Adapting phase-switch Monte Carlo method for flexible organic molecules
NASA Astrophysics Data System (ADS)
Bridgwater, Sally; Quigley, David
2014-03-01
The role of cholesterol in lipid bilayers has been widely studied via molecular simulation, however, there has been relatively little work on crystalline cholesterol in biological environments. Recent work has linked the crystallisation of cholesterol in the body with heart attacks and strokes. Any attempt to model this process will require new models and advanced sampling methods to capture and quantify the subtle polymorphism of solid cholesterol, in which two crystalline phases are separated by a phase transition close to body temperature. To this end, we have adapted phase-switch Monte Carlo for use with flexible molecules, to calculate the free energy between crystal polymorphs to a high degree of accuracy. The method samples an order parameter , which divides a displacement space for the N molecules, into regions energetically favourable for each polymorph; which is traversed using biased Monte Carlo. Results for a simple model of butane will be presented, demonstrating that conformational flexibility can be correctly incorporated within a phase-switching scheme. Extension to a coarse grained model of cholesterol and the resulting free energies will be discussed.
Kuan, Hui-Shun; Betterton, Meredith D.
2016-01-01
Motor protein motion on biopolymers can be described by models related to the totally asymmetric simple exclusion process (TASEP). Inspired by experiments on the motion of kinesin-4 motors on antiparallel microtubule overlaps, we analyze a model incorporating the TASEP on two antiparallel lanes with binding kinetics and lane switching. We determine the steady-state motor density profiles using phase-plane analysis of the steady-state mean field equations and kinetic Monte Carlo simulations. We focus on the density-density phase plane, where we find an analytic solution to the mean field model. By studying the phase-space flows, we determine the model’s fixed points and their changes with parameters. Phases previously identified for the single-lane model occur for low switching rate between lanes. We predict a multiple coexistence phase due to additional fixed points that appear as the switching rate increases: switching moves motors from the higher-density to the lower-density lane, causing local jamming and creating multiple domain walls. We determine the phase diagram of the model for both symmetric and general boundary conditions. PMID:27627345
Goto, Nobuo; Miyazaki, Yasumitsu
2014-06-01
Optical switching of high-bit-rate quadrature-phase-shift-keying (QPSK) pulse trains using collinear acousto-optic (AO) devices is theoretically discussed. Since the collinear AO devices have wavelength selectivity, the switched optical pulse trains suffer from distortion when the bandwidth of the pulse train is comparable to the pass bandwidth of the AO device. As the AO device, a sidelobe-suppressed device with a tapered surface-acoustic-wave (SAW) waveguide and a Butterworth-type filter device with a lossy SAW directional coupler are considered. Phase distortion of optical pulse trains at 40 to 100 Gsymbols/s in QPSK format is numerically analyzed. Bit-error-rate performance with additive Gaussian noise is also evaluated by the Monte Carlo method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richards, H.L.; Sides, S.W.; Novotny, M.A.
1996-12-31
Recently experimental techniques, such as magnetic force microscopy (MFM), have enabled the magnetic state of individual sub-micron particles to be resolved. Motivated by these experimental developments, the authors use Monte Carlo simulations of two-dimensional kinetic Ising ferromagnets to study the magnetic relaxation in a negative applied field of a grain with an initial magnetization m{sub 0} = + 1. They use classical droplet theory to predict the functional forms for some quantities which can be observed by MFM. An example is the probability that the magnetization is positive, which is a function of time, field, grain size, and grain dimensionality.more » The qualitative agreement between experiments and their simulations of switching in individual single-domain ferromagnets indicates that the switching mechanism in such particles may involve local nucleation and subsequent growth of droplets of the stable phase.« less
Employment, Production and Consumption model: Patterns of phase transitions
NASA Astrophysics Data System (ADS)
Lavička, H.; Lin, L.; Novotný, J.
2010-04-01
We have simulated the model of Employment, Production and Consumption (EPC) using Monte Carlo. The EPC model is an agent based model that mimics very basic rules of industrial economy. From the perspective of physics, the nature of the interactions in the EPC model represents multi-agent interactions where the relations among agents follow the key laws for circulation of capital and money. Monte Carlo simulations of the stochastic model reveal phase transition in the model economy. The two phases are the phase with full unemployment and the phase with nearly full employment. The economy switches between these two states suddenly as a reaction to a slight variation in the exogenous parameter, thus the system exhibits strong non-linear behavior as a response to the change of the exogenous parameters.
Vega roll and attitude control system algorithms trade-off study
NASA Astrophysics Data System (ADS)
Paulino, N.; Cuciniello, G.; Cruciani, I.; Corraro, F.; Spallotta, D.; Nebula, F.
2013-12-01
This paper describes the trade-off study for the selection of the most suitable algorithms for the Roll and Attitude Control System (RACS) within the FPS-A program, aimed at developing the new Flight Program Software of VEGA Launcher. Two algorithms were analyzed: Switching Lines (SL) and Quaternion Feedback Regulation. Using a development simulation tool that models two critical flight phases (Long Coasting Phase (LCP) and Payload Release (PLR) Phase), both algorithms were assessed with Monte Carlo batch simulations for both of the phases. The statistical outcomes of the results demonstrate a 100 percent success rate for Quaternion Feedback Regulation, and support the choice of this method.
An Overview of Grain Growth Theories for Pure Single Phase Systems,
1986-10-01
the fundamental causes for these distributions. This Blanc and Mocellin (1979) and Carnal and Mocellin (1981j set out to do. 7.1 Monte-Carlo Simulations...termed event B) (in 2-D) of 3-sided grains. (2) Neighbour-switching (termed event C). Blanc and Mocellin (1979) dealt with 2-D sections through...Kurtz and Carpay (1980a). 7.2 Analytical Method to Obtain fn Carnal and Mocellin (1981) obtained the distribution of grain coordination numbers in
Monte Carlo simulation of a simple gene network yields new evolutionary insights.
Andrecut, M; Cloud, D; Kauffman, S A
2008-02-07
Monte Carlo simulations of a genetic toggle switch show that its behavior can be more complex than analytic models would suggest. We show here that as a result of the interplay between frequent and infrequent reaction events, such a switch can have more stable states than an analytic model would predict, and that the number and character of these states depend to a large extent on the propensity of transcription factors to bind to and dissociate from promoters. The effects of gene duplications differ even more; in analytic models, these seem to result in the disappearance of bi-stability and thus a loss of the switching function, but a Monte Carlo simulation shows that they can result in the appearance of new stable states without the loss of old ones, and thus in an increase of the complexity of the switch's behavior which may facilitate the evolution of new cellular functions. These differences are of interest with respect to the evolution of gene networks, particularly in clonal lines of cancer cells, where the duplication of active genes is an extremely common event, and often seems to result in the appearance of viable new cellular phenotypes.
Markov and semi-Markov switching linear mixed models used to identify forest tree growth components.
Chaubert-Pereira, Florence; Guédon, Yann; Lavergne, Christian; Trottier, Catherine
2010-09-01
Tree growth is assumed to be mainly the result of three components: (i) an endogenous component assumed to be structured as a succession of roughly stationary phases separated by marked change points that are asynchronous among individuals, (ii) a time-varying environmental component assumed to take the form of synchronous fluctuations among individuals, and (iii) an individual component corresponding mainly to the local environment of each tree. To identify and characterize these three components, we propose to use semi-Markov switching linear mixed models, i.e., models that combine linear mixed models in a semi-Markovian manner. The underlying semi-Markov chain represents the succession of growth phases and their lengths (endogenous component) whereas the linear mixed models attached to each state of the underlying semi-Markov chain represent-in the corresponding growth phase-both the influence of time-varying climatic covariates (environmental component) as fixed effects, and interindividual heterogeneity (individual component) as random effects. In this article, we address the estimation of Markov and semi-Markov switching linear mixed models in a general framework. We propose a Monte Carlo expectation-maximization like algorithm whose iterations decompose into three steps: (i) sampling of state sequences given random effects, (ii) prediction of random effects given state sequences, and (iii) maximization. The proposed statistical modeling approach is illustrated by the analysis of successive annual shoots along Corsican pine trunks influenced by climatic covariates. © 2009, The International Biometric Society.
NO—CO—O2 Reaction on a Metal Catalytic Surface using Eley—Rideal Mechanism
NASA Astrophysics Data System (ADS)
Waqar, Ahmad
2008-10-01
Interactions among the reacting species NO, CO and O2 on metal catalytic surfaces are studied by means of Monte Carlo simulation using the Eley-Rideal (ER) mechanism. The study of this three-component system is important for understanding of the reaction kinetics by varying the relative ratios of the reactants. It is found that contrary to the conventional Langmuir-Hinshelwood (LH) thermal mechanism in which two irreversible phase transitions are obtained between active states and poisoned states, a single phase transition is observed when the ER mechanism is combined with the LH mechanism. The phase diagrams of the surface coverage and the steady state production of CO2, N2 and N2 O are evaluated as a function of the partial pressures of the reactants in the gas phase. The continuous production of CO2 starts as soon as the CO pressure is switched on and the second order phase transition at the first critical point is eliminated, which is in agreement with the experimental findings.
NASA Astrophysics Data System (ADS)
Huang, B. Y.; Lu, Z. X.; Zhang, Y.; Xie, Y. L.; Zeng, M.; Yan, Z. B.; Liu, J.-M.
2016-05-01
The polarization-electric field hysteresis loops and the dynamics of polarization switching in a two-dimensional antiferroelectric (AFE) lattice submitted to a time-oscillating electric field E(t) of frequency f and amplitude E0, is investigated using Monte Carlo simulation based on the Landau-Devonshire phenomenological theory on antiferroelectrics. It is revealed that the AFE double-loop hysteresis area A, i.e., the energy loss in one cycle of polarization switching, exhibits the single-peak frequency dispersion A(f), suggesting the unique characteristic time for polarization switching, which is independent of E0 as long as E0 is larger than the quasi-static coercive field for the antiferroelectric-ferroelectric transitions. However, the dependence of recoverable stored energy W on amplitude E0 seems to be complicated depending on temperature T and frequency f. A dynamic scaling behavior of the energy loss dispersion A(f) over a wide range of E0 is obtained, confirming the unique characteristic time for polarization switching of an AFE lattice. The present simulation may shed light on the dynamics of energy storage and release in AFE thin films.
Magnetization switching process in a torus nanoring with easy-plane surface anisotropy
NASA Astrophysics Data System (ADS)
Alzate-Cardona, J. D.; Sabogal-Suárez, D.; Restrepo-Parra, E.
2017-11-01
We have studied the effects of surface shape anisotropy in the magnetization behavior of a torus nanoring by means of Monte Carlo simulations. Stable states (vortex and reverse vortex states) and metastable states (onion and asymmetric onion states) were found in the torus nanoring. The probability of occurrence of the metastable states (stable states) tends to decrease (increase) as the amount of Monte Carlo steps per spin, temperature steps and negative values of the anisotropy constant increase. We evaluated under which conditions it is possible to switch the magnetic state of the torus nanoring from a vortex to a reverse vortex state by applying a circular magnetic field at certain temperature interval. The switching probability (from a vortex to a reverse vortex state) depends on the value of the current intensity, which generates the circular magnetic field, and the temperature interval where the magnetic field is applied. There is a linear relationship between the current intensity and the minimum temperature interval above which the vortex state can be switched.
Economic evaluation of distribution system smart grid investments
Onen, Ahmet; Cheng, Danling; Broadwater, Robert P.; ...
2014-12-31
This paper investigates economic benefits of smart grid automation investments. A system consisting of 7 substations and 14 feeders is used in the evaluation. Here benefits that can be quantified in terms of dollar savings are considered, termed “hard dollar” benefits. Smart Grid investment evaluations to be considered include investments in improved efficiency, more cost effective use of existing system capacity with automated switches, and coordinated control of capacitor banks and voltage regulators. These Smart Grid evaluations are sequentially ordered, resulting in a series of incremental hard dollar benefits. Hard dollar benefits come from improved efficiency, delaying large capital equipmentmore » investments, shortened storm restoration times, and reduced customer energy use. Analyses used in the evaluation involve hourly power flow analysis over multiple years and Monte Carlo simulations of switching operations during storms using a reconfiguration for restoration algorithm. The economic analysis uses the time varying value of the Locational Marginal Price. Algorithms used include reconfiguration for restoration involving either manual or automated switches and coordinated control involving two modes of control. Field validations of phase balancing and capacitor design results are presented. The evaluation shows that investments in automation can improve performance while at the same time lowering costs.« less
Lateral excitonic switching in vertically stacked quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jarzynka, Jarosław R.; McDonald, Peter G.; Galbraith, Ian
2016-06-14
We show that the application of a vertical electric field to the Coulomb interacting system in stacked quantum dots leads to a 90° in-plane switching of charge probability distribution in contrast to a single dot, where no such switching exists. Results are obtained using path integral quantum Monte Carlo with realistic dot geometry, alloy composition, and piezo-electric potential profiles. The origin of the switching lies in the strain interactions between the stacked dots hence the need for more than one layer of dots. The lateral polarization and electric field dependence of the radiative lifetimes of the excitonic switch are alsomore » discussed.« less
NASA Astrophysics Data System (ADS)
Sadi, Toufik; Mehonic, Adnan; Montesi, Luca; Buckwell, Mark; Kenyon, Anthony; Asenov, Asen
2018-02-01
We employ an advanced three-dimensional (3D) electro-thermal simulator to explore the physics and potential of oxide-based resistive random-access memory (RRAM) cells. The physical simulation model has been developed recently, and couples a kinetic Monte Carlo study of electron and ionic transport to the self-heating phenomenon while accounting carefully for the physics of vacancy generation and recombination, and trapping mechanisms. The simulation framework successfully captures resistance switching, including the electroforming, set and reset processes, by modeling the dynamics of conductive filaments in the 3D space. This work focuses on the promising yet less studied RRAM structures based on silicon-rich silica (SiO x ) RRAMs. We explain the intrinsic nature of resistance switching of the SiO x layer, analyze the effect of self-heating on device performance, highlight the role of the initial vacancy distributions acting as precursors for switching, and also stress the importance of using 3D physics-based models to capture accurately the switching processes. The simulation work is backed by experimental studies. The simulator is useful for improving our understanding of the little-known physics of SiO x resistive memory devices, as well as other oxide-based RRAM systems (e.g. transition metal oxide RRAMs), offering design and optimization capabilities with regard to the reliability and variability of memory cells.
Mendelev, M. I.; Underwood, T. L.; Ackland, G. J.
2016-10-17
New interatomic potentials describing defects, plasticity, and high temperature phase transitions for Ti are presented. Fitting the martensitic hcp-bcc phase transformation temperature requires an efficient and accurate method to determine it. We apply a molecular dynamics method based on determination of the melting temperature of competing solid phases, and Gibbs-Helmholtz integration, and a lattice-switch Monte Carlo method: these agree on the hcp-bcc transformation temperatures to within 2 K. We were able to develop embedded atom potentials which give a good fit to either low or high temperature data, but not both. The first developed potential (Ti1) reproduces the hcp-bcc transformationmore » and melting temperatures and is suitable for the simulation of phase transitions and bcc Ti. Two other potentials (Ti2 and Ti3) correctly describe defect properties and can be used to simulate plasticity or radiation damage in hcp Ti. The fact that a single embedded atom method potential cannot describe both low and high temperature phases may be attributed to neglect of electronic degrees of freedom, notably bcc has a much higher electronic entropy. As a result, a temperature-dependent potential obtained from the combination of potentials Ti1 and Ti2 may be used to simulate Ti properties at any temperature.« less
Cost-effective optical switch matrix for microwave phased-array
NASA Technical Reports Server (NTRS)
Pan, J. J.; Chia, S. L.; Li, W. Z.; Grove, C. H.
1991-01-01
An all-fiber (6x6) optical shutter switch matrix with the control system for microwave phased array has been demonstrated. The device offers the advantages of integrated configuration, low cost, low power consumption, small size, and light weight. The maximum extinction ratio (among 36 individual pixel) of this switch matrix at 840 nm is 24.2 dB, and the switching time is less than 120 microsec. In addition to phased array application, this low cost switch matrix is extremely attractive for fiber optic switching networks.
Track-before-detect labeled multi-bernoulli particle filter with label switching
NASA Astrophysics Data System (ADS)
Garcia-Fernandez, Angel F.
2016-10-01
This paper presents a multitarget tracking particle filter (PF) for general track-before-detect measurement models. The PF is presented in the random finite set framework and uses a labelled multi-Bernoulli approximation. We also present a label switching improvement algorithm based on Markov chain Monte Carlo that is expected to increase filter performance if targets get in close proximity for a sufficiently long time. The PF is tested in two challenging numerical examples.
Karalis, Vangelis; Macheras, Panos; Bialer, Meir
2014-01-01
Generic products of antiepileptic drugs (AEDs) are currently a controversial topic as neurologists and patients are reluctant to switch from brand products to generics and to switch between generics. The aim of this study was to provide enlightenment on issues of bioequivalence (BE) and interchangeability of AED products. Monte Carlo simulations of the classic 2 × 2 BE studies were performed to study the effect of sample size, within-subject variability, and the true difference in pharmacokinetic values of the products under comparison on BE acceptance of generic AED products. Simulations were extended to study the comparative performance of two generic AED products against the same innovative product. The simulated results are compared with literature data on AEDs. The question with regard to bioavailability (BA) is whether two formulations are different, while for BE the question is whether two formulations are sufficiently similar in terms of extent and rate of absorption. Therefore, the criteria for BA and BE and the statistical analysis involved in their analysis are different. Two generic formulations that meet regulatory approval requirements for generics by being bioequivalent to the same innovative AED may not be bioequivalent to one another and therefore should not be regarded as equal or as therapeutically equivalent products. A switch from a standard or an immediate-release formulation to a modified-release product, which comprises extended-release or delayed-release formulations, should not be regarded as a switch between generics, but rather as a switch between different formulation types. Switches between bioequivalent generic AED products could potentially lead to larger changes in plasma levels and exposure than the brand-to-generic switch. The simulation work verified the clinical findings that not all generic AED products bioequivalent to the same innovative product are bioequivalent to one another. Two generic formulations that meet regulatory approval requirements for generics, by being bioequivalent to the innovative AED, may not be bioequivalent to one another. Additional BE criteria are needed for a formulation switch, particularly in epilepsy, where a breakthrough seizure may change a patient's status from seizure-free to refractory.
High Voltage, Solid-State Switch for Fusion Science Applications
NASA Astrophysics Data System (ADS)
Ziemba, Timothy; Prager, James; Miller, Kenneth E.; Slobodov, Ilia
2017-10-01
Eagle Harbor Technologies, Inc. is developing a series stack of solid-state switches to produce a single high voltage switch that can be operated at over 35 kV. During the Phase I program, EHT developed two high voltage switch modules: one with isolated power gate drive and a second with inductively coupled gate drive. These switches were tested at 15 kV and up to 300 A at switching frequencies up to 500 kHz for 10 ms bursts. Robust switching was demonstrated for both IGBTs and SiC MOSFETs. During the Phase II program, EHT will develop a higher voltage switch (>35 kV) that will be suitable for high pulsed and average power applications. EHT will work with LTX to utilize these switches to design, build, and test a pulsed magnetron driver that will be delivered to LTX before the completion of the program. EHT will present data from the Phase I program as well as preliminary results from the start of the Phase II program. With support of DOE SBIR.
Modulated phases in a three-dimensional Maier-Saupe model with competing interactions
NASA Astrophysics Data System (ADS)
Bienzobaz, P. F.; Xu, Na; Sandvik, Anders W.
2017-07-01
This work is dedicated to the study of the discrete version of the Maier-Saupe model in the presence of competing interactions. The competition between interactions favoring different orientational ordering produces a rich phase diagram including modulated phases. Using a mean-field approach and Monte Carlo simulations, we show that the proposed model exhibits isotropic and nematic phases and also a series of modulated phases that meet at a multicritical point, a Lifshitz point. Though the Monte Carlo and mean-field phase diagrams show some quantitative disagreements, the Monte Carlo simulations corroborate the general behavior found within the mean-field approximation.
Finite Ground Coplanar Waveguide Shunt MEMS Switches for Switched Line Phase Shifters
NASA Technical Reports Server (NTRS)
Ponchak, George E.; Simons, Rainee N.; Scardelletti, Maximillian; Varaljay, Nicholas C.
2000-01-01
Switches with low insertion loss and high isolation are required for switched line phase shifters and the transmit/receive switch at the front end of communication systems. A Finite Ground Coplanar (FGC) waveguide capacitive, shunt MEMS switch has been implemented on high resistivity Si. The switch has demonstrated an insertion loss of less than 0.3 dB and a return loss greater than 15 dB from 10 to 20, GHz. The switch design, fabrication, and characteristics are presented.
NASA Astrophysics Data System (ADS)
Hussein, Ali Abdulsattar
This thesis presents an introduction to the design and simulation of a novel class of integrated photonic phased array switch elements. The main objective is to use nano-electromechanical (NEMS) based phase shifters of cascaded under-etched slot nanowires that are compact in size and require a small amount of power to operate them. The structure of the switch elements is organized such that it brings the phase shifting elements to the exterior sides of the photonic circuits. The transition slot couplers, used to interconnect the phase shifters, are designed to enable biasing one of the silicon beams of each phase shifter from an electrode located at the side of the phase shifter. The other silicon beam of each phase shifter is biased through the rest of the silicon structure of the switch element, which is taken as a ground. Phased array switch elements ranging from 2x2 up to 8x8 multiple-inputs/multiple-outputs (MIMO) are conveniently designed within reasonable footprints native to the current fabrication technologies. Chapter one presents the general layout of the various designs of the switch elements and demonstrates their novel features. This demonstration will show how waveguide disturbances in the interconnecting network from conventional switch elements can be avoided by adopting an innovative design. Some possible applications for the designed switch elements of different sizes and topologies are indicated throughout the chapter. Chapter two presents the design of the multimode interference (MMI) couplers used in the switch elements as splitters, combiners and waveguide crossovers. Simulation data and design methodologies for the multimode couplers of interest are detailed in this chapter. Chapter three presents the design and analysis of the NEMS-operated phase shifters. Both simulations and numerical analysis are utilized in the design of a 0°-180° capable NEMS-operated phase shifter. Additionally, the response of some of the designed photonic phased array switch elements is demonstrated in this chapter. An executive summary and conclusions sections are also included in the thesis.
NASA Astrophysics Data System (ADS)
Duan, Lian; Makita, Shuichi; Yamanari, Masahiro; Lim, Yiheng; Yasuno, Yoshiaki
2011-08-01
A Monte-Carlo-based phase retardation estimator is developed to correct the systematic error in phase retardation measurement by polarization sensitive optical coherence tomography (PS-OCT). Recent research has revealed that the phase retardation measured by PS-OCT has a distribution that is neither symmetric nor centered at the true value. Hence, a standard mean estimator gives us erroneous estimations of phase retardation, and it degrades the performance of PS-OCT for quantitative assessment. In this paper, the noise property in phase retardation is investigated in detail by Monte-Carlo simulation and experiments. A distribution transform function is designed to eliminate the systematic error by using the result of the Monte-Carlo simulation. This distribution transformation is followed by a mean estimator. This process provides a significantly better estimation of phase retardation than a standard mean estimator. This method is validated both by numerical simulations and experiments. The application of this method to in vitro and in vivo biological samples is also demonstrated.
Monolithic mm-wave phase shifter using optically activated superconducting switches
NASA Technical Reports Server (NTRS)
Romanofsky, Robert R. (Inventor); Bhasin, Kul B. (Inventor)
1992-01-01
A phase shifter is disclosed having a reference path and a delay path, light sources, and superconductive switches. Each of the superconductive switches is terminated in a virtual short circuit, which may be a radial stub. Switching between the reference path and delayed path is accomplished by illuminating the superconductive switches connected to the desired path, while not illuminating the superconductive switches connected to the other path.
Decomposing task-switching costs with the diffusion model.
Schmitz, Florian; Voss, Andreas
2012-02-01
In four experiments, task-switching processes were investigated with variants of the alternating runs paradigm and the explicit cueing paradigm. The classical diffusion model for binary decisions (Ratcliff, 1978) was used to dissociate different components of task-switching costs. Findings can be reconciled with the view that task-switching processes take place in successive phases as postulated by multiple-components models of task switching (e.g., Mayr & Kliegl, 2003; Ruthruff, Remington, & Johnston, 2001). At an earlier phase, task-set reconfiguration (Rogers & Monsell, 1995) or cue-encoding (Schneider & Logan, 2005) takes place, at a later phase, the response is selected in accord with constraints set in the first phase. Inertia effects (Allport, Styles, & Hsieh, 1994; Allport & Wylie, 2000) were shown to affect this later stage. Additionally, findings support the notion that response caution contributes to both global as well as to local switching costs when task switches are predictable.
NASA Astrophysics Data System (ADS)
Kitano, Haruhisa; Yamaguchi, Ayami; Takahashi, Yusaku; Umegai, Shunpei; Watabe, Yuji; Ohnuma, Haruka; Hosaka, Kazutaka; Kakehi, Daiki
2018-03-01
The macroscopic quantum tunneling (MQT) in the current-biased intrinsic Josephson junctions (IJJs) of high-T c cuprates has attracted much attention for decades. Although the MQT for the phase switches from the zero to the first voltage state (1st SW) in the multiple-branched I-V curves is well explained by the conventional theory, the occurrence of MQT for the higher order switches such as the switch from the 1st to 2nd voltage state (2nd SW) has been still debated. Here, we present an experimental study on the phase switches of small IJJs fabricated from underdoped Bi2Sr2(Ca,Y)Cu2Oy. We observed the single photon transition between quantized energy levels in the 3rd phase switches at 59.15 GHz and 2 K. The comparison with the previous studies on the nearly optimal-doped Bi2Sr2CaCu2Oy clearly suggests a possibility that the MQT rate for the higher-order phase switches is commonly enhanced by the effective suppression of the energy barrier for the higher-order phase escape due to the phase-running state after the 1st SW, in spite of the large difference in a critical current density and T c.
Patti, Alessandro; Cuetos, Alejandro
2012-07-01
We report on the diffusion of purely repulsive and freely rotating colloidal rods in the isotropic, nematic, and smectic liquid crystal phases to probe the agreement between Brownian and Monte Carlo dynamics under the most general conditions. By properly rescaling the Monte Carlo time step, being related to any elementary move via the corresponding self-diffusion coefficient, with the acceptance rate of simultaneous trial displacements and rotations, we demonstrate the existence of a unique Monte Carlo time scale that allows for a direct comparison between Monte Carlo and Brownian dynamics simulations. To estimate the validity of our theoretical approach, we compare the mean square displacement of rods, their orientational autocorrelation function, and the self-intermediate scattering function, as obtained from Brownian dynamics and Monte Carlo simulations. The agreement between the results of these two approaches, even under the condition of heterogeneous dynamics generally observed in liquid crystalline phases, is excellent.
NASA Astrophysics Data System (ADS)
Liu, Chen; Gao, Bin; Huang, Peng; Kang, Jinfeng
2017-03-01
In this work, first principle calculations are employed to study the microstructure characteristics of the anatase TiO2 resistive switching material associated with the generation of oxygen vacancy (V o) based nanofilaments during the switching process. The calculations indicate that both the magnéli phase Ti4O7 and V o-defect phase of anatase TiO2 may be formed with the generation of oxygen vacancies during the forming and SET processes. Based on the calculations, a new physical insight is proposed to clarify the microstructure evolution characteristics of the anatase TiO2 resistive switching material and the correlation with resistive switching behaviors. During the forming or SET process, the anatase TiO2 is first excited to a transition state with the generation of oxygen vacancies, then fully relaxes to a stable V o-defect state. This V o-defect state may either recover to the original state with the recombination of the oxygen vacancies, which causes the reversible resistive switching behavior, or further transform to a much more stable state—the magnéli phase Ti4O7, through a phase transition process with the generation of many more oxygen vacancies. The phase transition from V o- defective anatase phase to magnéli phase Ti4O7 causes the failure of the resistive switching due to the significantly reduced possibility of the reversible phase transition from the magnéli phase to the anatase phase, compared with the possibility of the recombination from the V o-defective anatase.
Wang, Wanjun; Zhou, Haifeng; Yang, Jianyi; Wang, Minghua; Jiang, Xiaoqing
2012-06-15
We report on an experimental 3×3 thermo-optical switch on silicon on insulator. By controlling a single combined phase shifter, light from any input waveguide can be directed to any output waveguide, showing a simple control method and highly integrated structure as compared to the conventional multiway optical switches. Furthermore, the proposed optical switch can be generalized to be a 1×N and N×N optical switch without an extra phase shifter. The switch is fabricated by complementary metal oxide semiconductor technology. By experiment, full 3×3 switching functionality is demonstrated at a wavelength of 1.55 μm, with an average cross talk of -11.1 dB and a power consumption of 97.5 mW.
NASA Astrophysics Data System (ADS)
Orkoulas, Gerassimos; Panagiotopoulos, Athanassios Z.
1994-07-01
In this work, we investigate the liquid-vapor phase transition of the restricted primitive model of ionic fluids. We show that at the low temperatures where the phase transition occurs, the system cannot be studied by conventional molecular simulation methods because convergence to equilibrium is slow. To accelerate convergence, we propose cluster Monte Carlo moves capable of moving more than one particle at a time. We then address the issue of charged particle transfers in grand canonical and Gibbs ensemble Monte Carlo simulations, for which we propose a biased particle insertion/destruction scheme capable of sampling short interparticle distances. We compute the chemical potential for the restricted primitive model as a function of temperature and density from grand canonical Monte Carlo simulations and the phase envelope from Gibbs Monte Carlo simulations. Our calculated phase coexistence curve is in agreement with recent results of Caillol obtained on the four-dimensional hypersphere and our own earlier Gibbs ensemble simulations with single-ion transfers, with the exception of the critical temperature, which is lower in the current calculations. Our best estimates for the critical parameters are T*c=0.053, ρ*c=0.025. We conclude with possible future applications of the biased techniques developed here for phase equilibrium calculations for ionic fluids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villa, Enrique, E-mail: villae@unican.es; Aja, Beatriz; Cagigas, Jaime
2013-12-15
This paper presents the analysis, design, and characterization of a wideband 90° phase switch in Ka-band. The phase switch is based on two microstrip bandpass filters in which the commutation is performed by a novel single-pole double-throw (SPDT) switch. The analysis of π-network bandpass filters is provided, obtaining the phase difference and amplitude imbalance between filters and their scattering parameters; tested results show an average phase difference of 88.9° ± 5° and an amplitude imbalance of 0.15 dB from 24 to 37 GHz. The new broadband SPDT switch is based on a coplanar waveguide-to-slotline-to-microstrip structure, which enables a full planarmore » integration with shifting branches. PIN diodes are used to perform the switching between outputs. The SPDT shows isolation better than 19 dB, insertion loss of around 1.8 dB, and return loss better than 15 dB. The full integration of the phase switch achieves a return loss better than 11 dB and insertion loss of around 4 dB over the band 26–36 GHz, with an average phase difference of 87.1° ± 4° and an average amplitude imbalance of 0.3 dB. It provides an excellent performance for this frequency range, suitable for radio-astronomy receivers.« less
Wang, Yonggang; Zhu, Jinlong; Yang, Wenge; Wen, Ting; Pravica, Michael; Liu, Zhenxian; Hou, Mingqiang; Fei, Yingwei; Kang, Lei; Lin, Zheshuai; Jin, Changqing; Zhao, Yusheng
2016-01-01
Pressure-induced amorphization (PIA) and thermal-driven recrystallization have been observed in many crystalline materials. However, controllable switching between PIA and a metastable phase has not been described yet, due to the challenge to establish feasible switching methods to control the pressure and temperature precisely. Here, we demonstrate a reversible switching between PIA and thermally-driven recrystallization of VO2(B) nanosheets. Comprehensive in situ experiments are performed to establish the precise conditions of the reversible phase transformations, which are normally hindered but occur with stimuli beyond the energy barrier. Spectral evidence and theoretical calculations reveal the pressure–structure relationship and the role of flexible VOx polyhedra in the structural switching process. Anomalous resistivity evolution and the participation of spin in the reversible phase transition are observed for the first time. Our findings have significant implications for the design of phase switching devices and the exploration of hidden amorphous materials. PMID:27426219
Wang, Yonggang; Zhu, Jinlong; Yang, Wenge; Wen, Ting; Pravica, Michael; Liu, Zhenxian; Hou, Mingqiang; Fei, Yingwei; Kang, Lei; Lin, Zheshuai; Jin, Changqing; Zhao, Yusheng
2016-07-18
Pressure-induced amorphization (PIA) and thermal-driven recrystallization have been observed in many crystalline materials. However, controllable switching between PIA and a metastable phase has not been described yet, due to the challenge to establish feasible switching methods to control the pressure and temperature precisely. Here, we demonstrate a reversible switching between PIA and thermally-driven recrystallization of VO2(B) nanosheets. Comprehensive in situ experiments are performed to establish the precise conditions of the reversible phase transformations, which are normally hindered but occur with stimuli beyond the energy barrier. Spectral evidence and theoretical calculations reveal the pressure-structure relationship and the role of flexible VOx polyhedra in the structural switching process. Anomalous resistivity evolution and the participation of spin in the reversible phase transition are observed for the first time. Our findings have significant implications for the design of phase switching devices and the exploration of hidden amorphous materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Küchlin, Stephan, E-mail: kuechlin@ifd.mavt.ethz.ch; Jenny, Patrick
2017-01-01
A major challenge for the conventional Direct Simulation Monte Carlo (DSMC) technique lies in the fact that its computational cost becomes prohibitive in the near continuum regime, where the Knudsen number (Kn)—characterizing the degree of rarefaction—becomes small. In contrast, the Fokker–Planck (FP) based particle Monte Carlo scheme allows for computationally efficient simulations of rarefied gas flows in the low and intermediate Kn regime. The Fokker–Planck collision operator—instead of performing binary collisions employed by the DSMC method—integrates continuous stochastic processes for the phase space evolution in time. This allows for time step and grid cell sizes larger than the respective collisionalmore » scales required by DSMC. Dynamically switching between the FP and the DSMC collision operators in each computational cell is the basis of the combined FP-DSMC method, which has been proven successful in simulating flows covering the whole Kn range. Until recently, this algorithm had only been applied to two-dimensional test cases. In this contribution, we present the first general purpose implementation of the combined FP-DSMC method. Utilizing both shared- and distributed-memory parallelization, this implementation provides the capability for simulations involving many particles and complex geometries by exploiting state of the art computer cluster technologies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatti, A.A.
1990-04-01
This paper examines the effects of primary and secondary fault quantities as well s of mutual couplings of neighboring circuits on the sensitivity of operation and threshold settings of a microcomputer based differential protection of UHV lines under selective phase switching. Microcomputer based selective phase switching allows the disconnection of minimum number of phases involved in a fault and requires the autoreclosing of these phases immediately after the extinction of secondary arc. During a primary fault a heavy current contribution to the healthy phases tends to cause an unwanted tripping. Faulty phases physically disconnected constitute an isolated fault which beingmore » coupled to the system affects the current and voltage levels of the healthy phases still retained in the system and may cause an unwanted tripping. The microcomputer based differential protection, appears to have poor performance when applied to uncompensated lines employing selective pole switching.« less
Markov switching multinomial logit model: An application to accident-injury severities.
Malyshkina, Nataliya V; Mannering, Fred L
2009-07-01
In this study, two-state Markov switching multinomial logit models are proposed for statistical modeling of accident-injury severities. These models assume Markov switching over time between two unobserved states of roadway safety as a means of accounting for potential unobserved heterogeneity. The states are distinct in the sense that in different states accident-severity outcomes are generated by separate multinomial logit processes. To demonstrate the applicability of the approach, two-state Markov switching multinomial logit models are estimated for severity outcomes of accidents occurring on Indiana roads over a four-year time period. Bayesian inference methods and Markov Chain Monte Carlo (MCMC) simulations are used for model estimation. The estimated Markov switching models result in a superior statistical fit relative to the standard (single-state) multinomial logit models for a number of roadway classes and accident types. It is found that the more frequent state of roadway safety is correlated with better weather conditions and that the less frequent state is correlated with adverse weather conditions.
Hatta, Kotaro; Sugiyama, Naoya; Ito, Hiroto
2018-01-01
In terms of effectiveness of antipsychotics in schizophrenia, discrepancy often exists between results from double-blind randomized controlled trials and observations in emergency or acute-phase clinical practice. For instance, the antipsychotic switching strategy is not always applicable in emergency or acute-phase situations, and augmentation of another antipsychotic is occasionally done instead. In this review, we discuss strategies for early nonresponse to an antipsychotic drug such as switching and augmentation from the perspective of emergency and acute-phase treatment. We searched PubMed for the latest evidence on switching and augmentation strategies of antipsychotics for an emergency or acute-phase period. For risperidone and olanzapine, there is some evidence on switching and augmentation strategies in the management of acute-phase schizophrenia. There may be responders to olanzapine alone among early nonresponders to risperidone, whereas there may be few responders to risperidone alone among early nonresponders to olanzapine. However, there is still insufficient evidence at this time for application of these findings to routine clinical practice. For other antipsychotics, there is little evidence for their augmentation in acute-phase practice. We should be wary of polypharmacy, as multiple agents are too often prescribed by clinicians when not warranted. Considering current evidence, we propose how to switch antipsychotics in the acute phase of schizophrenia in routine practice. PMID:29854396
Huang, Yin; Shen, Yuecheng; Min, Changjun; Veronis, Georgios
2017-10-30
We introduce a non-parity-time-symmetric three-layer structure, consisting of a gain medium layer sandwiched between two phase-change medium layers for switching of the direction of reflectionless light propagation. We show that for this structure unidirectional reflectionlessness in the forward direction can be switched to unidirectional reflectionlessness in the backward direction at the optical communication wavelength by switching the phase-change material Ge 2 Sb 2 Te 5 (GST) from its amorphous to its crystalline phase. We also show that it is the existence of exceptional points for this structure with GST in both its amorphous and crystalline phases which leads to unidirectional reflectionless propagation in the forward direction for GST in its amorphous phase, and in the backward direction for GST in its crystalline phase. Our results could be potentially important for developing a new generation of compact active free-space optical devices.
Application of the DMRG in two dimensions: a parallel tempering algorithm
NASA Astrophysics Data System (ADS)
Hu, Shijie; Zhao, Jize; Zhang, Xuefeng; Eggert, Sebastian
The Density Matrix Renormalization Group (DMRG) is known to be a powerful algorithm for treating one-dimensional systems. When the DMRG is applied in two dimensions, however, the convergence becomes much less reliable and typically ''metastable states'' may appear, which are unfortunately quite robust even when keeping a very high number of DMRG states. To overcome this problem we have now successfully developed a parallel tempering DMRG algorithm. Similar to parallel tempering in quantum Monte Carlo, this algorithm allows the systematic switching of DMRG states between different model parameters, which is very efficient for solving convergence problems. Using this method we have figured out the phase diagram of the xxz model on the anisotropic triangular lattice which can be realized by hardcore bosons in optical lattices. SFB Transregio 49 of the Deutsche Forschungsgemeinschaft (DFG) and the Allianz fur Hochleistungsrechnen Rheinland-Pfalz (AHRP).
Zalden, Peter; Shu, Michael J.; Chen, Frank; ...
2016-08-05
Many chalcogenide glasses undergo a breakdown in electronic resistance above a critical field strength. Known as threshold switching, this mechanism enables field-induced crystallization in emerging phase-change memory. Purely electronic as well as crystal nucleation assisted models have been employed to explain the electronic breakdown. Here, picosecond electric pulses are used to excite amorphous Ag 4In 3Sb 67Te 26. Field-dependent reversible changes in conductivity and pulse-driven crystallization are observed. The present results show that threshold switching can take place within the electric pulse on subpicosecond time scales—faster than crystals can nucleate. As a result, this supports purely electronic models of thresholdmore » switching and reveals potential applications as an ultrafast electronic switch.« less
NASA Astrophysics Data System (ADS)
Takesue, H.
2018-02-01
Punishment and partner switching are two well-studied mechanisms that support the evolution of cooperation. Observation of human behaviour suggests that the extent to which punishment is adopted depends on the usage of alternative mechanisms, including partner switching. In this study, we investigate the combined effect of punishment and partner switching in evolutionary prisoner's dilemma games conducted on a network. In the model, agents are located on the network and participate in the prisoner's dilemma games with punishment. In addition, they can opportunistically switch interaction partners to improve their payoff. Our Monte Carlo simulation showed that a large frequency of punishers is required to suppress defectors when the frequency of partner switching is low. In contrast, cooperation is the most abundant strategy when the frequency of partner switching is high regardless of the strength of punishment. Interestingly, cooperators become abundant not because they avoid the cost of inflicting punishment and earn a larger average payoff per game but rather because they have more numerous opportunities to be referred to as a role agent by defectors. Our results imply that the fluidity of social relationships has a profound effect on the adopted strategy in maintaining cooperation.
Hohimer, John P.
1994-01-01
A high-power broad-area semiconductor laser having a intracavity spatial phase controller is disclosed. The integrated intracavity spatial phase controller is easily formed by patterning an electrical contact metallization layer when fabricating the semiconductor laser. This spatial phase controller changes the normally broad far-field emission beam of such a laser into a single-lobed near-diffraction-limited beam at pulsed output powers of over 400 mW. Two operating modes, a thermal and a gain operating mode, exist for the phase controller, allowing for steering and switching the beam as the modes of operation are switched, and the emission beam may be scanned, for example, over a range of 1.4 degrees or switched by 8 degrees. More than one spatial phase controller may be integrated into the laser structure.
Hohimer, J.P.
1994-06-07
A high-power broad-area semiconductor laser having a intracavity spatial phase controller is disclosed. The integrated intracavity spatial phase controller is easily formed by patterning an electrical contact metallization layer when fabricating the semiconductor laser. This spatial phase controller changes the normally broad far-field emission beam of such a laser into a single-lobed near-diffraction-limited beam at pulsed output powers of over 400 mW. Two operating modes, a thermal and a gain operating mode, exist for the phase controller, allowing for steering and switching the beam as the modes of operation are switched, and the emission beam may be scanned, for example, over a range of 1.4 degrees or switched by 8 degrees. More than one spatial phase controller may be integrated into the laser structure. 6 figs.
Effect of lag time distribution on the lag phase of bacterial growth - a Monte Carlo analysis
USDA-ARS?s Scientific Manuscript database
The objective of this study is to use Monte Carlo simulation to evaluate the effect of lag time distribution of individual bacterial cells incubated under isothermal conditions on the development of lag phase. The growth of bacterial cells of the same initial concentration and mean lag phase durati...
Wang, Yonggang; Zhu, Jinlong; Yang, Wenge; ...
2016-07-18
Pressure-induced amorphization (PIA) and thermal-driven recrystallization have been observed in many crystalline materials. However, controllable switching between PIA and a metastable phase has not been described yet, due to the challenge to establish feasible switching methods to control the pressure and temperature precisely. Here, we demonstrate a reversible switching between PIA and thermally-driven recrystallization of VO 2(B) nanosheets. Comprehensive in situ experiments are performed to establish the precise conditions of the reversible phase transformations, which are normally hindered but occur with stimuli beyond the energy barrier. Spectral evidence and theoretical calculations reveal the pressure–structure relationship and the role of flexiblemore » VO x polyhedra in the structural switching process. Anomalous resistivity evolution and the participation of spin in the reversible phase transition are observed for the first time. Our findings have significant implications for the design of phase switching devices and the exploration of hidden amorphous materials.« less
A Locust Phase Change Model with Multiple Switching States and Random Perturbation
NASA Astrophysics Data System (ADS)
Xiang, Changcheng; Tang, Sanyi; Cheke, Robert A.; Qin, Wenjie
2016-12-01
Insects such as locusts and some moths can transform from a solitarious phase when they remain in loose populations and a gregarious phase, when they may swarm. Therefore, the key to effective management of outbreaks of species such as the desert locust Schistocercagregaria is early detection of when they are in the threshold state between the two phases, followed by timely control of their hopper stages before they fledge because the control of flying adult swarms is costly and often ineffective. Definitions of gregarization thresholds should assist preventive control measures and avoid treatment of areas that might not lead to gregarization. In order to better understand the effects of the threshold density which represents the gregarization threshold on the outbreak of a locust population, we developed a model of a discrete switching system. The proposed model allows us to address: (1) How frequently switching occurs from solitarious to gregarious phases and vice versa; (2) When do stable switching transients occur, the existence of which indicate that solutions with larger amplitudes can switch to a stable attractor with a value less than the switching threshold density?; and (3) How does random perturbation influence the switching pattern? Our results show that both subsystems have refuge equilibrium points, outbreak equilibrium points and bistable equilibria. Further, the outbreak equilibrium points and bistable equilibria can coexist for a wide range of parameters and can switch from one to another. This type of switching is sensitive to the intrinsic growth rate and the initial values of the locust population, and may result in locust population outbreaks and phase switching once a small perturbation occurs. Moreover, the simulation results indicate that the switching transient patterns become identical after some generations, suggesting that the evolving process of the perturbation system is not related to the initial value after some fixed number of generations for the same stochastic processes. However, the switching frequency and outbreak patterns can be significantly affected by the intensity of noise and the intrinsic growth rate of the locust population.
EIT-based all-optical switching and cross-phase modulation under the influence of four-wave mixing.
Lee, Meng-Jung; Chen, Yi-Hsin; Wang, I-Chung; Yu, Ite A
2012-05-07
All-optical switching (AOS) or cross-phase modulation (XPM) based on the effect of electromagnetically induced transparency (EIT) makes one photon switched or phase-modulated by another possible. The existence of four-wave mixing (FWM) process greatly diminishes the switching or phase-modulation efficiency and hinders the single-photon operation. We proposed and experimentally demonstrated an idea that with an optimum detuning the EIT-based AOS can be completely intact even under the influence of FWM. The results of the work can be directly applied to the EIT-based XPM. Our work makes the AOS and XPM schemes more flexible and the single-photon operation possible in FWM-allowed systems.
Effect of light and heat on the stability of montelukast in solution and in its solid state.
Al Omari, Mahmoud M; Zoubi, Rufaida M; Hasan, Enas I; Khader, Tariq Z; Badwan, Adnan A
2007-11-05
The chemical stability of montelukast (Monte) in solution and in its solid state was studied. A simultaneous measurement of Monte and its degradation products was determined using a selective HPLC method. The HPLC system comprised a reversed phase column (C18) as the stationary phase and a mixture of ammonium acetate buffer of pH 3.5 and methanol (15:85 v/v) as the mobile phase. The UV detection was conducted at 254 nm. Monte in solution showed instability when exposed to light leading to the formation of its cis-isomer as the major photoproduct. The rate of photodegradation of Monte in solution exposed to various light sources increases in the order of; sodium
ERIC Educational Resources Information Center
Masrur, M. A.
2009-01-01
This paper discusses the situation in a 3-phase motor or any other 3-phase system operating under unbalanced operating conditions caused by an open fault in an inverter switch. A dc voltage source is assumed as the input to the inverter, and under faulty conditions of the inverter switch, the actual voltage applied between the line to neutral…
AC motor controller with 180 degree conductive switches
NASA Technical Reports Server (NTRS)
Oximberg, Carol A. (Inventor)
1995-01-01
An ac motor controller is operated by a modified time-switching scheme where the switches of the inverter are on for electrical-phase-and-rotation intervals of 180.degree. as opposed to the conventional 120.degree.. The motor is provided with three-phase drive windings, a power inverter for power supplied from a dc power source consisting of six switches, and a motor controller which controls the current controlled switches in voltage-fed mode. During full power, each switch is gated continuously for three successive intervals of 60.degree. and modulated for only one of said intervals. Thus, during each 60.degree. interval, the two switches with like signs are on continuously and the switch with the opposite sign is modulated.
Hansen, Richard A; Chen, Shih-Yin; Gaynes, Bradley N; Maciejewski, Matthew L
2010-12-01
Patient nonadherence and early discontinuation of antidepressant treatment are common. Pharmaceutical promotion to consumers and physicians may influence this behavior. The objectives of this study were to explore whether promotional spending is related to early antidepressant switching, acute-phase adherence, and continuation-phase adherence. A retrospective cohort study was conducted with national promotional expenditure data merged with medical and prescription claims data from a large national health plan affiliated with i3 Innovus. Included were records for continuously insured adults with major depression who received a new prescription for an antidepressant: 5,010 were in the cohort assessed for switching, 4,457 were in the cohort assessed for acute-phase adherence, and 1,772 were in the cohort assessed for continuation-phase adherence. National promotional efforts were estimated by examining inflation-adjusted spending on direct-to-consumer advertising (DTCA) and physician detailing. Clinical guidelines were used to create proxies for aspects of treatment outcomes, including antidepressant switching and adherence in the acute phase and adherence in the continuation phase. Logistic regression models estimated the association between promotional variables and these outcomes. Patients taking medications that were more highly promoted to physicians were less likely to switch medications (odds ratio [OR]=.61) and were more likely to be adherent during the acute phase of treatment (OR=1.13). DTCA had little effect on switching or antidepressant adherence. Detailing to physicians was associated with lower rates of medication switching and had a positive relationship with patient adherence during early antidepressant treatment. This finding indicates that certain aspects of promotion may have beneficial effects on antidepressant use.
NASA Astrophysics Data System (ADS)
Rupp, Jonathan A. J.; Querré, Madec; Kindsmüller, Andreas; Besland, Marie-Paule; Janod, Etienne; Dittmann, Regina; Waser, Rainer; Wouters, Dirk J.
2018-01-01
This study investigates resistive switching in amorphous undoped and Cr-doped vanadium oxide thin films synthesized by sputtering deposition at low oxygen partial pressure. Two different volatile threshold switching characteristics can occur as well as a non-volatile bipolar switching mechanism, depending on device stack symmetry and Cr-doping. The two threshold switching types are associated with different crystalline phases in the conduction filament created during an initial forming step. The first kind of threshold switching, observed for undoped vanadium oxide films, was, by its temperature dependence, proven to be associated with a thermally triggered insulator-to-metal transition in a crystalline VO2 phase, whereas the threshold switch observed in chromium doped films is stable up to 90 °C and shows characteristics of an electronically induced Mott transition. This different behaviour for undoped versus doped films has been attributed to an increased stability of V3+ due to the Cr3+ doping (as evidenced by X-ray photoelectron spectroscopy analysis), probably favouring the creation of a crystalline Cr-doped V2O3 phase (rather than a Cr-doped VO2 phase) during the energetic forming step. The symmetric Pt/a-(VCr)Ox/Pt device showing high temperature stable threshold switching may find interesting applications as a possible new selector device for resistive switching memory (ReRAM) crossbar arrays.
InP-based millimeter-wave PIN diodes for switching and phase-shifting application
NASA Astrophysics Data System (ADS)
Pavlidis, Dimitris; Alekseev, Egor; Hong, Kyushik; Cui, Delong
1997-10-01
InP-based PIN design, technology and circuit implementation were addressed and successfully applied to millimeter-wave MMIC switches and phase shifters. A wet etchant based via technology was developed and applied to InP MMIC fabrication. MOCVD and MBE material growth was used for PIN realization and PIN specific growth optimization is discussed. Experimentally determined electrical characteristics and good performance is presented for a variety of InP-based PIN MMICs including coplanar and microstrip Ka-band SPST switches, W-band microstrip SPST switches and a 90-degree phase shifter.
Compact wavelength-selective optical switch based on digital optical phase conjugation.
Li, Zhiyang; Claver, Havyarimana
2013-11-15
In this Letter, we show that digital optical phase conjugation might be utilized to construct a new kind of wavelength-selective switches. When incorporated with a multimode interferometer, these switches have wide bandwidth, high tolerance for fabrication error, and low polarization dependency. They might help to build large-scale multiwavelength nonblocking switching systems, or even to fabricate an optical cross-connecting or routing system on a chip.
Four phases of the Flint Water Crisis: Evidence from blood lead levels in children.
Zahran, Sammy; McElmurry, Shawn P; Sadler, Richard C
2017-08-01
The Flint Water Crisis (FWC) is divisible into four phases of child water-lead exposure risk: Phase A) before the switch in water source to the Flint River (our baseline); Phase B) after the switch in water source, but before boil water advisories; Phase C) after boil water advisories, but before the switch back to the baseline water source of the Detroit Water and Sewerage Department (DWSD); and Phase D) after the switch back to DWSD. The objective of this work is to estimate water-lead attributable movements in child blood lead levels (BLLs) that correspond with the four phases in the FWC. With over 21,000 geo-referenced and time-stamped blood lead samples from children in Genesee County drawn from January 01, 2013 to July 19, 2016, we develop a series of quasi-experimental models to identify the causal effect of water-lead exposure on child BLLs in Flint. We find that the switch in water source (transitioning from phase A to B) caused mean BLLs to increase by about 0.5μg/dL, and increased the likelihood of a child presenting with a BLL ≥ 5μg/dL by a factor of 1.91-3.50, implying an additional 561 children exceeding 5μg/dL. We conservatively estimate cohort social costs (through lost earnings alone) of this increase in water-lead exposed children at $65 million, contrasted with expected annual savings of $2 million from switching water source. On the switch from Phase B to C, we find BLLs decreased about 50% from their initial rise following boil water advisories and subsequent water avoidance behaviors by households. Finally, the return to the baseline source water (Phase D) returned child BLLs to pre-FWC levels further implicating water-lead exposure as a causal source of child BLLs throughout the FWC. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
The ensemble switch method for computing interfacial tensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmitz, Fabian; Virnau, Peter
2015-04-14
We present a systematic thermodynamic integration approach to compute interfacial tensions for solid-liquid interfaces, which is based on the ensemble switch method. Applying Monte Carlo simulations and finite-size scaling techniques, we obtain results for hard spheres, which are in agreement with previous computations. The case of solid-liquid interfaces in a variant of the effective Asakura-Oosawa model and of liquid-vapor interfaces in the Lennard-Jones model are discussed as well. We demonstrate that a thorough finite-size analysis of the simulation data is required to obtain precise results for the interfacial tension.
Set statistics in conductive bridge random access memory device with Cu/HfO{sub 2}/Pt structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Meiyun; Long, Shibing, E-mail: longshibing@ime.ac.cn; Wang, Guoming
2014-11-10
The switching parameter variation of resistive switching memory is one of the most important challenges in its application. In this letter, we have studied the set statistics of conductive bridge random access memory with a Cu/HfO{sub 2}/Pt structure. The experimental distributions of the set parameters in several off resistance ranges are shown to nicely fit a Weibull model. The Weibull slopes of the set voltage and current increase and decrease logarithmically with off resistance, respectively. This experimental behavior is perfectly captured by a Monte Carlo simulator based on the cell-based set voltage statistics model and the Quantum Point Contact electronmore » transport model. Our work provides indications for the improvement of the switching uniformity.« less
NASA Astrophysics Data System (ADS)
Graham, Eleanor; Cuore Collaboration
2017-09-01
The CUORE experiment is a large-scale bolometric detector seeking to observe the never-before-seen process of neutrinoless double beta decay. Predictions for CUORE's sensitivity to neutrinoless double beta decay allow for an understanding of the half-life ranges that the detector can probe, and also to evaluate the relative importance of different detector parameters. Currently, CUORE uses a Bayesian analysis based in BAT, which uses Metropolis-Hastings Markov Chain Monte Carlo, for its sensitivity studies. My work evaluates the viability and potential improvements of switching the Bayesian analysis to Hamiltonian Monte Carlo, realized through the program Stan and its Morpho interface. I demonstrate that the BAT study can be successfully recreated in Stan, and perform a detailed comparison between the results and computation times of the two methods.
NASA Astrophysics Data System (ADS)
He, Hao; Sevick, Edith M.; Williams, David R. M.
2018-04-01
We examine a solution of non-adaptive two-state rotaxane molecules which can switch from a short state of length L to a long state of length qL, using statistical thermodynamics. This molecular switching is externally driven and can result in an isotropic-nematic phase transition without altering temperature and concentration. Here we concentrate on the limitation imposed by switching inefficiency, i.e., on the case where molecular switching is not quantitative, leading to a solution of rotaxanes in different states. We present switching diagrams that can guide in the design of rotaxanes which affect a macroscopic phase change.
The Consequences of Ignoring Individuals' Mobility in Multilevel Growth Models: A Monte Carlo Study
ERIC Educational Resources Information Center
Luo, Wen; Kwok, Oi-man
2012-01-01
In longitudinal multilevel studies, especially in educational settings, it is fairly common that participants change their group memberships over time (e.g., students switch to different schools). Participant's mobility changes the multilevel data structure from a purely hierarchical structure with repeated measures nested within individuals and…
Switch for serial or parallel communication networks
Crosette, D.B.
1994-07-19
A communication switch apparatus and a method for use in a geographically extensive serial, parallel or hybrid communication network linking a multi-processor or parallel processing system has a very low software processing overhead in order to accommodate random burst of high density data. Associated with each processor is a communication switch. A data source and a data destination, a sensor suite or robot for example, may also be associated with a switch. The configuration of the switches in the network are coordinated through a master processor node and depends on the operational phase of the multi-processor network: data acquisition, data processing, and data exchange. The master processor node passes information on the state to be assumed by each switch to the processor node associated with the switch. The processor node then operates a series of multi-state switches internal to each communication switch. The communication switch does not parse and interpret communication protocol and message routing information. During a data acquisition phase, the communication switch couples sensors producing data to the processor node associated with the switch, to a downlink destination on the communications network, or to both. It also may couple an uplink data source to its processor node. During the data exchange phase, the switch couples its processor node or an uplink data source to a downlink destination (which may include a processor node or a robot), or couples an uplink source to its processor node and its processor node to a downlink destination. 9 figs.
Switch for serial or parallel communication networks
Crosette, Dario B.
1994-01-01
A communication switch apparatus and a method for use in a geographically extensive serial, parallel or hybrid communication network linking a multi-processor or parallel processing system has a very low software processing overhead in order to accommodate random burst of high density data. Associated with each processor is a communication switch. A data source and a data destination, a sensor suite or robot for example, may also be associated with a switch. The configuration of the switches in the network are coordinated through a master processor node and depends on the operational phase of the multi-processor network: data acquisition, data processing, and data exchange. The master processor node passes information on the state to be assumed by each switch to the processor node associated with the switch. The processor node then operates a series of multi-state switches internal to each communication switch. The communication switch does not parse and interpret communication protocol and message routing information. During a data acquisition phase, the communication switch couples sensors producing data to the processor node associated with the switch, to a downlink destination on the communications network, or to both. It also may couple an uplink data source to its processor node. During the data exchange phase, the switch couples its processor node or an uplink data source to a downlink destination (which may include a processor node or a robot), or couples an uplink source to its processor node and its processor node to a downlink destination.
NASA Astrophysics Data System (ADS)
Aldana, S.; Roldán, J. B.; García-Fernández, P.; Suñe, J.; Romero-Zaliz, R.; Jiménez-Molinos, F.; Long, S.; Gómez-Campos, F.; Liu, M.
2018-04-01
A simulation tool based on a 3D kinetic Monte Carlo algorithm has been employed to analyse bipolar conductive bridge RAMs fabricated with Cu/HfOx/Pt stacks. Resistive switching mechanisms are described accounting for the electric field and temperature distributions within the dielectric. The formation and destruction of conductive filaments (CFs) are analysed taking into consideration redox reactions and the joint action of metal ion thermal diffusion and electric field induced drift. Filamentary conduction is considered when different percolation paths are formed in addition to other conventional transport mechanisms in dielectrics. The simulator was tuned by using the experimental data for Cu/HfOx/Pt bipolar devices that were fabricated. Our simulation tool allows for the study of different experimental results, in particular, the current variations due to the electric field changes between the filament tip and the electrode in the High Resistance State. In addition, the density of metallic atoms within the CF can also be characterized along with the corresponding CF resistance description.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamb, J; Lee, C; Tee, S
2014-06-15
Purpose: To investigate the accuracy of 4D dose accumulation using projection of dose calculated on the end-exhalation, mid-ventilation, or average intensity breathing phase CT scan, versus dose accumulation performed using full Monte Carlo dose recalculation on every breathing phase. Methods: Radiotherapy plans were analyzed for 10 patients with stage I-II lung cancer planned using 4D-CT. SBRT plans were optimized using the dose calculated by a commercially-available Monte Carlo algorithm on the end-exhalation 4D-CT phase. 4D dose accumulations using deformable registration were performed with a commercially available tool that projected the planned dose onto every breathing phase without recalculation, as wellmore » as with a Monte Carlo recalculation of the dose on all breathing phases. The 3D planned dose (3D-EX), the 3D dose calculated on the average intensity image (3D-AVE), and the 4D accumulations of the dose calculated on the end-exhalation phase CT (4D-PR-EX), the mid-ventilation phase CT (4D-PR-MID), and the average intensity image (4D-PR-AVE), respectively, were compared against the accumulation of the Monte Carlo dose recalculated on every phase. Plan evaluation metrics relating to target volumes and critical structures relevant for lung SBRT were analyzed. Results: Plan evaluation metrics tabulated using 4D-PR-EX, 4D-PR-MID, and 4D-PR-AVE differed from those tabulated using Monte Carlo recalculation on every phase by an average of 0.14±0.70 Gy, - 0.11±0.51 Gy, and 0.00±0.62 Gy, respectively. Deviations of between 8 and 13 Gy were observed between the 4D-MC calculations and both 3D methods for the proximal bronchial trees of 3 patients. Conclusions: 4D dose accumulation using projection without re-calculation may be sufficiently accurate compared to 4D dose accumulated from Monte Carlo recalculation on every phase, depending on institutional protocols. Use of 4D dose accumulation should be considered when evaluating normal tissue complication probabilities as well as in clinical situations where target volumes are directly inferior to mobile critical structures.« less
Monte Carlo simulation of a noisy quantum channel with memory.
Akhalwaya, Ismail; Moodley, Mervlyn; Petruccione, Francesco
2015-10-01
The classical capacity of quantum channels is well understood for channels with uncorrelated noise. For the case of correlated noise, however, there are still open questions. We calculate the classical capacity of a forgetful channel constructed by Markov switching between two depolarizing channels. Techniques have previously been applied to approximate the output entropy of this channel and thus its capacity. In this paper, we use a Metropolis-Hastings Monte Carlo approach to numerically calculate the entropy. The algorithm is implemented in parallel and its performance is studied and optimized. The effects of memory on the capacity are explored and previous results are confirmed to higher precision.
A genetic switch controls the production of flagella and toxins in Clostridium difficile.
Anjuwon-Foster, Brandon R; Tamayo, Rita
2017-03-01
In the human intestinal pathogen Clostridium difficile, flagella promote adherence to intestinal epithelial cells. Flagellar gene expression also indirectly impacts production of the glucosylating toxins, which are essential to diarrheal disease development. Thus, factors that regulate the expression of the flgB operon will likely impact toxin production in addition to flagellar motility. Here, we report the identification a "flagellar switch" that controls the phase variable production of flagella and glucosylating toxins. The flagellar switch, located upstream of the flgB operon containing the early stage flagellar genes, is a 154 bp invertible sequence flanked by 21 bp inverted repeats. Bacteria with the sequence in one orientation expressed flagellum and toxin genes, produced flagella, and secreted the toxins ("flg phase ON"). Bacteria with the sequence in the inverse orientation were attenuated for flagellar and toxin gene expression, were aflagellate, and showed decreased toxin secretion ("flg phase OFF"). The orientation of the flagellar switch is reversible during growth in vitro. We provide evidence that gene regulation via the flagellar switch occurs post-transcription initiation and requires a C. difficile-specific regulatory factor to destabilize or degrade the early flagellar gene mRNA when the flagellar switch is in the OFF orientation. Lastly, through mutagenesis and characterization of flagellar phase locked isolates, we determined that the tyrosine recombinase RecV, which catalyzes inversion at the cwpV switch, is also responsible for inversion at the flagellar switch in both directions. Phase variable flagellar motility and toxin production suggests that these important virulence factors have both advantageous and detrimental effects during the course of infection.
Logic computation in phase change materials by threshold and memory switching.
Cassinerio, M; Ciocchini, N; Ielmini, D
2013-11-06
Memristors, namely hysteretic devices capable of changing their resistance in response to applied electrical stimuli, may provide new opportunities for future memory and computation, thanks to their scalable size, low switching energy and nonvolatile nature. We have developed a functionally complete set of logic functions including NOR, NAND and NOT gates, each utilizing a single phase-change memristor (PCM) where resistance switching is due to the phase transformation of an active chalcogenide material. The logic operations are enabled by the high functionality of nanoscale phase change, featuring voltage comparison, additive crystallization and pulse-induced amorphization. The nonvolatile nature of memristive states provides the basis for developing reconfigurable hybrid logic/memory circuits featuring low-power and high-speed switching. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zheng, Ping; Sui, Yi; Tong, Chengde; Bai, Jingang; Yu, Bin; Lin, Fei
2014-05-01
This paper investigates a novel single-phase flux-switching permanent-magnet (PM) linear machine used for free-piston Stirling engines. The machine topology and operating principle are studied. A flux-switching PM linear machine is designed based on the quasi-sinusoidal speed characteristic of the resonant piston. Considering the performance of back electromotive force and thrust capability, some leading structural parameters, including the air gap length, the PM thickness, the ratio of the outer radius of mover to that of stator, the mover tooth width, the stator tooth width, etc., are optimized by finite element analysis. Compared with conventional three-phase moving-magnet linear machine, the proposed single-phase flux-switching topology shows advantages in less PM use, lighter mover, and higher volume power density.
Wu, Kan; Guo, Chaoshi; Wang, Hao; Zhang, Xiaoyan; Wang, Jun; Chen, Jianping
2017-07-24
All-optical phase shifters and switches play an important role for various all-optical applications including all-optical signal processing, sensing and communication. In this paper, we demonstrate a fiber all-optical phase shifter using few-layer 2D material tungsten disulfide (WS 2 ) deposited on a tapered fiber. WS 2 absorbs injected 980 nm pump (control light) and generates heat, which changes the refractive index of both WS 2 and tapered fiber due to thermo-optic effect and achieves a maximum phase shift of 6.1π near 1550 nm. The device has a loss of 3.7 dB. By constructing a Mach-Zehnder interferometer with WS 2 based phase shifter in one arm, an all-optical switch is also obtained with an extinction ratio of 15 dB and a rise time of 7.3 ms. This all fiber low-cost and compact optical phase shifter and switch demonstrates the potential of 2D transition metal dichalcogenides for all-optical signal processing devices.
Gutzwiller Monte Carlo approach for a critical dissipative spin model
NASA Astrophysics Data System (ADS)
Casteels, Wim; Wilson, Ryan M.; Wouters, Michiel
2018-06-01
We use the Gutzwiller Monte Carlo approach to simulate the dissipative X Y Z model in the vicinity of a dissipative phase transition. This approach captures classical spatial correlations together with the full on-site quantum behavior while neglecting nonlocal quantum effects. By considering finite two-dimensional lattices of various sizes, we identify a ferromagnetic and two paramagnetic phases, in agreement with earlier studies. The greatly reduced numerical complexity of the Gutzwiller Monte Carlo approach facilitates efficient simulation of relatively large lattice sizes. The inclusion of the spatial correlations allows to capture parts of the phase diagram that are completely missed by the widely applied Gutzwiller decoupling of the density matrix.
Quantized Self-Assembly of Discotic Rings in a Liquid Crystal Confined in Nanopores
NASA Astrophysics Data System (ADS)
Sentker, Kathrin; Zantop, Arne W.; Lippmann, Milena; Hofmann, Tommy; Seeck, Oliver H.; Kityk, Andriy V.; Yildirim, Arda; Schönhals, Andreas; Mazza, Marco G.; Huber, Patrick
2018-02-01
Disklike molecules with aromatic cores spontaneously stack up in linear columns with high, one-dimensional charge carrier mobilities along the columnar axes, making them prominent model systems for functional, self-organized matter. We show by high-resolution optical birefringence and synchrotron-based x-ray diffraction that confining a thermotropic discotic liquid crystal in cylindrical nanopores induces a quantized formation of annular layers consisting of concentric circular bent columns, unknown in the bulk state. Starting from the walls this ring self-assembly propagates layer by layer towards the pore center in the supercooled domain of the bulk isotropic-columnar transition and thus allows one to switch on and off reversibly single, nanosized rings through small temperature variations. By establishing a Gibbs free energy phase diagram we trace the phase transition quantization to the discreteness of the layers' excess bend deformation energies in comparison to the thermal energy, even for this near room-temperature system. Monte Carlo simulations yielding spatially resolved nematic order parameters, density maps, and bond-orientational order parameters corroborate the universality and robustness of the confinement-induced columnar ring formation as well as its quantized nature.
Concept of an interlaced phased array for beam switching
NASA Astrophysics Data System (ADS)
Reddy, C. A.; Janardhanan, K. V.; Mukundan, K. K.; Shenoy, K. S. V.
1990-04-01
A novel concept is described for feeding and phasing a large linear array of N antenna elements using only three or five feed points and phase shifters and still achieving beam switching. The idea consists of drastically reducing the number of input points by interlacing a small number of serially fed subarrays which are suitably phased. This so-called interlaced phased array (IPA) concept was tested using an array of 15 four-element Yagi antennas with a spacing equal to 0.8 wavelengths and found feasible. Some of the distinct advantages of the IPA in comparison with a conventional system of beam switching are reduced power loss, reduced phasing errors, reduced cost, increased reliability resulting from greatly reduced number of phase shifters, and better symmetry of off-zenith beams.
Evidence for thermally assisted threshold switching behavior in nanoscale phase-change memory cells
NASA Astrophysics Data System (ADS)
Le Gallo, Manuel; Athmanathan, Aravinthan; Krebs, Daniel; Sebastian, Abu
2016-01-01
In spite of decades of research, the details of electrical transport in phase-change materials are still debated. In particular, the so-called threshold switching phenomenon that allows the current density to increase steeply when a sufficiently high voltage is applied is still not well understood, even though there is wide consensus that threshold switching is solely of electronic origin. However, the high thermal efficiency and fast thermal dynamics associated with nanoscale phase-change memory (PCM) devices motivate us to reassess a thermally assisted threshold switching mechanism, at least in these devices. The time/temperature dependence of the threshold switching voltage and current in doped Ge2Sb2Te5 nanoscale PCM cells was measured over 6 decades in time at temperatures ranging from 40 °C to 160 °C. We observe a nearly constant threshold switching power across this wide range of operating conditions. We also measured the transient dynamics associated with threshold switching as a function of the applied voltage. By using a field- and temperature-dependent description of the electrical transport combined with a thermal feedback, quantitative agreement with experimental data of the threshold switching dynamics was obtained using realistic physical parameters.
NASA Astrophysics Data System (ADS)
Shukla, Krishna Dayal; Saxena, Nishant; Durai, Suresh; Manivannan, Anbarasu
2016-11-01
Although phase-change memory (PCM) offers promising features for a ‘universal memory’ owing to high-speed and non-volatility, achieving fast electrical switching remains a key challenge. In this work, a correlation between the rate of applied voltage and the dynamics of threshold-switching is investigated at picosecond-timescale. A distinct characteristic feature of enabling a rapid threshold-switching at a critical voltage known as the threshold voltage as validated by an instantaneous response of steep current rise from an amorphous off to on state is achieved within 250 picoseconds and this is followed by a slower current rise leading to crystallization. Also, we demonstrate that the extraordinary nature of threshold-switching dynamics in AgInSbTe cells is independent to the rate of applied voltage unlike other chalcogenide-based phase change materials exhibiting the voltage dependent transient switching characteristics. Furthermore, numerical solutions of time-dependent conduction process validate the experimental results, which reveal the electronic nature of threshold-switching. These findings of steep threshold-switching of ‘sub-50 ps delay time’, opens up a new way for achieving high-speed non-volatile memory for mainstream computing.
High bandwidth all-optical 3×3 switch based on multimode interference structures
NASA Astrophysics Data System (ADS)
Le, Duy-Tien; Truong, Cao-Dung; Le, Trung-Thanh
2017-03-01
A high bandwidth all-optical 3×3 switch based on general interference multimode interference (GI-MMI) structure is proposed in this study. Two 3×3 multimode interference couplers are cascaded to realize an all-optical switch operating at both wavelengths of 1550 nm and 1310 nm. Two nonlinear directional couplers at two outer-arms of the structure are used as all-optical phase shifters to achieve all switching states and to control the switching states. Analytical expressions for switching operation using the transfer matrix method are presented. The beam propagation method (BPM) is used to design and optimize the whole structure. The optimal design of the all-optical phase shifters and 3×3 MMI couplers are carried out to reduce the switching power and loss.
A 0.2 V Micro-Electromechanical Switch Enabled by a Phase Transition.
Dong, Kaichen; Choe, Hwan Sung; Wang, Xi; Liu, Huili; Saha, Bivas; Ko, Changhyun; Deng, Yang; Tom, Kyle B; Lou, Shuai; Wang, Letian; Grigoropoulos, Costas P; You, Zheng; Yao, Jie; Wu, Junqiao
2018-04-01
Micro-electromechanical (MEM) switches, with advantages such as quasi-zero leakage current, emerge as attractive candidates for overcoming the physical limits of complementary metal-oxide semiconductor (CMOS) devices. To practically integrate MEM switches into CMOS circuits, two major challenges must be addressed: sub 1 V operating voltage to match the voltage levels in current circuit systems and being able to deliver at least millions of operating cycles. However, existing sub 1 V mechanical switches are mostly subject to significant body bias and/or limited lifetimes, thus failing to meet both limitations simultaneously. Here 0.2 V MEM switching devices with ≳10 6 safe operating cycles in ambient air are reported, which achieve the lowest operating voltage in mechanical switches without body bias reported to date. The ultralow operating voltage is mainly enabled by the abrupt phase transition of nanolayered vanadium dioxide (VO 2 ) slightly above room temperature. The phase-transition MEM switches open possibilities for sub 1 V hybrid integrated devices/circuits/systems, as well as ultralow power consumption sensors for Internet of Things applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lu, Zeqin; Celo, Dritan; Mehrvar, Hamid; Bernier, Eric; Chrostowski, Lukas
2017-09-25
This work proposes a novel silicon photonic tri-state (cross/bar/blocking) switch, featuring high-speed switching, broadband operation, and crosstalk-free performance. The switch is designed based on a 2 × 2 balanced nested Mach-Zehnder interferometer structure with carrier injection phase tuning. As compared to silicon photonic dual-state (cross/bar) switches based on Mach-Zehnder interferometers with carrier injection phase tuning, the proposed switch not only has better performance in cross/bar switching but also provides an extra blocking state. The unique blocking state has a great advantage in applications of N × N switch fabrics, where idle switching elements in the fabrics can be configured to the blocking state for crosstalk suppression. According to our numerical experiments on a fully loaded 8 × 8 dilated Banyan switch fabric, the worst output crosstalk of the 8 × 8 switch can be dramatically suppressed by more than 50 dB, by assigning the blocking state to idle switching elements in the fabric. The results of this work can extend the functionality of silicon photonic switches and significantly improve the performance of on-chip N × N photonic switching technologies.
Novel switching method for single-phase NPC three-level inverter with neutral-point voltage control
NASA Astrophysics Data System (ADS)
Lee, June-Seok; Lee, Seung-Joo; Lee, Kyo-Beum
2018-02-01
This paper proposes a novel switching method with the neutral-point voltage control in a single-phase neutral-point-clamped three-level inverter (SP-NPCI) used in photovoltaic systems. A proposed novel switching method for the SP-NPCI improves the efficiency. The main concept is to fix the switching state of one leg. As a result, the switching loss decreases and the total efficiency is improved. In addition, it enables the maximum power-point-tracking operation to be performed by applying the proposed neutral-point voltage control algorithm. This control is implemented by modifying the reference signal. Simulation and experimental results provide verification of the performance of a novel switching method with the neutral-point voltage control.
NASA Astrophysics Data System (ADS)
Dani, Ibtissam; Tahiri, Najim; Ez-Zahraouy, Hamid; Benyoussef, Abdelilah
2014-08-01
The effect of the bi-quadratic exchange coupling anisotropy on the phase diagram of the spin-1 Blume-Emery-Griffiths model on simple-cubic lattice is investigated using mean field theory (MFT) and Monte Carlo simulation (MC). It is found that the anisotropy of the biquadratic coupling favors the stability of the ferromagnetic phase. By decreasing the parallel and/or perpendicular bi-quadratic coupling, the ferrimagnetic and the antiquadrupolar phases broaden in contrast, the ferromagnetic and the disordered phases become narrow. The behavior of magnetization and quadrupolar moment as a function of temperature is also computed, especially in the ferrimagnetic phase.
NASA Astrophysics Data System (ADS)
Tauber, C.
2018-05-01
We propose a general edge index definition for two-dimensional Floquet topological phases based on a switch-function formalism. When the Floquet operator has a spectral gap, the index covers both clean and disordered phases, anomalous or not, and does not require the bulk to be fully localized. It is interpreted as a nonadiabatic charge pumping that is quantized when the sample is placed next to an effective vacuum. This vacuum is gap-dependent and obtained from a Floquet Hamiltonian. The choice of a vacuum provides a simple and alternative gap-selection mechanism. Inspired by the model from Rudner et al. we then illustrate these concepts on Floquet disordered phases. Switch-function formalism is usually restricted to infinite samples in the thermodynamic limit. Here we circumvent this issue and propose a numerical implementation of the edge index that could be adapted to any bulk or edge index expressed in terms of switch functions, already existing for many topological phases.
Magnetization Reversal of Nanoscale Islands: How Size and Shape Affect the Arrhenius Prefactor
NASA Astrophysics Data System (ADS)
Krause, S.; Herzog, G.; Stapelfeldt, T.; Berbil-Bautista, L.; Bode, M.; Vedmedenko, E. Y.; Wiesendanger, R.
2009-09-01
The thermal switching behavior of individual in-plane magnetized Fe/W(110) nanoislands is investigated by a combined study of variable-temperature spin-polarized scanning tunneling microscopy and Monte Carlo simulations. Even for islands consisting of less than 100 atoms the magnetization reversal takes place via nucleation and propagation. The Arrhenius prefactor is found to strongly depend on the individual island size and shape, and based on the experimental results a simple model is developed to describe the magnetization reversal in terms of metastable states. Complementary Monte Carlo simulations confirm the model and provide new insight into the microscopic processes involved in magnetization reversal of smallest nanomagnets.
A Method for Decentralised Optimisation in Networks
NASA Astrophysics Data System (ADS)
Saramäki, Jari
2005-06-01
We outline a method for distributed Monte Carlo optimisation of computational problems in networks of agents, such as peer-to-peer networks of computers. The optimisation and messaging procedures are inspired by gossip protocols and epidemic data dissemination, and are decentralised, i.e. no central overseer is required. In the outlined method, each agent follows simple local rules and seeks for better solutions to the optimisation problem by Monte Carlo trials, as well as by querying other agents in its local neighbourhood. With proper network topology, good solutions spread rapidly through the network for further improvement. Furthermore, the system retains its functionality even in realistic settings where agents are randomly switched on and off.
Avalanche atomic switching in strain engineered Sb2Te3-GeTe interfacial phase-change memory cells
NASA Astrophysics Data System (ADS)
Zhou, Xilin; Behera, Jitendra K.; Lv, Shilong; Wu, Liangcai; Song, Zhitang; Simpson, Robert E.
2017-09-01
By confining phase transitions to the nanoscale interface between two different crystals, interfacial phase change memory heterostructures represent the state of the art for energy efficient data storage. We present the effect of strain engineering on the electrical switching performance of the {{Sb}}2{{Te}}3-GeTe superlattice van der Waals devices. Multiple Ge atoms switching through a two-dimensional Te layer reduces the activation barrier for further atoms to switch; an effect that can be enhanced by biaxial strain. The out-of-plane phonon mode of the GeTe crystal remains active in the superlattice heterostructures. The large in-plane biaxial strain imposed by the {{Sb}}2{{Te}}3 layers on the GeTe layers substantially improves the switching speed, reset energy, and cyclability of the superlattice memory devices. Moreover, carefully controlling residual stress in the layers of {{Sb}}2{{Te}}3-GeTe interfacial phase change memories provides a new degree of freedom to design the properties of functional superlattice structures for memory and photonics applications.
Evidence for thermally assisted threshold switching behavior in nanoscale phase-change memory cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Gallo, Manuel; Athmanathan, Aravinthan; Krebs, Daniel
2016-01-14
In spite of decades of research, the details of electrical transport in phase-change materials are still debated. In particular, the so-called threshold switching phenomenon that allows the current density to increase steeply when a sufficiently high voltage is applied is still not well understood, even though there is wide consensus that threshold switching is solely of electronic origin. However, the high thermal efficiency and fast thermal dynamics associated with nanoscale phase-change memory (PCM) devices motivate us to reassess a thermally assisted threshold switching mechanism, at least in these devices. The time/temperature dependence of the threshold switching voltage and current inmore » doped Ge{sub 2}Sb{sub 2}Te{sub 5} nanoscale PCM cells was measured over 6 decades in time at temperatures ranging from 40 °C to 160 °C. We observe a nearly constant threshold switching power across this wide range of operating conditions. We also measured the transient dynamics associated with threshold switching as a function of the applied voltage. By using a field- and temperature-dependent description of the electrical transport combined with a thermal feedback, quantitative agreement with experimental data of the threshold switching dynamics was obtained using realistic physical parameters.« less
Methodology for Wide Band-Gap Device Dynamic Characterization
Zhang, Zheyu; Guo, Ben; Wang, Fei Fred; ...
2017-01-19
Here, the double pulse test (DPT) is a widely accepted method to evaluate the dynamic behavior of power devices. Considering the high switching-speed capability of wide band-gap devices, the test results are very sensitive to the alignment of voltage and current (V-I) measurements. Also, because of the shoot-through current induced by Cdv/dt (i.e., cross-talk), the switching losses of the nonoperating switch device in a phase-leg must be considered in addition to the operating device. This paper summarizes the key issues of the DPT, including components and layout design, measurement considerations, grounding effects, and data processing. Additionally, a practical method ismore » proposed for phase-leg switching loss evaluation by calculating the difference between the input energy supplied by a dc capacitor and the output energy stored in a load inductor. Based on a phase-leg power module built with 1200-V/50-A SiC MOSFETs, the test results show that this method can accurately evaluate the switching loss of both the upper and lower switches by detecting only one switching current and voltage, and it is immune to V-I timing misalignment errors.« less
NASA Astrophysics Data System (ADS)
Augustyniak, Maria A.; Krupski, Marcin
1999-09-01
The pressure switch of the Jahn-Teller deformation direction in (ND 4) 2Cu(SO 4) 2·6D 2O was investigated in the temperature range 130-320 K. Below 295 K, the new, pressure-induced phase, is stable under ambient pressure. Switching back is observed on heating to above 297 K. In the range 150-295 K a strong temperature dependence of the switching pressure (from 24 to 450 MPa) is observed. Below 150 K, the switching process is slow and a coexistence of two phases is observed. We conclude that the switch of the Cu(D 2O) 6 complex deformation direction is the Jahn-Teller response to the changes in the hydrogen bond system.
Geothermal switch heater installation, testing and monitoring : phases 1 & 2.
DOT National Transportation Integrated Search
2016-07-01
Transportation Technology Center, Inc. (TTCI), Norfolk Southern (NS), and John A. Volpe National Transportation Systems Center (Volpe) completed Phases 1 and 2 of a project on a working prototype geothermal switch heating system designed to test the ...
Picosecond Electric-Field-Induced Threshold Switching in Phase-Change Materials.
Zalden, Peter; Shu, Michael J; Chen, Frank; Wu, Xiaoxi; Zhu, Yi; Wen, Haidan; Johnston, Scott; Shen, Zhi-Xun; Landreman, Patrick; Brongersma, Mark; Fong, Scott W; Wong, H-S Philip; Sher, Meng-Ju; Jost, Peter; Kaes, Matthias; Salinga, Martin; von Hoegen, Alexander; Wuttig, Matthias; Lindenberg, Aaron M
2016-08-05
Many chalcogenide glasses undergo a breakdown in electronic resistance above a critical field strength. Known as threshold switching, this mechanism enables field-induced crystallization in emerging phase-change memory. Purely electronic as well as crystal nucleation assisted models have been employed to explain the electronic breakdown. Here, picosecond electric pulses are used to excite amorphous Ag_{4}In_{3}Sb_{67}Te_{26}. Field-dependent reversible changes in conductivity and pulse-driven crystallization are observed. The present results show that threshold switching can take place within the electric pulse on subpicosecond time scales-faster than crystals can nucleate. This supports purely electronic models of threshold switching and reveals potential applications as an ultrafast electronic switch.
NASA Technical Reports Server (NTRS)
Shyy, Dong-Jye; Redman, Wayne
1993-01-01
For the next-generation packet switched communications satellite system with onboard processing and spot-beam operation, a reliable onboard fast packet switch is essential to route packets from different uplink beams to different downlink beams. The rapid emergence of point-to-point services such as video distribution, and the large demand for video conference, distributed data processing, and network management makes the multicast function essential to a fast packet switch (FPS). The satellite's inherent broadcast features gives the satellite network an advantage over the terrestrial network in providing multicast services. This report evaluates alternate multicast FPS architectures for onboard baseband switching applications and selects a candidate for subsequent breadboard development. Architecture evaluation and selection will be based on the study performed in phase 1, 'Onboard B-ISDN Fast Packet Switching Architectures', and other switch architectures which have become commercially available as large scale integration (LSI) devices.
Self-Learning Monte Carlo Method
NASA Astrophysics Data System (ADS)
Liu, Junwei; Qi, Yang; Meng, Zi Yang; Fu, Liang
Monte Carlo simulation is an unbiased numerical tool for studying classical and quantum many-body systems. One of its bottlenecks is the lack of general and efficient update algorithm for large size systems close to phase transition or with strong frustrations, for which local updates perform badly. In this work, we propose a new general-purpose Monte Carlo method, dubbed self-learning Monte Carlo (SLMC), in which an efficient update algorithm is first learned from the training data generated in trial simulations and then used to speed up the actual simulation. We demonstrate the efficiency of SLMC in a spin model at the phase transition point, achieving a 10-20 times speedup. This work is supported by the DOE Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0010526.
Static magnetism and thermal switching in randomly oriented L10 FePt thin films
NASA Astrophysics Data System (ADS)
Lisfi, A.; Pokharel, S.; Alqarni, A.; Akioya, O.; Morgan, W.; Wuttig, M.
2018-05-01
Static magnetism and thermally activated magnetic relaxation were investigated in granular FePt films (20 nm-200 nm thick) with random magnetic anisotropy through hysteresis loop, torque curve and magnetization time dependence measurements. While the magnetism of thicker film (200 nm thick) is dominated by a single switching of the ordered L10 phase, thinner film (20 nm) displays a double switching, which is indicative of the presence of the disordered cubic phase. The pronounced behavior of double switching in thinner film suggests that the film grain boundary is composed of soft cubic magnetic phase. The magnetic relaxation study reveals that magnetic viscosity S of the films is strongly dependent on the external applied field and exhibits a maximum value (12 kAm) around the switching field and a vanishing behavior at low (1 kOe) and large (12 kOe) fields. The activation volume of the thermal switching was found to be much smaller than the physical volume of the granular structure due to the incoherent rotation mode of the magnetization reversal mechanism, which is established to be domain wall nucleation.
Plasmonic Structures for CMOS Photonics and Control of Spontaneous Emission
2013-04-01
structures; v) developed CMOS Si photonic switching device based on the vanadium dioxide ( VO2 ) phase transition. vi) also engaged in a partnership with...CMOS Si photonic switching device based on the vanadium dioxide ( VO2 ) phase transition. vii. exploring approaches to enhance spontaneous emission in...size and bandwidth, we are exploring phase-change materials and, in particular, vanadium dioxide. VO2 undergoes an insulator-to-metal phase transition
Method and apparatus for current-output peak detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Geronimo, Gianluigi
2017-01-24
A method and apparatus for a current-output peak detector. A current-output peak detector circuit is disclosed and works in two phases. The peak detector circuit includes switches to switch the peak detector circuit from the first phase to the second phase upon detection of the peak voltage of an input voltage signal. The peak detector generates a current output with a high degree of accuracy in the second phase.
Design and application of gas-gap heat switches
NASA Technical Reports Server (NTRS)
Chan, C. K.; Ross, R. G., Jr.
1990-01-01
Gas-gap heat switches can serve as an effective means of thermally disconnecting a standby cryocooler when the primary (operating) cooler is connected and vice versa. The final phase of the development and test of a cryogenic heat switch designed for loads ranging from 2 watts at 8 K, to 100 watts at 80 K are described. Achieved heat-switch on/off conductance ratio ranged from 11,000 at 8 K to 2200 at 80 K. A particularly challenging element of heat-switch design is achieving satisfactory operation when large temperatures differentials exist across the switch. A special series of tests and analyses was conducted and used in this Phase-2 activity to evaluate the developed switches for temperature differentials ranging up to 200 K. Problems encountered at the maximum levels are described and analyzed, and means of avoiding the problems in the future are presented. A comprehensive summary of the overall heat-switch design methodology is also presented with special emphasis on lessons learned over the course of the 4-year development effort.
Ultra-fast switching blue phase liquid crystals diffraction grating stabilized by chiral monomer
NASA Astrophysics Data System (ADS)
Manda, Ramesh; Pagidi, Srinivas; Sarathi Bhattacharya, Surjya; Yoo, Hyesun; T, Arun Kumar; Lim, Young Jin; Lee, Seung Hee
2018-05-01
We have demonstrated an ultra-fast switching and efficient polymer stabilized blue phase liquid crystal (PS-BPLC) diffraction grating utilizing a chiral monomer. We have obtained a 0.5 ms response time by a novel polymer stabilization method which is three times faster than conventional PS-BPLC. In addition, the diffraction efficiency was improved 2% with a much wider phase range and the driving voltage to switch the device is reduced. The polarization properties of the diffracted beam are unaffected by this novel polymer stabilization. This device can be useful for future photonic applications.
Evidence for phase change memory behavior in In2(SexTe1-x)3 thin films
NASA Astrophysics Data System (ADS)
Matheswaran, P.; Sathyamoorthy, R.; Asokan, K.
2012-08-01
Crystalline In2(Se0.5Te0.5)3 thin films are prepared by thermal evaporation and subsequently annealed at 300°C in Ar atmosphere. SEM image of the crystalline sample shows spherical nature of constituents, distributed uniformly throughout the surface. Island structure of the surface is clearly visible after switching. Elemental composition of the sample remains unchanged even after switching. Temperature dependent I-V analysis shows stoichiometric phase change at 80°C [from In2(Se0.5Te0.5)3 to In2Te3 and In2Se3 phase], where current switches three orders of magnitude higher than that in lower temperature. Further rise in temperature results increase in current only after switching, where threshold voltage remains constant.
A genetic switch controls the production of flagella and toxins in Clostridium difficile
2017-01-01
In the human intestinal pathogen Clostridium difficile, flagella promote adherence to intestinal epithelial cells. Flagellar gene expression also indirectly impacts production of the glucosylating toxins, which are essential to diarrheal disease development. Thus, factors that regulate the expression of the flgB operon will likely impact toxin production in addition to flagellar motility. Here, we report the identification a “flagellar switch” that controls the phase variable production of flagella and glucosylating toxins. The flagellar switch, located upstream of the flgB operon containing the early stage flagellar genes, is a 154 bp invertible sequence flanked by 21 bp inverted repeats. Bacteria with the sequence in one orientation expressed flagellum and toxin genes, produced flagella, and secreted the toxins (“flg phase ON”). Bacteria with the sequence in the inverse orientation were attenuated for flagellar and toxin gene expression, were aflagellate, and showed decreased toxin secretion (“flg phase OFF”). The orientation of the flagellar switch is reversible during growth in vitro. We provide evidence that gene regulation via the flagellar switch occurs post-transcription initiation and requires a C. difficile-specific regulatory factor to destabilize or degrade the early flagellar gene mRNA when the flagellar switch is in the OFF orientation. Lastly, through mutagenesis and characterization of flagellar phase locked isolates, we determined that the tyrosine recombinase RecV, which catalyzes inversion at the cwpV switch, is also responsible for inversion at the flagellar switch in both directions. Phase variable flagellar motility and toxin production suggests that these important virulence factors have both advantageous and detrimental effects during the course of infection. PMID:28346491
On Distributed PV Hosting Capacity Estimation, Sensitivity Study, and Improvement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Fei; Mather, Barry
This paper first studies the estimated distributed PV hosting capacities of seventeen utility distribution feeders using the Monte Carlo simulation based stochastic analysis, and then analyzes the sensitivity of PV hosting capacity to both feeder and photovoltaic system characteristics. Furthermore, an active distribution network management approach is proposed to maximize PV hosting capacity by optimally switching capacitors, adjusting voltage regulator taps, managing controllable branch switches and controlling smart PV inverters. The approach is formulated as a mixed-integer nonlinear optimization problem and a genetic algorithm is developed to obtain the solution. Multiple simulation cases are studied and the effectiveness of themore » proposed approach on increasing PV hosting capacity is demonstrated.« less
Direct evidence on Ta-Metal Phases Igniting Resistive Switching in TaOx Thin Film
Kyu Yang, Min; Ju, Hyunsu; Hwan Kim, Gun; Lee, Jeon-Kook; Ryu, Han-Cheol
2015-01-01
A Ta/TaOx/Pt stacked capacitor-like device for resistive switching was fabricated and examined. The tested device demonstrated stable resistive switching characteristics including uniform distribution of resistive switching operational parameters, highly promising endurance, and retention properties. To reveal the resistive switching mechanism of the device, micro structure analysis using high-resolution transmission electron microscope (HR-TEM) was performed. From the observation results, two different phases of Ta-metal clusters of cubic α-Ta and tetragonal β-Ta were founded in the amorphous TaOx mother-matrix after the device was switched from high resistance state (HRS) to low resistance state (LRS) by externally applied voltage bias. The observed Ta metal clusters unveiled the origin of the electric conduction paths in the TaOx thin film at the LRS. PMID:26365532
Direct evidence on Ta-Metal Phases Igniting Resistive Switching in TaOx Thin Film
NASA Astrophysics Data System (ADS)
Kyu Yang, Min; Ju, Hyunsu; Hwan Kim, Gun; Lee, Jeon-Kook; Ryu, Han-Cheol
2015-09-01
A Ta/TaOx/Pt stacked capacitor-like device for resistive switching was fabricated and examined. The tested device demonstrated stable resistive switching characteristics including uniform distribution of resistive switching operational parameters, highly promising endurance, and retention properties. To reveal the resistive switching mechanism of the device, micro structure analysis using high-resolution transmission electron microscope (HR-TEM) was performed. From the observation results, two different phases of Ta-metal clusters of cubic α-Ta and tetragonal β-Ta were founded in the amorphous TaOx mother-matrix after the device was switched from high resistance state (HRS) to low resistance state (LRS) by externally applied voltage bias. The observed Ta metal clusters unveiled the origin of the electric conduction paths in the TaOx thin film at the LRS.
Sekiguchi, Shigeaki; Kurahashi, Teruo; Zhu, Lei; Kawaguchi, Kenichi; Morito, Ken
2012-04-09
We proposed a silicon-based optical switch with a carrier-plasma-induced phase shifter which employs a silicon-germanium (SiGe) / silicon (Si) hetero-structure in the waveguide core. A type-I hetero-interface formed by SiGe and Si is expected to confine carriers effectively in the SiGe waveguide core. The fabricated Mach-Zehnder optical switch shows a low switching power of only 1.53 mW with a compact phase shifter length of 250 μm. The switching time of the optical switch is less than 4.6 ns for the case of a square waveform driving condition, and 1 ns for the case of a pre-emphasis electric driving condition. These results show that our proposed SiGe/Si waveguide structure holds promise for active devices with compact size and low operation power.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Ye; Morozovska, Anna; Kalinin, Sergei V.
Pressure-induced polarization switching in ferroelectric thin films has emerged as a powerful method for domain patterning, allowing us to create predefined domain patterns on free surfaces and under thin conductive top electrodes. However, the mechanisms for pressure-induced polarization switching in ferroelectrics remain highly controversial, with flexoelectricity, polarization rotation and suppression, and bulk and surface electrochemical processes all being potentially relevant. Here we classify possible pressure-induced switching mechanisms, perform elementary estimates, and study in depth using phase-field modeling. Finally, we show that magnitudes of these effects are remarkably close and give rise to complex switching diagrams as a function of pressuremore » and film thickness with nontrivial topology or switchable and nonswitchable regions.« less
Cao, Ye; Morozovska, Anna; Kalinin, Sergei V.
2017-11-01
Pressure-induced polarization switching in ferroelectric thin films has emerged as a powerful method for domain patterning, allowing us to create predefined domain patterns on free surfaces and under thin conductive top electrodes. However, the mechanisms for pressure-induced polarization switching in ferroelectrics remain highly controversial, with flexoelectricity, polarization rotation and suppression, and bulk and surface electrochemical processes all being potentially relevant. Here we classify possible pressure-induced switching mechanisms, perform elementary estimates, and study in depth using phase-field modeling. Finally, we show that magnitudes of these effects are remarkably close and give rise to complex switching diagrams as a function of pressuremore » and film thickness with nontrivial topology or switchable and nonswitchable regions.« less
Interface and thickness dependent domain switching and stability in Mg doped lithium niobate
Neumayer, Sabine M.; Ivanov, Ilia N.; Manzo, Michele; ...
2015-12-08
Controlling ferroelectric switching in Mg doped lithium niobate (Mg: LN) is of fundamental importance for optical device and domain wall electronics applications that require precise domain patterns. Stable ferroelectric switching has been previously observed in undoped LN layers above proton exchanged (PE) phases that exhibit reduced polarization, whereas PE layers have been found to inhibit lateral domain growth. Here, Mg doping, which is known to significantly alter ferroelectric switching properties including coercive field and switching currents, is shown to inhibit domain nucleation and stability in Mg: LN above buried PE phases that allow for precise ferroelectric patterning via domain growthmore » control. Furthermore, piezoresponse force microscopy (PFM) and switching spectroscopy PFM reveal that the voltage at which polarization switches from the "up" to the "down" state increases with increasing thickness in pure Mg: LN, whereas the voltage required for stable back switching to the original "up" state does not exhibit this thickness dependence. This behavior is consistent with the presence of an internal frozen defect field. The inhibition of domain nucleation above PE interfaces, observed in this study, is a phenomenon that occurs in Mg: LN but not in undoped samples and is mainly ascribed to a remaining frozen polarization in the PE phase that opposes polarization reversal. This reduced frozen depolarization field in the PE phase also influences the depolarization field of the Mg: LN layer above due to the presence of uncompensated polarization charge at the PE-Mg: LN boundary. Furthermore, these alterations in internal electric fields within the sample cause long-range lattice distortions in Mg: LN via electromechanical coupling, which were corroborated with complimentary Raman measurements.« less
Interface and thickness dependent domain switching and stability in Mg doped lithium niobate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neumayer, Sabine M.; Rodriguez, Brian J., E-mail: gallo@kth.se, E-mail: brian.rodriguez@ucd.ie; Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4
2015-12-14
Controlling ferroelectric switching in Mg doped lithium niobate (Mg:LN) is of fundamental importance for optical device and domain wall electronics applications that require precise domain patterns. Stable ferroelectric switching has been previously observed in undoped LN layers above proton exchanged (PE) phases that exhibit reduced polarization, whereas PE layers have been found to inhibit lateral domain growth. Here, Mg doping, which is known to significantly alter ferroelectric switching properties including coercive field and switching currents, is shown to inhibit domain nucleation and stability in Mg:LN above buried PE phases that allow for precise ferroelectric patterning via domain growth control. Furthermore,more » piezoresponse force microscopy (PFM) and switching spectroscopy PFM reveal that the voltage at which polarization switches from the “up” to the “down” state increases with increasing thickness in pure Mg:LN, whereas the voltage required for stable back switching to the original “up” state does not exhibit this thickness dependence. This behavior is consistent with the presence of an internal frozen defect field. The inhibition of domain nucleation above PE interfaces, observed in this study, is a phenomenon that occurs in Mg:LN but not in undoped samples and is mainly ascribed to a remaining frozen polarization in the PE phase that opposes polarization reversal. This reduced frozen depolarization field in the PE phase also influences the depolarization field of the Mg:LN layer above due to the presence of uncompensated polarization charge at the PE-Mg:LN boundary. These alterations in internal electric fields within the sample cause long-range lattice distortions in Mg:LN via electromechanical coupling, which were corroborated with complimentary Raman measurements.« less
Three-phase power factor controller with induced EMF sensing
NASA Technical Reports Server (NTRS)
Nola, F. J. (Inventor)
1984-01-01
A power factor controller for an ac induction motor is provided which is of the type comprising thyristor switches connected in series with the motor, phase detectors for sensing the motor current and voltage and providing an output proportional to the phase difference between the motor voltage and current, and a control circuit, responsive to the output of the phase detector and to a power factor command signal, for controlling switching of the thyristor. The invention involves sensing the induced emf produced by the motor during the time interval when the thyristor is off and for producing a corresponding feedback signal for controlling switching of the thyristor. The sensed emf is also used to enhance soft starting of the motor.
Constant-pH Hybrid Nonequilibrium Molecular Dynamics–Monte Carlo Simulation Method
2016-01-01
A computational method is developed to carry out explicit solvent simulations of complex molecular systems under conditions of constant pH. In constant-pH simulations, preidentified ionizable sites are allowed to spontaneously protonate and deprotonate as a function of time in response to the environment and the imposed pH. The method, based on a hybrid scheme originally proposed by H. A. Stern (J. Chem. Phys.2007, 126, 164112), consists of carrying out short nonequilibrium molecular dynamics (neMD) switching trajectories to generate physically plausible configurations with changed protonation states that are subsequently accepted or rejected according to a Metropolis Monte Carlo (MC) criterion. To ensure microscopic detailed balance arising from such nonequilibrium switches, the atomic momenta are altered according to the symmetric two-ends momentum reversal prescription. To achieve higher efficiency, the original neMD–MC scheme is separated into two steps, reducing the need for generating a large number of unproductive and costly nonequilibrium trajectories. In the first step, the protonation state of a site is randomly attributed via a Metropolis MC process on the basis of an intrinsic pKa; an attempted nonequilibrium switch is generated only if this change in protonation state is accepted. This hybrid two-step inherent pKa neMD–MC simulation method is tested with single amino acids in solution (Asp, Glu, and His) and then applied to turkey ovomucoid third domain and hen egg-white lysozyme. Because of the simple linear increase in the computational cost relative to the number of titratable sites, the present method is naturally able to treat extremely large systems. PMID:26300709
Wang, Letian; Rho, Yoonsoo; Shou, Wan; Hong, Sukjoon; Kato, Kimihiko; Eliceiri, Matthew; Shi, Meng; Grigoropoulos, Costas P; Pan, Heng; Carraro, Carlo; Qi, Dongfeng
2018-03-27
Manipulating and tuning nanoparticles by means of optical field interactions is of key interest for nanoscience and applications in electronics and photonics. We report scalable, direct, and optically modulated writing of nanoparticle patterns (size, number, and location) of high precision using a pulsed nanosecond laser. The complex nanoparticle arrangement is modulated by the laser pulse energy and polarization with the particle size ranging from 60 to 330 nm. Furthermore, we report fast cooling-rate induced phase switching of crystalline Si nanoparticles to the amorphous state. Such phase switching has usually been observed in compound phase change materials like GeSbTe. The ensuing modification of atomic structure leads to dielectric constant switching. Based on these effects, a multiscale laser-assisted method of fabricating Mie resonator arrays is proposed. The number of Mie resonators, as well as the resonance peaks and dielectric constants of selected resonators, can be programmed. The programmable light-matter interaction serves as a mechanism to fabricate optical metasurfaces, structural color, and multidimensional optical storage devices.
Phase diagram of a symmetric electron–hole bilayer system: a variational Monte Carlo study
NASA Astrophysics Data System (ADS)
Sharma, Rajesh O.; Saini, L. K.; Prasad Bahuguna, Bhagwati
2018-05-01
We study the phase diagram of a symmetric electron–hole bilayer system at absolute zero temperature and in zero magnetic field within the quantum Monte Carlo approach. In particular, we conduct variational Monte Carlo simulations for various phases, i.e. the paramagnetic fluid phase, the ferromagnetic fluid phase, the anti-ferromagnetic Wigner crystal phase, the ferromagnetic Wigner crystal phase and the excitonic phase, to estimate the ground-state energy at different values of in-layer density and inter-layer spacing. Slater–Jastrow style trial wave functions, with single-particle orbitals appropriate for different phases, are used to construct the phase diagram in the (r s , d) plane by finding the relative stability of trial wave functions. At very small layer separations, we find that the fluid phases are stable, with the paramagnetic fluid phase being particularly stable at and the ferromagnetic fluid phase being particularly stable at . As the layer spacing increases, we first find that there is a phase transition from the ferromagnetic fluid phase to the ferromagnetic Wigner crystal phase when d reaches 0.4 a.u. at r s = 20, and before there is a return to the ferromagnetic fluid phase when d approaches 1 a.u. However, for r s < 20 and a.u., the excitonic phase is found to be stable. We do not find that the anti-ferromagnetic Wigner crystal is stable over the considered range of r s and d. We also find that as r s increases, the critical layer separations for Wigner crystallization increase.
NASA Astrophysics Data System (ADS)
Katayose, Satomi; Hashizume, Yasuaki; Itoh, Mikitaka
2016-08-01
We experimentally demonstrated a 1 × 8 silicon-silica hybrid thermo-optic switch based on an optical phased array using a multi-chip integration technique. The switch consists of a silicon chip with optical phase shifters and two silica-based planar lightwave circuit (PLC) chips composed of optical couplers and fiber connections. We adopted a rib waveguide as the silicon waveguide to reduce the coupling loss and increase the alignment tolerance for coupling between silicon and silica waveguides. As a result, we achieved a fast switching response of 81 µs, a high extinction ratio of over 18 dB and a low insertion loss of 4.9-8.1 dB including a silicon-silica coupling loss of 0.5 ± 0.3 dB at a wavelength of 1.55 µm.
Thermal helium clusters at 3.2 Kelvin in classical and semiclassical simulations
NASA Astrophysics Data System (ADS)
Schulte, J.
1993-03-01
The thermodynamic stability of4He4-13 at 3.2 K is investigated with the classical Monte Carlo method, with the semiclassical path-integral Monte Carlo (PIMC) method, and with the semiclassical all-order many-body method. In the all-order many-body simulation the dipole-dipole approximation including short-range correction is used. The resulting stability plots are discussed and related to recent TOF experiments by Stephens and King. It is found that with classical Monte Carlo of course the characteristics of the measured mass spectrum cannot be resolved. With PIMC, switching on more and more quantum mechanics. by raising the number of virtual time steps results in more structure in the stability plot, but this did not lead to sufficient agreement with the TOF experiment. Only the all-order many-body method resolved the characteristic structures of the measured mass spectrum, including magic numbers. The result shows the influence of quantum statistics and quantum mechanics on the stability of small neutral helium clusters.
Hybrid Monte Carlo approach to the entanglement entropy of interacting fermions
NASA Astrophysics Data System (ADS)
Drut, Joaquín E.; Porter, William J.
2015-09-01
The Monte Carlo calculation of Rényi entanglement entropies Sn of interacting fermions suffers from a well-known signal-to-noise problem, even for a large number of situations in which the infamous sign problem is absent. A few methods have been proposed to overcome this issue, such as ensemble switching and the use of auxiliary partition-function ratios. Here, we present an approach that builds on the recently proposed free-fermion decomposition method; it incorporates entanglement in the probability measure in a natural way; it takes advantage of the hybrid Monte Carlo algorithm (an essential tool in lattice quantum chromodynamics and other gauge theories with dynamical fermions); and it does not suffer from noise problems. This method displays no sign problem for the same cases as other approaches and is therefore useful for a wide variety of systems. As a proof of principle, we calculate S2 for the one-dimensional, half-filled Hubbard model and compare with results from exact diagonalization and the free-fermion decomposition method.
Self-assembled phase-change nanowire for nonvolatile electronic memory
NASA Astrophysics Data System (ADS)
Jung, Yeonwoong
One of the most important subjects in nanosciences is to identify and exploit the relationship between size and structural/physical properties of materials and to explore novel material properties at a small-length scale. Scale-down of materials is not only advantageous in realizing miniaturized devices but nanometer-sized materials often exhibit intriguing physical/chemical properties that greatly differ from their bulk counterparts. This dissertation studies self-assembled phase-change nanowires for future nonvolatile electronic memories, mainly focusing on their size-dependent memory switching properties. Owing to the one-dimensional, unique geometry coupled with the small and tunable sizes, bottom-designed nanowires offer great opportunities in terms for both fundamental science and practical engineering perspectives, which would be difficult to realize in conventional top-down based approaches. We synthesized chalcogenide phase-change nanowires of different compositions and sizes, and studied their electronic memory switching owing to the structural change between crystalline and amorphous phases. In particular, we investigated nanowire size-dependent memory switching parameters, including writing current, power consumption, and data retention times, as well as studying composition-dependent electronic properties. The observed size and composition-dependent switching and recrystallization kinetics are explained based on the heat transport model and heterogeneous nucleation theories, which help to design phase-change materials with better properties. Moreover, we configured unconventional heterostructured phase-change nanowire memories and studied their multiple memory states in single nanowire devices. Finally, by combining in-situ/ex-situ electron microscopy techniques and electrical measurements, we characterized the structural states involved in electrically-driven phase-change in order to understand the atomistic mechanism that governs the electronic memory switching through phase-change.
Design concept for pressure switch calibrator
NASA Technical Reports Server (NTRS)
Slingerland, M. G.
1966-01-01
Calibrator and switch design enables pressure switches to operate under 150 g shock loads. The design employs a saturated liquid-to-vapor phase transition at constant pressure to produce a known force independent of displacement over a usable range.
Wavelength-switched phase interrogator for EFPI sensors with polarization self-calibrated
NASA Astrophysics Data System (ADS)
Xia, Ji; Wang, Fuyin; Luo, Hong; Xiong, Shuidong
2017-10-01
The stability of the demodulation system for extrinsic Fabry-Perot interferometric(EFPI) sensors is significant to dynamic signal recovery. In the wavelength-switched demodulation system, a phase interrogation with a wavelength-switched structure has been presented. Two reflected peaks were in perpendicular polarization direction and switched in the time-domain. However, the operation point of system affected output of the linearly-polarized beams seriously, and the stability of the system decreased and even failed to work. In order to solve this problem, a polarization control unit is added into the system in this paper. The modified demodulation system has been demonstrated to have a higher stability.
Transient current interruption mechanism in a magnetically delayed vacuum switch
NASA Technical Reports Server (NTRS)
Morris, Gibson, Jr.; Dougal, Roger A.
1993-01-01
The capacity of a magnetically delayed vacuum switch to conduct current depends on the density of plasma injected into the switch. Exceeding the current capacity results in the switch entering a lossy mode of operation characterized by a transient interruption of the main current (opening behavior) and a rapid increase of voltage across the vacuum gap. Streak and framing photographs of the discharge indicate that a decrease of luminosity near the middle of the gap preceeds the transition to the opening phase. The zone of low luminosity propagates toward the cathode. This evidence suggests that the mechanism causing the opening phase is erosion of the background plasma in a manner similar to that in a plasma-opening switch. The resulting ion depletion forces a space-charge-limited conduction mode. The switch inductance maintains a high discharge current even during the space-charge-limited conduction phase, thus producing high internal fields. The high accelerating voltage, in turn, produces electron and ion beams that heat the electrode surfaces. As a result of the heating, jets of electrode vapor issue from the electrodes, either cathode or anode, depending on the selection of electrode materials.
NASA Astrophysics Data System (ADS)
Shirakawa, Hiroki; Araidai, Masaaki; Shiraishi, Kenji
2018-04-01
The interfacial phase change memory (iPCM) based on a GeTe/Sb2Te3 superlattice is one of the candidates for future storage class memories. However, the atomic structures of the high and low resistance states (HRS/LRS) remain unclear and the resistive switching mechanism is still under debate. Clarifying the switching mechanism is essential for developing further high-reliability and low-power-consumption iPCM. We propose, on the basis of the results of first-principles molecular dynamics simulations, a mechanism for resistive switching, and describe the atomic structures of the high and low resistance states of iPCM for unipolar switching. Our simulations indicated that switching from HRS to LRS occurs with Joule heating only, while that from LRS to HRS occurs with both hole injection and Joule heating.
Simulation of phase equilibria
NASA Astrophysics Data System (ADS)
Martin, Marcus Gary
The focus of this thesis is on the use of configurational bias Monte Carlo in the Gibbs ensemble. Unlike Metropolis Monte Carlo, which is reviewed in chapter I, configurational bias Monte Carlo uses an underlying Markov chain transition matrix which is asymmetric in such a way that it is more likely to attempt to move to a molecular conformation which has a lower energy than to one with a higher energy. Chapter II explains how this enables efficient simulation of molecules with complex architectures (long chains and branched molecules) for coexisting fluid phases (liquid, vapor, or supercritical), and also presents several of our recent extensions to this method. In chapter III we discuss the development of the Transferable Potentials for Phase Equilibria United Atom (TraPPE-UA) force field which accurately describes the fluid phase coexistence for linear and branched alkanes. Finally, in the fourth chapter the methods and the force field are applied to systems ranging from supercritical extraction to gas chromatography to illustrate the power and versatility of our approach.
NASA Astrophysics Data System (ADS)
Fan, Longlong; Chen, Jun; Ren, Yang; Pan, Zhao; Zhang, Linxing; Xing, Xianran
2016-01-01
The origin of the excellent piezoelectric properties at the morphotropic phase boundary is generally attributed to the existence of a monoclinic phase in various piezoelectric systems. However, there exist no experimental studies that reveal the role of the monoclinic phase in the piezoelectric behavior in phase-pure ceramics. In this work, a single monoclinic phase has been identified in Pb (Zr ,Ti )O3 ceramics at room temperature by in situ high-energy synchrotron x-ray diffraction, and its response to electric field has been characterized for the first time. Unique piezoelectric properties of the monoclinic phase in terms of large intrinsic lattice strain and negligible domain switching have been observed. The extensional strain constant d33 and the transverse strain constant d31 are calculated to be 520 and -200 pm /V , respectively. These large piezoelectric coefficients are mainly due to the large intrinsic lattice strain, with very little extrinsic contribution from domain switching. The unique properties of the monoclinic phase provide new insights into the mechanisms responsible for the piezoelectric properties at the morphotropic phase boundary.
Wang, Jing; Wang, Haoyuan; Yang, Le; Lv, Liping; Zhang, Zhe; Ren, Bin; Dong, Lichun; Li, Ning
2018-04-01
In this paper, a novel riboregulator Switch System of Gene Expression including an OFF-TO-ON switch and an ON-TO-OFF switch was designed to regulate the expression state of target genes between "ON" and "OFF" by switching the identifiability of ribosome recognition site (RBS) based on the thermodynamic stability of different RNA-RNA hybridizations between RBS and small noncoding RNAs. The proposed riboregulator switch system was employed for the fermentative production of succinic acid using an engineered strain of E. coli JW1021, during which the expression of mgtC gene was controlled at "ON" state and that of pepc and ecaA genes were controlled at the "OFF" state in the lag phase and switched to the "OFF" and "ON" state once the strain enters the logarithmic phase. The results showed that using the strain of JW1021, the yield and productivity of succinic acid can reach 0.91 g g -1 and 3.25 g L -1 h -1 , respectively, much higher than those using the strains without harboring the riboregulator switch system.
Dynamic Monte Carlo Simulations of Phase Ordering in Br Electrosorption on Ag(100)
NASA Astrophysics Data System (ADS)
Mitchell, S. J.; Brown, G.; Rikvold, P. A.
2000-03-01
We study the dynamics of Br electrosorption on single-crystal Ag(100) by Monte Carlo simulation. The system has a second-order phase transition from a low-coverage disordered phase at more negative potentials to a doubly degenerate c(2× 2) ordered phase at more positive potentials.(B.M. Ocko, et al.), Phys. Rev. Lett. 79, 1511 (1997). Effective lateral interactions were estimated by fitting equilibrium Monte Carlo isotherms to experiments. These are well described by nearest-neighbor exclusion and repulsive 1/r^3 interactions.(M.T.M. Koper, J. Electroanal. Chem. 450), 189 (1997). Considering adsorption/desorption and diffusion with barriers estimated from ab-initio calculations,(A. Ignaczak and J.A.N.F. Gomes, J. Electroanal. Chem. 420), 71 (1997). we simulate the time dependent Br coverage, order parameter, and x-ray scattering intensity following sudden potential steps across the phase boundary. For steps far into the ordered phase, dynamical scaling is observed. For smaller steps, the dynamics are more complicated. We also analyze hysteresis in a simulated cyclic-voltammetry experiment. Movies at http://www.scri.fsu.edu/ ~mitchell/.
BRIEF COMMUNICATIONS: Q switching of a resonator by the metal-semiconductor phase transition
NASA Astrophysics Data System (ADS)
Bugaev, A. A.; Zakharchenya, Boris P.; Chudnovskiĭ, F. A.
1981-12-01
An experimental study was made of Q switching in a resonator by a mirror with a nonlinear reflection coefficient. This mirror was an interference reflecting structure containing a vanadium oxide film capable of undergoing a metal-semiconductor transition. The nonlinearity of the reflection coefficient was due to initiation of this phase transition by laser radiation. A determination was made of the parameters of a giant radiation pulse obtained using such a passive switch with a vanadium oxide film.
NASA Astrophysics Data System (ADS)
Semenova, N. I.; Strelkova, G. I.; Anishchenko, V. S.; Zakharova, A.
2017-06-01
We describe numerical results for the dynamics of networks of nonlocally coupled chaotic maps. Switchings in time between amplitude and phase chimera states have been first established and studied. It has been shown that in autonomous ensembles, a nonstationary regime of switchings has a finite lifetime and represents a transient process towards a stationary regime of phase chimera. The lifetime of the nonstationary switching regime can be increased to infinity by applying short-term noise perturbations.
Chopper-stabilized phase detector
NASA Technical Reports Server (NTRS)
Hopkins, P. M.
1978-01-01
Phase-detector circuit for binary-tracking loops and other binary-data acquisition systems minimizes effects of drift, gain imbalance, and voltage offset in detector circuitry. Input signal passes simultaneously through two channels where it is mixed with early and late codes that are alternately switched between channels. Code switching is synchronized with polarity switching of detector output of each channel so that each channel uses each detector for half time. Net result is that dc offset errors are canceled, and effect of gain imbalance is simply change in sensitivity.
Persistent random walk of cells involving anomalous effects and random death
NASA Astrophysics Data System (ADS)
Fedotov, Sergei; Tan, Abby; Zubarev, Andrey
2015-04-01
The purpose of this paper is to implement a random death process into a persistent random walk model which produces sub-ballistic superdiffusion (Lévy walk). We develop a stochastic two-velocity jump model of cell motility for which the switching rate depends upon the time which the cell has spent moving in one direction. It is assumed that the switching rate is a decreasing function of residence (running) time. This assumption leads to the power law for the velocity switching time distribution. This describes the anomalous persistence of cell motility: the longer the cell moves in one direction, the smaller the switching probability to another direction becomes. We derive master equations for the cell densities with the generalized switching terms involving the tempered fractional material derivatives. We show that the random death of cells has an important implication for the transport process through tempering of the superdiffusive process. In the long-time limit we write stationary master equations in terms of exponentially truncated fractional derivatives in which the rate of death plays the role of tempering of a Lévy jump distribution. We find the upper and lower bounds for the stationary profiles corresponding to the ballistic transport and diffusion with the death-rate-dependent diffusion coefficient. Monte Carlo simulations confirm these bounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mlynarczyk, Paul J.; Pullen, Robert H.; Abel, Steven M., E-mail: abel@utk.edu
2016-01-07
Positive feedback is a common feature in signal transduction networks and can lead to phenomena such as bistability and signal propagation by domain growth. Physical features of the cellular environment, such as spatial confinement and the mobility of proteins, play important but inadequately understood roles in shaping the behavior of signaling networks. Here, we use stochastic, spatially resolved kinetic Monte Carlo simulations to explore a positive feedback network as a function of system size, system shape, and mobility of molecules. We show that these physical properties can markedly alter characteristics of bistability and stochastic switching when compared with well-mixed simulations.more » Notably, systems of equal volume but different shapes can exhibit qualitatively different behaviors under otherwise identical conditions. We show that stochastic switching to a state maintained by positive feedback occurs by cluster formation and growth. Additionally, the frequency at which switching occurs depends nontrivially on the diffusion coefficient, which can promote or suppress switching relative to the well-mixed limit. Taken together, the results provide a framework for understanding how confinement and protein mobility influence emergent features of the positive feedback network by modulating molecular concentrations, diffusion-influenced rate parameters, and spatiotemporal correlations between molecules.« less
NASA Astrophysics Data System (ADS)
Snow, Michael G.; Bajaj, Anil K.
2015-08-01
This work presents an uncertainty quantification (UQ) analysis of a comprehensive model for an electrostatically actuated microelectromechanical system (MEMS) switch. The goal is to elucidate the effects of parameter variations on certain key performance characteristics of the switch. A sufficiently detailed model of the electrostatically actuated switch in the basic configuration of a clamped-clamped beam is developed. This multi-physics model accounts for various physical effects, including the electrostatic fringing field, finite length of electrodes, squeeze film damping, and contact between the beam and the dielectric layer. The performance characteristics of immediate interest are the static and dynamic pull-in voltages for the switch. Numerical approaches for evaluating these characteristics are developed and described. Using Latin Hypercube Sampling and other sampling methods, the model is evaluated to find these performance characteristics when variability in the model's geometric and physical parameters is specified. Response surfaces of these results are constructed via a Multivariate Adaptive Regression Splines (MARS) technique. Using a Direct Simulation Monte Carlo (DSMC) technique on these response surfaces gives smooth probability density functions (PDFs) of the outputs characteristics when input probability characteristics are specified. The relative variation in the two pull-in voltages due to each of the input parameters is used to determine the critical parameters.
Phase-sensitive fiber-based parametric all-optical switch.
Parra-Cetina, Josué; Kumpera, Aleš; Karlsson, Magnus; Andrekson, Peter A
2015-12-28
We experimentally demonstrate, for the first time, an all-optical switch in a phase-sensitive fiber optic parametric amplifier operated in saturation. We study the effect of phase variation of the signal and idler waves on the pump power depletion. By changing the phase of a 0.9 mW signal/idler pair wave by π/2 rad, a pump power extinction ratio of 30.4 dB is achieved. Static and dynamic characterizations are also performed and time domain results presented.
Ferroelasticity and domain physics in two-dimensional transition metal dichalcogenide monolayers.
Li, Wenbin; Li, Ju
2016-02-24
Monolayers of transition metal dichalcogenides can exist in several structural polymorphs, including 2H, 1T and 1T'. The low-symmetry 1T' phase has three orientation variants, resulting from the three equivalent directions of Peierls distortion in the parental 1T phase. Using first-principles calculations, we predict that mechanical strain can switch the relative thermodynamic stability between the orientation variants of the 1T' phase. We find that such strain-induced variant switching only requires a few percent elastic strain, which is eminently achievable experimentally with transition metal dichalcogenide monolayers. Calculations indicate that the transformation barrier associated with such variant switching is small (<0.2 eV per chemical formula unit), suggesting that strain-induced variant switching can happen under laboratory conditions. Monolayers of transition metal dichalcogenides with 1T' structure therefore have the potential to be ferroelastic and shape memory materials with interesting domain physics.
Utilizing zero-sequence switchings for reversible converters
Hsu, John S.; Su, Gui-Jia; Adams, Donald J.; Nagashima, James M.; Stancu, Constantin; Carlson, Douglas S.; Smith, Gregory S.
2004-12-14
A method for providing additional dc inputs or outputs (49, 59) from a dc-to-ac inverter (10) for controlling motor loads (60) comprises deriving zero-sequence components (V.sub.ao, V.sub.bo, and V.sub.co) from the inverter (10) through additional circuit branches with power switching devices (23, 44, 46), transforming the voltage between a high voltage and a low voltage using a transformer or motor (42, 50), converting the low voltage between ac and dc using a rectifier (41, 51) or an H-bridge (61), and providing at least one low voltage dc input or output (49, 59). The transformation of the ac voltage may be either single phase or three phase. Where less than a 100% duty cycle is acceptable, a two-phase modulation of the switching signals controlling the inverter (10) reduces switching losses in the inverter (10). A plurality of circuits for carrying out the invention are also disclosed.
Ferroelasticity and domain physics in two-dimensional transition metal dichalcogenide monolayers
Li, Wenbin; Li, Ju
2016-02-24
Monolayers of transition metal dichalcogenides can exist in several structural polymorphs, including 2H, 1T and 1T'. The low-symmetry 1T' phase has three orientation variants, resulting from the three equivalent directions of Peierls distortion in the parental 1T phase. Using first-principles calculations, we predict that mechanical strain can switch the relative thermodynamic stability between the orientation variants of the 1T' phase. We find that such strain-induced variant switching only requires a few percent elastic strain, which is eminently achievable experimentally with transition metal dichalcogenide monolayers. Calculations indicate that the transformation barrier associated with such variant switching is small (<0.2 eV permore » chemical formula unit), suggesting that strain-induced variant switching can happen under laboratory conditions. Furthermore, monolayers of transition metal dichalcogenides with 1T' structure therefore have the potential to be ferroelastic and shape memory materials with interesting domain physics.« less
Demonstration of reconfigurable joint orbital angular momentum mode and space switching
Liu, Jun; Wang, Jian
2016-01-01
We propose and demonstrate space-selective switch functions employing orbital angular momentum (OAM) modes in the space domain for switching network. One is the switching among different OAM modes having different spatial phase structures, called OAM mode switching. The other is the switching among different space locations, called space switching. The switching operation mechanism relies on linear optics. Reconfigurable 4 × 4 OAM mode switching, space switching, and joint OAM mode and space switching fabric using a single spatial light modulator (SLM) are all demonstrated in the experiment. In addition, the presented OAM-incorporated space-selective switch might be further extended to N × N joint OAM mode and space switching with fast response, scalability, cascading ability and compability to facilitate robust switching applications. PMID:27869133
Demonstration of reconfigurable joint orbital angular momentum mode and space switching
NASA Astrophysics Data System (ADS)
Liu, Jun; Wang, Jian
2016-11-01
We propose and demonstrate space-selective switch functions employing orbital angular momentum (OAM) modes in the space domain for switching network. One is the switching among different OAM modes having different spatial phase structures, called OAM mode switching. The other is the switching among different space locations, called space switching. The switching operation mechanism relies on linear optics. Reconfigurable 4 × 4 OAM mode switching, space switching, and joint OAM mode and space switching fabric using a single spatial light modulator (SLM) are all demonstrated in the experiment. In addition, the presented OAM-incorporated space-selective switch might be further extended to N × N joint OAM mode and space switching with fast response, scalability, cascading ability and compability to facilitate robust switching applications.
Demonstration of reconfigurable joint orbital angular momentum mode and space switching.
Liu, Jun; Wang, Jian
2016-11-21
We propose and demonstrate space-selective switch functions employing orbital angular momentum (OAM) modes in the space domain for switching network. One is the switching among different OAM modes having different spatial phase structures, called OAM mode switching. The other is the switching among different space locations, called space switching. The switching operation mechanism relies on linear optics. Reconfigurable 4 × 4 OAM mode switching, space switching, and joint OAM mode and space switching fabric using a single spatial light modulator (SLM) are all demonstrated in the experiment. In addition, the presented OAM-incorporated space-selective switch might be further extended to N × N joint OAM mode and space switching with fast response, scalability, cascading ability and compability to facilitate robust switching applications.
2017-01-01
A thermodynamic model of thermoregulatory huddling interactions between endotherms is developed. The model is presented as a Monte Carlo algorithm in which animals are iteratively exchanged between groups, with a probability of exchanging groups defined in terms of the temperature of the environment and the body temperatures of the animals. The temperature-dependent exchange of animals between groups is shown to reproduce a second-order critical phase transition, i.e., a smooth switch to huddling when the environment gets colder, as measured in recent experiments. A peak in the rate at which group sizes change, referred to as pup flow, is predicted at the critical temperature of the phase transition, consistent with a thermodynamic description of huddling, and with a description of the huddle as a self-organising system. The model was subjected to a simple evolutionary procedure, by iteratively substituting the physiologies of individuals that fail to balance the costs of thermoregulation (by huddling in groups) with the costs of thermogenesis (by contributing heat). The resulting tension between cooperative and competitive interactions was found to generate a phenomenon called self-organised criticality, as evidenced by the emergence of avalanches in fitness that propagate across many generations. The emergence of avalanches reveals how huddling can introduce correlations in fitness between individuals and thereby constrain evolutionary dynamics. Finally, a full agent-based model of huddling interactions is also shown to generate criticality when subjected to the same evolutionary pressures. The agent-based model is related to the Monte Carlo model in the way that a Vicsek model is related to an Ising model in statistical physics. Huddling therefore presents an opportunity to use thermodynamic theory to study an emergent adaptive animal behaviour. In more general terms, huddling is proposed as an ideal system for investigating the interaction between self-organisation and natural selection empirically. PMID:28141809
NASA Astrophysics Data System (ADS)
Bernede, Adrien; Poëtte, Gaël
2018-02-01
In this paper, we are interested in the resolution of the time-dependent problem of particle transport in a medium whose composition evolves with time due to interactions. As a constraint, we want to use of Monte-Carlo (MC) scheme for the transport phase. A common resolution strategy consists in a splitting between the MC/transport phase and the time discretization scheme/medium evolution phase. After going over and illustrating the main drawbacks of split solvers in a simplified configuration (monokinetic, scalar Bateman problem), we build a new Unsplit MC (UMC) solver improving the accuracy of the solutions, avoiding numerical instabilities, and less sensitive to time discretization. The new solver is essentially based on a Monte Carlo scheme with time dependent cross sections implying the on-the-fly resolution of a reduced model for each MC particle describing the time evolution of the matter along their flight path.
Nanoionics-Based Switches for Radio-Frequency Applications
NASA Technical Reports Server (NTRS)
Nessel, James; Lee, Richard
2010-01-01
Nanoionics-based devices have shown promise as alternatives to microelectromechanical systems (MEMS) and semiconductor diode devices for switching radio-frequency (RF) signals in diverse systems. Examples of systems that utilize RF switches include phase shifters for electronically steerable phased-array antennas, multiplexers, cellular telephones and other radio transceivers, and other portable electronic devices. Semiconductor diode switches can operate at low potentials (about 1 to 3 V) and high speeds (switching times of the order of nanoseconds) but are characterized by significant insertion loss, high DC power consumption, low isolation, and generation of third-order harmonics and intermodulation distortion (IMD). MEMS-based switches feature low insertion loss (of the order of 0.2 dB), low DC power consumption (picowatts), high isolation (>30 dB), and low IMD, but contain moving parts, are not highly reliable, and must be operated at high actuation potentials (20 to 60 V) generated and applied by use of complex circuitry. In addition, fabrication of MEMS is complex, involving many processing steps. Nanoionics-based switches offer the superior RF performance and low power consumption of MEMS switches, without need for the high potentials and complex circuitry necessary for operation of MEMS switches. At the same time, nanoionics-based switches offer the high switching speed of semiconductor devices. Also, like semiconductor devices, nanoionics-based switches can be fabricated relatively inexpensively by use of conventional integrated-circuit fabrication techniques. More over, nanoionics-based switches have simple planar structures that can easily be integrated into RF power-distribution circuits.
Phase diagram of a symmetric electron-hole bilayer system: a variational Monte Carlo study.
Sharma, Rajesh O; Saini, L K; Bahuguna, Bhagwati Prasad
2018-05-10
We study the phase diagram of a symmetric electron-hole bilayer system at absolute zero temperature and in zero magnetic field within the quantum Monte Carlo approach. In particular, we conduct variational Monte Carlo simulations for various phases, i.e. the paramagnetic fluid phase, the ferromagnetic fluid phase, the anti-ferromagnetic Wigner crystal phase, the ferromagnetic Wigner crystal phase and the excitonic phase, to estimate the ground-state energy at different values of in-layer density and inter-layer spacing. Slater-Jastrow style trial wave functions, with single-particle orbitals appropriate for different phases, are used to construct the phase diagram in the (r s , d) plane by finding the relative stability of trial wave functions. At very small layer separations, we find that the fluid phases are stable, with the paramagnetic fluid phase being particularly stable at [Formula: see text] and the ferromagnetic fluid phase being particularly stable at [Formula: see text]. As the layer spacing increases, we first find that there is a phase transition from the ferromagnetic fluid phase to the ferromagnetic Wigner crystal phase when d reaches 0.4 a.u. at r s = 20, and before there is a return to the ferromagnetic fluid phase when d approaches 1 a.u. However, for r s < 20 and [Formula: see text] a.u., the excitonic phase is found to be stable. We do not find that the anti-ferromagnetic Wigner crystal is stable over the considered range of r s and d. We also find that as r s increases, the critical layer separations for Wigner crystallization increase.
Wiedemann, Eva-Maria; Peycheva, Mihaela; Pavri, Rushad
2016-12-13
Class switch recombination (CSR) at the immunoglobulin heavy chain (IgH) locus generates antibody isotypes. CSR depends on double-strand breaks (DSBs) induced by activation-induced cytidine deaminase (AID). Although DSB formation and repair machineries are active in G1 phase, efficient CSR is dependent on cell proliferation and S phase entry; however, the underlying mechanisms are obscure. Here, we show that efficient CSR requires the replicative helicase, the Mcm complex. Mcm proteins are enriched at IgH switch regions during CSR, leading to assembly of facultative replication origins that require Mcm helicase function for productive CSR. Assembly of CSR-associated origins is facilitated by R loops and promotes the physical proximity (synapsis) of recombining switch regions, which is reduced by R loop inhibition or Mcm complex depletion. Thus, R loops contribute to replication origin specification that promotes DSB resolution in CSR. This suggests a mechanism for the dependence of CSR on S phase and cell division. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Guangyu; Wu, Liangcai; Song, Zhitang; Liu, Yan; Li, Tao; Zhang, Sifan; Song, Sannian; Feng, Songlin
2017-12-01
A memory cell composed of a selector device and a storage device is the basic unit of phase change memory. The threshold switching effect, main principle of selectors, is a universal phenomenon in chalcogenide glasses. In this work, we put forward a safe and controllable method to prepare a SiGeAsTeN chalcogenide film by implanting As ions into sputtered SiGeTeN films. For the SiGeAsTeN material, the phase structure maintains the amorphous state, even at high temperature, indicating that no phase transition occurs for this chalcogenide-based material. The electrical test results show that the SiGeAsTeN-based devices exhibit good threshold switching characteristics and the switching voltage decreases with the increasing As content. The decrease in valence alternation pairs, reducing trap state density, may be the physical mechanism for lower switch-on voltage, which makes the SiGeAsTeN material more applicable in selector devices through component optimization.
Lee, Jun-Young; Kim, Jeong-Hyeon; Jeon, Deok-Jin; Han, Jaehyun; Yeo, Jong-Souk
2016-10-12
A phase change nanowire holds a promise for nonvolatile memory applications, but its transition mechanism has remained unclear due to the analytical difficulties at atomic resolution. Here we obtain a deeper understanding on the phase transition of a single crystalline Ge 2 Sb 2 Te 5 nanowire (GST NW) using atomic scale imaging, diffraction, and chemical analysis. Our cross-sectional analysis has shown that the as-grown hexagonal close-packed structure of the single crystal GST NW transforms to a metastable face-centered cubic structure due to the atomic migration to the pre-existing vacancy layers in the hcp structure going through iterative electrical switching. We call this crystal structure transformation "metastabilization", which is also confirmed by the increase of set-resistance during the switching operation. For the set to reset transition between crystalline and amorphous phases, high-resolution imaging indicates that the longitudinal center of the nanowire mainly undergoes phase transition. According to the atomic scale analysis of the GST NW after repeated electrical switching, partial crystallites are distributed around the core-centered amorphous region of the nanowire where atomic migration is mainly induced, thus potentially leading to low power electrical switching. These results provide a novel understanding of phase change nanowires, and can be applied to enhance the design of nanowire phase change memory devices for improved electrical performance.
A Ku band 5 bit MEMS phase shifter for active electronically steerable phased array applications
NASA Astrophysics Data System (ADS)
Sharma, Anesh K.; Gautam, Ashu K.; Farinelli, Paola; Dutta, Asudeb; Singh, S. G.
2015-03-01
The design, fabrication and measurement of a 5 bit Ku band MEMS phase shifter in different configurations, i.e. a coplanar waveguide and microstrip, are presented in this work. The development architecture is based on the hybrid approach of switched and loaded line topologies. All the switches are monolithically manufactured on a 200 µm high resistivity silicon substrate using 4 inch diameter wafers. The first three bits (180°, 90° and 45°) are realized using switched microstrip lines and series ohmic MEMS switches whereas the fourth and fifth bits (22.5° and 11.25°) consist of microstrip line sections loaded by shunt ohmic MEMS devices. Individual bits are fabricated and evaluated for performance and the monolithic device is a 5 bit Ku band (16-18 GHz) phase shifter with very low average insertion loss of the order of 3.3 dB and a return loss better than 15 dB over the 32 states with a chip area of 44 mm2. A total phase shift of 348.75° with phase accuracy within 3° is achieved over all of the states. The performance of individual bits has been optimized in order to achieve an integrated performance so that they can be implemented into active electronically steerable antennas for phased array applications.
Fluctuations in a model ferromagnetic film driven by a slowly oscillating field with a constant bias
NASA Astrophysics Data System (ADS)
Buendía, Gloria M.; Rikvold, Per Arne
2017-10-01
We present a numerical and theoretical study that supports and explains recent experimental results on anomalous magnetization fluctuations of a uniaxial ferromagnetic film in its low-temperature phase, which is forced by an oscillating field above the critical period of the associated dynamic phase transition (DPT) [P. Riego, P. Vavassori, and A. Berger, Phys. Rev. Lett. 118, 117202 (2017), 10.1103/PhysRevLett.118.117202]. For this purpose, we perform kinetic Monte Carlo simulations of a two-dimensional Ising model with nearest-neighbor ferromagnetic interactions in the presence of a sinusoidally oscillating field, to which is added a constant bias field. We study a large range of system sizes and supercritical periods and analyze the data using a droplet-theoretical description of magnetization switching. We find that the period-averaged magnetization, which plays the role of the order parameter for the DPT, presents large fluctuations that give rise to well-defined peaks in its scaled variance and its susceptibility with respect to the bias field. The peaks are symmetric with respect to zero bias and located at values of the bias field that increase toward the field amplitude as an inverse logarithm of the field oscillation period. Our results indicate that this effect is independent of the system size for large systems, ruling out critical behavior associated with a phase transition. Rather, it is a stochastic-resonance phenomenon that has no counterpart in the corresponding thermodynamic phase transition, providing a reminder that the equivalence of the DPT to an equilibrium phase transition is limited to the critical region near the critical period and zero bias.
Phase Transition between Black and Blue Phosphorenes: A Quantum Monte Carlo Study
NASA Astrophysics Data System (ADS)
Li, Lesheng; Yao, Yi; Reeves, Kyle; Kanai, Yosuke
Phase transition of the more common black phosphorene to blue phosphorene is of great interest because they are predicted to exhibit unique electronic and optical properties. However, these two phases are predicted to be separated by a rather large energy barrier. In this work, we study the transition pathway between black and blue phosphorenes by using the variable cell nudge elastic band method combined with density functional theory calculation. We show how diffusion quantum Monte Carlo method can be used for determining the energetics of the phase transition and demonstrate the use of two approaches for removing finite-size errors. Finally, we predict how applied stress can be used to control the energetic balance between these two different phases of phosphorene.
Toward Adversarial Online Learning and the Science of Deceptive Machines
2015-11-14
noise . Adver- saries can take advantage of this inherent blind spot to avoid detection (mimicry). Adversarial label noise is the intentional switching...of classification labels leading to de- terministic noise , error that the model cannot capture due to its generalization bias. An experiment in user...potentially infinite and with imperfect information. We will combine Monte-Carlo tree search ( MCTS ) with rein- forcement learning because the manipulation
ERIC Educational Resources Information Center
Chung, Hwan; Anthony, James C.
2013-01-01
This article presents a multiple-group latent class-profile analysis (LCPA) by taking a Bayesian approach in which a Markov chain Monte Carlo simulation is employed to achieve more robust estimates for latent growth patterns. This article describes and addresses a label-switching problem that involves the LCPA likelihood function, which has…
Ga-doped indium oxide nanowire phase change random access memory cells
NASA Astrophysics Data System (ADS)
Jin, Bo; Lim, Taekyung; Ju, Sanghyun; Latypov, Marat I.; Kim, Hyoung Seop; Meyyappan, M.; Lee, Jeong-Soo
2014-02-01
Phase change random access memory (PCRAM) devices are usually constructed using tellurium based compounds, but efforts to seek other materials providing desirable memory characteristics have continued. We have fabricated PCRAM devices using Ga-doped In2O3 nanowires with three different Ga compositions (Ga/(In+Ga) atomic ratio: 2.1%, 11.5% and 13.0%), and investigated their phase switching properties. The nanowires (˜40 nm in diameter) can be repeatedly switched between crystalline and amorphous phases, and Ga concentration-dependent memory switching behavior in the nanowires was observed with ultra-fast set/reset rates of 80 ns/20 ns, which are faster than for other competitive phase change materials. The observations of fast set/reset rates and two distinct states with a difference in resistance of two to three orders of magnitude appear promising for nonvolatile information storage. Moreover, we found that increasing the Ga concentration can reduce the power consumption and resistance drift; however, too high a level of Ga doping may cause difficulty in achieving the phase transition.
Monolithic InP strictly non-blocking 8×8 switch for high-speed WDM optical interconnection.
Kwack, Myung-Joon; Tanemura, Takuo; Higo, Akio; Nakano, Yoshiaki
2012-12-17
A strictly non-blocking 8 × 8 switch for high-speed WDM optical interconnection is realized on InP by using the phased-array scheme for the first time. The matrix switch architecture consists of over 200 functional devices such as star couplers, phase-shifters and so on without any waveguide cross-section. We demonstrate ultra-broad optical bandwidth covering the entire C-band through several Input/Output ports combination with extinction ratio performance of more than 20dB. Also, nanoseconds reconfiguration time was successfully achieved by dynamic switching experiment. Error-free transmission was verified for 40-Gbps (10-Gbps × 4ch) WDM signal.
Describing-function analysis of a ripple regulator with slew-rate limits and time delays
NASA Technical Reports Server (NTRS)
Wester, Gene W.
1990-01-01
The effects of time delays and slew-rate limits on the steady-state operating points and performance of a free-running ripple regulator are evaluated using describing-function analysis. The describing function of an ideal comparator (no time delays or slew rate limits) has no phase shift and is independent of frequency. It is found that turn-on delay and turn-off delay have different effects on gain and phase and cannot be combined. Comparator hysteresis affects both gain and phase; likewise, time delays generally affect both gain and phase. It is found that the effective time delay around the feedback loop is one half the sum of turn-on and turn-off delays, regardless of whether the delays are caused by storage time or slew rate limits. Expressions are formulated for the switching frequency, switch duty ratio, dc output, and output ripple. For the case of no hysteresis, a simple, graphical solution for the switching frequency is possible, and the resulting switching frequency is independent of first-order variations of input or load.
Wavelength-switched phase interrogator for extrinsic Fabry-Perot interferometric sensors.
Xia, Ji; Xiong, Shuidong; Wang, Fuyin; Luo, Hong
2016-07-01
We report on phase interrogation of extrinsic Fabry-Perot interferometric (EFPI) sensors through a wavelength-switched unit with a polarization-maintaining fiber Bragg grating (PMFBG). The measurements at two wavelengths are first achieved in one total-optical path. The reflected peaks of the PMFBG with two natural wavelengths are in mutually perpendicular polarization detection, and they are switched through an electro-optic modulator at a high switching speed of 10 kHz. An ellipse fitting differential cross multiplication (EF-DCM) algorithm is proposed for interrogating the variation of the gap length of the EFPI sensors. The phase demodulation system has been demonstrated to recover a minimum phase of 0.42 μrad/Hz at the test frequency of 100 Hz with a stable intensity fluctuation level of ±0.8 dB. Three EFPI sensors with different cavity lengths are tested at the test frequency of 200 Hz, and the results indicate that the system can achieve the demodulation of EFPI sensors with different cavity lengths stably.
Passive Q switching and mode-locking of Er:glass lasers using VO2 mirrors
NASA Astrophysics Data System (ADS)
Pollack, S. A.; Chang, D. B.; Chudnovky, F. A.; Khakhaev, I. A.
1995-09-01
Passive Q switching of an Er:glass laser with the pulse width varying between 14 and 80 ns has been demonstrated, using three resonator vanadium-dioxide-coated (VO2) mirror samples with temperature-dependent reflectivity and differing in the reflectivity contrast. The reflectivity changes because of a phase transition from a semiconductor to a metallic state. Broad band operating characteristics of VO2 mirrors provide Q switching over a wide range of wavelengths. In addition, mode-locked pulses with much shorter time scales have been observed, due to exciton formation and recombination. A simple criterion is derived for the allowable ambient temperatures at which the Q switching operates effectively. A simple relation has also been found relating the duration of the Q-switched pulse to the contrast in reflectivities of the two mirror phases.
Park, Woon Ik; Kim, Jong Min; Jeong, Jae Won; ...
2015-03-17
Phase change memory (PCM) is one of the most promising candidates for next-generation nonvolatile memory devices because of its high speed, excellent reliability, and outstanding scalability. But, the high switching current of PCM devices has been a critical hurdle to realize low-power operation. Although one solution is to reduce the switching volume of the memory, the resolution limit of photolithography hinders further miniaturization of device dimensions. Here, we employed unconventional self-assembly geometries obtained from blends of block copolymers (BCPs) to form ring-shaped hollow PCM nanostructures with an ultrasmall contact area between a phase-change material (Ge 2Sb 2Te 5) and amore » heater (TiN) electrode. The high-density (approximately 0.1 terabits per square inch) PCM nanoring arrays showed extremely small switching current of 2-3 mu A. Furthermore, the relatively small reset current of the ring-shaped PCM compared to the pillar-shaped devices is attributed to smaller switching volume, which is well supported by electro-thermal simulation results. Our approach may also be extended to other nonvolatile memory device applications such as resistive switching memory and magnetic storage devices, where the control of nanoscale geometry can significantly affect device performances.« less
Morphological analysis of GeTe in inline phase change switches
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, Matthew R., E-mail: matthew.king2@ngc.com; Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695; El-Hinnawy, Nabil
2015-09-07
Crystallization and amorphization phenomena in indirectly heated phase change material-based devices were investigated. Scanning transmission electron microscopy was utilized to explore GeTe phase transition processes in the context of the unique inline phase change switch (IPCS) architecture. A monolithically integrated thin film heating element successfully converted GeTe to ON and OFF states. Device cycling prompted the formation of an active area which sustains the majority of structural changes during pulsing. A transition region on both sides of the active area consisting of polycrystalline GeTe and small nuclei (<15 nm) in an amorphous matrix was also observed. The switching mechanism, determined bymore » variations in pulsing parameters, was shown to be predominantly growth-driven. A preliminary model for crystallization and amorphization in IPCS devices is presented.« less
Fan, Longlong; Chen, Jun; Ren, Yang; Pan, Zhao; Zhang, Linxing; Xing, Xianran
2016-01-15
The origin of the excellent piezoelectric properties at the morphotropic phase boundary is generally attributed to the existence of a monoclinic phase in various piezoelectric systems. However, there exist no experimental studies that reveal the role of the monoclinic phase in the piezoelectric behavior in phase-pure ceramics. In this work, a single monoclinic phase has been identified in Pb(Zr,Ti)O_{3} ceramics at room temperature by in situ high-energy synchrotron x-ray diffraction, and its response to electric field has been characterized for the first time. Unique piezoelectric properties of the monoclinic phase in terms of large intrinsic lattice strain and negligible domain switching have been observed. The extensional strain constant d_{33} and the transverse strain constant d_{31} are calculated to be 520 and -200 pm/V, respectively. These large piezoelectric coefficients are mainly due to the large intrinsic lattice strain, with very little extrinsic contribution from domain switching. The unique properties of the monoclinic phase provide new insights into the mechanisms responsible for the piezoelectric properties at the morphotropic phase boundary.
Gamma-ray irradiation of ohmic MEMS switches
NASA Astrophysics Data System (ADS)
Maciel, John J.; Lampen, James L.; Taylor, Edward W.
2012-10-01
Radio Frequency (RF) Microelectromechanical System (MEMS) switches are becoming important building blocks for a variety of military and commercial applications including switch matrices, phase shifters, electronically scanned antennas, switched filters, Automatic Test Equipment, instrumentation, cell phones and smart antennas. Low power consumption, large ratio of off-impedance to on-impedance, extreme linearity, low mass, small volume and the ability to be integrated with other electronics makes MEMS switches an attractive alternative to other mechanical and solid-state switches for a variety of space applications. Radant MEMS, Inc. has developed an electrostatically actuated broadband ohmic microswitch that has applications from DC through the microwave region. Despite the extensive earth based testing, little is known about the performance and reliability of these devices in space environments. To help fill this void, we have irradiated our commercial-off-the-shelf SPST, DC to 40 GHz MEMS switches with gamma-rays as an initial step to assessing static impact on RF performance. Results of Co-60 gamma-ray irradiation of the MEMS switches at photon energies ≥ 1.0 MeV to a total dose of ~ 118 krad(Si) did not show a statistically significant post-irradiation change in measured broadband, RF insertion loss, insertion phase, return loss and isolation.
NASA Astrophysics Data System (ADS)
Singh, Mandeep; Datta, Arnab
2018-05-01
In this paper, silicon based dual ring resonator with hybrid plasmonic bus waveguides (Cu-SiO2-Si-SiO2-Cu) is investigated for achieving switching in the telecommunication C-band (λ = 1.54-1.553µm). The switch element uses vanadium oxide (VO2) as the switching medium when inserted between the rings in order to tailor transmission from one ring to the other through heating induced phase transition. In this manner, the proposed switch element uses one vanadium oxide medium instead of refractive index tailoring of the whole ring as in the prior reported works and achieves switching response. From two-dimensional finite element analysis we have found that, the proposed switch can achieve maximum extinction ratio of 2.72 dB at λ = 1.5434µm, exclusively by tailoring VO2 phase. Furthermore, impact of aperture width, and gap (separation between the bus waveguide and rings) are investigated to gain insight on the improvement of extinction ratio. From our numerical simulations, we find that free spectral range (FSR) and figure of merit (Q) for OFF and ON states are (173.36 nm, 92.63), and (173.58 nm, 65.39), respectively.
NASA Astrophysics Data System (ADS)
Ju, Kyong-Sik; Ryo, Hyok-Su; Pak, Sung-Nam; Pak, Chang-Su; Ri, Sung-Guk; Ri, Dok-Hwan
2018-07-01
By using the generalized inverse-pole-figure model, the numbers of crystalline particles involved in different domain-switching near the triple tetragonal-rhombohedral-orthorhombic (T-R-O) points of three-phase polycrystalline ferroelectrics have been analytically calculated and domain-switching which can bring out phase transformations has been considered. Through polarization by an electric field, different numbers of crystalline particles can be involved in different phase transformations. According to the phase equilibrium conditions, the phase equilibrium compositions of the three phases coexisting near the T-R-O triple point have been evaluated from the results of the numbers of crystalline particles involved in different phase transformations.
Carrender, Curtis Lee; Gilbert, Ronald W.
2007-02-20
A radio frequency (RF) communication system employs phase-modulated backscatter signals for RF communication from an RF tag to an interrogator. The interrogator transmits a continuous wave interrogation signal to the RF tag, which based on an information code stored in a memory, phase-modulates the interrogation signal to produce a backscatter response signal that is transmitted back to the interrogator. A phase modulator structure in the RF tag may include a switch coupled between an antenna and a quarter-wavelength stub; and a driver coupled between the memory and a control terminal of the switch. The driver is structured to produce a modulating signal corresponding to the information code, the modulating signal alternately opening and closing the switch to respectively decrease and increase the transmission path taken by the interrogation signal and thereby modulate the phase of the response signal. Alternatively, the phase modulator may include a diode coupled between the antenna and driver. The modulating signal from the driver modulates the capacitance of the diode, which modulates the phase of the response signal reflected by the diode and antenna.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peplov, Vladimir V; Anderson, David E; Solley, Dennis J
2014-01-01
Three IGBT H-bridge switching networks are used in each High Voltage Converter Modulator (HVCM) system at the Spallation Neutron Source (SNS) to generate drive currents to three boost transformer primaries switching between positive and negative bus voltages at 20 kHz. Every switch plate assembly is tested before installing it into an operational HVCM. A Single Phase Test Stand has been built for this purpose, and it is used for adjustment, measurement and testing of different configurations of switch plates. This paper will present a description of the Test Stand configuration and discuss the results of testing switch plates with twomore » different types of IGBT gate drivers currently in use on the HVCM systems. Comparison of timing characteristics of the original and new drivers and the resulting performance reinforces the necessity to replace the original H-bridge network drivers with the upgraded units.« less
Development, implementation, and test results on integrated optics switching matrix
NASA Technical Reports Server (NTRS)
Rutz, E.
1982-01-01
A small integrated optics switching matrix, which was developed, implemented, and tested, indicates high performance. The matrix serves as a model for the design of larger switching matrices. The larger integrated optics switching matrix should form the integral part of a switching center with high data rate throughput of up to 300 megabits per second. The switching matrix technique can accomplish the design goals of low crosstalk and low distortion. About 50 illustrations help explain and depict the many phases of the integrated optics switching matrix. Many equations used to explain and calculate the experimental data are also included.
The Study of Phase-shift Super-Frequency Induction Heating Power Supply
NASA Astrophysics Data System (ADS)
Qi, Hairun; Peng, Yonglong; Li, Yabin
This paper combines pulse-width phase-shift power modulation with fixed-angle phase-locked-control to adjust the inverter's output power, this method not only meets the work conditions of voltage inverter, but also realizes the large-scale of power modulation, and the main circuit is simple, the switching devices realize soft switching. This paper analyzes the relationship between the output power and phase-shift angle, the control strategy is simulated by Matlab/Simulink, and the results show that the method is feasible and meets the theoretical analysis
Monte Carlo Analysis as a Trajectory Design Driver for the TESS Mission
NASA Technical Reports Server (NTRS)
Nickel, Craig; Lebois, Ryan; Lutz, Stephen; Dichmann, Donald; Parker, Joel
2016-01-01
The Transiting Exoplanet Survey Satellite (TESS) will be injected into a highly eccentric Earth orbit and fly 3.5 phasing loops followed by a lunar flyby to enter a mission orbit with lunar 2:1 resonance. Through the phasing loops and mission orbit, the trajectory is significantly affected by lunar and solar gravity. We have developed a trajectory design to achieve the mission orbit and meet mission constraints, including eclipse avoidance and a 30-year geostationary orbit avoidance requirement. A parallelized Monte Carlo simulation was performed to validate the trajectory after injecting common perturbations, including launch dispersions, orbit determination errors, and maneuver execution errors. The Monte Carlo analysis helped identify mission risks and is used in the trajectory selection process.
High-pressure hydrogen sulfide by diffusion quantum Monte Carlo.
Azadi, Sam; Kühne, Thomas D
2017-02-28
We revisit the enthalpy-pressure phase diagram of the various products from the different proposed decompositions of H 2 S at pressures above 150 GPa by means of accurate diffusion Monte Carlo simulations. Our results entail a revision of the ground-state enthalpy-pressure phase diagram. Specifically, we find that the C2/c HS 2 structure is persistent up to 440 GPa before undergoing a phase transition into the C2/m phase. Contrary to density functional theory, our calculations suggest that the C2/m phase of HS is more stable than the I4 1 /amd HS structure over the whole pressure range from 150 to 400 GPa. More importantly, we predict that the Im-3m phase is the most likely candidate for H 3 S, which is consistent with recent experimental x-ray diffraction measurements.
Multiple-Event Seismic Location Using the Markov-Chain Monte Carlo Technique
NASA Astrophysics Data System (ADS)
Myers, S. C.; Johannesson, G.; Hanley, W.
2005-12-01
We develop a new multiple-event location algorithm (MCMCloc) that utilizes the Markov-Chain Monte Carlo (MCMC) method. Unlike most inverse methods, the MCMC approach produces a suite of solutions, each of which is consistent with observations and prior estimates of data and model uncertainties. Model parameters in MCMCloc consist of event hypocenters, and travel-time predictions. Data are arrival time measurements and phase assignments. Posteriori estimates of event locations, path corrections, pick errors, and phase assignments are made through analysis of the posteriori suite of acceptable solutions. Prior uncertainty estimates include correlations between travel-time predictions, correlations between measurement errors, the probability of misidentifying one phase for another, and the probability of spurious data. Inclusion of prior constraints on location accuracy allows direct utilization of ground-truth locations or well-constrained location parameters (e.g. from InSAR) that aid in the accuracy of the solution. Implementation of a correlation structure for travel-time predictions allows MCMCloc to operate over arbitrarily large geographic areas. Transition in behavior between a multiple-event locator for tightly clustered events and a single-event locator for solitary events is controlled by the spatial correlation of travel-time predictions. We test the MCMC locator on a regional data set of Nevada Test Site nuclear explosions. Event locations and origin times are known for these events, allowing us to test the features of MCMCloc using a high-quality ground truth data set. Preliminary tests suggest that MCMCloc provides excellent relative locations, often outperforming traditional multiple-event location algorithms, and excellent absolute locations are attained when constraints from one or more ground truth event are included. When phase assignments are switched, we find that MCMCloc properly corrects the error when predicted arrival times are separated by several seconds. In cases where the predicted arrival times are within the combined uncertainty of prediction and measurement errors, MCMCloc determines the probability of one or the other phase assignment and propagates this uncertainty into all model parameters. We find that MCMCloc is a promising method for simultaneously locating large, geographically distributed data sets. Because we incorporate prior knowledge on many parameters, MCMCloc is ideal for combining trusted data with data of unknown reliability. This work was performed under the auspices of the U.S. Department of Energy by the University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48, Contribution UCRL-ABS-215048
Model-centric distribution automation: Capacity, reliability, and efficiency
Onen, Ahmet; Jung, Jaesung; Dilek, Murat; ...
2016-02-26
A series of analyses along with field validations that evaluate efficiency, reliability, and capacity improvements of model-centric distribution automation are presented. With model-centric distribution automation, the same model is used from design to real-time control calculations. A 14-feeder system with 7 substations is considered. The analyses involve hourly time-varying loads and annual load growth factors. Phase balancing and capacitor redesign modifications are used to better prepare the system for distribution automation, where the designs are performed considering time-varying loads. Coordinated control of load tap changing transformers, line regulators, and switched capacitor banks is considered. In evaluating distribution automation versus traditionalmore » system design and operation, quasi-steady-state power flow analysis is used. In evaluating distribution automation performance for substation transformer failures, reconfiguration for restoration analysis is performed. In evaluating distribution automation for storm conditions, Monte Carlo simulations coupled with reconfiguration for restoration calculations are used. As a result, the evaluations demonstrate that model-centric distribution automation has positive effects on system efficiency, capacity, and reliability.« less
Model-centric distribution automation: Capacity, reliability, and efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onen, Ahmet; Jung, Jaesung; Dilek, Murat
A series of analyses along with field validations that evaluate efficiency, reliability, and capacity improvements of model-centric distribution automation are presented. With model-centric distribution automation, the same model is used from design to real-time control calculations. A 14-feeder system with 7 substations is considered. The analyses involve hourly time-varying loads and annual load growth factors. Phase balancing and capacitor redesign modifications are used to better prepare the system for distribution automation, where the designs are performed considering time-varying loads. Coordinated control of load tap changing transformers, line regulators, and switched capacitor banks is considered. In evaluating distribution automation versus traditionalmore » system design and operation, quasi-steady-state power flow analysis is used. In evaluating distribution automation performance for substation transformer failures, reconfiguration for restoration analysis is performed. In evaluating distribution automation for storm conditions, Monte Carlo simulations coupled with reconfiguration for restoration calculations are used. As a result, the evaluations demonstrate that model-centric distribution automation has positive effects on system efficiency, capacity, and reliability.« less
NASA Astrophysics Data System (ADS)
Zhuang, Yufei; Huang, Haibin
2014-02-01
A hybrid algorithm combining particle swarm optimization (PSO) algorithm with the Legendre pseudospectral method (LPM) is proposed for solving time-optimal trajectory planning problem of underactuated spacecrafts. At the beginning phase of the searching process, an initialization generator is constructed by the PSO algorithm due to its strong global searching ability and robustness to random initial values, however, PSO algorithm has a disadvantage that its convergence rate around the global optimum is slow. Then, when the change in fitness function is smaller than a predefined value, the searching algorithm is switched to the LPM to accelerate the searching process. Thus, with the obtained solutions by the PSO algorithm as a set of proper initial guesses, the hybrid algorithm can find a global optimum more quickly and accurately. 200 Monte Carlo simulations results demonstrate that the proposed hybrid PSO-LPM algorithm has greater advantages in terms of global searching capability and convergence rate than both single PSO algorithm and LPM algorithm. Moreover, the PSO-LPM algorithm is also robust to random initial values.
Zhang, Qihang; Zhang, Yifei; Li, Junying; Soref, Richard; Gu, Tian; Hu, Juejun
2018-01-01
In this Letter, we propose a broadband, nonvolatile on-chip switch design in the telecommunication C-band with record low loss and crosstalk. The unprecedented device performance builds on: 1) a new optical phase change material (O-PCM) Ge 2 Sb 2 Se 4 Te 1 (GSST), which exhibits significantly reduced optical attenuation compared to traditional O-PCMs, and 2) a nonperturbative design that enables low-loss device operation beyond the classical figure-of-merit (FOM) limit. We further demonstrate that the 1-by-2 and 2-by-2 switches can serve as basic building blocks to construct nonblocking and nonvolatile on-chip switching fabric supporting arbitrary numbers of input and output ports.
Low loss millimeter-wave switches based on the Vanadium Dioxide Metal - Insulator - Transition
NASA Astrophysics Data System (ADS)
Field, Mark; Hillman, Christopher; Stupar, Philip; Griffith, Zachary; Rodwell, Mark
2014-03-01
A new ultra-low-loss and broad band millimeter wave switch technology based on the reversible metal / insulator phase transition of vanadium dioxide has been developed. We report having fabricated series configured, single-pole single-throw (SPST) switches having measured S-parameters from DC to 110 GHz. The on-state insertion loss is 0.2 dB and off-state isolation is 21 dB at 50 GHz. The resulting impedance contrast ratio, ZOFF / ZON, is greater than 500:1 at 50 GHz (i.e. cut-off frequency fc ~ 40 THz). As a demonstration of the technology's utility, we also present the results of a 2-bit real time delay phase shifter incorporating a pair of VO2 SP4T switches. This switch technology's high impedance contrast ratio combined with its compactness, ease of integration, and low voltage operation make it an enabler of previously unachievable high-performance millimeter wave FPGAs.
Ku to V-band 4-bit MEMS phase shifter bank using high isolation SP4T switches and DMTL structures
NASA Astrophysics Data System (ADS)
Dey, Sukomal; Koul, Shiban K.; Poddar, Ajay K.; Rohde, Ulrich L.
2017-10-01
This work presents a micro-electro-mechanical system (MEMS) based on a wide-band 4-bit phase shifter using two back-to-back single-pole-four-throw (SP4T) switches and four different distributed MEMS transmission line (DMTL) structures that are implemented on 635 µm alumina substrate using surface micromachining process. An SP4T switch is designed with a series-shunt configuration and it demonstrates an average return loss of >17 dB, an insertion loss of <1.97 dB and maximum isolation of >28 dB up to 60 GHz. A maximum area of the SP4T switch is ~0.76 mm2. Single-pole-single-throw and SP4T switches are capable of handling 1 W of radio frequency (RF) power up to >100 million cycles at 25° C; they can even sustained up to >70 million cycles with 1 W at 85 °C. The proposed wide-band phase shifter works at 17 GHz (Ku-band), 25 GHz (K-band), 35 GHz (Ka-band) and 60 GHz (V-band) frequencies. Finally,a 4-bit phase shifter demonstrates an average insertion loss of <6 dB, return loss of >10 dB and maximum phase error of ~3.8° at 60 GHz frequency over 500 MHz bandwidth. Total area of the fabricated device is ~11 mm2. In addition, the proposed device works well up to >107 cycles with 1 W of RF power. To the best of the author’s knowledge, this is the best reported wide-band MEMS 4-bit phase shifter in the literature that works with a constant resolution.
Applications of Non-linearities in RF MEMS Switches and Resonators
NASA Astrophysics Data System (ADS)
Vummidi Murali, Krishna Prasad
The 21st century is emerging into an era of wireless ubiquity. To support this trend, the RF (Radio Frequency) front end must be capable of processing a range of wireless signals (cellular phone, data connectivity, broadcast TV, GPS positioning, etc.) spanning a total bandwidth of nearly 6 GHz. This warrants the need for multi-band/multi-mode radio architectures. For such architectures to satisfy the constraints on size, battery life, functionality and cost, the radio front-end must be made reconfigurable. RF-MEMS (RF Micro-Electro-Mechanical Systems) are seen as an enabling technology for such reconfigurable radios. RF-MEMS mainly include micromechanical switches (used in phase shifters, switched capacitor banks, impedance tuners etc.) and micromechanical resonators (used in tunable filters, oscillators, reference clocks etc.). MEMS technology also has the potential to be directly integrated into CMOS (Complementary metal-oxide semiconductor) ICs (Integrated Circuits) leading to further potential reductions of cost and size. However, RF-MEMS face challenges that must be addressed before they can gain widespread commercial acceptance. Relatively low switching speed, power handling, and high-voltage drive are some of the key issues in MEMS switches. Phase noise influenced by non-linearities, need for temperature compensation (especially Si based resonators), large start-up times, and aging are the key issues in Si MEMS Resonators. In this work potential solutions are proposed to address some of these key issues, specifically the reduction of high voltage drives in switches and the reduction of phase noise in MEMS resonators for timing applications. MEMS devices that are electrostatically actuated exhibit significant non-linearities. The origins of the non-linearities are both electrical (electrostatic actuation) and mechanical (dimensions and material properties). The influence of spring non-linearities (cubic and quadratic) on the performance of switches and resonators are studied. Gold electroplated fixed-fixed beams were fabricated to test the phenomenon of dynamic (or resonant) pull-in in shunt switches. The dynamic pull-in phenomenon was also tested on commercially fabricated lateral switches. It is shown that the resonant pull-in technique reduces the overall voltage required to actuate the switch. There is an additional reduction of total actuation voltage possible via applying an AC actuation signal at the correct non-linear resonant frequency. The demonstrated best case savings from operating at the non-linear resonance is 50% (for the lateral switch) and 60% (for the vertical switch) as compared to 25% and 40% respectively using a fixed frequency approach. However, the timing response for resonant pull-in has been experimentally shown to be slower than the static actuation. To reduce the switching time, a shifted-frequency method is proposed where the excitation frequency is shifted up or down by a discrete amount deltaO after a brief hold time. It was theoretically shown that the shifted-frequency method enables a minimum realizable switching time comparable to the static switching time for a given set of actuation frequencies. The influence of VDC on the effective non-linearities of a fixed-fixed beam is also studied. Based on the dimensions of the resonator and the type of resonance there is a certain VDC,Lin where the response is near linear (S ≈ 0). In the near-linear domain, the dynamic pull-in is the only upper bound to the amplitude of vibrations, and hence the amplitude of output current, thereby maximizing the power handling capacity of the resonator. Apart from maximizing the output current, it is essential to reduce the amplitude and phase variations of the displacement response which are due to noise mixing into frequency of interest, and are eventually manifested as output phase noise due to capacitive current nonlinearity. Two major aliasing schemes were analyzed and it was shown that the capacitive force non-linearity is the major source of mixing that causes the up-conversion of 1/f frequency into signal sidebands. The resonator's periodic response (displacement) is defined by a set of two first-order nonlinear ordinary differential equations that describe the modulation of amplitude and phase of the response. Frequency response curves of amplitude and frequency are determined from these modulation equations. The zero slope point on the amplitude resonance curve is the peak of the resonance curve where the phase (gammadc) of the response is +/-pi/2. For a strongly non-linear system, the resonance curves are skewed based on the amount of total non-linearity S. For systems that are strongly non-linear, the best region to operate the resonator is the fixed point that correspond to infinite slope (gammadc = +/-2pi/3) in the frequency response of the system. The best case phase noise response was analytically developed for such a fixed point. Theoretically at this fixed point, phase noise will have contributions only from 1/ fnoise and not from 1/f2 and 1/ f3. The resonators phase can be set by controlling the rest of the phase in the loop such that the total phase around the loop is zero or 2pi. In addition, this work has also developed an analytical model for a lateral MEMS switch fabricated in a commercial foundry that has the potential to be processed as MEMS on CMOS. This model accounts for trapezoidal cross sections of the electrodes and springs and also models electrostatic fringing as a function of the moving gap. The analytical model matches closely with the Finite Element (FEA) model.
Collisional Decoherence in Trapped-Atom Interferometers that use Nondegenerate Sources
2009-01-22
a magneto - optical trap . The trap is switched off and the atomic cloud begins to fall due to gravity. At the time t=0, the cloud is illuminated with...model is used to find the optimal operating conditions of the interferometer and direct Monte-Carlo simulation of the interferometer is used to...A major difficulty with all trapped -atom interferometers that use optical pulses is that the residual potential along the guide causes
MEMS, Ka-Band Single-Pole Double-Throw (SPDT) Switch for Switched Line Phase Shifters
NASA Technical Reports Server (NTRS)
Scardelletti, Maximilian C.; Ponchak, George E.; Varaljay, Nicholas C.
2002-01-01
Ka-band MEMS doubly anchored cantilever beam capacitive shunt devices are used to demonstrate a MEMS SPDT switch fabricated on high resistivity silicon (HRS) utilizing finite ground coplanar waveguide (FGC) transmission lines. The SPDT switch has an insertion loss (IL), return loss (RL), and isolation of 0.3dB, 40dB, and 30 dB, respectively at Ka-band.
New coherent laser communication detection scheme based on channel-switching method.
Liu, Fuchuan; Sun, Jianfeng; Ma, Xiaoping; Hou, Peipei; Cai, Guangyu; Sun, Zhiwei; Lu, Zhiyong; Liu, Liren
2015-04-01
A new coherent laser communication detection scheme based on the channel-switching method is proposed. The detection front end of this scheme comprises a 90° optical hybrid and two balanced photodetectors which outputs the in-phase (I) channel and quadrature-phase (Q) channel signal current, respectively. With this method, the ultrahigh speed analog/digital transform of the signal of the I or Q channel is not required. The phase error between the signal and local lasers is obtained by simple analog circuit. Using the phase error signal, the signals of the I/Q channel are switched alternately. The principle of this detection scheme is presented. Moreover, the comparison of the sensitivity of this scheme with that of homodyne detection with an optical phase-locked loop is discussed. An experimental setup was constructed to verify the proposed detection scheme. The offline processing procedure and results are presented. This scheme could be realized through simple structure and has potential applications in cost-effective high-speed laser communication.
Experimental evidence for stochastic switching of supercooled phases in NdNiO3 nanostructures
NASA Astrophysics Data System (ADS)
Kumar, Devendra; Rajeev, K. P.; Alonso, J. A.
2018-03-01
A first-order phase transition is a dynamic phenomenon. In a multi-domain system, the presence of multiple domains of coexisting phases averages out the dynamical effects, making it nearly impossible to predict the exact nature of phase transition dynamics. Here, we report the metal-insulator transition in samples of sub-micrometer size NdNiO3 where the effect of averaging is minimized by restricting the number of domains under study. We observe the presence of supercooled metallic phases with supercooling of 40 K or more. The transformation from the supercooled metallic to the insulating state is a stochastic process that happens at different temperatures and times in different experimental runs. The experimental results are understood without incorporating material specific properties, suggesting that the behavior is of universal nature. The size of the sample needed to observe individual switching of supercooled domains, the degree of supercooling, and the time-temperature window of switching are expected to depend on the parameters such as quenched disorder, strain, and magnetic field.
On Per-Phase Topology Control and Switching in Emerging Distribution Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Fei; Mousavi, Mirrasoul J.
This paper presents a new concept and approach for topology control and switching in distribution systems by extending the traditional circuit switching to laterals and single-phase loads. Voltage unbalance and other key performance indicators including voltage magnitudes, line loading, and energy losses are used to characterize and demonstrate the technical value of optimizing system topology on a per-phase basis in response to feeder conditions. The near-optimal per-phase topology control is defined as a series of hierarchical optimization problems. The proposed approach is respectively applied to IEEE 13-bus and 123-bus test systems for demonstration, which included the impact of integrating electricmore » vehicles (EVs) in the test circuit. It is concluded that the proposed approach can be effectively leveraged to improve voltage profiles with electric vehicles, the extent of which depends upon the performance of the base case without EVs.« less
A sliding-control switch stabilizes synchronized states in a model of actuated cilia
NASA Astrophysics Data System (ADS)
Buchmann, Amy; Cortez, Ricardo; Fauci, Lisa
2017-11-01
A key function of cilia, flexible hairlike appendages located on the surface of a cell, is the transport of mucus in the lungs, where the cilia self-organize forming a metachronal wave that propels the surrounding fluid. Cilia also play an important role in the locomotion of ciliated microswimmers and other biological processes. To analyze the coordinated movement of cilia interacting through a fluid, we model each cilium as an elastic, actuated body whose beat pattern is driven by a geometric switch that drives the motion of the power and recovery strokes. The cilia are coupled to the viscous fluid using a numerical method based upon a centerline distribution of regularized Stokeslets. We first characterize the beat cycle and flow produced by a single cilium and then present results on the synchronization states between two cilia that show that the in-phase equilibrium is unstable while the anti-phase equilibrium is stable under the geometric switch model. Adding a sliding-control switching mechanism stabilizes the in-phase motion.
Intelligent Gate Drive for Fast Switching and Crosstalk Suppression of SiC Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zheyu; Dix, Jeffery; Wang, Fei Fred
This study presents an intelligent gate drive for silicon carbide (SiC) devices to fully utilize their potential of high switching-speed capability in a phase-leg configuration. Based on the SiC device's intrinsic properties, a gate assist circuit consisting of two auxiliary transistors with two diodes is introduced to actively control gate voltages and gate loop impedances of both devices in a phase-leg configuration during different switching transients. Compared to conventional gate drives, the proposed circuit has the capability of accelerating the switching speed of the phase-leg power devices and suppressing the crosstalk to below device limits. Based on Wolfspeed 1200-V SiCmore » MOSFETs, the test results demonstrate the effectiveness of this intelligent gate drive under varying operating conditions. More importantly, the proposed intelligent gate assist circuitry is embedded into a gate drive integrated circuit, offering a simple, compact, and reliable solution for end-users to maximize benefits of SiC devices in actual power electronics applications.« less
Intelligent Gate Drive for Fast Switching and Crosstalk Suppression of SiC Devices
Zhang, Zheyu; Dix, Jeffery; Wang, Fei Fred; ...
2017-01-19
This study presents an intelligent gate drive for silicon carbide (SiC) devices to fully utilize their potential of high switching-speed capability in a phase-leg configuration. Based on the SiC device's intrinsic properties, a gate assist circuit consisting of two auxiliary transistors with two diodes is introduced to actively control gate voltages and gate loop impedances of both devices in a phase-leg configuration during different switching transients. Compared to conventional gate drives, the proposed circuit has the capability of accelerating the switching speed of the phase-leg power devices and suppressing the crosstalk to below device limits. Based on Wolfspeed 1200-V SiCmore » MOSFETs, the test results demonstrate the effectiveness of this intelligent gate drive under varying operating conditions. More importantly, the proposed intelligent gate assist circuitry is embedded into a gate drive integrated circuit, offering a simple, compact, and reliable solution for end-users to maximize benefits of SiC devices in actual power electronics applications.« less
Epitaxial VO2 thin-film-based radio-frequency switches with electrical activation
NASA Astrophysics Data System (ADS)
Lee, Jaeseong; Lee, Daesu; Cho, Sang June; Seo, Jung-Hun; Liu, Dong; Eom, Chang-Beom; Ma, Zhenqiang
2017-09-01
Vanadium dioxide (VO2) is a correlated material exhibiting a sharp insulator-to-metal phase transition (IMT) caused by temperature change and/or bias voltage. We report on the demonstration of electrically triggered radio-frequency (RF) switches based on epitaxial VO2 thin films. The highly epitaxial VO2 and SnO2 template layer was grown on a (001) TiO2 substrate by pulsed laser deposition (PLD). A resistance change of the VO2 thin films of four orders of magnitude was achieved with a relatively low threshold voltage, as low as 13 V, for an IMT phase transition. VO2 RF switches also showed high-frequency responses of insertion losses of -3 dB at the on-state and return losses of -4.3 dB at the off-state over 27 GHz. Furthermore, an intrinsic cutoff frequency of 17.4 THz was estimated for the RF switches. The study on electrical IMT dynamics revealed a phase transition time of 840 ns.
Fast simulation of packet loss rates in a shared buffer communications switch
NASA Technical Reports Server (NTRS)
Chang, Cheng-Shang; Heidelberger, Philip; Shahabuddin, Perwez
1993-01-01
This paper describes an efficient technique for estimating, via simulation, the probability of buffer overflows in a queueing model that arises in the analysis of ATM (Asynchronous Transfer Mode) communication switches. There are multiple streams of (autocorrelated) traffic feeding the switch that has a buffer of finite capacity. Each stream is designated as either being of high or low priority. When the queue length reaches a certain threshold, only high priority packets are admitted to the switch's buffer. The problem is to estimate the loss rate of high priority packets. An asymptotically optimal importance sampling approach is developed for this rare event simulation problem. In this approach, the importance sampling is done in two distinct phases. In the first phase, an importance sampling change of measure is used to bring the queue length up to the threshold at which low priority packets get rejected. In the second phase, a different importance sampling change of measure is used to move the queue length from the threshold to the buffer capacity.
Resistive switching characteristics of interfacial phase-change memory at elevated temperature
NASA Astrophysics Data System (ADS)
Mitrofanov, Kirill V.; Saito, Yuta; Miyata, Noriyuki; Fons, Paul; Kolobov, Alexander V.; Tominaga, Junji
2018-04-01
Interfacial phase-change memory (iPCM) devices were fabricated using W and TiN for the bottom and top contacts, respectively, and the effect of operation temperature on the resistive switching was examined over the range between room temperature and 200 °C. It was found that the high-resistance (RESET) state in an iPCM device drops sharply at around 150 °C to a low-resistance (SET) state, which differs by ˜400 Ω from the SET state obtained by electric-field-induced switching. The iPCM device SET state resistance recovered during the cooling process and remained at nearly the same value for the RESET state. These resistance characteristics greatly differ from those of the conventional Ge-Sb-Te (GST) alloy phase-change memory device, underscoring the fundamentally different switching nature of iPCM devices. From the thermal stability measurements of iPCM devices, their optimal temperature operation was concluded to be less than 100 °C.
Suess, D.; Fuger, M.; Abert, C.; Bruckner, F.; Vogler, C.
2016-01-01
We report two effects that lead to a significant reduction of the switching field distribution in exchange spring media. The first effect relies on a subtle mechanism of the interplay between exchange coupling between soft and hard layers and anisotropy that allows significant reduction of the switching field distribution in exchange spring media. This effect reduces the switching field distribution by about 30% compared to single-phase media. A second effect is that due to the improved thermal stability of exchange spring media over single-phase media, the jitter due to thermal fluctuation is significantly smaller for exchange spring media than for single-phase media. The influence of this overall improved switching field distribution on the transition jitter in granular recording and the bit error rate in bit-patterned magnetic recording is discussed. The transition jitter in granular recording for a distribution of Khard values of 3% in the hard layer, taking into account thermal fluctuations during recording, is estimated to be a = 0.78 nm, which is similar to the best reported calculated jitter in optimized heat-assisted recording media. PMID:27245287
Magnesium-aspartate-based crystallization switch inspired from shell molt of crustacean
Tao, Jinhui; Zhou, Dongming; Zhang, Zhisen; Xu, Xurong; Tang, Ruikang
2009-01-01
Many animals such as crustacean periodically undergo cyclic molt of the exoskeleton. During this process, amorphous calcium mineral phases are biologically stabilized by magnesium and are reserved for the subsequent rapid formation of new shell tissue. However, it is a mystery how living organisms can regulate the transition of the precursor phases precisely. We reveal that the shell mineralization from the magnesium stabilized precursors is associated with the presence of Asp-rich proteins. It is suggested that a cooperative effect of magnesium and Asp-rich compound can result into a crystallization switch in biomineralization. Our in vitro experiments confirm that magnesium increases the lifetime of amorphous calcium carbonate and calcium phosphate in solution so that the crystallization can be temporarily switched off. Although Asp monomer alone inhibits the crystallization of pure amorphous calcium minerals, it actually reduces the stability of the magnesium-stabilized precursors to switch on the transformation from the amorphous to crystallized phases. These modification effects on crystallization kinetics can be understood by an Asp-enhanced magnesium desolvation model. The interesting magnesium-Asp-based switch is a biologically inspired lesson from nature, which can be developed into an advanced strategy to control material fabrications. PMID:20007788
Magnesium-aspartate-based crystallization switch inspired from shell molt of crustacean.
Tao, Jinhui; Zhou, Dongming; Zhang, Zhisen; Xu, Xurong; Tang, Ruikang
2009-12-29
Many animals such as crustacean periodically undergo cyclic molt of the exoskeleton. During this process, amorphous calcium mineral phases are biologically stabilized by magnesium and are reserved for the subsequent rapid formation of new shell tissue. However, it is a mystery how living organisms can regulate the transition of the precursor phases precisely. We reveal that the shell mineralization from the magnesium stabilized precursors is associated with the presence of Asp-rich proteins. It is suggested that a cooperative effect of magnesium and Asp-rich compound can result into a crystallization switch in biomineralization. Our in vitro experiments confirm that magnesium increases the lifetime of amorphous calcium carbonate and calcium phosphate in solution so that the crystallization can be temporarily switched off. Although Asp monomer alone inhibits the crystallization of pure amorphous calcium minerals, it actually reduces the stability of the magnesium-stabilized precursors to switch on the transformation from the amorphous to crystallized phases. These modification effects on crystallization kinetics can be understood by an Asp-enhanced magnesium desolvation model. The interesting magnesium-Asp-based switch is a biologically inspired lesson from nature, which can be developed into an advanced strategy to control material fabrications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manivannan, Anbarasu, E-mail: anbarasu@iiti.ac.in, E-mail: ranjith@iith.ac.in; Sahu, Smriti; Myana, Santosh Kumar
2014-12-15
Minimizing the dimensions of the electrode could directly impact the energy-efficient threshold switching and programming characteristics of phase change memory devices. A ∼12–15 nm AFM probe-tip was employed as one of the electrodes for a systematic study of threshold switching of as-deposited amorphous GeTe{sub 6} thin films. This configuration enables low power threshold switching with an extremely low steady state current in the on state of 6–8 nA. Analysis of over 48 different probe locations on the sample reveals a stable Ovonic threshold switching behavior at threshold voltage, V{sub TH} of 2.4 ± 0.5 V and the off state was retained below a holding voltage,more » V{sub H} of 0.6 ± 0.1 V. All these probe locations exhibit repeatable on-off transitions for more than 175 pulses at each location. Furthermore, by utilizing longer biasing voltages while scanning, a plausible nano-scale control over the phase change behavior from as-deposited amorphous to crystalline phase was studied.« less
In-plane only retardation switching by certain type of smectic liquid crystal panels
NASA Astrophysics Data System (ADS)
Mochizuki, Akihiro
2018-02-01
A certain type of smectic C phase liquid crystal material panel shows in-plane only retardation switching during its electric field applied driving. This paper explains some chronological approach how such an interesting phenomenon was found and how the in-plane only retardation switching was verified.
Phase detector for three-phase power factor controller
NASA Technical Reports Server (NTRS)
Nola, F. J. (Inventor)
1984-01-01
A phase detector for the three phase power factor controller (PFC) is described. The phase detector for each phase includes an operational amplifier which senses the current phase angle for that phase by sensing the voltage across the phase thyristor. Common mode rejection is achieved by providing positive feedback between the input and output of the voltage sensing operational amplifier. this feedback preferably comprises a resistor connected between the output and input of the operational amplifier. The novelty of the invention resides in providing positive feedback such that switching of the operational amplifier is synchronized with switching of the voltage across the thyristor. The invention provides a solution to problems associated with high common mode voltage and enables use of lower cost components than would be required by other approaches.
Phase transition in nonuniform Josephson arrays: Monte Carlo simulations
NASA Astrophysics Data System (ADS)
Lozovik, Yu. E.; Pomirchy, L. M.
1994-01-01
Disordered 2D system with Josephson interactions is considered. Disordered XY-model describes the granular films, Josephson arrays etc. Two types of disorder are analyzed: (1) randomly diluted system: Josephson coupling constants J ij are equal to J with probability p or zero (bond percolation problem); (2) coupling constants J ij are positive and distributed randomly and uniformly in some interval either including the vicinity of zero or apart from it. These systems are simulated by Monte Carlo method. Behaviour of potential energy, specific heat, phase correlation function and helicity modulus are analyzed. The phase diagram of the diluted system in T c-p plane is obtained.
Cluster-Expansion Model for Complex Quinary Alloys: Application to Alnico Permanent Magnets
NASA Astrophysics Data System (ADS)
Nguyen, Manh Cuong; Zhou, Lin; Tang, Wei; Kramer, Matthew J.; Anderson, Iver E.; Wang, Cai-Zhuang; Ho, Kai-Ming
2017-11-01
An accurate and transferable cluster-expansion model for complex quinary alloys is developed. Lattice Monte Carlo simulation enabled by this cluster-expansion model is used to investigate temperature-dependent atomic structure of alnico alloys, which are considered as promising high-performance non-rare-earth permanent-magnet materials for high-temperature applications. The results of the Monte Carlo simulations are consistent with available experimental data and provide useful insights into phase decomposition, selection, and chemical ordering in alnico. The simulations also reveal a previously unrecognized D 03 alloy phase. This phase is very rich in Ni and exhibits very weak magnetization. Manipulating the size and location of this phase provides a possible route to improve the magnetic properties of alnico, especially coercivity.
Oya, Masayuki; Kishikawa, Hiroki; Goto, Nobuo; Yanagiya, Shin-ichiro
2012-11-19
At routing nodes in future photonic networks, pico-second switching will be a key function. We propose an all-optical switch consisting of two-stage Mach-Zehnder interferometers, whose arms contain graphene saturable absorption films. Optical amplitudes along the interferometers are controlled to perform switching between two output ports instead of phase control used in conventional switches. Since only absorption is used for realizing complete switching, insertion loss of 10.2 dB is accompanied in switching. Picosecond response can be expected because of the fast response of saturable absorption of graphene. The switching characteristics are theoretically analyzed and numerically simulated by the finite-difference beam propagation method (FD-BPM).
Fuzzy Logic Controlled Solar Module for Driving Three- Phase Induction Motor
NASA Astrophysics Data System (ADS)
Afiqah Zainal, Nurul; Sooi Tat, Chan; Ajisman
2016-02-01
Renewable energy produced by solar module gives advantages for generated three- phase induction motor in remote area. But, solar module's ou tput is uncertain and complex. Fuzzy logic controller is one of controllers that can handle non-linear system and maximum power of solar module. Fuzzy logic controller used for Maximum Power Point Tracking (MPPT) technique to control Pulse-Width Modulation (PWM) for switching power electronics circuit. DC-DC boost converter used to boost up photovoltaic voltage to desired output and supply voltage source inverter which controlled by three-phase PWM generated by microcontroller. IGBT switched Voltage source inverter (VSI) produced alternating current (AC) voltage from direct current (DC) source to control speed of three-phase induction motor from boost converter output. Results showed that, the output power of solar module is optimized and controlled by using fuzzy logic controller. Besides that, the three-phase induction motor can be drive and control using VSI switching by the PWM signal generated by the fuzzy logic controller. This concluded that the non-linear system can be controlled and used in driving three-phase induction motor.
Simulation model for a seven-phase BLDCM drive system
NASA Astrophysics Data System (ADS)
Park, Sang-Hoon; Lee, Won-Cheol; Lee, Jung-Hyo; Yu, Jae-Sung; Kim, Gyu-Sik; Won, Chung-Yuen
2007-12-01
BLDC motors have many advantages over brushed DC motors and induction motors. So, BLDC motors extend their application to many industrial fields. In this paper, the digital simulation and modeling of a 7-phase brushless DC motor have been presented. The 14-switch inverter and a 7-phase brushless DC motor drive system are simulated using hysteresis current controller and logic of switching pattern with the Boolean¡s function. Through some simulations, we found that our modeling and analysis of a 7-phase BLDCM with PWM inverter would be helpful for the further studies of the multi-phase BLDCM drive systems.
ALMA long baseline phase calibration using phase referencing
NASA Astrophysics Data System (ADS)
Asaki, Yoshiharu; Matsushita, Satoki; Fomalont, Edward B.; Corder, Stuartt A.; Nyman, Lars-Åke; Dent, William R. F.; Philips, Neil M.; Hirota, Akihiko; Takahashi, Satoko; Vila-Vilaro, Baltasar; Nikolic, Bojan; Hunter, Todd R.; Remijan, Anthony; Vlahakis, Catherine
2016-08-01
The Atacama Large Millimeter/submillimeter Array (ALMA) is the world's largest millimeter/submillimeter telescope and provides unprecedented sensitivities and spatial resolutions. To achieve the highest imaging capabilities, interferometric phase calibration for the long baselines is one of the most important subjects: The longer the baselines, the worse the phase stability becomes because of turbulent motions of the Earth's atmosphere, especially, the water vapor in the troposphere. To overcome this subject, ALMA adopts a phase correction scheme using a Water Vapor Radiometer (WVR) to estimate the amount of water vapor content along the antenna line of sight. An additional technique is phase referencing, in which a science target and a nearby calibrator are observed by turn by quickly changing the antenna pointing. We conducted feasibility studies of the hybrid technique with the WVR phase correction and the antenna Fast Switching (FS) phase referencing (WVR+FS phase correction) for the ALMA 16 km longest baselines in cases that (1) the same observing frequency both for a target and calibrator is used, and (2) higher and lower frequencies for a target and calibrator, respectively, with a typical switching cycle time of 20 s. It was found that the phase correction performance of the hybrid technique is promising where a nearby calibrator is located within roughly 3◦ from a science target, and that the phase correction with 20 s switching cycle time significantly improves the performance with the above separation angle criterion comparing to the 120 s switching cycle time. The currently trial phase calibration method shows the same performance independent of the observing frequencies. This result is especially important for the higher frequency observations because it becomes difficult to find a bright calibrator close to an arbitrary sky position. In the series of our experiments, it is also found that phase errors affecting the image quality come from not only the water vapor content in the lower troposphere but also a large structure of the atmosphere with a typical cell scale of a few tens of kilometers.
Method of bistable optical information storage using antiferroelectric phase PLZT ceramics
Land, Cecil E.
1990-01-01
A method for bistable storage of binary optical information includes an antiferroelectric (AFE) lead lanthanum zirconate titanate (PLZT) layer having a stable antiferroelectric first phase and a ferroelectric (FE) second phase obtained by applying a switching electric field across the surface of the device. Optical information is stored by illuminating selected portions of the layer to photoactivate an FE to AFE transition in those portions. Erasure of the stored information is obtained by reapplying the switching field.
Method of bistable optical information storage using antiferroelectric phase PLZT ceramics
Land, C.E.
1990-07-31
A method for bistable storage of binary optical information includes an antiferroelectric (AFE) lead lanthanum zirconate titanate (PLZT) layer having a stable antiferroelectric first phase and a ferroelectric (FE) second phase obtained by applying a switching electric field across the surface of the device. Optical information is stored by illuminating selected portions of the layer to photoactivate an FE to AFE transition in those portions. Erasure of the stored information is obtained by reapplying the switching field. 8 figs.
Lai, Jih-Sheng; Young, Sr., Robert W.; Chen, Daoshen; Scudiere, Matthew B.; Ott, Jr., George W.; White, Clifford P.; McKeever, John W.
1997-01-01
A resonant, snubber-based, soft switching, inverter circuit achieves lossless switching during dc-to-ac power conversion and power conditioning with minimum component count and size. Current is supplied to the resonant snubber branches solely by the main inverter switches. Component count and size are reduced by use of a single semiconductor switch in the resonant snubber branches. Component count is also reduced by maximizing the use of stray capacitances of the main switches as parallel resonant capacitors. Resonance charging and discharging of the parallel capacitances allows lossless, zero voltage switching. In one embodiment, circuit component size and count are minimized while achieving lossless, zero voltage switching within a three-phase inverter.
Lai, J.S.; Young, R.W. Sr.; Chen, D.; Scudiere, M.B.; Ott, G.W. Jr.; White, C.P.; McKeever, J.W.
1997-06-24
A resonant, snubber-based, soft switching, inverter circuit achieves lossless switching during dc-to-ac power conversion and power conditioning with minimum component count and size. Current is supplied to the resonant snubber branches solely by the main inverter switches. Component count and size are reduced by use of a single semiconductor switch in the resonant snubber branches. Component count is also reduced by maximizing the use of stray capacitances of the main switches as parallel resonant capacitors. Resonance charging and discharging of the parallel capacitances allows lossless, zero voltage switching. In one embodiment, circuit component size and count are minimized while achieving lossless, zero voltage switching within a three-phase inverter. 14 figs.
Switching dynamics of doped CoFeB trilayers and a comparison to the quasistatic approximation
NASA Astrophysics Data System (ADS)
Forrester, Michael; Kusmartsev, Feodor; Kovács, Endre
2013-05-01
The investigation of the switching times of the magnetization reversal of two interacting CoFeB nanomagnets, with dimensions small enough to maintain a single-domain structure, has been carried out. A quasistatic approximation is shown to give valid results and to compare well to the damped dynamical solutions of the Landau-Lifshitz-Gilbert equations. The characteristics of the switching are shown in the associated hysteresis loops and we build a complete phase diagram of the various parallel, antiparallel, and scissoring states of the magnetization in terms of the coupling energy between the nanomagnets, magnetic anisotropy, and the interaction with an applied magnetic field. The phase diagram summarizes the different kinds of hysteresis associated with the magnetization reversal phenomena. The switching fields and times are estimated and the vulnerabilities of the magnetic phases to thermally induced magnetic field variations are examined. The stability of the phases is a fine balance between intrinsic and extrinsic magnetism and we examine its precarious nature. Our work identifies the structures that have the most robust magnetization states and hence a design ethic for creating nanomagnetic heterostructures with outstanding magnetoresistance properties based upon the two magnetic elements.
Pulse width modulation inverter with battery charger
Slicker, James M.
1985-01-01
An inverter is connected between a source of DC power and a three-phase AC induction motor, and a microprocessor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .theta., where .theta. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands for electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a "flyback" DC-DC converter circuit for recharging the battery.
Pulse width modulation inverter with battery charger
NASA Technical Reports Server (NTRS)
Slicker, James M. (Inventor)
1985-01-01
An inverter is connected between a source of DC power and a three-phase AC induction motor, and a microprocessor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .theta., where .theta. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands for electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a flyback DC-DC converter circuit for recharging the battery.
Continuous Easy-Plane Deconfined Phase Transition on the Kagome Lattice
NASA Astrophysics Data System (ADS)
Zhang, Xue-Feng; He, Yin-Chen; Eggert, Sebastian; Moessner, Roderich; Pollmann, Frank
2018-03-01
We use large scale quantum Monte Carlo simulations to study an extended Hubbard model of hard core bosons on the kagome lattice. In the limit of strong nearest-neighbor interactions at 1 /3 filling, the interplay between frustration and quantum fluctuations leads to a valence bond solid ground state. The system undergoes a quantum phase transition to a superfluid phase as the interaction strength is decreased. It is still under debate whether the transition is weakly first order or represents an unconventional continuous phase transition. We present a theory in terms of an easy plane noncompact C P1 gauge theory describing the phase transition at 1 /3 filling. Utilizing large scale quantum Monte Carlo simulations with parallel tempering in the canonical ensemble up to 15552 spins, we provide evidence that the phase transition is continuous at exactly 1 /3 filling. A careful finite size scaling analysis reveals an unconventional scaling behavior hinting at deconfined quantum criticality.
Non-volatile resistive switching in the Mott insulator (V1-xCrx)2O3
NASA Astrophysics Data System (ADS)
Querré, M.; Tranchant, J.; Corraze, B.; Cordier, S.; Bouquet, V.; Députier, S.; Guilloux-Viry, M.; Besland, M.-P.; Janod, E.; Cario, L.
2018-05-01
The discovery of non-volatile resistive switching in Mott insulators related to an electric-field-induced insulator to metal transition (IMT) has paved the way for their use in a new type of non-volatile memories, the Mott memories. While most of the previous studies were dedicated to uncover the resistive switching mechanism and explore the memory potential of chalcogenide Mott insulators, we present here a comprehensive study of resistive switching in the canonical oxide Mott insulator (V1-xCrx)2O3. Our work demonstrates that this compound undergoes a non-volatile resistive switching under electric field. This resistive switching is induced by a Mott transition at the local scale which creates metallic domains closely related to existing phases of the temperature-pressure phase diagram of (V1-xCrx)2O3. Our work demonstrates also reversible resistive switching in (V1-xCrx)2O3 crystals and thin film devices. Preliminary performances obtained on 880 nm thick layers with 500 nm electrodes show the strong potential of Mott memories based on the Mott insulator (V1-xCrx)2O3.
A fault-tolerant strategy based on SMC for current-controlled converters
NASA Astrophysics Data System (ADS)
Azer, Peter M.; Marei, Mostafa I.; Sattar, Ahmed A.
2018-05-01
The sliding mode control (SMC) is used to control variable structure systems such as power electronics converters. This paper presents a fault-tolerant strategy based on the SMC for current-controlled AC-DC converters. The proposed SMC is based on three sliding surfaces for the three legs of the AC-DC converter. Two sliding surfaces are assigned to control the phase currents since the input three-phase currents are balanced. Hence, the third sliding surface is considered as an extra degree of freedom which is utilised to control the neutral voltage. This action is utilised to enhance the performance of the converter during open-switch faults. The proposed fault-tolerant strategy is based on allocating the sliding surface of the faulty leg to control the neutral voltage. Consequently, the current waveform is improved. The behaviour of the current-controlled converter during different types of open-switch faults is analysed. Double switch faults include three cases: two upper switch fault; upper and lower switch fault at different legs; and two switches of the same leg. The dynamic performance of the proposed system is evaluated during healthy and open-switch fault operations. Simulation results exhibit the various merits of the proposed SMC-based fault-tolerant strategy.
NASA Technical Reports Server (NTRS)
Nickel, Craig; Parker, Joel; Dichmann, Don; Lebois, Ryan; Lutz, Stephen
2016-01-01
The Transiting Exoplanet Survey Satellite (TESS) will be injected into a highly eccentric Earth orbit and fly 3.5 phasing loops followed by a lunar flyby to enter a mission orbit with lunar 2:1 resonance. Through the phasing loops and mission orbit, the trajectory is significantly affected by lunar and solar gravity. We have developed a trajectory design to achieve the mission orbit and meet mission constraints, including eclipse avoidance and a 30-year geostationary orbit avoidance requirement. A parallelized Monte Carlo simulation was performed to validate the trajectory after injecting common perturbations, including launch dispersions, orbit determination errors, and maneuver execution errors. The Monte Carlo analysis helped identify mission risks and is used in the trajectory selection process.
The 4 phase VSR motor: The ideal prime mover for electric vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holling, G.H.; Yeck, M.M.
1994-12-31
4 phase variable switched reluctance motors are gaining acceptance in many applications due to their fault tolerant characteristics. A 4 phase variable switched reluctance motor (VSR) is modelled and its performance is predicted for several operating points for an electric vehicle application. The 4 phase VSR offers fault tolerance, high performance, and an excellent torque to weight ratio. The actual system performance was measured both on a teststand and on an actual vehicle. While the system described is used in a production electric motorscooter, the technology is equally applicable for high efficiency electric cars and buses. 4 refs.
An ultra-fast optical shutter exploiting total light absorption in a phase change material
NASA Astrophysics Data System (ADS)
Jafari, Mohsen; Guo, L. Jay; Rais-Zadeh, Mina
2017-02-01
In this paper, we present an ultra-fast and high-contrast optical shutter with applications in atomic clock assemblies, integrated photonic systems, communication hardware, etc. The shutter design exploits the total light absorption phenomenon in a thin phase change (PC) material placed over a metal layer. The shutter switches between ON and OFF states by changing PC material phase and thus its refractive index. The PC material used in this work is Germanium Telluride (GeTe), a group IV-VI chalcogenide compound, which exhibits good optical contrast when switching from amorphous to crystalline state and vice versa. The stable phase changing behavior and reliability of GeTe and GeSbTe (GST) have been verified in optical memories and RF switches. Here, GeTe is used as it has a lower extinction coefficient in near-IR regions compared to GST. GeTe can be thermally transitioned between two phases by applying electrical pulses to an integrated heater. The memory behavior of GeTe results in zero static power consumption which is useful in applications requiring long time periods between switching activities. We previously demonstrated a meta-surface employing GeTe in sub-wavelength slits with >14 dB isolation at 1.5 μm by exciting the surface plasmon polariton and localized slit resonances. In this work, strong interference effects in a thin layer of GeTe over a gold mirror result in near total light absorption of up to 40 dB (21 dB measured) in the amorphous phase of the shutter at 780 nm with much less fabrication complexity. The optical loss at the shutter ON state is less than 1.5 dB. A nickel chrome (NiCr) heater provides the Joule heating energy required to achieve the crystallographic phase change. The measured switching speed is 2 μs.
Automatic thermal control switches. [for use in Space Shuttle borne Get Away Special container
NASA Technical Reports Server (NTRS)
Wing, L. D.
1982-01-01
Two automatic, flexible connection thermal control switches have been designed and tested in a thermal vacuum facility and in the Get Away Special (GAS) container flown on the third Shuttle flight. The switches are complementary in that one switch passes heat when the plate on which it is mounted exceeds some selected temperature and the other switch will pass heat only when the mounting plate temperature is below the selected value. Both switches are driven and controlled by phase-change capsule motors and require no other power source or thermal sensors.
An on/off Berry phase switch in circular graphene resonators
NASA Astrophysics Data System (ADS)
Ghahari, Fereshte; Walkup, Daniel; Gutiérrez, Christopher; Rodriguez-Nieva, Joaquin F.; Zhao, Yue; Wyrick, Jonathan; Natterer, Fabian D.; Cullen, William G.; Watanabe, Kenji; Taniguchi, Takashi; Levitov, Leonid S.; Zhitenev, Nikolai B.; Stroscio, Joseph A.
2017-05-01
The phase of a quantum state may not return to its original value after the system’s parameters cycle around a closed path; instead, the wave function may acquire a measurable phase difference called the Berry phase. Berry phases typically have been accessed through interference experiments. Here, we demonstrate an unusual Berry phase-induced spectroscopic feature: a sudden and large increase in the energy of angular-momentum states in circular graphene p-n junction resonators when a relatively small critical magnetic field is reached. This behavior results from turning on a π Berry phase associated with the topological properties of Dirac fermions in graphene. The Berry phase can be switched on and off with small magnetic field changes on the order of 10 millitesla, potentially enabling a variety of optoelectronic graphene device applications.
Realization of spin wave switch for data processing
NASA Astrophysics Data System (ADS)
Balinskiy, M.; Chiang, H.; Khitun, A.
2018-05-01
In this work, experimental data on a spin wave switch based on spin wave interference is reported. The switch is a three terminal device where spin wave propagation between the source and the drain is modulated by the control spin wave signal. The prototype is a micrometer scale device based on Y3Fe2(FeO4)3 film. The output characteristics show the oscillation of the output spin wave signal as a function of the phase difference between the source and the drain spin wave signals. The On/Off ratio of the prototype exceeds 20 dB at room temperature. The utilization of phase in addition to amplitude for information encoding offers an innovative route towards multi-state logic circuits. The advantages and shortcomings of spin wave switches are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azadi, Sam, E-mail: s.azadi@ucl.ac.uk; Cohen, R. E.; Department of Earth- and Environmental Sciences, Ludwig Maximilians Universität, Munich 80333
We studied the low-pressure (0–10 GPa) phase diagram of crystalline benzene using quantum Monte Carlo and density functional theory (DFT) methods. We performed diffusion quantum Monte Carlo (DMC) calculations to obtain accurate static phase diagrams as benchmarks for modern van der Waals density functionals. Using density functional perturbation theory, we computed the phonon contributions to the free energies. Our DFT enthalpy-pressure phase diagrams indicate that the Pbca and P2{sub 1}/c structures are the most stable phases within the studied pressure range. The DMC Gibbs free-energy calculations predict that the room temperature Pbca to P2{sub 1}/c phase transition occurs at 2.1(1)more » GPa. This prediction is consistent with available experimental results at room temperature. Our DMC calculations give 50.6 ± 0.5 kJ/mol for crystalline benzene lattice energy.« less
Iliou, Katerina; Malenović, Anđelija; Loukas, Yannis L; Dotsikas, Yannis
2018-02-05
A novel Liquid Chromatography-tandem mass spectrometry (LC-MS/MS) method is presented for the quantitative determination of two potential genotoxic impurities (PGIs) in rabeprazole active pharmaceutical ingredient (API). In order to overcome the analytical challenges in the trace analysis of PGIs, a development procedure supported by Quality-by-Design (QbD) principles was evaluated. The efficient separation between rabeprazole and the two PGIs in the shortest analysis time was set as the defined analytical target profile (ATP) and to this purpose utilization of a switching valve allowed the flow to be sent to waste when rabeprazole was eluted. The selected critical quality attributes (CQAs) were the separation criterion s between the critical peak pair and the capacity factor k of the last eluted compound. The effect of the following critical process parameters (CPPs) on the CQAs was studied: %ACN content, the pH and the concentration of the buffer salt in the mobile phase, as well as the stationary phase of the analytical column. D-Optimal design was implemented to set the plan of experiments with UV detector. In order to define the design space, Monte Carlo simulations with 5000 iterations were performed. Acceptance criteria were met for C 8 column (50×4mm, 5μm) , and the region having probability π≥95% to achieve satisfactory values of all defined CQAs was computed. The working point was selected with the mobile phase consisting of ACN, ammonium formate 11mM at a ratio 31/69v/v with pH=6,8 for the water phase. The LC protocol was transferred to LC-MS/MS and validated according to ICH guidelines. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sato, Tomoyuki; Uemura, Satoshi; Asakawa, Akira; Yokoyama, Shigeru; Honda, Hideki; Horikoshi, Kazuhiro
In this study, we experimentally examined the possibility of the internal short circuit of an air switch due to the sparkover between different poles under the condition that no surge arrester exists in neighboring poles and one of three surge arresters is omitted at the pole with an air switch. Experiments at Shiobara Testing Yard and Akagi Testing Center of CRIEPI clarified the following. Fault current may flow via the grounding point of a pole with an air switch and that of the next pole on a different phase from grounded phase of the pole with an air switch. If the low-voltage wire, overhead ground wire or communication wire forms a short circuit between them, ultimately the air switch may burn out. Moreover Fault current continues even if the length of the short-circuit between different poles is increased. Although the increase of the short-circuit length results in the increase of wire impedance, the amount of increase is still small compared with source impedance.
NASA Astrophysics Data System (ADS)
Devulder, Wouter; Opsomer, Karl; Franquet, Alexis; Meersschaut, Johan; Belmonte, Attilio; Muller, Robert; De Schutter, Bob; Van Elshocht, Sven; Jurczak, Malgorzata; Goux, Ludovic; Detavernier, Christophe
2014-02-01
In this paper, we investigate the influence of the carbon content on the Cu-Te phase formation and on the resistive switching behavior in carbon alloyed Cu0.6Te0.4 based conductive bridge random access memory (CBRAM) cells. Carbon alloying of copper-tellurium inhibits the crystallization, while attractive switching behavior is preserved when using the material as Cu-supply layer in CBRAM cells. The phase formation is first investigated in a combinatorial way. With increasing carbon content, an enlargement of the temperature window in which the material stays amorphous was observed. Moreover, if crystalline phases are formed, subsequent phase transformations are inhibited. The electrical switching behavior of memory cells with different carbon contents is then investigated by implementing them in 580 μm diameter dot TiN/Cu0.6Te0.4-C/Al2O3/Si memory cells. Reliable switching behavior is observed for carbon contents up to 40 at. %, with a resistive window of more than 2 orders of magnitude, whereas for 50 at. % carbon, a higher current in the off state and only a small resistive window are present after repeated cycling. This degradation can be ascribed to the higher thermal and lower drift contribution to the reset operation due to a lower Cu affinity towards the supply layer, leading cycle-after-cycle to an increasing amount of Cu in the switching layer, which contributes to the current. The thermal diffusion of Cu into Al2O3 under annealing also gives an indication of the Cu affinity of the source layer. Time of flight secondary ion mass spectroscopy was used to investigate this migration depth in Al2O3 before and after annealing, showing a higher Cu, Te, and C migration for high carbon contents.
Delta connected resonant snubber circuit
Lai, J.S.; Peng, F.Z.; Young, R.W. Sr.; Ott, G.W. Jr.
1998-01-20
A delta connected, resonant snubber-based, soft switching, inverter circuit achieves lossless switching during dc-to-ac power conversion and power conditioning with minimum component count and size. Current is supplied to the resonant snubber branches solely by the dc supply voltage through the main inverter switches and the auxiliary switches. Component count and size are reduced by use of a single semiconductor switch in the resonant snubber branches. Component count is also reduced by maximizing the use of stray capacitances of the main switches as parallel resonant capacitors. Resonance charging and discharging of the parallel capacitances allows lossless, zero voltage switching. In one embodiment, circuit component size and count are minimized while achieving lossless, zero voltage switching within a three-phase inverter. 36 figs.
Delta connected resonant snubber circuit
Lai, Jih-Sheng; Peng, Fang Zheng; Young, Sr., Robert W.; Ott, Jr., George W.
1998-01-01
A delta connected, resonant snubber-based, soft switching, inverter circuit achieves lossless switching during dc-to-ac power conversion and power conditioning with minimum component count and size. Current is supplied to the resonant snubber branches solely by the dc supply voltage through the main inverter switches and the auxiliary switches. Component count and size are reduced by use of a single semiconductor switch in the resonant snubber branches. Component count is also reduced by maximizing the use of stray capacitances of the main switches as parallel resonant capacitors. Resonance charging and discharging of the parallel capacitances allows lossless, zero voltage switching. In one embodiment, circuit component size and count are minimized while achieving lossless, zero voltage switching within a three-phase inverter.
Radio Frequency (RF) Micro-Electromechanical Systems (MEMS) Switches for Space Communications
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Ponchak, George E.; Scardelletti, Maximillian C.; Varaljay, Nicholas C.
2000-01-01
Micro-electromechanical systems (MEMS) is an emerging technology for radio frequency (RF) systems because it has the potential to dramatically decrease loss and improve efficiency. In this paper, we address the design and fabrication of novel MEMS switches being developed at NASA Glenn Research Center. Two types of switches are being developed: a microstrip series single pole single throw (SPST) switch and a coplanar waveguide (CPW) series SPST and single pole double throw (SPDT) switches. These are being fabricated as an integral part of 50 Ohm microstrip and CPW RF integrated circuits using microfabrication techniques. The construction of the switch relies on a cantilever beam that is partially supported by a dielectric post. The cantilever beam is electro-magnetically actuated. To decrease stiction, a Si3N4 thin film is deposited over the contact area. Thus, when the switch is closed, the ON-state insertion loss is governed by the parallel plate capacitance formed by the two contacts. The isolation in the OFF-state is governed by the parasitic capacitance when the cantilever is in the up position. RF MEMS switches have been demonstrated with 80% lower insertion loss than conventional solid state devices (GaAs Metal Semiconductor Field Effect Transistors (MESFETs) and Silicon PIN diodes) based switches. For example, a conventional GaAs five-bit phase shifter which is required for beam steering in a phased array antenna has approximately 7 dB of insertion loss at 26.5 GHz where as a comparable MEMS based phase shifter is expected to have only 2 dB of insertion loss. This translates into 56% lower power dissipation and therefore decreases the thermal load on the spacecraft and also reduces the power amplifier requirements. These benefits will enable NASA to build the next generation of deep space science crafts and micro/nano satellites.
Neural networks supporting switching, hypothesis testing, and rule application
Liu, Zhiya; Braunlich, Kurt; Wehe, Hillary S.; Seger, Carol A.
2015-01-01
We identified dynamic changes in recruitment of neural connectivity networks across three phases of a flexible rule learning and set-shifting task similar to the Wisconsin Card Sort Task: switching, rule learning via hypothesis testing, and rule application. During fMRI scanning, subjects viewed pairs of stimuli that differed across four dimensions (letter, color, size, screen location), chose one stimulus, and received feedback. Subjects were informed that the correct choice was determined by a simple unidimensional rule, for example “choose the blue letter.” Once each rule had been learned and correctly applied for 4-7 trials, subjects were cued via either negative feedback or visual cues to switch to learning a new rule. Task performance was divided into three phases: Switching (first trial after receiving the switch cue), hypothesis testing (subsequent trials through the last error trial), and rule application (correct responding after the rule was learned). We used both univariate analysis to characterize activity occurring within specific regions of the brain, and a multivariate method, constrained principal component analysis for fMRI (fMRI-CPCA), to investigate how distributed regions coordinate to subserve different processes. As hypothesized, switching was subserved by a limbic network including the ventral striatum, thalamus, and parahippocampal gyrus, in conjunction with cortical salience network regions including the anterior cingulate and frontoinsular cortex. Activity in the ventral striatum was associated with switching regardless of how switching was cued; visually cued shifts were associated with additional visual cortical activity. After switching, as subjects moved into the hypothesis testing phase, a broad fronto-parietal-striatal network (associated with the cognitive control, dorsal attention, and salience networks) increased in activity. This network was sensitive to rule learning speed, with greater extended activity for the slowest learning speed late in the time course of learning. As subjects shifted from hypothesis testing to rule application, activity in this network decreased and activity in the somatomotor and default mode networks increased. PMID:26197092
Neural networks supporting switching, hypothesis testing, and rule application.
Liu, Zhiya; Braunlich, Kurt; Wehe, Hillary S; Seger, Carol A
2015-10-01
We identified dynamic changes in recruitment of neural connectivity networks across three phases of a flexible rule learning and set-shifting task similar to the Wisconsin Card Sort Task: switching, rule learning via hypothesis testing, and rule application. During fMRI scanning, subjects viewed pairs of stimuli that differed across four dimensions (letter, color, size, screen location), chose one stimulus, and received feedback. Subjects were informed that the correct choice was determined by a simple unidimensional rule, for example "choose the blue letter". Once each rule had been learned and correctly applied for 4-7 trials, subjects were cued via either negative feedback or visual cues to switch to learning a new rule. Task performance was divided into three phases: Switching (first trial after receiving the switch cue), hypothesis testing (subsequent trials through the last error trial), and rule application (correct responding after the rule was learned). We used both univariate analysis to characterize activity occurring within specific regions of the brain, and a multivariate method, constrained principal component analysis for fMRI (fMRI-CPCA), to investigate how distributed regions coordinate to subserve different processes. As hypothesized, switching was subserved by a limbic network including the ventral striatum, thalamus, and parahippocampal gyrus, in conjunction with cortical salience network regions including the anterior cingulate and frontoinsular cortex. Activity in the ventral striatum was associated with switching regardless of how switching was cued; visually cued shifts were associated with additional visual cortical activity. After switching, as subjects moved into the hypothesis testing phase, a broad fronto-parietal-striatal network (associated with the cognitive control, dorsal attention, and salience networks) increased in activity. This network was sensitive to rule learning speed, with greater extended activity for the slowest learning speed late in the time course of learning. As subjects shifted from hypothesis testing to rule application, activity in this network decreased and activity in the somatomotor and default mode networks increased. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ultrafast Silicon-based Modulators using Optical Switching of Vanadium Dioxide
2014-12-04
demonstrated by using photothermal heating to induce the VO2 semiconductor-to- metal phase transition and modulate the transmitted optical signal...speeds. By utilizing the sub-picosecond semiconductor-to- metal transition (SMT) in VO2 as the active switching mechanism that enables direct... metallic phases. The steep slope, high contrast, and relatively narrow hysteresis exhibited by these reflectivity measurements indicate the high quality
Silicon waveguide optical switch with embedded phase change material.
Miller, Kevin J; Hallman, Kent A; Haglund, Richard F; Weiss, Sharon M
2017-10-30
Phase-change materials (PCMs) have emerged as promising active elements in silicon (Si) photonic systems. In this work, we design, fabricate, and characterize a hybrid Si-PCM optical switch. By integrating vanadium dioxide (a PCM) within a Si photonic waveguide, in a non-resonant geometry, we achieve ~10 dB broadband optical contrast with a PCM length of 500 nm using thermal actuation.
Patent Abstract Digest. Volume II.
1981-03-01
THE AIR FORCE SYSTEMS COMMAND United States Patent 191 [J 4,190,815 Albanese [45] Feb. 26, 1980 [541 HIGH POWER HYBRID SWITCH 3,659.227 4/1972...R.F. power are controlled and switched [22] Filed: Mar. 9, 1978 by means of a hybrid switching network that employs [511 nt. C. 2...broadband quadrature 3dB hybrid . Switching is accomplished by selectively inserting a [561 Referenees Cited 180 phase shift means into the lower power
Birk, Jeffrey L; Bonanno, George A
2016-08-01
Particular emotion regulation (ER) strategies are beneficial in certain contexts, but little is known about the adaptiveness of switching strategies after implementing an initial strategy. Research and theory on regulatory flexibility suggest that people switch strategies dynamically and that internal states provide feedback indicating when switches are appropriate. Frequent switching may predict positive outcomes among people who respond to this feedback. We investigated whether internal feedback (particularly corrugator activity, heart rate, or subjective negative intensity) guides people to switch to an optimal (i.e., distraction) but not nonoptimal (i.e., reappraisal) strategy for regulating strong emotion. We also tested whether switching frequency and responsiveness to internal feedback (RIF) together predict well-being. While attempting to regulate emotion elicited by unpleasant pictures, participants could switch to an optimal (Study 1; reappraisal-to-distraction order; N = 90) or nonoptimal (Study 2; distraction-to-reappraisal order; N = 95) strategy for high-arousal emotion. A RIF score for each emotion measure indexed the relative strength of emotion during the initial phase for trials on which participants later switched strategies. As hypothesized, negative intensity, corrugator activity, and the magnitude of heart rate deceleration during this early phase were higher on switch than maintain trials in Study 1 only. Critically, in Study 1 only, greater switching frequency predicted higher and lower life satisfaction for participants with high and low corrugator RIF, respectively, even after controlling for reappraisal success. Individual differences in RIF may contribute to subjective well-being provided that the direction of strategy switching aligns well with regulatory preferences for high emotion. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Nonlinear Magnetic Dynamics and The Switching Phase Diagrams in Spintronic Devices
NASA Astrophysics Data System (ADS)
Yan, Shu
Spin-transfer torque induced magnetic switching, by which the spin-polarized current transfers its magnetic moment to the ferromagnetic layer and changes its magnetization, holds great promise towards faster and smaller magnetic bits in data-storage applications due to the lower power consumption and better scalability. We propose an analytic approach which can be used to calculate the switching phase diagram of a nanomagnetic system in the presence of both magnetic field and spin-transfer torque in an exact fashion. This method is applied to the study of switching conditions for the uniaxial, single domain magnetic layers in different spin-transfer devices. In a spin valve with spin polarization collinear with the easy axis, we get a modified Stoner-Wohlfarth astroid which represents many of the features that have been found in experiment. It also shows a self-crossing boundary and demonstrates a region with three stable equilibria. We demonstrate that the region of stable equilibria with energy near the maximum can be reached only through a narrow bottleneck in the field space, which sets a stringent requirement for magnetic field alignment in the experiments. Switching diagrams are then calculated for the setups with magnetic field not perfectly aligned with the easy axis. In a ferromagnet-heavy-metal bilayer device with strong spin Hall effect, the in plane current becomes spin-polarized and transfers its magnetic moment to the ferromagnetic layer by diffusion. The three-dimensional asymmetric phase diagram is calculated. In the case that the external field is confined in the vertical plane defined by the direction of the current and the easy axis, the spin-transfer torque shifts the conventional in-plane (IP) equilibria within the same plane, and also creates two out-of-plane (OOP) equilibria, one of which can be stable. The threshold switching currents for IP switching and OOP switching are discussed. We also address the magnetic switching processes. Damping switching and precessional switching are two different switching types that are typically considered in recent studies. In the damping mode the switching is slow and heavily depends on the initial deviation, while in the precessional mode the accurate manipulation of the field or current pulse is required. We propose a switching scenario for a fast and reliable switching by taking advantage of the out-of-plane stable equilibrium in the SHE induced magnetic switching. The magnetization is first driven by a pulse of field and current towards the OOP equilibrium without precession. Since it is in the lower half of the unit sphere, no backwards pulse is required for a complete switching. This indicates a potentially feasible method of reliable ultra-fast magnetic control.
NASA Astrophysics Data System (ADS)
Cohen, R. E.; Driver, K.; Wu, Z.; Militzer, B.; Rios, P. L.; Towler, M.; Needs, R.
2009-03-01
We have used diffusion quantum Monte Carlo (DMC) with the CASINO code with thermal free energies from phonons computed using density functional perturbation theory (DFPT) with the ABINIT code to obtain phase transition curves and thermal equations of state of silica phases under pressure. We obtain excellent agreement with experiments for the metastable phase transition from quartz to stishovite. The local density approximation (LDA) incorrectly gives stishovite as the ground state. The generalized gradient approximation (GGA) correctly gives quartz as the ground state, but does worse than LDA for the equations of state. DMC, variational quantum Monte Carlo (VMC), and DFT all give good results for the ferroelastic transition of stishovite to the CaCl2 structure, and LDA or the WC exchange correlation potentials give good results within a given silica phase. The δV and δH from the CaCl2 structure to α-PbO2 is small, giving uncertainly in the theoretical transition pressure. It is interesting that DFT has trouble with silica transitions, although the electronic structures of silica are insulating, simple closed-shell with ionic/covalent bonding. It seems like the errors in DFT are from not precisely giving the ion sizes.
SLURM: Simple Linux Utility for Resource Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jette, M; Dunlap, C; Garlick, J
2002-04-24
Simple Linux Utility for Resource Management (SLURM) is an open source, fault-tolerant, and highly scalable cluster management and job scheduling system for Linux clusters of thousands of nodes. Components include machine status, partition management, job management, and scheduling modules. The design also includes a scalable, general-purpose communication infrastructure. Development will take place in four phases: Phase I results in a solid infrastructure; Phase II produces a functional but limited interactive job initiation capability without use of the interconnect/switch; Phase III provides switch support and documentation; Phase IV provides job status, fault-tolerance, and job queuing and control through Livermore's Distributed Productionmore » Control System (DPCS), a meta-batch and resource management system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, J; Pelletier, C; Lee, C
Purpose: Organ doses for the Hodgkin’s lymphoma patients treated with cobalt-60 radiation were estimated using an anthropomorphic model and Monte Carlo modeling. Methods: A cobalt-60 treatment unit modeled in the BEAMnrc Monte Carlo code was used to produce phase space data. The Monte Carlo simulation was verified with percent depth dose measurement in water at various field sizes. Radiation transport through the lung blocks were modeled by adjusting the weights of phase space data. We imported a precontoured adult female hybrid model and generated a treatment plan. The adjusted phase space data and the human model were imported to themore » XVMC Monte Carlo code for dose calculation. The organ mean doses were estimated and dose volume histograms were plotted. Results: The percent depth dose agreement between measurement and calculation in water phantom was within 2% for all field sizes. The mean organ doses of heart, left breast, right breast, and spleen for the selected case were 44.3, 24.1, 14.6 and 3.4 Gy, respectively with the midline prescription dose of 40.0 Gy. Conclusion: Organ doses were estimated for the patient group whose threedimensional images are not available. This development may open the door to more accurate dose reconstruction and estimates of uncertainties in secondary cancer risk for Hodgkin’s lymphoma patients. This work was partially supported by the intramural research program of the National Institutes of Health, National Cancer Institute, Division of Cancer Epidemiology and Genetics.« less
A Monte Carlo simulation study of associated liquid crystals
NASA Astrophysics Data System (ADS)
Berardi, R.; Fehervari, M.; Zannoni, C.
We have performed a Monte Carlo simulation study of a system of ellipsoidal particles with donor-acceptor sites modelling complementary hydrogen-bonding groups in real molecules. We have considered elongated Gay-Berne particles with terminal interaction sites allowing particles to associate and form dimers. The changes in the phase transitions and in the molecular organization and the interplay between orientational ordering and dimer formation are discussed. Particle flip and dimer moves have been used to increase the convergency rate of the Monte Carlo (MC) Markov chain.
Low threshold all-optical crossbar switch on GaAs-GaAlAs channel waveguide arrays
NASA Astrophysics Data System (ADS)
Jannson, Tomasz; Kostrzewski, Andrew
1994-09-01
During the Phase 2 project entitled 'Low Threshold All-Optical Crossbar Switch on GaAs - GaAlAs Channel Waveguide Array,' Physical Optics Corporation (POC) developed the basic principles for the fabrication of all-optical crossbar switches. Based on this development. POC fabricated a 2 x 2 GaAs/GaAlAs switch that changes the direction of incident light with minimum insertion loss and nonlinear distortion. This unique technology can be used in both analog and digital networks. The applications of this technology are widespread. Because the all-optical network does not have any speed limitations (RC time constant), POC's approach will be beneficial to SONET networks, phased array radar networks, very high speed oscilloscopes, all-optical networks, IR countermeasure systems, BER equipment, and the fast growing video conferencing network market. The novel all-optical crossbar switch developed in this program will solve interconnect problems. and will be a key component in the widely proposed all-optical 200 Gb/s SONET/ATM networks.
Variability of multilevel switching in scaled hybrid RS/CMOS nanoelectronic circuits: theory
NASA Astrophysics Data System (ADS)
Heittmann, Arne; Noll, Tobias G.
2013-07-01
A theory is presented which describes the variability of multilevel switching in scaled hybrid resistive-switching/CMOS nanoelectronic circuits. Variability is quantified in terms of conductance variation using the first two moments derived from the probability density function (PDF) of the RS conductance. For RS, which are based on the electrochemical metallization effect (ECM), this variability is - to some extent - caused by discrete events such as electrochemical reactions, which occur on atomic scale and are at random. The theory shows that the conductance variation depends on the joint interaction between the programming circuit and the resistive switch (RS), and explicitly quantifies the impact of RS device parameters and parameters of the programming circuit on the conductance variance. Using a current mirror as an exemplary programming circuit an upper limit of 2-4 bits (dependent on the filament surface area) is estimated as the storage capacity exploiting the multilevel capabilities of an ECM cell. The theoretical results were verified by Monte Carlo circuit simulations on a standard circuit simulation environment using an ECM device model which models the filament growth by a Poisson process. Contribution to the Topical Issue “International Semiconductor Conference Dresden-Grenoble - ISCDG 2012”, Edited by Gérard Ghibaudo, Francis Balestra and Simon Deleonibus.
Hendrickson, Joshua; Soref, Richard; Sweet, Julian; Majumdar, Arka
2015-01-12
New device designs are proposed and theoretical simulations are performed on electro-optical routing switches in which light beams enter and exit the device either from free space or from lensed fibers. The active medium is a ~100 nm layer of phase change material (Ge(2)Sb(2)Te(5) or GeTe) that is electrically "triggered" to change its phase, giving "self-holding" behavior in each of two phases. Electrical current is supplied to that film by a pair of transparent highly doped conducting Ge prisms on both sides of the layer. For S-polarized light incident at ~80° on the film, a three-layer Fabry-Perot analysis, including dielectric loss, predicts good 1 x 2 and 2 x 2 switch performance at infrared wavelengths of 1.55, 2.1 and 3.0 μm, although the performance at 1.55 μm is degraded by material loss and prism mismatch. Proposals for in-plane and volumetric 1 x 4 and 4 x 4 switches are also presented. An unpolarized 1 x 2 switch projects good performance at mid infrared.
Gene regulatory networks: a coarse-grained, equation-free approach to multiscale computation.
Erban, Radek; Kevrekidis, Ioannis G; Adalsteinsson, David; Elston, Timothy C
2006-02-28
We present computer-assisted methods for analyzing stochastic models of gene regulatory networks. The main idea that underlies this equation-free analysis is the design and execution of appropriately initialized short bursts of stochastic simulations; the results of these are processed to estimate coarse-grained quantities of interest, such as mesoscopic transport coefficients. In particular, using a simple model of a genetic toggle switch, we illustrate the computation of an effective free energy Phi and of a state-dependent effective diffusion coefficient D that characterize an unavailable effective Fokker-Planck equation. Additionally we illustrate the linking of equation-free techniques with continuation methods for performing a form of stochastic "bifurcation analysis"; estimation of mean switching times in the case of a bistable switch is also implemented in this equation-free context. The accuracy of our methods is tested by direct comparison with long-time stochastic simulations. This type of equation-free analysis appears to be a promising approach to computing features of the long-time, coarse-grained behavior of certain classes of complex stochastic models of gene regulatory networks, circumventing the need for long Monte Carlo simulations.
Population Switching and Charge Sensing in Quantum Dots: A Case for a Quantum Phase Transition
NASA Astrophysics Data System (ADS)
Goldstein, Moshe; Berkovits, Richard; Gefen, Yuval
2010-06-01
A broad and a narrow level of a quantum dot connected to two external leads may swap their respective occupancies as a function of an external gate voltage. By mapping this problem onto a multiflavored Coulomb gas we show that such population switching is not abrupt. However, trying to measure it by adding a third electrostatically coupled lead may render this switching an abrupt first order quantum phase transition. This is related to the interplay of the Mahan mechanism versus the Anderson orthogonality catastrophe, in similitude to the Fermi edge singularity. A concrete setup for experimental observation of this effect is also suggested.
Design of a high-power Nd:YAG Q-switched laser cavity
NASA Astrophysics Data System (ADS)
Singh, Ikbal; Kumar, Avinash; Nijhawan, O. P.
1995-06-01
An electro-optically Q-switched Nd:YAG laser resonator that uses two end prisms placed orthogonally perpendicular to each other has been designed. This configuration improves the stability of the resonator and does not alter the characteristics of the electro-optical Q switch. The outcoupling ratio of the cavity is optimized by a change in the azimuthal angle of a phase-matched Porro prism placed at one end of the cavity. The prism placed at the other end of the cavity is designed so that it introduces a phase change of Pi , regardless of its orientation and index of refraction, resulting in a more efficient and stable cavity.
a Thermal Conduction Switch Based on Low Hysteresis Nitife Shape Memory Alloy Helical Springs
NASA Astrophysics Data System (ADS)
Krishnan, V. B.; Bewerse, C.; Notardonato, W. U.; Vaidyanathan, R.
2008-03-01
Shape memory alloy (SMA) actuators possess an inherent property of sensing a change in temperature and delivering significant force against external loads through a shape change resulting from a temperature-induced phase transformation. The utilization of a reversible trigonal (R-phase) to cubic phase transformation in NiTiFe SMAs allows for this strain recovery to occur with reduced hysteresis between the forward and reverse transformations. However, the magnitude of the strain recovery associated with the R-phase transformation is lower than that of the monoclinic to cubic phase transformation. The use of helical springs can compensate for this design constraint as they produce significant stroke when compared to straight elements such as thin strips and wires. This work reports on the development and implementation of NiTiFe helical springs in a low-hysteresis thermal conduction switch for advanced spaceport applications associated with NASA's requirements for future lunar and Mars missions. Such a low-hysteresis thermal conduction switch can provide on-demand heat transfer between two reservoirs at different temperatures.
Cluster expansion modeling and Monte Carlo simulation of alnico 5–7 permanent magnets
Nguyen, Manh Cuong; Zhao, Xin; Wang, Cai -Zhuang; ...
2015-03-05
The concerns about the supply and resource of rare earth (RE) metals have generated a lot of interests in searching for high performance RE-free permanent magnets. Alnico alloys are traditional non-RE permanent magnets and have received much attention recently due their good performance at high temperature. In this paper, we develop an accurate and efficient cluster expansion energy model for alnico 5–7. Monte Carlo simulations using the cluster expansion method are performed to investigate the structure of alnico 5–7 at atomistic and nano scales. The alnico 5–7 master alloy is found to decompose into FeCo-rich and NiAl-rich phases at lowmore » temperature. The boundary between these two phases is quite sharp (~2 nm) for a wide range of temperature. The compositions of the main constituents in these two phases become higher when the temperature gets lower. Both FeCo-rich and NiAl-rich phases are in B2 ordering with Fe and Al on α-site and Ni and Co on β-site. The degree of order of the NiAl-rich phase is much higher than that of the FeCo-rich phase. In addition, a small magnetic moment is also observed in NiAl-rich phase but the moment reduces as the temperature is lowered, implying that the magnetic properties of alnico 5–7 could be improved by lowering annealing temperature to diminish the magnetism in NiAl-rich phase. Furthermore, the results from our Monte Carlo simulations are consistent with available experimental results.« less
Cluster expansion modeling and Monte Carlo simulation of alnico 5-7 permanent magnets
NASA Astrophysics Data System (ADS)
Nguyen, Manh Cuong; Zhao, Xin; Wang, Cai-Zhuang; Ho, Kai-Ming
2015-03-01
The concerns about the supply and resource of rare earth (RE) metals have generated a lot of interests in searching for high performance RE-free permanent magnets. Alnico alloys are traditional non-RE permanent magnets and have received much attention recently due their good performance at high temperature. In this paper, we develop an accurate and efficient cluster expansion energy model for alnico 5-7. Monte Carlo simulations using the cluster expansion method are performed to investigate the structure of alnico 5-7 at atomistic and nano scales. The alnico 5-7 master alloy is found to decompose into FeCo-rich and NiAl-rich phases at low temperature. The boundary between these two phases is quite sharp (˜2 nm) for a wide range of temperature. The compositions of the main constituents in these two phases become higher when the temperature gets lower. Both FeCo-rich and NiAl-rich phases are in B2 ordering with Fe and Al on α-site and Ni and Co on β-site. The degree of order of the NiAl-rich phase is much higher than that of the FeCo-rich phase. A small magnetic moment is also observed in NiAl-rich phase but the moment reduces as the temperature is lowered, implying that the magnetic properties of alnico 5-7 could be improved by lowering annealing temperature to diminish the magnetism in NiAl-rich phase. The results from our Monte Carlo simulations are consistent with available experimental results.
High power ferrite microwave switch
NASA Technical Reports Server (NTRS)
Bardash, I.; Roschak, N. K.
1975-01-01
A high power ferrite microwave switch was developed along with associated electronic driver circuits for operation in a spaceborne high power microwave transmitter in geostationary orbit. Three units were built and tested in a space environment to demonstrate conformance to the required performance characteristics. Each unit consisted of an input magic-tee hybrid, two non-reciprocal latching ferrite phase shifters, an out short-slot 3 db quadrature coupler, a dual driver electronic circuit, and input logic interface circuitry. The basic mode of operation of the high power ferrite microwave switch is identical to that of a four-port, differential phase shift, switchable circulator. By appropriately designing the phase shifters and electronic driver circuits to operate in the flux-transfer magnetization mode, power and temperature insensitive operation was achieved. A list of the realized characteristics of the developed units is given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mafi, Elham; Tao, Xin; Zhu, Wenguang
2016-07-08
Using single crystalline In2Se3 nanowires as a platform, we have studied the RESET switching (from low to high electrical resistance) in this phase-change material under electric pulses. Particularly, we correlated the atomic-scale structural evolutions with local electrical resistance variations, by performing transmission electron microscopy and scanning Kelvin probe microscopy on the same nanowires. By coupling the experimental results with density functional theory calculations, we show that the immobile dislocations generated via vacancy condensations are responsible for the RESET switching and that the material maintains the single crystallinity during the process. This new mechanism is fundamentally different from the crystalline-amorphous transition,more » which is commonly understood as the underlying process for the RESET switching in similar phase-change materials.« less
Electrical Characterization of Critical Phase Change Conditions in Nanoscale Ge2Sb2Te5 Pillars
NASA Astrophysics Data System (ADS)
Ozatay, Ozhan; Stipe, Barry; Katine, Jordan; Terris, Bruce
2008-03-01
Following the original work of Ovshinsky on disordered semiconductors that exhibit ovonic threshold switching (OTS) there has been substantial interest in the electronic reversible switching properties of chalcogenides^1. The current induced phase transitions between polycrystalline and amorphous states in these materials offer orders of magnitude changes in the conductance which makes them an ideal candidate for non-volatile data storage applications. In this work we investigate the scaling of critical programming conditions required to observe such transitions between highly resistive (disordered) and highly conductive (ordered) states by constructing a resistance map with various pulse widths and amplitudes under different cooling conditions (as a function of pulse trailing edge). We study the evolution of critical phase change conditions as a function of contact size (50nm-1μm) and shape (circle-square-rectangle). We compare the resulting switching behaviour with the predictions of a finite-element model of the electro-thermal physics to analyze the nature of the switching dynamics at the nanoscale. ^1 S-H. Lee, Y. Jung, R. Agarwal, Nature Nanotechnology; doi:10:1038/nnano.2007.291
A variational method for analyzing limit cycle oscillations in stochastic hybrid systems
NASA Astrophysics Data System (ADS)
Bressloff, Paul C.; MacLaurin, James
2018-06-01
Many systems in biology can be modeled through ordinary differential equations, which are piece-wise continuous, and switch between different states according to a Markov jump process known as a stochastic hybrid system or piecewise deterministic Markov process (PDMP). In the fast switching limit, the dynamics converges to a deterministic ODE. In this paper, we develop a phase reduction method for stochastic hybrid systems that support a stable limit cycle in the deterministic limit. A classic example is the Morris-Lecar model of a neuron, where the switching Markov process is the number of open ion channels and the continuous process is the membrane voltage. We outline a variational principle for the phase reduction, yielding an exact analytic expression for the resulting phase dynamics. We demonstrate that this decomposition is accurate over timescales that are exponential in the switching rate ɛ-1 . That is, we show that for a constant C, the probability that the expected time to leave an O(a) neighborhood of the limit cycle is less than T scales as T exp (-C a /ɛ ) .
NASA Astrophysics Data System (ADS)
Xu, Cheng; Liu, Bo; Chen, Yi-Feng; Liang, Shuang; Song, Zhi-Tang; Feng, Song-Lin; Wan, Xu-Dong; Yang, Zuo-Ya; Xie, Joseph; Chen, Bomy
2008-05-01
A Ge2Sb2Te5 based phase change memory device cell integrated with metal-oxide semiconductor field effect transistor (MOSFET) is fabricated using standard 0. 18 μm complementary metal-oxide semiconductor process technology. It shows steady switching characteristics in the dc current-voltage measurement. The phase changing phenomenon from crystalline state to amorphous state with a voltage pulse altitude of 2.0 V and pulse width of 50 ns is also obtained. These results show the feasibility of integrating phase change memory cell with MOSFET.
Time-resolved imaging of the plasma development in a triggered vacuum switch
NASA Astrophysics Data System (ADS)
Park, Wung-Hoa; Kim, Moo-Sang; Son, Yoon-Kyoo; Frank, Klaus; Lee, Byung-Joon; Ackerman, Thilo; Iberler, Marcus
2017-12-01
Triggered vacuum switches (TVS) are particularly used in pulsed power technology as closing switches for high voltages and high charge transfer. A non-sealed-off prototype was designed with a side-on quartz window to investigate the evolution of the trigger discharge into the main discharge. The image acquisition was done with a fast CCD camera PI-MAX2 from Princeton Instruments. The CCD camera has a maximum exposure time of 2 ns. The electrode configuration of the prototype is a conventional six-rod gap type, a capacitor bank with C = 16.63 μF, which corresponds at 20 kV charging voltage to a total stored charge of 0.3 C or a total energy of 3.3 kJ. The peak current is 88 kA. According to the tremendously highly different light intensities during the trigger and main discharge, the complete discharge is split into three phases: a trigger breakdown phase, an intermediate phase and a main discharge phase. The CCD camera images of the first phase show instabilities of the trigger breakdown, in phase 2 three different discharge modes are observed. After the first current maximum the discharge behavior is reproducible.
Chen, Zibin; Hong, Liang; Wang, Feifei; Ringer, Simon P; Chen, Long-Qing; Luo, Haosu; Liao, Xiaozhou
2017-01-06
Heterogeneous ferroelastic transition that produces hierarchical 90° tetragonal nanodomains via mechanical loading and its effect on facilitating ferroelectric domain switching in relaxor-based ferroelectrics were explored. Combining in situ electron microscopy characterization and phase-field modeling, we reveal the nature of the transition process and discover that the transition lowers by 40% the electrical loading threshold needed for ferroelectric domain switching. Our results advance the fundamental understanding of ferroelectric domain switching behavior.
InGaAsP/InP optical waveguide switch operated by a carrier-induced change in the refractive index
NASA Astrophysics Data System (ADS)
Mikami, O.; Nakagome, H.
1985-11-01
Waveguided semiconductor optical switches operated by a carrier-induced change in the refractive-index associated with the plasma dispersion are proposed. InGaAsP/InP four-port switches having two intersecting single-mode channel waveguides are fabricated by selective liquid-phase epitaxy and investigated at 1.5 microns wavelength. Optical switching is observed as a result of mode interference in the waveguide intersection region.
Optical switching and photoluminescence in erbium-implanted vanadium dioxide thin films
NASA Astrophysics Data System (ADS)
Lim, Herianto; Stavrias, Nikolas; Johnson, Brett C.; Marvel, Robert E.; Haglund, Richard F.; McCallum, Jeffrey C.
2014-03-01
Vanadium dioxide (VO2) is under intensive consideration for optical switching due to its reversible phase transition, which features a drastic and rapid shift in infrared reflectivity. Classified as an insulator-to-metal transition, the phase transition in VO2 can be induced thermally, electrically, and optically. When induced optically, the transition can occur on sub-picosecond time scales. It is interesting to dope VO2 with erbium ions (Er3+) and observe their combined properties. The first excited-state luminescence of Er3+ lies within the wavelength window of minimal transmission-loss in silicon and has been widely utilized for signal amplification and generation in silicon photonics. The incorporation of Er3+ into VO2 could therefore result in a novel photonic material capable of simultaneous optical switching and amplification. In this work, we investigate the optical switching and photoluminescence in Er-implanted VO2 thin films. Thermally driven optical switching is demonstrated in the Er-implanted VO2 by infrared reflectometry. Photoluminescence is observed in the thin films annealed at ˜800 °C or above. In addition, Raman spectroscopy and a statistical analysis of switching hysteresis are carried out to assess the effects of the ion implantation on the VO2 thin films. We conclude that Er-implanted VO2 can function as an optical switch and amplifier, but with reduced switching quality compared to pure VO2.
MONTE: the next generation of mission design and navigation software
NASA Astrophysics Data System (ADS)
Evans, Scott; Taber, William; Drain, Theodore; Smith, Jonathon; Wu, Hsi-Cheng; Guevara, Michelle; Sunseri, Richard; Evans, James
2018-03-01
The Mission analysis, Operations and Navigation Toolkit Environment (MONTE) (Sunseri et al. in NASA Tech Briefs 36(9), 2012) is an astrodynamic toolkit produced by the Mission Design and Navigation Software Group at the Jet Propulsion Laboratory. It provides a single integrated environment for all phases of deep space and Earth orbiting missions. Capabilities include: trajectory optimization and analysis, operational orbit determination, flight path control, and 2D/3D visualization. MONTE is presented to the user as an importable Python language module. This allows a simple but powerful user interface via CLUI or script. In addition, the Python interface allows MONTE to be used seamlessly with other canonical scientific programming tools such as SciPy, NumPy, and Matplotlib. MONTE is the prime operational orbit determination software for all JPL navigated missions.
Van Campenhout, Joris; Green, William M J; Vlasov, Yurii A
2009-12-21
We present a novel design for a noise-tolerant, ultra-broadband electro-optic switch, based on a Mach-Zehnder lattice (MZL) interferometer. We analyze the switch performance through rigorous optical simulations, for devices implemented in silicon-on-insulator with carrier-injection-based phase shifters. We show that such a MZL switch can be designed to have a step-like switching response, resulting in improved tolerance to drive-voltage noise and temperature variations as compared to a single-stage Mach-Zehnder switch. Furthermore, we show that degradation in switching crosstalk and insertion loss due to free-carrier absorption can be largely overcome by a MZL switch design. Finally, MZL switches can be designed for having an ultra-wide, temperature-insensitive optical bandwidth of more than 250 nm. The proposed device shows good potential as a broadband optical switch in reconfigurable optical networks-on-chip.
Wideband Monolithic Tile for Reconfigurable Phased Arrays
2017-03-01
has been developed for Reconfigurable Phased Array applications. Low loss and high isolation interconnection of switches within the radiating...there is no ground to connect shunt elements to. An integral part of the design was bias control. Mesa resistors are used for biasing. MIM...highest in resistance had the best performance over bandwidth because of reduced capacitive loading of the “off” arms of the Quad Switch on the central
Method and apparatus for pulse width modulation control of an AC induction motor
Geppert, Steven; Slicker, James M.
1984-01-01
An inverter is connected between a source of DC power and a three-phase AC induction motor, and a micro-processor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .THETA., where .THETA. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands of electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a "flyback" DC-DC converter circuit for recharging the battery.
Method and apparatus for pulse width modulation control of an AC induction motor
NASA Technical Reports Server (NTRS)
Geppert, Steven (Inventor); Slicker, James M. (Inventor)
1984-01-01
An inverter is connected between a source of DC power and a three-phase AC induction motor, and a micro-processor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .THETA., where .THETA. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands of electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a flyback DC-DC converter circuit for recharging the battery.
NASA Astrophysics Data System (ADS)
Pandey, Shivendra Kumar; Manivannan, Anbarasu
2017-07-01
Prefixing a weak electric field (incubation) might enhance the crystallization speed via pre-structural ordering and thereby achieving faster programming of phase change memory (PCM) devices. We employed a weak electric field, equivalent to a constant small voltage (that is incubation voltage, Vi of 0.3 V) to the applied voltage pulse, VA (main pulse) for a systematic understanding of voltage-dependent rapid threshold switching characteristics and crystallization (set) process of In3SbTe2 (IST) PCM devices. Our experimental results on incubation-assisted switching elucidate strikingly one order faster threshold switching, with an extremely small delay time, td of 300 ps, as compared with no incubation voltage (Vi = 0 V) for the same VA. Also, the voltage dependent characteristics of incubation-assisted switching dynamics confirm that the initiation of threshold switching occurs at a lower voltage of 0.82 times of VA. Furthermore, we demonstrate an incubation assisted ultrafast set process of IST device for a low VA of 1.7 V (˜18 % lesser compared to without incubation) within a short pulse-width of 1.5 ns (full width half maximum, FWHM). These findings of ultrafast switching, yet low power set process would immensely be helpful towards designing high speed PCM devices with low power operation.
All optical controlled photonic integrated circuits using azo dye functionized sol-gel material
NASA Astrophysics Data System (ADS)
Ke, Xianjun
The main focus of this dissertation is development and characterization of all-optical controllable azo dye functionized sol gel material, demonstrating a PIC fabrication technique on glass substrate using such material, and exploration and feasibility demonstration of three PIC functional devices namely optical variable attenuator, optical switches, and optical tunable filters using the material. The realization of all the devices in this dissertation are based on one material: dye functionalized sol-gel material. A photochromic sol-gel material functionalized with azo dye was synthesized and characterized. It possesses a photochromic characteristic under the control of green laser beam illumination. The material characteristics suggest the possibility of a new promising material platform candidate for the fabrication of alloptical controlled photonic integrated circuits. As the first potential application of the dye functionalized sol-gel material, an alloptical variable attenuator was designed and demonstrated. The optical variable attenuation is achieved in Mach-Zehnder interferometric configuration through all-optical modulation of sol-gel waveguide phase shifters. A 2 x 2 optical switch based on multimode interference (MMI) waveguide structure is proposed in the dissertation. The schematic configuration of the optical switch consists of a cascade of two identical MMIs with two all-optical controlled phase shifters realized by using the photochromic sol-gel material. The cross or bar switch state of the optical switch is determined by the phase difference between the two sol-gel waveguide phase shifters. An all-optical tunable filter is designed and its feasibility demonstrated by using the sol-gel photochromic material. Except for the phase change demonstrated on sol-gel waveguide phase shifters, dynamic gratings were observed on sol-gel film when exposed to two interference beams. This reveals the possibility of realizing Bragg grating-based tunable filters. The schematic configuration of proposed tunable filters consists of a single straight waveguide embedded with a sol-gel waveguide. The wavelength tuning of the tunable filters is accomplished by varying the grating period.
Electrical switching and oscillations in vanadium dioxide
NASA Astrophysics Data System (ADS)
Pergament, Alexander; Velichko, Andrey; Belyaev, Maksim; Putrolaynen, Vadim
2018-05-01
We have studied electrical switching with S-shaped I-V characteristics in two-terminal MOM devices based on vanadium dioxide thin films. The switching effect is associated with the metal-insulator phase transition. Relaxation oscillations are observed in circuits with VO2-based switches. Dependences of the oscillator critical frequency Fmax, threshold power and voltage, as well as the time of current rise, on the switching structure size are obtained by numerical simulation. The empirical dependence of the threshold voltage on the switching region dimensions and film thickness is found. It is shown that, for the VO2 channel sizes of 10 × 10 nm, Fmax can reach the value of 300 MHz at a film thickness of 20 nm. Next, it is shown that oscillatory neural networks can be implemented on the basis of coupled VO2 oscillators. For the weak capacitive coupling, we revealed the dependence of the phase difference upon synchronization on the coupling capacitance value. When the switches are scaled down, the limiting time of synchronization is reduced to Ts 13 μs, and the number of oscillation periods for the entering to the synchronization mode remains constant, Ns 17. In the case of weak thermal coupling in the synchronization mode, we observe in-phase behavior of oscillators, and there is a certain range of parameters of the supply current, in which the synchronization effect becomes possible. With a decrease in dimensions, a decrease in the thermal coupling action radius is observed, which can vary in the range from 0.5 to 50 μm for structures with characteristic dimensions of 0.1-5 μm, respectively. Thermal coupling may have a promising effect for realization of a 3D integrated oscillatory neural network.
Monte Carlo Simulation Study of Atomic Structure of alnico Permanent Magnets
NASA Astrophysics Data System (ADS)
Nguyen, Manh Cuong; Wang, Cai-Zhuang; Ho, Kai-Ming
Lattice Monte Carlo simulation based on quinternary cluster expansion energy model is used to investigate nano-scale structure of alnico alloy, which is considered as a candidate material for rare-earth free high performance permanent magnets, especially for high or elevated temperature applications such as electric motor for vehicles. We observe phase decomposition of the master alnico alloy into FeCo-rich magnetic (α1) and NiAl-rich matrix (α2) phases. Concentrations of Fe and Co in α1 phase and Ni and Al in α2 phase are higher for lower annealing temperature. Ti is residing mostly in the α2 phase. The phase boundary between α1 and α2 phases are quite sharp with only few atomic layers. The α1 phase is in B2 ordering with Fe and Al occupying the α-site and Ni and Co occupying the β-site. The α2 phase is in L21 ordering with Al occupying the 4a-site. The phase composition profile again annealing temperature suggests that lower annealing temperature would improve the magnetism of α2 and diminish the magnetism of α2 phase, hence improve shape anisotropy of α1 phase rods and that of alnico.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardiansyah, D.; Haryanto, F.; Male, S.
2014-09-30
Prism is a non-commercial Radiotherapy Treatment Planning System (RTPS) develop by Ira J. Kalet from Washington University. Inhomogeneity factor is included in Prism TPS dose calculation. The aim of this study is to investigate the sensitivity of dose calculation on Prism using Monte Carlo simulation. Phase space source from head linear accelerator (LINAC) for Monte Carlo simulation is implemented. To achieve this aim, Prism dose calculation is compared with EGSnrc Monte Carlo simulation. Percentage depth dose (PDD) and R50 from both calculations are observed. BEAMnrc is simulated electron transport in LINAC head and produced phase space file. This file ismore » used as DOSXYZnrc input to simulated electron transport in phantom. This study is started with commissioning process in water phantom. Commissioning process is adjusted Monte Carlo simulation with Prism RTPS. Commissioning result is used for study of inhomogeneity phantom. Physical parameters of inhomogeneity phantom that varied in this study are: density, location and thickness of tissue. Commissioning result is shown that optimum energy of Monte Carlo simulation for 6 MeV electron beam is 6.8 MeV. This commissioning is used R50 and PDD with Practical length (R{sub p}) as references. From inhomogeneity study, the average deviation for all case on interest region is below 5 %. Based on ICRU recommendations, Prism has good ability to calculate the radiation dose in inhomogeneity tissue.« less
Li, Bingchu; Ling, Xiao; Huang, Yixiang; Gong, Liang; Liu, Chengliang
2017-01-01
This paper presents a fixed-switching-frequency model predictive current controller using multiplexed current sensor for switched reluctance machine (SRM) drives. The converter was modified to distinguish currents from simultaneously excited phases during the sampling period. The only current sensor installed in the converter was time division multiplexing for phase current sampling. During the commutation stage, the control steps of adjacent phases were shifted so that sampling time was staggered. The maximum and minimum duty ratio of pulse width modulation (PWM) was limited to keep enough sampling time for analog-to-digital (A/D) conversion. Current sensor multiplexing was realized without complex adjustment of either driver circuit nor control algorithms, while it helps to reduce the cost and errors introduced in current sampling due to inconsistency between sensors. The proposed controller is validated by both simulation and experimental results with a 1.5 kW three-phase 12/8 SRM. Satisfied current sampling is received with little difference compared with independent phase current sensors for each phase. The proposed controller tracks the reference current profile as accurately as the model predictive current controller with independent phase current sensors, while having minor tracking errors compared with a hysteresis current controller. PMID:28513554
When and why do old adults outsource control to the environment?
Mayr, Ulrich; Spieler, Daniel H; Hutcheon, Thomas G
2015-09-01
Old adults' tendency to rely on information present in the environment rather than internal representations has been frequently noted, but is not well understood. The fade-out paradigm provides a useful model situation to study this internal-to-external shift across the life span: Subjects need to transition from an initial, cued task-switching phase to a fade-out phase where only 1 task remains relevant. Old adults exhibit large response-time "fade-out costs," mainly because they continue to consult the task cues. Here we show that age differences in fade-out costs remain very large even when we insert between the task-switching and the fade-out phase 20 single-task trials without task cues (during which even old adults' performance becomes highly fluent; Experiment 1), but costs in old adults are eliminated when presenting an on-screen instruction to focus on the 1 remaining task at the transition point between the task-switching and fade-out phase (Experiment 2). Furthermore, old adults, but not young adults, also exhibited "fade-in costs" when they were instructed to perform an initial single-task phase that would be followed by the cued task-switching phase (Experiment 3). Combined, these results show that old adults' tendency to overutilize external support is not a problem of perseverating earlier-relevant control settings. Instead, old adults seem less likely to initiate the necessary reconfiguration process when transitioning from 1 phase to the next because they use underspecified task models that lack the higher-level distinction between those contexts that do and that do not require external support. (c) 2015 APA, all rights reserved).
Monte Carlo Shower Counter Studies
NASA Technical Reports Server (NTRS)
Snyder, H. David
1991-01-01
Activities and accomplishments related to the Monte Carlo shower counter studies are summarized. A tape of the VMS version of the GEANT software was obtained and installed on the central computer at Gallaudet University. Due to difficulties encountered in updating this VMS version, a decision was made to switch to the UNIX version of the package. This version was installed and used to generate the set of data files currently accessed by various analysis programs. The GEANT software was used to write files of data for positron and proton showers. Showers were simulated for a detector consisting of 50 alternating layers of lead and scintillator. Each file consisted of 1000 events at each of the following energies: 0.1, 0.5, 2.0, 10, 44, and 200 GeV. Data analysis activities related to clustering, chi square, and likelihood analyses are summarized. Source code for the GEANT user subprograms and data analysis programs are provided along with example data plots.
NASA Astrophysics Data System (ADS)
Lépinoux, J.; Sigli, C.
2018-01-01
In a recent paper, the authors showed how the clusters free energies are constrained by the coagulation probability, and explained various anomalies observed during the precipitation kinetics in concentrated alloys. This coagulation probability appeared to be a too complex function to be accurately predicted knowing only the cluster distribution in Cluster Dynamics (CD). Using atomistic Monte Carlo (MC) simulations, it is shown that during a transformation at constant temperature, after a short transient regime, the transformation occurs at quasi-equilibrium. It is proposed to use MC simulations until the system quasi-equilibrates then to switch to CD which is mean field but not limited by a box size like MC. In this paper, we explain how to take into account the information available before the quasi-equilibrium state to establish guidelines to safely predict the cluster free energies.
Heteroclinic switching between chimeras
NASA Astrophysics Data System (ADS)
Bick, Christian
2018-05-01
Functional oscillator networks, such as neuronal networks in the brain, exhibit switching between metastable states involving many oscillators. We give exact results how such global dynamics can arise in paradigmatic phase oscillator networks: Higher-order network interactions give rise to metastable chimeras—localized frequency synchrony patterns—which are joined by heteroclinic connections. Moreover, we illuminate the mechanisms that underly the switching dynamics in these experimentally accessible networks.
Van Devender, J.P.; Emin, D.
1983-12-21
A reusable fast opening switch for transferring energy, in the form of a high power pulse, from an electromagnetic storage device such as an inductor into a load. The switch is efficient, compact, fast and reusable. The switch comprises a ferromagnetic semiconductor which undergoes a fast transition between conductive and metallic states at a critical temperature and which undergoes the transition without a phase change in its crystal structure. A semiconductor such as europium rich europhous oxide, which undergoes a conductor to insulator transition when it is joule heated from its conductor state, can be used to form the switch.
Van Devender, John P.; Emin, David
1986-01-01
A reusable fast opening switch for transferring energy, in the form of a high power pulse, from an electromagnetic storage device such as an inductor into a load. The switch is efficient, compact, fast and reusable. The switch comprises a ferromagnetic semiconductor which undergoes a fast transition between conductive and insulating states at a critical temperature and which undergoes the transition without a phase change in its crystal structure. A semiconductor such as europium rich europhous oxide, which undergoes a conductor to insulator transition when it is joule heated from its conductor state, can be used to form the switch.
Single bus star connected reluctance drive and method
Fahimi, Babak; Shamsi, Pourya
2016-05-10
A system and methods for operating a switched reluctance machine includes a controller, an inverter connected to the controller and to the switched reluctance machine, a hysteresis control connected to the controller and to the inverter, a set of sensors connected to the switched reluctance machine and to the controller, the switched reluctance machine further including a set of phases the controller further comprising a processor and a memory connected to the processor, wherein the processor programmed to execute a control process and a generation process.
Dynamic Monte Carlo simulations of radiatively accelerated GRB fireballs
NASA Astrophysics Data System (ADS)
Chhotray, Atul; Lazzati, Davide
2018-05-01
We present a novel Dynamic Monte Carlo code (DynaMo code) that self-consistently simulates the Compton-scattering-driven dynamic evolution of a plasma. We use the DynaMo code to investigate the time-dependent expansion and acceleration of dissipationless gamma-ray burst fireballs by varying their initial opacities and baryonic content. We study the opacity and energy density evolution of an initially optically thick, radiation-dominated fireball across its entire phase space - in particular during the Rph < Rsat regime. Our results reveal new phases of fireball evolution: a transition phase with a radial extent of several orders of magnitude - the fireball transitions from Γ ∝ R to Γ ∝ R0, a post-photospheric acceleration phase - where fireballs accelerate beyond the photosphere and a Thomson-dominated acceleration phase - characterized by slow acceleration of optically thick, matter-dominated fireballs due to Thomson scattering. We quantify the new phases by providing analytical expressions of Lorentz factor evolution, which will be useful for deriving jet parameters.
Self-learning Monte Carlo method
Liu, Junwei; Qi, Yang; Meng, Zi Yang; ...
2017-01-04
Monte Carlo simulation is an unbiased numerical tool for studying classical and quantum many-body systems. One of its bottlenecks is the lack of a general and efficient update algorithm for large size systems close to the phase transition, for which local updates perform badly. In this Rapid Communication, we propose a general-purpose Monte Carlo method, dubbed self-learning Monte Carlo (SLMC), in which an efficient update algorithm is first learned from the training data generated in trial simulations and then used to speed up the actual simulation. Lastly, we demonstrate the efficiency of SLMC in a spin model at the phasemore » transition point, achieving a 10–20 times speedup.« less
TASEP of interacting particles of arbitrary size
NASA Astrophysics Data System (ADS)
Narasimhan, S. L.; Baumgaertner, A.
2017-10-01
A mean-field description of the stationary state behaviour of interacting k-mers performing totally asymmetric exclusion processes (TASEP) on an open lattice segment is presented employing the discrete Takahashi formalism. It is shown how the maximal current and the phase diagram, including triple-points, depend on the strength of repulsive and attractive interactions. We compare the mean-field results with Monte Carlo simulation of three types interacting k-mers: monomers, dimers and trimers. (a) We find that the Takahashi estimates of the maximal current agree quantitatively with those of the Monte Carlo simulation in the absence of interaction as well as in both the the attractive and the strongly repulsive regimes. However, theory and Monte Carlo results disagree in the range of weak repulsion, where the Takahashi estimates of the maximal current show a monotonic behaviour, whereas the Monte Carlo data show a peaking behaviour. It is argued that the peaking of the maximal current is due to a correlated motion of the particles. In the limit of very strong repulsion the theory predicts a universal behavior: th maximal currents of k-mers correspond to that of non-interacting (k+1) -mers; (b) Monte Carlo estimates of the triple-points for monomers, dimers and trimers show an interesting general behaviour : (i) the phase boundaries α * and β* for entry and exit current, respectively, as function of interaction strengths show maxima for α* whereas β * exhibit minima at the same strength; (ii) in the attractive regime, however, the trend is reversed (β * > α * ). The Takahashi estimates of the triple-point for monomers show a similar trend as the Monte Carlo data except for the peaking of α * ; for dimers and trimers, however, the Takahashi estimates show an opposite trend as compared to the Monte Carlo data.
Outsourcing cognitive control to the environment: adult age differences in the use of task cues.
Spieler, Daniel H; Mayr, Ulrich; LaGrone, Susan
2006-10-01
When an initial phase of cued task switching is followed by a phase of single-task trials, older adults show difficulties changing to the more efficient single-task mode of processing (Mayr & Liebscher, 2001). In Experiment 1, we show that these costs follow older adults' continued tendency to inspect task cues even though these provide no new information. In Experiment 2, we included a condition in which task cues were eliminated from the display after the task-switching phase. In this condition, older adults behaved the same as younger adults, suggesting that the presence of the task cue is critical for observing age differences while switching from a "high-control" to a "low-control" mode of processing. We discuss our results in terms of a life-span shift with regard to the reliance on internal versus external sources of information under conditions of high-control demands.
Variable Structure Control of a Hand-Launched Glider
NASA Technical Reports Server (NTRS)
Anderson, Mark R.; Waszak, Martin R.
2005-01-01
Variable structure control system design methods are applied to the problem of aircraft spin recovery. A variable structure control law typically has two phases of operation. The reaching mode phase uses a nonlinear relay control strategy to drive the system trajectory to a pre-defined switching surface within the motion state space. The sliding mode phase involves motion along the surface as the system moves toward an equilibrium or critical point. Analysis results presented in this paper reveal that the conventional method for spin recovery can be interpreted as a variable structure controller with a switching surface defined at zero yaw rate. Application of Lyapunov stability methods show that deflecting the ailerons in the direction of the spin helps to insure that this switching surface is stable. Flight test results, obtained using an instrumented hand-launched glider, are used to verify stability of the reaching mode dynamics.
Vibration energy harvesting based on stress-induced polarization switching: a phase field approach
NASA Astrophysics Data System (ADS)
Wang, Dan; Wang, Linxiang; Melnik, Roderick
2017-06-01
Different from the traditional piezoelectric vibration energy harvesting, a new strategy based on stress-induced polarization switching has been proposed in the current paper. Two related prototypes are presented and the associated advantages and drawbacks have been discussed in detail. It has been demonstrated that, with the assistance of a bias electric field, the robustness of the energy harvesters is improved. Furthermore, the real-space phase-field model has been employed to study the nonlinear hysteretic behavior involved in the proposed energy harvesting process. A substantially larger electric current associated with the stress-induced polarization switching has been demonstrated when compared with that with piezoelectric effect. In addition, the effects of bias electric potential, bias resistance, mechanical boundary conditions, charge leakage and electrodes arrangements have also been investigated by the phase-field simulation, which provides a guidance for future real implementations.
Comparative study of bolometric and non-bolometric switching elements for microwave phase shifters
NASA Technical Reports Server (NTRS)
Tabib-Azar, Massood; Bhasin, Kul B.; Romanofsky, Robert R.
1991-01-01
The performance of semiconductor and high critical temperature superconductor switches is compared as they are used in delay-line-type microwave and millimeter-wave phase shifters. Such factors as their ratios of the off-to-on resistances, parasitic reactances, power consumption, speed, input-to-output isolation, ease of fabrication, and physical dimensions are compared. Owing to their almost infinite off-to-on resistance ratio and excellent input-to-output isolation, bolometric superconducting switches appear to be quite suitable for use in microwave phase shifters; their only drawbacks are their speed and size. The SUPERFET, a novel device whose operation is based on the electric field effect in high critical temperature ceramic superconductors is also discussed. Preliminary results indicate that the SUPERFET is fast and that it can be scaled; therefore, it can be fabricated with dimensions comparable to semiconductor field-effect transistors.
Akimoto, Ryoichi; Gozu, Shin-ichiro; Mozume, Teruo; Ishikawa, Hiroshi
2011-07-04
We have developed a compact all-optical gate switch with a footprint less than 1 mm2, in which an optical nonlinear waveguide using cross-phase-modulation associated with intersubband transition in InGaAs/AlGaAs/AlAsSb coupled double quantum wells and a Michelson interferometer (MI) are monolithically integrated on an InP chip. The MI configuration allows a transverse magnetic pump light direct access to an MI arm for phase modulation while passive photonic integrated circuits serve a transverse electric signal light. Full switching of the π-rad nonlinear phase shift is achieved with a pump pulse energy of 8.6 pJ at a 10-GHz repetition rate. We also demonstrate all-optical demultiplexing of a 160-Gb/s signal to a 40-Gb/s signal.
Energy saving in ac generators
NASA Technical Reports Server (NTRS)
Nola, F. J.
1980-01-01
Circuit cuts no-load losses, without sacrificing full-load power. Phase-contro circuit includes gate-controlled semiconductor switch that cuts off applied voltage for most of ac cycle if generator idling. Switch "on" time increases when generator is in operation.
Beam-Switch Transient Effects in the RF Path of the ICAPA Receive Phased Array Antenna
NASA Technical Reports Server (NTRS)
Sands, O. Scott
2003-01-01
When the beam of a Phased Array Antenna (PAA) is switched from one pointing direction to another, transient effects in the RF path of the antenna are observed. Testing described in the report has revealed implementation-specific transient effects in the RF channel that are associated with digital clocking pulses that occur with transfer of data from the Beam Steering Controller (BSC) to the digital electronics of the PAA under test. The testing described here provides an initial assessment of the beam-switch phenomena by digitally acquiring time series of the RF communications channel, under CW excitation, during the period of time that the beam switch transient occurs. Effects are analyzed using time-frequency distributions and instantaneous frequency estimation techniques. The results of tests conducted with CW excitation supports further Bit-Error-Rate (BER) testing of the PAA communication channel.
Hassan, Sally; Huang, Hsini; Warren, Kim; Mahdavi, Behzad; Smith, David; Jong, Simcha; Farid, Suzanne S
2016-04-01
Some allogeneic cell therapies requiring a high dose of cells for large indication groups demand a change in cell expansion technology, from planar units to microcarriers in single-use bioreactors for the market phase. The aim was to model the optimal timing for making this change. A development lifecycle cash flow framework was created to examine the implications of process changes to microcarrier cultures at different stages of a cell therapy's lifecycle. The analysis performed under assumptions used in the framework predicted that making this switch earlier in development is optimal from a total expected out-of-pocket cost perspective. From a risk-adjusted net present value view, switching at Phase I is economically competitive but a post-approval switch can offer the highest risk-adjusted net present value as the cost of switching is offset by initial market penetration with planar technologies. The framework can facilitate early decision-making during process development.
NASA Astrophysics Data System (ADS)
Alves Júnior, A. A.; Sokoloff, M. D.
2017-10-01
MCBooster is a header-only, C++11-compliant library that provides routines to generate and perform calculations on large samples of phase space Monte Carlo events. To achieve superior performance, MCBooster is capable to perform most of its calculations in parallel using CUDA- and OpenMP-enabled devices. MCBooster is built on top of the Thrust library and runs on Linux systems. This contribution summarizes the main features of MCBooster. A basic description of the user interface and some examples of applications are provided, along with measurements of performance in a variety of environments
Multicanonical hybrid Monte Carlo algorithm: Boosting simulations of compact QED
NASA Astrophysics Data System (ADS)
Arnold, G.; Schilling, K.; Lippert, Th.
1999-03-01
We demonstrate that substantial progress can be achieved in the study of the phase structure of four-dimensional compact QED by a joint use of hybrid Monte Carlo and multicanonical algorithms through an efficient parallel implementation. This is borne out by the observation of considerable speedup of tunnelling between the metastable states, close to the phase transition, on the Wilson line. We estimate that the creation of adequate samples (with order 100 flip-flops) becomes a matter of half a year's run time at 2 Gflops sustained performance for lattices of size up to 244.
NASA Astrophysics Data System (ADS)
Bouachraoui, Rachid; El Hachimi, Abdel Ghafour; Ziat, Younes; Bahmad, Lahoucine; Tahiri, Najim
2018-06-01
Electronic and magnetic properties of hexagonal Iron (II) Sulfide (hexagonal FeS) have been investigated by combining the Density functional theory (DFT) and Monte Carlo simulations (MCS). This compound is constituted by magnetic hexagonal lattice occupied by Fe2+ with spin state (S = 2). Based on ab initio method, we calculated the exchange coupling JFe-Fe between two magnetic atoms Fe-Fe in different directions. Also phase transitions, magnetic stability and magnetizations have been investigated in the framework of Monte Carlo simulations. Within this method, a second phase transition is observed at the Néel temperature TN = 450 K. This finding in good agreement with the reported data in the literature. The effect of the applied different parameters showed how can these parameters affect the critical temperature of this system. Moreover, we studied the density of states and found that the hexagonal FeS will be a promoting material for spintronic applications.
Wada, Takao; Ueda, Noriaki
2013-01-01
The process of low pressure organic vapor phase deposition (LP-OVPD) controls the growth of amorphous organic thin films, where the source gases (Alq3 molecule, etc.) are introduced into a hot wall reactor via an injection barrel using an inert carrier gas (N2 molecule). It is possible to control well the following substrate properties such as dopant concentration, deposition rate, and thickness uniformity of the thin film. In this paper, we present LP-OVPD simulation results using direct simulation Monte Carlo-Neutrals (Particle-PLUS neutral module) which is commercial software adopting direct simulation Monte Carlo method. By estimating properly the evaporation rate with experimental vaporization enthalpies, the calculated deposition rates on the substrate agree well with the experimental results that depend on carrier gas flow rate and source cell temperature. PMID:23674843
DOE Office of Scientific and Technical Information (OSTI.GOV)
Müller, Florian, E-mail: florian.mueller@sam.math.ethz.ch; Jenny, Patrick, E-mail: jenny@ifd.mavt.ethz.ch; Meyer, Daniel W., E-mail: meyerda@ethz.ch
2013-10-01
Monte Carlo (MC) is a well known method for quantifying uncertainty arising for example in subsurface flow problems. Although robust and easy to implement, MC suffers from slow convergence. Extending MC by means of multigrid techniques yields the multilevel Monte Carlo (MLMC) method. MLMC has proven to greatly accelerate MC for several applications including stochastic ordinary differential equations in finance, elliptic stochastic partial differential equations and also hyperbolic problems. In this study, MLMC is combined with a streamline-based solver to assess uncertain two phase flow and Buckley–Leverett transport in random heterogeneous porous media. The performance of MLMC is compared tomore » MC for a two dimensional reservoir with a multi-point Gaussian logarithmic permeability field. The influence of the variance and the correlation length of the logarithmic permeability on the MLMC performance is studied.« less
Monte Carlo Simulations of Arterial Imaging with Optical Coherence Tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amendt, P.; Estabrook, K.; Everett, M.
2000-02-01
The laser-tissue interaction code LATIS [London et al., Appl. Optics 36, 9068 ( 1998)] is used to analyze photon scattering histories representative of optical coherence tomography (OCT) experiment performed at Lawrence Livermore National Laboratory. Monte Carlo photonics with Henyey-Greenstein anisotropic scattering is implemented and used to simulate signal discrimination of intravascular structure. An analytic model is developed and used to obtain a scaling law relation for optimization of the OCT signal and to validate Monte Carlo photonics. The appropriateness of the Henyey-Greenstein phase function is studied by direct comparison with more detailed Mie scattering theory using an ensemble of sphericalmore » dielectric scatterers. Modest differences are found between the two prescriptions for describing photon angular scattering in tissue. In particular, the Mie scattering phase functions provide less overall reflectance signal but more signal contrast compared to the Henyey-Greenstein formulation.« less
NASA Astrophysics Data System (ADS)
Gandhi, Sahil Sandesh; Kim, Min Su; Hwang, Jeoung-Yeon; Chien, Liang-Chy
2017-02-01
We demonstrate the application of the nanostructured scaffold of BPIII as a resuable EO device that retains the BPIII ordering and sub-millisecond EO switching characteristics, that is, "EO-memory" of the original BPIII even after removal of the cholesteric blue phase liquid crystal (LC) and subsequent refilling with different nematic LCs. We also fabricate scaffolds mimicking the isotropic phase and cubic blue phase I (BPI) to demonstrate the versatility of our material system to nano-engineer EO-memory scaffolds of various structures. We envisage that this work will promote new experimental investigations of the mysterious BPIII and the development of novel device architectures and optically functional nanomaterials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emenheiser, Jeffrey; Department of Physics, University of California, Davis, California 95616; Chapman, Airlie
Following the long-lived qualitative-dynamics tradition of explaining behavior in complex systems via the architecture of their attractors and basins, we investigate the patterns of switching between distinct trajectories in a network of synchronized oscillators. Our system, consisting of nonlinear amplitude-phase oscillators arranged in a ring topology with reactive nearest-neighbor coupling, is simple and connects directly to experimental realizations. We seek to understand how the multiple stable synchronized states connect to each other in state space by applying Gaussian white noise to each of the oscillators' phases. To do this, we first analytically identify a set of locally stable limit cyclesmore » at any given coupling strength. For each of these attracting states, we analyze the effect of weak noise via the covariance matrix of deviations around those attractors. We then explore the noise-induced attractor switching behavior via numerical investigations. For a ring of three oscillators, we find that an attractor-switching event is always accompanied by the crossing of two adjacent oscillators' phases. For larger numbers of oscillators, we find that the distribution of times required to stochastically leave a given state falls off exponentially, and we build an attractor switching network out of the destination states as a coarse-grained description of the high-dimensional attractor-basin architecture.« less
32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units.
Qiao, Lei; Tang, Weijie; Chu, Tao
2017-02-09
To construct large-scale silicon electro-optical switches for optical interconnections, we developed a method using a limited number of power monitors inserted at certain positions to detect and determine the optimum operating points of all switch units to eliminate non-uniform effects arising from fabrication errors. We also introduced an optical phase bias to one phase-shifter arm of a Mach-Zehnder interferometer (MZI)-type switch unit to balance the two operation statuses of a silicon electro-optical switch during push-pull operation. With these methods, a 32 × 32 MZI-based silicon electro-optical switch was successfully fabricated with 180-nm complementary metal-oxide-semiconductor (CMOS) process technology, which is the largest scale silicon electro-optical switch to the best of our knowledge. At a wavelength of 1520 nm, the on-chip insertion losses were 12.9 to 16.5 dB, and the crosstalk ranged from -17.9 to -24.8 dB when all units were set to the 'Cross' status. The losses were 14.4 to 18.5 dB, and the crosstalk ranged from -15.1 to -19.0 dB when all units were in the 'Bar' status. The total power consumptions of the 32 × 32 switch were 247.4 and 542.3 mW when all units were set to the 'Cross' and 'Bar' statuses, respectively.
32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units
Qiao, Lei; Tang, Weijie; Chu, Tao
2017-01-01
To construct large-scale silicon electro-optical switches for optical interconnections, we developed a method using a limited number of power monitors inserted at certain positions to detect and determine the optimum operating points of all switch units to eliminate non-uniform effects arising from fabrication errors. We also introduced an optical phase bias to one phase-shifter arm of a Mach–Zehnder interferometer (MZI)-type switch unit to balance the two operation statuses of a silicon electro-optical switch during push–pull operation. With these methods, a 32 × 32 MZI-based silicon electro-optical switch was successfully fabricated with 180-nm complementary metal–oxide–semiconductor (CMOS) process technology, which is the largest scale silicon electro-optical switch to the best of our knowledge. At a wavelength of 1520 nm, the on-chip insertion losses were 12.9 to 16.5 dB, and the crosstalk ranged from −17.9 to −24.8 dB when all units were set to the ‘Cross’ status. The losses were 14.4 to 18.5 dB, and the crosstalk ranged from −15.1 to −19.0 dB when all units were in the ‘Bar’ status. The total power consumptions of the 32 × 32 switch were 247.4 and 542.3 mW when all units were set to the ‘Cross’ and ‘Bar’ statuses, respectively. PMID:28181557
Mineo, Hirobumi; Yamaki, Masahiro; Teranishi, Yoshiaki; Hayashi, Michitoshi; Lin, Sheng Hsien; Fujimura, Yuichi
2012-09-05
Nonplanar chiral aromatic molecules are candidates for use as building blocks of multidimensional switching devices because the π electrons can generate ring currents with a variety of directions. We employed (P)-2,2'-biphenol because four patterns of π-electron rotations along the two phenol rings are possible and theoretically determine how quantum switching of the π-electron rotations can be realized. We found that each rotational pattern can be driven by a coherent excitation of two electronic states under two conditions: one is the symmetry of the electronic states and the other is their relative phase. On the basis of the results of quantum dynamics simulations, we propose a quantum control method for sequential switching among the four rotational patterns that can be performed by using ultrashort overlapped pump and dump pulses with properly selected relative phases and photon polarization directions. The results serve as a theoretical basis for the design of confined ultrafast switching of ring currents of nonplanar molecules and further current-induced magnetic fluxes of more sophisticated systems.
Phase-Change Thermoplastic Elastomer Blends for Tunable Shape Memory by Physical Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mineart, Kenneth P.; Tallury, Syamal S.; Li, Tao
Shape-memory polymers (SMPs) change shape upon exposure to an environmental stimulus.1-3 They are of considerable importance in the ongoing development of stimuli-responsive biomedical4,5 and deployable6 devices, and their function depends on the presence of two components.7 The first provides mechanical rigidity to ensure retention of one or more temporary strain states and also serves as a switch capable of releasing a temporary strain state. The second, a network-forming component, is required to restore the polymer to a prior strain state upon stimulation. In thermally-activated SMPs, the switching element typically relies on a melting or glass transition temperature,1-3,7 and broad ormore » multiple switches permit several temporary strain states.8-10 Chemical integration of network-forming and switching species endows SMPs with specific properties.8,10,11 Here, we demonstrate that phase-change materials incorporated into network-forming macromolecules yield shape-memory polymer blends (SMPBs) with physically tunable switching temperatures and recovery kinetics for use in multi-responsive laminates and shape-change electronics.« less
NASA Astrophysics Data System (ADS)
Motevalli, Benyamin; Taherifar, Neda; Wu, Bisheng; Tang, Wenxin; Liu, Jefferson Zhe
2017-11-01
The adsorption of di-meta-cyano azobenzene (DMC) cis and trans isomers on non-passivated and passivated Si (111) (7 × 7) surfaces is studied using density functional theory (DFT) calculations. Our results reveal that on the non-passivated surface the 12 Si adatoms are accessible to form chemical bonds with DMC molecules. Interestingly, the trans isomer forms two chemical bonds near the corner hole atom in Si (111) (7 × 7) surface, which is not observed in the widely studied metallic surfaces. The DMC isomers show significant structural distortion in the chemisorption case. The strong chemical bonds (and high bonding energy) could be detrimental to conformation switching between these two isomers under external stimuli. The physisorption case is also examined. Monte Carlo (MC) simulations with empirical force fields were employed to search about 106 different adsorption positions and DMC molecule orientations to identify the stable adsorption sites (up to six). The DFT-PBE and DFT-D2 calculations were then carried out to obtain the relaxed atomistic structures and accurate adsorption energy. We find that it is imperative to take van der Waals (vdW) interaction into account in DFT calculations. Our results show that the adsorption sites generally are encompassed by either the Si adatoms or the passivated H atoms, which could enhance the long-range dispersion interaction between DMC molecules and Si surfaces. The molecular structures of both isomers remain unchanged compared with gas phase. The obtained adsorption energy results ΔEads are moderate (0.2-0.8 eV). At some adsorption sites on the passivated surface, both isomers have similar moderate ΔEads (0.4-0.6 eV), implying promises of molecular switching that should be examined in experiments.
Phase stability of TiO 2 polymorphs from diffusion Quantum Monte Carlo
Luo, Ye; Benali, Anouar; Shulenburger, Luke; ...
2016-11-24
Titanium dioxide, TiO 2, has multiple applications in catalysis, energy conversion and memristive devices because of its electronic structure. Most of applications utilize the naturally existing phases: rutile, anatase and brookite. In spite of the simple form of TiO 2 and its wide uses, there is long- standing disagreement between theory and experiment on the energetic ordering of these phases that has never been resolved. We present the first analysis of phase stability at zero temperature using the highly accurate many-body fixed node diffusion Quantum Monte Carlo (QMC) method. We include temperature effects by calculating the Helmholtz free energy includingmore » both internal energy corrected by QMC and vibrational contributions from phonon calculations within the quasi harmonic approximation via density functional perturbation theory. Our QMC calculations find that anatase is the most stable phase at zero temperature, consistent with many previous mean- field calculations. Furthermore, at elevated temperatures, rutile becomes the most stable phase. For all finite temperatures, brookite is always the least stable phase.« less
Terahertz beam switching by electrical control of graphene-enabled tunable metasurface.
Zhang, Yin; Feng, Yijun; Zhao, Junming; Jiang, Tian; Zhu, Bo
2017-10-26
Controlling the terahertz wave, especially the dynamical and full control of terahertz wavefront, is highly demanded due to the increasing development of practical devices and application systems. Recently considerable efforts have been made to fill the 'terahertz gap' with the help of artificial metamaterial or metasurface incorporated with graphene material. Here, we propose a scheme to design tunable metasurface consisting of metallic patch array on a grounded polymer substrate embedded with graphene layers to electrically control the electromagnetic beam reflection at terahertz frequency. By adjusting geometric dimension of the patch elements, 360 degree reflection phase range may be achieved, thus abrupt phase shifts can be introduced along the metasurface for tailoring the reflected wavefront. Moreover, the reflective phase gradient over the metasurface can be switched between 90 and 360 degree by controlling the Fermi energy of the embedded graphene through voltage biasing, hence dynamically switching the reflective beam directions. Numerical simulations demonstrate that either single beam or dual beam dynamically switching between normal and oblique reflection angles can be well attained at working frequency. The proposed approach will bring much freedom in the design of beam manipulation devices and may be applied to terahertz radiation control.
2016-03-31
Corporation, Linthicum, Maryland *Corresponding author: Pavel.Borodulin@ngc.com Abstract: A chip -scale, highly-reconfigurable transmitter and...the technology has been used in a chip -scale, reconfigurable receiver demonstration and ongoing efforts to increase the level of performance and...circuit (RF-FPGA). It consists of a heterogeneous assembly of a SiGe BiCMOS chip with multiple 3D-integrated, low-loss, phase-change switch chiplets
NASA Astrophysics Data System (ADS)
Nie, Weijie; Li, Rang; Cheng, Chen; Chen, Yanxue; Lu, Qingming; Romero, Carolina; Vázquez de Aldana, Javier R.; Hao, Xiaotao; Chen, Feng
2017-04-01
We report on room-temperature subnanosecond waveguide laser operation at 1064 nm in a Nd:YVO4 crystal waveguide through Q-switching of phase-change nanomaterial vanadium dioxide (VO2). The unique feature of VO2 nanomaterial from the insulating to metallic phases offers low-saturation-intensity nonlinear absorptions of light for subnanosecond pulse generation. The low-loss waveguide is fabricated by using the femtosecond laser writing with depressed cladding geometry. Under optical pump at 808 nm, efficient pulsed laser has been achieved in the Nd:YVO4 waveguide, reaching minimum pulse duration of 690 ps and maximum output average power of 66.7 mW. To compare the Q-switched laser performances by VO2 saturable absorber with those based on two-dimensional materials, the 1064-nm laser pulses have been realized in the same waveguide platform with either graphene or transition metal dichalcogenide (in this work, WS2) coated mirror. The results on 2D material Q-switched waveguide lasers have shown that the shortest pulses are with 22-ns duration, whilst the maximum output average powers reach ~161.9 mW. This work shows the obvious difference on the lasing properties based on phase-change material and 2D materials, and suggests potential applications of VO2 as low-cost saturable absorber for subnanosecond laser generation.
Nie, Weijie; Li, Rang; Cheng, Chen; Chen, Yanxue; Lu, Qingming; Romero, Carolina; Vázquez de Aldana, Javier R; Hao, Xiaotao; Chen, Feng
2017-04-06
We report on room-temperature subnanosecond waveguide laser operation at 1064 nm in a Nd:YVO 4 crystal waveguide through Q-switching of phase-change nanomaterial vanadium dioxide (VO 2 ). The unique feature of VO 2 nanomaterial from the insulating to metallic phases offers low-saturation-intensity nonlinear absorptions of light for subnanosecond pulse generation. The low-loss waveguide is fabricated by using the femtosecond laser writing with depressed cladding geometry. Under optical pump at 808 nm, efficient pulsed laser has been achieved in the Nd:YVO 4 waveguide, reaching minimum pulse duration of 690 ps and maximum output average power of 66.7 mW. To compare the Q-switched laser performances by VO 2 saturable absorber with those based on two-dimensional materials, the 1064-nm laser pulses have been realized in the same waveguide platform with either graphene or transition metal dichalcogenide (in this work, WS 2 ) coated mirror. The results on 2D material Q-switched waveguide lasers have shown that the shortest pulses are with 22-ns duration, whilst the maximum output average powers reach ~161.9 mW. This work shows the obvious difference on the lasing properties based on phase-change material and 2D materials, and suggests potential applications of VO 2 as low-cost saturable absorber for subnanosecond laser generation.
Analysis of reliable sub-ns spin-torque switching under transverse bias magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Aquino, M., E-mail: daquino@uniparthenope.it; Perna, S.; Serpico, C.
2015-05-07
The switching process of a magnetic spin-valve nanosystem subject to spin-polarized current pulses is considered. The dependence of the switching probability on the current pulse duration is investigated. The further application of a transverse field along the intermediate anisotropy axis of the particle is used to control the quasi-random relaxation of magnetization to the reversed magnetization state. The critical current amplitudes to realize the switching are determined by studying the phase portrait of the Landau-Lifshtz-Slonczewski dynamics. Macrospin numerical simulations are in good agreement with the theoretical prediction and demonstrate reliable switching even for very short (below 100 ps) current pulses.
Liquid–liquid phase transition in hydrogen by coupled electron–ion Monte Carlo simulations
Pierleoni, Carlo; Morales, Miguel A.; Rillo, Giovanni; ...
2016-04-20
The phase diagram of high-pressure hydrogen is of great interest for fundamental research, planetary physics, and energy applications. A first-order phase transition in the fluid phase between a molecular insulating fluid and a monoatomic metallic fluid has been predicted. The existence and precise location of the transition line is relevant for planetary models. Recent experiments reported contrasting results about the location of the transition. Theoretical results based on density functional theory are also very scattered. We report highly accurate coupled electron-ion Monte Carlo calculations of this transition, finding results that lie between the two experimental predictions, close to that measuredmore » in diamond anvil cell experiments but at 25-30 GPa higher pressure. Here, the transition along an isotherm is signaled by a discontinuity in the specific volume, a sudden dissociation of the molecules, a jump in electrical conductivity, and loss of electron localization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baba, Justin S; Koju, Vijay; John, Dwayne O
2016-01-01
The modulation of the state of polarization of photons due to scatter generates associated geometric phase that is being investigated as a means for decreasing the degree of uncertainty in back-projecting the paths traversed by photons detected in backscattered geometry. In our previous work, we established that polarimetrically detected Berry phase correlates with the mean photon penetration depth of the backscattered photons collected for image formation. In this work, we report on the impact of state-of-linear-polarization (SOLP) filtering on both the magnitude and population distributions of image forming detected photons as a function of the absorption coefficient of the scatteringmore » sample. The results, based on Berry phase tracking implemented Polarized Monte Carlo Code, indicate that sample absorption plays a significant role in the mean depth attained by the image forming backscattered detected photons.« less
NASA Astrophysics Data System (ADS)
Takamatsu, Atsuko
2006-11-01
Three-oscillator systems with plasmodia of true slime mold, Physarum polycephalum, which is an oscillatory amoeba-like unicellular organism, were experimentally constructed and their spatio-temporal patterns were investigated. Three typical spatio-temporal patterns were found: rotation ( R), partial in-phase ( PI), and partial anti-phase with double frequency ( PA). In pattern R, phase differences between adjacent oscillators were almost 120 ∘. In pattern PI, two oscillators were in-phase and the third oscillator showed anti-phase against the two oscillators. In pattern PA, two oscillators showed anti-phase and the third oscillator showed frequency doubling oscillation with small amplitude. Actually each pattern is not perfectly stable but quasi-stable. Interestingly, the system shows spontaneous switching among the multiple quasi-stable patterns. Statistical analyses revealed a characteristic in the residence time of each pattern: the histograms seem to have Gamma-like distribution form but with a sharp peak and a tail on the side of long period. That suggests the attractor of this system has complex structure composed of at least three types of sub-attractors: a “Gamma attractor”-involved with several Poisson processes, a “deterministic attractor”-the residence time is deterministic, and a “stable attractor”-each pattern is stable. When the coupling strength was small, only the Gamma attractor was observed and switching behavior among patterns R, PI, and PA almost always via an asynchronous pattern named O. A conjecture is as follows: Internal/external noise exposes each pattern of R, PI, and PA coexisting around bifurcation points: That is observed as the Gamma attractor. As coupling strength increases, the deterministic attractor appears then followed by the stable attractor, always accompanied with the Gamma attractor. Switching behavior could be caused by regular existence of the Gamma attractor.
Signatures of a macroscopic switching transition for a dynamic microtubule
NASA Astrophysics Data System (ADS)
Aparna, J. S.; Padinhateeri, Ranjith; Das, Dibyendu
2017-04-01
Characterising complex kinetics of non-equilibrium self-assembly of bio-filaments is of general interest. Dynamic instability in microtubules, consisting of successive catastrophes and rescues, is observed to occur as a result of the non-equilibrium conversion of GTP-tubulin to GDP-tubulin. We study this phenomenon using a model for microtubule kinetics with GTP/GDP state-dependent polymerisation, depolymerisation and hydrolysis of subunits. Our results reveal a sharp switch-like transition in the mean velocity of the filaments, from a growth phase to a shrinkage phase, with an associated co-existence of the two phases. This transition is reminiscent of the discontinuous phase transition across the liquid-gas boundary. We probe the extent of discontinuity in the transition quantitatively using characteristic signatures such as bimodality in velocity distribution, variance and Binder cumulant, and also hysteresis behaviour of the system. We further investigate ageing behaviour in catastrophes of the filament, and find that the multi-step nature of catastrophes is intensified in the vicinity of the switching transition. This assumes importance in the context of Microtubule Associated Proteins which have the potential of altering kinetic parameter values.
Multistability in the lactose utilization network of Escherichia coli
NASA Astrophysics Data System (ADS)
Ozbudak, Ertugrul M.; Thattai, Mukund; Lim, Han N.; Shraiman, Boris I.; van Oudenaarden, Alexander
2004-02-01
Multistability, the capacity to achieve multiple internal states in response to a single set of external inputs, is the defining characteristic of a switch. Biological switches are essential for the determination of cell fate in multicellular organisms, the regulation of cell-cycle oscillations during mitosis and the maintenance of epigenetic traits in microbes. The multistability of several natural and synthetic systems has been attributed to positive feedback loops in their regulatory networks. However, feedback alone does not guarantee multistability. The phase diagram of a multistable system, a concise description of internal states as key parameters are varied, reveals the conditions required to produce a functional switch. Here we present the phase diagram of the bistable lactose utilization network of Escherichia coli. We use this phase diagram, coupled with a mathematical model of the network, to quantitatively investigate processes such as sugar uptake and transcriptional regulation in vivo. We then show how the hysteretic response of the wild-type system can be converted to an ultrasensitive graded response. The phase diagram thus serves as a sensitive probe of molecular interactions and as a powerful tool for rational network design.
Mao, Chen-Yu; Liao, Wei-Qiang; Wang, Zhong-Xia; Zafar, Zainab; Li, Peng-Fei; Lv, Xing-Hui; Fu, Da-Wei
2016-08-01
Molecular optical-electrical duple switches (switch "ON" and "OFF" bistable states) represent a class of highly desirable intelligent materials because of their sensitive switchable physical and/or chemical responses, simple and environmentally friendly processing, light weights, and mechanical flexibility. In the current work, the phase transition of 1 (general formula R2MX5, [C5N2H16]2[SbBr5]) can be triggered by the order-disorder transition of the organic cations at 278.3 K. The temperature-induced phase transition causes novel bistable optical-electrical duple characteristics, which indicates that 1 might be an excellent candidate for a potential switchable optical-electrical (fluorescence/dielectric) material. In the dielectric measurements, remarkable bistable dielectric responses were detected, accompanied by striking anisotropy along various crystallographic axes. For the intriguing fluorescence emission spectra, the intensity and position changed significantly with the occurrence of the structural phase transition. We believe that these findings might further promote the application of halogenoantimonates(III) and halogenobismuthates(III) in the field of optoelectronic multifunctional devices.
Forced Ion Migration for Chalcogenide Phase Change Memory Device
NASA Technical Reports Server (NTRS)
Campbell, Kristy A (Inventor)
2013-01-01
Non-volatile memory devices with two stacked layers of chalcogenide materials comprising the active memory device have been investigated for their potential as phase-change memories. The devices tested included GeTe/SnTe, Ge2Se3/SnTe, and Ge2Se3/SnSe stacks. All devices exhibited resistance switching behavior. The polarity of the applied voltage with respect to the SnTe or SnSe layer was critical to the memory switching properties, due to the electric field induced movement of either Sn or Te into the Ge-chalcogenide layer. One embodiment of the invention is a device comprising a stack of chalcogenide-containing layers which exhibit phase-change switching only after a reverse polarity voltage potential is applied across the stack causing ion movement into an adjacent layer and thus "activating" the device to act as a phase-change random access memory device or a reconfigurable electronics device when the applied voltage potential is returned to the normal polarity. Another embodiment of the invention is a device that is capable of exhibiting more than two data states.
Forced ion migration for chalcogenide phase change memory device
NASA Technical Reports Server (NTRS)
Campbell, Kristy A. (Inventor)
2011-01-01
Non-volatile memory devices with two stacked layers of chalcogenide materials comprising the active memory device have been investigated for their potential as phase change memories. The devices tested included GeTe/SnTe, Ge.sub.2Se.sub.3/SnTe, and Ge.sub.2Se.sub.3/SnSe stacks. All devices exhibited resistance switching behavior. The polarity of the applied voltage with respect to the SnTe or SnSe layer was critical to the memory switching properties, due to the electric field induced movement of either Sn or Te into the Ge-chalcogenide layer. One embodiment of the invention is a device comprising a stack of chalcogenide-containing layers which exhibit phase change switching only after a reverse polarity voltage potential is applied across the stack causing ion movement into an adjacent layer and thus "activating" the device to act as a phase change random access memory device or a reconfigurable electronics device when the applied voltage potential is returned to the normal polarity. Another embodiment of the invention is a device that is capable of exhibiting more that two data states.
Forced ion migration for chalcogenide phase change memory device
NASA Technical Reports Server (NTRS)
Campbell, Kristy A. (Inventor)
2012-01-01
Non-volatile memory devices with two stacked layers of chalcogenide materials comprising the active memory device have been investigated for their potential as phase-change memories. The devices tested included GeTe/SnTe, Ge.sub.2Se.sub.3/SnTe, and Ge.sub.2Se.sub.3/SnSe stacks. All devices exhibited resistance switching behavior. The polarity of the applied voltage with respect to the SnTe or SnSe layer was critical to the memory switching properties, due to the electric field induced movement of either Sn or Te into the Ge-chalcogenide layer. One embodiment of the invention is a device comprising a stack of chalcogenide-containing layers which exhibit phase-change switching only after a reverse polarity voltage potential is applied across the stack causing ion movement into an adjacent layer and thus "activating" the device to act as a phase-change random access memory device or a reconfigurable electronics device when the applied voltage potential is returned to the normal polarity. Another embodiment of the invention is a device that is capable of exhibiting more than two data states.
Lee, Woongkyu; Yoo, Sijung; Yoon, Kyung Jean; Yeu, In Won; Chang, Hye Jung; Choi, Jung-Hae; Hoffmann-Eifert, Susanne; Waser, Rainer; Hwang, Cheol Seong
2016-01-01
Identification of microstructural evolution of nanoscale conducting phase, such as conducting filament (CF), in many resistance switching (RS) devices is a crucial factor to unambiguously understand the electrical behaviours of the RS-based electronic devices. Among the diverse RS material systems, oxide-based redox system comprises the major category of these intriguing electronic devices, where the local, along both lateral and vertical directions of thin films, changes in oxygen chemistry has been suggested to be the main RS mechanism. However, there are systems which involve distinctive crystallographic phases as CF; the Magnéli phase in TiO2 is one of the very well-known examples. The current research reports the possible presence of distinctive local conducting phase in atomic layer deposited SrTiO3 RS thin film. The conducting phase was identified through extensive transmission electron microscopy studies, which indicated that oxygen-deficient Sr2Ti6O13 or Sr1Ti11O20 phase was presumably present mainly along the grain boundaries of SrTiO3 after the unipolar set switching in Pt/TiN/SrTiO3/Pt structure. A detailed electrical characterization revealed that the samples showed typical bipolar and complementary RS after the memory cell was unipolar reset. PMID:26830978
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Long; Berczik, Peter; Spurzem, Rainer
2014-01-10
The hierarchical galaxy formation picture suggests that supermassive black holes (SMBHs) observed in galactic nuclei today have grown from coalescence of massive black hole binaries (MBHB) after galaxy merging. Once the components of an MBHB become gravitationally bound, strong three-body encounters between the MBHB and stars dominate its evolution in a 'dry' gas-free environment and change the MBHB's energy and angular momentum (semimajor axis, eccentricity, and orientation). Here we present high-accuracy direct N-body simulations of spherical and axisymmetric (rotating) galactic nuclei with order of 10{sup 6} stars and two MBHs that are initially unbound. We analyze the properties of themore » ejected stars due to slingshot effects from three-body encounters with the MBHB in detail. Previous studies have investigated the eccentricity and energy changes of MBHs using approximate models or Monte Carlo three-body scatterings. We find general agreement with the average results of previous semi-analytic models for spherical galactic nuclei, but our results show a large statistical variation. Our new results show many more phase space details of how the process works, and also show the influence of stellar system rotation on the process. We detect that the angle between the orbital plane of the MBHBs and that of the stellar system (when it rotates) influences the phase-space properties of the ejected stars. We also find that MBHBs tend to switch stars with counter-rotating orbits into corotating orbits during their interactions.« less
NASA Astrophysics Data System (ADS)
Saiki, Toshiharu
2016-09-01
Control of localized surface plasmon resonance (LSPR) excited on metal nanostructures has drawn attention for applications in dynamic switching of plasmonic devices. As a reversible active media for LSPR control, chalcogenide phase-change materials (PCMs) such as GeSbTe (GST) are promising for high-contrast robust plasmonic switching. Owing to the plasticity and the threshold behavior during both amorphization and crystallization of PCMs, PCM-based LSPR switching elements possess a dual functionality of memory and processing. Integration of LSPR switching elements so that they interact with each other will allow us to build non-von-Neumann computing devices. As a specific demonstration, we discuss the implementation of a cellular automata (CA) algorithm into interacting LSPR switching elements. In the model we propose, PCM cells, which can be in one of two states (amorphous and crystalline), interact with each other by being linked by a AuNR, whose LSPR peak wavelength is determined by the phase of PCM cells on the both sides. The CA program proceeds by irradiating with a light pulse train. The local rule set is defined by the temperature rise in the PCM cells induced by the LSPR of the AuNR, which is subject to the intensity and wavelength of the irradiating pulse. We also investigate the possibility of solving a problem analogous to the spin-glass problem by using a coupled dipole system, in which the individual coupling strengths can be modified to optimize the system so that the exact solution can be easily reached. For this algorithm, we propose an implementation based on an idea that coupled plasmon particles can create long-range spatial correlations, and the interaction of this with a phase-change material allows the coupling strength to be modified.
NASA Astrophysics Data System (ADS)
Roy, Pinku; Maiti, Tanmoy
2018-02-01
Double perovskite materials have been studied in detail by many researchers, as their magnetic and electronic properties can be controlled by the substitution of alkaline earth metals or lanthanides in the A site and transition metals in the B site. Here we report the temperature-driven, p-n-type conduction switching assisted, large change in thermopower in La3+-doped Sr2TiFeO6-based double perovskites. Stoichiometric compositions of La x Sr2-x TiFeO6 (LSTF) with 0 ⩽ x ⩽ 0.25 were synthesized by the solid-state reaction method. Rietveld refinement of room-temperature XRD data confirmed a single-phase solid solution with cubic crystal structure and Pm\\bar{3}m space group. From temperature-dependent electrical conductivity and Seebeck coefficient (S) studies it is evident that all the compositions underwent an intermediate semiconductor-to-metal transition before the semiconductor phase reappeared at higher temperature. In the process of semiconductor-metal-semiconductor transition, LSTF compositions demonstrated temperature-driven p-n-type conduction switching behavior. The electronic restructuring which occurs due to the intermediate metallic phase between semiconductor phases leads to the colossal change in S for LSTF oxides. The maximum drop in thermopower (ΔS ~ 2516 µV K-1) was observed for LSTF with x = 0.1 composition. Owing to their enormous change in thermopower of the order of millivolts per kelvin, integrated with p-n-type resistance switching, these double perovskites can be used for various high-temperature multifunctional device applications such as diodes, sensors, switches, thermistors, thyristors, thermal runaway monitors etc. Furthermore, the conduction mechanisms of these oxides were explained by the small polaron hopping model.
NASA Technical Reports Server (NTRS)
Gallis, Michael A.; LeBeau, Gerald J.; Boyles, Katie A.
2003-01-01
The Direct Simulation Monte Carlo method was used to provide 3-D simulations of the early entry phase of the Shuttle Orbiter. Undamaged and damaged scenarios were modeled to provide calibration points for engineering "bridging function" type of analysis. Currently the simulation technology (software and hardware) are mature enough to allow realistic simulations of three dimensional vehicles.
Shift Work and Cognitive Flexibility: Decomposing Task Performance.
Cheng, Philip; Tallent, Gabriel; Bender, Thomas John; Tran, Kieulinh Michelle; Drake, Christopher L
2017-04-01
Deficits in cognitive functioning associated with shift work are particularly relevant to occupational performance; however, few studies have examined how cognitive functioning is associated with specific components of shift work. This observational study examined how circadian phase, nocturnal sleepiness, and daytime insomnia in a sample of shift workers ( N = 30) were associated with cognitive flexibility during the night shift. Cognitive flexibility was measured using a computerized task-switching paradigm, which produces 2 indexes of flexibility: switch cost and set inhibition. Switch cost represents the additional cognitive effort required in switching to a different task and can impact performance when multitasking is involved. Set inhibition is the efficiency in returning to previously completed tasks and represents the degree of cognitive perseveration, which can lead to reduced accuracy. Circadian phase was measured via melatonin assays, nocturnal sleepiness was assessed using the Multiple Sleep Latency Test, and daytime insomnia was assessed using the Insomnia Severity Index. Results indicated that those with an earlier circadian phase, insomnia, and sleepiness exhibited reduced cognitive flexibility; however, specific components of cognitive flexibility were differentially associated with circadian phase, insomnia, and sleepiness. Individuals with an earlier circadian phase (thus more misaligned to the night shift) exhibited larger switch costs, which was also associated with reduced task efficiency. Shift workers with more daytime insomnia demonstrated difficulties with cognitive inhibition, whereas nocturnal sleepiness was associated with difficulties in reactivating previous tasks. Deficits in set inhibition were also related to reduced accuracy and increased perseverative errors. Together, this study indicates that task performance deficits in shift work are complex and are variably impacted by different mechanisms. Future research may examine phenotypic differences in shift work and the associated consequences. Results also suggest that fatigue risk management strategies may benefit from increased scope and specificity in assessment of sleep, sleepiness, and circadian rhythms in shift workers.
Monte Carlo modeling the phase diagram of magnets with the Dzyaloshinskii - Moriya interaction
NASA Astrophysics Data System (ADS)
Belemuk, A. M.; Stishov, S. M.
2017-11-01
We use classical Monte Carlo calculations to model the high-pressure behavior of the phase transition in the helical magnets. We vary values of the exchange interaction constant J and the Dzyaloshinskii-Moriya interaction constant D, which is equivalent to changing spin-spin distances, as occurs in real systems under pressure. The system under study is self-similar at D / J = constant , and its properties are defined by the single variable J / T , where T is temperature. The existence of the first order phase transition critically depends on the ratio D / J . A variation of J strongly affects the phase transition temperature and width of the fluctuation region (the ;hump;) as follows from the system self-similarity. The high-pressure behavior of the spin system depends on the evolution of the interaction constants J and D on compression. Our calculations are relevant to the high pressure phase diagrams of helical magnets MnSi and Cu2OSeO3.
Quantum Monte Carlo study of the phase diagram of solid molecular hydrogen at extreme pressures
Drummond, N. D.; Monserrat, Bartomeu; Lloyd-Williams, Jonathan H.; Ríos, P. López; Pickard, Chris J.; Needs, R. J.
2015-01-01
Establishing the phase diagram of hydrogen is a major challenge for experimental and theoretical physics. Experiment alone cannot establish the atomic structure of solid hydrogen at high pressure, because hydrogen scatters X-rays only weakly. Instead, our understanding of the atomic structure is largely based on density functional theory (DFT). By comparing Raman spectra for low-energy structures found in DFT searches with experimental spectra, candidate atomic structures have been identified for each experimentally observed phase. Unfortunately, DFT predicts a metallic structure to be energetically favoured at a broad range of pressures up to 400 GPa, where it is known experimentally that hydrogen is non-metallic. Here we show that more advanced theoretical methods (diffusion quantum Monte Carlo calculations) find the metallic structure to be uncompetitive, and predict a phase diagram in reasonable agreement with experiment. This greatly strengthens the claim that the candidate atomic structures accurately model the experimentally observed phases. PMID:26215251
Switch for Good Community Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, Tabitha; Amran, Martha
2013-11-19
Switch4Good is an energy-savings program that helps residents reduce consumption from behavior changes; it was co-developed by Balfour Beatty Military Housing Management (BB) and WattzOn in Phase I of this grant. The program was offered at 11 Navy bases. Three customer engagement strategies were evaluated, and it was found that Digital Nudges (a combination of monthly consumption statements with frequent messaging via text or email) was most cost-effective. The program was delivered on-time and on-budget, and its success is based on the teamwork of local BB staff and the WattzOn team. The following graphic shows Switch4Good “by the numbers”, e.g.more » the scale of operations achieved during Phase I.« less
NASA Technical Reports Server (NTRS)
Wester, Gene W. (Inventor)
1980-01-01
A unity power factor converter capable of effecting either inversion (dc-to-dc) or rectification (ac-to-dc), and capable of providing bilateral power control from a DC source (or load) through an AC transmission line to a DC load (or source) for power flow in either direction, is comprised of comparators for comparing the AC current i with an AC signal i.sub.ref (or its phase inversion) derived from the AC ports to generate control signals to operate a switch control circuit for high speed switching to shape the AC current waveform to a sine waveform, and synchronize it in phase and frequency with the AC voltage at the AC ports, by selectively switching the connections to a series inductor as required to increase or decrease the current i.
A zero-voltage-switched three-phase interleaved buck converter
NASA Astrophysics Data System (ADS)
Hsieh, Yao-Ching; Huang, Bing-Siang; Lin, Jing-Yuan; Pham, Phu Hieu; Chen, Po-Hao; Chiu, Huang-Jen
2018-04-01
This paper proposes a three-phase interleaved buck converter which is composed of three identical paralleled buck converters. The proposed solution has three shunt inductors connected between each other of three basic buck conversion units. With the help of the shunt inductors, the MOSFET parasitic capacitances will resonate to achieve zero-voltage-switching. Furthermore, the decreasing rate of the current through the free-wheeling diodes is limited, and therefore, their reverse-recovery losses can be minimised. The active power switches are controlled by interleaved pulse-width modulation signals to reduce the input and output current ripples. Therefore, the filtering capacitances on the input and output sides can be reduced. The power efficiency is measured to be as high as 98% in experiment with a prototype circuit.
Pushing the limits of Monte Carlo simulations for the three-dimensional Ising model
NASA Astrophysics Data System (ADS)
Ferrenberg, Alan M.; Xu, Jiahao; Landau, David P.
2018-04-01
While the three-dimensional Ising model has defied analytic solution, various numerical methods like Monte Carlo, Monte Carlo renormalization group, and series expansion have provided precise information about the phase transition. Using Monte Carlo simulation that employs the Wolff cluster flipping algorithm with both 32-bit and 53-bit random number generators and data analysis with histogram reweighting and quadruple precision arithmetic, we have investigated the critical behavior of the simple cubic Ising Model, with lattice sizes ranging from 163 to 10243. By analyzing data with cross correlations between various thermodynamic quantities obtained from the same data pool, e.g., logarithmic derivatives of magnetization and derivatives of magnetization cumulants, we have obtained the critical inverse temperature Kc=0.221 654 626 (5 ) and the critical exponent of the correlation length ν =0.629 912 (86 ) with precision that exceeds all previous Monte Carlo estimates.
NASA Astrophysics Data System (ADS)
Le Foll, S.; André, F.; Delmas, A.; Bouilly, J. M.; Aspa, Y.
2012-06-01
A backward Monte Carlo method for modelling the spectral directional emittance of fibrous media has been developed. It uses Mie theory to calculate the radiative properties of single fibres, modelled as infinite cylinders, and the complex refractive index is computed by a Drude-Lorenz model for the dielectric function. The absorption and scattering coefficient are homogenised over several fibres, but the scattering phase function of a single one is used to determine the scattering direction of energy inside the medium. Sensitivity analysis based on several Monte Carlo results has been performed to estimate coefficients for a Multi-Linear Model (MLM) specifically developed for inverse analysis of experimental data. This model concurs with the Monte Carlo method and is highly computationally efficient. In contrast, the surface emissivity model, which assumes an opaque medium, shows poor agreement with the reference Monte Carlo calculations.
Final Engineering Report - Phase I HYCOS (Hydraulic Check Out System)
1976-07-30
34 Shock Strut Pressure/Level Concept 37 35 Pressure vs Temperature Variation 40 36 Temperature Compensated Pressure Switch (Concept) 41 37...Temperature Compensated Pressure Switch (NEO-DYNE) ... 42 38 Deslccant Saturation Monitor 43 39 HIAC Model PC-120 Contamination Monitor 44 40...variables. If a thermal compensated pressure switch is utilized which has the same operating slope as the ideal gaa, then a low charge can be
Socioeconomic Impact Assessment: Communications Industry. Phase III. Technology Forecast.
1979-02-02
8217. Some add-on devices , such as automatic answering systems, have already penetrated the home market substantially. In the future, however, ( major changes ...equipment. This class includes garage door openers, wireless micro- phones , cordless telephones, and radio and TV receivers. These -( devices can...ACUMENICS 1-9 1.2.2 Switching Devices The first automatic switching devices which began to replace operator-switched telephone traffic in the early
Nonvolatile Ionic Two-Terminal Memory Device
NASA Technical Reports Server (NTRS)
Williams, Roger M.
1990-01-01
Conceptual solid-state memory device nonvolatile and erasable and has only two terminals. Proposed device based on two effects: thermal phase transition and reversible intercalation of ions. Transfer of sodium ions between source of ions and electrical switching element increases or decreases electrical conductance of element, turning switch "on" or "off". Used in digital computers and neural-network computers. In neural networks, many small, densely packed switches function as erasable, nonvolatile synaptic elements.
NASA Astrophysics Data System (ADS)
Shankaraiah, N.; Murthy, K. P. N.; Lookman, T.; Shenoy, S. R.
2015-06-01
Entropy barriers and aging states appear in martensitic structural-transition models, slowly re-equilibrating after temperature quenches, under Monte Carlo dynamics. Concepts from protein folding and aging harmonic oscillators turn out to be useful in understanding these nonequilibrium evolutions. We show how the athermal, nonactivated delay time for seeded parent-phase austenite to convert to product-phase martensite arises from an identified entropy barrier in Fourier space. In an aging state of low Monte Carlo acceptances, the strain structure factor makes constant-energy searches for rare pathways to enter a Brillouin zone "golf hole" enclosing negative-energy states, and to suddenly release entropically trapped stresses. In this context, a stress-dependent effective temperature can be defined, that re-equilibrates to the quenched bath temperature.
A Superconducting Dual-Channel Photonic Switch.
Srivastava, Yogesh Kumar; Manjappa, Manukumara; Cong, Longqing; Krishnamoorthy, Harish N S; Savinov, Vassili; Pitchappa, Prakash; Singh, Ranjan
2018-06-05
The mechanism of Cooper pair formation and its underlying physics has long occupied the investigation into high temperature (high-T c ) cuprate superconductors. One of the ways to unravel this is to observe the ultrafast response present in the charge carrier dynamics of a photoexcited specimen. This results in an interesting approach to exploit the dissipation-less dynamic features of superconductors to be utilized for designing high-performance active subwavelength photonic devices with extremely low-loss operation. Here, dual-channel, ultrafast, all-optical switching and modulation between the resistive and the superconducting quantum mechanical phase is experimentally demonstrated. The ultrafast phase switching is demonstrated via modulation of sharp Fano resonance of a high-T c yttrium barium copper oxide (YBCO) superconducting metamaterial device. Upon photoexcitation by femtosecond light pulses, the ultrasensitive cuprate superconductor undergoes dual dissociation-relaxation dynamics, with restoration of superconductivity within a cycle, and thereby establishes the existence of dual switching windows within a timescale of 80 ps. Pathways are explored to engineer the secondary dissociation channel which provides unprecedented control over the switching speed. Most importantly, the results envision new ways to accomplish low-loss, ultrafast, and ultrasensitive dual-channel switching applications that are inaccessible through conventional metallic and dielectric based metamaterials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
High-Power X-Band Semiconductor RF Switch for Pulse Compression Systems of Future Colliders
NASA Astrophysics Data System (ADS)
Tantawi, Sami G.; Tamura, Fumihiko
2000-04-01
We describe the potential of semiconductor X-band RF switch arrays as a means of developing high power RF pulse compression systems for future linear colliders. The switch systems described here have two designs. Both designs consist of two 3dB hybrids and active modules. In the first design the module is composed of a cascaded active phase shifter. In the second design the module uses arrays of SPST (Single Pole Single Throw) switches. Each cascaded element of the phase shifter and the SPST switch has similar design. The active element consists of symmetrical three-port tee-junctions and an active waveguide window in the symmetrical arm of the tee-junction. The design methodology of the elements and the architecture of the whole switch system are presented. We describe the scaling law that governs the relation between power handling capability and number of elements. The design of the active waveguide window is presented. The waveguide window is a silicon wafer with an array of four hundred PIN/NIP diodes covering the surface of the window. This waveguide window is located in an over-moded TE01 circular waveguide. The results of high power RF measurements of the active waveguide window are presented. The experiment is performed at power levels of tens of megawatts at X-band.
Power requirements reducing of FBG based all-optical switching
NASA Astrophysics Data System (ADS)
Scholtz, Ľubomír.; Solanská, Michaela; Ladányi, Libor; Müllerová, Jarmila
2017-12-01
Although Fiber Bragg gratings (FBGs) are well known devices, their using as all-optical switching elements has been still examined. Current research is focused on optimization of their properties for their using in future all-optical networks. The main problem are high switching intensities needed for achieving the changes of the transmission state. Over several years switching intensities have been reduced from hundreds of GW/cm2 to tens of MW/cm2 by selecting appropriate gratings and signal parameters or using suitable materials. Two principal nonlinear effects with similar power requirements can result in the bistable transmission/reflection of an input optical pulse. In the self-phase modulation (SPM) regime switching is achieved by the intense probe pulse itself. Using cross-phase modulation (XPM) a strong pump alters the FBG refractive index experienced by a weak probe pulse. As a result of this the detuning of the probe pulse from the center of the photonic band gap occurs. Using of XPM the effect of modulation instability is reduced. Modulation instability which is the main SPM degradation mechanism. We focused on nonlinear FBGs based on chalcogenide glasses which are very often used in various applications. Thanks to high nonlinear parameters chalcogenide glasses are suitable candidates for reducing switching intensities of nonlinear FBGs.
Dead-time optimisation with reducing voltage distortion for nine-switch inverter
NASA Astrophysics Data System (ADS)
Alizadeh Pahlavani, Mohamadreza; Sanatgar Hasankiadeh, Meisam; Bali Lashak, Aref
2018-03-01
Nine-switch inverter with two sets of three-phase outputs is an improved topology proposed in place of the 12-switch back-to-back converters and has therefore attracted much attention in recent years. This inverter can be used with two conventional pulse width modulation approaches: different frequency and the constant frequency. One disadvantage of using this modulation method is the possibility of short-circuits in the legs (shoot-through), which decreases the reliability of converter and system. This paper presents a new modulation technique, in which switching pulses of nine-switch inverter are produced by not only the original carrier signals but also through two auxiliary carrier signals. In this method, adjustable three-phase voltages are produced in the inverter's terminals, and so there is no possibility of any shoot-through in the inverter's legs. The suggested reliable modulation approach does not rely on any information about the load polarity, as switching is performed by a simple and reliable algorithm. The result is the considerably better waveform quality of the output voltages in comparison with other methods. To verify the analysis, an experimental platform based on DSP is built. The simulation and experimental results are given to demonstrate the effectiveness and feasibility of this new approach.
NASA Astrophysics Data System (ADS)
Ikezoe, R.; Ichimura, M.; Okada, T.; Itagaki, J.; Hirata, M.; Sumida, S.; Jang, S.; Izumi, K.; Tanaka, A.; Yoshikawa, M.; Kohagura, J.; Sakamoto, M.; Nakashima, Y.
2017-03-01
A two-channel microwave reflectometer system with fast microwave antenna switching capability was developed and applied to the GAMMA 10 tandem mirror device to study high-frequency small-amplitude fluctuations in a hot mirror plasma. The fast switching of the antennas is controlled using PIN diode switches, which offers the significant advantage of reducing the number of high-cost microwave components and digitizers with high bandwidths and large memory that are required to measure the spatiotemporal behavior of the high-frequency fluctuations. The use of two channels rather than one adds the important function of a simultaneous two-point measurement in either the radial direction or the direction of the antenna array to measure the phase profile of the fluctuations along with the normal amplitude profile. The density fluctuations measured using this system clearly showed the high-frequency coherent fluctuations that are associated with Alfvén-ion-cyclotron (AIC) waves in GAMMA 10. A correlation analysis applied to simultaneously measured density fluctuations showed that the phase component that was included in a reflected microwave provided both high coherence and a clear phase difference for the AIC waves, while the amplitude component showed neither significant coherence nor clear phase difference. The axial phase differences of the AIC waves measured inside the hot plasma confirmed the formation of a standing wave structure. The axial variation of the radial profiles was evaluated and a clear difference was found among the AIC waves for the first time, which would be a key to clarify the unknown boundary conditions of the AIC waves.
Cascaded Converters for Integration and Management of Grid Level Energy Storage Systems
NASA Astrophysics Data System (ADS)
Alaas, Zuhair
This research work proposes two cascaded multilevel inverter structures for BESS. The gating and switching control of switching devices in both inverter typologies are done by using a phase-shifted PWM scheme. The first proposed isolated multilevel inverter is made up of three-phase six-switch inverter blocks with a reduced number of power components compared with traditional isolated CHB. The suggested isolated converter has only one battery string for three-phase system that can be used for high voltage and high power applications such as grid connected BESS and alternative energy systems. The isolated inverter enables dq frame based simple control and eliminates the issues of single-phase pulsating power, which can cause detrimental impacts on certain dc sources. Simulation studies have been carried out to compare the proposed isolated multi-level inverter with an H-bridge cascaded transformer inverter. The simulation results verified the performance of the isolated inverter. The second proposed topology is a Hierarchal Cascaded Multilevel Converter (HCMC) with phase to phase SOC balancing capability which also for high voltage and high power battery energy storage systems. The HCMC has a hybrid structure of half-bridge converters and H-bridge inverters and the voltage can be hierarchically cascaded to reach the desired value at the half-bridge and the H-bridge levels. The uniform SOC battery management is achieved by controlling the half-bridge converters that are connected to individual battery modules/cells. Simulation studies and experimental results have been carried on a large scale battery system under different operating conditions to verify the effectiveness of the proposed inverters. Moreover, this dissertation presents a new three-phase SOC equalizing circuit, called six-switch energy-level balancing circuit (SSBC), which can be used to realize uniform SOC operation for full utilization of the battery capacity in proposed HCMC or any CMI inverter while keeping balanced three-phase operation. A sinusoidal PWM modulation technique is used to control power transferring between phases. Simulation results have been carried out to verify the performance of the proposed SSBC circuit of uniform three-phase SOC balancing.
Transmitter switch for high-power microwave output
NASA Technical Reports Server (NTRS)
Wiggins, C. P.; Leu, R. K.
1975-01-01
Combiner system can be used for combining output powers of two transmitters or for switching from one to the other. This can be done when pair of transmitters operate on same frequency and carriers are phase coherent as by excitation from single exciter.
NASA Astrophysics Data System (ADS)
Saakian, David B.
2012-03-01
We map the Markov-switching multifractal model (MSM) onto the random energy model (REM). The MSM is, like the REM, an exactly solvable model in one-dimensional space with nontrivial correlation functions. According to our results, four different statistical physics phases are possible in random walks with multifractal behavior. We also introduce the continuous branching version of the model, calculate the moments, and prove multiscaling behavior. Different phases have different multiscaling properties.
Sax, Paul E; Dejesus, Edwin; Crofoot, Gordon; Ward, Douglas; Benson, Paul; Dretler, Robin; Mills, Anthony; Brinson, Cynthia; Wei, Xuelian; Collins, Sean E; Cheng, Andrew
2018-05-22
: A phase 2, randomized, active-controlled study of initial antiretroviral therapy with bictegravir or dolutegravir in combination with emtricitabine and tenofovir alafenamide showed excellent efficacy. After 60 weeks of blinded treatment, participants switched to a single tablet regimen of bictegravir, emtricitabine and tenofovir alafenamide. Switching maintained viral suppression in all participants who chose to remain on the study through at least 12 weeks in the open-label phase, was safe and well tolerated.
A new two-phase homopolar switched reluctance motor for electric vehicle applications
NASA Astrophysics Data System (ADS)
Tsai, Mi-Ching; Huang, Chien-Chin; Huang, Zheng-Yi
2003-12-01
This paper presents a novel 2-phase homopolar switched reluctance motor (SRM), whose design successfully avoids dead-zone problems that afflict low cost 1- and/or 2-phase SRMs. Unlike conventional radial-winding-radial-gap motors, the proposed SRM has an interior stator that is of the pancake type with axial winding. Such a design allows for a high slot-fill factor and is suitable for implementation as a flat pancake-shaped stator. An efficient, compact prototype was produced with TMS320F240 DSP driving control unit. Experimental results indicate that the present SRM design has the potential to be used for electric bicycles and scooters.
NASA Astrophysics Data System (ADS)
Boström, Mathias; Dou, Maofeng; Malyi, Oleksandr I.; Parashar, Prachi; Parsons, Drew F.; Brevik, Iver; Persson, Clas
2018-03-01
We analyze the Lifshitz pressure between silica and tin separated by a liquid mixture of bromobenzene and chlorobenzene. We show that the phase transition from semimetallic α -Sn to metallic β -Sn can switch Lifshitz forces from repulsive to attractive. This effect is caused by the difference in dielectric functions of α -Sn and β -Sn , giving both attractive and repulsive contributions to the total Lifshitz pressure in different frequency regions controlled by the composition of the intervening liquid mixture. In this way, one may be able to produce phase-transition-controlled quantum levitation in a liquid medium.
NASA Astrophysics Data System (ADS)
Jeon, J.; Jung, J.; Chow, K. H.
2017-12-01
We report the coexistence of non-volatile bi-polar resistive switching (RS) and tunneling magnetoresistance (TMR) in spatially confined La0.3Pr0.4Ca0.3MnO3 films grown on LaAlO3 substrates. At certain temperatures, the arrangement of electronic phase domains in these narrow systems mimics those found in heterostructured metal-insulator-metal devices. The relative spin orientations between adjacent ferromagnetic metallic phase domains enable the TMR effect, while the creation/annihilation of conduction filaments between the metallic phase domains produces the RS effect.
NASA Astrophysics Data System (ADS)
Ziti, S.; Aouini, S.; Labrim, H.; Bahmad, L.
2017-02-01
We study the magnetic layering transitions in a polyamidoamine (PAMAM) dendrimer nano-structure, under the effect of an external magnetic field. We examine the magnetic properties, of this model of the spin S=1 Ising ferromagnetic in real nanostructure used in several scientific domains. For T=0, we give and discuss the ground state phase diagrams. At non null temperatures, we applied the Monte Carlo simulations giving important results summarized in the form of the phase diagrams. We also analyzed the effect of varying the external magnetic field, and found the layering transitions in the polyamidoamine (PAMAM) dendrimer nano-structure.
Studies of ZVS soft switching of dual-active-bridge isolated bidirectional DC-DC converters
NASA Astrophysics Data System (ADS)
Xu, Fei; Zhao, Feng; Shi, Qibiao; Wen, Xuhui
2018-05-01
To operate dual-active-bridge isolated bidirectional dc- dc converter (DAB) at high efficiency, the two bridge switches must operate with Zero-Voltage-Switching (ZVS) over as wide an operating range as possible. This paper proposes a new perspective on realizing ZVS in dead-time. An exact theoretical analysis and mathematical mode is built to explain the process of ZVS switching in dead-time under Single Phase Shift (SPS) control strategy. In order to assure the two bridge switches operate on soft switching, every SPS switching point is analyzed. Generally, dead-time will be determined when the power electronic devices is selected. The key factor to realizing ZVS is the size of the end time of resonance comparing to dead-time. Through detailed analysis, it can obtain the conditions of all switches achieving ZVS turn-on and turn-off. Finally, simulation validates the theoretical analysis and some advice are given to realize the ZVS soft switching.
LANDSAT-D investigations in snow hydrology
NASA Technical Reports Server (NTRS)
Dozier, J.
1983-01-01
The atmospheric radiative transfer calculation program (ATARD) and its supporting programs (setting up atmospheric profile, making Mie tables and an exponential-sum-fitting table) were completed. More sophisticated treatment of aerosol scattering (including angular phase function or asymmetric factor) and multichannel analysis of results from ATRAD are being developed. Some progress was made on a Monte Carlo program for examining two dimensional effects, specifically a surface boundary condition that varies across a scene. The MONTE program combines ATRAD and the Monte Carlo method together to produce an atmospheric point spread function. Currently the procedure passes monochromatic tests and the results are reasonable.
Mixed-Mode Operation of Hybrid Phase-Change Nanophotonic Circuits.
Lu, Yegang; Stegmaier, Matthias; Nukala, Pavan; Giambra, Marco A; Ferrari, Simone; Busacca, Alessandro; Pernice, Wolfram H P; Agarwal, Ritesh
2017-01-11
Phase change materials (PCMs) are highly attractive for nonvolatile electrical and all-optical memory applications because of unique features such as ultrafast and reversible phase transitions, long-term endurance, and high scalability to nanoscale dimensions. Understanding their transient characteristics upon phase transition in both the electrical and the optical domains is essential for using PCMs in future multifunctional optoelectronic circuits. Here, we use a PCM nanowire embedded into a nanophotonic circuit to study switching dynamics in mixed-mode operation. Evanescent coupling between light traveling along waveguides and a phase-change nanowire enables reversible phase transition between amorphous and crystalline states. We perform time-resolved measurements of the transient change in both the optical transmission and resistance of the nanowire and show reversible switching operations in both the optical and the electrical domains. Our results pave the way toward on-chip multifunctional optoelectronic integrated devices, waveguide integrated memories, and hybrid processing applications.
Belosi, Maria F; Rodriguez, Miguel; Fogliata, Antonella; Cozzi, Luca; Sempau, Josep; Clivio, Alessandro; Nicolini, Giorgia; Vanetti, Eugenio; Krauss, Harald; Khamphan, Catherine; Fenoglietto, Pascal; Puxeu, Josep; Fedele, David; Mancosu, Pietro; Brualla, Lorenzo
2014-05-01
Phase-space files for Monte Carlo simulation of the Varian TrueBeam beams have been made available by Varian. The aim of this study is to evaluate the accuracy of the distributed phase-space files for flattening filter free (FFF) beams, against experimental measurements from ten TrueBeam Linacs. The phase-space files have been used as input in PRIMO, a recently released Monte Carlo program based on the PENELOPE code. Simulations of 6 and 10 MV FFF were computed in a virtual water phantom for field sizes 3 × 3, 6 × 6, and 10 × 10 cm(2) using 1 × 1 × 1 mm(3) voxels and for 20 × 20 and 40 × 40 cm(2) with 2 × 2 × 2 mm(3) voxels. The particles contained in the initial phase-space files were transported downstream to a plane just above the phantom surface, where a subsequent phase-space file was tallied. Particles were transported downstream this second phase-space file to the water phantom. Experimental data consisted of depth doses and profiles at five different depths acquired at SSD = 100 cm (seven datasets) and SSD = 90 cm (three datasets). Simulations and experimental data were compared in terms of dose difference. Gamma analysis was also performed using 1%, 1 mm and 2%, 2 mm criteria of dose-difference and distance-to-agreement, respectively. Additionally, the parameters characterizing the dose profiles of unflattened beams were evaluated for both measurements and simulations. Analysis of depth dose curves showed that dose differences increased with increasing field size and depth; this effect might be partly motivated due to an underestimation of the primary beam energy used to compute the phase-space files. Average dose differences reached 1% for the largest field size. Lateral profiles presented dose differences well within 1% for fields up to 20 × 20 cm(2), while the discrepancy increased toward 2% in the 40 × 40 cm(2) cases. Gamma analysis resulted in an agreement of 100% when a 2%, 2 mm criterion was used, with the only exception of the 40 × 40 cm(2) field (∼95% agreement). With the more stringent criteria of 1%, 1 mm, the agreement reduced to almost 95% for field sizes up to 10 × 10 cm(2), worse for larger fields. Unflatness and slope FFF-specific parameters are in line with the possible energy underestimation of the simulated results relative to experimental data. The agreement between Monte Carlo simulations and experimental data proved that the evaluated Varian phase-space files for FFF beams from TrueBeam can be used as radiation sources for accurate Monte Carlo dose estimation, especially for field sizes up to 10 × 10 cm(2), that is the range of field sizes mostly used in combination to the FFF, high dose rate beams.
Interface dynamics and crystal phase switching in GaAs nanowires
NASA Astrophysics Data System (ADS)
Jacobsson, Daniel; Panciera, Federico; Tersoff, Jerry; Reuter, Mark C.; Lehmann, Sebastian; Hofmann, Stephan; Dick, Kimberly A.; Ross, Frances M.
2016-03-01
Controlled formation of non-equilibrium crystal structures is one of the most important challenges in crystal growth. Catalytically grown nanowires are ideal systems for studying the fundamental physics of phase selection, and could lead to new electronic applications based on the engineering of crystal phases. Here we image gallium arsenide (GaAs) nanowires during growth as they switch between phases as a result of varying growth conditions. We find clear differences between the growth dynamics of the phases, including differences in interface morphology, step flow and catalyst geometry. We explain these differences, and the phase selection, using a model that relates the catalyst volume, the contact angle at the trijunction (the point at which solid, liquid and vapour meet) and the nucleation site of each new layer of GaAs. This model allows us to predict the conditions under which each phase should be observed, and use these predictions to design GaAs heterostructures. These results could apply to phase selection in other nanowire systems.
Interface dynamics and crystal phase switching in GaAs nanowires.
Jacobsson, Daniel; Panciera, Federico; Tersoff, Jerry; Reuter, Mark C; Lehmann, Sebastian; Hofmann, Stephan; Dick, Kimberly A; Ross, Frances M
2016-03-17
Controlled formation of non-equilibrium crystal structures is one of the most important challenges in crystal growth. Catalytically grown nanowires are ideal systems for studying the fundamental physics of phase selection, and could lead to new electronic applications based on the engineering of crystal phases. Here we image gallium arsenide (GaAs) nanowires during growth as they switch between phases as a result of varying growth conditions. We find clear differences between the growth dynamics of the phases, including differences in interface morphology, step flow and catalyst geometry. We explain these differences, and the phase selection, using a model that relates the catalyst volume, the contact angle at the trijunction (the point at which solid, liquid and vapour meet) and the nucleation site of each new layer of GaAs. This model allows us to predict the conditions under which each phase should be observed, and use these predictions to design GaAs heterostructures. These results could apply to phase selection in other nanowire systems.
Electrical switching dynamics and broadband microwave characteristics of VO2 radio frequency devices
NASA Astrophysics Data System (ADS)
Ha, Sieu D.; Zhou, You; Fisher, Christopher J.; Ramanathan, Shriram; Treadway, Jacob P.
2013-05-01
Vanadium dioxide (VO2) is a correlated electron system that features a metal-insulator phase transition (MIT) above room temperature and is of interest in high speed switching devices. Here, we integrate VO2 into two-terminal coplanar waveguides and demonstrate a large resistance modulation of the same magnitude (>103) in both electrically (i.e., by bias voltage, referred to as E-MIT) and thermally (T-MIT) driven transitions. We examine transient switching characteristics of the E-MIT and observe two distinguishable time scales for switching. We find an abrupt jump in conductivity with a rise time of the order of 10 ns followed by an oscillatory damping to steady state on the order of several μs. We characterize the RF power response in the On state and find that high RF input power drives VO2 further into the metallic phase, indicating that electromagnetic radiation-switching of the phase transition may be possible. We measure S-parameter RF properties up to 13.5 GHz. Insertion loss is markedly flat at 2.95 dB across the frequency range in the On state, and sufficient isolation of over 25 dB is observed in the Off state. We are able to simulate the RF response accurately using both lumped element and 3D electromagnetic models. Extrapolation of our results suggests that optimizing device geometry can reduce insertion loss further and maintain broadband flatness up to 40 GHz.
Simulation studies of phase inversion in agitated vessels using a Monte Carlo technique.
Yeo, Leslie Y; Matar, Omar K; Perez de Ortiz, E Susana; Hewitt, Geoffrey F
2002-04-15
A speculative study on the conditions under which phase inversion occurs in agitated liquid-liquid dispersions is conducted using a Monte Carlo technique. The simulation is based on a stochastic model, which accounts for fundamental physical processes such as drop deformation, breakup, and coalescence, and utilizes the minimization of interfacial energy as a criterion for phase inversion. Profiles of the interfacial energy indicate that a steady-state equilibrium is reached after a sufficiently large number of random moves and that predictions are insensitive to initial drop conditions. The calculated phase inversion holdup is observed to increase with increasing density and viscosity ratio, and to decrease with increasing agitation speed for a fixed viscosity ratio. It is also observed that, for a fixed viscosity ratio, the phase inversion holdup remains constant for large enough agitation speeds. The proposed model is therefore capable of achieving reasonable qualitative agreement with general experimental trends and of reproducing key features observed experimentally. The results of this investigation indicate that this simple stochastic method could be the basis upon which more advanced models for predicting phase inversion behavior can be developed.
Appearance of superconductivity at the vacancy order-disorder boundary in KxFe2 -ySe2
NASA Astrophysics Data System (ADS)
Duan, Chunruo; Yang, Junjie; Ren, Yang; Thomas, Sean M.; Louca, Despina
2018-05-01
The role of phase separation and the effect of Fe-vacancy ordering in the emergence of superconductivity in alkali metal doped iron selenides AxFe2 -ySe2 (A = K, Rb, Cs) is explored. High energy x-ray diffraction and Monte Carlo simulation were used to investigate the crystal structure of quenched superconducting (SC) and as-grown nonsuperconducting (NSC) KxFe2 -ySe2 single crystals. The coexistence of superlattice structures with the in-plane √{2 }×√{2 } K-vacancy ordering and the √{5 }×√{5 } Fe-vacancy ordering were observed in both the SC and NSC crystals alongside the I4/mmm Fe-vacancy-free phase. Moreover, in the SC crystals, an Fe-vacancy-disordered phase is additionally proposed to be present. Monte Carlo simulations suggest that it appears at the boundary between the I4/mmm vacancy-free phase and the I4/m vacancy-ordered phases (√{5 }×√{5 } ). The vacancy-disordered phase is nonmagnetic and is most likely the host of superconductivity.
Cohen, Jeffrey A; Khatri, Bhupendra; Barkhof, Frederik; Comi, Giancarlo; Hartung, Hans-Peter; Montalban, Xavier; Pelletier, Jean; Stites, Tracy; Ritter, Shannon; von Rosenstiel, Philipp; Tomic, Davorka; Kappos, Ludwig
2016-05-01
The 12-month (M), phase 3, double-blind, randomised TRANSFORMS study demonstrated significant benefits of fingolimod 0.5 or 1.25 mg over interferon β-1a (IFNβ-1a) in patients with relapsing-remitting multiple sclerosis. We report the results of long-term (up to 4.5 years) extension of TRANSFORMS. Patients randomised to fingolimod (0.5/1.25 mg) in the core phase continued the same dose (continuous-fingolimod) in the extension, whereas those on IFNβ-1a were re-randomised (1:1) to fingolimod (IFN-switch; IFN: 0.5/1.25 mg). Outcomes included annualised relapse rate (ARR), confirmed disability progression and MRI measures. Results are presented here for the continuous-fingolimod 0.5 mg and pooled IFN-switch groups. Of the 1027 patients who entered the extension, 772 (75.2%) completed the study. From baseline to the end of the study (EOS), ARR in patients on continuous-fingolimod 0.5 mg was significantly lower than in the IFN-switch group (M0-EOS: 0.17 vs 0.27). After switching to fingolimod (M0-12 vs M13-EOS), patients initially treated with IFN had a 50% reduction in ARR (0.40 vs 0.20), reduced MRI activity and a lower rate of brain volume loss. In a post hoc analysis, the proportion of IFN-switch patients with no evidence of disease activity increased by approximately 50% in the first year after switching to fingolimod treatment (44.3% to 66.0%). The safety profile was consistent with that observed in the core phase. These results support a continued effect of long-term fingolimod therapy in maintaining a low rate of disease activity and sustained improved efficacy after switching from IFNβ-1a to fingolimod. NCT00340834. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Comparison of Quantum and Classical Monte Carlo on a Simple Model Phase Transition
NASA Astrophysics Data System (ADS)
Cohen, D. E.; Cohen, R. E.
2005-12-01
Most simulations of phase transitions in minerals use classical molecular dynamics or classical Monte Carlo. However, it is known that in some cases, quantum effects are quite large, even for perovskite oxides [1]. We have studied the simplest model of a phase transition where this can be tested, that of interacting of double wells with an infinite- range interaction. The energy is E = ∑i (-A xi2 + B xi4 + ξ xi) . We used the same parameters used in a study of vibrational spectra and soft- mode behavior [4], A=0.01902, B=0.14294, ξ=0.025 in Hartree atomic units. This gives Tc of about 400 K. We varied the oscillator mass from 18 to 100. Classical Monte Carlo and path integral Monte Carlo (PIMC) were performed on this model. The maximum effect was for the lightest mass, in which PIMC gave a 75K lower Tc than the classical simulation. This is similar to the reduction in Tc observed in PIMC simulations for BaTiO3 at zero pressure [1]. We will explore the effects of varying the well depths. Shallower wells would show a greater quantum effect, as was seen in the high pressure BaTiO3 simulations, since pressure reduces the double well depths [5]. [1] Iniguez, J. & Vanderbilt, D. First-principles study of the temperature-pressure phase diagram of BaTiO3. Phys. Rev. Lett. 89, 115503 (2002). [2] Gillis, N. S. & Koehler, T. R. Phase transitions in a simple model ferroelectric-- -comparison of exact and variational treatments of a molecular-field Hamiltonian. Phys. Rev. B 9, 3806 (1974). [3] Koehler, T. R. & Gillis, N. S. Phase Transitions in a Model of Interacting Anharmonic Oscillators. Phys. Rev. B 7, 4980 (1973). [4] Flocken, J. W., Guenther, R. A., Hardy, J. R. & Boyer, L. L. Dielectric response spectrum of a damped one-dimensional double-well oscillator. Phys. Rev. B 40, 11496-11501 (1989). [5] Cohen, R. E. Origin of ferroelectricity in oxide ferroelectrics and the difference in ferroelectric behavior of BaTiO3 and PbTiO3. Nature 358, 136-138 (1992).
Atack, John M; Srikhanta, Yogitha N; Fox, Kate L; Jurcisek, Joseph A; Brockman, Kenneth L; Clark, Tyson A; Boitano, Matthew; Power, Peter M; Jen, Freda E-C; McEwan, Alastair G; Grimmond, Sean M; Smith, Arnold L; Barenkamp, Stephen J; Korlach, Jonas; Bakaletz, Lauren O; Jennings, Michael P
2015-07-28
Non-typeable Haemophilus influenzae contains an N(6)-adenine DNA-methyltransferase (ModA) that is subject to phase-variable expression (random ON/OFF switching). Five modA alleles, modA2, modA4, modA5, modA9 and modA10, account for over two-thirds of clinical otitis media isolates surveyed. Here, we use single molecule, real-time (SMRT) methylome analysis to identify the DNA-recognition motifs for all five of these modA alleles. Phase variation of these alleles regulates multiple proteins including vaccine candidates, and key virulence phenotypes such as antibiotic resistance (modA2, modA5, modA10), biofilm formation (modA2) and immunoevasion (modA4). Analyses of a modA2 strain in the chinchilla model of otitis media show a clear selection for ON switching of modA2 in the middle ear. Our results indicate that a biphasic epigenetic switch can control bacterial virulence, immunoevasion and niche adaptation in an animal model system.
NASA Astrophysics Data System (ADS)
Yao, Lide; Inkinen, Sampo; van Dijken, Sebastiaan
2017-02-01
Resistive switching in transition metal oxides involves intricate physical and chemical behaviours with potential for non-volatile memory and memristive devices. Although oxygen vacancy migration is known to play a crucial role in resistive switching of oxides, an in-depth understanding of oxygen vacancy-driven effects requires direct imaging of atomic-scale dynamic processes and their real-time impact on resistance changes. Here we use in situ transmission electron microscopy to demonstrate reversible switching between three resistance states in epitaxial La2/3Sr1/3MnO3 films. Simultaneous high-resolution imaging and resistance probing indicate that the switching events are caused by the formation of uniform structural phases. Reversible horizontal migration of oxygen vacancies within the manganite film, driven by combined effects of Joule heating and bias voltage, predominantly triggers the structural and resistive transitions. Our findings open prospects for ionotronic devices based on dynamic control of physical properties in complex oxide nanostructures.
Direct real-time neural evidence for task-set inertia.
Evans, Lisa H; Herron, Jane E; Wilding, Edward L
2015-03-01
One influential explanation for the costs incurred when switching between tasks is that they reflect interference arising from completing the previous task-known as task-set inertia. We report a novel approach for assessing task-set inertia in a memory experiment using event-related potentials (ERPs). After a study phase, participants completed a test block in which they switched between a memory task (retrieving information from the study phase) and a perceptual task. These tasks alternated every two trials. An ERP index of the retrieval of study information was evident in the memory task. It was also present on the first trial of the perceptual task but was markedly attenuated on the second. Moreover, this task-irrelevant ERP activity was positively correlated with a behavioral cost associated with switching between tasks. This real-time measure of neural activity thus provides direct evidence of task-set inertia, its duration, and the functional role it plays in switch costs. © The Author(s) 2015.
Feng, Jijun; Akimoto, Ryoichi; Gozu, Shin-ichiro; Mozume, Teruo; Hasama, Toshifumi; Ishikawa, Hiroshi
2013-07-01
We demonstrate a compact all-optical Michelson interferometer (MI) gating switch with monolithic integration of two different bandgap energies. Based on the ion-induced intermixing in InGaAs/AlAsSb coupled double quantum wells, the blueshift of the band edge can be tailored. Through phosphorus ion implantation with a dose of 5 × 10(14) cm(-2) and subsequent annealing at 720 °C for 60 s, an implanted sample can acquire a high transmittance compared with the as-grown one. Meanwhile, the cross-phase modulation (XPM) efficiency of a non-implanted sample undergoing the same annealing process decreases little. An implanted part for signal propagation and a non-implanted section for XPM are thus monolithically integrated for an MI switch by an area-selective manner. Full switching of a π-rad nonlinear phase shift is achieved with pump pulse energy of 5.6 pJ at a 10-GHz repetition rate.
First-order metal-insulator transitions in vanadates from first principles
NASA Astrophysics Data System (ADS)
Kumar, Anil; Rabe, Karin
2013-03-01
Materials that exhibit first-order metal-insulator transitions, with the accompanying abrupt change in the conductivity, have potential applications as switches in future electronic devices. Identification of materials and exploration of the atomic-scale mechanisms for switching between the two electronic states is a focus of current research. In this work, we search for first-order metal-insulator transitions in transition metal compounds, with a particular focus on d1 and d2 systems, by using first principles calculations to screen for an alternative low-energy state having not only a electronic character opposite to that of the ground state, but a distinct structure and/or magnetic ordering which would permit switching by an applied field or stress. We will present the results of our investigation of the perovskite compounds SrVO3, LaVO3, CaVO3, YVO3, LaTiO3 and related layered phase, including superlattices and Ruddlesden-Popper phases. While the pure compounds do not satisfy the search criteria, the layered phases show promising results.
Optically Tunable Resistive-Switching Memory in Multiferroic Heterostructures
NASA Astrophysics Data System (ADS)
Zheng, Ming; Ni, Hao; Xu, Xiaoke; Qi, Yaping; Li, Xiaomin; Gao, Ju
2018-04-01
Electronic phase separation has been used to realize exotic functionalities in complex oxides with external stimuli, such as magnetic field, electric field, current, light, strain, etc. Using the Nd0.7Sr0.3MnO3/0.7 Pb (Mg1 /3Nb2 /3)O3-0 .3 PbTiO3 multiferroic heterostructure as a model system, we investigate the electric field and light cocontrol of phase separation in resistive switching. The electric-field-induced nonvolatile electroresistance response is achieved at room temperature using reversible ferroelastic domain switching, which can be robustly modified on illumination of light. Moreover, the electrically controlled ferroelastic strain can effectively enhance the visible-light-induced photoresistance effect. These findings demonstrate that the electric-field- and light-induced effects strongly correlate with each other and are essentially driven by electronic phase separation. Our work opens a gate to design electrically tunable multifunctional storage devices based on multiferroic heterostructures by adding light as an extra control parameter.
NASA Astrophysics Data System (ADS)
Pigot, Corentin; Gilibert, Fabien; Reyboz, Marina; Bocquet, Marc; Zuliani, Paola; Portal, Jean-Michel
2018-04-01
Phase-change memory (PCM) compact modeling of the threshold switching based on a thermal runaway in Poole–Frenkel conduction is proposed. Although this approach is often used in physical models, this is the first time it is implemented in a compact model. The model accuracy is validated by a good correlation between simulations and experimental data collected on a PCM cell embedded in a 90 nm technology. A wide range of intermediate states is measured and accurately modeled with a single set of parameters, allowing multilevel programing. A good convergence is exhibited even in snapback simulation owing to this fully continuous approach. Moreover, threshold properties extraction indicates a thermally enhanced switching, which validates the basic hypothesis of the model. Finally, it is shown that this model is compliant with a new drift-resilient cell-state metric. Once enriched with a phase transition module, this compact model is ready to be implemented in circuit simulators.
Murphy, Andrew; Semenov, Alexander; Korneev, Alexander; Korneeva, Yulia; Gol’tsman, Gregory; Bezryadin, Alexey
2015-01-01
We perform measurements of the switching current distributions of three w ≈ 120 nm wide, 4 nm thick NbN superconducting strips which are used for single-photon detectors. These strips are much wider than the diameter of the vortex cores, so they are classified as quasi-two-dimensional (quasi-2D). We discover evidence of macroscopic quantum tunneling by observing the saturation of the standard deviation of the switching distributions at temperatures around 2 K. We analyze our results using the Kurkijärvi-Garg model and find that the escape temperature also saturates at low temperatures, confirming that at sufficiently low temperatures, macroscopic quantum tunneling is possible in quasi-2D strips and can contribute to dark counts observed in single photon detectors. At the highest temperatures the system enters a multiple phase-slip regime. In this range single phase-slips are unable to produce dark counts and the fluctuations in the switching current are reduced. PMID:25988591
NASA Astrophysics Data System (ADS)
Li, Peining; Yang, Xiaosheng; Maß, Tobias W. W.; Hanss, Julian; Lewin, Martin; Michel, Ann-Katrin U.; Wuttig, Matthias; Taubner, Thomas
2016-08-01
Surface phonon-polaritons (SPhPs), collective excitations of photons coupled with phonons in polar crystals, enable strong light-matter interaction and numerous infrared nanophotonic applications. However, as the lattice vibrations are determined by the crystal structure, the dynamical control of SPhPs remains challenging. Here, we realize the all-optical, non-volatile, and reversible switching of SPhPs by controlling the structural phase of a phase-change material (PCM) employed as a switchable dielectric environment. We experimentally demonstrate optical switching of an ultrathin PCM film (down to 7 nm, <λ/1,200) with single laser pulses and detect ultra-confined SPhPs (polariton wavevector kp > 70k0, k0 = 2π/λ) in quartz. Our proof of concept allows the preparation of all-dielectric, rewritable SPhP resonators without the need for complex fabrication methods. With optimized materials and parallelized optical addressing we foresee application potential for switchable infrared nanophotonic elements, for example, imaging elements such as superlenses and hyperlenses, as well as reconfigurable metasurfaces and sensors.
Ultralow-power switching via defect engineering in germanium telluride phase-change memory devices.
Nukala, Pavan; Lin, Chia-Chun; Composto, Russell; Agarwal, Ritesh
2016-01-25
Crystal-amorphous transformation achieved via the melt-quench pathway in phase-change memory involves fundamentally inefficient energy conversion events; and this translates to large switching current densities, responsible for chemical segregation and device degradation. Alternatively, introducing defects in the crystalline phase can engineer carrier localization effects enhancing carrier-lattice coupling; and this can efficiently extract work required to introduce bond distortions necessary for amorphization from input electrical energy. Here, by pre-inducing extended defects and thus carrier localization effects in crystalline GeTe via high-energy ion irradiation, we show tremendous improvement in amorphization current densities (0.13-0.6 MA cm(-2)) compared with the melt-quench strategy (∼50 MA cm(-2)). We show scaling behaviour and good reversibility on these devices, and explore several intermediate resistance states that are accessible during both amorphization and recrystallization pathways. Existence of multiple resistance states, along with ultralow-power switching and scaling capabilities, makes this approach promising in context of low-power memory and neuromorphic computation.
Ultralow-power switching via defect engineering in germanium telluride phase-change memory devices
Nukala, Pavan; Lin, Chia-Chun; Composto, Russell; Agarwal, Ritesh
2016-01-01
Crystal–amorphous transformation achieved via the melt-quench pathway in phase-change memory involves fundamentally inefficient energy conversion events; and this translates to large switching current densities, responsible for chemical segregation and device degradation. Alternatively, introducing defects in the crystalline phase can engineer carrier localization effects enhancing carrier–lattice coupling; and this can efficiently extract work required to introduce bond distortions necessary for amorphization from input electrical energy. Here, by pre-inducing extended defects and thus carrier localization effects in crystalline GeTe via high-energy ion irradiation, we show tremendous improvement in amorphization current densities (0.13–0.6 MA cm−2) compared with the melt-quench strategy (∼50 MA cm−2). We show scaling behaviour and good reversibility on these devices, and explore several intermediate resistance states that are accessible during both amorphization and recrystallization pathways. Existence of multiple resistance states, along with ultralow-power switching and scaling capabilities, makes this approach promising in context of low-power memory and neuromorphic computation. PMID:26805748
Simultaneous DC and three phase output using hybrid converter
NASA Astrophysics Data System (ADS)
Surenderanath, S.; Rathnavel, P.; Prakash, G.; Rayavel, P.
2018-04-01
This Paper introduces new hybrid converter topologies which can supply simultaneously three phase AC as well as DC from a single DC source. The new Hybrid Converter is derived from the single switch controlled Boost converter by replacing the controlled switch with voltage source inverter (VSI). This new hybrid converter has the advantages like reduced number of switches as compared with conventional design having separate converter for supplying three phase AC and DC loads, provide DC and three AC outputs with an increased reliability, resulting from the inherent shoot through protection in the inverter stage. The proposed converter, studied in this paper, is called Boost-Derived Hybrid Converter (BDHC) as it is obtained from the conventional boost topology. A DSPIC based feedback controller is designed to regulate the DC as well as AC outputs. The proposed Converter can supply DC and AC loads at 95 V and 35 V (line to ground) respectively from a 48 V DC source.
Murphy, Andrew; Semenov, Alexander; Korneev, Alexander; Korneeva, Yulia; Gol'tsman, Gregory; Bezryadin, Alexey
2015-05-19
We perform measurements of the switching current distributions of three w ≈ 120 nm wide, 4 nm thick NbN superconducting strips which are used for single-photon detectors. These strips are much wider than the diameter of the vortex cores, so they are classified as quasi-two-dimensional (quasi-2D). We discover evidence of macroscopic quantum tunneling by observing the saturation of the standard deviation of the switching distributions at temperatures around 2 K. We analyze our results using the Kurkijärvi-Garg model and find that the escape temperature also saturates at low temperatures, confirming that at sufficiently low temperatures, macroscopic quantum tunneling is possible in quasi-2D strips and can contribute to dark counts observed in single photon detectors. At the highest temperatures the system enters a multiple phase-slip regime. In this range single phase-slips are unable to produce dark counts and the fluctuations in the switching current are reduced.
High-efficiency thermal switch based on topological Josephson junctions
NASA Astrophysics Data System (ADS)
Sothmann, Björn; Giazotto, Francesco; Hankiewicz, Ewelina M.
2017-02-01
We propose theoretically a thermal switch operating by the magnetic-flux controlled diffraction of phase-coherent heat currents in a thermally biased Josephson junction based on a two-dimensional topological insulator. For short junctions, the system shows a sharp switching behavior while for long junctions the switching is smooth. Physically, the switching arises from the Doppler shift of the superconducting condensate due to screening currents induced by a magnetic flux. We suggest a possible experimental realization that exhibits a relative temperature change of 40% between the on and off state for realistic parameters. This is a factor of two larger than in recently realized thermal modulators based on conventional superconducting tunnel junctions.
Liu, Jin; Dai, Qiao-Feng; Huang, Xu-Guang; Wu, Li-Jun; Guo, Qi; Hu, Wei; Yang, Xiang-Bo; Lan, Sheng; Gopal, Achanta Venu; Trofimov, Vyacheslav A
2008-11-15
We investigate the dynamics of optical matter creation and annihilation in a colloidal liquid that was employed to construct an all-optical switch. It is revealed that the switching-on process can be characterized by the Fermi-Dirac distribution function, while the switching-off process can be described by a steady state followed by a single exponential decay. The phase transition times exhibit a strong dependence on trapping power. With an increasing trapping power, while the switching-on time decreases rapidly, the switch-off time increases significantly, indicating the effects of optical binding and van der Waals force on the lifetime of the optical matter.
Voltage-Controlled Switching and Thermal Effects in VO2 Nano-Gap Junctions
2014-06-09
Voltage-controlled switching and thermal effects in VO2 nano-gap junctions Arash Joushaghani,1 Junho Jeong,1 Suzanne Paradis,2 David Alain,2 J...2014) Voltage-controlled switching in lateral VO2 nano-gap junctions with different gap lengths and thermal properties was investigated. The effect of...indicate that the VO2 phase transition was likely initiated electroni- cally, which was sometimes followed by a secondary thermally-induced transition
Low-Loss, High-Isolation Microwave Microelectromechanical Systems (MEMS) Switches Being Developed
NASA Technical Reports Server (NTRS)
Ponchak, George E.
2002-01-01
Switches, electrical components that either permit or prevent the flow of electricity, are the most important and widely used electrical devices in integrated circuits. In microwave systems, switches are required for switching between the transmitter and receiver; in communication systems, they are needed for phase shifters in phased-array antennas, for radar and communication systems, and for the new class of digital or software definable radios. Ideally, switches would be lossless devices that did not depend on the electrical signal's frequency or power, and they would not consume electrical power to change from OFF to ON or to maintain one of these two states. Reality is quite different, especially at microwave frequencies. Typical switches in microwave integrated circuits are pin diodes or gallium arsenide (GaAs) field-effect transistors that are nonlinear, with characteristics that depend on the power of the signal. In addition, they are frequency-dependent, lossy, and require electrical power to maintain a certain state. A new type of component has been developed that overcomes most of these technical difficulties. Microelectromechanical (MEMS) switches rely on mechanical movement as a response to an applied electrical force to either transmit or reflect electrical signal power. The NASA Glenn Research Center has been actively developing MEMS for microwave applications for over the last 5 years. Complete fabrication procedures have been developed so that the moving parts of the switch can be released with near 100-percent yield. Moreover, the switches fabricated at Glenn have demonstrated state-of-the-art performance. A typical MEMS switch is shown. The switch extends over the signal and ground lines of a finite ground coplanar waveguide, a commonly used microwave transmission line. In the state shown, the switch is in the UP state and all the microwave power traveling along the transmission line proceeds unimpeded. When a potential difference is applied between the cantilever and the transmission line, the cantilever is pulled downward until it connects the signal line to the ground planes, creating a short circuit. In this state, all the microwave power is reflected. The graph shows the measured performance of the switch, which has less than 0.1 dB of insertion loss and greater than 30dB of isolation. These switches consume negligible electrical power and are extremely linear. Additional research is required to address reliability and to increase the switching speed.
Accurate Theoretical Predictions of the Properties of Energetic Materials
2008-09-18
decomposition, Monte Carlo, molecular dynamics, supercritical fluids, solvation and separation, quantum Monte Carlo, potential energy surfaces, RDX , TNAZ...labs, who are contributing to the theoretical efforts, providing data for testing of the models, or aiding in the transition of the methods, models...and results to DoD applications. The major goals of the project are: • Models that describe phase transitions and chemical reactions in
NASA Astrophysics Data System (ADS)
Lachugin, V. F.; Panfilov, D. I.; Akhmetov, I. M.; Astashev, M. G.; Shevelev, A. V.
2014-12-01
Problems of functioning of differential current protection systems of phase shifting devices (PSD) with mechanically changed coefficient of transformation of shunt transformer are analyzed. Requirements for devices of protection of PSD with thyristor switch are formulated. Based on use of nonlinear models of series-wound and shunt transformers of PSD modes of operation of major protection during PSD, switching to zero load operation and to operation under load and during short circuit operation were studied for testing PSD with failures. Use of the principle of duplicating by devices of differential current protection (with realization of functions of breaking) of failures of separate pares of PSD with thyristor switch was substantiated. To ensure protection sensitivity to the shunt transformer winding short circuit, in particular, to a short circuit that is not implemented in the current differential protection for PSD with mechanical switch, the differential current protection reacting to the amount of primary ampere-turns of high-voltage and low-voltage winding of this transformer was designed. Studies have shown that the use of differential current cutoff instead of overcurrent protection for the shunt transformer wndings allows one to provide the sensitivity during thyristor failure with the formation of a short circuit. The results of simulation mode for the PSD with switch thyristor designed to be installed as switching point of Voskhod-Tatarskaya-Barabinsk 220 kV transmission line point out the efficiency of the developed solutions that ensure reliable functioning of the PSD.
The effect of domain-general inhibition-related training on language switching: An ERP study.
Liu, Huanhuan; Liang, Lijuan; Dunlap, Susan; Fan, Ning; Chen, Baoguo
2016-01-01
Previous studies have demonstrated that inhibitory control ability could be improved by training, and the Inhibitory Control (IC) Model implies that enhanced domain-general inhibition may elicit certain changes in language switch costs. In the present study, we aimed to examine the effects of domain-general inhibition training on performance in a language switching task, including which phase of domain-general inhibitory control benefits from training during an overt picture naming task in L1 and L2, using the event-related brain potentials (ERPs). Results showed that the language switch costs of bilinguals with high inhibitory control (high-IC) were symmetrical in both pretest and posttest, and those of bilinguals with low inhibitory control (low-IC) were asymmetrical in the pretest, but symmetrical in the posttest. Moreover, the high-IC group showed a larger LPC (late positive component) for L2 switch trials than for L1 trials in both pretest and posttest. In contrast, the low-IC group only exhibited a similar pattern of LPC in the posttest, but not in the pretest. These results indicate that inhibition training could increase the efficiency of language switching, and inhibitory control may play a key role during the lexical selection response phase. Overall, the present study is the first one to provide electrophysiological evidence for individual differences in the domain-general inhibition impact on language switching performance in low-proficient bilinguals. Copyright © 2015 Elsevier B.V. All rights reserved.
Zero-static power radio-frequency switches based on MoS2 atomristors.
Kim, Myungsoo; Ge, Ruijing; Wu, Xiaohan; Lan, Xing; Tice, Jesse; Lee, Jack C; Akinwande, Deji
2018-06-28
Recently, non-volatile resistance switching or memristor (equivalently, atomristor in atomic layers) effect was discovered in transitional metal dichalcogenides (TMD) vertical devices. Owing to the monolayer-thin transport and high crystalline quality, ON-state resistances below 10 Ω are achievable, making MoS 2 atomristors suitable as energy-efficient radio-frequency (RF) switches. MoS 2 RF switches afford zero-hold voltage, hence, zero-static power dissipation, overcoming the limitation of transistor and mechanical switches. Furthermore, MoS 2 switches are fully electronic and can be integrated on arbitrary substrates unlike phase-change RF switches. High-frequency results reveal that a key figure of merit, the cutoff frequency (f c ), is about 10 THz for sub-μm 2 switches with favorable scaling that can afford f c above 100 THz for nanoscale devices, exceeding the performance of contemporary switches that suffer from an area-invariant scaling. These results indicate a new electronic application of TMDs as non-volatile switches for communication platforms, including mobile systems, low-power internet-of-things, and THz beam steering.
Dynamic switching enables efficient bacterial colonization in flow.
Kannan, Anerudh; Yang, Zhenbin; Kim, Minyoung Kevin; Stone, Howard A; Siryaporn, Albert
2018-05-22
Bacteria colonize environments that contain networks of moving fluids, including digestive pathways, blood vasculature in animals, and the xylem and phloem networks in plants. In these flow networks, bacteria form distinct biofilm structures that have an important role in pathogenesis. The physical mechanisms that determine the spatial organization of bacteria in flow are not understood. Here, we show that the bacterium P. aeruginosa colonizes flow networks using a cyclical process that consists of surface attachment, upstream movement, detachment, movement with the bulk flow, and surface reattachment. This process, which we have termed dynamic switching, distributes bacterial subpopulations upstream and downstream in flow through two phases: movement on surfaces and cellular movement via the bulk. The model equations that describe dynamic switching are identical to those that describe dynamic instability, a process that enables microtubules in eukaryotic cells to search space efficiently to capture chromosomes. Our results show that dynamic switching enables bacteria to explore flow networks efficiently, which maximizes dispersal and colonization and establishes the organizational structure of biofilms. A number of eukaryotic and mammalian cells also exhibit movement in two phases in flow, which suggests that dynamic switching is a modality that enables efficient dispersal for a broad range of cell types.
Nie, Weijie; Li, Rang; Cheng, Chen; Chen, Yanxue; Lu, Qingming; Romero, Carolina; Vázquez de Aldana, Javier R.; Hao, Xiaotao; Chen, Feng
2017-01-01
We report on room-temperature subnanosecond waveguide laser operation at 1064 nm in a Nd:YVO4 crystal waveguide through Q-switching of phase-change nanomaterial vanadium dioxide (VO2). The unique feature of VO2 nanomaterial from the insulating to metallic phases offers low-saturation-intensity nonlinear absorptions of light for subnanosecond pulse generation. The low-loss waveguide is fabricated by using the femtosecond laser writing with depressed cladding geometry. Under optical pump at 808 nm, efficient pulsed laser has been achieved in the Nd:YVO4 waveguide, reaching minimum pulse duration of 690 ps and maximum output average power of 66.7 mW. To compare the Q-switched laser performances by VO2 saturable absorber with those based on two-dimensional materials, the 1064-nm laser pulses have been realized in the same waveguide platform with either graphene or transition metal dichalcogenide (in this work, WS2) coated mirror. The results on 2D material Q-switched waveguide lasers have shown that the shortest pulses are with 22-ns duration, whilst the maximum output average powers reach ~161.9 mW. This work shows the obvious difference on the lasing properties based on phase-change material and 2D materials, and suggests potential applications of VO2 as low-cost saturable absorber for subnanosecond laser generation. PMID:28383017
Harmonic reduction of Direct Torque Control of six-phase induction motor.
Taheri, A
2016-07-01
In this paper, a new switching method in Direct Torque Control (DTC) of a six-phase induction machine for reduction of current harmonics is introduced. Selecting a suitable vector in each sampling period is an ordinal method in the ST-DTC drive of a six-phase induction machine. The six-phase induction machine has 64 voltage vectors and divided further into four groups. In the proposed DTC method, the suitable voltage vectors are selected from two vector groups. By a suitable selection of two vectors in each sampling period, the harmonic amplitude is decreased more, in and various comparison to that of the ST-DTC drive. The harmonics loss is greater reduced, while the electromechanical energy is decreased with switching loss showing a little increase. Spectrum analysis of the phase current in the standard and new switching table DTC of the six-phase induction machine and determination for the amplitude of each harmonics is proposed in this paper. The proposed method has a less sampling time in comparison to the ordinary method. The Harmonic analyses of the current in the low and high speed shows the performance of the presented method. The simplicity of the proposed method and its implementation without any extra hardware is other advantages of the proposed method. The simulation and experimental results show the preference of the proposed method. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Ferroelastic domain switching dynamics under electrical and mechanical excitations.
Gao, Peng; Britson, Jason; Nelson, Christopher T; Jokisaari, Jacob R; Duan, Chen; Trassin, Morgan; Baek, Seung-Hyub; Guo, Hua; Li, Linze; Wang, Yiran; Chu, Ying-Hao; Minor, Andrew M; Eom, Chang-Beom; Ramesh, Ramamoorthy; Chen, Long-Qing; Pan, Xiaoqing
2014-05-02
In thin film ferroelectric devices, switching of ferroelastic domains can significantly enhance electromechanical response. Previous studies have shown disagreement regarding the mobility or immobility of ferroelastic domain walls, indicating that switching behaviour strongly depends on specific microstructures in ferroelectric systems. Here we study the switching dynamics of individual ferroelastic domains in thin Pb(Zr0.2,Ti0.8)O3 films under electrical and mechanical excitations by using in situ transmission electron microscopy and phase-field modelling. We find that ferroelastic domains can be effectively and permanently stabilized by dislocations at the substrate interface while similar domains at free surfaces without pinning dislocations can be removed by either electric or stress fields. For both electrical and mechanical switching, ferroelastic switching is found to occur most readily at the highly active needle points in ferroelastic domains. Our results provide new insights into the understanding of polarization switching dynamics as well as the engineering of ferroelectric devices.
Ferroelastic domain switching dynamics under electrical and mechanical excitations
NASA Astrophysics Data System (ADS)
Gao, Peng; Britson, Jason; Nelson, Christopher T.; Jokisaari, Jacob R.; Duan, Chen; Trassin, Morgan; Baek, Seung-Hyub; Guo, Hua; Li, Linze; Wang, Yiran; Chu, Ying-Hao; Minor, Andrew M.; Eom, Chang-Beom; Ramesh, Ramamoorthy; Chen, Long-Qing; Pan, Xiaoqing
2014-05-01
In thin film ferroelectric devices, switching of ferroelastic domains can significantly enhance electromechanical response. Previous studies have shown disagreement regarding the mobility or immobility of ferroelastic domain walls, indicating that switching behaviour strongly depends on specific microstructures in ferroelectric systems. Here we study the switching dynamics of individual ferroelastic domains in thin Pb(Zr0.2,Ti0.8)O3 films under electrical and mechanical excitations by using in situ transmission electron microscopy and phase-field modelling. We find that ferroelastic domains can be effectively and permanently stabilized by dislocations at the substrate interface while similar domains at free surfaces without pinning dislocations can be removed by either electric or stress fields. For both electrical and mechanical switching, ferroelastic switching is found to occur most readily at the highly active needle points in ferroelastic domains. Our results provide new insights into the understanding of polarization switching dynamics as well as the engineering of ferroelectric devices.
Stable switching among high-order modes in polariton condensates
NASA Astrophysics Data System (ADS)
Sun, Yongbao; Yoon, Yoseob; Khan, Saeed; Ge, Li; Steger, Mark; Pfeiffer, Loren N.; West, Ken; Türeci, Hakan E.; Snoke, David W.; Nelson, Keith A.
2018-01-01
We report multistate optical switching among high-order bouncing-ball modes ("ripples") and whispering-gallery modes ("petals") of exciton-polariton condensates in a laser-generated annular trap. By tailoring the diameter and power of the annular trap, the polariton condensate can be switched among different trapped modes, accompanied by redistribution of spatial densities and superlinear increase in the emission intensities, implying that polariton condensates in this geometry could be exploited for an all-optical multistate switch. A model based on non-Hermitian modes of the generalized Gross-Pitaevskii equation reveals that this mode switching arises from competition between pump-induced gain and in-plane polariton loss. The parameters for reproducible switching among trapped modes have been measured experimentally, giving us a phase diagram for mode switching. Taken together, the experimental result and theoretical modeling advance our fundamental understanding of the spontaneous emergence of coherence and move us toward its practical exploitation.
Mode selecting switch using multimode interference for on-chip optical interconnects.
Priti, Rubana B; Pishvai Bazargani, Hamed; Xiong, Yule; Liboiron-Ladouceur, Odile
2017-10-15
A novel mode selecting switch (MSS) is experimentally demonstrated for on-chip mode-division multiplexing (MDM) optical interconnects. The MSS consists of a Mach-Zehnder interferometer with tapered multi-mode interference couplers and TiN thermo-optic phase shifters for conversion and switching between the optical data encoded on the fundamental and first-order quasi-transverse electric (TE) modes. The C-band MSS exhibits a >25 dB switching extinction ratio and < -12 dB crosstalk. We validate the dynamic switching with a 25.8 kHz gating signal measuring switching times for both TE0 and TE1 modes of <10.9 μs. All channels exhibit less than 1.7 dB power penalty at a 10 -12 bit error rate, while switching the non-return-to-zero PRBS-31 data signals at 10 Gb/s.
Class E/F switching power amplifiers
NASA Technical Reports Server (NTRS)
Hajimiri, Seyed-Ali (Inventor); Aoki, Ichiro (Inventor); Rutledge, David B. (Inventor); Kee, Scott David (Inventor)
2004-01-01
The present invention discloses a new family of switching amplifier classes called class E/F amplifiers. These amplifiers are generally characterized by their use of the zero-voltage-switching (ZVS) phase correction technique to eliminate of the loss normally associated with the inherent capacitance of the switching device as utilized in class-E amplifiers, together with a load network for improved voltage and current wave-shaping by presenting class-F.sup.-1 impedances at selected overtones and class-E impedances at the remaining overtones. The present invention discloses a several topologies and specific circuit implementations for achieving such performance.
Spin-orbit torque-driven magnetization switching in 2D-topological insulator heterostructure
NASA Astrophysics Data System (ADS)
Soleimani, Maryam; Jalili, Seifollah; Mahfouzi, Farzad; Kioussis, Nicholas
2017-02-01
Charge pumping and spin-orbit torque (SOT) are two reciprocal phenomena widely studied in ferromagnet (FM)/topological insulator (TI) heterostructures. However, the SOT and its corresponding switching phase diagram for a FM island in proximity to a two-dimensional topological insulator (2DTI) has not been explored yet. We have addressed these features, using the recently developed adiabatic expansion of time-dependent nonequilibrium Green's function (NEGF) in the presence of both precessing magnetization and bias voltage. We have calculated the angular and spatial dependence of different components of the SOT on the FM island. We determined the switching phase diagram of the FM for different orientations of the easy axis. The results can be used as a guideline for the future experiments on such systems.
Direct calculation of liquid-vapor phase equilibria from transition matrix Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Errington, Jeffrey R.
2003-06-01
An approach for directly determining the liquid-vapor phase equilibrium of a model system at any temperature along the coexistence line is described. The method relies on transition matrix Monte Carlo ideas developed by Fitzgerald, Picard, and Silver [Europhys. Lett. 46, 282 (1999)]. During a Monte Carlo simulation attempted transitions between states along the Markov chain are monitored as opposed to tracking the number of times the chain visits a given state as is done in conventional simulations. Data collection is highly efficient and very precise results are obtained. The method is implemented in both the grand canonical and isothermal-isobaric ensemble. The main result from a simulation conducted at a given temperature is a density probability distribution for a range of densities that includes both liquid and vapor states. Vapor pressures and coexisting densities are calculated in a straightforward manner from the probability distribution. The approach is demonstrated with the Lennard-Jones fluid. Coexistence properties are directly calculated at temperatures spanning from the triple point to the critical point.
Flexible Charged Macromolecules on Mixed Fluid Lipid Membranes: Theory and Monte Carlo Simulations
Tzlil, Shelly; Ben-Shaul, Avinoam
2005-01-01
Fluid membranes containing charged lipids enhance binding of oppositely charged proteins by mobilizing these lipids into the interaction zone, overcoming the concomitant entropic losses due to lipid segregation and lower conformational freedom upon macromolecule adsorption. We study this energetic-entropic interplay using Monte Carlo simulations and theory. Our model system consists of a flexible cationic polyelectrolyte, interacting, via Debye-Hückel and short-ranged repulsive potentials, with membranes containing neutral lipids, 1% tetravalent, and 10% (or 1%) monovalent anionic lipids. Adsorption onto a fluid membrane is invariably stronger than to an equally charged frozen or uniform membrane. Although monovalent lipids may suffice for binding rigid macromolecules, polyvalent counter-lipids (e.g., phosphatidylinositol 4,5 bisphosphate), whose entropy loss upon localization is negligible, are crucial for binding flexible macromolecules, which lose conformational entropy upon adsorption. Extending Rosenbluth's Monte Carlo scheme we directly simulate polymer adsorption on fluid membranes. Yet, we argue that similar information could be derived from a biased superposition of quenched membrane simulations. Using a simple cell model we account for surface concentration effects, and show that the average adsorption probabilities on annealed and quenched membranes coincide at vanishing surface concentrations. We discuss the relevance of our model to the electrostatic-switch mechanism of, e.g., the myristoylated alanine-rich C kinase substrate protein. PMID:16126828
Ramírez-Zavala, Bernardo; Weyler, Michael; Gildor, Tsvia; Schmauch, Christian; Kornitzer, Daniel; Arkowitz, Robert; Morschhäuser, Joachim
2013-01-01
Depending on the environmental conditions, the pathogenic yeast Candida albicans can undergo different developmental programs, which are controlled by dedicated transcription factors and upstream signaling pathways. C. albicans strains that are homozygous at the mating type locus can switch from the normal yeast form (white) to an elongated cell type (opaque), which is the mating-competent form of this fungus. Both white and opaque cells use the Ste11-Hst7-Cek1/Cek2 MAP kinase signaling pathway to react to the presence of mating pheromone. However, while opaque cells employ the transcription factor Cph1 to induce the mating response, white cells recruit a different downstream transcription factor, Tec1, to promote the formation of a biofilm that facilitates mating of opaque cells in the population. The switch from the white to the opaque cell form is itself induced by environmental signals that result in the upregulation of the transcription factor Wor1, the master regulator of white-opaque switching. To get insight into the upstream signaling pathways controlling the switch, we expressed all C. albicans protein kinases from a tetracycline-inducible promoter in a switching-competent strain. Screening of this library of strains showed that a hyperactive form of Ste11 lacking its N-terminal domain (Ste11ΔN467) efficiently stimulated white cells to switch to the opaque phase, a behavior that did not occur in response to pheromone. Ste11ΔN467-induced switching specifically required the downstream MAP kinase Cek1 and its target transcription factor Cph1, but not Cek2 and Tec1, and forced expression of Cph1 also promoted white-opaque switching in a Wor1-dependent manner. Therefore, depending on the activation mechanism, components of the pheromone-responsive MAP kinase pathway can be reconnected to stimulate an alternative developmental program, switching of white cells to the mating-competent opaque phase. PMID:24130492
RF MEMS and Their Applications in NASA's Space Communication Systems
NASA Technical Reports Server (NTRS)
Williams, W. Daniel; Ponchak, George E.; Simons, Rainee N.; Zaman, Afroz; Kory, Carol; Wintucky, Edwin; Wilson, Jeffrey D.; Scardelletti, Maximilian; Lee, Richard; Nguyen, Hung
2001-01-01
Radio frequency (RF) and microwave communication systems rely on frequency, amplitude, and phase control circuits to efficiently use the available spectrum. Phase control circuits are required for electronically scanning phase array antennas that enable radiation pattern shaping, scanning, and hopping. Two types of phase shifters, which are the phase control circuits, are most often used. The first is comprised of two circuits with different phase characteristics such as two transmission lines of different lengths or a high pass and low pass filter and a switch that directs the RF power through one of the two circuits. Alternatively, a variable capacitor, or varactor, is used to change the effective electrical path length of a transmission line, which changes the phase characteristics. Filter banks are required for the diplexer at the front end of wide band communication satellites. These filters greatly increase the size and mass of the RF/microwave systems, but smaller diplexers may be made with a low loss varactor or a group of capacitors, a switch and an inductor.
Helicopter-based live-line work. Volume 1, Helicopter platform work between phases: Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gela, G.
1993-06-01
This report presents experimental data on tests of a configuration consisting of a helicopter between two energized phases (for AC and switching surge) or poles (for DC). The configuration is that related to live-line work from a hovering helicopter. The McDonnell Douglas 500 Series helicopter was used for the tests. All tests were performed with phase-to-phase, or pole-to-pole energization. For AC tests, proper relationship between the phase-to-ground voltages and the phase-to-phase voltage was maintained by energizing the experimental setup from a balanced 3-{phi} AC source. For DC tests, one pole was energized with positive DC voltage to ground, while themore » other pole was energized with negative DC voltage to ground. For switching surge tests, a surge of positive polarity and a specific peak voltage magnitude was applied to one phase while a surge of negative polarity and the same peak voltage Magnitude was simultaneously applied to the other phase, resulting in {alpha} = 0.5 ({alpha} is the ratio between negative and total surge). In the research program, four conditions were investigated, namely helicopter operating versus not operating, and helicopter bonded to one phase or pole versus not bonded. Results from this research show effects of the rotating main rotor blade of the helicopter, effect of the position of the electrically floating helicopter in the phase-to-phase or pole-to-pole gap, effects of the mannequin, importance of the polarity of the DC poles and switching surges, and effects of inclement weather such as rain. The overall conclusion of this research is that the phase-to-phase or pole-to-pole spacings that cause sparkover with the helicopter between phases (poles) were always significantly smaller than the typical spacings on actual existing overhead transmission lines of the corresponding voltage rating.« less
Gas adsorption/absorption heat switch, phase 1
NASA Technical Reports Server (NTRS)
Chan, C. K.
1987-01-01
The service life and/or reliability of far-infrared sensors on surveillance satellites is presently limited by the cryocooler. The life and/or reliability, however, can be extended by using redundant cryocoolers. To reduce parasitic heat leak, each stage of the inactive redundant cryocooler must be thermally isolated from the optical system, while each stage of the active cryocooler must be thermally connected to the system. The thermal break or the thermal contact can be controlled by heat switches. Among different physical mechanisms for heat switching, mechanically activated heat switches tend to have low reliability and, furthermore, require a large contact force. Magnetoresistive heat switches are, except at very low temperatures, of very low efficiency. Heat switches operated by the heat pipe principle usually require a long response time. A sealed gas gap heat switch operated by an adsorption pump has no mechanical motion and should provide the reliability and long lifetime required in long-term space missions. Another potential application of a heat switch is the thermal isolation of the optical plane during decontamination.
Non-volatile, solid state bistable electrical switch
NASA Technical Reports Server (NTRS)
Williams, Roger M. (Inventor)
1994-01-01
A bistable switching element is made of a material whose electrical resistance reversibly decreases in response to intercalation by positive ions. Flow of positive ions between the bistable switching element and a positive ion source is controlled by means of an electrical potential applied across a thermal switching element. The material of the thermal switching element generates heat in response to electrical current flow therethrough, which in turn causes the material to undergo a thermal phase transition from a high electrical resistance state to a low electrical resistance state as the temperature increases above a predetermined value. Application of the electrical potential in one direction renders the thermal switching element conductive to pass electron current out of the ion source. This causes positive ions to flow from the source into the bistable switching element and intercalate the same to produce a non-volatile, low resistance logic state. Application of the electrical potential in the opposite direction causes reverse current flow which de-intercalates the bistable logic switching element and produces a high resistance logic state.
Methods/Labor Standards Application Program - Phase IV
1985-01-01
Engine Platform a. Pressure switch b. Compressor motor c. Voltage regulator d. Open and clean generator exciter and main windings S3 . Main Collector...clean motors b. Slip rings Gantry #3 Annual: S2. Engine Platform a. Pressure switch b. Compressor motor Voltage regulator d. Open and clean generator...Travel Motors Open and clean motorsa. b. Slip rings Gantry #4 S2 . S3. S4 . S5 . Engine Platform a. Pressure switch b. Compressor motor Voltage regulator
Electric field-triggered metal-insulator transition resistive switching of bilayered multiphasic VOx
NASA Astrophysics Data System (ADS)
Won, Seokjae; Lee, Sang Yeon; Hwang, Jungyeon; Park, Jucheol; Seo, Hyungtak
2018-01-01
Electric field-triggered Mott transition of VO2 for next-generation memory devices with sharp and fast resistance-switching response is considered to be ideal but the formation of single-phase VO2 by common deposition techniques is very challenging. Here, VOx films with a VO2-dominant phase for a Mott transition-based metal-insulator transition (MIT) switching device were successfully fabricated by the combined process of RF magnetron sputtering of V metal and subsequent O2 annealing to form. By performing various material characterizations, including scanning transmission electron microscopy-electron energy loss spectroscopy, the film is determined to have a bilayer structure consisting of a VO2-rich bottom layer acting as the Mott transition switching layer and a V2O5/V2O3 mixed top layer acting as a control layer that suppresses any stray leakage current and improves cyclic performance. This bilayer structure enables excellent electric field-triggered Mott transition-based resistive switching of Pt-VOx-Pt metal-insulator-metal devices with a set/reset current ratio reaching 200, set/reset voltage of less than 2.5 V, and very stable DC cyclic switching upto 120 cycles with a great set/reset current and voltage distribution less than 5% of standard deviation at room temperature, which are specifications applicable for neuromorphic or memory device applications. [Figure not available: see fulltext.
High-Voltage, High-Power Gaseous Electronics Switch For Electric Grid Power Conversion
NASA Astrophysics Data System (ADS)
Sommerer, Timothy J.
2014-05-01
We are developing a high-voltage, high-power gas switch for use in low-cost power conversion terminals on the electric power grid. Direct-current (dc) power transmission has many advantages over alternating current (ac) transmission, but at present the high cost of ac-dc power interconversion limits the use of dc. The gas switch we are developing conducts current through a magnetized cold cathode plasma in hydrogen or helium to reach practical current densities > 1 A/cm2. Thermal and sputter damage of the cathode by the incident ion flux is a major technical risk, and is being addressed through use of a ``self-healing'' liquid metal cathode (eg, gallium). Plasma conditions and cathode sputtering loss are estimated by analyzing plasma spectral emission. A particle-in-cell plasma model is used to understand various aspects of switch operation, including the conduction phase (where plasma densities can exceed 1013 cm-3), the switch-open phase (where the high-voltage must be held against gas breakdown on the left side of Paschen's curve), and the switching transitions (especially the opening process, which is initiated by forming an ion-matrix sheath adjacent to a control grid). The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000298.
NASA Technical Reports Server (NTRS)
Bentz, Daniel N.; Betush, William; Jackson, Kenneth A.
2003-01-01
In this paper we report on two related topics: Kinetic Monte Carlo simulations of the steady state growth of rod eutectics from the melt, and a study of the surface roughness of binary alloys. We have implemented a three dimensional kinetic Monte Carlo (kMC) simulation with diffusion by pair exchange only in the liquid phase. Entropies of fusion are first chosen to fit the surface roughness of the pure materials, and the bond energies are derived from the equilibrium phase diagram, by treating the solid and liquid as regular and ideal solutions respectively. A simple cubic lattice oriented in the {100} direction is used. Growth of the rods is initiated from columns of pure B material embedded in an A matrix, arranged in a close packed array with semi-periodic boundary conditions. The simulation cells typically have dimensions of 50 by 87 by 200 unit cells. Steady state growth is compliant with the Jackson-Hunt model. In the kMC simulations, using the spin-one Ising model, growth of each phase is faceted or nonfaceted phases depending on the entropy of fusion. There have been many studies of the surface roughening transition in single component systems, but none for binary alloy systems. The location of the surface roughening transition for the phases of a eutectic alloy determines whether the eutectic morphology will be regular or irregular. We have conducted a study of surface roughness on the spin-one Ising Model with diffusion using kMC. The surface roughness was found to scale with the melting temperature of the alloy as given by the liquidus line on the equilibrium phase diagram. The density of missing lateral bonds at the surface was used as a measure of surface roughness.
Passive temperature control based on a phase change metasurface.
Wu, Sheng-Rui; Lai, Kuan-Lin; Wang, Chih-Ming
2018-05-16
In this paper, a tunable mid-infrared metasurface based on VO 2 phase change material is proposed for temperature control. The proposed structure consisting of a VO 2 /SiO 2 /VO 2 cavity supports a thermally switchable Fabry-Perot-like resonance mode at the transparency window of the atmosphere. Theoretically, the radiative cooling power density of the proposed metasurface can be switched to four-fold as the device temperature is below/above the phase change temperature of VO 2 . Besides radiative cooling, a passive temperature control application based on this huge cooling power switching ability is theoretically demonstrated. We believe the proposed device can be applied for small radiative cooling and temperature control applications.
Improved lifetime high voltage switch electrode
NASA Astrophysics Data System (ADS)
Halverson, W.
1985-06-01
In this Phase 1 Small Business Innovation Research (SBIR) program, preliminary tests of ion implantation to increase the lifetime of spark switch electrodes have indicated that a 185 keV carbon ion implant into a tungsten-copper composite has reduced electrode erosion by a factor of two to four. Apparently, the thin layer of tungsten carbide (WC) has better thermal properties than pure tungsten; the WC may have penetrated into the unimplanted body of the electrode by liquid and/or solid phase diffusion during erosion testing. These encouraging results should provide the basis for a Phase 2 SBIR program to investigate further the physical and chemical effects of ion implantation on spark gap electrodes and to optimize the technique for applications.
Amplitude-steered, pseudophased antenna array
NASA Technical Reports Server (NTRS)
Johnson, C. C.; Martel, R. J.; Dietrich, F. J.; Koloboff, G. J.
1975-01-01
Beam may be smoothly scanned around ring array without instantaneous phase transitions while maintaining constant radiated power by gradually transferring power from receding element to element next to leading edge of driven segment, and by accomplishing antenna element switching during intervals when no power is being applied to elements being switched.
Dc-To-Dc Converter Uses Reverse Conduction Of MOSFET's
NASA Technical Reports Server (NTRS)
Gruber, Robert P.; Gott, Robert W.
1991-01-01
In modified high-power, phase-controlled, full-bridge, pulse-width-modulated dc-to-dc converters, switching devices power metal oxide/semiconductor field-effect transistors (MOSFET's). Decreases dissipation of power during switching by eliminating approximately 0.7-V forward voltage drop in anti-parallel diodes. Energy-conversion efficiency increased.
Sphingolipid-Mediated Apoptosis and Tumor Suppression in Breast Carcinoma.
1997-11-01
sodium bicarbonate . G418 at 500 jtg/ml was added to the CrmA cell line and its vector while hygromycin 150 jtg/ml was added to the Bcl-2 cell line...were switched to fresh complete medium containing [3H] choline ( 1 pCi/ml). After 48 hrs, cells were switched again to fresh medium and chased for 2 hr...1, v/v) and 0.2 ml of water. After phase separation, a portion of the upper phase containing the product [14C] choline phosphate was counted for
Optical bistability and optical response of an infrared quantum dot hybridized to VO2 nanoparticle
NASA Astrophysics Data System (ADS)
Zamani, Naser; Hatef, Ali; Nadgaran, Hamid; Keshavarz, Alireza
2017-08-01
In this work, we theoretically investigate optical bistability and optical response of a hybrid system consisting of semiconductor quantum dot (SQD) coupled with a vanadium dioxide nanoparticle (VO2NP) in the infrared (IR) regime. The VO2 material exists in semiconductor and metallic phases below and above the critical temperature, respectively where the particle optical properties dramatically change during this phase transition. In our calculations a filling fraction factor controls the VO2NP phase transition when the hybrid system interacts with a laser field. We demonstrate that the switch-up threshold for optical bistability is strongly controlled by filling fraction without changing the structure of the hybrid system. Also, it is shown that, the threshold of optical bistability increases when the VO2NP phases changes from semiconductor to metallic phase. The presented results have the potential to be applied in designing optical switching and optical storage.
Oxygen Tuned Local Structure and Phase-Change Performance of Germanium Telluride.
Zhou, Xilin; Du, Yonghua; Behera, Jitendra K; Wu, Liangcai; Song, Zhitang; Simpson, Robert E
2016-08-10
The effect of oxygen on the local structure of Ge atoms in GeTe-O materials has been investigated. Oxygen leads to a significant modification to the vibrational modes of Ge octahedra, which results from a decrease in its coordination. We find that a defective octahedral Ge network is the crucial fingerprint for rapid and reversible structural transitions in GeTe-based phase change materials. The appearance of oxide Raman modes confirms phase separation into GeO and TeO at high level O doping. Counterintuitively, despite the increase in crystallization temperature of oxygen doped GeTe-O phase change materials, when GeTe-O materials are used in electrical phase change memory cells, the electrical switching energy is lower than the pure GeTe material. This switching energy reduction is ascribed to the smaller change in volume, and therefore smaller enthalpy change, for the oxygen doped GeTe materials.
White, Olivier; Karniel, Amir; Papaxanthis, Charalambos; Barbiero, Marie; Nisky, Ilana
2018-01-01
Switched systems are common in artificial control systems. Here, we suggest that the brain adopts a switched feedforward control of grip forces during manipulation of objects. We measured how participants modulated grip force when interacting with soft and rigid virtual objects when stiffness varied continuously between trials. We identified a sudden phase transition between two forms of feedforward control that differed in the timing of the synchronization between the anticipated load force and the applied grip force. The switch occurred several trials after a threshold stiffness level in the range 100–200 N/m. These results suggest that in the control of grip force, the brain acts as a switching control system. This opens new research questions as to the nature of the discrete state variables that drive the switching. PMID:29930504
Pickett, Matthew D; Williams, R Stanley
2012-06-01
We built and measured the dynamical current versus time behavior of nanoscale niobium oxide crosspoint devices which exhibited threshold switching (current-controlled negative differential resistance). The switching speeds of 110 × 110 nm(2) devices were found to be Δt(ON) = 700 ps and Δt(OFF) = 2:3 ns while the switching energies were of the order of 100 fJ. We derived a new dynamical model based on the Joule heating rate of a thermally driven insulator-to-metal phase transition that accurately reproduced the experimental results, and employed the model to estimate the switching time and energy scaling behavior of such devices down to the 10 nm scale. These results indicate that threshold switches could be of practical interest in hybrid CMOS nanoelectronic circuits.
Characteristics of silicon-based Sagnac optical switches using magneto-optical micro-ring array
NASA Astrophysics Data System (ADS)
Ni, Shuang; Wu, Baojian; Liu, Yawen
2018-01-01
The miniaturization and integration of optical switches are necessary for photonic switching networks and the utilization of magneto optical effects is a promising candidate. We propose a Sagnac optical switch chip based on the principle of nonreciprocal phase shift (NPS) of the magneto-optical (MO) micro-ring (MOMR) array, composed of SiO2/Si/Ce:YIG/SGGG. The MO switching function is realized by controlling the drive current in the snake-like metal microstrip circuit layered on the MOMRs. The transmission characteristics of the Sagnac MO switch chip dependent on magnetization intensity, waveguide coupling coefficient and waveguide loss are simulated. By optimizing the coupling coefficients, we design an MO switch using two serial MOMRs with a circumference of 38.37 μm, and the 3dB bandwidth and the extinction ratio are respectively up to 1.6 nm and 50dB for the waveguide loss coefficient of ?. And the switching magnetization can be further reduced by increasing the number of parallel MOMRs. The frequency response of the MO Sagnac switch is analyzed as well.
Adaptive synchronized switch damping on an inductor: a self-tuning switching law
NASA Astrophysics Data System (ADS)
Kelley, Christopher R.; Kauffman, Jeffrey L.
2017-03-01
Synchronized switch damping (SSD) techniques exploit low-power switching between passive circuits connected to piezoelectric material to reduce structural vibration. In the classical implementation of SSD, the piezoelectric material remains in an open circuit for the majority of the vibration cycle and switches briefly to a shunt circuit at every displacement extremum. Recent research indicates that this switch timing is only optimal for excitation exactly at resonance and points to more general optimal switch criteria based on the phase of the displacement and the system parameters. This work proposes a self-tuning approach that implements the more general optimal switch timing for synchronized switch damping on an inductor (SSDI) without needing any knowledge of the system parameters. The law involves a gradient-based search optimization that is robust to noise and uncertainties in the system. Testing of a physical implementation confirms this law successfully adapts to the frequency and parameters of the system. Overall, the adaptive SSDI controller provides better off-resonance steady-state vibration reduction than classical SSDI while matching performance at resonance.
Tutorial: Integrated-photonic switching structures
NASA Astrophysics Data System (ADS)
Soref, Richard
2018-02-01
Recent developments in waveguided 2 × 2 and N × M photonic switches are reviewed, including both broadband and narrowband resonant devices for the Si, InP, and AlN platforms. Practical actuation of switches by electro-optical and thermo-optical techniques is discussed. Present datacom-and-computing applications are reviewed, and potential applications are proposed for chip-scale photonic and optoelectronic integrated switching networks. Potential is found in the reconfigurable, programmable "mesh" switches that enable a promising group of applications in new areas beyond those in data centers and cloud servers. Many important matrix switches use gated semiconductor optical amplifiers. The family of broadband, directional-coupler 2 × 2 switches featuring two or three side-coupled waveguides deserves future experimentation, including devices that employ phase-change materials. The newer 2 × 2 resonant switches include standing-wave resonators, different from the micro-ring traveling-wave resonators. The resonant devices comprise nanobeam interferometers, complex-Bragg interferometers, and asymmetric contra-directional couplers. Although the fast, resonant devices offer ultralow switching energy, ˜1 fJ/bit, they have limitations. They require several trade-offs when deployed, but they do have practical application.
Chow, Sy-Miin; Ou, Lu; Ciptadi, Arridhana; Prince, Emily B; You, Dongjun; Hunter, Michael D; Rehg, James M; Rozga, Agata; Messinger, Daniel S
2018-06-01
A growing number of social scientists have turned to differential equations as a tool for capturing the dynamic interdependence among a system of variables. Current tools for fitting differential equation models do not provide a straightforward mechanism for diagnosing evidence for qualitative shifts in dynamics, nor do they provide ways of identifying the timing and possible determinants of such shifts. In this paper, we discuss regime-switching differential equation models, a novel modeling framework for representing abrupt changes in a system of differential equation models. Estimation was performed by combining the Kim filter (Kim and Nelson State-space models with regime switching: classical and Gibbs-sampling approaches with applications, MIT Press, Cambridge, 1999) and a numerical differential equation solver that can handle both ordinary and stochastic differential equations. The proposed approach was motivated by the need to represent discrete shifts in the movement dynamics of [Formula: see text] mother-infant dyads during the Strange Situation Procedure (SSP), a behavioral assessment where the infant is separated from and reunited with the mother twice. We illustrate the utility of a novel regime-switching differential equation model in representing children's tendency to exhibit shifts between the goal of staying close to their mothers and intermittent interest in moving away from their mothers to explore the room during the SSP. Results from empirical model fitting were supplemented with a Monte Carlo simulation study to evaluate the use of information criterion measures to diagnose sudden shifts in dynamics.
Jin, Dongliang; Coasne, Benoit
2017-10-24
Different molecular simulation strategies are used to assess the stability of methane hydrate under various temperature and pressure conditions. First, using two water molecular models, free energy calculations consisting of the Einstein molecule approach in combination with semigrand Monte Carlo simulations are used to determine the pressure-temperature phase diagram of methane hydrate. With these calculations, we also estimate the chemical potentials of water and methane and methane occupancy at coexistence. Second, we also consider two other advanced molecular simulation techniques that allow probing the phase diagram of methane hydrate: the direct coexistence method in the Grand Canonical ensemble and the hyperparallel tempering Monte Carlo method. These two direct techniques are found to provide stability conditions that are consistent with the pressure-temperature phase diagram obtained using rigorous free energy calculations. The phase diagram obtained in this work, which is found to be consistent with previous simulation studies, is close to its experimental counterpart provided the TIP4P/Ice model is used to describe the water molecule.
Bond Order Correlations in the 2D Hubbard Model
NASA Astrophysics Data System (ADS)
Moore, Conrad; Abu Asal, Sameer; Yang, Shuxiang; Moreno, Juana; Jarrell, Mark
We use the dynamical cluster approximation to study the bond correlations in the Hubbard model with next nearest neighbor (nnn) hopping to explore the region of the phase diagram where the Fermi liquid phase is separated from the pseudogap phase by the Lifshitz line at zero temperature. We implement the Hirsch-Fye cluster solver that has the advantage of providing direct access to the computation of the bond operators via the decoupling field. In the pseudogap phase, the parallel bond order susceptibility is shown to persist at zero temperature while it vanishes for the Fermi liquid phase which allows the shape of the Lifshitz line to be mapped as a function of filling and nnn hopping. Our cluster solver implements NVIDIA's CUDA language to accelerate the linear algebra of the Quantum Monte Carlo to help alleviate the sign problem by allowing for more Monte Carlo updates to be performed in a reasonable amount of computation time. Work supported by the NSF EPSCoR Cooperative Agreement No. EPS-1003897 with additional support from the Louisiana Board of Regents.
Stahl, Christian; Albe, Karsten
2012-01-01
Summary Nanoparticles of Pt–Rh were studied by means of lattice-based Monte Carlo simulations with respect to the stability of ordered D022- and 40-phases as a function of particle size and composition. By thermodynamic integration in the semi-grand canonical ensemble, phase diagrams for particles with a diameter of 7.8 nm, 4.3 nm and 3.1 nm were obtained. Size-dependent trends such as the lowering of the critical ordering temperature, the broadening of the compositional stability range of the ordered phases, and the narrowing of the two-phase regions were observed and discussed in the context of complete size-dependent nanoparticle phase diagrams. In addition, an ordered surface phase emerges at low temperatures and low platinum concentration. A decrease of platinum surface segregation with increasing global platinum concentration was observed, when a second, ordered phase is formed inside the core of the particle. The order–disorder transitions were analyzed in terms of the Warren–Cowley short-range order parameters. Concentration-averaged short-range order parameters were used to remove the surface segregation bias of the conventional short-range order parameters. Using this procedure, it was shown that the short-range order in the particles at high temperatures is bulk-like. PMID:22428091
Chen, Ji; Ren, Xinguo; Li, Xin-Zheng; Alfè, Dario; Wang, Enge
2014-07-14
The finite-temperature phase diagram of hydrogen in the region of phase IV and its neighborhood was studied using the ab initio molecular dynamics (MD) and the ab initio path-integral molecular dynamics (PIMD). The electronic structures were analyzed using the density-functional theory (DFT), the random-phase approximation, and the diffusion Monte Carlo (DMC) methods. Taking the state-of-the-art DMC results as benchmark, comparisons of the energy differences between structures generated from the MD and PIMD simulations, with molecular and dissociated hydrogens, respectively, in the weak molecular layers of phase IV, indicate that standard functionals in DFT tend to underestimate the dissociation barrier of the weak molecular layers in this mixed phase. Because of this underestimation, inclusion of the quantum nuclear effects (QNEs) in PIMD using electronic structures generated with these functionals leads to artificially dissociated hydrogen layers in phase IV and an error compensation between the neglect of QNEs and the deficiencies of these functionals in standard ab initio MD simulations exists. This analysis partly rationalizes why earlier ab initio MD simulations complement so well the experimental observations. The temperature and pressure dependencies for the stability of phase IV were also studied in the end and compared with earlier results.
Cortes, Jorge E.; Lipton, Jeffrey H.; Miller, Carole B.; Busque, Lambert; Akard, Luke P.; Pinilla-Ibarz, Javier; Keir, Christopher; Warsi, Ghulam; Lin, Felice P.; Mauro, Michael J.
2016-01-01
Background Many patients with chronic myeloid leukemia in chronic phase (CML-CP) experience chronic treatment-related adverse events (AEs) on imatinib therapy. These AEs can impair quality of life (QOL) and lead to reduced treatment adherence, which is associated with poor clinical outcomes. Patients and Methods In the phase 2 Exploring Nilotinib to Reduce Imatinib Related Chronic Adverse Events (ENRICH) study (N = 52), the impact of switching patients with imatinib-related chronic low-grade nonhematologic AEs from imatinib to nilotinib was evaluated. Results Three months after switching to nilotinib, 84.6% of patients had overall improvement in imatinib-related AEs (primary endpoint). Of 210 imatinib-related AEs identified at baseline, 62.9% resolved within 3 months of switching to nilotinib. Among evaluable patients, most had improvements in overall QOL after switching to nilotinib. At screening, 65.4% of evaluable patients had a major molecular response (MMR; BCR-ABL1 ≤ 0.1% on the International Scale). After switching to nilotinib, the rate of MMR was 76.1% at 3 months and 87.8% at 12 months. Treatment-emergent AEs reported on nilotinib were typically grade 1/2; however, some patients developed more serious AEs, and 8 patients discontinued nilotinib due to new or worsening AEs. Conclusions Overall, results from ENRICH demonstrated that switching to nilotinib can mitigate imatinib-related chronic low-grade nonhematologic AEs in patients with CML-CP in conjunction with acceptable safety and achievement of molecular responses. This trial was registered at www.clinicaltrials.gov as NCT00980018. PMID:26993758
Sleezer, Brianna J.; Hayden, Benjamin Y.
2017-01-01
Flexible decision-making, a defining feature of human cognition, is typically thought of as a canonical pFC function. Recent work suggests that the striatum may participate as well; however, its role in this process is not well understood. We recorded activity of neurons in both the ventral (VS) and dorsal (DS) striatum while rhesus macaques performed a version of the Wisconsin Card Sorting Test, a classic test of flexibility. Our version of the task involved a trial-and-error phase before monkeys could identify the correct rule on each block. We observed changes in firing rate in both regions when monkeys switched rules. Specifically, VS neurons demonstrated switch-related activity early in the trial-and-error period when the rule needed to be updated, and a portion of these neurons signaled information about the switch context (i.e., whether the switch was intradimensional or extradimensional). Neurons in both VS and DS demonstrated switch-related activity at the end of the trial-and-error period, immediately before the rule was fully established and maintained, but these signals did not carry any information about switch context. We also observed associative learning signals (i.e., specific responses to options associated with rewards in the presentation period before choice) that followed the same pattern as switch signals (early in VS, later in DS). Taken together, these results endorse the idea that the striatum participates directly in cognitive set reconfiguration and suggest that single neurons in the striatum may contribute to a functional handoff from the VS to the DS during reconfiguration processes. PMID:27417204
Two Bistable Switches Govern M Phase Entry.
Mochida, Satoru; Rata, Scott; Hino, Hirotsugu; Nagai, Takeharu; Novák, Béla
2016-12-19
The abrupt and irreversible transition from interphase to M phase is essential to separate DNA replication from chromosome segregation. This transition requires the switch-like phosphorylation of hundreds of proteins by the cyclin-dependent kinase 1 (Cdk1):cyclin B (CycB) complex. Previous studies have ascribed these switch-like phosphorylations to the auto-activation of Cdk1:CycB through the removal of inhibitory phosphorylations on Cdk1-Tyr15 [1, 2]. The positive feedback in Cdk1 activation creates a bistable switch that makes mitotic commitment irreversible [2-4]. Here, we surprisingly find that Cdk1 auto-activation is dispensable for irreversible, switch-like mitotic entry due to a second mechanism, whereby Cdk1:CycB inhibits its counteracting phosphatase (PP2A:B55). We show that the PP2A:B55-inhibiting Greatwall (Gwl)-endosulfine (ENSA) pathway is both necessary and sufficient for switch-like phosphorylations of mitotic substrates. Using purified components of the Gwl-ENSA pathway in a reconstituted system, we found a sharp Cdk1 threshold for phosphorylation of a luminescent mitotic substrate. The Cdk1 threshold to induce mitotic phosphorylation is distinctly higher than the Cdk1 threshold required to maintain these phosphorylations-evidence for bistability. A combination of mathematical modeling and biochemical reconstitution show that the bistable behavior of the Gwl-ENSA pathway emerges from its mutual antagonism with PP2A:B55. Our results demonstrate that two interlinked bistable mechanisms provide a robust solution for irreversible and switch-like mitotic entry. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belosi, Maria F.; Fogliata, Antonella, E-mail: antonella.fogliata-cozzi@eoc.ch, E-mail: afc@iosi.ch; Cozzi, Luca
2014-05-15
Purpose: Phase-space files for Monte Carlo simulation of the Varian TrueBeam beams have been made available by Varian. The aim of this study is to evaluate the accuracy of the distributed phase-space files for flattening filter free (FFF) beams, against experimental measurements from ten TrueBeam Linacs. Methods: The phase-space files have been used as input in PRIMO, a recently released Monte Carlo program based on thePENELOPE code. Simulations of 6 and 10 MV FFF were computed in a virtual water phantom for field sizes 3 × 3, 6 × 6, and 10 × 10 cm{sup 2} using 1 × 1more » × 1 mm{sup 3} voxels and for 20 × 20 and 40 × 40 cm{sup 2} with 2 × 2 × 2 mm{sup 3} voxels. The particles contained in the initial phase-space files were transported downstream to a plane just above the phantom surface, where a subsequent phase-space file was tallied. Particles were transported downstream this second phase-space file to the water phantom. Experimental data consisted of depth doses and profiles at five different depths acquired at SSD = 100 cm (seven datasets) and SSD = 90 cm (three datasets). Simulations and experimental data were compared in terms of dose difference. Gamma analysis was also performed using 1%, 1 mm and 2%, 2 mm criteria of dose-difference and distance-to-agreement, respectively. Additionally, the parameters characterizing the dose profiles of unflattened beams were evaluated for both measurements and simulations. Results: Analysis of depth dose curves showed that dose differences increased with increasing field size and depth; this effect might be partly motivated due to an underestimation of the primary beam energy used to compute the phase-space files. Average dose differences reached 1% for the largest field size. Lateral profiles presented dose differences well within 1% for fields up to 20 × 20 cm{sup 2}, while the discrepancy increased toward 2% in the 40 × 40 cm{sup 2} cases. Gamma analysis resulted in an agreement of 100% when a 2%, 2 mm criterion was used, with the only exception of the 40 × 40 cm{sup 2} field (∼95% agreement). With the more stringent criteria of 1%, 1 mm, the agreement reduced to almost 95% for field sizes up to 10 × 10 cm{sup 2}, worse for larger fields. Unflatness and slope FFF-specific parameters are in line with the possible energy underestimation of the simulated results relative to experimental data. Conclusions: The agreement between Monte Carlo simulations and experimental data proved that the evaluated Varian phase-space files for FFF beams from TrueBeam can be used as radiation sources for accurate Monte Carlo dose estimation, especially for field sizes up to 10 × 10 cm{sup 2}, that is the range of field sizes mostly used in combination to the FFF, high dose rate beams.« less
Constant-pressure nested sampling with atomistic dynamics
NASA Astrophysics Data System (ADS)
Baldock, Robert J. N.; Bernstein, Noam; Salerno, K. Michael; Pártay, Lívia B.; Csányi, Gábor
2017-10-01
The nested sampling algorithm has been shown to be a general method for calculating the pressure-temperature-composition phase diagrams of materials. While the previous implementation used single-particle Monte Carlo moves, these are inefficient for condensed systems with general interactions where single-particle moves cannot be evaluated faster than the energy of the whole system. Here we enhance the method by using all-particle moves: either Galilean Monte Carlo or the total enthalpy Hamiltonian Monte Carlo algorithm, introduced in this paper. We show that these algorithms enable the determination of phase transition temperatures with equivalent accuracy to the previous method at 1 /N of the cost for an N -particle system with general interactions, or at equal cost when single-particle moves can be done in 1 /N of the cost of a full N -particle energy evaluation. We demonstrate this speed-up for the freezing and condensation transitions of the Lennard-Jones system and show the utility of the algorithms by calculating the order-disorder phase transition of a binary Lennard-Jones model alloy, the eutectic of copper-gold, the density anomaly of water, and the condensation and solidification of bead-spring polymers. The nested sampling method with all three algorithms is implemented in the pymatnest software.
Southeastern Virtual Institute for Health Equity and Wellness (SE VIEW) Phase 2
2013-09-01
and sweet tea. • Switch to fat free or 1% milk • Limit consumption of 100% fruit juice to ½ cup per day. • Fruit smoothie taste testing. Youth...in popular beverages. • Deliverables: • Drink water to replace sugar sweetened beverages such as soda and sweet tea. • Switch to fat free or 1...examples of dairy products. • Switch to 1% or unflavored skim milk. • Try to consume reduced fat or low- fat cheese. • Dairy snack taste-testing
Sumant, Anirudha V.; Auciello, Orlando H.; Mancini, Derrick C.
2013-01-15
An efficient deposition process is provided for fabricating reliable RF MEMS capacitive switches with multilayer ultrananocrystalline (UNCD) films for more rapid recovery, charging and discharging that is effective for more than a billion cycles of operation. Significantly, the deposition process is compatible for integration with CMOS electronics and thereby can provide monolithically integrated RF MEMS capacitive switches for use with CMOS electronic devices, such as for insertion into phase array antennas for radars and other RF communication systems.
Transport dynamics of molecular motors that switch between an active and inactive state
NASA Astrophysics Data System (ADS)
Pinkoviezky, I.; Gov, N. S.
2013-08-01
Molecular motors are involved in key transport processes in the cell. Many of these motors can switch from an active to a nonactive state, either spontaneously or depending on their interaction with other molecules. When active, the motors move processively along the filaments, while when inactive they are stationary. We treat here the simple case of spontaneously switching motors, between the active and inactive states, along an open linear track. We use our recent analogy with vehicular traffic, where we go beyond the mean-field description. We map the phase diagram of this system, and find that it clearly breaks the symmetry between the different phases, as compared to the standard total asymmetric exclusion process. We make several predictions that may be testable using molecular motors in vitro and in living cells.
Chen, Sihai; Lai, Jianjun; Dai, Jun; Ma, Hong; Wang, Hongchen; Yi, Xinjian
2009-12-21
By magnetron controlled sputtering system, a new nanostructured metastable monoclinic phase VO2 (B) thin film has been fabricated. The testing result shows that this nanostructured VO2 (B) thin film has high temperature coefficient of resistance (TCR) of -7%/K. Scanning electron microscopy measurement shows that the average grain diameter of the VO2 (B) crystallite is between 100 and 250 nm. After post annealed, VO2 (B) crystallite is changed into monoclinic (M) phase VO2 (M) crystallite with the average grain diameter between 20 and 50 nm. A set up of testing the thin film switching time is established. The test result shows the switching time is about 50 ms. With the nanostructured VO2 (B) and VO2 (M) thin films, optical switches and high sensitivity detectors will be presented.
Coupling and Switching in Optically Resonant Periodic Electrode Structures
NASA Astrophysics Data System (ADS)
Bieber, Amy Erica
This thesis describes coupling and switching of optical radiation using metal-semiconductor-metal (MSM) structures, specifically in a metal-on-silicon waveguide configuration. The structures which are the subject of this research have the special advantage of being VLSI -compatible; this is very important for the ultimate acceptance of any integrated optoelectronics technology by the mainstream semiconductor community. To date, research efforts in VLSI electronics, MSM detectors, metal devices, and optical switching have existed as separate entities with decidedly different goals. This work attempts to unite these specialties; an interdigitated array of metal fingers on a silicon waveguide allows for (1) fabrication processes which are well-understood and compatible with current or next-generation semiconductor manufacturing standards, (2) electrical bias capability which can potentially provide modulation, tuning, and enhanced speed, and (3) potentially efficient waveguide coupling which takes advantage of TM coupling. The latter two items are made possible by the use of metallic gratings, which sets this work apart from previous optical switching results. This MSM structure represents an important step in uniting four vital technologies which, taken together, can lead to switching performance and operational flexibility which could substantially advance the capabilities of current optoelectronic devices. Three different designs were successfully used to examine modulation and optical switching based upon nonlinear interactions in the silicon waveguide. First, a traditional Bragg reflector design with input and output couplers on either side was used to observe switching of nanosecond-regime Nd:YAG pulses. This structure was thermally tuned to obtain a variety of switching dynamics. Next, a phase-shift was incorporated into the Bragg reflector, and again thermally-tunable switching dynamics were observed, but with the added advantage of a reduction in the energy requirements for optical switching. Finally, the roles of the coupler and Bragg reflector were combined in a normal -incidence structure which exhibited nonlinear reflectivity modulation. This has not only been the first experimental demonstration of optical switching in a metal-semiconductor waveguide structure, but, to our knowledge, one of the first such demonstrations using a nonlinear phase-shifted or normal incidence grating of any kind.
Voltage Control of Antiferromagnetic Phases at Near-Terahertz Frequencies
NASA Astrophysics Data System (ADS)
Barra, Anthony; Domann, John; Kim, Ki Wook; Carman, Greg
2018-03-01
A method to control antiferromagnetism using voltage-induced strain is proposed and theoretically examined. Voltage-induced magnetoelastic anisotropy is shown to provide sufficient torque to switch an antiferromagnetic domain 90° either from out of plane to in plane or between in-plane axes. Numerical results indicate that strain-mediated antiferromagnetic switching can occur in an 80-nm nanopatterned disk at frequencies approaching 1 THz but that the switching speed heavily depends on the system's mechanical design. Furthermore, the energy cost to induce magnetic switching is only 450 aJ, indicating that magnetoelastic control of antiferromagnetism is substantially more energy efficient than other approaches.
Full wave modulator-demodulator amplifier apparatus. [for generating rectified output signal
NASA Technical Reports Server (NTRS)
Black, J. M. (Inventor)
1974-01-01
A full-wave modulator-demodulator apparatus is described including an operational amplifier having a first input terminal coupled to a circuit input terminal, and a second input terminal alternately coupled to the circuit input terminal. A circuit is ground by a switching circuit responsive to a phase reference signal and the operational amplifier is alternately switched between a non-inverting mode and an inverting mode. The switching circuit includes three field-effect transistors operatively associated to provide the desired switching function in response to an alternating reference signal of the same frequency as an AC input signal applied to the circuit input terminal.
An X-Band SOS Resistive Gate-Insulator-Semiconductor /RIS/ switch
NASA Astrophysics Data System (ADS)
Kwok, S. P.
1980-02-01
The new X-Band Resistive Gate-Insulator-Semiconductor (RIS) switch has been fabricated on silicon-on-sapphire, and its equivalent circuit model characterized. An RIS SPST switch with 20-dB on/off isolation, 1.2-dB insertion loss, and power handling capacity in excess of 20-W peak has been achieved at X band. The device switching time is on the order of 600 ns, and it requires negligible control holding current in both on and off states. The device is compatible with monolithic integrated-circuit technology and thus is suitable for integration into low-cost monolithic phase shifters or other microwave integrated circuits.
Chemical manipulation of phase stability and electronic behavior in Cu 4−x Ag x Se 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olvera, A.; Bailey, T. P.; Uher, C.
Gradual stoichiometric chemical substitution of Cu by Ag in the p-type Cu 2 Se phase enables phase segregation and incremental switching of the electronic transport to n-type behavior for large Ag/Cu ratios.
Chemical manipulation of phase stability and electronic behavior in Cu 4−x Ag x Se 2
Olvera, A.; Bailey, T. P.; Uher, C.; ...
2018-01-01
Gradual stoichiometric chemical substitution of Cu by Ag in the p-type Cu 2 Se phase enables phase segregation and incremental switching of the electronic transport to n-type behavior for large Ag/Cu ratios.
Dependence on sphere size of the phase behavior of mixtures of rods and spheres
NASA Astrophysics Data System (ADS)
Urakami, Naohito; Imai, Masayuki
2003-07-01
By the addition of chondroitin sulfate (Chs) to the aqueous suspension of tobacco mosaic virus (TMV), the aggregation of TMV occurs at very dilute TMV concentration compared with the addition of polyethylene oxide (PEO). The difference of physical behavior between Chs and PEO is the chain conformation in solution. The Chs chain has a semirigid nature, whereas the PEO chain has a flexible nature. In this study, the Chs and PEO chains are simplified to spherical particles having different size, and we use the spherocylinder model for TMV particle. The effect of the sphere size on the phase behaviors in the mixtures of rods and spheres is investigated by Monte Carlo simulations. By the addition of small spheres, the system transforms from the miscible isotropic phase to the miscible nematic phase. On the other hand, by the addition of large spheres, the system changes from the miscible isotropic phase to the immiscible nematic phase through the immiscible isotropic phase. The different phase behaviors between the small and the large spheres originate from the difference of overlapping volume of the depletion zone. In addition, we perform the Monte Carlo simulations in the case that semirigid chains are used as the Chs chain models. The same phase behaviors are observed as the mixtures of rods and large spheres. Thus the sphere model captures the phase behaviors of rod and polymer mixture systems.
Gartner, Thomas E; Epps, Thomas H; Jayaraman, Arthi
2016-11-08
We describe an extension of the Gibbs ensemble molecular dynamics (GEMD) method for studying phase equilibria. Our modifications to GEMD allow for direct control over particle transfer between phases and improve the method's numerical stability. Additionally, we found that the modified GEMD approach had advantages in computational efficiency in comparison to a hybrid Monte Carlo (MC)/MD Gibbs ensemble scheme in the context of the single component Lennard-Jones fluid. We note that this increase in computational efficiency does not compromise the close agreement of phase equilibrium results between the two methods. However, numerical instabilities in the GEMD scheme hamper GEMD's use near the critical point. We propose that the computationally efficient GEMD simulations can be used to map out the majority of the phase window, with hybrid MC/MD used as a follow up for conditions under which GEMD may be unstable (e.g., near-critical behavior). In this manner, we can capitalize on the contrasting strengths of these two methods to enable the efficient study of phase equilibria for systems that present challenges for a purely stochastic GEMC method, such as dense or low temperature systems, and/or those with complex molecular topologies.
NASA Technical Reports Server (NTRS)
Liffman, Kurt
1990-01-01
The effects of catastrophic collisional fragmentation and diffuse medium accretion on a the interstellar dust system are computed using a Monte Carlo computer model. The Monte Carlo code has as its basis an analytic solution of the bulk chemical evolution of a two-phase interstellar medium, described by Liffman and Clayton (1989). The model is subjected to numerous different interstellar processes as it transfers from one interstellar phase to another. Collisional fragmentation was found to be the dominant physical process that shapes the size spectrum of interstellar dust. It was found that, in the diffuse cloud phase, 90 percent of the refractory material is locked up in the dust grains, primarily due to accretion in the molecular medium. This result is consistent with the observed depletions of silicon. Depletions were found to be affected only slightly by diffuse cloud accretion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Yangzheng; Cohen, Ronald E.; Stackhouse, Stephen
2014-11-10
In this study, we have performed quantum Monte Carlo (QMC) simulations and density functional theory calculations to study the equations of state of MgSiO 3 perovskite (Pv, bridgmanite) and post-perovskite (PPv) up to the pressure and temperature conditions of the base of Earth's lower mantle. The ground-state energies were derived using QMC simulations and the temperature-dependent Helmholtz free energies were calculated within the quasiharmonic approximation and density functional perturbation theory. The equations of state for both phases of MgSiO 3 agree well with experiments, and better than those from generalized gradient approximation calculations. The Pv-PPv phase boundary calculated from ourmore » QMC equations of state is also consistent with experiments, and better than previous local density approximation calculations. Lastly, we discuss the implications for double crossing of the Pv-PPv boundary in the Earth.« less
Low-Temperature Crystal Structures of the Hard Core Square Shoulder Model.
Gabriëlse, Alexander; Löwen, Hartmut; Smallenburg, Frank
2017-11-07
In many cases, the stability of complex structures in colloidal systems is enhanced by a competition between different length scales. Inspired by recent experiments on nanoparticles coated with polymers, we use Monte Carlo simulations to explore the types of crystal structures that can form in a simple hard-core square shoulder model that explicitly incorporates two favored distances between the particles. To this end, we combine Monte Carlo-based crystal structure finding algorithms with free energies obtained using a mean-field cell theory approach, and draw phase diagrams for two different values of the square shoulder width as a function of the density and temperature. Moreover, we map out the zero-temperature phase diagram for a broad range of shoulder widths. Our results show the stability of a rich variety of crystal phases, such as body-centered orthogonal (BCO) lattices not previously considered for the square shoulder model.
Physical chemistry: Molecular motion watched
NASA Astrophysics Data System (ADS)
Siwick, Bradley; Collet, Eric
2013-04-01
A laser pulse can switch certain crystals from an insulating phase to a highly conducting phase. The ultrafast molecular motions that drive the transition have been directly observed using electron diffraction. See Letter p.343
Ultra-fast quantum randomness generation by accelerated phase diffusion in a pulsed laser diode.
Abellán, C; Amaya, W; Jofre, M; Curty, M; Acín, A; Capmany, J; Pruneri, V; Mitchell, M W
2014-01-27
We demonstrate a high bit-rate quantum random number generator by interferometric detection of phase diffusion in a gain-switched DFB laser diode. Gain switching at few-GHz frequencies produces a train of bright pulses with nearly equal amplitudes and random phases. An unbalanced Mach-Zehnder interferometer is used to interfere subsequent pulses and thereby generate strong random-amplitude pulses, which are detected and digitized to produce a high-rate random bit string. Using established models of semiconductor laser field dynamics, we predict a regime of high visibility interference and nearly complete vacuum-fluctuation-induced phase diffusion between pulses. These are confirmed by measurement of pulse power statistics at the output of the interferometer. Using a 5.825 GHz excitation rate and 14-bit digitization, we observe 43 Gbps quantum randomness generation.
Evaluation of half wave induction motor drive for use in passenger vehicles
NASA Technical Reports Server (NTRS)
Hoft, R. G.; Kawamura, A.; Goodarzi, A.; Yang, G. Q.; Erickson, C. L.
1985-01-01
Research performed at the University of Missouri-Columbia to devise and design a lower cost inverter induction motor drive for electrical propulsion of passenger vehicles is described. A two phase inverter motor system is recommended. The new design is predicted to provide comparable vehicle performance, improved reliability and a cost advantage for a high production vehicle, decreased total rating of the power semiconductor switches, and a somewhat simpler control hardware compared to the conventional three phase bridge inverter motor drive system. The major disadvantages of the two phase inverter motor drive are that it is larger and more expensive than a three phase machine, the design of snubbers for the power leakage inductances produce higher transient voltages, and the torque pulsations are relatively large because of the necessity to limit the inverter switching frequency to achieve high efficiency.
Finite-time output feedback control of uncertain switched systems via sliding mode design
NASA Astrophysics Data System (ADS)
Zhao, Haijuan; Niu, Yugang; Song, Jun
2018-04-01
The problem of sliding mode control (SMC) is investigated for a class of uncertain switched systems subject to unmeasurable state and assigned finite (possible short) time constraint. A key issue is how to ensure the finite-time boundedness (FTB) of system state during reaching phase and sliding motion phase. To this end, a state observer is constructed to estimate the unmeasured states. And then, a state estimate-based SMC law is designed such that the state trajectories can be driven onto the specified integral sliding surface during the assigned finite time interval. By means of partitioning strategy, the corresponding FTB over reaching phase and sliding motion phase are guaranteed and the sufficient conditions are derived via average dwell time technique. Finally, an illustrative example is given to illustrate the proposed method.
Grishin, Ilja; Huey, Bryan D; Kolosov, Oleg V
2013-11-13
The nanostructure of micrometer-sized domains (bits) in phase-change materials (PCM) that undergo switching between amorphous and crystalline phases plays a key role in the performance of optical PCM-based memories. Here, we explore the dynamics of such phase transitions by mapping PCM nanostructures in three dimensions with nanoscale resolution by combining precision Ar ion beam cross-sectional polishing and nanomechanical ultrasonic force microscopy (UFM) mapping. Surface and bulk phase changes of laser written submicrometer to micrometer sized amorphous-to-crystalline (SET) and crystalline-to-amorphous (RESET) bits in chalcogenide Ge2Sb2Te5 PCM are observed with 10-20 nm lateral and 4 nm depth resolution. UFM mapping shows that the Young's moduli of crystalline SET bits exceed the moduli of amorphous areas by 11 ± 2%, with crystalline content extending from a few nanometers to 50 nm in depth depending on the energy of the switching pulses. The RESET bits written with 50 ps pulses reveal shallower depth penetration and show 30-50 nm lateral and few nanometer vertical wavelike topography that is anticorrelated with the elastic modulus distribution. Reverse switching of amorphous RESET bits results in the full recovery of subsurface nanomechanical properties accompanied with only partial topography recovery, resulting in surface corrugations attributed to quenching. This precision sectioning and nanomechanical mapping approach could be applicable to a wide range of amorphous, nanocrystalline, and glass-forming materials for 3D nanomechanical mapping of amorphous-crystalline transitions.
Shew, Chwen-Yang; Oda, Soutaro; Yoshikawa, Kenichi
2017-11-28
For living cells in the real world, a large organelle is commonly positioned in the inner region away from membranes, such as the nucleus of eukaryotic cells, the nucleolus of nuclei, mitochondria, chloroplast, Golgi body, etc. It contradicts the expectation by the current depletion-force theory in that the larger particle should be excluded from the inner cell space onto cell boundaries in a crowding media. Here we simply model a sizable organelle as a soft-boundary large particle allowing crowders, which are smaller hard spheres in the model, to intrude across its boundary. The results of Monte Carlo simulation indicate that the preferential location of the larger particle switches from the periphery into the inner region of the cavity by increasing its softness. An integral equation theory is further developed to account for the structural features of the model, and the theoretical predictions are found consistent with our simulation results.
NASA Astrophysics Data System (ADS)
Shew, Chwen-Yang; Oda, Soutaro; Yoshikawa, Kenichi
2017-11-01
For living cells in the real world, a large organelle is commonly positioned in the inner region away from membranes, such as the nucleus of eukaryotic cells, the nucleolus of nuclei, mitochondria, chloroplast, Golgi body, etc. It contradicts the expectation by the current depletion-force theory in that the larger particle should be excluded from the inner cell space onto cell boundaries in a crowding media. Here we simply model a sizable organelle as a soft-boundary large particle allowing crowders, which are smaller hard spheres in the model, to intrude across its boundary. The results of Monte Carlo simulation indicate that the preferential location of the larger particle switches from the periphery into the inner region of the cavity by increasing its softness. An integral equation theory is further developed to account for the structural features of the model, and the theoretical predictions are found consistent with our simulation results.
Code-Switching and Vernacular Support: An Early Middle English Case Study
ERIC Educational Resources Information Center
Skaffari, Janne
2016-01-01
In the multilingual history of England, the period following the Norman Conquest in 1066 is a particularly intriguing phase, but its code-switching patterns have so far received little attention. The present article describes and analyses the multilingual practices evinced in London, British Library, MS Stowe 34, containing one instructional prose…
The Effects of Reinvestment of Conscious Processing on Switching Focus of Attention
ERIC Educational Resources Information Center
Weiss, Stephen M.
2011-01-01
The effects of switching focusing strategies on complex motor skill learning were investigated using a dart-throwing task. Participants were screened for reinvestment of conscious processing by completing the Reinvestment Scale (RS) of Masters, Polman, and Hammond (1993). After an initial baseline phase, two focusing strategies were described. Low…
Shamaeli, Ehsan; Alizadeh, Naader
2012-01-01
A nanostructure fiber based on conducting polypyrrole synthesized by an electrochemical method has been developed, and used for electrochemically switching solid-phase microextraction (ES-SPME). The ES-SPME was prepared by the doping of eriochrome blue in polypyrrole (PPy-ECB) and used for selectively extracting the Ni(II) cation in the presence of some transition and heavy metal ions. The cation-exchange behavior of electrochemically prepared polypyrrole on stainless-steel with and without eriochrome blue (ECB) dye was characterized using ICP-OES analysis. The effects of the scan rate for electrochemical synthesis, uptake and the release potential on the extraction behavior of the PPy-ECB conductive fiber were studied. Uptake and release time profiles show that the process of electrically switched cation exchange could be completed within 250 s. The results of the present study point concerning the possibility of developing a selective extraction process for Ni(II) from waste water was explored using such a nanostructured PPy-ECB film through an electrically switched cation exchange. 2012 © The Japan Society for Analytical Chemistry
A Shape Memory Alloy Based Cryogenic Thermal Conduction Switch
NASA Technical Reports Server (NTRS)
Notardonato, W. U.; Krishnan, V. B.; Singh, J. D.; Woodruff, T. R.; Vaidyanathan, R.
2005-01-01
Shape memory alloys (SMAs) can produce large strains when deformed (e.g., up to 8%). Heating results in a phase transformation and associated recovery of all the accumulated strain. This strain recovery can occur against large forces, resulting in their use as actuators. Thus an SMA element can integrate both sensory and actuation functions, by inherently sensing a change in temperature and actuating by undergoing a shape change as a result of a temperature-induced phase transformation. Two aspects of our work on cryogenic SMAs are addressed here. First - a shape memory alloy based cryogenic thermal conduction switch for operation between dewars of liquid methane and liquid oxygen in a common bulkhead arrangement is discussed. Such a switch integrates the sensor element and the actuator element and can be used to create a variable thermal sink to other cryogenic tanks for liquefaction, densification, and zero boil-off systems for advanced spaceport applications. Second - fabrication via arc-melting and subsequent materials testing of SMAs with cryogenic transformation temperatures for use in the aforementioned switch is discussed.
Gate-tunable gigantic changes in lattice parameters and optical properties in VO2
NASA Astrophysics Data System (ADS)
Nakano, Masaki; Okuyama, Daisuke; Shibuya, Keisuke; Ogawa, Naoki; Hatano, Takafumi; Kawasaki, Masashi; Arima, Taka-Hisa; Iwasa, Yoshihiro; Tokura, Yoshinori
2014-03-01
The field-effect transistor provides an electrical switching function of current flowing through a channel surface by external gate voltage (VG). We recently reported that an electric-double-layer transistor (EDLT) based on vanadium dioxide (VO2) enables electrical switching of the metal-insulator phase transition, where the low-temperature insulating state can be completely switched to the metallic state by application of VG. Here we demonstrate that VO2-EDLT enables electrical switching of lattice parameters and optical properties as well as electrical current. We performed in-situ x-ray diffraction and optical transmission spectroscopy measurements, and found that the c-axis length and the infrared transmittance of VO2 can be significantly modulated by more than 1% and 40%, respectively, by application of VG. We emphasize that these distinguished features originate from the electric-field induced bulk phase transition available with VO2-EDLT. This work was supported by the Japan Society for the Promotion of Science (JSPS) through its ``Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program).''
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ruixue; Yang, Bin; Luo, Zhenlin
2016-08-29
Here, the monoclinic (M) phases in high-performance relaxor-based ferroelectric single crystals have been recognized to be a vital structural factor for the outstanding piezoelectric property. However, due to the complexity of the structure in M phases, the understanding about it is still limited. In this paper, the local twin domains and tip-voltage-induced domain switching of the M C phase in Pb(Mg 1/3Nb 2/3)O 3 - 0.34PbTiO 3 (PMN-0.34PT) single crystal have been intensively investigated by piezoresponse force microscopy (PFM). By theoretically analyzing the experimental patterns of domain walls on the (001) C face, the specific M C twin domains inmore » the initial annealed state of a selected area have been clarified, and the polarization orientation of the M C phase in this sample is determined to be at an angle of 29 degrees to the < 001 > C directions. In addition, based on the evolution of domains and the motion of domain walls under the step-increased PFM tip dc voltage (V dc), the switching process and features of different types of M C domain variants are visually revealed« less
NASA Astrophysics Data System (ADS)
Kim, Hyun-Tak; Chae, Byung-Gyu; Kim, Bong-Jun; Lee, Yong-Wook; Yun, Sun-Jin; Kang, Kwang-Yong
2006-03-01
An abrupt first-order metal-insulator transition (MIT) is observed during the application of a switching pulse voltage to VO2-based two-terminal devices. When the abrupt MIT occurs, the structural phase transition (SPT) is investigated by a micro- Raman spectroscopy and a micro-XRD. The result shows that the MIT is not accompanied with the structural phase transition (SPT); the abrupt MIT is prior to the SPT. Moreover, any switching pulse over a threshold voltage of 7.1 V for the MIT enabled the device material to transform efficiently from an insulator to a metal. The measured delay time from the source switching pulse to an induced MIT pulse is an order of 20 nsec which is much less than a delay time of about one msec deduced by thermal model. This indicates that the first-order MIT does not occur due to thermal. We think this MIT is the Mott transition. (Reference: New J. Phys. 6 (1994) 52 (www.njp.org), Appl. Phys. Lett. 86 (2005) 242101, Physica B 369 (2005. December) xxxx)
NASA Astrophysics Data System (ADS)
Wang, Limin; Shen, Yiteng; Yu, Jingxian; Li, Ping; Zhang, Ridong; Gao, Furong
2018-01-01
In order to cope with system disturbances in multi-phase batch processes with different dimensions, a hybrid robust control scheme of iterative learning control combined with feedback control is proposed in this paper. First, with a hybrid iterative learning control law designed by introducing the state error, the tracking error and the extended information, the multi-phase batch process is converted into a two-dimensional Fornasini-Marchesini (2D-FM) switched system with different dimensions. Second, a switching signal is designed using the average dwell-time method integrated with the related switching conditions to give sufficient conditions ensuring stable running for the system. Finally, the minimum running time of the subsystems and the control law gains are calculated by solving the linear matrix inequalities. Meanwhile, a compound 2D controller with robust performance is obtained, which includes a robust extended feedback control for ensuring the steady-state tracking error to converge rapidly. The application on an injection molding process displays the effectiveness and superiority of the proposed strategy.
Shepperd, Christopher J; Eldridge, Alison; Camacho, Oscar M; McAdam, Kevin; Proctor, Christopher J; Meyer, Ingo
2013-06-01
Reduced toxicant prototype (RTP) cigarettes with substantially reduced levels of tobacco smoke toxicants have been developed. Evaluation of these prototype cigarettes included measurement of biomarkers of exposure (BoE) to toxicants in smokers switched from conventional cigarettes to the RTPs. A 6-week single-blinded randomised controlled study with occasional clinical confinement was conducted ( ISRCTN7215735). All smoking subjects smoked a conventional cigarette for 2-weeks. Control groups continued to smoke the conventional cigarette while test groups switched to one of three RTP designs. Clinical confinement and additional assessments were performed for all smoking groups after 2 and 4-weeks. A non-smoker group provided background levels of BoE. On average, smokers switched to RTPs with reduced machine yields of toxicants had reduced levels of corresponding BoEs. For vapour phase toxicants such as acrolein and 1,3-butadiene reductions of ⩾70% were observed both in smoke chemistry and BoEs. Reductions in particulate phase toxicants such as tobacco-specific nitrosamines, aromatic amines and polyaromatic hydrocarbons depended upon the technologies used, but were in some cases ⩾80% although some increases in other particulate phase toxicants were observed. However, reductions in BoEs demonstrate that it is possible to produce prototype cigarettes that reduce exposure to toxicants in short-term use. Copyright © 2013 Elsevier Inc. All rights reserved.
Kotiadis, D; Hermens, H J; Veltink, P H
2010-05-01
An Inertial Gait Phase Detection system was developed to replace heel switches and footswitches currently being used for the triggering of drop foot stimulators. A series of four algorithms utilising accelerometers and gyroscopes individually and in combination were tested and initial results are shown. Sensors were positioned on the outside of the upper shank. Tests were performed on data gathered from a subject, sufferer of stroke, implanted with a drop foot stimulator and triggered with the current trigger, the heel switch. Data tested includes a variety of activities representing everyday life. Flat surface walking, rough terrain and carpet walking show 100% detection and the ability of the algorithms to ignore non-gait events such as weight shifts. Timing analysis is performed against the current triggering method, the heel switch. After evaluating the heel switch timing against a reference system, namely the Vicon 370 marker and force plates system. Initial results show a close correlation between the current trigger detection and the inertial sensor based triggering algorithms. Algorithms were tested for stairs up and stairs down. Best results are observed for algorithms using gyroscope data. Algorithms were designed using threshold techniques for lowest possible computational load and with least possible sensor components to minimize power requirements and to allow for potential future implantation of sensor system.
Effect of reaction-step-size noise on the switching dynamics of stochastic populations
NASA Astrophysics Data System (ADS)
Be'er, Shay; Heller-Algazi, Metar; Assaf, Michael
2016-05-01
In genetic circuits, when the messenger RNA lifetime is short compared to the cell cycle, proteins are produced in geometrically distributed bursts, which greatly affects the cellular switching dynamics between different metastable phenotypic states. Motivated by this scenario, we study a general problem of switching or escape in stochastic populations, where influx of particles occurs in groups or bursts, sampled from an arbitrary distribution. The fact that the step size of the influx reaction is a priori unknown and, in general, may fluctuate in time with a given correlation time and statistics, introduces an additional nondemographic reaction-step-size noise into the system. Employing the probability-generating function technique in conjunction with Hamiltonian formulation, we are able to map the problem in the leading order onto solving a stationary Hamilton-Jacobi equation. We show that compared to the "usual case" of single-step influx, bursty influx exponentially decreases the population's mean escape time from its long-lived metastable state. In particular, close to bifurcation we find a simple analytical expression for the mean escape time which solely depends on the mean and variance of the burst-size distribution. Our results are demonstrated on several realistic distributions and compare well with numerical Monte Carlo simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jørgensen, Mads R. V.; Piccoli, Paula M. B.; Hathwar, Venkatesha R.
2017-01-31
The structural phase transition accompanied by a Jahn–Teller switch has been studied over a range of H/D ratios in (NH 4) 2[Cu(H 2O) 6](SO 4) 2(ACTS). In particular, single-crystal neutron diffraction investigations of crystals with deuteration in the range 50 to 82% are shown to be consistent with previous electron paramagnetic resonance (EPR) experiments exhibiting a phase boundary at 50% deuteration under ambient pressure. Polycrystalline samples show that the two phases can co-exist. In addition, single-crystal neutron and polycrystalline X-ray diffraction pressure experiments show a shift to lower pressure at 60% deuterationversusprevious measurements at 100% deuteration.
Multilevel-Dc-Bus Inverter For Providing Sinusoidal And Pwm Electrical Machine Voltages
Su, Gui-Jia [Knoxville, TN
2005-11-29
A circuit for controlling an ac machine comprises a full bridge network of commutation switches which are connected to supply current for a corresponding voltage phase to the stator windings, a plurality of diodes, each in parallel connection to a respective one of the commutation switches, a plurality of dc source connections providing a multi-level dc bus for the full bridge network of commutation switches to produce sinusoidal voltages or PWM signals, and a controller connected for control of said dc source connections and said full bridge network of commutation switches to output substantially sinusoidal voltages to the stator windings. With the invention, the number of semiconductor switches is reduced to m+3 for a multi-level dc bus having m levels. A method of machine control is also disclosed.
Domain switching in single-phase multiferroics
NASA Astrophysics Data System (ADS)
Jia, Tingting; Cheng, Zhenxiang; Zhao, Hongyang; Kimura, Hideo
2018-06-01
Multiferroics are a time-honoured research subject by reason for their tremendous application potential in the information industry, such as in multi-state information storage devices and new types of sensors. An outburst of studies on multiferroicity has been witnessed in the 21st century, although this field has a long research history since the 19th century. Multiferroicity has now become one of the hottest research topics in condensed matter physics and materials science. Numerous efforts have been made to investigate the cross-coupling phenomena among ferroic orders such as ferroelectricity, (anti-)ferromagnetism, and ferroelasticity, especially the coupling between electric and magnetic orderings that would account for the magnetoelectric (ME) effect in multiferroic materials. The magnetoelectric properties and coupling behavior of single phase multiferroics are dominated by their domain structures. It was also noted that, however, the multiferroic materials exhibit very complicated domain structures. Studies on domain structure characterization and domain switching are a crucial step in the exploration of approaches to the control and manipulation of magnetic (electric) properties using an electric (magnetic) field or other means. In this review, following a concise outline of our current basic knowledge on the magnetoelectric (ME) effect, we summarize some important research activities on domain switching in single-phase multiferroic materials in the form of single crystals and thin films, especially domain switching behavior involving strain and the related physics in the last decade. We also introduce recent developments in characterization techniques for domain structures of ferroelectric or multiferroic materials, which have significantly advanced our understanding of domain switching dynamics and interactions. The effects of a series of issues such as electric field, magnetic field, and stress effects on domain switching are been discussed as well. It is intended that an integrated viewpoint of these issues, as provided here, will further motivate synergistic activities between the various research groups and industry towards the development and characterization of multiferroic materials.
High Performance ZVT with Bus Clamping Modulation Technique for Single Phase Full Bridge Inverters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Yinglai; Ayyanar, Raja
2016-03-20
This paper proposes a topology based on bus clamping modulation and zero-voltage-transition (ZVT) technique to realize zero-voltage-switching (ZVS) for all the main switches of the full bridge inverters, and inherent ZVS and/or ZCS for the auxiliary switches. The advantages of the strategy include significant reduction in the turn-on loss of the ZVT auxiliary switches which typically account for a major part of the total loss in other ZVT circuits, and reduction in the voltage ratings of auxiliary switches. The modulation scheme and the commutation stages are analyzed in detail. Finally, a 1kW, 500 kHz switching frequency inverter of the proposedmore » topology using SiC MOSFETs has been built to validate the theoretical analysis. The ZVT with bus clamping modulation technique of fixed timing and adaptive timing schemes are implemented in DSP TMS320F28335 resulting in full ZVS for the main switches in the full bridge inverter. The proposed scheme can save up to 33 % of the switching loss compared with no ZVT case.« less
Viveros-Méndez, Perla X; Gil-Villegas, Alejandro; Aranda Espinoza, Said
2017-12-21
The phase behavior of hard spherocylinders (HSCs) confined in cylindrical cavities is studied using Monte Carlo simulations in the canonical ensemble. Results are presented for different values of the particles' aspect ratio l/σ, where l and σ are the length and diameter of the cylinder and hemispherical caps, respectively. Finite cavities with periodic boundary conditions along the principal axis of the cavities have been considered, where the cavity's principal axis is along the z-direction. We first focus our study in the structure induced by varying the degree of confinement, determining the HSC phase diagram for aspect ratios l/σ = 3, 5, 7, and 9, at a fixed packing fraction η = 0.071. By compressing the cavities along the radial direction, the isotropic phase becomes stable before the nematic phase as the length of the cavities is increased, resulting in a second-order transition. The occurrence of phase transitions has also been determined by varying η for constant values of the cavity's length L. Systems with low aspect ratios, l/σ = 3, 5, 7, and 9, exhibit first-order transitions with chiral, paranematic, and isotropic phases, whereas for larger HSCs, l/σ = 50, 70, and 100, the transitions are second order with paranematic, nematic, and isotropic phases, in contrast with the behavior of non-confined systems, with first-order transitions for isotropic, nematic, smectic-A, and solid phases.
Liquid part of the phase diagram and percolation line for two-dimensional Mercedes-Benz water.
Urbic, T
2017-09-01
Monte Carlo simulations and Wertheim's thermodynamic perturbation theory (TPT) are used to predict the phase diagram and percolation curve for the simple two-dimensional Mercedes-Benz (MB) model of water. The MB model of water is quite popular for explaining water properties, but the phase diagram has not been reported till now. In the MB model, water molecules are modeled as two-dimensional Lennard-Jones disks, with three orientation-dependent hydrogen-bonding arms, arranged as in the MB logo. The liquid part of the phase space is explored using grand canonical Monte Carlo simulations and two versions of Wertheim's TPT for associative fluids, which have been used before to predict the properties of the simple MB model. We find that the theory reproduces well the physical properties of hot water but is less successful at capturing the more structured hydrogen bonding that occurs in cold water. In addition to reporting the phase diagram and percolation curve of the model, it is shown that the improved TPT predicts the phase diagram rather well, while the standard one predicts a phase transition at lower temperatures. For the percolation line, both versions have problems predicting the correct position of the line at high temperatures.
Liquid part of the phase diagram and percolation line for two-dimensional Mercedes-Benz water
NASA Astrophysics Data System (ADS)
Urbic, T.
2017-09-01
Monte Carlo simulations and Wertheim's thermodynamic perturbation theory (TPT) are used to predict the phase diagram and percolation curve for the simple two-dimensional Mercedes-Benz (MB) model of water. The MB model of water is quite popular for explaining water properties, but the phase diagram has not been reported till now. In the MB model, water molecules are modeled as two-dimensional Lennard-Jones disks, with three orientation-dependent hydrogen-bonding arms, arranged as in the MB logo. The liquid part of the phase space is explored using grand canonical Monte Carlo simulations and two versions of Wertheim's TPT for associative fluids, which have been used before to predict the properties of the simple MB model. We find that the theory reproduces well the physical properties of hot water but is less successful at capturing the more structured hydrogen bonding that occurs in cold water. In addition to reporting the phase diagram and percolation curve of the model, it is shown that the improved TPT predicts the phase diagram rather well, while the standard one predicts a phase transition at lower temperatures. For the percolation line, both versions have problems predicting the correct position of the line at high temperatures.
NASA Astrophysics Data System (ADS)
Pei, Zongrui; Eisenbach, Markus; Stocks, G. Malcolm
Simulating order-disorder phase transitions in magnetic materials requires the accurate treatment of both the atomic and magnetic interactions, which span a vast configuration space. Using FeCo as a prototype system, we demonstrate that this can be addressed by combining the Locally Self-consistent Multiple Scattering (LSMS) method with the Wang-Landau (WL) Monte-Carlo algorithm. Fe-Co based materials are interesting magnetic materials but a reliable phase diagram of the binary Fe-Co system is still difficult to obtain. Using the combined WL-LSMS method we clarify the existence of the disordered A2 phase and predict the Curie temperature between it and the ordered B2 phase. The WL-LSMS method is readily applicable to the study of second-order phase transitions in other binary and multi-component alloys, thereby providing a means to the direct simulation of order-disorder phase transitions in complex alloys without need of intervening classical model Hamiltonians. We also demonstrate the capability of our method to guide the design of new magnetic materials. This research was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division and it used Oak Ridge Leadership Computing Facility resources at Oak Ridge National Laboratory.
Rafferty, Jake L; Siepmann, J Ilja; Schure, Mark R
2009-03-20
Particle-based simulations using the configurational-bias and Gibbs ensemble Monte Carlo techniques are carried out to probe the effects of various chromatographic parameters on bonded-phase chain conformation, solvent penetration, and retention in reversed-phase liquid chromatography (RPLC). Specifically, we investigate the effects due to the length of the bonded-phase chains (C(18), C(8), and C(1)), the inclusion of embedded polar groups (amide and ether) near the base of the bonded-phase chains, the column pressure (1, 400, and 1000 atm), and the pore shape (planar slit pore versus cylindrical pore with a 60A diameter). These simulations utilize a bonded-phase coverage of 2.9 micromol/m(2)and a mobile phase containing methanol at a molfraction of 33% (about 50% by volume). The simulations show that chain length, embedded polar groups, and pore shape significantly alter structural and retentive properties of the model RPLC system, whereas the column pressure has a relatively small effect. The simulation results are extensively compared to retention measurements. A molecular view of the RPLC retention mechanism emerges that is more complex than can be inferred from thermodynamic measurements.
Finite-size scaling study of the two-dimensional Blume-Capel model
NASA Astrophysics Data System (ADS)
Beale, Paul D.
1986-02-01
The phase diagram of the two-dimensional Blume-Capel model is investigated by using the technique of phenomenological finite-size scaling. The location of the tricritical point and the values of the critical and tricritical exponents are determined. The location of the tricritical point (Tt=0.610+/-0.005, Dt=1.9655+/-0.0010) is well outside the error bars for the value quoted in previous Monte Carlo simulations but in excellent agreement with more recent Monte Carlo renormalization-group results. The values of the critical and tricritical exponents, with the exception of the leading thermal tricritical exponent, are in excellent agreement with previous calculations, conjectured values, and Monte Carlo renormalization-group studies.
Dynamics of a coherently driven micromaser by the Monte Carlo wavefunction approach
NASA Astrophysics Data System (ADS)
Bonacina, L.; Casagrande, F.; Lulli, A.
2000-08-01
Using a Monte Carlo wavefunction approach we investigate the dynamics of a micromaser driven by a resonant coherent field. At steady state, for increasing interaction times, the system exhibits driven Rabi oscillations, followed by collapse as the range of micromaser trapping states is approached. The system operates in regimes ranging from a strong to a weak amplifier. In the strong-amplifier regime the cavity mode shows a preferred phase and can exhibit quadrature squeezing and sub-Poissonian photon statistics. In the weak-amplifier regime the cavity mode has no preferred phase, is super-Poissonian and is influenced by trapping effects; no revival of Rabi oscillations occurs. The main predictions can be compared with experimental measurements on the populations of atoms leaving the cavity.
NASA Astrophysics Data System (ADS)
Borowik, Piotr; Thobel, Jean-Luc; Adamowicz, Leszek
2017-12-01
The Monte Carlo simulation method is applied to study the relaxation of excited electrons in monolayer graphene. The presence of spin polarized background electrons population, with density corresponding to highly degenerate conditions is assumed. Formulas of electron-electron scattering rates, which properly account for electrons presence in two energetically degenerate, inequivalent valleys in this material are presented. The electron relaxation process can be divided into two phases: thermalization and cooling, which can be clearly distinguished when examining the standard deviation of electron energy distribution. The influence of the exchange effect in interactions between electrons with parallel spins is shown to be important only in transient conditions, especially during the thermalization phase.
RFI in hybrid loops - Simulation and experimental results.
NASA Technical Reports Server (NTRS)
Ziemer, R. E.; Nelson, D. R.; Raghavan, H. R.
1972-01-01
A digital simulation of an imperfect second-order hybrid phase-locked loop (HPLL) operating in radio frequency interference (RFI) is described. Its performance is characterized in terms of phase error variance and phase error probability density function (PDF). Monte-Carlo simulation is used to show that the HPLL can be superior to the conventional phase-locked loops in RFI backgrounds when minimum phase error variance is the goodness criterion. Similar experimentally obtained data are given in support of the simulation data.
Microscopic Description of Thermodynamics of Lipid Membrane at Liquid-Gel Phase Transition
NASA Astrophysics Data System (ADS)
Kheyfets, B.; Galimzyanov, T.; Mukhin, S.
2018-05-01
A microscopic model of the lipid membrane is constructed that provides analytically tractable description of the physical mechanism of the first order liquid-gel phase transition. We demonstrate that liquid-gel phase transition is cooperative effect of the three major interactions: inter-lipid van der Waals attraction, steric repulsion and hydrophobic tension. The model explicitly shows that temperature-dependent inter-lipid steric repulsion switches the system from liquid to gel phase when the temperature decreases. The switching manifests itself in the increase of lateral compressibility of the lipids as the temperature decreases, making phase with smaller area more preferable below the transition temperature. The model gives qualitatively correct picture of abrupt change at transition temperature of the area per lipid, membrane thickness and volume per hydrocarbon group in the lipid chains. The calculated dependence of phase transition temperature on lipid chain length is in quantitative agreement with experimental data. Steric repulsion between the lipid molecules is shown to be the only driver of the phase transition, as van der Waals attraction and hydrophobic tension are weakly temperature dependent.
Ahmadivand, Arash; Gerislioglu, Burak; Sinha, Raju; Karabiyik, Mustafa; Pala, Nezih
2017-01-01
Capacitive coupling and direct shuttling of charges in nanoscale plasmonic components across a dielectric spacer and through a conductive junction lead to excitation of significantly different dipolar and charge transfer plasmon (CTP) resonances, respectively. Here, we demonstrate the excitation of dipolar and CTP resonant modes in metallic nanodimers bridged by phase-change material (PCM) sections, material and electrical characteristics of which can be controlled by external stimuli. Ultrafast switching (in the range of a few nanoseconds) between amorphous and crystalline phases of the PCM section (here Ge2Sb2Te5 (GST)) allows for designing a tunable plasmonic switch for optical communication applications with significant modulation depth (up to 88%). Judiciously selecting the geometrical parameters and taking advantage of the electrical properties of the amorphous phase of the GST section we adjusted the extinction peak of the dipolar mode at the telecommunication band (λ~1.55 μm), which is considered as the OFF state. Changing the GST phase to crystalline via optical heating allows for direct transfer of charges through the junction between nanodisks and formation of a distinct CTP peak at longer wavelengths (λ~1.85 μm) far from the telecommunication wavelength, which constitutes the ON state. PMID:28205643
Ahmadivand, Arash; Gerislioglu, Burak; Sinha, Raju; Karabiyik, Mustafa; Pala, Nezih
2017-02-16
Capacitive coupling and direct shuttling of charges in nanoscale plasmonic components across a dielectric spacer and through a conductive junction lead to excitation of significantly different dipolar and charge transfer plasmon (CTP) resonances, respectively. Here, we demonstrate the excitation of dipolar and CTP resonant modes in metallic nanodimers bridged by phase-change material (PCM) sections, material and electrical characteristics of which can be controlled by external stimuli. Ultrafast switching (in the range of a few nanoseconds) between amorphous and crystalline phases of the PCM section (here Ge 2 Sb 2 Te 5 (GST)) allows for designing a tunable plasmonic switch for optical communication applications with significant modulation depth (up to 88%). Judiciously selecting the geometrical parameters and taking advantage of the electrical properties of the amorphous phase of the GST section we adjusted the extinction peak of the dipolar mode at the telecommunication band (λ~1.55 μm), which is considered as the OFF state. Changing the GST phase to crystalline via optical heating allows for direct transfer of charges through the junction between nanodisks and formation of a distinct CTP peak at longer wavelengths (λ~1.85 μm) far from the telecommunication wavelength, which constitutes the ON state.
NASA Astrophysics Data System (ADS)
Ahmadivand, Arash; Gerislioglu, Burak; Sinha, Raju; Karabiyik, Mustafa; Pala, Nezih
2017-02-01
Capacitive coupling and direct shuttling of charges in nanoscale plasmonic components across a dielectric spacer and through a conductive junction lead to excitation of significantly different dipolar and charge transfer plasmon (CTP) resonances, respectively. Here, we demonstrate the excitation of dipolar and CTP resonant modes in metallic nanodimers bridged by phase-change material (PCM) sections, material and electrical characteristics of which can be controlled by external stimuli. Ultrafast switching (in the range of a few nanoseconds) between amorphous and crystalline phases of the PCM section (here Ge2Sb2Te5 (GST)) allows for designing a tunable plasmonic switch for optical communication applications with significant modulation depth (up to 88%). Judiciously selecting the geometrical parameters and taking advantage of the electrical properties of the amorphous phase of the GST section we adjusted the extinction peak of the dipolar mode at the telecommunication band (λ~1.55 μm), which is considered as the OFF state. Changing the GST phase to crystalline via optical heating allows for direct transfer of charges through the junction between nanodisks and formation of a distinct CTP peak at longer wavelengths (λ~1.85 μm) far from the telecommunication wavelength, which constitutes the ON state.
Monte Carlo-based Reconstruction in Water Cherenkov Detectors using Chroma
NASA Astrophysics Data System (ADS)
Seibert, Stanley; Latorre, Anthony
2012-03-01
We demonstrate the feasibility of event reconstruction---including position, direction, energy and particle identification---in water Cherenkov detectors with a purely Monte Carlo-based method. Using a fast optical Monte Carlo package we have written, called Chroma, in combination with several variance reduction techniques, we can estimate the value of a likelihood function for an arbitrary event hypothesis. The likelihood can then be maximized over the parameter space of interest using a form of gradient descent designed for stochastic functions. Although slower than more traditional reconstruction algorithms, this completely Monte Carlo-based technique is universal and can be applied to a detector of any size or shape, which is a major advantage during the design phase of an experiment. As a specific example, we focus on reconstruction results from a simulation of the 200 kiloton water Cherenkov far detector option for LBNE.
NASA Astrophysics Data System (ADS)
Vatansever, Erol
2017-05-01
By means of Monte Carlo simulation method with Metropolis algorithm, we elucidate the thermal and magnetic phase transition behaviors of a ferrimagnetic core/shell nanocubic system driven by a time dependent magnetic field. The particle core is composed of ferromagnetic spins, and it is surrounded by an antiferromagnetic shell. At the interface of the core/shell particle, we use antiferromagnetic spin-spin coupling. We simulate the nanoparticle using classical Heisenberg spins. After a detailed analysis, our Monte Carlo simulation results suggest that present system exhibits unusual and interesting magnetic behaviors. For example, at the relatively lower temperature regions, an increment in the amplitude of the external field destroys the antiferromagnetism in the shell part of the nanoparticle, leading to a ground state with ferromagnetic character. Moreover, particular attention has been dedicated to the hysteresis behaviors of the system. For the first time, we show that frequency dispersions can be categorized into three groups for a fixed temperature for finite core/shell systems, as in the case of the conventional bulk systems under the influence of an oscillating magnetic field.
NASA Astrophysics Data System (ADS)
Townson, Reid W.; Zavgorodni, Sergei
2014-12-01
In GPU-based Monte Carlo simulations for radiotherapy dose calculation, source modelling from a phase-space source can be an efficiency bottleneck. Previously, this has been addressed using phase-space-let (PSL) sources, which provided significant efficiency enhancement. We propose that additional speed-up can be achieved through the use of a hybrid primary photon point source model combined with a secondary PSL source. A novel phase-space derived and histogram-based implementation of this model has been integrated into gDPM v3.0. Additionally, a simple method for approximately deriving target photon source characteristics from a phase-space that does not contain inheritable particle history variables (LATCH) has been demonstrated to succeed in selecting over 99% of the true target photons with only ~0.3% contamination (for a Varian 21EX 18 MV machine). The hybrid source model was tested using an array of open fields for various Varian 21EX and TrueBeam energies, and all cases achieved greater than 97% chi-test agreement (the mean was 99%) above the 2% isodose with 1% / 1 mm criteria. The root mean square deviations (RMSDs) were less than 1%, with a mean of 0.5%, and the source generation time was 4-5 times faster. A seven-field intensity modulated radiation therapy patient treatment achieved 95% chi-test agreement above the 10% isodose with 1% / 1 mm criteria, 99.8% for 2% / 2 mm, a RMSD of 0.8%, and source generation speed-up factor of 2.5. Presented as part of the International Workshop on Monte Carlo Techniques in Medical Physics
Weiden, Peter J; Du, Yangchun; Liu, Chih-Chin; Stanford, Arielle D
2018-06-26
Switching antipsychotic medications is common in patients with schizophrenia who are experiencing persistent symptoms or tolerability issues associated with their current drug regimen. This analysis assessed the safety of switching from an oral antipsychotic to the long-acting injectable antipsychotic aripiprazole lauroxil (AL). This was a post hoc analysis of outpatients with schizophrenia who were prescribed an oral antipsychotic and who enrolled in an international, open-label, long-term (52-week) safety study of AL. The analysis focused on the first 3 injections of AL 882 mg over 12 weeks, divided into the immediate 4-week crossover period between the first and second AL injections (initiation phase) and the subsequent 8 weeks (stabilization phase). Patients were grouped by preswitch oral antipsychotic medication, and safety and clinical symptoms were assessed. In total, 190 patients had switched from one of the following oral antipsychotic medications: aripiprazole, conventional antipsychotics, risperidone/paliperidone, olanzapine, or quetiapine. The 12-week completion rate was high (92.1%) and similar across the different preswitch oral antipsychotic groups. Overall, adverse event (AE) rates experienced over 12 weeks were modest; no AEs were considered serious. The most common AEs in the initiation phase were injection site pain (5.8%), insomnia (5.8%), and akathisia (3.2%). No apparent relationship was observed between preswitch medication and early-onset AEs. Mean Positive and Negative Syndrome Scale total scores remained stable during this period across preswitch antipsychotic groups. Switching from an oral antipsychotic to AL was feasible in an outpatient setting for patients with schizophrenia, and the 12-week retention rate was favorable.
Enhanced Thermo-Optical Switching of Paraffin-Wax Composite Spots under Laser Heating
Said, Asmaa; Salah, Abeer; Abdel Fattah, Gamal
2017-01-01
Thermo-optical switches are of particular significance in communications networks where increasingly high switching speeds are required. Phase change materials (PCMs), in particular those based on paraffin wax, provide wealth of exciting applications with unusual thermally-induced switching properties, only limited by paraffin’s rather low thermal conductivity. In this paper, the use of different carbon fillers as thermal conductivity enhancers for paraffin has been investigated, and a novel structure based on spot of paraffin wax as a thermo-optic switch is presented. Thermo-optical switching parameters are enhanced with the addition of graphite and graphene, due to the extreme thermal conductivity of the carbon fillers. Differential Scanning Calorimetry (DSC) and Scanning electron microscope (SEM) are performed on paraffin wax composites, and specific heat capacities are calculated based on DSC measurements. Thermo-optical switching based on transmission is measured as a function of the host concentration under conventional electric heating and laser heating of paraffin-carbon fillers composites. Further enhancements in thermo-optical switching parameters are studied under Nd:YAG laser heating. This novel structure can be used in future networks with huge bandwidth requirements and electric noise free remote aerial laser switching applications. PMID:28772884
Enhanced Thermo-Optical Switching of Paraffin-Wax Composite Spots under Laser Heating.
Said, Asmaa; Salah, Abeer; Fattah, Gamal Abdel
2017-05-12
Thermo-optical switches are of particular significance in communications networks where increasingly high switching speeds are required. Phase change materials (PCMs), in particular those based on paraffin wax, provide wealth of exciting applications with unusual thermally-induced switching properties, only limited by paraffin's rather low thermal conductivity. In this paper, the use of different carbon fillers as thermal conductivity enhancers for paraffin has been investigated, and a novel structure based on spot of paraffin wax as a thermo-optic switch is presented. Thermo-optical switching parameters are enhanced with the addition of graphite and graphene, due to the extreme thermal conductivity of the carbon fillers. Differential Scanning Calorimetry (DSC) and Scanning electron microscope (SEM) are performed on paraffin wax composites, and specific heat capacities are calculated based on DSC measurements. Thermo-optical switching based on transmission is measured as a function of the host concentration under conventional electric heating and laser heating of paraffin-carbon fillers composites. Further enhancements in thermo-optical switching parameters are studied under Nd:YAG laser heating. This novel structure can be used in future networks with huge bandwidth requirements and electric noise free remote aerial laser switching applications.
NASA Astrophysics Data System (ADS)
Lee, Sang-Won; Jeong, Hyun-Woo; Kim, Beop-Min
2010-02-01
We demonstrated high-speed spectral domain polarization-sensitive optical coherence tomography (SD-PSOCT) using a single InGaAs line-scan camera and an optical switch at 1.3-μm region. The polarization-sensitive low coherence interferometer in the system was based on the original free-space PS-OCT system published by Hee et al. The horizontal and vertical polarization light rays split by polarization beam splitter were delivered and detected via an optical switch to a single spectrometer by turns instead of dual spectrometers. The SD-PSOCT system had an axial resolution of 8.2 μm, a sensitivity of 101.5 dB, and an acquisition speed of 23,496 Alines/s. We obtained the intensity, phase retardation, and fast axis orientation images of a biological tissue. In addition, we calculated the averaged axial profiles of the phase retardation in human skin.
Shape memory thermal conduction switch
NASA Technical Reports Server (NTRS)
Krishnan, Vinu (Inventor); Vaidyanathan, Rajan (Inventor); Notardonato, William U. (Inventor)
2010-01-01
A thermal conduction switch includes a thermally-conductive first member having a first thermal contacting structure for securing the first member as a stationary member to a thermally regulated body or a body requiring thermal regulation. A movable thermally-conductive second member has a second thermal contacting surface. A thermally conductive coupler is interposed between the first member and the second member for thermally coupling the first member to the second member. At least one control spring is coupled between the first member and the second member. The control spring includes a NiTiFe comprising shape memory (SM) material that provides a phase change temperature <273 K, a transformation range <40 K, and a hysteresis of <10 K. A bias spring is between the first member and the second member. At the phase change the switch provides a distance change (displacement) between first and second member by at least 1 mm, such as 2 to 4 mm.
Yamamoto, Arata
2016-07-29
We propose the lattice QCD calculation of the Berry phase, which is defined by the ground state of a single fermion. We perform the ground-state projection of a single-fermion propagator, construct the Berry link variable on a momentum-space lattice, and calculate the Berry phase. As the first application, the first Chern number of the (2+1)-dimensional Wilson fermion is calculated by the Monte Carlo simulation.
NASA Technical Reports Server (NTRS)
Dietrich, F. J.; Koloboff, G. J.; Martel, R. J.; Johnson, C. C. (Inventor)
1974-01-01
A spin stabilized satellite has an electronically despun antenna array comprising a multiplicity of peripheral antenna elements. A high gain energy beam is established by connecting a suitable fraction or array of the elements in phase. The beam is steered or caused to scan by switching elements in sequence into one end of the array as elements at the other end of the array are switched out. The switching transients normally associated with such steering are avoided by an amplitude control system. Instead of abruptly switching from one element to the next, a fixed value of power is gradually transferred from the element at the trailing edge of the array to the element next to the leading edge.
All-optical diffractive/transmissive switch based on coupled cycloidal diffractive waveplates.
Serak, Svetlana V; Hakobyan, Rafael S; Nersisyan, Sarik R; Tabiryan, Nelson V; White, Timothy J; Bunning, Timothy J; Steeves, Diane M; Kimball, Brian R
2012-02-27
Pairs of cycloidal diffractive waveplates can be used to doubly diffract or collinearly propagate laser radiation of the appropriate wavelength. The use of a dynamic phase retarder placed in between the pair can be utilized to switch between the two optical states. We present results from the implementation of an azo-based retarder whose optical properties can be modulated using light itself. We show fast and efficient switching between the two states for both CW and single nanosecond laser pulses of green radiation. Contrasts greater than 100:1 were achieved. The temporal response as a function of light intensity is presented and the optical switching is shown to be polarization independent.
ERIC Educational Resources Information Center
Majors, Ronald E.; And Others
1984-01-01
Reviews literature covering developments of column liquid chromatography during 1982-83. Areas considered include: books and reviews; general theory; columns; instrumentation; detectors; automation and data handling; multidimensional chromatographic and column switching techniques; liquid-solid chromatography; normal bonded-phase, reversed-phase,…
Lu, Bin [Kenosha, WI; Luebke, Charles John [Sussex, WI; Habetler, Thomas G [Snellville, GA; Zhang, Pinjia [Atlanta, GA; Becker, Scott K [Oak Creek, WI
2011-12-27
A system and method for measuring and controlling stator winding temperature in an AC motor while idling is disclosed. The system includes a circuit having an input connectable to an AC source and an output connectable to an input terminal of a multi-phase AC motor. The circuit further includes a plurality of switching devices to control current flow and terminal voltages in the multi-phase AC motor and a controller connected to the circuit. The controller is configured to activate the plurality of switching devices to create a DC signal in an output of the motor control device corresponding to an input to the multi-phase AC motor, determine or estimate a stator winding resistance of the multi-phase AC motor based on the DC signal, and estimate a stator temperature from the stator winding resistance. Temperature can then be controlled and regulated by DC injection into the stator windings.
A 63 K phase change unit integrating with pulse tube cryocoolers
NASA Astrophysics Data System (ADS)
Chunhui, Kong; Liubiao, Chen; Sixue, Liu; Yuan, Zhou; Junjie, Wang
2017-02-01
This article presents the design and computer model results of an integrated cooler system which consists of a single stage pulse tube cryocooler integrated with a small amount of a phase change material. A cryogenic thermal switch was used to thermally connect the phase change unit to the cold end of the cryocooler. During heat load operation, the cryogenic thermal switch is turned off to avoid vibrations. The phase change unit absorbs heat loads by melting a substance in a constant pressure-temperature-volume process. Once the substance has been melted, the cryogenic thermal turned on, the cryocooler can then refreeze the material. Advantages of this type of cooler are no vibrations during sensor operations; the ability to absorb increased heat loads; potentially longer system lifetime; and a lower mass, volume and cost. A numerical model was constructed from derived thermodynamic relationships for the cooling/heating and freezing/melting processes.
Ultrafast magnetic vortex core switching driven by the topological inverse Faraday effect.
Taguchi, Katsuhisa; Ohe, Jun-ichiro; Tatara, Gen
2012-09-21
We present a theoretical discovery of an unconventional mechanism of inverse Faraday effect which acts selectively on topological magnetic structures. The effect, topological inverse Faraday effect, is induced by the spin Berry's phase of the magnetic structure when a circularly polarized light is applied. Thus a spin-orbit interaction is not necessary unlike that in the conventional inverse Faraday effect. We demonstrate by numerical simulation that topological inverse Faraday effect realizes ultrafast switching of a magnetic vortex within a switching time of 150 ps without magnetic field.
Study of the choice of the decoupling layout for the ITER ICRH system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vervier, M., E-mail: michel.vervier@rma.ac.be; Messiaen, A.; Ongena, J.
10 decouplers are used to neutralize the mutual coupling effects and to control the current amplitude of the 24 straps array of the ITER ICRH antenna in the case of current drive phasing. In the case of heating phasing only 4 decouplers are active and the array current control needs to act on the ratio between the power delivered by the 4 generators. This ratio is very sensitive to the precise adjustment of the antenna array phasing. The maximum total radiated power capability is then limited when the power of one generator reaches its maximum value. With the addition ofmore » four switches all 10 installed decouplers are made active and can act on all mutual coupling effects with equal source power from the 4 generators. With four more switches the current drive phasing could work with a reduced poloidal phasing resulting in a 35% increase of its coupling to the plasma.« less
Compare the phase transition properties of VO2 films from infrared to terahertz range
NASA Astrophysics Data System (ADS)
Liang, Shan; Shi, Qiwu; Huang, Wanxia; Peng, Bo; Mao, Zhenya; Zhu, Hongfu
2018-06-01
VO2 with reversible semiconductor-metal phase transition properties is particularly available for the application in smart opto-electrical devices. However, there are rare reports on comparing its phase transition properties at different ranges. In this study, the VO2 films are designed with the similar crystalline structure and stoichiometry, but different morphologies by inorganic and organic sol-gel methods, and their phase transition characteristics are compared both at infrared and terahertz range. The results indicate that the VO2 film prepared by inorganic sol-gel method shows more compact nanostructure. It results in larger resistivity change, infrared and terahertz switching ratio in the VO2 film. Moreover, it presents that the phase transition intensity of VO2 film in terahertz range is more sensitive to its microstructure. This work is helpful for understanding the susceptibility of terahertz switching properties of VO2 to its microstructure. And it can provide insights for the applications of VO2 in terahertz smart devices.
Doherty, Angela L.; Bodnar, Robert J.; De Vivo, Benedetto; Bohrson, Wendy A.; Belkin, Harvey E.; Messina, Antonia; Tracy, Robert J.
2012-01-01
The Aeolian Islands are an arcuate chain of submarine seamounts and volcanic islands, lying just north of Sicily in southern Italy. The second largest of the islands, Salina, exhibits a wide range of compositional variation in its erupted products, from basaltic lavas to rhyolitic pumice. The Monte dei Porri eruptions occurred between 60 ka and 30 ka, following a period of approximately 60,000 years of repose. The bulk rock composition of the Monte dei Porri products range from basaltic-andesite scoria to andesitic pumice in the Grey Porri Tuff (GPT), with the Monte dei Porri lavas having basaltic-andesite compositions. The typical mineral assemblage of the GPT is calcic plagioclase, clinopyroxene (augite), olivine (Fo72−84) and orthopyroxene (enstatite) ± amphibole and Ti-Fe oxides. The lava units show a similar mineral assemblage, but contain lower Fo olivines (Fo57−78). The lava units also contain numerous glomerocrysts, including an unusual variety that contains quartz, K-feldspar and mica. Melt inclusions (MI) are ubiquitous in all mineral phases from all units of the Monte dei Porri eruptions; however, only data from olivine-hosted MI in the GPT are reported here. Compositions of MI in the GPT are typically basaltic (average SiO2 of 49.8 wt %) in the pumices and basaltic-andesite (average SiO2 of 55.6 wt %) in the scoriae and show a bimodal distribution in most compositional discrimination plots. The compositions of most of the MI in the scoriae overlap with bulk rock compositions of the lavas. Petrological and geochemical evidence suggest that mixing of one or more magmas and/or crustal assimilation played a role in the evolution of the Monte dei Porri magmatic system, especially the GPT. Analyses of the more evolved mineral phases are required to better constrain the evolution of the magma.
Li, Weiying; Wang, Feng; Zhang, Junpeng; Qiao, Yu; Xu, Chen; Liu, Yao; Qian, Lin; Li, Wenming; Dong, Bingzhi
2016-02-15
The bacterial community of biofilms in drinking water distribution systems (DWDS) with various water sources has been rarely reported. In this research, biofilms were sampled at three points (A, B, and C) during the river water source phase (phase I), the interim period (phase II) and the reservoir water source phase (phase III), and the biofilm community was determined using the 454-pyrosequencing method. Results showed that microbial diversity declined in phase II but increased in phase III. The primary phylum was Proteobacteria during three phases, while the dominant class at points A and B was Betaproteobacteria (>49%) during all phases, but that changed to Holophagae in phase II (62.7%) and Actinobacteria in phase III (35.6%) for point C, which was closely related to its water quality. More remarkable community shift was found at the genus level. In addition, analysis results showed that water quality could significantly affect microbial diversity together, while the nutrient composition (e.g. C/N ration) of the water environment might determine the microbial community. Furthermore, Mycobacterium spp. and Pseudomonas spp. were detected in the biofilm, which should give rise to attention. This study revealed that water source switching produced substantial impact on the biofilm community. Copyright © 2015 Elsevier B.V. All rights reserved.
A technique for generating phase-space-based Monte Carlo beamlets in radiotherapy applications.
Bush, K; Popescu, I A; Zavgorodni, S
2008-09-21
As radiotherapy treatment planning moves toward Monte Carlo (MC) based dose calculation methods, the MC beamlet is becoming an increasingly common optimization entity. At present, methods used to produce MC beamlets have utilized a particle source model (PSM) approach. In this work we outline the implementation of a phase-space-based approach to MC beamlet generation that is expected to provide greater accuracy in beamlet dose distributions. In this approach a standard BEAMnrc phase space is sorted and divided into beamlets with particles labeled using the inheritable particle history variable. This is achieved with the use of an efficient sorting algorithm, capable of sorting a phase space of any size into the required number of beamlets in only two passes. Sorting a phase space of five million particles can be achieved in less than 8 s on a single-core 2.2 GHz CPU. The beamlets can then be transported separately into a patient CT dataset, producing separate dose distributions (doselets). Methods for doselet normalization and conversion of dose to absolute units of Gy for use in intensity modulated radiation therapy (IMRT) plan optimization are also described.
Subdiffusion kinetics of nanoprecipitate growth and destruction in solid solutions
NASA Astrophysics Data System (ADS)
Sibatov, R. T.; Svetukhin, V. V.
2015-06-01
Based on fractional differential generalizations of the Ham and Aaron-Kotler precipitation models, we study the kinetics of subdiffusion-limited growth and dissolution of new-phase precipitates. We obtain the time dependence of the number of impurities and dimensions of new-phase precipitates. The solutions agree with the Monte Carlo simulation results.
NASA Astrophysics Data System (ADS)
Alexandrov, A. L.; Schweigert, I. V.
2018-05-01
The phenomenon of subnanosecond electrical breakdown in a strong electric field observed in an open discharge in helium at pressures of 6-20 Torr can be used to create ultrafast plasma switches triggering into a conducting state for a time shorter than 1 ns. To evaluate the possible repetition rate of such a subnanosecond switch, it is interesting to study the decay dynamics of the plasma remaining in the discharge gap after ultrafast breakdown. In this paper, a kinetic model based on the particle-in-cell Monte Carlo collision method is used to study the dynamics of the plasma afterglow in the discharge gap of a subnanosecond switch operating with helium at a pressure of 6 Torr. The simulation results show that the radiative, collisional-radiative, and three-body collision recombination mechanisms significantly contribute to the afterglow decay only while the plasma density remains higher than 1012 cm-3; the main mechanism of the further plasma decay is diffusion of plasma particles onto the wall. Therefore, the effect of recombination in the plasma bulk is observed only during the first 10-20 μs of the afterglow. Over nearly the same time, plasma electrons become thermalized. The afterglow time can be substantially reduced by applying a positive voltage U c to the cathode. Since diffusive losses are limited by the ion mobility, the additional ion drift toward the wall significantly accelerates plasma decay. As U c increases from 0 to +500 V, the characteristic time of plasma decay is reduced from 35 to 10 μs.
Blauvelt, A; Lacour, J-P; Fowler, J F; Weinberg, J M; Gospodinov, D; Schuck, E; Jauch-Lembach, J; Balfour, A; Leonardi, C L
2018-06-19
The impact of multiple switches between GP2017 and reference adalimumab (ref-ADMB) was assessed following the demonstration of equivalent efficacy and similar safety and immunogenicity, in adult patients with active, clinically stable, moderate-to-severe plaque psoriasis. This 51-week double-blinded, phase 3 study randomly assigned patients to GP2017 (N=231) or ref-ADMB (N=234) 80 mg subcutaneously at Week 0, then 40 mg biweekly from Week 1. At Week 17, patients were re-randomised to switch (n=126) or continue (n=253) treatment. Primary endpoint: patients achieving Psoriasis Area and Severity Index (PASI)75 at Week 16 (equivalence confirmed if the 95% confidence interval [CI] for the difference in PASI75 between treatments was ±18%). Key secondary endpoint: change from baseline to Week 16 in continuous PASI. Other endpoints: PASI over time, PASI 50/75/90/100, pharmacokinetics, safety, tolerability and immunogenicity for the switched and continued treatment groups. Equivalent efficacy between GP2017 and ref-ADMB was confirmed for the primary (66.8% and 65.0%, respectively; 95% CI, -7.46, 11.15) and key secondary (-60.7% and -61.5%, respectively; 95% CI, -3.15, 4.84) endpoints. PASI improved over time and was similar between treatment groups at Week 16, and the switched/continued groups from Weeks 17-51. There were no relevant safety or immunogenicity differences between GP2017 and ref-ADMB at Week 16, or the switched/continued groups from Weeks 17-51. No hypersensitivity to adalimumab was reported upon switching. Following the demonstration of GP2017 biosimilarity to ref-ADMB, switching up to four times between GP2017 and ref-ADMB had no detectable impact on efficacy, safety or immunogenicity. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Noise-constrained switching times for heteroclinic computing
NASA Astrophysics Data System (ADS)
Neves, Fabio Schittler; Voit, Maximilian; Timme, Marc
2017-03-01
Heteroclinic computing offers a novel paradigm for universal computation by collective system dynamics. In such a paradigm, input signals are encoded as complex periodic orbits approaching specific sequences of saddle states. Without inputs, the relevant states together with the heteroclinic connections between them form a network of states—the heteroclinic network. Systems of pulse-coupled oscillators or spiking neurons naturally exhibit such heteroclinic networks of saddles, thereby providing a substrate for general analog computations. Several challenges need to be resolved before it becomes possible to effectively realize heteroclinic computing in hardware. The time scales on which computations are performed crucially depend on the switching times between saddles, which in turn are jointly controlled by the system's intrinsic dynamics and the level of external and measurement noise. The nonlinear dynamics of pulse-coupled systems often strongly deviate from that of time-continuously coupled (e.g., phase-coupled) systems. The factors impacting switching times in pulse-coupled systems are still not well understood. Here we systematically investigate switching times in dependence of the levels of noise and intrinsic dissipation in the system. We specifically reveal how local responses to pulses coact with external noise. Our findings confirm that, like in time-continuous phase-coupled systems, piecewise-continuous pulse-coupled systems exhibit switching times that transiently increase exponentially with the number of switches up to some order of magnitude set by the noise level. Complementarily, we show that switching times may constitute a good predictor for the computation reliability, indicating how often an input signal must be reiterated. By characterizing switching times between two saddles in conjunction with the reliability of a computation, our results provide a first step beyond the coding of input signal identities toward a complementary coding for the intensity of those signals. The results offer insights on how future heteroclinic computing systems may operate under natural, and thus noisy, conditions.
Multimodal Responses of Self-Organized Circuitry in Electronically Phase Separated Materials
Herklotz, Andreas; Guo, Hangwen; Wong, Anthony T.; ...
2016-07-13
When confining an electronically phase we separated manganite film to the scale of its coexisting self-organized metallic and these insulating domains allows resistor-capacitor circuit-like responses while providing both electroresistive and magnetoresistive switching functionality.
Monte Carlo simulation to investigate the formation of molecular hydrogen and its deuterated forms
NASA Astrophysics Data System (ADS)
Sahu, Dipen; Das, Ankan; Majumdar, Liton; Chakrabarti, Sandip K.
2015-07-01
H2 is the most abundant interstellar species, and its deuterated forms (HD and D2) are also present in high abundance. The high abundance of these molecules could be explained by considering the chemistry that occurs on interstellar dust. Because of its simplicity, the rate equation method is widely used to study the formation of grain-surface species. However, because the recombination efficiency for the formation of any surface species is highly dependent on various physical and chemical parameters, the Monte Carlo method is best suited for addressing the randomness of the processes. We perform Monte Carlo simulations to study the formation of H2, HD and D2 on interstellar ice. The adsorption energies of surface species are the key inputs for the formation of any species on interstellar dusts, but the binding energies of deuterated species have yet to be determined with certainty. A zero-point energy correction exists between hydrogenated and deuterated species, which should be considered during modeling of the chemistry on interstellar dusts. Following some previous studies, we consider various sets of adsorption energies to investigate the formation of these species under diverse physical conditions. As expected, notable differences in these two approaches (rate equation method and Monte Carlo method) are observed for the production of these simple molecules on interstellar ice. We introduce two factors, namely, Sf and β , to explain these discrepancies: Sf is a scaling factor, which can be used to correlate the discrepancies between the rate equation and Monte Carlo methods, and β indicates the formation efficiency under various conditions. Higher values of β indicate a lower production efficiency. We observed that β increases with a decrease in the rate of accretion from the gas phase to the grain phase.
The Metropolis Monte Carlo method with CUDA enabled Graphic Processing Units
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, Clifford; School of Physics, Astronomy, and Computational Sciences, George Mason University, 4400 University Dr., Fairfax, VA 22030; Ji, Weixiao
2014-02-01
We present a CPU–GPU system for runtime acceleration of large molecular simulations using GPU computation and memory swaps. The memory architecture of the GPU can be used both as container for simulation data stored on the graphics card and as floating-point code target, providing an effective means for the manipulation of atomistic or molecular data on the GPU. To fully take advantage of this mechanism, efficient GPU realizations of algorithms used to perform atomistic and molecular simulations are essential. Our system implements a versatile molecular engine, including inter-molecule interactions and orientational variables for performing the Metropolis Monte Carlo (MMC) algorithm,more » which is one type of Markov chain Monte Carlo. By combining memory objects with floating-point code fragments we have implemented an MMC parallel engine that entirely avoids the communication time of molecular data at runtime. Our runtime acceleration system is a forerunner of a new class of CPU–GPU algorithms exploiting memory concepts combined with threading for avoiding bus bandwidth and communication. The testbed molecular system used here is a condensed phase system of oligopyrrole chains. A benchmark shows a size scaling speedup of 60 for systems with 210,000 pyrrole monomers. Our implementation can easily be combined with MPI to connect in parallel several CPU–GPU duets. -- Highlights: •We parallelize the Metropolis Monte Carlo (MMC) algorithm on one CPU—GPU duet. •The Adaptive Tempering Monte Carlo employs MMC and profits from this CPU—GPU implementation. •Our benchmark shows a size scaling-up speedup of 62 for systems with 225,000 particles. •The testbed involves a polymeric system of oligopyrroles in the condensed phase. •The CPU—GPU parallelization includes dipole—dipole and Mie—Jones classic potentials.« less
Savaliya, Priten B; Thomas, Arun; Dua, Rishi; Dhawan, Anuj
2017-10-02
We propose the design of switchable plasmonic nanoantennas (SPNs) that can be employed for optical switching in the near-infrared regime. The proposed SPNs consist of nanoantenna structures made up of a plasmonic metal (gold) such that these nanoantennas are filled with a switchable material (vanadium dioxide). We compare the results of these SPNs with inverted SPN structures that consist of gold nanoantenna structures surrounded by a layer of vanadium dioxide (VO 2 ) on their outer surface. These nanoantennas demonstrate switching of electric-field intensity enhancement (EFIE) between two states (On and Off states), which can be induced thermally, optically or electrically. The On and Off states of the nanoantennas correspond to the metallic and semiconductor states, respectively of the VO 2 film inside or around the nanoantennas, as the VO 2 film exhibits phase transition from its semiconductor state to the metallic state upon application of thermal, optical, or electrical energy. We employ finite-difference time-domain (FDTD) simulations to demonstrate switching in the EFIE for four different SPN geometries - nanorod-dipole, bowtie, planar trapezoidal toothed log-periodic, and rod-disk - and compare their near-field distributions for the On and Off states of the SPNs. We also demonstrate that the resonance wavelength of the EFIE spectra gets substantially modified when these SPNs switch between the two states.
Resource Needs for the Trivalent Oral Polio to Bivalent Oral Polio Vaccine Switch in Indonesia.
Holmes, Marionette; Abimbola, Taiwo; Lusiana, Merry; Pallas, Sarah; Hampton, Lee M; Widyastuti, Retno; Muas, Idawati; Karlina, Karlina; Kosen, Soewarta
2017-07-01
We present an empirical economic cost analysis of the April 2016 switch from trivalent (tOPV) to bivalent (bOPV) oral polio vaccine at the national-level and 3 provinces (Bali, West Sumatera and Nusa Tenggara) for Indonesia's Expanded Program on Immunization. Data on the quantity and prices of resources used in the 4 World Health Organization guideline phases of the switch were collected at the national-level and in each of the sampled provinces, cities/districts, and health facilities. Costs were calculated as the sum of the value of resources reportedly used in each sampled unit by switch phase. Estimated national-level costs were $46 791. Costs by health system level varied from $9062 to $34 256 at the province-level, from $4576 to $11 936 at the district-level , and from $3488 to $29 175 at the city-level. Estimated national costs ranged from $4 076 446 (Bali, minimum cost scenario) to $28 120 700 (West Sumatera, maximum cost scenario). Our findings suggest that the majority of tPOV to bOPV switch costs were borne at the subnational level. Considerable variation in reported costs among health system levels surveyed indicates a need for flexibility in budgeting for globally synchronized public health activities. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.
Switching dynamics of the spin density wave in superconducting CeCoIn 5
Kim, Duk Y.; Lin, Shi-Zeng; Bauer, Eric D.; ...
2017-06-21
The ordering wave vector Q of a spin density wave (SDW), stabilized within the superconducting state of CeCoIn 5 in a high magnetic field, has been shown to be hypersensitive to the direction of the field. Q can be switched from a nodal direction of the d-wave superconducting order parameter to a perpendicular node by rotating the in-plane magnetic field through the antinodal direction within a fraction of a degree. In this paper, we address the dynamics of the switching of Q. We use a free-energy functional based on the magnetization density, which describes the condensation of magnetic fluctuations ofmore » nodal quasiparticles, and show that the switching process includes closing of the SDW gap at one Q and then reopening the SDW gap at another Q perpendicular to the first one. The magnetic field couples to Q through the spin-orbit interaction. Our calculations show that the width of the hysteretic region of switching depends linearly on the deviation of magnetic field from the critical field associated with the SDW transition, consistent with our thermal conductivity measurements. Finally, the agreement between theory and experiment supports our scenario of the hypersensitivity of the Q phase on the direction of magnetic field, as well as the magnon condensation as the origin of the SDW phase in CeCoIn 5.« less
NASA Astrophysics Data System (ADS)
Sharma, Natasha; Gupta, A. K.
2017-04-01
Motivated by connections between the inputs and outputs of several transport mechanisms and multi-species functionalities, we studied an open system of a two-species totally asymmetric simple exclusion process with narrow entrances, which assimilate the synergy of the particles with the surrounding environment through Langmuir kinetics (LK). We analyzed the model within the framework of mean-field theory, and examined complex phenomena such as boundary-induced phase transitions and spontaneous symmetry breaking for variant conditions of attachment and detachment rates. Based on the theoretical investigations we obtained the phase boundaries for various symmetric and asymmetric phases. Our finding displays a prolific behavior, highlighting the significant effect of LK rates on symmetry breaking. It is found that for lower orders of LK rates, the number of symmetrical and asymmetrical phases increases notably, while for their higher orders symmetry breaking disappears, revealing that the presence of bulk non-conserving processes can resume/break the uniformity between two species. The critical value of LK rates beyond which the asymmetrical phases disappears is identified. The theoretical findings are explored by extensive Monte Carlo simulations. The effect of the system size and symmetry breaking incident on the Monte Carlo simulation results has also been examined based on particle density histograms.
Peter, Silvia; Modregger, Peter; Fix, Michael K.; Volken, Werner; Frei, Daniel; Manser, Peter; Stampanoni, Marco
2014-01-01
Phase-sensitive X-ray imaging shows a high sensitivity towards electron density variations, making it well suited for imaging of soft tissue matter. However, there are still open questions about the details of the image formation process. Here, a framework for numerical simulations of phase-sensitive X-ray imaging is presented, which takes both particle- and wave-like properties of X-rays into consideration. A split approach is presented where we combine a Monte Carlo method (MC) based sample part with a wave optics simulation based propagation part, leading to a framework that takes both particle- and wave-like properties into account. The framework can be adapted to different phase-sensitive imaging methods and has been validated through comparisons with experiments for grating interferometry and propagation-based imaging. The validation of the framework shows that the combination of wave optics and MC has been successfully implemented and yields good agreement between measurements and simulations. This demonstrates that the physical processes relevant for developing a deeper understanding of scattering in the context of phase-sensitive imaging are modelled in a sufficiently accurate manner. The framework can be used for the simulation of phase-sensitive X-ray imaging, for instance for the simulation of grating interferometry or propagation-based imaging. PMID:24763652
100-GHz Phase Switch/Mixer Containing a Slot-Line Transition
NASA Technical Reports Server (NTRS)
Gaier, Todd; Wells, Mary; Dawson, Douglas
2009-01-01
A circuit that can function as a phase switch, frequency mixer, or frequency multiplier operates over a broad frequency range in the vicinity of 100 GHz. Among the most notable features of this circuit is a grounded uniplanar transition (in effect, a balun) between a slot line and one of two coplanar waveguides (CPWs). The design of this circuit is well suited to integration of the circuit into a microwave monolithic integrated circuit (MMIC) package. One CPW is located at the input end and one at the output end of the top side of a substrate on which the circuit is fabricated (see Figure 1). The input CPW feeds the input signal to antiparallel flip-chip Schottky diodes connected to the edges of the slot line. Phase switching is effected by the combination of (1) the abrupt transition from the input CPW to the slot line and (2) CPW ground tuning effected by switching of the bias on the diodes. Grounding of the slot metal to the bottom metal gives rise to a frequency cutoff in the slot. This cutoff is valuable for separating different frequency components when the circuit is used as a mixer or multiplier. Proceeding along the slot line toward the output end, one encounters the aforementioned transition, which couples the slot line to the output CPW. Impedance tuning of the transition is accomplished by use of a high-impedance section immediately before the transition.
Effects of Switching Behavior for the Attraction on Pedestrian Dynamics
Kwak, Jaeyoung; Jo, Hang-Hyun; Luttinen, Tapio; Kosonen, Iisakki
2015-01-01
Walking is a fundamental activity of our daily life not only for moving to other places but also for interacting with surrounding environment. While walking on the streets, pedestrians can be aware of attractions like shopping windows. They can be influenced by the attractions and some of them might shift their attention towards the attractions, namely switching behavior. As a first step to incorporate the switching behavior, this study investigates collective effects of switching behavior for an attraction by developing a behavioral model. Numerical simulations exhibit different patterns of pedestrian behavior depending on the strength of the social influence and the average length of stay. When the social influence is strong along with a long length of stay, a saturated phase can be defined at which all the pedestrians have visited the attraction. If the social influence is not strong enough, an unsaturated phase appears where one can observe that some pedestrians head for the attraction while others walk in their desired direction. These collective patterns of pedestrian behavior are summarized in a phase diagram by comparing the number of pedestrians who visited the attraction to the number of passersby near the attraction. Measuring the marginal benefits with respect to the strength of the social influence and the average length of stay enables us to identify under what conditions enhancing these variables would be more effective. The findings from this study can be understood in the context of the pedestrian facility management, for instance, for retail stores. PMID:26218430
Effects of Switching Behavior for the Attraction on Pedestrian Dynamics.
Kwak, Jaeyoung; Jo, Hang-Hyun; Luttinen, Tapio; Kosonen, Iisakki
2015-01-01
Walking is a fundamental activity of our daily life not only for moving to other places but also for interacting with surrounding environment. While walking on the streets, pedestrians can be aware of attractions like shopping windows. They can be influenced by the attractions and some of them might shift their attention towards the attractions, namely switching behavior. As a first step to incorporate the switching behavior, this study investigates collective effects of switching behavior for an attraction by developing a behavioral model. Numerical simulations exhibit different patterns of pedestrian behavior depending on the strength of the social influence and the average length of stay. When the social influence is strong along with a long length of stay, a saturated phase can be defined at which all the pedestrians have visited the attraction. If the social influence is not strong enough, an unsaturated phase appears where one can observe that some pedestrians head for the attraction while others walk in their desired direction. These collective patterns of pedestrian behavior are summarized in a phase diagram by comparing the number of pedestrians who visited the attraction to the number of passersby near the attraction. Measuring the marginal benefits with respect to the strength of the social influence and the average length of stay enables us to identify under what conditions enhancing these variables would be more effective. The findings from this study can be understood in the context of the pedestrian facility management, for instance, for retail stores.
Very-low-power and footprint integrated photonic modulators and switches for ICT
NASA Astrophysics Data System (ADS)
Thylén, Lars; Holmström, Petter; Wosinski, Lech
2013-03-01
The current development in photonics for communications and interconnects pose increasing requirements on reduction of footprint, power dissipation and cost, as well as increased bandwidth. Integrated nanophotonics has been viewed as one solution to this, capitalizing on development in nanotechnology as such as well as on increased insights into light matter interaction on the nanoscale. The latter can be exemplified by plasmonics and low-dimensional semiconductors such as quantum dots (QDs). In this scenario the development of better electrooptic materials is also of great importance, the electrooptic polymers being an example, since they potentially offer improved properties for optical phase modulators in terms of power and probably cost and general flexibility. Phase modulators are essential for e.g. the rapidly developing advanced modulation formats for telecom, since phase modulation basically can generate any type of modulation. The electrooptic polymers, e.g. in combination with plasmonics nanoparticle array waveguides or nanostructured hybrid plasmonic media can theoretically give extremely compact and low power dissipation modulators, still to be demonstrated. The low-dimensional semiconductors, e.g. in the shape of QDs, can be employed for modulation or switching functions, offering possibilities in the future for scaling to 2 or 3 dimensions for advanced switching functions. In both the plasmonics and QD cases, nanosizing and low power dissipation are generally due to near-field interactions, albeit being of different physical origin in the two cases. A comparison of all-optical and electronically controlled switching is given.
Applications of High Speed Networks
1991-09-01
plished in order to achieve a dpgree of parallelism by constructing a distributed switch. The type of switch, self -routing, processes the packet...control more than a dozen missiles in flight, and the four Mark 99 target illuminators direct missiles in the terminal phase. The self -contained Phalanx...military installations, weapon system respose and expected missile performance against a threat. Projects are already underway transposing of
DOE Office of Scientific and Technical Information (OSTI.GOV)
San Emeterio Alvarez, L.; Lacoste, B.; Rodmacq, B.
2014-05-07
Field-current phase diagrams were measured on in-plane anisotropy Co{sub 60}Fe{sub 20}B{sub 20} magnetic tunnel junctions to obtain the spin transfer torque (STT) field-current switching window. These measurements were used to characterise junctions with varying free layer thicknesses from 2.5 down to 1.1 nm having a reduced effective demagnetizing field due to the perpendicular magnetic anisotropy at CoFeB/MgO interface. Diagrams were obtained with 100 ns current pulses, of either same or alternating polarity. When consecutive pulses have the same polarity, it is possible to realize the STT switching even for conditions having a low switching probability. This was evidenced in diagrams with consecutivemore » pulses of alternating polarity, with 100% switching obtained at 4.7 MA/cm{sup 2}, compared to the lower 3.4 MA/cm{sup 2} value for same polarity pulses. Although the low level of the current density window is higher in alternating polarity diagrams, the field window in both diagrams is the same and therefore independent of the pulse polarity sequence.« less
Engineering the switching dynamics of TiOx-based RRAM with Al doping
NASA Astrophysics Data System (ADS)
Trapatseli, Maria; Khiat, Ali; Cortese, Simone; Serb, Alexantrou; Carta, Daniela; Prodromakis, Themistoklis
2016-07-01
Titanium oxide (TiOx) has attracted a lot of attention as an active material for resistive random access memory (RRAM), due to its versatility and variety of possible crystal phases. Although existing RRAM materials have demonstrated impressive characteristics, like ultra-fast switching and high cycling endurance, this technology still encounters challenges like low yields, large variability of switching characteristics, and ultimately device failure. Electroforming has been often considered responsible for introducing irreversible damage to devices, with high switching voltages contributing to device degradation. In this paper, we have employed Al doping for tuning the resistive switching characteristics of titanium oxide RRAM. The resistive switching threshold voltages of undoped and Al-doped TiOx thin films were first assessed by conductive atomic force microscopy. The thin films were then transferred in RRAM devices and tested with voltage pulse sweeping, demonstrating that the Al-doped devices could on average form at lower potentials compared to the undoped ones and could support both analog and binary switching at potentials as low as 0.9 V. This work demonstrates a potential pathway for implementing low-power RRAM systems.
Motta, Mario; Zhang, Shiwei
2017-11-14
We address the computation of ground-state properties of chemical systems and realistic materials within the auxiliary-field quantum Monte Carlo method. The phase constraint to control the Fermion phase problem requires the random walks in Slater determinant space to be open-ended with branching. This in turn makes it necessary to use back-propagation (BP) to compute averages and correlation functions of operators that do not commute with the Hamiltonian. Several BP schemes are investigated, and their optimization with respect to the phaseless constraint is considered. We propose a modified BP method for the computation of observables in electronic systems, discuss its numerical stability and computational complexity, and assess its performance by computing ground-state properties in several molecular systems, including small organic molecules.
Simpkin, D J
1989-02-01
A Monte Carlo calculation has been performed to determine the transmission of broad constant-potential x-ray beams through Pb, concrete, gypsum wallboard, steel and plate glass. The EGS4 code system was used with a simple broad-beam geometric model to generate exposure transmission curves for published 70, 100, 120 and 140-kVcp x-ray spectra. These curves are compared to measured three-phase generated x-ray transmission data in the literature and found to be reasonable. For calculation ease the data are fit to an equation previously shown to describe such curves quite well. These calculated transmission data are then used to create three-phase shielding tables for Pb and concrete, as well as other materials not available in Report No. 49 of the NCRP.
Fermi gases with imaginary mass imbalance and the sign problem in Monte-Carlo calculations
NASA Astrophysics Data System (ADS)
Roscher, Dietrich; Braun, Jens; Chen, Jiunn-Wei; Drut, Joaquín E.
2014-05-01
Fermi gases in strongly coupled regimes are inherently challenging for many-body methods. Although progress has been made analytically, quantitative results require ab initio numerical approaches, such as Monte-Carlo (MC) calculations. However, mass-imbalanced and spin-imbalanced gases are not accessible to MC calculations due to the infamous sign problem. For finite spin imbalance, the problem can be circumvented using imaginary polarizations and analytic continuation, and large parts of the phase diagram then become accessible. We propose to apply this strategy to the mass-imbalanced case, which opens up the possibility to study the associated phase diagram with MC calculations. We perform a first mean-field analysis which suggests that zero-temperature studies, as well as detecting a potential (tri)critical point, are feasible.