the midpoint of any side of any figure with the midpoint of any side of any other figure and insert an arrow pointing in the direction of flow. It can write 'yes' or 'no' next to the line joining two figures. FLOWCHART creates flowcharts using some basic plotting subroutine* which permit plots to be generated interactively and inspected on a Tektronix compatible graphics screen or plotted in a deferred mode on a Houston Instruments 42' pen plotter. The size of the plot, character set and character height in inches are inputs to the program. Plots generated using the pen plotter can be up to 42' high--the larger size plots being directly usable as visual aids in a talk. FLOWCHART centers each block of text on an imaginary column line. (The number of columns and column width are specified as input.) The midpoint of the longest line of text within the block is defined to be the center of the block and is placed on the column line. The spacing of individual words within the block is not altered when the block is positioned. The program writes the first block of text in a designated column and continues placing each subsequent block below the previous block in the same column. A block of text may be placed in a different column by specifying the number of the column and an earlier block of text with which the new block is to be aligned. If block zero is given as the earlier block, the new text is placed in the new column continuing down the page below the previous block. Optionally a column and number of inches from the top of the page may be given for positioning the next block of text. The program will normally draw one of five types of figure to enclose a block of text: a rectangle, circle, diamond, eight sided figure or figure with parallel sides and rounded ends. It can connect the figure with a line to the preceding figure, and place an arrow pointing toward the second figure. Text blocks not in sequence can also be connected and 'yes' or 'no' written next to any line to indicate branching. Figure 1 illustrates the various types of figures that can be drawn, spacings, connecting lines and the like. * The plotting package employed is Buplot available on the VAX and PDP-1170 computers at the USGS Office of Earthquake Studies, Golden, Colo. Calls to the plotting subroutines must be adjusted if some other plotting package is used.

  9. Operational experience in underwater photogrammetry

    NASA Astrophysics Data System (ADS)

    Leatherdale, John D.; John Turner, D.

    Underwater photogrammetry has become established as a cost-effective technique for inspection and maintenance of platforms and pipelines for the offshore oil industry. A commercial service based in Scotland operates in the North Sea, USA, Brazil, West Africa and Australia. 70 mm cameras and flash units are built for the purpose and analytical plotters and computer graphics systems are used for photogrammetric measurement and analysis of damage, corrosion, weld failures and redesign of underwater structures. Users are seeking simple, low-cost systems for photogrammetric analysis which their engineers can use themselves.

  10. Quadrifilar Helical Antenna Array for Line-of-Sight Communications Above the Ocean Surface

    DTIC Science & Technology

    2007-06-25

    placing the copper-covered sheet into a mechanical plotter and using a diamond scribe to cut the edges. 5 27 (a) i (bI 900 PUTTR 180 SPTTER ANTENN 11Z...soldering of the cable to the hole and to avoid any possible radio frequency (RF) ground loops that may form. However, because it was determined that...prevent any RF ground loops that may be produced that could induce undesirable currents along the brass tube. Figure 4-9 is a closeup view of an

  11. General purpose film plotting system

    NASA Technical Reports Server (NTRS)

    Mcquillan, C.

    1977-01-01

    The general purpose film plotting system which is a plot program design to handle a majority of the data tape formats presently available under OS/360 was discussed. The convenience of this program is due to the fact that the user merely describes the format of his data set and the type of data plots he desires. It processes the input data according to the given specifications. The output is generated on a tape which yields data plots when processed by the selected plotter. A summary of each job is produced on the printer.

  12. The Shock and Vibration Bulletin: Proceedings on the Symposium on ShocK and Vibration (52nd) Held in New Orleans, Louisiana on 26-28 October 1981. Part 3. Environmental Testing and Simulation, Flight Environments.

    DTIC Science & Technology

    1982-05-01

    signal generation history can then be generated. These opera- processes generally consisted of recording tions work quite well electromagnetic ex...fninduerointe gualinicharactestics I PLOTTER MULTI CHANNEL TAPE RECORDER TEST ITEM 71T RESPONSE MOTIO ANALOG SIGNAL SHOCK CONDITIONING SPECTRUM ANALYZER...of TM to the EM. The exciter displacement producing a drive signal with excessive actua- drive signal is generated fron the linear sm tor stroke

  13. Autocorrelation techniques for soft photogrammetry

    NASA Astrophysics Data System (ADS)

    Yao, Wu

    In this thesis research is carried out on image processing, image matching searching strategies, feature type and image matching, and optimal window size in image matching. To make comparisons, the soft photogrammetry package SoftPlotter is used. Two aerial photographs from the Iowa State University campus high flight 94 are scanned into digital format. In order to create a stereo model from them, interior orientation, single photograph rectification and stereo rectification are done. Two new image matching methods, multi-method image matching (MMIM) and unsquare window image matching are developed and compared. MMIM is used to determine the optimal window size in image matching. Twenty four check points from four different types of ground features are used for checking the results from image matching. Comparison between these four types of ground feature shows that the methods developed here improve the speed and the precision of image matching. A process called direct transformation is described and compared with the multiple steps in image processing. The results from image processing are consistent with those from SoftPlotter. A modified LAN image header is developed and used to store the information about the stereo model and image matching. A comparison is also made between cross correlation image matching (CCIM), least difference image matching (LDIM) and least square image matching (LSIM). The quality of image matching in relation to ground features are compared using two methods developed in this study, the coefficient surface for CCIM and the difference surface for LDIM. To reduce the amount of computation in image matching, the best-track searching algorithm, developed in this research, is used instead of the whole range searching algorithm.

  14. A study of real-time computer graphic display technology for aeronautical applications

    NASA Technical Reports Server (NTRS)

    Rajala, S. A.

    1981-01-01

    The development, simulation, and testing of an algorithm for anti-aliasing vector drawings is discussed. The pseudo anti-aliasing line drawing algorithm is an extension to Bresenham's algorithm for computer control of a digital plotter. The algorithm produces a series of overlapping line segments where the display intensity shifts from one segment to the other in this overlap (transition region). In this algorithm the length of the overlap and the intensity shift are essentially constants because the transition region is an aid to the eye in integrating the segments into a single smooth line.

  15. Natural resources information system.

    NASA Technical Reports Server (NTRS)

    Leachtenauer, J. C.; Woll, A. M.

    1972-01-01

    A computer-based Natural Resources Information System was developed for the Bureaus of Indian Affairs and Land Management. The system stores, processes and displays data useful to the land manager in the decision making process. Emphasis is placed on the use of remote sensing as a data source. Data input consists of maps, imagery overlays, and on-site data. Maps and overlays are entered using a digitizer and stored as irregular polygons, lines and points. Processing functions include set intersection, union and difference and area, length and value computations. Data output consists of computer tabulations and overlays prepared on a drum plotter.

  16. Extension of a simplified computer program for analysis of solid-propellant rocket motors

    NASA Technical Reports Server (NTRS)

    Sforzini, R. H.

    1973-01-01

    A research project to develop a computer program for the preliminary design and performance analysis of solid propellant rocket engines is discussed. The following capabilities are included as computer program options: (1) treatment of wagon wheel cross sectional propellant configurations alone or in combination with circular perforated grains, (2) calculation of ignition transients with the igniter treated as a small rocket engine, (3) representation of spherical circular perforated grain ends as an alternative to the conical end surface approximation used in the original program, and (4) graphical presentation of program results using a digital plotter.

  17. Clinical application of a light-pen computer system for quantitative angiography

    NASA Technical Reports Server (NTRS)

    Alderman, E. L.

    1975-01-01

    The paper describes an angiographic analysis system which uses a video disk for recording and playback, a light-pen for data input, minicomputer processing, and an electrostatic printer/plotter for hardcopy output. The method is applied to quantitative analysis of ventricular volumes, sequential ventriculography for assessment of physiologic and pharmacologic interventions, analysis of instantaneous time sequence of ventricular systolic and diastolic events, and quantitation of segmental abnormalities. The system is shown to provide the capability for computation of ventricular volumes and other measurements from operator-defined margins by greatly reducing the tedium and errors associated with manual planimetry.

  18. Multidisciplinary geoscientific experiments in central Europe

    NASA Technical Reports Server (NTRS)

    Bannert, D. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. Studies were carried out in the fields of geology-pedology, coastal dynamics, geodesy-cartography, geography, and data processing. In geology-pedology, a comparison of ERTS image studies with extensive ground data led to a better understanding of the relationship between vegetation, soil, bedrock, and other geologic features. Findings in linear tectonics gave better insight in orogeny and ore deposit development for prospecting. Coastal studies proved the value of ERTS images for the updating of nautical charts, as well as small scale topographic maps. A plotter for large scale high speed image generation from CCT was developed.

  19. Biomedical microfluidic devices by using low-cost fabrication techniques: A review.

    PubMed

    Faustino, Vera; Catarino, Susana O; Lima, Rui; Minas, Graça

    2016-07-26

    One of the most popular methods to fabricate biomedical microfluidic devices is by using a soft-lithography technique. However, the fabrication of the moulds to produce microfluidic devices, such as SU-8 moulds, usually requires a cleanroom environment that can be quite costly. Therefore, many efforts have been made to develop low-cost alternatives for the fabrication of microstructures, avoiding the use of cleanroom facilities. Recently, low-cost techniques without cleanroom facilities that feature aspect ratios more than 20, for fabricating those SU-8 moulds have been gaining popularity among biomedical research community. In those techniques, Ultraviolet (UV) exposure equipment, commonly used in the Printed Circuit Board (PCB) industry, replaces the more expensive and less available Mask Aligner that has been used in the last 15 years for SU-8 patterning. Alternatively, non-lithographic low-cost techniques, due to their ability for large-scale production, have increased the interest of the industrial and research community to develop simple, rapid and low-cost microfluidic structures. These alternative techniques include Print and Peel methods (PAP), laserjet, solid ink, cutting plotters or micromilling, that use equipment available in almost all laboratories and offices. An example is the xurography technique that uses a cutting plotter machine and adhesive vinyl films to generate the master moulds to fabricate microfluidic channels. In this review, we present a selection of the most recent lithographic and non-lithographic low-cost techniques to fabricate microfluidic structures, focused on the features and limitations of each technique. Only microfabrication methods that do not require the use of cleanrooms are considered. Additionally, potential applications of these microfluidic devices in biomedical engineering are presented with some illustrative examples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. The eigenvalue problem in phase space.

    PubMed

    Cohen, Leon

    2018-06-30

    We formulate the standard quantum mechanical eigenvalue problem in quantum phase space. The equation obtained involves the c-function that corresponds to the quantum operator. We use the Wigner distribution for the phase space function. We argue that the phase space eigenvalue equation obtained has, in addition to the proper solutions, improper solutions. That is, solutions for which no wave function exists which could generate the distribution. We discuss the conditions for ascertaining whether a position momentum function is a proper phase space distribution. We call these conditions psi-representability conditions, and show that if these conditions are imposed, one extracts the correct phase space eigenfunctions. We also derive the phase space eigenvalue equation for arbitrary phase space distributions functions. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Engineering studies of vectorcardiographs in blood pressure measuring systems, appendix 1

    NASA Technical Reports Server (NTRS)

    Mark, R. G.

    1975-01-01

    A small, portable, relatively inexpensive computer system was developed for on-line use in clinical or laboratory situations. The system features an integrated hardware-software package that permits use of all peripherals, such as analog-to-digital converter, oscilloscope, plotter, digital bus, with an interpreter constructed around the BASIC programming language. The system is conceptually similar to the LINC system developed in 1962, but is more compact and powerful due to intervening advances in integrated circuit technology. A description of the hardware of the system was given. A reference manual, user manual, and programming guides were also presented. Finally, a stereo display system for vectorcardiograms was described.

  2. Geologic map of the Cochiti Dam quadrangle, Sandoval County, New Mexico

    USGS Publications Warehouse

    Dethier, David P.; Thompson, Ren A.; Hudson, Mark R.; Minor, Scott A.; Sawyer, David A.

    2011-01-01

    The mapped distribution of units is based primarily on interpretation of 1:16,000-scale, color aerial photographs taken in 1992, and 1:40,000-scale, black-and-white, aerial photographs taken in 1996. Most of the contacts on the map were transferred from the aerial photographs using a photogrammetric stereo-plotter and subsequently field checked for accuracy and revised based on field determination of allostratigraphic and lithostratigraphic units. Determination of lithostratigraphic units in volcanic deposits was aided by geochemical data, 40Ar/39Ar geochronology, aeromagnetic and paleomagnetic data. Supplemental revision of mapped contacts was based on interpretation of USGS 1-meter orthoimagery.

  3. Anharmonic quantum mechanical systems do not feature phase space trajectories

    NASA Astrophysics Data System (ADS)

    Oliva, Maxime; Kakofengitis, Dimitris; Steuernagel, Ole

    2018-07-01

    Phase space dynamics in classical mechanics is described by transport along trajectories. Anharmonic quantum mechanical systems do not allow for a trajectory-based description of their phase space dynamics. This invalidates some approaches to quantum phase space studies. We first demonstrate the absence of trajectories in general terms. We then give an explicit proof for all quantum phase space distributions with negative values: we show that the generation of coherences in anharmonic quantum mechanical systems is responsible for the occurrence of singularities in their phase space velocity fields, and vice versa. This explains numerical problems repeatedly reported in the literature, and provides deeper insight into the nature of quantum phase space dynamics.

  4. Phase-space networks of geometrically frustrated systems.

    PubMed

    Han, Yilong

    2009-11-01

    We illustrate a network approach to the phase-space study by using two geometrical frustration models: antiferromagnet on triangular lattice and square ice. Their highly degenerated ground states are mapped as discrete networks such that the quantitative network analysis can be applied to phase-space studies. The resulting phase spaces share some comon features and establish a class of complex networks with unique Gaussian spectral densities. Although phase-space networks are heterogeneously connected, the systems are still ergodic due to the random Poisson processes. This network approach can be generalized to phase spaces of some other complex systems.

  5. Illustration of microphysical processes in Amazonian deep convective clouds in the gamma phase space: introduction and potential applications

    NASA Astrophysics Data System (ADS)

    Cecchini, Micael A.; Machado, Luiz A. T.; Wendisch, Manfred; Costa, Anja; Krämer, Martina; Andreae, Meinrat O.; Afchine, Armin; Albrecht, Rachel I.; Artaxo, Paulo; Borrmann, Stephan; Fütterer, Daniel; Klimach, Thomas; Mahnke, Christoph; Martin, Scot T.; Minikin, Andreas; Molleker, Sergej; Pardo, Lianet H.; Pöhlker, Christopher; Pöhlker, Mira L.; Pöschl, Ulrich; Rosenfeld, Daniel; Weinzierl, Bernadett

    2017-12-01

    The behavior of tropical clouds remains a major open scientific question, resulting in poor representation by models. One challenge is to realistically reproduce cloud droplet size distributions (DSDs) and their evolution over time and space. Many applications, not limited to models, use the gamma function to represent DSDs. However, even though the statistical characteristics of the gamma parameters have been widely studied, there is almost no study dedicated to understanding the phase space of this function and the associated physics. This phase space can be defined by the three parameters that define the DSD intercept, shape, and curvature. Gamma phase space may provide a common framework for parameterizations and intercomparisons. Here, we introduce the phase space approach and its characteristics, focusing on warm-phase microphysical cloud properties and the transition to the mixed-phase layer. We show that trajectories in this phase space can represent DSD evolution and can be related to growth processes. Condensational and collisional growth may be interpreted as pseudo-forces that induce displacements in opposite directions within the phase space. The actually observed movements in the phase space are a result of the combination of such pseudo-forces. Additionally, aerosol effects can be evaluated given their significant impact on DSDs. The DSDs associated with liquid droplets that favor cloud glaciation can be delimited in the phase space, which can help models to adequately predict the transition to the mixed phase. We also consider possible ways to constrain the DSD in two-moment bulk microphysics schemes, in which the relative dispersion parameter of the DSD can play a significant role. Overall, the gamma phase space approach can be an invaluable tool for studying cloud microphysical evolution and can be readily applied in many scenarios that rely on gamma DSDs.

  6. Phase Space Exchange in Thick Wedge Absorbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuffer, David

    The problem of phase space exchange in wedge absorbers with ionization cooling is discussed. The wedge absorber exchanges transverse and longitudinal phase space by introducing a position-dependent energy loss. In this paper we note that the wedges used with ionization cooling are relatively thick, so that single wedges cause relatively large changes in beam phase space. Calculation methods adapted to such “thick wedge” cases are presented, and beam phase-space transformations through such wedges are discussed.

  7. Phase-space topography characterization of nonlinear ultrasound waveforms.

    PubMed

    Dehghan-Niri, Ehsan; Al-Beer, Helem

    2018-03-01

    Fundamental understanding of ultrasound interaction with material discontinuities having closed interfaces has many engineering applications such as nondestructive evaluation of defects like kissing bonds and cracks in critical structural and mechanical components. In this paper, to analyze the acoustic field nonlinearities due to defects with closed interfaces, the use of a common technique in nonlinear physics, based on a phase-space topography construction of ultrasound waveform, is proposed. The central idea is to complement the "time" and "frequency" domain analyses with the "phase-space" domain analysis of nonlinear ultrasound waveforms. A nonlinear time series method known as pseudo phase-space topography construction is used to construct equivalent phase-space portrait of measured ultrasound waveforms. Several nonlinear models are considered to numerically simulate nonlinear ultrasound waveforms. The phase-space response of the simulated waveforms is shown to provide different topographic information, while the frequency domain shows similar spectral behavior. Thus, model classification can be substantially enhanced in the phase-space domain. Experimental results on high strength aluminum samples show that the phase-space transformation provides a unique detection and classification capabilities. The Poincaré map of the phase-space domain is also used to better understand the nonlinear behavior of ultrasound waveforms. It is shown that the analysis of ultrasound nonlinearities is more convenient and informative in the phase-space domain than in the frequency domain. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Gymnastics in Phase Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, Alexander Wu; /SLAC

    2012-03-01

    As accelerator technology advances, the requirements on accelerator beam quality become increasingly demanding. Facing these new demands, the topic of phase space gymnastics is becoming a new focus of accelerator physics R&D. In a phase space gymnastics, the beam's phase space distribution is manipulated and precision tailored to meet the required beam qualities. On the other hand, all realization of such gymnastics will have to obey accelerator physics principles as well as technological limitations. Recent examples of phase space gymnastics include Emittance exchanges, Phase space exchanges, Emittance partitioning, Seeded FELs and Microbunched beams. The emittance related topics of this listmore » are reviewed in this report. The accelerator physics basis, the optics design principles that provide these phase space manipulations, and the possible applications of these gymnastics, are discussed. This fascinating new field promises to be a powerful tool of the future.« less

  9. Phase-space evolution of x-ray coherence in phase-sensitive imaging.

    PubMed

    Wu, Xizeng; Liu, Hong

    2008-08-01

    X-ray coherence evolution in the imaging process plays a key role for x-ray phase-sensitive imaging. In this work we present a phase-space formulation for the phase-sensitive imaging. The theory is reformulated in terms of the cross-spectral density and associated Wigner distribution. The phase-space formulation enables an explicit and quantitative account of partial coherence effects on phase-sensitive imaging. The presented formulas for x-ray spectral density at the detector can be used for performing accurate phase retrieval and optimizing the phase-contrast visibility. The concept of phase-space shearing length derived from this phase-space formulation clarifies the spatial coherence requirement for phase-sensitive imaging with incoherent sources. The theory has been applied to x-ray Talbot interferometric imaging as well. The peak coherence condition derived reveals new insights into three-grating-based Talbot-interferometric imaging and gratings-based x-ray dark-field imaging.

  10. GASPLOT - A computer graphics program that draws a variety of thermophysical property charts

    NASA Technical Reports Server (NTRS)

    Trivisonno, R. J.; Hendricks, R. C.

    1977-01-01

    A FORTRAN V computer program, written for the UNIVAC 1100 series, is used to draw a variety of precision thermophysical property charts on the Calcomp plotter. In addition to the program (GASPLOT), which requires (15 160) sub 10 storages, a thermophysical properties routine needed to produce plots. The program is designed so that any two of the state variables, the derived variables, or the transport variables may be plotted as the ordinate - abscissa pair with as many as five parametric variables. The parameters may be temperature, pressure, density, enthalpy, and entropy. Each parameter may have as many a 49 values, and the range of the variables is limited only by the thermophysical properties routine.

  11. Computer package for the design and optimization of absorption air conditioning system operated by solar energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sofrata, H.; Khoshaim, B.; Megahed, M.

    1980-12-01

    In this paper a computer package for the design and optimization of the simple Li-Br absorption air conditioning system, operated by solar energy, is developed in order to study its performance. This was necessary, as a first step, before carrying out any computations regarding the dual system (1-3). The computer package has the facilities of examining any parameter which may control the system; namely generator, evaporator, condenser, absorber temperatures and pumping factor. The output may be tabulated and also fed to the graph plotter. The flow chart of the programme is explained in an easy way and a typical examplemore » is included.« less

  12. Nova Centauri 2013 = PNV J13544700-5909080

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2013-12-01

    Announces the discovery of V1369 Cen = Nova Cen 2013 = PNV J13544700-5909080 by John Seach (Chatsworth Island, NSW, Australia) at unfiltered magnitude 5.5 on 2013 December 02.692 UT. Low-resolution spectra obtained by Locke on Dec. 03.3776 UT and by Kaufman on Dec. 03.621 UT show strong Ha and Hb emission lines, indicating the object is a nova. Announced on IAU CBAT Central Bureau Electronic Telegram 3732 (Daniel W. E. Green, ed.). Finder charts with sequences may be created using the AAVSO Variable Star Plotter (http://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details and observations.

  13. A general formalism for phase space calculations

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Deutchman, Philip A.; Townsend, Lawrence W.; Cucinotta, Francis A.

    1988-01-01

    General formulas for calculating the interactions of galactic cosmic rays with target nuclei are presented. Methods for calculating the appropriate normalization volume elements and phase space factors are presented. Particular emphasis is placed on obtaining correct phase space factors for 2-, and 3-body final states. Calculations for both Lorentz-invariant and noninvariant phase space are presented.

  14. Nonequilibrium life-cycles in Ocean Heat Content

    NASA Astrophysics Data System (ADS)

    Weiss, Jeffrey B.; Fox-Kemper, Baylor; Mandal, Dibyendu; Zia, Royce K. P.

    2014-03-01

    Natural climate variability can be considered as fluctuations in a nonequilibrium steady state. A fundamental property of nonequilibrium steady states is the phase space current which provides a preferred direction for fluctuations, and is manifested as preferred life-cycles for climate fluctuations. We propose a new quantity, the phase space angular momentum, to quantify the phase space rotation. In analogy with traditional angular momentum, which quantifies the rotation of mass in physical space, the phase space angular momentum quantifies the rotation of probability in phase space. It has the additional advantage that it is straightforward to calculate from a time series. We investigate the phase space angular momentum for fluctuations in ocean heat content in both observations and ocean general circulation models. We gratefully acknowledge financial support from the National Science Foundation (USA) under grant OCE 1245944.

  15. Quantum mechanics on phase space: The hydrogen atom and its Wigner functions

    NASA Astrophysics Data System (ADS)

    Campos, P.; Martins, M. G. R.; Fernandes, M. C. B.; Vianna, J. D. M.

    2018-03-01

    Symplectic quantum mechanics (SQM) considers a non-commutative algebra of functions on a phase space Γ and an associated Hilbert space HΓ, to construct a unitary representation for the Galilei group. From this unitary representation the Schrödinger equation is rewritten in phase space variables and the Wigner function can be derived without the use of the Liouville-von Neumann equation. In this article the Coulomb potential in three dimensions (3D) is resolved completely by using the phase space Schrödinger equation. The Kustaanheimo-Stiefel(KS) transformation is applied and the Coulomb and harmonic oscillator potentials are connected. In this context we determine the energy levels, the amplitude of probability in phase space and correspondent Wigner quasi-distribution functions of the 3D-hydrogen atom described by Schrödinger equation in phase space.

  16. Space station MSFC-DPD-235/DR no. MA-05 phase C/D program development plan. Volume 2: Phase C/D, programmatic requirements

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The design plan requirements define the design implementation and control requirements for Phase C/D of the Modular Space Station Project and specifically address the Initial Space Station phase of the Space Station Program (modular). It is based primarily on the specific objective of translating the requirements of the Space Station Program, Project, Interface, and Support Requirements and preliminary contract end x item specifications into detail design of the operational systems which comprise the initial space station. This document is designed to guide aerospace contractors in the planning and bidding for Phase C/D.

  17. LONGLIB - A GRAPHICS LIBRARY

    NASA Technical Reports Server (NTRS)

    Long, D.

    1994-01-01

    This library is a set of subroutines designed for vector plotting to CRT's, plotters, dot matrix, and laser printers. LONGLIB subroutines are invoked by program calls similar to standard CALCOMP routines. In addition to the basic plotting routines, LONGLIB contains an extensive set of routines to allow viewport clipping, extended character sets, graphic input, shading, polar plots, and 3-D plotting with or without hidden line removal. LONGLIB capabilities include surface plots, contours, histograms, logarithm axes, world maps, and seismic plots. LONGLIB includes master subroutines, which are self-contained series of commonly used individual subroutines. When invoked, the master routine will initialize the plotting package, and will plot multiple curves, scatter plots, log plots, 3-D plots, etc. and then close the plot package, all with a single call. Supported devices include VT100 equipped with Selanar GR100 or GR100+ boards, VT125s, VT240s, VT220 equipped with Selanar SG220, Tektronix 4010/4014 or 4107/4109 and compatibles, and Graphon GO-235 terminals. Dot matrix printer output is available by using the provided raster scan conversion routines for DEC LA50, Printronix printers, and high or low resolution Trilog printers. Other output devices include QMS laser printers, Postscript compatible laser printers, and HPGL compatible plotters. The LONGLIB package includes the graphics library source code, an on-line help library, scan converter and meta file conversion programs, and command files for installing, creating, and testing the library. The latest version, 5.0, is significantly enhanced and has been made more portable. Also, the new version's meta file format has been changed and is incompatible with previous versions. A conversion utility is included to port the old meta files to the new format. Color terminal plotting has been incorporated. LONGLIB is written in FORTRAN 77 for batch or interactive execution and has been implemented on a DEC VAX series computer operating under VMS. This program was developed in 1985, and last updated in 1988.

  18. Vasodilator-Stimulated Phosphoprotein (VASP) depletion from breast cancer MDA-MB-231 cells inhibits tumor spheroid invasion through downregulation of Migfilin, β-catenin and urokinase-plasminogen activator (uPA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gkretsi, Vasiliki; Stylianou, Andreas; Stylianopoulos, Triantafyllos, E-mail: tstylian@ucy.ac.cy

    A hallmark of cancer cells is their ability to invade surrounding tissues and form metastases. Cell-extracellular matrix (ECM)-adhesion proteins are crucial in metastasis, connecting tumor ECM with actin cytoskeleton thus enabling cells to respond to mechanical cues. Vasodilator-stimulated phosphoprotein (VASP) is an actin-polymerization regulator which interacts with cell-ECM adhesion protein Migfilin, and regulates cell migration. We compared VASP expression in MCF-7 and MDA-MB-231 breast cancer (BC) cells and found that more invasive MDA-MB-231 cells overexpress VASP. We then utilized a 3-dimensional (3D) approach to study metastasis in MDA-MB-231 cells using a system that considers mechanical forces exerted by the ECM.more » We prepared 3D collagen I gels of increasing concentration, imaged them by atomic force microscopy, and used them to either embed cells or tumor spheroids, in the presence or absence of VASP. We show, for the first time, that VASP silencing downregulated Migfilin, β-catenin and urokinase plasminogen activator both in 2D and 3D, suggesting a matrix-independent mechanism. Tumor spheroids lacking VASP demonstrated impaired invasion, indicating VASP’s involvement in metastasis, which was corroborated by Kaplan-Meier plotter showing high VASP expression to be associated with poor remission-free survival in lymph node-positive BC patients. Hence, VASP may be a novel BC metastasis biomarker. - Highlights: • More invasive MDA-MB-231 overexpress VASP compared to MCF-7 breast cancer cells. • We prepared 3D collagen I gels of increasing concentration and characterized them. • VASP silencing downregulated Migfilin, β-catenin and uPA both in 2D and 3D culture. • Tumor spheroids lacking VASP demonstrated impaired invasion. • Kaplan-Meier plotter shows association of high VASP expression with poor survival.« less

  19. PPFIA1 is upregulated in liver metastasis of breast cancer and is a potential poor prognostic indicator of metastatic relapse.

    PubMed

    Yang, Jing; Wu, Ning-Ni; Huang, De-Jia; Luo, Yao-Chang; Huang, Jun-Zhen; He, Hai-Yuan; Lu, Hai-Lin; Song, Wen-Ling

    2017-07-01

    Although the oncogenic role of PPFIA1 (liprin-α1) in breast cancer has been reported, whether its dysregulation is associated with metastasis risk or survival outcomes in breast cancer patients is not clear. Our primary data showed that PPFIA1 expression was significantly higher in liver metastatic breast tumors than in the primary tumors. Then, we tried to pool previous annotated genomic data to assess the prognostic value of PPFIA1 in distant metastasis-free survival, the risk of metastatic relapse, and metastatic relapse-free survival in breast cancer patients by data mining in two large databases, Kaplan-Meier plotter and bc-GenExMiner 4.0. Results from Kaplan-Meier plotter showed that although high PPFIA1 expression was generally associated with decreased distant metastasis-free survival in estrogen receptor+ patients, subgroup analysis only confirmed significant association in estrogen receptor+/N- (nodal negative) group (median survival, high PPFIA1 group vs low PPFIA1 cohort: 191.21 vs 236.22 months; hazard ratio: 2.23, 95% confidence interval: 1.42-3.5, p < 0.001), but not in estrogen receptor+/N+ (nodal positive) group (hazard ratio: 1.63, 95% confidence interval: 0.88-3.03, p = 0.12). In estrogen receptor- patients, there was no association between PPFIA1 expression and distant metastasis-free survival, no matter in Nm (nodal status mixed), N-, or N+ subgroups. In bc-GenExMiner 4.0, Nottingham Prognostic Index- and Adjuvant! Online-adjusted analysis validated the independent prognostic value of PPFIA1 in metastatic risks in estrogen receptor+/N- patients. Based on these findings, we infer that high PPFIA1 expression might be an independent prognostic indicator of increased metastatic relapse risk in patients with estrogen receptor+/N- breast cancer, but not in estrogen receptor+/N+ or estrogen receptor- patients.

  20. TU-AB-BRC-07: Efficiency of An IAEA Phase-Space Source for a Low Energy X-Ray Tube Using Egs++

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, PGF; Renaud, MA; Seuntjens, J

    Purpose: To extend the capability of the EGSnrc C++ class library (egs++) to write and read IAEA phase-space files as a particle source, and to assess the relative efficiency gain in dose calculation using an IAEA phase-space source for modelling a miniature low energy x-ray source. Methods: We created a new ausgab object to score particles exiting a user-defined geometry and write them to an IAEA phase-space file. A new particle source was created to read from IAEA phase-space data. With these tools, a phase-space file was generated for particles exiting a miniature 50 kVp x-ray tube (The INTRABEAM System,more » Carl Zeiss). The phase-space source was validated by comparing calculated PDDs with a full electron source simulation of the INTRABEAM. The dose calculation efficiency gain of the phase-space source was determined relative to the full simulation. The efficiency gain as a function of i) depth in water, and ii) job parallelization was investigated. Results: The phase-space and electron source PDDs were found to agree to 0.5% RMS, comparable to statistical uncertainties. The use of a phase-space source for the INTRABEAM led to a relative efficiency gain of greater than 20 over the full electron source simulation, with an increase of up to a factor of 196. The efficiency gain was found to decrease with depth in water, due to the influence of scattering. Job parallelization (across 2 to 256 cores) was not found to have any detrimental effect on efficiency gain. Conclusion: A set of tools has been developed for writing and reading IAEA phase-space files, which can be used with any egs++ user code. For simulation of a low energy x-ray tube, the use of a phase-space source was found to increase the relative dose calculation efficiency by factor of up to 196. The authors acknowledge partial support by the CREATE Medical Physics Research Training Network grant of the Natural Sciences and Engineering Research Council (Grant No. 432290).« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akkelin, S.V.; Sinyukov, Yu.M.

    A method allowing analysis of the overpopulation of phase space in heavy ion collisions in a model-independent way is proposed within the hydrodynamic approach. It makes it possible to extract a chemical potential of thermal pions at freeze-out, irrespective of the form of freeze-out (isothermal) hypersurface in Minkowski space and transverse flows on it. The contributions of resonance (with masses up to 2 GeV) decays to spectra, interferometry volumes, and phase-space densities are calculated and discussed in detail. The estimates of average phase-space densities and chemical potentials of thermal pions are obtained for SPS and RHIC energies. They demonstrate thatmore » multibosonic phenomena at those energies might be considered as a correction factor rather than as a significant physical effect. The analysis of the evolution of the pion average phase-space density in chemically frozen hadron systems shows that it is almost constant or slightly increases with time while the particle density and phase-space density at each space point decreases rapidly during the system's expansion. We found that, unlike the particle density, the average phase-space density has no direct link to the freeze-out criterion and final thermodynamic parameters, being connected rather to the initial phase-space density of hadronic matter formed in relativistic nucleus-nucleus collisions.« less

  2. Disentangling the Cosmic Web with Lagrangian Submanifold

    NASA Astrophysics Data System (ADS)

    Shandarin, Sergei F.; Medvedev, Mikhail V.

    2016-10-01

    The Cosmic Web is a complicated highly-entangled geometrical object. Remarkably it has formed from practically Gaussian initial conditions, which may be regarded as the simplest departure from exactly uniform universe in purely deterministic mapping. The full complexity of the web is revealed neither in configuration no velocity spaces considered separately. It can be fully appreciated only in six-dimensional (6D) phase space. However, studies of the phase space is complicated by the fact that every projection of it on a three-dimensional (3D) space is multivalued and contained caustics. In addition phase space is not a metric space that complicates studies of geometry. We suggest to use Lagrangian submanifold i.e., x = x(q), where both x and q are 3D vectors instead of the phase space for studies the complexity of cosmic web in cosmological N-body dark matter simulations. Being fully equivalent in dynamical sense to the phase space it has an advantage of being a single valued and also metric space.

  3. Writing filter processes for the SAGA editor, appendix G

    NASA Technical Reports Server (NTRS)

    Kirslis, Peter A.

    1985-01-01

    The SAGA editor provides a mechanism by which separate processes can be invoked during an editing session to traverse portions of the parse tree being edited. These processes, termed filter processes, read, analyze, and possibly transform the parse tree, returning the result to the editor. By defining new commands with the editor's user defined command facility, which invoke filter processes, authors of filter can provide complex operations as simple commands. A tree plotter, pretty printer, and Pascal tree transformation program were already written using this facility. The filter processes are introduced, parse tree structure is described and the library interface made available to the programmer. Also discussed is how to compile and run filter processes. Examples are presented to illustrate aspect of each of these areas.

  4. Observations of V694 Mon (MWC 560) requested for Chandra campaign

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2016-02-01

    Dr. Jeno Sokoloski (Columbia University) and Mr. Adrian Lucy (graduate student, Columbia University) have requested AAVSO observations of the jet-driving symbiotic star V694 Mon (MWC 560), which is in outburst, in support of upcoming Chandra observations to investigate the state of the inner accretion disk during this outburst. Beginning now and continuing through April 2016, Sokoloski writes, "multi-band photometry (UBVRI, but especially UBV), spectroscopy, and minute-time-resolution light curves of the optical flickering are requested. Series of exposures in B or V will be very interesting." Finder charts with sequence may be created using the AAVSO Variable Star Plotter (https://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details.

  5. User's manual for THPLOT, A FORTRAN 77 Computer program for time history plotting

    NASA Technical Reports Server (NTRS)

    Murray, J. E.

    1982-01-01

    A general purpose FORTRAN 77 computer program (THPLOT) for plotting time histories using Calcomp pen plotters is described. The program is designed to read a time history data file and to generate time history plots for selected time intervals and/or selected data channels. The capabilities of the program are described. The card input required to define the plotting operation is described and examples of card input and the resulting plotted output are given. The examples are followed by a description of the printed output, including both normal output and error messages. Lastly, implementation of the program is described. A complete listing of the program with reference maps produced by the CDC FTN 5.0 compiler is included.

  6. Phase space methods in HMD systems

    NASA Astrophysics Data System (ADS)

    Babington, James

    2017-06-01

    We consider using phase space techniques and methods in analysing optical ray propagation in head mounted display systems. Two examples are considered that illustrate the concepts and methods. Firstly, a shark tooth freeform geometry, and secondly, a waveguide geometry that replicates a pupil in one dimension. Classical optics and imaging in particular provide a natural stage to employ phase space techniques, albeit as a constrained system. We consider how phase space provides a global picture of the physical ray trace data. As such, this gives a complete optical world history of all of the rays propagating through the system. Using this data one can look at, for example, how aberrations arise on a surface by surface basis. These can be extracted numerically from phase space diagrams in the example of a freeform imaging prism. For the waveguide geometry, phase space diagrams provide a way of illustrating how replicated pupils behave and what these imply for design considerations such as tolerances.

  7. Husimi function and phase-space analysis of bilayer quantum Hall systems at ν = 2/λ

    NASA Astrophysics Data System (ADS)

    Calixto, M.; Peón-Nieto, C.

    2018-05-01

    We propose localization measures in phase space of the ground state of bilayer quantum Hall systems at fractional filling factors , to characterize the three quantum phases (shortly denoted by spin, canted and ppin) for arbitrary -isospin λ. We use a coherent state (Bargmann) representation of quantum states, as holomorphic functions in the 8-dimensional Grassmannian phase-space (a higher-dimensional generalization of the Haldane’s 2-dimensional sphere ). We quantify the localization (inverse volume) of the ground state wave function in phase-space throughout the phase diagram (i.e. as a function of Zeeman, tunneling, layer distance, etc, control parameters) with the Husimi function second moment, a kind of inverse participation ratio that behaves as an order parameter. Then we visualize the different ground state structure in phase space of the three quantum phases, the canted phase displaying a much higher delocalization (a Schrödinger cat structure) than the spin and ppin phases, where the ground state is highly coherent. We find a good agreement between analytic (variational) and numeric diagonalization results.

  8. On the importance of an accurate representation of the initial state of the system in classical dynamics simulations

    NASA Astrophysics Data System (ADS)

    García-Vela, A.

    2000-05-01

    A definition of a quantum-type phase-space distribution is proposed in order to represent the initial state of the system in a classical dynamics simulation. The central idea is to define an initial quantum phase-space state of the system as the direct product of the coordinate and momentum representations of the quantum initial state. The phase-space distribution is then obtained as the square modulus of this phase-space state. The resulting phase-space distribution closely resembles the quantum nature of the system initial state. The initial conditions are sampled with the distribution, using a grid technique in phase space. With this type of sampling the distribution of initial conditions reproduces more faithfully the shape of the original phase-space distribution. The method is applied to generate initial conditions describing the three-dimensional state of the Ar-HCl cluster prepared by ultraviolet excitation. The photodissociation dynamics is simulated by classical trajectories, and the results are compared with those of a wave packet calculation. The classical and quantum descriptions are found in good agreement for those dynamical events less subject to quantum effects. The classical result fails to reproduce the quantum mechanical one for the more strongly quantum features of the dynamics. The properties and applicability of the phase-space distribution and the sampling technique proposed are discussed.

  9. Experimental Evidence for a Structural-Dynamical Transition in Trajectory Space.

    PubMed

    Pinchaipat, Rattachai; Campo, Matteo; Turci, Francesco; Hallett, James E; Speck, Thomas; Royall, C Patrick

    2017-07-14

    Among the key insights into the glass transition has been the identification of a nonequilibrium phase transition in trajectory space which reveals phase coexistence between the normal supercooled liquid (active phase) and a glassy state (inactive phase). Here, we present evidence that such a transition occurs in experiments. In colloidal hard spheres, we find a non-Gaussian distribution of trajectories leaning towards those rich in locally favored structures (LFSs), associated with the emergence of slow dynamics. This we interpret as evidence for a nonequilibrium transition to an inactive LFS-rich phase. Reweighting trajectories reveals a first-order phase transition in trajectory space between a normal liquid and a LFS-rich phase. We also find evidence for a purely dynamical transition in trajectory space.

  10. Phase-locked laser array having a non-uniform spacing between lasing regions

    NASA Technical Reports Server (NTRS)

    Ackley, Donald E. (Inventor)

    1986-01-01

    A phase-locked semiconductor array wherein the lasing regions of the array are spaced an effective distance apart such that the modes of oscillation of the different lasing regions are phase-locked to one another. The center-to-center spacing between the lasing regions is non-uniform. This variation in spacing perturbs the preferred 180.degree. phase difference between adjacent lasing regions thereby providing an increased yield of arrays exhibiting a single-lobed, far-field radiation pattern.

  11. An effective method to accurately calculate the phase space factors for β - β - decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neacsu, Andrei; Horoi, Mihai

    2016-01-01

    Accurate calculations of the electron phase space factors are necessary for reliable predictions of double-beta decay rates and for the analysis of the associated electron angular and energy distributions. Here, we present an effective method to calculate these phase space factors that takes into account the distorted Coulomb field of the daughter nucleus, yet it allows one to easily calculate the phase space factors with good accuracy relative to the most exact methods available in the recent literature.

  12. Definition of technology development missions for early Space Station satellite servicing. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The Executive Summary volume 1, includes an overview of both phases of the Definition of Technology Development Missions for Early Space Station Satellite Servicing. The primary purpose of Phase 1 of the Marshall Space Flight Center (MSFC) Satellite Servicing Phase 1 study was to establish requirements for demonstrating the capability of performing satellite servicing activities on a permanently manned Space Station in the early 1990s. The scope of Phase 1 included TDM definition, outlining of servicing objectives, derivation of initial Space Station servicing support requirements, and generation of the associated programmatic schedules and cost. The purpose of phase 2 of the satellite servicing study was to expand and refine the overall understanding of how best to use the manned space station as a test bed for demonstration of satellite servicing capabilities.

  13. Energy content of stormtime ring current from phase space mapping simulations

    NASA Technical Reports Server (NTRS)

    Chen, Margaret W.; Schulz, Michael; Lyons, Larry R.

    1993-01-01

    We perform a phase space mapping study to estimate the enhancement in energy content that results from stormtime particle transport in the equatorial magnetosphere. Our pre-storm phase space distribution is based on a steady-state transport model. Using results from guiding-center simulations of ion transport during model storms having main phases of 3 hr, 6 hr, and 12 hr, we map phase space distributions of ring current protons from the pre-storm distribution in accordance with Liouville's theorem. We find that transport can account for the entire ten to twenty-fold increase in magnetospheric particle energy content typical of a major storm if a realistic stormtime enhancement of the phase space density f is imposed at the nightside tail plasma sheet (represented by an enhancement of f at the neutral line in our model).

  14. Space-Based Telemetry and Range Safety Project Ku-Band and Ka-Band Phased Array Antenna

    NASA Technical Reports Server (NTRS)

    Whiteman, Donald E.; Valencia, Lisa M.; Birr, Richard B.

    2005-01-01

    The National Aeronautics and Space Administration Space-Based Telemetry and Range Safety study is a multiphase project to increase data rates and flexibility and decrease costs by using space-based communications assets for telemetry during launches and landings. Phase 1 used standard S-band antennas with the Tracking and Data Relay Satellite System to obtain a baseline performance. The selection process and available resources for Phase 2 resulted in a Ku-band phased array antenna system. Several development efforts are under way for a Ka-band phased array antenna system for Phase 3. Each phase includes test flights to demonstrate performance and capabilities. Successful completion of this project will result in a set of communications requirements for the next generation of launch vehicles.

  15. Ku- and Ka-Band Phased Array Antenna for the Space-Based Telemetry and Range Safety Project

    NASA Technical Reports Server (NTRS)

    Whiteman, Donald E.; Valencia, Lisa M.; Birr, Richard B.

    2005-01-01

    The National Aeronautics and Space Administration Space-Based Telemetry and Range Safety study is a multiphase project to increase data rates and flexibility and decrease costs by using space-based communications assets for telemetry during launches and landings. Phase 1 used standard S-band antennas with the Tracking and Data Relay Satellite System to obtain a baseline performance. The selection process and available resources for Phase 2 resulted in a Ku-band phased array antenna system. Several development efforts are under way for a Ka-band phased array antenna system for Phase 3. Each phase includes test flights to demonstrate performance and capabilities. Successful completion of this project will result in a set of communications requirements for the next generation of launch vehicles.

  16. Phase space quantum mechanics - Direct

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nasiri, S.; Sobouti, Y.; Taati, F.

    2006-09-15

    Conventional approach to quantum mechanics in phase space (q,p), is to take the operator based quantum mechanics of Schroedinger, or an equivalent, and assign a c-number function in phase space to it. We propose to begin with a higher level of abstraction, in which the independence and the symmetric role of q and p is maintained throughout, and at once arrive at phase space state functions. Upon reduction to the q- or p-space the proposed formalism gives the conventional quantum mechanics, however, with a definite rule for ordering of factors of noncommuting observables. Further conceptual and practical merits of themore » formalism are demonstrated throughout the text.« less

  17. Classical-Quantum Correspondence by Means of Probability Densities

    NASA Technical Reports Server (NTRS)

    Vegas, Gabino Torres; Morales-Guzman, J. D.

    1996-01-01

    Within the frame of the recently introduced phase space representation of non relativistic quantum mechanics, we propose a Lagrangian from which the phase space Schrodinger equation can be derived. From that Lagrangian, the associated conservation equations, according to Noether's theorem, are obtained. This shows that one can analyze quantum systems completely in phase space as it is done in coordinate space, without additional complications.

  18. Space Phase III - The commercial era dawns

    NASA Technical Reports Server (NTRS)

    Allnutt, R. F.

    1983-01-01

    After the 'Phase I' of space activities, the period bounded by Sputnik and Apollo, 'Phase II', has been entered, a phase in which concerns over the use and the protection of space assets which support national security predominate. However, it is only when the commercial motive becomes prominent that human activity in new regions truly prospers and enters periods of exponential growth. It is believed that there are increasing signs that such a period, called 'Space Phase III', may be coming soon. A description is presented of developments and results upon which this conclusion is based. Since 1980, there have been three developments of great importance for the future of space activities. Six highly successful flights have demonstrated that the Space Shuttle concept works. A series of Soviet missions are related to the emergence of a capability to construct and service modular space stations. Successful tests of the European Ariane 1 indicate an end to U.S. monopoly with respect to the provision of launch services to the Western World.

  19. Phase-space reaction network on a multisaddle energy landscape: HCN isomerization.

    PubMed

    Li, Chun-Biu; Matsunaga, Yasuhiro; Toda, Mikito; Komatsuzaki, Tamiki

    2005-11-08

    By using the HCN/CNH isomerization reaction as an illustrative vehicle of chemical reactions on multisaddle energy landscapes, we give explicit visualizations of molecular motions associated with a straight-through reaction tube in the phase space inside which all reactive trajectories pass from one basin to another, with eliminating recrossing trajectories in the configuration space. This visualization provides us with a chemical intuition of how chemical species "walk along" the reaction-rate slope in the multidimensional phase space compared with the intrinsic reaction path in the configuration space. The distinct nonergodic features in the two different HCN and CNH wells can be easily demonstrated by a section of Poincare surface of section in those potential minima, which predicts in a priori the pattern of trajectories residing in the potential well. We elucidate the global phase-space structure which gives rise to the non-Markovian dynamics or the dynamical correlation of sequential multisaddle chemical reactions. The phase-space structure relevant to the controllability of the product state in chemical reactions is also discussed.

  20. Expanding the term "Design Space" in high performance liquid chromatography (I).

    PubMed

    Monks, K E; Rieger, H-J; Molnár, I

    2011-12-15

    The current article presents a novel approach to applying Quality by Design (QbD) principles to the development of high pressure reversed phase liquid chromatography (HPLC) methods. Four common critical parameters in HPLC--gradient time, temperature, pH of the aqueous eluent, and stationary phase--are evaluated within the Quality by Design framework by the means of computer modeling software and a column database, to a satisfactory degree. This work proposes the establishment of two mutually complimentary Design Spaces to fully depict a chromatographic method; one Column Design Space (CDS) and one Eluent Design Space (EDS) to describe the influence of the stationary phase and of the mobile phase on the separation selectivity, respectively. The merge of both Design Spaces into one is founded on the continuous nature of the mobile phase influence on retention and the great variety of the stationary phases available. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. An approach for automated fault diagnosis based on a fuzzy decision tree and boundary analysis of a reconstructed phase space.

    PubMed

    Aydin, Ilhan; Karakose, Mehmet; Akin, Erhan

    2014-03-01

    Although reconstructed phase space is one of the most powerful methods for analyzing a time series, it can fail in fault diagnosis of an induction motor when the appropriate pre-processing is not performed. Therefore, boundary analysis based a new feature extraction method in phase space is proposed for diagnosis of induction motor faults. The proposed approach requires the measurement of one phase current signal to construct the phase space representation. Each phase space is converted into an image, and the boundary of each image is extracted by a boundary detection algorithm. A fuzzy decision tree has been designed to detect broken rotor bars and broken connector faults. The results indicate that the proposed approach has a higher recognition rate than other methods on the same dataset. © 2013 ISA Published by ISA All rights reserved.

  2. Transverse emittance and phase space program developed for use at the Fermilab A0 Photoinjector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thurman-Keup, R.; Johnson, A.S.; Lumpkin, A.H.

    2011-03-01

    The Fermilab A0 Photoinjector is a 16 MeV high intensity, high brightness electron linac developed for advanced accelerator R&D. One of the key parameters for the electron beam is the transverse beam emittance. Here we report on a newly developed MATLAB based GUI program used for transverse emittance measurements using the multi-slit technique. This program combines the image acquisition and post-processing tools for determining the transverse phase space parameters with uncertainties. An integral part of accelerator research is a measurement of the beam phase space. Measurements of the transverse phase space can be accomplished by a variety of methods includingmore » multiple screens separated by drift spaces, or by sampling phase space via pepper pots or slits. In any case, the measurement of the phase space parameters, in particular the emittance, can be drastically simplified and sped up by automating the measurement in an intuitive fashion utilizing a graphical interface. At the A0 Photoinjector (A0PI), the control system is DOOCS, which originated at DESY. In addition, there is a library for interfacing to MATLAB, a graphically capable numerical analysis package sold by The Mathworks. It is this graphical package which was chosen as the basis for a graphical phase space measurement system due to its combination of analysis and display capabilities.« less

  3. NASA Research Announcement Phase 1 Report and Phase 2 Proposal for the Development of a Power Assisted Space Suit Glove Assembly

    NASA Technical Reports Server (NTRS)

    Cadogan, Dave; Lingo, Bob

    1996-01-01

    In July of 1996, ILC Dover was awarded Phase 1 of a contract for NASA to develop a prototype Power Assisted Space Suit glove to enhance the performance of astronauts during Extra-Vehicular Activity (EVA). This report summarizes the work performed to date on Phase 1, and details the work to be conducted on Phase 2 of the program. Phase 1 of the program consisted of research and review of related technical sources, concept brainstorming, baseline design development, modeling and analysis, component mock-up testing, and test data analysis. ILC worked in conjunction with the University of Maryland's Space Systems Laboratory (SSL) to develop the power assisted glove. Phase 2 activities will focus on the design maturation and the manufacture of a working prototype system. The prototype will be tested and evaluated in conjunction with existing space suit glove technology to determine the performance enhancement anticipated with the implementation of the power assisted joint technology in space suit gloves.

  4. Efficient characterization of phase space mapping in axially symmetric optical systems

    NASA Astrophysics Data System (ADS)

    Barbero, Sergio; Portilla, Javier

    2018-01-01

    Phase space mapping, typically between an object and image plane, characterizes an optical system within a geometrical optics framework. We propose a novel conceptual frame to characterize the phase mapping in axially symmetric optical systems for arbitrary object locations, not restricted to a specific object plane. The idea is based on decomposing the phase mapping into a set of bivariate equations corresponding to different values of the radial coordinate on a specific object surface (most likely the entrance pupil). These equations are then approximated through bivariate Chebyshev interpolation at Chebyshev nodes, which guarantees uniform convergence. Additionally, we propose the use of a new concept (effective object phase space), defined as the set of points of the phase space at the first optical element (typically the entrance pupil) that are effectively mapped onto the image surface. The effective object phase space provides, by means of an inclusion test, a way to avoid tracing rays that do not reach the image surface.

  5. Families of vector-like deformations of relativistic quantum phase spaces, twists and symmetries

    NASA Astrophysics Data System (ADS)

    Meljanac, Daniel; Meljanac, Stjepan; Pikutić, Danijel

    2017-12-01

    Families of vector-like deformed relativistic quantum phase spaces and corresponding realizations are analyzed. A method for a general construction of the star product is presented. The corresponding twist, expressed in terms of phase space coordinates, in the Hopf algebroid sense is presented. General linear realizations are considered and corresponding twists, in terms of momenta and Poincaré-Weyl generators or gl(n) generators are constructed and R-matrix is discussed. A classification of linear realizations leading to vector-like deformed phase spaces is given. There are three types of spaces: (i) commutative spaces, (ii) κ -Minkowski spaces and (iii) κ -Snyder spaces. The corresponding star products are (i) associative and commutative (but non-local), (ii) associative and non-commutative and (iii) non-associative and non-commutative, respectively. Twisted symmetry algebras are considered. Transposed twists and left-right dual algebras are presented. Finally, some physical applications are discussed.

  6. Self-dual phase space for (3 +1 )-dimensional lattice Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Riello, Aldo

    2018-01-01

    I propose a self-dual deformation of the classical phase space of lattice Yang-Mills theory, in which both the electric and magnetic fluxes take value in the compact gauge Lie group. A local construction of the deformed phase space requires the machinery of "quasi-Hamiltonian spaces" by Alekseev et al., which is reviewed here. The results is a full-fledged finite-dimensional and gauge-invariant phase space, the self-duality properties of which are largely enhanced in (3 +1 ) spacetime dimensions. This enhancement is due to a correspondence with the moduli space of an auxiliary noncommutative flat connection living on a Riemann surface defined from the lattice itself, which in turn equips the duality between electric and magnetic fluxes with a neat geometrical interpretation in terms of a Heegaard splitting of the space manifold. Finally, I discuss the consequences of the proposed deformation on the quantization of the phase space, its quantum gravitational interpretation, as well as its relevance for the construction of (3 +1 )-dimensional topological field theories with defects.

  7. Longitudinal phase space tomography using a booster cavity at PITZ

    NASA Astrophysics Data System (ADS)

    Malyutin, D.; Gross, M.; Isaev, I.; Khojoyan, M.; Kourkafas, G.; Krasilnikov, M.; Marchetti, B.; Otevrel, M.; Stephan, F.; Vashchenko, G.

    2017-11-01

    The knowledge of the longitudinal phase space (LPS) of electron beams is of great importance for optimizing the performance of high brightness photo injectors. To get the longitudinal phase space of an electron bunch in a linear accelerator a tomographic technique can be used. The method is based on measurements of the bunch momentum spectra while varying the bunch energy chirp. The energy chirp can be varied by one of the RF accelerating structures in the accelerator and the resulting momentum distribution can be measured with a dipole spectrometer further downstream. As a result, the longitudinal phase space can be reconstructed. Application of the tomographic technique for reconstruction of the longitudinal phase space is introduced in detail in this paper. Measurement results from the PITZ facility are shown and analyzed.

  8. A Phase-Space Approach to Collisionless Stellar Systems Using a Particle Method

    NASA Astrophysics Data System (ADS)

    Hozumi, Shunsuke

    1997-10-01

    A particle method for reproducing the phase space of collisionless stellar systems is described. The key idea originates in Liouville's theorem, which states that the distribution function (DF) at time t can be derived from tracing necessary orbits back to t = 0. To make this procedure feasible, a self-consistent field (SCF) method for solving Poisson's equation is adopted to compute the orbits of arbitrary stars. As an example, for the violent relaxation of a uniform density sphere, the phase-space evolution generated by the current method is compared to that obtained with a phase-space method for integrating the collisionless Boltzmann equation, on the assumption of spherical symmetry. Excellent agreement is found between the two methods if an optimal basis set for the SCF technique is chosen. Since this reproduction method requires only the functional form of initial DFs and does not require any assumptions to be made about the symmetry of the system, success in reproducing the phase-space evolution implies that there would be no need of directly solving the collisionless Boltzmann equation in order to access phase space even for systems without any special symmetries. The effects of basis sets used in SCF simulations on the reproduced phase space are also discussed.

  9. Evolution of Government and Industrial Partnerships to Open the Space Frontier

    NASA Technical Reports Server (NTRS)

    Martin, Gary L.

    2008-01-01

    If the logical extension of the current exploration program is to develop self-sustaining settlements on the Moon and Mars over the next few centuries, then there is a path that takes civilization from its current one planet existence to a multi-world future. By considering the far term goal of space settlements as a desired endpoint and using the current state as a starting point, the policy drivers and potential pathways to the goal of sustainable space settlements can be explored. This paper describes a three-phased evolution of government and industrial partnerships from current day relationships to a time when there are sustainable settlements in space. Phase I details the current state government-led exploration while Phase III describes a desired endpoint of self-sufficient settlements in space. Phase II is an important transition phase, which acts as a bridge between now and the future. This paper discusses the critical evolution that must take place in two key areas to ensure a thriving future in space; space transportation and the right to use space property and resources. This paper focuses on the enabling role of government necessary to achieve United States (U.S.) goals for space exploration and open the frontier.

  10. Quantum Optics in Phase Space

    NASA Astrophysics Data System (ADS)

    Schleich, Wolfgang P.

    2001-04-01

    Quantum Optics in Phase Space provides a concise introduction to the rapidly moving field of quantum optics from the point of view of phase space. Modern in style and didactically skillful, Quantum Optics in Phase Space prepares students for their own research by presenting detailed derivations, many illustrations and a large set of workable problems at the end of each chapter. Often, the theoretical treatments are accompanied by the corresponding experiments. An exhaustive list of references provides a guide to the literature. Quantum Optics in Phase Space also serves advanced researchers as a comprehensive reference book. Starting with an extensive review of the experiments that define quantum optics and a brief summary of the foundations of quantum mechanics the author Wolfgang P. Schleich illustrates the properties of quantum states with the help of the Wigner phase space distribution function. His description of waves ala WKB connects semi-classical phase space with the Berry phase. These semi-classical techniques provide deeper insight into the timely topics of wave packet dynamics, fractional revivals and the Talbot effect. Whereas the first half of the book deals with mechanical oscillators such as ions in a trap or atoms in a standing wave the second half addresses problems where the quantization of the radiation field is of importance. Such topics extensively discussed include optical interferometry, the atom-field interaction, quantum state preparation and measurement, entanglement, decoherence, the one-atom maser and atom optics in quantized light fields. Quantum Optics in Phase Space presents the subject of quantum optics as transparently as possible. Giving wide-ranging references, it enables students to study and solve problems with modern scientific literature. The result is a remarkably concise yet comprehensive and accessible text- and reference book - an inspiring source of information and insight for students, teachers and researchers alike.

  11. Statistical techniques applied to aerial radiometric surveys (STAARS): principal components analysis user's manual. [NURE program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koch, C.D.; Pirkle, F.L.; Schmidt, J.S.

    1981-01-01

    A Principal Components Analysis (PCA) has been written to aid in the interpretation of multivariate aerial radiometric data collected by the US Department of Energy (DOE) under the National Uranium Resource Evaluation (NURE) program. The variations exhibited by these data have been reduced and classified into a number of linear combinations by using the PCA program. The PCA program then generates histograms and outlier maps of the individual variates. Black and white plots can be made on a Calcomp plotter by the application of follow-up programs. All programs referred to in this guide were written for a DEC-10. From thismore » analysis a geologist may begin to interpret the data structure. Insight into geological processes underlying the data may be obtained.« less

  12. Coverage by land, sea, and airplane surveys, 1900-1967.

    NASA Technical Reports Server (NTRS)

    Fabiano, E.; Cain, S. J.

    1971-01-01

    The worldwide coverage of the earth by land, sea, and aircraft magnetic surveys since the beginning of the 20th century is shown on three world maps for surface surveys spanning the periods of 1900-1930, 1930-1955, and 1955-1967, respectively, on a fourth map for ship-towed magnetometer surveys performed after 1956, and on a fifth map for 1953-1966 airborne survey data. The technique used, involving a position plotting of each measurement with a microfilm plotter, results in the appearance of heavily surveyed regions as completely darkened areas. The coverage includes measurements at about 100,000 land stations, airborne measurements at over 90,000 points, and marine measurements at over 25,000 points. The marine measurements cover over 1,000,000 km of trackline.

  13. Validation of GC and HPLC systems for residue studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, M.

    1995-12-01

    For residue studies, GC and HPLC system performance must be validated prior to and during use. One excellent measure of system performance is the standard curve and associated chromatograms used to construct that curve. The standard curve is a model of system response to an analyte over a specific time period, and is prima facia evidence of system performance beginning at the auto sampler and proceeding through the injector, column, detector, electronics, data-capture device, and printer/plotter. This tool measures the performance of the entire chromatographic system; its power negates most of the benefits associated with costly and time-consuming validation ofmore » individual system components. Other measures of instrument and method validation will be discussed, including quality control charts and experimental designs for method validation.« less

  14. Microcumpter computation of water quality discharges

    USGS Publications Warehouse

    Helsel, Dennis R.

    1983-01-01

    A fully prompted program (SEDQ) has been developed to calculate daily and instantaneous water quality (QW) discharges. It is written in a version of BASIC, and requires inputs of gage heights, discharge rating curve, shifts, and water quality concentration information. Concentration plots may be modified interactively using the display screen. Semi-logarithmic plots of concentration and water quality discharge are output to the display screen, and optionally to plotters. A summary table of data is also output. SEDQ could be a model program for micro and minicomputer systems likely to be in use within the Water Resources Division, USGS, in the near future. The daily discharge-weighted mean concentration is one output from SEDQ. It is defined in this report, differentiated from the currently used mean concentration, and designated the ' equivalent concentration. ' (USGS)

  15. Computer user's manual for a generalized curve fit and plotting program

    NASA Technical Reports Server (NTRS)

    Schlagheck, R. A.; Beadle, B. D., II; Dolerhie, B. D., Jr.; Owen, J. W.

    1973-01-01

    A FORTRAN coded program has been developed for generating plotted output graphs on 8-1/2 by 11-inch paper. The program is designed to be used by engineers, scientists, and non-programming personnel on any IBM 1130 system that includes a 1627 plotter. The program has been written to provide a fast and efficient method of displaying plotted data without having to generate any additions. Various output options are available to the program user for displaying data in four different types of formatted plots. These options include discrete linear, continuous, and histogram graphical outputs. The manual contains information about the use and operation of this program. A mathematical description of the least squares goodness of fit test is presented. A program listing is also included.

  16. Digital image transformation and rectification of spacecraft and radar images

    USGS Publications Warehouse

    Wu, S.S.C.

    1985-01-01

    Digital image transformation and rectification can be described in three categories: (1) digital rectification of spacecraft pictures on workable stereoplotters; (2) digital correction of radar image geometry; and (3) digital reconstruction of shaded relief maps and perspective views including stereograms. Digital rectification can make high-oblique pictures workable on stereoplotters that would otherwise not accommodate such extreme tilt angles. It also enables panoramic line-scan geometry to be used to compile contour maps with photogrammetric plotters. Rectifications were digitally processed on both Viking Orbiter and Lander pictures of Mars as well as radar images taken by various radar systems. By merging digital terrain data with image data, perspective and three-dimensional views of Olympus Mons and Tithonium Chasma, also of Mars, are reconstructed through digital image processing. ?? 1985.

  17. Development of a High Strength Isothermally Heat-Treated Nodular Iron Road Wheel Arm

    DTIC Science & Technology

    1985-03-31

    capacity load cell was calibrated using a Satec Universal Test System and a Hewlett-Packard X,Y Plotter to record the calibrated curve. The load cell...12e 1,3- 0 s0 3 I I r~ I I Il.1660 119 13. 30 1 3,1ý4-514 1 1 o36 1~~ 123 1, d 51 7 4~ 14 ~ 3.• 3I 2k i 7, G 0 se, y 2 es I Q.~ 141/ 14( 13.0130 1B14...LOT BAR QCH YIELD TESS. ELON(. Rc Rc 0HNCARPY LENGTH CaVNT. Nio. No. TIME .000 1O..O % ýMa-crol~licrd IFt Lb INCH~ ES IOU 2-77 •,3~-341.4___ 1 79 7,o

  18. Engineering simulation development and evaluation of the two-segment noise abatement approach conducted in the B-727-222 flight simulator

    NASA Technical Reports Server (NTRS)

    Nylen, W. E.

    1974-01-01

    Profile modification as a means of reducing ground level noise from jet aircraft in the landing approach is evaluated. A flight simulator was modified to incorporate the cockpit hardware which would be in the prototype airplane installation. The two-segment system operational and aircraft interface logic was accurately emulated in software. Programs were developed to permit data to be recorded in real time on the line printer, a 14-channel oscillograph, and an x-y plotter. The two-segment profile and procedures which were developed are described with emphasis on operational concepts and constraints. The two-segment system operational logic and the flight simulator capabilities are described. The findings influenced the ultimate system design and aircraft interface.

  19. ADMAP (automatic data manipulation program)

    NASA Technical Reports Server (NTRS)

    Mann, F. I.

    1971-01-01

    Instructions are presented on the use of ADMAP, (automatic data manipulation program) an aerospace data manipulation computer program. The program was developed to aid in processing, reducing, plotting, and publishing electric propulsion trajectory data generated by the low thrust optimization program, HILTOP. The program has the option of generating SC4020 electric plots, and therefore requires the SC4020 routines to be available at excution time (even if not used). Several general routines are present, including a cubic spline interpolation routine, electric plotter dash line drawing routine, and single parameter and double parameter sorting routines. Many routines are tailored for the manipulation and plotting of electric propulsion data, including an automatic scale selection routine, an automatic curve labelling routine, and an automatic graph titling routine. Data are accepted from either punched cards or magnetic tape.

  20. Transparent electrodes made with ultrasonic spray coating technique for flexible heaters

    NASA Astrophysics Data System (ADS)

    Wroblewski, G.; Krzemiński, J.; Janczak, D.; Sowiński, J.; Jakubowska, M.

    2017-08-01

    Transparent electrodes are one of the basic elements of various electronic components. The paper presents the preliminary results related to novel method of ultrasonic spray coating used for fabrication of transparent flexible electrodes. Experiments were conducted by means of specially made laboratory setup composed of ultrasonic spray generator and XYZ plotter. In the first part of the paper diverse solvents were used to determine the crucial technological parameters such as atomization voltage and fluid flow velocity. Afterwards paint containing carbon nanotubes suspended in the two solvent system was prepared and deposited on the polyethylene terephthalate foil. Thickness, roughness and electrical measurements were performed to designate the relations of technological parameters of ultrasonic spray coating on thickness, roughness, sheet resistance and optical transmission of fabricated samples.

  1. Monitoring of V380 Oph requested in support of HST observations

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2012-08-01

    On behalf of a large Hubble Space Telescope consortium of which they are members, Dr. Joseph Patterson (Columbia University, Center for Backyard Astrophysics) and Dr. Arne Henden (AAVSO) requested observations from the amateur astronomer community in support of upcoming HST observations of the novalike VY Scl-type cataclysmic variable V380 Oph. The HST observations will likely take place in September but nightly visual observations are needed beginning immediately and continuing through at least October 2012. The astronomers plan to observe V380 Oph while it is in its current low state. Observations beginning now are needed to determine the behavior of this system at minimum and to ensure that the system is not in its high state at the time of the HST observations. V380 Oph is very faint in its low state: magnitude 17 to 19 and perhaps even fainter. Nightly snapshot observations, not time series, are requested, as is whatever technique - adding frames, lengthening exposur! es, etc. - necessary to measure the magnitude. It is not known whether V380 Oph is relatively inactive at minimum or has flares of one to two magnitudes; it is this behavior that is essential to learn in order to safely execute the HST observations. Finder charts with sequence may be created using the AAVSO Variable Star Plotter (http://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details. NOTE: This campaign was subsequently cancelled when it was learned V830 Oph was not truly in its low state. See AAVSO Alert Notice 468 for details.

  2. Cataclysmic variables to be monitored for HST observations

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2012-09-01

    Drs. Boris Gaensicke (Warwick University), Joseph Patterson (Columbia University, Center for Backyard Astrophysics), and Arne Henden (AAVSO), on behalf of a consortium of 16 astronomers, requested the help of AAVSO observers in monitoring the ~40 cataclysmic variables in support of Hubble Space Telescope observations in the coming months. The HST COS (Cosmic Origins Spectrograph) will be carrying out far-ultraviolet spectroscopy of ~40 CVs sequentially, with the aim to measure the temperatures, atmospheric compositions, rotation rates, and eventually masses of their white dwarfs. The primary purpose of the monitoring is to know whether each target is in quiescence immediately prior to the observation window; if it is in outburst it will be too bright for the HST instrumentation. Based on the information supplied by the AAVSO, the HST scheduling team will make the decision (usually) the evening before the scheduled observing time as to whether to go forward with the HST observations. For CCD observers, simultaneous photometry [shortly before, during, and after the HST observations] would be ideal. B filter would be best for a light curve, although for the magnitude estimates, V would be best. Finder charts may be created using the AAVSO Variable Star Plotter (http://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. If the target is seen in outburst, please contact the AAVSO immediately and post a message to the Observations and Campaigns & Observations Reports forum (http://www.aavso.org/forum). This campaign will run the better part of a year or longer. See full Alert Notice for more details and list of objects.

  3. Effective increase in beam emittance by phase-space expansion using asymmetric Bragg diffraction.

    PubMed

    Chu, Chia-Hung; Tang, Mau-Tsu; Chang, Shih-Lin

    2015-08-24

    We propose an innovative method to extend the utilization of the phase space downstream of a synchrotron light source for X-ray transmission microscopy. Based on the dynamical theory of X-ray diffraction, asymmetrically cut perfect crystals are applied to reshape the position-angle-wavelength space of the light source, by which the usable phase space of the source can be magnified by over one hundred times, thereby "phase-space-matching" the source with the objective lens of the microscope. The method's validity is confirmed using SHADOW code simulations, and aberration through an optical lens such as a Fresnel zone plate is examined via matrix optics for nano-resolution X-ray images.

  4. Optical enhanced luminescent measurements and sequential reagent mixing on a centrifugal microfluidic device for multi-analyte point-of-care applications

    NASA Astrophysics Data System (ADS)

    Bartholomeusz, Daniel A.; Davies, Rupert H.; Andrade, Joseph D.

    2006-02-01

    A centrifugal-based microfluidic device1 was built with lyophilized bioluminescent reagents for measuring multiple metabolites from a sample of less than 15 μL. Microfluidic channels, reaction wells, and valves were cut in adhesive vinyl film using a knife plotter with features down to 30 μm and transferred to metalized polycarbonate compact disks (CDs). The fabrication method was simple enough to test over 100 prototypes within a few months. It also allowed enzymes to be packaged in microchannels without exposure to heat or chemicals. The valves were rendered hydrophobic using liquid phase deposition. Microchannels were patterned using soft lithography to make them hydrophilic. Reagents and calibration standards were deposited and lyophilized in different wells before being covered with another adhesive film. Sample delivery was controlled by a modified CD ROM. The CD was capable of distributing 200 nL sample aliquots to 36 channels, each with a different set of reagents that mixed with the sample before initiating the luminescent reactions. Reflection of light from the metalized layer and lens configuration allowed for 20% of the available light to be collected from each channel. ATP was detected down to 0.1 μM. Creatinine, glucose, and galactose were also measured in micro and milliMolar ranges. Other optical-based analytical assays can easily be incorporated into the device design. The minimal sample size needed and expandability of the device make it easier to simultaneously measure a variety of clinically relevant analytes in point-of-care settings.

  5. WORM - WINDOWED OBSERVATION OF RELATIVE MOTION

    NASA Technical Reports Server (NTRS)

    Bauer, F.

    1994-01-01

    The Windowed Observation of Relative Motion, WORM, program is primarily intended for the generation of simple X-Y plots from data created by other programs. It allows the user to label, zoom, and change the scale of various plots. Three dimensional contour and line plots are provided, although with more limited capabilities. The input data can be in binary or ASCII format, although all data must be in the same format. A great deal of control over the details of the plot is provided, such as gridding, size of tick marks, colors, log/semilog capability, time tagging, and multiple and phase plane plots. Many color and monochrome graphics terminals and hard copy printer/plotters are supported. The WORM executive commands, menu selections and macro files can be used to develop plots and tabular data, query the WORM Help library, retrieve data from input files, and invoke VAX DCL commands. WORM generated plots are displayed on local graphics terminals and can be copied using standard hard copy capabilities. Some of the graphics features of WORM include: zooming and dezooming various portions of the plot; plot documentation including curve labeling and function listing; multiple curves on the same plot; windowing of multiple plots and insets of the same plot; displaying a specific on a curve; and spinning the curve left, right, up, and down. WORM is written in PASCAL for interactive execution and has been implemented on a DEC VAX computer operating under VMS 4.7 with a virtual memory requirement of approximately 392K of 8 bit bytes. It uses the QPLOT device independent graphics library included with WORM. It was developed in 1988.

  6. Initial-value semiclassical propagators for the Wigner phase space representation: Formulation based on the interpretation of the Moyal equation as a Schrödinger equation.

    PubMed

    Koda, Shin-ichi

    2015-12-28

    We formulate various semiclassical propagators for the Wigner phase space representation from a unified point of view. As is shown in several studies, the Moyal equation, which is an equation of motion for the Wigner distribution function, can be regarded as the Schrödinger equation of an extended Hamiltonian system where its "position" and "momentum" correspond to the middle point of two points of the original phase space and the difference between them, respectively. Then we show that various phase-space semiclassical propagators can be formulated just by applying existing semiclassical propagators to the extended system. As a result, a phase space version of the Van Vleck propagator, the initial-value Van Vleck propagator, the Herman-Kluk propagator, and the thawed Gaussian approximation are obtained. In addition, we numerically compare the initial-value phase-space Van Vleck propagator, the phase-space Herman-Kluk propagator, and the classical mechanical propagation as approximation methods for the time propagation of the Wigner distribution function in terms of both accuracy and convergence speed. As a result, we find that the convergence speed of the Van Vleck propagator is far slower than others as is the case of the Hilbert space, and the Herman-Kluk propagator keeps its accuracy for a long period compared with the classical mechanical propagation while the convergence speed of the latter is faster than the former.

  7. Space Fence PDR Concept Development Phase

    NASA Astrophysics Data System (ADS)

    Haines, L.; Phu, P.

    2011-09-01

    The Space Fence, a major Air Force acquisition program, will become the dominant low-earth orbit uncued sensor in the space surveillance network (SSN). Its primary objective is to provide a 24/7 un-cued capability to find, fix, and track small objects in low earth orbit to include emerging and evolving threats, as well as the rapidly growing population of orbital debris. Composed of up to two geographically dispersed large-scale S-band phased array radars, this new system-of-systems concept will provide comprehensive Space Situational Awareness through net-centric operations and integrated decision support. Additionally, this program will facilitate cost saving force structure changes in the SSN, specifically including the decommissioning of very-high frequency VHF Air Force Space Surveillance System (AFSSS). The Space Fence Program Office entered a Preliminary Design Review (PDR) concept development phase in January 2011 to achieve the delivery of the Initial Operational Capability (IOC) expected in FY17. Two contractors were awarded to perform preliminary system design, conduct radar performance analyses and evaluations, and develop a functional PDR radar system prototype. The key objectives for the Phase A PDR effort are to reduce Space Fence total program technical, cost, schedule, and performance risk. The overall program objective is to achieve a preliminary design that demonstrates sufficient technical and manufacturing maturity and that represents a low risk, affordable approach to meet the Space Fence Technical Requirements Document (TRD) requirements for the final development and production phase to begin in 3QFY12. This paper provides an overview of the revised Space Fence program acquisition strategy for the Phase-A PDR phase to IOC, the overall program milestones and major technical efforts. In addition, the key system trade studies and modeling/simulation efforts undertaken during the System Design Requirement (SDR) phase to address and mitigate technical challenges of the Space Fence System will also be discussed. Examples include radar system optimization studies, modeling and simulation for system performance assessment, investigation of innovative Astrodynamics algorithms for initial orbit determination and observation correlation.

  8. Explicit methods in extended phase space for inseparable Hamiltonian problems

    NASA Astrophysics Data System (ADS)

    Pihajoki, Pauli

    2015-03-01

    We present a method for explicit leapfrog integration of inseparable Hamiltonian systems by means of an extended phase space. A suitably defined new Hamiltonian on the extended phase space leads to equations of motion that can be numerically integrated by standard symplectic leapfrog (splitting) methods. When the leapfrog is combined with coordinate mixing transformations, the resulting algorithm shows good long term stability and error behaviour. We extend the method to non-Hamiltonian problems as well, and investigate optimal methods of projecting the extended phase space back to original dimension. Finally, we apply the methods to a Hamiltonian problem of geodesics in a curved space, and a non-Hamiltonian problem of a forced non-linear oscillator. We compare the performance of the methods to a general purpose differential equation solver LSODE, and the implicit midpoint method, a symplectic one-step method. We find the extended phase space methods to compare favorably to both for the Hamiltonian problem, and to the implicit midpoint method in the case of the non-linear oscillator.

  9. Integrability and nonintegrability of quantum systems. II. Dynamics in quantum phase space

    NASA Astrophysics Data System (ADS)

    Zhang, Wei-Min; Feng, Da Hsuan; Yuan, Jian-Min

    1990-12-01

    Based on the concepts of integrability and nonintegrability of a quantum system presented in a previous paper [Zhang, Feng, Yuan, and Wang, Phys. Rev. A 40, 438 (1989)], a realization of the dynamics in the quantum phase space is now presented. For a quantum system with dynamical group scrG and in one of its unitary irreducible-representation carrier spaces gerhΛ, the quantum phase space is a 2MΛ-dimensional topological space, where MΛ is the quantum-dynamical degrees of freedom. This quantum phase space is isomorphic to a coset space scrG/scrH via the unitary exponential mapping of the elementary excitation operator subspace of scrg (algebra of scrG), where scrH (⊂scrG) is the maximal stability subgroup of a fixed state in gerhΛ. The phase-space representation of the system is realized on scrG/scrH, and its classical analogy can be obtained naturally. It is also shown that there is consistency between quantum and classical integrability. Finally, a general algorithm for seeking the manifestation of ``quantum chaos'' via the classical analogy is provided. Illustrations of this formulation in several important quantum systems are presented.

  10. Developing and Applying Synthesis Models of Emerging Space Systems

    DTIC Science & Technology

    2016-03-01

    enables the exploration of small satellite physical trade -offs early in the conceptual design phase of the DOD space acquisition process. Early...provide trade space insights that can assist DOD space acquisition professionals in making better decisions in the conceptual design phase. More informed

  11. Space station needs, attributes, and architectural options study. Volume 1: Missions and requirements

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Science and applications, NOAA environmental observation, commercial resource observations, commercial space processing, commercial communications, national security, technology development, and GEO servicing are addressed. Approach to time phasing of mission requirements, system sizing summary, time-phased user mission payload support, space station facility requirements, and integrated time-phased system requirements are also addressed.

  12. Asymptotically stable phase synchronization revealed by autoregressive circle maps

    NASA Astrophysics Data System (ADS)

    Drepper, F. R.

    2000-11-01

    A specially designed of nonlinear time series analysis is introduced based on phases, which are defined as polar angles in spaces spanned by a finite number of delayed coordinates. A canonical choice of the polar axis and a related implicit estimation scheme for the potentially underlying autoregressive circle map (next phase map) guarantee the invertibility of reconstructed phase space trajectories to the original coordinates. The resulting Fourier approximated, invertibility enforcing phase space map allows us to detect conditional asymptotic stability of coupled phases. This comparatively general synchronization criterion unites two existing generalizations of the old concept and can successfully be applied, e.g., to phases obtained from electrocardiogram and airflow recordings characterizing cardiorespiratory interaction.

  13. Review of two-phase flow liquid metal MHD and turbine energy conversion concepts for space applications

    NASA Technical Reports Server (NTRS)

    Fabris, Gracio

    1992-01-01

    Two-phase energy conversion systems could be liquid metal magnetohydrodynamic (LMMHD) with no moving parts or two-phase turbines. Both of them are inherently simple and reliable devices which can operate in a wide range of temperatures. Their thermal efficiency is significantly higher than for conventional cycles due to reheat of vapor by liquid phase during the energy converting expansion. Often they can be more easily coupled to heat sources. These features make two-phase systems particularly promising for space application. Insufficient research has been done in the past. So far achieved LMMHD generator and two-phase turbine efficiencies are in the 40 to 45 percent range. However if certain fluid dynamic and design problems are resolved these efficiencies could be brought into the range of 70 percent. This would make two-phase systems extremely competitive as compared to present or other proposed conversion system for space. Accordingly, well directed research effort on potential space applications of two-phase conversion systems would be a wise investment.

  14. Solar power satellite system definition study, phase 2.

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A program plan for the Solar Power Satellite Program is presented. The plan includes research, development, and evaluation phase, engineering and development and cost verification phase, prototype construction, and commercialization. Cost estimates and task requirements are given for the following technology areas: (1) solar arrays; (2) thermal engines and thermal systems; (3) power transmission (to earth); (4) large space structures; (5) materials technology; (6) system control; (7) space construction; (8) space transportation; (9) power distribution, and space environment effects.

  15. Real-space Berry phases: Skyrmion soccer (invited)

    NASA Astrophysics Data System (ADS)

    Everschor-Sitte, Karin; Sitte, Matthias

    2014-05-01

    Berry phases occur when a system adiabatically evolves along a closed curve in parameter space. This tutorial-like article focuses on Berry phases accumulated in real space. In particular, we consider the situation where an electron traverses a smooth magnetic structure, while its magnetic moment adjusts to the local magnetization direction. Mapping the adiabatic physics to an effective problem in terms of emergent fields reveals that certain magnetic textures, skyrmions, are tailormade to study these Berry phase effects.

  16. Real-space Berry phases: Skyrmion soccer (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Everschor-Sitte, Karin, E-mail: karin@physics.utexas.edu; Sitte, Matthias

    Berry phases occur when a system adiabatically evolves along a closed curve in parameter space. This tutorial-like article focuses on Berry phases accumulated in real space. In particular, we consider the situation where an electron traverses a smooth magnetic structure, while its magnetic moment adjusts to the local magnetization direction. Mapping the adiabatic physics to an effective problem in terms of emergent fields reveals that certain magnetic textures, skyrmions, are tailormade to study these Berry phase effects.

  17. Hamiltonian flow over saddles for exploring molecular phase space structures

    NASA Astrophysics Data System (ADS)

    Farantos, Stavros C.

    2018-03-01

    Despite using potential energy surfaces, multivariable functions on molecular configuration space, to comprehend chemical dynamics for decades, the real happenings in molecules occur in phase space, in which the states of a classical dynamical system are completely determined by the coordinates and their conjugate momenta. Theoretical and numerical results are presented, employing alanine dipeptide as a model system, to support the view that geometrical structures in phase space dictate the dynamics of molecules, the fingerprints of which are traced by following the Hamiltonian flow above saddles. By properly selecting initial conditions in alanine dipeptide, we have found internally free rotor trajectories the existence of which can only be justified in a phase space perspective. This article is part of the theme issue `Modern theoretical chemistry'.

  18. An extensive phase space for the potential martian biosphere.

    PubMed

    Jones, Eriita G; Lineweaver, Charles H; Clarke, Jonathan D

    2011-12-01

    We present a comprehensive model of martian pressure-temperature (P-T) phase space and compare it with that of Earth. Martian P-T conditions compatible with liquid water extend to a depth of ∼310 km. We use our phase space model of Mars and of terrestrial life to estimate the depths and extent of the water on Mars that is habitable for terrestrial life. We find an extensive overlap between inhabited terrestrial phase space and martian phase space. The lower martian surface temperatures and shallower martian geotherm suggest that, if there is a hot deep biosphere on Mars, it could extend 7 times deeper than the ∼5 km depth of the hot deep terrestrial biosphere in the crust inhabited by hyperthermophilic chemolithotrophs. This corresponds to ∼3.2% of the volume of present-day Mars being potentially habitable for terrestrial-like life.

  19. Mutually unbiased coarse-grained measurements of two or more phase-space variables

    NASA Astrophysics Data System (ADS)

    Paul, E. C.; Walborn, S. P.; Tasca, D. S.; Rudnicki, Łukasz

    2018-05-01

    Mutual unbiasedness of the eigenstates of phase-space operators—such as position and momentum, or their standard coarse-grained versions—exists only in the limiting case of infinite squeezing. In Phys. Rev. Lett. 120, 040403 (2018), 10.1103/PhysRevLett.120.040403, it was shown that mutual unbiasedness can be recovered for periodic coarse graining of these two operators. Here we investigate mutual unbiasedness of coarse-grained measurements for more than two phase-space variables. We show that mutual unbiasedness can be recovered between periodic coarse graining of any two nonparallel phase-space operators. We illustrate these results through optics experiments, using the fractional Fourier transform to prepare and measure mutually unbiased phase-space variables. The differences between two and three mutually unbiased measurements is discussed. Our results contribute to bridging the gap between continuous and discrete quantum mechanics, and they could be useful in quantum-information protocols.

  20. Phase space manipulation in high-brightness electron beams

    NASA Astrophysics Data System (ADS)

    Rihaoui, Marwan M.

    Electron beams have a wide range of applications, including discovery science, medicine, and industry. Electron beams can also be used to power next-generation, high-gradient electron accelerators. The performances of some of these applications could be greatly enhanced by precisely tailoring the phase space distribution of the electron beam. The goal of this dissertation is to explore some of these phase space manipulations. We especially focus on transformations capable of tailoring the beam current distribution. Specifically, we investigate a beamline exchanging phase space coordinates between the horizontal and longitudinal degrees of freedom. The key components necessary for this beamline were constructed and tested. The preliminary beamline was used as a singleshot phase space diagnostics and to produce a train of picoseconds electron bunches. We also investigate the use of multiple electron beams to control the transverse focusing. Our numerical and analytical studies are supplemented with experiments performed at the Argonne Wakefield Accelerator.

  1. Water-based alkyl ketene dimer ink for user-friendly patterning in paper microfluidics.

    PubMed

    Hamidon, Nurul Nadiah; Hong, Yumiao; Salentijn, Gert Ij; Verpoorte, Elisabeth

    2018-02-13

    We propose the use of water-based alkyl ketene dimer (AKD) ink for fast and user-friendly patterning of paper microfluidic devices either manually or using an inexpensive XY-plotter. The ink was produced by dissolving hydrophobic AKD in chloroform and emulsifying the solution in water. The emulsification was performed in a warm water bath, which led to an increased rate of the evaporation of chloroform. Subsequent cooling led to the final product, an aqueous suspension of fine AKD particles. The effects of surfactant and AKD concentrations, emulsification procedure, and cooling approach on final ink properties are presented, along with an optimized protocol for its formulation. This hydrophobic agent was applied onto paper using a plotter pen, after which the paper was heated to allow spreading of AKD molecules and chemical bonding with cellulose. A paper surface patterned with the ink (10 g L -1 AKD) yielded a contact angle of 135.6° for water. Unlike organic solvent-based solutions of AKD, this AKD ink does not require a fume hood for its use. Moreover, it is compatible with plastic patterning tools, due to the effective removal of chloroform in the production process to less than 2% of the total volume. Furthermore, this water-based ink is easy to prepare and use. Finally, the AKD ink can also be used for the fabrication of so-called selectively permeable barriers for use in paper microfluidic networks. These are barriers that stop the flow of water through paper, but are permeable to solvents with lower surface energies. We applied the AKD ink to confine and preconcentrate sample on paper, and demonstrated the use of this approach to achieve higher detection sensitivities in paper spray ionization-mass spectrometry (PSI-MS). Our patterning approach can be employed outside of the analytical lab or machine workshop for fast prototyping and small-scale production of paper-based analytical tools, for use in limited-resource labs or in the field. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Differentially expressed and survival-related proteins of lung adenocarcinoma with bone metastasis.

    PubMed

    Yang, Mengdi; Sun, Yi; Sun, Jing; Wang, Zhiyu; Zhou, Yiyi; Yao, Guangyu; Gu, Yifeng; Zhang, Huizhen; Zhao, Hui

    2018-04-01

    Despite recent advances in targeted and immune-based therapies, the poor prognosis of lung adenocarcinoma (LUAD) with bone metastasis (BM) remains a challenge. First, two-dimensional gel electrophoresis (2-DE) was used to identify proteins that were differentially expressed in LUAD with BM, and then matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) was used to identify these proteins. Second, the Cancer Genome Atlas (TCGA) was used to identify mutations in these differentially expressed proteins and Kaplan-Meier plotter (KM Plotter) was used to generate survival curves for the analyzed cases. Immunohistochemistry (IHC) was used to check the expression of proteins in 28 patients with BM and nine patients with LUAD. Lastly, the results were analyzed with respect to clinical features and patient's follow-up. We identified a number of matched proteins from 2-DE. High expression of enolase 1 (ENO1) (HR = 1.67, logrank P = 1.9E-05), ribosomal protein lateral stalk subunit P2 (RPLP2) (HR = 1.77, logrank P = 2.9e-06), and NME/NM23 nucleoside diphosphate kinase 2 (NME1-NME2) (HR = 2.65, logrank P = 3.9E-15) was all significantly associated with poor survival (P < 0.05). Further, ENO1 was upregulated (P = 0.0004) and calcyphosine (CAPS1) was downregulated (P = 5.34E-07) in TCGA LUAD RNA-seq expression data. IHC revealed that prominent ENO1 staining (OR = 7.5, P = 0.034) and low levels of CAPS1 (OR = 0.01, P < 0.0001) staining were associated with BM incidence. Finally, we found that LUAD patients with high expression of ENO1 and RPLP2 had worse overall survival. This is the first instance where the genes ENO1, RPLP2, NME1-NME2 and CAPS1 were associated with disease severity and progression in LUAD patients with BM. Thus, with this study, we have identified potential biomarkers and therapeutic targets for this disease. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  3. Automated preparation method for colloidal crystal arrays of monodisperse and binary colloid mixtures by contact printing with a pintool plotter.

    PubMed

    Burkert, Klaus; Neumann, Thomas; Wang, Jianjun; Jonas, Ulrich; Knoll, Wolfgang; Ottleben, Holger

    2007-03-13

    Photonic crystals and photonic band gap materials with periodic variation of the dielectric constant in the submicrometer range exhibit unique optical properties such as opalescence, optical stop bands, and photonic band gaps. As such, they represent attractive materials for the active elements in sensor arrays. Colloidal crystals, which are 3D gratings leading to Bragg diffraction, are one potential precursor of such optical materials. They have gained particular interest in many technological areas as a result of their specific properties and ease of fabrication. Although basic techniques for the preparation of regular patterns of colloidal crystals on structured substrates by self-assembly of mesoscopic particles are known, the efficient fabrication of colloidal crystal arrays by simple contact printing has not yet been reported. In this article, we present a spotting technique used to produce a microarray comprising up to 9600 single addressable sensor fields of colloidal crystal structures with dimensions down to 100 mum on a microfabricated substrate in different formats. Both monodisperse colloidal crystals and binary colloidal crystal systems were prepared by contact printing of polystyrene particles in aqueous suspension. The array morphology was characterized by optical light microscopy and scanning electron microscopy, which revealed regularly ordered crystalline structures for both systems. In the case of binary crystals, the influence of the concentration ratio of the large and small particles in the printing suspension on the obtained crystal structure was investigated. The optical properties of the colloidal crystal arrays were characterized by reflection spectroscopy. To examine the stop bands of the colloidal crystal arrays in a high-throughput fashion, an optical setup based on a CCD camera was realized that allowed the simultaneous readout of all of the reflection spectra of several thousand sensor fields per array in parallel. In agreement with Bragg's relation, the investigated arrays exhibited strong opalescence and stop bands in the expected wavelength range, confirming the successful formation of highly ordered colloidal crystals. Furthermore, a narrow distribution of wavelength-dependent stop bands across the sensor array was achieved, demonstrating the capability of producing highly reproducible crystal spots by the contact printing method with a pintool plotter.

  4. Uncovering the nonadiabatic response of geosynchronous electrons to geomagnetic disturbance

    USGS Publications Warehouse

    Gannon, Jennifer; Elkington, Scot R.; Onsager, Terrance G.

    2012-01-01

    We describe an energy spectrum method for scaling electron integral flux, which is measured at a constant energy, to phase space density at a constant value of the first adiabatic invariant which removes much of the variation due to reversible adiabatic effects. Applying this method to nearly a solar cycle (1995 - 2006) of geosynchronous electron integral flux (E>2.0MeV) from the GOES satellites, we see that much of the diurnal variation in electron phase space density at constant energy can be removed by the transformation to phase space density at constant μ (4000 MeV/G). This allows us a clearer picture of underlying non-adiabatic electron population changes due to geomagnetic activity. Using scaled phase space density, we calculate the percentage of geomagnetic storms resulting in an increase, decrease or no change in geosynchronous electrons as 38%, 7%, and 55%, respectively. We also show examples of changes in the electron population that may be different than the unscaled fluxes alone suggest. These examples include sudden electron enhancements during storms which appear during the peak of negative Dst for μ-scaled phase space density, contrary to the slow increase seen during the recovery phase for unscaled phase space density for the same event.

  5. Hierarchical phase space structure of dark matter haloes: Tidal debris, caustics, and dark matter annihilation

    NASA Astrophysics Data System (ADS)

    Afshordi, Niayesh; Mohayaee, Roya; Bertschinger, Edmund

    2009-04-01

    Most of the mass content of dark matter haloes is expected to be in the form of tidal debris. The density of debris is not constant, but rather can grow due to formation of caustics at the apocenters and pericenters of the orbit, or decay as a result of phase mixing. In the phase space, the debris assemble in a hierarchy that is truncated by the primordial temperature of dark matter. Understanding this phase structure can be of significant importance for the interpretation of many astrophysical observations and, in particular, dark matter detection experiments. With this purpose in mind, we develop a general theoretical framework to describe the hierarchical structure of the phase space of cold dark matter haloes. We do not make any assumption of spherical symmetry and/or smooth and continuous accretion. Instead, working with correlation functions in the action-angle space, we can fully account for the hierarchical structure (predicting a two-point correlation function ∝ΔJ-1.6 in the action space), as well as the primordial discreteness of the phase space. As an application, we estimate the boost to the dark matter annihilation signal due to the structure of the phase space within virial radius: the boost due to the hierarchical tidal debris is of order unity, whereas the primordial discreteness of the phase structure can boost the total annihilation signal by up to an order of magnitude. The latter is dominated by the regions beyond 20% of the virial radius, and is largest for the recently formed haloes with the least degree of phase mixing. Nevertheless, as we argue in a companion paper, the boost due to small gravitationally-bound substructure can dominate this effect at low redshifts.

  6. BFV-BRST analysis of the classical and quantum q-deformations of the sl(2) algebra

    NASA Astrophysics Data System (ADS)

    Dayi, O. F.

    1994-01-01

    BFV--BRST charge for q-deformed algebras is not unique. Different constructions of it in the classical as well as in the quantum phase space for the $q$-deformed algebra sl_q(2) are discussed. Moreover, deformation of the phase space without deforming the generators of sl(2) is considered. $\\hbar$-q-deformation of the phase space is shown to yield the Witten's second deformation. To study the BFV--BRST cohomology problem when both the quantum phase space and the group are deformed, a two parameter deformation of sl(2) is proposed, and its BFV-BRST charge is given.

  7. Sensitivity of Space Shuttle Weight and Cost to Structure Subsystem Weights

    NASA Technical Reports Server (NTRS)

    Wedge, T. E.; Williamson, R. P.

    1973-01-01

    Quantitative relationships between changes in space shuttle weights and costs with changes in weight of various portions of space shuttle structural subsystems are investigated. These sensitivity relationships, as they apply at each of three points in the development program (preliminary design phase, detail design phase, and test/operational phase) have been established for five typical space shuttle designs, each of which was responsive to the missions in the NASA Shuttle RFP, and one design was that selected by NASA.

  8. Space Station - An integrated approach to operational logistics support

    NASA Technical Reports Server (NTRS)

    Hosmer, G. J.

    1986-01-01

    Development of an efficient and cost effective operational logistics system for the Space Station will require logistics planning early in the program's design and development phase. This paper will focus on Integrated Logistics Support (ILS) Program techniques and their application to the Space Station program design, production and deployment phases to assure the development of an effective and cost efficient operational logistics system. The paper will provide the methodology and time-phased programmatic steps required to establish a Space Station ILS Program that will provide an operational logistics system based on planned Space Station program logistics support.

  9. Wavelets and the squeezed states of quantum optics

    NASA Technical Reports Server (NTRS)

    Defacio, B.

    1992-01-01

    Wavelets are new mathematical objects which act as 'designer trigonometric functions.' To obtain a wavelet, the original function space of finite energy signals is generalized to a phase-space, and the translation operator in the original space has a scale change in the new variable adjoined to the translation. Localization properties in the phase-space can be improved and unconditional bases are obtained for a broad class of function and distribution spaces. Operators in phase space are 'almost diagonal' instead of the traditional condition of being diagonal in the original function space. These wavelets are applied to the squeezed states of quantum optics. The scale change required for a quantum wavelet is shown to be a Yuen squeeze operator acting on an arbitrary density operator.

  10. Surface Wave Propagation on a Laterally Heterogeneous Earth

    NASA Astrophysics Data System (ADS)

    Tromp, Jeroen

    1992-01-01

    Love and Rayleigh waves propagating on the surface of the Earth exhibit path, phase and amplitude anomalies as a result of the lateral heterogeneity of the mantle. In the JWKB approximation, these anomalies can be determined by tracing surface wave trajectories, and calculating phase and amplitude anomalies along them. A time- or frequency -domain JWKB analysis yields local eigenfunctions, local dispersion relations, and conservation laws for the surface wave energy. The local dispersion relations determine the surface wave trajectories, and the energy equations determine the surface wave amplitudes. On an anisotrophic Earth model the local dispersion relation and the local vertical eigenfunctions depend explicitly on the direction of the local wavevector. Apart from the usual dynamical phase, which is the integral of the local wavevector along a raypath, there is an additional variation is phase. This additional phase, which is an analogue of the Berry phase in adiabatic quantum mechanics, vanishes in a waveguide with a local vertical two-fold symmetry axis or a local horizontal mirror plane. JWKB theory breaks down in the vicinity of caustics, where neighboring rays merge and the surface wave amplitude diverges. Based upon a potential representation of the surface wave field, a uniformly valid Maslov theory can be obtained. Surface wave trajectories are determined by a system of four ordinary differential equations which define a three-dimensional manifold in four-dimensional phase space (theta,phi,k_theta,k _phi), where theta is colatitude, phi is longitude, and k_theta and k _phi are the covariant components of the wavevector. There are no caustics in phase space; it is only when the rays in phase space are projected onto configuration space (theta,phi), the mixed spaces (k_theta,phi ) and (theta,k_phi), or onto momentum space (k_theta,k _phi), that caustics occur. The essential strategy is to employ a mixed or momentum space representation of the wavefield in the vicinity of a configuration space caustic.

  11. Grain size dependent phase stabilities and presence of a monoclinic (Pm) phase in the morphotropic phase boundary region of (1-x)Bi(Mg1/2Ti1/2)O3-xPbTiO3 piezoceramics

    NASA Astrophysics Data System (ADS)

    Upadhyay, Ashutosh; Singh, Akhilesh Kumar

    2015-04-01

    Results of the room temperature structural studies on (1-x)Bi(Mg1/2Ti1/2)O3-xPbTiO3 ceramics using Rietveld analysis of the powder x-ray diffraction data in the composition range 0.28 ≤ x ≤ 0.45 are presented. The morphotropic phase boundary region exhibits coexistence of monoclinic (space group Pm) and tetragonal (space group P4 mm) phases in the composition range 0.33 ≤ x ≤ 0.40. The structure is nearly single phase monoclinic (space group Pm) in the composition range 0.28 ≤ x ≤ 0.32. The structure for the compositions with x ≥ 0.45 is found to be predominantly tetragonal with space group P4 mm. Rietveld refinement of the structure rules out the coexistence of rhombohedral and tetragonal phases in the morphotropic phase boundary region reported by earlier authors. The Rietveld structure analysis for the sample x = .35 calcined at various temperatures reveals that phase fraction of the coexisting phases in the morphotropic phase boundary region varies with grain size. The structural parameters of the two coexisting phases also change slightly with changing grain size.

  12. The U.S. Space Grant College and Fellowship Program

    NASA Technical Reports Server (NTRS)

    Dasch, E. Julius; Schwartz, Elaine T.; Keffer, Lynne

    1990-01-01

    The U.S. NASA Space Grant College and Fellowship Program, congressionally mandated in 1987, consists of two phases. Phase I consisted of the designation of 21 university consortia as 'Space Grant Colleges/Consortia' which received support from NASA to conduct programs to achieve, maintain, and advance a balanced program of research capability, curriculum, and public service. Program descriptions for phase II are given. This phase is designed to broaden participation in the Space Grant Program by targeting states that currently are not as involved in NASA programs as are the states for which phase I was constructed. Under phase II, states will compete in either the Programs Grants or the Capability Enhancement Grants category. Only one proposal per state will be accepted with the state determining in which category it will compete. The amount of total award, $150,000, is the same in both categories and includes funds for university-administered fellowship programs.

  13. Space station experiment definition: Long-term cryogenic fluid storage

    NASA Technical Reports Server (NTRS)

    Jetley, R. L.; Scarlotti, R. D.

    1987-01-01

    The conceptual design of a space station Technology Development Mission (TDM) experiment to demonstrate and evaluate cryogenic fluid storage and transfer technologies is presented. The experiment will be deployed on the initial operational capability (IOC) space station for a four-year duration. It is modular in design, consisting of three phases to test the following technologies: passive thermal technologies (phase 1), fluid transfer (phase 2), and active refrigeration (phase 3). Use of existing hardware was a primary consideration throughout the design effort. A conceptual design of the experiment was completed, including configuration sketches, system schematics, equipment specifications, and space station resources and interface requirements. These requirements were entered into the NASA Space Station Mission Data Base. A program plan was developed defining a twelve-year development and flight plan. Program cost estimates are given.

  14. Disequilibrium condensation environments in space - A frontier in thermodynamics

    NASA Technical Reports Server (NTRS)

    De, B. R.

    1979-01-01

    The thermal-disequilibrium aspect of the problem of dust-particle formation from a gas phase in an open space environment is discussed in an effort to draw attention to the space condensation environment as an interesting arena for application and extension of the ideas and formalisms of nonequilibrium thermodynamics. It is shown that quasi-steady states with a disequilibrium between the gas-phase kinetic temperature and the condensed-phase internal temperature appear to be the norm of condensation environments in space. Consideration of the case of condensation onto a bulk condensed phase indicates that these quasi-steady states may constitute Prigogine dissipative structures. It is suggested that a proper study of the process of condensation in a space environment should include any effects arising from thermal disequilibrium.

  15. Characterization of cumulus cloud fields using trajectories in the center of gravity versus water mass phase space: 1. Cloud tracking and phase space description: CENTER OF GRAVITY VERSUS WATER MASS 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heiblum, Reuven H.; Altaratz, Orit; Koren, Ilan

    We study the evolution of warm convective cloud fields using large eddy simulations of continental and trade cumulus. Individual clouds are tracked a posteriori from formation to dissipation using a 3D cloud tracking algorithm and results are presented in the phase- space of center of gravity altitude versus cloud liquid water mass (CvM space). The CvM space is shown to contain rich information on cloud field characteristics, cloud morphology, and common cloud development pathways, together facilitating a comprehensive understanding of the cloud field. In this part we show how the meteorological (thermodynamic) conditions that determine the cloud properties are projectedmore » on the CvM phase space and how changes in the initial conditions affect the clouds' trajectories in this space. This part sets the stage for a detailed microphysical analysis that will be shown in part II.« less

  16. Transverse phase space diagnostics for ionization injection in laser plasma acceleration using permanent magnetic quadrupoles

    NASA Astrophysics Data System (ADS)

    Li, F.; Nie, Z.; Wu, Y. P.; Guo, B.; Zhang, X. H.; Huang, S.; Zhang, J.; Cheng, Z.; Ma, Y.; Fang, Y.; Zhang, C. J.; Wan, Y.; Xu, X. L.; Hua, J. F.; Pai, C. H.; Lu, W.; Mori, W. B.

    2018-04-01

    We report the transverse phase space diagnostics for electron beams generated through ionization injection in a laser-plasma accelerator. Single-shot measurements of both ultimate emittance and Twiss parameters are achieved by means of permanent magnetic quadrupole. Beams with emittance of μm rad level are obtained in a typical ionization injection scheme, and the dependence on nitrogen concentration and charge density is studied experimentally and confirmed by simulations. A key feature of the transverse phase space, matched beams with Twiss parameter α T ≃ 0, is identified according to the measurement. Numerical simulations that are in qualitative agreement with the experimental results reveal that a sufficient phase mixing induced by an overlong injection length leads to the matched phase space distribution.

  17. Transverse phase space diagnostics for ionization injection in laser plasma acceleration using permanent magnetic quadrupoles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, F.; Nie, Z.; Wu, Y. P.

    We report the transverse phase space diagnostics for electron beams generated through ionization injection in a laser-plasma accelerator. Single-shot measurements of both ultimate emittance and Twiss parameters are achieved by means of permanent magnetic quadrupole. Beams with emittance of μm rad level are obtained in a typical ionization injection scheme, and the dependence on nitrogen concentration and charge density is studied experimentally and confirmed by simulations. A key feature of the transverse phase space, matched beams with Twiss parameter α T ≃ 0, is identified according to the measurement. Lastly, numerical simulations that are in qualitative agreement with the experimentalmore » results reveal that a sufficient phase mixing induced by an overlong injection length leads to the matched phase space distribution.« less

  18. Solid-solid phase change thermal storage application to space-suit battery pack

    NASA Astrophysics Data System (ADS)

    Son, Chang H.; Morehouse, Jeffrey H.

    1989-01-01

    High cell temperatures are seen as the primary safety problem in the Li-BCX space battery. The exothermic heat from the chemical reactions could raise the temperature of the lithium electrode above the melting temperature. Also, high temperature causes the cell efficiency to decrease. Solid-solid phase-change materials were used as a thermal storage medium to lower this battery cell temperature by utilizing their phase-change (latent heat storage) characteristics. Solid-solid phase-change materials focused on in this study are neopentyl glycol and pentaglycerine. Because of their favorable phase-change characteristics, these materials appear appropriate for space-suit battery pack use. The results of testing various materials are reported as thermophysical property values, and the space-suit battery operating temperature is discussed in terms of these property results.

  19. Transverse phase space diagnostics for ionization injection in laser plasma acceleration using permanent magnetic quadrupoles

    DOE PAGES

    Li, F.; Nie, Z.; Wu, Y. P.; ...

    2018-02-22

    We report the transverse phase space diagnostics for electron beams generated through ionization injection in a laser-plasma accelerator. Single-shot measurements of both ultimate emittance and Twiss parameters are achieved by means of permanent magnetic quadrupole. Beams with emittance of μm rad level are obtained in a typical ionization injection scheme, and the dependence on nitrogen concentration and charge density is studied experimentally and confirmed by simulations. A key feature of the transverse phase space, matched beams with Twiss parameter α T ≃ 0, is identified according to the measurement. Lastly, numerical simulations that are in qualitative agreement with the experimentalmore » results reveal that a sufficient phase mixing induced by an overlong injection length leads to the matched phase space distribution.« less

  20. Explaining Gibbsean phase space to second year students

    NASA Astrophysics Data System (ADS)

    Vesely, Franz J.

    2005-03-01

    A new approach to teaching introductory statistical physics is presented. We recommend making extensive use of the fact that even systems with a very few degrees of freedom may display chaotic behaviour. This permits a didactic 'bottom-up' approach, starting out with toy systems whose phase space may be depicted on a screen or blackboard, then proceeding to ever higher dimensions in Gibbsean phase space.

  1. Multiplexed phase-space imaging for 3D fluorescence microscopy.

    PubMed

    Liu, Hsiou-Yuan; Zhong, Jingshan; Waller, Laura

    2017-06-26

    Optical phase-space functions describe spatial and angular information simultaneously; examples of optical phase-space functions include light fields in ray optics and Wigner functions in wave optics. Measurement of phase-space enables digital refocusing, aberration removal and 3D reconstruction. High-resolution capture of 4D phase-space datasets is, however, challenging. Previous scanning approaches are slow, light inefficient and do not achieve diffraction-limited resolution. Here, we propose a multiplexed method that solves these problems. We use a spatial light modulator (SLM) in the pupil plane of a microscope in order to sequentially pattern multiplexed coded apertures while capturing images in real space. Then, we reconstruct the 3D fluorescence distribution of our sample by solving an inverse problem via regularized least squares with a proximal accelerated gradient descent solver. We experimentally reconstruct a 101 Megavoxel 3D volume (1010×510×500µm with NA 0.4), demonstrating improved acquisition time, light throughput and resolution compared to scanning aperture methods. Our flexible patterning scheme further allows sparsity in the sample to be exploited for reduced data capture.

  2. Triple points and phase diagrams in the extended phase space of charged Gauss-Bonnet black holes in AdS space

    NASA Astrophysics Data System (ADS)

    Wei, Shao-Wen; Liu, Yu-Xiao

    2014-08-01

    We study the triple points and phase diagrams in the extended phase space of the charged Gauss-Bonnet black holes in d-dimensional anti-de Sitter space, where the cosmological constant appears as a dynamical pressure of the system and its conjugate quantity is the thermodynamic volume of the black holes. Employing the equation of state T=T(v,P), we demonstrate that the information of the phase transition and behavior of the Gibbs free energy are potential encoded in the T-v (T-rh) line with fixed pressure P. We get the phase diagrams for the charged Gauss-Bonnet black holes with different values of the charge Q and dimension d. The result shows that the small/large black hole phase transitions appear for any d, which is reminiscent of the liquid/gas transition of a Van der Waals type. Moreover, the interesting thermodynamic phenomena, i.e., the triple points and the small/intermediate/large black hole phase transitions are observed for d=6 and Q ∈(0.1705,0.1946).

  3. Photogrammetry of the Viking Lander imagery

    NASA Technical Reports Server (NTRS)

    Wu, S. S. C.; Schafer, F. J.

    1982-01-01

    The problem of photogrammetric mapping which uses Viking Lander photography as its basis is solved in two ways: (1) by converting the azimuth and elevation scanning imagery to the equivalent of a frame picture, using computerized rectification; and (2) by interfacing a high-speed, general-purpose computer to the analytical plotter employed, so that all correction computations can be performed in real time during the model-orientation and map-compilation process. Both the efficiency of the Viking Lander cameras and the validity of the rectification method have been established by a series of pre-mission tests which compared the accuracy of terrestrial maps compiled by this method with maps made from aerial photographs. In addition, 1:10-scale topographic maps of Viking Lander sites 1 and 2 having a contour interval of 1.0 cm have been made to test the rectification method.

  4. Nova Sco 2016 No. 2 = PNV J17225112-3158349 = ASASSN-16kd

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2016-09-01

    AAVSO Alert Notice 550 announces the independent discovery of Nova Sco 2016 No. 2 = ASASSN-16kd = PNV J17225112-3158349 = V1656 Sco by Shigehisa Fujikawa (Kan'onji, Kagawa, Japan) at unfiltered CCD magnitude 11.6 on 2016 September 06.481 UT; and by ASAS-SN (Stanek et al., ATel #9469) at 12.13 V on 2016 September 06.00 UT. Spectroscopy indicating that Nova Sco 2016 No. 2 is a highly reddened classical Fe II-type nova was obtained by Arai and Honda (CBET 4320); by Bohlsen (ATel #9477); by Bersier et al. (ATel #9478); and by Prieto et al. (ATel #9479). Finder charts with sequence may be created using the AAVSO Variable Star Plotter (https://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details.

  5. A statistical data analysis and plotting program for cloud microphysics experiments

    NASA Technical Reports Server (NTRS)

    Jordan, A. J.

    1981-01-01

    The analysis software developed for atmospheric cloud microphysics experiments conducted in the laboratory as well as aboard a KC-135 aircraft is described. A group of four programs was developed and implemented on a Hewlett Packard 1000 series F minicomputer running under HP's RTE-IVB operating system. The programs control and read data from a MEMODYNE Model 3765-8BV cassette recorder, format the data on the Hewlett Packard disk subsystem, and generate statistical data (mean, variance, standard deviation) and voltage and engineering unit plots on a user selected plotting device. The programs are written in HP FORTRAN IV and HP ASSEMBLY Language with the graphics software using the HP 1000 Graphics. The supported plotting devices are the HP 2647A graphics terminal, the HP 9872B four color pen plotter, and the HP 2608A matrix line printer.

  6. CHiCP: a web-based tool for the integrative and interactive visualization of promoter capture Hi-C datasets.

    PubMed

    Schofield, E C; Carver, T; Achuthan, P; Freire-Pritchett, P; Spivakov, M; Todd, J A; Burren, O S

    2016-08-15

    Promoter capture Hi-C (PCHi-C) allows the genome-wide interrogation of physical interactions between distal DNA regulatory elements and gene promoters in multiple tissue contexts. Visual integration of the resultant chromosome interaction maps with other sources of genomic annotations can provide insight into underlying regulatory mechanisms. We have developed Capture HiC Plotter (CHiCP), a web-based tool that allows interactive exploration of PCHi-C interaction maps and integration with both public and user-defined genomic datasets. CHiCP is freely accessible from www.chicp.org and supports most major HTML5 compliant web browsers. Full source code and installation instructions are available from http://github.com/D-I-L/django-chicp ob219@cam.ac.uk. © The Author 2016. Published by Oxford University Press. All rights reserved.

  7. The QDP/PLT user's guide

    NASA Technical Reports Server (NTRS)

    Tennant, Allyn F.

    1991-01-01

    PLT is a high level plotting package. A Programmer can create a default plot suited for the data being displayed. At run times, users can then interact with the plot overriding any or all of these defaults. The user is also provided the capability to fit functions to the displayed data. This ability to display, interact with, and to fit the data make PLT a useful tool in the analysis of data. The Quick and Dandy Plotter (QDP) program will read ASCII text files that contain PLT commands and data. Thus, QDP provides and easy way to use the PLT software QPD files provide a convenient way to exchange data. The QPD/PLT software is written in standard FORTRAN 77 and has been ported to VAX VMS, SUN UNIX, IBM AIX, NeXT NextStep, and MS-DOS systems.

  8. Method and apparatus for measuring areas of photoelectric cells and photoelectric cell performance parameters

    DOEpatents

    Osterwald, C.R.; Emery, K.A.

    1984-05-29

    A laser scanning system for scanning the surface of photovoltaic cell in a precise, stepped raster pattern includes electric current detecting and measuring equipment for sensing the current response of the scanned cell to the laser beam at each stepped irradiated spot or pixel on the cell surface. A computer is used to control and monitor the raster position of the laser scan as well as monitoring the corresponding current responses, storing this data, operating on it, and for feeding the data to a graphical plotter for producing a visual, color-coded image of the current response of the cell to the laser scan. A translation platform driven by stepper motors in precise X and Y distances holds and rasters the cell being scanned under a stationary spot-focused laser beam.

  9. Method and apparatus for measuring areas of photoelectric cells and photoelectric cell performance parameters

    DOEpatents

    Osterwald, Carl R.; Emery, Keith A.

    1987-01-01

    A laser scanning system for scanning the surface of a photovoltaic cell in a precise, stepped raster pattern includes electric current detecting and measuring equipment for sensing the current response of the scanned cell to the laser beam at each stepped irradiated spot or pixel on the cell surface. A computer is used to control and monitor the raster position of the laser scan as well as monitoring the corresponding current responses, storing this data, operating on it, and for feeding the data to a graphic plotter for producing a visual, color-coded image of the current response of the cell to the laser scan. A translation platform driven by stepper motors in precise X and Y distances holds and rasters the cell being scanned under a stationary spot-focused laser beam.

  10. SD-4060OCPLT4 program, user's guide

    NASA Technical Reports Server (NTRS)

    Glazer, J.

    1973-01-01

    A brief description of the Orbit Comparison Plot (OCPLT4) program is presented, along with user information and a source program listing. In addition to correcting several errors that existed in the original program, this program incorporates the following new features: (1) For any satellite whose observations are processed by the Definitive Orbit Determination System (DODS), the orbital uncertainty estimates (OUE) can be obtained via appropriate card input with no major modification to the program. (2) All satellite-related information (e.g., plotter scales, cutoff limits, plotting frequencies) is user controlled via card input. (3) Not all components of OUE must be obtained. The user has the option of obtaining only the radial component if there is no need for the other two components. (4) The altitude and time graph formats are controlled by the user and are not stored for specific satellites.

  11. HYSEP: A Computer Program for Streamflow Hydrograph Separation and Analysis

    USGS Publications Warehouse

    Sloto, Ronald A.; Crouse, Michele Y.

    1996-01-01

    HYSEP is a computer program that can be used to separate a streamflow hydrograph into base-flow and surface-runoff components. The base-flow component has traditionally been associated with ground-water discharge and the surface-runoff component with precipitation that enters the stream as overland runoff. HYSEP includes three methods of hydrograph separation that are referred to in the literature as the fixed interval, sliding-interval, and local-minimum methods. The program also describes the frequency and duration of measured streamflow and computed base flow and surface runoff. Daily mean stream discharge is used as input to the program in either an American Standard Code for Information Interchange (ASCII) or binary format. Output from the program includes table,s graphs, and data files. Graphical output may be plotted on the computer screen or output to a printer, plotter, or metafile.

  12. Nova Lupi 2011

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2011-08-01

    Announcement of discovery of Nova Lupi 2011 = PNV J14542000-5505030. Discovered by Nicholas Brown (Quinns Rocks, Western Australia) on 2011 Aug. 4.73 UT at unfiltered mag=10.2 (tmax 400 film). Posted on the IAU Central Bureau for Astronomical Telegrams Transient Object Confirmation Page (TOCP) as PNV J14542000-5505030. Spectra obtained by Fred Walter (SUNY Stony Brook) 2011 August 9.0132 UT with the SMARTS 1.5m RC spectrograph at Cerro Tololo and reported in ATEL #3536 confirms that the object is an Fe II nova near maximum. Initially announced in [vsnet-alert 13560] (Nicholas Brown) and in AAVSO Special Notice #247 (Arne Henden). Finder charts with sequence may be created using the AAVSO Variable Star Plotter (http://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details and observations.

  13. Effects of different space allowances on growth performance, blood profile and pork quality in a grow-to-finish production system.

    PubMed

    Jang, J C; Jin, X H; Hong, J S; Kim, Y Y

    2017-12-01

    This experiment was conducted to evaluate the optimal space allowance on growth performance, blood profile and pork quality of growing-finishing pigs. A total of ninety crossbred pigs [(Yorkshire×Landrace)×Duroc, 30.25±1.13 kg] were allocated into three treatments (0.96: four pigs/pen, 0.96 m2/pig; 0.80: five pigs/pen, 0.80 m2/pig; 0.69: six pigs/pen, 0.69 m2/pig) in a randomized complete block design. Pigs were housed in balanced sex and had free access to feed in all phases for 14 weeks (growing phase I, growing phase II, finishing phase I, and finishing phase II). There was no statistical difference in growing phase, but a linear decrease was observed on average daily gain (ADG, p<0.01), average daily feed intake (ADFI, p<0.01), and body weight (BW, p<0.01) with decreasing space allowance in late finishing phase. On the other hand, a quadratic effect was observed on gain to feed ratio in early finishing phase (p<0.03). Consequently, overall ADG, ADFI, and final BW linearly declined in response to decreased space allowance (p<0.01). The pH of pork had no significant difference in 1 hour after slaughter, whereas there was a linear decrease in 24 h after slaughter with decreasing space allowance. Floor area allowance did not affect pork colors, but shear force linearly increased as floor space decreased (p<0.01). There was a linear increase in serum cortisol concentration on 14 week (p<0.05) with decreased space allocation. Serum IgG was linearly ameliorated as space allowance increased on 10 week (p<0.05) and 14 week (p<0.01). Data from current study indicated that stress derived from reduced space allowance deteriorates the immune system as well as growth performance of pigs, resulting in poor pork quality. Recommended adequate space allowance in a grow-to-finish production system is more than 0.80 m2/pig for maximizing growth performance and production efficiency.

  14. Multispacecraft Observations and 3D Structure of Electromagnetic Electron Phase-Space Holes

    NASA Astrophysics Data System (ADS)

    Holmes, J.; Ahmadi, N.; Ergun, R.; Wilder, F. D.; Newman, D. L.; Le Contel, O.; Torbert, R. B.; Burch, J. L.

    2017-12-01

    Electron phase-space holes are nonlinear plasma structures characterized by a unipolar trapping potential with a radial electric field. They commonly form from beam instabilities and other turbulent processes in many plasma environments. Due to their strong fields and long lifetimes, it has been hypothesized that phase-space holes can carry energy over long distances, contribute to large-scale currents, and accelerate individual particles to high energies. With electromagnetic field measurements at high cadence and precision on more than two spacecraft, we can compare the real 3D structure of electron phase-space holes to the models suggested by Andersson et al. (2009) and Treumann and Baumjohann (2012). In this case study, we consider a train of correlated electron phase-space holes observed by all four MMS spacecraft on the dusk flank within the magnetosphere. A number of the holes appear to pass directly through the 7 km tetrahedron formation. We use this data to compute the holes' phase velocity vector relative to the background magnetic field, and quantify their internal currents and associated magnetic moments. For these weak magnetic signatures, we find that the contribution from internal E×B0 currents is comparable to the v×E effect. This study will be interesting to compare with MMS observations in the magnetotail, which are expected to capture large, semi-relativistic phase-space holes with a strong magnetic component.

  15. General post-Minkowskian expansion and application of the phase function

    NASA Astrophysics Data System (ADS)

    Qin, Cheng-Gang; Shao, Cheng-Gang

    2017-07-01

    The phase function is a useful tool to study all observations of space missions, since it can give all the information about light propagation in a gravitational field. For the extreme accuracy of the modern space missions, a precise relativistic modeling of observations is required. So, we develop a recursive procedure enabling us to expand the phase function into a perturbative series of ascending powers of the Newtonian gravitational constant. Any n th-order perturbation of the phase function can be determined by the integral along the straight line connecting two point events. To illustrate the result, we carry out the calculation of the phase function outside a static, spherically symmetric body up to the order of G2. Then, we develop a precise relativistic model that is able to calculate the phase function and the derivatives of the phase function in the gravitational field of rotating and uniformly moving bodies. This model allows the computing of the Doppler, radio science, and astrometric observables of the space missions in the Solar System. With the development of space technology, the relativistic corrections due to the motion of a planet's spin must be considered in the high-precision space missions in the near future. As an example, we give the estimates of the relativistic corrections on the observables about the space missions TianQin and BEACON.

  16. System technology analysis of aeroassisted orbital transfer vehicles: Moderate lift/drag (0.75-1.5). Volume 3: Cost estimates and work breakdown structure/dictionary, phase 1 and 2

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Technology payoffs of representative ground based (Phase 1) and space based (Phase 2) mid lift/drag ratio aeroassisted orbit transfer vehicles (AOTV) were assessed and prioritized. A narrative summary of the cost estimates and work breakdown structure/dictionary for both study phases is presented. Costs were estimated using the Grumman Space Programs Algorithm for Cost Estimating (SPACE) computer program and results are given for four AOTV configurations. The work breakdown structure follows the standard of the joint government/industry Space Systems Cost Analysis Group (SSCAG). A table is provided which shows cost estimates for each work breakdown structure element.

  17. 3D imaging of translucent media with a plenoptic sensor based on phase space optics

    NASA Astrophysics Data System (ADS)

    Zhang, Xuanzhe; Shu, Bohong; Du, Shaojun

    2015-05-01

    Traditional stereo imaging technology is not working for dynamical translucent media, because there are no obvious characteristic patterns on it and it's not allowed using multi-cameras in most cases, while phase space optics can solve the problem, extracting depth information directly from "space-spatial frequency" distribution of the target obtained by plenoptic sensor with single lens. This paper discussed the presentation of depth information in phase space data, and calculating algorithms with different transparency. A 3D imaging example of waterfall was given at last.

  18. Cycle-Averaged Phase-Space States for the Harmonic and the Morse Oscillators, and the Corresponding Uncertainty Relations

    ERIC Educational Resources Information Center

    Nicolaides, Cleanthes A.; Constantoudis, Vasilios

    2009-01-01

    In Planck's model of the harmonic oscillator (HO) a century ago, both the energy and the phase space were quantized according to epsilon[subscript n] = nhv, n = 0, 1, 2..., and [double integral]dp[subscript x] dx = h. By referring to just these two relations, we show how the adoption of "cycle-averaged phase-space states" (CAPSSs) leads to the…

  19. Optical sectioning for optical scanning holography using phase-space filtering with Wigner distribution functions.

    PubMed

    Kim, Hwi; Min, Sung-Wook; Lee, Byoungho; Poon, Ting-Chung

    2008-07-01

    We propose a novel optical sectioning method for optical scanning holography, which is performed in phase space by using Wigner distribution functions together with the fractional Fourier transform. The principle of phase-space optical sectioning for one-dimensional signals, such as slit objects, and two-dimensional signals, such as rectangular objects, is first discussed. Computer simulation results are then presented to substantiate the proposed idea.

  20. Analysis of remote operating systems for space-based servicing operations, volume 1

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A two phase study was conducted to analyze and develop the requirements for remote operating systems as applied to space based operations for the servicing, maintenance, and repair of satellites. Phase one consisted of the development of servicing requirements to establish design criteria for remote operating systems. Phase two defined preferred system concepts and development plans which met the requirements established in phase one. The specific tasks in phase two were to: (1) identify desirable operational and conceptual approaches for selected mission scenarios; (2) examine the potential impact of remote operating systems incorporated into the design of the space station; (3) address remote operating systems design issues, such as mobility, which are effected by the space station configuration; and (4) define the programmatic approaches for technology development, testing, simulation, and flight demonstration.

  1. Space Environments and Effects Concept: Transitioning Research to Operations and Applications

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Spann, James; Burns, Howard D.; Schumacher, Dan

    2012-01-01

    The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while expanding its mission to explore the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. NASA has established numerous offices specializing in specific space environments disciplines that will serve to enable these missions. To complement these existing discipline offices, a concept focusing on the development of space environment and effects application is presented. This includes space climate, space weather, and natural and induced space environments. This space environment and effects application is composed of 4 topic areas; characterization and modeling, engineering effects, prediction and operation, and mitigation and avoidance. These topic areas are briefly described below. Characterization and modeling of space environments will primarily focus on utilization during Program mission concept, planning, and design phases. Engineering effects includes materials testing and flight experiments producing data to be used in mission planning and design phases. Prediction and operation pulls data from existing sources into decision-making tools and empirical data sets to be used during the operational phase of a mission. Mitigation and avoidance will develop techniques and strategies used in the design and operations phases of the mission. The goal of this space environment and effects application is to develop decision-making tools and engineering products to support the mission phases of mission concept through operations by focusing on transitioning research to operations. Products generated by this space environments and effects application are suitable for use in anomaly investigations. This paper will outline the four topic areas, describe the need, and discuss an organizational structure for this space environments and effects application.

  2. Independent-Cluster Parametrizations of Wave Functions in Model Field Theories III. The Coupled-Cluster Phase Spaces and Their Geometrical Structure

    NASA Astrophysics Data System (ADS)

    Arponen, J. S.; Bishop, R. F.

    1993-11-01

    In this third paper of a series we study the structure of the phase spaces of the independent-cluster methods. These phase spaces are classical symplectic manifolds which provide faithful descriptions of the quantum mechanical pure states of an arbitrary system. They are "superspaces" in the sense that the full physical many-body or field-theoretic system is described by a point of the space, in contrast to "ordinary" spaces for which the state of the physical system is described rather by the whole space itself. We focus attention on the normal and extended coupled-cluster methods (NCCM and ECCM). Both methods provide parametrizations of the Hilbert space which take into account in increasing degrees of completeness the connectivity properties of the associated perturbative diagram structure. This corresponds to an increasing incorporation of locality into the description of the quantum system. As a result the degree of nonlinearity increases in the dynamical equations that govern the temporal evolution and determine the equilibrium state. Because of the nonlinearity, the structure of the manifold becomes geometrically complicated. We analyse the neighbourhood of the ground state of the one-mode anharmonic bosonic field theory and derive the nonlinear expansion beyond the linear response regime. The expansion is given in terms of normal-mode amplitudes, which provide the best local coordinate system close to the ground state. We generalize the treatment to other nonequilibrium states by considering the similarly defined normal coordinates around the corresponding phase space point. It is pointed out that the coupled-cluster method (CCM) maps display such features as (an)holonomy, or geometric phase. For example, a physical state may be represented by a number of different points on the CCM manifold. For this reason the whole phase spaces in the NCCM or ECCM cannot be covered by a single chart. To account for this non-Euclidean nature we introduce a suitable pseudo-Riemannian metric structure which is compatible with an important subset of all canonical transformations. It is then shown that the phase space of the configuration-interaction method is flat, namely the complex Euclidean space; that the NCCM manifold has zero curvature even though its Reimann tensor does not vanish; and that the ECCM manifold is intrinsically curved. It is pointed out that with the present metrization many of the dimensions of the ECCM phase space are effectively compactified and that the overall topological structure of the space is related to the distribution of the zeros of the Bargmann wave function.

  3. Grassmann phase space theory and the Jaynes–Cummings model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalton, B.J., E-mail: bdalton@swin.edu.au; Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Melbourne, Victoria 3122; Garraway, B.M.

    2013-07-15

    The Jaynes–Cummings model of a two-level atom in a single mode cavity is of fundamental importance both in quantum optics and in quantum physics generally, involving the interaction of two simple quantum systems—one fermionic system (the TLA), the other bosonic (the cavity mode). Depending on the initial conditions a variety of interesting effects occur, ranging from ongoing oscillations of the atomic population difference at the Rabi frequency when the atom is excited and the cavity is in an n-photon Fock state, to collapses and revivals of these oscillations starting with the atom unexcited and the cavity mode in a coherentmore » state. The observation of revivals for Rydberg atoms in a high-Q microwave cavity is key experimental evidence for quantisation of the EM field. Theoretical treatments of the Jaynes–Cummings model based on expanding the state vector in terms of products of atomic and n-photon states and deriving coupled equations for the amplitudes are a well-known and simple method for determining the effects. In quantum optics however, the behaviour of the bosonic quantum EM field is often treated using phase space methods, where the bosonic mode annihilation and creation operators are represented by c-number phase space variables, with the density operator represented by a distribution function of these variables. Fokker–Planck equations for the distribution function are obtained, and either used directly to determine quantities of experimental interest or used to develop c-number Langevin equations for stochastic versions of the phase space variables from which experimental quantities are obtained as stochastic averages. Phase space methods have also been developed to include atomic systems, with the atomic spin operators being represented by c-number phase space variables, and distribution functions involving these variables and those for any bosonic modes being shown to satisfy Fokker–Planck equations from which c-number Langevin equations are often developed. However, atomic spin operators satisfy the standard angular momentum commutation rules rather than the commutation rules for bosonic annihilation and creation operators, and are in fact second order combinations of fermionic annihilation and creation operators. Though phase space methods in which the fermionic operators are represented directly by c-number phase space variables have not been successful, the anti-commutation rules for these operators suggest the possibility of using Grassmann variables—which have similar anti-commutation properties. However, in spite of the seminal work by Cahill and Glauber and a few applications, the use of phase space methods in quantum optics to treat fermionic systems by representing fermionic annihilation and creation operators directly by Grassmann phase space variables is rather rare. This paper shows that phase space methods using a positive P type distribution function involving both c-number variables (for the cavity mode) and Grassmann variables (for the TLA) can be used to treat the Jaynes–Cummings model. Although it is a Grassmann function, the distribution function is equivalent to six c-number functions of the two bosonic variables. Experimental quantities are given as bosonic phase space integrals involving the six functions. A Fokker–Planck equation involving both left and right Grassmann differentiations can be obtained for the distribution function, and is equivalent to six coupled equations for the six c-number functions. The approach used involves choosing the canonical form of the (non-unique) positive P distribution function, in which the correspondence rules for the bosonic operators are non-standard and hence the Fokker–Planck equation is also unusual. Initial conditions, such as those above for initially uncorrelated states, are discussed and used to determine the initial distribution function. Transformations to new bosonic variables rotating at the cavity frequency enable the six coupled equations for the new c-number functions–that are also equivalent to the canonical Grassmann distribution function–to be solved analytically, based on an ansatz from an earlier paper by Stenholm. It is then shown that the distribution function is exactly the same as that determined from the well-known solution based on coupled amplitude equations. In quantum–atom optics theories for many atom bosonic and fermionic systems are needed. With large atom numbers, treatments must often take into account many quantum modes—especially for fermions. Generalisations of phase space distribution functions of phase space variables for a few modes to phase space distribution functionals of field functions (which represent the field operators, c-number fields for bosons, Grassmann fields for fermions) are now being developed for large systems. For the fermionic case, the treatment of the simple two mode problem represented by the Jaynes–Cummings model is a useful test case for the future development of phase space Grassmann distribution functional methods for fermionic applications in quantum–atom optics. -- Highlights: •Novel phase space theory of the Jaynes–Cummings model using Grassmann variables. •Fokker–Planck equations solved analytically. •Results agree with the standard quantum optics treatment. •Grassmann phase space theory applicable to fermion many-body problems.« less

  4. Full complex spatial filtering with a phase mostly DMD. [Deformable Mirror Device

    NASA Technical Reports Server (NTRS)

    Florence, James M.; Juday, Richard D.

    1991-01-01

    A new technique for implementing fully complex spatial filters with a phase mostly deformable mirror device (DMD) light modulator is described. The technique combines two or more phase-modulating flexure-beam mirror elements into a single macro-pixel. By manipulating the relative phases of the individual sub-pixels within the macro-pixel, the amplitude and the phase can be independently set for this filtering element. The combination of DMD sub-pixels into a macro-pixel is accomplished by adjusting the optical system resolution, thereby trading off system space bandwidth product for increased filtering flexibility. Volume in the larger dimensioned space, space bandwidth-complex axes count, is conserved. Experimental results are presented mapping out the coupled amplitude and phase characteristics of the individual flexure-beam DMD elements and demonstrating the independent control of amplitude and phase in a combined macro-pixel. This technique is generally applicable for implementation with any type of phase modulating light modulator.

  5. Transverse Phase Space Reconstruction and Emittance Measurement of Intense Electron Beams using a Tomography Technique

    NASA Astrophysics Data System (ADS)

    Stratakis, D.; Kishek, R. A.; Li, H.; Bernal, S.; Walter, M.; Tobin, J.; Quinn, B.; Reiser, M.; O'Shea, P. G.

    2006-11-01

    Tomography is the technique of reconstructing an image from its projections. It is widely used in the medical community to observe the interior of the human body by processing multiple x-ray images taken at different angles, A few pioneering researchers have adapted tomography to reconstruct detailed phase space maps of charged particle beams. Some questions arise regarding the limitations of tomography technique for space charge dominated beams. For instance is the linear space charge force a valid approximation? Does tomography equally reproduce phase space for complex, experimentally observed, initial particle distributions? Does tomography make any assumptions about the initial distribution? This study explores the use of accurate modeling with the particle-in-cell code WARP to address these questions, using a wide range of different initial distributions in the code. The study also includes a number of experimental results on tomographic phase space mapping performed on the University of Maryland Electron Ring (UMER).

  6. Quantum phase space with a basis of Wannier functions

    NASA Astrophysics Data System (ADS)

    Fang, Yuan; Wu, Fan; Wu, Biao

    2018-02-01

    A quantum phase space with Wannier basis is constructed: (i) classical phase space is divided into Planck cells; (ii) a complete set of Wannier functions are constructed with the combination of Kohn’s method and Löwdin method such that each Wannier function is localized at a Planck cell. With these Wannier functions one can map a wave function unitarily onto phase space. Various examples are used to illustrate our method and compare it to Wigner function. The advantage of our method is that it can smooth out the oscillations in wave functions without losing any information and is potentially a better tool in studying quantum-classical correspondence. In addition, we point out that our method can be used for time-frequency analysis of signals.

  7. Multivariable Hermite polynomials and phase-space dynamics

    NASA Technical Reports Server (NTRS)

    Dattoli, G.; Torre, Amalia; Lorenzutta, S.; Maino, G.; Chiccoli, C.

    1994-01-01

    The phase-space approach to classical and quantum systems demands for advanced analytical tools. Such an approach characterizes the evolution of a physical system through a set of variables, reducing to the canonically conjugate variables in the classical limit. It often happens that phase-space distributions can be written in terms of quadratic forms involving the above quoted variables. A significant analytical tool to treat these problems may come from the generalized many-variables Hermite polynomials, defined on quadratic forms in R(exp n). They form an orthonormal system in many dimensions and seem the natural tool to treat the harmonic oscillator dynamics in phase-space. In this contribution we discuss the properties of these polynomials and present some applications to physical problems.

  8. Gauging Spatial Symmetries and the Classification of Topological Crystalline Phases

    NASA Astrophysics Data System (ADS)

    Thorngren, Ryan; Else, Dominic V.

    2018-01-01

    We put the theory of interacting topological crystalline phases on a systematic footing. These are topological phases protected by space-group symmetries. Our central tool is an elucidation of what it means to "gauge" such symmetries. We introduce the notion of a crystalline topological liquid and argue that most (and perhaps all) phases of interest are likely to satisfy this criterion. We prove a crystalline equivalence principle, which states that in Euclidean space, crystalline topological liquids with symmetry group G are in one-to-one correspondence with topological phases protected by the same symmetry G , but acting internally, where if an element of G is orientation reversing, it is realized as an antiunitary symmetry in the internal symmetry group. As an example, we explicitly compute, using group cohomology, a partial classification of bosonic symmetry-protected topological phases protected by crystalline symmetries in (3 +1 ) dimensions for 227 of the 230 space groups. For the 65 space groups not containing orientation-reversing elements (Sohncke groups), there are no cobordism invariants that may contribute phases beyond group cohomology, so we conjecture that our classification is complete.

  9. Phase operator problem and macroscopic extension of quantum mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozawa, M.

    1997-06-01

    To find the Hermitian phase operator of a single-mode electromagnetic field in quantum mechanics, the Schr{umlt o}dinger representation is extended to a larger Hilbert space augmented by states with infinite excitation by nonstandard analysis. The Hermitian phase operator is shown to exist on the extended Hilbert space. This operator is naturally considered as the controversial limit of the approximate phase operators on finite dimensional spaces proposed by Pegg and Barnett. The spectral measure of this operator is a Naimark extension of the optimal probability operator-valued measure for the phase parameter found by Helstrom. Eventually, the two promising approaches to themore » statistics of the phase in quantum mechanics are synthesized by means of the Hermitian phase operator in the macroscopic extension of the Schr{umlt o}dinger representation. {copyright} 1997 Academic Press, Inc.« less

  10. Early Program Development

    NASA Image and Video Library

    1969-01-01

    This 1969 artist's concept illustrates the use of three major elements of NASA's Integrated program, as proposed by President Nixon's Space Task Group. In Phases I and II, a Space Tug with a manipulator-equipped crew module removes a cargo module from an early Space Shuttle Orbiter and docks with it. In Phases III and IV, the Space Tug with attached cargo module flys toward a Nuclear Shuttle. As a result of the Space Task Group's recommendations for more commonality and integration in the American space program, Marshall Space Flight Center engineers studied many of the spacecraft depicted here.

  11. Space Launch System Update

    NASA Technical Reports Server (NTRS)

    Cobb, Sharon

    2017-01-01

    NASA has a phased approach to ensure our nation's leadership in space exploration, beginning in Earth orbit, developing our skills in lunar space, and extending those skills and technologies to a human mission to Mars. We're currently in Phase 0, using the ISS to better understand living and working in space. You may have heard about our "twin study" with astronauts Scott and Mike Kelly that's giving us valuable information on the effects of microgravity environments on the human body during long stays in LEO. During Phase 1 in the 2020s, SLS will be used to lift the pieces of a "deep space gateway" outpost to lunar orbit. Developing and operating the gateway will get us to Mars in a step-by-step fashion, with lessons learned in each phase of the process informing the next steps. First step of moving humans farther into the solar system is completing and flying SLS and Orion.

  12. Microscopic Phase-Space Exploration Modeling of ^{258}Fm Spontaneous Fission.

    PubMed

    Tanimura, Yusuke; Lacroix, Denis; Ayik, Sakir

    2017-04-14

    We show that the total kinetic energy (TKE) of nuclei after the spontaneous fission of ^{258}Fm can be well reproduced using simple assumptions on the quantum collective phase space explored by the nucleus after passing the fission barrier. Assuming energy conservation and phase-space exploration according to the stochastic mean-field approach, a set of initial densities is generated. Each density is then evolved in time using the nuclear time-dependent density-functional theory with pairing. This approach goes beyond the mean-field theory by allowing spontaneous symmetry breaking as well as a wider dynamical phase-space exploration leading to larger fluctuations in collective space. The total kinetic energy and mass distributions are calculated. New information on the fission process: fluctuations in scission time, strong correlation between TKE and collective deformation, as well as prescission particle emission, are obtained. We conclude that fluctuations of the TKE and mass are triggered by quantum fluctuations.

  13. FAST User Guide

    NASA Technical Reports Server (NTRS)

    Walatka, Pamela P.; Clucas, Jean; McCabe, R. Kevin; Plessel, Todd; Potter, R.; Cooper, D. M. (Technical Monitor)

    1994-01-01

    The Flow Analysis Software Toolkit, FAST, is a software environment for visualizing data. FAST is a collection of separate programs (modules) that run simultaneously and allow the user to examine the results of numerical and experimental simulations. The user can load data files, perform calculations on the data, visualize the results of these calculations, construct scenes of 3D graphical objects, and plot, animate and record the scenes. Computational Fluid Dynamics (CFD) visualization is the primary intended use of FAST, but FAST can also assist in the analysis of other types of data. FAST combines the capabilities of such programs as PLOT3D, RIP, SURF, and GAS into one environment with modules that share data. Sharing data between modules eliminates the drudgery of transferring data between programs. All the modules in the FAST environment have a consistent, highly interactive graphical user interface. Most commands are entered by pointing and'clicking. The modular construction of FAST makes it flexible and extensible. The environment can be custom configured and new modules can be developed and added as needed. The following modules have been developed for FAST: VIEWER, FILE IO, CALCULATOR, SURFER, TOPOLOGY, PLOTTER, TITLER, TRACER, ARCGRAPH, GQ, SURFERU, SHOTET, and ISOLEVU. A utility is also included to make the inclusion of user defined modules in the FAST environment easy. The VIEWER module is the central control for the FAST environment. From VIEWER, the user can-change object attributes, interactively position objects in three-dimensional space, define and save scenes, create animations, spawn new FAST modules, add additional view windows, and save and execute command scripts. The FAST User Guide uses text and FAST MAPS (graphical representations of the entire user interface) to guide the user through the use of FAST. Chapters include: Maps, Overview, Tips, Getting Started Tutorial, a separate chapter for each module, file formats, and system administration.

  14. Geometric phase of mixed states for three-level open systems

    NASA Astrophysics Data System (ADS)

    Jiang, Yanyan; Ji, Y. H.; Xu, Hualan; Hu, Li-Yun; Wang, Z. S.; Chen, Z. Q.; Guo, L. P.

    2010-12-01

    Geometric phase of mixed state for three-level open system is defined by establishing in connecting density matrix with nonunit vector ray in a three-dimensional complex Hilbert space. Because the geometric phase depends only on the smooth curve on this space, it is formulated entirely in terms of geometric structures. Under the limiting of pure state, our approach is in agreement with the Berry phase, Pantcharatnam phase, and Aharonov and Anandan phase. We find that, furthermore, the Berry phase of mixed state correlated to population inversions of three-level open system.

  15. Qubits in phase space: Wigner-function approach to quantum-error correction and the mean-king problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paz, Juan Pablo; Roncaglia, Augusto Jose; Theoretical Division, LANL, MSB213, Los Alamos, New Mexico 87545

    2005-07-15

    We analyze and further develop a method to represent the quantum state of a system of n qubits in a phase-space grid of NxN points (where N=2{sup n}). The method, which was recently proposed by Wootters and co-workers (Gibbons et al., Phys. Rev. A 70, 062101 (2004).), is based on the use of the elements of the finite field GF(2{sup n}) to label the phase-space axes. We present a self-contained overview of the method, we give insights into some of its features, and we apply it to investigate problems which are of interest for quantum-information theory: We analyze the phase-spacemore » representation of stabilizer states and quantum error-correction codes and present a phase-space solution to the so-called mean king problem.« less

  16. Scientific management of Space Telescope

    NASA Technical Reports Server (NTRS)

    Odell, C. R.

    1981-01-01

    A historical summay is given on the science management of the Space Telescope, the inception of which began in 1962, when scientists and engineers first recommended the development of a nearly diffraction limited substantial-size optical telescope. Phase A, the feasibility requirements generation phase, began in 1971 and consisted largely of NASA scientists and a NASA design. Phase B, the preliminary design phase, established a tiered structure of scientists, led by the Large Space Telescope operations and Management Work Group. A Mission Operations Working Group headed six instrument definition teams to develop the essential instrument definitions. Many changes took place during Phase B, before design and development, which began in 1978 and still continues today.

  17. Space station program phase B definition: Nuclear reactor-powered space station cost and schedules

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Tabulated data are presented on the costs, schedules, and technical characteristics for the space station phases C and D program. The work breakdown structure, schedule data, program ground rules, program costs, cost-estimating rationale, funding schedules, and supporting data are included.

  18. Momentum space topology of QCD

    NASA Astrophysics Data System (ADS)

    Zubkov, M. A.

    2018-06-01

    We discuss the possibility to consider quark matter as the topological material. We consider hadronic phase (HP), the quark-gluon plasma phase (QGP), and the hypothetical color-flavor locking (CFL) phase. In those phases we identify the relevant topological invariants in momentum space. The formalism is developed, which relates those invariants and massless fermions that reside on vortices and at the interphases. This formalism is illustrated by the example of vortices in the CFL phase.

  19. Controlling quantum interference in phase space with amplitude.

    PubMed

    Xue, Yinghong; Li, Tingyu; Kasai, Katsuyuki; Okada-Shudo, Yoshiko; Watanabe, Masayoshi; Zhang, Yun

    2017-05-23

    We experimentally show a quantum interference in phase space by interrogating photon number probabilities (n = 2, 3, and 4) of a displaced squeezed state, which is generated by an optical parametric amplifier and whose displacement is controlled by amplitude of injected coherent light. It is found that the probabilities exhibit oscillations of interference effect depending upon the amplitude of the controlling light field. This phenomenon is attributed to quantum interference in phase space and indicates the capability of controlling quantum interference using amplitude. This remarkably contrasts with the oscillations of interference effects being usually controlled by relative phase in classical optics.

  20. A phase space approach to imaging from limited data

    NASA Astrophysics Data System (ADS)

    Testorf, Markus E.

    2015-09-01

    The optical instrument function is used as the basis to develop optical system theory for imaging applications. The detection of optical signals is conveniently described as the overlap integral of the Wigner distribution functions of instrument and optical signal. Based on this framework various optical imaging systems, including plenoptic cameras, phase-retrieval algorithms, and Shack-Hartman sensors are shown to acquire information about a domain in phase-space, with finite extension and finite resolution. It is demonstrated how phase space optics can be used both to analyze imaging systems, as well as for designing methods for image reconstruction.

  1. Dynamics of spacing adjustment and recovery mechanisms of ABAC-type growth pattern in ternary eutectic systems

    NASA Astrophysics Data System (ADS)

    Mohagheghi, Samira; Şerefoğlu, Melis

    2017-07-01

    In directionally solidified 2D samples at ternary eutectic compositions, the stable three-phase pattern is established to be lamellar structure with ABAC stacking, where A, B, and C are crystalline phases. Beyond the stability limits of the ABAC pattern, the system uses various spacing adjustment mechanisms to revert to the stable regime. In this study, the dynamics of spacing adjustment and recovery mechanisms of isotropic ABAC patterns were investigated using three-phase In-Bi-Sn alloy. Unidirectional solidification experiments were performed on 23.0 and 62.7 μm-thick samples, where solidification front was monitored in real-time from both sides of the sample using a particular microscopy system. At these thicknesses, the pattern was found to be 2D during steady-state growth, i.e. both top and bottom microstructures were the same. However, during spacing adjustment and recovery mechanisms, 3D features were observed. Dynamics of two major instabilities, lamellae branching and elimination, were quantified. After these instabilities, two key ABAC pattern recovery mechanisms, namely, phase invasion and phase exchange processes, were identified and analyzed. After elimination, ABAC pattern is recovered by either continuous eliminations of all phases or by phase exchange. After branching, the recovery mechanisms are established to be phase invasion and phase exchange.

  2. Performance evaluation of digital phase-locked loops for advanced deep space transponders

    NASA Technical Reports Server (NTRS)

    Nguyen, T. M.; Hinedi, S. M.; Yeh, H.-G.; Kyriacou, C.

    1994-01-01

    The performances of the digital phase-locked loops (DPLL's) for the advanced deep-space transponders (ADT's) are investigated. DPLL's considered in this article are derived from the analog phase-locked loop, which is currently employed by the NASA standard deep space transponder, using S-domain to Z-domain mapping techniques. Three mappings are used to develop digital approximations of the standard deep space analog phase-locked loop, namely the bilinear transformation (BT), impulse invariant transformation (IIT), and step invariant transformation (SIT) techniques. The performance in terms of the closed loop phase and magnitude responses, carrier tracking jitter, and response of the loop to the phase offset (the difference between in incoming phase and reference phase) is evaluated for each digital approximation. Theoretical results of the carrier tracking jitter for command-on and command-off cases are then validated by computer simulation. Both theoretical and computer simulation results show that at high sampling frequency, the DPLL's approximated by all three transformations have the same tracking jitter. However, at low sampling frequency, the digital approximation using BT outperforms the others. The minimum sampling frequency for adequate tracking performance is determined for each digital approximation of the analog loop. In addition, computer simulation shows that the DPLL developed by BT provides faster response to the phase offset than IIT and SIT.

  3. Simulations of phase space distributions of storm time proton ring current

    NASA Technical Reports Server (NTRS)

    Chen, Margaret W.; Lyons, Larry R.; Schulz, Michael

    1994-01-01

    We use results of guiding-center simulations of ion transport to map phase space densities of the stormtime proton ring current. We model a storm as a sequence of substorm-associated enhancements in the convection electric field. Our pre-storm phase space distribution is an analytical solution to a steady-state transport model in which quiet-time radial diffusion balances charge exchange. This pre-storm phase space spectra at L approximately 2 to 4 reproduce many of the features found in observed quiet-time spectra. Using results from simulations of ion transport during model storms having main phases of 3, 6, and 12 hr, we map phase space distributions from the pre-storm distribution in accordance with Liouville's theorem. We find stormtime enhancements in the phase space densities at energies E approximately 30-160 keV for L approximately 2.5 to 4. These enhancements agree well with the observed stormtime ring current. For storms with shorter main phases (approximately 3 hr), the enhancements are caused mainly by the trapping of ions injected from open night side trajectories, and diffusive transport of higher-energy (greater than or approximately 160 keV) ions contributes little to the stormtime ring current. However, the stormtime ring current is augmented also by the diffusive transport of higher-energy ions (E greater than or approximately 160 keV) durinng stroms having longer main phases (greater than or approximately 6 hr). In order to account for the increase in Dst associated with the formation of the stormtime ring current, we estimate the enhancement in particle-energy content that results from stormtime ion transport in the equatorial magnetosphere. We find that transport alone cannot account for the entire increase in absolute value of Dst typical of a major storm. However, we can account for the entire increase in absolute value of Dst by realistically increasing the stormtime outer boundary value of the phase space density relative to the quiet-time value. We compute the magnetic field produced by the ring current itself and find that radial profiles of the magnetic field depression resemble those obtained from observational data.

  4. Phase III Simplified Integrated Test (SIT) results - Space Station ECLSS testing

    NASA Technical Reports Server (NTRS)

    Roberts, Barry C.; Carrasquillo, Robyn L.; Dubiel, Melissa Y.; Ogle, Kathryn Y.; Perry, Jay L.; Whitley, Ken M.

    1990-01-01

    During 1989, phase III testing of Space Station Freedom Environmental Control and Life Support Systems (ECLSS) began at Marshall Space Flight Center (MSFC) with the Simplified Integrated Test. This test, conducted at the MSFC Core Module Integration Facility (CMIF), was the first time the four baseline air revitalization subsystems were integrated together. This paper details the results and lessons learned from the phase III SIT. Future plans for testing at the MSFC CMIF are also discussed.

  5. FO Aqr time-series observations requested

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2016-07-01

    Dr. Colin Littlefield (University of Notre Dame) and colleagues Drs. Peter Garnavich (Notre Dame), Erin Aadland (Minnesota State), and Mark Kennedy (University College Cork) have requested AAVSO assistance in monitoring the intermediate polar cataclysmic variable FO Aqr beginning immediately. Littlefield, who with his colleagues recently published ATel #9216 and #9225, writes: "This system is in a faint state for the first time in its observational record, implying a dropoff in the mass-transfer rate. AAVSO observations contributed by Shawn Dvorak [the only observer following FO Aqr at the time] were particularly helpful in detecting this low state. Since early May, the system has recovered to V 15, but it is still well below its normal brightness. In addition, our time-series photometry shows a very strong 11.26-minute photometric period. By contrast, during its bright state, FO Aqr's light curve is dominated by a 20.9-minute period, corresponding with the spin period of the white dwarf. We interpret our observations as evidence that the system's accretion processes have changed dramatically as a result of the reduced mass-transfer rate. We have...determined that...[the 11.26-min] periodicity is dependent on the orbital phase of the binary. The 11.26-min period is dominant for about half of the orbit, but for the other half, a 22.5-min period is stronger. AAVSO observers can help us study both of these periods as well as their dependence on the orbital phase. We are particularly interested in any changes in this behavior as the system continues to brighten...Time-series photometry of FO Aqr [is requested] in order to better study the evolution of the 11.26-minute period as the system rebrightens. Unfiltered photometry reduced with a V zeropoint would be the most useful to us...A cadence of less than 60 seconds per image is important, given the brevity of these periods (especially the 11.26-min period). Finder charts with sequence may be created using the AAVSO Variable Star Plotter (https://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details.

  6. Peaks in Phase Space Density: A Survey of the Van Allen Probes Era

    NASA Astrophysics Data System (ADS)

    Boyd, A. J.; Turner, D. L.; Reeves, G. D.; Spence, H. E.

    2017-12-01

    One of the challenges of radiation belt studies is the differentiation between acceleration mechanisms, particularly local acceleration and radial diffusion. This is often done through careful examination of phase space density profiles in terms of adiabatic coordinates. In particular, local acceleration processes produce growing peaks in phase space density. Many previous studies have shown clear observations of these features for individual events. However, it remains unclear how often and where these growing peaks are observed over a long time period. With the availability of several years of high quality observations from multiple spacecraft, we now have an opportunity to quantify phase space density profiles not only for multiple events, but also across a wide range of energies. In this study, we examine phase space density from more than four years of data from the Van Allen Probes and THEMIS to determine the statistical properties of the observed peaks in phase space density. First, we determine how often growing peaks are observed. Second, we examine where the peaks are located in terms of the adiabatic invariants mu, K and L* and how these locations relate to geomagnetic indices, solar wind conditions and the plasmapause location. Third, we explore how these peaks evolve in time. Together, these results will reveal the relative importance of different acceleration processes and how these affect the various electron populations within the radiation belt.

  7. Evaluating Trauma Sonography for Operational Use in the Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, Andrew W.; Jones, Jeffrey A.; Sargsyan, Ashot; Hamilton, Douglas; Melton, Shannon; Beck, George; Nicolaou, Savvas; Campbell, Mark; Dulchavsky, Scott

    2007-01-01

    Sonography is the only medical imaging modality aboard the ISS, and is likely to remain the leading imaging modality in future human space flight programs. While trauma sonography (TS) has been well recognized for terrestrial trauma settings, the technique had to be evaluated for suitability in space flight prior to adopting it as an operational capability. The authors found the following four-phased evaluative approach applicable to this task: 1) identifying standard or novel terrestrial techniques for potential use in space medicine; 2) developing and testing these techniques with suggested modifications on the ground (1g) either in clinical settings or in animal models, as appropriate; 3) evaluating and refining the techniques in parabolic flight (0g); and 4) validating and implementing for clinical use in space. In Phase I of the TS project, expert opinion and literature review suggested TS to be a potential screening tool for trauma in space. In Phase II, animal models were developed and tested in ground studies, and clinical studies were carried out in collaborating trauma centers. In Phase III, animal models were flight-tested in the NASA KC-135 Reduced Gravity Laboratory. Preliminary results of the first three phases demonstrated potential clinical utility of TS in microgravity. Phase IV studies have begun to address crew training issues, on-board imaging protocols, and data transfer procedures necessary to offer the modified TS technique for space use.

  8. White-light diffraction phase microscopy at doubled space-bandwidth product.

    PubMed

    Shan, Mingguang; Kandel, Mikhail E; Majeed, Hassaan; Nastasa, Viorel; Popescu, Gabriel

    2016-12-12

    White light diffraction microscopy (wDPM) is a quantitative phase imaging method that benefits from both temporal and spatial phase sensitivity, granted, respectively, by the common-path geometry and white light illumination. However, like all off-axis quantitative phase imaging methods, wDPM is characterized by a reduced space-bandwidth product compared to phase shifting approaches. This happens essentially because the ultimate resolution of the image is governed by the period of the interferogram and not just the diffraction limit. As a result, off-axis techniques generates single-shot, i.e., high time-bandwidth, phase measurements, at the expense of either spatial resolution or field of view. Here, we show that combining phase-shifting and off-axis, the original space-bandwidth is preserved. Specifically, we developed phase-shifting diffraction phase microscopy with white light, in which we measure and combine two phase shifted interferograms. Due to the white light illumination, the phase images are characterized by low spatial noise, i.e., <1nm pathlength. We illustrate the operation of the instrument with test samples, blood cells, and unlabeled prostate tissue biopsy.

  9. Grassmann phase space theory and the Jaynes-Cummings model

    NASA Astrophysics Data System (ADS)

    Dalton, B. J.; Garraway, B. M.; Jeffers, J.; Barnett, S. M.

    2013-07-01

    The Jaynes-Cummings model of a two-level atom in a single mode cavity is of fundamental importance both in quantum optics and in quantum physics generally, involving the interaction of two simple quantum systems—one fermionic system (the TLA), the other bosonic (the cavity mode). Depending on the initial conditions a variety of interesting effects occur, ranging from ongoing oscillations of the atomic population difference at the Rabi frequency when the atom is excited and the cavity is in an n-photon Fock state, to collapses and revivals of these oscillations starting with the atom unexcited and the cavity mode in a coherent state. The observation of revivals for Rydberg atoms in a high-Q microwave cavity is key experimental evidence for quantisation of the EM field. Theoretical treatments of the Jaynes-Cummings model based on expanding the state vector in terms of products of atomic and n-photon states and deriving coupled equations for the amplitudes are a well-known and simple method for determining the effects. In quantum optics however, the behaviour of the bosonic quantum EM field is often treated using phase space methods, where the bosonic mode annihilation and creation operators are represented by c-number phase space variables, with the density operator represented by a distribution function of these variables. Fokker-Planck equations for the distribution function are obtained, and either used directly to determine quantities of experimental interest or used to develop c-number Langevin equations for stochastic versions of the phase space variables from which experimental quantities are obtained as stochastic averages. Phase space methods have also been developed to include atomic systems, with the atomic spin operators being represented by c-number phase space variables, and distribution functions involving these variables and those for any bosonic modes being shown to satisfy Fokker-Planck equations from which c-number Langevin equations are often developed. However, atomic spin operators satisfy the standard angular momentum commutation rules rather than the commutation rules for bosonic annihilation and creation operators, and are in fact second order combinations of fermionic annihilation and creation operators. Though phase space methods in which the fermionic operators are represented directly by c-number phase space variables have not been successful, the anti-commutation rules for these operators suggest the possibility of using Grassmann variables—which have similar anti-commutation properties. However, in spite of the seminal work by Cahill and Glauber and a few applications, the use of phase space methods in quantum optics to treat fermionic systems by representing fermionic annihilation and creation operators directly by Grassmann phase space variables is rather rare. This paper shows that phase space methods using a positive P type distribution function involving both c-number variables (for the cavity mode) and Grassmann variables (for the TLA) can be used to treat the Jaynes-Cummings model. Although it is a Grassmann function, the distribution function is equivalent to six c-number functions of the two bosonic variables. Experimental quantities are given as bosonic phase space integrals involving the six functions. A Fokker-Planck equation involving both left and right Grassmann differentiations can be obtained for the distribution function, and is equivalent to six coupled equations for the six c-number functions. The approach used involves choosing the canonical form of the (non-unique) positive P distribution function, in which the correspondence rules for the bosonic operators are non-standard and hence the Fokker-Planck equation is also unusual. Initial conditions, such as those above for initially uncorrelated states, are discussed and used to determine the initial distribution function. Transformations to new bosonic variables rotating at the cavity frequency enable the six coupled equations for the new c-number functions-that are also equivalent to the canonical Grassmann distribution function-to be solved analytically, based on an ansatz from an earlier paper by Stenholm. It is then shown that the distribution function is exactly the same as that determined from the well-known solution based on coupled amplitude equations. In quantum-atom optics theories for many atom bosonic and fermionic systems are needed. With large atom numbers, treatments must often take into account many quantum modes—especially for fermions. Generalisations of phase space distribution functions of phase space variables for a few modes to phase space distribution functionals of field functions (which represent the field operators, c-number fields for bosons, Grassmann fields for fermions) are now being developed for large systems. For the fermionic case, the treatment of the simple two mode problem represented by the Jaynes-Cummings model is a useful test case for the future development of phase space Grassmann distribution functional methods for fermionic applications in quantum-atom optics.

  10. A pilot study of river flow prediction in urban area based on phase space reconstruction

    NASA Astrophysics Data System (ADS)

    Adenan, Nur Hamiza; Hamid, Nor Zila Abd; Mohamed, Zulkifley; Noorani, Mohd Salmi Md

    2017-08-01

    River flow prediction is significantly related to urban hydrology impact which can provide information to solve any problems such as flood in urban area. The daily river flow of Klang River, Malaysia was chosen to be forecasted in this pilot study which based on phase space reconstruction. The reconstruction of phase space involves a single variable of river flow data to m-dimensional phase space in which the dimension (m) is based on the optimal values of Cao method. The results from the reconstruction of phase space have been used in the forecasting process using local linear approximation method. From our investigation, river flow at Klang River is chaotic based on the analysis from Cao method. The overall results provide good value of correlation coefficient. The value of correlation coefficient is acceptable since the area of the case study is influence by a lot of factors. Therefore, this pilot study may be proposed to forecast daily river flow data with the purpose of providing information about the flow of the river system in urban area.

  11. Grain size dependent phase stabilities and presence of a monoclinic (Pm) phase in the morphotropic phase boundary region of (1−x)Bi(Mg{sub 1/2}Ti{sub 1/2})O{sub 3}-xPbTiO{sub 3} piezoceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyay, Ashutosh; Singh, Akhilesh Kumar, E-mail: akhilesh-bhu@yahoo.com, E-mail: aksingh.mst@itbhu.ac.in

    2015-04-14

    Results of the room temperature structural studies on (1−x)Bi(Mg{sub 1/2}Ti{sub 1/2})O{sub 3}-xPbTiO{sub 3} ceramics using Rietveld analysis of the powder x-ray diffraction data in the composition range 0.28 ≤ x ≤ 0.45 are presented. The morphotropic phase boundary region exhibits coexistence of monoclinic (space group Pm) and tetragonal (space group P4 mm) phases in the composition range 0.33 ≤ x ≤ 0.40. The structure is nearly single phase monoclinic (space group Pm) in the composition range 0.28 ≤ x ≤ 0.32. The structure for the compositions with x ≥ 0.45 is found to be predominantly tetragonal with space group P4 mm. Rietveld refinement of the structure rules out the coexistence of rhombohedral and tetragonal phases inmore » the morphotropic phase boundary region reported by earlier authors. The Rietveld structure analysis for the sample x = .35 calcined at various temperatures reveals that phase fraction of the coexisting phases in the morphotropic phase boundary region varies with grain size. The structural parameters of the two coexisting phases also change slightly with changing grain size.« less

  12. Using the phase-space imager to analyze partially coherent imaging systems: bright-field, phase contrast, differential interference contrast, differential phase contrast, and spiral phase contrast

    NASA Astrophysics Data System (ADS)

    Mehta, Shalin B.; Sheppard, Colin J. R.

    2010-05-01

    Various methods that use large illumination aperture (i.e. partially coherent illumination) have been developed for making transparent (i.e. phase) specimens visible. These methods were developed to provide qualitative contrast rather than quantitative measurement-coherent illumination has been relied upon for quantitative phase analysis. Partially coherent illumination has some important advantages over coherent illumination and can be used for measurement of the specimen's phase distribution. However, quantitative analysis and image computation in partially coherent systems have not been explored fully due to the lack of a general, physically insightful and computationally efficient model of image formation. We have developed a phase-space model that satisfies these requirements. In this paper, we employ this model (called the phase-space imager) to elucidate five different partially coherent systems mentioned in the title. We compute images of an optical fiber under these systems and verify some of them with experimental images. These results and simulated images of a general phase profile are used to compare the contrast and the resolution of the imaging systems. We show that, for quantitative phase imaging of a thin specimen with matched illumination, differential phase contrast offers linear transfer of specimen information to the image. We also show that the edge enhancement properties of spiral phase contrast are compromised significantly as the coherence of illumination is reduced. The results demonstrate that the phase-space imager model provides a useful framework for analysis, calibration, and design of partially coherent imaging methods.

  13. From phase space to integrable representations and level-rank duality

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Arghya; Dutta, Parikshit; Dutta, Suvankar

    2018-05-01

    We explicitly find representations for different large N phases of Chern-Simons matter theory on S 2 × S 1. These representations are characterised by Young diagrams. We show that no-gap and lower-gap phase of Chern-Simons-matter theory correspond to integrable representations of SU( N) k affine Lie algebra, where as upper-cap phase corresponds to integrable representations of SU( k - N) k affine Lie algebra. We use phase space description of [1] to obtain these representations and argue how putting a cap on eigenvalue distribution forces corresponding representations to be integrable. We also prove that the Young diagrams corresponding to lower-gap and upper-cap representations are related to each other by transposition under level-rank duality. Finally we draw phase space droplets for these phases and show how information about eigenvalue and Young diagram descriptions can be captured in topologies of these droplets in a unified way.

  14. Signal Strength-Based Global Navigation Satellite System Performance Assessment in the Space Service Volume

    NASA Technical Reports Server (NTRS)

    Welch, Bryan W.

    2016-01-01

    NASA is participating in the International Committee on Global Navigation Satellite Systems (GNSS) (ICG)'s efforts towards demonstrating the benefits to the space user in the Space Service Volume (SSV) when a multi-GNSS solution space approach is utilized. The ICG Working Group: Enhancement of GNSS Performance, New Services and Capabilities has started a three phase analysis initiative as an outcome of recommendations at the ICG-10 meeting, in preparation for the ICG-11 meeting. The second phase of that increasing complexity and fidelity analysis initiative is based on augmenting the Phase 1 pure geometrical approach with signal strength-based limitations to determine if access is valid. The second phase of analysis has been completed, and the results are documented in this paper.

  15. Streamlined design and self reliant hardware for active control of precision space structures

    NASA Technical Reports Server (NTRS)

    Hyland, David C.; King, James A.; Phillips, Douglas J.

    1994-01-01

    Precision space structures may require active vibration control to satisfy critical performance requirements relating to line-of-sight pointing accuracy and the maintenance of precise, internal alignments. In order for vibration control concepts to become operational, it is necessary that their benefits be practically demonstrated in large scale ground-based experiments. A unique opportunity to carry out such demonstrations on a wide variety of experimental testbeds was provided by the NASA Control-Structure Integration (CSI) Guest Investigator (GI) Program. This report surveys the experimental results achieved by the Harris Corporation GI team on both Phases 1 and 2 of the program and provides a detailed description of Phase 2 activities. The Phase 1 results illustrated the effectiveness of active vibration control for space structures and demonstrated a systematic methodology for control design, implementation test. In Phase 2, this methodology was significantly streamlined to yield an on-site, single session design/test capability. Moreover, the Phase 2 research on adaptive neural control techniques made significant progress toward fully automated, self-reliant space structure control systems. As a further thrust toward productized, self-contained vibration control systems, the Harris Phase II activity concluded with experimental demonstration of new vibration isolation hardware suitable for a wide range of space-flight and ground-based commercial applications.The CSI GI Program Phase 1 activity was conducted under contract NASA1-18872, and the Phase 2 activity was conducted under NASA1-19372.

  16. Diffeomorphisms as symplectomorphisms in history phase space: Bosonic string model

    NASA Astrophysics Data System (ADS)

    Kouletsis, I.; Kuchař, K. V.

    2002-06-01

    The structure of the history phase space G of a covariant field system and its history group (in the sense of Isham and Linden) is analyzed on an example of a bosonic string. The history space G includes the time map T from the spacetime manifold (the two-sheet) Y to a one-dimensional time manifold T as one of its configuration variables. A canonical history action is posited on G such that its restriction to the configuration history space yields the familiar Polyakov action. The standard Dirac-ADM action is shown to be identical with the canonical history action, the only difference being that the underlying action is expressed in two different coordinate charts on G. The canonical history action encompasses all individual Dirac-ADM actions corresponding to different choices T of foliating Y. The history Poisson brackets of spacetime fields on G induce the ordinary Poisson brackets of spatial fields in the instantaneous phase space G0 of the Dirac-ADM formalism. The canonical history action is manifestly invariant both under spacetime diffeomorphisms Diff Y and temporal diffeomorphisms Diff T. Both of these diffeomorphisms are explicitly represented by symplectomorphisms on the history phase space G. The resulting classical history phase space formalism is offered as a starting point for projection operator quantization and consistent histories interpretation of the bosonic string model.

  17. Phase space holes and synchronized BGK modes in autoresonantly driven, Penning-trapped electron clouds

    NASA Astrophysics Data System (ADS)

    Friedland, Lazar; Fajans, Joel; Bertsche, Will; Wurtele, Jonathan

    2003-10-01

    We study excitation and control of BGK modes in pure electron plasmas in a Penning trap. We apply an oscillating external potential with a negatively chirped frequency. This drive resonates with, and phase-locks to, a group of axially bouncing electrons in the trap. All initially phase-locked electrons remain phase-locked during the chirp (the autoresonance phenomenon), while some new particles are added to the resonant group, as the bucket moves through the phase space. This creates an oscillating in space and slowly evolving in energy hole in the phase space distribution of the electrons. The electron density perturbation associated with this evolving hole yields a BGK mode synchronized with the drive. The local depth of the hole in phase space, and, thus, the amplitude of the mode are controlled by the external parameter (the driving frequency). The process is reversible, so that the BGK mode can be returned to its nearly initial state, by reversing the direction of variation of the driving frequency. A kinetic theory of this excitation process is developed. The theory uses results on passage through, and capture into, bounce resonance in the system from Monte Carlo simulations of resonant bucket dynamics. We discuss the dependence of the excited BGK mode on the drive frequency chirp rate and other plasma parameters and compare these predictions with experiments.

  18. A computer graphics display and data compression technique

    NASA Technical Reports Server (NTRS)

    Teague, M. J.; Meyer, H. G.; Levenson, L. (Editor)

    1974-01-01

    The computer program discussed is intended for the graphical presentation of a general dependent variable X that is a function of two independent variables, U and V. The required input to the program is the variation of the dependent variable with one of the independent variables for various fixed values of the other. The computer program is named CRP, and the output is provided by the SD 4060 plotter. Program CRP is an extremely flexible program that offers the user a wide variety of options. The dependent variable may be presented in either a linear or a logarithmic manner. Automatic centering of the plot is provided in the ordinate direction, and the abscissa is scaled automatically for a logarithmic plot. A description of the carpet plot technique is given along with the coordinates system used in the program. Various aspects of the program logic are discussed and detailed documentation of the data card format is presented.

  19. Lead isotope data bank; 2,624 samples and analyses cited

    USGS Publications Warehouse

    Doe, Bruce R.

    1976-01-01

    The Lead Isotope Data Bank (LIDB) was initiated to facilitate plotting data. Therefore, the Bank reflects data most often used in plotting rather than comprises a comprehensive tabulation of lead isotope data. Up until now, plotting was done using card decks processed by computer with tapes plotted by a Gerber plotter and more recently a CRT using a batch mode. Lack of a uniform format for sample identification was not a great impediment. With increase in the size of the bank, hand sorting is becoming prohibitive and ·plans are underway to put the bank into a uniform format on DISK with a card backup so that it may be accessed by use of IRIS on the DECK 10 computer at the U.S.G.S. facility in Denver. Plots will be constructed on a CRT. Entry of the bank into the IRIS accessing program is scheduled for completion in FY 1976

  20. Alaska Interim Land Cover Mapping Program; final report

    USGS Publications Warehouse

    Fitzpatrick-Lins, Katherine; Doughty, E.F.; Shasby, Mark; Benjamin, Susan

    1989-01-01

    In 1985, the U.S. Geological Survey initiated a research project to develop an interim land cover data base for Alaska as an alternative to the nationwide Land Use and Land Cover Mapping Program. The Alaska Interim Land Cover Mapping Program was subsequently created to develop methods for producing a series of land cover maps that utilized the existing Landsat digital land cover classifications produced by and for the major land management agencies for mapping the vegetation of Alaska. The program was successful in producing digital land cover classifications and statistical summaries using a common statewide classification and in reformatting these data to produce l:250,000-scale quadrangle-based maps directly from the Scitex laser plotter. A Federal and State agency review of these products found considerable user support for the maps. Presently the Geological Survey is committed to digital processing of six to eight quadrangles each year.

  1. Development of a data management front end for use with a LANDSAT based information system. [assessing gypsy moth defoliation damage in Pennsylvania

    NASA Technical Reports Server (NTRS)

    Turner, B. J. (Principal Investigator)

    1982-01-01

    A user friendly front end was constructed to facilitate access to the LANDSAT mosaic data base supplied by JPL and to process both LANDSAT and ancillary data. Archieval and retrieval techniques were developed to efficiently handle this data base and make it compatible with requirements of the Pennsylvania Bureau of Forestry. Procedures are ready for: (1) forming the forest/nonforest mask in ORSER compressed map format using GSFC-supplied classification procedures; (2) registering data from a new scene (defoliated) to the mask (which may involve mosaicking if the area encompasses two LANDSAT scenes; (3) producing a masked new data set using the MASK program; (4) analyzing this data set to produce a map showing degrees of defoliation, output on the Versatec plotter; and (5) producing color composite maps by a diazo-type process.

  2. Mission Operations Control Room Activities during STS-2 mission

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Mission Operations Control Room (MOCR) activities during STS-2 mission. President Ronald Reagan and Dr. Christopher C. Kraft, Jr., look toward the orbiter spotter on the projection plotter at the front of the MOCR. Also present are Astronaut Daniel C. Brandenstein, seated left, and NASA Administrator James M. Beggs standing left of center. In the foreground, Dr. Hans Mark, Deputy NASA Administrator, briefs Michael Deaver, Special Assistant to President Reagan (39504); President Reagan speaks to the STS-2 crew during the second day of their mission. On hand in MOCR were NASA Administrator James M. Beggs and Deputy Administrator Hans Mark (standing behind the president but mostly out of frame) and Dr. Kraft on the right. Eugene F. Kranz, Deputy Director of Flight Operations can be seen in the background seated at the Flight Operations Directorate (FOD) console. Also present is Astronaut Daniel C. Brandenstein, seated left, who turned the communications over to Mr. Reagan (39505).

  3. Laserprinter applications in a medical graphics department.

    PubMed

    Lynch, P J

    1987-01-01

    Our experience with the Apple Macintosh and LaserWriter equipment has convinced us that lasergraphics holds much current and future promise in the creation of line graphics and typography for the biomedical community. Although we continue to use other computer graphics equipment to produce color slides and an occasional pen-plotter graphic, the most rapidly growing segment of our graphics workload is in material well-suited to production on the Macintosh/LaserWriter system. At present our goal is to integrate all of our computer graphics production (color slides, video paint graphics and monochrome print graphics) into a single Macintosh-based system within the next two years. The software and hardware currently available are capable of producing a wide range of science graphics very quickly and inexpensively. The cost-effectiveness, versatility and relatively low initial investment required to install this equipment make it an attractive alternative for cost-recovery departments just entering the field of computer graphics.

  4. Thermal Transfer Compared To The Fourteen Other Imaging Technologies

    NASA Astrophysics Data System (ADS)

    O'Leary, John W.

    1989-07-01

    A quiet revolution in the world of imaging has been underway for the past few years. The older technologies of dot matrix, daisy wheel, thermal paper and pen plotters have been increasingly displaced by laser, ink jet and thermal transfer. The net result of this revolution is improved technologies that afford superior imaging, quiet operation, plain paper usage, instant operation, and solid state components. Thermal transfer is one of the processes that incorporates these benefits. Among the imaging application for thermal transfer are: 1. Bar code labeling and scanning. 2. New systems for airline ticketing, boarding passes, reservations, etc. 3. Color computer graphics and imaging. 4. Copying machines that copy in color. 5. Fast growing communications media such as facsimile. 6. Low cost word processors and computer printers. 7. New devices that print pictures from video cameras or television sets. 8. Cameras utilizing computer chips in place of film.

  5. Supernova 2011by in NGC 3972 = Psn J11554556+5519338

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2011-04-01

    Announces discovery of SN 2011by = PSN J11554556+5519338 by Zhangwei Jin (Ningbo, Zhejiang, China) and Xing Gao (Urumqi, Xinjiang, China) on 2011 Apr. 26.8234 UT at magnitude ~14.2 (unfiltered CCD). Spectra obtained on 2011 Apr. 27.5 UT by T. Zhang and Z. Zhou (National Astronomical Observatories of China) and X. Wang (Tsinghua Center for Astrophysics, Tsinghua University) show SN 2011by to be a type-Ia supernova about 10 days before maximum. Initially announced in IAU CBAT Central Bureau Electronic Telegrams 2708 (Daniel W. E. Green, ed.). The object was designated PSN J11554556+5519338 when posted on the Central Bureau's Transient Objects Confirmation Page (TOCP) webpage. Finder charts with sequence may be created using the AAVSO Variable Star Plotter (http://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details, observations, and links to images.

  6. Topographic mapping of the Moon

    USGS Publications Warehouse

    Wu, S.S.C.

    1985-01-01

    Contour maps of the Moon have been compiled by photogrammetric methods that use stereoscopic combinations of all available metric photographs from the Apollo 15, 16, and 17 missions. The maps utilize the same format as the existing NASA shaded-relief Lunar Planning Charts (LOC-1, -2, -3, and -4), which have a scale of 1:2 750 000. The map contour interval is 500m. A control net derived from Apollo photographs by Doyle and others was used for the compilation. Contour lines and elevations are referred to the new topographic datum of the Moon, which is defined in terms of spherical harmonics from the lunar gravity field. Compilation of all four LOC charts was completed on analytical plotters from 566 stereo models of Apollo metric photographs that cover approximately 20% of the Moon. This is the first step toward compiling a global topographic map of the Moon at a scale of 1:5 000 000. ?? 1985 D. Reidel Publishing Company.

  7. Art in the Digital Age

    PubMed

    2016-01-01

    The genre of “computer art” began in the 1950s, when long exposure photography was used to capture images created by an oscilloscope manipulating electronic waves on a small fluorescent screen. Through the 1960s, most works of computer art were created using plotters and impact printers by the scientists and engineers who had access to emerging computing technology. By the 1970s, artists were learning to program, and some universities began to integrate computers into the fine arts curriculum. The widespread adoption of computers and the availability of off-the-shelf paint programs in the 1980s brought computer art to the masses. At the same time, computer graphics and special effects were beginning their takeover of the entertainment industry through Hollywood films, TV shows, and video games. By the 1990s, the term computer art was fading, and computers were becoming a mainstream part of arts and entertainment.

  8. Spaced-antenna wind estimation using an X-band active phased-array weather radar

    NASA Astrophysics Data System (ADS)

    Venkatesh, Vijay

    Over the past few decades, several single radar methods have been developed to probe the kinematic structure of storms. All these methods trade angular-resolution to retrieve the wind-field. To date, the spaced-antenna method has been employed for profiling the ionosphere and the precipitation free lower atmosphere. This work focuses on applying the spaced-antenna method on an X-band active phased-array radar for high resolution horizontal wind-field retrieval from precipitation echoes. The ability to segment the array face into multiple displaced apertures allows for flexible spaced-antenna implementations. The methodology employed herein comprises of Monte-Carlo simulations to optimize the spaced-antenna system design and analysis of real data collected with the designed phased-array system. The contribution that underpins this dissertation is the demonstration of qualitative agreement between spaced-antenna and Doppler beam swinging retrievals based on real data. First, simulations of backscattered electric fields at the antenna array elements are validated using theoretical expressions. Based on the simulations, the degrees of freedom in the spaced-antenna system design are optimized for retrieval of mean baseline wind. We show that the designed X-band spaced-antenna system has lower retrieval uncertainty than the existing S-band spaced-antenna implementation on the NWRT. This is because of the flexibility to synthesize small overlapping apertures and the ability to obtain statistically independent samples at a faster rate at X-band. We then demonstrate a technique to make relative phase-center displacement measurements based on simulations and real data from the phased-array spaced-antenna system. This simple method uses statistics of precipitation echoes and apriori beamwidth measurements to make field repeatable phase-center displacement measurements. Finally, we test the hypothesis that wind-field curvature effects are common to both the spaced-antenna and Doppler beam swinging methods. Based on a close-range winter storm data set, we find that the spaced-antenna and fine-resolution Doppler beam swinging retrievals are in qualitative agreement. The correlation between the spaced-antenna and fine-resolution Doppler beam swinging retrievals was 0.57. The lowered correlation coefficient was, in part, due to the high standard deviation of the DBS retrievals. At high wind-speeds, the spaced-antenna retrievals significantly departed from variational retrievals of mean baseline wind.

  9. International Space Station (ISS)

    NASA Image and Video Library

    1995-04-17

    This computer generated scene of the International Space Station (ISS) represents the first addition of hardware following the completion of Phase II. The 8-A Phase shows the addition of the S-9 truss.

  10. Spiral computed tomography phase-space source model in the BEAMnrc/EGSnrc Monte Carlo system: implementation and validation.

    PubMed

    Kim, Sangroh; Yoshizumi, Terry T; Yin, Fang-Fang; Chetty, Indrin J

    2013-04-21

    Currently, the BEAMnrc/EGSnrc Monte Carlo (MC) system does not provide a spiral CT source model for the simulation of spiral CT scanning. We developed and validated a spiral CT phase-space source model in the BEAMnrc/EGSnrc system. The spiral phase-space source model was implemented in the DOSXYZnrc user code of the BEAMnrc/EGSnrc system by analyzing the geometry of spiral CT scan-scan range, initial angle, rotational direction, pitch, slice thickness, etc. Table movement was simulated by changing the coordinates of the isocenter as a function of beam angles. Some parameters such as pitch, slice thickness and translation per rotation were also incorporated into the model to make the new phase-space source model, designed specifically for spiral CT scan simulations. The source model was hard-coded by modifying the 'ISource = 8: Phase-Space Source Incident from Multiple Directions' in the srcxyznrc.mortran and dosxyznrc.mortran files in the DOSXYZnrc user code. In order to verify the implementation, spiral CT scans were simulated in a CT dose index phantom using the validated x-ray tube model of a commercial CT simulator for both the original multi-direction source (ISOURCE = 8) and the new phase-space source model in the DOSXYZnrc system. Then the acquired 2D and 3D dose distributions were analyzed with respect to the input parameters for various pitch values. In addition, surface-dose profiles were also measured for a patient CT scan protocol using radiochromic film and were compared with the MC simulations. The new phase-space source model was found to simulate the spiral CT scanning in a single simulation run accurately. It also produced the equivalent dose distribution of the ISOURCE = 8 model for the same CT scan parameters. The MC-simulated surface profiles were well matched to the film measurement overall within 10%. The new spiral CT phase-space source model was implemented in the BEAMnrc/EGSnrc system. This work will be beneficial in estimating the spiral CT scan dose in the BEAMnrc/EGSnrc system.

  11. Spiral computed tomography phase-space source model in the BEAMnrc/EGSnrc Monte Carlo system: implementation and validation

    NASA Astrophysics Data System (ADS)

    Kim, Sangroh; Yoshizumi, Terry T.; Yin, Fang-Fang; Chetty, Indrin J.

    2013-04-01

    Currently, the BEAMnrc/EGSnrc Monte Carlo (MC) system does not provide a spiral CT source model for the simulation of spiral CT scanning. We developed and validated a spiral CT phase-space source model in the BEAMnrc/EGSnrc system. The spiral phase-space source model was implemented in the DOSXYZnrc user code of the BEAMnrc/EGSnrc system by analyzing the geometry of spiral CT scan—scan range, initial angle, rotational direction, pitch, slice thickness, etc. Table movement was simulated by changing the coordinates of the isocenter as a function of beam angles. Some parameters such as pitch, slice thickness and translation per rotation were also incorporated into the model to make the new phase-space source model, designed specifically for spiral CT scan simulations. The source model was hard-coded by modifying the ‘ISource = 8: Phase-Space Source Incident from Multiple Directions’ in the srcxyznrc.mortran and dosxyznrc.mortran files in the DOSXYZnrc user code. In order to verify the implementation, spiral CT scans were simulated in a CT dose index phantom using the validated x-ray tube model of a commercial CT simulator for both the original multi-direction source (ISOURCE = 8) and the new phase-space source model in the DOSXYZnrc system. Then the acquired 2D and 3D dose distributions were analyzed with respect to the input parameters for various pitch values. In addition, surface-dose profiles were also measured for a patient CT scan protocol using radiochromic film and were compared with the MC simulations. The new phase-space source model was found to simulate the spiral CT scanning in a single simulation run accurately. It also produced the equivalent dose distribution of the ISOURCE = 8 model for the same CT scan parameters. The MC-simulated surface profiles were well matched to the film measurement overall within 10%. The new spiral CT phase-space source model was implemented in the BEAMnrc/EGSnrc system. This work will be beneficial in estimating the spiral CT scan dose in the BEAMnrc/EGSnrc system.

  12. Compactification on phase space

    NASA Astrophysics Data System (ADS)

    Lovelady, Benjamin; Wheeler, James

    2016-03-01

    A major challenge for string theory is to understand the dimensional reduction required for comparison with the standard model. We propose reducing the dimension of the compactification by interpreting some of the extra dimensions as the energy-momentum portion of a phase-space. Such models naturally arise as generalized quotients of the conformal group called biconformal spaces. By combining the standard Kaluza-Klein approach with such a conformal gauge theory, we may start from the conformal group of an n-dimensional Euclidean space to form a 2n-dimensional quotient manifold with symplectic structure. A pair of involutions leads naturally to two n-dimensional Lorentzian manifolds. For n = 5, this leaves only two extra dimensions, with a countable family of possible compactifications and an SO(5) Yang-Mills field on the fibers. Starting with n=6 leads to 4-dimensional compactification of the phase space. In the latter case, if the two dimensions each from spacetime and momentum space are compactified onto spheres, then there is an SU(2)xSU(2) (left-right symmetric electroweak) field between phase and configuration space and an SO(6) field on the fibers. Such a theory, with minor additional symmetry breaking, could contain all parts of the standard model.

  13. Wigner functions for evanescent waves.

    PubMed

    Petruccelli, Jonathan C; Tian, Lei; Oh, Se Baek; Barbastathis, George

    2012-09-01

    We propose phase space distributions, based on an extension of the Wigner distribution function, to describe fields of any state of coherence that contain evanescent components emitted into a half-space. The evanescent components of the field are described in an optical phase space of spatial position and complex-valued angle. Behavior of these distributions upon propagation is also considered, where the rapid decay of the evanescent components is associated with the exponential decay of the associated phase space distributions. To demonstrate the structure and behavior of these distributions, we consider the fields generated from total internal reflection of a Gaussian Schell-model beam at a planar interface.

  14. Molecular quantum control landscapes in von Neumann time-frequency phase space

    NASA Astrophysics Data System (ADS)

    Ruetzel, Stefan; Stolzenberger, Christoph; Fechner, Susanne; Dimler, Frank; Brixner, Tobias; Tannor, David J.

    2010-10-01

    Recently we introduced the von Neumann representation as a joint time-frequency description for femtosecond laser pulses and suggested its use as a basis for pulse shaping experiments. Here we use the von Neumann basis to represent multidimensional molecular control landscapes, providing insight into the molecular dynamics. We present three kinds of time-frequency phase space scanning procedures based on the von Neumann formalism: variation of intensity, time-frequency phase space position, and/or the relative phase of single subpulses. The shaped pulses produced are characterized via Fourier-transform spectral interferometry. Quantum control is demonstrated on the laser dye IR140 elucidating a time-frequency pump-dump mechanism.

  15. Molecular quantum control landscapes in von Neumann time-frequency phase space.

    PubMed

    Ruetzel, Stefan; Stolzenberger, Christoph; Fechner, Susanne; Dimler, Frank; Brixner, Tobias; Tannor, David J

    2010-10-28

    Recently we introduced the von Neumann representation as a joint time-frequency description for femtosecond laser pulses and suggested its use as a basis for pulse shaping experiments. Here we use the von Neumann basis to represent multidimensional molecular control landscapes, providing insight into the molecular dynamics. We present three kinds of time-frequency phase space scanning procedures based on the von Neumann formalism: variation of intensity, time-frequency phase space position, and/or the relative phase of single subpulses. The shaped pulses produced are characterized via Fourier-transform spectral interferometry. Quantum control is demonstrated on the laser dye IR140 elucidating a time-frequency pump-dump mechanism.

  16. The fault monitoring and diagnosis knowledge-based system for space power systems: AMPERES, phase 1

    NASA Technical Reports Server (NTRS)

    Lee, S. C.

    1989-01-01

    The objective is to develop a real time fault monitoring and diagnosis knowledge-based system (KBS) for space power systems which can save costly operational manpower and can achieve more reliable space power system operation. The proposed KBS was developed using the Autonomously Managed Power System (AMPS) test facility currently installed at NASA Marshall Space Flight Center (MSFC), but the basic approach taken for this project could be applicable for other space power systems. The proposed KBS is entitled Autonomously Managed Power-System Extendible Real-time Expert System (AMPERES). In Phase 1 the emphasis was put on the design of the overall KBS, the identification of the basic research required, the initial performance of the research, and the development of a prototype KBS. In Phase 2, emphasis is put on the completion of the research initiated in Phase 1, and the enhancement of the prototype KBS developed in Phase 1. This enhancement is intended to achieve a working real time KBS incorporated with the NASA space power system test facilities. Three major research areas were identified and progress was made in each area. These areas are real time data acquisition and its supporting data structure; sensor value validations; development of inference scheme for effective fault monitoring and diagnosis, and its supporting knowledge representation scheme.

  17. The space station assembly phase: Flight telerobotic servicer feasibility, volume 1

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey H.; Gyamfi, Max A.; Volkmer, Kent; Zimmerman, Wayne F.

    1987-01-01

    The question is addressed which was raised by the Critical Evaluation Task Force (CETF) analysis of the space station: if a Flight Telerobotic Servicer (FTS) of a given technical risk could be built for use during space station assembly, could it save significant extravehicular (EVA) resources. Key issues and trade-offs associated with using an FTS to aid in space station assembly phase tasks such as construction and servicing are identified. A methodology is presented that incorporates assessment of candidate assembly phase tasks, telerobotics performance capabilities, development costs, operational constraints (STS and proximity operations), maintenance, attached payloads, and polar platforms. A discussion of the issues is presented with focus on potential FTS roles: (1) as a research-oriented test bed to learn more about space usage of telerobotics; (2) as a research-based test bed with an experimental demonstration orientation and limited assembly and servicing applications; or (3) as an operational system to augment EVA, to aid the construction of the space station, and to reduce the programmatic (schedule) risk by increasing the flexibility of mission operations. During the course of the study, the baseline configuration was modified into Phase 1 (a station assembled in 12 flights), and Phase 2 (a station assembled over a 30 flight period) configuration.

  18. Cost effective management of space venture risks

    NASA Technical Reports Server (NTRS)

    Giuntini, Ronald E.; Storm, Richard E.

    1986-01-01

    The development of a model for the cost-effective management of space venture risks is discussed. The risk assessment and control program of insurance companies is examined. A simplified system development cycle which consists of a conceptual design phase, a preliminary design phase, a final design phase, a construction phase, and a system operations and maintenance phase is described. The model incorporates insurance safety risk methods and reliability engineering, and testing practices used in the development of large aerospace and defense systems.

  19. Octahedral deformations and cationic displacements in the ferroelectric PbHf(0.8)Ti(0.2)O(3): a neutron powder diffraction study from 10 to 770 K

    PubMed

    Muller; Baudour; Bedoya; Bouree; Soubeyroux; Roubin

    2000-02-01

    Neutron powder diffraction data, collected over the temperature range 10-770 K, have been analysed in order to make a detailed characterization of the sequence of phase transitions occurring in the Hf-rich ferroelectric PbHf(0.8)Ti(0.2)O3, titanium hafnium lead oxide. Over the whole temperature range this compound undergoes two phase transitions, which involve cationic displacements and octahedral deformations (tilt and/or distortion) leading to strongly distorted perovskite-type structures. The first transition appears around 415 K between two ferroelectric rhombohedral phases: a low-temperature nonzero-tilt phase F(RL) (space group R3c) and an intermediate zero-tilt phase FRH (space group R3m). The second one, detected around 520 K, is associated with a ferroelectric to-paraelectric transition between the FRH phase and the Pc cubic phase (space group Pm3m). From high-resolution neutron powder diffraction data (diffractometer 3T2-LLB, Saclay, France, lambda = 1.2251 A), the crystallographic structure of the three successive phases has been accurately determined at the following temperatures: T = 10 K (FRL): space group R3c, Z = 6, a(hex) = 5.7827 (1), c(hex) = 14.2702 (4) A, V(hex) = 413.26 (2) A3; T = 150 K (F(RL)): space group R3c, Z = 6, a(hex) = 5.7871 (1), C(hex) = 14.2735 (4) A, V(hex) = 413.98 (3) A3; T = 290 K (FRL): space group R3c, Z = 6, a(hex) = 5.7943 (1), C(hex) = 14.2742 (5) A, V(hex) = 415.04 (3) A3; T = 440 K (F(RH)): space group R3c, Z = 6, a(hex) = 5.8025 (1), c(hex) = 14.2648 (4) A, V(hex) = 415.94 (3) A3; T = 520 K (Pc): space group Pm3m, Z = 1, a(cub) = 4.1072 (2) A, V(cub) = 69.29 (1) A3. In addition, a neutron powder thermodiffractometry experiment, performed between 290 and 770 K (diffractometer D1B-ILL, Grenoble, France, lambda = 2.533 A), has been used to study in situ the temperature-induced phase transitions. From sequential Rietveld refinements, the temperature dependence of the cation displacements and the rotation and/or distortion of oxygen octahedra was derived.

  20. Neutral line chaos and phase space structure

    NASA Technical Reports Server (NTRS)

    Burkhart, Grant R.; Speiser, Theodore W.; Martin, Richard F., Jr.; Dusenbery, Paul B.

    1991-01-01

    Phase space structure and chaos near a neutral line are studied with numerical surface-of-section (SOS) techniques and analytic methods. Results are presented for a linear neutral line model with zero crosstail electric field. It was found that particle motion can be divided into three regimes dependening on the value of the conserved canonical momentum, Py, and the conserved Hamiltonian, h. The phase space structure, using Poincare SOS plots, is highly sensitive to bn = Bn/B0 variations, but not to h variations. It is verified that the slow motion preserves the action, Jz, as evaluated by Sonnerup (1971), when the period of the fast motion is smaller than the time scale of the slow motion. Results show that the phase space structure and particle chaos depend sensitively upon Py and bn, but are independent of h.

  1. Quantum mechanics on phase space and the Coulomb potential

    NASA Astrophysics Data System (ADS)

    Campos, P.; Martins, M. G. R.; Vianna, J. D. M.

    2017-04-01

    Symplectic quantum mechanics (SMQ) makes possible to derive the Wigner function without the use of the Liouville-von Neumann equation. In this formulation of the quantum theory the Galilei Lie algebra is constructed using the Weyl (or star) product with Q ˆ = q ⋆ = q +iħ/2∂p , P ˆ = p ⋆ = p -iħ/2∂q, and the Schrödinger equation is rewritten in phase space; in consequence physical applications involving the Coulomb potential present some specific difficulties. Within this context, in order to treat the Schrödinger equation in phase space, a procedure based on the Levi-Civita (or Bohlin) transformation is presented and applied to two-dimensional (2D) hydrogen atom. Amplitudes of probability in phase space and the correspondent Wigner quasi-distribution functions are derived and discussed.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosales-Zarate, Laura E. C.; Drummond, P. D.

    We calculate the quantum Renyi entropy in a phase-space representation for either fermions or bosons. This can also be used to calculate purity and fidelity, or the entanglement between two systems. We show that it is possible to calculate the entropy from sampled phase-space distributions in normally ordered representations, although this is not possible for all quantum states. We give an example of the use of this method in an exactly soluble thermal case. The quantum entropy cannot be calculated at all using sampling methods in classical symmetric (Wigner) or antinormally ordered (Husimi) phase spaces, due to inner-product divergences. Themore » preferred method is to use generalized Gaussian phase-space methods, which utilize a distribution over stochastic Green's functions. We illustrate this approach by calculating the reduced entropy and entanglement of bosonic or fermionic modes coupled to a time-evolving, non-Markovian reservoir.« less

  3. ColDICE: A parallel Vlasov–Poisson solver using moving adaptive simplicial tessellation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sousbie, Thierry, E-mail: tsousbie@gmail.com; Department of Physics, The University of Tokyo, Tokyo 113-0033; Research Center for the Early Universe, School of Science, The University of Tokyo, Tokyo 113-0033

    2016-09-15

    Resolving numerically Vlasov–Poisson equations for initially cold systems can be reduced to following the evolution of a three-dimensional sheet evolving in six-dimensional phase-space. We describe a public parallel numerical algorithm consisting in representing the phase-space sheet with a conforming, self-adaptive simplicial tessellation of which the vertices follow the Lagrangian equations of motion. The algorithm is implemented both in six- and four-dimensional phase-space. Refinement of the tessellation mesh is performed using the bisection method and a local representation of the phase-space sheet at second order relying on additional tracers created when needed at runtime. In order to preserve in the bestmore » way the Hamiltonian nature of the system, refinement is anisotropic and constrained by measurements of local Poincaré invariants. Resolution of Poisson equation is performed using the fast Fourier method on a regular rectangular grid, similarly to particle in cells codes. To compute the density projected onto this grid, the intersection of the tessellation and the grid is calculated using the method of Franklin and Kankanhalli [65–67] generalised to linear order. As preliminary tests of the code, we study in four dimensional phase-space the evolution of an initially small patch in a chaotic potential and the cosmological collapse of a fluctuation composed of two sinusoidal waves. We also perform a “warm” dark matter simulation in six-dimensional phase-space that we use to check the parallel scaling of the code.« less

  4. Evolution of axis ratios from phase space dynamics of triaxial collapse

    NASA Astrophysics Data System (ADS)

    Nadkarni-Ghosh, Sharvari; Arya, Bhaskar

    2018-04-01

    We investigate the evolution of axis ratios of triaxial haloes using the phase space description of triaxial collapse. In this formulation, the evolution of the triaxial ellipsoid is described in terms of the dynamics of eigenvalues of three important tensors: the Hessian of the gravitational potential, the tensor of velocity derivatives, and the deformation tensor. The eigenvalues of the deformation tensor are directly related to the parameters that describe triaxiality, namely, the minor-to-major and intermediate-to-major axes ratios (s and q) and the triaxiality parameter T. Using the phase space equations, we evolve the eigenvalues and examine the evolution of the probability distribution function (PDF) of the axes ratios as a function of mass scale and redshift for Gaussian initial conditions. We find that the ellipticity and prolateness increase with decreasing mass scale and decreasing redshift. These trends agree with previous analytic studies but differ from numerical simulations. However, the PDF of the scaled parameter {\\tilde{q}} = (q-s)/(1-s) follows a universal distribution over two decades in mass range and redshifts which is in qualitative agreement with the universality for conditional PDF reported in simulations. We further show using the phase space dynamics that, in fact, {\\tilde{q}} is a phase space invariant and is conserved individually for each halo. These results demonstrate that the phase space analysis is a useful tool that provides a different perspective on the evolution of perturbations and can be applied to more sophisticated models in the future.

  5. Experimental demonstration of electron longitudinal-phase-space linearization by shaping the photoinjector laser pulse.

    PubMed

    Penco, G; Danailov, M; Demidovich, A; Allaria, E; De Ninno, G; Di Mitri, S; Fawley, W M; Ferrari, E; Giannessi, L; Trovó, M

    2014-01-31

    Control of the electron-beam longitudinal-phase-space distribution is of crucial importance in a number of accelerator applications, such as linac-driven free-electron lasers, colliders and energy recovery linacs. Some longitudinal-phase-space features produced by nonlinear electron beam self- fields, such as a quadratic energy chirp introduced by geometric longitudinal wakefields in radio-frequency (rf) accelerator structures, cannot be compensated by ordinary tuning of the linac rf phases nor corrected by a single high harmonic accelerating cavity. In this Letter we report an experimental demonstration of the removal of the quadratic energy chirp by properly shaping the electron beam current at the photoinjector. Specifically, a longitudinal ramp in the current distribution at the cathode linearizes the longitudinal wakefields in the downstream linac, resulting in a flat electron current and energy distribution. We present longitudinal-phase-space measurements in this novel configuration compared to those typically obtained without longitudinal current shaping at the FERMI linac.

  6. LCA in space - current status and future development

    NASA Astrophysics Data System (ADS)

    Ko, Nathanael; Betten, Thomas; Schestak, Isabel; Gantner, Johannes

    2018-06-01

    This paper represents the first stage of extending the scope of LCA to space and is intended as a discussion starter. Based on the assumption, that the future and outlast of humanity lies within the exploration and colonisation of space, the LCA methodology as of today, is discussed with regards to its capabilities to cover the impact of human activities in space. Based on this assessment, ideas whether and how LCA can be extended are outlined. Initially, an understanding of additional environmental impacts which occur in space compared to Earth is built up by the means of literature research. The state of the art of space regulations and availability of LCAs in space and for astronautics is clarified as well. Further literature research was conducted on the LCA subtopic of regionalization. Based on this and assumptions regarding future space travel, the suitability of LCA as an assessment method is validated. Afterwards, different potential development phases of LCA towards its applicability in space are defined. For activities in space, the regarded environmental impacts have to be expanded (e.g. space debris, extra-terrestrial life toxicity, etc.). Space regulations, if in place, cover only impacts of space activities on Earth so far. LCAs for space activities are not widespread yet. One reason for this is that the state of the art LCA methodology has not been expanded and existing regionalisation approaches are not easily transferable to space. Critical issues are faced in all phases of an LCA and include widening of boundaries, definition of space regions, finding suitable reference units and ethical problems. As a result, four LCA development phases are suggested: Earth-bound, solar system-bound, transition phase and intergalactic. Each phase involves different activities and goals, which result in different system boundaries and impact categories and widen the scope of LCA subsequently. It is a long way for humanity to populate space and so, it is for enabling LCA to assess these activities. The methodology of LCA is flexible and capable to make this adaptation. This paper can be seen as a starting point of a discussion opening up many questions. Some of these questions can only be answered in the future with more certainty about the development of space colonialization.

  7. Earth-to-Orbit Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Beaurain, Andre; Souchier, Alain; Moravie, Michel; Sackheim, Robert L.; Cikanek, Harry A., III

    2003-01-01

    The Earth-to-orbit (ETO) phase of access to space is and always will be the first and most critical phase of all space missions. This first phase of all space missions has unique characteristics that have driven space launcher propulsion requirements for more than half a century. For example, the need to overcome the force of the Earth s gravity in combination with high levels of atmospheric drag to achieve the initial orbital velocity; i.e., Earth parking orbit or =9 km/s, will always require high thrust- to-weight (TN) propulsion systems. These are necessary with a T/W ratio greater than one during the ascent phase. The only type of propulsion system that can achieve these high T/W ratios are those that convert thermal energy to kinetic energy. There are only two basic sources of onboard thermal energy: chemical combustion-based systems or nuclear thermal-based systems (fission, fusion, or antimatter). The likelihood of advanced open-cycle, nuclear thermal propulsion being developed for flight readiness or becoming environmentally acceptable during the next century is extremely low. This realization establishes that chemical propulsion for ET0 launchers will be the technology of choice for at least the next century, just as it has been for the last half century of rocket flight into space. The world s space transportation propulsion requirements have evolved through several phases over the history of the space program, as has been necessitated by missions and systems development, technological capabilities available, and the growth and evolution of the utilization of space for economic, security, and science benefit. Current projections for the continuing evolution of requirements and concepts may show how future space transportation system needs could be addressed. The evolution and projections will be described in detail in this manuscript.

  8. Resonance controlled transport in phase space

    NASA Astrophysics Data System (ADS)

    Leoncini, Xavier; Vasiliev, Alexei; Artemyev, Anton

    2018-02-01

    We consider the mechanism of controlling particle transport in phase space by means of resonances in an adiabatic setting. Using a model problem describing nonlinear wave-particle interaction, we show that captures into resonances can be used to control transport in momentum space as well as in physical space. We design the model system to provide creation of a narrow peak in the distribution function, thus producing effective cooling of a sub-ensemble of the particles.

  9. Space-charge-sustained microbunch structure in the Los Alamos Proton Storage Ring

    NASA Astrophysics Data System (ADS)

    Cousineau, S.; Danilov, V.; Holmes, J.; Macek, R.

    2004-09-01

    We present experimental data from the Los Alamos Proton Storage Ring (PSR) showing long-lived linac microbunch structure during beam storage with no rf bunching. Analysis of the experimental data and particle-in-cell simulations of the experiments indicate that space charge, coupled with energy spread effects, is responsible for the sustained microbunch structure. The simulated longitudinal phase space of the beam reveals a well-defined separatrix in the phase space between linac microbunches, with particles executing unbounded motion outside of the separatrix. We show that the longitudinal phase space of the beam was near steady state during the PSR experiments, such that the separatrix persisted for long periods of time. Our simulations indicate that the steady state is very sensitive to the experimental conditions. Finally, we solve the steady-state problem in an analytic, self-consistent fashion for a set of periodic longitudinal space-charge potentials.

  10. Rocket experiment METS Microwave Energy Transmission in Space

    NASA Astrophysics Data System (ADS)

    Kaya, N.; Matsumoto, H.; Akiba, R.

    A METS (Microwave Energy Transmission in Space) rocket experiment is being planned by the SPS (Solar Power Satellite) Working Group at the Institute of Space and Astronautical Science (ISAS) in Japan for the forthcoming International Space Year (ISY), 1992. The METS experiment is an advanced version of our MINIX rocket experiment. This paper describes the conceptual design for the METS rocket experiment. Aims are to verify the feasibility of a newly developed microwave energy transmission system designed for use in space and to study nonlinear effects of the microwave energy beam on space plasma. A high power microwave (936 W) will be transmitted by a new phase-array antenna from a mother rocket to a separate target (daughter rocket) through the Earth's ionospheric plasma. The active phased-array system has the capability of being able to focus the microwave energy at any spatial point by individually controlling the digital phase shifters.

  11. Rocket experiment METS - Microwave Energy Transmission in Space

    NASA Astrophysics Data System (ADS)

    Kaya, N.; Matsumoto, H.; Akiba, R.

    A Microwave Energy Transmission in Space (METS) rocket experiment is being planned by the Solar Power Satellite Working Group at the Institute of Space and Astronautical Science in Japan for the forthcoming International Space Year, 1992. The METS experiment is an advanced version of the previous MINIX rocket experiment (Matsumoto et al., 1990). This paper describes a conceptual design of the METS rocket experiment. It aims at verifying a newly developed microwave energy transmission system for space use and to study nonlinear effects of the microwave energy beam in the space plasma environment. A high power microwave of 936 W will be transmitted by the new phased-array antenna from a mother rocket to a separated target (daughter rocket) through the ionospheric plasma. The active phased-array system has a capability of focusing the microwave energy around any spatial point by controlling the digital phase shifters individually.

  12. Dual Phase-space Cascades in 3D Hybrid-Vlasov–Maxwell Turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerri, S. S.; Kunz, M. W.; Califano, F.

    To explain energy dissipation via turbulence in collisionless, magnetized plasmas, the existence of a dual real- and velocity-space cascade of ion-entropy fluctuations below the ion gyroradius has been proposed. Such a dual cascade, predicted by the gyrokinetic theory, has previously been observed in gyrokinetic simulations of two-dimensional, electrostatic turbulence. For the first time we show evidence for a dual phase-space cascade of ion-entropy fluctuations in a three-dimensional simulation of hybrid-kinetic, electromagnetic turbulence. Some of the scalings observed in the energy spectra are consistent with a generalized theory for the cascade that accounts for the spectral anisotropy of critically balanced, intermittent,more » sub-ion-Larmor-scale fluctuations. Also, the observed velocity-space cascade is anisotropic with respect to the magnetic-field direction, with linear phase mixing along magnetic-field lines proceeding mainly at spatial scales above the ion gyroradius and nonlinear phase mixing across magnetic-field lines proceeding at perpendicular scales below the ion gyroradius. Such phase-space anisotropy could be sought in heliospheric and magnetospheric data of solar-wind turbulence and has far-reaching implications for the dissipation of turbulence in weakly collisional astrophysical plasmas.« less

  13. Quantum-field-theoretical approach to phase-space techniques: Generalizing the positive-P representation

    NASA Astrophysics Data System (ADS)

    Plimak, L. I.; Fleischhauer, M.; Olsen, M. K.; Collett, M. J.

    2003-01-01

    We present an introduction to phase-space techniques (PST) based on a quantum-field-theoretical (QFT) approach. In addition to bridging the gap between PST and QFT, our approach results in a number of generalizations of the PST. First, for problems where the usual PST do not result in a genuine Fokker-Planck equation (even after phase-space doubling) and hence fail to produce a stochastic differential equation (SDE), we show how the system in question may be approximated via stochastic difference equations (SΔE). Second, we show that introducing sources into the SDE’s (or SΔE’s) generalizes them to a full quantum nonlinear stochastic response problem (thus generalizing Kubo’s linear reaction theory to a quantum nonlinear stochastic response theory). Third, we establish general relations linking quantum response properties of the system in question to averages of operator products ordered in a way different from time normal. This extends PST to a much wider assemblage of operator products than are usually considered in phase-space approaches. In all cases, our approach yields a very simple and straightforward way of deriving stochastic equations in phase space.

  14. Dual Phase-space Cascades in 3D Hybrid-Vlasov–Maxwell Turbulence

    DOE PAGES

    Cerri, S. S.; Kunz, M. W.; Califano, F.

    2018-03-23

    To explain energy dissipation via turbulence in collisionless, magnetized plasmas, the existence of a dual real- and velocity-space cascade of ion-entropy fluctuations below the ion gyroradius has been proposed. Such a dual cascade, predicted by the gyrokinetic theory, has previously been observed in gyrokinetic simulations of two-dimensional, electrostatic turbulence. For the first time we show evidence for a dual phase-space cascade of ion-entropy fluctuations in a three-dimensional simulation of hybrid-kinetic, electromagnetic turbulence. Some of the scalings observed in the energy spectra are consistent with a generalized theory for the cascade that accounts for the spectral anisotropy of critically balanced, intermittent,more » sub-ion-Larmor-scale fluctuations. Also, the observed velocity-space cascade is anisotropic with respect to the magnetic-field direction, with linear phase mixing along magnetic-field lines proceeding mainly at spatial scales above the ion gyroradius and nonlinear phase mixing across magnetic-field lines proceeding at perpendicular scales below the ion gyroradius. Such phase-space anisotropy could be sought in heliospheric and magnetospheric data of solar-wind turbulence and has far-reaching implications for the dissipation of turbulence in weakly collisional astrophysical plasmas.« less

  15. A technique for generating phase-space-based Monte Carlo beamlets in radiotherapy applications.

    PubMed

    Bush, K; Popescu, I A; Zavgorodni, S

    2008-09-21

    As radiotherapy treatment planning moves toward Monte Carlo (MC) based dose calculation methods, the MC beamlet is becoming an increasingly common optimization entity. At present, methods used to produce MC beamlets have utilized a particle source model (PSM) approach. In this work we outline the implementation of a phase-space-based approach to MC beamlet generation that is expected to provide greater accuracy in beamlet dose distributions. In this approach a standard BEAMnrc phase space is sorted and divided into beamlets with particles labeled using the inheritable particle history variable. This is achieved with the use of an efficient sorting algorithm, capable of sorting a phase space of any size into the required number of beamlets in only two passes. Sorting a phase space of five million particles can be achieved in less than 8 s on a single-core 2.2 GHz CPU. The beamlets can then be transported separately into a patient CT dataset, producing separate dose distributions (doselets). Methods for doselet normalization and conversion of dose to absolute units of Gy for use in intensity modulated radiation therapy (IMRT) plan optimization are also described.

  16. Dual Phase-space Cascades in 3D Hybrid-Vlasov–Maxwell Turbulence

    NASA Astrophysics Data System (ADS)

    Cerri, S. S.; Kunz, M. W.; Califano, F.

    2018-03-01

    To explain energy dissipation via turbulence in collisionless, magnetized plasmas, the existence of a dual real- and velocity-space cascade of ion-entropy fluctuations below the ion gyroradius has been proposed. Such a dual cascade, predicted by the gyrokinetic theory, has previously been observed in gyrokinetic simulations of two-dimensional, electrostatic turbulence. For the first time, we show evidence for a dual phase-space cascade of ion-entropy fluctuations in a three-dimensional simulation of hybrid-kinetic, electromagnetic turbulence. Some of the scalings observed in the energy spectra are consistent with a generalized theory for the cascade that accounts for the spectral anisotropy of critically balanced, intermittent, sub-ion-Larmor-scale fluctuations. The observed velocity-space cascade is also anisotropic with respect to the magnetic-field direction, with linear phase mixing along magnetic-field lines proceeding mainly at spatial scales above the ion gyroradius and nonlinear phase mixing across magnetic-field lines proceeding at perpendicular scales below the ion gyroradius. Such phase-space anisotropy could be sought in heliospheric and magnetospheric data of solar-wind turbulence and has far-reaching implications for the dissipation of turbulence in weakly collisional astrophysical plasmas.

  17. Space transfer concepts and analysis for exploration missions

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Covered here is the second phase of a broad scoped and systematic study of space transfer concepts for human lunar and Mars missions. The study addressed issues that were raised during Phase 1, developed generic Mars missions profile analysis data, and conducted preliminary analysis of the Mars in-space transportation requirements and implementation from the Stafford Committee Synthesis Report.

  18. Theoretical calculations of high-pressure phases of NiF2: An ab initio constant-pressure study

    NASA Astrophysics Data System (ADS)

    Kürkçü, Cihan; Merdan, Ziya; Öztürk, Hülya

    2016-12-01

    We have studied the structural properties of the antiferromagnetic NiF2 tetragonal structure with P42/ mnm symmetry using density functional theory (DFT) under rapid hydrostatic pressure up to 400 GPa. For the exchange correlation energy we used the local density approximation (LDA) of Ceperley and Alder (CA). Two phase transformations are successfully observed through the simulations. The structures of XF2-type compounds crystallize in rutile-type structure. NiF2 undergoes phase transformations from the tetragonal rutile-type structure with space group P42/ mnm to orthorhombic CaCl2-type structure with space group Pnnm and from this orthorhombic phase to monoclinic structure with space group C2/ m at 152 GPa and 360 GPa, respectively. These phase changes are also studied by total energy and enthalpy calculations. According to these calculations, we perdict these phase transformations at about 1.85 and 30 GPa.

  19. Phase change references for in-flight recalibration of orbital thermometry

    NASA Astrophysics Data System (ADS)

    Topham, T. S.; Latvakoski, H.; Watson, M.

    2013-09-01

    Several critical questions need to be answered to determine the potential utility of phase change materials as long-term orbital references: How accurate and repeatable will phase change reference implementations be after incorporating necessary design trade-offs to accommodate launch and the space environment? How can the temperature of phase transitions be transferred to something useful for calibration such as a black body. How, if at all, will the microgravity environment affect the phase transitions? To help answer some of these questions, three experiments will be conducted on the International Space Station (ISS). The experiments will test melts and freezes of three different phase change materials in various containment apparatus. This paper addresses the current status of the ISS experiments, as well as results from ground testing of several concepts for space application of PCM recalibration systems in the CORSAIR (Calibration Observations of Radiance Spectra in the far Infrared) black body.

  20. Constellation Program Thermal and Environmental Control and Life Support System Status: 2009 - 2010

    NASA Technical Reports Server (NTRS)

    Williams, David E.; Carrasquillo, Robyn L.; Bagdigian, Robert M.

    2009-01-01

    The Constellation Program (CxP) consists of spacecrafts, launch vehicles, and support systems to execute the Exploration Architecture. The Program is currently divided into three distinct phases. The first phase is to develop a vehicle to provide limited cargo resupply capability and allow crew member rotation to the International Space Station (ISS). The second phase is to support the return of humans to the moon. The final phase is currently envisioned to allow the delivery of humans and cargo to Mars for an extended time. To implement this phased approach the CxP is currently working on the first vehicle and support systems to replace the Space Shuttle and allow continued access to space. This paper provides a summary of the CxP Thermal and Environmental Control and Life Support (ECLS) work that that has occurred across the different parts of the Program in support of these three phases over the past year.

  1. Reliability and the design process at Honeywell Avionics Division

    NASA Technical Reports Server (NTRS)

    Bezat, A.

    1981-01-01

    The division's philosophy for designed-in reliability and a comparison of reliability programs for space, manned military aircraft, and commercial aircraft, are presented. Topics include: the reliability interface with design and production; the concept phase through final proposal; the design, development, test and evaluation phase; the production phase; and the commonality among space, military, and commercial avionics.

  2. A phase one AR/C system design

    NASA Technical Reports Server (NTRS)

    Kachmar, Peter M.; Polutchko, Robert J.; Matusky, Martin; Chu, William; Jackson, William; Montez, Moises

    1991-01-01

    The Phase One AR&C System Design integrates an evolutionary design based on the legacy of previous mission successes, flight tested components from manned Rendezvous and Proximity Operations (RPO) space programs, and additional AR&C components validated using proven methods. The Phase One system has a modular, open architecture with the standardized interfaces proposed for Space Station Freedom system architecture.

  3. Oncoprotein HBXIP enhances HOXB13 acetylation and co-activates HOXB13 to confer tamoxifen resistance in breast cancer.

    PubMed

    Liu, Bowen; Wang, Tianjiao; Wang, Huawei; Zhang, Lu; Xu, Feifei; Fang, Runping; Li, Leilei; Cai, Xiaoli; Wu, Yue; Zhang, Weiying; Ye, Lihong

    2018-02-23

    Resistance to tamoxifen (TAM) frequently occurs in the treatment of estrogen receptor positive (ER+) breast cancer. Accumulating evidences indicate that transcription factor HOXB13 is of great significance in TAM resistance. However, the regulation of HOXB13 in TAM-resistant breast cancer remains largely unexplored. Here, we were interested in the potential effect of HBXIP, an oncoprotein involved in the acceleration of cancer progression, on the modulation of HOXB13 in TAM resistance of breast cancer. The Kaplan-Meier plotter cancer database and GEO dataset were used to analyze the association between HBXIP expression and relapse-free survival. The correlation of HBXIP and HOXB13 in ER+ breast cancer was assessed by human tissue microarray. Immunoblotting analysis, qRT-PCR assay, immunofluorescence staining, Co-IP assay, ChIP assay, luciferase reporter gene assay, cell viability assay, and colony formation assay were performed to explore the possible molecular mechanism by which HBXIP modulates HOXB13. Cell viability assay, xenograft assay, and immunohistochemistry staining analysis were utilized to evaluate the effect of the HBXIP/HOXB13 axis on the facilitation of TAM resistance in vitro and in vivo. The analysis of the Kaplan-Meier plotter and the GEO dataset showed that mono-TAM-treated breast cancer patients with higher HBXIP expression levels had shorter relapse-free survivals than patients with lower HBXIP expression levels. Overexpression of HBXIP induced TAM resistance in ER+ breast cancer cells. The tissue microarray analysis revealed a positive association between the expression levels of HBXIP and HOXB13 in ER+ breast cancer patients. HBXIP elevated HOXB13 protein level in breast cancer cells. Mechanistically, HBXIP prevented chaperone-mediated autophagy (CMA)-dependent degradation of HOXB13 via enhancement of HOXB13 acetylation at the lysine 277 residue, causing the accumulation of HOXB13. Moreover, HBXIP was able to act as a co-activator of HOXB13 to stimulate interleukin (IL)-6 transcription in the promotion of TAM resistance. Interestingly, aspirin (ASA) suppressed the HBXIP/HOXB13 axis by decreasing HBXIP expression, overcoming TAM resistance in vitro and in vivo. Our study highlights that HBXIP enhances HOXB13 acetylation to prevent HOXB13 degradation and co-activates HOXB13 in the promotion of TAM resistance of breast cancer. Therapeutically, ASA can serve as a potential candidate for reversing TAM resistance by inhibiting HBXIP expression.

  4. Dynamics of the Trapped Electron Phase Space Density in Relation to the Wave Activity in the Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Vassiliadis, D.; Green, J.

    2008-05-01

    The phase space density fe of the radiation belt electron population is reconstructed based on measurements made by POLAR/HIST. The density peaks in invariant space (mu, K, L*) are shown to be responding to changes in the solar wind velocity and density, and the interplanetary magnetic field. We have associated specific types of storms with the appearance of peaks thereby producing a climatology of fe. We will report on comparing the phase space density changes during these storms to the ULF wave power in the inner magnetosphere remote- sensed by the IMAGE magnetometer array and related properties of the wave environment.

  5. Grassmann phase space methods for fermions. II. Field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalton, B.J., E-mail: bdalton@swin.edu.au; Jeffers, J.; Barnett, S.M.

    In both quantum optics and cold atom physics, the behaviour of bosonic photons and atoms is often treated using phase space methods, where mode annihilation and creation operators are represented by c-number phase space variables, with the density operator equivalent to a distribution function of these variables. The anti-commutation rules for fermion annihilation, creation operators suggests the possibility of using anti-commuting Grassmann variables to represent these operators. However, in spite of the seminal work by Cahill and Glauber and a few applications, the use of Grassmann phase space methods in quantum-atom optics to treat fermionic systems is rather rare, thoughmore » fermion coherent states using Grassmann variables are widely used in particle physics. This paper presents a phase space theory for fermion systems based on distribution functionals, which replace the density operator and involve Grassmann fields representing anti-commuting fermion field annihilation, creation operators. It is an extension of a previous phase space theory paper for fermions (Paper I) based on separate modes, in which the density operator is replaced by a distribution function depending on Grassmann phase space variables which represent the mode annihilation and creation operators. This further development of the theory is important for the situation when large numbers of fermions are involved, resulting in too many modes to treat separately. Here Grassmann fields, distribution functionals, functional Fokker–Planck equations and Ito stochastic field equations are involved. Typical applications to a trapped Fermi gas of interacting spin 1/2 fermionic atoms and to multi-component Fermi gases with non-zero range interactions are presented, showing that the Ito stochastic field equations are local in these cases. For the spin 1/2 case we also show how simple solutions can be obtained both for the untrapped case and for an optical lattice trapping potential.« less

  6. High-order continuum kinetic method for modeling plasma dynamics in phase space

    DOE PAGES

    Vogman, G. V.; Colella, P.; Shumlak, U.

    2014-12-15

    Continuum methods offer a high-fidelity means of simulating plasma kinetics. While computationally intensive, these methods are advantageous because they can be cast in conservation-law form, are not susceptible to noise, and can be implemented using high-order numerical methods. Advances in continuum method capabilities for modeling kinetic phenomena in plasmas require the development of validation tools in higher dimensional phase space and an ability to handle non-cartesian geometries. To that end, a new benchmark for validating Vlasov-Poisson simulations in 3D (x,v x,v y) is presented. The benchmark is based on the Dory-Guest-Harris instability and is successfully used to validate a continuummore » finite volume algorithm. To address challenges associated with non-cartesian geometries, unique features of cylindrical phase space coordinates are described. Preliminary results of continuum kinetic simulations in 4D (r,z,v r,v z) phase space are presented.« less

  7. Classical phase space and Hadamard states in the BRST formalism for gauge field theories on curved spacetime

    NASA Astrophysics Data System (ADS)

    Wrochna, Michał; Zahn, Jochen

    We investigate linearized gauge theories on globally hyperbolic spacetimes in the BRST formalism. A consistent definition of the classical phase space and of its Cauchy surface analogue is proposed. We prove that it is isomorphic to the phase space in the ‘subsidiary condition’ approach of Hack and Schenkel in the case of Maxwell, Yang-Mills, and Rarita-Schwinger fields. Defining Hadamard states in the BRST formalism in a standard way, their existence in the Maxwell and Yang-Mills case is concluded from known results in the subsidiary condition (or Gupta-Bleuler) formalism. Within our framework, we also formulate criteria for non-degeneracy of the phase space in terms of BRST cohomology and discuss special cases. These include an example in the Yang-Mills case, where degeneracy is not related to a non-trivial topology of the Cauchy surface.

  8. Formation and interaction of multiple coherent phase space structures in plasma

    NASA Astrophysics Data System (ADS)

    Kakad, Amar; Kakad, Bharati; Omura, Yoshiharu

    2017-06-01

    The head-on collision of multiple counter-propagating coherent phase space structures associated with the ion acoustic solitary waves (IASWs) in plasmas composed of hot electrons and cold ions is studied here by using one-dimensional Particle-in-Cell simulation. The chains of counter-propagating IASWs are generated in the plasma by injecting the Gaussian perturbations in the equilibrium electron and ion densities. The head-on collisions of the counter-propagating electron and ion phase space structures associated with IASWs are allowed by considering the periodic boundary condition in the simulation. Our simulation shows that the phase space structures are less significantly affected by their collision with each other. They emerge out from each other by retaining their characteristics, so that they follow soliton type behavior. We also find that the electrons trapped within these IASW potentials are accelerated, while the ions are decelerated during the course of their collisions.

  9. Augmenting Phase Space Quantization to Introduce Additional Physical Effects

    NASA Astrophysics Data System (ADS)

    Robbins, Matthew P. G.

    Quantum mechanics can be done using classical phase space functions and a star product. The state of the system is described by a quasi-probability distribution. A classical system can be quantized in phase space in different ways with different quasi-probability distributions and star products. A transition differential operator relates different phase space quantizations. The objective of this thesis is to introduce additional physical effects into the process of quantization by using the transition operator. As prototypical examples, we first look at the coarse-graining of the Wigner function and the damped simple harmonic oscillator. By generalizing the transition operator and star product to also be functions of the position and momentum, we show that additional physical features beyond damping and coarse-graining can be introduced into a quantum system, including the generalized uncertainty principle of quantum gravity phenomenology, driving forces, and decoherence.

  10. NASA's commercial research plans and opportunities

    NASA Technical Reports Server (NTRS)

    Arnold, Ray J.

    1992-01-01

    One of the primary goals of the National Aeronautics and Space Administration's (NASA) commercial space development plan is to encourage the development of space-based products and markets, along with the infrastructure and transportation that will support those products and markets. A three phased program has been instituted to carry out this program. The first phase utilizes government grants through the Centers for the Commercial Development of Space (CCDS) for space-related, industry driven research; the development of a technology data base; and the development of commercial space transportation and infrastructure. The second phase includes the development of these technologies by industry for new commercial markets, and features unique industry/government collaborations such as Joint Endeavor Agreements. The final phase will feature technical applications actually brought to the marketplace. The government's role will be to support industry required infrastructure to encourage start-up markets and industries through follow-on development agreements such as the Space Systems Development Agreement. The Office of Commercial Programs has an aggressive flight program underway on the Space Shuttle, suborbital rockets, orbital expendable launch vehicles, and the Commercial Middeck Accommodation Module with SPACEHAB Inc. The Office of Commercial Program's has been allocated 35 percent of the U.S. share of the Space Station Freedom resources for 1997 utilization. A utilization plan has been developed with the Centers for the Commercial Development of Space and has identified eleven materials processing and biotechnology payloads occupying 5 double racks in the pressurized module as well as two payloads external to the module in materials exposure and environment monitoring. The Office of Commercial Programs will rely on the Space Station Freedom to provide the long duration laboratory component for space-based commercial research.

  11. NASA's commercial research plans and opportunities

    NASA Astrophysics Data System (ADS)

    Arnold, Ray J.

    One of the primary goals of the National Aeronautics and Space Administration's (NASA) commercial space development plan is to encourage the development of space-based products and markets, along with the infrastructure and transportation that will support those products and markets. A three phased program has been instituted to carry out this program. The first phase utilizes government grants through the Centers for the Commercial Development of Space (CCDS) for space-related, industry driven research; the development of a technology data base; and the development of commercial space transportation and infrastructure. The second phase includes the development of these technologies by industry for new commercial markets, and features unique industry/government collaborations such as Joint Endeavor Agreements. The final phase will feature technical applications actually brought to the marketplace. The government's role will be to support industry required infrastructure to encourage start-up markets and industries through follow-on development agreements such as the Space Systems Development Agreement. The Office of Commercial Programs has an aggressive flight program underway on the Space Shuttle, suborbital rockets, orbital expendable launch vehicles, and the Commercial Middeck Accommodation Module with SPACEHAB Inc. The Office of Commercial Program's has been allocated 35 percent of the U.S. share of the Space Station Freedom resources for 1997 utilization. A utilization plan has been developed with the Centers for the Commercial Development of Space and has identified eleven materials processing and biotechnology payloads occupying 5 double racks in the pressurized module as well as two payloads external to the module in materials exposure and environment monitoring. The Office of Commercial Programs will rely on the Space Station Freedom to provide the long duration laboratory component for space-based commercial research.

  12. Development of a Ground Test and Analysis Protocol to Support NASA's NextSTEP Phase 2 Habitation Concepts

    NASA Technical Reports Server (NTRS)

    Beaton, Kara H.; Chappell, Steven P.; Bekdash, Omar S.; Gernhardt, Michael L.

    2018-01-01

    The NASA Next Space Technologies for Exploration Partnerships (NextSTEP) program is a public-private partnership model that seeks commercial development of deep space exploration capabilities to support extensive human spaceflight missions around and beyond cislunar space. NASA first issued the Phase 1 NextSTEP Broad Agency Announcement to U.S. industries in 2014, which called for innovative cislunar habitation concepts that leveraged commercialization plans for low Earth orbit. These habitats will be part of the Deep Space Gateway (DSG), the cislunar space station planned by NASA for construction in the 2020s. In 2016, Phase 2 of the NextSTEP program selected five commercial partners to develop ground prototypes. A team of NASA research engineers and subject matter experts have been tasked with developing the ground test protocol that will serve as the primary means by which these Phase 2 prototype habitats will be evaluated. Since 2008, this core test team has successfully conducted multiple spaceflight analog mission evaluations utilizing a consistent set of operational products, tools, methods, and metrics to enable the iterative development, testing, analysis, and validation of evolving exploration architectures, operations concepts, and vehicle designs. The purpose of implementing a similar evaluation process for the NextSTEP Phase 2 Habitation Concepts is to consistently evaluate the different commercial partner ground prototypes to provide data-driven, actionable recommendations for Phase 3.

  13. Phase space interrogation of the empirical response modes for seismically excited structures

    NASA Astrophysics Data System (ADS)

    Paul, Bibhas; George, Riya C.; Mishra, Sudib K.

    2017-07-01

    Conventional Phase Space Interrogation (PSI) for structural damage assessment relies on exciting the structure with low dimensional chaotic waveform, thereby, significantly limiting their applicability to large structures. The PSI technique is presently extended for structure subjected to seismic excitations. The high dimensionality of the phase space for seismic response(s) are overcome by the Empirical Mode Decomposition (EMD), decomposing the responses to a number of intrinsic low dimensional oscillatory modes, referred as Intrinsic Mode Functions (IMFs). Along with their low dimensionality, a few IMFs, retain sufficient information of the system dynamics to reflect the damage induced changes. The mutually conflicting nature of low-dimensionality and the sufficiency of dynamic information are taken care by the optimal choice of the IMF(s), which is shown to be the third/fourth IMFs. The optimal IMF(s) are employed for the reconstruction of the Phase space attractor following Taken's embedding theorem. The widely referred Changes in Phase Space Topology (CPST) feature is then employed on these Phase portrait(s) to derive the damage sensitive feature, referred as the CPST of the IMFs (CPST-IMF). The legitimacy of the CPST-IMF is established as a damage sensitive feature by assessing its variation with a number of damage scenarios benchmarked in the IASC-ASCE building. The damage localization capability, remarkable tolerance to noise contamination and the robustness under different seismic excitations of the feature are demonstrated.

  14. A solvable model of Vlasov-kinetic plasma turbulence in Fourier-Hermite phase space

    NASA Astrophysics Data System (ADS)

    Adkins, T.; Schekochihin, A. A.

    2018-02-01

    A class of simple kinetic systems is considered, described by the one-dimensional Vlasov-Landau equation with Poisson or Boltzmann electrostatic response and an energy source. Assuming a stochastic electric field, a solvable model is constructed for the phase-space turbulence of the particle distribution. The model is a kinetic analogue of the Kraichnan-Batchelor model of chaotic advection. The solution of the model is found in Fourier-Hermite space and shows that the free-energy flux from low to high Hermite moments is suppressed, with phase mixing cancelled on average by anti-phase-mixing (stochastic plasma echo). This implies that Landau damping is an ineffective route to dissipation (i.e. to thermalisation of electric energy via velocity space). The full Fourier-Hermite spectrum is derived. Its asymptotics are -3/2$ at low wavenumbers and high Hermite moments ( ) and -1/2k-2$ at low Hermite moments and high wavenumbers ( ). These conclusions hold at wavenumbers below a certain cutoff (analogue of Kolmogorov scale), which increases with the amplitude of the stochastic electric field and scales as inverse square of the collision rate. The energy distribution and flows in phase space are a simple and, therefore, useful example of competition between phase mixing and nonlinear dynamics in kinetic turbulence, reminiscent of more realistic but more complicated multi-dimensional systems that have not so far been amenable to complete analytical solution.

  15. Implementing Effective Mission Systems Engineering Practices During Early Project Formulation Phases

    NASA Technical Reports Server (NTRS)

    Moton, Tryshanda

    2016-01-01

    Developing and implementing a plan for a NASA space mission can be a complicated process. The needs, goals, and objectives of any proposed mission or technology must be assessed early in the Project Life Cycle. The key to successful development of a space mission or flight project is the inclusion of systems engineering in early project formulation, namely during Pre-phase A, Phase A, and Phase B of the NASA Project Life Cycle. When a space mission or new technology is in pre-development, or "pre-Formulation", feasibility must be determined based on cost, schedule, and risk. Inclusion of system engineering during project formulation is key because in addition to assessing feasibility, design concepts are developed and alternatives to design concepts are evaluated. Lack of systems engineering involvement early in the project formulation can result in increased risks later in the implementation and operations phases of the project. One proven method for effective systems engineering practice during the pre-Formulation Phase is the use of a mission conceptual design or technology development laboratory, such as the Mission Design Lab (MDL) at NASA's Goddard Space Flight Center (GSFC). This paper will review the engineering process practiced routinely in the MDL for successful mission or project development during the pre-Formulation Phase.

  16. NASA's attack on costs

    NASA Technical Reports Server (NTRS)

    Low, George M.

    1994-01-01

    This article's concern is regarding the high costs of space travel and the need to minimize or reduce these costs in order to effectively provide the continuation of the space programs and space exploration needs of the future. Discussed is the possibility and need to optimize payloads in order to lower the costs associated with them. Design phase principles and implementation phase points are discussed.

  17. Non-geometric fluxes, quasi-Hopf twist deformations, and nonassociative quantum mechanics

    NASA Astrophysics Data System (ADS)

    Mylonas, Dionysios; Schupp, Peter; Szabo, Richard J.

    2014-12-01

    We analyse the symmetries underlying nonassociative deformations of geometry in non-geometric R-flux compactifications which arise via T-duality from closed strings with constant geometric fluxes. Starting from the non-abelian Lie algebra of translations and Bopp shifts in phase space, together with a suitable cochain twist, we construct the quasi-Hopf algebra of symmetries that deforms the algebra of functions and the exterior differential calculus in the phase space description of nonassociative R-space. In this setting, nonassociativity is characterised by the associator 3-cocycle which controls non-coassociativity of the quasi-Hopf algebra. We use abelian 2-cocycle twists to construct maps between the dynamical nonassociative star product and a family of associative star products parametrized by constant momentum surfaces in phase space. We define a suitable integration on these nonassociative spaces and find that the usual cyclicity of associative noncommutative deformations is replaced by weaker notions of 2-cyclicity and 3-cyclicity. Using this star product quantization on phase space together with 3-cyclicity, we formulate a consistent version of nonassociative quantum mechanics, in which we calculate the expectation values of area and volume operators, and find coarse-graining of the string background due to the R-flux.

  18. Space Station Furnace Facility. Volume 2: Requirements definition and conceptual design study

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Space Station Freedom Furnace (SSFF) Project is divided into two phases: phase 1, a definition study phase, and phase 2, a design and development phase. TBE was awarded a research study entitled, 'Space Station Furnace Facility Requirements Definition and Conceptual Design Study' on June 2, 1989. This report addresses the definition study phase only. Phase 2 is to be complete after completion of phase 1. The contract encompassed a requirements definition study and culminated in hardware/facility conceptual designs and hardware demonstration development models to test these conceptual designs. The study was divided into two parts. Part 1 (the basic part of the effort) encompassed preliminary requirements definition and assessment; conceptional design of the SSFF Core; fabrication of mockups; and preparation for the support of a conceptional design review (CoDR). Part 2 (the optional part of the effort) included detailed definition of the engineering and design requirements, as derived from the science requirements; refinement of the conceptual design of the SSFF Core; fabrication and testing of the 'breadboards' or development models; and preparation for and support of a requirements definition review.

  19. Evaluating Uncertainty in GHG Emission Scenarios: Mapping IAM Outlooks With an Energy System Phase Space

    NASA Astrophysics Data System (ADS)

    Ritchie, W. J.; Dowlatabadi, H.

    2017-12-01

    Climate change modeling relies on projections of future greenhouse gas emissions and other phenomena leading to changes in planetary radiative forcing (RF). Pathways for long-run fossil energy use that map to total forcing outcomes are commonly depicted with integrated assessment models (IAMs). IAMs structure outlooks for 21st-century emissions with various theories for developments in demographics, economics, land-use, energy markets and energy service demands. These concepts are applied to understand global changes in two key factors relevant for scenarios of carbon emissions: total energy use (E) this century and the carbon intensity of that energy (F/E). A simple analytical and graphical approach can also illustrate the full range of outcomes for these variables to determine if IAMs provide sufficient coverage of the uncertainty space for future energy use. In this talk, we present a method for understanding uncertainties relevant to RF scenario components in a phase space. The phase space of a dynamic system represents significant factors as axes to capture the full range of physically possible states. A two-dimensional phase space of E and F/E presents the possible system states that can lead to various levels of total 21st-century carbon emissions. Once defined in this way, a phase space of these energy system coordinates allows for rapid characterization of large IAM scenario sets with machine learning techniques. This phase space method is applied to the levels of RF described by the Representative Concentration Pathways (RCPs). The resulting RCP phase space identifies characteristics of the baseline energy system outlooks provided by IAMs for IPCC Working Group III. We conduct a k-means cluster analysis to distinguish the major features of IAM scenarios for each RCP range. Cluster analysis finds the IAM scenarios in AR5 illustrate RCPs with consistent combinations of energy resources. This suggests IAM scenarios understate uncertainty ranges for future fossil energy combustion and are overly constrained, implying it is likely easier to achieve a 1.5˚ climate policy goal than previously demonstrated.

  20. Natural environment design criteria for the space station program definition phase

    NASA Technical Reports Server (NTRS)

    Vaughan, W. W.

    1984-01-01

    The natural environment design criteria requirements for use in the Space Station and its Elements (SSPE) definition phase studies are presented. The atmospheric dynamic and thermodynamic environments, meteoroids, radiation, physical constants are addressed. It is intended to enable all groups involved in the definition phase studies to proceed with a common and consistent set of natural environment criteria requirements.

  1. Phase-space methods for the spin dynamics in condensed matter systems

    PubMed Central

    Hurst, Jérôme; Manfredi, Giovanni

    2017-01-01

    Using the phase-space formulation of quantum mechanics, we derive a four-component Wigner equation for a system composed of spin- fermions (typically, electrons) including the Zeeman effect and the spin–orbit coupling. This Wigner equation is coupled to the appropriate Maxwell equations to form a self-consistent mean-field model. A set of semiclassical Vlasov equations with spin effects is obtained by expanding the full quantum model to first order in the Planck constant. The corresponding hydrodynamic equations are derived by taking velocity moments of the phase-space distribution function. A simple closure relation is proposed to obtain a closed set of hydrodynamic equations. This article is part of the themed issue ‘Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces’. PMID:28320903

  2. Wigner Functions for the Bateman System on Noncommutative Phase Space

    NASA Astrophysics Data System (ADS)

    Heng, Tai-Hua; Lin, Bing-Sheng; Jing, Si-Cong

    2010-09-01

    We study an important dissipation system, i.e. the Bateman model on noncommutative phase space. Using the method of deformation quantization, we calculate the Exp functions, and then derive the Wigner functions and the corresponding energy spectra.

  3. Flow Boiling and Condensation Experiment (FBCE) for the International Space Station

    NASA Technical Reports Server (NTRS)

    Mudawar, Issam; Hasan, Mohammad M.; Kharangate, Chirag; O'Neill, Lucas; Konishi, Chris; Nahra, Henry; Hall, Nancy; Balasubramaniam, R.; Mackey, Jeffrey

    2015-01-01

    The proposed research aims to develop an integrated two-phase flow boiling/condensation facility for the International Space Station (ISS) to serve as primary platform for obtaining two-phase flow and heat transfer data in microgravity.

  4. Responses of Cloud Type Distributions to the Large-Scale Dynamical Circulation: Water Budget-Related Dynamical Phase Space and Dynamical Regimes

    NASA Technical Reports Server (NTRS)

    Wong, Sun; Del Genio, Anthony; Wang, Tao; Kahn, Brian; Fetzer, Eric J.; L'Ecuyer, Tristan S.

    2015-01-01

    Goals: Water budget-related dynamical phase space; Connect large-scale dynamical conditions to atmospheric water budget (including precipitation); Connect atmospheric water budget to cloud type distributions.

  5. Phase A design study of microgravity fluoride fiber puller

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Smith, Guy A.; Kosten, Susan

    1994-01-01

    Improved transmission properties for fluoride fibers due to space processing has great potential for commercial benefits. Phase A design study will determine conceptual feasibility and provide initial definition of the technical requirements and design issues for space.

  6. Probabilistic risk assessment of the Space Shuttle. Phase 3: A study of the potential of losing the vehicle during nominal operation. Volume 5: Auxiliary shuttle risk analyses

    NASA Technical Reports Server (NTRS)

    Fragola, Joseph R.; Maggio, Gaspare; Frank, Michael V.; Gerez, Luis; Mcfadden, Richard H.; Collins, Erin P.; Ballesio, Jorge; Appignani, Peter L.; Karns, James J.

    1995-01-01

    Volume 5 is Appendix C, Auxiliary Shuttle Risk Analyses, and contains the following reports: Probabilistic Risk Assessment of Space Shuttle Phase 1 - Space Shuttle Catastrophic Failure Frequency Final Report; Risk Analysis Applied to the Space Shuttle Main Engine - Demonstration Project for the Main Combustion Chamber Risk Assessment; An Investigation of the Risk Implications of Space Shuttle Solid Rocket Booster Chamber Pressure Excursions; Safety of the Thermal Protection System of the Space Shuttle Orbiter - Quantitative Analysis and Organizational Factors; Space Shuttle Main Propulsion Pressurization System Probabilistic Risk Assessment, Final Report; and Space Shuttle Probabilistic Risk Assessment Proof-of-Concept Study - Auxiliary Power Unit and Hydraulic Power Unit Analysis Report.

  7. Space transfer vehicle concepts and requirements study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Weber, Gary A.

    1991-01-01

    A description of the study in terms of background, objectives, and issues is provided. NASA is currently studying new initiatives of space exploration involving both piloted and unpiloted missions to destinations throughout the solar system. Many of these missions require substantial improvements in launch vehicle and upper stage capabilities. This study provides a focused examination of the Space Transfer Vehicles (STV) required to perform these missions using the emerging national launch vehicle definition, the Space Station Freedom (SSF) definition, and the latest mission scenario requirements. The study objectives are to define preferred STV concepts capable of accommodating future exploration missions in a cost-effective manner, determine the technology development (if any) required to perform these missions, and develop a decision database of various programmatic approaches for the development of the STV family of vehicles. Special emphasis was given to examining space basing (stationing reusable vehicles at a space station), examining the piloted lunar mission as a primary design mission, and restricting trade studies to the high-performance, near-term cryogenics (LO2/LH2) as vehicle propellant. The study progressed through three distinct 6-month phases. The first phase concentrated on supporting a NASA 3 month definition of exploration requirements (the '90-day study') and during this phase developed and optimized the space-based point-of-departure (POD) 2.5-stage lunar vehicle. The second phase developed a broad decision database of 95 different vehicle options and transportation architectures. The final phase chose the three most cost-effective architectures and developed point designs to carry to the end of the study. These reference vehicle designs are mutually exclusive and correspond to different national choices about launch vehicles and in-space reusability. There is, however, potential for evolution between concepts.

  8. A distributed planning concept for Space Station payload operations

    NASA Technical Reports Server (NTRS)

    Hagopian, Jeff; Maxwell, Theresa; Reed, Tracey

    1994-01-01

    The complex and diverse nature of the payload operations to be performed on the Space Station requires a robust and flexible planning approach. The planning approach for Space Station payload operations must support the phased development of the Space Station, as well as the geographically distributed users of the Space Station. To date, the planning approach for manned operations in space has been one of centralized planning to the n-th degree of detail. This approach, while valid for short duration flights, incurs high operations costs and is not conducive to long duration Space Station operations. The Space Station payload operations planning concept must reduce operations costs, accommodate phased station development, support distributed users, and provide flexibility. One way to meet these objectives is to distribute the planning functions across a hierarchy of payload planning organizations based on their particular needs and expertise. This paper presents a planning concept which satisfies all phases of the development of the Space Station (manned Shuttle flights, unmanned Station operations, and permanent manned operations), and the migration from centralized to distributed planning functions. Identified in this paper are the payload planning functions which can be distributed and the process by which these functions are performed.

  9. Sparse aperiodic arrays for optical beam forming and LIDAR.

    PubMed

    Komljenovic, Tin; Helkey, Roger; Coldren, Larry; Bowers, John E

    2017-02-06

    We analyze optical phased arrays with aperiodic pitch and element-to-element spacing greater than one wavelength at channel counts exceeding hundreds of elements. We optimize the spacing between waveguides for highest side-mode suppression providing grating lobe free steering in full visible space while preserving the narrow beamwidth. Optimum waveguide placement strategies are derived and design guidelines for sparse (> 1.5 λ and > 3 λ average element spacing) optical phased arrays are given. Scaling to larger array areas by means of tiling is considered.

  10. An exact solution of the Currie-Hill equations in 1 + 1 dimensional Minkowski space

    NASA Astrophysics Data System (ADS)

    Balog, János

    2014-11-01

    We present an exact two-particle solution of the Currie-Hill equations of Predictive Relativistic Mechanics in 1 + 1 dimensional Minkowski space. The instantaneous accelerations are given in terms of elementary functions depending on the relative particle position and velocities. The general solution of the equations of motion is given and by studying the global phase space of this system it is shown that this is a subspace of the full kinematic phase space.

  11. Phase-space representations of symmetric informationally complete positive-operator-valued-measure fiducial states

    NASA Astrophysics Data System (ADS)

    Saraceno, Marcos; Ermann, Leonardo; Cormick, Cecilia

    2017-03-01

    The problem of finding symmetric informationally complete positive-operator-valued-measures (SIC-POVMs) has been solved numerically for all dimensions d up to 67 [A. J. Scott and M. Grassl, J. Math. Phys. 51, 042203 (2010), 10.1063/1.3374022], but a general proof of existence is still lacking. For each dimension, it was shown that it is possible to find a SIC-POVM that is generated from a fiducial state upon application of the operators of the Heisenberg-Weyl group. We draw on the numerically determined fiducial states to study their phase-space features, as displayed by the characteristic function and the Wigner, Bargmann, and Husimi representations, adapted to a Hilbert space of finite dimension. We analyze the phase-space localization of fiducial states, and observe that the SIC-POVM condition is equivalent to a maximal delocalization property. Finally, we explore the consequences in phase space of the conjectured Zauner symmetry. In particular, we construct a Hermitian operator commuting with this symmetry that leads to a representation of fiducial states in terms of eigenfunctions with definite semiclassical features.

  12. Direct observation of the phase space footprint of a painting injection in the Rapid Cycling Synchrotron at the Japan Proton Accelerator Research Complex

    NASA Astrophysics Data System (ADS)

    Saha, P. K.; Shobuda, Y.; Hotchi, H.; Hayashi, N.; Takayanagi, T.; Harada, H.; Irie, Y.

    2009-04-01

    The 3 GeV Rapid Cycling Synchrotron (RCS) at Japan Proton Accelerator Research Complex is nearly at the operational stage with regard to the beam commissioning aspects. Recently, the design painting injection study has been commenced with the aim of high output beam power at the extraction. In order to observe the phase space footprint of the painting injection, a method was developed utilizing a beam position monitor (BPM) in the so-called single pass mode. The turn-by-turn phase space coordinates of the circulating beam directly measured using a pair of BPMs entirely positioned in drift space, and the calculated transfer matrices from the injection point to the pair of BPMs with several successive turns were used together in order to obtain the phase space footprint of the painting injection. There are two such pairs of BPMs placed in two different locations in the RCS, the results from which both agreed and were quite consistent with what was expected.

  13. Geometrical-Based Navigation System Performance Assessment in the Space Service Volume Using a Multiglobal Navigation Satellite System Methodology

    NASA Technical Reports Server (NTRS)

    Welch, Bryan W.

    2016-01-01

    NASA is participating in the International Committee on Global Navigation Satellite Systems (GNSS) (ICG)'s efforts towards demonstrating the benefits to the space user in the Space Service Volume (SSV) when a multi-GNSS solution space approach is utilized. The ICG Working Group: Enhancement of GNSS Performance, New Services and Capabilities has started a three phase analysis initiative as an outcome of recommendations at the ICG-10 meeting, in preparation for the ICG-11 meeting. The first phase of that increasing complexity and fidelity analysis initiative is based on a pure geometrically-derived access technique. The first phase of analysis has been completed, and the results are documented in this paper.

  14. Standard spacecraft economic analysis. Volume 2: Findings and conclusions

    NASA Technical Reports Server (NTRS)

    Harris, E. D.; Large, J. P.

    1976-01-01

    The comparative program costs associated with use of various standardized spacecraft for Air Force space test program missions to be flown on the space shuttle were studied in two phases. In the first phase, a variety of procurement mixes composed of existing or programmed NASA standard spacecraft designs and an Air Force standard spacecraft design were considered. The second phase dealt with additional procurement options using an upgraded version of an existing NASA design. The results of both phases are discussed.

  15. Grain growth and phase transformations induced by shock waves on alpha-GeO2 powder

    NASA Astrophysics Data System (ADS)

    Rosales, Ivonne; Thions-Renero, Claude; Martinez, Erendira; Bucio, Lauro; Orozco, Eligio

    2011-09-01

    An impact experiment on a mixture of water and microcrystalline alpha-GeO2 powder was performed with a single-stage gas gun. The recovered sample contained micrometer-scale crystals of different sizes and morphologies that correspond to 88% of alpha-GeO2, 6.0% of monoclinic phase (P21/c, space group No. 14), 4.9% of orthorhombic phase (Pnnm, space group No. 58) and 1.1% of rutile-type phase.

  16. Berry phase for spin-1/2 particles moving in a space-time with torsion

    NASA Astrophysics Data System (ADS)

    Alimohammadi, M.; Shariati, A.

    Berry phase for a spin-1/2 particle moving in a flat space-time with torsion is investigated in the context of the Einstein-Cartan-Dirac model. It is shown that if the torsion is due to a dense polarized background, then there is a Berry phase only if the fermion is massless and its momentum is perpendicular to the direction of the background polarization. The order of magnitude of this Berry phase is discussed in other theoretical frameworks.

  17. A Gaussian wave packet phase-space representation of quantum canonical statistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coughtrie, David J.; Tew, David P.

    2015-07-28

    We present a mapping of quantum canonical statistical averages onto a phase-space average over thawed Gaussian wave-packet (GWP) parameters, which is exact for harmonic systems at all temperatures. The mapping invokes an effective potential surface, experienced by the wave packets, and a temperature-dependent phase-space integrand, to correctly transition from the GWP average at low temperature to classical statistics at high temperature. Numerical tests on weakly and strongly anharmonic model systems demonstrate that thermal averages of the system energy and geometric properties are accurate to within 1% of the exact quantum values at all temperatures.

  18. Phase space trajectories and Lyapunov exponents in the dynamics of an alpha-helical protein lattice with intra- and inter-spine interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angelin Jeba, K.; Latha, M. M., E-mail: lathaisaac@yahoo.com; Jain, Sudhir R.

    2015-11-15

    The nonlinear dynamics of intra- and inter-spine interaction models of alpha-helical proteins is investigated by proposing a Hamiltonian using the first quantized operators. Hamilton's equations of motion are derived, and the dynamics is studied by constructing the trajectories and phase space plots in both cases. The phase space plots display a chaotic behaviour in the dynamics, which opens questions about the relationship between the chaos and exciton-exciton and exciton-phonon interactions. This is verified by plotting the Lyapunov characteristic exponent curves.

  19. Phase C/D program development plan. Volume 1: Program plan

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The Phase C/D definition of the Modular Space Station has been developed. The modular approach selected during the option period was evaluated, requirements were defined, and program definition and preliminary design were accomplished. The Space Station Project is covered in depth, the research applications module is limited to a project-level definition, and the shuttle operations are included for interface requirements identification, scheduling, and costing. Discussed in detail are: (1) baseline program and project descriptions; (2) phase project planning; (3) modular space station program schedule; (4) program management plan; (5) operations; (6) facilities; (7) logistics; and (8) manpower.

  20. Semiclassical propagator of the Wigner function.

    PubMed

    Dittrich, Thomas; Viviescas, Carlos; Sandoval, Luis

    2006-02-24

    Propagation of the Wigner function is studied on two levels of semiclassical propagation: one based on the Van Vleck propagator, the other on phase-space path integration. Leading quantum corrections to the classical Liouville propagator take the form of a time-dependent quantum spot. Its oscillatory structure depends on whether the underlying classical flow is elliptic or hyperbolic. It can be interpreted as the result of interference of a pair of classical trajectories, indicating how quantum coherences are to be propagated semiclassically in phase space. The phase-space path-integral approach allows for a finer resolution of the quantum spot in terms of Airy functions.

  1. Development of a passive phase separator for space and earth applications

    PubMed Central

    Wu, Xiongjun; Loraine, Greg; Hsiao, Chao-Tsung; Chahine, Georges L.

    2018-01-01

    The limited amount of liquids and gases that can be carried to space makes it imperative to recycle and reuse these fluids for extended human operations. During recycling processes gas and liquid phases are often intermixed. In the absence of gravity, separating gases from liquids is challenging due to the absence of buoyancy. This paper describes development of a passive phase separator that is capable of efficiently and reliably separating gas–liquid mixtures of both high and low void fractions in a wide range of flow rates that is applicable to for both space and earth applications. PMID:29628785

  2. Positive phase space distributions and uncertainty relations

    NASA Technical Reports Server (NTRS)

    Kruger, Jan

    1993-01-01

    In contrast to a widespread belief, Wigner's theorem allows the construction of true joint probabilities in phase space for distributions describing the object system as well as for distributions depending on the measurement apparatus. The fundamental role of Heisenberg's uncertainty relations in Schroedinger form (including correlations) is pointed out for these two possible interpretations of joint probability distributions. Hence, in order that a multivariate normal probability distribution in phase space may correspond to a Wigner distribution of a pure or a mixed state, it is necessary and sufficient that Heisenberg's uncertainty relation in Schroedinger form should be satisfied.

  3. Universal clustering of dark matter in phase space

    NASA Astrophysics Data System (ADS)

    Zavala, Jesús; Afshordi, Niayesh

    2016-03-01

    We have recently introduced a novel statistical measure of dark matter clustering in phase space, the particle phase-space average density (P2SAD). In a two-paper series, we studied the structure of P2SAD in the Milky Way-size Aquarius haloes, constructed a physically motivated model to describe it, and illustrated its potential as a powerful tool to predict signals sensitive to the nanostructure of dark matter haloes. In this work, we report a remarkable universality of the clustering of dark matter in phase space as measured by P2SAD within the subhaloes of host haloes across different environments covering a range from dwarf-size to cluster-size haloes (1010-1015 M⊙). Simulations show that the universality of P2SAD holds for more than seven orders of magnitude, over a 2D phase space, covering over three orders of magnitude in distance/velocity, with a simple functional form that can be described by our model. Invoking the universality of P2SAD, we can accurately predict the non-linear power spectrum of dark matter at small scales all the way down to the decoupling mass limit of cold dark matter particles. As an application, we compute the subhalo boost to the annihilation of dark matter in a wide range of host halo masses.

  4. Thermal Technology Development Activities at the Goddard Space Flight Center - 2001

    NASA Technical Reports Server (NTRS)

    Butler, Dan

    2002-01-01

    This presentation provides an overview of thermal technology development activities carried out at NASA's Goddard Space Flight Center during 2001. Specific topics covered include: two-phase systems (heat pipes, capillary pumped loops, vapor compression systems and phase change materials), variable emittance systems, advanced coatings, high conductivity materials and electrohydrodynamic (EHD) thermal coatings. The application of these activities to specific space missions is also discussed.

  5. NASA Physical Sciences - Presentation to Annual Two Phase Heat Transfer International Topical Team Meeting

    NASA Technical Reports Server (NTRS)

    Chiaramonte, Francis; Motil, Brian; McQuillen, John

    2014-01-01

    The Two-phase Heat Transfer International Topical Team consists of researchers and members from various space agencies including ESA, JAXA, CSA, and RSA. This presentation included descriptions various fluid experiments either being conducted by or planned by NASA for the International Space Station in the areas of two-phase flow, flow boiling, capillary flow, and crygenic fluid storage.

  6. Space cryogenics components based on the thermomechanical effect - Vapor-liquid phase separation

    NASA Technical Reports Server (NTRS)

    Yuan, S. W. K.; Frederking, T. H. K.

    1989-01-01

    Applications of the thermomechanical effect has been qualified including incorporation in large-scale space systems in the area of vapor-liquid phase separation (VLPS). The theory of the porous-plug phase separator is developed for the limit of a high thermal impedance of the solid-state grains. Extensions of the theory of nonlinear turbulent flow are presented based on experimental results.

  7. Time, space and equilibrium means of continuous vector functions on the phase space of a dynamical system

    NASA Astrophysics Data System (ADS)

    Gurevich, Boris M.; Tempel'man, Arcady A.

    2010-05-01

    For a dynamical system \\tau with 'time' \\mathbb Z^d and compact phase space X, we introduce three subsets of the space \\mathbb R^m related to a continuous function f\\colon X\\to\\mathbb R^m: the set of time means of f and two sets of space means of f, namely those corresponding to all \\tau-invariant probability measures and those corresponding to some equilibrium measures on X. The main results concern topological properties of these sets of means and their mutual position. Bibliography: 18 titles.

  8. Growth-rate periodicity of Streptomyces levoris during space flight

    NASA Technical Reports Server (NTRS)

    Rogers, T. D.; Brower, M. E.; Taylor, G. R.

    1977-01-01

    Streptomyces levoris provides a suitable biological test system to investigate the effects of space flight on the rhythms of vegetative and spore phase characteristics of both growth-rate periodicity and culture morphology during the pre-, in-, and post-flight periods of the Apollo-Soyuz Test Project. The objectives of the American participation were to study the effects of space flight on the biorhythms of Streptomyces levoris based on a comparison of the growth-rate periodicity of the vegetative and spore phase within each culture, to examine the possible alteration of spore morphology and development by SEM, and to compare the effects of a 12-hr phase shift on the periodic growth characteristics of this microorganism in cultures which were exchanged during the joint activities of the space flight. No uniform differences in the biorhythm of Streptomyces levoris during space flight were observed. It appears that the single most variable factor related to the experiment was the lack of temperature control for the space-flight specimens.

  9. Optical properties monitor: Experiment definition phase

    NASA Technical Reports Server (NTRS)

    Wilkes, Donald R.; Bennett, Jean M.; Hummer, Leigh L.; Chipman, Russell A.; Hadaway, James B.; Pezzaniti, Larry

    1990-01-01

    The stability of materials used in the space environment will continue to be a limiting technology for space missions. The Optical Properties Monitor (OPM) Experiment provides a comprehensive space research program to study the effects of the space environment (both natural and induced) on optical, thermal and space power materials. The OPM Experiment was selected for definition under the NASA/OAST In-Space Technology Experiment Program. The results of the OPM Definition Phase are presented. The OPM experiment will expose selected materials to the space environment and measure the effects with in-space optical measurements. In-space measurements include total hemispherical reflectance total integrated scatter and VUV reflectance/transmittance. The in-space measurements will be augmented with extensive pre- and post-flight sample measurements to determine other optical, mechanical, electrical, chemical or surface effects of space exposure. Environmental monitors will provide the amount and time history of the sample exposure to solar irradiation, atomic oxygen and molecular contamination.

  10. Optical properties monitor: Experiment definition phase

    NASA Technical Reports Server (NTRS)

    Wilkes, Donald R.; Bennett, Jean M.; Hummer, Leigh L.; Chipman, Russell A.; Hadaway, James B.; Pezzaniti, Larry

    1989-01-01

    The stability of materials used in the space environment will continue to be a limiting technology for space missions. The Optical Properties Monitor (OPM) Experiment provides a comprehensive space research program to study the effects of the space environment-both natural and induced-on optical, thermal and space power materials. The OPM Experiment was selected for definition under the NASA/OAST In-Space Technology Experiment Program. The results of the OPM Definition Phase are presented. The OPM Experiment will expose selected materials to the space environment and measure the effects with in-space optical measurements. In-space measurements include total hemispherical reflectance total integrated scatter and VUV reflectance/transmittance. The in-space measurements will be augmented with extensive pre- and post-flight sample measurements to determine other optical, mechanical, electrical, chemical or surface effects of space exposure. Environmental monitors will provide the amount and time history of the sample exposure to solar irradiation, atomic oxygen and molecular contamination.

  11. Phase pupil functions for focal-depth enhancement derived from a Wigner distribution function.

    PubMed

    Zalvidea, D; Sicre, E E

    1998-06-10

    A method for obtaining phase-retardation functions, which give rise to an increase of the image focal depth, is proposed. To this end, the Wigner distribution function corresponding to a specific aperture that has an associated small depth of focus in image space is conveniently sheared in the phase-space domain to generate a new Wigner distribution function. From this new function a more uniform on-axis image irradiance can be accomplished. This approach is illustrated by comparison of the imaging performance of both the derived phase function and a previously reported logarithmic phase distribution.

  12. Fluid Phase Separation (FPS) experiment for flight on a space shuttle Get Away Special (GAS) canister

    NASA Technical Reports Server (NTRS)

    Peters, Bruce; Wingo, Dennis; Bower, Mark; Amborski, Robert; Blount, Laura; Daniel, Alan; Hagood, Bob; Handley, James; Hediger, Donald; Jimmerson, Lisa

    1990-01-01

    The separation of fluid phases in microgravity environments is of importance to environmental control and life support systems (ECLSS) and materials processing in space. A successful fluid phase separation experiment will demonstrate a proof of concept for the separation technique and add to the knowledge base of material behavior. The phase separation experiment will contain a premixed fluid which will be exposed to a microgravity environment. After the phase separation of the compound has occurred, small samples of each of the species will be taken for analysis on the Earth. By correlating the time of separation and the temperature history of the fluid, it will be possible to characterize the process. The experiment has been integrated into space available on a manifested Get Away Special (GAS) experiment, CONCAP 2, part of the Consortium for Materials Complex Autonomous Payload (CAP) Program, scheduled for STS-42. The design and the production of a fluid phase separation experiment for rapid implementation at low cost is presented.

  13. The Canadian Space Agency, Space Station, Strategic Technologies for Automation and Robotics Program technology development activity in protection of materials from the low Earth orbit space environment

    NASA Technical Reports Server (NTRS)

    Francoeur, J. R.

    1992-01-01

    The Strategic Technologies in Automation and Robotics (STEAR) program is managing a number of development contracts to improve the protection of spacecraft materials from the Low Earth Orbit (LEO) space environment. The project is structured in two phases over a 3 to 4 year period with a budget of 3 to 4 million dollars. Phase 1 is designed to demonstrate the technical feasibility and commercial potential of a coating/substrate system and its associated application process. The objective is to demonstrate a prototype fabrication capability using a full scale component of a commercially viable process for the protection of materials and surface finishes from the LEO space environment, and to demonstrate compliance with a set of performance requirements. Only phase 1 will be discussed in this paper.

  14. The Capabilities of Space Stations

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Over the past two years the U.S. space station program has evolved to a three-phased international program, with the first phase consisting of the use of the U.S. Space Shuttle and the upgrading and use of the Russian Mir Space Station, and the second and third phases consisting of the assembly and use of the new International Space Station. Projected capabilities for research, and plans for utilization, have also evolved and it has been difficult for those not directly involved in the design and engineering of these space stations to learn and understand their technical details. The Committee on the Space Station of the National Research Council, with the concurrence of NASA, undertook to write this short report in order to provide concise and objective information on space stations and platforms -- with emphasis on the Mir Space Station and International Space Station -- and to supply a summary of the capabilities of previous, existing, and planned space stations. In keeping with the committee charter and with the task statement for this report, the committee has summarized the research capabilities of five major space platforms: the International Space Station, the Mir Space Station, the Space Shuttle (with a Spacelab or Spacehab module in its cargo bay), the Space Station Freedom (which was redesigned to become the International Space Station in 1993 and 1994), and Skylab. By providing the summary, together with brief descriptions of the platforms, the committee hopes to assist interested readers, including scientists and engineers, government officials, and the general public, in evaluating the utility of each system to meet perceived user needs.

  15. Phased array feed design technology for Large Aperture Microwave Radiometer (LAMR) Earth observations

    NASA Technical Reports Server (NTRS)

    Schuman, H. K.

    1992-01-01

    An assessment of the potential and limitations of phased array antennas in space-based geophysical precision radiometry is described. Mathematical models exhibiting the dependence of system and scene temperatures and system sensitivity on phased array antenna parameters and components such as phase shifters and low noise amplifiers (LNA) are developed. Emphasis is given to minimum noise temperature designs wherein the LNA's are located at the array level, one per element or subarray. Two types of combiners are considered: array lenses (space feeds) and corporate networks. The result of a survey of suitable components and devices is described. The data obtained from that survey are used in conjunction with the mathematical models to yield an assessment of effective array antenna noise temperature for representative geostationary and low Earth orbit systems. Practical methods of calibrating a space-based, phased array radiometer are briefly addressed as well.

  16. Space Station Freedom Water Recovery test total organic carbon accountability

    NASA Technical Reports Server (NTRS)

    Davidson, Michael W.; Slivon, Laurence; Sheldon, Linda; Traweek, Mary

    1991-01-01

    Marshall Space Flight Center's (MSFC) Water Recovery Test (WRT) addresses the concept of integrated hygiene and potable reuse water recovery systems baselined for Space Station Freedom (SSF). To assess the adequacy of water recovery system designs and the conformance of reclaimed water quality to established specifications, MSFC has initiated an extensive water characterization program. MSFC's goal is to quantitatively account for a large percentage of organic compounds present in waste and reclaimed hygiene and potable waters from the WRT and in humidity condensate from Spacelab missions. The program is coordinated into Phase A and B. Phase A's focus is qualitative and semi-quantitative. Precise quantitative analyses are not emphasized. Phase B's focus centers on a near complete quantitative characterization of all water types. Technical approaches along with Phase A and partial Phase B investigations on the compositional analysis of Total Organic Carbon (TOC) Accountability are presented.

  17. Method of phase space beam dilution utilizing bounded chaos generated by rf phase modulation

    DOE PAGES

    Pham, Alfonse N.; Lee, S. Y.; Ng, K. Y.

    2015-12-10

    This paper explores the physics of chaos in a localized phase-space region produced by rf phase modulation applied to a double rf system. The study can be exploited to produce rapid particle bunch broadening exhibiting longitudinal particle distribution uniformity. Hamiltonian models and particle-tracking simulations are introduced to understand the mechanism and applicability of controlled particle diffusion. When phase modulation is applied to the double rf system, regions of localized chaos are produced through the disruption and overlapping of parametric resonant islands and configured to be bounded by well-behaved invariant tori to prevent particle loss. The condition of chaoticity and themore » degree of particle dilution can be controlled by the rf parameters. As a result, the method has applications in alleviating adverse space-charge effects in high-intensity beams, particle bunch distribution uniformization, and industrial radiation-effects experiments.« less

  18. MMIC linear-phase and digital modulators for deep space spacecraft X-band transponder applications

    NASA Technical Reports Server (NTRS)

    Mysoor, Narayan R.; Ali, Fazal

    1991-01-01

    The design concepts, analyses, and development of GaAs monolithic microwave integrated circuit (MMIC) linear-phase and digital modulators for the next generation of space-borne communications systems are summarized. The design approach uses a compact lumped element quadrature hybrid and Metal Semiconductor Field Effect Transistors (MESFET)-varactors to provide low loss and well-controlled phase performance for deep space transponder (DST) applications. The measured results of the MESFET-diode show a capacitance range of 2:1 under reverse bias, and a Q of 38 at 10 GHz. Three cascaded sections of hybrid-coupled reflection phase shifters were modeled and simulations performed to provide an X-band (8415 +/- 50 MHz) DST phase modulator with +/- 2.5 radians of peak phase deviation. The modulator will accommodate downlink signal modulation with composite telemetry and ranging data, with a deviation linearity tolerance of +/- 8 percent and insertion loss of less than 8 +/- 0.5 dB. The MMIC digital modulator is designed to provide greater than 10 Mb/s of bi-phase modulation at X-band.

  19. Atmospheric constraint statistics for the Space Shuttle mission planning

    NASA Technical Reports Server (NTRS)

    Smith, O. E.; Batts, G. W.; Willett, J. A.

    1982-01-01

    The procedures used to establish statistics of atmospheric constraints of interest to the Space Shuttle mission planning are presented. The statistics considered are for the frequency of occurrence, runs, and time conditional probabilities of several atmospheric constrants for each of the Space Shuttle mission phases. The mission phases considered are (1) prelaunch, (2) launch, (3) return to launch site, (4) abort once around landing, and (5) end of mission landing.

  20. Behavioral and health implications of civilian spaceflight.

    PubMed

    Wichman, Harvey A

    2005-06-01

    The current enthusiasm over the prospect of space tourism and the belief among many that such civilian spaceflight is imminent are characterized herein. There are many concerns about screening and certifying passengers for future spaceflight. Efforts by several organizations to propose such screening are cited. The problem with some of these proposals, which treat all types of spaceflight the same, is that they are so restrictive that too few people would be eligible for space travel to have a viable tourism industry. However, not all types of spaceflight are the same, so the distinctions between them need to be clarified. Of the five types of spaceflight described, one is proposed as the most likely to be the first significant phase of space tourism: long-term microgravity flight in low Earth orbit. But because of human problems with long-term exposure to microgravity, this phase requires rather conservative screening and extensive training. However, prior to discussing the passenger issues related to this early phase of space tourism, the reasons why Earth-like gravity, as well as microgravity, must be made available to spacefarers before space tourism can take place on a grand scale need to be explained. Finally, major passenger medical and behavioral issues of the first phase of orbital space tourism-long-term microgravity flight-are discussed.

  1. User interface and operational issues with thermionic space power systems

    NASA Technical Reports Server (NTRS)

    Dahlberg, R. C.; Fisher, C. R.

    1987-01-01

    Thermionic space power systems have unique features which facilitate predeployment operations, provide operational flexibility and simplify the interface with the user. These were studied in some detail during the SP-100 program from 1983 to 1985. Three examples are reviewed in this paper: (1) system readiness verification in the prelaunch phase; (2) startup, shutdown, and dormancy in the operations phase; (3) part-load operation in the operations phase.

  2. Design and analysis of a low-loss linear analog phase modulator for deep space spacecraft X-band transponder applications

    NASA Technical Reports Server (NTRS)

    Mysoor, N. R.; Mueller, R. O.

    1991-01-01

    This article summarizes the design concepts, analyses, and development of an X-band (8145 MHz) transponder low-loss linear phase modulator for deep space spacecraft applications. A single-section breadboard circulator-coupled reflection phase modulator has been analyzed, fabricated, and evaluated. A linear phase deviation of 92 deg with a linearity tolerance of +/- 8 percent was measured for this modulator from 8257 MHz to 8634 MHz over the temperature range -20 to 75 C. The measured insertion loss and the static delay variation with temperature were 2 +/- 0.3 dB and 0.16 psec/ C, respectively. Based on this design, cascaded sections have been modeled, and simulations were performed to provide an X-band deep space transponder (DST) phase modulator with +/- 2.5 radians (+/- 143 deg) of peak phase deviation to accommodate downlink signal modulation with composite telemetry data and ranging, with a deviation linearity tolerance of +/- 8 percent and insertion loss of less than 10 +/- 0.5 dB. A two-section phase modulator using constant gamma hyperabrupt varactors and an efficient modulator driver circuit was breadboarded. The measured results satisfy the DST phase-modulator requirements and show excellent agreement with the predicted results.

  3. Wigner's quantum phase-space current in weakly-anharmonic weakly-excited two-state systems

    NASA Astrophysics Data System (ADS)

    Kakofengitis, Dimitris; Steuernagel, Ole

    2017-09-01

    There are no phase-space trajectories for anharmonic quantum systems, but Wigner's phase-space representation of quantum mechanics features Wigner current J . This current reveals fine details of quantum dynamics —finer than is ordinarily thought accessible according to quantum folklore invoking Heisenberg's uncertainty principle. Here, we focus on the simplest, most intuitive, and analytically accessible aspects of J. We investigate features of J for bound states of time-reversible, weakly-anharmonic one-dimensional quantum-mechanical systems which are weakly-excited. We establish that weakly-anharmonic potentials can be grouped into three distinct classes: hard, soft, and odd potentials. We stress connections between each other and the harmonic case. We show that their Wigner current fieldline patterns can be characterised by J's discrete stagnation points, how these arise and how a quantum system's dynamics is constrained by the stagnation points' topological charge conservation. We additionally show that quantum dynamics in phase space, in the case of vanishing Planck constant ℏ or vanishing anharmonicity, does not pointwise converge to classical dynamics.

  4. Effect of normalized plasma frequency on electron phase-space orbits in a free-electron laser

    NASA Astrophysics Data System (ADS)

    Ji, Yu-Pin; Wang, Shi-Jian; Xu, Jing-Yue; Xu, Yong-Gen; Liu, Xiao-Xu; Lu, Hong; Huang, Xiao-Li; Zhang, Shi-Chang

    2014-02-01

    Irregular phase-space orbits of the electrons are harmful to the electron-beam transport quality and hence deteriorate the performance of a free-electron laser (FEL). In previous literature, it was demonstrated that the irregularity of the electron phase-space orbits could be caused in several ways, such as varying the wiggler amplitude and inducing sidebands. Based on a Hamiltonian model with a set of self-consistent differential equations, it is shown in this paper that the electron-beam normalized plasma frequency functions not only couple the electron motion with the FEL wave, which results in the evolution of the FEL wave field and a possible power saturation at a large beam current, but also cause the irregularity of the electron phase-space orbits when the normalized plasma frequency has a sufficiently large value, even if the initial energy of the electron is equal to the synchronous energy or the FEL wave does not reach power saturation.

  5. Using Phase Space Density Profiles to Investigate the Radiation Belt Seed Population

    NASA Astrophysics Data System (ADS)

    Boyd, A. J.; Spence, H.; Reeves, G. D.; Blake, J. B.; Fennell, J. F.; Claudepierre, S. G.; Turner, D. L.

    2013-12-01

    It is believed that particles with energies of 100s of keV play a critical role in the acceleration of electrons within the radiation belt. Through wave particle interactions, these so called 'seed electrons' can be accelerated up to energies greater than 1 MeV. Using data from the MagEIS (Magnetic Electron Ion Spectrometer) Instrument onboard the Van Allen Probes we calculate phase space density within the radiation belts over a wide range of mu and K values. These phase space density profiles are combined with those from THEMIS, in order to see how the phase space density evolves over a large range of L*. In this presentation we examine how the seed electron population evolves in both time and L* during acceleration events. Comparing this to the evolution of the higher mu electron population allows us to determine what role the seed electrons played in the acceleration process. Finally, we compare several of these storms to examine the importance of the seed population to the acceleration process.

  6. Nonlinear Prediction As A Tool For Determining Parameters For Phase Space Reconstruction In Meteorology

    NASA Astrophysics Data System (ADS)

    Miksovsky, J.; Raidl, A.

    Time delays phase space reconstruction represents one of useful tools of nonlinear time series analysis, enabling number of applications. Its utilization requires the value of time delay to be known, as well as the value of embedding dimension. There are sev- eral methods how to estimate both these parameters. Typically, time delay is computed first, followed by embedding dimension. Our presented approach is slightly different - we reconstructed phase space for various combinations of mentioned parameters and used it for prediction by means of the nearest neighbours in the phase space. Then some measure of prediction's success was computed (correlation or RMSE, e.g.). The position of its global maximum (minimum) should indicate the suitable combination of time delay and embedding dimension. Several meteorological (particularly clima- tological) time series were used for the computations. We have also created a MS- Windows based program in order to implement this approach - its basic features will be presented as well.

  7. Phase space simulation of collisionless stellar systems on the massively parallel processor

    NASA Technical Reports Server (NTRS)

    White, Richard L.

    1987-01-01

    A numerical technique for solving the collisionless Boltzmann equation describing the time evolution of a self gravitating fluid in phase space was implemented on the Massively Parallel Processor (MPP). The code performs calculations for a two dimensional phase space grid (with one space and one velocity dimension). Some results from calculations are presented. The execution speed of the code is comparable to the speed of a single processor of a Cray-XMP. Advantages and disadvantages of the MPP architecture for this type of problem are discussed. The nearest neighbor connectivity of the MPP array does not pose a significant obstacle. Future MPP-like machines should have much more local memory and easier access to staging memory and disks in order to be effective for this type of problem.

  8. Multidimensional kinetic simulations using dissipative closures and other reduced Vlasov methods for differing particle magnetizations

    NASA Astrophysics Data System (ADS)

    Newman, David L.

    2006-10-01

    Kinetic plasma simulations in which the phase-space distribution functions are advanced directly via the coupled Vlasov and Poisson (or Maxwell) equations---better known simply as Vlasov simulations---provide a valuable low-noise complement to the more commonly employed Particle-in-Cell (PIC) simulations. However, in more than one spatial dimension Vlasov simulations become numerically demanding due to the high dimensionality of x--v phase-space. Methods that can reduce this computational demand are therefore highly desirable. Several such methods will be presented, which treat the phase-space dynamics along a dominant dimension (e.g., parallel to a beam or current) with the full Vlasov propagator, while employing a reduced description, such as moment equations, for the evolution perpendicular to the dominant dimension. A key difference between the moment-based (and other reduced) methods considered here and standard fluid methods is that the moments are now functions of a phase-space coordinate (e.g. moments of vy in z--vz--y phase space, where z is the dominant dimension), rather than functions of spatial coordinates alone. Of course, moment-based methods require closure. For effectively unmagnetized species, new dissipative closure methods inspired by those of Hammett and Perkins [PRL, 64, 3019 (1990)] have been developed, which exactly reproduce the linear electrostatic response for a broad class of distributions with power-law tails, as are commonly measured in space plasmas. The nonlinear response, which requires more care, will also be discussed. For weakly magnetized species (i.e., φs<φs) an alternative algorithm has been developed in which the distributions are assumed to gyrate about the magnetic field with a fixed nominal perpendicular ``thermal'' velocity, thereby reducing the required phase-space dimension by one. These reduced algorithms have been incorporated into 2-D codes used to study the evolution of nonlinear structures such as double layers and electron holes in Earth's auroral zone.

  9. Calculating Free Energies Using Scaled-Force Molecular Dynamics Algorithm

    NASA Technical Reports Server (NTRS)

    Darve, Eric; Wilson, Micahel A.; Pohorille, Andrew

    2000-01-01

    One common objective of molecular simulations in chemistry and biology is to calculate the free energy difference between different states of the system of interest. Examples of problems that have such an objective are calculations of receptor-ligand or protein-drug interactions, associations of molecules in response to hydrophobic, and electrostatic interactions or partition of molecules between immiscible liquids. Another common objective is to describe evolution of the system towards a low energy (possibly the global minimum energy), 'native' state. Perhaps the best example of such a problem is folding of proteins or short RNA molecules. Both types of problems share the same difficulty. Often, different states of the system are separated by high energy barriers, which implies that transitions between these states are rare events. This, in turn, can greatly impede exploration of phase space. In some instances this can lead to 'quasi non-ergodicity', whereby a part of phase space is inaccessible on timescales of the simulation. A host of strategies has been developed to improve efficiency of sampling the phase space. For example, some Monte Carlo techniques involve large steps which move the system between low-energy regions in phase space without the need for sampling the configurations corresponding to energy barriers (J-walking). Most strategies, however, rely on modifying probabilities of sampling low and high-energy regions in phase space such that transitions between states of interest are encouraged. Perhaps the simplest implementation of this strategy is to increase the temperature of the system. This approach was successfully used to identify denaturation pathways in several proteins, but it is clearly not applicable to protein folding. It is also not a successful method for determining free energy differences. Finally, the approach is likely to fail for systems with co-existing phases, such as water-membrane systems, because it may lead to spontaneous mixing. A similar difficulty may be encountered in any method relying on global modifications of phase space.

  10. Suppression of Phase Mixing in Drift-Kinetic Plasma Turbulence

    NASA Astrophysics Data System (ADS)

    Parker, J. T.; Dellar, P. J.; Schekochihin, A. A.; Highcock, E. G.

    2017-12-01

    The solar wind and interstellar medium are examples of strongly magnetised, weakly collisional, astrophysical plasmas. Their turbulent fluctuations are strongly anisotropic, with small amplitudes, and frequencies much lower than the Larmor frequency. This regime is described by gyrokinetic theory, a reduced five-dimensional kinetic system describing averages over Larmor orbits. A turbulent plasma may transfer free energy, a measure of fluctuation amplitudes, from injection at large scales, typically by an instability, to dissipation at small physical scales like a turbulent fluid. Alternatively, a turbulent plasma may form fine scale structures in velocity space via phase-mixing, the mechanism that leads to Landau damping in linear plasma theory. Macroscopic plasma properties like heat and momentum transport are affected by both mechanisms. While each is understood in isolation, their interaction is not. We study this interaction using a Hankel-Hermite velocity space representation of gyrokinetic theory. The Hankel transform interacts neatly with the Bessel functions that arise from averaging over Larmor orbits, so the perpendicular velocity space is decoupled for linearized problems. The Hermite transform expresses phase mixing as nearest-neighbor coupling between parallel velocity space scales represented by Hermite mode numbers. We use this representation to study transfer mechanisms in drift-kinetic plasma turbulence, the long wavelength limit of gyrokinetic theory. We show that phase space is divided into two regions, with one transfer mechanism dominating in each. Most energy is contained in the region where the fluid-like nonlinear cascade dominates. Moreover, in that region the nonlinear cascade interferes with phase mixing by exciting an "anti phase mixing" transfer of free energy from small to large velocity space scales. This cancels out the usual phase mixing, and renders the overall behavior fluid-like. These results profoundly change our understanding of free energy flow in drift-kinetic turbulence, and, moreover, explain previously observed spectra.

  11. Designing a Unique Single Point Cross Over Method

    NASA Technical Reports Server (NTRS)

    Wilson, Richard Phillip

    2002-01-01

    The idea behind genetic algorithms is to extract optimization strategies nature uses successfully - known as Darwinian Evolution - and transform them for application in mathematical optimization theory to find the global optimum in a defined phase space. One could imagine a population of individual 'explorers' sent into the optimization phase-space. Each explorer is defined by its genes, what means, its position inside the phase-space is coded in his genes. Every explorer has the duty to find a value of the quality of his position in the phase space. (Consider the phase-space being a number of variables in some technological process, the value of quality of any position in the phase space - in other words: any set of the variables - can be expressed by the yield of the desired chemical product.) Then the struggle of 'life' begins. The three fundamental principles are selection, mating/crossover, and mutation. Only explorers (= genes) sitting on the best places will reproduce and create a new population. This is performed in the second step (mating/crossover). The 'hope' behind this part of the algorithm is, that 'good' sections of two parents will be recombined to yet better fitting children. In fact, many of the created children will not be successful (as in biological evolution), but a few children will indeed fulfill this hope. These good sections are named in some publications as building blocks. Now there appears a problem. Repeating these steps, no new area would be explored. The two former steps would only exploit the already known regions in the phase space, which could lead to premature convergence of the algorithm with the consequence of missing the global optimum by exploiting some local optimum. The third step, mutation, ensures the necessary accidental effects. One can imagine the new population being mixed up a little bit to bring some new information into this set of genes. Whereas in biology a gene is described as a macro-molecule with four different bases to code the genetic information, a gene in genetic algorithms is usually defined as a bitstring (a sequence of b 1's and 0's).

  12. SU-E-T-459: Dosimetric Consequences of Rotated Elliptical Proton Spots in Modeling In-Air Proton Fluence for Calculating Doses in Water of Proton Pencil Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matysiak, W; Yeung, D; Hsi, W

    2014-06-01

    Purpose: We present a study of dosimetric consequences on doses in water in modeling in-air proton fluence independently along principle axes for rotated elliptical spots. Methods: Phase-space parameters for modeling in-air fluence are the position sigma for the spatial distribution, the angle sigma for the angular distribution, and the correlation between position and angle distributions. Proton spots of the McLaren proton therapy system were measured at five locations near the isocenter for the energies of 180 MeV and 250 MeV. An elongated elliptical spot rotated with respect to the principle axes was observed for the 180 MeV, while a circular-likemore » spot was observed for the 250 MeV. In the first approach, the phase-space parameters were derived in the principle axes without rotation. In the second approach, the phase space parameters were derived in the reference frame with axes rotated to coincide with the major axes of the elliptical spot. Monte-Carlo simulations with derived phase-space parameters using both approaches to tally doses in water were performed and analyzed. Results: For the rotated elliptical 180 MeV spots, the position sigmas were 3.6 mm and 3.2 mm in principle axes, but were 4.3 mm and 2.0 mm when the reference frame was rotated. Measured spots fitted poorly the uncorrelated 2D Gaussian, but the quality of fit was significantly improved after the reference frame was rotated. As a Result, phase space parameters in the rotated frame were more appropriate for modeling in-air proton fluence of 180 MeV protons. Considerable differences were observed in Monte Carlo simulated dose distributions in water with phase-space parameters obtained with the two approaches. Conclusion: For rotated elliptical proton spots, phase-space parameters obtained in the rotated reference frame are better for modeling in-air proton fluence, and can be introduced into treatment planning systems.« less

  13. Space Station ECLSS Integration Analysis

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Space Station Environmental Control and Life Support System (ECLSS) contract with NASA MSFC covered the time frame from 9 May 1985 to 31 Dec. 1992. The contract roughly covered the period of Space Station Freedom (SSF) development from early Phase B through Phase C/D Critical Design Review (CDR). During this time, McDonnell Douglas Aerospace-Huntsville (formerly McDonnell Douglas Space Systems Company) performed an analytical support role to MSFC for the development of analytical math models and engineering trade studies related to the design of the ECLSS for the SSF.

  14. Wigner functions from the two-dimensional wavelet group.

    PubMed

    Ali, S T; Krasowska, A E; Murenzi, R

    2000-12-01

    Following a general procedure developed previously [Ann. Henri Poincaré 1, 685 (2000)], here we construct Wigner functions on a phase space related to the similitude group in two dimensions. Since the group space in this case is topologically homeomorphic to the phase space in question, the Wigner functions so constructed may also be considered as being functions on the group space itself. Previously the similitude group was used to construct wavelets for two-dimensional image analysis; we discuss here the connection between the wavelet transform and the Wigner function.

  15. Phase space localization for anti-de Sitter quantum mechanics and its zero curvature limit

    NASA Technical Reports Server (NTRS)

    Elgradechi, Amine M.

    1993-01-01

    Using techniques of geometric quantization and SO(sub 0)(3,2)-coherent states, a notion of optimal localization on phase space is defined for the quantum theory of a massive and spinning particle in anti-de Sitter space time. It is shown that this notion disappears in the zero curvature limit, providing one with a concrete example of the regularizing character of the constant (nonzero) curvature of the anti-de Sitter space time. As a byproduct a geometric characterization of masslessness is obtained.

  16. A new hybrid-Lagrangian numerical scheme for gyrokinetic simulation of tokamak edge plasma

    DOE PAGES

    Ku, S.; Hager, R.; Chang, C. S.; ...

    2016-04-01

    In order to enable kinetic simulation of non-thermal edge plasmas at a reduced computational cost, a new hybrid-Lagrangian δf scheme has been developed that utilizes the phase space grid in addition to the usual marker particles, taking advantage of the computational strengths from both sides. The new scheme splits the particle distribution function of a kinetic equation into two parts. Marker particles contain the fast space-time varying, δf, part of the distribution function and the coarse-grained phase-space grid contains the slow space-time varying part. The coarse-grained phase-space grid reduces the memory-requirement and the computing cost, while the marker particles providemore » scalable computing ability for the fine-grained physics. Weights of the marker particles are determined by a direct weight evolution equation instead of the differential form weight evolution equations that the conventional delta-f schemes use. The particle weight can be slowly transferred to the phase space grid, thereby reducing the growth of the particle weights. The non-Lagrangian part of the kinetic equation – e.g., collision operation, ionization, charge exchange, heat-source, radiative cooling, and others – can be operated directly on the phase space grid. Deviation of the particle distribution function on the velocity grid from a Maxwellian distribution function – driven by ionization, charge exchange and wall loss – is allowed to be arbitrarily large. In conclusion, the numerical scheme is implemented in the gyrokinetic particle code XGC1, which specializes in simulating the tokamak edge plasma that crosses the magnetic separatrix and is in contact with the material wall.« less

  17. A new hybrid-Lagrangian numerical scheme for gyrokinetic simulation of tokamak edge plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ku, S.; Hager, R.; Chang, C. S.

    In order to enable kinetic simulation of non-thermal edge plasmas at a reduced computational cost, a new hybrid-Lagrangian δf scheme has been developed that utilizes the phase space grid in addition to the usual marker particles, taking advantage of the computational strengths from both sides. The new scheme splits the particle distribution function of a kinetic equation into two parts. Marker particles contain the fast space-time varying, δf, part of the distribution function and the coarse-grained phase-space grid contains the slow space-time varying part. The coarse-grained phase-space grid reduces the memory-requirement and the computing cost, while the marker particles providemore » scalable computing ability for the fine-grained physics. Weights of the marker particles are determined by a direct weight evolution equation instead of the differential form weight evolution equations that the conventional delta-f schemes use. The particle weight can be slowly transferred to the phase space grid, thereby reducing the growth of the particle weights. The non-Lagrangian part of the kinetic equation – e.g., collision operation, ionization, charge exchange, heat-source, radiative cooling, and others – can be operated directly on the phase space grid. Deviation of the particle distribution function on the velocity grid from a Maxwellian distribution function – driven by ionization, charge exchange and wall loss – is allowed to be arbitrarily large. In conclusion, the numerical scheme is implemented in the gyrokinetic particle code XGC1, which specializes in simulating the tokamak edge plasma that crosses the magnetic separatrix and is in contact with the material wall.« less

  18. A new hybrid-Lagrangian numerical scheme for gyrokinetic simulation of tokamak edge plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ku, S., E-mail: sku@pppl.gov; Hager, R.; Chang, C.S.

    In order to enable kinetic simulation of non-thermal edge plasmas at a reduced computational cost, a new hybrid-Lagrangian δf scheme has been developed that utilizes the phase space grid in addition to the usual marker particles, taking advantage of the computational strengths from both sides. The new scheme splits the particle distribution function of a kinetic equation into two parts. Marker particles contain the fast space-time varying, δf, part of the distribution function and the coarse-grained phase-space grid contains the slow space-time varying part. The coarse-grained phase-space grid reduces the memory-requirement and the computing cost, while the marker particles providemore » scalable computing ability for the fine-grained physics. Weights of the marker particles are determined by a direct weight evolution equation instead of the differential form weight evolution equations that the conventional delta-f schemes use. The particle weight can be slowly transferred to the phase space grid, thereby reducing the growth of the particle weights. The non-Lagrangian part of the kinetic equation – e.g., collision operation, ionization, charge exchange, heat-source, radiative cooling, and others – can be operated directly on the phase space grid. Deviation of the particle distribution function on the velocity grid from a Maxwellian distribution function – driven by ionization, charge exchange and wall loss – is allowed to be arbitrarily large. The numerical scheme is implemented in the gyrokinetic particle code XGC1, which specializes in simulating the tokamak edge plasma that crosses the magnetic separatrix and is in contact with the material wall.« less

  19. Development of Autonomous Aerobraking - Phase 2

    NASA Technical Reports Server (NTRS)

    Murri, Daniel G.

    2013-01-01

    Phase 1 of the Development of Autonomous Aerobraking (AA) Assessment investigated the technical capability of transferring the processes of aerobraking maneuver (ABM) decision-making (currently performed on the ground by an extensive workforce and communicated to the spacecraft via the deep space network) to an efficient flight software algorithm onboard the spacecraft. This document describes Phase 2 of this study, which was a 12-month effort to improve and rigorously test the AA Development Software developed in Phase 1. Aerobraking maneuver; Autonomous Aerobraking; Autonomous Aerobraking Development Software; Deep Space Network; NASA Engineering and Safety Center

  20. Suppression of phase mixing in drift-kinetic plasma turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, J. T., E-mail: joseph.parker@stfc.ac.uk; OCIAM, Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG; Brasenose College, Radcliffe Square, Oxford OX1 4AJ

    2016-07-15

    Transfer of free energy from large to small velocity-space scales by phase mixing leads to Landau damping in a linear plasma. In a turbulent drift-kinetic plasma, this transfer is statistically nearly canceled by an inverse transfer from small to large velocity-space scales due to “anti-phase-mixing” modes excited by a stochastic form of plasma echo. Fluid moments (density, velocity, and temperature) are thus approximately energetically isolated from the higher moments of the distribution function, so phase mixing is ineffective as a dissipation mechanism when the plasma collisionality is small.

  1. Phase space analysis for a scalar-tensor model with kinetic and Gauss-Bonnet couplings

    NASA Astrophysics Data System (ADS)

    Granda, L. N.; Loaiza, E.

    2016-09-01

    We study the phase space for a scalar-tensor string inspired model of dark energy with nonminimal kinetic and Gauss-Bonnet couplings. The form of the scalar potential and of the coupling terms is of the exponential type, which gives rise to appealing cosmological solutions. The critical points describe a variety of cosmological scenarios that go from a matter or radiation dominated universe to a dark energy dominated universe. Trajectories were found in the phase space departing from unstable or saddle fixed points and arriving at the stable scalar field dominated point corresponding to late-time accelerated expansion.

  2. Phase-space foundations of electron holography

    NASA Astrophysics Data System (ADS)

    Lubk, A.; Röder, F.

    2015-09-01

    We present a unified formalism for describing various forms of electron holography in quantum mechanical phase space including their extensions to quantum-state reconstructions. The phase-space perspective allows for taking into account partial coherence as well as the quantum mechanical detection process typically hampering the unique reconstruction of a wave function. We elaborate on the limitations imposed by the electron optical elements of the transmission electron microscope as well as the scattering at the target. The results provide the basis for vastly extending the scope of electron holographic techniques towards analyzing partially coherent signals such as inelastically scattered electrons or electron pulses used in ultrafast transmission electron microscopy.

  3. Incomplete Detection of Nonclassical Phase-Space Distributions

    NASA Astrophysics Data System (ADS)

    Bohmann, M.; Tiedau, J.; Bartley, T.; Sperling, J.; Silberhorn, C.; Vogel, W.

    2018-02-01

    We implement the direct sampling of negative phase-space functions via unbalanced homodyne measurement using click-counting detectors. The negativities significantly certify nonclassical light in the high-loss regime using a small number of detectors which cannot resolve individual photons. We apply our method to heralded single-photon states and experimentally demonstrate the most significant certification of nonclassicality for only two detection bins. By contrast, the frequently applied Wigner function fails to directly indicate such quantum characteristics for the quantum efficiencies present in our setup without applying additional reconstruction algorithms. Therefore, we realize a robust and reliable approach to characterize nonclassical light in phase space under realistic conditions.

  4. Application of a transverse phase-space measurement technique for high-brightness, H{sup {minus}} beams to the GTA H{sup {minus}} beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, K.F.; Garcia, R.C.; Rusthoi, D.P.

    1995-05-01

    The Ground Test Accelerator (GTA) had the objective Of Producing a high-brightness, high-current H-beam. The major components were a 35 keV injector, a Radio Frequency Quadrupole (RFQ), an intertank matching section (IMS), and a drift tube linac (DTL), consisting of 10 modules. A technique for measuring the transverse phase-space of high-power density beams has been developed and tested. This diagnostic has been applied to the GTA H-beam. Experimental results are compared to the slit and collector technique for transverse phase-space measurements and to simulations.

  5. Mixed semiclassical-classical propagators for the Wigner phase space representation

    NASA Astrophysics Data System (ADS)

    Koda, Shin-ichi

    2016-04-01

    We formulate mixed semiclassical-classical (SC-Cl) propagators by adding a further approximation to the phase-space SC propagators, which have been formulated in our previous paper [S. Koda, J. Chem. Phys. 143, 244110 (2015)]. We first show that the stationary phase approximation over the operation of the phase-space van Vleck propagator on initial distribution functions results in the classical mechanical time propagation. Then, after dividing the degrees of freedom (DOFs) of the total system into the semiclassical DOFs and the classical DOFs, the SC-Cl van Vleck propagator and the SC-Cl Herman-Kluk (HK) propagator are derived by performing the stationary phase approximation only with respect to the classical DOFs. These SC-Cl propagators are naturally decomposed to products of the phase-space SC propagators and the classical mechanical propagators when the system does not have any interaction between the semiclassical and the classical DOFs. In addition, we also numerically compare the original phase-space HK (full HK) propagator and the SC-Cl HK propagator in terms of accuracy and efficiency to find that the accuracy of the SC-Cl HK propagator can be comparable to that of the full HK propagator although the latter is more accurate than the former in general. On the other hand, we confirm that the convergence speed of the SC-Cl HK propagator is faster than that of the full HK propagator. The present numerical tests indicate that the SC-Cl HK propagator can be more accurate than the full HK propagator when they use a same and finite number of classical trajectories due to the balance of the accuracy and the efficiency.

  6. Mixed semiclassical-classical propagators for the Wigner phase space representation.

    PubMed

    Koda, Shin-Ichi

    2016-04-21

    We formulate mixed semiclassical-classical (SC-Cl) propagators by adding a further approximation to the phase-space SC propagators, which have been formulated in our previous paper [S. Koda, J. Chem. Phys. 143, 244110 (2015)]. We first show that the stationary phase approximation over the operation of the phase-space van Vleck propagator on initial distribution functions results in the classical mechanical time propagation. Then, after dividing the degrees of freedom (DOFs) of the total system into the semiclassical DOFs and the classical DOFs, the SC-Cl van Vleck propagator and the SC-Cl Herman-Kluk (HK) propagator are derived by performing the stationary phase approximation only with respect to the classical DOFs. These SC-Cl propagators are naturally decomposed to products of the phase-space SC propagators and the classical mechanical propagators when the system does not have any interaction between the semiclassical and the classical DOFs. In addition, we also numerically compare the original phase-space HK (full HK) propagator and the SC-Cl HK propagator in terms of accuracy and efficiency to find that the accuracy of the SC-Cl HK propagator can be comparable to that of the full HK propagator although the latter is more accurate than the former in general. On the other hand, we confirm that the convergence speed of the SC-Cl HK propagator is faster than that of the full HK propagator. The present numerical tests indicate that the SC-Cl HK propagator can be more accurate than the full HK propagator when they use a same and finite number of classical trajectories due to the balance of the accuracy and the efficiency.

  7. A tale of two theories: How the adiabatic response and ULF waves affect relativistic electrons

    NASA Astrophysics Data System (ADS)

    Green, J. C.; Kivelson, M. G.

    2001-11-01

    Using data from the Comprehensive Energetic Particle and Pitch Angle Distribution (CEPPAD)-High Sensitivity Telescope (HIST) instrument on the Polar spacecraft and ground magnetometer data from the 210 meridian magnetometer chain, we test the ULF wave drift resonance theory proposed to explain relativistic electron phase space density enhancements. We begin by investigating changes in electron flux due to the ``Dst effect.'' The Dst effect refers to the adiabatic response of relativistic electrons to changes in the magnetic field characterized by the Dst index. The Dst effect, assuming no loss or addition of new electrons, produces reversible order of magnitude changes in relativistic electrons flux measured at fixed energy, but it cannot account for the flux enhancement that occurs in the recovery phase of most storms. Liouville's theorem states that phase space density expressed in terms of constant adiabatic invariants is unaffected by adiabatic field changes and thus is insensitive to the Dst effect. It is therefore useful to express flux measurements in terms of phase space densities at constant first, second and third adiabatic invariants. The phase space density is determined from the CEPPAD-HIST electron detector that measures differential directional flux of electrons from 0.7 to 9 MeV and the Tsyganenko 96 field model. The analysis is done for January to June 1997. The ULF wave drift resonance theory that we test proposes that relativistic electrons are accelerated by an m=2 toroidal or poloidal mode wave whose frequency equals the drift frequency of the electron. The theory is tested by comparing the relativistic electron phase space densities to wave power determined at three ground stations with L* values of 4.0, 5.7 and 6.2. Comparison of the wave data to the phase space densities shows that five out of nine storm events are consistent with the ULF wave drift resonance mechanism, three out of nine give ambiguous support to the model, and one event has high ULF wave power at the drift frequency of the electrons but no corresponding phase space density enhancement suggesting that ULF wave power alone is not sufficient to cause an electron response. Two explanations of the anomalous event are investigated including excessive loss of electrons to the magnetopause and wave duration.

  8. Coincidence probability as a measure of the average phase-space density at freeze-out

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Czyz, W.; Zalewski, K.

    2006-02-01

    It is pointed out that the average semi-inclusive particle phase-space density at freeze-out can be determined from the coincidence probability of the events observed in multiparticle production. The method of measurement is described and its accuracy examined.

  9. Moments of the Particle Phase-Space Density at Freeze-out and Coincidence Probabilities

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Czyż, W.; Zalewski, K.

    2005-10-01

    It is pointed out that the moments of phase-space particle density at freeze-out can be determined from the coincidence probabilities of the events observed in multiparticle production. A method to measure the coincidence probabilities is described and its validity examined.

  10. Bound-Preserving Discontinuous Galerkin Methods for Conservative Phase Space Advection in Curvilinear Coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mezzacappa, Anthony; Endeve, Eirik; Hauck, Cory D.

    We extend the positivity-preserving method of Zhang & Shu [49] to simulate the advection of neutral particles in phase space using curvilinear coordinates. The ability to utilize these coordinates is important for non-equilibrium transport problems in general relativity and also in science and engineering applications with specific geometries. The method achieves high-order accuracy using Discontinuous Galerkin (DG) discretization of phase space and strong stabilitypreserving, Runge-Kutta (SSP-RK) time integration. Special care in taken to ensure that the method preserves strict bounds for the phase space distribution function f; i.e., f ϵ [0, 1]. The combination of suitable CFL conditions and themore » use of the high-order limiter proposed in [49] is su cient to ensure positivity of the distribution function. However, to ensure that the distribution function satisfies the upper bound, the discretization must, in addition, preserve the divergencefree property of the phase space ow. Proofs that highlight the necessary conditions are presented for general curvilinear coordinates, and the details of these conditions are worked out for some commonly used coordinate systems (i.e., spherical polar spatial coordinates in spherical symmetry and cylindrical spatial coordinates in axial symmetry, both with spherical momentum coordinates). Results from numerical experiments - including one example in spherical symmetry adopting the Schwarzschild metric - demonstrate that the method achieves high-order accuracy and that the distribution function satisfies the maximum principle.« less

  11. A study of space-rated connectors using a robot end-effector

    NASA Technical Reports Server (NTRS)

    Nguyen, Charles C.

    1995-01-01

    The main research activities have been directed toward the study of the Robot Operated Materials Processing System (ROMPS), developed at GSFC under a flight project to investigate commercially promising in-space material processes and to design reflyable robot automated systems to be used in the above processes for low-cost operations. The research activities can be divided into two phases. Phase 1 dealt with testing of ROMPS robot mechanical interfaces and compliant device using a Stewart Platform testbed and Phase 2 with computer simulation study of the ROMPS robot control system. This report provides a summary of the results obtained in Phase 1 and Phase 2.

  12. Phase and Pupil Amplitude Recovery for JWST Space-Optics Control

    NASA Technical Reports Server (NTRS)

    Dean, B. H.; Zielinski, T. P.; Smith, J. S.; Bolcar, M. R.; Aronstein, D. L.; Fienup, J. R.

    2010-01-01

    This slide presentation reviews the phase and pupil amplitude recovery for the James Webb Space Telescope (JWST) Near Infrared Camera (NIRCam). It includes views of the Integrated Science Instrument Module (ISIM), the NIRCam, examples of Phase Retrieval Data, Ghost Irradiance, Pupil Amplitude Estimation, Amplitude Retrieval, Initial Plate Scale Estimation using the Modulation Transfer Function (MTF), Pupil Amplitude Estimation vs lambda, Pupil Amplitude Estimation vs. number of Images, Pupil Amplitude Estimation vs Rotation (clocking), and Typical Phase Retrieval Results Also included is information about the phase retrieval approach, Non-Linear Optimization (NLO) Optimized Diversity Functions, and Least Square Error vs. Starting Pupil Amplitude.

  13. Physics of Colloids in Space (PCS): Microgravity Experiment Completed Operations on the International Space Station

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Sankaran, Subramanian

    2003-01-01

    Immediately after mixing, the two-phase-like colloid-polymer critical point sample begins to phase separate, or de-mix, into two phases-one that resembles a gas and one that resembles a liquid, except that the particles are colloids and not atoms. The colloid-poor black regions (colloidal gas) grow bigger, and the colloid-rich white regions (colloidal liquid) become whiter as the domains further coarsen. Finally, complete phase separation is achieved, that is, just one region of each colloid-rich (white) and colloid-poor (black) phase. This process was studied over four decades of length scale, from 1 micrometer to 1 centimeter.

  14. Unconventional Density Wave and Superfluidity in Cold Atom Systems

    DTIC Science & Technology

    2014-06-01

    species can provide more phase space to renormalize minority pairing channel (i.e, q can be anywhere on that FS branch...and intra-species interactions, Ucf/Uff . . . . . . . 43 5.2 (Left) dxy order parameter for f - and c-fermions. (Right) Real- space particle density of...interlayer tunneling tz = 0.1t. Sketched real space configuration for (d) CDWp and (e) CDW± with a π- phase resonance, where the dashed red lines indicate

  15. UCLA-LANL Reanalysis Project

    NASA Astrophysics Data System (ADS)

    Shprits, Y.; Chen, Y.; Friedel, R.; Kondrashov, D.; Ni, B.; Subbotin, D.; Reeves, G.; Ghil, M.

    2009-04-01

    We present first results of the UCLA-LANL Reanalysis Project. Radiation belt relativistic electron Phase Space Density is obtained using the data assimilative VERB code combined with observations from GEO, CRRES, and Akebono data. Reanalysis of data shows the pronounced peaks in the phase space density and pronounced dropouts of fluxes during the main phase of a storm. The results of the reanalysis are discussed and compared to the simulations with the recently developed VERB 3D code.

  16. Monte Carlo simulation of TrueBeam flattening-filter-free beams using varian phase-space files: comparison with experimental data.

    PubMed

    Belosi, Maria F; Rodriguez, Miguel; Fogliata, Antonella; Cozzi, Luca; Sempau, Josep; Clivio, Alessandro; Nicolini, Giorgia; Vanetti, Eugenio; Krauss, Harald; Khamphan, Catherine; Fenoglietto, Pascal; Puxeu, Josep; Fedele, David; Mancosu, Pietro; Brualla, Lorenzo

    2014-05-01

    Phase-space files for Monte Carlo simulation of the Varian TrueBeam beams have been made available by Varian. The aim of this study is to evaluate the accuracy of the distributed phase-space files for flattening filter free (FFF) beams, against experimental measurements from ten TrueBeam Linacs. The phase-space files have been used as input in PRIMO, a recently released Monte Carlo program based on the PENELOPE code. Simulations of 6 and 10 MV FFF were computed in a virtual water phantom for field sizes 3 × 3, 6 × 6, and 10 × 10 cm(2) using 1 × 1 × 1 mm(3) voxels and for 20 × 20 and 40 × 40 cm(2) with 2 × 2 × 2 mm(3) voxels. The particles contained in the initial phase-space files were transported downstream to a plane just above the phantom surface, where a subsequent phase-space file was tallied. Particles were transported downstream this second phase-space file to the water phantom. Experimental data consisted of depth doses and profiles at five different depths acquired at SSD = 100 cm (seven datasets) and SSD = 90 cm (three datasets). Simulations and experimental data were compared in terms of dose difference. Gamma analysis was also performed using 1%, 1 mm and 2%, 2 mm criteria of dose-difference and distance-to-agreement, respectively. Additionally, the parameters characterizing the dose profiles of unflattened beams were evaluated for both measurements and simulations. Analysis of depth dose curves showed that dose differences increased with increasing field size and depth; this effect might be partly motivated due to an underestimation of the primary beam energy used to compute the phase-space files. Average dose differences reached 1% for the largest field size. Lateral profiles presented dose differences well within 1% for fields up to 20 × 20 cm(2), while the discrepancy increased toward 2% in the 40 × 40 cm(2) cases. Gamma analysis resulted in an agreement of 100% when a 2%, 2 mm criterion was used, with the only exception of the 40 × 40 cm(2) field (∼95% agreement). With the more stringent criteria of 1%, 1 mm, the agreement reduced to almost 95% for field sizes up to 10 × 10 cm(2), worse for larger fields. Unflatness and slope FFF-specific parameters are in line with the possible energy underestimation of the simulated results relative to experimental data. The agreement between Monte Carlo simulations and experimental data proved that the evaluated Varian phase-space files for FFF beams from TrueBeam can be used as radiation sources for accurate Monte Carlo dose estimation, especially for field sizes up to 10 × 10 cm(2), that is the range of field sizes mostly used in combination to the FFF, high dose rate beams.

  17. Investigation of phase segregation using Rietveld refinement in Mg doped BaTiO3 solid solutions and their ferroelectric properties

    NASA Astrophysics Data System (ADS)

    Aanchal, Kaur, Kiranpreet; Singh, Anupinder; Singh, Mandeep

    2018-05-01

    Ba(1-x) Mgx Ti O3 (BMT) samples were synthesised using solid state reaction route with `x' varying from 0.025 to 0.10. The structural and ferroelectric properties of the bulk samples were investigated. The XRD analysis shows the presence of two phases, the first phase being magnesium doped BT (space group P4mm) and the second phase being Ba2TiO4 (space group Pna21). The tetragonal phase was found to be the major phase in the samples. The double phase Rietveld refinement was done and the weight percentage of orthorhombic phase was found to vary from 3.43% to 6.96% for x varying from 0.025≤x≤0.10. The P - E measurements reveal that all the samples exhibit lossy behaviour.

  18. Crystalline liquids: the blue phases

    NASA Astrophysics Data System (ADS)

    Wright, David C.; Mermin, N. David

    1989-04-01

    The blue phases of cholesteric liquid crystals are liquids that exhibit orientational order characterized by crystallographic space-group symmetries. We present here a pedagogical introduction to the current understanding of the equilibrium structure of these phases accompanied by a general overview of major experimental results. Using the Ginzburg-Landau free energy appropriate to the system, we first discuss in detail the character and stability of the usual helical phase of cholesterics, showing that for certain parameter ranges the helical phase is unstable to the appearance of one or more blue phases. The two principal models for the blue phases are two limiting cases of the Ginzburg-Landau theory. We explore each limit and conclude with some general considerations of defects in both models and an exact minimization of the free energy in a curved three-dimensional space.

  19. Space transfer concepts and analyses for exploration missions: Technical directive 10

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon R.

    1992-01-01

    The current technical effort is part of the third phase of a broad-scoped and systematic study of space transfer concepts for human lunar and Mars missions. The study addressed issues that were raised during the previous phases but specifically on launch vehicle size trades and MEV options.

  20. Classicalization by phase space measurements

    NASA Astrophysics Data System (ADS)

    Bolaños, Marduk

    2018-05-01

    This article provides an illustration of the measurement approach to the quantum–classical transition suitable for beginning graduate students. As an example, we apply this framework to a quantum system with a general quadratic Hamiltonian, and obtain the exact solution of the dynamics for an arbitrary measurement strength using phase space methods.

  1. Polycrystalline PLZT/ITO Ceramic Electro-Optic Phase Gratings: Electro- Optically Reconfigurable Diffractive Devices for Free-Space and In-Wafer Interconnects

    DTIC Science & Technology

    1994-09-01

    free-space and waveguide interconnects is investigated through the fabrication, testing and modeling of polycrystalline PLZT/ITO ceramic electro - optic phase...only gratings. PLZT Diffraction grating, Electro - optic diffraction grating, Optical switching, Optical interconnects, Reconfigurable interconnect

  2. Depositing spacing layers on magnetic film with liquid phase epitaxy

    NASA Technical Reports Server (NTRS)

    Moody, J. W.; Shaw, R. W.; Sanfort, R. M.

    1975-01-01

    Liquid phase epitaxy spacing layer is compatible with systems which are hard-bubble proofed by use of second magnetic garnet film as capping layer. Composite is superior in that: circuit fabrication time is reduced; adherence is superior; visibility is better; and, good match of thermal expansion coefficients is provided.

  3. Use of Probabilistic Engineering Methods in the Detailed Design and Development Phases of the NASA Ares Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Fayssal, Safie; Weldon, Danny

    2008-01-01

    The United States National Aeronautics and Space Administration (NASA) is in the midst of a space exploration program called Constellation to send crew and cargo to the international Space Station, to the moon, and beyond. As part of the Constellation program, a new launch vehicle, Ares I, is being developed by NASA Marshall Space Flight Center. Designing a launch vehicle with high reliability and increased safety requires a significant effort in understanding design variability and design uncertainty at the various levels of the design (system, element, subsystem, component, etc.) and throughout the various design phases (conceptual, preliminary design, etc.). In a previous paper [1] we discussed a probabilistic functional failure analysis approach intended mainly to support system requirements definition, system design, and element design during the early design phases. This paper provides an overview of the application of probabilistic engineering methods to support the detailed subsystem/component design and development as part of the "Design for Reliability and Safety" approach for the new Ares I Launch Vehicle. Specifically, the paper discusses probabilistic engineering design analysis cases that had major impact on the design and manufacturing of the Space Shuttle hardware. The cases represent important lessons learned from the Space Shuttle Program and clearly demonstrate the significance of probabilistic engineering analysis in better understanding design deficiencies and identifying potential design improvement for Ares I. The paper also discusses the probabilistic functional failure analysis approach applied during the early design phases of Ares I and the forward plans for probabilistic design analysis in the detailed design and development phases.

  4. Free space and waveguide Talbot effect: phase relations and planar light circuit applications

    NASA Astrophysics Data System (ADS)

    Nikkhah, H.; Zheng, Q.; Hasan, I.; Abdul-Majid, S.; Hall, T. J.

    2012-10-01

    Optical fields that are periodic in the transverse plane self-image periodically as they propagate along the optical axis: a phenomenon known as the Talbot effect. A transfer matrix may be defined that relates the amplitude and phase of point sources placed on a particular grid at the input to their respective multiple images at an image plane. The free-space Talbot effect may be mapped to the waveguide Talbot effect. Applying this mapping to the transfer matrix enables the prediction of the phase and amplitude relations between the ports of a Multimode Interference (MMI) coupler- a planar waveguide device. The transfer matrix approach has not previously been applied to the free-space case and its mapping to the waveguide case provides greater clarity and physical insight into the phase relationships than previous treatments. The paper first introduces the underlying physics of the Talbot effect in free space with emphasis on the positions along the optical axis at which images occur; their multiplicity; and their relative phase relations determined by the Gauss Quadratic Sum of number theory. The analysis is then adapted to predict the phase relationships between the ports of an MMI. These phase relationships are critical to planar light circuit (PLC) applications such as 90° optical hybrids for coherent optical receiver front-ends, external optical I-Q modulators for coherent optical transmitters; and optical phased array switches. These applications are illustrated by results obtained from devices that have been fabricated and tested by the PTLab in Si micro-photonic integration platforms.

  5. The Triangle of the Space Launch System Operations

    NASA Astrophysics Data System (ADS)

    Fayolle, Eric

    2010-09-01

    Firemen know it as “fire triangle”, mathematicians know it as “golden triangle”, sailormen know it as “Bermuda triangle”, politicians know it as “Weimar triangle”… This article aims to present a new aspect of that shape geometry in the space launch system world: “the triangle of the space launch system operations”. This triangle is composed of these three following topics, which have to be taken into account for any space launch system operation processing: design, safety and operational use. Design performance is of course taking into account since the early preliminary phase of a system development. This design performance is matured all along the development phases, thanks to consecutives iterations in order to respect the financial and timing constraints imposed to the development of the system. This process leads to a detailed and precise design to assess the required performance. Then, the operational use phase brings its batch of constraints during the use of the system. This phase is conducted by specific procedures for each operation. Each procedure has sequences for each sub-system, which have to be conducted in a very precise chronological way. These procedures can be processed by automatic way or manual way, with the necessity or not of the implication of operators, and in a determined environment. Safeguard aims to verify the respect of the specific constraints imposed to guarantee the safety of persons and property, the protection of public health and the environment. Safeguard has to be taken into account above the operational constraints of any space operation, without forgetting the highest safety level for the operators of the space operation, and of course without damaging the facilities or without disturbing the external environment. All space operations are the result of a “win-win” compromise between these three topics. Contrary to the fire triangle where one of the topics has to be suppressed in order to avoid the combustion, no topics at all should be suppressed in the triangle of the space launch system operations. Indeed, if safeguard is not considered since the beginning of the development phase, this development will not take into account safeguard constraints. Then, the operational phase will become very difficult because unavailable, to respect safety rules required for the operational use phase of the system. Taking into account safeguard constraints in late project phases will conduct to very high operational constraints, sometimes quite disturbing for the operator, even blocking to be able to consider the operational use phase as mature and optimized. On the contrary, if design performance is not taken into account in order to favor safeguard aspect in the operational use phase, system design will not be optimized, what will lead to high planning and timing impacts. The examples detailed in this article show the compromise for what each designer should confront with during the development of any system dealing with the safety of persons and property, the protection of public health and the environment.

  6. Multiplicity fluctuation analysis of target residues in nucleus-emulsion collisions at a few hundred MeV/nucleon

    NASA Astrophysics Data System (ADS)

    Zhang, Dong-Hai; Chen, Yan-Ling; Wang, Guo-Rong; Li, Wang-Dong; Wang, Qing; Yao, Ji-Jie; Zhou, Jian-Guo; Zheng, Su-Hua; Xu, Li-Ling; Miao, Hui-Feng; Wang, Peng

    2014-07-01

    Multiplicity fluctuation of the target evaporated fragments emitted in 290 MeV/u 12C-AgBr, 400 MeV/u 12C-AgBr, 400 MeV/u 20Ne-AgBr and 500 MeV/u 56Fe-AgBr interactions is investigated using the scaled factorial moment method in two-dimensional normal phase space and cumulative variable space, respectively. It is found that in normal phase space the scaled factorial moment (ln) increases linearly with the increase of the divided number of phase space (lnM)for lower q-value and increases linearly with the increase of lnM, and then becomes saturated or decreased for a higher q-value. In cumulative variable space ln decreases linearly with increase of lnM. This indicates that no evidence of non-statistical multiplicity fluctuation is observed in our data sets. So, any fluctuation indicated in the results of normal variable space analysis is totally caused by the non-uniformity of the single-particle density distribution.

  7. Requirement Generation for Space Infrastructure Systems

    NASA Astrophysics Data System (ADS)

    Hempsell, M.

    Despite heavy investment, in the half-century period between 1970 and 2020 there will almost no progress in the capability provided by the space infrastructure. It is argued that this is due to a failure during the requirement generation phase of the infrastructure's elements, a failure that is primarily due to following the accepted good practice of involving stakeholders while establishing a mission based set of technical requirements. This argument is supported by both a consideration of the history of the requirement generation phase of past space infrastructure projects, in particular the Space Shuttle, and an analysis of the interactions of the stakeholders during this phase. Traditional stakeholder involvement only works well in mature infrastructures where investment aims to make minor improvements, whereas space activity is still in the early experimental stages and is open to major new initiatives that aim to radically change the way we work in space. A new approach to requirement generation is proposed, which is more appropriate to these current circumstances. This uses a methodology centred on the basic functions the system is intended to perform rather than its expected missions.

  8. Decryption with incomplete cyphertext and multiple-information encryption in phase space.

    PubMed

    Xu, Xiaobin; Wu, Quanying; Liu, Jun; Situ, Guohai

    2016-01-25

    Recently, we have demonstrated that information encryption in phase space offers security enhancement over the traditional encryption schemes operating in real space. However, there is also an important issue with this technique: increasing the cost for data transmitting and storage. To address this issue, here we investigate the problem of decryption using incomplete cyphertext. We show that the analytic solution under the traditional framework set the lower limit of decryption performance. More importantly, we demonstrate that one just needs a small amount of cyphertext to recover the plaintext signal faithfully using compressive sensing, meaning that the amount of data that needs to transmit and store can be significantly reduced. This leads to multiple information encryption so that we can use the system bandwidth more effectively. We also provide an optical experimental result to demonstrate the plaintext recovered in phase space.

  9. The Nosé–Hoover looped chain thermostat for low temperature thawed Gaussian wave-packet dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coughtrie, David J.; Tew, David P.

    2014-05-21

    We have used a generalised coherent state resolution of the identity to map the quantum canonical statistical average for a general system onto a phase-space average over the centre and width parameters of a thawed Gaussian wave packet. We also propose an artificial phase-space density that has the same behaviour as the canonical phase-space density in the low-temperature limit, and have constructed a novel Nosé–Hoover looped chain thermostat that generates this density in conjunction with variational thawed Gaussian wave-packet dynamics. This forms a new platform for evaluating statistical properties of quantum condensed-phase systems that has an explicit connection to themore » time-dependent Schrödinger equation, whilst retaining many of the appealing features of path-integral molecular dynamics.« less

  10. Request for regular monitoring of the symbiotic variable RT Cru

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2014-08-01

    Dr. Margarita Karovska (Harvard-Smithsonian Center for Astrophysics) and colleagues have requested AAVSO observer assistance in their campaign on the symbiotic variable RT Cru (member of a new class of hard X-ray emitting symbiotic binaries). Weekly or more frequent monitoring (B, V, and visual) beginning now is requested in support of upcoming Chandra observations still to be scheduled. "We plan Chandra observations of RT Cru in the near future that will help us understand the characteristics of the accretion onto the white dwarf in this sub-class of symbiotics. This is an important step for determining the precursor conditions for formation of a fraction of asymmetric Planetary Nebulae, and the potential of symbiotic systems as progenitors of at least a fraction of Type Ia supernovae." Finder charts with sequence may be created using the AAVSO Variable Star Plotter (http://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details and observations.

  11. Computer-generated mineral commodity deposit maps

    USGS Publications Warehouse

    Schruben, Paul G.; Hanley, J. Thomas

    1983-01-01

    This report describes an automated method of generating deposit maps of mineral commodity information. In addition, it serves as a user's manual for the authors' mapping system. Procedures were developed which allow commodity specialists to enter deposit information, retrieve selected data, and plot deposit symbols in any geographic area within the conterminous United States. The mapping system uses both micro- and mainframe computers. The microcomputer is used to input and retrieve information, thus minimizing computing charges. The mainframe computer is used to generate map plots which are printed by a Calcomp plotter. Selector V data base system is employed for input and retrieval on the microcomputer. A general mapping program (Genmap) was written in FORTRAN for use on the mainframe computer. Genmap can plot fifteen symbol types (for point locations) in three sizes. The user can assign symbol types to data items interactively. Individual map symbols can be labeled with a number or the deposit name. Genmap also provides several geographic boundary file and window options.

  12. Grid-coordinate generation program

    USGS Publications Warehouse

    Cosner, Oliver J.; Horwich, Esther

    1974-01-01

    This program description of the grid-coordinate generation program is written for computer users who are familiar with digital aquifer models. The program computes the coordinates for a variable grid -used in the 'Pinder Model' (a finite-difference aquifer simulator), for input to the CalComp GPCP (general purpose contouring program). The program adjusts the y-value by a user-supplied constant in order to transpose the origin of the model grid from the upper left-hand corner to the lower left-hand corner of the grid. The user has the options of, (1.) choosing the boundaries of the plot; (2.) adjusting the z-values (altitudes) by a constant; (3.) deleting superfluous z-values and (4.) subtracting the simulated surfaces from each other to obtain the decline. Output of this program includes the fixed format CNTL data cards and the other data cards required for input to GPCP. The output from GPCP then is used to produce a potentiometric map or a decline map by means of the CalComp plotter.

  13. Rotordynamics on the PC: Transient Analysis With ARDS

    NASA Technical Reports Server (NTRS)

    Fleming, David P.

    1997-01-01

    Personal computers can now do many jobs that formerly required a large mainframe computer. An example is NASA Lewis Research Center's program Analysis of RotorDynamic Systems (ARDS), which uses the component mode synthesis method to analyze the dynamic motion of up to five rotating shafts. As originally written in the early 1980's, this program was considered large for the mainframe computers of the time. ARDS, which was written in Fortran 77, has been successfully ported to a 486 personal computer. Plots appear on the computer monitor via calls programmed for the original CALCOMP plotter; plots can also be output on a standard laser printer. The executable code, which uses the full array sizes of the mainframe version, easily fits on a high-density floppy disk. The program runs under DOS with an extended memory manager. In addition to transient analysis of blade loss, step turns, and base acceleration, with simulation of squeeze-film dampers and rubs, ARDS calculates natural frequencies and unbalance response.

  14. Collision of Physics and Software in the Monte Carlo Application Toolkit (MCATK)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweezy, Jeremy Ed

    2016-01-21

    The topic is presented in a series of slides organized as follows: MCATK overview, development strategy, available algorithms, problem modeling (sources, geometry, data, tallies), parallelism, miscellaneous tools/features, example MCATK application, recent areas of research, and summary and future work. MCATK is a C++ component-based Monte Carlo neutron-gamma transport software library with continuous energy neutron and photon transport. Designed to build specialized applications and to provide new functionality in existing general-purpose Monte Carlo codes like MCNP, it reads ACE formatted nuclear data generated by NJOY. The motivation behind MCATK was to reduce costs. MCATK physics involves continuous energy neutron & gammamore » transport with multi-temperature treatment, static eigenvalue (k eff and α) algorithms, time-dependent algorithm, and fission chain algorithms. MCATK geometry includes mesh geometries and solid body geometries. MCATK provides verified, unit-test Monte Carlo components, flexibility in Monte Carlo application development, and numerous tools such as geometry and cross section plotters.« less

  15. V390 Nor = Nova Normae 2007

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2007-06-01

    Nova Normae 2007 was discovered photographically by William Liller on June 15.086 UT at magnitude 9.4. Precise position measured by G. Bolt from his unfiltered CCD image of June 16.7 UT: 16:32:11.51 -45:09:13.4 (2000.0). Giorgio Di Scala reported to the AAVSO that a low-resolution spectrum indicates a nova a week or so after outburst, with strong H-alpha emission. E. Kazarovets, Sternberg Astronomical Institute, reports that N Nor 07 has been assigned the name V390 Nor. Discovery originally announced in IAU Central Bureau Electronic Telegram 982 (Daniel W. E. Green) and AAVSO Special Notice #49 (Arne Henden). Information in this Alert Notice was received at AAVSO from William Liller, Giorgio Di Scala, or via IAU Circular No. 8850, ed. Daniel W. E. Green. A chart for V390 Nor is available via the Variable Star Plotter (VSP). Go to: http://www.aavso.org/observing/charts/vsp/ and enter the name V390 NOR.

  16. Refactoring DIRT

    NASA Astrophysics Data System (ADS)

    Amarnath, N. S.; Pound, M. W.; Wolfire, M. G.

    The Dust InfraRed ToolBox (DIRT - a part of the Web Infrared ToolShed, or WITS, located at http://dustem.astro.umd.edu) is a Java applet for modeling astrophysical processes in circumstellar shells around young and evolved stars. DIRT has been used by the astrophysics community for about 4 years. DIRT uses results from a number of numerical models of astrophysical processes, and has an AWT based user interface. DIRT has been refactored to decouple data representation from plotting and curve fitting. This makes it easier to add new kinds of astrophysical models, use the plotter in other applications, migrate the user interface to Swing components, and modify the user interface to add functionality (for example, SIRTF tools). DIRT is now an extension of two generic libraries, one of which manages data representation and caching, and the second of which manages plotting and curve fitting. This project is an example of refactoring with no impact on user interface, so the existing user community was not affected.

  17. Nova Scorpii 2011 = PNV J16551100-3838120

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2011-06-01

    Announces the discovery of Nova Scorpii 2011 = PNV J16551100-3838120 by John Seach (Chatsworth Island, NSW, Australia) on 2011 June 1.40 UT at magnitude 9.5 (DSLR + orange filter). Spectra by Bernard Heathcote (South Yarra, Vic, Australia) on Jun 2.4896 UT, A. Arai, T. Kajikawa, and M. Nagashima (Kyoto Sangyo University, Japan) on 2011 June 2.68 UT, and Masayuki Yamanaka and Ryosuke Itoh (Hiroshima University, Japan) on Jun 2 UT indicate a highly-reddened classical nova. Initially reported to the AAVSO by Seach and announced in AAVSO Special Notice #240 (Arne Henden) and IAU CBET 2735 (Daniel W. E. Green, ed.). The object was designated PNV J18102135-2305306 when posted on the Central Bureau's Transient Objects Confirmation Page (TOCP) webpage. Finder charts with sequence may be created using the AAVSO Variable Star Plotter (http://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details, observations, and links to images. [Nova Sco 2011 subsequently assigned the name V1312 Sco

  18. The Position Control of the Surface Motor with the Poles Distribution of Triangular Lattice

    NASA Astrophysics Data System (ADS)

    Watada, Masaya; Katsuyama, Norikazu; Ebihara, Daiki

    Recently, as for the machine tools or industrial robots, high performance, accuracy, etc. are demanded. Generally, when drive of many degrees of freedom is required in the machine tools or industrial robots, it has realized by using two or more motors. For example, two-dimensional positioning stages such as the X-Y plotter or the X-Y stage are enabling the two-dimensional drive by using each one motor in the direction of x, y. In order to use plural motors, these, however, have problems that equipment becomes large and complicate control system. From such problems, the Surface Motor (SFM) that can drive two directions by only one motor is researched. Authors have proposed SFM that considered wide range movement and the application to a curved surface. In this paper, the characteristics of the micro step drive by the open loop control are showed. Introduction of closed loop control for highly accurate positioning, moreover, is examined. The drive characteristics by each control are compared.

  19. HYDES: A generalized hybrid computer program for studying turbojet or turbofan engine dynamics

    NASA Technical Reports Server (NTRS)

    Szuch, J. R.

    1974-01-01

    This report describes HYDES, a hybrid computer program capable of simulating one-spool turbojet, two-spool turbojet, or two-spool turbofan engine dynamics. HYDES is also capable of simulating two- or three-stream turbofans with or without mixing of the exhaust streams. The program is intended to reduce the time required for implementing dynamic engine simulations. HYDES was developed for running on the Lewis Research Center's Electronic Associates (EAI) 690 Hybrid Computing System and satisfies the 16384-word core-size and hybrid-interface limits of that machine. The program could be modified for running on other computing systems. The use of HYDES to simulate a single-spool turbojet and a two-spool, two-stream turbofan engine is demonstrated. The form of the required input data is shown and samples of output listings (teletype) and transient plots (x-y plotter) are provided. HYDES is shown to be capable of performing both steady-state design and off-design analyses and transient analyses.

  20. Practical somewhat-secure quantum somewhat-homomorphic encryption with coherent states

    NASA Astrophysics Data System (ADS)

    Tan, Si-Hui; Ouyang, Yingkai; Rohde, Peter P.

    2018-04-01

    We present a scheme for implementing homomorphic encryption on coherent states encoded using phase-shift keys. The encryption operations require only rotations in phase space, which commute with computations in the code space performed via passive linear optics, and with generalized nonlinear phase operations that are polynomials of the photon-number operator in the code space. This encoding scheme can thus be applied to any computation with coherent-state inputs, and the computation proceeds via a combination of passive linear optics and generalized nonlinear phase operations. An example of such a computation is matrix multiplication, whereby a vector representing coherent-state amplitudes is multiplied by a matrix representing a linear optics network, yielding a new vector of coherent-state amplitudes. By finding an orthogonal partitioning of the support of our encoded states, we quantify the security of our scheme via the indistinguishability of the encrypted code words. While we focus on coherent-state encodings, we expect that this phase-key encoding technique could apply to any continuous-variable computation scheme where the phase-shift operator commutes with the computation.

  1. Field measurement and estimate of gaseous and particle pollutant emissions from cooking and space heating processes in rural households, northern China

    NASA Astrophysics Data System (ADS)

    Chen, Yuanchen; Shen, Guofeng; Liu, Weijian; Du, Wei; Su, Shu; Duan, Yonghong; Lin, Nan; Zhuo, Shaojie; Wang, Xilong; Xing, Baoshan; Tao, Shu

    2016-01-01

    Pollutant emissions into outdoor air from cooking and space heating processes with various solid fuels were measured, and daily household emissions were estimated from the kitchen performance tests. The burning of honeycomb briquette had the lowest emission factors, while the use of wood produced the highest pollutants. Daily emissions from space heating were significantly higher than those from cooking, and the use of honeycomb briquette for cooking and raw coal chunk for space heating reduces 28%, 24% and 25% for CO, PM10 and PM2.5, compared to wood for cooking and peat for space heating. Much higher emissions were observed during the initial phase than the stable phase due to insufficient air supply and lower combustion temperature at the beginning of burning processes. However, more mass percent of fine particles formed in the later high temperature stable burning phase may increase potential inhalation exposure risks.

  2. Some dynamical aspects of interacting quintessence model

    NASA Astrophysics Data System (ADS)

    Choudhury, Binayak S.; Mondal, Himadri Shekhar; Chatterjee, Devosmita

    2018-04-01

    In this paper, we consider a particular form of coupling, namely B=σ (\\dot{ρ _m}-\\dot{ρ _φ }) in spatially flat (k=0) Friedmann-Lemaitre-Robertson-Walker (FLRW) space-time. We perform phase-space analysis for this interacting quintessence (dark energy) and dark matter model for different numerical values of parameters. We also show the phase-space analysis for the `best-fit Universe' or concordance model. In our analysis, we observe the existence of late-time scaling attractors.

  3. Space-Based Range Safety and Future Space Range Applications

    NASA Technical Reports Server (NTRS)

    Whiteman, Donald E.; Valencia, Lisa M.; Simpson, James C.

    2005-01-01

    The National Aeronautics and Space Administration (NASA) Space-Based Telemetry and Range Safety (STARS) study is a multiphase project to demonstrate the performance, flexibility and cost savings that can be realized by using space-based assets for the Range Safety [global positioning system (GPS) metric tracking data, flight termination command and range safety data relay] and Range User (telemetry) functions during vehicle launches and landings. Phase 1 included flight testing S-band Range Safety and Range User hardware in 2003 onboard a high-dynamic aircraft platform at Dryden Flight Research Center (Edwards, California, USA) using the NASA Tracking and Data Relay Satellite System (TDRSS) as the communications link. The current effort, Phase 2, includes hardware and packaging upgrades to the S-band Range Safety system and development of a high data rate Ku-band Range User system. The enhanced Phase 2 Range Safety Unit (RSU) provided real-time video for three days during the historic Global Flyer (Scaled Composites, Mojave, California, USA) flight in March, 2005. Additional Phase 2 testing will include a sounding rocket test of the Range Safety system and aircraft flight testing of both systems. Future testing will include a flight test on a launch vehicle platform. This paper discusses both Range Safety and Range User developments and testing with emphasis on the Range Safety system. The operational concept of a future space-based range is also discussed.

  4. Space-Based Range Safety and Future Space Range Applications

    NASA Technical Reports Server (NTRS)

    Whiteman, Donald E.; Valencia, Lisa M.; Simpson, James C.

    2005-01-01

    The National Aeronautics and Space Administration Space-Based Telemetry and Range Safety study is a multiphase project to demonstrate the performance, flexibility and cost savings that can be realized by using space-based assets for the Range Safety (global positioning system metric tracking data, flight termination command and range safety data relay) and Range User (telemetry) functions during vehicle launches and landings. Phase 1 included flight testing S-band Range Safety and Range User hardware in 2003 onboard a high-dynamic aircraft platform at Dryden Flight Research Center (Edwards, California) using the NASA Tracking and Data Relay Satellite System as the communications link. The current effort, Phase 2, includes hardware and packaging upgrades to the S-band Range Safety system and development of a high data rate Ku-band Range User system. The enhanced Phase 2 Range Safety Unit provided real-time video for three days during the historic GlobalFlyer (Scaled Composites, Mojave, California) flight in March, 2005. Additional Phase 2 testing will include a sounding rocket test of the Range Safety system and aircraft flight testing of both systems. Future testing will include a flight test on a launch vehicle platform. This report discusses both Range Safety and Range User developments and testing with emphasis on the Range Safety system. The operational concept of a future space-based range is also discussed.

  5. Study of two-phase flows in reduced gravity

    NASA Astrophysics Data System (ADS)

    Roy, Tirthankar

    Study of gas-liquid two-phase flows under reduced gravity conditions is extremely important. One of the major applications of gas-liquid two-phase flows under reduced gravity conditions is in the design of active thermal control systems for future space applications. Previous space crafts were characterized by low heat generation within the spacecraft which needed to be redistributed within the craft or rejected to space. This task could easily have been accomplished by pumped single-phase loops or passive systems such as heat pipes and so on. However with increase in heat generation within the space craft as predicted for future missions, pumped boiling two-phase flows are being considered. This is because of higher heat transfer co-efficients associated with boiling heat transfer among other advantages. Two-phase flows under reduced gravity conditions also find important applications in space propulsion as in space nuclear power reactors as well as in many other life support systems of space crafts. Two-fluid model along with Interfacial Area Transport Equation (IATE) is a useful tool available to predict the behavior of gas-liquid two-phase flows under reduced gravity conditions. It should be noted that considerable differences exist between two-phase flows under reduced and normal gravity conditions especially for low inertia flows. This is because due to suppression of the gravity field the gas-liquid two-phase flows take a considerable time to develop under reduced gravity conditions as compared to normal gravity conditions. Hence other common methods of analysis applicable for fully developed gas-liquid two-phase flows under normal gravity conditions, like flow regimes and flow regime transition criteria, will not be applicable to gas-liquid two-phase flows under reduced gravity conditions. However the two-fluid model and the IATE need to be evaluated first against detailed experimental data obtained under reduced gravity conditions. Although lot of studies have been done in the past to understand the global structure of gas-liquid two-phase flows under reduced gravity conditions, using experimental setups aboard drop towers or aircrafts flying parabolic flights, detailed data on local structure of such two-phase flows are extremely rare. Hence experiments were carried out in a 304 mm inner diameter (ID) test facility on earth. Keeping in mind the detailed experimental data base that needs to be generated to evaluate two-fluid model along with IATE, ground based simulations provide the only economic path. Here the reduced gravity condition is simulated using two-liquids of similar densities (water and Therminol 59 RTM in the present case). Only adiabatic two-phase flows were concentrated on at this initial stage. Such a large diameter test section was chosen to study the development of drops to their full extent (it is to be noted that under reduced gravity conditions the stable bubble size in gas-liquid two-phase flows is much larger than that at normal gravity conditions). Twelve flow conditions were chosen around predicted bubbly flow to cap-bubbly flow transition region. Detailed local data was obtained at ten radial locations for each of three axial locations using state-of-the art multi-sensor conductivity probes. The results are presented and discussed. Also one-group as well as two-group, steady state, one-dimensional IATE was evaluated against data obtained here and by other researchers, and the results presented and discussed.

  6. Phases of a stack of membranes in a large number of dimensions of configuration space

    NASA Astrophysics Data System (ADS)

    Borelli, M. E.; Kleinert, H.

    2001-05-01

    The phase diagram of a stack of tensionless membranes with nonlinear curvature energy and vertical harmonic interaction is calculated exactly in a large number of dimensions of configuration space. At low temperatures, the system forms a lamellar phase with spontaneously broken translational symmetry in the vertical direction. At a critical temperature, the stack disorders vertically in a meltinglike transition. The critical temperature is determined as a function of the interlayer separation l.

  7. APT, The Phase I Tool for HST Cycle 12

    NASA Astrophysics Data System (ADS)

    Blacker, B.; Berch, M.; Curtis, G.; Douglas, R.; Downes, R.; Krueger, A.; O'Dea, C.

    2002-12-01

    In our continuing effort to streamline our systems and improve service to the science community, the Space Telescope Science Institute (STScI) is developing and releasing, APT - The Astronomer's Proposal Tool as the new interface for Hubble Space Telescope (HST) Phase I and Phase II proposal submissions for HST Cycle 12. The goal of the APT, is to bring state of the art technology, more visual tools and power into the hands of proposers so that they can optimize the scientific return of their HST programs. Proposing for HST and other missions, consists of requesting observing time and/or archival research funding. This step is called Phase I, where the scientific merit of a proposal is considered by a community based peer-review process. Accepted proposals then proceed thru Phase II, where the observations are specified in sufficient detail to enable scheduling on the telescope. In this paper we will present our concept and implementation plans for our Phase I development and submission tool, APT. In addition, we will go behind the scenes and discuss the implications for the Science Policies Division (SPD) and other groups at the STScI caused by a new submission tool and submission output products. The Space Telescope Science Institute (STScI) is operated by the Association of Universities for Research in Astronomy, Inc., for the National Aeronautics and Space Administration.

  8. Advanced Exploration Systems Water Architecture Study Interim Results

    NASA Technical Reports Server (NTRS)

    Sargusingh, Miriam J.

    2013-01-01

    The mission of the Advanced Exploration System (AES) Water Recovery Project (WRP) is to develop advanced water recovery systems that enable NASA human exploration missions beyond low Earth orbit (LEO). The primary objective of the AES WRP is to develop water recovery technologies critical to near-term missions beyond LEO. The secondary objective is to continue to advance mid-readiness-level technologies to support future NASA missions. An effort is being undertaken to establish the architecture for the AES Water Recovery System (WRS) that meets both near- and long-term objectives. The resultant architecture will be used to guide future technical planning, establish a baseline development roadmap for technology infusion, and establish baseline assumptions for integrated ground and on-orbit Environmental Control and Life Support Systems definition. This study is being performed in three phases. Phase I established the scope of the study through definition of the mission requirements and constraints, as well as identifying all possible WRS configurations that meet the mission requirements. Phase II focused on the near-term space exploration objectives by establishing an International Space Station-derived reference schematic for long-duration (>180 day) in-space habitation. Phase III will focus on the long-term space exploration objectives, trading the viable WRS configurations identified in Phase I to identify the ideal exploration WRS. The results of Phases I and II are discussed in this paper.

  9. CNES reliability approach for the qualification of MEMS for space

    NASA Astrophysics Data System (ADS)

    Pressecq, Francis; Lafontan, Xavier; Perez, Guy; Fortea, Jean-Pierre

    2001-10-01

    This paper describes the reliability approach performs at CNES to evaluate MEMS for space application. After an introduction and a detailed state of the art on the space requirements and on the use of MEMS for space, different approaches for taking into account MEMS in the qualification phases are presented. CNES proposes improvement to theses approaches in term of failure mechanisms identification. Our approach is based on a design and test phase deeply linked with a technology study. This workflow is illustrated with an example: the case of a variable capacitance processed with MUMPS process is presented.

  10. Extending the scanning angle of a phased array antenna by using a null-space medium.

    PubMed

    Sun, Fei; He, Sailing

    2014-10-30

    By introducing a columnar null-space region as the reference space, we design a radome that can extend the scanning angle of a phased array antenna (PAA) by a predetermined relationship (e.g. a linear relationship between the incident angle and steered output angle can be achieved). After some approximation, we only need two homogeneous materials to construct the proposed radome layer by layer. This kind of medium is called a null-space medium, which has been studied and fabricated for realizing hyper-lenses and some other devices. Numerical simulations verify the performance of our radome.

  11. Space Transfer Concepts and Analyses for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon R.

    1993-01-01

    This report covers the third phase of a broad-scoped and systematic study of space transfer concepts for human lunar and Mars missions. The study addressed issues that were raised during Phase 2, developed generic Mars missions profile analysis data, and conducted preliminary analysis of the Mars in-space transportation requirements and implementation from Stafford Committee Synthesis Report. The major effort of the study was the development of the first Lunar Outpost (FLO) baseline which evolved from the Space Station Freedom Hab Module. Modifications for the First Lunar Outpost were made to meet mission requirements and technology advancements.

  12. Two-phase adiabatic pressure drop experiments and modeling under micro-gravity conditions

    NASA Astrophysics Data System (ADS)

    Longeot, Matthieu J.; Best, Frederick R.

    1995-01-01

    Thermal systems for space applications based on two phase flow have several advantages over single phase systems. Two phase thermal energy management and dynamic power conversion systems have the capability of achieving high specific power levels. However, before two phase systems for space applications can be designed effectively, knowledge of the flow behavior in a ``0-g'' acceleration environment is necessary. To meet this need, two phase flow experiments were conducted by the Interphase Transport Phenomena Laboratory Group (ITP) aboard the National Aeronautics and Space Administration's (NASA) KC-135, using R12 as the working fluid. The present work is concerned with modeling of two-phase pressure drop under 0-g conditions, for bubbly and slug flow regimes. The set of data from the ITP group includes 3 bubbly points, 9 bubbly/slug points and 6 slug points. These two phase pressure drop data were collected in 1991 and 1992. A methodology to correct and validate the data was developed to achieve high levels of confidence. A homogeneous model was developed to predict the pressure drop for particular flow conditions. This model, which uses the Blasius Correlation, was found to be accurate for bubbly and bubbly/slug flows, with errors not larger than 28%. For slug flows, however, the errors are greater, attaining values up to 66%.

  13. Identifying phase-space boundaries with Voronoi tessellations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debnath, Dipsikha; Gainer, James S.; Kilic, Can

    Determining the masses of new physics particles appearing in decay chains is an important and longstanding problem in high energy phenomenology. Recently it has been shown that these mass measurements can be improved by utilizing the boundary of the allowed region in the fully differentiable phase space in its full dimensionality. Here in this paper we show that the practical challenge of identifying this boundary can be solved using techniques based on the geometric properties of the cells resulting from Voronoi tessellations of the relevant data. The robust detection of such phase-space boundaries in the data could also be usedmore » to corroborate a new physics discovery based on a cut-and-count analysis.« less

  14. On the coplanar eccentric non-restricted co-orbital dynamics

    NASA Astrophysics Data System (ADS)

    Leleu, A.; Robutel, P.; Correia, A. C. M.

    2018-03-01

    We study the phase space of eccentric coplanar co-orbitals in the non-restricted case. Departing from the quasi-circular case, we describe the evolution of the phase space as the eccentricities increase. We find that over a given value of the eccentricity, around 0.5 for equal mass co-orbitals, important topological changes occur in the phase space. These changes lead to the emergence of new co-orbital configurations and open a continuous path between the previously distinct trojan domains near the L_4 and L_5 eccentric Lagrangian equilibria. These topological changes are shown to be linked with the reconnection of families of quasi-periodic orbits of non-maximal dimension.

  15. Identifying phase-space boundaries with Voronoi tessellations

    DOE PAGES

    Debnath, Dipsikha; Gainer, James S.; Kilic, Can; ...

    2016-11-24

    Determining the masses of new physics particles appearing in decay chains is an important and longstanding problem in high energy phenomenology. Recently it has been shown that these mass measurements can be improved by utilizing the boundary of the allowed region in the fully differentiable phase space in its full dimensionality. Here in this paper we show that the practical challenge of identifying this boundary can be solved using techniques based on the geometric properties of the cells resulting from Voronoi tessellations of the relevant data. The robust detection of such phase-space boundaries in the data could also be usedmore » to corroborate a new physics discovery based on a cut-and-count analysis.« less

  16. Phase space flows for non-Hamiltonian systems with constraints

    NASA Astrophysics Data System (ADS)

    Sergi, Alessandro

    2005-09-01

    In this paper, non-Hamiltonian systems with holonomic constraints are treated by a generalization of Dirac’s formalism. Non-Hamiltonian phase space flows can be described by generalized antisymmetric brackets or by general Liouville operators which cannot be derived from brackets. Both situations are treated. In the first case, a Nosé-Dirac bracket is introduced as an example. In the second one, Dirac’s recipe for projecting out constrained variables from time translation operators is generalized and then applied to non-Hamiltonian linear response. Dirac’s formalism avoids spurious terms in the response function of constrained systems. However, corrections coming from phase space measure must be considered for general perturbations.

  17. Space shuttle guidance, navigation, and control design equations. Volume 3: Guidance

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Space shuttle guidance, navigation, and control design equations are presented. The space-shuttle mission includes three relatively distinct guidance phases which are discussed; atmospheric boost, which is characterized by an adaptive guidance law; extra-atmospheric activities; and re-entry activities, where aerodynamic surfaces are the principal effectors. Guidance tasks include pre-maneuver targeting and powered flight guidance, where powered flight is defined to include the application of aerodynamic forces as well as thruster forces. A flow chart which follows guidance activities throughout the mission from the pre-launch phase through touchdown is presented. The main guidance programs and subroutines used in each phase of a typical rendezvous mission are listed. Detailed software requirements are also presented.

  18. Combining states without scale hierarchies with ordered parton showers

    DOE PAGES

    Fischer, Nadine; Prestel, Stefan

    2017-09-12

    Here, we present a parameter-free scheme to combine fixed-order multi-jet results with parton-shower evolution. The scheme produces jet cross sections with leading-order accuracy in the complete phase space of multiple emissions, resumming large logarithms when appropriate, while not arbitrarily enforcing ordering on momentum configurations beyond the reach of the parton-shower evolution equation. This then requires the development of a matrix-element correction scheme for complex phase-spaces including ordering conditions as well as a systematic scale-setting procedure for unordered phase-space points. Our algorithm does not require a merging-scale parameter. We implement the new method in the Vincia framework and compare to LHCmore » data.« less

  19. Longitudinal phase-space coating of beam in a storage ring

    NASA Astrophysics Data System (ADS)

    Bhat, C. M.

    2014-06-01

    In this Letter, I report on a novel scheme for beam stacking without any beam emittance dilution using a barrier rf system in synchrotrons. The general principle of the scheme called longitudinal phase-space coating, validation of the concept via multi-particle beam dynamics simulations applied to the Fermilab Recycler, and its experimental demonstration are presented. In addition, it has been shown and illustrated that the rf gymnastics involved in this scheme can be used in measuring the incoherent synchrotron tune spectrum of the beam in barrier buckets and in producing a clean hollow beam in longitudinal phase space. The method of beam stacking in synchrotrons presented here is the first of its kind.

  20. Third-space fluid shift in elderly patients undergoing gastrointestinal surgery: Part 1: Pathophysiological mechanisms.

    PubMed

    Redden, Maurine; Wotton, Karen

    2002-06-01

    Third-space fluid shift, the movement of body fluid to a non-functional space, is a frequently occurring and potentially fatal clinical phenomenon. Little published research exists however in medical or nursing journals concerning its incidence, significance and ramifications in elderly patients undergoing major gastrointestinal surgery. This initial article, part I, explores fluid movement between fluid compartments and uses these principles to discuss the pathophysiology of the two distinct phases of third-space fluid shift. Part II will examine the criteria nurses could use in the clinical assessment of patients in both first and second phases third-space fluid shift and discuss the clinical reliability of these criteria.

  1. Wave Geometry: a Plurality of Singularities

    NASA Astrophysics Data System (ADS)

    Berry, M. V.

    Five interconnected wave singularities are discussed: phase monopoles, at eigenvalue degeneracies in parameter space, where the 2-form generating the geomeeic phase is singular, phase dislocations, at zeros of complex wavefunctions in position space, where different wavefronts (surfaces of constant phase) meet; caustics, that is envelopes (foci) of families of classical paths or geometrical rays, where real rays are born violently and which are complementary to dislocations; Stokes sets, at which a complex ray is born gently where it is maximally dominated by another ray; and complex degeneracies, which are the sources of adiabatic quantum transtions in analytic Hamiltonians.

  2. Tracking and data systems support for the Helios project. Volume 1: Project development through end of mission, phase 2

    NASA Technical Reports Server (NTRS)

    Goodwin, P. S.; Traxler, M. R.; Meeks, W. G.; Flanagan, F. M.

    1976-01-01

    The overall evolution of the Helios Project is summarized from its conception through to the completion of the Helios-1 mission phase 2. Beginning with the project objectives and concluding with the Helios-1 spacecraft entering its first superior conjunction (end of mission phase 2), descriptions of the project, the mission and its phases, international management and interfaces, and Deep Space Network-spacecraft engineering development in telemetry, tracking, and command systems to ensure compatibility between the U.S. Deep Space Network and the German-built spacecraft are included.

  3. Combined loading criterial influence on structural performance

    NASA Technical Reports Server (NTRS)

    Kuchta, B. J.; Sealey, D. M.; Howell, L. J.

    1972-01-01

    An investigation was conducted to determine the influence of combined loading criteria on the space shuttle structural performance. The study consisted of four primary phases: Phase (1) The determination of the sensitivity of structural weight to various loading parameters associated with the space shuttle. Phase (2) The determination of the sensitivity of structural weight to various levels of loading parameter variability and probability. Phase (3) The determination of shuttle mission loading parameters variability and probability as a function of design evolution and the identification of those loading parameters where inadequate data exists. Phase (4) The determination of rational methods of combining both deterministic time varying and probabilistic loading parameters to provide realistic design criteria. The study results are presented.

  4. Fermion masses through four-fermion condensates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayyar, Venkitesh; Chandrasekharan, Shailesh

    Fermion masses can be generated through four-fermion condensates when symmetries prevent fermion bilinear condensates from forming. This less explored mechanism of fermion mass generation is responsible for making four reduced staggered lattice fermions massive at strong couplings in a lattice model with a local four-fermion coupling. The model has a massless fermion phase at weak couplings and a massive fermion phase at strong couplings. In particular there is no spontaneous symmetry breaking of any lattice symmetries in both these phases. Recently it was discovered that in three space-time dimensions there is a direct second order phase transition between the twomore » phases. Here we study the same model in four space-time dimensions and find results consistent with the existence of a narrow intermediate phase with fermion bilinear condensates, that separates the two asymptotic phases by continuous phase transitions.« less

  5. Microwave performance characterization of large space antennas

    NASA Technical Reports Server (NTRS)

    Bathker, D. A. (Editor)

    1977-01-01

    Performance capabilities of large microwave space antenna configurations with apertures generally from 100 wavelengths upwards are discussed. Types of antennas considered include: phased arrays, lenses, reflectors, and hybrid combinations of phased arrays with reflectors or lenses. The performance characteristics of these broad classes of antennas are examined and compared in terms of applications.

  6. Space Shuttle Range Safety Command Destruct System Analysis and Verification. Phase 1. Destruct System Analysis and Verification

    DTIC Science & Technology

    1981-03-01

    overcome the shortcomings of this system. A phase III study develops the breakup model of the Space Shuttle clus’ter at various times into flight. The...2-1 ROCKET MODEL ..................................................... 2-5 COMBUSTION CHAMBER OPERATION ................................... 2-5...2-19 RESULTS .......................................................... 2-22 ROCKET MODEL

  7. Modular space station phase B extension program master plan

    NASA Technical Reports Server (NTRS)

    Munsey, E. H.

    1971-01-01

    The project is defined for design, development, fabrication, test, and pre-mission and mission operations of a shuttle-launched modular space station. The project management approach is described in terms of organization, management requirements, work breakdown structure, schedule, time-phased logic, implementation plans, manpower, and funding. The programmatic and technical problems are identified.

  8. DICE/ColDICE: 6D collisionless phase space hydrodynamics using a lagrangian tesselation

    NASA Astrophysics Data System (ADS)

    Sousbie, Thierry

    2018-01-01

    DICE is a C++ template library designed to solve collisionless fluid dynamics in 6D phase space using massively parallel supercomputers via an hybrid OpenMP/MPI parallelization. ColDICE, based on DICE, implements a cosmological and physical VLASOV-POISSON solver for cold systems such as dark matter (CDM) dynamics.

  9. 14 CFR 91.865 - Phased compliance for operators with base level.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Phased compliance for operators with base level. 91.865 Section 91.865 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF....867 or to foreign operators not engaged in foreign air commerce. (b) Each operator that chooses to...

  10. 14 CFR 91.865 - Phased compliance for operators with base level.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Phased compliance for operators with base level. 91.865 Section 91.865 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF....867 or to foreign operators not engaged in foreign air commerce. (b) Each operator that chooses to...

  11. Infinite-mode squeezed coherent states and non-equilibrium statistical mechanics (phase-space-picture approach)

    NASA Technical Reports Server (NTRS)

    Yeh, Leehwa

    1993-01-01

    The phase-space-picture approach to quantum non-equilibrium statistical mechanics via the characteristic function of infinite-mode squeezed coherent states is introduced. We use quantum Brownian motion as an example to show how this approach provides an interesting geometrical interpretation of quantum non-equilibrium phenomena.

  12. Phase space deformations in phantom cosmology

    NASA Astrophysics Data System (ADS)

    López, J. L.; Sabido, M.; Yee-Romero, C.

    2018-03-01

    We discuss the physical consequences of general phase space deformations on the minisuperspace of phantom cosmology. Based on the principle of physically equivalent descriptions in the deformed theory, we investigate for what values of the deformation parameters the arising descriptions are physically equivalent. We also construct and solve the quantum model and derive the semiclassical dynamics.

  13. Space shuttle navigation analysis. Volume 1: GPS aided navigation

    NASA Technical Reports Server (NTRS)

    Matchett, G. A.; Vogel, M. A.; Macdonald, T. J.

    1980-01-01

    Analytical studies related to space shuttle navigation are presented. Studies related to the addition of NAVSTAR Global Positioning System user equipment to the shuttle avionics suite are presented. The GPS studies center about navigation accuracy covariance analyses for both developmental and operational phases of GPS, as well as for various orbiter mission phases.

  14. Space station final study report. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Volume 1 of the Final Study Report provides an Executive Summary of the Phase B study effort conducted under contract NAS8-36526. Space station Phase B implementation resulted in the timely establishment of preliminary design tasks, including trades and analyses. A comprehensive summary of project activities in conducting this study effort is included.

  15. Zonal-flow dynamics from a phase-space perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruiz, D. E.; Parker, J. B.; Shi, E. L.

    The wave kinetic equation (WKE) describing drift-wave (DW) turbulence is widely used in the studies of zonal flows (ZFs) emerging from DW turbulence. But, this formulation neglects the exchange of enstrophy between DWs and ZFs and also ignores effects beyond the geometrical-optics limit. Furthermore, we derive a modified theory that takes both of these effects into account, while still treating DW quanta (“driftons”) as particles in phase space. The drifton dynamics is described by an equation of the Wigner–Moyal type, which is commonly known in the phase-space formulation of quantum mechanics. In the geometrical-optics limit, this formulation features additional termsmore » missing in the traditional WKE that ensure exact conservation of the total enstrophy of the system, in addition to the total energy, which is the only conserved invariant in previous theories based on the WKE. We present numerical simulations to illustrate the importance of these additional terms. The proposed formulation can be considered as a phase-space representation of the second-order cumulant expansion, or CE2.« less

  16. Medical care capabilities for Space Station Freedom: A phase approach

    NASA Technical Reports Server (NTRS)

    Doarn, C. R.; Lloyd, C. W.

    1992-01-01

    As a result of Congressional mandate Space Station Freedom (SSF) was restructured. This restructuring activity has affected the capabilities for providing medical care on board the station. This presentation addresses the health care facility to be built and used on the orbiting space station. This unit, named the Health Maintenance Facility (HMF) is based on and modeled after remote, terrestrial medical facilities. It will provide a phased approach to health care for the crews of SSF. Beginning with a stabilization and transport phase, HMF will expand to provide the most advanced state of the art therapeutic and diagnostic capabilities. This presentation details the capabilities of such a phased HMF. As Freedom takes form over the next decade there will be ever-increasing engineering and scientific developmental activities. The HMF will evolve with this process until it eventually reaches a mature, complete stand-alone health care facility that provides a foundation to support interplanetary travel. As man's experience in space continues to grow so will the ability to provide advanced health care for Earth-orbital and exploratory missions as well.

  17. Zonal-flow dynamics from a phase-space perspective

    DOE PAGES

    Ruiz, D. E.; Parker, J. B.; Shi, E. L.; ...

    2016-12-16

    The wave kinetic equation (WKE) describing drift-wave (DW) turbulence is widely used in the studies of zonal flows (ZFs) emerging from DW turbulence. But, this formulation neglects the exchange of enstrophy between DWs and ZFs and also ignores effects beyond the geometrical-optics limit. Furthermore, we derive a modified theory that takes both of these effects into account, while still treating DW quanta (“driftons”) as particles in phase space. The drifton dynamics is described by an equation of the Wigner–Moyal type, which is commonly known in the phase-space formulation of quantum mechanics. In the geometrical-optics limit, this formulation features additional termsmore » missing in the traditional WKE that ensure exact conservation of the total enstrophy of the system, in addition to the total energy, which is the only conserved invariant in previous theories based on the WKE. We present numerical simulations to illustrate the importance of these additional terms. The proposed formulation can be considered as a phase-space representation of the second-order cumulant expansion, or CE2.« less

  18. Performance Assessment of the Exploration Water Recovery System

    NASA Technical Reports Server (NTRS)

    Carter. D. Layne; Tabb, David; Perry, Jay

    2008-01-01

    A new water recovery system architecture designed to fulfill the National Aeronautics and Space Administration s (NASA) Space Exploration Policy has been tested at the Marshall Space Flight Center (MSFC). This water recovery system architecture evolved from the current state-of-the-art system developed for the International Space Station (ISS). Through novel integration of proven technologies for air and water purification, this system promises to elevate existing system optimization. The novel aspect of the system is twofold. First, volatile organic compounds (VOC) are removed from the cabin air via catalytic oxidation in the vapor phase, prior to their absorption into the aqueous phase. Second, vapor compression distillation (VCD) technology processes the condensate and hygiene waste streams in addition to the urine waste stream. Oxidation kinetics dictate that removing VOCs from the vapor phase is more efficient. Treating the various waste streams by VCD reduces the load on the expendable ion exchange and adsorption media which follows, as well as the aqueous-phase catalytic oxidation process further downstream. This paper documents the results of testing this new architecture.

  19. Some intriguing aspects of multiparticle production processes

    NASA Astrophysics Data System (ADS)

    Wilk, Grzegorz; Włodarczyk, Zbigniew

    2018-04-01

    Multiparticle production processes provide valuable information about the mechanism of the conversion of the initial energy of projectiles into a number of secondaries by measuring their multiplicity distributions and their distributions in phase space. They therefore serve as a reference point for more involved measurements. Distributions in phase space are usually investigated using the statistical approach, very successful in general but failing in cases of small colliding systems, small multiplicities, and at the edges of the allowed phase space, in which cases the underlying dynamical effects competing with the statistical distributions take over. We discuss an alternative approach, which applies to the whole phase space without detailed knowledge of dynamics. It is based on a modification of the usual statistics by generalizing it to a superstatistical form. We stress particularly the scaling and self-similar properties of such an approach manifesting themselves as the phenomena of the log-periodic oscillations and oscillations of temperature caused by sound waves in hadronic matter. Concerning the multiplicity distributions we discuss in detail the phenomenon of the oscillatory behavior of the modified combinants apparently observed in experimental data.

  20. Spectrometers for compact neutron sources

    NASA Astrophysics Data System (ADS)

    Voigt, J.; Böhm, S.; Dabruck, J. P.; Rücker, U.; Gutberlet, T.; Brückel, T.

    2018-03-01

    We discuss the potential for neutron spectrometers at novel accelerator driven compact neutron sources. Such a High Brilliance Source (HBS) relies on low energy nuclear reactions, which enable cryogenic moderators in very close proximity to the target and neutron optics at comparably short distances from the moderator compared to existing sources. While the first effect aims at increasing the phase space density of a moderator, the second allows the extraction of a large phase space volume, which is typically requested for spectrometer applications. We find that competitive spectrometers can be realized if (a) the neutron production rate can be synchronized with the experiment repetition rate and (b) the emission characteristics of the moderator can be matched to the phase space requirements of the experiment. MCNP simulations for protons or deuterons on a Beryllium target with a suitable target/moderator design yield a source brightness, from which we calculate the sample fluxes by phase space considerations for different types of spectrometers. These match closely the figures of todays spectrometers at medium flux sources. Hence we conclude that compact neutron sources might be a viable option for next generation neutron sources.

  1. Hierarchical structure in sharply divided phase space for the piecewise linear map

    NASA Astrophysics Data System (ADS)

    Akaishi, Akira; Aoki, Kazuki; Shudo, Akira

    2017-05-01

    We have studied a two-dimensional piecewise linear map to examine how the hierarchical structure of stable regions affects the slow dynamics in Hamiltonian systems. In the phase space there are infinitely many stable regions, each of which is polygonal-shaped, and the rest is occupied by chaotic orbits. By using symbolic representation of stable regions, a procedure to compute the edges of the polygons is presented. The stable regions are hierarchically distributed in phase space and the edges of the stable regions show the marginal instability. The cumulative distribution of the recurrence time obeys a power law as ˜t-2 , the same as the one for the system with phase space, which is composed of a single stable region and chaotic components. By studying the symbol sequence of recurrence trajectories, we show that the hierarchical structure of stable regions has no significant effect on the power-law exponent and that only the marginal instability on the boundary of stable regions is responsible for determining the exponent. We also discuss the relevance of the hierarchical structure to those in more generic chaotic systems.

  2. Local phase space and edge modes for diffeomorphism-invariant theories

    NASA Astrophysics Data System (ADS)

    Speranza, Antony J.

    2018-02-01

    We discuss an approach to characterizing local degrees of freedom of a subregion in diffeomorphism-invariant theories using the extended phase space of Donnelly and Freidel [36]. Such a characterization is important for defining local observables and entanglement entropy in gravitational theories. Traditional phase space constructions for subregions are not invariant with respect to diffeomorphisms that act at the boundary. The extended phase space remedies this problem by introducing edge mode fields at the boundary whose transformations under diffeomorphisms render the extended symplectic structure fully gauge invariant. In this work, we present a general construction for the edge mode symplectic structure. We show that the new fields satisfy a surface symmetry algebra generated by the Noether charges associated with the edge mode fields. For surface-preserving symmetries, the algebra is universal for all diffeomorphism-invariant theories, comprised of diffeomorphisms of the boundary, SL(2, ℝ) transformations of the normal plane, and, in some cases, normal shearing transformations. We also show that if boundary conditions are chosen such that surface translations are symmetries, the algebra acquires a central extension.

  3. Design and analysis of low-loss linear analog phase modulator for deep space spacecraft X-band transponder (DST) application

    NASA Technical Reports Server (NTRS)

    Mysoor, Narayan R.; Mueller, Robert O.

    1991-01-01

    This paper summarizes the design concepts, analyses, and the development of an X-band transponder low-loss linear phase modulator for deep space spacecraft applications. A single section breadboard circulator-coupled reflection phase modulator has been analyzed, fabricated, and evaluated. Two- and three-cascaded sections have been modeled and simulations performed to provide an X-band DST phase modulator with +/- 2.5 radians of peak phase deviation to accommodate down-link signal modulation with composite telemetry data and ranging with a deviation linearity tolerance +/- 8 percent and insertion loss of less than 10 +/- 0.5 dB. A two-section phase modulator using constant gamma hyperabrupt varactors and an efficient modulator driver circuit was breadboarded. The measured results satisfy the DST phase modulator requirements, and excellent agreement with the predicted results.

  4. Dimension of quantum phase space measured by photon correlations

    NASA Astrophysics Data System (ADS)

    Leuchs, Gerd; Glauber, Roy J.; Schleich, Wolfgang P.

    2015-06-01

    We show that the different values 1, 2 and 3 of the normalized second-order correlation function {g}(2)(0) corresponding to a coherent state, a thermal state and a highly squeezed vacuum originate from the different dimensionality of these states in phase space. In particular, we derive an exact expression for {g}(2)(0) in terms of the ratio of the moments of the classical energy evaluated with the Wigner function of the quantum state of interest and corrections proportional to the reciprocal of powers of the average number of photons. In this way we establish a direct link between {g}(2)(0) and the shape of the state in phase space. Moreover, we illuminate this connection by demonstrating that in the semi-classical limit the familiar photon statistics of a thermal state arise from an area in phase space weighted by a two-dimensional Gaussian, whereas those of a highly squeezed state are governed by a line-integral of a one-dimensional Gaussian. We dedicate this article to Margarita and Vladimir Man’ko on the occasion of their birthdays. The topic of our contribution is deeply rooted in and motivated by their love for non-classical light, quantum mechanical phase space distribution functions and orthogonal polynomials. Indeed, through their articles, talks and most importantly by many stimulating discussions and intensive collaborations with us they have contributed much to our understanding of physics. Happy birthday to you both!

  5. Dynamics in multiple-well Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Nigro, M.; Capuzzi, P.; Cataldo, H. M.; Jezek, D. M.

    2018-01-01

    We study the dynamics of three-dimensional weakly linked Bose-Einstein condensates using a multimode model with an effective interaction parameter. The system is confined by a ring-shaped four-well trapping potential. By constructing a two-mode Hamiltonian in a reduced highly symmetric phase space, we examine the periodic orbits and calculate their time periods both in the self-trapping and Josephson regimes. The dynamics in the vicinity of the reduced phase space is investigated by means of a Floquet multiplier analysis, finding regions of different linear stability and analyzing their implications on the exact dynamics. The numerical exploration in an extended region of the phase space demonstrates that two-mode tools can also be useful for performing a partition of the space in different regimes. Comparisons with Gross-Pitaevskii simulations confirm these findings and emphasize the importance of properly determining the effective on-site interaction parameter governing the multimode dynamics.

  6. Design of an ammonia two-phase Prototype Thermal Bus for Space Station

    NASA Technical Reports Server (NTRS)

    Brown, Richard F.; Gustafson, Eric; Parish, Richard

    1987-01-01

    The feasibility of two-phase heat transport systems for use on Space Station was demonstrated by testing the Thermal Bus Technology Demonstrator (TBTD) as part of the Integrated Two-Phase System Test in NASA-JSC's Thermal Test Bed. Under contract to NASA-JSC, Grumman is currently developing the successor to the TBTD, the Prototype Thermal Bus System (TBS). The TBS design, which uses ammonia as the working fluid, is intended to achieve a higher fidelity level than the TBTD by incorporating both improvements based on TBTD testing and realistic design margins, and by addressing Space Station issues such as redundancy and maintenance. The TBS is currently being fabricated, with testing scheduled for late 1987/early 1988. This paper describes the TBS design which features fully redundant plumbing loops, five evaporators designed to represent different heat acquisition interfaces, 14 condensers which mate with either space radiators or facility heat exchangers, and several modular components.

  7. Low-energy Lunar Trajectories with Lunar Flybys

    NASA Astrophysics Data System (ADS)

    Wei, B. W.; Li, Y. S.

    2017-09-01

    The low-energy lunar trajectories with lunar flybys are investigated in the Sun-Earth-Moon bicircular problem (BCP). Accordingly, the characteristics of the distribution of trajectories in the phase space are summarized. To begin with, by using invariant manifolds of the BCP system, the low-energy lunar trajectories with lunar flybys are sought based on the BCP model. Secondly, through the treating time as an augmented dimension in the phase space of nonautonomous system, the state space map that reveals the distribution of these lunar trajectories in the phase space is given. As a result, it is become clear that low-energy lunar trajectories exist in families, and every moment of a Sun-Earth-Moon synodic period can be the departure date. Finally, the changing rule of departure impulse, midcourse impulse at Poincaré section, transfer duration, and system energy of different families are analyzed. Consequently, the impulse optimal family and transfer duration optimal family are obtained respectively.

  8. Combinatorial-topological framework for the analysis of global dynamics.

    PubMed

    Bush, Justin; Gameiro, Marcio; Harker, Shaun; Kokubu, Hiroshi; Mischaikow, Konstantin; Obayashi, Ippei; Pilarczyk, Paweł

    2012-12-01

    We discuss an algorithmic framework based on efficient graph algorithms and algebraic-topological computational tools. The framework is aimed at automatic computation of a database of global dynamics of a given m-parameter semidynamical system with discrete time on a bounded subset of the n-dimensional phase space. We introduce the mathematical background, which is based upon Conley's topological approach to dynamics, describe the algorithms for the analysis of the dynamics using rectangular grids both in phase space and parameter space, and show two sample applications.

  9. Combinatorial-topological framework for the analysis of global dynamics

    NASA Astrophysics Data System (ADS)

    Bush, Justin; Gameiro, Marcio; Harker, Shaun; Kokubu, Hiroshi; Mischaikow, Konstantin; Obayashi, Ippei; Pilarczyk, Paweł

    2012-12-01

    We discuss an algorithmic framework based on efficient graph algorithms and algebraic-topological computational tools. The framework is aimed at automatic computation of a database of global dynamics of a given m-parameter semidynamical system with discrete time on a bounded subset of the n-dimensional phase space. We introduce the mathematical background, which is based upon Conley's topological approach to dynamics, describe the algorithms for the analysis of the dynamics using rectangular grids both in phase space and parameter space, and show two sample applications.

  10. Solid Surface Combustion Experiment

    NASA Image and Video Library

    1994-09-12

    STS064-10-011 (12 Sept. 1994) --- The Solid Surface Combustion Experiment (SSCE), designed to supply information on flame spread over solid fuel surfaces in the reduced-gravity environment of space, is pictured during flight day four operations. The middeck experiment measured the rate of spreading, the solid-phase temperature, and the gas-phase temperature of flames spreading over rectangular fuel beds. STS-64 marked the seventh trip into space for the Lewis Research Center experiment. Photo credit: NASA or National Aeronautics and Space Administration

  11. Atmospheric constraint statistics for the Space Shuttle mission planning

    NASA Technical Reports Server (NTRS)

    Smith, O. E.

    1983-01-01

    The procedures used to establish statistics of atmospheric constraints of interest to the Space Shuttle mission planning are presented. The statistics considered are for the frequency of occurrence, runs, and time conditional probabilities of several atmospheric constraints for each of the Space Shuttle mission phases. The mission phases considered are (1) prelaunch, (2) launch operations, (3) return to launch site, (4) abort once around landing, and (5) end of mission landing. Previously announced in STAR as N82-33417

  12. Legacy and Emergence of Spaceport Technology Development at the Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Starr, Stanley; Voska, Ned (Technical Monitor)

    2003-01-01

    Kennedy Space Center (KSC) has a long and successful legacy in the checkout and launch of missiles and space vehicles. These operations have become significantly more complex, and their evolution has driven the need for many technology developments. Unanticipated events have also underscored the need for a local, highly responsive technology development and testing capability. This evolution is briefly described, as well as the increasing level of technology capability at KSC. The importance of these technologies in achieving past national space goals suggests that the accomplishment of low-cost and reliable access to space will depend critically upon KSC's future success in developing spaceport technologies. This paper concludes with a description KSC's current organizational approach and major thrust areas in technology development. The first phase of our historical review focuses on the development and testing of field- deployable short- and intermediate-range ballistic missiles (1953 to 1958). These vehicles are later pressed into service as space launchers. The second phase involves the development of large space lift vehicles culminating in the Saturn V launches (1959 to 1975). The third phase addresses the development and operations of the partially reusable launch vehicle, Space Shuttle (1976 to 2000). In the current era, KSC is teaming with the U.S. Air Force (AF), industry, academia, and other partners to identify and develop Spaceport and Range Technologies necessary to achieve national space goals of lower-cost and higher-reliability space flight.

  13. BUDHIES II: a phase-space view of H I gas stripping and star formation quenching in cluster galaxies

    NASA Astrophysics Data System (ADS)

    Jaffé, Yara L.; Smith, Rory; Candlish, Graeme N.; Poggianti, Bianca M.; Sheen, Yun-Kyeong; Verheijen, Marc A. W.

    2015-04-01

    We investigate the effect of ram-pressure from the intracluster medium on the stripping of H I gas in galaxies in a massive, relaxed, X-ray bright, galaxy cluster at z = 0.2 from the Blind Ultra Deep H I Environmental Survey (BUDHIES). We use cosmological simulations, and velocity versus position phase-space diagrams to infer the orbital histories of the cluster galaxies. In particular, we embed a simple analytical description of ram-pressure stripping in the simulations to identify the regions in phase-space where galaxies are more likely to have been sufficiently stripped of their H I gas to fall below the detection limit of our survey. We find a striking agreement between the model predictions and the observed location of H I-detected and non-detected blue (late-type) galaxies in phase-space, strongly implying that ram-pressure plays a key role in the gas removal from galaxies, and that this can happen during their first infall into the cluster. However, we also find a significant number of gas-poor, red (early-type) galaxies in the infall region of the cluster that cannot easily be explained with our model of ram-pressure stripping alone. We discuss different possible additional mechanisms that could be at play, including the pre-processing of galaxies in their previous environment. Our results are strengthened by the distribution of galaxy colours (optical and UV) in phase-space, that suggests that after a (gas-rich) field galaxy falls into the cluster, it will lose its gas via ram-pressure stripping, and as it settles into the cluster, its star formation will decay until it is completely quenched. Finally, this work demonstrates the utility of phase-space diagrams to analyse the physical processes driving the evolution of cluster galaxies, in particular H I gas stripping.

  14. The Linear Parameters and the Decoupling Matrix for Linearly Coupled Motion in 6 Dimensional Phase Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parzen, George

    It will be shown that starting from a coordinate system where the 6 phase space coordinates are linearly coupled, one can go to a new coordinate system, where the motion is uncoupled, by means of a linear transformation. The original coupled coordinates and the new uncoupled coordinates are related by a 6 x 6 matrix, R. R will be called the decoupling matrix. It will be shown that of the 36 elements of the 6 x 6 decoupling matrix R, only 12 elements are independent. This may be contrasted with the results for motion in 4- dimensional phase space, wheremore » R has 4 independent elements. A set of equations is given from which the 12 elements of R can be computed from the one period transfer matrix. This set of equations also allows the linear parameters, the β i,α i, i = 1, 3, for the uncoupled coordinates, to be computed from the one period transfer matrix. An alternative procedure for computing the linear parameters,β i,α i, i = 1, 3, and the 12 independent elements of the decoupling matrix R is also given which depends on computing the eigenvectors of the one period transfer matrix. These results can be used in a tracking program, where the one period transfer matrix can be computed by multiplying the transfer matrices of all the elements in a period, to compute the linear parameters α i and β i, i = 1, 3, and the elements of the decoupling matrix R. The procedure presented here for studying coupled motion in 6-dimensional phase space can also be applied to coupled motion in 4-dimensional phase space, where it may be a useful alternative procedure to the procedure presented by Edwards and Teng. In particular, it gives a simpler programing procedure for computing the beta functions and the emittances for coupled motion in 4-dimensional phase space.« less

  15. The linear parameters and the decoupling matrix for linearly coupled motion in 6 dimensional phase space. Informal report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parzen, G.

    It will be shown that starting from a coordinate system where the 6 phase space coordinates are linearly coupled, one can go to a new coordinate system, where the motion is uncoupled, by means of a linear transformation. The original coupled coordinates and the new uncoupled coordinates are related by a 6 {times} 6 matrix, R. R will be called the decoupling matrix. It will be shown that of the 36 elements of the 6 {times} 6 decoupling matrix R, only 12 elements are independent. This may be contrasted with the results for motion in 4-dimensional phase space, where Rmore » has 4 independent elements. A set of equations is given from which the 12 elements of R can be computed from the one period transfer matrix. This set of equations also allows the linear parameters, {beta}{sub i}, {alpha}{sub i} = 1, 3, for the uncoupled coordinates, to be computed from the one period transfer matrix. An alternative procedure for computing the linear parameters, the {beta}{sub i}, {alpha}{sub i} i = 1, 3, and the 12 independent elements of the decoupling matrix R is also given which depends on computing the eigenvectors of the one period transfer matrix. These results can be used in a tracking program, where the one period transfer matrix can be computed by multiplying the transfer matrices of all the elements in a period, to compute the linear parameters {alpha}{sub i} and {beta}{sub i}, i = 1, 3, and the elements of the decoupling matrix R. The procedure presented here for studying coupled motion in 6-dimensional phase space can also be applied to coupled motion in 4-dimensional phase space, where it may be a useful alternative procedure to the procedure presented by Edwards and Teng. In particular, it gives a simpler programming procedure for computing the beta functions and the emittances for coupled motion in 4-dimensional phase space.« less

  16. Amateur Radio on the International Space Station - Phase 2 Hardware System

    NASA Technical Reports Server (NTRS)

    Bauer, F.; McFadin, L.; Bruninga, B.; Watarikawa, H.

    2003-01-01

    The International Space Station (ISS) ham radio system has been on-orbit for over 3 years. Since its first use in November 2000, the first seven expedition crews and three Soyuz taxi crews have utilized the amateur radio station in the Functional Cargo Block (also referred to as the FGB or Zarya module) to talk to thousands of students in schools, to their families on Earth, and to amateur radio operators around the world. Early on, the Amateur Radio on the International Space Station (ARISS) international team devised a multi-phased hardware development approach for the ISS ham radio station. Three internal development Phases. Initial Phase 1, Mobile Radio Phase 2 and Permanently Mounted Phase 3 plus an externally mounted system, were proposed and agreed to by the ARISS team. The Phase 1 system hardware development which was started in 1996 has since been delivered to ISS. It is currently operational on 2 meters. The 70 cm system is expected to be installed and operated later this year. Since 2001, the ARISS international team have worked to bring the second generation ham system, called Phase 2, to flight qualification status. At this time, major portions of the Phase 2 hardware system have been delivered to ISS and will soon be installed and checked out. This paper intends to provide an overview of the Phase 1 system for background and then describe the capabilities of the Phase 2 radio system. It will also describe the current plans to finalize the Phase 1 and Phase 2 testing in Russia and outlines the plans to bring the Phase 2 hardware system to full operation.

  17. An approach for generating trajectory-based dynamics which conserves the canonical distribution in the phase space formulation of quantum mechanics. II. Thermal correlation functions.

    PubMed

    Liu, Jian; Miller, William H

    2011-03-14

    We show the exact expression of the quantum mechanical time correlation function in the phase space formulation of quantum mechanics. The trajectory-based dynamics that conserves the quantum canonical distribution-equilibrium Liouville dynamics (ELD) proposed in Paper I is then used to approximately evaluate the exact expression. It gives exact thermal correlation functions (of even nonlinear operators, i.e., nonlinear functions of position or momentum operators) in the classical, high temperature, and harmonic limits. Various methods have been presented for the implementation of ELD. Numerical tests of the ELD approach in the Wigner or Husimi phase space have been made for a harmonic oscillator and two strongly anharmonic model problems, for each potential autocorrelation functions of both linear and nonlinear operators have been calculated. It suggests ELD can be a potentially useful approach for describing quantum effects for complex systems in condense phase.

  18. Configuration-shape-size optimization of space structures by material redistribution

    NASA Technical Reports Server (NTRS)

    Vandenbelt, D. N.; Crivelli, L. A.; Felippa, C. A.

    1993-01-01

    This project investigates the configuration-shape-size optimization (CSSO) of orbiting and planetary space structures. The project embodies three phases. In the first one the material-removal CSSO method introduced by Kikuchi and Bendsoe (KB) is further developed to gain understanding of finite element homogenization techniques as well as associated constrained optimization algorithms that must carry along a very large number (thousands) of design variables. In the CSSO-KB method an optimal structure is 'carved out' of a design domain initially filled with finite elements, by allowing perforations (microholes) to develop, grow and merge. The second phase involves 'materialization' of space structures from the void, thus reversing the carving process. The third phase involves analysis of these structures for construction and operational constraints, with emphasis in packaging and deployment. The present paper describes progress in selected areas of the first project phase and the start of the second one.

  19. Optical authentication based on moiré effect of nonlinear gratings in phase space

    NASA Astrophysics Data System (ADS)

    Liao, Meihua; He, Wenqi; Wu, Jiachen; Lu, Dajiang; Liu, Xiaoli; Peng, Xiang

    2015-12-01

    An optical authentication scheme based on the moiré effect of nonlinear gratings in phase space is proposed. According to the phase function relationship of the moiré effect in phase space, an arbitrary authentication image can be encoded into two nonlinear gratings which serve as the authentication lock (AL) and the authentication key (AK). The AL is stored in the authentication system while the AK is assigned to the authorized user. The authentication procedure can be performed using an optoelectronic approach, while the design process is accomplished by a digital approach. Furthermore, this optical authentication scheme can be extended for multiple users with different security levels. The proposed scheme can not only verify the legality of a user identity, but can also discriminate and control the security levels of legal users. Theoretical analysis and simulation experiments are provided to verify the feasibility and effectiveness of the proposed scheme.

  20. Methods for improved forewarning of critical events across multiple data channels

    DOEpatents

    Hively, Lee M [Philadelphia, TN

    2007-04-24

    This disclosed invention concerns improvements in forewarning of critical events via phase-space dissimilarity analysis of data from mechanical devices, electrical devices, biomedical data, and other physical processes. First, a single channel of process-indicative data is selected that can be used in place of multiple data channels without sacrificing consistent forewarning of critical events. Second, the method discards data of inadequate quality via statistical analysis of the raw data, because the analysis of poor quality data always yields inferior results. Third, two separate filtering operations are used in sequence to remove both high-frequency and low-frequency artifacts using a zero-phase quadratic filter. Fourth, the method constructs phase-space dissimilarity measures (PSDM) by combining of multi-channel time-serial data into a multi-channel time-delay phase-space reconstruction. Fifth, the method uses a composite measure of dissimilarity (C.sub.i) to provide a forewarning of failure and an indicator of failure onset.

  1. Driven phase space vortices in plasmas with nonextensive velocity distribution

    NASA Astrophysics Data System (ADS)

    Trivedi, Pallavi; Ganesh, Rajaraman

    2017-03-01

    The evolution of chirp-driven electrostatic waves in unmagnetized plasmas is numerically investigated by using a one-dimensional (1D) Vlasov-poisson solver with periodic boundary conditions. The initial velocity distribution of the 1D plasma is assumed to be governed by nonextensive q distribution [C. Tsallis, J. Stat. Phys. 52, 479 (1988)]. For an infinitesimal amplitude of an external drive, we investigate the effects of chirp driven dynamics that leads to the formation of giant phase space vortices (PSV) for both Maxwellian (q = 1) and non-Maxwellian ( q ≠ 1 ) plasmas. For non-Maxwellian plasmas, the formation of giant PSV with multiple extrema and phase velocities is shown to be dependent on the strength of "q". Novel features such as "shark"-like and transient "honeycomb"-like structures in phase space are discussed. Wherever relevant, we compare our results with previous work.

  2. New science from the phase space of old stellar systems

    NASA Astrophysics Data System (ADS)

    Varri, Anna Lisa; Breen, Philip G.; Heggie, Douglas C.; Tiongco, Maria; Vesperini, Enrico

    2017-06-01

    Our traditional interpretative picture of the internal dynamics of globular clusters has been recently revolutionized by a series of discoveries about their chemical, structural, and kinematic properties. The empirical evidence that their velocity space is much more complex than usually expected encourages us to use them as refreshingly novel phase space laboratories for some long-forgotten aspects of collisional gravitational dynamics. Such a realization, coupled with the discovery that the stars in clusters were not all born at once in a single population, makes them new, challenging chemodynamical puzzles.Thanks to the proper motions of thousands of stars that will be available from the Gaia mission, we are about to enter a new ''golden age'' for the study of the dynamics of this class of stellar systems, as the full phase space of several Galactic globular clusters will be soon unlocked for the first time. In this context, I will present the highlights of a more realistic dynamical paradigm for these intriguing stellar systems, with emphasis on the role of angular momentum, velocity anisotropy and external tidal field. Such a fundamental understanding of the emerging phase space complexity of globulars will allow us to address many open questions about their rich dynamical evolution, their elusive stellar populations and putative black holes, and their role within the history of our Galaxy.

  3. In-space experiment on thermoacoustic convection heat transfer phenomenon-experiment definition

    NASA Technical Reports Server (NTRS)

    Parang, M.; Crocker, D. S.

    1991-01-01

    The definition phase of an in-space experiment in thermoacoustic convection (TAC) heat transfer phenomenon is completed and the results are presented and discussed in some detail. Background information, application and potential importance of TAC in heat transfer processes are discussed with particular focus on application in cryogenic fluid handling and storage in microgravity space environment. Also included are the discussion on TAC space experiment objectives, results of ground support experiments, hardware information, and technical specifications and drawings. The future plans and a schedule for the development of experiment hardware (Phase 1) and flight tests and post-flight analysis (Phase 3/4) are also presented. The specific experimental objectives are rapid heating of a compressible fluid and the measurement of the fluid temperature and pressure and the recording and analysis of the experimental data for the establishment of the importance of TAC heat transfer process. The ground experiments that were completed in support of the experiment definition included fluid temperature measurement by a modified shadowgraph method, surface temperature measurements by thermocouples, and fluid pressure measurements by strain-gage pressure transducers. These experiments verified the feasibility of the TAC in-space experiment, established the relevance and accuracy of the experimental results, and specified the nature of the analysis which will be carried out in the post-flight phase of the report.

  4. Phase space gradient of dissipated work and information: A role of relative Fisher information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamano, Takuya, E-mail: yamano@amy.hi-ho.ne.jp

    2013-11-15

    We show that an information theoretic distance measured by the relative Fisher information between canonical equilibrium phase densities corresponding to forward and backward processes is intimately related to the gradient of the dissipated work in phase space. We present a universal constraint on it via the logarithmic Sobolev inequality. Furthermore, we point out that a possible expression of the lower bound indicates a deep connection in terms of the relative entropy and the Fisher information of the canonical distributions.

  5. Materials Science Clean Room Facility at Tulane University (Final Technical Report)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altiero, Nicholas

    2010-09-30

    The project involves conversion of a 3,000 sq. ft. area into a clean room facility for materials science research. It will be accomplished in phases. Phase I will involve preparation of the existing space, acquisition and installation of clean room equipped with a pulsed laser deposition (PLD) processing system, and conversion of ancillary space to facilitate the interface with the clean room. From a capital perspective, Phases II and III will involve the acquisition of additional processing, fabrication, and characterization equipment and capabilities.

  6. Free-Electron Laser (FEL) Utilization in Space Applications (Ship-Borne Pointing Accuracy, Deep-Space Communications, and Orbital Debris Tracking)

    DTIC Science & Technology

    2011-12-01

    Network STK Satellite Tool Kit WFOV Wide-Field-of-View xv ACKNOWLEDGMENTS I would like to first and foremost thank the Lord, Jesus Christ, our...frequencies in FSK is easily visualized . Table 5.1 details the phase difference between each state as the number of represented states is increased...assist in visualizing the phase separation when adding additional phases to the system. Each of the rows from Table 5.1 is displayed in Figure 5.10

  7. Chemical potential driven phase transition of black holes in anti-de Sitter space

    NASA Astrophysics Data System (ADS)

    Galante, Mario; Giribet, Gaston; Goya, Andrés; Oliva, Julio

    2015-11-01

    Einstein-Maxwell theory conformally coupled to a scalar field in D dimensions may exhibit a phase transition at low temperature whose end point is an asymptotically anti-de Sitter black hole with a scalar field profile that is regular everywhere outside and on the horizon. This provides a tractable model to study the phase transition of hairy black holes in anti-de Sitter space in which the backreaction on the geometry can be solved analytically.

  8. TESTING CONVECTIVE-CORE OVERSHOOTING USING PERIOD SPACINGS OF DIPOLE MODES IN RED GIANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montalban, J.; Noels, A.; Dupret, M.-A.

    2013-04-01

    Uncertainties on central mixing in main-sequence (MS) and core He-burning (He-B) phases affect key predictions of stellar evolution such as late evolutionary phases, chemical enrichment, ages, etc. We propose a test of the extension of extra-mixing in two relevant evolutionary phases based on period spacing ({Delta}P) of solar-like oscillating giants. From stellar models and their corresponding adiabatic frequencies (respectively, computed with ATON and LOSC codes), we provide the first predictions of the observable {Delta}P for stars in the red giant branch and in the red clump (RC). We find (1) a clear correlation between {Delta}P and the mass of themore » helium core (M{sub He}); the latter in intermediate-mass stars depends on the MS overshooting, and hence it can be used to set constraints on extra-mixing during MS when coupled with chemical composition; and (2) a linear dependence of the average value of the asymptotic period spacing (({Delta}P){sub a}) on the size of the convective core during the He-B phase. A first comparison with the inferred asymptotic period spacing for Kepler RC stars also suggests the need for extra-mixing during this phase, as evinced from other observational facts.« less

  9. Phase-space perspective on the wavelength-dependent electron correlation of strong-field double ionization of Xe

    NASA Astrophysics Data System (ADS)

    Shao, Yun; Yuan, Zongqiang; Ye, Difa; Fu, Libin; Liu, Ming-Ming; Sun, Xufei; Wu, Chengyin; Liu, Jie; Gong, Qihuang; Liu, Yunquan

    2017-12-01

    We measure the wavelength-dependent correlated-electron momentum (CEM) spectra of strong-field double ionization of Xe atoms, and observe a significant change from a roughly nonstructured (uncorrelated) pattern at 795 nm to an elongated distribution with V-shaped structure (correlated) at higher wavelengths of 1320 and 1810 nm, pointing to the transition of the ionization dynamics imprinted in the momentum distributions. These observations are well reproduced by a semiclassical model using Green-Sellin-Zachor potential to take into account the screening effect. We show that the momentum distribution of Xe2+ undergoes a bifurcation structure emerging from single-hump to double-hump structure as the laser wavelength increases, which is dramatically different from that of He2+, indicating the complex multi-electron effect. By back analyzing the double ionization trajectories in the phase space (the initial transverse momentum and the laser phase at the tunneling exit) of the first tunneled electrons, we provide deep insight into the physical origin for electron correlation dynamics. We find that a random distribution in phase-space is responsible for a less distinct structured CEM spectrum at shorter wavelength. While increasing the laser wavelength, a topology-invariant pattern in phase-space appears, leading to the clearly visible V-shaped structures.

  10. Discriminative Cooperative Networks for Detecting Phase Transitions

    NASA Astrophysics Data System (ADS)

    Liu, Ye-Hua; van Nieuwenburg, Evert P. L.

    2018-04-01

    The classification of states of matter and their corresponding phase transitions is a special kind of machine-learning task, where physical data allow for the analysis of new algorithms, which have not been considered in the general computer-science setting so far. Here we introduce an unsupervised machine-learning scheme for detecting phase transitions with a pair of discriminative cooperative networks (DCNs). In this scheme, a guesser network and a learner network cooperate to detect phase transitions from fully unlabeled data. The new scheme is efficient enough for dealing with phase diagrams in two-dimensional parameter spaces, where we can utilize an active contour model—the snake—from computer vision to host the two networks. The snake, with a DCN "brain," moves and learns actively in the parameter space, and locates phase boundaries automatically.

  11. Different structures of monoclinic martensitic phases in titanium nickelide

    NASA Astrophysics Data System (ADS)

    Voronin, V. I.; Naish, V. E.; Novoselova, T. V.; Pushin, V. G.; Sagaradze, I. V.

    2000-03-01

    The detailed theoretical and experimental analysis has been undertaken to bring to light the true structure of the monoclinic phase in titanium nickelide (NiTi). Theoretical models for such a phase have been proposed to describe the experimental data. In addition to the well-known B19‧ phase two more structures - new monoclinic M phase with Cm space group and triclinic phase with P1 space group - have been produced and analyzed in detail. Diffraction patterns have been obtained from different NiTi samples by using the neutron diffractometer IVV2 at different temperatures. From the refinement by DBWS-9411 program all these neutron patterns have been decoded successfully. The proposed new structures and stereotype B19‧ one agree with correspondent experimental data and the agreement is quite good.

  12. Phase-change materials handbook

    NASA Technical Reports Server (NTRS)

    Hale, D. V.; Hoover, M. J.; Oneill, M. J.

    1972-01-01

    Handbook describes relationship between phase-change materials and more conventional thermal control techniques and discusses materials' space and terrestrial applications. Material properties of most promising phase-change materials and purposes and uses of metallic filler materials in phase-change material composites are provided.

  13. Role of RBP2-Induced ER and IGF1R-ErbB Signaling in Tamoxifen Resistance in Breast Cancer.

    PubMed

    Choi, Hee-Joo; Joo, Hyeong-Seok; Won, Hee-Young; Min, Kyueng-Whan; Kim, Hyung-Yong; Son, Taekwon; Oh, Young-Ha; Lee, Jeong-Yeon; Kong, Gu

    2018-04-01

    Despite the benefit of endocrine therapy, acquired resistance during or after treatment still remains a major challenge in estrogen receptor (ER)-positive breast cancer. We investigated the potential role of histone demethylase retinoblastoma-binding protein 2 (RBP2) in endocrine therapy resistance of breast cancer. Survival of breast cancer patients according to RBP2 expression was analyzed in three different breast cancer cohorts including METABRIC (n = 1980) and KM plotter (n = 1764). RBP2-mediated tamoxifen resistance was confirmed by invitro sulforhodamine B (SRB) colorimetric, colony-forming assays, and invivo xenograft models (n = 8 per group). RNA-seq analysis and receptor tyrosine kinase assay were performed to identify the tamoxifen resistance mechanism by RBP2. All statistical tests were two-sided. RBP2 was associated with poor prognosis to tamoxifen therapy in ER-positive breast cancer (P = .04 in HYU cohort, P = .02 in KM plotter, P = .007 in METABRIC, log-rank test). Furthermore, RBP2 expression was elevated in patients with tamoxifen-resistant breast cancer (P = .04, chi-square test). Knockdown of RBP2 conferred tamoxifen sensitivity, whereas overexpression of RBP2 induced tamoxifen resistance invitro and invivo (MCF7 xenograft: tamoxifen-treated control, mean [SD] tumor volume = 70.8 [27.9] mm3, vs tamoxifen-treated RBP2, mean [SD] tumor volume = 387.9 [85.1] mm3, P < .001). Mechanistically, RBP2 cooperated with ER co-activators and corepressors and regulated several tamoxifen resistance-associated genes, including NRIP1, CCND1, and IGFBP4 and IGFBP5. Furthermore, epigenetic silencing of IGFBP4/5 by RBP2-ER-NRIP1-HDAC1 complex led to insulin-like growth factor-1 receptor (IGF1R) activation. RBP2 also increased IGF1R-ErbB crosstalk and subsequent PI3K-AKT activation via demethylase activity-independent ErbB protein stabilization. Combinational treatment with tamoxifen and PI3K inhibitor could overcome RBP2-mediated tamoxifen resistance (RBP2-overexpressing cells: % cell viability [SD], tamoxifen = 89.0 [3.8]%, vs tamoxifen with BKM120 = 41.3 [5.6]%, P < .001). RBP2 activates ER-IGF1R-ErbB signaling cascade in multiple ways to induce tamoxifen resistance, suggesting that RBP2 is a potential therapeutic target for ER-driven cancer. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  14. A structural topological optimization method for multi-displacement constraints and any initial topology configuration

    NASA Astrophysics Data System (ADS)

    Rong, J. H.; Yi, J. H.

    2010-10-01

    In density-based topological design, one expects that the final result consists of elements either black (solid material) or white (void), without any grey areas. Moreover, one also expects that the optimal topology can be obtained by starting from any initial topology configuration. An improved structural topological optimization method for multi- displacement constraints is proposed in this paper. In the proposed method, the whole optimization process is divided into two optimization adjustment phases and a phase transferring step. Firstly, an optimization model is built to deal with the varied displacement limits, design space adjustments, and reasonable relations between the element stiffness matrix and mass and its element topology variable. Secondly, a procedure is proposed to solve the optimization problem formulated in the first optimization adjustment phase, by starting with a small design space and advancing to a larger deign space. The design space adjustments are automatic when the design domain needs expansions, in which the convergence of the proposed method will not be affected. The final topology obtained by the proposed procedure in the first optimization phase, can approach to the vicinity of the optimum topology. Then, a heuristic algorithm is given to improve the efficiency and make the designed structural topology black/white in both the phase transferring step and the second optimization adjustment phase. And the optimum topology can finally be obtained by the second phase optimization adjustments. Two examples are presented to show that the topologies obtained by the proposed method are of very good 0/1 design distribution property, and the computational efficiency is enhanced by reducing the element number of the design structural finite model during two optimization adjustment phases. And the examples also show that this method is robust and practicable.

  15. Grassmann phase space methods for fermions. I. Mode theory

    NASA Astrophysics Data System (ADS)

    Dalton, B. J.; Jeffers, J.; Barnett, S. M.

    2016-07-01

    In both quantum optics and cold atom physics, the behaviour of bosonic photons and atoms is often treated using phase space methods, where mode annihilation and creation operators are represented by c-number phase space variables, with the density operator equivalent to a distribution function of these variables. The anti-commutation rules for fermion annihilation, creation operators suggest the possibility of using anti-commuting Grassmann variables to represent these operators. However, in spite of the seminal work by Cahill and Glauber and a few applications, the use of Grassmann phase space methods in quantum-atom optics to treat fermionic systems is rather rare, though fermion coherent states using Grassmann variables are widely used in particle physics. The theory of Grassmann phase space methods for fermions based on separate modes is developed, showing how the distribution function is defined and used to determine quantum correlation functions, Fock state populations and coherences via Grassmann phase space integrals, how the Fokker-Planck equations are obtained and then converted into equivalent Ito equations for stochastic Grassmann variables. The fermion distribution function is an even Grassmann function, and is unique. The number of c-number Wiener increments involved is 2n2, if there are n modes. The situation is somewhat different to the bosonic c-number case where only 2 n Wiener increments are involved, the sign of the drift term in the Ito equation is reversed and the diffusion matrix in the Fokker-Planck equation is anti-symmetric rather than symmetric. The un-normalised B distribution is of particular importance for determining Fock state populations and coherences, and as pointed out by Plimak, Collett and Olsen, the drift vector in its Fokker-Planck equation only depends linearly on the Grassmann variables. Using this key feature we show how the Ito stochastic equations can be solved numerically for finite times in terms of c-number stochastic quantities. Averages of products of Grassmann stochastic variables at the initial time are also involved, but these are determined from the initial conditions for the quantum state. The detailed approach to the numerics is outlined, showing that (apart from standard issues in such numerics) numerical calculations for Grassmann phase space theories of fermion systems could be carried out without needing to represent Grassmann phase space variables on the computer, and only involving processes using c-numbers. We compare our approach to that of Plimak, Collett and Olsen and show that the two approaches differ. As a simple test case we apply the B distribution theory and solve the Ito stochastic equations to demonstrate coupling between degenerate Cooper pairs in a four mode fermionic system involving spin conserving interactions between the spin 1 / 2 fermions, where modes with momenta - k , + k-each associated with spin up, spin down states, are involved.

  16. Monte Carlo simulation of TrueBeam flattening-filter-free beams using Varian phase-space files: Comparison with experimental data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belosi, Maria F.; Fogliata, Antonella, E-mail: antonella.fogliata-cozzi@eoc.ch, E-mail: afc@iosi.ch; Cozzi, Luca

    2014-05-15

    Purpose: Phase-space files for Monte Carlo simulation of the Varian TrueBeam beams have been made available by Varian. The aim of this study is to evaluate the accuracy of the distributed phase-space files for flattening filter free (FFF) beams, against experimental measurements from ten TrueBeam Linacs. Methods: The phase-space files have been used as input in PRIMO, a recently released Monte Carlo program based on thePENELOPE code. Simulations of 6 and 10 MV FFF were computed in a virtual water phantom for field sizes 3 × 3, 6 × 6, and 10 × 10 cm{sup 2} using 1 × 1more » × 1 mm{sup 3} voxels and for 20 × 20 and 40 × 40 cm{sup 2} with 2 × 2 × 2 mm{sup 3} voxels. The particles contained in the initial phase-space files were transported downstream to a plane just above the phantom surface, where a subsequent phase-space file was tallied. Particles were transported downstream this second phase-space file to the water phantom. Experimental data consisted of depth doses and profiles at five different depths acquired at SSD = 100 cm (seven datasets) and SSD = 90 cm (three datasets). Simulations and experimental data were compared in terms of dose difference. Gamma analysis was also performed using 1%, 1 mm and 2%, 2 mm criteria of dose-difference and distance-to-agreement, respectively. Additionally, the parameters characterizing the dose profiles of unflattened beams were evaluated for both measurements and simulations. Results: Analysis of depth dose curves showed that dose differences increased with increasing field size and depth; this effect might be partly motivated due to an underestimation of the primary beam energy used to compute the phase-space files. Average dose differences reached 1% for the largest field size. Lateral profiles presented dose differences well within 1% for fields up to 20 × 20 cm{sup 2}, while the discrepancy increased toward 2% in the 40 × 40 cm{sup 2} cases. Gamma analysis resulted in an agreement of 100% when a 2%, 2 mm criterion was used, with the only exception of the 40 × 40 cm{sup 2} field (∼95% agreement). With the more stringent criteria of 1%, 1 mm, the agreement reduced to almost 95% for field sizes up to 10 × 10 cm{sup 2}, worse for larger fields. Unflatness and slope FFF-specific parameters are in line with the possible energy underestimation of the simulated results relative to experimental data. Conclusions: The agreement between Monte Carlo simulations and experimental data proved that the evaluated Varian phase-space files for FFF beams from TrueBeam can be used as radiation sources for accurate Monte Carlo dose estimation, especially for field sizes up to 10 × 10 cm{sup 2}, that is the range of field sizes mostly used in combination to the FFF, high dose rate beams.« less

  17. Phase unwrapping algorithm using polynomial phase approximation and linear Kalman filter.

    PubMed

    Kulkarni, Rishikesh; Rastogi, Pramod

    2018-02-01

    A noise-robust phase unwrapping algorithm is proposed based on state space analysis and polynomial phase approximation using wrapped phase measurement. The true phase is approximated as a two-dimensional first order polynomial function within a small sized window around each pixel. The estimates of polynomial coefficients provide the measurement of phase and local fringe frequencies. A state space representation of spatial phase evolution and the wrapped phase measurement is considered with the state vector consisting of polynomial coefficients as its elements. Instead of using the traditional nonlinear Kalman filter for the purpose of state estimation, we propose to use the linear Kalman filter operating directly with the wrapped phase measurement. The adaptive window width is selected at each pixel based on the local fringe density to strike a balance between the computation time and the noise robustness. In order to retrieve the unwrapped phase, either a line-scanning approach or a quality guided strategy of pixel selection is used depending on the underlying continuous or discontinuous phase distribution, respectively. Simulation and experimental results are provided to demonstrate the applicability of the proposed method.

  18. Simulated molecular-scale interaction of supercritical fluid mobile and stationary phases.

    PubMed

    Siders, Paul D

    2017-12-08

    In supercritical fluid chromatography, molecules from the mobile phase adsorb on the stationary phase. Stationary-phase alkylsilane-terminated silica surfaces might adsorb molecules at the silica, among the silanes, on a silane layer, or in pore space between surfaces. Mobile phases of carbon dioxide, pure and modified with methanol, and stationary phases were simulated at the molecular scale. Classical atomistic force fields were used in Gibbs-ensemble hybrid Monte Carlo calculations. Excess adsorption of pure carbon dioxide mobile phase peaked at fluid densities of 0.002-0.003Å -3 . Mobile phase adsorption from 7% methanol in carbon dioxide peaked at lower fluid density. Methanol was preferentially adsorbed from the mixed fluid. Surface silanes prevented direct interaction of fluid-phase molecules with silica. Some adsorbed molecules mixed with tails of bonded silanes; some formed layers above the silanes. Much adsorption occurred by filling the space between surfaces in the stationary-phase model. The distribution in the stationary phase of methanol molecules from a modified fluid phase varied with pressure. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Multi-mission space vehicle subsystem analysis tools

    NASA Technical Reports Server (NTRS)

    Kordon, M.; Wood, E.

    2003-01-01

    Spacecraft engineers often rely on specialized simulation tools to facilitate the analysis, design and operation of space systems. Unfortunately these tools are often designed for one phase of a single mission and cannot be easily adapted to other phases or other misions. The Multi-Mission Pace Vehicle Susbsystem Analysis Tools are designed to provide a solution to this problem.

  20. Geometrical Series and Phase Space in a Finite Oscillatory Motion

    ERIC Educational Resources Information Center

    Mareco, H. R. Olmedo

    2006-01-01

    This article discusses some interesting physical properties of oscillatory motion of a particle on two joined inclined planes. The geometrical series demonstrates that the particle will oscillate during a finite time. Another detail is the converging path to the origin of the phase space. Due to its simplicity, this motion may be used as a…

Top