Sub-nanosecond clock synchronization and trigger management in the nuclear physics experiment AGATA
NASA Astrophysics Data System (ADS)
Bellato, M.; Bortolato, D.; Chavas, J.; Isocrate, R.; Rampazzo, G.; Triossi, A.; Bazzacco, D.; Mengoni, D.; Recchia, F.
2013-07-01
The new-generation spectrometer AGATA, the Advanced GAmma Tracking Array, requires sub-nanosecond clock synchronization among readout and front-end electronics modules that may lie hundred meters apart. We call GTS (Global Trigger and Synchronization System) the infrastructure responsible for precise clock synchronization and for the trigger management of AGATA. It is made of a central trigger processor and nodes, connected in a tree structure by means of optical fibers operated at 2Gb/s. The GTS tree handles the synchronization and the trigger data flow, whereas the trigger processor analyses and eventually validates the trigger primitives centrally. Sub-nanosecond synchronization is achieved by measuring two different types of round-trip times and by automatically correcting for phase-shift differences. For a tree of depth two, the peak-to-peak clock jitter at each leaf is 70 ps; the mean phase difference is 180 ps, while the standard deviation over such phase difference, namely the phase equalization repeatability, is 20 ps. The GTS system has run flawlessly for the two-year long AGATA campaign, held at the INFN Legnaro National Laboratories, Italy, where five triple clusters of the AGATA sub-array were coupled with a variety of ancillary detectors.
On a Possible Relationship between Linguistic Expertise and EEG Gamma Band Phase Synchrony
Reiterer, Susanne; Pereda, Ernesto; Bhattacharya, Joydeep
2011-01-01
Recent research has shown that extensive training in and exposure to a second language can modify the language organization in the brain by causing both structural and functional changes. However it is not yet known how these changes are manifested by the dynamic brain oscillations and synchronization patterns subserving the language networks. In search for synchronization correlates of proficiency and expertise in second language acquisition, multivariate EEG signals were recorded from 44 high and low proficiency bilinguals during processing of natural language in their first and second languages. Gamma band (30–45 Hz) phase synchronization (PS) was calculated mainly by two recently developed methods: coarse-graining of Markov chains (estimating global phase synchrony, measuring the degree of PS between one electrode and all other electrodes), and phase lag index (PLI; estimating bivariate phase synchrony, measuring the degree of PS between a pair of electrodes). On comparing second versus first language processing, global PS by coarse-graining Markov chains indicated that processing of the second language needs significantly higher synchronization strength than first language. On comparing the proficiency groups, bivariate PS measure (i.e., PLI) revealed that during second language processing the low proficiency group showed stronger and broader network patterns than the high proficiency group, with interconnectivities between a left fronto-parietal network. Mean phase coherence analysis also indicated that the network activity was globally stronger in the low proficiency group during second language processing. PMID:22125542
Synchronization Tomography: Modeling and Exploring Complex Brain Dynamics
NASA Astrophysics Data System (ADS)
Fieseler, Thomas
2002-03-01
Phase synchronization (PS) plays an important role both under physiological and pathological conditions. With standard averaging techniques of MEG data, it is difficult to reliably detect cortico-cortical and cortico-muscular PS processes that are not time-locked to an external stimulus. For this reason, novel synchronization analysis techniques were developed and directly applied to MEG signals. Of course, due to the lack of an inverse modeling (i.e. source localization), the spatial resolution of this approach was limited. To detect and localize cerebral PS, we here present the synchronization tomography (ST): For this, we first estimate the cerebral current source density by means of the magnetic field tomography (MFT). We then apply the single-run PS analysis to the current source density in each voxel of the reconstruction space. In this way we study simulated PS, voxel by voxel in order to determine the spatio-temporal resolution of the ST. To this end different generators of ongoing rhythmic cerebral activity are simulated by current dipoles at different locations and directions, which are modeled by slightly detuned chaotic oscillators. MEG signals for these generators are simulated for a spherical head model and a whole-head MEG system. MFT current density solutions are calculated from these simulated signals within a hemispherical source space. We compare the spatial resolution of the ST with that of the MFT. Our results show that adjacent sources which are indistinguishable for the MFT, can nevertheless be separated with the ST, provided they are not strongly phase synchronized. This clearly demonstrates the potential of combining spatial information (i.e. source localization) with temporal information for the anatomical localization of phase synchronization in the human brain.
Phase synchronization of instrumental music signals
NASA Astrophysics Data System (ADS)
Mukherjee, Sayan; Palit, Sanjay Kumar; Banerjee, Santo; Ariffin, M. R. K.; Bhattacharya, D. K.
2014-06-01
Signal analysis is one of the finest scientific techniques in communication theory. Some quantitative and qualitative measures describe the pattern of a music signal, vary from one to another. Same musical recital, when played by different instrumentalists, generates different types of music patterns. The reason behind various patterns is the psycho-acoustic measures - Dynamics, Timber, Tonality and Rhythm, varies in each time. However, the psycho-acoustic study of the music signals does not reveal any idea about the similarity between the signals. For such cases, study of synchronization of long-term nonlinear dynamics may provide effective results. In this context, phase synchronization (PS) is one of the measures to show synchronization between two non-identical signals. In fact, it is very critical to investigate any other kind of synchronization for experimental condition, because those are completely non identical signals. Also, there exists equivalence between the phases and the distances of the diagonal line in Recurrence plot (RP) of the signals, which is quantifiable by the recurrence quantification measure τ-recurrence rate. This paper considers two nonlinear music signals based on same raga played by two eminent sitar instrumentalists as two non-identical sources. The psycho-acoustic study shows how the Dynamics, Timber, Tonality and Rhythm vary for the two music signals. Then, long term analysis in the form of phase space reconstruction is performed, which reveals the chaotic phase spaces for both the signals. From the RP of both the phase spaces, τ-recurrence rate is calculated. Finally by the correlation of normalized tau-recurrence rate of their 3D phase spaces and the PS of the two music signals has been established. The numerical results well support the analysis.
Glerean, Enrico; Salmi, Juha; Lahnakoski, Juha M; Jääskeläinen, Iiro P; Sams, Mikko
2012-01-01
Functional brain activity and connectivity have been studied by calculating intersubject and seed-based correlations of hemodynamic data acquired with functional magnetic resonance imaging (fMRI). To inspect temporal dynamics, these correlation measures have been calculated over sliding time windows with necessary restrictions on the length of the temporal window that compromises the temporal resolution. Here, we show that it is possible to increase temporal resolution by using instantaneous phase synchronization (PS) as a measure of dynamic (time-varying) functional connectivity. We applied PS on an fMRI dataset obtained while 12 healthy volunteers watched a feature film. Narrow frequency band (0.04-0.07 Hz) was used in the PS analysis to avoid artifactual results. We defined three metrics for computing time-varying functional connectivity and time-varying intersubject reliability based on estimation of instantaneous PS across the subjects: (1) seed-based PS, (2) intersubject PS, and (3) intersubject seed-based PS. Our findings show that these PS-based metrics yield results consistent with both seed-based correlation and intersubject correlation methods when inspected over the whole time series, but provide an important advantage of maximal single-TR temporal resolution. These metrics can be applied both in studies with complex naturalistic stimuli (e.g., watching a movie or listening to music in the MRI scanner) and more controlled (e.g., event-related or blocked design) paradigms. A MATLAB toolbox FUNPSY ( http://becs.aalto.fi/bml/software.html ) is openly available for using these metrics in fMRI data analysis.
Ultrafast electric phase control of a single exciton qubit
NASA Astrophysics Data System (ADS)
Widhalm, Alex; Mukherjee, Amlan; Krehs, Sebastian; Sharma, Nandlal; Kölling, Peter; Thiede, Andreas; Reuter, Dirk; Förstner, Jens; Zrenner, Artur
2018-03-01
We report on the coherent phase manipulation of quantum dot excitons by electric means. For our experiments, we use a low capacitance single quantum dot photodiode which is electrically controlled by a custom designed SiGe:C BiCMOS chip. The phase manipulation is performed and quantified in a Ramsey experiment, where ultrafast transient detuning of the exciton energy is performed synchronous to double pulse π/2 ps laser excitation. We are able to demonstrate electrically controlled phase manipulations with magnitudes up to 3π within 100 ps which is below the dephasing time of the quantum dot exciton.
Anticipatory phase correction in sensorimotor synchronization.
Repp, Bruno H; Moseley, Gordon P
2012-10-01
Studies of phase correction in sensorimotor synchronization often introduce timing perturbations that are unpredictable with regard to direction, magnitude, and position in the stimulus sequence. If participants knew any or all of these parameters in advance, would they be able to anticipate perturbations and thus regain synchrony more quickly? In Experiment 1, we asked musically trained participants to tap in synchrony with short isochronous tone sequences containing a phase shift (PS) of -100, -40, 40, or 100 ms and provided advance information about its direction, position, or both (but not about its magnitude). The first two conditions had little effect, but in the third condition participants shifted their tap in anticipation of the PS, though only by about ±40 ms on average. The phase correction response to the residual PS was also enhanced. In Experiment 2, we provided complete advance information about PSs of various magnitudes either at the time of the immediately preceding tone ("late") or at the time of the tone one position back ("early") while also varying sequence tempo. Anticipatory phase correction was generally conservative and was impeded by fast tempo in the "late" condition. At fast tempi in both conditions, advancing a tap was more difficult than delaying a tap. The results indicate that temporal constraints on anticipatory phase correction resemble those on reactive phase correction. While the latter is usually automatic, this study shows that phase correction can also be controlled consciously for anticipatory purposes. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lu, Zenghai; Kasaragod, Deepa K.; Matcher, Stephen J.
2011-07-01
We present a phase fluctuation calibration method for polarization-sensitive swept-source optical coherence tomography (PS-SS-OCT) using continuous polarization modulation. The method uses a low-voltage broadband polarization modulator driven by a synchronized sinusoidal burst waveform rather than an asynchronous waveform, together with the removal of the global phases of the measured Jones matrices by the use of matrix normalization. This makes it possible to average the measured Jones matrices to remove the artifact due to the speckle noise of the signal in the sample without introducing auxiliary optical components into the sample arm. This method was validated on measurements of an equine tendon sample by the PS-SS-OCT system.
NASA Astrophysics Data System (ADS)
Szplet, R.; Kalisz, J.; Jachna, Z.
2009-02-01
We present a time digitizer having 45 ps resolution, integrated in a field programmable gate array (FPGA) device. The time interval measurement is based on the two-stage interpolation method. A dual-edge two-phase interpolator is driven by the on-chip synthesized 250 MHz clock with precise phase adjustment. An improved dual-edge double synchronizer was developed to control the main counter. The nonlinearity of the digitizer's transfer characteristic is identified and utilized by the dedicated hardware code processor for the on-the-fly correction of the output data. Application of presented ideas has resulted in the measurement uncertainty of the digitizer below 70 ps RMS over the time interval ranging from 0 to 1 s. The use of the two-stage interpolation and a fast FIFO memory has allowed us to obtain the maximum measurement rate of five million measurements per second.
Jing, Wencai; Zhang, Yimo; Zhou, Ge
2002-07-15
A new structure for bit synchronization in a tera-bit/s optical interconnection network has been designed using micro-electro-mechanical system (MEMS) technique. Link multiplexing has been adopted to reduce data packet communication latency. To eliminate link set-up time, adjustable optical delay lines (AODLs) have been adopted to shift the phases of the distributed optical clock signals for bit synchronization. By changing the optical path distance of the optical clock signal, the phase of the clock signal can be shifted at a very high resolution. A phase-shift resolution of 0.1 ps can be easily achieved with 30-microm alternation of the optical path length in vacuum.
Generation of Ultrashort Pulses from Chromium - Forsterite Laser
NASA Astrophysics Data System (ADS)
Seas, Antonios
This thesis discusses the generation of ultrashort pulses from the chromium-doped forsterite laser, the various designs, construction and operation of forsterite laser systems capable of generating picosecond and femtosecond pulses in the near infrared. Various mode-locking techniques including synchronous optical pumping, active mode-locking, and self-mode-locking were successfully engineered and implemented. Active and synchronously pumped mode-locking using a three mirror, astigmatically compensated cavity design and a forsterite crystal with a figure of merit of 26 (FOM = alpha_{rm 1064nm} /alpha_{rm 1250nm }) generated pulses with FWHM of 49 and 260 ps, respectively. The tuning range of the mode-locked forsterite laser in both cases was determined to be in the order of 100 nm limited only by the dielectric coatings of the mirrors used in the cavity. The slope efficiency was measured to be 12.5% for synchronous pumping and 9.1% for active mode-locking. A four mirror astigmatically compensated cavity was found to be more appropriate for mode-locking. Active mode-locking using the four-mirror cavity generated pulses with FWHM of 31 ps. The pulsewidth was further reduced to 6 ps by using a forsterite crystal with a higher figure of merit (FOM = 39). Pulsewidth-bandwidth measurements indicated the presence of chirp in the output pulses. Numerical calculation of the phase characteristics of various optical materials indicated that a pair of prisms made of SF 14 optical glass can be used in the cavity in order to compensate for the chirp. The insertion of the prisms in the cavity resulted in a reduction of the pulsewidth from 6 ps down to 900 fs. Careful optimization of the laser cavity resulted in the generation of stable 90-fs pulses. Pulses as short as 60 fs were generated and self-mode-locked mode of operation using the Cr:forsterite laser was demonstrated for the first time. Pure self-mode-locking was next achieved generating 105-fs pulses tunable between 1230-1270 nm. Numerical calculations of the cubic phase characteristics of the prism pair used indicated that the pair of SF 14 prisms compensated for quadratic phase but introduced a large cubic phase term. Numerical evaluation of other optical glasses indicated that a pair of SFN 64 prisms can introduce the same quadratic phase as SF 14 prisms but introduce a smaller cubic phase. When the SF 14 prisms were replaced by SFN 64 prisms the pulsewidth was reduced to 50 fs. Great improvement was also observed in the stability of the self-mode-locked forsterite laser and in the ease of achieving mode-locking. Using the same experimental arrangement and a forsterite crystal with improved FOM the pulse width was reduced to 36 fs.
Hydrodynamic interactions in metachronal paddling: effects of varying stroke kinematics
NASA Astrophysics Data System (ADS)
Samaee, Milad; Kasoju, Vishwa; Lai, Hong Kuan; Santhanakrishnan, Arvind
2017-11-01
Crustaceans such as shrimp and krill use a drag-based technique for propulsion, in which multiple pairs of limbs are paddled rhythmically from the tail to the head. Each limb is phase-shifted in time relative to its neighbor. Most studies of this type of metachronal swimming have focused on the jet formed in the animal's wake. However, synergistic hydrodynamic interactions between adjacent limbs in metachrony have received minimal attention. We used a dynamically scaled robotic model to experimentally investigate how variations in stroke kinematics impact inter-paddle hydrodynamic interactions and thrust generation. Physical models of limbs were fitted to the robot and paddled with two different motion profiles (MPs)-1) MP1: metachronal power stroke (PS) and metachronal recovery stroke (RS); and 2) MP2: metachronal PS and synchronous RS. Stroke frequency and amplitude were maintained constant across both MPs. Our results show that MP2 produced faster jets in the thrust-generating direction as compared to MP1. The necessity for a pause in MP2 after completion of PS by the paddles leading the motion, prior to executing the synchronous RS, aided in further downstream flow propagation. The effect of using asymmetric stroke kinematics on thrust generated will be discussed.
Mode-locking of a terahertz laser by direct phase synchronization.
Maysonnave, J; Maussang, K; Freeman, J R; Jukam, N; Madéo, J; Cavalié, P; Rungsawang, R; Khanna, S P; Linfield, E H; Davies, A G; Beere, H E; Ritchie, D A; Dhillon, S S; Tignon, J
2012-09-10
A novel scheme to achieve mode-locking of a multimode laser is demonstrated. Traditional methods to produce ultrashort laser pulses are based on modulating the cavity gain or losses at the cavity roundtrip frequency, favoring the pulsed emission. Here, we rather directly act on the phases of the modes, resulting in constructive interference for the appropriated phase relationship. This was performed on a terahertz quantum cascade laser by multimode injection seeding with an external terahertz pulse, resulting in phase mode-locked terahertz laser pulses of 9 ps duration, characterized unambiguously in the time domain.
Repp, Bruno H
2011-01-01
When tapping is paced by an auditory sequence containing small phase shift (PS) perturbations, the phase correction response (PCR) of the tap following a PS increases with the baseline interonset interval (IOI), leading eventually to overcorrection (B. H. Repp, 2008). Experiment 1 shows that this holds even for fixed-size PSs that become imperceptible as the IOI increases (here, from 400 to 1200 ms). Earlier research has also shown (but only for IOI=500 ms) that the PCR is proportionally smaller for large than for small PSs (B. H. Repp, 2002a, 2002b). Experiment 2 introduced large PSs and found smaller PCRs than in Experiment 1, at all of the same IOIs. In Experiments 3A and 3B, the author investigated whether the change in slope of the sigmoid function relating PCR and PS magnitudes occurs at a fixed absolute or relative PS magnitude across different IOIs (600, 1000, 1400 ms). The results suggest no clear answer; the exact shape of the function may depend on the range of PSs used in an experiment. Experiment 4 examined the PCR in the IOI range from 1000 to 2000 ms and found overcorrection throughout, but with the PCR increasing much more gradually than in Experiment 1. These results provide important new information about the phase correction process and pose challenges for models of sensorimotor synchronization, which presently cannot explain nonlinear PCR functions and overcorrection. Copyright © Taylor & Francis Group, LLC
Robust Synchronization Models for Presentation System Using SMIL-Driven Approach
ERIC Educational Resources Information Center
Asnawi, Rustam; Ahmad, Wan Fatimah Wan; Rambli, Dayang Rohaya Awang
2013-01-01
Current common Presentation System (PS) models are slide based oriented and lack synchronization analysis either with temporal or spatial constraints. Such models, in fact, tend to lead to synchronization problems, particularly on parallel synchronization with spatial constraints between multimedia element presentations. However, parallel…
Chirped frequency transfer: a tool for synchronization and time transfer.
Raupach, Sebastian M F; Grosche, Gesine
2014-06-01
We propose and demonstrate the phase-stabilized transfer of a chirped frequency as a tool for synchronization and time transfer. Technically, this is done by evaluating remote measurements of the transferred, chirped frequency. The gates of the frequency counters, here driven by a 10-MHz oscillation derived from a hydrogen maser, play a role analogous to the 1-pulse per second (PPS) signals usually employed for time transfer. In general, for time transfer, the gates consequently must be related to the external clock. Synchronizing observations based on frequency measurements, on the other hand, only requires a stable oscillator driving the frequency counters. In a proof of principle, we demonstrate the suppression of symmetrical delays, such as the geometrical path delay. We transfer an optical frequency chirped by around 240 kHz/s over a fiber link of around 149 km. We observe an accuracy and simultaneity, as well as a precision (Allan deviation, 18,000 s averaging interval) of the transferred frequency of around 2 × 10(-19). We apply chirped frequency transfer to remote measurements of the synchronization between two counters' gate intervals. Here, we find a precision of around 200 ps at an estimated overall uncertainty of around 500 ps. The measurement results agree with those obtained from reference measurements, being well within the uncertainty. In the present setup, timing offsets up to 4 min can be measured unambiguously. We indicate how this range can be extended further.
NASA Astrophysics Data System (ADS)
Radhakrishnan, Srinivasan; Duvvuru, Arjun; Sultornsanee, Sivarit; Kamarthi, Sagar
2016-02-01
The cross correlation coefficient has been widely applied in financial time series analysis, in specific, for understanding chaotic behaviour in terms of stock price and index movements during crisis periods. To better understand time series correlation dynamics, the cross correlation matrices are represented as networks, in which a node stands for an individual time series and a link indicates cross correlation between a pair of nodes. These networks are converted into simpler trees using different schemes. In this context, Minimum Spanning Trees (MST) are the most favoured tree structures because of their ability to preserve all the nodes and thereby retain essential information imbued in the network. Although cross correlations underlying MSTs capture essential information, they do not faithfully capture dynamic behaviour embedded in the time series data of financial systems because cross correlation is a reliable measure only if the relationship between the time series is linear. To address the issue, this work investigates a new measure called phase synchronization (PS) for establishing correlations among different time series which relate to one another, linearly or nonlinearly. In this approach the strength of a link between a pair of time series (nodes) is determined by the level of phase synchronization between them. We compare the performance of phase synchronization based MST with cross correlation based MST along selected network measures across temporal frame that includes economically good and crisis periods. We observe agreement in the directionality of the results across these two methods. They show similar trends, upward or downward, when comparing selected network measures. Though both the methods give similar trends, the phase synchronization based MST is a more reliable representation of the dynamic behaviour of financial systems than the cross correlation based MST because of the former's ability to quantify nonlinear relationships among time series or relations among phase shifted time series.
NASA Technical Reports Server (NTRS)
Fouts, Douglas J.
1992-01-01
The design, implementation, testing, and applications of a gallium-arsenide digital phase shifter and fan-out buffer are described. The integrated circuit provides a method for adjusting the phase of high-speed clock and control signals in digital systems, without the need for pruning cables, multiplexing between cables of different lengths, delay lines, or similar techniques. The phase of signals distributed with the described chip can be dynamically adjusted in eight different steps of approximately 60 ps per step. The IC also serves as a fan-out buffer and provides 12 in-phase outputs. The chip is useful for distributing high-speed clock and control signals in synchronous digital systems, especially if components are distributed over a large physical area or if there is a large number of components.
Synchronization of pulses from mode-locked lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey, G.T.
A study of the synchronization of mode-locked lasers is presented. In particular, we investigate the timing of the laser output pulses with respect to the radio frequency (RF) signal driving the mode-locking elements in the laser cavity. Two types of mode-locked lasers are considered: a cw loss-modulated mode-locked argon ion laser; and a q-switched active-passive mode-locked Nd:YAG laser. We develop theoretical models for the treatment of laser pulse synchronization in both types of lasers. Experimental results are presented on a combined laser system that synchronizes pulses from both an argon ion and a Nd:YAG laser by using a common RFmore » signal to drive independent mode-lockers in both laser cavities. Shot to shot jitter as low as 18 ps (RMS) was measured between the output pulses from the two lasers. The theory of pulse synchronization for the cw loss-modulated mode-locked argon ion laser is based on the relationship between the timing of the mode-locked laser pulse (with respect to the peak of the RF signal) and the length of the laser cavity. Experiments on the argon laser include the measurement of the phase shift of the mode-locked pulse as a function of cavity length and intracavity intensity. The theory of synchronization of the active-passive mode-locked Nd:YAG laser is an extension of the pulse selection model of the active-passive laser. Experiments on the active-passive Nd:YAG laser include: measurement of the early noise fluctuations; measurement of the duration of the linear build-up stage (time between laser threshold and saturation of the absorber); measurement of jitter as a function of the mode-locker modulation depth; and measurement of the output pulse phase shift as a function of cavity length.« less
Rovibrational hybrid fs/ps CARS using a volume Bragg grating for N₂ thermometry.
Scherman, M; Nafa, M; Schmid, T; Godard, A; Bresson, A; Attal-Tretout, B; Joubert, P
2016-02-01
Coherent anti-Stokes Raman scattering (CARS) spectra of N2 in the hybrid femtosecond/picosecond regime have been recorded with 0.7 cm(-1) resolution. The Q-branch rovibrational structure has been resolved, making it suitable for gas-phase simultaneous rotational and vibrational thermometry applications. Resolving this spectral structure requires synchronization of a narrowband picosecond probe pulse with a broadband femtosecond pair of pump and Stokes pulses. It is achieved using a single femtosecond ytterbium-laser source and a volume Bragg grating in a compact experimental arrangement.
Wang, Xun-Heng; Li, Lihua; Xu, Tao; Ding, Zhongxiang
2015-01-01
The brain active patterns were organized differently under resting states of eyes open (EO) and eyes closed (EC). The altered voxel-wise and regional-wise resting state active patterns under EO/EC were found by static analysis. More importantly, dynamical spontaneous functional connectivity has been observed in the resting brain. To the best of our knowledge, the dynamical mechanisms of intrinsic connectivity networks (ICNs) under EO/EC remain largely unexplored. The goals of this paper were twofold: 1) investigating the dynamical intra-ICN and inter-ICN temporal patterns during resting state; 2) analyzing the altered dynamical temporal patterns of ICNs under EO/EC. To this end, a cohort of healthy subjects with scan conditions of EO/EC were recruited from 1000 Functional Connectomes Project. Through Hilbert transform, time-varying phase synchronization (PS) was applied to evaluate the inter-ICN synchrony. Meanwhile, time-varying amplitude was analyzed as dynamical intra-ICN temporal patterns. The results found six micro-states of inter-ICN synchrony. The medial visual network (MVN) showed decreased intra-ICN amplitude during EC relative to EO. The sensory-motor network (SMN) and auditory network (AN) exhibited enhanced intra-ICN amplitude during EC relative to EO. Altered inter-ICN PS was found between certain ICNs. Particularly, the SMN and AN exhibited enhanced PS to other ICNs during EC relative to EO. In addition, the intra-ICN amplitude might influence the inter-ICN synchrony. Moreover, default mode network (DMN) might play an important role in information processing during EO/EC. Together, the dynamical temporal patterns within and between ICNs were altered during different scan conditions of EO/EC. Overall, the dynamical intra-ICN and inter-ICN temporal patterns could benefit resting state fMRI-related research, and could be potential biomarkers for human functional connectome. PMID:26469182
Chen, Xing; Lu, Jinlong; Cui, Yifan; Zhang, Jian; Lu, Xing; Tian, Xusheng; Ci, Cheng; Liu, Bo; Wu, Hong; Tang, Tingsong; Shi, Kebin; Zhang, Zhigang
2015-12-22
Precision time synchronization between two remote sites is desired in many applications such as global positioning satellite systems, long-baseline interferometry, coherent radar detection and fundamental physics constant measurements. The recently developed frequency dissemination technologies based on optical fiber link have improved the transfer instability to the level of 10(-19)/day at remote location. Therefore it is possible to keep clock oscillation at remote locations continuously corrected, or to reproduce a "virtual" clock on the remote location. However the initial alignment and the correction of 1 pps timing signal from time to time are still required, besides the highly stabilized clock frequency transfer between distant locations. Here we demonstrate a time synchronization based on an ultra-stable frequency transfer system via 120-km commercial fiber link by transferring an optical frequency comb. Both the phase noise compensation in frequency dissemination and temporal basis alignment in time synchronization were implemented by a feed-forward digital compensation (FFDC) technique. The fractional frequency instability was measured to be 6.18 × 10(-20) at 2000 s. The timing deviation of time synchronization was measured to be 0.6 ps in 1500 s. This technique also can be applied in multi-node fiber network topology.
Chen, Xing; Lu, Jinlong; Cui, Yifan; Zhang, Jian; Lu, Xing; Tian, Xusheng; Ci, Cheng; Liu, Bo; Wu, Hong; Tang, Tingsong; Shi, Kebin; Zhang, Zhigang
2015-01-01
Precision time synchronization between two remote sites is desired in many applications such as global positioning satellite systems, long-baseline interferometry, coherent radar detection and fundamental physics constant measurements. The recently developed frequency dissemination technologies based on optical fiber link have improved the transfer instability to the level of 10−19/day at remote location. Therefore it is possible to keep clock oscillation at remote locations continuously corrected, or to reproduce a “virtual” clock on the remote location. However the initial alignment and the correction of 1 pps timing signal from time to time are still required, besides the highly stabilized clock frequency transfer between distant locations. Here we demonstrate a time synchronization based on an ultra-stable frequency transfer system via 120-km commercial fiber link by transferring an optical frequency comb. Both the phase noise compensation in frequency dissemination and temporal basis alignment in time synchronization were implemented by a feed-forward digital compensation (FFDC) technique. The fractional frequency instability was measured to be 6.18 × 10−20 at 2000 s. The timing deviation of time synchronization was measured to be 0.6 ps in 1500 s. This technique also can be applied in multi-node fiber network topology. PMID:26691731
Joint transfer of time and frequency signals and multi-point synchronization via fiber network
NASA Astrophysics Data System (ADS)
Nan, Cheng; Wei, Chen; Qin, Liu; Dan, Xu; Fei, Yang; You-Zhen, Gui; Hai-Wen, Cai
2016-01-01
A system of jointly transferring time signals with a rate of 1 pulse per second (PPS) and frequency signals of 10 MHz via a dense wavelength division multiplex-based (DWDM) fiber is demonstrated in this paper. The noises of the fiber links are suppressed and compensated for by a controlled fiber delay line. A method of calibrating and characterizing time is described. The 1PPS is synchronized by feed-forward calibrating the fiber delays precisely. The system is experimentally examined via a 110 km spooled fiber in laboratory. The frequency stabilities of the user end with compensation are 1.8×10-14 at 1 s and 2.0×10-17 at 104 s average time. The calculated uncertainty of time synchronization is 13.1 ps, whereas the direct measurement of the uncertainty is 12 ps. Next, the frequency and 1PPS are transferred via a metropolitan area optical fiber network from one central site to two remote sites with distances of 14 km and 110 km. The frequency stabilities of 14 km link reach 3.0×10-14 averaged in 1 s and 1.4×10-17 in 104 s respectively; and the stabilities of 110 km link are 8.3×10-14 and 1.7×10-17, respectively. The accuracies of synchronization are estimated to be 12.3 ps for the 14 km link and 13.1 ps for the 110 km link, respectively. Project supported by the National Natural Science Foundation of China (Grant No. 61405227).
Clock jitter generator with picoseconds resolution
NASA Astrophysics Data System (ADS)
Jovanović, Goran; Stojčev, Mile; Nikolić, Tatjana
2013-06-01
The clock is one of the most critical signals in any synchronous system. As CMOS technology has scaled, supply voltages have dropped chip power consumption has increased and the effects of jitter due to clock frequency increase have become critical and jitter budget has become tighter. This article describes design and development of low-cost mixed-signal programmable jitter generator with high resolution. The digital technique is used for coarse-grain and an analogue technique for fine-grain clock phase shifting. Its structure allows injection of various random and deterministic jitter components in a controllable and programmable fashion. Each jitter component can be switched on or off. The jitter generator can be used in jitter tolerance test and jitter transfer function measurement of high-speed synchronous digital circuits. At operating system clock frequency of 220 MHz, a jitter with 4 ps resolution can be injected.
A precise clock distribution network for MRPC-based experiments
NASA Astrophysics Data System (ADS)
Wang, S.; Cao, P.; Shang, L.; An, Q.
2016-06-01
In high energy physics experiments, the MRPC (Multi-Gap Resistive Plate Chamber) detectors are widely used recently which can provide higher-resolution measurement for particle identification. However, the application of MRPC detectors leads to a series of challenges in electronics design with large number of front-end electronic channels, especially for distributing clock precisely. To deal with these challenges, this paper presents a universal scheme of clock transmission network for MRPC-based experiments with advantages of both precise clock distribution and global command synchronization. For precise clock distributing, the clock network is designed into a tree architecture with two stages: the first one has a point-to-multipoint long range bidirectional distribution with optical channels and the second one has a fan-out structure with copper link inside readout crates. To guarantee the precision of clock frequency or phase, the r-PTP (reduced Precision Time Protocol) and the DDMTD (digital Dual Mixer Time Difference) methods are used for frequency synthesis, phase measurement and adjustment, which is implemented by FPGA (Field Programmable Gate Array) in real-time. In addition, to synchronize global command execution, based upon this clock distribution network, synchronous signals are coded with clock for transmission. With technique of encoding/decoding and clock data recovery, signals such as global triggers or system control commands, can be distributed to all front-end channels synchronously, which greatly simplifies the system design. The experimental results show that both the clock jitter (RMS) and the clock skew can be less than 100 ps.
Anshushaug, Malin; Gynnild, Mari Aas; Kaasa, Stein; Kvikstad, Anne; Grønberg, Bjørn H
2015-03-01
Many cancer patients receive chemotherapy and radiotherapy their last 30 days [end of life (EOL)]. The benefit is questionable and side effects are common. The aim of this study was to investigate what characterized the patients who received chemo- and radiotherapy during EOL, knowledge that might be used to improve practice. Patients dead from cancer in 2005 and 2009 were analyzed. Data were collected from hospital medical records. When performance status (PS) was not stated, PS was estimated from other information in the records. A Glasgow Prognostic Score (GPS) of 0, 1 or 2 was assessed from blood values (CRP and albumin). A higher score is associated with a shorter prognosis. In total 616 patients died in 2005; 599 in 2009. Among the 723 analyzed, median age was 71; 42% had metastases at diagnosis (synchronous metastases); 53% had PS 2 and 16% PS 3-4 at the start of last cancer therapy. GPS at the start of last cancer therapy was assessable in 70%; of these, 26% had GPS 1 and 35% GPS 2. Overall, 10% received chemotherapy and 8% radiotherapy during EOL. The proportions varied significantly between the different types of cancer. Multivariate analyses revealed that those at age<70 years, GPS 2, no contact with our Palliative Care Unit and synchronous metastases received most chemotherapy the last 30 days. PS 3-4, GPS 2 and synchronous metastases were strongest associated with radiotherapy the last 30 days. Ten percent received chemotherapy and 8% radiotherapy the last 30 days of life. GPS 2 and synchronous metastases were most significantly associated with cancer therapy the last 30 days of life, indicating that in general, patients with the shortest survival time after diagnosis of cancer received more chemo- and radiotherapy during EOL than other patients.
Palmieri, Arianna; Kleinbub, Johann R; Calvo, Vincenzo; Benelli, Enrico; Messina, Irene; Sambin, Marco; Voci, Alberto
2018-03-01
Physiological synchronization (PS) is a phenomenon of simultaneous activity between two persons' physiological signals. It has been associated with empathy, shared affectivity, and efficacious therapeutic relationships. The aim of the present study was to explore the possible connections between PS and the attachment system, seeking preliminary evidence of this link by means of an experimental manipulation of the sense of attachment security in psychotherapists according to a protocol by Mikulincer and Shaver (2001), which has been proven to elicit empathetic behavior. We compared the synchronization of skin-conductance signals in brief psychological interviews between 18 psychodynamic therapists and 18 healthy volunteers. A sense of attachment-security priming was administered to half of the therapists, whereas the other half received a positive-affect control prime. Lag analysis was performed to investigate the "leading" or "following" attitudes of the participants in the two conditions. Mixed-model regressions and evidence-ratio model comparisons were used to investigate the effects of the manipulation on PS. Therapist attachment anxiety and avoidance traits were considered covariates. The attachment-security prime showed a significant effect on PS lag dynamics, but not on overall PS amount. Lag analysis showed that the therapists in the attachment-security condition were significantly more prone to assume a leading attitude in the physiological coupling than the therapists in the control condition. Therapist attachment anxiety and avoidance had no apparent effect. Our result paves the way for further exploration of the clinical relationship from a physiological standpoint. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Saito, Norihito; Akagawa, Kazuyuki; Ito, Mayumi; Takazawa, Akira; Hayano, Yutaka; Saito, Yoshihiko; Ito, Meguru; Takami, Hideki; Iye, Masanori; Wada, Satoshi
2007-07-01
We report on a sodium D2 resonance coherent light source achieved in single-pass sum-frequency generation in periodically poled MgO-doped stoichiometric lithium tantalate with actively mode-locked Nd:YAG lasers. Mode-locked pulses at 1064 and 1319 nm are synchronized with a time resolution of 37 ps with the phase adjustment of the radio frequencies fed to acousto-optic mode lockers. An output power of 4.6 W at 589.1586 nm is obtained, and beam quality near the diffraction limit is also achieved in a simple design.
Saito, Norihito; Akagawa, Kazuyuki; Ito, Mayumi; Takazawa, Akira; Hayano, Yutaka; Saito, Yoshihiko; Ito, Meguru; Takami, Hideki; Iye, Masanori; Wada, Satoshi
2007-07-15
We report on a sodium D(2) resonance coherent light source achieved in single-pass sum-frequency generation in periodically poled MgO-doped stoichiometric lithium tantalate with actively mode-locked Nd:YAG lasers. Mode-locked pulses at 1064 and 1319 nm are synchronized with a time resolution of 37 ps with the phase adjustment of the radio frequencies fed to acousto-optic mode lockers. An output power of 4.6 W at 589.1586 nm is obtained, and beam quality near the diffraction limit is also achieved in a simple design.
NASA Astrophysics Data System (ADS)
Frank, Milan; Jelínek, Michal; Kubeček, Václav; Ivleva, Lyudmila I.; Zverev, Petr G.; Smetanin, Sergei
2017-12-01
A lot of attention is currently focused on synchronously pumped, extra-cavity crystalline Raman lasers generating one or two Stokes Raman components in KGW or diamond Raman-active crystals, and also generating additional components of stimulated polariton scattering in lithium niobate crystal having both cubic and quadratic nonlinearities. In this contribution we report on generation of more than two Stokes components of stimulated Raman scattering with different Raman shifts in the all-solid-state, synchronously pumped, extra-cavity Raman laser based on the Raman-active a-cut BaWO4 crystal excited by a mode-locked, 220 nJ, 36 ps, 150 MHz diode sidepumped Nd:GdVO4 laser generating at the wavelength of 1063 nm. Excitation by the pumping radiation polarized along the BaWO4 crystal optical axis resulted in the Raman generation with not only usual (925cm - 1), but also additional (332cm - 1) Raman shift. Besides the 1180-nm first and 1323 nm second Stokes components with the Raman shift of 925cm - 1 from the 1063nm fundamental laser wavelength, we have achieved generation of the additional 1227 nm Raman component with different Raman shift of 332cm - 1 from the 1180nm component. At the 1227 nm component the strongest 12-times pulse shortening from 36ps down to 3ps was obtained due to shorter dephasing time of this additional Raman line (3ps for the 332-cm - 1 line instead of 6.5ps for the 925cm - 1 line). It has to be also noted that the 1225 nm generation is intracavity pumped by the 1179 nm first Stokes component resulting in the strongest pulse shortening close to the 332cm -1 line dephasing time (3ps). Slope efficiency of three Stokes components generation exceeded 20%.
Quan, Runai; Zhai, Yiwei; Wang, Mengmeng; Hou, Feiyan; Wang, Shaofeng; Xiang, Xiao; Liu, Tao; Zhang, Shougang; Dong, Ruifang
2016-01-01
Based on the second-order quantum interference between frequency entangled photons that are generated by parametric down conversion, a quantum strategic algorithm for synchronizing two spatially separated clocks has been recently presented. In the reference frame of a Hong-Ou-Mandel (HOM) interferometer, photon correlations are used to define simultaneous events. Once the HOM interferometer is balanced by use of an adjustable optical delay in one arm, arrival times of simulta- neously generated photons are recorded by each clock. The clock offset is determined by correlation measurement of the recorded arrival times. Utilizing this algorithm, we demonstrate a proof-of-principle experiment for synchronizing two clocks separated by 4 km fiber link. A minimum timing stability of 0.44 ps at averaging time of 16000 s is achieved with an absolute time accuracy of 73.2 ps. The timing stability is verified to be limited by the correlation measurement device and ideally can be better than 10 fs. Such results shine a light to the application of quantum clock synchronization in the real high-accuracy timing system. PMID:27452276
Enhancements to the timing of the OMEGA laser system to improve illumination uniformity
NASA Astrophysics Data System (ADS)
Donaldson, W. R.; Katz, J.; Kosc, T. Z.; Kelly, J. H.; Hill, E. M.; Bahr, R. E.
2016-09-01
Two diagnostics have been developed to improve the uniformity on the OMEGA Laser System, which is used for inertial confinement fusion (ICF) research. The first diagnostic measures the phase of an optical modulator (used for the spectral dispersion technique employed on OMEGA to enhance spatial smoothing), which adds bandwidth to the optical pulse. Setting this phase precisely is required to reduce pointing errors. The second diagnostic ensures that the arrival times of all the beams are synchronized. The arrival of each of the 60 OMEGA beams is measured by placing a 1-mm diffusing sphere at target chamber center. By comparing the arrival time of each beam with respect to a reference pulse, the measured timing spread of the OMEGA Laser System is now 3.8 ps.
Ultrafast Airy beam optical parametric oscillator
Apurv Chaitanya, N.; Kumar, S. Chaitanya; Aadhi, A.; Samanta, G. K.; Ebrahim-Zadeh, M.
2016-01-01
We report on the first realization of an ultrafast Airy beam optical parametric oscillator (OPO). By introducing intracavity cubic phase modulation to the resonant Gaussian signal in a synchronously-pumped singly-resonant OPO cavity and its subsequent Fourier transformation, we have generated 2-dimensional Airy beam in the output signal across a 250 nm tuning range in the near-infrared. The generated Airy beam can be tuned continuously from 1477 to 1727 nm, providing an average power of as much as 306 mW at 1632 nm in pulses of ~23 ps duration with a spectral bandwidth of 1.7 nm. PMID:27476910
Medubi, O O; Iranloye, B O; Adegoke, O A
2017-06-30
Stress has been acknowledged as one of the aetiologies of female reproductive dysfunction, yet the mechanismsinvolved are not totally elucidated. Based on the paucity of information on how predator-induced stress (PS) affects oestrouscycle in rats, this study was designed to investigate the effect of PS on the oestrous cycle in rats. Forty-eight (48) SpragueDawley rats were used for this study. They were randomly divided into Control and PS group. Each group was divided intofour subgroups (n=6/group) according to the phases of oestrous cycle. Stress was induced by exposing rats to cat (predator)for 60 minutes/day for 14 consecutive days. PS caused significant disruption of the oestrous cycle. In animals subjected toPS at proestrus (PS-proestrus) and oestrus (PS-oestrus), percentage occurrence of proestrus, oestrus and metestrus phaseswere significantly reduced compared with control. In animals subjected to PS at metestrus (PS-metestrus) and diestrus (PSdiestrus), percentage occurrence of oestrus phase was not significantly affected. In all animals exposed to PS, percentageoccurrence of diestrus was significantly increased regardless of the phase of first exposure compared with control.Corticosterone and prolactin levels were significantly elevated in PS groups compared with control. Progesterone wassignificantly increased in animals at diestrus phase compared with oestrus phase and respective phases in control. Oestradiolwas significantly reduced in PS group compared with control at oestrus phase but not significantly different at diestrus phase.Luteinizing hormone (LH) and follicle stimulating hormone (FSH) levels were significantly lower in PS groups at oestrusphase compared with diestrus phase. This study shows that PS disrupts the oestrous cycle secondary to perturbation ofhormonal control of female reproduction and is influenced by the phase at first exposure to stress.
Kanai, Tsuneto; Malevich, Pavel; Kangaparambil, Sarayoo Sasidharan; Ishida, Kakuta; Mizui, Makoto; Yamanouchi, Kaoru; Hoogland, Heinar; Holzwarth, Ronald; Pugzlys, Audrius; Baltuska, Andrius
2017-02-15
We report on the parametric generation of 100 fs sub-6-cycle 40 μJ pulses with the center wavelength at 5.2 μm using a 1 ps 2.1 μm pump laser and a dispersion management scheme based on bulk material. Our optically synchronized amplifier chain consists of a Ho:YAG chirped-pulse amplifier and white-light-seeded optical parametric amplifiers providing simultaneous passive carrier-envelope phase locking of three ultrashort longwave pulses at the pump, signal, and idler wavelengths corresponding, respectively, to 2.1, 3.5, and 5.2 μm. We also demonstrate bandwidth enhancement and efficient control over nonlinear spectral phase in the regime of cascaded χ2 nonlinearity in ZnGeP2.
A Model for Determining Task Set Schedulability in the Presence of System Effects
1992-12-01
A-34 A.20.100ps data (cont) .............................................. A- 35 A.21.100ps data (cont...Specification Item [ Range User Tasks 0 to 99 System Tasks no limit Simulation Time (in ps) 0 to 2,100,000,000 (0 to 35 minutes) Synchronization Events...3.800* 32 363.4 57 332.3 82 310.1 8 3.800* 33 352.6 58 332.5 83 307.9 9 3.800* 34 359.3 59 330.1 84 314.3 10 3.800* 35 353.3 60 324.8 85 304.6 11 3.800
Sun, Junfeng; Li, Zhijun; Tong, Shanbao
2012-01-01
Functional neural connectivity is drawing increasing attention in neuroscience research. To infer functional connectivity from observed neural signals, various methods have been proposed. Among them, phase synchronization analysis is an important and effective one which examines the relationship of instantaneous phase between neural signals but neglecting the influence of their amplitudes. In this paper, we review the advances in methodologies of phase synchronization analysis. In particular, we discuss the definitions of instantaneous phase, the indexes of phase synchronization and their significance test, the issues that may affect the detection of phase synchronization and the extensions of phase synchronization analysis. In practice, phase synchronization analysis may be affected by observational noise, insufficient samples of the signals, volume conduction, and reference in recording neural signals. We make comments and suggestions on these issues so as to better apply phase synchronization analysis to inferring functional connectivity from neural signals. PMID:22577470
Xia, Tian; Qin, Yaping; Huang, Yajiang; Huang, Ting; Xu, Jianhui; Li, Youbing
2016-11-28
The morphology evolution mechanism of polystyrene (PS)/poly (vinyl methyl ether) (PVME) blend thin films with different PS molecular weights (M w ) was studied. It was found that the morphology evolution was closely related to the molecular weight asymmetry between PS and PVME. In the film where M w (PS) ≈ M w (PVME), dewetting happened at the interface between the bottom layer and substrate after SD phase separation. While in the film where M w (PS) > M w (PVME), dewetting happened at the interface between the middle PS/PVME blend layer and bottom PVME layer near the substrate prior to phase separation. The different sequences of phase separation and dewetting and different interface for dewetting occurrence were studied by regarding the competitive effects of viscoelasticity contrast between polymer components and preferential wetting between PVME and the substrate. The viscoelastic nature of the PS component played a crucial role in the sequence of phase separation and dewetting.
Phase synchronization of oscillations in cardiovascular and respiratory systems in humans
NASA Astrophysics Data System (ADS)
Tankanag, Arina V.; Grinevich, Andrey A.; Tikhonova, Irina V.; Chaplygina, Alina V.; Chemeris, Nikolay K.
2017-04-01
Phase synchronization between blood flow oscillations of left and right forearm skin sites, heart rate variability (HRV) and breath rate were studied from healthy volunteers at rest. The degree of synchronization between the phases of the analyzed signals was estimated from the value of the wavelet phase coherence. High medians of values of phase wavelet coherence function were obtained for the endothelial, neurogenic, myogenic and cardiac intervals. Significant phase synchronization were demonstrated between HRV and skin blood flow oscillations in both left and right forearms in a wide frequency range from 0.04 to 0.4 Hz. Six participants exhibited low phase synchronization (< 0.5) between the breath rate and HRV, while nine participants had high phase synchronization (> 0.5). This distribution was not affected by the sex or sympathovagal status of volunteers. Participants with low phase synchronization between breath rate and HRV featured low phase synchronization (< 0.5) between breath rate and blood flow oscillations in both forearms. Contrariwise, in subjects with high phase synchronization between respiratory rhythm and HRV both low and high phase synchronization between breath rate and blood flow oscillations in both forearms was observed. The results obtained allow us to suggest that the organism possesses a mechanism mediating the synchronization of blood flow oscillations in the skin microvasculature with all other periodical processes across the cardiovascular system, in particular, with HRV and breath rate over a wide frequency range.
Silicon RFIC Techniques for Reconfigurable Military Applications
2008-12-01
21 3.2.1 Motivation ...2008-295 21 3.2 Distributed Cascode LNAs at 20 GHz 3.2.1 Motivation Millimetrewave integrated circuits are traditionally implemented using...ZRef=50. Ohm Phase=-45. PhaseShiftSML PS4 ZRef=50. Ohm Phase=-22.5 PhaseShiftSML PS7 ZRef=50. Ohm Phase=-180 PhaseShiftSML PS8 ZRef=50. Ohm Phase=-180
Ripamonti, Giancarlo; Abba, Andrea; Geraci, Angelo
2010-05-01
A method for measuring time intervals accurate to the picosecond range is based on phase measurements of oscillating waveforms synchronous with their beginning and/or end. The oscillation is generated by triggering an LC resonant circuit, whose capacitance is precharged. By using high Q resonators and a final active quenching of the oscillation, it is possible to conjugate high time resolution and a small measurement time, which allows a high measurement rate. Methods for fast analysis of the data are considered and discussed with reference to computing resource requirements, speed, and accuracy. Experimental tests show the feasibility of the method and a time accuracy better than 4 ps rms. Methods aimed at further reducing hardware resources are finally discussed.
High resolution distributed time-to-digital converter (TDC) in a White Rabbit network
NASA Astrophysics Data System (ADS)
Pan, Weibin; Gong, Guanghua; Du, Qiang; Li, Hongming; Li, Jianmin
2014-02-01
The Large High Altitude Air Shower Observatory (LHAASO) project consists of a complex detector array with over 6000 detector nodes spreading over 1.2 km2 areas. The arrival times of shower particles are captured by time-to-digital converters (TDCs) in the detectors' frontend electronics, the arrival direction of the high energy cosmic ray are then to be reconstructed from the space-time information of all detector nodes. To guarantee the angular resolution of 0.5°, a time synchronization of 500 ps (RMS) accuracy and 100 ps precision must be achieved among all TDC nodes. A technology enhancing Gigabit Ethernet, called the White Rabbit (WR), has shown the capability of delivering sub-nanosecond accuracy and picoseconds precision of synchronization over the standard data packet transfer. In this paper we demonstrate a distributed TDC prototype system combining the FPGA based TDC and the WR technology. With the time synchronization and data transfer services from a compact WR node, separate FPGA-TDC nodes can be combined to provide uniform time measurement information for correlated events. The design detail and test performance will be described in the paper.
Synchronous, Alternating, and Phase-Locked Stridulation by a Tropical Katydid
NASA Astrophysics Data System (ADS)
Sismondo, Enrico
1990-07-01
In the field the chirps of neighboring Mecopoda sp. (Orthoptera, Tettigoniidae, and Mecopodinae) males are normally synchronized, but between more distant individuals the chirps are either synchronous or regularly alternating. The phase response to single-stimulus chirps depends on both the phase and the intensity of the stimulus. Iteration of the Poincare map of the phase response predicts a variety of phase-locked synchronization regimes, including period-doubling bifurcations, in close agreement with experimental observations. The versatile acoustic behavior of Mecopoda encompasses most of the phenomena found in other synchronizing insects and thus provides a general model of insect synchronization behavior.
Synthesis and evaluation of phase detectors for active bit synchronizers
NASA Technical Reports Server (NTRS)
Mcbride, A. L.
1974-01-01
Self-synchronizing digital data communication systems usually use active or phase-locked loop (PLL) bit synchronizers. The three main elements of PLL synchronizers are the phase detector, loop filter, and the voltage controlled oscillator. Of these three elements, phase detector synthesis is the main source of difficulty, particularly when the received signals are demodulated square-wave signals. A phase detector synthesis technique is reviewed that provides a physically realizable design for bit synchronizer phase detectors. The development is based upon nonlinear recursive estimation methods. The phase detector portion of the algorithm is isolated and analyzed.
Cell Cycle Synchronization of HeLa Cells to Assay EGFR Pathway Activation.
Wee, Ping; Wang, Zhixiang
2017-01-01
Progression through the cell cycle causes changes in the cell's signaling pathways that can alter EGFR signal transduction. Here, we describe drug-derived protocols to synchronize HeLa cells in various phases of the cell cycle, including G1 phase, S phase, G2 phase, and mitosis, specifically in the mitotic stages of prometaphase, metaphase, and anaphase/telophase. The synchronization procedures are designed to allow synchronized cells to be treated for EGF and collected for the purpose of Western blotting for EGFR signal transduction components.S phase synchronization is performed by thymidine block, G2 phase with roscovitine, prometaphase with nocodazole, metaphase with MG132, and anaphase/telophase with blebbistatin. G1 phase synchronization is performed by culturing synchronized mitotic cells obtained by mitotic shake-off. We also provide methods to validate the synchronization methods. For validation by Western blotting, we provide the temporal expression of various cell cycle markers that are used to check the quality of the synchronization. For validation of mitotic synchronization by microscopy, we provide a guide that describes the physical properties of each mitotic stage, using their cellular morphology and DNA appearance. For validation by flow cytometry, we describe the use of imaging flow cytometry to distinguish between the phases of the cell cycle, including between each stage of mitosis.
NASA Astrophysics Data System (ADS)
Koloskova, A. D.; Moskalenko, O. I.
2017-05-01
The phenomenon of intermittent phase synchronization during development of epileptic activity in human beings has been discovered based on EEG data. The presence of synchronous behavior phases has been detected both during spike-wave discharges and in the regions of background activity of the brain. The degree of synchronism in the intermittent phase-synchronization regime in both cases has been determined, and it has been established that spike-wave discharges are characterized by a higher degree of synchronism than exists in the regions of background activity of the brain. To determine the degree of synchronism, a modified method of evaluating zero conditional Lyapunov exponents from time series is proposed.
Immobilization and functional reconstitution of antibody Fab fragment by solid-phase refolding.
Kumada, Yoichi; Hamasaki, Kyoto; Nakagawa, Aya; Sasaki, Eiju; Shirai, Tatsunori; Okumura, Masahiro; Inoue, Manami; Kishimoto, Michimasa
2013-12-31
In this study, we demonstrated the successful preparation of a Fab antibody-immobilized hydrophilic polystyrene (phi-PS) plate via one- and two-step solid-phase refolding methods. Both polystyrene-binding peptide (PS-tag)-fused Fd fragment of heavy chain (Fab H-PS) and full-length of light-chain (Fab L-PS) were individually produced in insoluble fractions of Escherichia coli cells, and they were highly purified in the presence of 8M of urea. Antigen-binding activities of Fab antibody immobilized were correctly recovered by the one-step solid-phase refolding method that a mixture of Fab H-PS and Fab L-PS was immobilized in the presence of 0.5-2M urea, followed by surface washing of the phi-PS plate with PBST. These results indicate that by genetic fusion of a PS-tag, a complex between Fab H and Fab L was efficiently immobilized on the surface of a phi-PS plate even in the presence of a low concentration of urea, and was then correctly refolded to retain its high antigen-binding activity via removal of the urea. A two-step solid-phase refolding method whereby Fab H-PS and Fab L-PS were successively refolded on the surface of a phi-PS plate also resulted in Fab antibody formation on the plate. Furthermore, both the binding affinity and the specificity of the Fab antibody produced by the two-step method were highly maintained, according to the results of sandwich ELISA and competitive ELISA using Fab antibody-immobilized plate via two-step solid-phase refolding. Thus, the solid-phase refolding method demonstrated in this study should be quite useful for the preparation of a Fab antibody-immobilized PS surface with high efficiency from individually produced Fab H-PS and Fab L-PS. This method will be applicable to the preparation of a large Fab antibody library on the surface of a PS plate for use in antibody screening. © 2013. Published by Elsevier B.V. All rights reserved.
Detection of Nonverbal Synchronization through Phase Difference in Human Communication.
Kwon, Jinhwan; Ogawa, Ken-ichiro; Ono, Eisuke; Miyake, Yoshihiro
2015-01-01
Nonverbal communication is an important factor in human communication, and body movement synchronization in particular is an important part of nonverbal communication. Some researchers have analyzed body movement synchronization by focusing on changes in the amplitude of body movements. However, the definition of "body movement synchronization" is still unclear. From a theoretical viewpoint, phase difference is the most important factor in synchronization analysis. Therefore, there is a need to measure the synchronization of body movements using phase difference. The purpose of this study was to provide a quantitative definition of the phase difference distribution for detecting body movement synchronization in human communication. The phase difference distribution was characterized using four statistical measurements: density, mean phase difference, standard deviation (SD) and kurtosis. To confirm the effectiveness of our definition, we applied it to human communication in which the roles of speaker and listener were defined. Specifically, we examined the difference in the phase difference distribution between two different communication situations: face-to-face communication with visual interaction and remote communication with unidirectional visual perception. Participant pairs performed a task supposing lecture in the face-to-face communication condition and in the remote communication condition via television. Throughout the lecture task, we extracted a set of phase differences from the time-series data of the acceleration norm of head nodding motions between two participants. Statistical analyses of the phase difference distribution revealed the characteristics of head nodding synchronization. Although the mean phase differences in synchronized head nods did not differ significantly between the conditions, there were significant differences in the densities, the SDs and the kurtoses of the phase difference distributions of synchronized head nods. These results show the difference in nonverbal synchronization between different communication types. Our study indicates that the phase difference distribution is useful in detecting nonverbal synchronization in various human communication situations.
NASA Astrophysics Data System (ADS)
Ainiwaer, A.; Gurrola, H.
2017-12-01
In traditional Ps receiver functions (RFs) imaging, PPs and PSs phases from the shallow layers (near surface and crust) can be miss stacked as Ps phases or interfere with deeper Ps phases. To overcome interference between phases, we developed a method to produce phase specific Ps, PPs and PSs receiver functions (wavefield iterative deconvolution or WID). Rather than preforming a separate deconvolution of each seismogram recorded at a station, WID processes all the seismograms from a seismic station in a single run. Each iteration of WID identifies the most prominent phase remaining in the data set, based on the shape of its wavefield (or moveout curve), and then places this phase on the appropriate phase specific RF. As a result, we produce PsRFs that are free of PPs and PSs phase; and reverberations thereof. We also produce phase specific PPsRFs and PSsRFs but moveout curves for these phases and their higher order reverberations are not as distinct from one another. So the PPsRFs and the PSsRFs are not as clean as the PsRFs. These phase specific RFs can be stacked to image 2-D or 3-D Earth structure using common conversion point (CCP) stacking or migration. We applied WID to 524 Southern California seismic stations to construct 3-D PsRF image of lithosphere beneath southern California. These CCP images exhibit a Ps phases from the Moho and the lithosphere asthenosphere boundary (LAB) that are free of interference from the crustal reverberations. The Moho and LAB were found to be deepest beneath the Sierra Nevada, Tansverse Range and Peninsular Range. Shallow Moho and Lab is apparent beneath the Inner Borderland and Salton Trough. The LAB depth that we estimate is in close agreement to recent published results that used Sp imaging (Lekic et al., 2011). We also found complicated structure beneath Mojave Block where mid crustal features are apparent and anomalous Ps phases at 60 km depth are observed beneath Western Mojave dessert.
Vemmer, T; Steinbüchel, C; Bertram, J; Eschner, W; Kögler, A; Luig, H
1997-03-01
The purpose of this study was to determine whether data acquisition in the list mode and iterative tomographic reconstruction would render feasible cardiac phase-synchronized thallium-201 single-photon emission tomography (SPET) of the myocardium under routine conditions without modifications in tracer dose, acquisition time, or number of steps of the a gamma camera. Seventy non-selected patients underwent 201T1 SPET imaging according to a routine protocol (74 MBq/2 mCi 201T1, 180 degrees rotation of the gamma camera, 32 steps, 30 min). Gamma camera data, ECG, and a time signal were recorded in list mode. The cardiac cycle was divided into eight phases, the end-diastolic phase encompassing the QRS complex, and the end-systolic phase the T wave. Both phase- and non-phase-synchronized tomograms based on the same list mode data were reconstructed iteratively. Phase-synchronized and non-synchronized images were compared. Patients were divided into two groups depending on whether or not coronary artery disease had been definitely diagnosed prior to SPET imaging. The numbers of patients in both groups demonstrating defects visible on the phase-synchronized but not on the non-synchronized images were compared. It was found that both postexercise and redistribution phase tomograms were suited for interpretation. The changes from end-diastolic to end-systolic images allowed a comparative assessment of regional wall motility and tracer uptake. End-diastolic tomograms provided the best definition of defects. Additional defects not apparent on non-synchronized images were visible in 40 patients, six of whom did not show any defect on the non-synchronized images. Of 42 patients in whom coronary artery disease had been definitely diagnosed, 19 had additional defects not visible on the non-synchronized images, in comparison to 21 of 28 in whom coronary artery disease was suspected (P < 0.02; chi 2). It is concluded that cardiac phase-synchronized 201T1 SPET of the myocardium was made feasible by list mode data acquisition and iterative reconstruction. The additional findings on the phase-synchronized tomograms, not visible on the non-synchronized ones, represented genuine defects. Cardiac phase-synchronized 201T1 SPET is advantageous in allowing simultaneous assessment of regional wall motion and tracer uptake, and in visualizing smaller defects.
NASA Astrophysics Data System (ADS)
Sun, Xiaojuan; Perc, Matjaž; Kurths, Jürgen
2017-05-01
In this paper, we study effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks. Our focus is on the impact of two parameters, namely the time delay τ and the probability of partial time delay pdelay, whereby the latter determines the probability with which a connection between two neurons is delayed. Our research reveals that partial time delays significantly affect phase synchronization in this system. In particular, partial time delays can either enhance or decrease phase synchronization and induce synchronization transitions with changes in the mean firing rate of neurons, as well as induce switching between synchronized neurons with period-1 firing to synchronized neurons with period-2 firing. Moreover, in comparison to a neuronal network where all connections are delayed, we show that small partial time delay probabilities have especially different influences on phase synchronization of neuronal networks.
Sun, Xiaojuan; Perc, Matjaž; Kurths, Jürgen
2017-05-01
In this paper, we study effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks. Our focus is on the impact of two parameters, namely the time delay τ and the probability of partial time delay p delay , whereby the latter determines the probability with which a connection between two neurons is delayed. Our research reveals that partial time delays significantly affect phase synchronization in this system. In particular, partial time delays can either enhance or decrease phase synchronization and induce synchronization transitions with changes in the mean firing rate of neurons, as well as induce switching between synchronized neurons with period-1 firing to synchronized neurons with period-2 firing. Moreover, in comparison to a neuronal network where all connections are delayed, we show that small partial time delay probabilities have especially different influences on phase synchronization of neuronal networks.
NASA Astrophysics Data System (ADS)
Caruso, Angelo; Pais, Vicente A.
1998-07-01
We discuss two issues relevant for the feasibility of the scheme in which a heavy ion pulse is used to ignite a DT fuel spherically compressed, by laser induced ablation, along a low adiabat (no self-ignition). The discussed issues are (i) the degree of synchronism between the laser driven implosion and the trigger pulse; (ii) the requirements on focusing for the trigger beam. The numerical simulation have been made by using cylindrical heavy ion beams with gaussian radial distribution, truncated where the intensity is {1}/{e-4} of the maximum. The parameter ( dbeam), used to measure the focusing, is the diameter of the circle where the intensity is {1}/{e} of the maximum (energy content ≈ 64% of the total energy). Requirements on focusing have been first explored by simulating (2D) the irradiation of static DT cylinders at 200 g/cm 3 by coaxially impinging 15 GeV Bi ions. The ignition conditions have been studied for pulses having 10 ps or 50 ps duration. For both the cases, the ignition energy ( Emin) is constant for spot radii smaller than 50 μm. In the range 50-140 μm the ignition energy increases linearly (3 × Emin at 140 μm, with Emin = 40 kJ for 10 ps pulses, Emin = 100 kJ for 50 ps pulses). The study on synchronism has been performed by simulating (2D) the irradiation, by a heavy ion beam, of a laser imploded spherical DT shell (initial aspect ratio 10). The trigger beam was started at different times near the stagnation, and the initial fuel state (field of velocity, density, temperature, etc.) was that computed by a 1D simulation. It has been found that ignition, and almost constant thermonuclear energy release, can be obtained by triggering within a temporal window of the order of 1 ns, around the stagnation. The interplay between focusing and synchronization for the ignition of the spherical imploding fuel has also been studied. The heavy ion pulse duration was maintained constant at 50 ps (FWHM). Ignition conditions have been studied for trigger energies below 38% of the laser energy used to compress the target (1 MJ), for focusing spot diameters ranging from 30 to 150 μm (full beam diameter, 60 and 300 μm respectively). Useful timing ranges of 400-900 ps in which the overall gain (that is, thermonuclear energy /(laser energy + trigger energy) is greater than 200 have been found.
NASA Astrophysics Data System (ADS)
Mormann, Florian; Lehnertz, Klaus; David, Peter; E. Elger, Christian
2000-10-01
We apply the concept of phase synchronization of chaotic and/or noisy systems and the statistical distribution of the relative instantaneous phases to electroencephalograms (EEGs) recorded from patients with temporal lobe epilepsy. Using the mean phase coherence as a statistical measure for phase synchronization, we observe characteristic spatial and temporal shifts in synchronization that appear to be strongly related to pathological activity. In particular, we observe distinct differences in the degree of synchronization between recordings from seizure-free intervals and those before an impending seizure, indicating an altered state of brain dynamics prior to seizure activity.
Detection of Nonverbal Synchronization through Phase Difference in Human Communication
Kwon, Jinhwan; Ogawa, Ken-ichiro; Ono, Eisuke; Miyake, Yoshihiro
2015-01-01
Nonverbal communication is an important factor in human communication, and body movement synchronization in particular is an important part of nonverbal communication. Some researchers have analyzed body movement synchronization by focusing on changes in the amplitude of body movements. However, the definition of “body movement synchronization” is still unclear. From a theoretical viewpoint, phase difference is the most important factor in synchronization analysis. Therefore, there is a need to measure the synchronization of body movements using phase difference. The purpose of this study was to provide a quantitative definition of the phase difference distribution for detecting body movement synchronization in human communication. The phase difference distribution was characterized using four statistical measurements: density, mean phase difference, standard deviation (SD) and kurtosis. To confirm the effectiveness of our definition, we applied it to human communication in which the roles of speaker and listener were defined. Specifically, we examined the difference in the phase difference distribution between two different communication situations: face-to-face communication with visual interaction and remote communication with unidirectional visual perception. Participant pairs performed a task supposing lecture in the face-to-face communication condition and in the remote communication condition via television. Throughout the lecture task, we extracted a set of phase differences from the time-series data of the acceleration norm of head nodding motions between two participants. Statistical analyses of the phase difference distribution revealed the characteristics of head nodding synchronization. Although the mean phase differences in synchronized head nods did not differ significantly between the conditions, there were significant differences in the densities, the SDs and the kurtoses of the phase difference distributions of synchronized head nods. These results show the difference in nonverbal synchronization between different communication types. Our study indicates that the phase difference distribution is useful in detecting nonverbal synchronization in various human communication situations. PMID:26208100
Phase Distribution and Selection of Partially Correlated Persistent Scatterers
NASA Astrophysics Data System (ADS)
Lien, J.; Zebker, H. A.
2012-12-01
Interferometric synthetic aperture radar (InSAR) time-series methods can effectively estimate temporal surface changes induced by geophysical phenomena. However, such methods are susceptible to decorrelation due to spatial and temporal baselines (radar pass separation), changes in orbital geometries, atmosphere, and noise. These effects limit the number of interferograms that can be used for differential analysis and obscure the deformation signal. InSAR decorrelation effects may be ameliorated by exploiting pixels that exhibit phase stability across the stack of interferograms. These so-called persistent scatterer (PS) pixels are dominated by a single point-like scatterer that remains phase-stable over the spatial and temporal baseline. By identifying a network of PS pixels for use in phase unwrapping, reliable deformation measurements may be obtained even in areas of low correlation, where traditional InSAR techniques fail to produce useful observations. Many additional pixels can be added to the PS list if we are able to identify those in which a dominant scatterer exhibits partial, rather than complete, correlation across all radar scenes. In this work, we quantify and exploit the phase stability of partially correlated PS pixels. We present a new system model for producing interferometric pixel values from a complex surface backscatter function characterized by signal-to-clutter ratio (SCR). From this model, we derive the joint probabilistic distribution for PS pixel phases in a stack of interferograms as a function of SCR and spatial baselines. This PS phase distribution generalizes previous results that assume the clutter phase contribution is uncorrelated between radar passes. We verify the analytic distribution through a series of radar scattering simulations. We use the derived joint PS phase distribution with maximum-likelihood SCR estimation to analyze an area of the Hayward Fault Zone in the San Francisco Bay Area. We obtain a series of 38 interferometric images of the area from C-band ERS radar satellite passes between May 1995 and December 2000. We compare the estimated SCRs to those calculated with previously derived PS phase distributions. Finally, we examine the PS network density resulting from varying selection thresholds of SCR and compare to other PS identification techniques.
Ma, Meng; He, Zhoukun; Li, Yuhan; Chen, Feng; Wang, Ke; Zhang, Qing; Deng, Hua; Fu, Qiang
2012-12-01
Thin films of polystyrene (PS)/poly(ε-caprolactone) (PCL) blends were prepared by spin-coating and characterized by tapping mode force microscopy (AFM). Effects of the relative concentration of PS in polymer solution on the surface phase separation and dewetting feature size of the blend films were systematically studied. Due to the coupling of phase separation, dewetting, and crystallization of the blend films with the evaporation of solvent during spin-coating, different size of PS islands decorated with various PCL crystal structures including spherulite-like, flat-on individual lamellae, and flat-on dendritic crystal were obtained in the blend films by changing the film composition. The average distance of PS islands was shown to increase with the relative concentration of PS in casting solution. For a given ratio of PS/PCL, the feature size of PS appeared to increase linearly with the square of PS concentration while the PCL concentration only determined the crystal morphology of the blend films with no influence on the upper PS domain features. This is explained in terms of vertical phase separation and spinodal dewetting of the PS rich layer from the underlying PCL rich layer, leading to the upper PS dewetting process and the underlying PCL crystalline process to be mutually independent. Copyright © 2012 Elsevier Inc. All rights reserved.
Wind Turbine Power Generation Emulation Via Doubly Fed Induction Generator Control
2009-12-01
vde thetas vqs_pu vds_pu synchronous...to stationary 0 ide_ref 200 Vdc_ref I_ref I_meas vqe PI iq I_ref I_meas vde PI id v_ref v_meas iqs PI Vdc 4 theta_s 3 ide 2 iqe 1 Vdc 21 between...1-1 x(-1)- a b a + b+ Sy stem Generator Variac P/S 60V 60HzVariac P/S 60V 60Hz 70 Vabc_s THETA CALCULATION 5 vde 4 vqe 3 Vas 2 Vdc_out 1
Dynamical inference: where phase synchronization and generalized synchronization meet.
Stankovski, Tomislav; McClintock, Peter V E; Stefanovska, Aneta
2014-06-01
Synchronization is a widespread phenomenon that occurs among interacting oscillatory systems. It facilitates their temporal coordination and can lead to the emergence of spontaneous order. The detection of synchronization from the time series of such systems is of great importance for the understanding and prediction of their dynamics, and several methods for doing so have been introduced. However, the common case where the interacting systems have time-variable characteristic frequencies and coupling parameters, and may also be subject to continuous external perturbation and noise, still presents a major challenge. Here we apply recent developments in dynamical Bayesian inference to tackle these problems. In particular, we discuss how to detect phase slips and the existence of deterministic coupling from measured data, and we unify the concepts of phase synchronization and general synchronization. Starting from phase or state observables, we present methods for the detection of both phase and generalized synchronization. The consistency and equivalence of phase and generalized synchronization are further demonstrated, by the analysis of time series from analog electronic simulations of coupled nonautonomous van der Pol oscillators. We demonstrate that the detection methods work equally well on numerically simulated chaotic systems. In all the cases considered, we show that dynamical Bayesian inference can clearly identify noise-induced phase slips and distinguish coherence from intrinsic coupling-induced synchronization.
Shukla, Krishna Dayal; Saxena, Nishant; Manivannan, Anbarasu
2017-12-01
Recent advancements in commercialization of high-speed non-volatile electronic memories including phase change memory (PCM) have shown potential not only for advanced data storage but also for novel computing concepts. However, an in-depth understanding on ultrafast electrical switching dynamics is a key challenge for defining the ultimate speed of nanoscale memory devices that demands for an unconventional electrical setup, specifically capable of handling extremely fast electrical pulses. In the present work, an ultrafast programmable electrical tester (PET) setup has been developed exceptionally for unravelling time-resolved electrical switching dynamics and programming characteristics of nanoscale memory devices at the picosecond (ps) time scale. This setup consists of novel high-frequency contact-boards carefully designed to capture extremely fast switching transient characteristics within 200 ± 25 ps using time-resolved current-voltage measurements. All the instruments in the system are synchronized using LabVIEW, which helps to achieve various programming characteristics such as voltage-dependent transient parameters, read/write operations, and endurance test of memory devices systematically using short voltage pulses having pulse parameters varied from 1 ns rise/fall time and 1.5 ns pulse width (full width half maximum). Furthermore, the setup has successfully demonstrated strikingly one order faster switching characteristics of Ag 5 In 5 Sb 60 Te 30 (AIST) PCM devices within 250 ps. Hence, this novel electrical setup would be immensely helpful for realizing the ultimate speed limits of various high-speed memory technologies for future computing.
NASA Astrophysics Data System (ADS)
Shukla, Krishna Dayal; Saxena, Nishant; Manivannan, Anbarasu
2017-12-01
Recent advancements in commercialization of high-speed non-volatile electronic memories including phase change memory (PCM) have shown potential not only for advanced data storage but also for novel computing concepts. However, an in-depth understanding on ultrafast electrical switching dynamics is a key challenge for defining the ultimate speed of nanoscale memory devices that demands for an unconventional electrical setup, specifically capable of handling extremely fast electrical pulses. In the present work, an ultrafast programmable electrical tester (PET) setup has been developed exceptionally for unravelling time-resolved electrical switching dynamics and programming characteristics of nanoscale memory devices at the picosecond (ps) time scale. This setup consists of novel high-frequency contact-boards carefully designed to capture extremely fast switching transient characteristics within 200 ± 25 ps using time-resolved current-voltage measurements. All the instruments in the system are synchronized using LabVIEW, which helps to achieve various programming characteristics such as voltage-dependent transient parameters, read/write operations, and endurance test of memory devices systematically using short voltage pulses having pulse parameters varied from 1 ns rise/fall time and 1.5 ns pulse width (full width half maximum). Furthermore, the setup has successfully demonstrated strikingly one order faster switching characteristics of Ag5In5Sb60Te30 (AIST) PCM devices within 250 ps. Hence, this novel electrical setup would be immensely helpful for realizing the ultimate speed limits of various high-speed memory technologies for future computing.
High-precision multi-node clock network distribution.
Chen, Xing; Cui, Yifan; Lu, Xing; Ci, Cheng; Zhang, Xuesong; Liu, Bo; Wu, Hong; Tang, Tingsong; Shi, Kebin; Zhang, Zhigang
2017-10-01
A high precision multi-node clock network for multiple users was built following the precise frequency transmission and time synchronization of 120 km fiber. The network topology adopts a simple star-shaped network structure. The clock signal of a hydrogen maser (synchronized with UTC) was recovered from a 120 km telecommunication fiber link and then was distributed to 4 sub-stations. The fractional frequency instability of all substations is in the level of 10 -15 in a second and the clock offset instability is in sub-ps in root-mean-square average.
Fazal, Irfan; Yilmaz, Omer; Nuccio, Scott; Zhang, Bo; Willner, Alan E; Langrock, Carsten; Fejer, Martin M
2007-08-20
10 Gb/s non-return-to-zero (NRZ) on-off keyed (OOK) optical data packets are synchronized and time-multiplexed using a 26-ns tunable all-optical delay line. The delay element is based on wavelength conversion in periodically poled lithium niobate (PPLN) waveguides, inter-channel chromatic dispersion in dispersion compensating fiber (DCF) and intra-channel dispersion compensation with a chirped fiber Bragg grating (FBG). Delay reconfiguration time is measured to be less than 300 ps.
2010-12-21
House of Representatives Subject: Missile Defense: European Phased Adaptive Approach Acquisitions Face Synchronization , Transparency, and...TITLE AND SUBTITLE Missile Defense: European Phased Adaptive Approach Acquisitions Face Synchronization , Transparency, and Accountability...However, we found that DOD has not fully implemented a management process that synchronizes EPAA acquisition activities and ensures transparency and
NASA Astrophysics Data System (ADS)
Tsai, Chih-Wei; Lo, Yu-Lung; Chang, Chia-Chen; Liu, Han-Ying; Yang, Wei-Bin; Cheng, Kuo-Hsing
2017-04-01
A synchronous and highly accurate all-digital duty-cycle corrector (ADDCC), which uses simplified dual-loop architecture, is presented in this paper. To explain the operational principle, a detailed circuit description and formula derivation are provided. To verify the proposed design, a chip was fabricated through the 0.18-µm standard complementary metal oxide semiconductor process with a core area of 0.091 mm2. The measurement results indicate that the proposed ADDCC can operate between 300 and 600 MHz with an input duty-cycle range of 40-60%, and that the output duty-cycle error is less than 1% with a root-mean-square jitter of 3.86 ps.
Lowet, Eric; Roberts, Mark J.; Bonizzi, Pietro; Karel, Joël; De Weerd, Peter
2016-01-01
Synchronization or phase-locking between oscillating neuronal groups is considered to be important for coordination of information among cortical networks. Spectral coherence is a commonly used approach to quantify phase locking between neural signals. We systematically explored the validity of spectral coherence measures for quantifying synchronization among neural oscillators. To that aim, we simulated coupled oscillatory signals that exhibited synchronization dynamics using an abstract phase-oscillator model as well as interacting gamma-generating spiking neural networks. We found that, within a large parameter range, the spectral coherence measure deviated substantially from the expected phase-locking. Moreover, spectral coherence did not converge to the expected value with increasing signal-to-noise ratio. We found that spectral coherence particularly failed when oscillators were in the partially (intermittent) synchronized state, which we expect to be the most likely state for neural synchronization. The failure was due to the fast frequency and amplitude changes induced by synchronization forces. We then investigated whether spectral coherence reflected the information flow among networks measured by transfer entropy (TE) of spike trains. We found that spectral coherence failed to robustly reflect changes in synchrony-mediated information flow between neural networks in many instances. As an alternative approach we explored a phase-locking value (PLV) method based on the reconstruction of the instantaneous phase. As one approach for reconstructing instantaneous phase, we used the Hilbert Transform (HT) preceded by Singular Spectrum Decomposition (SSD) of the signal. PLV estimates have broad applicability as they do not rely on stationarity, and, unlike spectral coherence, they enable more accurate estimations of oscillatory synchronization across a wide range of different synchronization regimes, and better tracking of synchronization-mediated information flow among networks. PMID:26745498
Fatigue-propagation du melange polymere polystyrene/polyethylene
NASA Astrophysics Data System (ADS)
Bureau, Martin N.
The interrelations between the morphology of PS/HDPE and PS/SEBS/HDPE immiscible polymer blends and their mechanical behavior, namely in monotonic loading and in cyclic loading, were studied. As predicted by theory, high shear rates encountered during extrusion blending led to efficient minor phase emulsification in PS/HDPE blends for which the viscosity ratio approaches unity. Consequently, the emulsifying effect of an SEBS triblock copolymer employed as a compatibilizer was found to be negligible. In subsequent molding process, disintegration, shape relaxation and coarsening of the minor phase domains were responsible for the morphological evolution of the blends. In the compression molding process, morphological observations showed that the rate of minor phase coarsening followed the predictions of the Ostwald ripening theory, in agreement with the rheological analysis. In the injection molding process, minor phase coarsening was attributed to shear coalescence. The fatigue crack propagation behavior of injection-molded specimens of pure PS as well as of 95/5, 85/15 and 70/30 PS/HDPE blends and of 95/(0.5/4.5), 85/(1.5/13.5) and 70/(3/27) PS/(SEBS/HDPE) blends was then studied. The fatigue fracture surface features of specimens of pure PS as well as of PS/HDPE and PS/SEBS/HDPE blends were analyzed in detail in order to interpret their fatigue crack propagation behavior. In pure PS specimens, discontinuous growth bands, associated with the fracture of crazes in the plastic zone, formed at low fatigue crack growth rates, large dimple-like features at intermediate fatigue crack growth rates and fatigue striations at high fatigue crack growth rates. The fracture toughness of injection-molded specimens of pure PS as well as of 95/5, 85/15 and 70/30 PS/HDPE blends and of 95/(0.5/4.5) PS/(SEBS/HDPE), 85/(1.5/13.5) and 70/(3/27) PS/(SEBS/HDPE) was finally studied. The results showed that the addition of HDPE to PS led to a reduction of the fracture toughness KQ following ASTM E-399 when compared to that of pure PS. This effect was attributed to the very fine minor phase morphology of the blends obtained after extrusion blending and injection molding. (Abstract shortened by UMI.)
Smith, Stephen F [Loudon, TN; Moore, James A [Powell, TN
2011-02-01
Systems and methods are described for carrier phase synchronization for improved AM and TV broadcast reception. A method includes synchronizing the phase of a carrier frequency of a broadcast signal with the phase of a remote reference frequency. An apparatus includes a receiver to detect the phase of a reference signal; a phase comparator coupled to the reference signal-phase receiver; a voltage controlled oscillator coupled to the phase comparator; and a phase-controlled radio frequency output coupled to the voltage controlled oscillator.
Recent advances in the front-end sources of the LMJ fusion laser
NASA Astrophysics Data System (ADS)
Gleyze, Jean-François; Hares, Jonathan; Vidal, Sebastien; Beck, Nicolas; Dubertrand, Jerome; Perrin, Arnaud
2011-03-01
LMJ is typical of lasers used for inertial confinement fusion and requires a laser of programmable parameters for injection into the main amplifier. For several years, the CEA has developed front end fiber sources, based on telecommunications fiber optics technologies. These sources meet the needs but as the technology evolves we can expect improved efficiency and reductions in size and cost. We give an up-to-date description of some present development issues, particularly in the field of temporal shaping with the use of digital system. The synchronization of such electronics has been challenging however we now obtain system jitter of less then 7ps rms. Secondly, we will present recent advance in the use of fiber based pre-comp system to avoid parasitic amplitude modulation from phase modulation used for spectral broadening.
Yu, Haitao; Wang, Jiang; Du, Jiwei; Deng, Bin; Wei, Xile
2015-02-01
Effects of time delay on the local and global synchronization in small-world neuronal networks with chemical synapses are investigated in this paper. Numerical results show that, for both excitatory and inhibitory coupling types, the information transmission delay can always induce synchronization transitions of spiking neurons in small-world networks. In particular, regions of in-phase and out-of-phase synchronization of connected neurons emerge intermittently as the synaptic delay increases. For excitatory coupling, all transitions to spiking synchronization occur approximately at integer multiples of the firing period of individual neurons; while for inhibitory coupling, these transitions appear at the odd multiples of the half of the firing period of neurons. More importantly, the local synchronization transition is more profound than the global synchronization transition, depending on the type of coupling synapse. For excitatory synapses, the local in-phase synchronization observed for some values of the delay also occur at a global scale; while for inhibitory ones, this synchronization, observed at the local scale, disappears at a global scale. Furthermore, the small-world structure can also affect the phase synchronization of neuronal networks. It is demonstrated that increasing the rewiring probability can always improve the global synchronization of neuronal activity, but has little effect on the local synchronization of neighboring neurons.
Zhao, Xiaodong; Zhao, Jun; Cao, Jian-Ping; Wang, Xiaoyan; Chen, Min; Dang, Zhi-Min
2013-02-28
In this work, the dielectric properties of immiscible polystyrene (PS)/poly(vinylidene fluoride) (PVDF) blends are tuned by selectively localizing carbon black (CB) nanoparticles in different phases. The PS/PVDF blends have a wide window of cocontinuity (ca. 30-80 vol % in terms of the volume fraction of PS component (v(PS))). The selective localization of CB nanoparticles is achieved by using the masterbatch process during melt mixing. For the volume ratio PS/PVDF 1/1 and the volume fraction of CB nanoparticles (v(CB)) below but close to the percolation threshold (v(c)(CB)), the selective localization of CB nanoparticles in PVDF phase produces higher dielectric constant (ε) than that in PS phase, whereas the ε of the ternary mixtures without selective localization of fillers is in the middle. For the volume ratios PS/PVDF 1/2 and 2/1, the selective location of CB nanoparticles in different phases can be used to easily tune the system from conductive to insulating or inverse, which might have potential applications in industry. The fillers are found to be "fixed" in the masterbatch of PS or PVDF component and there is no migration of the fillers to another phase occurring during the further mixing process for the mixing time up to 30 min. Furthermore, the addition of CB nanoparticles to the polymer matrix is found to induce the brittle-ductile transition in the system and increase the compatibility between the immiscible PS and PVDF components, which should benefit the mechanical properties.
Kottlow, Mara; Jann, Kay; Dierks, Thomas; Koenig, Thomas
2012-08-01
Gamma zero-lag phase synchronization has been measured in the animal brain during visual binding. Human scalp EEG studies used a phase locking factor (trial-to-trial phase-shift consistency) or gamma amplitude to measure binding but did not analyze common-phase signals so far. This study introduces a method to identify networks oscillating with near zero-lag phase synchronization in human subjects. We presented unpredictably moving face parts (NOFACE) which - during some periods - produced a complete schematic face (FACE). The amount of zero-lag phase synchronization was measured using global field synchronization (GFS). GFS provides global information on the amount of instantaneous coincidences in specific frequencies throughout the brain. Gamma GFS was increased during the FACE condition. To localize the underlying areas, we correlated gamma GFS with simultaneously recorded BOLD responses. Positive correlates comprised the bilateral middle fusiform gyrus and the left precuneus. These areas may form a network of areas transiently synchronized during face integration, including face-specific as well as binding-specific regions and regions for visual processing in general. Thus, the amount of zero-lag phase synchronization between remote regions of the human visual system can be measured with simultaneously acquired EEG/fMRI. Copyright © 2012 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Yong; Qin, Shao-Meng; Yu, Lianchun; Zhang, Shengli
2008-03-01
We studied synchronization between prisoner’s dilemma games with voluntary participation in two Newman-Watts small-world networks. It was found that there are three kinds of synchronization: partial phase synchronization, total phase synchronization, and complete synchronization, for varied coupling factors. Besides, two games can reach complete synchronization for the large enough coupling factor. We also discussed the effect of the coupling factor on the amplitude of oscillation of cooperator density.
Ceux, Tanja; Montagne, Gilles; Buekers, Martinus J
2010-12-01
The present study examined whether the beneficial role of coherently grouped visual motion structures for performing complex (interlimb) coordination patterns can be generalized to synchronization behavior in a visuo-proprioceptive conflict situation. To achieve this goal, 17 participants had to synchronize a self-moved circle, representing the arm movement, with a visual target signal corresponding to five temporally shifted visual feedback conditions (0%, 25%, 50%, 75%, and 100% of the target cycle duration) in three synchronization modes (in-phase, anti-phase, and intermediate). The results showed that the perception of a newly generated perceptual Gestalt between the visual feedback of the arm and the target signal facilitated the synchronization performance in the preferred in-phase synchronization mode in contrast to the less stable anti-phase and intermediate mode. Our findings suggest that the complexity of the synchronization mode defines to what extent the visual and/or proprioceptive information source affects the synchronization performance in the present unimanual synchronization task. Copyright © 2010 Elsevier B.V. All rights reserved.
Phase synchronization based on a Dual-Tree Complex Wavelet Transform
NASA Astrophysics Data System (ADS)
Ferreira, Maria Teodora; Domingues, Margarete Oliveira; Macau, Elbert E. N.
2016-11-01
In this work, we show the applicability of our Discrete Complex Wavelet Approach (DCWA) to verify the phenomenon of phase synchronization transition in two coupled chaotic Lorenz systems. DCWA is based on the phase assignment from complex wavelet coefficients obtained by using a Dual-Tree Complex Wavelet Transform (DT-CWT). We analyzed two coupled chaotic Lorenz systems, aiming to detect the transition from non-phase synchronization to phase synchronization. In addition, we check how good is the method in detecting periods of 2π phase-slips. In all experiments, DCWA is compared with classical phase detection methods such as the ones based on arctangent and Hilbert transform showing a much better performance.
Scale-freeness or partial synchronization in neural mass phase oscillator networks: Pick one of two?
Daffertshofer, Andreas; Ton, Robert; Pietras, Bastian; Kringelbach, Morten L; Deco, Gustavo
2018-04-04
Modeling and interpreting (partial) synchronous neural activity can be a challenge. We illustrate this by deriving the phase dynamics of two seminal neural mass models: the Wilson-Cowan firing rate model and the voltage-based Freeman model. We established that the phase dynamics of these models differed qualitatively due to an attractive coupling in the first and a repulsive coupling in the latter. Using empirical structural connectivity matrices, we determined that the two dynamics cover the functional connectivity observed in resting state activity. We further searched for two pivotal dynamical features that have been reported in many experimental studies: (1) a partial phase synchrony with a possibility of a transition towards either a desynchronized or a (fully) synchronized state; (2) long-term autocorrelations indicative of a scale-free temporal dynamics of phase synchronization. Only the Freeman phase model exhibited scale-free behavior. Its repulsive coupling, however, let the individual phases disperse and did not allow for a transition into a synchronized state. The Wilson-Cowan phase model, by contrast, could switch into a (partially) synchronized state, but it did not generate long-term correlations although being located close to the onset of synchronization, i.e. in its critical regime. That is, the phase-reduced models can display one of the two dynamical features, but not both. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
CdS/C60 binary nanocomposite films prepared via phase transition of PS-b-P2VP block copolymer.
Lee, Jung-Pil; Koh, Haeng-Deog; Shin, Won-Jeong; Kang, Nam-Goo; Park, Soojin; Lee, Jae-Suk
2014-03-01
We demonstrate the well-defined control of phase transition of a polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) block copolymer from spherical micelles to lamellar structures, in which CdS and C60 nanoparticles (NPs) are selectively positioned at the P2VP domains. The CdS NPs are in situ synthesized using PS-b-P2VP block copolymer templates that are self-assembled in PS-selective solvents. The CdS-PS-b-P2VP micellar structures are transformed to lamellar phase by adjusting a solvent selectivity for both blocks. In addition, a binary system of CdS/C60 embedded in PS-b-P2VP lamellar structures (CdS/C60-PS-b-P2VP) is fabricated by embedding C60 molecules into P2VP domain though charge-transfer complexation between pyridine units of PS-b-P2VP and C60 molecules. The CdS/C60-PS-b-P2VP nanostructured films are characterized by transmission electron microscopy (TEM) and UV-Vis spectrometer. Copyright © 2013 Elsevier Inc. All rights reserved.
Indirect synchronization control in a starlike network of phase oscillators
NASA Astrophysics Data System (ADS)
Kuptsov, Pavel V.; Kuptsova, Anna V.
2018-04-01
A starlike network of non-identical phase oscillators is considered that contains the hub and tree rays each having a single node. In such network effect of indirect synchronization control is reported: changing the natural frequency and the coupling strength of one of the peripheral oscillators one can switch on an off the synchronization of the others. The controlling oscillator at that is not synchronized with them and has a frequency that is approximately four time higher then the frequency of the synchronization. The parameter planes showing a corresponding synchronization tongue are represented and time dependencies of phase differences are plotted for points within and outside of the tongue.
Coupled lasers: phase versus chaos synchronization.
Reidler, I; Nixon, M; Aviad, Y; Guberman, S; Friesem, A A; Rosenbluh, M; Davidson, N; Kanter, I
2013-10-15
The synchronization of chaotic lasers and the optical phase synchronization of light originating in multiple coupled lasers have both been extensively studied. However, the interplay between these two phenomena, especially at the network level, is unexplored. Here, we experimentally compare these phenomena by controlling the heterogeneity of the coupling delay times of two lasers. While chaotic lasers exhibit deterioration in synchronization as the time delay heterogeneity increases, phase synchronization is found to be independent of heterogeneity. The experimental results are found to be in agreement with numerical simulations for semiconductor lasers.
Sessile Serrated Adenomas: How to Detect, Characterize and Resect
Ma, Michael X.; Bourke, Michael J.
2017-01-01
Serrated polyps are important contributors to the burden of colorectal cancers (CRC). These lesions were once considered to have no malignant potential, but currently up to 30% of all CRC are recognized to arise from the serrated neoplasia pathway. The primary premalignant lesions are sessile serrated adenomas/polyps (SSA/Ps), although traditional serrated adenomas are relatively uncommon. Compared to conventional adenomas, SSA/Ps are morphologically subtle with indistinct borders, may be difficult to detect endoscopically, are more prevalent than previously thought, are associated with synchronous and metachronous advanced neoplasia, and have a higher risk of incomplete resection. Although many lesions remain “dormant,” progressive disease is associated with the development of dysplasia and more rapid progression to CRC. As a result, SSA/Ps are strongly implicated in the development of interval cancers. These factors represent unique challenges that require a meticulous approach to their management. In this review, we summarize the contemporary literature on the characterization, detection and resection of SSA/Ps. PMID:28494577
Dynamics of a network of phase oscillators with plastic couplings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nekorkin, V. I.; Kasatkin, D. V.; Moscow Institute of Physics and Technology
The processes of synchronization and phase cluster formation are investigated in a complex network of dynamically coupled phase oscillators. Coupling weights evolve dynamically depending on the phase relations between the oscillators. It is shown that the network exhibits several types of behavior: the globally synchronized state, two-cluster and multi-cluster states, different synchronous states with a fixed phase relationship between the oscillators and chaotic desynchronized state.
High power lasers for gamma source
NASA Astrophysics Data System (ADS)
Durand, Magali; Sangla, Damien; Trophème, Benoit; Sevillano, Pierre; Casanova, Alexis; Caillon, Laurianne; Courjaud, Antoine
2017-02-01
A high intensity Gamma source is required for Nuclear Spectroscopy, it will be delivered by the interaction between accelerated electron and intense laser beams. Those two interactions lasers are based on a multi-stage amplification scheme that ended with a second harmonics generation to deliver 200 mJ, 3.5 ps pulses at 515 nm and 100 Hz. A t-Pulse oscillator with slow and fast feedback loop implemented inside the oscillator cavity allows the possibility of synchronization to an optical reference. A temporal jitter of 120 fs rms is achieved, integrated from 10 Hz to 10 MHz. Then a regenerative amplifier, based on Yb:YAG technology, pumped by fiber-coupled QCW laser diodes, delivers pulses up to 30 mJ. The 1 nm bandwidth was compressed to 1.5 ps with a good spatial quality: M2 of 1.1. This amplifier is integrated in a compact sealed housing (750x500x150 cm), which allows a pulse-pulse stability of 0.1% rms, and a long-term stability of 1,9% over 100 hours (with +/-1°C environment). The main amplification stage uses a cryocooled Yb:YAG crystal in an active mirror configuration. The crystal is cooled at 130 K via a compact and low-vibration cryocooler, avoiding any additional phase noise contribution, 340 mJ in a six pass scheme was achieved, with 0.9 of Strehl ratio. The trade off to the gain of a cryogenic amplifier is the bandwidth reduction, however the 1030 nm pulse was compressed to 3.5 ps.
Instrument to synchronize Thomson scattering diagnostic measurements with MHD acitivity in a tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wintenberg, A.L.
1985-04-01
An instrument to synchronize the firing of a ruby laser for a Thomson scattering diagnostic with plasma oscillations was designed, developed, and evaluated. The instrument will fire the laser at a user-selected phase of an input sine or sawtooth wave with an accuracy of +-15/sup 0/. Allowable frequencies range from 20 to 500 Hz for a sawtooth and from 1 to 30 kHz for a sine wave. The instrument also allows synchronization with a sine wave to be enabled by a preselected sawtooth phase. The instrument uses analog signal processing circuits to separate the signal components, remove unwanted components, andmore » produce zero-phase synchronization pulses. The instrument measures the period between zero-phase pulses in order to produce phase synchronization pulses delayed a fraction of the period from the zero-phase pulses. The laser is fired by the phase synchronization pulse. Unwanted signal components are attenuated by bandpass filters. A digitally controlled self-adjusting bandpass filter for sine processing. The instrument was used to investigate the variation of the electron temperature profile with the phase of the x-ray signal from an Impurity Studies Experiment (ISX-B) plasma exhibiting magnetohydrodynamic (MHD) activity.« less
Sauer, H; Wilmanns, W
1976-03-01
Chemotherapy of malignant tumors can be made more effective by synchronization of the cell cycle. Synchronization therapy consists of a synchronizing step (phase I), an interval and a cytocidal step (phase II). Some regimens till now approved in clinical treatment are presented. The results are found to be encouraging. In all schedules three effects work together namely synchronization recruitment, summation.
Unraveling shock-induced chemistry using ultrafast lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, David Steven
The exquisite time synchronicity between shock and diagnostics needed to unravel chemical events occurring in picoseconds has been achieved using a shaped ultrafast laser pulse to both drive the shocks and interrogate the sample via a multiplicity of optical diagnostics. The shaped laser drive pulse can produce well-controlled shock states of sub-ns duration with sub-10 ps risetimes, sufficient for investigation offast reactions or phase transformations in a thin layer with picosecond time resolution. The shock state is characterized using ultrafast dynamic ellipsometry (UDE) in either planar or Gaussian spatial geometries, the latter allowing measurements of the equation of state ofmore » materials at a range of stresses in a single laser pulse. Time-resolved processes in materials are being interrogated using UDE, ultrafast infrared absorption, ultrafast UV/visible absorption, and femtosecond stimulated Raman spectroscopy. Using these tools we showed that chemistry in an energetic thin film starts only after an induction time of a few tens of ps, an observation that allows differentiation between proposed shock-induced reaction mechanisms. These tools are presently being applied to a variety of energetic and reactive sample systems, from nitromethane and carbon disulfide, to microengineered interfaces in tunable energetic mixtures. Recent results will be presented, and future trends outlined.« less
Measures of Quantum Synchronization in Continuous Variable Systems
NASA Astrophysics Data System (ADS)
Mari, A.; Farace, A.; Didier, N.; Giovannetti, V.; Fazio, R.
2013-09-01
We introduce and characterize two different measures which quantify the level of synchronization of coupled continuous variable quantum systems. The two measures allow us to extend to the quantum domain the notions of complete and phase synchronization. The Heisenberg principle sets a universal bound to complete synchronization. The measure of phase synchronization is, in principle, unbounded; however, in the absence of quantum resources (e.g., squeezing) the synchronization level is bounded below a certain threshold. We elucidate some interesting connections between entanglement and synchronization and, finally, discuss an application based on quantum optomechanical systems.
Measures of quantum synchronization in continuous variable systems.
Mari, A; Farace, A; Didier, N; Giovannetti, V; Fazio, R
2013-09-06
We introduce and characterize two different measures which quantify the level of synchronization of coupled continuous variable quantum systems. The two measures allow us to extend to the quantum domain the notions of complete and phase synchronization. The Heisenberg principle sets a universal bound to complete synchronization. The measure of phase synchronization is, in principle, unbounded; however, in the absence of quantum resources (e.g., squeezing) the synchronization level is bounded below a certain threshold. We elucidate some interesting connections between entanglement and synchronization and, finally, discuss an application based on quantum optomechanical systems.
NASA Technical Reports Server (NTRS)
Drake, Jeffrey T.; Prasad, Nadipuram R.
1999-01-01
This paper surveys recent advances in communications that utilize soft computing approaches to phase synchronization. Soft computing, as opposed to hard computing, is a collection of complementary methodologies that act in producing the most desirable control, decision, or estimation strategies. Recently, the communications area has explored the use of the principal constituents of soft computing, namely, fuzzy logic, neural networks, and genetic algorithms, for modeling, control, and most recently for the estimation of phase in phase-coherent communications. If the receiver in a digital communications system is phase-coherent, as is often the case, phase synchronization is required. Synchronization thus requires estimation and/or control at the receiver of an unknown or random phase offset.
Methods, systems and apparatus for synchronous current regulation of a five-phase machine
Gallegos-Lopez, Gabriel; Perisic, Milun
2012-10-09
Methods, systems and apparatus are provided for controlling operation of and regulating current provided to a five-phase machine when one or more phases has experienced a fault or has failed. In one implementation, the disclosed embodiments can be used to synchronously regulate current in a vector controlled motor drive system that includes a five-phase AC machine, a five-phase inverter module coupled to the five-phase AC machine, and a synchronous current regulator.
A new modem for microwave time synchronisation via geosynchronous telecommunication satellites
NASA Astrophysics Data System (ADS)
Dienert, Michael
1992-06-01
A study illustrating the two way time transfer technique and describing the use of this technique with the MITREX (Microwave Time and Range Experiment) SATRE (Satellite Time and Range Experiment) modems is presented. The two way time transfer technique via geosynchronous telecom satellites is one of the most accurate methods for synchronization and comparison of remote clocks. Most of the unknown propagation delays can be eliminated by the two way principle. The use of a coherent spread spectrum technique with a truncated pseudonoise code offers a resolution better than 30 ps of the measured time interval. The receiver is built around a Delay Locked Loop (DLL), which correlates the received signal with the known PN sequence to derive the control signal of the loop. In the locked state both PN sequences are synchronous and tracking errors of less than 30 ps are possible. Results showing the accuracy of the modem depending on signal to noise ratio and variation of total input power levels are presented and show that the expected improvement of the jitter of the internal delay by an increase of the chip rate is possible.
Desynchronization of stochastically synchronized chemical oscillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snari, Razan; Tinsley, Mark R., E-mail: mark.tinsley@mail.wvu.edu, E-mail: kshowalt@wvu.edu; Faramarzi, Sadegh
Experimental and theoretical studies are presented on the design of perturbations that enhance desynchronization in populations of oscillators that are synchronized by periodic entrainment. A phase reduction approach is used to determine optimal perturbation timing based upon experimentally measured phase response curves. The effectiveness of the perturbation waveforms is tested experimentally in populations of periodically and stochastically synchronized chemical oscillators. The relevance of the approach to therapeutic methods for disrupting phase coherence in groups of stochastically synchronized neuronal oscillators is discussed.
Synchronization of Oscillators: An Ideal Introduction to Phase Transitions
ERIC Educational Resources Information Center
English, L. Q.
2008-01-01
The spontaneous synchronization of phase-coupled, non-identical oscillators is explored numerically via the famous Kuramoto model. The conditions for synchronization are examined as a function of the coupling network. I argue that such a numerical exploration provides a feasible way to introduce the topic of phase transitions early in the physics…
G2 phase-specific proteins of HeLa cells.
Al-Bader, A A; Orengo, A; Rao, P N
1978-01-01
The objective of this study was to determine if HeLa cells irreversibly arrested in G2 phase of the cell cycle by a brief exposure to a nitrosourea compound were deficient in certain proteins when compared with G2-synchronized cells. Total cellular proteins of G2-synchronized, G2-arrested, and S phase-synchronized cells were compared by two-dimensional polyacrylamide gel electrophoresis. The S phase cells differed from the G2-synchronized and G2-arrested cells by the absence of about 35 and 25 protein spots, respectively, of a total of nearly 150. At least nine protein spots in the molecular weight range of 4--5 X 10(4) that were present in the G2-synchronized cells were absent in both the G2-arrested and the S phase cells. Thus, these studies suggest that the missing proteins are probably necessary for the transition of cells from G2 phase to mitosis. Supplying the missing proteins to the G2-arrested cells by fusion with G2-synchronized cells facilitated the entry of the former into mitosis. Images PMID:282623
Synchronization of coupled metronomes on two layers
NASA Astrophysics Data System (ADS)
Zhang, Jing; Yu, Yi-Zhen; Wang, Xin-Gang
2017-12-01
Coupled metronomes serve as a paradigmatic model for exploring the collective behaviors of complex dynamical systems, as well as a classical setup for classroom demonstrations of synchronization phenomena. Whereas previous studies of metronome synchronization have been concentrating on symmetric coupling schemes, here we consider the asymmetric case by adopting the scheme of layered metronomes. Specifically, we place two metronomes on each layer, and couple two layers by placing one on top of the other. By varying the initial conditions of the metronomes and adjusting the friction between the two layers, a variety of synchronous patterns are observed in experiment, including the splay synchronization (SS) state, the generalized splay synchronization (GSS) state, the anti-phase synchronization (APS) state, the in-phase delay synchronization (IPDS) state, and the in-phase synchronization (IPS) state. In particular, the IPDS state, in which the metronomes on each layer are synchronized in phase but are of a constant phase delay to metronomes on the other layer, is observed for the first time. In addition, a new technique based on audio signals is proposed for pattern detection, which is more convenient and easier to apply than the existing acquisition techniques. Furthermore, a theoretical model is developed to explain the experimental observations, and is employed to explore the dynamical properties of the patterns, including the basin distributions and the pattern transitions. Our study sheds new lights on the collective behaviors of coupled metronomes, and the developed setup can be used in the classroom for demonstration purposes.
Dual-domain point diffraction interferometer
Naulleau, Patrick P.; Goldberg, Kenneth Alan
2000-01-01
A hybrid spatial/temporal-domain point diffraction interferometer (referred to as the dual-domain PS/PDI) that is capable of suppressing the scattered-reference-light noise that hinders the conventional PS/PDI is provided. The dual-domain PS/PDI combines the separate noise-suppression capabilities of the widely-used phase-shifting and Fourier-transform fringe pattern analysis methods. The dual-domain PS/PDI relies on both a more restrictive implementation of the image plane PS/PDI mask and a new analysis method to be applied to the interferograms generated and recorded by the modified PS/PDI. The more restrictive PS/PDI mask guarantees the elimination of spatial-frequency crosstalk between the signal and the scattered-light noise arising from scattered-reference-light interfering with the test beam. The new dual-domain analysis method is then used to eliminate scattered-light noise arising from both the scattered-reference-light interfering with the test beam and the scattered-reference-light interfering with the "true" pinhole-diffracted reference light. The dual-domain analysis method has also been demonstrated to provide performance enhancement when using the non-optimized standard PS/PDI design. The dual-domain PS/PDI is essentially a three-tiered filtering system composed of lowpass spatial-filtering the test-beam electric field using the more restrictive PS/PDI mask, bandpass spatial-filtering the individual interferogram irradiance frames making up the phase-shifting series, and bandpass temporal-filtering the phase-shifting series as a whole.
NASA Astrophysics Data System (ADS)
Solomonov, Alexey V.; Shipitsyna, Maria K.; Vashurin, Arthur S.; Rumyantsev, Evgeniy V.; Timin, Alexander S.; Ivanov, Sergey P.
2016-11-01
An interaction between 5,10,15,20-tetrakis-(N-methyl-x-pyridyl)porphyrins, x = 2; 4 (TMPyPs) with bovine serum albumin (BSA) and its bilirubin (BR) complex was investigated by UV-Viz and fluorescence spectroscopy under imitated physiological conditions involving molecular docking studies. The parameters of forming intermolecular complexes (binding constants, quenching rate constants, quenching sphere radius etc.) were determined. It was showed that the interaction between proteins and TMPyPs occurs via static quenching of protein fluorescence and has predominantly hydrophobic and electrostatic character. It was revealed that obtained complexes are relatively stable, but in the case of TMPyP4 binding with proteins occurs better than TMPyP2. Nevertheless, both TMPyPs have better binding ability with free protein compared to BRBSA at the same time. The influence of TMPyPs on the conformational changes in protein molecules was studied using synchronous fluorescence spectroscopy. It was found that there is no competition of BR with TMPyPs for binging sites on protein molecule and BR displacement does not occur. Molecular docking calculations have showed that TMPyPs can bind with albumin via tryptophan residue in the hydrophilic binding site of protein molecule but it is not one possible interaction way.
(T2L2) Time Transfer by Laser Link
NASA Technical Reports Server (NTRS)
Veillet, Christian; Fridelance, Patricia
1995-01-01
T2L2 (Time Transfer by Laser Link) is a new generation time transfer experiment based on the principles of LASSO (Laser Synchronization from Synchronous Orbit) and used with an operational procedure developed at OCA (Observatoire de la Cote d'Azur) during the active intercontinental phase of LASSO. The hardware improvements could lead to a precision better than 10 ps for time transfer (flying clock monitoring or ground based clock comparison). Such a package could fly on any spacecraft with a stable clock. It has been developed in France in the frame of the PHARAO project (cooled atom clock in orbit) involving CNES and different laboratories. But T2L2 could fly on any spacecraft carrying a stable oscillator. A GPS satellite would be a good candidate, as T2L2 could allow to link the flying clock directly to ground clocks using light, aiming to important accuracy checks, both for time and for geodesy. Radioastron (a flying VLBI antenna with a H-maser) is also envisioned, waiting for a PHARAO flight. The ultimate goal of T2L2 is to be part of more ambitious missions, as SORT (Solar Orbit Relativity Test), aiming to examine aspects of the gravitation in the vicinity of the Sun.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iverson, Adam; Carlson, Carl; Young, Jason
2013-07-08
The diagnostic needs of any dynamic loading platform present unique technical challenges that must be addressed in order to accurately measure in situ material properties in an extreme environment. The IMPULSE platform (IMPact system for Ultrafast Synchrotron Experiments) at the Advanced Photon Source (APS) is no exception and, in fact, may be more challenging, as the imaging diagnostics must be synchronized to both the experiment and the 60 ps wide x-ray bunches produced at APS. The technical challenges of time-resolved x-ray diffraction imaging and high-resolution multi-frame phase contrast imaging (PCI) are described in this paper. Example data from recent IMPULSEmore » experiments are shown to illustrate the advances and evolution of these diagnostics with a focus on comparing the performance of two intensified CCD cameras and their suitability for multi-frame PCI. The continued development of these diagnostics is fundamentally important to IMPULSE and many other loading platforms and will benefit future facilities such as the Dynamic Compression Sector at APS and MaRIE at Los Alamos National Laboratory.« less
Application of Soft Computing in Coherent Communications Phase Synchronization
NASA Technical Reports Server (NTRS)
Drake, Jeffrey T.; Prasad, Nadipuram R.
2000-01-01
The use of soft computing techniques in coherent communications phase synchronization provides an alternative to analytical or hard computing methods. This paper discusses a novel use of Adaptive Neuro-Fuzzy Inference Systems (ANFIS) for phase synchronization in coherent communications systems utilizing Multiple Phase Shift Keying (MPSK) modulation. A brief overview of the M-PSK digital communications bandpass modulation technique is presented and it's requisite need for phase synchronization is discussed. We briefly describe the hybrid platform developed by Jang that incorporates fuzzy/neural structures namely the, Adaptive Neuro-Fuzzy Interference Systems (ANFIS). We then discuss application of ANFIS to phase estimation for M-PSK. The modeling of both explicit, and implicit phase estimation schemes for M-PSK symbols with unknown structure are discussed. Performance results from simulation of the above scheme is presented.
Note: A phase synchronization photography method for AC discharge.
Wu, Zhicheng; Zhang, Qiaogen; Ma, Jingtan; Pang, Lei
2018-05-01
To research discharge physics under AC voltage, a phase synchronization photography method is presented. By using a permanent-magnet synchronous motor to drive a photography mask synchronized with a discharge power supply, discharge images in a specific phase window can be recorded. Some examples of discharges photographed by this method, including the corona discharge in SF 6 and the corona discharge along the air/epoxy surface, demonstrate the feasibility of this method. Therefore, this method provides an effective tool for discharge physics researchers.
Note: A phase synchronization photography method for AC discharge
NASA Astrophysics Data System (ADS)
Wu, Zhicheng; Zhang, Qiaogen; Ma, Jingtan; Pang, Lei
2018-05-01
To research discharge physics under AC voltage, a phase synchronization photography method is presented. By using a permanent-magnet synchronous motor to drive a photography mask synchronized with a discharge power supply, discharge images in a specific phase window can be recorded. Some examples of discharges photographed by this method, including the corona discharge in SF6 and the corona discharge along the air/epoxy surface, demonstrate the feasibility of this method. Therefore, this method provides an effective tool for discharge physics researchers.
Nanoscale elastic modulus variation in loaded polymeric micelle reactors.
Solmaz, Alim; Aytun, Taner; Deuschle, Julia K; Ow-Yang, Cleva W
2012-07-17
Tapping mode atomic force microscopy (TM-AFM) enables mapping of chemical composition at the nanoscale by taking advantage of the variation in phase angle shift arising from an embedded second phase. We demonstrate that phase contrast can be attributed to the variation in elastic modulus during the imaging of zinc acetate (ZnAc)-loaded reverse polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) diblock co-polymer micelles less than 100 nm in diameter. Three sample configurations were characterized: (i) a 31.6 μm thick polystyrene (PS) support film for eliminating the substrate contribution, (ii) an unfilled PS-b-P2VP micelle supported by the same PS film, and (iii) a ZnAc-loaded PS-b-P2VP micelle supported by the same PS film. Force-indentation (F-I) curves were measured over unloaded micelles on the PS film and over loaded micelles on the PS film, using standard tapping mode probes of three different spring constants, the same cantilevers used for imaging of the samples before and after loading. For calibration of the tip geometry, nanoindentation was performed on the bare PS film. The resulting elastic modulus values extracted by applying the Hertz model were 8.26 ± 3.43 GPa over the loaded micelles and 4.17 ± 1.65 GPa over the unloaded micelles, confirming that phase contrast images of a monolayer of loaded micelles represent maps of the nanoscale chemical and mechanical variation. By calibrating the tip geometry indirectly using a known soft material, we are able to use the same standard tapping mode cantilevers for both imaging and indentation.
NASA Astrophysics Data System (ADS)
Song, Changyong
2017-05-01
Interest in high-resolution structure investigation has been zealous, especially with the advent of X-ray free electron lasers (XFELs). The intense and ultra-short X-ray laser pulses ( 10 GW) pave new routes to explore structures and dynamics of single macromolecules, functional nanomaterials and complex electronic materials. In the last several years, we have developed XFEL single-shot diffraction imaging by probing ultrafast phase changes directly. Pump-probe single-shot imaging was realized by synchronizing femtosecond (<10 fs in FWHM) X-ray laser (probe) with femtosecond (50 fs) IR laser (pump) at better than 1 ps resolution. Nanoparticles under intense fs-laser pulses were investigated with fs XFEL pulses to provide insight into the irreversible particle damage processes with nanoscale resolution. Research effort, introduced, aims to extend the current spatio-temporal resolution beyond the present limit. We expect this single-shot dynamic imaging to open new science opportunity with XFELs.
Stability of the phase motion in race-track microtrons
NASA Astrophysics Data System (ADS)
Kubyshin, Yu. A.; Larreal, O.; Ramírez-Ros, R.; Seara, T. M.
2017-06-01
We model the phase oscillations of electrons in race-track microtrons by means of an area preserving map with a fixed point at the origin, which represents the synchronous trajectory of a reference particle in the beam. We study the nonlinear stability of the origin in terms of the synchronous phase -the phase of the synchronous particle at the injection. We estimate the size and shape of the stability domain around the origin, whose main connected component is enclosed by an invariant curve. We describe the evolution of the stability domain as the synchronous phase varies. We also clarify the role of the stable and unstable invariant curves of some hyperbolic (fixed or periodic) points.
Distributed Synchronization in Communication Networks
2018-01-24
synchronization. Secondly, it is known that identical oscillators with sin() coupling functions are guaranteed to synchronize in phase on a complete...provide sufficient conditions for phase- locking , i.e., convergence to a stable equilibrium almost surely. We additionally find conditions when the
NASA Astrophysics Data System (ADS)
Zheng, F.; Liu, Y.; Liu, Z.; Dai, Y.-Q.; Fang, P.-F.; Wang, S.-J.
2012-08-01
The defect properties of nanocrystalline TiO2 were investigated by positron annihilation lifetime spectroscopy (PALS) and X-ray diffraction (XRD) as a function of annealed temperature that ranged from 300 to 850 °C. Below 500 °C, the measured positron lifetimes of τ1 (200-206 ps) and τ2 (378-402 ps) revealed the existence of mono-vacancy and vacancy-clusters at grain surface and in the micro-void of intergranular region. Between 500 and 750 °C, the phase transition from anatase to rutile was probed by the variations of positron lifetime and XRD pattern. With the increasing temperature from 500 to 850 °C, the positron lifetime τ1, τ2 and its intensity I2 sharply decreased from 200 ps, 378 ps, and 60% to 135 ps, 274 ps, and 33%, respectively. The results clearly indicate that the mono-vacancy or vacancy-clusters at grain surface and micro-voids between the grains were annealed out during the phase transition.
Wetzel, Lucas; Jörg, David J.; Pollakis, Alexandros; Rave, Wolfgang; Fettweis, Gerhard; Jülicher, Frank
2017-01-01
Self-organized synchronization occurs in a variety of natural and technical systems but has so far only attracted limited attention as an engineering principle. In distributed electronic systems, such as antenna arrays and multi-core processors, a common time reference is key to coordinate signal transmission and processing. Here we show how the self-organized synchronization of mutually coupled digital phase-locked loops (DPLLs) can provide robust clocking in large-scale systems. We develop a nonlinear phase description of individual and coupled DPLLs that takes into account filter impulse responses and delayed signal transmission. Our phase model permits analytical expressions for the collective frequencies of synchronized states, the analysis of stability properties and the time scale of synchronization. In particular, we find that signal filtering introduces stability transitions that are not found in systems without filtering. To test our theoretical predictions, we designed and carried out experiments using networks of off-the-shelf DPLL integrated circuitry. We show that the phase model can quantitatively predict the existence, frequency, and stability of synchronized states. Our results demonstrate that mutually delay-coupled DPLLs can provide robust and self-organized synchronous clocking in electronic systems. PMID:28207779
On the estimation of phase synchronization, spurious synchronization and filtering
NASA Astrophysics Data System (ADS)
Rios Herrera, Wady A.; Escalona, Joaquín; Rivera López, Daniel; Müller, Markus F.
2016-12-01
Phase synchronization, viz., the adjustment of instantaneous frequencies of two interacting self-sustained nonlinear oscillators, is frequently used for the detection of a possible interrelationship between empirical data recordings. In this context, the proper estimation of the instantaneous phase from a time series is a crucial aspect. The probability that numerical estimates provide a physically relevant meaning depends sensitively on the shape of its power spectral density. For this purpose, the power spectrum should be narrow banded possessing only one prominent peak [M. Chavez et al., J. Neurosci. Methods 154, 149 (2006)]. If this condition is not fulfilled, band-pass filtering seems to be the adequate technique in order to pre-process data for a posterior synchronization analysis. However, it was reported that band-pass filtering might induce spurious synchronization [L. Xu et al., Phys. Rev. E 73, 065201(R), (2006); J. Sun et al., Phys. Rev. E 77, 046213 (2008); and J. Wang and Z. Liu, EPL 102, 10003 (2013)], a statement that without further specification causes uncertainty over all measures that aim to quantify phase synchronization of broadband field data. We show by using signals derived from different test frameworks that appropriate filtering does not induce spurious synchronization. Instead, filtering in the time domain tends to wash out existent phase interrelations between signals. Furthermore, we show that measures derived for the estimation of phase synchronization like the mean phase coherence are also useful for the detection of interrelations between time series, which are not necessarily derived from coupled self-sustained nonlinear oscillators.
Digital phase shifter synchronizes local oscillators
NASA Technical Reports Server (NTRS)
Ali, S. M.
1978-01-01
Digital phase-shifting network is used as synchronous frequency multiplier for applications such as phase-locking two signals that may differ in frequency. Circuit has various phase-shift capability. Possible applications include data-communication systems and hybrid digital/analog phase-locked loops.
Ouyang, Yang; Liu, Jianxia; Xu, Xiaofeng; Zhao, Yujia; Zhou, Ai
2018-04-11
A phase-shifted eccentric core fiber Bragg grating (PS-ECFBG) fabricated by electric arc discharge (EAD) is presented and demonstrated. It is composed of a fraction of eccentric core fiber fusion spliced in between two pieces of commercial single mode fibers, where a PS-FBG was written. The EAD in this work could flexibly change the amount of phase-shift by changing the discharge number or discharge duration. Because of the offset location of the eccentric core and the ultra-narrow resonant peak of the PS-ECFBG, it has a higher accuracy for measuring the directional bend. The elongation and compression of the eccentric core keep the magnitude of phase shift still unchanged during the bending process. The bending sensitivities of the PS-ECFBG at two opposite most sensitive directions are 57.4 pm/m -1 and -51.5 pm/m -1 , respectively. Besides, the PS-ECFBG has the potential to be a tunable narrow bandpass filter, which has a wider bi-directional adjustable range because of the bending responses. The strain and temperature sensitivities of the PS-ECFBG are experimentally measured as well, which are 0.70 pm/με and 8.85 pm/°C, respectively.
Time delay induced different synchronization patterns in repulsively coupled chaotic oscillators
NASA Astrophysics Data System (ADS)
Yao, Chenggui; Yi, Ming; Shuai, Jianwei
2013-09-01
Time delayed coupling plays a crucial role in determining the system's dynamics. We here report that the time delay induces transition from the asynchronous state to the complete synchronization (CS) state in the repulsively coupled chaotic oscillators. In particular, by changing the coupling strength or time delay, various types of synchronous patterns, including CS, antiphase CS, antiphase synchronization (ANS), and phase synchronization, can be generated. In the transition regions between different synchronous patterns, bistable synchronous oscillators can be observed. Furthermore, we show that the time-delay-induced phase flip bifurcation is of key importance for the emergence of CS. All these findings may light on our understanding of neuronal synchronization and information processing in the brain.
Mondal, S; Pawar, S A; Sujith, R I
2017-10-01
Thermoacoustic instability, caused by a positive feedback between the unsteady heat release and the acoustic field in a combustor, is a major challenge faced in most practical combustors such as those used in rockets and gas turbines. We employ the synchronization theory for understanding the coupling between the unsteady heat release and the acoustic field of a thermoacoustic system. Interactions between coupled subsystems exhibiting different collective dynamics such as periodic, quasiperiodic, and chaotic oscillations are addressed. Even though synchronization studies have focused on different dynamical states separately, synchronous behaviour of two coupled systems exhibiting a quasiperiodic route to chaos has not been studied. In this study, we report the first experimental observation of different synchronous behaviours between two subsystems of a thermoacoustic system exhibiting such a transition as reported in Kabiraj et al. [Chaos 22, 023129 (2012)]. A rich variety of synchronous behaviours such as phase locking, intermittent phase locking, and phase drifting are observed as the dynamics of such subsystem change. The observed synchronization behaviour is further characterized using phase locking value, correlation coefficient, and relative mean frequency. These measures clearly reveal the boundaries between different states of synchronization.
Performance prediction of a synchronization link for distributed aerospace wireless systems.
Wang, Wen-Qin; Shao, Huaizong
2013-01-01
For reasons of stealth and other operational advantages, distributed aerospace wireless systems have received much attention in recent years. In a distributed aerospace wireless system, since the transmitter and receiver placed on separated platforms which use independent master oscillators, there is no cancellation of low-frequency phase noise as in the monostatic cases. Thus, high accurate time and frequency synchronization techniques are required for distributed wireless systems. The use of a dedicated synchronization link to quantify and compensate oscillator frequency instability is investigated in this paper. With the mathematical statistical models of phase noise, closed-form analytic expressions for the synchronization link performance are derived. The possible error contributions including oscillator, phase-locked loop, and receiver noise are quantified. The link synchronization performance is predicted by utilizing the knowledge of the statistical models, system error contributions, and sampling considerations. Simulation results show that effective synchronization error compensation can be achieved by using this dedicated synchronization link.
Steady-State Visual Evoked Potentials and Phase Synchronization in Migraine Patients
NASA Astrophysics Data System (ADS)
Angelini, L.; Tommaso, M. De; Guido, M.; Hu, K.; Ivanov, P. Ch.; Marinazzo, D.; Nardulli, G.; Nitti, L.; Pellicoro, M.; Pierro, C.; Stramaglia, S.
2004-07-01
We investigate phase synchronization in EEG recordings from migraine patients. We use the analytic signal technique, based on the Hilbert transform, and find that migraine brains are characterized by enhanced alpha band phase synchronization in the presence of visual stimuli. Our findings show that migraine patients have an overactive regulatory mechanism that renders them more sensitive to external stimuli.
Automated quantification of the synchrogram by recurrence plot analysis.
Nguyen, Chinh Duc; Wilson, Stephen James; Crozier, Stuart
2012-04-01
Recently, the concept of phase synchronization of two weakly coupled oscillators has raised a great research interest and has been applied to characterize synchronization phenomenon in physiological data. Phase synchronization of cardiorespiratory coupling is often studied by a synchrogram analysis, a graphical tool investigating the relationship between instantaneous phases of two signals. Although several techniques have been proposed to automatically quantify the synchrogram, most of them require a preselection of a phase-locking ratio by trial and error. One technique does not require this information; however, it is based on the power spectrum of phase's distribution in the synchrogram, which is vulnerable to noise. This study aims to introduce a new technique to automatically quantify the synchrogram by studying its dynamic structure. Our technique exploits recurrence plot analysis, which is a well-established tool for characterizing recurring patterns and nonstationarities in experiments. We applied our technique to detect synchronization in simulated and measured infants' cardiorespiratory data. Our results suggest that the proposed technique is able to systematically detect synchronization in noisy and chaotic data without preselecting the phase-locking ratio. By embedding phase information of the synchrogram into phase space, the phase-locking ratio is automatically unveiled as the number of attractors.
NASA Astrophysics Data System (ADS)
Frank, M.; Jelínek, M., Jr.; Vyhlídal, D.; Kubeček, V.; Ivleva, L. I.; Zverev, P. G.; Smetanin, S. N.
2018-02-01
In this paper, we demonstrate the generation of three (1179, 1227, and 1323 nm) Stokes components of stimulated Raman scattering with long (925 cm-1 ) and short (332 cm-1 ) Raman shifts in an all-solid-state, synchronously pumped, extra-cavity Raman laser based on a BaWO4 crystal excited by a quasi-continuous, 36 ps, diode side-pumped Nd:GdVO4 laser generating at the wavelength of 1063 nm. We achieved the strongest 12-fold pulse shortening down to 3 ps at the 925 cm-1 + 332 cm-1 shifted 1227 nm wavelength due to a shorter dephasing time (wider linewidth) of the short-shift 332 cm-1 Raman line, resulting in a peak power of 2.5 kW.
Effects of frustration on explosive synchronization
NASA Astrophysics Data System (ADS)
Huang, Xia; Gao, Jian; Sun, Yu-Ting; Zheng, Zhi-Gang; Xu, Can
2016-12-01
In this study, we consider the emergence of explosive synchronization in scale-free networks by considering the Kuramoto model of coupled phase oscillators. The natural frequencies of oscillators are assumed to be correlated with their degrees and frustration is included in the system. This assumption can enhance or delay the explosive transition to synchronization. Interestingly, a de-synchronization phenomenon occurs and the type of phase transition is also changed. Furthermore, we provide an analytical treatment based on a star graph, which resembles that obtained in scale-free networks. Finally, a self-consistent approach is implemented to study the de-synchronization regime. Our findings have important implications for controlling synchronization in complex networks because frustration is a controllable parameter in experiments and a discontinuous abrupt phase transition is always dangerous in engineering in the real world.
Thermodynamics aspects of noise-induced phase synchronization
NASA Astrophysics Data System (ADS)
Pinto, Pedro D.; Oliveira, Fernando A.; Penna, André L. A.
2016-05-01
In this article, we present an approach for the thermodynamics of phase oscillators induced by an internal multiplicative noise. We analytically derive the free energy, entropy, internal energy, and specific heat. In this framework, the formulation of the first law of thermodynamics requires the definition of a synchronization field acting on the phase oscillators. By introducing the synchronization field, we have consistently obtained the susceptibility and analyzed its behavior. This allows us to characterize distinct phases in the system, which we have denoted as synchronized and parasynchronized phases, in analogy with magnetism. The system also shows a rich complex behavior, exhibiting ideal gas characteristics for low temperatures and susceptibility anomalies that are similar to those present in complex fluids such as water.
Thermodynamics aspects of noise-induced phase synchronization.
Pinto, Pedro D; Oliveira, Fernando A; Penna, André L A
2016-05-01
In this article, we present an approach for the thermodynamics of phase oscillators induced by an internal multiplicative noise. We analytically derive the free energy, entropy, internal energy, and specific heat. In this framework, the formulation of the first law of thermodynamics requires the definition of a synchronization field acting on the phase oscillators. By introducing the synchronization field, we have consistently obtained the susceptibility and analyzed its behavior. This allows us to characterize distinct phases in the system, which we have denoted as synchronized and parasynchronized phases, in analogy with magnetism. The system also shows a rich complex behavior, exhibiting ideal gas characteristics for low temperatures and susceptibility anomalies that are similar to those present in complex fluids such as water.
Solid-Phase Synthesis of RNA Analogs Containing Phosphorodithioate Linkages.
Yang, Xianbin
2017-09-18
The oligoribonucleotide phosphorodithioate (PS2-RNA) modification uses two sulfur atoms to replace two non-bridging oxygen atoms at an internucleotide phosphorodiester backbone linkage. Like a natural phosphodiester RNA backbone linkage, a PS2-modified backbone linkage is achiral at phosphorus. PS2-RNAs are highly stable to nucleases and several in vitro assays have demonstrated their biological activity. For example, PS2-RNAs silenced mRNA in vitro and bound to protein targets in the form of PS2-aptamers (thioaptamers). Thus, the interest in and promise of PS2-RNAs has drawn attention to synthesizing, isolating, and characterizing these compounds. RNA-thiophosphoramidite monomers are commercially available from AM Biotechnologies and this unit describes an effective methodology for solid-phase synthesis, deprotection, and purification of RNAs having PS2 internucleotide linkages. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
Analytical Studies on the Synchronization of a Network of Linearly-Coupled Simple Chaotic Systems
NASA Astrophysics Data System (ADS)
Sivaganesh, G.; Arulgnanam, A.; Seethalakshmi, A. N.; Selvaraj, S.
2018-05-01
We present explicit generalized analytical solutions for a network of linearly-coupled simple chaotic systems. Analytical solutions are obtained for the normalized state equations of a network of linearly-coupled systems driven by a common chaotic drive system. Two parameter bifurcation diagrams revealing the various hidden synchronization regions, such as complete, phase and phase-lag synchronization are identified using the analytical results. The synchronization dynamics and their stability are studied using phase portraits and the master stability function, respectively. Further, experimental results for linearly-coupled simple chaotic systems are presented to confirm the analytical results. The synchronization dynamics of a network of chaotic systems studied analytically is reported for the first time.
Digital synchronization and communication techniques
NASA Technical Reports Server (NTRS)
Lindsey, William C.
1992-01-01
Information on digital synchronization and communication techniques is given in viewgraph form. Topics covered include phase shift keying, modems, characteristics of open loop digital synchronizers, an open loop phase and frequency estimator, and a digital receiver structure using an open loop estimator in a decision directed architecture.
Phase locked loop synchronization for direct detection optical PPM communication systems
NASA Technical Reports Server (NTRS)
Chen, C. C.; Gardner, C. S.
1985-01-01
Receiver timing synchronization of an optical pulse position modulation (PPM) communication system can be achieved using a phase locked loop (PLL) if the photodetector output is properly processed. The synchronization performance is shown to improve with increasing signal power and decreasing loop bandwidth. Bit error rate (BER) of the PLL synchronized PPM system is analyzed and compared to that for the perfectly synchronized system. It is shown that the increase in signal power needed to compensate for the imperfect synchronization is small (less than 0.1 dB) for loop bandwidths less than 0.1% of the slot frequency.
McGuire, V; Alexander, S
1996-06-14
The differentiated spores of Dictyostelium are surrounded by an extracellular matrix, the spore coat, which protects them from environmental factors allowing them to remain viable for extended periods of time. This presumably is a major evolutionary advantage. This unique extracellular matrix is composed of cellulose and glycoproteins. Previous work has shown that some of these spore coat glycoproteins exist as a preassembled multiprotein complex (the PsB multiprotein complex) which is stored in the prespore vesicles (Watson, N., McGuire, V., and Alexander, S (1994) J. Cell Sci. 107, 2567-2579). Later in development, the complex is synchronously secreted from the prespore vesicles and incorporated into the spore coat. We now have shown that the PsB complex has a specific in vitro cellulose binding activity. The analysis of mutants lacking individual subunits of the PsB complex revealed the relative order of assembly of the subunit proteins and demonstrated that the protein subunits must be assembled for cellulose binding activity. These results provide a biochemical explanation for the localization of this multiprotein complex in the spore coat.
High-precision two-way optic-fiber time transfer using an improved time code.
Wu, Guiling; Hu, Liang; Zhang, Hao; Chen, Jianping
2014-11-01
We present a novel high-precision two-way optic-fiber time transfer scheme. The Inter-Range Instrumentation Group (IRIG-B) time code is modified by increasing bit rate and defining new fields. The modified time code can be transmitted directly using commercial optical transceivers and is able to efficiently suppress the effect of the Rayleigh backscattering in the optical fiber. A dedicated codec (encoder and decoder) with low delay fluctuation is developed. The synchronization issue is addressed by adopting a mask technique and combinational logic circuit. Its delay fluctuation is less than 27 ps in terms of the standard deviation. The two-way optic-fiber time transfer using the improved codec scheme is verified experimentally over 2 m to100 km fiber links. The results show that the stability over 100 km fiber link is always less than 35 ps with the minimum value of about 2 ps at the averaging time around 1000 s. The uncertainty of time difference induced by the chromatic dispersion over 100 km is less than 22 ps.
Deformation Measurement In The Hayward Fault Zone Using Partially Correlated Persistent Scatterers
NASA Astrophysics Data System (ADS)
Lien, J.; Zebker, H. A.
2013-12-01
Interferometric synthetic aperture radar (InSAR) is an effective tool for measuring temporal changes in the Earth's surface. By combining SAR phase data collected at varying times and orbit geometries, with InSAR we can produce high accuracy, wide coverage images of crustal deformation fields. Changes in the radar imaging geometry, scatterer positions, or scattering behavior between radar passes causes the measured radar return to differ, leading to a decorrelation phase term that obscures the deformation signal and prevents the use of large baseline data. Here we present a new physically-based method of modeling decorrelation from the subset of pixels with the highest intrinsic signal-to-noise ratio, the so-called persistent scatters (PS). This more complete formulation, which includes both phase and amplitude scintillations, better describes the scattering behavior of partially correlated PS pixels and leads to a more reliable selection algorithm. The new method identifies PS pixels using maximum likelihood signal-to-clutter ratio (SCR) estimation based on the joint interferometric stack phase-amplitude distribution. Our PS selection method is unique in that it considers both phase and amplitude; accounts for correlation between all possible pairs of interferometric observations; and models the effect of spatial and temporal baselines on the stack. We use the resulting maximum likelihood SCR estimate as a criterion for PS selection. We implement the partially correlated persistent scatterer technique to analyze a stack of C-band European Remote Sensing (ERS-1/2) interferometric radar data imaging the Hayward Fault Zone from 1995 to 2000. We show that our technique achieves a better trade-off between PS pixel selection accuracy and network density compared to other PS identification methods, particularly in areas of natural terrain. We then present deformation measurements obtained by the selected PS network. Our results demonstrate that the partially correlated persistent scatterer technique can attain accurate deformation measurements even in areas that suffer decorrelation due to natural terrain. The accuracy of phase unwrapping and subsequent deformation estimation on the spatially sparse PS network depends on both pixel selection accuracy and the density of the network. We find that many additional pixels can be added to the PS list if we are able to correctly identify and add those in which the scattering mechanism exhibits partial, rather than complete, correlation across all radar scenes.
Characterizing Lithospheric Thickness in Australia using Ps and Sp Scattered Waves
NASA Astrophysics Data System (ADS)
Ford, H. A.; Fischer, K. M.; Rychert, C. A.
2008-12-01
The purpose of this study is to constrain the morphology of the lithosphere-asthenosphere boundary throughout Australia using scattered waves. Prior surface wave studies have shown a correlation between lithospheric thickness and the three primary geologic provinces of Australia, with the shallowest lithosphere located beneath the Phanerozoic province to the east, and the thicker lithosphere located beneath the Proterozoic and Archean regions. To determine lithospheric thickness, waveform data from twenty permanent broadband stations spanning mainland Australia and the island of Tasmania were analyzed using Ps and Sp migration techniques. Waveform selection for each station was based on epicentral distance (35° to 80° for Ps and 55° to 80° for Sp), and event depth (no greater than 300 km for Sp). For both Ps and Sp a simultaneous deconvolution was performed on the data for each of the twenty stations, and the resulting receiver function for each station was migrated to depth. Data were binned with epicentral distance to differentiate direct discontinuity phases from crustal reverberations (for Ps) and other teleseismic arrivals (for Sp). Early results in both Ps and Sp show a clear Moho discontinuity at most stations in addition to sharp, strong crustal reverberations seen in many of the Ps images. In the eastern Phanerozoic province, a strong negative phase at 100-105 km is evident in Ps for stations CAN and EIDS. The negative phase lies within a depth range that corresponds to the negative velocity gradient between fast lithosphere and slow asthenosphere imaged by surface waves. We therefore think that it is the lithosphere- asthenosphere boundary. On the island of Tasmania, a negative phase at 70-75 km in Ps images at stations TAU and MOO also appears to be the lithosphere-asthenosphere boundary. In the Proterozoic and Archean regions of the Australian continent, initial results for both Ps and Sp migration indicate clear crustal phases, but significantly more complicated signals at mantle depths. However, at some stations along the southern edge of the thick sub-cratonic lithosphere (previously imaged by surface waves) phases exist which may represent a lithosphere-asthenosphere boundary at depths of 110-115 km. Constraining the relationship of lithospheric thickness to the age and tectonic history of the overlying crust in Australia is important for better understanding the long term evolution of the continent.
COMPASS time synchronization and dissemination—Toward centimetre positioning accuracy
NASA Astrophysics Data System (ADS)
Wang, ZhengBo; Zhao, Lu; Wang, ShiGuang; Zhang, JianWei; Wang, Bo; Wang, LiJun
2014-09-01
In this paper we investigate methods to achieve highly accurate time synchronization among the satellites of the COMPASS global navigation satellite system (GNSS). Owing to the special design of COMPASS which implements several geo-stationary satellites (GEO), time synchronization can be highly accurate via microwave links between ground stations to the GEO satellites. Serving as space-borne relay stations, the GEO satellites can further disseminate time and frequency signals to other satellites such as the inclined geo-synchronous (IGSO) and mid-earth orbit (MEO) satellites within the system. It is shown that, because of the accuracy in clock synchronization, the theoretical accuracy of COMPASS positioning and navigation will surpass that of the GPS. In addition, the COMPASS system can function with its entire positioning, navigation, and time-dissemination services even without the ground link, thus making it much more robust and secure. We further show that time dissemination using the COMPASS-GEO satellites to earth-fixed stations can achieve very high accuracy, to reach 100 ps in time dissemination and 3 cm in positioning accuracy, respectively. In this paper, we also analyze two feasible synchronization plans. All special and general relativistic effects related to COMPASS clocks frequency and time shifts are given. We conclude that COMPASS can reach centimeter-level positioning accuracy and discuss potential applications.
Fast angular synchronization for phase retrieval via incomplete information
NASA Astrophysics Data System (ADS)
Viswanathan, Aditya; Iwen, Mark
2015-08-01
We consider the problem of recovering the phase of an unknown vector, x ∈ ℂd, given (normalized) phase difference measurements of the form xjxk*/|xjxk*|, j,k ∈ {1,...,d}, and where xj* denotes the complex conjugate of xj. This problem is sometimes referred to as the angular synchronization problem. This paper analyzes a linear-time-in-d eigenvector-based angular synchronization algorithm and studies its theoretical and numerical performance when applied to a particular class of highly incomplete and possibly noisy phase difference measurements. Theoretical results are provided for perfect (noiseless) measurements, while numerical simulations demonstrate the robustness of the method to measurement noise. Finally, we show that this angular synchronization problem and the specific form of incomplete phase difference measurements considered arise in the phase retrieval problem - where we recover an unknown complex vector from phaseless (or magnitude) measurements.
Matsuura, Katsuhisa; Kodama, Fumiko; Sugiyama, Kasumi; Shimizu, Tatsuya; Hagiwara, Nobuhisa; Okano, Teruo
2015-03-01
Cardiac tissue engineering is a promising method for regenerative medicine. Although we have developed human cardiac cell sheets by integration of cell sheet-based tissue engineering and scalable bioreactor culture, the risk of contamination by induced pluripotent stem (iPS) cells in cardiac cell sheets remains unresolved. In the present study, we established a novel culture method to fabricate human cardiac cell sheets with a decreased risk of iPS cell contamination while maintaining viabilities of iPS cell-derived cells, including cardiomyocytes and fibroblasts, using a methionine-free culture condition. When cultured in the methionine-free condition, human iPS cells did not survive without feeder cells and could not proliferate or form colonies on feeder cells or in coculture with cells for cardiac cell sheet fabrication. When iPS cell-derived cells after the cardiac differentiation were transiently cultured in the methionine-free condition, gene expression of OCT3/4 and NANOG was downregulated significantly compared with that in the standard culture condition. Furthermore, in fabricated cardiac cell sheets, spontaneous and synchronous beating was observed in the whole area while maintaining or upregulating the expression of various cardiac and extracellular matrix genes. These findings suggest that human iPS cells are methionine dependent and a methionine-free culture condition for cardiac cell sheet fabrication might reduce the risk of iPS cell contamination.
NASA Astrophysics Data System (ADS)
Ferreira, Maria Teodora; Follmann, Rosangela; Domingues, Margarete O.; Macau, Elbert E. N.; Kiss, István Z.
2017-08-01
Phase synchronization may emerge from mutually interacting non-linear oscillators, even under weak coupling, when phase differences are bounded, while amplitudes remain uncorrelated. However, the detection of this phenomenon can be a challenging problem to tackle. In this work, we apply the Discrete Complex Wavelet Approach (DCWA) for phase assignment, considering signals from coupled chaotic systems and experimental data. The DCWA is based on the Dual-Tree Complex Wavelet Transform (DT-CWT), which is a discrete transformation. Due to its multi-scale properties in the context of phase characterization, it is possible to obtain very good results from scalar time series, even with non-phase-coherent chaotic systems without state space reconstruction or pre-processing. The method correctly predicts the phase synchronization for a chemical experiment with three locally coupled, non-phase-coherent chaotic processes. The impact of different time-scales is demonstrated on the synchronization process that outlines the advantages of DCWA for analysis of experimental data.
NASA Astrophysics Data System (ADS)
Song, Ju-Myung; Ko, Beom-Seok; Sohn, Joon-Yong; Nho, Young Chang; Shin, Junhwa
2014-04-01
The morphology of polystyrene-grafted poly(ethylene-alt-tetrafluoroethylene) (ETFE) films prepared using a simultaneous radiation grafting method was investigated using DMA, DSC, XRD, and SAXS instruments. The DMA study indicates that the ETFE amorphous phase and PS amorphous phase are mixed well in the PS-grafted ETFE films while the ETFE crystalline phase and the PS amorphous phase are separated, suggesting that the PS chains are grafted mainly on the ETFE amorphous regions. The DSC and XRD data showed that the natural crystalline structures of ETFE in the grafted ETFE films are not affected by the degree of grafting. The SAXS profiles displayed that the inter-crystalline distance of the ETFE films increases with an increasing degree of grafting, which further implies that the PS graft chains formed by the simultaneous irradiation has a significant impact on the amorphous morphology of the resulting grafted ETFE film. Thus, these results indicate that the styrene monomers are mainly grafted on the ETFE amorphous regions during the simultaneous radiation grafting process.
Noncoherent DTTLs for Symbol Synchronization
NASA Technical Reports Server (NTRS)
Simon, Marvin; Tkacenko, Andre
2007-01-01
Noncoherent data-transition tracking loops (DTTLs) have been proposed for use as symbol synchronizers in digital communication receivers. [Communication- receiver subsystems that can perform their assigned functions in the absence of synchronization with the phases of their carrier signals ( carrier synchronization ) are denoted by the term noncoherent, while receiver subsystems that cannot function without carrier synchronization are said to be coherent. ] The proposal applies, more specifically, to receivers of binary phase-shift-keying (BPSK) signals generated by directly phase-modulating binary non-return-to-zero (NRZ) data streams onto carrier signals having known frequencies but unknown phases. The proposed noncoherent DTTLs would be modified versions of traditional DTTLs, which are coherent. The symbol-synchronization problem is essentially the problem of recovering symbol timing from a received signal. In the traditional, coherent approach to symbol synchronization, it is necessary to establish carrier synchronization in order to recover symbol timing. A traditional DTTL effects an iterative process in which it first generates an estimate of the carrier phase in the absence of symbol-synchronization information, then uses the carrier-phase estimate to obtain an estimate of the symbol-synchronization information, then feeds the symbol-synchronization estimate back to the carrier-phase-estimation subprocess. In a noncoherent symbol-synchronization process, there is no need for carrier synchronization and, hence, no need for iteration between carrier-synchronization and symbol- synchronization subprocesses. The proposed noncoherent symbolsynchronization process is justified theoretically by a mathematical derivation that starts from a maximum a posteriori (MAP) method of estimation of symbol timing utilized in traditional, coherent DTTLs. In that MAP method, one chooses the value of a variable of interest (in this case, the offset in the estimated symbol timing) that causes a likelihood function of symbol estimates over some number of symbol periods to assume a maximum value. In terms that are necessarily oversimplified to fit within the space available for this article, it can be said that the mathematical derivation involves a modified interpretation of the likelihood function that lends itself to noncoherent DTTLs. The proposal encompasses both linear and nonlinear noncoherent DTTLs. The performances of both have been computationally simulated; for comparison, the performances of linear and nonlinear coherent DTTLs have also been computationally simulated. The results of these simulations show that, among other things, the expected mean-square timing errors of coherent and noncoherent DTTLs are relatively insensitive to window width. The results also show that at high signal-to-noise ratios (SNRs), the performances of the noncoherent DTTLs approach those of their coherent counterparts at, while at low SNRs, the noncoherent DTTLs incur penalties of the order of 1.5 to 2 dB.
Synchronization of multi-phase oscillators: an Axelrod-inspired model
NASA Astrophysics Data System (ADS)
Kuperman, M. N.; Zanette, D. H.
2009-07-01
Inspired by Axelrod’s model of culture dissemination, we introduce and analyze a model for a population of coupled oscillators where different levels of synchronization can be assimilated to different degrees of cultural organization. The state of each oscillator is represented by a set of phases, and the interaction - which occurs between homologous phases - is weighted by a decreasing function of the distance between individual states. Both ordered arrays and random networks are considered. We find that the transition between synchronization and incoherent behaviour is mediated by a clustering regime with rich organizational structure, where any two oscillators can be synchronized in some of their phases, while their remain unsynchronized in the others.
High Speed Turbo-Generator: Test Stand Simulator Including Turbine Engine Emulator
2010-07-30
15% Shaft Power 4% 8% Our model of the six-phase synchronous machine was based on work by Schiferl and Ong [1]. The six-phase synchronous machine is...develop and submit to ONR a follow-on proposal to address these open issues. 27 REFERENCES [1] R. F. Schiferl and C. M. Ong, "Six phase...at 32 References [Al] R. F. Schiferl and C. M. Ong, "Six phase synchronous machine with ac and dc stator connections, Part I: Equivalent Circuit
NASA Astrophysics Data System (ADS)
Fuwape, Ibiyinka A.; Ogunjo, Samuel T.; Dada, Joseph B.; Ashidi, Gabriel A.; Emmanuel, Israel
2016-11-01
This study investigated linear and nonlinear relationship between the amount of rainfall and radio refractivity in a tropical country, Nigeria using forty seven locations scattered across the country. Correlation and Phase synchronization measures were used for the linear and nonlinear relationship respectively. Weak correlation and phase synchronization was observed between seasonal mean rainfall amount and radio refractivity while strong phase synchronization was found for the detrended data suggesting similar underlying dynamics between rainfall amount and radio refractivity. Causation between rainfall and radio refractivity in a tropical location was studied using Granger causality test. In most of the Southern locations, rainfall was found to Granger cause radio refractivity. Furthermore, it was observed that there is strong correlation between mean rainfall amount and the phase synchronization index over Nigeria. Coupling between rainfall and radio refractivity has been found to be due to water vapour in the atmosphere. Frequency planning and budgeting for microwave propagation during periods of high rainfall should take into consideration this nonlinear relationship.
NASA Astrophysics Data System (ADS)
Degaudenzi, Riccardo; Vanghi, Vieri
1994-02-01
In all-digital Trellis-Coded 8PSK (TC-8PSK) demodulator well suited for VLSI implementation, including maximum likelihood estimation decision-directed (MLE-DD) carrier phase and clock timing recovery, is introduced and analyzed. By simply removing the trellis decoder the demodulator can efficiently cope with uncoded 8PSK signals. The proposed MLE-DD synchronization algorithm requires one sample for the phase and two samples per symbol for the timing loop. The joint phase and timing discriminator characteristics are analytically derived and numerical results checked by means of computer simulations. An approximated expression for steady-state carrier phase and clock timing mean square error has been derived and successfully checked with simulation findings. Synchronizer deviation from the Cramer Rao bound is also discussed. Mean acquisition time for the digital synchronizer has also been computed and checked, using the Monte Carlo simulation technique. Finally, TC-8PSK digital demodulator performance in terms of bit error rate and mean time to lose lock, including digital interpolators and synchronization loops, is presented.
Abnormal auditory synchronization in stuttering: A magnetoencephalographic study.
Kikuchi, Yoshikazu; Okamoto, Tsuyoshi; Ogata, Katsuya; Hagiwara, Koichi; Umezaki, Toshiro; Kenjo, Masamutsu; Nakagawa, Takashi; Tobimatsu, Shozo
2017-02-01
In a previous magnetoencephalographic study, we showed both functional and structural reorganization of the right auditory cortex and impaired left auditory cortex function in people who stutter (PWS). In the present work, we reevaluated the same dataset to further investigate how the right and left auditory cortices interact to compensate for stuttering. We evaluated bilateral N100m latencies as well as indices of local and inter-hemispheric phase synchronization of the auditory cortices. The left N100m latency was significantly prolonged relative to the right N100m latency in PWS, while healthy control participants did not show any inter-hemispheric differences in latency. A phase-locking factor (PLF) analysis, which indicates the degree of local phase synchronization, demonstrated enhanced alpha-band synchrony in the right auditory area of PWS. A phase-locking value (PLV) analysis of inter-hemispheric synchronization demonstrated significant elevations in the beta band between the right and left auditory cortices in PWS. In addition, right PLF and PLVs were positively correlated with stuttering frequency in PWS. Taken together, our data suggest that increased right hemispheric local phase synchronization and increased inter-hemispheric phase synchronization are electrophysiological correlates of a compensatory mechanism for impaired left auditory processing in PWS. Published by Elsevier B.V.
Quantum Synchronization of three-level atoms
NASA Astrophysics Data System (ADS)
He, Peiru; Rey, Ana Maria; Holland, Murray
2015-05-01
Recent studies show that quantum synchronization, the spontaneous alignment of the quantum phase between different oscillators, can be used to build superradiant lasers with ultranarrow linewidth. We theoretically investigate the effect of quantum synchronization on many coupled three-level atoms where there are richer phase diagrams than the standard two-level system. This three-level model allows two-color ultranarrow coherent light to be produced where more than one phase must be simultaneously synchronized. Of particular interest, we study the V-type geometry that is relevant to current 87 Sr experiments in JILA. As well as the synchronization phenomenon, we explore other quantum effects such as photon correlations and squeezing. This work is supported by the DARPA QuASAR program, the NSF, and NIST.
A quantitative theory of gamma synchronization in macaque V1.
Lowet, Eric; Roberts, Mark J; Peter, Alina; Gips, Bart; De Weerd, Peter
2017-08-31
Gamma-band synchronization coordinates brief periods of excitability in oscillating neuronal populations to optimize information transmission during sensation and cognition. Commonly, a stable, shared frequency over time is considered a condition for functional neural synchronization. Here, we demonstrate the opposite: instantaneous frequency modulations are critical to regulate phase relations and synchronization. In monkey visual area V1, nearby local populations driven by different visual stimulation showed different gamma frequencies. When similar enough, these frequencies continually attracted and repulsed each other, which enabled preferred phase relations to be maintained in periods of minimized frequency difference. Crucially, the precise dynamics of frequencies and phases across a wide range of stimulus conditions was predicted from a physics theory that describes how weakly coupled oscillators influence each other's phase relations. Hence, the fundamental mathematical principle of synchronization through instantaneous frequency modulations applies to gamma in V1 and is likely generalizable to other brain regions and rhythms.
Competing role of Interactions in Synchronization of Exciton-Polariton condensates
NASA Astrophysics Data System (ADS)
Khan, Saeed; Tureci, Hakan E.
We present a theoretical study of synchronization dynamics in incoherently pumped exciton-polariton condensates in coupled traps. Our analysis is based on an expansion in non-Hermitian modes that take into account the trapping potential and the pump-induced complex-valued potential. We find that polariton-polariton and reservoir-polariton interactions play competing roles in the emergence of a synchronized phase as pumping power is increased, leading to qualitatively different synchronized phases. Crucially, these interactions can also act against each other to hinder synchronization. We present a phase diagram and explain the general characteristics of these phases using a generalized Adler equation. Our work sheds light on dynamics strongly influenced by competing interactions particular to incoherently pumped exciton-polariton condensates, which can lead to interesting features in recently engineered polariton lattices. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering.
A quantitative theory of gamma synchronization in macaque V1
Roberts, Mark J; Peter, Alina; Gips, Bart; De Weerd, Peter
2017-01-01
Gamma-band synchronization coordinates brief periods of excitability in oscillating neuronal populations to optimize information transmission during sensation and cognition. Commonly, a stable, shared frequency over time is considered a condition for functional neural synchronization. Here, we demonstrate the opposite: instantaneous frequency modulations are critical to regulate phase relations and synchronization. In monkey visual area V1, nearby local populations driven by different visual stimulation showed different gamma frequencies. When similar enough, these frequencies continually attracted and repulsed each other, which enabled preferred phase relations to be maintained in periods of minimized frequency difference. Crucially, the precise dynamics of frequencies and phases across a wide range of stimulus conditions was predicted from a physics theory that describes how weakly coupled oscillators influence each other’s phase relations. Hence, the fundamental mathematical principle of synchronization through instantaneous frequency modulations applies to gamma in V1 and is likely generalizable to other brain regions and rhythms. PMID:28857743
Analysis of remote synchronization in complex networks
NASA Astrophysics Data System (ADS)
Gambuzza, Lucia Valentina; Cardillo, Alessio; Fiasconaro, Alessandro; Fortuna, Luigi; Gómez-Gardeñes, Jesus; Frasca, Mattia
2013-12-01
A novel regime of synchronization, called remote synchronization, where the peripheral nodes form a phase synchronized cluster not including the hub, was recently observed in star motifs [Bergner et al., Phys. Rev. E 85, 026208 (2012)]. We show the existence of a more general dynamical state of remote synchronization in arbitrary networks of coupled oscillators. This state is characterized by the synchronization of pairs of nodes that are not directly connected via a physical link or any sequence of synchronized nodes. This phenomenon is almost negligible in networks of phase oscillators as its underlying mechanism is the modulation of the amplitude of those intermediary nodes between the remotely synchronized units. Our findings thus show the ubiquity and robustness of these states and bridge the gap from their recent observation in simple toy graphs to complex networks.
Cardiorespiratory phase synchronization during normal rest and inward-attention meditation.
Wu, Shr-Da; Lo, Pei-Chen
2010-06-11
The cardiac and respiratory systems can be viewed as two self-sustained oscillators with various interactions between them. In this study, the cardiorespiratory phase synchronization (CRPS) quantified by synchrogram was investigated to explore the phase synchronization between these two systems. The synchrogram scheme was applied to electrocardiogram (ECG) and respiration signals. Particular focus was the distinct cardiac-respiratory regulation phenomena intervened by inward-attention meditation and normal relaxation. Four synchronization parameters were measured: frequency ratio, lasting length, number of epochs, and total length. The results showed that normal rest resulted in much weaker CRPS. Statistical analysis reveals that the number of synchronous epochs and the total synchronization length significantly increase (p=0.024 and 0.034 respectively) during meditation. Furthermore, a predominance of 4:1 and 5:1 rhythm-ratio synchronizations was observed during meditation. Consequently, this study concludes that CRPS can be enhanced during meditation, compared with normal relaxation, and reveals a predominance of specific frequency ratios. Copyright (c) 2008 Elsevier Ireland Ltd. All rights reserved.
Investigation of phase synchronization of interictal EEG in right temporal lobe epilepsy
NASA Astrophysics Data System (ADS)
Yu, Haitao; Cai, Lihui; Wu, Xinyu; Song, Zhenxi; Wang, Jiang; Xia, Zijie; Liu, Jing; Cao, Yibin
2018-02-01
Epilepsy is commonly associated with abnormally synchronous activity of neurons located in epileptogenic zones. In this study, we investigated the synchronization characteristic of right temporal lobe epilepsy (RTLE). Multichannel electroencephalography (EEG) data were recorded from the RTLE patients during interictal period and normal controls. Power spectral density was first used to analyze the EEG power for two groups of subjects. It was found that the power of epileptics is increased in the whole brain compared with that of the control. We calculated phase lag index (PLI) to measure the phase synchronization between each pair of EEG signals. A higher degree of synchronization was observed in the epileptics especially between distant channels. In particular, the regional synchronization degree was negatively correlated with power spectral density and the correlation was weaker for epileptics. Moreover, the synchronization degree decayed with the increase of relative distance of channels for both the epilepsy and control, but the dependence was weakened in the former. The obtained results may provide new insights into the generation mechanism of epilepsy.
Performance Prediction of a Synchronization Link for Distributed Aerospace Wireless Systems
Shao, Huaizong
2013-01-01
For reasons of stealth and other operational advantages, distributed aerospace wireless systems have received much attention in recent years. In a distributed aerospace wireless system, since the transmitter and receiver placed on separated platforms which use independent master oscillators, there is no cancellation of low-frequency phase noise as in the monostatic cases. Thus, high accurate time and frequency synchronization techniques are required for distributed wireless systems. The use of a dedicated synchronization link to quantify and compensate oscillator frequency instability is investigated in this paper. With the mathematical statistical models of phase noise, closed-form analytic expressions for the synchronization link performance are derived. The possible error contributions including oscillator, phase-locked loop, and receiver noise are quantified. The link synchronization performance is predicted by utilizing the knowledge of the statistical models, system error contributions, and sampling considerations. Simulation results show that effective synchronization error compensation can be achieved by using this dedicated synchronization link. PMID:23970828
NASA Astrophysics Data System (ADS)
Ferrari, F. A. S.; Viana, R. L.; Reis, A. S.; Iarosz, K. C.; Caldas, I. L.; Batista, A. M.
2018-04-01
The cerebral cortex plays a key role in complex cortical functions. It can be divided into areas according to their function (motor, sensory and association areas). In this paper, the cerebral cortex is described as a network of networks (cortex network), we consider that each cortical area is composed of a network with small-world property (cortical network). The neurons are assumed to have bursting properties with the dynamics described by the Rulkov model. We study the phase synchronization of the cortex network and the cortical networks. In our simulations, we verify that synchronization in cortex network is not homogeneous. Besides, we focus on the suppression of neural phase synchronization. Synchronization can be related to undesired and pathological abnormal rhythms in the brain. For this reason, we consider the delayed feedback control to suppress the synchronization. We show that delayed feedback control is efficient to suppress synchronous behavior in our network model when an appropriate signal intensity and time delay are defined.
NASA Technical Reports Server (NTRS)
Maestrello, Lucio
2002-01-01
Acoustic and turbulent boundary layer flow loadings over a flexible structure are used to study the spatial-temporal dynamics of the response of the structure. The stability of the spatial synchronization and desynchronization by an active external force is investigated with an array of coupled transducers on the structure. In the synchronous state, the structural phase is locked, which leads to the formation of spatial patterns while the amplitude peaks exhibit chaotic behaviors. Large amplitude, spatially symmetric loading is superimposed on broadband, but in the desynchronized state, the spectrum broadens and the phase space is lost. The resulting pattern bears a striking resemblance to phase turbulence. The transition is achieved by using a low power external actuator to trigger broadband behaviors from the knowledge of the external acoustic load inducing synchronization. The changes are made favorably and efficiently to alter the frequency distribution of power, not the total power level. Before synchronization effects are seen, the panel response to the turbulent boundary layer loading is discontinuously spatio-temporally correlated. The stability develops from different competing wavelengths; the spatial scale is significantly shorter than when forced with the superimposed external sound. When the external sound level decreases and the synchronized phases are lost, changes in the character of the spectra can be linked to the occurrence of spatial phase transition. These changes can develop broadband response. Synchronized responses of fuselage structure panels have been observed in subsonic and supersonic aircraft; results from two flights tests are discussed.
NASA Astrophysics Data System (ADS)
Gurrola, H.; Berdine, A.; Pulliam, J.
2017-12-01
Interference between Ps phases and reverberations (PPs, PSs phases and reverberations thereof) make it difficult to use Ps receiver functions (RF) in regions with thick sediments. Crustal reverberations typically interfere with Ps phases from the lithosphere-asthenosphere boundary (LAB). We have developed a method to separate Ps phases from reverberations by deconvolution of all the data recorded at a seismic station by removing phases from a single wavefront at each iteration of the deconvolution (wavefield iterative deconvolution or WID). We applied WID to data collected in the Gulf Coast and Llano Front regions of Texas by the EarthScope Transportable array and by a temporary deployment of 23 broadband seismometers (deployed by Texas Tech and Baylor Universities). The 23 station temporary deployment was 300 km long; crossing from Matagorda Island onto the Llano uplift. 3-D imaging using these data shows that the deepest part of the sedimentary basin may be inboard of the coastline. The Moho beneath the Gulf Coast plain does not appear in many of the images. This could be due to interference from reverberations from shallower layers or it may indicate the lack of a strong velocity contrast at the Moho perhaps due to serpentinization of the uppermost mantle. The Moho appears to be flat, at 40 km) beneath most of the Llano uplift but may thicken to the south and thin beneath the Coastal plain. After application of WID, we were able to identify a negatively polarized Ps phase consistent with LAB depths identified in Sp RF images. The LAB appears to be 80-100 km deep beneath most of the coast but is 100 to 120 km deep beneath the Llano uplift. There are other negatively polarized phases between 160 and 200 km depths beneath the Gulf Coast and the Llano Uplift. These deeper phases may indicate that, in this region, the LAB is transitional in nature and rather than a discrete boundary.
Deterministic direct reprogramming of somatic cells to pluripotency.
Rais, Yoach; Zviran, Asaf; Geula, Shay; Gafni, Ohad; Chomsky, Elad; Viukov, Sergey; Mansour, Abed AlFatah; Caspi, Inbal; Krupalnik, Vladislav; Zerbib, Mirie; Maza, Itay; Mor, Nofar; Baran, Dror; Weinberger, Leehee; Jaitin, Diego A; Lara-Astiaso, David; Blecher-Gonen, Ronnie; Shipony, Zohar; Mukamel, Zohar; Hagai, Tzachi; Gilad, Shlomit; Amann-Zalcenstein, Daniela; Tanay, Amos; Amit, Ido; Novershtern, Noa; Hanna, Jacob H
2013-10-03
Somatic cells can be inefficiently and stochastically reprogrammed into induced pluripotent stem (iPS) cells by exogenous expression of Oct4 (also called Pou5f1), Sox2, Klf4 and Myc (hereafter referred to as OSKM). The nature of the predominant rate-limiting barrier(s) preventing the majority of cells to successfully and synchronously reprogram remains to be defined. Here we show that depleting Mbd3, a core member of the Mbd3/NuRD (nucleosome remodelling and deacetylation) repressor complex, together with OSKM transduction and reprogramming in naive pluripotency promoting conditions, result in deterministic and synchronized iPS cell reprogramming (near 100% efficiency within seven days from mouse and human cells). Our findings uncover a dichotomous molecular function for the reprogramming factors, serving to reactivate endogenous pluripotency networks while simultaneously directly recruiting the Mbd3/NuRD repressor complex that potently restrains the reactivation of OSKM downstream target genes. Subsequently, the latter interactions, which are largely depleted during early pre-implantation development in vivo, lead to a stochastic and protracted reprogramming trajectory towards pluripotency in vitro. The deterministic reprogramming approach devised here offers a novel platform for the dissection of molecular dynamics leading to establishing pluripotency at unprecedented flexibility and resolution.
Phase synchronization in the forced Lorenz system
NASA Astrophysics Data System (ADS)
Park, Eun-Hyoung; Zaks, Michael A.; Kurths, Jürgen
1999-12-01
We demonstrate that the dynamics of phase synchronization in a chaotic system under weak periodic forcing depends crucially on the distribution of intrinsic characteristic times of this system. Under the external periodic action, the frequency of every unstable periodic orbit is locked to the frequency of the force. In systems which in the autonomous case displays nearly isochronous chaotic rotations, the locking ratio is the same for all periodic orbits; since a typical chaotic orbit wanders between the periodic ones, its phase follows the phase of the force. For the Lorenz attractor with its unbounded times of return onto a Poincaré surface, such state of perfect phase synchronization is inaccessible. Analysis with the help of unstable periodic orbits shows that this state is replaced by another one, which we call ``imperfect phase synchronization,'' and in which we observe alternation of temporal segments, corresponding to different rational values of frequency lockings.
Banerjee, Somanshu; Chaturvedi, Chandra Mohini
2017-10-01
Birds time their daily and seasonal activities in synchronization with circadian and annual periodicities in the environment, which is mainly provided by changes in photoperiod/day length conditions. Photoperiod appears to act at the level of eye, pineal and encephalic/deep brain photoperception and thus entrain the hypothalamic clock as well as reproductive circuitry in different avian species. In this article our focus of study is to elucidate out the underlying molecular mechanism of modulation of the hypothalamic reproductive circuitry following the photoperception through the hypothalamic photoreceptor cells and the subsequent alteration in the reproductive responses in quail, kept under different simulated photoperiodic conditions. Present study investigated the different simulated photoperiodic conditions induced hypothalamic DBP-GnRH-GnIH system mediated translation of photoperiodic information and subsequent exhibition of differential photosexual responses (scoto-/photo-sensitivity and refractoriness) in Japanese quail, Coturnix coturnix japonica. Paired testes weight and paired testicular volume increased 15.9 and 22.6-fold respectively in scotorefractory quail compare to that of scotosensitive phase and 12.8 and 24.3-fold in photosensitive quail compare to that of photorefractory phase. The pineal/eye melatonin (through melatonin receptor subtype Mel 1c R) and hypothalamic deep brain photoreceptor (DBPs) cells directly modulate the hypothalamic GnRH-I/II and GnIH system and thus exhibit testicular stimulation or regression in response to different photoperiodic conditions (PS, PR, SS and SR). The hypothalamic alteration of DBP(s) and GnRH-GnIH system thus may induce the testicular stimulation in PS and SR quail and testicular regression in SS and PR quail. Copyright © 2017 Elsevier B.V. All rights reserved.
A Facile Synthesis of Dynamic, Shape-Changing Polymer Particles
2014-04-02
utilizing functional surfactants to control the phase separation of symmetric polystyrene- b -poly(2-vinylpyr- idine) ( PS - b - P2VP ) in dispersed droplets...Figure 1. Schematic representation of a mixed surfactant strategy for controlling the self-assembly of PS - b - P2VP and the generation of particles with...surfactant mixtures to control the phase separation of the symmetric polystyrene- b -poly(2-vinylpyridine) ( PS - b - P2VP ) block copolymers (BCPs) within
Diffusion of extracellular K+ can synchronize bursting oscillations in a model islet of Langerhans.
Stokes, C L; Rinzel, J
1993-01-01
Electrical bursting oscillations of mammalian pancreatic beta-cells are synchronous among cells within an islet. While electrical coupling among cells via gap junctions has been demonstrated, its extent and topology are unclear. The beta-cells also share an extracellular compartment in which oscillations of K+ concentration have been measured (Perez-Armendariz and Atwater, 1985). These oscillations (1-2 mM) are synchronous with the burst pattern, and apparently are caused by the oscillating voltage-dependent membrane currents: Extracellular K+ concentration (Ke) rises during the depolarized active (spiking) phase and falls during the hyperpolarized silent phase. Because raising Ke depolarizes the cell membrane by increasing the potassium reversal potential (VK), any cell in the active phase should recruit nonspiking cells into the active phase. The opposite is predicted for the silent phase. This positive feedback system might couple the cells' electrical activity and synchronize bursting. We have explored this possibility using a theoretical model for bursting of beta-cells (Sherman et al., 1988) and K+ diffusion in the extracellular space of an islet. Computer simulations demonstrate that the bursts synchronize very quickly (within one burst) without gap junctional coupling among the cells. The shape and amplitude of computed Ke oscillations resemble those seen in experiments for certain parameter ranges. The model cells synchronize with exterior cells leading, though incorporating heterogeneous cell properties can allow interior cells to lead. The model islet can also be forced to oscillate at both faster and slower frequencies using periodic pulses of higher K+ in the medium surrounding the islet. Phase plane analysis was used to understand the synchronization mechanism. The results of our model suggest that diffusion of extracellular K+ may contribute to coupling and synchronization of electrical oscillations in beta-cells within an islet. Images FIGURE 1 PMID:8218890
Reproducibility of CT Perfusion Parameters in Liver Tumors and Normal Liver
Ng, Chaan S.; Chandler, Adam G.; Wei, Wei; Herron, Delise H.; Anderson, Ella F.; Kurzrock, Razelle; Charnsangavej, Chusilp
2011-01-01
Purpose: To assess the reproducibility of computed tomographic (CT) perfusion measurements in liver tumors and normal liver and effects of motion and data acquisition time on parameters. Materials and Methods: Institutional review board approval and written informed consent were obtained for this prospective study. The study complied with HIPAA regulations. Two CT perfusion scans were obtained 2–7 days apart in seven patients with liver tumors with two scanning phases (phase 1: 30-second breath-hold cine; phase 2: six intermittent free-breathing cines) spanning 135 seconds. Blood flow (BF), blood volume (BV), mean transit time (MTT), and permeability–surface area product (PS) for tumors and normal liver were calculated from phase 1 with and without rigid registration and, for combined phases 1 and 2, with manually and rigid-registered phase 2 images, by using deconvolution modeling. Variability was assessed with within-patient coefficients of variation (CVs) and Bland-Altman analyses. Results: For tumors, BF, BV, MTT, and PS values and reproducibility varied by analytical method, the former by up to 11%, 23%, 21%, and 138%, respectively. Median PS values doubled with the addition of phase 2 data to phase 1 data. The best overall reproducibility was obtained with rigidly registered phase 1 and phase 2 images, with within-patient CVs for BF, BV, MTT, and PS of 11.2%, 14.4%, 5.5% and 12.1%, respectively. Normal liver evaluations were similar, except with marginally lower variability. Conclusion: Absolute values and reproducibility of CT perfusion parameters were markedly influenced by motion and data acquisition time. PS, in particular, probably requires data acquisition beyond a single breath hold, for which motion-correction techniques are likely necessary. © RSNA, 2011 Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.11110331/-/DC1 PMID:21788525
NASA Astrophysics Data System (ADS)
Zhou, Xin; Ju, Myeong Jin; Huang, Lin; Tang, Shuo
2017-02-01
Polarization-sensitive optical coherence tomography (PS-OCT) and second harmonic generation (SHG) microscopy are two imaging modalities with different resolutions, field-of-views (FOV), and contrasts, while they both have the capability of imaging collagen fibers in biological tissues. PS-OCT can measure the tissue birefringence which is induced by highly organized fibers while SHG can image the collagen fiber organization with high resolution. Articular cartilage, with abundant structural collagen fibers, is a suitable sample to study the correlation between PS-OCT and SHG microscopy. Qualitative conjecture has been made that the phase retardation measured by PS-OCT is affected by the relationship between the collagen fiber orientation and the illumination direction. Anatomical studies show that the multilayered architecture of articular cartilage can be divided into four zones from its natural surface to the subchondral bone: the superficial zone, the middle zone, the deep zone, and the calcified zone. The different zones have different collagen fiber orientations, which can be studied by the different slopes in the cumulative phase retardation in PS-OCT. An algorithm is developed based on the quantitative analysis of PS-OCT phase retardation images to analyze the microstructural features in swine articular cartilage tissues. This algorithm utilizes the depth-dependent slope changing of phase retardation A-lines to segment structural layers. The results show good consistency with the knowledge of cartilage morphology and correlation with the SHG images measured at selected depth locations. The correlation between PS-OCT and SHG microscopy shows that PS-OCT has the potential to analyze both the macro and micro characteristics of biological tissues with abundant collagen fibers and other materials that may cause birefringence.
EEG synchronization and migraine
NASA Astrophysics Data System (ADS)
Stramaglia, Sebastiano; Angelini, Leonardo; Pellicoro, Mario; Hu, Kun; Ivanov, Plamen Ch.
2004-03-01
We investigate phase synchronization in EEG recordings from migraine patients. We use the analytic signal technique, based on the Hilbert transform, and find that migraine brains are characterized by enhanced alpha band phase synchronization in presence of visual stimuli. Our findings show that migraine patients have an overactive regulatory mechanism that renders them more sensitive to external stimuli.
Digital multi-channel stabilization of four-mode phase-sensitive parametric multicasting.
Liu, Lan; Tong, Zhi; Wiberg, Andreas O J; Kuo, Bill P P; Myslivets, Evgeny; Alic, Nikola; Radic, Stojan
2014-07-28
Stable four-mode phase-sensitive (4MPS) process was investigated as a means to enhance two-pump driven parametric multicasting conversion efficiency (CE) and signal to noise ratio (SNR). Instability of multi-beam, phase sensitive (PS) device that inherently behaves as an interferometer, with output subject to ambient induced fluctuations, was addressed theoretically and experimentally. A new stabilization technique that controls phases of three input waves of the 4MPS multicaster and maximizes CE was developed and described. Stabilization relies on digital phase-locked loop (DPLL) specifically was developed to control pump phases to guarantee stable 4MPS operation that is independent of environmental fluctuations. The technique also controls a single (signal) input phase to optimize the PS-induced improvement of the CE and SNR. The new, continuous-operation DPLL has allowed for fully stabilized PS parametric broadband multicasting, demonstrating CE improvement over 20 signal copies in excess of 10 dB.
NASA Astrophysics Data System (ADS)
Li, C.; Huang, X.; Cao, P.; Wang, J.; An, Q.
2018-03-01
RPC Super module (SM) detector assemblies are used for charged hadron identification in the Time-of-Flight (TOF) spectrometer at the Compressed Baryonic Matter (CBM) experiment. Each SM contains several multi-gap Resistive Plate Chambers (MRPCs) and provides up to 320 electronic channels in total for high-precision time measurements. Time resolution of the Time-to-Digital Converter (TDC) is required to be better than 20 ps. During mass production, the quality of each SM needs to be evaluated. In order to meet the requirements, the system clock signal as well as the trigger signal should be distributed precisely and synchronously to all electronics modules within the evaluation readout system. In this paper, a hierarchical clock and trigger distribution method is proposed for the quality evaluation of CBM-TOF SM detectors. In a first stage, the master clock and trigger module (CTM) allocated in a 6U PXI chassis distributes the clock and trigger signals to the slave CTM in the same chassis. In a second stage, the slave CTM transmits the clock and trigger signals to the TDC readout module (TRM) through one optical link. In a third stage, the TRM distributes the clock and trigger signals synchronously to 10 individual TDC boards. Laboratory test results show that the clock jitter at the third stage is less than 4 ps (RMS) and the trigger transmission latency from the master CTM to the TDC is about 272 ns with 11 ps (RMS) jitter. The overall performance complies well with the required specifications.
Directed Self-Organization of Polymer-Grafted Nanoparticles in Polymer Thin Films
NASA Astrophysics Data System (ADS)
Zhang, Ren
The controlled organization of nanoparticle (NP) constituents into superstructures of well-defined shape, composition and connectivity represents a continuing challenge in the development of novel hybrid materials for many technological applications. Surface modification of NPs with grafted polymer ligands has emerged as a versatile means to control the interaction and organization of particle constituents in polymer-matrix composite materials. In this study, by incorporating polymer-grafted nanoparticles (PGNPs) into polymeric thin films, we aim to understand and control the spatial organization of PGNPs through the interactions between polymer brush layer and matrix chains. As model systems, we investigate thermodynamic behaviors of polystyrene-tethered gold nanoparticles (denoted as AuPS) dispersed in polymer thin film matrices with identical and different chemical compositions (PS and PMMA, respectively), and evaluate the influence of external perturbation fields on directed organization of nanofillers. With the presence of unfavorable enthalpic interactions between grafted and free polymer chains (i.e. AuPS/ PMMA blend thin films), phase-separated structures are generated upon thermal annealing, characterized with morphologies ranging from discrete droplets to spinodal structures, which is consistent with composition-dependent classic binary polymer blends phase separation. The phase separation kinetics of AuPS/ PMMA blends exhibit distinct features compared to the parent PS/ PMMA homopolymer blends. We further illustrate phase-separated AuPS-rich domains can be directed into unidirectionally aligned anisotropic structures through soft-shear dynamic zone annealing (DZA-SS) process with tunable domain aspect ratios. To exert exquisite control over the shape, size and location of phase-separated PGNP domains, topographically patterned elastomer confinement is introduced to PGNP/ polymer blend thin films during thermal annealing. When the phase-separated lengthscale coincides with confined pattern dimension, long-range ordered submicron-sized AuPS domains are generated in PMMA matrices with dense and well-dispersed nanoparticle distribution. Furthermore, preferential segregation of AuPS nanoparticles at patterned mesa regions can be induced in PS matrices where enthalpic interactions are absent. This selective segregation is achieved due to the local perturbation of grafted chains when confined in a restricted space. The efficiency of this particle segregation process within patterned mesa-trench films can be tuned by changing the relative entropic confinement effects on grafted and matrix chains. This physical pattern directed PGNP organization strategy is applicable to versatile pattern geometries and nanoparticle compositions.
Quantifying phase synchronization using instances of Hilbert phase slips
NASA Astrophysics Data System (ADS)
Govindan, R. B.
2018-07-01
We propose to quantify phase synchronization between two signals, x(t) and y(t), by calculating variance in the Hilbert phase of y(t) at instances of phase slips exhibited by x(t). The proposed approach is tested on numerically simulated coupled chaotic Roessler systems and second order autoregressive processes. Furthermore we compare the performance of the proposed and original approaches using uterine electromyogram signals and show that both approaches yield consistent results A standard phase synchronization approach, which involves unwrapping the Hilbert phases (ϕ1(t) and ϕ2(t)) of the two signals and analyzing the variance in the | n ṡϕ1(t) - m ṡϕ2(t) | , mod 2 π, (n and m are integers), was used for comparison. The synchronization indexes obtained from the proposed approach and the standard approach agree reasonably well in all of the systems studied in this work. Our results indicate that the proposed approach, unlike the traditional approach, does not require the non-invertible transformations - unwrapping of the phases and calculation of mod 2 π and it can be used to reliably to quantify phase synchrony between two signals.
Ye, Cui-Ping; Feng, Jie; Li, Wen-Ying
2012-07-01
Coal structure, especially the macromolecular aromatic skeleton structure, has a strong influence on coke reactivity and coal gasification, so it is the key to grasp the macromolecular aromatic skeleton coal structure for getting the reasonable high efficiency utilization of coal. However, it is difficult to acquire their information due to the complex compositions and structure of coal. It has been found that the macromolecular aromatic network coal structure would be most isolated if small molecular of coal was first extracted. Then the macromolecular aromatic skeleton coal structure would be clearly analyzed by instruments, such as X-ray diffraction (XRD), fluorescence spectroscopy with synchronous mode (Syn-F), Gel permeation chromatography (GPC) etc. Based on the previous results, according to the stepwise fractional liquid extraction, two Chinese typical power coals, PS and HDG, were extracted by silica gel as stationary phase and acetonitrile, tetrahydrofuran (THF), pyridine and 1-methyl-2-pyrollidinone (NMP) as a solvent group for sequential elution. GPC, Syn-F and XRD were applied to investigate molecular mass distribution, condensed aromatic structure and crystal characteristics. The results showed that the size of aromatic layers (La) is small (3-3.95 nm) and the stacking heights (Lc) are 0.8-1.2 nm. The molecular mass distribution of the macromolecular aromatic network structure is between 400 and 1 130 amu, with condensed aromatic numbers of 3-7 in the structure units.
Synchronization properties of heterogeneous neuronal networks with mixed excitability type
NASA Astrophysics Data System (ADS)
Leone, Michael J.; Schurter, Brandon N.; Letson, Benjamin; Booth, Victoria; Zochowski, Michal; Fink, Christian G.
2015-03-01
We study the synchronization of neuronal networks with dynamical heterogeneity, showing that network structures with the same propensity for synchronization (as quantified by master stability function analysis) may develop dramatically different synchronization properties when heterogeneity is introduced with respect to neuronal excitability type. Specifically, we investigate networks composed of neurons with different types of phase response curves (PRCs), which characterize how oscillating neurons respond to excitatory perturbations. Neurons exhibiting type 1 PRC respond exclusively with phase advances, while neurons exhibiting type 2 PRC respond with either phase delays or phase advances, depending on when the perturbation occurs. We find that Watts-Strogatz small world networks transition to synchronization gradually as the proportion of type 2 neurons increases, whereas scale-free networks may transition gradually or rapidly, depending upon local correlations between node degree and excitability type. Random placement of type 2 neurons results in gradual transition to synchronization, whereas placement of type 2 neurons as hubs leads to a much more rapid transition, showing that type 2 hub cells easily "hijack" neuronal networks to synchronization. These results underscore the fact that the degree of synchronization observed in neuronal networks is determined by a complex interplay between network structure and the dynamical properties of individual neurons, indicating that efforts to recover structural connectivity from dynamical correlations must in general take both factors into account.
Vapor Phase Deposition Using Plasma Spray-PVD™
NASA Astrophysics Data System (ADS)
von Niessen, K.; Gindrat, M.; Refke, A.
2010-01-01
Plasma spray—physical vapor deposition (PS-PVD) is a low pressure plasma spray technology to deposit coatings out of the vapor phase. PS-PVD is a part of the family of new hybrid processes recently developed by Sulzer Metco AG (Switzerland) on the basis of the well-established low pressure plasma spraying (LPPS) technology. Included in this new process family are plasma spray—chemical vapor deposition (PS-CVD) and plasma spray—thin film (PS-TF) processes. In comparison to conventional vacuum plasma spraying and LPPS, these new processes use a high energy plasma gun operated at a work pressure below 2 mbar. This leads to unconventional plasma jet characteristics which can be used to obtain specific and unique coatings. An important new feature of PS-PVD is the possibility to deposit a coating not only by melting the feed stock material which builds up a layer from liquid splats, but also by vaporizing the injected material. Therefore, the PS-PVD process fills the gap between the conventional PVD technologies and standard thermal spray processes. The possibility to vaporize feedstock material and to produce layers out of the vapor phase results in new and unique coating microstructures. The properties of such coatings are superior to those of thermal spray and EB-PVD coatings. This paper reports on the progress made at Sulzer Metco to develop functional coatings build up from vapor phase of oxide ceramics and metals.
Remote Synchronization Reveals Network Symmetries and Functional Modules
NASA Astrophysics Data System (ADS)
Nicosia, Vincenzo; Valencia, Miguel; Chavez, Mario; Díaz-Guilera, Albert; Latora, Vito
2013-04-01
We study a Kuramoto model in which the oscillators are associated with the nodes of a complex network and the interactions include a phase frustration, thus preventing full synchronization. The system organizes into a regime of remote synchronization where pairs of nodes with the same network symmetry are fully synchronized, despite their distance on the graph. We provide analytical arguments to explain this result, and we show how the frustration parameter affects the distribution of phases. An application to brain networks suggests that anatomical symmetry plays a role in neural synchronization by determining correlated functional modules across distant locations.
Phase synchronization of neuronal noise in mouse hippocampal epileptiform dynamics.
Serletis, Demitre; Carlen, Peter L; Valiante, Taufik A; Bardakjian, Berj L
2013-02-01
Organized brain activity is the result of dynamical, segregated neuronal signals that may be used to investigate synchronization effects using sophisticated neuroengineering techniques. Phase synchrony analysis, in particular, has emerged as a promising methodology to study transient and frequency-specific coupling effects across multi-site signals. In this study, we investigated phase synchronization in intracellular recordings of interictal and ictal epileptiform events recorded from pairs of cells in the whole (intact) mouse hippocampus. In particular, we focused our analysis on the background noise-like activity (NLA), previously reported to exhibit complex neurodynamical properties. Our results show evidence for increased linear and nonlinear phase coupling in NLA across three frequency bands [theta (4-10 Hz), beta (12-30 Hz) and gamma (30-80 Hz)] in the ictal compared to interictal state dynamics. We also present qualitative and statistical evidence for increased phase synchronization in the theta, beta and gamma frequency bands from paired recordings of ictal NLA. Overall, our results validate the use of background NLA in the neurodynamical study of epileptiform transitions and suggest that what is considered "neuronal noise" is amenable to synchronization effects in the spatiotemporal domain.
Phase definition to assess synchronization quality of nonlinear oscillators
NASA Astrophysics Data System (ADS)
Freitas, Leandro; Torres, Leonardo A. B.; Aguirre, Luis A.
2018-05-01
This paper proposes a phase definition, named the vector field phase, which can be defined for systems with arbitrary finite dimension and is a monotonically increasing function of time. The proposed definition can properly quantify the dynamics in the flow direction, often associated with the null Lyapunov exponent. Numerical examples that use benchmark periodic and chaotic oscillators are discussed to illustrate some of the main features of the definition, which are that (i) phase information can be obtained either from the vector field or from a time series, (ii) it permits not only detection of phase synchronization but also quantification of it, and (iii) it can be used in the phase synchronization of very different oscillators.
Phase definition to assess synchronization quality of nonlinear oscillators.
Freitas, Leandro; Torres, Leonardo A B; Aguirre, Luis A
2018-05-01
This paper proposes a phase definition, named the vector field phase, which can be defined for systems with arbitrary finite dimension and is a monotonically increasing function of time. The proposed definition can properly quantify the dynamics in the flow direction, often associated with the null Lyapunov exponent. Numerical examples that use benchmark periodic and chaotic oscillators are discussed to illustrate some of the main features of the definition, which are that (i) phase information can be obtained either from the vector field or from a time series, (ii) it permits not only detection of phase synchronization but also quantification of it, and (iii) it can be used in the phase synchronization of very different oscillators.
Analysis of structural patterns in the brain with the complex network approach
NASA Astrophysics Data System (ADS)
Maksimenko, Vladimir A.; Makarov, Vladimir V.; Kharchenko, Alexander A.; Pavlov, Alexey N.; Khramova, Marina V.; Koronovskii, Alexey A.; Hramov, Alexander E.
2015-03-01
In this paper we study mechanisms of the phase synchronization in a model network of Van der Pol oscillators and in the neural network of the brain by consideration of macroscopic parameters of these networks. As the macroscopic characteristics of the model network we consider a summary signal produced by oscillators. Similar to the model simulations, we study EEG signals reflecting the macroscopic dynamics of neural network. We show that the appearance of the phase synchronization leads to an increased peak in the wavelet spectrum related to the dynamics of synchronized oscillators. The observed correlation between the phase relations of individual elements and the macroscopic characteristics of the whole network provides a way to detect phase synchronization in the neural networks in the cases of normal and pathological activity.
More About the Phase-Synchronized Enhancement Method
NASA Technical Reports Server (NTRS)
Jong, Jen-Yi
2004-01-01
A report presents further details regarding the subject matter of "Phase-Synchronized Enhancement Method for Engine Diagnostics" (MFS-26435), NASA Tech Briefs, Vol. 22, No. 1 (January 1998), page 54. To recapitulate: The phase-synchronized enhancement method (PSEM) involves the digital resampling of a quasi-periodic signal in synchronism with the instantaneous phase of one of its spectral components. This resampling transforms the quasi-periodic signal into a periodic one more amenable to analysis. It is particularly useful for diagnosis of a rotating machine through analysis of vibration spectra that include components at the fundamental and harmonics of a slightly fluctuating rotation frequency. The report discusses the machinery-signal-analysis problem, outlines the PSEM algorithms, presents the mathematical basis of the PSEM, and presents examples of application of the PSEM in some computational simulations.
Composition and structure of whey protein/gum arabic coacervates.
Weinbreck, F; Tromp, R H; de Kruif, C G
2004-01-01
Complex coacervation in whey protein/gum arabic (WP/GA) mixtures was studied as a function of three main key parameters: pH, initial protein to polysaccharide mixing ratio (Pr:Ps)(ini), and ionic strength. Previous studies had already revealed under which conditions a coacervate phase was obtained. This study is aimed at understanding how these parameters influence the phase separation kinetics, the coacervate composition, and the internal coacervate structure. At a defined (Pr:Ps)(ini), an optimum pH of complex coacervation was found (pH(opt)), at which the strength of electrostatic interaction was maximum. For (Pr:Ps)(ini) = 2:1, the phase separation occurred the fastest and the final coacervate volume was the largest at pH(opt) = 4.0. The composition of the coacervate phase was determined after 48 h of phase separation and revealed that, at pH(opt), the coacervate phase was the most concentrated. Varying the (Pr:Ps)(ini) shifted the pH(opt) to higher values when (Pr:Ps)(ini) was increased and to lower values when (Pr:Ps)(ini) was decreased. This phenomenon was due to the level of charge compensation of the WP/GA complexes. Finally, the structure of the coacervate phase was studied with small-angle X-ray scattering (SAXS). SAXS data confirmed that at pH(opt) the coacervate phase was dense and structured. Model calculations revealed that the structure factor of WP induced a peak at Q = 0.7 nm(-1), illustrating that the coacervate phase was more structured, inducing the stronger correlation length of WP molecules. When the pH was changed to more acidic values, the correlation peak faded away, due to a more open structure of the coacervate. A shoulder in the scattering pattern of the coacervates was visible at small Q. This peak was attributed to the presence of residual charges on the GA. The peak intensity was reduced when the strength of interaction was increased, highlighting a greater charge compensation of the polyelectrolyte. Finally, increasing the ionic strength led to a less concentrated, a more heterogeneous, and a less structured coacervate phase, induced by the screening of the electrostatic interactions.
Asynchronous inputs and flip-flop metastability in the CLAS trigger at CEBAF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doughty, D.C. Jr.; Lemon, S.; Bonneau, P.
1993-08-01
The impact of flip-flop metastability on the pipelined trigger for the CLAS detector at CEBAF has been studied. The authors find that the newest ECL flip-flops (ECLinPS) are much faster than older families (10H) at resolving the metastable condition. This will allow their use in systems with asynchronous inputs without an extra stage of synchronizing flip-flops.
NASA Astrophysics Data System (ADS)
Stauffer, Hans U.; Miller, Joseph D.; Slipchenko, Mikhail N.; Meyer, Terrence R.; Prince, Benjamin D.; Roy, Sukesh; Gord, James R.
2014-01-01
The hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps CARS) technique presents a promising alternative to either fs time-resolved or ps frequency-resolved CARS in both gas-phase thermometry and condensed-phase excited-state dynamics applications. A theoretical description of time-dependent CARS is used to examine this recently developed probe technique, and quantitative comparisons of the full time-frequency evolution show excellent accuracy in predicting the experimental vibrational CARS spectra obtained for two model systems. The interrelated time- and frequency-domain spectral signatures of gas-phase species produced by hybrid fs/ps CARS are explored with a focus on gas-phase N2 vibrational CARS, which is commonly used as a thermometric diagnostic of combusting flows. In particular, we discuss the merits of the simple top-hat spectral filter typically used to generate the ps-duration hybrid fs/ps CARS probe pulse, including strong discrimination against non-resonant background that often contaminates CARS signal. It is further demonstrated, via comparison with vibrational CARS results on a time-evolving solvated organic chromophore, that this top-hat probe-pulse configuration can provide improved spectral resolution, although the degree of improvement depends on the dephasing timescales of the observed molecular modes and the duration and timing of the narrowband final pulse. Additionally, we discuss the virtues of a frequency-domain Lorentzian probe-pulse lineshape and its potential for improving the hybrid fs/ps CARS technique as a diagnostic in high-pressure gas-phase thermometry applications.
Stauffer, Hans U; Miller, Joseph D; Slipchenko, Mikhail N; Meyer, Terrence R; Prince, Benjamin D; Roy, Sukesh; Gord, James R
2014-01-14
The hybrid femtosecond∕picosecond coherent anti-Stokes Raman scattering (fs∕ps CARS) technique presents a promising alternative to either fs time-resolved or ps frequency-resolved CARS in both gas-phase thermometry and condensed-phase excited-state dynamics applications. A theoretical description of time-dependent CARS is used to examine this recently developed probe technique, and quantitative comparisons of the full time-frequency evolution show excellent accuracy in predicting the experimental vibrational CARS spectra obtained for two model systems. The interrelated time- and frequency-domain spectral signatures of gas-phase species produced by hybrid fs∕ps CARS are explored with a focus on gas-phase N2 vibrational CARS, which is commonly used as a thermometric diagnostic of combusting flows. In particular, we discuss the merits of the simple top-hat spectral filter typically used to generate the ps-duration hybrid fs∕ps CARS probe pulse, including strong discrimination against non-resonant background that often contaminates CARS signal. It is further demonstrated, via comparison with vibrational CARS results on a time-evolving solvated organic chromophore, that this top-hat probe-pulse configuration can provide improved spectral resolution, although the degree of improvement depends on the dephasing timescales of the observed molecular modes and the duration and timing of the narrowband final pulse. Additionally, we discuss the virtues of a frequency-domain Lorentzian probe-pulse lineshape and its potential for improving the hybrid fs∕ps CARS technique as a diagnostic in high-pressure gas-phase thermometry applications.
NASA Astrophysics Data System (ADS)
Tavakkoli Estahbanat, A.; Dehghani, M.
2017-09-01
In interferometry technique, phases have been modulated between 0-2π. Finding the number of integer phases missed when they were wrapped is the main goal of unwrapping algorithms. Although the density of points in conventional interferometry is high, this is not effective in some cases such as large temporal baselines or noisy interferograms. Due to existing noisy pixels, not only it does not improve results, but also it leads to some unwrapping errors during interferogram unwrapping. In PS technique, because of the sparse PS pixels, scientists are confronted with a problem to unwrap phases. Due to the irregular data separation, conventional methods are sterile. Unwrapping techniques are divided in to path-independent and path-dependent in the case of unwrapping paths. A region-growing method which is a path-dependent technique has been used to unwrap PS data. In this paper an idea of EKF has been generalized on PS data. This algorithm is applied to consider the nonlinearity of PS unwrapping problem as well as conventional unwrapping problem. A pulse-pair method enhanced with singular value decomposition (SVD) has been used to estimate spectral shift from interferometric power spectral density in 7*7 local windows. Furthermore, a hybrid cost-map is used to manage the unwrapping path. This algorithm has been implemented on simulated PS data. To form a sparse dataset, A few points from regular grid are randomly selected and the RMSE of results and true unambiguous phases in presented to validate presented approach. The results of this algorithm and true unwrapped phases were completely identical.
Bistable synchronization modes in hydrodynamically coupled micro-rotors
NASA Astrophysics Data System (ADS)
Guo, Hanliang; Kanale, Anup; Fuerthauer, Sebastian; Kanso, Eva
2017-11-01
Cilia often beat in synchrony, and they may transition between different synchronization modes in the same cell type. For example, cilia in the mammalian brain ventricles are reported to periodically change their collective beat orientation, providing a cilia-based switch for redirecting the transport of cerebrospinal fluid. Experimental and theoretical evidences suggest that phase coordinations can be achieved solely via hydrodynamical interactions. However, the exact mechanisms responsible for transitioning between various synchronization modes remain illusive. Here, we use a theoretical model where each cilium is represented by a bead moving along a closed trajectory close to a no-slip surface. We investigate the emergent synchronization modes and their stability for various cilia-inspired force profiles. We observe distinct stable synchronization modes between two rotors, including a bistable regime where both in-phase and anti-phase synchronizations are stable. We then extend this analysis to an array of rotors where we demonstrate the dynamical formations of metachronal waves. These findings may help us to understand the origin of synchrony in biological and bio-inspired systems, and the mechanisms underlying transitions between different synchronization modes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Stephen F; Moore, James A
Systems and methods are described for carrier phase synchronization for improved AM and TV broadcast reception. A method includes synchronizing the phase of a carrier frequency of a broadcast signal with the phase of a remote reference frequency. An apparatus includes a receiver to detect the phase of a reference signal; a phase comparator coupled to the reference signal-phase receiver; a voltage controlled oscillator coupled to the phase comparator; and a phase-controlled radio frequency output coupled to the voltage controlled oscillator.
Potentials and Limits of Sar Permanent Scatterers In Ground Deformation Monitoring
NASA Astrophysics Data System (ADS)
Rocca, F.; Colesanti, C.; Ferretti, A.; Prati, C.
The Permanent Scatterers (PS) technique allows the identification of individual radar targets particularly suitable for SAR interferometric measurements. In fact, despite its remarkable potential, spaceborne SAR Differential Interferometry (DInSAR) has not been fully exploited as a reference tool for ground deformation mapping, due to the presence of atmospheric artefacts as well as geometrical and temporal phase decorrelation. Both drawbacks are overcome in a multi-image framework of interfer- ometric data (>25-30 images) jointly used in order to properly identify and exploit the subset of image pixels corresponding to privileged reflectors, the so-called Per- manent Scatterers. Provided that at least 3-4 PS/sqkm are available, accurate phase measurements carried out on the sparse PS grid allow one to compensate data for the atmospheric phase contributions. Average ground deformation rate as well as full dis- placement time series (both along the satellite Line of Sight, LOS) are estimated with millimetric accuracy on individual PS locations. The PS subset of image pixels can be thought of as a high density (100-400 PS/sqkm, in urban areas) "natural" geode- tic network. This study aims at discussing in detail potentials and limits of the PS approach in monitoring ground deformation phenomena characterised by a complex time non-uniform evolution (Non-Linear Motion, NLM). PS results highlighting sea- sonal displacement effects beneath San Jose (Santa Clara Valley, California) are going to be discussed. The deformation occurring there is related to the seasonal variation of the ground water level in the area delimited by the Silver Creek and the San Jose fault. The San Jose PS analysis is exploited as a significant case study to assess the main requirements for a successful detection of NLM phenomena (by means of PS), and to analyse their impact on the quality of results. Particular attention will be de- voted to the effect of irregularly sampled data and missing acquisitions. The strategies used in order to isolate the phase contribution relative to time non-uniform displace- ment phenomena from other phase terms (mainly atmospheric artefacts and residual topography) are going to be illustrated. Moreover, the main aspects to be considered envisaging a synergistic use of PS results and both GPS and optical levelling data are going to be outlined. Finally, attention will be paid to key issues to be taken into account for designing future SAR missions dedicated to detection and monitoring of ground deformation phenomena.
Phase Behavior of Binary Blends of AB+AC Block Copolymers with compatible B and C blocks
NASA Astrophysics Data System (ADS)
Pryamitsyn, Victor; Ganesan, Venkat
2012-02-01
Recently the experimental studies of phase behavior of binary blends of PS-b-P2VP and PS-b-PHS demonstrated an interesting effect: blends of symmetric PS-b-P2VP and shorter symmetric (PS-b-PHS) formed cylindrical HEX and spherical BCC phases, while each pure component formed lamellas. The miscibility of P2VP and PHS is caused by the hydrogen bonding between P2VP and PHS,which can be described as a negative Flory ?-parameter between P2VP and PHS. We developed a theory of the microphase segregation of AB+AC blends of diblock copolymers based on strong stretching theory. The main result of our theory is that in the copolymer brush-like layer formed by longer B chain and shorter C chains, the attraction between B and shorter C chains causes relative stretching of short C chains and compression of longer B chains. The latter manifests in an excessive bending force towards the grafting surface (BC|AA interface). Such bending force causes a transition from a symmetric lamella phase to a HEX cylinder or BCC spherical phases with the BC phase being a ``matrix'' component. In a blend of asymmetric BCC sphere forming copolymers (where B and C segments are the minor components), such bending force may unfold BCC spherical phase to a HEX cylinder phase, or even highly uneven lamella phases.
A Two-Phase Time Synchronization-Free Localization Algorithm for Underwater Sensor Networks.
Luo, Junhai; Fan, Liying
2017-03-30
Underwater Sensor Networks (UWSNs) can enable a broad range of applications such as resource monitoring, disaster prevention, and navigation-assistance. Sensor nodes location in UWSNs is an especially relevant topic. Global Positioning System (GPS) information is not suitable for use in UWSNs because of the underwater propagation problems. Hence, some localization algorithms based on the precise time synchronization between sensor nodes that have been proposed for UWSNs are not feasible. In this paper, we propose a localization algorithm called Two-Phase Time Synchronization-Free Localization Algorithm (TP-TSFLA). TP-TSFLA contains two phases, namely, range-based estimation phase and range-free evaluation phase. In the first phase, we address a time synchronization-free localization scheme based on the Particle Swarm Optimization (PSO) algorithm to obtain the coordinates of the unknown sensor nodes. In the second phase, we propose a Circle-based Range-Free Localization Algorithm (CRFLA) to locate the unlocalized sensor nodes which cannot obtain the location information through the first phase. In the second phase, sensor nodes which are localized in the first phase act as the new anchor nodes to help realize localization. Hence, in this algorithm, we use a small number of mobile beacons to help obtain the location information without any other anchor nodes. Besides, to improve the precision of the range-free method, an extension of CRFLA achieved by designing a coordinate adjustment scheme is updated. The simulation results show that TP-TSFLA can achieve a relative high localization ratio without time synchronization.
A Two-Phase Time Synchronization-Free Localization Algorithm for Underwater Sensor Networks
Luo, Junhai; Fan, Liying
2017-01-01
Underwater Sensor Networks (UWSNs) can enable a broad range of applications such as resource monitoring, disaster prevention, and navigation-assistance. Sensor nodes location in UWSNs is an especially relevant topic. Global Positioning System (GPS) information is not suitable for use in UWSNs because of the underwater propagation problems. Hence, some localization algorithms based on the precise time synchronization between sensor nodes that have been proposed for UWSNs are not feasible. In this paper, we propose a localization algorithm called Two-Phase Time Synchronization-Free Localization Algorithm (TP-TSFLA). TP-TSFLA contains two phases, namely, range-based estimation phase and range-free evaluation phase. In the first phase, we address a time synchronization-free localization scheme based on the Particle Swarm Optimization (PSO) algorithm to obtain the coordinates of the unknown sensor nodes. In the second phase, we propose a Circle-based Range-Free Localization Algorithm (CRFLA) to locate the unlocalized sensor nodes which cannot obtain the location information through the first phase. In the second phase, sensor nodes which are localized in the first phase act as the new anchor nodes to help realize localization. Hence, in this algorithm, we use a small number of mobile beacons to help obtain the location information without any other anchor nodes. Besides, to improve the precision of the range-free method, an extension of CRFLA achieved by designing a coordinate adjustment scheme is updated. The simulation results show that TP-TSFLA can achieve a relative high localization ratio without time synchronization. PMID:28358342
A 41 ps ASIC time-to-digital converter for physics experiments
NASA Astrophysics Data System (ADS)
Russo, Stefano; Petra, Nicola; De Caro, Davide; Barbarino, Giancarlo; Strollo, Antonio G. M.
2011-12-01
We present a novel Time-to-Digital (TDC) converter for physics experiments. Proposed TDC is based on a synchronous counter and an asynchronous fine interpolator. The fine part of the measurement is obtained using NORA inverters that provide improved resolution. A prototype IC was fabricated in 180 nm CMOS technology. Experimental measurements show that proposed TDC features 41 ps resolution associated with 0.35LSB differential non-linearity, 0.77LSB integral non-linearity and a negligible single shot precision. The whole dynamic range is equal to 18 μs. The proposed TDC is designed using a flash architecture that reduces dead time. Data reported in the paper show that our design is well suited for present and future particle physics experiments.
2007-09-01
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited WIRELESSLY NETWORKED...DIGITAL PHASED ARRAY: ANALYSIS AND DEVELOPMENT OF A PHASE SYNCHRONIZATION CONCEPT by Micael Grahn September 2007 Thesis Advisor...September 2007 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE Wirelessly Networked Digital Phased Array: Analysis and
State observer for synchronous motors
Lang, Jeffrey H.
1994-03-22
A state observer driven by measurements of phase voltages and currents for estimating the angular orientation of a rotor of a synchronous motor such as a variable reluctance motor (VRM). Phase voltages and currents are detected and serve as inputs to a state observer. The state observer includes a mathematical model of the electromechanical operation of the synchronous motor. The characteristics of the state observer are selected so that the observer estimates converge to the actual rotor angular orientation and velocity, winding phase flux linkages or currents.
2015-11-04
Kirtland AFB, NM 87117-5776 10. SPONSOR/MONITOR’S ACRONYM(S) AFRL /RVBYE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) AFRL -RV-PS-TR-2016-0012 12. DISTRIBUTION...DISTRIBUTION LIST DTIC/OCP 8725 John J. Kingman Rd, Suite 0944 Ft Belvoir, VA 22060-6218 1 cy AFRL /RVIL Kirtland AFB, NM 87117-5776 2 cys Official... AFRL -RV-PS- TR-2016-0012 AFRL -RV-PS- TR-2016-0012 TOWARD UNIFIED CORRECTION OF REGIONAL PHASES FOR AMPLITUDE AND TRAVEL TIME EFFECTS
2015-11-04
Kirtland AFB, NM 87117-5776 10. SPONSOR/MONITOR’S ACRONYM(S) AFRL /RVBYE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) AFRL -RV-PS-TR-2016-0012 12. DISTRIBUTION...DISTRIBUTION LIST DTIC/OCP 8725 John J. Kingman Rd, Suite 0944 Ft Belvoir, VA 22060-6218 1 cy AFRL /RVIL Kirtland AFB, NM 87117-5776 2 cys Official... AFRL -RV-PS- TR-2016-0012 AFRL -RV-PS- TR-2016-0012 TOWARD UNIFIED CORRECTION OF REGIONAL PHASES FOR AMPLITUDE AND TRAVEL TIME EFFECTS
Anticipated and zero-lag synchronization in motifs of delay-coupled systems
NASA Astrophysics Data System (ADS)
Mirasso, Claudio R.; Carelli, Pedro V.; Pereira, Tiago; Matias, Fernanda S.; Copelli, Mauro
2017-11-01
Anticipated and zero-lag synchronization have been observed in different scientific fields. In the brain, they might play a fundamental role in information processing, temporal coding and spatial attention. Recent numerical work on anticipated and zero-lag synchronization studied the role of delays. However, an analytical understanding of the conditions for these phenomena remains elusive. In this paper, we study both phenomena in systems with small delays. By performing a phase reduction and studying phase locked solutions, we uncover the functional relation between the delay, excitation and inhibition for the onset of anticipated synchronization in a sender-receiver-interneuron motif. In the case of zero-lag synchronization in a chain motif, we determine the stability conditions. These analytical solutions provide an excellent prediction of the phase-locked regimes of Hodgkin-Huxley models and Roessler oscillators.
Sasaki, Takuma; Kakesu, Izumi; Mitsui, Yusuke; Rontani, Damien; Uchida, Atsushi; Sunada, Satoshi; Yoshimura, Kazuyuki; Inubushi, Masanobu
2017-10-16
We experimentally achieve common-signal-induced synchronization in two photonic integrated circuits with short external cavities driven by a constant-amplitude random-phase light. The degree of synchronization can be controlled by changing the optical feedback phase of the two photonic integrated circuits. The change in the optical feedback phase leads to a significant redistribution of the spectral energy of optical and RF spectra, which is a unique characteristic of PICs with the short external cavity. The matching of the RF and optical spectra is necessary to achieve synchronization between the two PICs, and stable synchronization can be obtained over an hour in the presence of optical feedback. We succeed in generating information-theoretic secure keys and achieving the final key generation rate of 184 kb/s using the PICs.
NASA Astrophysics Data System (ADS)
Palagummi, Sri Vikram; Landis, Forrest A.; Chiang, Martin Y. M.
2018-03-01
An instrumentation capable of simultaneously determining degree of conversion (DC), polymerization stress (PS), and polymerization exotherm (PE) in real time was introduced to self-curing bone cements. This comprises the combination of an in situ high-speed near-infrared spectrometer, a cantilever-beam instrument with compliance-variable feature, and a microprobe thermocouple. Two polymethylmethacrylate-based commercial bone cements, containing essentially the same raw materials but differ in their viscosity for orthopedic applications, were used to demonstrate the applicability of the instrumentation. The results show that for both the cements studied the final DC was marginally different, the final PS was different at the low compliance, the peak of the PE was similar, and their polymerization rates were significantly different. Systematic variation of instrumental compliance for testing reveals differences in the characteristics of PS profiles of both the cements. This emphasizes the importance of instrumental compliance in obtaining an accurate understanding of PS evaluation. Finally, the key advantage for the simultaneous measurements is that these polymerization properties can be correlated directly, thus providing higher measurement confidence and enables a more in-depth understanding of the network formation process.
Onojima, Takayuki; Goto, Takahiro; Mizuhara, Hiroaki; Aoyagi, Toshio
2018-01-01
Synchronization of neural oscillations as a mechanism of brain function is attracting increasing attention. Neural oscillation is a rhythmic neural activity that can be easily observed by noninvasive electroencephalography (EEG). Neural oscillations show the same frequency and cross-frequency synchronization for various cognitive and perceptual functions. However, it is unclear how this neural synchronization is achieved by a dynamical system. If neural oscillations are weakly coupled oscillators, the dynamics of neural synchronization can be described theoretically using a phase oscillator model. We propose an estimation method to identify the phase oscillator model from real data of cross-frequency synchronized activities. The proposed method can estimate the coupling function governing the properties of synchronization. Furthermore, we examine the reliability of the proposed method using time-series data obtained from numerical simulation and an electronic circuit experiment, and show that our method can estimate the coupling function correctly. Finally, we estimate the coupling function between EEG oscillation and the speech sound envelope, and discuss the validity of these results.
NASA Astrophysics Data System (ADS)
Jia, Chenglai; Shastri, Bhavin J.; Abdukerim, Nurmemet; Rochette, Martin; Prucnal, Paul R.; Saad, Mohammed; Chen, Lawrence R.
2016-11-01
Dual-band fiber lasers are emerging as a promising technology to penetrate new industrial and medical applications from their dual-band properties, in addition to providing compactness and environmental robustness from the waveguide structure. Here, we demonstrate the use of a common graphene saturable absorber and a single gain medium (Tm3+:ZBLAN fiber) to implement (1) a dual-band fiber ring laser with synchronized Q-switched pulses at wavelengths of 1480 nm and 1840 nm, and (2) a dual-band fiber linear laser with synchronized mode-locked pulses at wavelengths of 1480 nm and 1845 nm. Q-switched operation at 1480 nm and 1840 nm is achieved with a synchronized repetition rate from 20 kHz to 40.5 kHz. For synchronous mode-locked operation, pulses with full-width at half maximum durations of 610 fs and 1.68 ps at wavelengths of 1480 nm and 1845 nm, respectively, are obtained at a repetition rate of 12.3 MHz. These dual-band pulsed sources with an ultra-broadband wavelength separation of ~360 nm will add new capabilities in applications including optical sensing, spectroscopy, and communications.
Jia, Chenglai; Shastri, Bhavin J; Abdukerim, Nurmemet; Rochette, Martin; Prucnal, Paul R; Saad, Mohammed; Chen, Lawrence R
2016-11-02
Dual-band fiber lasers are emerging as a promising technology to penetrate new industrial and medical applications from their dual-band properties, in addition to providing compactness and environmental robustness from the waveguide structure. Here, we demonstrate the use of a common graphene saturable absorber and a single gain medium (Tm 3+ :ZBLAN fiber) to implement (1) a dual-band fiber ring laser with synchronized Q-switched pulses at wavelengths of 1480 nm and 1840 nm, and (2) a dual-band fiber linear laser with synchronized mode-locked pulses at wavelengths of 1480 nm and 1845 nm. Q-switched operation at 1480 nm and 1840 nm is achieved with a synchronized repetition rate from 20 kHz to 40.5 kHz. For synchronous mode-locked operation, pulses with full-width at half maximum durations of 610 fs and 1.68 ps at wavelengths of 1480 nm and 1845 nm, respectively, are obtained at a repetition rate of 12.3 MHz. These dual-band pulsed sources with an ultra-broadband wavelength separation of ~360 nm will add new capabilities in applications including optical sensing, spectroscopy, and communications.
Synchronization of EEG activity in patients with bipolar disorder
NASA Astrophysics Data System (ADS)
Panischev, O. Yu; Demin, S. A.; Muhametshin, I. G.; Demina, N. Yu
2015-12-01
In paper we apply the method based on the Flicker-Noise Spectroscopy (FNS) to determine the differences in frequency-phase synchronization of the cortical electroencephalographic (EEG) activities in patients with bipolar disorder (BD). We found that for healthy subjects the frequency-phase synchronization of EEGs from long-range electrodes was significantly better for BD patients. In BD patients a high synchronization of EEGs was observed only for short-range electrodes. Thus, the FNS is a simple graphical method for qualitative analysis can be applied to identify the synchronization effects in EEG activity and, probably, may be used for the diagnosis of this syndrome.
High-throughput synchronization of mammalian cell cultures by spiral microfluidics.
Lee, Wong Cheng; Bhagat, Ali Asgar S; Lim, Chwee Teck
2014-01-01
The development of mammalian cell cycle synchronization techniques has greatly advanced our understanding of many cellular regulatory events and mechanisms specific to different phases of the cell cycle. In this chapter, we describe a high-throughput microfluidic-based approach for cell cycle synchronization. By exploiting the relationship between cell size and its phase in the cell cycle, large numbers of synchronized cells can be obtained by size fractionation in a spiral microfluidic channel. Protocols for the synchronization of primary cells such as mesenchymal stem cells, and immortal cell lines such as Chinese hamster ovarian cells (CHO-CD36) and HeLa cells are provided as examples.
Nonlinear simulations of particle source effects on edge localized mode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, J.; Tang, C. J.; Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064
2015-12-15
The effects of particle source (PS) with different intensities and located positions on Edge Localized Mode (ELM) are systematically studied with BOUT++ code. The results show the ELM size strongly decreases with increasing the PS intensity once the PS is located in the middle or bottom of the pedestal. The effects of PS on ELM depend on the located position of PS. When it is located at the top of the pedestal, peeling-ballooning (P-B) modes can extract more free energy from the pressure gradient and grow up to be a large filament at the initial crash phase and the broadeningmore » of mode spectrum can be suppressed by PS, which leads to more energy loss. When it is located in the middle or bottom of the pedestal, the extraction of free energy by P-B modes can be suppressed, and a small filament is generated. During the turbulence transport phase, the broader mode spectrum suppresses the turbulence transport when PS is located in the middle, while the zonal flow plays an important role in damping the turbulence transport when PS is located at the bottom.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryson, Kyle C.; Lobling, Tina I.; Muller, Axel H. E.
Using ternary blends of polystyrene (PS), poly(methyl methacrylate) (PMMA), and Janus particles (JPs) with symmetric PS and PMMA hemispheres, we demonstrate the stabilization of dispersed and bicontinuous phase-separated morphologies by the interfacial adsorption of Janus particles during demixing upon solvent removal. The resulting blend morphology could be varied by changing the blend composition and JP loading. Increasing particle loading decreased the size of phase-separated domains, while altering the mixing ratio of the PS/PMMA homopolymers produced morphologies ranging from PMMA droplets in a PS matrix to PS droplets in a PMMA matrix. Notably, bicontinuous morphologies were obtained at intermediate blend compositions,more » marking the first report of highly continuous domains obtained through demixing in a polymer blend compatibilized by Janus particles. The JPs were found to assemble in a densely packed monolayer at the interface, allowing for the stabilization of bicontinuous morphologies in films above the glass transition temperature by inhibiting coarsening and coalescence of the phase-separated domains. In conclusion, the rate of solvent evaporation from the drop-cast films and the molecular weights of the homopolymers were found to greatly affect blend morphology.« less
Strongly aligned gas-phase molecules at free-electron lasers
Kierspel, Thomas; Wiese, Joss; Mullins, Terry; ...
2015-09-16
Here, we demonstrate a novel experimental implementation to strongly align molecules at full repetition rates of free-electron lasers. We utilized the available in-house laser system at the coherent x-ray imaging beamline at the linac coherent light source. Chirped laser pulses, i.e., the direct output from the regenerative amplifier of the Ti:Sa chirped pulse amplification laser system, were used to strongly align 2, 5-diiodothiophene molecules in a molecular beam. The alignment laser pulses had pulse energies of a few mJ and a pulse duration of 94 ps. A degree of alignment ofmore » $$\\langle {\\mathrm{cos}}^{2}{\\theta }_{2{\\rm{D}}}\\rangle =0.85$$ was measured, limited by the intrinsic temperature of the molecular beam rather than by the available laser system. With the general availability of synchronized chirped-pulse-amplified near-infrared laser systems at short-wavelength laser facilities, our approach allows for the universal preparation of molecules tightly fixed in space for experiments with x-ray pulses.« less
A versatile small form factor twisted-pair TFC FMC for MTCA AMCs
NASA Astrophysics Data System (ADS)
Meder, L.; Lebedev, J.; Becker, J.
2017-03-01
In continuous readout systems of particle physics experiments, the provision of a common clock and time reference and the distribution of critical low latency messages to the processing and fronted layers of the readout are crucial tasks. In the context of the Compressed Baryonic Matter (CBM) experiment, a versatile small form factor Timing and Fast-Control (TFC) interfacing FPGA Mezzanine Card (FMC) was developed, offering bidirectional twisted-pair (TP) links for the communication between TFC nodes. Also a versatile clocking including voltage controlled oscillators and a connection to the telecommunication clock lines of mTCA crates are available. Being designed for both TFC Master and Slaves, the card allows rapid system developments without additional Slave hardware circuits. Measurements show that it is possible to transmit over cable lengths of 25 m at a rate of 240 Mbit/s for all data channels simultaneously. A TFC Master-Slave system using two of these cards can be synchronized with a precision of ±10 ps to an user-defined phase setpoint.
NASA Astrophysics Data System (ADS)
Duan, Lian; Makita, Shuichi; Yamanari, Masahiro; Lim, Yiheng; Yasuno, Yoshiaki
2011-08-01
A Monte-Carlo-based phase retardation estimator is developed to correct the systematic error in phase retardation measurement by polarization sensitive optical coherence tomography (PS-OCT). Recent research has revealed that the phase retardation measured by PS-OCT has a distribution that is neither symmetric nor centered at the true value. Hence, a standard mean estimator gives us erroneous estimations of phase retardation, and it degrades the performance of PS-OCT for quantitative assessment. In this paper, the noise property in phase retardation is investigated in detail by Monte-Carlo simulation and experiments. A distribution transform function is designed to eliminate the systematic error by using the result of the Monte-Carlo simulation. This distribution transformation is followed by a mean estimator. This process provides a significantly better estimation of phase retardation than a standard mean estimator. This method is validated both by numerical simulations and experiments. The application of this method to in vitro and in vivo biological samples is also demonstrated.
Seismic receiver function interpretation: Ps splitting or anisotropic underplating?
NASA Astrophysics Data System (ADS)
Liu, Z.; Park, J. J.
2016-12-01
Crustal anisotropy is crucial to understanding the evolutionary history of Earth's lithosphere. Shear-wave splitting of Moho P-to-s converted phases in receiver functions has often been used to infer crustal anisotropy. In addition to estimating birefringence directly, the harmonic variations of Moho Ps phases in delay times can be used to infer splitting parameters of averaged anisotropy in the crust. However, crustal anisotropy may localize at various levels within the crust due to complex deformational processes. Layered anisotropy requires careful investigation of the distribution of anisotropy before interpreting Moho Ps splitting. In this study, we show results from stations ARU in Russia, KIP in Hawaiian Islands and LSA in Tibetan Plateau, where layered anisotropy is well constrained by intra-crust Ps conversions at high frequencies using harmonic decomposition of multiple-taper correlation receiver functions. Anisotropic velocity models are inferred by forward-modeling decomposed RF waveforms. Our results of ARU and KIP show that the harmonic behavior of Moho Ps phases can be explained by a uniformly anisotropic crust model at lower cut-off frequencies, but higher-resolution RF-signals reveal a thin, highly anisotropic layer at the base of the crust. Station LSA tells a similar story with a twist: a modest Ps birefringence is revealed at high frequencies to stem from multiple thin (5-10-km) layers of localized anisotropy within the middle crust, but no strongly-sheared basal layer is inferred. We suggest that the harmonic variation of Moho Ps phases should always be investigated as a result of anisotropic layering using RFs with frequency content above 1Hz, rather than simply reporting averaged anisotropy of the whole crust.
Gaynor, P M; Greenberg, M L
1992-01-01
CDP-diacylglycerol (CDP-DG) is an important branchpoint intermediate in eucaryotic phospholipid biosynthesis and could be a key regulatory site in phospholipid metabolism. Therefore, we examined the effects of growth phase, phospholipid precursors, and the disruption of phosphatidylcholine (PC) synthesis on the membrane-associated phospholipid biosynthetic enzymes CDP-DG synthase, phosphatidylglycerolphosphate (PGP) synthase, phosphatidylinositol (PI) synthase, and phosphatidylserine (PS) synthase in cell extracts of the fission yeast Schizosaccharomyces pombe. In complete synthetic medium containing inositol, maximal expression of CDP-DG synthase, PGP synthase, PI synthase, and PS synthase in wild-type cells occurred in the exponential phase of growth and decreased two- to fourfold in the stationary phase of growth. In cells starved for inositol, this decrease in PGP synthase, PI synthase, and PS synthase expression was not observed. Starvation for inositol resulted in a twofold derepression of PGP synthase and PS synthase expression, while PI synthase expression decreased initially and then remained constant. Upon the addition of inositol to inositol-starved cells, there was a rapid and continued increase in PI synthase expression. We examined expression of these enzymes in cho2 and cho1 mutants, which are blocked in the methylation pathway for synthesis of PC. Choline starvation resulted in a decrease in PS synthase and CDP-DG synthase expression in cho1 but not cho2 cells. Expression of PGP synthase and PI synthase was not affected by choline starvation. Inositol starvation resulted in a 1.7-fold derepression of PGP synthase expression in cho2 but not cho1 cells when PC was synthesized. PS synthase expression was not depressed, while CDP-DG synthase and PI synthase expression decreased in cho2 and cho1 cells in the absence of inositol. These results demonstrate that (i) CDP-DG synthase, PGP synthase, PI synthase, and PS synthase are similarly regulated by growth phase; (ii) inositol affects the expression of PGP synthase, PI synthase, and PS synthase; (iii) disruption of the methylation pathway results in aberrant patterns of regulation of growth phase and phospholipid precursors. Important differences between S. pombe and Saccharomyces cerevisiae with regard to regulation of these enzymes are discussed. PMID:1324908
NASA Astrophysics Data System (ADS)
Hramov, Alexander E.; Kharchenko, Alexander A.; Makarov, Vladimir V.; Khramova, Marina V.; Koronovskii, Alexey A.; Pavlov, Alexey N.; Dana, Syamal K.
2016-04-01
In the paper we study the mechanisms of phase synchronization in the adaptive model network of Kuramoto oscillators and the neural network of brain by consideration of the integral characteristics of the observed networks signals. As the integral characteristics of the model network we consider the summary signal produced by the oscillators. Similar to the model situation we study the ECoG signal as the integral characteristic of neural network of the brain. We show that the establishment of the phase synchronization results in the increase of the peak, corresponding to synchronized oscillators, on the wavelet energy spectrum of the integral signals. The observed correlation between the phase relations of the elements and the integral characteristics of the whole network open the way to detect the size of synchronous clusters in the neural networks of the epileptic brain before and during seizure.
Structural and Na-ion conduction characteristics of Na 3PS xSe 4–x
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bo, Shou -Hang; Wang, Yan; Ceder, Gerbrand
The recent discovery of the isostructrual cubic Na 3PS 4 and Na 3PSe 4 as fast Na-ion conductors provided a general structural framework for the exploration of new sodium superionic conductors. In this work, we systematically investigated the structures and ionic conduction characteristics of a series of compounds with the general chemical formula of Na 3PS xSe 4–x. Synthesis of Na 3PS 4 under different conditions (e.g., temperature, reaction vessel, mass of the precursors) reveals the reactivity of the precursors with the reaction tubes, producing different polymorphs. X-ray diffraction studies on the solid solution phases Na 3PS xSe 4–x identifiedmore » a tetragonal-to-cubic phase transition with increasing Se concentration. This observation is consistent with the computed stability of the tetragonal and cubic polymorphs, where the energy difference between the two polymorphs becomes very close to zero in Se-rich compositions. Furthermore, ab initio molecular dynamic simulations suggest that the fast Na-ion conduction in Na 3PS xSe 4–x may not be causally related with the symmetry or the composition of these phases. The formation of defects, instead, enables fast Na-ion conduction in this class of materials.« less
Structural and Na-ion conduction characteristics of Na 3 PS x Se 4-x
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bo, Shou-Hang; Wang, Yan; Ceder, Gerbrand
The recent discovery of the isostructrual cubic Na 3PS 4 and Na 3PSe 4 as fast Na-ion conductors provided a general structural framework for the exploration of new sodium superionic conductors. In this work, we systematically investigated the structures and ionic conduction characteristics of a series of compounds with the general chemical formula of Na 3PS xSe 4-x. Synthesis of Na 3PS 4 under different conditions (e.g., temperature, reaction vessel, mass of the precursors) reveals the reactivity of the precursors with the reaction tubes, producing different polymorphs. X-ray diffraction studies on the solid solution phases Na 3PS xSe 4-x more » identified a tetragonal-to-cubic phase transition with increasing Se concentration. This observation is consistent with the computed stability of the tetragonal and cubic polymorphs, where the energy difference between the two polymorphs becomes very close to zero in Se-rich compositions. Furthermore, ab initio molecular dynamic simulations suggest that the fast Na-ion conduction in Na 3PS xSe 4-x may not be causally related with the symmetry or the composition of these phases. The formation of defects, instead, enables fast Na-ion conduction in this class of materials.« less
A Facile Method to Fabricate Double Gyroid as A Polymer Template for Nanohybrids
NASA Astrophysics Data System (ADS)
Wang, Hsiao-Fang; Ho, Rong-Ming
2015-03-01
Here, we suggest a facile method to acquire double gyroid (DG) phase from the self-assembly of chiral block copolymers (BCPs*), polystyrene- b-poly(L-lactide) (PS-PLLA). A wide region for the formation of DG can be found in the phase diagram of the BCPs*, suggesting that helical phase (H*) from the self-assembly of BCPs* can serve as a stepping stone for the formation of the DG due to an easy path for order-order transition from two-dimensional to three-dimensional (network) structure. Moreover, the order-order transition from metastable H* to stable DG can be expedited by blending the PS-PLLA with compatible entity. Moreover, PS-PLLA blends are prepared by using styrene oligomer (S) to fine-tune the morphologies of the blends at which the molecular weight ratio of the S and compatible PS block (r) is less than 0.1. Owing to the use of the low-molecular-weight oligomer, the increase of BCP chain mobility in the blends significantly reduces the transformation time for the order-order transition from H* to DG. Consequently, nanoporous gyroid SiO2 can be fabricated using hydrolyzed PS-PLLA blends as a template for sol-gel reaction followed by removal of the PS matrix.
Structural and Na-ion conduction characteristics of Na 3PS xSe 4–x
Bo, Shou -Hang; Wang, Yan; Ceder, Gerbrand
2016-05-19
The recent discovery of the isostructrual cubic Na 3PS 4 and Na 3PSe 4 as fast Na-ion conductors provided a general structural framework for the exploration of new sodium superionic conductors. In this work, we systematically investigated the structures and ionic conduction characteristics of a series of compounds with the general chemical formula of Na 3PS xSe 4–x. Synthesis of Na 3PS 4 under different conditions (e.g., temperature, reaction vessel, mass of the precursors) reveals the reactivity of the precursors with the reaction tubes, producing different polymorphs. X-ray diffraction studies on the solid solution phases Na 3PS xSe 4–x identifiedmore » a tetragonal-to-cubic phase transition with increasing Se concentration. This observation is consistent with the computed stability of the tetragonal and cubic polymorphs, where the energy difference between the two polymorphs becomes very close to zero in Se-rich compositions. Furthermore, ab initio molecular dynamic simulations suggest that the fast Na-ion conduction in Na 3PS xSe 4–x may not be causally related with the symmetry or the composition of these phases. The formation of defects, instead, enables fast Na-ion conduction in this class of materials.« less
NASA Astrophysics Data System (ADS)
Li, Bing-Wei; Cao, Xiao-Zhi; Fu, Chenbo
2017-12-01
Many biological and chemical systems could be modeled by a population of oscillators coupled indirectly via a dynamical environment. Essentially, the environment by which the individual element communicates with each other is heterogeneous. Nevertheless, most of previous works considered the homogeneous case only. Here we investigated the dynamical behaviors in a population of spatially distributed chaotic oscillators immersed in a heterogeneous environment. Various dynamical synchronization states (such as oscillation death, phase synchronization, and complete synchronized oscillation) as well as their transitions were explored. In particular, we uncovered a non-traditional quorum sensing transition: increasing the population density leaded to a transition from oscillation death to synchronized oscillation at first, but further increasing the density resulted in degeneration from complete synchronization to phase synchronization or even from phase synchronization to desynchronization. The underlying mechanism of this finding was attributed to the dual roles played by the population density. What's more, by treating the environment as another component of the oscillator, the full system was then effectively equivalent to a locally coupled system. This fact allowed us to utilize the master stability functions approach to predict the occurrence of complete synchronization oscillation, which agreed with that from the direct numerical integration of the system. The potential candidates for the experimental realization of our model were also discussed.
NASA Astrophysics Data System (ADS)
Pantaleone, James
2002-10-01
Synchronization is a common phenomenon in physical and biological systems. We examine the synchronization of two (and more) metronomes placed on a freely moving base. The small motion of the base couples the pendulums causing synchronization. The synchronization is generally in-phase, with antiphase synchronization occurring only under special conditions. The metronome system provides a mechanical realization of the popular Kuramoto model for synchronization of biological oscillators, and is excellent for classroom demonstrations and an undergraduate physics lab.
Asynchronous inputs and flip-flop metastability in the CLAS trigger at CEBAF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dave Doughty; S. Lemon; P. Bonneau
1992-10-01
The impact of flip-flop metastability on the pipelined trigger for the CLAS detector at CEBAF (Continuous Electron Beam Accelerator Facility) has been studied. It is found that the newest ECL (emitter coupled logic) flip-flops (ECLinPS) are much faster than older families at resolving the metastable condition. This will allow their use in systems with asynchronous inputs without an extra stage of synchronizing flip-flops.
NASA Astrophysics Data System (ADS)
Henry, Olivier; Raffestin, Didier; Bretheau, Dominique; Luttmann, Michel; Graillot, Herve; Ferri, Michel; Seguineau, Frederic; Bar, Emmanuel; Patissou, Loic; Canal, Philippe; Sautarel, Françoise; Tranquille-Marques, Yves
2015-11-01
The LMJ (Laser mega Joule) facility at the CESTA site (Aquitaine, France) is a tool designed to deliver up to 1.2 MJ at 351 nm. The experiment system will include plasma diagnostics: UV and X energy balances, imagers (Streak and stripe camera, CCD), spectrometers, and a Visar/pyrometer. The facility must be able to deliver, within the hour following the shot, all the results of the plasma diagnostics, alignment images and laser diagnostic measurements. Part of the end of 2014 was devoted to the qualification of system pointing on target and synchronization within and between beams. The shots made with one chain (divided in 2 quads - 8 laser beams) have achieved 50 μm of misalignment accuracy and a synchronization accuracy in the order of 50 ps. The performances achieved for plasma diagnostic (in the order of less 100 μm of alignment and timing accuracy less than 150 ps) comply with expectations. At the same time the first automatic sequences were tested. They allowed a shot on target every 6h:30 and in some case twice a day by reducing preparation actions, leading to a sequence of 4h:00. These shooting sequences are managed by an operating team of 7 people helped by 3 people for security aspects.
First experiment on LMJ facility: pointing and synchronisation qualification
NASA Astrophysics Data System (ADS)
Henry, Olivier; Raffestin, Didier; Bretheau, Dominique; Luttmann, Michel; Graillot, Herve; Ferri, Michel; Seguineau, Frederic; Bar, Emmanuel; Patissou, Loic; Canal, Philippe; Sautarel, Franöise; Tranquille-Marques, Yves
2017-10-01
The LMJ (Laser mega Joule) facility at the CESTA site (Aquitaine, France) is a tool designed to deliver up to 1.2 MJ at 351 nm for plasma experiments. The experiment system will include 11 diagnostics: UV and X energy balances, imagers (Streak and stripe camera, CCD), spectrometers, and a Visar/pyrometer. The facility must be able to deliver, within the hour following the shot, all the results of the plasma diagnostics, alignment images and laser diagnostic measurements. These results have to be guaranteed in terms of conformity to the request and quality of measurement. The end of 2016 was devoted to the qualification of system pointing on target and synchronization within and between beams. The shots made with two chains (divided in 4 quads - 8 laser beams) have achieved 50 µm of misalignment accuracy (chain and quad channel) and a synchronization accuracy in the order of 50 ps . The performances achieved for plasma diagnostic (in the order of less 100 µm of alignment and timing accuracy less than 150 ps) comply with expectations. At the same time the first automatic sequences were tested. They allowed a shot on target every 6h:30 and in some case twice a day by reducing preparation actions, leading to a sequence of 4h:00.
Sensorless sliding mode observer for a five-phase permanent magnet synchronous motor drive.
Hosseyni, Anissa; Trabelsi, Ramzi; Mimouni, Med Faouzi; Iqbal, Atif; Alammari, Rashid
2015-09-01
This paper deals with the sensorless vector controlled five-phase permanent magnet synchronous motor (PMSM) drive based on a sliding mode observer (SMO). The observer is designed considering the back electromotive force (EMF) of five-phase permanent magnet synchronous motor. The SMO structure and design are illustrated. Stability of the proposed observer is demonstrated using Lyapunov stability criteria. The proposed strategy is asymptotically stable in the context of Lyapunov theory. Simulated results on a five-phase PMSM drive are displayed to validate the feasibility and the effectiveness of the proposed control strategy. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
GENERAL: A Possible Population-Driven Phase Transition in Cicada Chorus
NASA Astrophysics Data System (ADS)
Gu, Si-Yuan; Jin, Yu-Liang; Zhao, Xiao-Xue; Huang, Ji-Ping
2009-06-01
We investigate the collective synchronization of cicada chirping. Using both experimental and phenomenological numerical techniques, here we show that the onset of a periodic two-state acoustic synchronous behavior in cicada chorus depends on a critical size of population Nc = 21, above which a typical chorus state appears periodically with a 30 second-silence state in between, and further clarify its possibility concerning a new class of phase transition, which is unusually driven by population. This work has relevance to acoustic synchronization and to general physics of phase transition.
NASA Astrophysics Data System (ADS)
Quian Quiroga, R.; Kraskov, A.; Kreuz, T.; Grassberger, P.
2002-04-01
We study the synchronization between left and right hemisphere rat electroencephalographic (EEG) channels by using various synchronization measures, namely nonlinear interdependences, phase synchronizations, mutual information, cross correlation, and the coherence function. In passing we show a close relation between two recently proposed phase synchronization measures and we extend the definition of one of them. In three typical examples we observe that except mutual information, all these measures give a useful quantification that is hard to be guessed beforehand from the raw data. Despite their differences, results are qualitatively the same. Therefore, we claim that the applied measures are valuable for the study of synchronization in real data. Moreover, in the particular case of EEG signals their use as complementary variables could be of clinical relevance.
Multivariate singular spectrum analysis and the road to phase synchronization
NASA Astrophysics Data System (ADS)
Groth, Andreas; Ghil, Michael
2010-05-01
Singular spectrum analysis (SSA) and multivariate SSA (M-SSA) are based on the classical work of Kosambi (1943), Loeve (1945) and Karhunen (1946) and are closely related to principal component analysis. They have been introduced into information theory by Bertero, Pike and co-workers (1982, 1984) and into dynamical systems analysis by Broomhead and King (1986a,b). Ghil, Vautard and associates have applied SSA and M-SSA to the temporal and spatio-temporal analysis of short and noisy time series in climate dynamics and other fields in the geosciences since the late 1980s. M-SSA provides insight into the unknown or partially known dynamics of the underlying system by decomposing the delay-coordinate phase space of a given multivariate time series into a set of data-adaptive orthonormal components. These components can be classified essentially into trends, oscillatory patterns and noise, and allow one to reconstruct a robust "skeleton" of the dynamical system's structure. For an overview we refer to Ghil et al. (Rev. Geophys., 2002). In this talk, we present M-SSA in the context of synchronization analysis and illustrate its ability to unveil information about the mechanisms behind the adjustment of rhythms in coupled dynamical systems. The focus of the talk is on the special case of phase synchronization between coupled chaotic oscillators (Rosenblum et al., PRL, 1996). Several ways of measuring phase synchronization are in use, and the robust definition of a reasonable phase for each oscillator is critical in each of them. We illustrate here the advantages of M-SSA in the automatic identification of oscillatory modes and in drawing conclusions about the transition to phase synchronization. Without using any a priori definition of a suitable phase, we show that M-SSA is able to detect phase synchronization in a chain of coupled chaotic oscillators (Osipov et al., PRE, 1996). Recently, Muller et al. (PRE, 2005) and Allefeld et al. (Intl. J. Bif. Chaos, 2007) have demonstrated the usefulness of principal component analysis in detecting phase synchronization from multivariate time series. The present talk provides a generalization of this idea and presents a robust implementation thereof via M-SSA.
Chaotic phase synchronization in bursting-neuron models driven by a weak periodic force
NASA Astrophysics Data System (ADS)
Ando, Hiroyasu; Suetani, Hiromichi; Kurths, Jürgen; Aihara, Kazuyuki
2012-07-01
We investigate the entrainment of a neuron model exhibiting a chaotic spiking-bursting behavior in response to a weak periodic force. This model exhibits two types of oscillations with different characteristic time scales, namely, long and short time scales. Several types of phase synchronization are observed, such as 1:1 phase locking between a single spike and one period of the force and 1:l phase locking between the period of slow oscillation underlying bursts and l periods of the force. Moreover, spiking-bursting oscillations with chaotic firing patterns can be synchronized with the periodic force. Such a type of phase synchronization is detected from the position of a set of points on a unit circle, which is determined by the phase of the periodic force at each spiking time. We show that this detection method is effective for a system with multiple time scales. Owing to the existence of both the short and the long time scales, two characteristic phenomena are found around the transition point to chaotic phase synchronization. One phenomenon shows that the average time interval between successive phase slips exhibits a power-law scaling against the driving force strength and that the scaling exponent has an unsmooth dependence on the changes in the driving force strength. The other phenomenon shows that Kuramoto's order parameter before the transition exhibits stepwise behavior as a function of the driving force strength, contrary to the smooth transition in a model with a single time scale.
NASA Astrophysics Data System (ADS)
Ogawa, Yutaro; Ikeda, Akira; Kotani, Kiyoshi; Jimbo, Yasuhiko
In this study, we propose the EEG phase synchronization analysis including not only the average strength of the synchronization but also the distribution and directions under the conditions that evoked emotion by musical stimuli. The experiment is performed with the two different musical stimuli that evoke happiness or sadness for 150 seconds. It is found that the average strength of synchronization indicates no difference between the right side and the left side of the frontal lobe during the happy stimulus, the distribution and directions indicate significant differences. Therefore, proposed analysis is useful for detecting emotional condition because it provides information that cannot be obtained only by the average strength of synchronization.
NASA Astrophysics Data System (ADS)
Baugh, Daniel Webster, III
Poly(styrene-isobutylene-styrene) block copolymers made by living cationic polymerization using a difunctional initiator and the sequential monomer addition technique were analyzed using curve-resolution software in conjunction with high-resolution GPC. Fractional precipitation and selective solvent extraction were applied to a representative sample in order to confirm the identity of contaminating species. The latter were found to be low molecular weight polystyrene homopolymer, diblock copolymer, and higher molecular weight segmented block copolymers formed by intermolecular electrophilic aromatic substitution linking reactions occurring late in the polymerization of the styrene outer blocks. Solvent-cast films of poly(styrene-isobutylene-styrene) (PS-PIB-PS) block copolymers and block ionomers were analyzed using small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). Four block copolymer samples with center block molecular weights of 52,000 g/mol and PS volume fractions (o sbPS) ranging from 0.17 to 0.31 were studied. All samples exhibited hexagonally packed cylinders of PS within the PIB matrix. Cylinder spacing was in the range 32 to 36 nm for most samples, while cylinder diameters varied from 14 to 21 nm. Porod analysis of the scattering data indicated the presence of isolated phase mixing and sharp phase boundaries. PS-PIB-PS block copolymers and ionomers therefrom were analyzed using dynamic mechanical analysis (DMA) and tensile testing. The study encompassed five block copolymer samples with similar PIB center blocks with molecular weights of approx52,000 g/mol and PS weight fractions ranging from 0.127 to 0.337. Ionomers were prepared from two of these materials by lightly sulfonating the PS outer blocks. Sulfonation levels varied from 1.7 to 4.7 mol % and the sodium and potassium neutralized forms were compared to the parent block copolymers. Dynamic mechanical analysis (DMA) of the block copolymer films indicated the existence of a third phase attributed to PIB chains near the PS domain interface which experience reduced mobility due to their firm attachment to the hard PS domain. The relative amount of this phase decreased in samples with larger PS blocks, while the temperature of the associated transition increased. Tensile testing showed increased tensile strength but decreased elongation at break with larger PS blocks. DMA of the ionomers indicated improved dynamic modulus at temperatures above 100spcirc$C. Tensile testing of the ionomers indicated slight improvements in tensile strength with little loss in elongation at break. PS-PIB-PS block copolymer ionomer (BCP01, center block molecular weight = 53,000 g/mole; 25.5 wt % polystyrene, 4.7% sulfonation of phenyl units, 100% neutralized with KOH) was compounded with various organic and inorganic acid salts of 2-ethylhexyl-p-dimethyl aminobenzoate (ODAB) to explore the efficacy of these compounds as ionic plasticizers. (Abstract shortened by UMI.)
Anticipated synchronization in neuronal circuits unveiled by a phase-response-curve analysis
NASA Astrophysics Data System (ADS)
Matias, Fernanda S.; Carelli, Pedro V.; Mirasso, Claudio R.; Copelli, Mauro
2017-05-01
Anticipated synchronization (AS) is a counterintuitive behavior that has been observed in several systems. When AS occurs in a sender-receiver configuration, the latter can predict the future dynamics of the former for certain parameter values. In particular, in neuroscience AS was proposed to explain the apparent discrepancy between information flow and time lag in the cortical activity recorded in monkeys. Despite its success, a clear understanding of the mechanisms yielding AS in neuronal circuits is still missing. Here we use the well-known phase-response-curve (PRC) approach to study the prototypical sender-receiver-interneuron neuronal motif. Our aim is to better understand how the transitions between delayed to anticipated synchronization and anticipated synchronization to phase-drift regimes occur. We construct a map based on the PRC method to predict the phase-locking regimes and their stability. We find that a PRC function of two variables, accounting simultaneously for the inputs from sender and interneuron into the receiver, is essential to reproduce the numerical results obtained using a Hodgkin-Huxley model for the neurons. On the contrary, the typical approximation that considers a sum of two independent single-variable PRCs fails for intermediate to high values of the inhibitory coupling strength of the interneuron. In particular, it loses the delayed-synchronization to anticipated-synchronization transition.
Matias, Fernanda S.; Carelli, Pedro V.; Mirasso, Claudio R.; Copelli, Mauro
2015-01-01
Several cognitive tasks related to learning and memory exhibit synchronization of macroscopic cortical areas together with synaptic plasticity at neuronal level. Therefore, there is a growing effort among computational neuroscientists to understand the underlying mechanisms relating synchrony and plasticity in the brain. Here we numerically study the interplay between spike-timing dependent plasticity (STDP) and anticipated synchronization (AS). AS emerges when a dominant flux of information from one area to another is accompanied by a negative time lag (or phase). This means that the receiver region pulses before the sender does. In this paper we study the interplay between different synchronization regimes and STDP at the level of three-neuron microcircuits as well as cortical populations. We show that STDP can promote auto-organized zero-lag synchronization in unidirectionally coupled neuronal populations. We also find synchronization regimes with negative phase difference (AS) that are stable against plasticity. Finally, we show that the interplay between negative phase difference and STDP provides limited synaptic weight distribution without the need of imposing artificial boundaries. PMID:26474165
Goto, Takahiro; Aoyagi, Toshio
2018-01-01
Synchronization of neural oscillations as a mechanism of brain function is attracting increasing attention. Neural oscillation is a rhythmic neural activity that can be easily observed by noninvasive electroencephalography (EEG). Neural oscillations show the same frequency and cross-frequency synchronization for various cognitive and perceptual functions. However, it is unclear how this neural synchronization is achieved by a dynamical system. If neural oscillations are weakly coupled oscillators, the dynamics of neural synchronization can be described theoretically using a phase oscillator model. We propose an estimation method to identify the phase oscillator model from real data of cross-frequency synchronized activities. The proposed method can estimate the coupling function governing the properties of synchronization. Furthermore, we examine the reliability of the proposed method using time-series data obtained from numerical simulation and an electronic circuit experiment, and show that our method can estimate the coupling function correctly. Finally, we estimate the coupling function between EEG oscillation and the speech sound envelope, and discuss the validity of these results. PMID:29337999
NASA Astrophysics Data System (ADS)
Bartsch, Ronny P.; Ivanov, Plamen Ch.
2012-02-01
Recent studies have focused on various features of cardiac and respiratory dynamics with the aim to better understand key aspects of the underlying neural control of these systems. We investigate how sleep influences cardio-respiratory coupling, and how the degree of this coupling changes with transitions across sleep stages in healthy young and elderly subjects. We analyze full night polysomnographic recordings of 189 healthy subjects (age range: 20 to 90 years). To probe cardio-respiratory coupling, we apply a novel phase synchronization analysis method to quantify the adjustment of rhythms between heartbeat and breathing signals. We investigate how cardio-respiratory synchronization changes with sleep-stage transitions and under healthy aging. We find a statistically significant difference in the degree of cardio-respiratory synchronization during different sleep stages for both young and elderly subjects and a significant decline of synchronization with age. This is a first evidence of how sleep regulation and aging influence a key nonlinear mechanism of physiologic coupling as quantified by the degree of phase synchronization between the cardiac and respiratory systems, which is of importance to develop adequate modeling approaches.
Minati, Ludovico
2014-12-01
In this paper, experimental evidence of multiple synchronization phenomena in a large (n = 30) ring of chaotic oscillators is presented. Each node consists of an elementary circuit, generating spikes of irregular amplitude and comprising one bipolar junction transistor, one capacitor, two inductors, and one biasing resistor. The nodes are mutually coupled to their neighbours via additional variable resistors. As coupling resistance is decreased, phase synchronization followed by complete synchronization is observed, and onset of synchronization is associated with partial synchronization, i.e., emergence of communities (clusters). While component tolerances affect community structure, the general synchronization properties are maintained across three prototypes and in numerical simulations. The clusters are destroyed by adding long distance connections with distant notes, but are otherwise relatively stable with respect to structural connectivity changes. The study provides evidence that several fundamental synchronization phenomena can be reliably observed in a network of elementary single-transistor oscillators, demonstrating their generative potential and opening way to potential applications of this undemanding setup in experimental modelling of the relationship between network structure, synchronization, and dynamical properties.
NASA Astrophysics Data System (ADS)
Kong, Xiangxi; Zhang, Xueliang; Chen, Xiaozhe; Wen, Bangchun; Wang, Bo
2016-05-01
In this paper, phase and speed synchronization control of four eccentric rotors (ERs) driven by induction motors in a linear vibratory feeder with unknown time-varying load torques is studied. Firstly, the electromechanical coupling model of the linear vibratory feeder is established by associating induction motor's model with the dynamic model of the system, which is a typical under actuated model. According to the characteristics of the linear vibratory feeder, the complex control problem of the under actuated electromechanical coupling model converts to phase and speed synchronization control of four ERs. In order to keep the four ERs operating synchronously with zero phase differences, phase and speed synchronization controllers are designed by employing adaptive sliding mode control (ASMC) algorithm via a modified master-slave structure. The stability of the controllers is proved by Lyapunov stability theorem. The proposed controllers are verified by simulation via Matlab/Simulink program and compared with the conventional sliding mode control (SMC) algorithm. The results show the proposed controllers can reject the time-varying load torques effectively and four ERs can operate synchronously with zero phase differences. Moreover, the control performance is better than the conventional SMC algorithm and the chattering phenomenon is attenuated. Furthermore, the effects of reference speed and parametric perturbations are discussed to show the strong robustness of the proposed controllers. Finally, experiments on a simple vibratory test bench are operated by using the proposed controllers and without control, respectively, to validate the effectiveness of the proposed controllers further.
Robust Timing Synchronization in Aeronautical Mobile Communication Systems
NASA Technical Reports Server (NTRS)
Xiong, Fu-Qin; Pinchak, Stanley
2004-01-01
This work details a study of robust synchronization schemes suitable for satellite to mobile aeronautical applications. A new scheme, the Modified Sliding Window Synchronizer (MSWS), is devised and compared with existing schemes, including the traditional Early-Late Gate Synchronizer (ELGS), the Gardner Zero-Crossing Detector (GZCD), and the Sliding Window Synchronizer (SWS). Performance of the synchronization schemes is evaluated by a set of metrics that indicate performance in digital communications systems. The metrics are convergence time, mean square phase error (or root mean-square phase error), lowest SNR for locking, initial frequency offset performance, midstream frequency offset performance, and system complexity. The performance of the synchronizers is evaluated by means of Matlab simulation models. A simulation platform is devised to model the satellite to mobile aeronautical channel, consisting of a Quadrature Phase Shift Keying modulator, an additive white Gaussian noise channel, and a demodulator front end. Simulation results show that the MSWS provides the most robust performance at the cost of system complexity. The GZCD provides a good tradeoff between robustness and system complexity for communication systems that require high symbol rates or low overall system costs. The ELGS has a high system complexity despite its average performance. Overall, the SWS, originally designed for multi-carrier systems, performs very poorly in single-carrier communications systems. Table 5.1 in Section 5 provides a ranking of each of the synchronization schemes in terms of the metrics set forth in Section 4.1. Details of comparison are given in Section 5. Based on the results presented in Table 5, it is safe to say that the most robust synchronization scheme examined in this work is the high-sample-rate Modified Sliding Window Synchronizer. A close second is its low-sample-rate cousin. The tradeoff between complexity and lowest mean-square phase error determines the rankings of the Gardner Zero-Crossing Detector and both versions of the Early-Late Gate Synchronizer. The least robust models are the high and low-sample-rate Sliding Window Synchronizers. Consequently, the recommended replacement synchronizer for NASA's Advanced Air Transportation Technologies mobile aeronautical communications system is the high-sample-rate Modified Sliding Window Synchronizer. By incorporating this synchronizer into their system, NASA can be assured that their system will be operational in extremely adverse conditions. The quick convergence time of the MSWS should allow the use of high-level protocols. However, if NASA feels that reduced system complexity is the most important aspect of their replacement synchronizer, the Gardner Zero-Crossing Detector would be the best choice.
Closed-loop carrier phase synchronization techniques motivated by likelihood functions
NASA Technical Reports Server (NTRS)
Tsou, H.; Hinedi, S.; Simon, M.
1994-01-01
This article reexamines the notion of closed-loop carrier phase synchronization motivated by the theory of maximum a posteriori phase estimation with emphasis on the development of new structures based on both maximum-likelihood and average-likelihood functions. The criterion of performance used for comparison of all the closed-loop structures discussed is the mean-squared phase error for a fixed-loop bandwidth.
Gas-phase lifetimes of nucleobase analogues by picosecond pumpionization and streak techniques.
Blaser, Susan; Frey, Hans-Martin; Heid, Cornelia G; Leutwyler, Samuel
2014-01-01
The picosecond (ps) timescale is relevant for the investigation of many molecular dynamical processes such as fluorescence, nonradiative relaxation, intramolecular vibrational relaxation, molecular rotation and intermolecular energy transfer, to name a few. While investigations of ultrafast (femtosecond) processes of biological molecules, e.g. nucleobases and their analogues in the gas phase are available, there are few investigations on the ps time scale. We have constructed a ps pump-ionization setup and a ps streak camera fluorescence apparatus for the determination of lifetimes of supersonic jet-cooled and isolated molecules and clusters. The ps pump-ionization setup was used to determine the lifetimes of the nucleobase analogue 2-aminopurine (2AP) and of two 2AP˙(H2O)n water cluster isomers with n=1 and 2. Their lifetimes lie between 150 ps and 3 ns and are strongly cluster-size dependent. The ps streak camera setup was used to determine accurate fluorescence lifetimes of the uracil analogue 2-pyridone (2PY), its self-dimer (2PY)2, two isomers of its trimer (2PY)3 and its tetramer (2PY)4, which lie in the 7-12 ns range.
Development of sub-100 femtosecond timing and synchronization system
NASA Astrophysics Data System (ADS)
Lin, Zhenyang; Du, Yingchao; Yang, Jin; Xu, Yilun; Yan, Lixin; Huang, Wenhui; Tang, Chuanxiang; Huang, Gang; Du, Qiang; Doolittle, Lawrence; Wilcox, Russell; Byrd, John
2018-01-01
The precise timing and synchronization system is an essential part for the ultra-fast electron and X-ray sources based on the photocathode injector where strict synchronization among RF, laser, and beams are required. In this paper, we present an integrated sub-100 femtosecond timing and synchronization system developed and demonstrated recently in Tsinghua University based on the collaboration with Lawrence Berkeley National Lab. The timing and synchronization system includes the fiber-based CW carrier phase reference distribution system for delivering stabilized RF phase reference to multiple receiver clients, the Low Level RF (LLRF) control system to monitor and generate the phase and amplitude controllable pulse RF signal, and the laser-RF synchronization system for high precision synchronization between optical and RF signals. Each subsystem is characterized by its blocking structure and is also expansible. A novel asymmetric calibration sideband signal method was proposed for eliminating the non-linear distortion in the optical synchronization process. According to offline and online tests, the system can deliver a stable signal to each client and suppress the drift and jitter of the RF signal for the accelerator and the laser oscillator to less than 100 fs RMS (˜0.1° in 2856 MHz frequency). Moreover, a demo system with a LLRF client and a laser-RF synchronization client is deployed and operated successfully at the Tsinghua Thomson scattering X-ray source. The beam-based jitter measurement experiments have been conducted to evaluate the overall performance of the system, and the jitter sources are discussed.
Development of sub-100 femtosecond timing and synchronization system.
Lin, Zhenyang; Du, Yingchao; Yang, Jin; Xu, Yilun; Yan, Lixin; Huang, Wenhui; Tang, Chuanxiang; Huang, Gang; Du, Qiang; Doolittle, Lawrence; Wilcox, Russell; Byrd, John
2018-01-01
The precise timing and synchronization system is an essential part for the ultra-fast electron and X-ray sources based on the photocathode injector where strict synchronization among RF, laser, and beams are required. In this paper, we present an integrated sub-100 femtosecond timing and synchronization system developed and demonstrated recently in Tsinghua University based on the collaboration with Lawrence Berkeley National Lab. The timing and synchronization system includes the fiber-based CW carrier phase reference distribution system for delivering stabilized RF phase reference to multiple receiver clients, the Low Level RF (LLRF) control system to monitor and generate the phase and amplitude controllable pulse RF signal, and the laser-RF synchronization system for high precision synchronization between optical and RF signals. Each subsystem is characterized by its blocking structure and is also expansible. A novel asymmetric calibration sideband signal method was proposed for eliminating the non-linear distortion in the optical synchronization process. According to offline and online tests, the system can deliver a stable signal to each client and suppress the drift and jitter of the RF signal for the accelerator and the laser oscillator to less than 100 fs RMS (∼0.1° in 2856 MHz frequency). Moreover, a demo system with a LLRF client and a laser-RF synchronization client is deployed and operated successfully at the Tsinghua Thomson scattering X-ray source. The beam-based jitter measurement experiments have been conducted to evaluate the overall performance of the system, and the jitter sources are discussed.
Rhythm Patterns Interaction - Synchronization Behavior for Human-Robot Joint Action
Mörtl, Alexander; Lorenz, Tamara; Hirche, Sandra
2014-01-01
Interactive behavior among humans is governed by the dynamics of movement synchronization in a variety of repetitive tasks. This requires the interaction partners to perform for example rhythmic limb swinging or even goal-directed arm movements. Inspired by that essential feature of human interaction, we present a novel concept and design methodology to synthesize goal-directed synchronization behavior for robotic agents in repetitive joint action tasks. The agents’ tasks are described by closed movement trajectories and interpreted as limit cycles, for which instantaneous phase variables are derived based on oscillator theory. Events segmenting the trajectories into multiple primitives are introduced as anchoring points for enhanced synchronization modes. Utilizing both continuous phases and discrete events in a unifying view, we design a continuous dynamical process synchronizing the derived modes. Inverse to the derivation of phases, we also address the generation of goal-directed movements from the behavioral dynamics. The developed concept is implemented to an anthropomorphic robot. For evaluation of the concept an experiment is designed and conducted in which the robot performs a prototypical pick-and-place task jointly with human partners. The effectiveness of the designed behavior is successfully evidenced by objective measures of phase and event synchronization. Feedback gathered from the participants of our exploratory study suggests a subjectively pleasant sense of interaction created by the interactive behavior. The results highlight potential applications of the synchronization concept both in motor coordination among robotic agents and in enhanced social interaction between humanoid agents and humans. PMID:24752212
Stages of chaotic synchronization.
Tang, D. Y.; Dykstra, R.; Hamilton, M. W.; Heckenberg, N. R.
1998-09-01
In an experimental investigation of the response of a chaotic system to a chaotic driving force, we have observed synchronization of chaos of the response system in the forms of generalized synchronization, phase synchronization, and lag synchronization to the driving signal. In this paper we compare the features of these forms of synchronized chaos and study their relations and physical origins. We found that different forms of chaotic synchronization could be interpreted as different stages of nonlinear interaction between the coupled chaotic systems. (c) 1998 American Institute of Physics.
Kerns, Q.A.; Anderson, O.A.
1960-05-01
An electronic control circuit is described in which a first signal frequency is held in synchronization with a second varying reference signal. The circuit receives the first and second signals as inputs and produces an output signal having an amplitude dependent upon rate of phase change between the two signals and a polarity dependent on direction of the phase change. The output may thus serve as a correction signal for maintaining the desired synchronization. The response of the system is not dependent on relative phase angle between the two compared signals. By having practically no capacitance in the circuit, there is minimum delay between occurrence of a phase shift and a response in the output signal and therefore very fast synchronization is effected.
Joint excitation synchronization characteristics of fatigue test for offshore wind turbine blade
NASA Astrophysics Data System (ADS)
Zhang, Lei-an; Yu, Xiang-yong; Wei, Xiu-ting; Liu, Wei-sheng
2018-02-01
In the case of the stiffness of offshore wind turbine blade is relatively large, the joint excitation device solves the problem of low accuracy of bending moment distribution, insufficient driving ability and long fatigue test period in single-point loading. In order to study the synchronous characteristics of joint excitation system, avoid blade vibration disturbance. First, on the base of a Lagrange equation, a mathematical model of combined excitation is formulated, and a numerical analysis of vibration synchronization is performed. Then, the model is constructed via MATLAB/Simulink, and the effect of the phase difference on the vibration synchronization characteristics is obtained visually. Finally, a set of joint excitation platform for the fatigue test of offshore wind turbine blades are built. The parameter measurement scheme is given and the correctness of the joint excitation synchronization in the simulation model is verified. The results show that when the rotational speed difference is 2 r/min, 30 r/min, the phase difference is 0, π/20, π/8 and π/4, as the rotational speed difference and the phase difference increase, the time required for the blade to reach a steady state is longer. When the phase difference is too large, the electromechanical coupling can no longer make the joint excitation device appear self-synchronizing phenomenon, so that the value of the phase difference develops toward a fixed value (not equal to 0), and the blade vibration disorder is serious, at this time, the effect of electromechanical coupling must be eliminated. The research results provide theoretical basis for the subsequent decoupling control algorithm and synchronization control strategy, and have good application value.
Smith, Stephen F.; Moore, James A.
2003-05-13
Systems and methods are described for carrier-frequency synchronization for improved AM and TV broadcast reception. A method includes synchronizing a carrier frequency of a broadcast signal with a remote reference frequency. An apparatus includes a reference signal receiver; a phase comparator coupled to the reference signal receiver; a voltage controlled oscillator coupled to the phase comparator; and a radio frequency output coupled to the voltage controlled oscillator.
NASA Astrophysics Data System (ADS)
Li, Peining; Yang, Xiaosheng; Maß, Tobias W. W.; Hanss, Julian; Lewin, Martin; Michel, Ann-Katrin U.; Wuttig, Matthias; Taubner, Thomas
2016-08-01
Surface phonon-polaritons (SPhPs), collective excitations of photons coupled with phonons in polar crystals, enable strong light-matter interaction and numerous infrared nanophotonic applications. However, as the lattice vibrations are determined by the crystal structure, the dynamical control of SPhPs remains challenging. Here, we realize the all-optical, non-volatile, and reversible switching of SPhPs by controlling the structural phase of a phase-change material (PCM) employed as a switchable dielectric environment. We experimentally demonstrate optical switching of an ultrathin PCM film (down to 7 nm, <λ/1,200) with single laser pulses and detect ultra-confined SPhPs (polariton wavevector kp > 70k0, k0 = 2π/λ) in quartz. Our proof of concept allows the preparation of all-dielectric, rewritable SPhP resonators without the need for complex fabrication methods. With optimized materials and parallelized optical addressing we foresee application potential for switchable infrared nanophotonic elements, for example, imaging elements such as superlenses and hyperlenses, as well as reconfigurable metasurfaces and sensors.
Hidden imperfect synchronization of wall turbulence.
Tardu, Sedat F
2010-03-01
Instantaneous amplitude and phase concept emerging from analytical signal formulation is applied to the wavelet coefficients of streamwise velocity fluctuations in the buffer layer of a near wall turbulent flow. Experiments and direct numerical simulations show both the existence of long periods of inert zones wherein the local phase is constant. These regions are separated by random phase jumps. The local amplitude is globally highly intermittent, but not in the phase locked regions wherein it varies smoothly. These behaviors are reminiscent of phase synchronization phenomena observed in stochastic chaotic systems. The lengths of the constant phase inert (laminar) zones reveal a type I intermittency behavior, in concordance with saddle-node bifurcation, and the periodic orbits of saddle nature recently identified in Couette turbulence. The imperfect synchronization is related to the footprint of coherent Reynolds shear stress producing eddies convecting in the low buffer.
Evaluation of osteoarthritis progression using polarization-sensitive optical coherence tomography
NASA Astrophysics Data System (ADS)
Nassif, Nader A.; Pierce, Mark C.; Park, B. Hyle; Cense, Barry; de Boer, Johannes F.
2004-07-01
Osteoarthritis is a prevalent medical condition that presents a diagnostic and therapeutic challenge to physicians today because of the inability to assess the integrity of the articular cartilage early in the disease. Polarization sensitive optical coherence tomography (PS-OCT) is a high resolution, non-contact imaging modality that provides cross-sectional images with additional information regarding the integrity of the collagen matrix. Using PS-OCT to image provides information regarding thickness of the articular cartilage and gives an index of biochemical changes based on alterations in optical properties (i.e. birefringence) of the tissue. We demonstrate initial experiments performed on specimens collected following total knee replacement surgery. Articular cartilage was imaged using a 1310 nm PS-OCT system where both intensity and phase images were acquired. PS-OCT images were compared with histology, and the changes in tissue optical properties were characterized. Analysis of the intensity images demonstrates differences between healthy and diseased cartilage surface and thickness. Phase maps of the tissue demonstrated distinct differences between healthy and diseased tissue. PS-OCT was able to image a gradual loss of birefringence as the tissue became more diseased. In this way, determining the rate of change of the phase provides a quantitative measure of pathology. Thus, imaging and evaluation of osteoarthritis using PS-OCT can be a useful means of quantitative assessment of the disease.
Frequency Conversion of Single Photons: Physics, Devices, and Applications
2012-07-01
Ginzton lab who have also been instrumental have been Steve Sensarn, Il-Woong Jung , Kelley Rivoire, Gary Shambat, Sonia Buckley, Kiarash Aghaie, Na...My initial projects in the Fejer group were focused on modeling a synchronously pumped OPO for terahertz generation. A ps-pulsed 1064-nm laser...detection of the spin state of a single nucleus in silicon. Physical Review B, 69(12):125306, March 2004. BIBLIOGRAPHY 151 [116] Carl A. Kocher and
NASA Technical Reports Server (NTRS)
Braun, W. R.
1981-01-01
Pseudo noise (PN) spread spectrum systems require a very accurate alignment between the PN code epochs at the transmitter and receiver. This synchronism is typically established through a two-step algorithm, including a coarse synchronization procedure and a fine synchronization procedure. A standard approach for the coarse synchronization is a sequential search over all code phases. The measurement of the power in the filtered signal is used to either accept or reject the code phase under test as the phase of the received PN code. This acquisition strategy, called a single dwell-time system, has been analyzed by Holmes and Chen (1977). A synopsis of the field of sequential analysis as it applies to the PN acquisition problem is provided. From this, the implementation of the variable dwell time algorithm as a sequential probability ratio test is developed. The performance of this algorithm is compared to the optimum detection algorithm and to the fixed dwell-time system.
Emergent gamma synchrony in all-to-all interneuronal networks.
Ratnadurai-Giridharan, Shivakeshavan; Khargonekar, Pramod P; Talathi, Sachin S
2015-01-01
We investigate the emergence of in-phase synchronization in a heterogeneous network of coupled inhibitory interneurons in the presence of spike timing dependent plasticity (STDP). Using a simple network of two mutually coupled interneurons (2-MCI), we first study the effects of STDP on in-phase synchronization. We demonstrate that, with STDP, the 2-MCI network can evolve to either a state of stable 1:1 in-phase synchronization or exhibit multiple regimes of higher order synchronization states. We show that the emergence of synchronization induces a structural asymmetry in the 2-MCI network such that the synapses onto the high frequency firing neurons are potentiated, while those onto the low frequency firing neurons are de-potentiated, resulting in the directed flow of information from low frequency firing neurons to high frequency firing neurons. Finally, we demonstrate that the principal findings from our analysis of the 2-MCI network contribute to the emergence of robust synchronization in the Wang-Buzsaki network (Wang and Buzsáki, 1996) of all-to-all coupled inhibitory interneurons (100-MCI) for a significantly larger range of heterogeneity in the intrinsic firing rate of the neurons in the network. We conclude that STDP of inhibitory synapses provide a viable mechanism for robust neural synchronization.
Emergent gamma synchrony in all-to-all interneuronal networks
Ratnadurai-Giridharan, Shivakeshavan; Khargonekar, Pramod P.; Talathi, Sachin S.
2015-01-01
We investigate the emergence of in-phase synchronization in a heterogeneous network of coupled inhibitory interneurons in the presence of spike timing dependent plasticity (STDP). Using a simple network of two mutually coupled interneurons (2-MCI), we first study the effects of STDP on in-phase synchronization. We demonstrate that, with STDP, the 2-MCI network can evolve to either a state of stable 1:1 in-phase synchronization or exhibit multiple regimes of higher order synchronization states. We show that the emergence of synchronization induces a structural asymmetry in the 2-MCI network such that the synapses onto the high frequency firing neurons are potentiated, while those onto the low frequency firing neurons are de-potentiated, resulting in the directed flow of information from low frequency firing neurons to high frequency firing neurons. Finally, we demonstrate that the principal findings from our analysis of the 2-MCI network contribute to the emergence of robust synchronization in the Wang-Buzsaki network (Wang and Buzsáki, 1996) of all-to-all coupled inhibitory interneurons (100-MCI) for a significantly larger range of heterogeneity in the intrinsic firing rate of the neurons in the network. We conclude that STDP of inhibitory synapses provide a viable mechanism for robust neural synchronization. PMID:26528174
Phase dynamics of oscillating magnetizations coupled via spin pumping
NASA Astrophysics Data System (ADS)
Taniguchi, Tomohiro
2018-05-01
A theoretical formalism is developed to simultaneously solve equation of motion of the magnetizations in two ferromagnets and the spin-pumping induced spin transport equation. Based on the formalism, a coupled motion of the magnetizations in a self-oscillation state is studied. The spin pumping is found to induce an in-phase synchronization of the magnetizations for the oscillation around the easy axis. For an out-of-plane self-oscillation around the hard axis, on the other hand, the spin pumping leads to an in-phase synchronization in a small current region, whereas an antiphase synchronization is excited in a large current region. An analytical theory based on the phase equation reveals that the phase difference between the magnetizations in a steady state depends on the oscillation direction, clockwise or counterclockwise, of the magnetizations.
Experimental observation of phase-flip transitions in the brain
NASA Astrophysics Data System (ADS)
Dotson, Nicholas M.; Gray, Charles M.
2016-10-01
The phase-flip transition has been demonstrated in a host of coupled nonlinear oscillator models, many pertaining directly to understanding neural dynamics. However, there is little evidence that this phenomenon occurs in the brain. Using simultaneous microelectrode recordings in the nonhuman primate cerebral cortex, we demonstrate the presence of phase-flip transitions between oscillatory narrow-band local field potential signals separated by several centimeters. Specifically, we show that sharp transitions between in-phase and antiphase synchronization are accompanied by a jump in synchronization frequency. These findings are significant for two reasons. First, they validate predictions made by model systems. Second, they have potentially far reaching implications for our understanding of the mechanisms underlying corticocortical communication, which are thought to rely on narrow-band oscillatory synchronization with specific relative phase relationships.
NASA Astrophysics Data System (ADS)
El-Nashar, Hassan F.
2017-06-01
We consider a system of three nonidentical coupled phase oscillators in a ring topology. We explore the conditions that must be satisfied in order to obtain the phases at the transition to a synchrony state. These conditions lead to the correct mathematical expressions of phases that aid to find a simple analytic formula for critical coupling when the oscillators transit to a synchronization state having a common frequency value. The finding of a simple expression for the critical coupling allows us to perform a linear stability analysis at the transition to the synchronization stage. The obtained analytic forms of the eigenvalues show that the three coupled phase oscillators with periodic boundary conditions transit to a synchrony state when a saddle-node bifurcation occurs.
NASA Astrophysics Data System (ADS)
Bazhenova, E.; Spielhagen, R. F.; Kudryavtseva, A.; Voronovich, E.; Stein, R. H.; Krylov, A.
2017-12-01
In the central Arctic Ocean, circulation of surface oceanic currents and trajectories of sea-ice drift generally follow the two main systems, the Beaufort Gyre and the Transpolar Drift. The boundary between the two systems is located above the Lomonosov Ridge but might have been shifted over the Quaternary glacial/interglacial cycles due to changing water masses, sea-ice cover, and wind patterns. Changes in sediment core composition can provide information about the different source areas of material reaching the central part of the Arctic basin, and hence, about the driving paleaoceanographic settings. We will summarize results of completed and ongoing investigations performed on several sediment cores recovered by the German RV "Polarstern" in 2007, 2008, and 2014: PS72/340-5, and PS72/344-3 - on the Mendeleev Ridge; PS70/330-1, and PS70/342-1 - on the Alpha Ridge; PS87/023-1, PS87/030-1, PS87/056-1, and PS2185 - on the Lomonosov Ridge. We focused on the petrographic classification of coarse grains (>0.5 mm) isolated from the sediments. Identification of grain composition was done using an optical binocular. Additionally, grain surface was treated with HCL 10%-solution to check for the presence of detrital carbonates. Clast types were classified following published studies from the Mendeleev and Lomonosov ridges which utilized the same size fractions. The studied cores span the last two glacial/interglacial cycles (ca. 200 kyrs). On the Mendeleev Ridge, total grain counts decrease towards the East Siberian margin (from core PS72/340 to core PS72/344), similar to the bulk dolomite content and the amount of larger dropstones. Sediments are generally very fine-grained throughout the cores. Peaks of all clast types in these two cores are synchronous, probably indicating events of abrupt iceberg discharge. Morphometry of larger dropstones (>2 cm) in these cores clearly indicates iceberg transportation. In cores PS87/056-1 and PS87/070-1 (central Lomonosov Ridge), quartz and carbonate peaks are not observed simultaneously, which can be indicative of two different source areas supplying IRD to these core sites. Morphometry of larger dropstones (>2 cm) indicates both iceberg and sea-ice transport; some material holds evidence of riverine transportation.
Langella, M; Colarieti, L; Ambrosini, M V; Giuditta, A
1992-02-01
Female adult rats were trained for a two-way active avoidance task (4 h), and allowed free sleep (3 h). Control rats (C) were left in their home cages during the acquisition period. Dural electrodes and an intraventricular cannula, implanted one week in advance, were used for EEG recording during the period of sleep and for the injection of [3H]thymidine at the beginning of the training session, respectively. Rats were killed at the end of the sleep period, and the DNA-specific activity was determined in the main brain regions and in liver. Correlations among sleep, behavioral and biochemical variables were assessed using Spearman's nonparametric method. In learning rats (L), the number of avoidances was negatively correlated with SS-W variables, and positively correlated with SS-PS variables (episodes of synchronized sleep followed by wakefulness or paradoxical sleep, respectively) and with PS variables. An inverse pattern of correlations was shown by the number of escapes or freezings. No correlations occurred in rats unable to achieve the learning criterion (NL). In L rats, the specific activity of brain DNA was negatively correlated with SS-W variables and positively correlated with SS-PS variables, while essentially no correlation concerned PS variables. On the other hand, in NL rats, comparable correlations were positive with SS-W variables and negative with SS-PS and PS variables. Few and weak correlations occurred in C rats. The data support a role of SS in brain information processing, as postulated by the sequential hypothesis on the function of sleep. In addition, they suggest that the elimination of nonadaptive memory traces may require several SS-W episodes and a terminal SS-PS episode. During PS episodes, adaptive memory traces cleared of nonadaptive components may be copied in more suitable brain sites.
Zuo, Yi Y.; Keating, Eleonora; Zhao, Lin; Tadayyon, Seyed M.; Veldhuizen, Ruud A. W.; Petersen, Nils O.; Possmayer, Fred
2008-01-01
Monolayers of a functional pulmonary surfactant (PS) can reach very low surface tensions well below their equilibrium value. The mechanism by which PS monolayers reach such low surface tensions and maintain film stability remains unknown. As shown previously by fluorescence microscopy, phospholipid phase transition and separation seem to be important for the normal biophysical properties of PS. This work studied phospholipid phase transitions and separations in monolayers of bovine lipid extract surfactant using atomic force microscopy. Atomic force microscopy showed phospholipid phase separation on film compression and a monolayer-to-multilayer transition at surface pressure 40–50 mN/m. The tilted-condensed phase consisted of domains not only on the micrometer scale, as detected previously by fluorescence microscopy, but also on the nanometer scale, which is below the resolution limits of conventional optical methods. The nanodomains were embedded uniformly within the liquid-expanded phase. On compression, the microdomains broke up into nanodomains, thereby appearing to contribute to tilted-condensed and liquid-expanded phase remixing. Addition of surfactant protein A altered primarily the nanodomains and promoted the formation of multilayers. We conclude that the nanodomains play a predominant role in affecting the biophysical properties of PS monolayers and the monolayer-to-multilayer transition. PMID:18212010
Tomii, Naoki; Yamazaki, Masatoshi; Arafune, Tatsuhiko; Kamiya, Kaichiro; Nakazawa, Kazuo; Honjo, Haruo; Shibata, Nitaro; Sakuma, Ichiro
2018-03-09
The action mechanism of stimulation toward spiral waves (SWs) owing to the complex excitation patterns that occur just after point stimulation has not yet been experimentally clarified. This study sought to test our hypothesis that the effect of capturing excitable gap of SW by stimulation can also be explained as the interaction of original phase singularity (PS) and PSs induced by the stimulation on the wave tail (WT) of the original SW. Phase variance analysis was used to quantitatively analyze the post-shock PS trajectories. In a two-dimensional subepicardial layer of Langendorff-perfused rabbit hearts, optical mapping was utilized to record the excitation pattern during stimulation. After SW was induced by S1-S2 shock, single biphasic point stimulation S3 was applied. In 70 of the S1-S2-S3 stimulation episodes applied on six hearts, the original PS was clearly observed just before the S3 point stimulation in 37 episodes. Pairwise PSs were newly induced by the S3 in 20 episodes. The original PS collided with the newly-induced PSs in 16 episodes; otherwise, they did not interact with the original PS. SW shift occurred most efficiently when the S3 shock was applied at the relative refractory period, and PS shifted in the direction of WT. Quantitative tracking of PS clarified that stimulation in desirable conditions induces pairwise PSs on WT and that the collision of PSs causes SW shift along the WT. Results of this study indicate the importance of the interaction of shock-induced excitation with the WT for effective stimulation.
High power green lasers for gamma source
NASA Astrophysics Data System (ADS)
Durand, Magali; Sevillano, Pierre; Alexaline, Olivier; Sangla, Damien; Casanova, Alexis; Aubourg, Adrien; Saci, Abdelhak; Courjaud, Antoine
2018-02-01
A high intensity Gamma source is required for Nuclear Spectroscopy, it will be delivered by the interaction between accelerated electron and intense laser beams. Those two interactions lasers are based on a multi-stage amplification scheme that ended with a second harmonics generation to deliver 200 mJ, 5 ps pulses at 515 nm and 100 Hz. A t-Pulse oscillator with slow and fast feedback loop implemented inside the oscillator cavity allows the possibility of synchronization to an optical reference. A temporal jitter of 120 fs rms is achieved, integrated from 10 Hz to 10 MHz. Then a regenerative amplifier, based on Yb:YAG technology, pumped by fiber-coupled QCW laser diodes, delivers pulses up to 30 mJ. The 1 nm bandwidth was compressed to 1.5 ps with a good spatial quality: M2 of 1.1. This amplifier is integrated in a compact sealed housing (750 x 500 x 150 mm), which allows a pulse-pulse stability of 0.1 % rms, and a long-term stability of 1,9 % over 100 hours (with +/-1°C environment). The main amplification stage uses a cryocooled Yb:YAG crystal in an active mirror configuration. The crystal is cooled at 130 K via a compact and low-vibration cryocooler, avoiding any additional phase noise contribution, 340 mJ in a six pass scheme was achieved, with 0.9 of Strehl ratio. The trade off to the gain of a cryogenic amplifier is the bandwidth reduction, however the 1030 nm pulse was compressed to 4.4 ps. As for the regenerative amplifier a long-term stability of 1.9 % over 30 hours was achieved in an environment with +/-1°C temperature fluctuations The compression and Second Harmonics Generation Stages have allowed the conversion of 150 mJ of uncompressed infrared beam into 60 mJ at 515 nm.
Synchronizing noisy nonidentical oscillators by transient uncoupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tandon, Aditya, E-mail: adityat@iitk.ac.in; Mannattil, Manu, E-mail: mmanu@iitk.ac.in; Schröder, Malte, E-mail: malte@nld.ds.mpg.de
2016-09-15
Synchronization is the process of achieving identical dynamics among coupled identical units. If the units are different from each other, their dynamics cannot become identical; yet, after transients, there may emerge a functional relationship between them—a phenomenon termed “generalized synchronization.” Here, we show that the concept of transient uncoupling, recently introduced for synchronizing identical units, also supports generalized synchronization among nonidentical chaotic units. Generalized synchronization can be achieved by transient uncoupling even when it is impossible by regular coupling. We furthermore demonstrate that transient uncoupling stabilizes synchronization in the presence of common noise. Transient uncoupling works best if the unitsmore » stay uncoupled whenever the driven orbit visits regions that are locally diverging in its phase space. Thus, to select a favorable uncoupling region, we propose an intuitive method that measures the local divergence at the phase points of the driven unit's trajectory by linearizing the flow and subsequently suppresses the divergence by uncoupling.« less
Zhang, Ren; Lee, Bongjoon; Bockstaller, Michael R; Douglas, Jack F; Stafford, Christopher M; Kumar, Sanat K; Raghavan, Dharmaraj; Karim, Alamgir
The controlled organization of nanoparticle (NP) constituents into superstructures of well-defined shape, composition and connectivity represents a continuing challenge in the development of novel hybrid materials for many technological applications. We show that the phase separation of polymer-tethered nanoparticles immersed in a chemically different polymer matrix provides an effective and scalable method for fabricating defined submicron-sized amorphous NP domains in melt polymer thin films. We investigate this phenomenon with a view towards understanding and controlling the phase separation process through directed nanoparticle assembly. In particular, we consider isothermally annealed thin films of polystyrene-grafted gold nanoparticles (AuPS) dispersed in a poly(methyl methacrylate) (PMMA) matrix. Classic binary polymer blend phase separation related morphology transitions, from discrete AuPS domains to bicontinuous to inverse domain structure with increasing nanoparticle composition is observed, yet the kinetics of the AuPS/PMMA polymer blends system exhibit unique features compared to the parent PS/PMMA homopolymer blend. We further illustrate how to pattern-align the phase-separated AuPS nanoparticle domain shape, size and location through the imposition of a simple and novel external symmetry-breaking perturbation via soft-lithography. Specifically, submicron-sized topographically patterned elastomer confinement is introduced to direct the nanoparticles into kinetically controlled long-range ordered domains, having a dense yet well-dispersed distribution of non-crystallizing nanoparticles. The simplicity, versatility and roll-to-roll adaptability of this novel method for controlled nanoparticle assembly should make it useful in creating desirable patterned nanoparticle domains for a variety of functional materials and applications.
Transition to synchrony in degree-frequency correlated Sakaguchi-Kuramoto model
NASA Astrophysics Data System (ADS)
Kundu, Prosenjit; Khanra, Pitambar; Hens, Chittaranjan; Pal, Pinaki
2017-11-01
We investigate transition to synchrony in degree-frequency correlated Sakaguchi-Kuramoto (SK) model on complex networks both analytically and numerically. We analytically derive self-consistent equations for group angular velocity and order parameter for the model in the thermodynamic limit. Using the self-consistent equations we investigate transition to synchronization in SK model on uncorrelated scale-free (SF) and Erdős-Rényi (ER) networks in detail. Depending on the degree distribution exponent (γ ) of SF networks and phase-frustration parameter, the population undergoes from first-order transition [explosive synchronization (ES)] to second-order transition and vice versa. In ER networks transition is always second order irrespective of the values of the phase-lag parameter. We observe that the critical coupling strength for the onset of synchronization is decreased by phase-frustration parameter in case of SF network where as in ER network, the phase-frustration delays the onset of synchronization. Extensive numerical simulations using SF and ER networks are performed to validate the analytical results. An analytical expression of critical coupling strength for the onset of synchronization is also derived from the self-consistent equations considering the vanishing order parameter limit.
Multiplexing topologies and time scales: The gains and losses of synchrony
NASA Astrophysics Data System (ADS)
Makovkin, Sergey; Kumar, Anil; Zaikin, Alexey; Jalan, Sarika; Ivanchenko, Mikhail
2017-11-01
Inspired by the recent interest in collective dynamics of biological neural networks immersed in the glial cell medium, we investigate the frequency and phase order, i.e., Kuramoto type of synchronization in a multiplex two-layer network of phase oscillators of different time scales and topologies. One of them has a long-range connectivity, exemplified by the Erdős-Rényi random network, and supports both kinds of synchrony. The other is a locally coupled two-dimensional lattice that can reach frequency synchronization but lacks phase order. Drastically different layer frequencies disentangle intra- and interlayer synchronization. We find that an indirect but sufficiently strong coupling through the regular layer can induce both phase order in the originally nonsynchronized random layer and global order, even when an isolated regular layer does not manifest it in principle. At the same time, the route to global synchronization is complex: an initial onset of (partial) synchrony in the regular layer, when its intra- and interlayer coupling is increased, provokes the loss of synchrony even in the originally synchronized random layer. Ultimately, a developed asynchronous dynamics in both layers is abruptly taken over by the global synchrony of both kinds.
Combined Yb/Nd driver for optical parametric chirped pulse amplifiers.
Michailovas, Kirilas; Baltuska, Andrius; Pugzlys, Audrius; Smilgevicius, Valerijus; Michailovas, Andrejus; Zaukevicius, Audrius; Danilevicius, Rokas; Frankinas, Saulius; Rusteika, Nerijus
2016-09-19
We report on the developed front-end/pump system for optical parametric chirped pulse amplifiers. The system is based on a dual output fiber oscillator/power amplifier which seeds and assures all-optical synchronization of femtosecond Yb and picosecond Nd laser amplifiers operating at a central wavelength of 1030 nm and 1064 nm, respectively. At the central wavelength of 1030 nm, the fiber oscillator generates partially stretched 4 ps pulses with the spectrum supporting a <120 fs pulse duration and pulse energy of 0.45 nJ. The energy of generated 1064 nm pulses is 0.15 nJ, which is sufficient for the efficient seeding of high-contrast Nd:YVO chirped pulse regenerative amplifier/post amplifier systems generating 9 mJ pulses compressible to 16 ps duration. The power amplification stages, based on Nd:YAG crystals, provide 62 mJ pulses compressible to 20 ps pulse duration at a repetition rate of 1 kHz. Further energy scaling currently is prevented by limited dimensions of the diffraction gratings, which, because of the fast progress in MLD grating manufacturing technologies is only a temporary obstacle.
Miao, Li; Liu, Yan; Li, Hao; Qi, Yunpeng; Lu, Feng
2017-02-01
Two-dimensional correlation spectroscopy (2DCOS) was employed for the identification of ephedrine (Ep) and pseudoephedrine (Ps) present in illegally adulterated slimming herbal products (SHPs). Second derivative (SD) spectral pretreatment was used prior to 2DCOS analysis to highlight specific features not readily observable by Fourier transform infrared spectroscopy (FTIR), SD-FTIR, or original 2DCOS, leading to enhanced resolution and a reduced lower limit of detection (<1% in this study). After examining the power spectra of suspicious SHPs, bands containing characteristic peaks for Ep (701, 747, 1042, 1363, 1375, 1451, 1478 cm -1 etc) and/or Ps (703, 767, 1037, 1375, 1428, 1455, 1590 cm - 1, etc.) were selected to construct synchronous and asynchronous maps for further analysis, while the latter was applied to discriminate positive SHPs adulterated simultaneously with Ep and Ps. The proposed method is simple and economical and has the potential to identify other chemicals in illegally adulterated herbal products. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Polar synchronization and the synchronized climatic history of Greenland and Antarctica
NASA Astrophysics Data System (ADS)
Oh, Jeseung; Reischmann, Elizabeth; Rial, José A.
2014-01-01
Stable isotope proxies from ice cores show subtle differences in the climatic fluctuations of the Arctic and Antarctic, and recent analyses have revealed evidence of polar synchronization at the millennial time scale. At this scale, we analogize the polar climates of the last ice ages to two coupled nonlinear oscillators, which adjust their natural rhythms until they synchronize at a common frequency and constant phase shift. Heat and mass transfers across the intervening ocean and atmosphere make the coupling possible. Here we statistically demonstrate the existence of this phenomenon in polar proxy records with methane-matched age models, and quantify their phase relationship. We show that the time series of representative proxy records of the last glaciation recorded in Greenland (GRIP, NGRIP) and Antarctica (Byrd, Dome C) satisfy phase synchronization conditions, independently of age, for periods ranging 1-6 ky, and can be transformed into one another by a π/2 phase shift, with Antarctica temperature variations leading Greenland's. Based on these results, we use the polar synchronization paradigm to replicate the 800 ky-long, Antarctic, EPICA time series from a theoretical model that extends Greenland's 100 ky-long GRIP record to 800 ky. Statistical analysis of the simulated and actual Antarctic records shows that the procedure is stable to change in adjustable parameters, and requires the coupling between the polar climates to be proportional mainly to the difference in heat storage between the two regions.
Fabrication of iron (III) oxide doped polystyrene shells
NASA Astrophysics Data System (ADS)
Cai, Pei-Jun; Tang, Yong-Jian; Zhang, Lin; Du, Kai; Feng, Chang-Gen
2004-03-01
A type of iron (III) oxide doped plastic shell used for inertial confinement fusion experiments has been fabricated by emulsion techniques. Three different phases of solution (W1, O, and W2) are used for the fabrication process. The W1 phase is a 1 wt % of sodium lauryl sulfate in water. This W1 phase solution is mixed with a 3 wt % Fe2O3-polystyrene (PS) solution in benzene-dichloroethane (O phase) while stirring. The resulting emulsion (W1/O) is poured into a 3 wt % aqueous polyvinyl alcohol solution (W2 phase) while stirring. The resulting emulsion (W1/O/W2) is then heated to evaporate benzene and dichloroethane, and thus a solid Fe2O3-PS shell is formed. The diameter and wall thickness of the shells range from 150 to 500 μm and 5 to 15 μm, respectively. The average surface roughness of the shells is 40 nm, similar to that of the usual PS shells. .
Phase unwrapping with a virtual Hartmann-Shack wavefront sensor.
Akondi, Vyas; Falldorf, Claas; Marcos, Susana; Vohnsen, Brian
2015-10-05
The use of a spatial light modulator for implementing a digital phase-shifting (PS) point diffraction interferometer (PDI) allows tunability in fringe spacing and in achieving PS without the need for mechanically moving parts. However, a small amount of detector or scatter noise could affect the accuracy of wavefront sensing. Here, a novel method of wavefront reconstruction incorporating a virtual Hartmann-Shack (HS) wavefront sensor is proposed that allows easy tuning of several wavefront sensor parameters. The proposed method was tested and compared with a Fourier unwrapping method implemented on a digital PS PDI. The rewrapping of the Fourier reconstructed wavefronts resulted in phase maps that matched well the original wrapped phase and the performance was found to be more stable and accurate than conventional methods. Through simulation studies, the superiority of the proposed virtual HS phase unwrapping method is shown in comparison with the Fourier unwrapping method in the presence of noise. Further, combining the two methods could improve accuracy when the signal-to-noise ratio is sufficiently high.
ERIC Educational Resources Information Center
Dick, James C.; And Others
The management information system (MIS) development project for California's Regional Occupational Centers and Programs (ROC/Ps) was conducted in 3 phases over a 12-month period. Phase I involved a literature review and field study to match MIS design features and development strategy with existing conditions in ROC/Ps. A decision support system…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minati, Ludovico, E-mail: lminati@ieee.org, E-mail: ludovico.minati@unitn.it
In this paper, experimental evidence of multiple synchronization phenomena in a large (n = 30) ring of chaotic oscillators is presented. Each node consists of an elementary circuit, generating spikes of irregular amplitude and comprising one bipolar junction transistor, one capacitor, two inductors, and one biasing resistor. The nodes are mutually coupled to their neighbours via additional variable resistors. As coupling resistance is decreased, phase synchronization followed by complete synchronization is observed, and onset of synchronization is associated with partial synchronization, i.e., emergence of communities (clusters). While component tolerances affect community structure, the general synchronization properties are maintained across three prototypes andmore » in numerical simulations. The clusters are destroyed by adding long distance connections with distant notes, but are otherwise relatively stable with respect to structural connectivity changes. The study provides evidence that several fundamental synchronization phenomena can be reliably observed in a network of elementary single-transistor oscillators, demonstrating their generative potential and opening way to potential applications of this undemanding setup in experimental modelling of the relationship between network structure, synchronization, and dynamical properties.« less
Shimizu-Sato, Sae; Ike, Yoko
2007-01-01
In intact plants, cells in axillary buds are arrested at the G1 phase of the cell cycle during dormancy. In mammalian cells, the cell cycle is suppressed at the G1 phase by the activities of retinoblastoma tumor suppressor gene (RB) family proteins, depending on their phosphorylation state. Here, we report the isolation of a pea cDNA clone encoding an RB-related protein (PsRBR1, Accession No. AB012024) with a high degree of amino acid conservation in comparison with RB family proteins. PsRBR1 protein was detected as two polypeptides using an anti-PsRBR1 antibody in dormant axillary buds, whereas it was detected as three polypeptides, which were the same two polypeptides and another larger polypeptide 2 h after terminal decapitation. Both in vitro-synthesized PsPRB1 protein and lambda protein phosphatase-treated PsRBR1 protein corresponded to the smallest polypeptide detected by anti-PsRBR1 antibody, suggesting that the three polypeptides correspond to non-phosphorylated form of PsRBR1 protein, and lower- and higher-molecular mass forms of phosphorylated PsRBR1 protein. Furthermore, in vivo labeling with [32P]-inorganic phosphate indicated that PsRBR1 protein was more phosphorylated before mRNA accumulation of cell cycle regulatory genes such as PCNA. Together these findings suggest that dormancy-to-growth transition in pea axillary buds is regulated by molecular mechanisms of cell cycle control similar to those in mammals, and that the PsRBR1 protein has an important role in suppressing the cell cycle during dormancy in axillary buds. PMID:18034314
Optical signal monitoring in phase modulated optical fiber transmission systems
NASA Astrophysics Data System (ADS)
Zhao, Jian
Optical performance monitoring (OPM) is one of the essential functions for future high speed optical networks. Among the parameters to be monitored, chromatic dispersion (CD) is especially important since it has a significant impact on overall system performance. In this thesis effective CD monitoring approaches for phase-shift keying (PSK) based optical transmission systems are investigated. A number of monitoring schemes based on radio frequency (RF) spectrum analysis and delay-tap sampling are proposed and their performance evaluated. A method for dispersion monitoring of differential phase-shift keying (DPSK) signals based on RF power detection is studied. The RF power spectrum is found to increase with the increase of CD and decrease with polarization mode dispersion (PMD). The spectral power density dependence on CD is studied theoretically and then verified through simulations and experiments. The monitoring sensitivity for nonreturn-to-zero differential phase-shift keying (NRZ-DPSK) and return-to-zero differential phase-shift keying (RZ-DPSK) based systems can reach 80ps/nm/dB and 34ps/nm/dB respectively. The scheme enables the monitoring of differential group delay (DGD) and CD simultaneously. The monitoring sensitivity of CD and DGD can reach 56.7ps/nm/dB and 3.1ps/dB using a bandpass filter. The effects of optical signal-to-noise ratio (OSNR), DGD, fiber nonlinearity and chirp on the monitoring results are investigated. Two RF pilot tones are employed for CD monitoring of DPSK signals. Specially selected pilot tone frequencies enable good monitoring sensitivity with minimum influence on the received signals. The dynamic range exceeding 35dB and monitoring sensitivity up to 9.5ps/nm/dB are achieved. Asynchronous sampling technique is employed for CD monitoring. A signed CD monitoring method for 10Gb/s NRZ-DPSK and RZ-DPSK systems using asynchronous delay-tap sampling technique is studied. The demodulated signals suffer asymmetric waveform distortion if there is a phase error (Deltaphi) in the delay interferometer (DI) and in the presence of residual CD. Using delay-tap sampling the scatter plots can reflect this signal distortion through their asymmetric characteristics. A distance ratio (DR) is defined to represent the change of the scatter plots which is directly related to the accumulated CD. The monitoring range can be up to +/-400ps/nm and to +/-720ps/nm for 10Gb/s NRZ-DPSK and RZ-DPSK signals with 450 phase error in DI. The monitoring sensitivity reaches +/-8ps/nm and CD polarity discrimination is realized. It is found that the signal degradation is related to the increment of the absolute value of CD or phase mismatch. The effect of different polarities of phase error on CD monitoring is also analyzed. The shoulders location depends on the sign of the product DLDeltaphi. If DLDeltaphi > 0, the shoulder will appear on trailing edge else the shoulder will appear on leading edge when DLDeltaphi < 0. The analysis shows that the phase error is identical to the frequency offset of optical source so a signed frequency offset monitoring is also demonstrated. The monitoring results show that the monitoring range can reach +/-2.2GHz and the monitoring sensitivity is around 27MHz. The effect of nonlinearity, OSNR and bandwidth of the lowpass filter on the proposed monitoring method has also been studied. The signed CD monitoring for 100Gb/s carrier suppressed return-to-zero differential quadrature phase-shift keying (CSRZ-DQPSK) system based on the delay-tap sampling technology is demonstrated. The monitoring range and monitoring resolution can goes up to +/-32ps/nm and +/-8ps/nm, respectively. A signed CD and optical carrier wavelength monitoring scheme using cross-correlation method for on-off keying (00K) wavelength division multiplexing (WDM) system is proposed and demonstrated. CD monitoring sensitivity is high and can be less than 10% of the bit period. Wavelength monitoring is implemented using the proposed approach. The monitoring results show that the sensitivity can reach up to 1.37ps/GHz.
Block Copolymer Composites: A Bio-Optic Synthetic System for Dynamic Control of Refractive Index
2005-06-16
Wagner (interfacial) polarization of dispersed, ion-conductive phases in PS - b -PEO containing NLO-active moieties. In this initiative we postulate that...either by application of an electric or magnetic field. Technical Results Spatial modulation of refractive index in PS - b -PEO composites. Over the 18 month...segments with ionizable salts and polarizable, electrorefractive moieties and nanocrystals. Simple devices comprised of thin films of PS - b -PEO/KDP, PS - b
Lowet, Eric; Roberts, Mark; Hadjipapas, Avgis; Peter, Alina; van der Eerden, Jan; De Weerd, Peter
2015-02-01
Fine-scale temporal organization of cortical activity in the gamma range (∼25-80Hz) may play a significant role in information processing, for example by neural grouping ('binding') and phase coding. Recent experimental studies have shown that the precise frequency of gamma oscillations varies with input drive (e.g. visual contrast) and that it can differ among nearby cortical locations. This has challenged theories assuming widespread gamma synchronization at a fixed common frequency. In the present study, we investigated which principles govern gamma synchronization in the presence of input-dependent frequency modulations and whether they are detrimental for meaningful input-dependent gamma-mediated temporal organization. To this aim, we constructed a biophysically realistic excitatory-inhibitory network able to express different oscillation frequencies at nearby spatial locations. Similarly to cortical networks, the model was topographically organized with spatially local connectivity and spatially-varying input drive. We analyzed gamma synchronization with respect to phase-locking, phase-relations and frequency differences, and quantified the stimulus-related information represented by gamma phase and frequency. By stepwise simplification of our models, we found that the gamma-mediated temporal organization could be reduced to basic synchronization principles of weakly coupled oscillators, where input drive determines the intrinsic (natural) frequency of oscillators. The gamma phase-locking, the precise phase relation and the emergent (measurable) frequencies were determined by two principal factors: the detuning (intrinsic frequency difference, i.e. local input difference) and the coupling strength. In addition to frequency coding, gamma phase contained complementary stimulus information. Crucially, the phase code reflected input differences, but not the absolute input level. This property of relative input-to-phase conversion, contrasting with latency codes or slower oscillation phase codes, may resolve conflicting experimental observations on gamma phase coding. Our modeling results offer clear testable experimental predictions. We conclude that input-dependency of gamma frequencies could be essential rather than detrimental for meaningful gamma-mediated temporal organization of cortical activity.
Lowet, Eric; Roberts, Mark; Hadjipapas, Avgis; Peter, Alina; van der Eerden, Jan; De Weerd, Peter
2015-01-01
Fine-scale temporal organization of cortical activity in the gamma range (∼25–80Hz) may play a significant role in information processing, for example by neural grouping (‘binding’) and phase coding. Recent experimental studies have shown that the precise frequency of gamma oscillations varies with input drive (e.g. visual contrast) and that it can differ among nearby cortical locations. This has challenged theories assuming widespread gamma synchronization at a fixed common frequency. In the present study, we investigated which principles govern gamma synchronization in the presence of input-dependent frequency modulations and whether they are detrimental for meaningful input-dependent gamma-mediated temporal organization. To this aim, we constructed a biophysically realistic excitatory-inhibitory network able to express different oscillation frequencies at nearby spatial locations. Similarly to cortical networks, the model was topographically organized with spatially local connectivity and spatially-varying input drive. We analyzed gamma synchronization with respect to phase-locking, phase-relations and frequency differences, and quantified the stimulus-related information represented by gamma phase and frequency. By stepwise simplification of our models, we found that the gamma-mediated temporal organization could be reduced to basic synchronization principles of weakly coupled oscillators, where input drive determines the intrinsic (natural) frequency of oscillators. The gamma phase-locking, the precise phase relation and the emergent (measurable) frequencies were determined by two principal factors: the detuning (intrinsic frequency difference, i.e. local input difference) and the coupling strength. In addition to frequency coding, gamma phase contained complementary stimulus information. Crucially, the phase code reflected input differences, but not the absolute input level. This property of relative input-to-phase conversion, contrasting with latency codes or slower oscillation phase codes, may resolve conflicting experimental observations on gamma phase coding. Our modeling results offer clear testable experimental predictions. We conclude that input-dependency of gamma frequencies could be essential rather than detrimental for meaningful gamma-mediated temporal organization of cortical activity. PMID:25679780
Estimating phase synchronization in dynamical systems using cellular nonlinear networks
NASA Astrophysics Data System (ADS)
Sowa, Robert; Chernihovskyi, Anton; Mormann, Florian; Lehnertz, Klaus
2005-06-01
We propose a method for estimating phase synchronization between time series using the parallel computing architecture of cellular nonlinear networks (CNN’s). Applying this method to time series of coupled nonlinear model systems and to electroencephalographic time series from epilepsy patients, we show that an accurate approximation of the mean phase coherence R —a bivariate measure for phase synchronization—can be achieved with CNN’s using polynomial-type templates.
Exploring the tolerability of spatiotemporally complex electrical stimulation paradigms.
Nelson, Timothy S; Suhr, Courtney L; Lai, Alan; Halliday, Amy J; Freestone, Dean R; McLean, Karen J; Burkitt, Anthony N; Cook, Mark J
2011-10-01
A modified cortical stimulation model was used to investigate the effects of varying the synchronicity and periodicity of electrical stimuli delivered to multiple pairs of electrodes on seizure initiation. In this model, electrical stimulation of the motor cortex of rats, along four pairs of a microwire electrode array, results in an observable seizure with quantifiable electrographic duration and behavioural severity. Periodic stimuli had a constant inter-stimulus intervals across the two-second stimulus duration, whilst synchronous stimuli consisted of singular biphasic, bipolar pulses delivered to the four pairs of electrodes at precisely the same time for the entire two second stimulation period. In this way four combinations of stimulation were possible; periodic/synchronous (P/S), periodic/asynchronous (P/As), aperiodic/synchronous (Ap/S) and aperiodic/asynchronous (Ap/As). All stimulation types were designed with equal pulse width, current intensity and mean frequency of stimulation (60 Hz), standardizing net charge transfer. It was expected that the periodicity of the stimulus would be the primary determinant of seizure initiation and therefore severity and electrographic duration. However, the results showed that significant differences in both severity and duration only occurred when the synchronicity was altered. For periodic stimuli, synchronous delivery increased median seizure duration from 5 s to 13 s and increased median Racine severity from 1 to 3. In the aperiodic case, synchronous stimulus delivery increased median duration from 5.5 s to 11s and resulted in seizures of median severity 3 vs. 0 in the asynchronous case. These findings may have implications for the design of future neurostimulation waveform designs as higher numbers of electrodes and stimulator output channels become available in next generation implants. Copyright © 2011 Elsevier B.V. All rights reserved.
Emergence of multiple synchronization modes in hydrodynamically-coupled cilia
NASA Astrophysics Data System (ADS)
Guo, Hanliang; Kanso, Eva
2016-11-01
Motile cilia and flagella exhibit different phase coordinations. For example, closely swimming spermatozoa are observed to synchronize together; bi-flagellates Chlamydomonas regulate the flagella in a "breast-stroke" fashion; cilia on the surface of Paramecium beat in a fixed phase lag in an orchestrated wave like fashion. Experimental evidence suggests that phase coordinations can be achieved solely via hydrodynamical interactions. However, the exact mechanisms behind it remain illusive. Here, adapting a "geometric switch" model, we observe different synchronization modes in pairs of hydrodynamically-coupled cilia by changing physical parameters such as the strength of the cilia internal motor and the separation distance between cilia. Interestingly, we find regions in the parameter space where the coupled cilia reach stable phase coordinations and regions where the phase coordinations are sensitive to perturbations. We also find that leaning into the fluid reduces the sensitivity to perturbations, and produces stable phase coordination that is neither in-phase nor anti-phase, which could explain the origin of metachronal waves in large cilia populations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leung, Bonnie; Hitchcock, Adam; Brash, John
Spun-cast films of polystyrene (PS) blended with polylactide (PLA) were visualized and characterized using atomic force microscopy (AFM) and synchrotron-based X-ray photoemission electron microscopy (X-PEEM). The composition of the two polymers in these systems was determined by quantitative chemical analysis of near-edge X-ray absorption signals recorded with X-PEEM. The surface morphology depends on the ratio of the two components, the total polymer concentration, and the temperature of vacuum annealing. For most of the blends examined, PS is the continuous phase with PLA existing in discrete domains or segregated to the air?polymer interface. Phase segregation was improved with further annealing. Amore » phase inversion occurred when films of a 40:60 PS:PLA blend (0.7 wt percent loading) were annealed above the glass transition temperature (Tg) of PLA.« less
Experimental Evidence for Phase Synchronization Transitions in the Human Cardiorespiratory System
NASA Astrophysics Data System (ADS)
Bartsch, Ronny; Kantelhardt, Jan W.; Penzel, Thomas; Havlin, Shlomo
2007-02-01
Transitions in the dynamics of complex systems can be characterized by changes in the synchronization behavior of their components. Taking the human cardiorespiratory system as an example and using an automated procedure for screening the synchrograms of 112 healthy subjects we study the frequency and the distribution of synchronization episodes under different physiological conditions that occur during sleep. We find that phase synchronization between heartbeat and breathing is significantly enhanced during non-rapid-eye-movement (non-REM) sleep (deep sleep and light sleep) and reduced during REM sleep. Our results suggest that the synchronization is mainly due to a weak influence of the breathing oscillator upon the heartbeat oscillator, which is disturbed in the presence of long-term correlated noise, superimposed by the activity of higher brain regions during REM sleep.
The role of community structure on the nature of explosive synchronization.
Lotfi, Nastaran; Rodrigues, Francisco A; Darooneh, Amir Hossein
2018-03-01
In this paper, we analyze explosive synchronization in networks with a community structure. The results of our study indicate that the mesoscopic structure of the networks could affect the synchronization of coupled oscillators. With the variation of three parameters, the degree probability distribution exponent, the community size probability distribution exponent, and the mixing parameter, we could have a fast or slow phase transition. Besides, in some cases, we could have communities which are synchronized inside but not with other communities and vice versa. We also show that there is a limit in these mesoscopic structures which suppresses the transition from the second-order phase transition and results in explosive synchronization. This could be considered as a tuning parameter changing the transition of the system from the second order to the first order.
Cardiovascular and cardiorespiratory phase synchronization in normovolemic and hypovolemic humans.
Zhang, Qingguang; Patwardhan, Abhijit R; Knapp, Charles F; Evans, Joyce M
2015-02-01
We investigated whether and how cardiovascular and cardiorespiratory phase synchronization would respond to changes in hydration status and orthostatic stress. Four men and six women were tested during graded head-up tilt (HUT) in both euhydration and dehydration (DEH) conditions. Continuous R-R intervals (RRI), systolic blood pressure (SBP) and respiration were investigated in low (LF 0.04-0.15 Hz) and high (HF 0.15-0.4 Hz) frequency ranges using a phase synchronization index (λ) ranging from 0 (complete lack of interaction) to 1 (perfect interaction) and a directionality index (d), where a positive value of d reflects oscillator 1 driving oscillator 2, and a negative value reflects the opposite driving direction. Surrogate data analysis was used to exclude relationships that occurred by chance. In the LF range, respiration was not synchronized with RRI or SBP, whereas RRI and SBP were phase synchronized. In the HF range, phases among all variables were synchronized. DEH reduced λ among all variables in the HF and did not affect λ between RRI and SBP in the LF region. DEH reduced d between RRI and SBP in the LF and did not affect d among all variables in the HF region. Increasing λ and decreasing d between SBP and RRI were observed in the LF range during HUT. Decreasing λ between SBP and RRI, respiration and RRI, and decreasing d between respiration and SBP were observed in the HF range during HUT. These results show that orthostatic stress disassociated interactions among RRI, SBP and respiration, and that DEH exacerbated the disconnection.
Roy, Sudeshna; Sharma, Ashutosh
2015-07-01
Dewetting pathways, kinetics and morphologies of thin films of phase separating polymer blends are governed by the relative mobilities of the two components. We characterize the morphological transformations of the nanostructures of a PS/PMMA blend by annealing in toluene and chloroform vapors. Toluene leads to faster reorganization of PS, whereas chloroform engenders the opposite effect. Spin coating produces a very rough PMMA rich layer that completely wets the substrate and forms a plethora of slender columns protruding through the continuous PS rich layer on top. The nanostructures were stable under long thermal annealing but in the vapor annealing, phase separation and dewetting occurred readily to form the equilibrium structures of dewetted droplets of PS on top of PMMA which also climbed around the PS droplets to form rims. Toluene and chloroform annealing required around 50 h and 1 h respectively to attain the equilibrium. Substantial differences are observed in the intermediate morphologies (heights of nanostructures, roughness and size). PMMA columns remained embedded in the dewetted PS droplets, whereas a high mobility of PMMA in chloroform allowed its rapid evacuation during dewetting to produce an intermediate swiss-cheese like morphology of PS domains. Copyright © 2015 Elsevier Inc. All rights reserved.
Phase diagram for the Kuramoto model with van Hemmen interactions.
Kloumann, Isabel M; Lizarraga, Ian M; Strogatz, Steven H
2014-01-01
We consider a Kuramoto model of coupled oscillators that includes quenched random interactions of the type used by van Hemmen in his model of spin glasses. The phase diagram is obtained analytically for the case of zero noise and a Lorentzian distribution of the oscillators' natural frequencies. Depending on the size of the attractive and random coupling terms, the system displays four states: complete incoherence, partial synchronization, partial antiphase synchronization, and a mix of antiphase and ordinary synchronization.
NASA Technical Reports Server (NTRS)
Kazlauskas, K. A.; Kurlavichus, A. I.
1973-01-01
The operating characteristics of a synchronous electric motor are discussed. A system of phase stabilization of the instantaneous angular velocity of rotation of a synchronous-reaction motor is diagrammed. A mathematical model is developed to show the parameters which affect the operation of the motor. The selection of a correcting filter to use with the motor in order to reduce the reaction of the system to interference is explained.
NASA Astrophysics Data System (ADS)
Henry, Olivier; Bretheau, Dominique; Luttmann, Michel; Graillot, Herve; Ferri, Michel; Seguineau, Frederic; Bar, Emmanuel; Patissou, Loic; Canal, Phillipe; Sautarel, Françoise; Tranquille Marques, Yves; Raffestin, Didier
2016-10-01
The LMJ (Laser mega Joule) facility at the CESTA site (Aquitaine, France) is a tool designed to deliver up to 1.2 MJ at 351 nm for plasma experiments. The experiment system will include 11 diagnostics: UV and X energy balances, imagers (Streak and stripe camera, CCD), spectrometers, and a Visar/pyrometer. The facility must be able to deliver, within the hour following the shot, all the results of the plasma diagnostics, alignment images and laser diagnostic measurements. These results have to be guaranteed in terms of conformity to the request and quality of measurement. The end of 2014 was devoted to the qualification of system pointing on target and synchronization within and between beams. The shots made with one chain (divided in 2 quads - 8 laser beams) have achieved 50 µm of misalignment accuracy (chain and quad channel) and a synchronization accuracy in the order of 50 ps. The performances achieved for plasma diagnostic (in the order of less 100 µm of alignment and timing accuracy less than 150 ps) comply with expectations. At the same time the first automatic sequences were tested. They allowed a shot on target every 6h:30 and in some case twice a day by reducing preparation actions, leading to a sequence of 4h:00. These shooting sequences are managed by an operating team of 7 people helped by 3 people for security aspects.
Phase-sensitive dual-inversion recovery for accelerated carotid vessel wall imaging.
Bonanno, Gabriele; Brotman, David; Stuber, Matthias
2015-03-01
Dual-inversion recovery (DIR) is widely used for magnetic resonance vessel wall imaging. However, optimal contrast may be difficult to obtain and is subject to RR variability. Furthermore, DIR imaging is time-inefficient and multislice acquisitions may lead to prolonged scanning times. Therefore, an extension of phase-sensitive (PS) DIR is proposed for carotid vessel wall imaging. The statistical distribution of the phase signal after DIR is probed to segment carotid lumens and suppress their residual blood signal. The proposed PS-DIR technique was characterized over a broad range of inversion times. Multislice imaging was then implemented by interleaving the acquisition of 3 slices after DIR. Quantitative evaluation was then performed in healthy adult subjects and compared with conventional DIR imaging. Single-slice PS-DIR provided effective blood-signal suppression over a wide range of inversion times, enhancing wall-lumen contrast and vessel wall conspicuity for carotid arteries. Multislice PS-DIR imaging with effective blood-signal suppression is enabled. A variant of the PS-DIR method has successfully been implemented and tested for carotid vessel wall imaging. This technique removes timing constraints related to inversion recovery, enhances wall-lumen contrast, and enables a 3-fold increase in volumetric coverage at no extra cost in scanning time.
ERIC Educational Resources Information Center
Sisco, Ashley; Woodcock, Stuart; Eady, Michelle
2015-01-01
This article reports on the findings of phase two of a larger study, which examines pre-service teacher experiences engaging with a synchronous (live-time) platform as a part of their training. While phase one focused on pre-service experiences "e-learning" with this synchronous platform (Woodcock, Sisco, & Eady, 2015), phase two…
Novel Anaerobic Wastewater Treatment System for Energy Generation at Forward Operating Bases
2016-08-01
AnMBR) technology with clinoptilolite ion exchange and GreenBox™ ammonia electrolysis. The system generates both methane and hydrogen fuels...experimental setup. ................................................ 21 Figure 10. Methane phase semi batch experimental setup, a total of three reactors were...set up for PS + solid, Bioc and ADS methane phase reactors. .................... 21 Figure 11. Dried PS solid for the control, Bioc blend for the
Lobier, Muriel; Palva, J Matias; Palva, Satu
2018-01-15
Visuospatial attention prioritizes processing of attended visual stimuli. It is characterized by lateralized alpha-band (8-14 Hz) amplitude suppression in visual cortex and increased neuronal activity in a network of frontal and parietal areas. It has remained unknown what mechanisms coordinate neuronal processing among frontoparietal network and visual cortices and implement the attention-related modulations of alpha-band amplitudes and behavior. We investigated whether large-scale network synchronization could be such a mechanism. We recorded human cortical activity with magnetoencephalography (MEG) during a visuospatial attention task. We then identified the frequencies and anatomical networks of inter-areal phase synchronization from source localized MEG data. We found that visuospatial attention is associated with robust and sustained long-range synchronization of cortical oscillations exclusively in the high-alpha (10-14 Hz) frequency band. This synchronization connected frontal, parietal and visual regions and was observed concurrently with amplitude suppression of low-alpha (6-9 Hz) band oscillations in visual cortex. Furthermore, stronger high-alpha phase synchronization was associated with decreased reaction times to attended stimuli and larger suppression of alpha-band amplitudes. These results thus show that high-alpha band phase synchronization is functionally significant and could coordinate the neuronal communication underlying the implementation of visuospatial attention. Copyright © 2017 Elsevier Inc. All rights reserved.
Speed control for synchronous motors
NASA Technical Reports Server (NTRS)
Packard, H.; Schott, J.
1981-01-01
Feedback circuit controls fluctuations in speed of synchronous ac motor. Voltage proportional to phase angle is developed by phase detector, rectified, amplified, compared to threshold, and reapplied positively or negatively to motor excitation circuit. Speed control reduces wow and flutter of audio turntables and tape recorders, and enhances hunting in gyroscope motors.
Phase transitions in traffic flow on multilane roads.
Kerner, Boris S; Klenov, Sergey L
2009-11-01
Based on empirical and numerical analyses of vehicular traffic, the physics of spatiotemporal phase transitions in traffic flow on multilane roads is revealed. The complex dynamics of moving jams observed in single vehicle data measured by video cameras on American highways is explained by the nucleation-interruption effect in synchronized flow, i.e., the spontaneous nucleation of a narrow moving jam with the subsequent jam dissolution. We find that (i) lane changing, vehicle merging from on-ramps, and vehicle leaving to off-ramps result in different traffic phases-free flow, synchronized flow, and wide moving jams-occurring and coexisting in different road lanes as well as in diverse phase transitions between the traffic phases; (ii) in synchronized flow, the phase transitions are responsible for a non-regular moving jam dynamics that explains measured single vehicle data: moving jams emerge and dissolve randomly at various road locations in different lanes; (iii) the phase transitions result also in diverse expanded general congested patterns occurring at closely located bottlenecks.
Critique of a Hughes shuttle Ku-band data sampler/bit synchronizer
NASA Technical Reports Server (NTRS)
Holmes, J. K.
1980-01-01
An alternative bit synchronizer proposed for shuttle was analyzed in a noise-free environment by considering the basic operation of the loop via timing diagrams and by linearizing the bit synchronizer as an equivalent, continuous, phased-lock loop (PLL). The loop is composed of a high-frequency phase-frequency detector which is capable of detecting both phase and frequency errors and is used to track the clock, and a bit transition detector which attempts to track the transitions of the data bits. It was determined that the basic approach was a good design which, with proper implementation of the accumulator, up/down counter and logic should provide accurate mid-bit sampling with symmetric bits. However, when bit asymmetry occurs, the bit synchronizer can lock up with a large timing error, yet be quasi-stable (timing will not change unless the clock and bit sequence drift). This will result in incorrectly detecting some bits.
LASSO observations at McDonald and OCA/CERGA: A preliminary analysis
NASA Technical Reports Server (NTRS)
Veillet, CH.; Fridelance, P.; Feraudy, D.; Boudon, Y.; Shelus, P. J.; Ricklefs, R. L.; Wiant, J. R.
1993-01-01
The Laser Synchronization from Synchronous Orbit (LASSO) observations between USA and Europe were made possible with the move of Meteosat 3/P2 toward 50 deg W. Two Lunar Laser Ranging stations participated into the observations: the MLRS at McDonald Observatory (Texas, USA) and OCA/CERGA (Grasse, France). Common sessions were performed since 30 Apr. 1992, and will be continued up to the next Meteosat 3/P2 move further West (planned for January 1993). The preliminary analysis made with the data already collected by the end of Nov. 1992 shows that the precision which can be obtained from LASSO is better than 100 ps, the accuracy depending on how well the stations maintain their time metrology, as well as on the quality of the calibration (still to be made.) For extracting such a precision from the data, the processing has been drastically changed compared to the initial LASSO data analysis. It takes into account all the measurements made, timings on board, and echoes at each station. This complete use of the data increased dramatically the confidence into the synchronization results.
NASA Astrophysics Data System (ADS)
Lin, Gong-Ru
2002-12-01
We develop a delay-line-free and frequency traceable electro-optic sampling oscilloscope by use of a digital phase-locked loop phase shifter (PLL-PS) controlled delay-time-tunable gain-switched laser diode (GSLD). The home-made voltage-controllable PLL-PS exhibits a linear transfer function with ultra-wide phase shifting range of ±350° and tuning error of <±5%, which benefits the advantages of frequency tracking to free-running signals with suppressed timing-jitter. The maximum delay-time of PLL-PS controlled GSLD is up to 1.95 periods by changing the controlling voltage ( VREF) from -3.5 to 3.5 V, which corresponds to 3.9 ns at repetition frequency of 500 MHz. The tuning responsivity and resolution are about 0.56 ns/V and 0.15˜0.2 ps, respectively. The maximum delay-time switching bandwidth of 100 Hz is determined under the control of a saw-tooth modulated VREF function. The waveform sampling of microwave PECL signals generated from a free-running digital frequency divider is performed with acceptable measuring deviation.
Phase behavior of diblock copolymer/star-shaped polymer thin film mixtures.
Zhao, Junnan; Sakellariou, Georgios; Green, Peter F
2016-05-07
We investigated the phase behavior of thin film, thickness h≈ 100 nm, mixtures of a polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) diblock copolymer with star-shaped polystyrene (SPS) molecules of varying functionalities f, where 4 ≤f≤ 64, and molecular weights per arm Marm. The miscibility of the system and the surface composition varied appreciably with Marm and f. For large values of Marm, regardless of f, the miscibility of the system was qualitatively similar to that of linear chain PS/PS-b-P2VP mixtures - the copolymer chains aggregate to form micelles, each composed of an inner P2VP core and PS corona, which preferentially segregate to the free surface. On the other hand, for large f and small Marm, SPS molecules preferentially resided at the free surface. Moreover, blends containing SPS molecules with the highest values of f and lowest values of Marm were phase separated. These observations are rationalized in terms of competing entropic interactions and the dependence of the surface tension of the star-shaped molecules on Marm and f.
Šmigovec Ljubič, Tina; Pahovnik, David; Žigon, Majda; Žagar, Ema
2012-01-01
The separation of a mixture of three poly(styrene-block-t-butyl methacrylate) copolymers (PS-b-PtBMA), consisting of polystyrene (PS) blocks of similar length and t-butyl methacrylate (PtBMA) blocks of different lengths, was performed using various chromatographic techniques, that is, a gradient liquid chromatography on reversed-phase (C18 and C8) and normal-phase columns, a liquid chromatography under critical conditions for polystyrene as well as a fully automated two-dimensional liquid chromatography that separates block copolymers by chemical composition in the first dimension and by molar mass in the second dimension. The results show that a partial separation of the mixture of PS-b-PtBMA copolymers can be achieved only by gradient liquid chromatography on reversed-phase columns. The coelution of the two block copolymers is ascribed to a much shorter PtBMA block length, compared to the PS block, as well as a small difference in the length of the PtBMA block in two of these copolymers, which was confirmed by SEC-MALS and NMR spectroscopy. PMID:22489207
NASA Astrophysics Data System (ADS)
Benkler, Erik; Telle, Harald R.
2007-06-01
An improved phase-locked loop (PLL) for versatile synchronization of a sampling pulse train to an optical data stream is presented. It enables optical sampling of the true waveform of repetitive high bit-rate optical time division multiplexed (OTDM) data words such as pseudorandom bit sequences. Visualization of the true waveform can reveal details, which cause systematic bit errors. Such errors cannot be inferred from eye diagrams and require word-synchronous sampling. The programmable direct-digital-synthesis circuit used in our novel PLL approach allows flexible adaption of virtually any problem-specific synchronization scenario, including those required for waveform sampling, for jitter measurements by slope detection, and for classical eye-diagrams. Phase comparison of the PLL is performed at 10-GHz OTDM base clock rate, leading to a residual synchronization jitter of less than 70 fs.
The integration of FPGA TDC inside White Rabbit node
NASA Astrophysics Data System (ADS)
Li, H.; Xue, T.; Gong, G.; Li, J.
2017-04-01
White Rabbit technology is capable of delivering sub-nanosecond accuracy and picosecond precision of synchronization and normal data packets over the fiber network. Carry chain structure in FPGA is a popular way to build TDC and tens of picosecond RMS resolution has been achieved. The integration of WR technology with FPGA TDC can enhance and simplify the TDC in many aspects that includes providing a low jitter clock for TDC, a synchronized absolute UTC/TAI timestamp for coarse counter, a fancy way to calibrate the carry chain DNL and an easy to use Ethernet link for data and control information transmit. This paper presents a FPGA TDC implemented inside a normal White Rabbit node with sub-nanosecond measurement precision. The measured standard deviation reaches 50ps between two distributed TDCs. Possible applications of this distributed TDC are also discussed.
Schneider, Nils-Lasse; Stengl, Monika
2006-03-01
The temporal organization of physiological and behavioral states is controlled by circadian clocks in apparently all eukaryotic organisms. In the cockroach Leucophaea maderae lesion and transplantation studies located the circadian pacemaker in the accessory medulla (AMe). The AMe is densely innervated by gamma-aminobutyric acid (GABA)-immunoreactive and peptidergic neurons, among them the pigment-dispersing factor immunoreactive circadian pacemaker candidates. The large majority of cells of the cockroach AMe spike regularly and synchronously in the gamma frequency range of 25-70 Hz as a result of synaptic and nonsynaptic coupling. Although GABAergic coupling forms assemblies of phase-locked cells, in the absence of synaptic release the cells remain synchronized but fire now at a stable phase difference. To determine whether these coupling mechanisms of AMe neurons, which are independent of synaptic release, are based on electrical synapses between the circadian pacemaker cells the gap-junction blockers halothane, octanol, and carbenoxolone were used in the presence and absence of synaptic transmission. Here, we show that different populations of AMe neurons appear to be coupled by gap junctions to maintain synchrony at a stable phase difference. This synchronization by gap junctions is a prerequisite to phase-locked assembly formation by synaptic interactions and to synchronous gamma-type action potential oscillations within the circadian clock.
Synchronous clock stopper for microprocessor
NASA Technical Reports Server (NTRS)
Kitchin, David A. (Inventor)
1985-01-01
A synchronous clock stopper circuit for inhibiting clock pulses to a microprocessor in response to a stop request signal, and for reinstating the clock pulses in response to a start request signal thereby to conserve power consumption of the microprocessor when used in an environment of limited power. The stopping and starting of the microprocessor is synchronized, by a phase tracker, with the occurrences of a predetermined phase in the instruction cycle of the microprocessor in which the I/O data and address lines of the microprocessor are of high impedance so that a shared memory connected to the I/O lines may be accessed by other peripheral devices. The starting and stopping occur when the microprocessor initiates and completes, respectively, an instruction, as well as before and after transferring data with a memory. Also, the phase tracker transmits phase information signals over a bus to other peripheral devices which signals identify the current operational phase of the microprocessor.
Langdon, Angela J; Breakspear, Michael; Coombes, Stephen
2012-12-01
The minimal integrate-and-fire-or-burst neuron model succinctly describes both tonic firing and postinhibitory rebound bursting of thalamocortical cells in the sensory relay. Networks of integrate-and-fire-or-burst (IFB) neurons with slow inhibitory synaptic interactions have been shown to support stable rhythmic states, including globally synchronous and cluster oscillations, in which network-mediated inhibition cyclically generates bursting in coherent subgroups of neurons. In this paper, we introduce a reduced IFB neuronal population model to study synchronization of inhibition-mediated oscillatory bursting states to periodic excitatory input. Using numeric methods, we demonstrate the existence and stability of 1:1 phase-locked bursting oscillations in the sinusoidally forced IFB neuronal population model. Phase locking is shown to arise when periodic excitation is sufficient to pace the onset of bursting in an IFB cluster without counteracting the inhibitory interactions necessary for burst generation. Phase-locked bursting states are thus found to destabilize when periodic excitation increases in strength or frequency. Further study of the IFB neuronal population model with pulse-like periodic excitatory input illustrates that this synchronization mechanism generalizes to a broad range of n:m phase-locked bursting states across both globally synchronous and clustered oscillatory regimes.
NASA Astrophysics Data System (ADS)
Davis, L. Craig
2006-03-01
Congestion in freeway traffic is an example of self-organization in the language of complexity theory. Nonequilibrium, first-order phase transitions from free flow cause complex spatiotemporal patterns. Two distinct phases of congestion are observed in empirical traffic data--wide moving jams and synchronous flow. Wide moving jams are characterized by stopped or slowly moving vehicles within the jammed region, which widens and moves upstream at 15-20 km/h. Above a critical density of vehicles, a sudden decrease in the velocity of a lead vehicle can initiate a transition from metastable states to this phase. Human behaviors, especially delayed reactions, are implicated in the formation of jams. The synchronous flow phase results from a bottleneck such as an on-ramp. Thus, in contrast to a jam, the downstream front is pinned at a fixed location. The name of the phase comes from the equilibration (or synchronization) of speed and flow rate across all lanes caused by frequent vehicle lane changes. Synchronous flow occurs when the mainline flow and the rate of merging from an on-ramp are sufficiently large. Large-scale simulations using car-following models reproduce the physical phenomena occurring in traffic and suggest methods to improve flow and mediate congestion.
Selection of G1 Phase Yeast Cells for Synchronous Meiosis and Sporulation.
Stuart, David T
2017-01-01
Centrifugal elutriation is a procedure that allows the fractionation of cell populations based upon their size and shape. This allows cells in distinct cell cycle stages can be captured from an asynchronous population. The technique is particularly helpful when performing an experiment to monitor the progression of cells through the cell cycle or meiosis. Yeast sporulation like gametogenesis in other eukaryotes initiates from the G1 phase of the cell cycle. Conveniently, S. cerevisiae arrest in G1 phase when starved for nutrients and so withdrawal of nitrogen and glucose allows cells to abandon vegetative growth in G1 phase before initiating the sporulation program. This simple starvation protocol yields a partial synchronization that has been used extensively in studies of progression through meiosis and sporulation. By using centrifugal elutriation it is possible to isolate a homogeneous population of G1 phase cells and induce them to sporulate synchronously, which is beneficial for investigating progression through meiosis and sporulation. An additionally benefit of this protocol is that cell populations can be isolated based upon size and both large and small cell populations can be tested for progression through meiosis and sporulation. Here we present a protocol for purification of G1 phase diploid cells for examining synchronous progression through meiosis and sporulation.
Synchronization analysis of voltage-sensitive dye imaging during focal seizures in the rat neocortex
NASA Astrophysics Data System (ADS)
Takeshita, Daisuke; Bahar, Sonya
2011-12-01
Seizures are often assumed to result from an excess of synchronized neural activity. However, various recent studies have suggested that this is not necessarily the case. We investigate synchronization during focal neocortical seizures induced by injection of 4-aminopyridine (4AP) in the rat neocortex in vivo. Neocortical activity is monitored by field potential recording and by the fluorescence of the voltage-sensitive dye RH-1691. After removal of artifacts, the voltage-sensitive dye (VSD) signal is analyzed using the nonlinear dynamics-based technique of stochastic phase synchronization in order to determine the degree of synchronization within the neocortex during the development and spread of each seizure event. Results show a large, statistically significant increase in synchronization during seizure activity. Synchrony is typically greater between closer pixel pairs during a seizure event; the entire seizure region is synchronized almost exactly in phase. This study represents, to our knowledge, the first application of synchronization analysis methods to mammalian VSD imaging in vivo. Our observations indicate a clear increase in synchronization in this model of focal neocortical seizures across a large area of the neocortex; a sharp increase in synchronization during seizure events was observed in all 37 seizures imaged. The results are consistent with a recent computational study which simulates the effect of 4AP in a neocortical neuron model.
A scheme for synchronizing clocks connected by a packet communication network
NASA Astrophysics Data System (ADS)
dos Santos, R. V.; Monteiro, L. H. A.
2012-07-01
Consider a communication system in which a transmitter equipment sends fixed-size packets of data at a uniform rate to a receiver equipment. Consider also that these equipments are connected by a packet-switched network, which introduces a random delay to each packet. Here we propose an adaptive clock recovery scheme able of synchronizing the frequencies and the phases of these devices, within specified limits of precision. This scheme for achieving frequency and phase synchronization is based on measurements of the packet arrival times at the receiver, which are used to control the dynamics of a digital phase-locked loop. The scheme performance is evaluated via numerical simulations performed by using realistic parameter values.
NASA Astrophysics Data System (ADS)
Ott, Edward; Antonsen, Thomas M.
2017-05-01
A common observation is that large groups of oscillatory biological units often have the ability to synchronize. A paradigmatic model of such behavior is provided by the Kuramoto model, which achieves synchronization through coupling of the phase dynamics of individual oscillators, while each oscillator maintains a different constant inherent natural frequency. Here we consider the biologically likely possibility that the oscillatory units may be capable of enhancing their synchronization ability by adaptive frequency dynamics. We propose a simple augmentation of the Kuramoto model which does this. We also show that, by the use of a previously developed technique [Ott and Antonsen, Chaos 18, 037113 (2008)], it is possible to reduce the resulting dynamics to a lower dimensional system for the macroscopic evolution of the oscillator ensemble. By employing this reduction, we investigate the dynamics of our system, finding a characteristic hysteretic behavior and enhancement of the quality of the achieved synchronization.
The two-way time synchronization system via a satellite voice channel
NASA Technical Reports Server (NTRS)
Heng-Qiu, Zheng; Ren-Huan, Zhang; Yong-Hui, HU
1994-01-01
A newly developed two-way time synchronization system is described in this paper. The system uses one voice channel at a SCPC satellite digital communication earth station, whose bandwidth is only 45 kHz, thus saving satellite resources greatly. The system is composed of one master station and one or several, up to sixty-two, secondary stations. The master and secondary stations are equipped with the same equipment, including a set of timing equipment, a synthetic data terminal for time synchronizing, and a interface unit between the data terminal and the satellite earth station. The synthetic data terminal for time synchronization also has an IRIG-B code generator and a translator. The data terminal of master station is the key part of whole system. The system synchronization process is full automatic, which is controlled by the master station. Employing an autoscanning technique and conversational mode, the system accomplishes the following tasks: linking up liaison with each secondary station in turn, establishing a coarse time synchronization, calibrating date (years, months, days) and time of day (hours, minutes, seconds), precisely measuring the time difference between local station and the opposite station, exchanging measurement data, statistically processing the data, rejecting error terms, printing the data, calculating the clock difference and correcting the phase, thus realizing real-time synchronization from one point to multiple points. We also designed an adaptive phase circuit to eliminate the phase ambiguity of the PSK demodulator. The experiments have shown that the time synchronization accuracy is better than 2 mu S. The system has been put into regular operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Octavianty, Ressa, E-mail: ressa-octavianty@ed.tmu.ac.jp; Asai, Masahito, E-mail: masai@tmu.ac.jp
Synchronized vortex shedding from two side-by-side cylinders and the associated sound radiation were examined experimentally at Reynolds numbers of the order of 10{sup 4} in low-Mach-number flows. In addition to a pair of square cylinders, a pair of rectangular cylinders, one with a square cross section (d × d) and the other with a rectangular cross section (d × c) having a cross-sectional aspect ratio (c/d) of 1.2–1.5, was considered. The center-to-center distance between the two cylinders L/d was 3.6, 4.5, and 6.0; these settings were within the non-biased flow regime for side-by-side square cylinders. In case of a squaremore » cylinder pair, anti-phase synchronized vortex shedding occurring for L/d = 3.6 and 4.5 generated a quadrupole-like sound source which radiated in-phase, planar-symmetric sound in the far field. Synchronized vortex shedding from the two rectangular cylinders with different c/d also occurred with almost the same frequency as the characteristic frequency of the square-cylinder wake in the case of the small center-to-center distance, L/d = 3.6, for all the cylinder pairs examined. The synchronized sound field was anti-phase and asymmetric in amplitude, unlike the case of a square cylinder pair. For larger spacing L/d = 4.5, synchronized vortex shedding and anti-phase sound still occurred, but only for close cross-sectional aspect ratios (c/d = 1.0 and 1.2), and highly modulated sound was radiated with two different frequencies due to non-synchronized vortex shedding from the two cylinders for larger differences in c/d. It was also found that when synchronized vortex shedding occurred, near-wake velocity fluctuations exhibited high spanwise-coherency, with a very sharp spectral peak compared with the single-cylinder case.« less
Dual-domain lateral shearing interferometer
Naulleau, Patrick P.; Goldberg, Kenneth Alan
2004-03-16
The phase-shifting point diffraction interferometer (PS/PDI) was developed to address the problem of at-wavelength metrology of extreme ultraviolet (EUV) optical systems. Although extremely accurate, the fact that the PS/PDI is limited to use with coherent EUV sources, such as undulator radiation, is a drawback for its widespread use. An alternative to the PS/PDI, with relaxed coherence requirements, is lateral shearing interferometry (LSI). The use of a cross-grating, carrier-frequency configuration to characterize a large-field 4.times.-reduction EUV lithography optic is demonstrated. The results obtained are directly compared with PS/PDI measurements. A defocused implementation of the lateral shearing interferometer in which an image-plane filter allows both phase-shifting and Fourier wavefront recovery. The two wavefront recovery methods can be combined in a dual-domain technique providing suppression of noise added by self-interference of high-frequency components in the test-optic wavefront.
West, Timothy; Farmer, Simon; Berthouze, Luc; Jha, Ashwani; Beudel, Martijn; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Brown, Peter; Litvak, Vladimir
2016-01-01
In this paper we investigated the dopaminergic modulation of neuronal interactions occurring in the subthalamic nucleus (STN) during Parkinson's disease (PD). We utilized linear measures of local and long range synchrony such as power and coherence, as well as Detrended Fluctuation Analysis for Phase Synchrony (DFA-PS)- a recently developed non-linear method that computes the extent of long tailed autocorrelations present in the phase interactions between two coupled signals. Through analysis of local field potentials (LFPs) taken from the STN we seek to determine changes in the neurodynamics that may underpin the pathophysiology of PD in a group of 12 patients who had undergone surgery for deep brain stimulation. We demonstrate up modulation of alpha-theta (5-12 Hz) band power in response to L-DOPA treatment, whilst low beta band power (15-20 Hz) band-power is suppressed. We also find evidence for significant local connectivity within the region surrounding STN although there was evidence for its modulation via administration of L-DOPA. Further to this we present evidence for a positive correlation between the phase ordering of bilateral STN interactions and the severity of bradykinetic and rigidity symptoms in PD. Although, the ability of non-linear measures to predict clinical state did not exceed standard measures such as beta power, these measures may help identify the connections which play a role in pathological dynamics.
Repp, Bruno H
2004-10-01
In a task that requires in-phase synchronization of finger taps with an isochronous sequence of target tones that is interleaved with a sequence of distractor tones at various fixed phase relationships, the taps tend to be attracted to the distractor tones, especially when the distractor tones closely precede the target tones [Repp, B. H. (2003a). Phase attraction in sensorimotor synchronization with auditory sequences: Effects of single and periodic distractors on synchronization accuracy. Journal of Experimental Psychology: Human Perception and Performance, 29, 290-309]. The present research addressed two related questions about this distractor effect: (1) Is it a function of the absolute temporal separation or of the relative phase of the two stimulus sequences? (2) Is it the result of perceptual grouping (integration) of target and distractor tones or of simultaneous attraction to two independent sequences? In three experiments, distractor effects were compared across two different sequence rates. The results suggest that absolute temporal separation, not relative phase, is the critical variable. Experiment 3 also included an anti-phase tapping task that addressed the second question directly. The results suggest that the attraction of taps to distractor tones is caused mainly by temporal integration of target and distractor tones within a fixed window of 100-150 ms duration, with the earlier-occurring tone being weighted more strongly than the later-occurring one.
NASA Astrophysics Data System (ADS)
Sakai, Joe; Katano, Satoshi; Kuwahara, Masashi; Uehara, Yoichi
2017-10-01
We attempted to observe pump-probe scanning tunneling microscopy (STM)-light emission (LE) from a VO2 thin film grown on a rutile TiO2(0 0 1) substrate, with an Ag tip fixed over a semiconducting domain. Laser pulses from a Ti:sapphire laser (wavelength 920 nm pulse width less than 1.5 ps) irradiated the tip-sample gap as pump and probe light sources. With a photon energy of 2.7 eV, suggesting phase transition from semiconducting monoclinic (M) to metallic rutile (R) phases in relation to the electronic band structure, faint LE was observed roughly 30 ps after the irradiation of the pump pulse, followed by retention for roughly 20 ps. The incident energy fluence of the pump pulse at the gap was five orders of magnitude lower than the threshold value for reported photo-induced M-R phase transition. The mechanism that makes it possible to reduce the threshold fluence is discussed.
Sakai, Joe; Katano, Satoshi; Kuwahara, Masashi; Uehara, Yoichi
2017-10-11
We attempted to observe pump-probe scanning tunneling microscopy (STM)-light emission (LE) from a VO 2 thin film grown on a rutile TiO 2 (0 0 1) substrate, with an Ag tip fixed over a semiconducting domain. Laser pulses from a Ti:sapphire laser (wavelength 920 nm; pulse width less than 1.5 ps) irradiated the tip-sample gap as pump and probe light sources. With a photon energy of 2.7 eV, suggesting phase transition from semiconducting monoclinic (M) to metallic rutile (R) phases in relation to the electronic band structure, faint LE was observed roughly 30 ps after the irradiation of the pump pulse, followed by retention for roughly 20 ps. The incident energy fluence of the pump pulse at the gap was five orders of magnitude lower than the threshold value for reported photo-induced M-R phase transition. The mechanism that makes it possible to reduce the threshold fluence is discussed.
NASA Technical Reports Server (NTRS)
Maleki, Lutfollah (Inventor)
1993-01-01
Two different carrier frequencies modulated by a reference frequency are transmitted to each receiver to be synchronized therewith. Each receiver responds to local phase differences between the two received signals to correct the phase of one of them so as to maintain the corrected signal as a reliable synchronization reference.
Partial synchronization in networks of non-linearly coupled oscillators: The Deserter Hubs Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freitas, Celso, E-mail: cbnfreitas@gmail.com; Macau, Elbert, E-mail: elbert.macau@inpe.br; Pikovsky, Arkady, E-mail: pikovsky@uni-potsdam.de
2015-04-15
We study the Deserter Hubs Model: a Kuramoto-like model of coupled identical phase oscillators on a network, where attractive and repulsive couplings are balanced dynamically due to nonlinearity of interactions. Under weak force, an oscillator tends to follow the phase of its neighbors, but if an oscillator is compelled to follow its peers by a sufficient large number of cohesive neighbors, then it actually starts to act in the opposite manner, i.e., in anti-phase with the majority. Analytic results yield that if the repulsion parameter is small enough in comparison with the degree of the maximum hub, then the fullmore » synchronization state is locally stable. Numerical experiments are performed to explore the model beyond this threshold, where the overall cohesion is lost. We report in detail partially synchronous dynamical regimes, like stationary phase-locking, multistability, periodic and chaotic states. Via statistical analysis of different network organizations like tree, scale-free, and random ones, we found a measure allowing one to predict relative abundance of partially synchronous stationary states in comparison to time-dependent ones.« less
Waves of Cdk1 Activity in S Phase Synchronize the Cell Cycle in Drosophila Embryos.
Deneke, Victoria E; Melbinger, Anna; Vergassola, Massimo; Di Talia, Stefano
2016-08-22
Embryos of most metazoans undergo rapid and synchronous cell cycles following fertilization. While diffusion is too slow for synchronization of mitosis across large spatial scales, waves of Cdk1 activity represent a possible process of synchronization. However, the mechanisms regulating Cdk1 waves during embryonic development remain poorly understood. Using biosensors of Cdk1 and Chk1 activities, we dissect the regulation of Cdk1 waves in the Drosophila syncytial blastoderm. We show that Cdk1 waves are not controlled by the mitotic switch but by a double-negative feedback between Cdk1 and Chk1. Using mathematical modeling and surgical ligations, we demonstrate a fundamental distinction between S phase Cdk1 waves, which propagate as active trigger waves in an excitable medium, and mitotic Cdk1 waves, which propagate as passive phase waves. Our findings show that in Drosophila embryos, Cdk1 positive feedback serves primarily to ensure the rapid onset of mitosis, while wave propagation is regulated by S phase events. Copyright © 2016 Elsevier Inc. All rights reserved.
Active hydrodynamics of synchronization and ordering in moving oscillators
NASA Astrophysics Data System (ADS)
Banerjee, Tirthankar; Basu, Abhik
2017-08-01
The nature of emergent collective behaviors of moving interacting physical agents is a long-standing open issue in physical and biological systems alike. This calls for studies on the control of synchronization and the degree of order in a collection of diffusively moving noisy oscillators. We address this by constructing a generic hydrodynamic theory for active phase fluctuations in a collection of a large number of nearly-phase-coherent moving oscillators in two dimensions. Our theory describes the general situation where phase fluctuations and oscillator mobility mutually affect each other. We show that the interplay between the active effects and the mobility of the oscillators leads to a variety of phenomena, ranging from synchronization with long-range, nearly-long-range, and quasi-long-range orders to instabilities and desynchronization with short-range order of the oscillator phases. We highlight the complex dependences of synchronization on the active effects. These should be testable in wide-ranging systems, e.g., oscillating chemical reactions in the presence of different reaction inhibitors and facilitators, live oriented cytoskeletal extracts, and vertebrate segmentation clocks.
Energy Supply Alternatives for Picatinny Arsenal, NJ
1992-09-01
condensation unit. The generator is a 3- phase, 60 cycle, synchronous, air -cooled type with brushless exciters. The generator’s voltage is 13.8 kV and rated at...60 cycle, synchronous, air -cooled type with brushless exciters. The generator’s voltage is 13.8 kV and rated at 150 MVA with a 0.85 Power Factor...condensation unit. The generator is a 3- phase, 60 cycle, synchronous, air -cooled type with brushless exciters. The generator’s voltage is 13.8 kV and rated
On-chip programmable ultra-wideband microwave photonic phase shifter and true time delay unit.
Burla, Maurizio; Cortés, Luis Romero; Li, Ming; Wang, Xu; Chrostowski, Lukas; Azaña, José
2014-11-01
We proposed and experimentally demonstrated an ultra-broadband on-chip microwave photonic processor that can operate both as RF phase shifter (PS) and true-time-delay (TTD) line, with continuous tuning. The processor is based on a silicon dual-phase-shifted waveguide Bragg grating (DPS-WBG) realized with a CMOS compatible process. We experimentally demonstrated the generation of delay up to 19.4 ps over 10 GHz instantaneous bandwidth and a phase shift of approximately 160° over the bandwidth 22-29 GHz. The available RF measurement setup ultimately limits the phase shifting demonstration as the device is capable of providing up to 300° phase shift for RF frequencies over a record bandwidth approaching 1 THz.
Photonic integrated circuit as a picosecond pulse timing discriminator.
Lowery, Arthur James; Zhuang, Leimeng
2016-04-18
We report the first experimental demonstration of a compact on-chip optical pulse timing discriminator that is able to provide an output voltage proportional to the relative timing of two 60-ps input pulses on separate paths. The output voltage is intrinsically low-pass-filtered, so the discriminator forms an interface between high-speed optics and low-speed electronics. Potential applications include timing synchronization of multiple pulse trains as a precursor for optical time-division multiplexing, and compact rangefinders with millimeter dimensions.
Anchoring in a novel bimanual coordination pattern.
Maslovat, Dana; Lam, Melanie Y; Brunke, Kirstin M; Chua, Romeo; Franks, Ian M
2009-02-01
Anchoring in cyclical movements has been defined as regions of reduced spatial or temporal variability [Beek, P. J. (1989). Juggling dynamics. PhD thesis. Amsterdam: Free University Press] that are typically found at movement reversal points. For in-phase and anti-phase movements, synchronizing reversal points with a metronome pulse has resulted in decreased anchor point variability and increased pattern stability [Byblow, W. D., Carson, R. G., & Goodman, D. (1994). Expressions of asymmetries and anchoring in bimanual coordination. Human Movement Science, 13, 3-28; Fink, P. W., Foo, P., Jirsa, V. K., & Kelso, J. A. S. (2000). Local and global stabilization of coordination by sensory information. Experimental Brain Research, 134, 9-20]. The present experiment examined anchoring during acquisition, retention, and transfer of a 90 degrees phase-offset continuous bimanual coordination pattern (whereby the right limb lags the left limb by one quarter cycle), involving horizontal flexion about the elbow. Three metronome synchronization strategies were imposed: participants either synchronized maximal flexion of the right arm (i.e., single metronome), both flexion and extension of the right arm (i.e., double metronome within-limb), or flexion of each arm (i.e., double metronome between-limb) to an auditory metronome. In contrast to simpler in-phase and anti-phase movements, synchronization of additional reversal points to the metronome did not reduce reversal point variability or increase pattern stability. Furthermore, practicing under different metronome synchronization strategies did not appear to have a significant effect on the rate of acquisition of the pattern.
Enabling vendor independent photoacoustic imaging systems with asynchronous laser source
NASA Astrophysics Data System (ADS)
Wu, Yixuan; Zhang, Haichong K.; Boctor, Emad M.
2018-02-01
Channel data acquisition, and synchronization between laser excitation and PA signal acquisition, are two fundamental hardware requirements for photoacoustic (PA) imaging. Unfortunately, however, neither is equipped by most clinical ultrasound scanners. Therefore, less economical specialized research platforms are used in general, which hinders a smooth clinical transition of PA imaging. In previous studies, we have proposed an algorithm to achieve PA imaging using ultrasound post-beamformed (USPB) RF data instead of channel data. This work focuses on enabling clinical ultrasound scanners to implement PA imaging, without requiring synchronization between the laser excitation and PA signal acquisition. Laser synchronization is inherently consisted of two aspects: frequency and phase information. We synchronize without communicating the laser and the ultrasound scanner by investigating USPB images of a point-target phantom in two steps. First, frequency information is estimated by solving a nonlinear optimization problem, under the assumption that the segmented wave-front can only be beamformed into a single spot when synchronization is achieved. Second, after making frequencies of two systems identical, phase delay is estimated by optimizing the image quality while varying phase value. The proposed method is validated through simulation, by manually adding both frequency and phase errors, then applying the proposed algorithm to correct errors and reconstruct PA images. Compared with the ground truth, simulation results indicate that the remaining errors in frequency correction and phase correction are 0.28% and 2.34%, respectively, which affirm the potential of overcoming hardware barriers on PA imaging through software solution.
Analysis of In-Flight Vibration Measurements from Helicopter Transmissions
NASA Technical Reports Server (NTRS)
Mosher, Marianne; Huff, Ed; Barszcz
2004-01-01
In-flight vibration measurements from the transmission of an OH-58C KIOWA are analyzed. In order to understand the effect of normal flight variation on signal shape, the first gear mesh components of the planetary gear system and bevel gear are studied in detail. Systematic patterns occur in the amplitude and phase of these signal components with implications for making time synchronous averages and interpreting gear metrics in flight. The phase of the signal component increases as the torque increases; limits on the torque range included in a time synchronous average may now be selected to correspond to phase change limits on the underlying signal. For some sensors and components, an increase in phase variation and/or abrupt change in the slope of the phase dependence on torque are observed in regions of very low amplitude of the signal component. A physical mechanism for this deviation is postulated. Time synchronous averages should not be constructed in torque regions with wide phase variation.
Patel, Mainak; Joshi, Badal
2013-10-07
The widespread presence of synchronized neuronal oscillations within the brain suggests that a mechanism must exist that is capable of decoding such activity. Two realistic designs for such a decoder include: (1) a read-out neuron with a high spike threshold, or (2) a phase-delayed inhibition network motif. Despite requiring a more elaborate network architecture, phase-delayed inhibition has been observed in multiple systems, suggesting that it may provide inherent advantages over simply imposing a high spike threshold. In this work, we use a computational and mathematical approach to investigate the efficacy of the phase-delayed inhibition motif in detecting synchronized oscillations. We show that phase-delayed inhibition is capable of creating a synchrony detector with sharp synchrony filtering properties that depend critically on the time course of inputs. Additionally, we show that phase-delayed inhibition creates a synchrony filter that is far more robust than that created by a high spike threshold. Copyright © 2013 Elsevier Ltd. All rights reserved.
Misichronis, Konstantinos; Chen, Jihua; Kahk, Jong K.; ...
2016-03-29
Here, the synthesis and molecular characterization of a series of conformationally asymmetric polystyrene-block-poly(1,3-cyclohexadiene) (PS- b-PCHD) diblock copolymers (PCHD: ~90% 1,4 and ~10% 1,2), by sequential anionic copolymerization high vacuum techniques, is reported. A wide range of volume fractions (0.27 ≤ Φ PS ≤ 0.91) was studied by transmission electron microscopy and small-angle X-ray scattering in order to explore in detail the microphase separation behavior of these flexible/semiflexible diblock copolymers. Unusual morphologies, consisting of PCHD core(PCHD-1,4)–shell(PCHD-1,2) cylinders in PS matrix and three-phase (PS, PCHD-1,4, PCHD-1,2) four-layer lamellae, were observed suggesting that the chain stiffness of the PCHD block and the strongmore » dependence of the interaction parameter χ on the PCHD microstructures are important factors for the formation of this unusual microphase separation behavior in PS- b-PCHD diblock copolymers. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 1564–1572« less
Emotional speech synchronizes brains across listeners and engages large-scale dynamic brain networks
Nummenmaa, Lauri; Saarimäki, Heini; Glerean, Enrico; Gotsopoulos, Athanasios; Jääskeläinen, Iiro P.; Hari, Riitta; Sams, Mikko
2014-01-01
Speech provides a powerful means for sharing emotions. Here we implement novel intersubject phase synchronization and whole-brain dynamic connectivity measures to show that networks of brain areas become synchronized across participants who are listening to emotional episodes in spoken narratives. Twenty participants' hemodynamic brain activity was measured with functional magnetic resonance imaging (fMRI) while they listened to 45-s narratives describing unpleasant, neutral, and pleasant events spoken in neutral voice. After scanning, participants listened to the narratives again and rated continuously their feelings of pleasantness–unpleasantness (valence) and of arousal–calmness. Instantaneous intersubject phase synchronization (ISPS) measures were computed to derive both multi-subject voxel-wise similarity measures of hemodynamic activity and inter-area functional dynamic connectivity (seed-based phase synchronization, SBPS). Valence and arousal time series were subsequently used to predict the ISPS and SBPS time series. High arousal was associated with increased ISPS in the auditory cortices and in Broca's area, and negative valence was associated with enhanced ISPS in the thalamus, anterior cingulate, lateral prefrontal, and orbitofrontal cortices. Negative valence affected functional connectivity of fronto-parietal, limbic (insula, cingulum) and fronto-opercular circuitries, and positive arousal affected the connectivity of the striatum, amygdala, thalamus, cerebellum, and dorsal frontal cortex. Positive valence and negative arousal had markedly smaller effects. We propose that high arousal synchronizes the listeners' sound-processing and speech-comprehension networks, whereas negative valence synchronizes circuitries supporting emotional and self-referential processing. PMID:25128711
Cholinergic modulation of event-related oscillations (ERO)
Sanchez-Alavez, Manuel; Robledo, Patricia; Wills, Derek N.; Havstad, James; Ehlers, Cindy L.
2014-01-01
The cholinergic system in the brain modulates patterns of activity involved in general arousal, attention processing, memory and consciousness. In the present study we determined the effects of selective cholinergic lesions of the medial septum area (MS) or nucleus basalis magnocellularis (NBM) on amplitude and phase characteristics of event related oscillations (EROs). A time–frequency based representation was used to determine ERO energy, phase synchronization across trials, recorded within a structure (phase lock index, PLI), and phase synchronization across trials, recorded between brain structures (phase difference lock index, PDLI), in the frontal cortex (Fctx), dorsal hippocampus (DHPC) and central amygdala (Amyg). Lesions in MS produced: (1) decreases in ERO energy in delta, theta, alpha, beta and gamma frequencies in Amyg, (2) reductions in gamma ERO energy and PLI in Fctx, (3) decreases in PDLI between the Fctx–Amyg in the theta, alpha, beta and gamma frequencies, and (4) decreases in PDLI between the DHPC–Amyg and Fctx–DHPC in the theta frequency bands. Lesions in NBM resulted in: (1) increased ERO energy in delta and theta frequency bands in Fctx, (2) reduced gamma ERO energy in Fctx and Amyg, (3) reductions in PLI in the theta, beta and gamma frequency ranges in Fctx, (4) reductions in gamma PLI in DHPC and (5) reduced beta PLI in Amyg. These studies suggest that the MS cholinergic system can alter phase synchronization between brain areas whereas the NBM cholinergic system modifies phase synchronization/phase resetting within a brain area. PMID:24594019
Crystallization and Microphase Separation in Chiral Block Copolymers
NASA Astrophysics Data System (ADS)
Ho, Rong-Ming
2012-02-01
Block copolymers composed of chiral entities, denoted as chiral block copolymers (BCP*s), were designed to fabricate helical architectures from self-assembly. A helical phase (denoted H*) was discovered in the self-assembly of poly(styrene)-b-poly(L-lactide) (PS-PLLA) BCPs*. To examine the phase behavior of the PS-PLLA, self-assembled superstructures resulting from the competition between crystallization and microphase separation of the PS-PLLA in solution were examined. A kinetically controlled process by changing non-solvent addition rate was utilized to control the BCP* self-assembly. Single-crystal lozenge lamellae were obtained by the slow self-assembly (i.e., slow non-solvent addition rate) of PS-PLLA whereas amorphous helical ribbon superstructures were obtained from the fast self-assembly (i.e., fast non-solvent addition rate). As a result, the formation of helical architectures from the self-assembly of the PS-PLLA reflects the impact of chirality on microphase separation, but the chiral effect might be overwhelmed by crystallization. Consequently, various crystalline PS-PLLA nanostructures in bulk were obtained by controlling the crystallization temperature of PLLA (Tc,PLLA) at which crystalline helices and crystalline cylinders occur while Tc,PLLA
NASA Astrophysics Data System (ADS)
Zhou, Xin; Oak, Chulho; Ahn, Yeh-Chan; Kim, Sung Won; Tang, Shuo
2018-02-01
Polarization-sensitive optical coherence tomography (PS-OCT) is capable of measuring tissue birefringence. It has been widely applied to access the birefringence in tissues such as skin and cartilage. The vocal cord tissue consists of three anatomical layers from the surface to deep inside, the epithelium that contains almost no collagen, the lamina propria that is composed with abundant collagen, and the vocalis muscle layer. Due to the variation in the organization of collagen fibers, the different tissue layers show different tissue birefringence, which can be evaluated by PS-OCT phase retardation measurement. Furthermore, collagen fibers in healthy connective tissues are usually well organized, which provides relatively high birefringence. When the collagen organization is destroyed by diseases such as tumor, the birefringence of the tissue will decrease. In this study, a rabbit laryngeal tumor model with different stages of tumor progression is investigated ex-vivo by PS-OCT. The PS-OCT images show a gradual decrease in birefringence from normal tissue to severe tumor tissue. A phase retardation slope-based analysis is conducted to distinguish the epithelium, lamina propria, and muscle layers, respectively. The phase retardation slope quantifies the birefringence in different layers. The quantitative study provides a more detailed comparison among different stages of the rabbit laryngeal tumor model. The PS-OCT result is validated by the corresponding histology images of the same samples.
An on-chip coupled resonator optical waveguide single-photon buffer
Takesue, Hiroki; Matsuda, Nobuyuki; Kuramochi, Eiichi; Munro, William J.; Notomi, Masaya
2013-01-01
Integrated quantum optical circuits are now seen as one of the most promising approaches with which to realize single-photon quantum information processing. Many of the core elements for such circuits have been realized, including sources, gates and detectors. However, a significant missing function necessary for photonic quantum information processing on-chip is a buffer, where single photons are stored for a short period of time to facilitate circuit synchronization. Here we report an on-chip single-photon buffer based on coupled resonator optical waveguides (CROW) consisting of 400 high-Q photonic crystal line-defect nanocavities. By using the CROW, a pulsed single photon is successfully buffered for 150 ps with 50-ps tunability while maintaining its non-classical properties. Furthermore, we show that our buffer preserves entanglement by storing and retrieving one photon from a time-bin entangled state. This is a significant step towards an all-optical integrated quantum information processor. PMID:24217422
Shear-induced Long Range Order in Diblock Copolymer Thin Films
NASA Astrophysics Data System (ADS)
Ding, Xuan; Russell, Thomas
2007-03-01
Shear is a well-established means of aligning block copolymer micro-domains in bulk; cylinder-forming block copolymers respond by orienting cylinder axes parallel to the flow direction, and macroscopic specimens with near-single-crystal texture can be obtained. A stepper motor is a brushless, synchronous electric motor that can divide a full rotation into a large number of steps. With the combination of a stepper motor and several gear boxes in our experiment, we can control the rotating resolution to be as small as 1 x10-4 degree/step. Also, with the help of a customized computer program we can control the motor speed in a very systematical way. By changing parameters such as the weight (or the uniform pressure) and the lateral force we can carry on experiment to examine the effect of lateral shear on different polymer systems such as PS-b-PEO (large χ) and PS-b-P2VP (small χ).
Anderson, Joseph C; Butterly, Lynn F; Robinson, Christina M; Weiss, Julia E; Amos, Christopher; Srivastava, Amitabh
2018-01-01
Surveillance guidelines for serrated polyps (SPs) are based on limited data on longitudinal outcomes of patients. We used the New Hampshire Colonoscopy Registry to evaluate risk of clinically important metachronous lesions associated with SPs detected during index colonoscopies. We collected data from a population-based colonoscopy registry that has been collecting and analyzing data on colonoscopies across the state of New Hampshire since 2004, including rates of adenoma and SP detection. Patients completed a questionnaire to determine demographic characteristics, health history, and risk factors for colorectal cancer, and were followed from index colonoscopy through all subsequent surveillance colonoscopies. Our analyses included 5433 participants (median age, 61 years; 49.7% male) with 2 colonoscopies (median time to surveillance, 4.9 years). We used multivariable logistic regression models to assess effects of index SPs (n = 1016), high-risk adenomas (HRA, n = 817), low-risk adenomas (n = 1418), and no adenomas (n = 3198) on subsequent HRA or large SPs (>1 cm) on surveillance colonoscopy (metachronous lesions). Synchronous SPs, within each index risk group, were assessed for size and by histology. SPs comprise hyperplastic polyps, sessile serrated adenomas/polyps (SSA/Ps), and traditional serrated adenomas. In this study, SSA/Ps and traditional serrated adenomas are referred to collectively as STSAs. HRA and synchronous large SP (odds ratio [OR], 5.61; 95% confidence interval [CI], 1.72-18.28), HRA with synchronous STSA (OR, 16.04; 95% CI, 6.95-37.00), and HRA alone (OR, 3.86; 95% CI, 2.77-5.39) at index colonoscopy significantly increased the risk of metachronous HRA compared to the reference group (no index adenomas or SPs). Large index SPs alone (OR, 14.34; 95% CI, 5.03-40.86) or index STSA alone (OR, 9.70; 95% CI, 3.63-25.92) significantly increased the risk of a large metachronous SP. In an analysis of data from a population-based colonoscopy registry, we found index large SP or index STSA with no index HRA increased risk of metachronous large SPs but not metachronous HRA. HRA and synchronous SPs at index colonoscopy significantly increased risk of metachronous HRA. Individuals with HRA and synchronous large SP or any STSA could therefore benefit from close surveillance. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
von Benten, R.; Charvat, A.; Link, O.; Abel, B.; Schwarzer, D.
2004-03-01
Femtosecond pump probe spectroscopy was employed to measure intramolecular vibrational energy redistribution (IVR) and intermolecular vibrational energy transfer (VET) of benzene in the gas phase and in supercritical (sc) CO 2. We observe two IVR time scales the faster of which proceeds within τ IVR(1)<0.5 ps. The slower IVR component has a time constant of τ IVR(2)=(48±5) ps in the gas phase and in scCO 2 is accelerated by interactions with the solvent. At the highest CO 2 density it is reduced to τ IVR(2)=(6±1) ps. The corresponding IVR rate constants show a similar density dependence as the VET rate constants. Model calculations suggest that both quantities correlate with the local CO 2 density in the immediate surrounding of the benzene molecule.
Detection of phase synchronization from the data: Application to physiology
NASA Astrophysics Data System (ADS)
Rosenblum, Michael G.; Pikovsky, Arkady S.; Schäfer, Carsten; Tass, Peter; Kurths, Jürgen
2000-02-01
Synchronization of coupled oscillating systems means appearance of certain relations between their phases and frequencies. Here we use this concept in order to address the inverse problem and to reveal interaction between systems from experimental data. We discuss how the phases and frequencies can be estimated from time series and present the techniques for detection and quantification of synchronization. We apply our approach to multichannel magnetoencephalography data and records of muscle activity of a Parkinsonian patient, and also use it to analyze the cardiorespiratory interaction in humans. By means of these examples we demonstrate that our method is effective for the analysis of systems interrelation from noisy nonstationary bivariate data and provides other information than traditional correlation (spectral) techniques.
An integrated system for synchronous culture of animal cells under controlled conditions.
Mendoza-Pérez, Elena; Hernández, Vanessa; Palomares, Laura A; Serrato, José A
2016-01-01
The cell cycle has fundamental effects on cell cultures and their products. Tools to synchronize cultured cells allow the study of cellular physiology and metabolism at particular cell cycle phases. However, cells are most often arrested by methods that alter their homeostasis and are then cultivated in poorly controlled environments. Cell behavior could then be affected by the synchronization method and culture conditions used, and not just by the particular cell cycle phase under study. Moreover, only a few viable cells are recovered. Here, we designed an integrated system where a large number of cells from a controlled bioreactor culture is separated by centrifugal elutriation at high viabilities. In contrast to current elutriation methods, cells are injected directly from a bioreactor into an injection loop, allowing the introduction of a large number of cells into the separation chamber without stressful centrifugation. A low pulsation peristaltic pump increases the stability of the elutriation chamber. Using this approach, a large number of healthy cells at each cell cycle phase were obtained, allowing their direct inoculation into fully instrumented bioreactors. Hybridoma cells synchronized and cultured in this system behaved as expected for a synchronous culture.
Quantum synchronization in an optomechanical system based on Lyapunov control.
Li, Wenlin; Li, Chong; Song, Heshan
2016-06-01
We extend the concepts of quantum complete synchronization and phase synchronization, which were proposed in A. Mari et al., Phys. Rev. Lett. 111, 103605 (2013)PRLTAO0031-900710.1103/PhysRevLett.111.103605, to more widespread quantum generalized synchronization. Generalized synchronization can be considered a necessary condition or a more flexible derivative of complete synchronization, and its criterion and synchronization measure are proposed and analyzed in this paper. As examples, we consider two typical generalized synchronizations in a designed optomechanical system. Unlike the effort to construct a special coupling synchronization system, we purposefully design extra control fields based on Lyapunov control theory. We find that the Lyapunov function can adapt to more flexible control objectives, which is more suitable for generalized synchronization control, and the control fields can be achieved simply with a time-variant voltage. Finally, the existence of quantum entanglement in different generalized synchronizations is also discussed.
Image synchronization for 3D application using the NanEye sensor
NASA Astrophysics Data System (ADS)
Sousa, Ricardo M.; Wäny, Martin; Santos, Pedro; Dias, Morgado
2015-03-01
Based on Awaiba's NanEye CMOS image sensor family and a FPGA platform with USB3 interface, the aim of this paper is to demonstrate a novel technique to perfectly synchronize up to 8 individual self-timed cameras. Minimal form factor self-timed camera modules of 1 mm x 1 mm or smaller do not generally allow external synchronization. However, for stereo vision or 3D reconstruction with multiple cameras as well as for applications requiring pulsed illumination it is required to synchronize multiple cameras. In this work, the challenge to synchronize multiple self-timed cameras with only 4 wire interface has been solved by adaptively regulating the power supply for each of the cameras to synchronize their frame rate and frame phase. To that effect, a control core was created to constantly monitor the operating frequency of each camera by measuring the line period in each frame based on a well-defined sampling signal. The frequency is adjusted by varying the voltage level applied to the sensor based on the error between the measured line period and the desired line period. To ensure phase synchronization between frames of multiple cameras, a Master-Slave interface was implemented. A single camera is defined as the Master entity, with its operating frequency being controlled directly through a PC based interface. The remaining cameras are setup in Slave mode and are interfaced directly with the Master camera control module. This enables the remaining cameras to monitor its line and frame period and adjust their own to achieve phase and frequency synchronization. The result of this work will allow the realization of smaller than 3mm diameter 3D stereo vision equipment in medical endoscopic context, such as endoscopic surgical robotic or micro invasive surgery.
Taylor, Dane; Skardal, Per Sebastian; Sun, Jie
2016-01-01
Synchronization is central to many complex systems in engineering physics (e.g., the power-grid, Josephson junction circuits, and electro-chemical oscillators) and biology (e.g., neuronal, circadian, and cardiac rhythms). Despite these widespread applications—for which proper functionality depends sensitively on the extent of synchronization—there remains a lack of understanding for how systems can best evolve and adapt to enhance or inhibit synchronization. We study how network modifications affect the synchronization properties of network-coupled dynamical systems that have heterogeneous node dynamics (e.g., phase oscillators with non-identical frequencies), which is often the case for real-world systems. Our approach relies on a synchrony alignment function (SAF) that quantifies the interplay between heterogeneity of the network and of the oscillators and provides an objective measure for a system’s ability to synchronize. We conduct a spectral perturbation analysis of the SAF for structural network modifications including the addition and removal of edges, which subsequently ranks the edges according to their importance to synchronization. Based on this analysis, we develop gradient-descent algorithms to efficiently solve optimization problems that aim to maximize phase synchronization via network modifications. We support these and other results with numerical experiments. PMID:27872501
Explosive synchronization transitions in complex neural networks.
Chen, Hanshuang; He, Gang; Huang, Feng; Shen, Chuansheng; Hou, Zhonghuai
2013-09-01
It has been recently reported that explosive synchronization transitions can take place in networks of phase oscillators [Gómez-Gardeñes et al. Phys. Rev. Lett. 106, 128701 (2011)] and chaotic oscillators [Leyva et al. Phys. Rev. Lett. 108, 168702 (2012)]. Here, we investigate the effect of a microscopic correlation between the dynamics and the interacting topology of coupled FitzHugh-Nagumo oscillators on phase synchronization transition in Barabási-Albert (BA) scale-free networks and Erdös-Rényi (ER) random networks. We show that, if natural frequencies of the oscillations are positively correlated with node degrees and the width of the frequency distribution is larger than a threshold value, a strong hysteresis loop arises in the synchronization diagram of BA networks, indicating the evidence of an explosive transition towards synchronization of relaxation oscillators system. In contrast to the results in BA networks, in more homogeneous ER networks, the synchronization transition is always of continuous type regardless of the width of the frequency distribution. Moreover, we consider the effect of degree-mixing patterns on the nature of the synchronization transition, and find that the degree assortativity is unfavorable for the occurrence of such an explosive transition.
Explosive synchronization transitions in complex neural networks
NASA Astrophysics Data System (ADS)
Chen, Hanshuang; He, Gang; Huang, Feng; Shen, Chuansheng; Hou, Zhonghuai
2013-09-01
It has been recently reported that explosive synchronization transitions can take place in networks of phase oscillators [Gómez-Gardeñes et al. Phys. Rev. Lett. 106, 128701 (2011)] and chaotic oscillators [Leyva et al. Phys. Rev. Lett. 108, 168702 (2012)]. Here, we investigate the effect of a microscopic correlation between the dynamics and the interacting topology of coupled FitzHugh-Nagumo oscillators on phase synchronization transition in Barabási-Albert (BA) scale-free networks and Erdös-Rényi (ER) random networks. We show that, if natural frequencies of the oscillations are positively correlated with node degrees and the width of the frequency distribution is larger than a threshold value, a strong hysteresis loop arises in the synchronization diagram of BA networks, indicating the evidence of an explosive transition towards synchronization of relaxation oscillators system. In contrast to the results in BA networks, in more homogeneous ER networks, the synchronization transition is always of continuous type regardless of the width of the frequency distribution. Moreover, we consider the effect of degree-mixing patterns on the nature of the synchronization transition, and find that the degree assortativity is unfavorable for the occurrence of such an explosive transition.
Synchronization properties of network motifs: Influence of coupling delay and symmetry
NASA Astrophysics Data System (ADS)
D'Huys, O.; Vicente, R.; Erneux, T.; Danckaert, J.; Fischer, I.
2008-09-01
We investigate the effect of coupling delays on the synchronization properties of several network motifs. In particular, we analyze the synchronization patterns of unidirectionally coupled rings, bidirectionally coupled rings, and open chains of Kuramoto oscillators. Our approach includes an analytical and semianalytical study of the existence and stability of different in-phase and out-of-phase periodic solutions, complemented by numerical simulations. The delay is found to act differently on networks possessing different symmetries. While for the unidirectionally coupled ring the coupling delay is mainly observed to induce multistability, its effect on bidirectionally coupled rings is to enhance the most symmetric solution. We also study the influence of feedback and conclude that it also promotes the in-phase solution of the coupled oscillators. We finally discuss the relation between our theoretical results on delay-coupled Kuramoto oscillators and the synchronization properties of networks consisting of real-world delay-coupled oscillators, such as semiconductor laser arrays and neuronal circuits.
Explosive synchronization as a process of explosive percolation in dynamical phase space
Zhang, Xiyun; Zou, Yong; Boccaletti, S.; Liu, Zonghua
2014-01-01
Explosive synchronization and explosive percolation are currently two independent phenomena occurring in complex networks, where the former takes place in dynamical phase space while the latter in configuration space. It has been revealed that the mechanism of EP can be explained by the Achlioptas process, where the formation of a giant component is controlled by a suppressive rule. We here introduce an equivalent suppressive rule for ES. Before the critical point of ES, the suppressive rule induces the presence of multiple, small sized, synchronized clusters, while inducing the abrupt formation of a giant cluster of synchronized oscillators at the critical coupling strength. We also show how the explosive character of ES degrades into a second-order phase transition when the suppressive rule is broken. These results suggest that our suppressive rule can be considered as a dynamical counterpart of the Achlioptas process, indicating that ES and EP can be unified into a same framework. PMID:24903808
Time delay in the Kuramoto model of coupled-phase oscillators
NASA Astrophysics Data System (ADS)
Yeung, Man Kit Stephen
1999-10-01
The Kuramoto model is a mean-field model of coupled phase oscillators with distributed natural frequencies. It was proposed to study collective synchronization in large systems of nonlinear oscillators. Here we generalize this model to allow time-delayed interactions. Despite the delay, synchronization is still possible. We derive exact stability conditions for the incoherent state, and for synchronized states and clustering states in the special case of noiseless identical oscillators. We also study the bifurcations of these states. We find that the incoherent state loses stability in a Hopf bifurcation. In the absence of noise, this leads to partial synchrony, where some oscillators are entrained to a common frequency. New phenomena caused by the delay include multistability among synchronization, incoherence, and clustering; and unsteady solutions with time-dependent order parameters. The experimental implications of the model are discussed for populations of chirping crickets, where the finite speed of sound causes communication delays, and for physical systems such as coupled phase- locked loops, lasers, and communication satellites.
Phase-locked patterns of the Kuramoto model on 3-regular graphs
NASA Astrophysics Data System (ADS)
DeVille, Lee; Ermentrout, Bard
2016-09-01
We consider the existence of non-synchronized fixed points to the Kuramoto model defined on sparse networks: specifically, networks where each vertex has degree exactly three. We show that "most" such networks support multiple attracting phase-locked solutions that are not synchronized and study the depth and width of the basins of attraction of these phase-locked solutions. We also show that it is common in "large enough" graphs to find phase-locked solutions where one or more of the links have angle difference greater than π/2.
Phase-locked patterns of the Kuramoto model on 3-regular graphs.
DeVille, Lee; Ermentrout, Bard
2016-09-01
We consider the existence of non-synchronized fixed points to the Kuramoto model defined on sparse networks: specifically, networks where each vertex has degree exactly three. We show that "most" such networks support multiple attracting phase-locked solutions that are not synchronized and study the depth and width of the basins of attraction of these phase-locked solutions. We also show that it is common in "large enough" graphs to find phase-locked solutions where one or more of the links have angle difference greater than π/2.
The effect of PS porosity on the structure, optical and electrical properties of ZnS/PS
NASA Astrophysics Data System (ADS)
Wang, Cai-Feng; Hu, Bo; Yi, Hou-Hui; Li, Wei-Bing
2014-03-01
ZnS films were deposited on porous silicon (PS) substrates with different porosities by pulsed laser deposition (PLD). The crystalline structure, surface morphology of ZnS films on PS substrates and optical, electrical properties of ZnS/PS composites were studied. The results show that, ZnS films deposited on PS substrates were grown in preferred orientation along β-ZnS (111) direction corresponding to crystalline structure of cubic phase. With the increase of PS porosity, the XRD diffraction peak intensity of ZnS films decreases. Some voids and cracks appear in the films. Compared with as-prepared PS, the PL peak of PS for ZnS/PS has a blueshift. The larger the porosity of PS, the greater the blueshift is. A new green light emission located around 550 nm is observed with increasing PS porosity, which is ascribed to defect-center luminescence of ZnS. The blue, green emission of ZnS combined with the red emission of PS, a broad photoluminescence band (450-750 nm) is formed. ZnS/PS composites exhibited intense white light emission. The I-V characteristics of ZnS/PS heterojunctions showed rectifying behavior. Under forward bias conditions, the current density is large. Under reverse bias conditions, the current density nearly to be zero. The forward current increases with increasing PS porosity. This work lay a foundation for the realization of electroluminescence of ZnS/PS and solid white light emission devices.
Generalized synchronization in relay systems with instantaneous coupling
NASA Astrophysics Data System (ADS)
Gutiérrez, R.; Sevilla-Escoboza, R.; Piedrahita, P.; Finke, C.; Feudel, U.; Buldú, J. M.; Huerta-Cuellar, G.; Jaimes-Reátegui, R.; Moreno, Y.; Boccaletti, S.
2013-11-01
We demonstrate the existence of generalized synchronization in systems that act as mediators between two dynamical units that, in turn, show complete synchronization with each other. These are the so-called relay systems. Specifically, we analyze the Lyapunov spectrum of the full system to elucidate when complete and generalized synchronization appear. We show that once a critical coupling strength is achieved, complete synchronization emerges between the systems to be synchronized, and at the same point, generalized synchronization with the relay system also arises. Next, we use two nonlinear measures based on the distance between phase-space neighbors to quantify the generalized synchronization in discretized time series. Finally, we experimentally show the robustness of the phenomenon and of the theoretical tools here proposed to characterize it.
A Dynamic Attitude Measurement System Based on LINS
Li, Hanzhou; Pan, Quan; Wang, Xiaoxu; Zhang, Juanni; Li, Jiang; Jiang, Xiangjun
2014-01-01
A dynamic attitude measurement system (DAMS) is developed based on a laser inertial navigation system (LINS). Three factors of the dynamic attitude measurement error using LINS are analyzed: dynamic error, time synchronization and phase lag. An optimal coning errors compensation algorithm is used to reduce coning errors, and two-axis wobbling verification experiments are presented in the paper. The tests indicate that the attitude accuracy is improved 2-fold by the algorithm. In order to decrease coning errors further, the attitude updating frequency is improved from 200 Hz to 2000 Hz. At the same time, a novel finite impulse response (FIR) filter with three notches is designed to filter the dither frequency of the ring laser gyro (RLG). The comparison tests suggest that the new filter is five times more effective than the old one. The paper indicates that phase-frequency characteristics of FIR filter and first-order holder of navigation computer constitute the main sources of phase lag in LINS. A formula to calculate the LINS attitude phase lag is introduced in the paper. The expressions of dynamic attitude errors induced by phase lag are derived. The paper proposes a novel synchronization mechanism that is able to simultaneously solve the problems of dynamic test synchronization and phase compensation. A single-axis turntable and a laser interferometer are applied to verify the synchronization mechanism. The experiments results show that the theoretically calculated values of phase lag and attitude error induced by phase lag can both match perfectly with testing data. The block diagram of DAMS and physical photos are presented in the paper. The final experiments demonstrate that the real-time attitude measurement accuracy of DAMS can reach up to 20″ (1σ) and the synchronization error is less than 0.2 ms on the condition of three axes wobbling for 10 min. PMID:25177802
NASA Astrophysics Data System (ADS)
Lin, Fang-Yi; Hohmann, Austin; Hernández, Nacú; Cochran, Eric
Here we present the phase behavior of a new type of coil-hyperbranched diblock copolymer: poly(styrene- b-acrylated epoxidized soybean oil), or PS-PAESO. PS-PAESO is an example of a biorenewable thermoplastic elastomer (bio-TPE). To date, we have shown that bio-TPEs can be economical commercial substitutes for their petrochemically derived analogues--such as poly(styrene- b-butadiene- b-styrene) (SBS)--in a range of applications including pressure sensitive adhesives and bitumen modification. From a polymer physics perspective, PS-PAESO is an interesting material in that it couples a linear coil-like block with a highly branched block. Thus in contrast to the past five decades of studies on linear AB diblock copolymers, coil-hyperbranched block copolymers are relatively unknown to the community and can be expected to deviate substantially from the standard ``universal'' phase behavior in the AB systems. To explore these new materials, we have constructed a library of PS-PAESO materials spanning a range of molecular weight and composition values. The phase transition behavior and the morphology information will be interpreted by isochronal temperature scanning in dynamic shear rheology, small angle X-ray scattering and the corresponding transmission electron microscopy.
NASA Astrophysics Data System (ADS)
Wigal, Sharon B.; Polzonetti, Chiara M.; Stehli, Annamarie; Gratton, Enrico
2012-12-01
The beneficial effects of pharmacotherapy on children with attention-deficit hyperactivity disorder (ADHD) are well documented. We use near-infrared spectroscopy (NIRS) methodology to determine reorganization of brain neurovascular properties following the medication treatment. Twenty-six children with ADHD (ages six through 12) participated in a modified laboratory school protocol to monitor treatment response with lisdexamfetamine dimesylate (LDX; Vyvanse, Shire US Inc.). All children refrained from taking medication for at least two weeks (washout period). To detect neurovascular reorganization, we measured changes in synchronization of oxy (HbO2) and deoxy (HHb) hemoglobin waves between the two frontal lobes. Participants without medication displayed average baseline HbO2 phase difference at about -7-deg. and HHb differences at about 240-deg.. This phase synchronization index changed after pharmacological intervention. Medication induced an average phase changes of HbO2 after first medication to 280-deg. and after medication optimization to 242-deg.. Instead first medication changed of the average HHb phase difference at 186-deg. and then after medication optimization to 120-deg. In agreement with findings of White et al., and Varela et al., we associated the phase synchronization differences of brain hemodynamics in children with ADHD with lobe specific hemodynamic reorganization of HbO2- and HHB oscillations following medication status.
A Parameter Communication Optimization Strategy for Distributed Machine Learning in Sensors.
Zhang, Jilin; Tu, Hangdi; Ren, Yongjian; Wan, Jian; Zhou, Li; Li, Mingwei; Wang, Jue; Yu, Lifeng; Zhao, Chang; Zhang, Lei
2017-09-21
In order to utilize the distributed characteristic of sensors, distributed machine learning has become the mainstream approach, but the different computing capability of sensors and network delays greatly influence the accuracy and the convergence rate of the machine learning model. Our paper describes a reasonable parameter communication optimization strategy to balance the training overhead and the communication overhead. We extend the fault tolerance of iterative-convergent machine learning algorithms and propose the Dynamic Finite Fault Tolerance (DFFT). Based on the DFFT, we implement a parameter communication optimization strategy for distributed machine learning, named Dynamic Synchronous Parallel Strategy (DSP), which uses the performance monitoring model to dynamically adjust the parameter synchronization strategy between worker nodes and the Parameter Server (PS). This strategy makes full use of the computing power of each sensor, ensures the accuracy of the machine learning model, and avoids the situation that the model training is disturbed by any tasks unrelated to the sensors.
Bektik, Emre; Dennis, Adrienne; Pawlowski, Gary; Zhou, Chen; Maleski, Danielle; Takahashi, Satoru; Laurita, Kenneth R; Deschênes, Isabelle; Fu, Ji-Dong
2018-05-04
Direct reprogramming of fibroblasts into induced cardiomyocytes (iCMs) holds a great promise for regenerative medicine and has been studied in several major directions. However, cell-cycle regulation, a fundamental biological process, has not been investigated during iCM-reprogramming. Here, our time-lapse imaging on iCMs, reprogrammed by Gata4, Mef2c, and Tbx5 (GMT) monocistronic retroviruses, revealed that iCM-reprogramming was majorly initiated at late-G1- or S-phase and nearly half of GMT-reprogrammed iCMs divided soon after reprogramming. iCMs exited cell cycle along the process of reprogramming with decreased percentage of 5-ethynyl-20-deoxyuridine (EdU)⁺/α-myosin heavy chain (αMHC)-GFP⁺ cells. S-phase synchronization post-GMT-infection could enhance cell-cycle exit of reprogrammed iCMs and yield more GFP high iCMs, which achieved an advanced reprogramming with more expression of cardiac genes than GFP low cells. However, S-phase synchronization did not enhance the reprogramming with a polycistronic-viral vector, in which cell-cycle exit had been accelerated. In conclusion, post-infection synchronization of S-phase facilitated the early progression of GMT-reprogramming through a mechanism of enhanced cell-cycle exit.
Asymptotically stable phase synchronization revealed by autoregressive circle maps
NASA Astrophysics Data System (ADS)
Drepper, F. R.
2000-11-01
A specially designed of nonlinear time series analysis is introduced based on phases, which are defined as polar angles in spaces spanned by a finite number of delayed coordinates. A canonical choice of the polar axis and a related implicit estimation scheme for the potentially underlying autoregressive circle map (next phase map) guarantee the invertibility of reconstructed phase space trajectories to the original coordinates. The resulting Fourier approximated, invertibility enforcing phase space map allows us to detect conditional asymptotic stability of coupled phases. This comparatively general synchronization criterion unites two existing generalizations of the old concept and can successfully be applied, e.g., to phases obtained from electrocardiogram and airflow recordings characterizing cardiorespiratory interaction.
Ultra-fast switching blue phase liquid crystals diffraction grating stabilized by chiral monomer
NASA Astrophysics Data System (ADS)
Manda, Ramesh; Pagidi, Srinivas; Sarathi Bhattacharya, Surjya; Yoo, Hyesun; T, Arun Kumar; Lim, Young Jin; Lee, Seung Hee
2018-05-01
We have demonstrated an ultra-fast switching and efficient polymer stabilized blue phase liquid crystal (PS-BPLC) diffraction grating utilizing a chiral monomer. We have obtained a 0.5 ms response time by a novel polymer stabilization method which is three times faster than conventional PS-BPLC. In addition, the diffraction efficiency was improved 2% with a much wider phase range and the driving voltage to switch the device is reduced. The polarization properties of the diffracted beam are unaffected by this novel polymer stabilization. This device can be useful for future photonic applications.
NASA Astrophysics Data System (ADS)
Sarazin, Pierre
2003-06-01
In this thesis a novel approach to preparing biodegradable materials with highly structured and interconnected porosity is proposed. The method involves the controlled preparation of immiscible co-continuous polymer blends using melt-processing technology followed by a bulk solvent extraction step of one of the phases (the porogen phase). A co-continuous structure is defined as the state when each phase of the blend is fully interconnected through a continuous pathway. This method allows for the preparation of porous materials with highly controlled pore size, pore volume and pore shape which can then be transformed and shaped in various forms useful for biomedical applications. Various properties of the skin of the polymeric articles (closed-cell, open-cell, modification of the pore size) can be controlled. Initially, the study on the immiscible binary and compatibilized poly(L-lactide)/polystyrene blends (PLLA/PS) after extraction of the PS phase demonstrated that highly percolated blends exist from 40--75%PS and 40--60%PS for the binary and compatibilized blends, respectively. It is demonstrated that both the pore size and extent of co-continuity can be controlled through composition and interfacial modification. The subsequent part of our work treats of the preparation of porous PLLA from a blend of two biodegradable polymers and the performance of such porous materials. This portion of the work uses only polymer materials which have been medically approved for internal use. In this case, small amounts of the porogen phase can be tolerated in the final porous substrate. Co-continuous blends comprised of poly(L-lactide)/Poly(epsilon-caprolactone) PLLA/PCL, were prepared via melt processing. A wide range of phase sizes for the co-continuous blend is generated through a combination of concentration control and quiescent annealing. As the PLLA phase can not be dissolved selectively in PLLA/PS blends, the co-continuity range was evaluated indirectly. To precisely assess the formation of the co-continuous morphology, the polylactide was replaced by a poly(epsilon-caprolactone) (PCL) in the following work. PCL possesses a similar biocompatibility, although it exhibits a much slower degradation rate. These results practically allow for a separation of the effects of deformation/disintegration processes and coalescence on continuous and co-continuous morphology development. Coalescence phenomena for systems such as the PS in PCL case is clearly the dominant parameter controlling phase size at higher compositions. These results underline the requirement of co-continuity models to include parameters related to coalescence effects. The data indicate the significant potential of mixing temperature as a tool for the morphology control of co-continuous polymer blends. (Abstract shortened by UMI.)
Dysrhythmia of timed movements in Parkinson's disease and freezing of gait.
Tolleson, Christopher M; Dobolyi, David G; Roman, Olivia C; Kanoff, Kristen; Barton, Scott; Wylie, Scott A; Kubovy, Michael; Claassen, Daniel O
2015-10-22
A well-established motor timing paradigm, the Synchronization-Continuation Task (SCT), quantifies how accurately participants can time finger tapping to a rhythmic auditory beat (synchronization phase) then maintain this rhythm after the external auditory cue is extinguished, where performance depends on an internal representation of the beat (continuation phase). In this study, we investigated the hypothesis that Parkinson's disease (PD) patients with clinical symptoms of freezing of gait (FOG) exhibit exaggerated motor timing deficits. We predicted that dysrhythmia is exacerbated when finger tapping is stopped temporarily and then reinitiated under the guidance of an internal representation of the beat. Healthy controls and PD patients with and without FOG performed the SCT with and without the insertion of a 7-s cessation of motor tapping between synchronization and continuation phases. With no interruption between synchronization and continuation phases, PD patients, especially those with FOG, showed pronounced motor timing hastening at the slowest inter-stimulus intervals during the continuation phase. The introduction of a gap prior to the continuation phase had a beneficial effect for healthy controls and PD patients without FOG, although patients with FOG continued to show pronounced and persistent motor timing hastening. Ratings of freezing of gait severity across the entire sample of PD tracked closely with the magnitude of hastening during the continuation phase. These results suggest that PD is accompanied by a unique dysrhythmia of measured movements, with FOG reflecting a particularly pronounced disruption to internal rhythmic timing. Copyright © 2015 Elsevier B.V. All rights reserved.
Optimal Implementations for Reliable Circadian Clocks
NASA Astrophysics Data System (ADS)
Hasegawa, Yoshihiko; Arita, Masanori
2014-09-01
Circadian rhythms are acquired through evolution to increase the chances for survival through synchronizing with the daylight cycle. Reliable synchronization is realized through two trade-off properties: regularity to keep time precisely, and entrainability to synchronize the internal time with daylight. We find by using a phase model with multiple inputs that achieving the maximal limit of regularity and entrainability entails many inherent features of the circadian mechanism. At the molecular level, we demonstrate the role sharing of two light inputs, phase advance and delay, as is well observed in mammals. At the behavioral level, the optimal phase-response curve inevitably contains a dead zone, a time during which light pulses neither advance nor delay the clock. We reproduce the results of phase-controlling experiments entrained by two types of periodic light pulses. Our results indicate that circadian clocks are designed optimally for reliable clockwork through evolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamadeh, A.; Loubens, G. de, E-mail: gregoire.deloubens@cea.fr; Klein, O.
2014-01-13
We study the synchronization of the auto-oscillation signal generated by the spin transfer driven dynamics of two coupled vortices in a spin-valve nanopillar to an external source. Phase-locking to the microwave field h{sub rf} occurs in a range larger than 10% of the oscillator frequency for drive amplitudes of only a few Oersteds. Using synchronization at the double frequency, the generation linewidth is found to decrease by more than five orders of magnitude in the phase-locked regime (down to 1 Hz, limited by the resolution bandwidth of the spectrum analyzer) in comparison to the free running regime (140 kHz). This perfect phase-lockingmore » holds for frequency detuning as large as 2 MHz, which proves its robustness. We also analyze how the free running spectral linewidth impacts the main characteristics of the synchronization regime.« less
Nazhan, Salam; Ghassemlooy, Zabih; Busawon, Krishna
2016-01-01
In this paper, the influence of the rotating polarization-preserved optical feedback on the chaos synchronization of a vertical-cavity surface-emitting laser (VCSEL) is investigated experimentally. Two VCSELs' polarization modes (XP) and (YP) are gradually rotated and re-injected back into the VCSEL. The anti-phase dynamics synchronization of the two polarization modes is evaluated using the cross-correlation function. For a fixed optical feedback, a clear relationship is found between the cross-correlation coefficient and the polarization angle θp. It is shown that high-quality anti-phase polarization-resolved chaos synchronization is achieved at higher values of θp. The maximum value of the cross-correlation coefficient achieved is -0.99 with a zero time delay over a wide range of θp beyond 65° with a poor synchronization dynamic at θp less than 65°. Furthermore, it is observed that the antiphase irregular oscillation of the XP and YP modes changes with θp. VCSEL under the rotating polarization optical feedback can be a good candidate as a chaotic synchronization source for a secure communication system.
High-speed polarization sensitive optical coherence tomography for retinal diagnostics
NASA Astrophysics Data System (ADS)
Yin, Biwei; Wang, Bingqing; Vemishetty, Kalyanramu; Nagle, Jim; Liu, Shuang; Wang, Tianyi; Rylander, Henry G., III; Milner, Thomas E.
2012-01-01
We report design and construction of an FPGA-based high-speed swept-source polarization-sensitive optical coherence tomography (SS-PS-OCT) system for clinical retinal imaging. Clinical application of the SS-PS-OCT system is accurate measurement and display of thickness, phase retardation and birefringence maps of the retinal nerve fiber layer (RNFL) in human subjects for early detection of glaucoma. The FPGA-based SS-PS-OCT system provides three incident polarization states on the eye and uses a bulk-optic polarization sensitive balanced detection module to record two orthogonal interference fringe signals. Interference fringe signals and relative phase retardation between two orthogonal polarization states are used to obtain Stokes vectors of light returning from each RNFL depth. We implement a Levenberg-Marquardt algorithm on a Field Programmable Gate Array (FPGA) to compute accurate phase retardation and birefringence maps. For each retinal scan, a three-state Levenberg-Marquardt nonlinear algorithm is applied to 360 clusters each consisting of 100 A-scans to determine accurate maps of phase retardation and birefringence in less than 1 second after patient measurement allowing real-time clinical imaging-a speedup of more than 300 times over previous implementations. We report application of the FPGA-based SS-PS-OCT system for real-time clinical imaging of patients enrolled in a clinical study at the Eye Institute of Austin and Duke Eye Center.
Refining the Tonga Slab Geometry Using Slab Phases of Seismic Waves
NASA Astrophysics Data System (ADS)
Alongi, T.; Wei, S. S.; Blackman, D. K.
2017-12-01
Although the Tonga subducting slab geometry has been previously mapped by earthquake distribution, its detailed morphology is poorly constrained. The uncertainties of the slab surface relative to earthquakes can be translated into large errors in predicted temperature of hypocenters that is considered as a chief control of intermediate-depth seismicity. Seismic waves converted at the interface between the slab crust and the overlying mantle wedge can provide additional constraints on the location of the slab surface. A PS phase converted at the slab interface is observable in the horizontal components, whereas an SP converted phase can be seen in the vertical component. In this study, we analyze PS and SP phases in the seismic dataset of the 2009-2010 Ridge2000 Lau Spreading Center project, which consisted of 50 ocean bottom seismographs (OBSs) and 17 island-based seismic stations deployed in Fiji, Tonga, and the Lau Basin for about one year. More than 1,000 PS arrivals from local events were manually picked, predominantly with a 1-3 Hz filter. Next, the PS-P differential travel times will be inverted to determine improved depths of the slab surface relative to the local earthquakes and the receiving stations. The refined slab geometry will allow us to assess the thermal structure and dehydration reactions of the Tonga slab, lending further insight into the mechanisms of intermediate-depth seismicity.
Balanced optical-microwave phase detector for sub-femtosecond optical-RF synchronization
Peng, Michael Y.; Kalaydzhyan, Aram; Kärtner, Franz X.
2014-10-23
We demonstrate that balanced optical-microwave phase detectors (BOMPD) are capable of optical-RF synchronization with sub-femtosecond residual timing jitter for large-scale timing distribution systems. RF-to-optical synchronization is achieved with a long-term stability of < 1 fs RMS and < 7 fs pk-pk drift for over 10 hours and short-term stability of < 2 fs RMS jitter integrated from 1 Hz to 200 kHz as well as optical-to-RF synchronization with 0.5 fs RMS jitter integrated from 1 Hz to 20 kHz. Moreover, we achieve a –161 dBc/Hz noise floor that integrates well into the sub-fs regime and measure a nominal 50-dB AM-PMmore » suppression ratio with potential improvement via DC offset adjustment.« less
Improving the frequency precision of oscillators by synchronization.
Cross, M C
2012-04-01
Improving the frequency precision by synchronizing a lattice of N oscillators with disparate frequencies is studied in the phase reduction limit. In the general case where the coupling is not purely dissipative the synchronized state consists of targetlike waves radiating from a local source, which is a region of higher-frequency oscillators. In this state the improvement of the frequency precision is shown to be independent of N for large N, but instead depends on the disorder and reflects the dependence of the frequency of the synchronized state on just those oscillators in the source region of the waves. These results are obtained by a mapping of the nonlinear phase dynamics onto the linear Anderson problem of the quantum mechanics of electrons on a random lattice in the tight-binding approximation.
NASA Astrophysics Data System (ADS)
Bai, Cheng-lin; Cheng, Zhi-hui
2016-09-01
In order to further improve the carrier synchronization estimation range and accuracy at low signal-to-noise ratio ( SNR), this paper proposes a code-aided carrier synchronization algorithm based on improved nonbinary low-density parity-check (NB-LDPC) codes to study the polarization-division-multiplexing coherent optical orthogonal frequency division multiplexing (PDM-CO-OFDM) system performance in the cases of quadrature phase shift keying (QPSK) and 16 quadrature amplitude modulation (16-QAM) modes. The simulation results indicate that this algorithm can enlarge frequency and phase offset estimation ranges and enhance accuracy of the system greatly, and the bit error rate ( BER) performance of the system is improved effectively compared with that of the system employing traditional NB-LDPC code-aided carrier synchronization algorithm.
Synchronization of hyperexcitable systems with phase-repulsive coupling
NASA Astrophysics Data System (ADS)
Balázsi, Gábor; Cornell-Bell, Ann; Neiman, Alexander B.; Moss, Frank
2001-10-01
We study two-dimensional arrays of FitzHugh-Nagumo elements with nearest-neighbor coupling from the viewpoint of synchronization. The elements are diffusively coupled. By varying the diffusion coefficient from positive to negative values, interesting synchronization patterns are observed. The results of the simulations resemble the intracellular oscillation patterns observed in cultured human epileptic astrocytes. Three measures are proposed to determine the degree of synchronization (or coupling) in both the simulated and the experimental system.
Endogenous Crisis Waves: Stochastic Model with Synchronized Collective Behavior
NASA Astrophysics Data System (ADS)
Gualdi, Stanislao; Bouchaud, Jean-Philippe; Cencetti, Giulia; Tarzia, Marco; Zamponi, Francesco
2015-02-01
We propose a simple framework to understand commonly observed crisis waves in macroeconomic agent-based models, which is also relevant to a variety of other physical or biological situations where synchronization occurs. We compute exactly the phase diagram of the model and the location of the synchronization transition in parameter space. Many modifications and extensions can be studied, confirming that the synchronization transition is extremely robust against various sources of noise or imperfections.
Wu, Yi-Hsiu; Lo, Ting-Ya; She, Ming-Shiuan; Ho, Rong-Ming
2015-08-05
In this study, we aim to examine the morphological evolution of block copolymer (BCP) nanostructured thin films through solvent evaporation at different rates for solvent swollen polystyrene-block-poly(l-lactide) (PS-PLLA). Interesting phase transitions from disorder to perpendicular cylinder and then gyroid can be found while using a partially selective solvent for PS to swell PS-PLLA thin film followed by solvent evaporation. During the transitions, gyroid-forming BCP thin film with characteristic crystallographic planes of (111)G, (110)G, and (211)G parallel to air surface can be observed, and will gradually transform into coexisting (110)G and (211)G planes, and finally transforms to (211)G plane due to the preferential segregation of constituted block to the surface (i.e., the thermodynamic origin for self-assembly) that affects the relative amount of each component at the air surface. With the decrease on the evaporation rate, the disorder phase will transform to parallel cylinder and then directly to (211)G without transition to perpendicular cylinder phase. Most importantly, the morphological evolution of PS-PLLA thin films is strongly dependent upon the solvent removal rate only in the initial stage of the evaporation process due to the anisotropy of cylinder structure. Once the morphology is transformed back to the isotropic gyroid structure after long evaporation, the morphological evolution will only relate to the variation of the surface composition. Similar phase transitions at the substrate can also be obtained by controlling the ratio of PLLA-OH to PS-OH homopolymers to functionalize the substrate. As a result, the fabrication of well-defined nanostructured thin films with controlled orientation can be achieved by simple swelling and deswelling with controlled evaporation rate.
Zubair, Usman; Amici, Julia; Francia, Carlotta; McNulty, David; Bodoardo, Silvia; O'Dwyer, Colm
2018-06-11
In Li-S batteries, it is important to ensure efficient reversible conversion of sulfur to lithium polysulfide (LiPS). Shuttling effects caused by LiPS dissolution can lead to reduced performance and cycle life. Although carbon materials rely on physical trapping of polysulfides, polar oxide surfaces can chemically bind LiPS to improve the stability of sulfur cathodes. We show a simple synthetic method that allows high sulfur loading into mesoporous carbon preloaded with spatially localized nanoparticles of several Magnéli-phase titanium oxide (Ti n O 2n-1 ). This material simultaneously suppresses polysulfide shuttling phenomena by chemically binding Li polysulfides onto several Magnéli-phase surfaces in a single cathode and ensures physical confinement of sulfur and LiPS. The synergy between chemical immobilization of significant quantities of LiPS at the surface of several Ti n O 2n-1 phases and physical entrapment results in coulombically efficient high-rate cathodes with long cycle life and high capacity. These cathodes function efficiently at low electrolyte-to-sulfur ratios to provide high gravimetric and volumetric capacities in comparison with their highly porous carbon counterparts. Assembled coin cells have an initial discharge capacity of 1100 mAh g -1 at 0.1C and maintain a reversible capacity of 520 mAh g -1 at 0.2C for more than 500 cycles. Even at 1C, the cell loses only 0.06 % per cycle for 1000 cycles with a coulombic efficiency close to 99 %. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
The order-to-disorder transition behavior of PS-b-P2VP thin film system
NASA Astrophysics Data System (ADS)
Ahn, Hyungju; Ryu, Du
2013-03-01
We investigated the transition behavior such as the order-to-disorder transition (ODT) for symmetric poly(styrene)-block-poly(2-vinly pridine) (PS-b-P2VP) using SAXS and GISAXS for block copolymer bulks and films. The bulk transition temperature of PS-b-P2VP was significantly influenced by the interfacial interactions in thin films, leading to the different transition temperature. From these results, we will discuss about the interfacial interaction effects on the phase behaviors in bulks and thin films system of PS-b-P2VP.
Computer Aided Wirewrap Interconnect.
1980-11-01
ECLI (180 MHz System Clock Generated via Ring Oscillator) Clock Waveform: Synchronous Phase 0 Output Binary Counter: Power Plane Noie: (Loaded) LSB...LOGIC (ECL) (185 MHz System Clock Generated via Ring Oscillator) Clock Woveform Synchronous Phase 0 Output Binary Counter- Power Plane Voise (Loaded...High Speed .. ......... . 98 Clock Signals Into Logic Panels in a Multiboard System On-Eoard Clock Distribution Via Fanout .... ......... 102 Through
ERIC Educational Resources Information Center
Schubert, T. F., Jr.; Jacobitz, F. G.; Kim, E. M.
2011-01-01
In order to meet changing curricular and societal needs, a three-phase system and synchronous motor laboratory experience for sophomore-level students in a wide variety of engineering majors was designed, implemented, and assessed. The experiment is unusual in its early placement in the curriculum, and in that it focuses primarily on basic…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Stephen F; Moore, James A
Systems and methods are described for carrier-frequency synchronization for improved AM and TV broadcast reception. A method includes synchronizing a carrier frequency of a broadcast signal with a remote reference frequency. An apparatus includes a reference signal receiver; a phase comparator coupled to the reference signal receiver; a voltage controlled oscillator coupled to the phase comparator; and a radio frequency output coupled to the voltage controlled oscillator.
NASA Astrophysics Data System (ADS)
Ghatge, Mayur; Tabrizian, Roozbeh
2018-03-01
A matrix of aluminum-nitride (AlN) waveguides is acoustically engineered to realize electrically isolated phase-synchronous frequency references through nonlinear wave-mixing. AlN rectangular waveguides are cross-coupled through a periodically perforated plate that is engineered to have a wide acoustic bandgap around a desirable frequency ( f1≈509 MHz). While the coupling plate isolates the matrix from resonant vibrations of individual waveguide constituents at f1, it is transparent to the third-order harmonic waves (3f1) that are generated through nonlinear wave-mixing. Therefore, large-signal excitation of the f1 mode in a constituent waveguide generates acoustic waves at 3f1 with an efficiency defined by elastic anharmonicity of the AlN film. The phase-synchronous propagation of the third harmonic through the matrix is amplified by a high quality-factor resonance mode at f2≈1529 MHz, which is sufficiently close to 3f1 (f2 ≅ 3f1). Such an architecture enables realization of frequency-multiplied and phase-synchronous, yet electrically and spectrally isolated, references for multi-band/carrier and spread-spectrum wireless communication systems.
Method for observing phase objects without halos and directional shadows
NASA Astrophysics Data System (ADS)
Suzuki, Yoshimasa; Kajitani, Kazuo; Ohde, Hisashi
2015-03-01
A new microscopy method for observing phase objects without halos and directional shadows is proposed. The key optical element is an annular aperture at the front focal plane of a condenser with a larger diameter than those used in standard phase contrast microscopy. The light flux passing through the annular aperture is changed by the specimen's surface profile and then passes through an objective and contributes to image formation. This paper presents essential conditions for realizing the method. In this paper, images of colonies formed by induced pluripotent stem (iPS) cells using this method are compared with the conventional phase contrast method and the bright-field method when the NA of the illumination is small to identify differences among these techniques. The outlines of the iPS cells are clearly visible with this method, whereas they are not clearly visible due to halos when using the phase contrast method or due to weak contrast when using the bright-field method. Other images using this method are also presented to demonstrate a capacity of this method: a mouse ovum and superimposition of several different images of mouse iPS cells.
Illumination-based synchronization of high-speed vision sensors.
Hou, Lei; Kagami, Shingo; Hashimoto, Koichi
2010-01-01
To acquire images of dynamic scenes from multiple points of view simultaneously, the acquisition time of vision sensors should be synchronized. This paper describes an illumination-based synchronization method derived from the phase-locked loop (PLL) algorithm. Incident light to a vision sensor from an intensity-modulated illumination source serves as the reference signal for synchronization. Analog and digital computation within the vision sensor forms a PLL to regulate the output signal, which corresponds to the vision frame timing, to be synchronized with the reference. Simulated and experimental results show that a 1,000 Hz frame rate vision sensor was successfully synchronized with 32 μs jitters.
Interferometric at-wavelength flare characterization of EUV optical systems
Naulleau, Patrick P.; Goldberg, Kenneth Alan
2001-01-01
The extreme ultraviolet (EUV) phase-shifting point diffraction interferometer (PS/PDI) provides the high-accuracy wavefront characterization critical to the development of EUV lithography systems. Enhancing the implementation of the PS/PDI can significantly extend its spatial-frequency measurement bandwidth. The enhanced PS/PDI is capable of simultaneously characterizing both wavefront and flare. The enhanced technique employs a hybrid spatial/temporal-domain point diffraction interferometer (referred to as the dual-domain PS/PDI) that is capable of suppressing the scattered-reference-light noise that hinders the conventional PS/PDI. Using the dual-domain technique in combination with a flare-measurement-optimized mask and an iterative calculation process for removing flare contribution caused by higher order grating diffraction terms, the enhanced PS/PDI can be used to simultaneously measure both figure and flare in optical systems.
NASA Astrophysics Data System (ADS)
Braun, Walter; Eglin, Peter; Abello, Ricard
1993-02-01
Spread Spectrum Code Division Multiplex is an attractive scheme for the transmission of multiple signals over a satellite transponder. By using orthogonal or quasi-orthogonal spreading codes the interference between the users can be virtually eliminated. However, the acquisition and tracking of the spreading code phase can not take advantage of the code orthogonality since sequential acquisition and Delay-Locked loop tracking depend on correlation with code phases other than the optimal despreading phase. Hence, synchronization is a critical issue in such a system. A demonstration hardware for the verification of the orthogonal CDM synchronization and data transmission concept is being designed and implemented. The system concept, the synchronization scheme, and the implementation are described. The performance of the system is discussed based on computer simulations.
NASA Astrophysics Data System (ADS)
Yuan, Di; Tian, Jun-Long; Lin, Fang; Ma, Dong-Wei; Zhang, Jing; Cui, Hai-Tao; Xiao, Yi
2018-06-01
In this study we investigate the collective behavior of the generalized Kuramoto model with an external pinning force in which oscillators with positive and negative coupling strengths are conformists and contrarians, respectively. We focus on a situation in which the natural frequencies of the oscillators follow a uniform probability density. By numerically simulating the model, it is shown that the model supports multistable synchronized states such as a traveling wave state, π state and periodic synchronous state: an oscillating π state. The oscillating π state may be characterized by the phase distribution oscillating in a confined region and the phase difference between conformists and contrarians oscillating around π periodically. In addition, we present the parameter space of the oscillating π state and traveling wave state of the model.
Research on the phase adjustment method for dispersion interferometer on HL-2A tokamak
NASA Astrophysics Data System (ADS)
Tongyu, WU; Wei, ZHANG; Haoxi, WANG; Yan, ZHOU; Zejie, YIN
2018-06-01
A synchronous demodulation system is proposed and deployed for CO2 dispersion interferometer on HL-2A, which aims at high plasma density measurements and real-time feedback control. In order to make sure that the demodulator and the interferometer signal are synchronous in phase, a phase adjustment (PA) method has been developed for the demodulation system. The method takes advantages of the field programmable gate array parallel and pipeline process capabilities to carry out high performance and low latency PA. Some experimental results presented show that the PA method is crucial to the synchronous demodulation system and reliable to follow the fast change of the electron density. The system can measure the line-integrated density with a high precision of 2.0 × 1018 m‑2.
Eliaz, Noam; Metoki, Noah
2017-03-24
Calcium phosphate (CaP) bioceramics are widely used in the field of bone regeneration, both in orthopedics and in dentistry, due to their good biocompatibility, osseointegration and osteoconduction. The aim of this article is to review the history, structure, properties and clinical applications of these materials, whether they are in the form of bone cements, paste, scaffolds, or coatings. Major analytical techniques for characterization of CaPs, in vitro and in vivo tests, and the requirements of the US Food and Drug Administration (FDA) and international standards from CaP coatings on orthopedic and dental endosseous implants, are also summarized, along with the possible effect of sterilization on these materials. CaP coating technologies are summarized, with a focus on electrochemical processes. Theories on the formation of transient precursor phases in biomineralization, the dissolution and reprecipitation as bone of CaPs are discussed. A wide variety of CaPs are presented, from the individual phases to nano-CaP, biphasic and triphasic CaP formulations, composite CaP coatings and cements, functionally graded materials (FGMs), and antibacterial CaPs. We conclude by foreseeing the future of CaPs.
Eliaz, Noam; Metoki, Noah
2017-01-01
Calcium phosphate (CaP) bioceramics are widely used in the field of bone regeneration, both in orthopedics and in dentistry, due to their good biocompatibility, osseointegration and osteoconduction. The aim of this article is to review the history, structure, properties and clinical applications of these materials, whether they are in the form of bone cements, paste, scaffolds, or coatings. Major analytical techniques for characterization of CaPs, in vitro and in vivo tests, and the requirements of the US Food and Drug Administration (FDA) and international standards from CaP coatings on orthopedic and dental endosseous implants, are also summarized, along with the possible effect of sterilization on these materials. CaP coating technologies are summarized, with a focus on electrochemical processes. Theories on the formation of transient precursor phases in biomineralization, the dissolution and reprecipitation as bone of CaPs are discussed. A wide variety of CaPs are presented, from the individual phases to nano-CaP, biphasic and triphasic CaP formulations, composite CaP coatings and cements, functionally graded materials (FGMs), and antibacterial CaPs. We conclude by foreseeing the future of CaPs. PMID:28772697
NASA Astrophysics Data System (ADS)
Gągor, A.; Pietraszko, A.; Kaynts, D.
2005-11-01
In order to understand the structural transformations leading to high ionic conductivity of Cu + ions in Cu 6PS 5I argyrodite compound, the detailed structure analysis based on single-crystal X-ray diffraction has been performed. Below the phase transition at T=(144-169) K Cu 6PS 5I belongs to monoclinic, ferroelastic phase (space group Cc) with ordered copper sublattice. Above Tc delocalization of copper ions begins and crystal changes the symmetry to cubic superstructure with space group F-43 c ( a'=19.528 Å, z=32). Finally, above T1=274 K increasing disordering of the Cu + ions heightens the symmetry to F-43 m ( a=9.794 Å, z=4). In this work, the final structural model of two cubic phases is presented including the detailed temperature evolution of positions and site occupation factors of copper ions ( R1=0.0397 for F-43 c phase, and 0.0245 for F-43 m phase). Possible diffusion paths for the copper ions are represented by means of the atomic displacement factors and split model. The structural results coincide well with the previously reported non-Arrhenius behavior of conductivity and indicate significant change in conduction mechanism.
Role of Chain Microstructure and Branching on Solution and Thin Film Phase Behavior
2015-11-30
0.46:1 PS4 – PI4 60k‐60k 62.9k‐74.8k 1.07 0.457 0.840:1 60k‐120k 62.9k‐116.8k 1.06 0.350 0.54:1 ARO Final Report (PI: M. Kilbey) 5...nominal composition). PS-PI PS2-PI2 PS4 -PI4 S/I=1 S/I=0.5 ARO Final Report (PI: M. Kilbey) 6 the PS/PVP interface, or possibly bury themselves
Theers, Mario; Winkler, Roland G
2014-08-28
We investigate the emergent dynamical behavior of hydrodynamically coupled microrotors by means of multiparticle collision dynamics (MPC) simulations. The two rotors are confined in a plane and move along circles driven by active forces. Comparing simulations to theoretical results based on linearized hydrodynamics, we demonstrate that time-dependent hydrodynamic interactions lead to synchronization of the rotational motion. Thermal noise implies large fluctuations of the phase-angle difference between the rotors, but synchronization prevails and the ensemble-averaged time dependence of the phase-angle difference agrees well with analytical predictions. Moreover, we demonstrate that compressibility effects lead to longer synchronization times. In addition, the relevance of the inertia terms of the Navier-Stokes equation are discussed, specifically the linear unsteady acceleration term characterized by the oscillatory Reynolds number ReT. We illustrate the continuous breakdown of synchronization with the Reynolds number ReT, in analogy to the continuous breakdown of the scallop theorem with decreasing Reynolds number.
Siebenhühner, Felix; Wang, Sheng H; Palva, J Matias; Palva, Satu
2016-09-26
Neuronal activity in sensory and fronto-parietal (FP) areas underlies the representation and attentional control, respectively, of sensory information maintained in visual working memory (VWM). Within these regions, beta/gamma phase-synchronization supports the integration of sensory functions, while synchronization in theta/alpha bands supports the regulation of attentional functions. A key challenge is to understand which mechanisms integrate neuronal processing across these distinct frequencies and thereby the sensory and attentional functions. We investigated whether such integration could be achieved by cross-frequency phase synchrony (CFS). Using concurrent magneto- and electroencephalography, we found that CFS was load-dependently enhanced between theta and alpha-gamma and between alpha and beta-gamma oscillations during VWM maintenance among visual, FP, and dorsal attention (DA) systems. CFS also connected the hubs of within-frequency-synchronized networks and its strength predicted individual VWM capacity. We propose that CFS integrates processing among synchronized neuronal networks from theta to gamma frequencies to link sensory and attentional functions.
Method for protecting an electric generator
Kuehnle, Barry W.; Roberts, Jeffrey B.; Folkers, Ralph W.
2008-11-18
A method for protecting an electrical generator which includes providing an electrical generator which is normally synchronously operated with an electrical power grid; providing a synchronizing signal from the electrical generator; establishing a reference signal; and electrically isolating the electrical generator from the electrical power grid if the synchronizing signal is not in phase with the reference signal.
Hirvonen, Jonni; Wibral, Michael; Palva, J Matias; Singer, Wolf; Uhlhaas, Peter; Palva, Satu
2017-01-01
Current theories of schizophrenia (ScZ) posit that the symptoms and cognitive dysfunctions arise from a dysconnection syndrome. However, studies that have examined this hypothesis with physiological data at realistic time scales are so far scarce. The current study employed a state-of-the-art approach using Magnetoencephalography (MEG) to test alterations in large-scale phase synchronization in a sample of n = 16 chronic ScZ patients, 10 males and n = 19 healthy participants, 10 males, during a perceptual closure task. We identified large-scale networks from source reconstructed MEG data using data-driven analyses of neuronal synchronization. Oscillation amplitudes and interareal phase-synchronization in the 3-120 Hz frequency range were estimated for 400 cortical parcels and correlated with clinical symptoms and neuropsychological scores. ScZ patients were characterized by a reduction in γ-band (30-120 Hz) oscillation amplitudes that was accompanied by a pronounced deficit in large-scale synchronization at γ-band frequencies. Synchronization was reduced within visual regions as well as between visual and frontal cortex and the reduction of synchronization correlated with elevated clinical disorganization. Accordingly, these data highlight that ScZ is associated with a profound disruption of transient synchronization, providing critical support for the notion that core aspect of the pathophysiology arises from an impairment in coordination of distributed neural activity.
NASA Astrophysics Data System (ADS)
Banerjee, Tanmoy; Biswas, Debabrata
2013-12-01
We explore and experimentally demonstrate the phenomena of amplitude death (AD) and the corresponding transitions through synchronized states that lead to AD in coupled intrinsic time-delayed hyperchaotic oscillators interacting through mean-field diffusion. We identify a novel synchronization transition scenario leading to AD, namely transitions among AD, generalized anticipatory synchronization (GAS), complete synchronization (CS), and generalized lag synchronization (GLS). This transition is mediated by variation of the difference of intrinsic time-delays associated with the individual systems and has no analogue in non-delayed systems or coupled oscillators with coupling time-delay. We further show that, for equal intrinsic time-delays, increasing coupling strength results in a transition from the unsynchronized state to AD state via in-phase (complete) synchronized states. Using Krasovskii-Lyapunov theory, we derive the stability conditions that predict the parametric region of occurrence of GAS, GLS, and CS; also, using a linear stability analysis, we derive the condition of occurrence of AD. We use the error function of proper synchronization manifold and a modified form of the similarity function to provide the quantitative support to GLS and GAS. We demonstrate all the scenarios in an electronic circuit experiment; the experimental time-series, phase-plane plots, and generalized autocorrelation function computed from the experimental time series data are used to confirm the occurrence of all the phenomena in the coupled oscillators.
Generalized synchronization between chimera states
NASA Astrophysics Data System (ADS)
Andrzejak, Ralph G.; Ruzzene, Giulia; Malvestio, Irene
2017-05-01
Networks of coupled oscillators in chimera states are characterized by an intriguing interplay of synchronous and asynchronous motion. While chimera states were initially discovered in mathematical model systems, there is growing experimental and conceptual evidence that they manifest themselves also in natural and man-made networks. In real-world systems, however, synchronization and desynchronization are not only important within individual networks but also across different interacting networks. It is therefore essential to investigate if chimera states can be synchronized across networks. To address this open problem, we use the classical setting of ring networks of non-locally coupled identical phase oscillators. We apply diffusive drive-response couplings between pairs of such networks that individually show chimera states when there is no coupling between them. The drive and response networks are either identical or they differ by a variable mismatch in their phase lag parameters. In both cases, already for weak couplings, the coherent domain of the response network aligns its position to the one of the driver networks. For identical networks, a sufficiently strong coupling leads to identical synchronization between the drive and response. For non-identical networks, we use the auxiliary system approach to demonstrate that generalized synchronization is established instead. In this case, the response network continues to show a chimera dynamics which however remains distinct from the one of the driver. Hence, segregated synchronized and desynchronized domains in individual networks congregate in generalized synchronization across networks.
Hirvonen, Jonni; Palva, J. Matias; Singer, Wolf; Uhlhaas, Peter
2017-01-01
Abstract Current theories of schizophrenia (ScZ) posit that the symptoms and cognitive dysfunctions arise from a dysconnection syndrome. However, studies that have examined this hypothesis with physiological data at realistic time scales are so far scarce. The current study employed a state-of-the-art approach using Magnetoencephalography (MEG) to test alterations in large-scale phase synchronization in a sample of n = 16 chronic ScZ patients, 10 males and n = 19 healthy participants, 10 males, during a perceptual closure task. We identified large-scale networks from source reconstructed MEG data using data-driven analyses of neuronal synchronization. Oscillation amplitudes and interareal phase-synchronization in the 3–120 Hz frequency range were estimated for 400 cortical parcels and correlated with clinical symptoms and neuropsychological scores. ScZ patients were characterized by a reduction in γ-band (30–120 Hz) oscillation amplitudes that was accompanied by a pronounced deficit in large-scale synchronization at γ-band frequencies. Synchronization was reduced within visual regions as well as between visual and frontal cortex and the reduction of synchronization correlated with elevated clinical disorganization. Accordingly, these data highlight that ScZ is associated with a profound disruption of transient synchronization, providing critical support for the notion that core aspect of the pathophysiology arises from an impairment in coordination of distributed neural activity. PMID:29085902
Iyer, Kishore R.; Kunecki, Marek; Boullata, Joseph I.; Fujioka, Ken; Joly, Francisca; Gabe, Simon; Pape, Ulrich-Frank; Schneider, Stéphane M.; Virgili Casas, María Nuria; Ziegler, Thomas R.; Li, Benjamin; Youssef, Nader N.; Jeppesen, Palle B.
2016-01-01
Background: In phase III clinical studies, treatment with teduglutide was associated with clinically meaningful reductions (≥20% from baseline) in parenteral support (PS; parenteral nutrition and/or intravenous fluids) requirements in adult patients with intestinal failure associated with short bowel syndrome (SBS-IF). This analysis reports clinical characteristics of patients who achieved complete independence from PS during teduglutide treatment. Materials and Methods: Post hoc analysis of adult patients who achieved complete PS independence during treatment with teduglutide 0.05 mg/kg/d. Data were pooled from 5 teduglutide clinical trials (2 phase III placebo-controlled trials [NCT00081458 and NCT00798967] and their respective extension studies [NCT00172185, NCT00930644, NCT01560403]). Descriptive statistics were used; no between-group comparisons were performed because of the small sample size and lack of comparator. Results: Of 134 patients, 16 gained oral or enteral autonomy after a median of 5 years of PS dependence and 89 weeks of teduglutide treatment. Demographic and baseline disease characteristics varied among patients (median age, 55 years; 50% men; median baseline PS volume, 5.1 L/wk; median residual small intestine length, 52.5 cm). Most patients who achieved PS independence had colon-in-continuity; however, there was no significant difference in the frequency of PS independence among patients who maintained colon-in-continuity vs those who did not. Conclusion: Findings from this post hoc analysis suggest that oral or enteral autonomy is possible for some patients with SBS-IF who are treated with teduglutide, regardless of baseline characteristics and despite long-term PS dependence. PMID:27875291
Antiphase synchronization in coupled chaotic oscillators.
Liu, Weiqing; Xiao, Jinghua; Qian, Xiaolan; Yang, Junzhong
2006-05-01
Anti-phase synchronization (AS) in coupled chaotic oscillators is investigated. The necessary condition for AS is given and the stability of AS is studied. Results are demonstrated with numerical simulations and electronic circuits.
Static inverter with synchronous output waveform synthesized by time-optimal-response feedback
NASA Technical Reports Server (NTRS)
Kernick, A.; Stechschulte, D. L.; Shireman, D. W.
1976-01-01
Time-optimal-response 'bang-bang' or 'bang-hang' technique, using four feedback control loops, synthesizes static-inverter sinusoidal output waveform by self-oscillatory but yet synchronous pulse-frequency-modulation (SPFM). A single modular power stage per phase of ac output entails the minimum of circuit complexity while providing by feedback synthesis individual phase voltage regulation, phase position control and inherent compensation simultaneously for line and load disturbances. Clipped sinewave performance is described under off-limit load or input voltage conditions. Also, approaches to high power levels, 3-phase arraying and parallel modular connection are given.
NASA Astrophysics Data System (ADS)
Naddaf, M.; Mrad, O.; Al-zier, A.
2014-06-01
A pulsed anodic etching method has been utilized for nanostructuring of a copper-coated p-type (100) silicon substrate, using HF-based solution as electrolyte. Scanning electron microscopy reveals the formation of a nanostructured matrix that consists of island-like textures with nanosize grains grown onto fiber-like columnar structures separated with etch pits of grooved porous structures. Spatial micro-Raman scattering analysis indicates that the island-like texture is composed of single-phase cupric oxide (CuO) nanocrystals, while the grooved porous structure is barely related to formation of porous silicon (PS). X-ray diffraction shows that both the grown CuO nanostructures and the etched silicon layer have the same preferred (220) orientation. Chemical composition obtained by means of X-ray photoelectron spectroscopic (XPS) analysis confirms the presence of the single-phase CuO on the surface of the patterned CuO-PS matrix. As compared to PS formed on the bare silicon substrate, the room-temperature photoluminescence (PL) from the CuO-PS matrix exhibits an additional weak `blue' PL band as well as a blue shift in the PL band of PS (S-band). This has been revealed from XPS analysis to be associated with the enhancement in the SiO2 content as well as formation of the carbonyl group on the surface in the case of the CuO-PS matrix.
NASA Astrophysics Data System (ADS)
Lu, Zenghai; Kasaragod, Deepa K.; Matcher, Stephen J.
2011-06-01
A phase fluctuation calibration method is presented for polarization-sensitive swept-source optical coherence tomography (PS-SS-OCT) using continuous polarization modulation. The method consists of the generation of a continuous triggered tone-burst waveform rather than an asynchronous waveform by use of a function generator and the removal of the global phases of the measured Jones matrices by use of matrix normalization. This could remove the use of auxiliary optical components for the phase fluctuation compensation in the system, which reduces the system complexity. Phase fluctuation calibration is necessary to obtain the reference Jones matrix by averaging the measured Jones matrices at sample surfaces. Measurements on an equine tendon sample were made by the PS-SS-OCT system to validate the proposed method.
NASA Astrophysics Data System (ADS)
Kim, Sehee; Char, Kookheon; Sohn, Byeong-Hyeok
2010-03-01
Diblock copolymers consisting of two immiscible polymer blocks covalently bonded together form various self-assembled nanostructures such as spheres, cylinders, and lamellae in bulk phase. In a selective solvent, however, they assemble into micelles with soluble corona brushes and immiscible cores. Both polystyrene-poly(4-vinylpyridine) (PS-b-P4VP) and polystyrene-poly(2-vinylpyridine) (PS-b-P2VP) diblock copolymers form micelles with PS coronas and P4VP or P2VP cores in a PS selective solvent (toluene). By varying the mixture ratio between PS-b-P4VP and PS-b-P2VP, composite films based on the micellar mixtures of PS-b-P4VP and PS-b-P2VP were obtained by spin-coating, followed by the solvent annealing with tetrahydrofuran (THF) vapor. Since THF is a solvent for both PS and P2VP blocks and, at the same time, a non-solvent for the P4VP block, PS-P2VP micelles transformed to lamellar multilayers while PS-P4VP micelles remained intact during the THF annealing. The spontaneous evolution of nanostructure in composite films consisting of lamellae layers with BCP micelles were investigated in detail by cross-sectional TEM and AFM.
Inter-subject phase synchronization for exploratory analysis of task-fMRI.
Bolt, Taylor; Nomi, Jason S; Vij, Shruti G; Chang, Catie; Uddin, Lucina Q
2018-08-01
Analysis of task-based fMRI data is conventionally carried out using a hypothesis-driven approach, where blood-oxygen-level dependent (BOLD) time courses are correlated with a hypothesized temporal structure. In some experimental designs, this temporal structure can be difficult to define. In other cases, experimenters may wish to take a more exploratory, data-driven approach to detecting task-driven BOLD activity. In this study, we demonstrate the efficiency and power of an inter-subject synchronization approach for exploratory analysis of task-based fMRI data. Combining the tools of instantaneous phase synchronization and independent component analysis, we characterize whole-brain task-driven responses in terms of group-wise similarity in temporal signal dynamics of brain networks. We applied this framework to fMRI data collected during performance of a simple motor task and a social cognitive task. Analyses using an inter-subject phase synchronization approach revealed a large number of brain networks that dynamically synchronized to various features of the task, often not predicted by the hypothesized temporal structure of the task. We suggest that this methodological framework, along with readily available tools in the fMRI community, provides a powerful exploratory, data-driven approach for analysis of task-driven BOLD activity. Copyright © 2018 Elsevier Inc. All rights reserved.
ELECTROMAGNETIC AND ELECTROSTATIC GENERATORS: ANNOTATED BIBLIOGRAPHY.
generator with split poles, ultrasonic-frequency generator, unipolar generator, single-phase micromotors , synchronous motor, asynchronous motor...asymmetrical rotor, magnetic circuit, dc micromotors , circuit for the automatic control of synchronized induction motors, induction torque micromotors , electric
NASA Astrophysics Data System (ADS)
Kori, Hiroshi; Kiss, István Z.; Jain, Swati; Hudson, John L.
2018-04-01
Experiments and supporting theoretical analysis are presented to describe the synchronization patterns that can be observed with a population of globally coupled electrochemical oscillators close to a homoclinic, saddle-loop bifurcation, where the coupling is repulsive in the electrode potential. While attractive coupling generates phase clusters and desynchronized states, repulsive coupling results in synchronized oscillations. The experiments are interpreted with a phenomenological model that captures the waveform of the oscillations (exponential increase) followed by a refractory period. The globally coupled autocatalytic integrate-and-fire model predicts the development of partially synchronized states that occur through attracting heteroclinic cycles between out-of-phase two-cluster states. Similar behavior can be expected in many other systems where the oscillations occur close to a saddle-loop bifurcation, e.g., with Morris-Lecar neurons.
Narahara, Koichi; Misono, Masatoshi; Miyakawa, Kenji
2013-01-01
We investigate the external synchronization of the oscillating pulse edges developed in a transmission line periodically loaded with tunnel diodes (TDs), termed a TD line. It is observed that the pulse edge oscillates on a TD line when supplied by an appropriate voltage at the end of the line. We discuss how the pulse edge oscillates on a TD line and the properties of the external synchronization of the edge oscillation driven by a sinusoidal perturbation. By applying a phase-reduction scheme to the transmission equation of a TD line, we obtain the phase sensitivity, which satisfactory explains the measured spatial dependence of the locking range on the frequency. Moreover, we successfully detect the spatiotemporal behaviors of the edge oscillation by establishing synchronization with the sampling trigger of an oscilloscope.
Sleep-Dependent Oscillatory Synchronization: A Role in Fear Memory Consolidation.
Totty, Michael S; Chesney, Logan A; Geist, Phillip A; Datta, Subimal
2017-01-01
Sleep plays an important role in memory consolidation through the facilitation of neuronal plasticity; however, how sleep accomplishes this remains to be completely understood. It has previously been demonstrated that neural oscillations are an intrinsic mechanism by which the brain precisely controls neural ensembles. Inter-regional synchronization of these oscillations is also known to facilitate long-range communication and long-term potentiation (LTP). In the present study, we investigated how the characteristic rhythms found in local field potentials (LFPs) during non-REM and REM sleep play a role in emotional memory consolidation. Chronically implanted bipolar electrodes in the lateral amygdala (LA), dorsal and ventral hippocampus (DH, VH), and the infra-limbic (IL), and pre-limbic (PL) prefrontal cortex were used to record LFPs across sleep-wake activity following each day of a Pavlovian cued fear conditioning paradigm. This resulted in three principle findings: (1) theta rhythms during REM sleep are highly synchronized between regions; (2) the extent of inter-regional synchronization during REM and non-REM sleep is altered by FC and EX; (3) the mean phase difference of synchronization between the LA and VH during REM sleep predicts changes in freezing after cued fear extinction. These results both oppose a currently proposed model of sleep-dependent memory consolidation and provide a novel finding which suggests that the role of REM sleep theta rhythms in memory consolidation may rely more on the relative phase-shift between neural oscillations, rather than the extent of phase synchronization.
Non-conventional synchronization of weakly coupled active oscillators
NASA Astrophysics Data System (ADS)
Manevitch, L. I.; Kovaleva, M. A.; Pilipchuk, V. N.
2013-03-01
We present a new type of self-sustained vibrations in the fundamental physical model covering a broad area of applications from wave generation in radiophysics and nonlinear optics to the heart muscle contraction and eyesight disorder in biophysics. Such a diversity of applications is due to the universal physical phenomenon of synchronization. Previous studies of this phenomenon, originating from Huygens famous observation, are based mainly on the model of two weakly coupled Van der Pol oscillators and usually deal with their synchronization in the regimes close to nonlinear normal modes (NNMs). In this work, we show for the first time that, in the important case of threshold excitation, an alternative synchronization mechanism can develop when the conventional synchronization becomes impossible. We identify this mechanism as an appearance of dynamic attractor with the complete periodic energy exchange between the oscillators, which is the dissipative analogue of highly intensive beats in a conservative system. This type of motion is therefore opposite to the NNM-type synchronization with no energy exchange by definition. The analytical description of these vibrations employs the concept of Limiting Phase Trajectories (LPTs) introduced by one of the authors earlier for conservative systems. Finally, within the LPT approach, we describe the transition from the complete energy exchange between the oscillators to the energy localization mostly on one of the two oscillators. The localized mode is an attractor in the range of model parameters wherein the LPT as well as the in-phase and out-of-phase NNMs become unstable.
Phase synchronization motion and neural coding in dynamic transmission of neural information.
Wang, Rubin; Zhang, Zhikang; Qu, Jingyi; Cao, Jianting
2011-07-01
In order to explore the dynamic characteristics of neural coding in the transmission of neural information in the brain, a model of neural network consisting of three neuronal populations is proposed in this paper using the theory of stochastic phase dynamics. Based on the model established, the neural phase synchronization motion and neural coding under spontaneous activity and stimulation are examined, for the case of varying network structure. Our analysis shows that, under the condition of spontaneous activity, the characteristics of phase neural coding are unrelated to the number of neurons participated in neural firing within the neuronal populations. The result of numerical simulation supports the existence of sparse coding within the brain, and verifies the crucial importance of the magnitudes of the coupling coefficients in neural information processing as well as the completely different information processing capability of neural information transmission in both serial and parallel couplings. The result also testifies that under external stimulation, the bigger the number of neurons in a neuronal population, the more the stimulation influences the phase synchronization motion and neural coding evolution in other neuronal populations. We verify numerically the experimental result in neurobiology that the reduction of the coupling coefficient between neuronal populations implies the enhancement of lateral inhibition function in neural networks, with the enhancement equivalent to depressing neuronal excitability threshold. Thus, the neuronal populations tend to have a stronger reaction under the same stimulation, and more neurons get excited, leading to more neurons participating in neural coding and phase synchronization motion.
Okuyama, Kohei; Kaida, Atsushi; Hayashi, Yoshiki; Hayashi, Yoshio; Harada, Kiyoshi; Miura, Masahiko
2015-01-01
KPU-300 is a novel colchicine-type anti-microtubule agent derived from plinabulin (NPI-2358). We characterized the effects of KPU-300 on cell cycle kinetics and radiosensitization using HeLa cells expressing the fluorescent ubiquitination-based cell cycle indicator (Fucci). Cells treated with 30 nM KPU-300 for 24 h were efficiently synchronized in M phase and contained clearly detectable abnormal Fucci fluorescence. Two-dimensional flow-cytometric analysis revealed a fraction of cells distinct from the normal Fucci fluorescence pattern. Most of these cells were positive for an M phase marker, the phosphorylated form of histone H3. Cells growing in spheroids responded similarly to the drug, and the inner quiescent fraction also responded after recruitment to the growth fraction. When such drug-treated cells were irradiated in monolayer, a remarkable radiosensitization was observed. To determine whether this radiosensitization was truly due to the synchronization in M phase, we compared the radiosensitivity of cells synchronized by KPU-300 treatment and cells in early M phase isolated by a combined method that took advantage of shake-off and the properties of the Fucci system. Following normalization against the surviving fraction of cells treated with KPU-300 alone, the surviving fractions of cells irradiated in early M phase coincided. Taken together with potential vascular disrupting function in vivo, we propose a novel radiosensitizing strategy using KPU-300. PMID:26716455
Okuyama, Kohei; Kaida, Atsushi; Hayashi, Yoshiki; Hayashi, Yoshio; Harada, Kiyoshi; Miura, Masahiko
2015-01-01
KPU-300 is a novel colchicine-type anti-microtubule agent derived from plinabulin (NPI-2358). We characterized the effects of KPU-300 on cell cycle kinetics and radiosensitization using HeLa cells expressing the fluorescent ubiquitination-based cell cycle indicator (Fucci). Cells treated with 30 nM KPU-300 for 24 h were efficiently synchronized in M phase and contained clearly detectable abnormal Fucci fluorescence. Two-dimensional flow-cytometric analysis revealed a fraction of cells distinct from the normal Fucci fluorescence pattern. Most of these cells were positive for an M phase marker, the phosphorylated form of histone H3. Cells growing in spheroids responded similarly to the drug, and the inner quiescent fraction also responded after recruitment to the growth fraction. When such drug-treated cells were irradiated in monolayer, a remarkable radiosensitization was observed. To determine whether this radiosensitization was truly due to the synchronization in M phase, we compared the radiosensitivity of cells synchronized by KPU-300 treatment and cells in early M phase isolated by a combined method that took advantage of shake-off and the properties of the Fucci system. Following normalization against the surviving fraction of cells treated with KPU-300 alone, the surviving fractions of cells irradiated in early M phase coincided. Taken together with potential vascular disrupting function in vivo, we propose a novel radiosensitizing strategy using KPU-300.
NASA Astrophysics Data System (ADS)
Ciucur, Violeta
2015-02-01
Of three-phase alternating current electric machines, it brings into question which of them is more advantageous to be used in electrical energy storage system by pumping water. The two major categories among which are given dispute are synchronous and the asynchronous machine. To consider the synchronous machine with permanent magnet configuration because it brings advantages compared with conventional synchronous machine, first by removing the necessary additional excitation winding. From the point of view of loss of the two types of machines, the optimal adjustment of the magnetic flux density is obtained to minimize the copper loss by hysteresis and eddy currents.
GPS synchronized power system phase angle measurements
NASA Astrophysics Data System (ADS)
Wilson, Robert E.; Sterlina, Patrick S.
1994-09-01
This paper discusses the use of Global Positioning System (GPS) synchronized equipment for the measurement and analysis of key power system quantities. Two GPS synchronized phasor measurement units (PMU) were installed before testing. It was indicated that PMUs recorded the dynamic response of the power system phase angles when the northern California power grid was excited by the artificial short circuits. Power system planning engineers perform detailed computer generated simulations of the dynamic response of the power system to naturally occurring short circuits. The computer simulations use models of transmission lines, transformers, circuit breakers, and other high voltage components. This work will compare computer simulations of the same event with field measurement.
Composite synchronization of three eccentric rotors driven by induction motors in a vibrating system
NASA Astrophysics Data System (ADS)
Kong, Xiangxi; Chen, Changzheng; Wen, Bangchun
2018-03-01
This paper addresses the problem of composite synchronization of three eccentric rotors (ERs) driven by induction motors in a vibrating system. The composite synchronous motion of three ERs is composed of the controlled synchronous motion of two ERs and the self-synchronous motion of the third ER. Combining an adaptive sliding mode control (ASMC) algorithm with a modified master-slave control structure, the controllers are designed to implement controlled synchronous motion of two ERs with zero phase difference. Based on Lyapunov stability theorem and Barbalat's lemma, the stability of the designed controllers is verified. On basis of controlled synchronization of two ERs, self-synchronization of the third ER is introduced to implement composite synchronous motion of three ERs. The feasibility of the proposed composite synchronization method is analyzed by numerical method. The effects of motor and structure parameters on composite synchronous motion are discussed. Experiments on a vibrating test bench driven by three ERs are operated to validate the effectiveness of the proposed composite synchronization method, including a comparison with self-synchronization method.
NASA Astrophysics Data System (ADS)
Zaouter, Y.; Cormier, E.; Rigail, P.; Hönninger, C.; Mottay, E.
2007-02-01
The concept of spectral compression induced by self phase modulation is used to generate transform-limited 10ps pulses in a rare-earth-doped low nonlinearity fibre amplifier. The seed source of the amplifier stage is a high power, Yb 3+:KGW bulk oscillator which delivers 500 fs transform-limited pulses at 10MHz repetition rate. After a reduction of the repetition rate down to 3MHz, the femtosecond pulses are negatively chirped by transmission gratings in a compressor arrangement. The resulting 10ps pulses are further seeded into the power amplifier and up to 32W output power is obtained while the spectral bandwidth is reduced to less than 0.5 nm by means of self phase modulation.
Synchronization of a self-sustained cold-atom oscillator
NASA Astrophysics Data System (ADS)
Heimonen, H.; Kwek, L. C.; Kaiser, R.; Labeyrie, G.
2018-04-01
Nonlinear oscillations and synchronization phenomena are ubiquitous in nature. We study the synchronization of self-oscillating magneto-optically trapped cold atoms to a weak external driving. The oscillations arise from a dynamical instability due the competition between the screened magneto-optical trapping force and the interatomic repulsion due to multiple scattering of light. A weak modulation of the trapping force allows the oscillations of the cloud to synchronize to the driving. The synchronization frequency range increases with the forcing amplitude. The corresponding Arnold tongue is experimentally measured and compared to theoretical predictions. Phase locking between the oscillator and drive is also observed.
NASA Astrophysics Data System (ADS)
Zhao, Bo-Han; Hu, Mao-Bin; Jiang, Rui; Wu, Qing-Song
2009-11-01
A cellular automaton model is proposed to consider the anticipation effect in drivers' behavior. It is shown that the anticipation effect can be one of the origins of synchronized traffic flow. With anticipation effect, the congested traffic flow simulated by the model exhibits the features of synchronized flow. The spatiotemporal patterns induced by an on-ramp are also consistent with the three-phase traffic theory. Since the origin of synchronized flow is still controversial, our work can shed some light on the mechanism of synchronized flow.
NASA Astrophysics Data System (ADS)
Kerner, Boris S.
2012-03-01
Based on numerical simulations of a stochastic three-phase traffic flow model, we reveal the physics of the fundamental hypothesis of three-phase theory that, in contrast with a fundamental diagram of classical traffic flow theories, postulates the existence of a two-dimensional (2D) region of steady states of synchronized flow where a driver makes an arbitrary choice of a space gap (time headway) to the preceding vehicle. We find that macroscopic and microscopic spatiotemporal effects of the entire complexity of traffic congestion observed up to now in real measured traffic data can be explained by simulations of traffic flow consisting of identical drivers and vehicles, if a microscopic model used in these simulations incorporates the fundamental hypothesis of three-phase theory. It is shown that the driver's choice of space gaps within the 2D region of synchronized flow associated with the fundamental hypothesis of three-phase theory can qualitatively change types of congested patterns that can emerge at a highway bottleneck. In particular, if drivers choose long enough spaces gaps associated with the fundamental hypothesis, then general patterns, which consist of synchronized flow and wide moving jams, do not emerge independent of the flow rates and bottleneck characteristics: Even at a heavy bottleneck leading to a very low speed within congested patterns, only synchronized flow patterns occur in which no wide moving jams emerge spontaneously.
Kerner, Boris S
2012-03-01
Based on numerical simulations of a stochastic three-phase traffic flow model, we reveal the physics of the fundamental hypothesis of three-phase theory that, in contrast with a fundamental diagram of classical traffic flow theories, postulates the existence of a two-dimensional (2D) region of steady states of synchronized flow where a driver makes an arbitrary choice of a space gap (time headway) to the preceding vehicle. We find that macroscopic and microscopic spatiotemporal effects of the entire complexity of traffic congestion observed up to now in real measured traffic data can be explained by simulations of traffic flow consisting of identical drivers and vehicles, if a microscopic model used in these simulations incorporates the fundamental hypothesis of three-phase theory. It is shown that the driver's choice of space gaps within the 2D region of synchronized flow associated with the fundamental hypothesis of three-phase theory can qualitatively change types of congested patterns that can emerge at a highway bottleneck. In particular, if drivers choose long enough spaces gaps associated with the fundamental hypothesis, then general patterns, which consist of synchronized flow and wide moving jams, do not emerge independent of the flow rates and bottleneck characteristics: Even at a heavy bottleneck leading to a very low speed within congested patterns, only synchronized flow patterns occur in which no wide moving jams emerge spontaneously.
NASA Astrophysics Data System (ADS)
Branicio, Paulo S.; Bai, Kewu; Ramanarayan, H.; Wu, David T.; Sullivan, Michael B.; Srolovitz, David J.
2018-04-01
The complete process of amorphization and crystallization of the phase-change material G e2S b2T e5 is investigated using nanosecond ab initio molecular dynamics simulations. Varying the quench rate during the amorphization phase of the cycle results in the generation of a variety of structures from entirely crystallized (-0.45 K/ps) to entirely amorphized (-16 K/ps). The 1.5-ns annealing simulations indicate that the crystallization process depends strongly on both the annealing temperature and the initial amorphous structure. The presence of crystal precursors (square rings) in the amorphous matrix enhances nucleation/crystallization kinetics. The simulation data are used to construct a combined continuous-cooling-transformation (CCT) and temperature-time-transformation (TTT) diagram. The nose of the CCT-TTT diagram corresponds to the minimum time for the onset of homogenous crystallization and is located at 600 K and 70 ps. That corresponds to a critical cooling rate for amorphization of -4.5 K/ps. The results, in excellent agreement with experimental observations, suggest that a strategy that utilizes multiple quench rates and annealing temperatures may be used to effectively optimize the reversible switching speed and enable fast and energy-efficient phase-change memories.
Jin, Cheng-Jie; Wang, Wei; Jiang, Rui; Zhang, H M; Wang, Hao
2013-01-01
Traffic flow complexity comes from the car-following and lane-changing behavior. Based on empirical data for individual vehicle speeds and time headways measured on a single-lane highway section, we have studied the traffic flow properties induced by pure car-following behavior. We have found that a spontaneous sudden drop in velocity could happen in a platoon of vehicles when the velocity of the leading vehicle is quite high (~70 km/h). In contrast, when the velocity of the leading vehicle in a platoon slows down, such a spontaneous sudden drop of velocity has not been observed. Our finding indicates that traffic breakdown on a single-lane road might be a phase transition from free flow to synchronized flow (F→S transition). We have found that the flow rate within the emergent synchronized flow can be either smaller or larger than the flow rate in the free flow within which the synchronized flow propagates. Our empirical findings support Kerner's three-phase theory in which traffic breakdown is associated with an F→S transition.
Spike phase synchronization in multiplex cortical neural networks
NASA Astrophysics Data System (ADS)
Jalili, Mahdi
2017-01-01
In this paper we study synchronizability of two multiplex cortical networks: whole-cortex of hermaphrodite C. elegans and posterior cortex in male C. elegans. These networks are composed of two connection layers: network of chemical synapses and the one formed by gap junctions. This work studies the contribution of each layer on the phase synchronization of non-identical spiking Hindmarsh-Rose neurons. The network of male C. elegans shows higher phase synchronization than its randomized version, while it is not the case for hermaphrodite type. The random networks in each layer are constructed such that the nodes have the same degree as the original network, thus providing an unbiased comparison. In male C. elegans, although the gap junction network is sparser than the chemical network, it shows higher contribution in the synchronization phenomenon. This is not the case in hermaphrodite type, which is mainly due to significant less density of gap junction layer (0.013) as compared to chemical layer (0.028). Also, the gap junction network in this type has stronger community structure than the chemical network, and this is another driving factor for its weaker synchronizability.
Doesburg, Sam M; Herdman, Anthony T; Ribary, Urs; Cheung, Teresa; Moiseev, Alexander; Weinberg, Hal; Liotti, Mario; Weeks, Daniel; Grunau, Ruth E
2010-04-01
Local alpha-band synchronization has been associated with both cortical idling and active inhibition. Recent evidence, however, suggests that long-range alpha synchronization increases functional coupling between cortical regions. We demonstrate increased long-range alpha and beta band phase synchronization during short-term memory retention in children 6-10 years of age. Furthermore, whereas alpha-band synchronization between posterior cortex and other regions is increased during retention, local alpha-band synchronization over posterior cortex is reduced. This constitutes a functional dissociation for alpha synchronization across local and long-range cortical scales. We interpret long-range synchronization as reflecting functional integration within a network of frontal and visual cortical regions. Local desynchronization of alpha rhythms over posterior cortex, conversely, likely arises because of increased engagement of visual cortex during retention.
Finding Major Patterns of Aging Process by Data Synchronization
NASA Astrophysics Data System (ADS)
Miyano, Takaya; Tsutsui, Takako
We developed a method for extracting feature patterns from multivariate data using a network of coupled phase oscillators subject to an analogue of the Kuramoto model for collective synchronization. Our method may be called data synchronization. We applied data synchronization to the care-needs-certification data, provided by Otsu City as a historical old city near Kyoto City, in the Japanese public long-term care insurance program to find the trend of the major patterns of the aging process for elderly people needing nursing care.
Purely wavelength- and amplitude-modulated quartz-enhanced photoacoustic spectroscopy.
Patimisco, Pietro; Sampaolo, Angelo; Bidaux, Yves; Bismuto, Alfredo; Scott, Marshall; Jiang, James; Muller, Antoine; Faist, Jerome; Tittel, Frank K; Spagnolo, Vincenzo
2016-11-14
We report here on a quartz-enhanced photoacoustic (QEPAS) sensor employing a quantum cascade laser (QCL) structure capable of operating in a pure amplitude or wavelength modulation configuration. The QCL structure is composed of three electrically independent sections: Gain, Phase (PS) and Master Oscillator (MO). Selective current pumping of these three sections allows obtaining laser wavelength tuning without changes in the optical power, and power modulation without emission wavelength shifts. A pure QEPAS amplitude modulation condition is obtained by modulating the PS current, while pure wavelength modulation is achieved by modulating simultaneously the MO and PS QCL sections and slowly scanning the DC current level injected in the PS section.
Repp, B H
2001-06-01
Recent studies of synchronized finger tapping have shown that perceptually subliminal phase shifts in an auditory sequence are rapidly compensated for in the motor activity (B. H. Repp, 2000a). Experiment 1 used a continuation-tapping task to confirm that this compensation is indeed a phase correction, not an adjustment of the central timekeeper period. Experiments 2-5 revealed that this phase correction occurs even when there is no ordinary sensorimotor asynchrony--when the finger taps are in antiphase or arbitrary phase relative to the auditory sequence (Experiments 2 and 3) or when the tap coinciding with the sequence phase shift is withheld (Experiments 4 and 5). The phase correction observed in the latter conditions was instantaneous, which suggests that phase resetting occurs when the motor activity is discontinuous. A prolonged phase shift suggestive of overcompensation was observed in some conditions, which poses a challenge to pure phase correction models.
Synchronization in monkey visual cortex analyzed with an information-theoretic measure
NASA Astrophysics Data System (ADS)
Manyakov, Nikolay V.; Van Hulle, Marc M.
2008-09-01
We apply an information-theoretic measure for phase synchrony to local field potentials recorded with a multi-electrode array implanted in area V4 of the monkey visual cortex during a reinforcement pairing experiment. We show for the first time that (1) the phase synchrony is significantly higher for the rewarded stimulus than the unrewarded one, after training the monkey; (2) just after the stimuli reversal, the difference in phase synchronization is due to the stimuli, not the reward; (3) the difference between reward and no reward is most clear in two disconnected time intervals between stimuli onset and the expected delivery of the reward; and (4) synchronous activity appears in waves running over the array, and their timing correlates well with the time intervals where the difference between reward and no reward is most prominent.
Weiss, Daniel; Klotz, Rosa; Govindan, Rathinaswamy B; Scholten, Marlieke; Naros, Georgios; Ramos-Murguialday, Ander; Bunjes, Friedemann; Meisner, Christoph; Plewnia, Christian; Krüger, Rejko; Gharabaghi, Alireza
2015-03-01
Dynamic modulations of large-scale network activity and synchronization are inherent to a broad spectrum of cognitive processes and are disturbed in neuropsychiatric conditions including Parkinson's disease. Here, we set out to address the motor network activity and synchronization in Parkinson's disease and its modulation with subthalamic stimulation. To this end, 20 patients with idiopathic Parkinson's disease with subthalamic nucleus stimulation were analysed on externally cued right hand finger movements with 1.5-s interstimulus interval. Simultaneous recordings were obtained from electromyography on antagonistic muscles (right flexor digitorum and extensor digitorum) together with 64-channel electroencephalography. Time-frequency event-related spectral perturbations were assessed to determine cortical and muscular activity. Next, cross-spectra in the time-frequency domain were analysed to explore the cortico-cortical synchronization. The time-frequency modulations enabled us to select a time-frequency range relevant for motor processing. On these time-frequency windows, we developed an extension of the phase synchronization index to quantify the global cortico-cortical synchronization and to obtain topographic differentiations of distinct electrode sites with respect to their contributions to the global phase synchronization index. The spectral measures were used to predict clinical and reaction time outcome using regression analysis. We found that movement-related desynchronization of cortical activity in the upper alpha and beta range was significantly facilitated with 'stimulation on' compared to 'stimulation off' on electrodes over the bilateral parietal, sensorimotor, premotor, supplementary-motor, and prefrontal areas, including the bilateral inferior prefrontal areas. These spectral modulations enabled us to predict both clinical and reaction time improvement from subthalamic stimulation. With 'stimulation on', interhemispheric cortico-cortical coherence in the beta band was significantly attenuated over the bilateral sensorimotor areas. Similarly, the global cortico-cortical phase synchronization was attenuated, and the topographic differentiation revealed stronger desynchronization over the (ipsilateral) right-hemispheric prefrontal, premotor and sensorimotor areas compared to 'stimulation off'. We further demonstrated that the cortico-cortical phase synchronization was largely dominated by genuine neuronal coupling. The clinical improvement with 'stimulation on' compared to 'stimulation off' could be predicted from this cortical decoupling with multiple regressions, and the reduction of synchronization over the right prefrontal area showed a linear univariate correlation with clinical improvement. Our study demonstrates wide-spread activity and synchronization modulations of the cortical motor network, and highlights subthalamic stimulation as a network-modulating therapy. Accordingly, subthalamic stimulation may release bilateral cortical computational resources by facilitating movement-related desynchronization. Moreover, the subthalamic nucleus is critical to balance inhibitory and facilitatory cortical players within the motor program. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Klotz, Rosa; Govindan, Rathinaswamy B.; Scholten, Marlieke; Naros, Georgios; Ramos-Murguialday, Ander; Bunjes, Friedemann; Meisner, Christoph; Plewnia, Christian; Krüger, Rejko
2015-01-01
Dynamic modulations of large-scale network activity and synchronization are inherent to a broad spectrum of cognitive processes and are disturbed in neuropsychiatric conditions including Parkinson’s disease. Here, we set out to address the motor network activity and synchronization in Parkinson’s disease and its modulation with subthalamic stimulation. To this end, 20 patients with idiopathic Parkinson’s disease with subthalamic nucleus stimulation were analysed on externally cued right hand finger movements with 1.5-s interstimulus interval. Simultaneous recordings were obtained from electromyography on antagonistic muscles (right flexor digitorum and extensor digitorum) together with 64-channel electroencephalography. Time-frequency event-related spectral perturbations were assessed to determine cortical and muscular activity. Next, cross-spectra in the time-frequency domain were analysed to explore the cortico-cortical synchronization. The time-frequency modulations enabled us to select a time-frequency range relevant for motor processing. On these time-frequency windows, we developed an extension of the phase synchronization index to quantify the global cortico-cortical synchronization and to obtain topographic differentiations of distinct electrode sites with respect to their contributions to the global phase synchronization index. The spectral measures were used to predict clinical and reaction time outcome using regression analysis. We found that movement-related desynchronization of cortical activity in the upper alpha and beta range was significantly facilitated with ‘stimulation on’ compared to ‘stimulation off’ on electrodes over the bilateral parietal, sensorimotor, premotor, supplementary-motor, and prefrontal areas, including the bilateral inferior prefrontal areas. These spectral modulations enabled us to predict both clinical and reaction time improvement from subthalamic stimulation. With ‘stimulation on’, interhemispheric cortico-cortical coherence in the beta band was significantly attenuated over the bilateral sensorimotor areas. Similarly, the global cortico-cortical phase synchronization was attenuated, and the topographic differentiation revealed stronger desynchronization over the (ipsilateral) right-hemispheric prefrontal, premotor and sensorimotor areas compared to ‘stimulation off’. We further demonstrated that the cortico-cortical phase synchronization was largely dominated by genuine neuronal coupling. The clinical improvement with ‘stimulation on’ compared to ‘stimulation off’ could be predicted from this cortical decoupling with multiple regressions, and the reduction of synchronization over the right prefrontal area showed a linear univariate correlation with clinical improvement. Our study demonstrates wide-spread activity and synchronization modulations of the cortical motor network, and highlights subthalamic stimulation as a network-modulating therapy. Accordingly, subthalamic stimulation may release bilateral cortical computational resources by facilitating movement-related desynchronization. Moreover, the subthalamic nucleus is critical to balance inhibitory and facilitatory cortical players within the motor program. PMID:25558877
Gombos, Ferenc; Bódizs, Róbert; Kovács, Ilona
2017-07-21
Williams syndrome (7q11.23 microdeletion) is characterized by specific alterations in neurocognitive architecture and functioning, as well as disordered sleep. Here we analyze the region, sleep state and frequency-specific EEG synchronization of whole night sleep recordings of 21 Williams syndrome and 21 typically developing age- and gender-matched subjects by calculating weighted phase lag indexes. We found broadband increases in inter- and intrahemispheric neural connectivity for both NREM and REM sleep EEG of Williams syndrome subjects. These effects consisted of increased theta, high sigma, and beta/low gamma synchronization, whereas alpha synchronization was characterized by a peculiar Williams syndrome-specific decrease during NREM states (intra- and interhemispheric centro-temporal) and REM phases of sleep (occipital intra-area synchronization). We also found a decrease in short range, occipital connectivity of NREM sleep EEG theta activity. The striking increased overall synchronization of sleep EEG in Williams syndrome subjects is consistent with the recently reported increase in synaptic and dendritic density in stem-cell based Williams syndrome models, whereas decreased alpha and occipital connectivity might reflect and underpin the altered microarchitecture of primary visual cortex and disordered visuospatial functioning of Williams syndrome subjects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nazhan, Salam; Ghassemlooy, Zabih; Busawon, Krishna
2016-01-15
In this paper, the influence of the rotating polarization-preserved optical feedback on the chaos synchronization of a vertical-cavity surface-emitting laser (VCSEL) is investigated experimentally. Two VCSELs' polarization modes (XP) and (YP) are gradually rotated and re-injected back into the VCSEL. The anti-phase dynamics synchronization of the two polarization modes is evaluated using the cross-correlation function. For a fixed optical feedback, a clear relationship is found between the cross-correlation coefficient and the polarization angle θ{sub p}. It is shown that high-quality anti-phase polarization-resolved chaos synchronization is achieved at higher values of θ{sub p}. The maximum value of the cross-correlation coefficient achievedmore » is −0.99 with a zero time delay over a wide range of θ{sub p} beyond 65° with a poor synchronization dynamic at θ{sub p} less than 65°. Furthermore, it is observed that the antiphase irregular oscillation of the XP and YP modes changes with θ{sub p}. VCSEL under the rotating polarization optical feedback can be a good candidate as a chaotic synchronization source for a secure communication system.« less
Influence of the external DEM on PS-InSAR processing and results on Northern Appennine slopes
NASA Astrophysics Data System (ADS)
Bayer, B.; Schmidt, D. A.; Simoni, A.
2014-12-01
We present an InSAR analysis of slow moving landslide in the Northern Appennines, Italy, and assess the dependencies on the choice of DEM. In recent years, advanced processing techniques for synthetic aperture radar interferometry (InSAR) have been applied to measure slope movements. The persistent scatterers (PS-InSAR) approach is probably the most widely used and some codes are now available in the public domain. The Stanford method of Persistent Scatterers (StamPS) has been successfully used to analyze landslide areas. One problematic step in the processing chain is the choice of an external DEM that is used to model and remove the topographic phase in a series of interferograms in order to obtain the phase contribution caused by surface deformation. The choice is not trivial, because the PS InSAR results differ significantly in terms of PS identification, positioning, and the resulting deformation signal. We use four different DEMs to process a set of 18 ASAR (Envisat) scenes over a mountain area (~350 km2) of the Northern Appennines of Italy, using StamPS. Slow-moving landslides control the evolution of the landscape and cover approximately 30% of the territory. Our focus in this presentation is to evaluate the influence of DEM resolution and accuracy by comparing PS-InSAR results. On an areal basis, we perform a statistical analysis of displacement time-series to make the comparison. We also consider two case studies to illustrate the differences in terms of PS identification, number and estimated displacements. It is clearly shown that DEM accuracy positively influences the number of PS, while line-of-sight rates differ from case to case and can result in deformation signals that are difficult to interpret. We also take advantage of statistical tools to analyze the obtained time-series datasets for the whole study area. Results indicate differences in the style and amount of displacement that can be related to the accuracy of the employed DEM.
Liang, Zhenhu; Ren, Ye; Yan, Jiaqing; Li, Duan; Voss, Logan J; Sleigh, Jamie W; Li, Xiaoli
2016-08-01
Electroencephalogram (EEG) synchronization is becoming an essential tool to describe neurophysiological mechanisms of communication between brain regions under general anesthesia. Different synchronization measures have their own properties to reflect the changes of EEG activities during different anesthetic states. However, the performance characteristics and the relations of different synchronization measures in evaluating synchronization changes during propofol-induced anesthesia are not fully elucidated. Two-channel EEG data from seven volunteers who had undergone a brief standardized propofol anesthesia were then adopted to calculate eight synchronization indexes. We computed the prediction probability (P K ) of synchronization indexes with Bispectral Index (BIS) and propofol effect-site concentration (C eff ) to quantify the ability of the indexes to predict BIS and C eff . Also, box plots and coefficient of variation were used to reflect the different synchronization changes and their robustness to noise in awake, unconscious and recovery states, and the Pearson correlation coefficient (R) was used for assessing the relationship among synchronization measures, BIS and C eff . Permutation cross mutual information (PCMI) and determinism (DET) could predict BIS and follow C eff better than nonlinear interdependence (NI), mutual information based on kernel estimation (KerMI) and cross correlation. Wavelet transform coherence (WTC) in α and β frequency bands followed BIS and C eff better than that in other frequency bands. There was a significant decrease in unconscious state and a significant increase in recovery state for PCMI and NI, while the trends were opposite for KerMI, DET and WTC. Phase synchronization based on phase locking value (PSPLV) in δ, θ, α and γ1 frequency bands dropped significantly in unconscious state, whereas it had no significant synchronization in recovery state. Moreover, PCMI, NI, DET correlated closely with each other and they had a better robustness to noise and higher correlation with BIS and C eff than other synchronization indexes. Propofol caused EEG synchronization changes during the anesthetic period. Different synchronization measures had individual properties in evaluating synchronization changes in different anesthetic states, which might be related to various forms of neural activities and neurophysiological mechanisms under general anesthesia.
Mass synchronization: Occurrence and its control with possible applications to brain dynamics
NASA Astrophysics Data System (ADS)
Chandrasekar, V. K.; Sheeba, Jane H.; Lakshmanan, M.
2010-12-01
Occurrence of strong or mass synchronization of a large number of neuronal populations in the brain characterizes its pathological states. In order to establish an understanding of the mechanism underlying such pathological synchronization, we present a model of coupled populations of phase oscillators representing the interacting neuronal populations. Through numerical analysis, we discuss the occurrence of mass synchronization in the model, where a source population which gets strongly synchronized drives the target populations onto mass synchronization. We hypothesize and identify a possible cause for the occurrence of such a synchronization, which is so far unknown: Pathological synchronization is caused not just because of the increase in the strength of coupling between the populations but also because of the strength of the strong synchronization of the drive population. We propose a demand controlled method to control this pathological synchronization by providing a delayed feedback where the strength and frequency of the synchronization determine the strength and the time delay of the feedback. We provide an analytical explanation for the occurrence of pathological synchronization and its control in the thermodynamic limit.
Frequency stability improvement for piezoresistive micromechanical oscillators via synchronization
NASA Astrophysics Data System (ADS)
Pu, Dong; Huan, Ronghua; Wei, Xueyong
2017-03-01
Synchronization phenomenon first discovered in Huygens' clock shows that the rhythms of oscillating objects can be adjusted via an interaction. Here we show that the frequency stability of a piezoresistive micromechanical oscillator can be enhanced via synchronization. The micromechanical clamped-clamped beam oscillator is built up using the electrostatic driving and piezoresistive sensing technique and the synchronization phenomenon is observed after coupling it to an external oscillator. An enhancement of frequency stability is obtained in the synchronization state. The influences of the synchronizing perturbation intensity and frequency detuning applied on the oscillator are studied experimentally. A theoretical analysis of phase noise leads to an analytical formula for predicting Allan deviation of the frequency output of the piezoresistive oscillator, which successfully explains the experimental observations and the mechanism of frequency stability enhancement via synchronization.
Chopped molecular beam multiplexing system
NASA Technical Reports Server (NTRS)
Adams, Billy R. (Inventor)
1986-01-01
The integration of a chopped molecular beam mass spectrometer with a time multiplexing system is described. The chopping of the molecular beam is synchronized with the time intervals by a phase detector and a synchronous motor. Arithmetic means are generated for phase shifting the chopper with respect to the multiplexer. A four channel amplifier provides the capacity to independently vary the baseline and amplitude in each channel of the multiplexing system.
Synchronization Properties of Slow Cortical Oscillations
NASA Astrophysics Data System (ADS)
Takekawa, T.; Aoyagi, T.; Fukai, T.
During slow-wave sleep, the brain shows slow oscillatory activity with remarkable long-range synchrony. Intracellular recordings show that the slow oscillation consists of two phases: an textit{up} state and a textit{down} state. Deriving the phase-response function of simplified neuronal systems, we examine the synchronization properties on slow oscillations between the textit{up} state and the textit{down} state. As a result, the strange interaction functions are found in some parameter ranges. These functions indicate that the states with the smaller phase lag than a critical value are all stable.
NASA Astrophysics Data System (ADS)
Wilcox, R. B.; Byrd, J. M.; Doolittle, L. R.; Holzwarth, R.; Huang, G.
2011-09-01
We propose a method of synchronizing mode-locked lasers separated by hundreds of meters with the possibility of achieving sub-fs performance by locking the phases of corresponding lines in the optical comb spectrum. The optical phase from one comb line is transmitted to the remote laser over an interferometrically stabilized link by locking a single frequency laser to a comb line with high phase stability. We describe how these elements are integrated into a complete system and estimate the potential performance.
Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle
Feillet, Céline; Krusche, Peter; Tamanini, Filippo; Janssens, Roel C.; Downey, Mike J.; Martin, Patrick; Teboul, Michèle; Saito, Shoko; Lévi, Francis A.; Bretschneider, Till; van der Horst, Gijsbertus T. J.; Delaunay, Franck; Rand, David A.
2014-01-01
Daily synchronous rhythms of cell division at the tissue or organism level are observed in many species and suggest that the circadian clock and cell cycle oscillators are coupled. For mammals, despite known mechanistic interactions, the effect of such coupling on clock and cell cycle progression, and hence its biological relevance, is not understood. In particular, we do not know how the temporal organization of cell division at the single-cell level produces this daily rhythm at the tissue level. Here we use multispectral imaging of single live cells, computational methods, and mathematical modeling to address this question in proliferating mouse fibroblasts. We show that in unsynchronized cells the cell cycle and circadian clock robustly phase lock each other in a 1:1 fashion so that in an expanding cell population the two oscillators oscillate in a synchronized way with a common frequency. Dexamethasone-induced synchronization reveals additional clock states. As well as the low-period phase-locked state there are distinct coexisting states with a significantly higher period clock. Cells transition to these states after dexamethasone synchronization. The temporal coordination of cell division by phase locking to the clock at a single-cell level has significant implications because disordered circadian function is increasingly being linked to the pathogenesis of many diseases, including cancer. PMID:24958884
Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle.
Feillet, Céline; Krusche, Peter; Tamanini, Filippo; Janssens, Roel C; Downey, Mike J; Martin, Patrick; Teboul, Michèle; Saito, Shoko; Lévi, Francis A; Bretschneider, Till; van der Horst, Gijsbertus T J; Delaunay, Franck; Rand, David A
2014-07-08
Daily synchronous rhythms of cell division at the tissue or organism level are observed in many species and suggest that the circadian clock and cell cycle oscillators are coupled. For mammals, despite known mechanistic interactions, the effect of such coupling on clock and cell cycle progression, and hence its biological relevance, is not understood. In particular, we do not know how the temporal organization of cell division at the single-cell level produces this daily rhythm at the tissue level. Here we use multispectral imaging of single live cells, computational methods, and mathematical modeling to address this question in proliferating mouse fibroblasts. We show that in unsynchronized cells the cell cycle and circadian clock robustly phase lock each other in a 1:1 fashion so that in an expanding cell population the two oscillators oscillate in a synchronized way with a common frequency. Dexamethasone-induced synchronization reveals additional clock states. As well as the low-period phase-locked state there are distinct coexisting states with a significantly higher period clock. Cells transition to these states after dexamethasone synchronization. The temporal coordination of cell division by phase locking to the clock at a single-cell level has significant implications because disordered circadian function is increasingly being linked to the pathogenesis of many diseases, including cancer.
Plasma Spray-PVD: A New Thermal Spray Process to Deposit Out of the Vapor Phase
NASA Astrophysics Data System (ADS)
von Niessen, Konstantin; Gindrat, Malko
2011-06-01
Plasma spray-physical vapor deposition (PS-PVD) is a low pressure plasma spray technology recently developed by Sulzer Metco AG (Switzerland). Even though it is a thermal spray process, it can deposit coatings out of the vapor phase. The basis of PS-PVD is the low pressure plasma spraying (LPPS) technology that has been well established in industry for several years. In comparison to conventional vacuum plasma spraying (VPS) or low pressure plasma spraying (LPPS), the new proposed process uses a high energy plasma gun operated at a reduced work pressure of 0.1 kPa (1 mbar). Owing to the high energy plasma and further reduced work pressure, PS-PVD is able to deposit a coating not only by melting the feed stock material which builds up a layer from liquid splats but also by vaporizing the injected material. Therefore, the PS-PVD process fills the gap between the conventional physical vapor deposition (PVD) technologies and standard thermal spray processes. The possibility to vaporize feedstock material and to produce layers out of the vapor phase results in new and unique coating microstructures. The properties of such coatings are superior to those of thermal spray and electron beam-physical vapor deposition (EB-PVD) coatings. In contrast to EB-PVD, PS-PVD incorporates the vaporized coating material into a supersonic plasma plume. Owing to the forced gas stream of the plasma jet, complex shaped parts such as multi-airfoil turbine vanes can be coated with columnar thermal barrier coatings using PS-PVD. Even shadowed areas and areas which are not in the line of sight of the coating source can be coated homogeneously. This article reports on the progress made by Sulzer Metco in developing a thermal spray process to produce coatings out of the vapor phase. Columnar thermal barrier coatings made of Yttria-stabilized Zircona (YSZ) are optimized to serve in a turbine engine. This process includes not only preferable coating properties such as strain tolerance and erosion resistance but also the simultaneous coverage of multiple air foils.
Chimera at the phase-flip transition of an ensemble of identical nonlinear oscillators
NASA Astrophysics Data System (ADS)
Gopal, R.; Chandrasekar, V. K.; Senthilkumar, D. V.; Venkatesan, A.; Lakshmanan, M.
2018-06-01
A complex collective emerging behavior characterized by coexisting coherent and incoherent domains is termed as a chimera state. We bring out the existence of a new type of chimera in a nonlocally coupled ensemble of identical oscillators driven by a common dynamic environment. The latter facilitates the onset of phase-flip bifurcation/transitions among the coupled oscillators of the ensemble, while the nonlocal coupling induces a partial asynchronization among the out-of-phase synchronized oscillators at this onset. This leads to the manifestation of coexisting out-of-phase synchronized coherent domains interspersed by asynchronous incoherent domains elucidating the existence of a different type of chimera state. In addition to this, a rich variety of other collective behaviors such as clusters with phase-flip transition, conventional chimera, solitary state and complete synchronized state which have been reported using different coupling architectures are found to be induced by the employed couplings for appropriate coupling strengths. The robustness of the resulting dynamics is demonstrated in ensembles of two paradigmatic models, namely Rössler oscillators and Stuart-Landau oscillators.
Oscillatory mechanisms of process binding in memory.
Klimesch, Wolfgang; Freunberger, Roman; Sauseng, Paul
2010-06-01
A central topic in cognitive neuroscience is the question, which processes underlie large scale communication within and between different neural networks. The basic assumption is that oscillatory phase synchronization plays an important role for process binding--the transient linking of different cognitive processes--which may be considered a special type of large scale communication. We investigate this question for memory processes on the basis of different types of oscillatory synchronization mechanisms. The reviewed findings suggest that theta and alpha phase coupling (and phase reorganization) reflect control processes in two large memory systems, a working memory and a complex knowledge system that comprises semantic long-term memory. It is suggested that alpha phase synchronization may be interpreted in terms of processes that coordinate top-down control (a process guided by expectancy to focus on relevant search areas) and access to memory traces (a process leading to the activation of a memory trace). An analogous interpretation is suggested for theta oscillations and the controlled access to episodic memories. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Natarajan, Suresh; Gardner, C. S.
1987-01-01
Receiver timing synchronization of an optical Pulse-Position Modulation (PPM) communication system can be achieved using a phased-locked loop (PLL), provided the photodetector output is suitably processed. The magnitude of the PLL phase error is a good indicator of the timing error at the receiver decoder. The statistics of the phase error are investigated while varying several key system parameters such as PPM order, signal and background strengths, and PPL bandwidth. A practical optical communication system utilizing a laser diode transmitter and an avalanche photodiode in the receiver is described, and the sampled phase error data are presented. A linear regression analysis is applied to the data to obtain estimates of the relational constants involving the phase error variance and incident signal power.
Phase-locked loop with controlled phase slippage
Mestha, Lingappa K.
1994-01-01
A system for synchronizing a first subsystem controlled by a changing frequency sweeping from a first frequency to a second frequency, with a second subsystem operating at a steady state second frequency. Trip plan parameters are calculated in advance to determine the phase relationship between the frequencies of the first subsystem and second subsystem in order to obtain synchronism at the end of the frequency sweep of the first subsystem. During the time in which the frequency of the first subsystem is sweeping from the first frequency to the second frequency, the phase locked system compares the actual phase difference with the trip plan phase difference and incrementally changes the sweep frequency in a manner so that phase lock is achieved when the first subsystem reaches a frequency substantially identical to that of the second subsystem.
Synchronizable Q-switched, mode-locked, and cavity-dumped ruby laser for plasma diagnostics
NASA Astrophysics Data System (ADS)
Houtman, H.; Meyer, J.
1985-06-01
We report on the design and operation of an optimized version of a Q-switched, mode-locked, and cavity-dumped ruby-laser oscillator. The modulator window is much narrower than that assumed in conventional active mode-lock theory, and is shown to yield much shorter pulses than the latter in cases where the number of round trips is restricted. To allow a high-power pulse (≊1 GW) to evolve in the oscillator, and to allow simple synchronization to a (˜100 ns fixed delay) CO2 laser, a limit of 23 round trips was chosen, but similar limits may be imposed by lasers having short-gain duration as in an excimer laser. Details are given on the single spark gap switching element and Pockels cells, with an analysis of their expected switching speeds, in order to establish the effectiveness of the modulator, as compared to conventional sinusoidally driven active mode lockers. Single pulses of 50-70 mJ are reliably cavity-dumped after only 100-ns delay (23 round trips) with pulse length adjustable from 50-100 ps with ±5-ps stability. Relative timing between the main (CO2) and probe (ruby) pulses allows a measurement accuracy of ±50 ps to be attained.
Synchronizable Q-switched, mode-locked, and cavity-dumped ruby laser for plasma diagnostics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Houtman, H.; Meyer, J.
We report on the design and operation of an optimized version of a Q-switched, mode-locked, and cavity-dumped ruby-laser oscillator. The modulator window is much narrower than that assumed in conventional active mode-lock theory, and is shown to yield much shorter pulses than the latter in cases where the number of round trips is restricted. To allow a high-power pulse (roughly-equal1 GW) to evolve in the oscillator, and to allow simple synchronization to a (approx.100 ns fixed delay) CO/sub 2/ laser, a limit of 23 round trips was chosen, but similar limits may be imposed by lasers having short-gain duration asmore » in an excimer laser. Details are given on the single spark gap switching element and Pockels cells, with an analysis of their expected switching speeds, in order to establish the effectiveness of the modulator, as compared to conventional sinusoidally driven active mode lockers. Single pulses of 50--70 mJ are reliably cavity-dumped after only 100-ns delay (23 round trips) with pulse length adjustable from 50--100 ps with +- 5-ps stability. Relative timing between the main (CO/sub 2/) and probe (ruby) pulses allows a measurement accuracy of +- 50 ps to be attained.« less
Van Cleeff, J; Karsch, F J; Padmanabhan, V
1998-01-01
The Controlled Internal Drug Releasing (CIDR) device is an intravaginal pessary containing progesterone (P4) designed for synchronizing estrus in ruminants. To date, there has been little information available on the timing, duration, and quality of the follicular phase after CIDR removal and how those characteristics compare with natural periovulatory endocrine events. The present communication relates the results of methods we used to characterize the endocrine events that followed CIDR synchronization. Breeding-season ewes were given an injection (10 mg) of Lutalyse (PGF2 alpha), and then studied during three consecutive estrous cycles, beginning in the luteal phase after the estrus induced by PGF2 alpha. Cycle 1 estrus was synchronized with 1 CIDR (Type G) inserted for 8 d beginning 10 d after PGF2 alpha. Cycles 2 and 3 were synchronized with two CIDRs for 8 d beginning 10 d after previous CIDR removal. Cycle 1 estrous behavior and serum gonadotropins showed a follicular phase (the interval from CIDR withdrawal to gonadotropin surge [surge] peak) of 38.2 +/- 1.5 hr. Two CIDRs lengthened the interval to 46.2 +/- 1.5 hr (P < 0.0001). At CIDR removal, circulating P4 concentrations were higher in ewes treated with two CIDRs (5.1 +/- 0.3 and 6.4 +/- 0.4 ng/mL in Cycles 2 and 3 vs. 2.7 +/- 0.3 ng/mL in Cycle 1), whereas estradiol concentrations were higher in the 1 CIDR cycle (3.3 +/- 0.5 pg/mL in Cycle 1 vs. 0.5 +/- 0.1, and 0.7 +/- 0.2 pg/mL in Cycles 2 and 3), suggesting that the lower levels of P4 achieved with one CIDR was not sufficient to arrest follicular development. There were no differences in any other endocrine variable. Both one and two CIDR synchronization concentrated surges within a 24-hr period in 92% of the ewes in Cycles 1 and 2. Cycles 3 ewes were euthanized at estimated luteal, early follicular, late follicular, LH surge, and secondary FSH rise timepoints. Endocrine data and ovaries showed that 88% of the ewes synchronized with two CIDRs were in the predicted stage of the estrous cycle. These data demonstrate that the CIDR device applied during the luteal phase effectively synchronizes estrus and results in a CIDR removal-to-surge interval of similar length to a natural follicular phase.
Lipski, Witold J; Wozny, Thomas A; Alhourani, Ahmad; Kondylis, Efstathios D; Turner, Robert S; Crammond, Donald J; Richardson, Robert Mark
2017-09-01
Coupled oscillatory activity recorded between sensorimotor regions of the basal ganglia-thalamocortical loop is thought to reflect information transfer relevant to movement. A neuronal firing-rate model of basal ganglia-thalamocortical circuitry, however, has dominated thinking about basal ganglia function for the past three decades, without knowledge of the relationship between basal ganglia single neuron firing and cortical population activity during movement itself. We recorded activity from 34 subthalamic nucleus (STN) neurons, simultaneously with cortical local field potentials and motor output, in 11 subjects with Parkinson's disease (PD) undergoing awake deep brain stimulator lead placement. STN firing demonstrated phase synchronization to both low- and high-beta-frequency cortical oscillations, and to the amplitude envelope of gamma oscillations, in motor cortex. We found that during movement, the magnitude of this synchronization was dynamically modulated in a phase-frequency-specific manner. Importantly, we found that phase synchronization was not correlated with changes in neuronal firing rate. Furthermore, we found that these relationships were not exclusive to motor cortex, because STN firing also demonstrated phase synchronization to both premotor and sensory cortex. The data indicate that models of basal ganglia function ultimately will need to account for the activity of populations of STN neurons that are bound in distinct functional networks with both motor and sensory cortices and code for movement parameters independent of changes in firing rate. NEW & NOTEWORTHY Current models of basal ganglia-thalamocortical networks do not adequately explain simple motor functions, let alone dysfunction in movement disorders. Our findings provide data that inform models of human basal ganglia function by demonstrating how movement is encoded by networks of subthalamic nucleus (STN) neurons via dynamic phase synchronization with cortex. The data also demonstrate, for the first time in humans, a mechanism through which the premotor and sensory cortices are functionally connected to the STN. Copyright © 2017 the American Physiological Society.
Fang, Pan; Hou, Yongjun; Nan, Yanghai
2015-01-01
A new mechanism is proposed to implement synchronization of the two unbalanced rotors in a vibration system, which consists of a double vibro-body, two induction motors and spring foundations. The coupling relationship between the vibro-bodies is ascertained with the Laplace transformation method for the dynamics equation of the system obtained with the Lagrange's equation. An analytical approach, the average method of modified small parameters, is employed to study the synchronization characteristics between the two unbalanced rotors, which is converted into that of existence and the stability of zero solutions for the non-dimensional differential equations of the angular velocity disturbance parameters. By assuming the disturbance parameters that infinitely approach to zero, the synchronization condition for the two rotors is obtained. It indicated that the absolute value of the residual torque between the two motors should be equal to or less than the maximum of their coupling torques. Meanwhile, the stability criterion of synchronization is derived with the Routh-Hurwitz method, and the region of the stable phase difference is confirmed. At last, computer simulations are preformed to verify the correctness of the approximate solution of the theoretical computation for the stable phase difference between the two unbalanced rotors, and the results of theoretical computation is in accordance with that of computer simulations. To sum up, only the parameters of the vibration system satisfy the synchronization condition and the stability criterion of the synchronization, the two unbalanced rotors can implement the synchronization operation.
Fang, Pan; Hou, Yongjun; Nan, Yanghai
2015-01-01
A new mechanism is proposed to implement synchronization of the two unbalanced rotors in a vibration system, which consists of a double vibro-body, two induction motors and spring foundations. The coupling relationship between the vibro-bodies is ascertained with the Laplace transformation method for the dynamics equation of the system obtained with the Lagrange’s equation. An analytical approach, the average method of modified small parameters, is employed to study the synchronization characteristics between the two unbalanced rotors, which is converted into that of existence and the stability of zero solutions for the non-dimensional differential equations of the angular velocity disturbance parameters. By assuming the disturbance parameters that infinitely approach to zero, the synchronization condition for the two rotors is obtained. It indicated that the absolute value of the residual torque between the two motors should be equal to or less than the maximum of their coupling torques. Meanwhile, the stability criterion of synchronization is derived with the Routh-Hurwitz method, and the region of the stable phase difference is confirmed. At last, computer simulations are preformed to verify the correctness of the approximate solution of the theoretical computation for the stable phase difference between the two unbalanced rotors, and the results of theoretical computation is in accordance with that of computer simulations. To sum up, only the parameters of the vibration system satisfy the synchronization condition and the stability criterion of the synchronization, the two unbalanced rotors can implement the synchronization operation. PMID:25993472
Controlled longitudinal emittance blow-up using band-limited phase noise in CERN PSB
NASA Astrophysics Data System (ADS)
Quartullo, D.; Shaposhnikova, E.; Timko, H.
2017-07-01
Controlled longitudinal emittance blow-up (from 1 eVs to 1.4 eVs) for LHC beams in the CERN PS Booster is currently achievied using sinusoidal phase modulation of a dedicated high-harmonic RF system. In 2021, after the LHC injectors upgrade, 3 eVs should be extracted to the PS. Even if the current method may satisfy the new requirements, it relies on low-power level RF improvements. In this paper another method of blow-up was considered, that is the injection of band-limited phase noise in the main RF system (h=1), never tried in PSB but already used in CERN SPS and LHC, under different conditions (longer cycles). This technique, which lowers the peak line density and therefore the impact of intensity effects in the PSB and the PS, can also be complementary to the present method. The longitudinal space charge, dominant in the PSB, causes significant synchrotron frequency shifts with intensity, and its effect should be taken into account. Another complication arises from the interaction of the phase loop with the injected noise, since both act on the RF phase. All these elements were studied in simulations of the PSB cycle with the BLonD code, and the required blow-up was achieved.
Synchronization scenarios in the Winfree model of coupled oscillators
NASA Astrophysics Data System (ADS)
Gallego, Rafael; Montbrió, Ernest; Pazó, Diego
2017-10-01
Fifty years ago Arthur Winfree proposed a deeply influential mean-field model for the collective synchronization of large populations of phase oscillators. Here we provide a detailed analysis of the model for some special, analytically tractable cases. Adopting the thermodynamic limit, we derive an ordinary differential equation that exactly describes the temporal evolution of the macroscopic variables in the Ott-Antonsen invariant manifold. The low-dimensional model is then thoroughly investigated for a variety of pulse types and sinusoidal phase response curves (PRCs). Two structurally different synchronization scenarios are found, which are linked via the mutation of a Bogdanov-Takens point. From our results, we infer a general rule of thumb relating pulse shape and PRC offset with each scenario. Finally, we compare the exact synchronization threshold with the prediction of the averaging approximation given by the Kuramoto-Sakaguchi model. At the leading order, the discrepancy appears to behave as an odd function of the PRC offset.
Synchronous Controlled Switching by VCB with Electromagnetic Operation Mechanism
NASA Astrophysics Data System (ADS)
Horinouchi, Katsuhiko; Tsukima, Mitsuru; Tohya, Nobumoto; Inoue, Ryuuichi; Sasao, Hiroyuki
Synchronously controlled switching to suppress transient overvoltage and overcurrent resulting from when the circuit breakers on medium voltage systems are closed is described. Firstly, by simulation it is found that if the closing time is synchronously controlled so that the contacts of the circuit breaker close completely at the instant when the voltage across contacts of the breaker at each of the three individual phases are zero, the resulting overvoltage and overcurrent is significantly suppressed when compared to conventional three phase simultaneous closing. Next, an algorithm for determining the closing timing based on a forecasted voltage zero waveform, obtained from voltage sampling data, is presented. Finally, a synchronous closing experiment of voltage 22kV utilizing a controller to implement the algorithm and a VCB with an electromagnetic operation mechanism is presented. The VCB was successfully closed at the zero point within a tolerance range of 200 microseconds.
NASA Astrophysics Data System (ADS)
Pattini, F.; Porzio Giusto, P.
The design criteria and performance of the master clock (MCK) generator and the unique word (UW) detector are examined. A narrow band phase lock loop is used for the onboard MCK generator and it is implemented with an all-digital scheme that employs a D-type flip flop as the phase detector. The performance of the MCK generator is analyzed with a computer program which considers phase offset of the digital phase comparator. The characteristics and capabilities of the UW detector which provides strobe signals for the MCK generator and synchronization signals for the onboard switching matrix are described.
Synchronization algorithm for three-phase voltages of an inverter and a grid
NASA Astrophysics Data System (ADS)
Nos, O. V.
2017-07-01
This paper presents the results of designing a joint phase-locked loop for adjusting the phase shifts (speed) and Euclidean norm of three-phase voltages of an inverter to the same grid parameters. The design can be used, in particular, to match the potentials of two parallel-connected power sources for the fundamental harmonic at the moments of switching the stator windings of an induction AC motor from a converter to a centralized power-supply system and back. Technical implementation of the developed synchronization algorithm will significantly reduce the inductance of the current-balancing reactor and exclude emergency operation modes in the electric motor power circuit.
A statistical model of false negative and false positive detection of phase singularities.
Jacquemet, Vincent
2017-10-01
The complexity of cardiac fibrillation dynamics can be assessed by analyzing the distribution of phase singularities (PSs) observed using mapping systems. Interelectrode distance, however, limits the accuracy of PS detection. To investigate in a theoretical framework the PS false negative and false positive rates in relation to the characteristics of the mapping system and fibrillation dynamics, we propose a statistical model of phase maps with controllable number and locations of PSs. In this model, phase maps are generated from randomly distributed PSs with physiologically-plausible directions of rotation. Noise and distortion of the phase are added. PSs are detected using topological charge contour integrals on regular grids of varying resolutions. Over 100 × 10 6 realizations of the random field process are used to estimate average false negative and false positive rates using a Monte-Carlo approach. The false detection rates are shown to depend on the average distance between neighboring PSs expressed in units of interelectrode distance, following approximately a power law with exponents in the range of 1.14 to 2 for false negatives and around 2.8 for false positives. In the presence of noise or distortion of phase, false detection rates at high resolution tend to a non-zero noise-dependent lower bound. This model provides an easy-to-implement tool for benchmarking PS detection algorithms over a broad range of configurations with multiple PSs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gagor, A.; Pietraszko, A.; Kaynts, D.
2005-11-15
In order to understand the structural transformations leading to high ionic conductivity of Cu{sup +} ions in Cu{sub 6}PS{sub 5}I argyrodite compound, the detailed structure analysis based on single-crystal X-ray diffraction has been performed. Below the phase transition at T{sub c}=(144-169)K Cu{sub 6}PS{sub 5}I belongs to monoclinic, ferroelastic phase (space group Cc) with ordered copper sublattice. Above T{sub c} delocalization of copper ions begins and crystal changes the symmetry to cubic superstructure with space group F-43c (a{sup '}=19.528A, z=32). Finally, above T{sub 1}=274K increasing disordering of the Cu{sup +} ions heightens the symmetry to F-43m (a=9.794A, z=4). In this work,more » the final structural model of two cubic phases is presented including the detailed temperature evolution of positions and site occupation factors of copper ions (R{sub 1}=0.0397 for F-43c phase, and 0.0245 for F-43m phase). Possible diffusion paths for the copper ions are represented by means of the atomic displacement factors and split model. The structural results coincide well with the previously reported non-Arrhenius behavior of conductivity and indicate significant change in conduction mechanism.« less
Xu, Ou; Zhang, Jiejun; Yao, Jianping
2016-11-01
High speed and high resolution interrogation of a fiber Bragg grating (FBG) sensor based on microwave photonic filtering and chirped microwave pulse compression is proposed and experimentally demonstrated. In the proposed sensor, a broadband linearly chirped microwave waveform (LCMW) is applied to a single-passband microwave photonic filter (MPF) which is implemented based on phase modulation and phase modulation to intensity modulation conversion using a phase modulator (PM) and a phase-shifted FBG (PS-FBG). Since the center frequency of the MPF is a function of the central wavelength of the PS-FBG, when the PS-FBG experiences a strain or temperature change, the wavelength is shifted, which leads to the change in the center frequency of the MPF. At the output of the MPF, a filtered chirped waveform with the center frequency corresponding to the applied strain or temperature is obtained. By compressing the filtered LCMW in a digital signal processor, the resolution is improved. The proposed interrogation technique is experimentally demonstrated. The experimental results show that interrogation sensitivity and resolution as high as 1.25 ns/με and 0.8 με are achieved.
Modeling synchronization in networks of delay-coupled fiber ring lasers.
Lindley, Brandon S; Schwartz, Ira B
2011-11-21
We study the onset of synchronization in a network of N delay-coupled stochastic fiber ring lasers with respect to various parameters when the coupling power is weak. In particular, for groups of three or more ring lasers mutually coupled to a central hub laser, we demonstrate a robust tendency toward out-of-phase (achronal) synchronization between the N-1 outer lasers and the single inner laser. In contrast to the achronal synchronization, we find the outer lasers synchronize with zero-lag (isochronal) with respect to each other, thus forming a set of N-1 coherent fiber lasers. © 2011 Optical Society of America
Reliability and synchronization in a delay-coupled neuronal network with synaptic plasticity
NASA Astrophysics Data System (ADS)
Pérez, Toni; Uchida, Atsushi
2011-06-01
We investigate the characteristics of reliability and synchronization of a neuronal network of delay-coupled integrate and fire neurons. Reliability and synchronization appear in separated regions of the phase space of the parameters considered. The effect of including synaptic plasticity and different delay values between the connections are also considered. We found that plasticity strongly changes the characteristics of reliability and synchronization in the parameter space of the coupling strength and the drive amplitude for the neuronal network. We also found that delay does not affect the reliability of the network but has a determinant influence on the synchronization of the neurons.
NASA Astrophysics Data System (ADS)
Ponomarenko, V. I.; Prokhorov, M. D.; Karavaev, A. S.; Kiselev, A. R.; Gridnev, V. I.; Bezruchko, B. P.
2013-10-01
We investigate synchronization between the low-frequency oscillations of heart rate and blood pressure having in humans a basic frequency close to 0.1 Hz. A quantitative estimation of this synchronization based on calculation of relative time of phase synchronization of oscillations is proposed. We show that assessment of synchronization between the considered oscillations can be useful for selecting an optimal dose of beta-blocker treatment in patients after acute myocardial infarction. It is found out that low value of synchronization between the low-frequency rhythms in heart rate and blood pressure at the first week after acute myocardial infarction is a sensitive marker of high risk of mortality during the subsequent 5 years.
NASA Astrophysics Data System (ADS)
Akdoǧan, E. K.; Kerman, K.; Abazari, M.; Safari, A.
2008-03-01
We study the temperature dependence of dielectric constant (K) and spontaneous polarization (Ps) in the range of -95-200°C. Cubic (C)-tetragonal (T) and T-orthorhombic (O) transitions are observed at 264 and 25°C, respectively. The Curie-Weiss temperature of C-T transition is 249°C, indicating it is first order. X-ray data indicate T-O phase coexistence at 25°C. A singularity in Ps at 25°C and a T-O phase coexistence spanning 25-31°C was observed, wherein Ps increases from 17×10-2C /m2 at 31°Cto23×10-2C/m2 25°C. The transition at 25°C appears diffusionless and polymorphic with martensite start and finish temperatures of 31 and 25°C, respectively. The maximum in d33 is 345pC/N and is attributed to the instability at 25°C, where Ps and K show singularity.
Siebenhühner, Felix; Wang, Sheng H; Palva, J Matias; Palva, Satu
2016-01-01
Neuronal activity in sensory and fronto-parietal (FP) areas underlies the representation and attentional control, respectively, of sensory information maintained in visual working memory (VWM). Within these regions, beta/gamma phase-synchronization supports the integration of sensory functions, while synchronization in theta/alpha bands supports the regulation of attentional functions. A key challenge is to understand which mechanisms integrate neuronal processing across these distinct frequencies and thereby the sensory and attentional functions. We investigated whether such integration could be achieved by cross-frequency phase synchrony (CFS). Using concurrent magneto- and electroencephalography, we found that CFS was load-dependently enhanced between theta and alpha–gamma and between alpha and beta-gamma oscillations during VWM maintenance among visual, FP, and dorsal attention (DA) systems. CFS also connected the hubs of within-frequency-synchronized networks and its strength predicted individual VWM capacity. We propose that CFS integrates processing among synchronized neuronal networks from theta to gamma frequencies to link sensory and attentional functions. DOI: http://dx.doi.org/10.7554/eLife.13451.001 PMID:27669146
Self-Organization in 2D Traffic Flow Model with Jam-Avoiding Drive
NASA Astrophysics Data System (ADS)
Nagatani, Takashi
1995-04-01
A stochastic cellular automaton (CA) model is presented to investigate the traffic jam by self-organization in the two-dimensional (2D) traffic flow. The CA model is the extended version of the 2D asymmetric exclusion model to take into account jam-avoiding drive. Each site contains either a car moving to the up, a car moving to the right, or is empty. A up car can shift right with probability p ja if it is blocked ahead by other cars. It is shown that the three phases (the low-density phase, the intermediate-density phase and the high-density phase) appear in the traffic flow. The intermediate-density phase is characterized by the right moving of up cars. The jamming transition to the high-density jamming phase occurs with higher density of cars than that without jam-avoiding drive. The jamming transition point p 2c increases with the shifting probability p ja. In the deterministic limit of p ja=1, it is found that a new jamming transition occurs from the low-density synchronized-shifting phase to the high-density moving phase with increasing density of cars. In the synchronized-shifting phase, all up cars do not move to the up but shift to the right by synchronizing with the move of right cars. We show that the jam-avoiding drive has an important effect on the dynamical jamming transition.
Tuning the synchronization of a network of weakly coupled self-oscillating gels via capacitors.
Fang, Yan; Yashin, Victor V; Dickerson, Samuel J; Balazs, Anna C
2018-05-01
We consider a network of coupled oscillating units, where each unit comprises a self-oscillating polymer gel undergoing the Belousov-Zhabotinsky (BZ) reaction and an overlaying piezoelectric (PZ) cantilever. Through chemo-mechano-electrical coupling, the oscillations of the networked BZ-PZ units achieve in-phase or anti-phase synchronization, enabling, for example, the storage of information within the system. Herein, we develop numerical and computational models to show that the introduction of capacitors into the BZ-PZ system enhances the dynamical behavior of the oscillating network by yielding additional stable synchronization modes. We specifically show that the capacitors lead to a redistribution of charge in the system and alteration of the force that the PZ cantilevers apply to the underlying gel. Hence, the capacitors modify the strength of the coupling between the oscillators in the network. We utilize a linear stability analysis to determine the phase behavior of BZ-PZ networks encompassing different capacitances, force polarities, and number of units and then verify our findings with numerical simulations. Thus, through analytical calculations and numerical simulations, we determine the impact of the capacitors on the existence of the synchronization modes, their stability, and the rate of synchronization within these complex dynamical systems. The findings from our study can be used to design robotic materials that harness the materials' intrinsic, responsive properties to perform such functions as sensing, actuation, and information storage.
Tuning the synchronization of a network of weakly coupled self-oscillating gels via capacitors
NASA Astrophysics Data System (ADS)
Fang, Yan; Yashin, Victor V.; Dickerson, Samuel J.; Balazs, Anna C.
2018-05-01
We consider a network of coupled oscillating units, where each unit comprises a self-oscillating polymer gel undergoing the Belousov-Zhabotinsky (BZ) reaction and an overlaying piezoelectric (PZ) cantilever. Through chemo-mechano-electrical coupling, the oscillations of the networked BZ-PZ units achieve in-phase or anti-phase synchronization, enabling, for example, the storage of information within the system. Herein, we develop numerical and computational models to show that the introduction of capacitors into the BZ-PZ system enhances the dynamical behavior of the oscillating network by yielding additional stable synchronization modes. We specifically show that the capacitors lead to a redistribution of charge in the system and alteration of the force that the PZ cantilevers apply to the underlying gel. Hence, the capacitors modify the strength of the coupling between the oscillators in the network. We utilize a linear stability analysis to determine the phase behavior of BZ-PZ networks encompassing different capacitances, force polarities, and number of units and then verify our findings with numerical simulations. Thus, through analytical calculations and numerical simulations, we determine the impact of the capacitors on the existence of the synchronization modes, their stability, and the rate of synchronization within these complex dynamical systems. The findings from our study can be used to design robotic materials that harness the materials' intrinsic, responsive properties to perform such functions as sensing, actuation, and information storage.
Theta-Modulated Gamma-Band Synchronization Among Activated Regions During a Verb Generation Task
Doesburg, Sam M.; Vinette, Sarah A.; Cheung, Michael J.; Pang, Elizabeth W.
2012-01-01
Expressive language is complex and involves processing within a distributed network of cortical regions. Functional MRI and magnetoencephalography (MEG) have identified brain areas critical for expressive language, but how these regions communicate across the network remains poorly understood. It is thought that synchronization of oscillations between neural populations, particularly at a gamma rate (>30 Hz), underlies functional integration within cortical networks. Modulation of gamma rhythms by theta-band oscillations (4–8 Hz) has been proposed as a mechanism for the integration of local cell coalitions into large-scale networks underlying cognition and perception. The present study tested the hypothesis that these oscillatory mechanisms of functional integration were present within the expressive language network. We recorded MEG while subjects performed a covert verb generation task. We localized activated cortical regions using beamformer analysis, calculated inter-regional phase locking between activated areas, and measured modulation of inter-regional gamma synchronization by theta phase. The results show task-dependent gamma-band synchronization among regions activated during the performance of the verb generation task, and we provide evidence that these transient and periodic instances of high-frequency connectivity were modulated by the phase of cortical theta oscillations. These findings suggest that oscillatory synchronization and cross-frequency interactions are mechanisms for functional integration among distributed brain areas supporting expressive language processing. PMID:22707946
Quantum Synchronization of Two Ensembles of Atoms
NASA Astrophysics Data System (ADS)
Xu, Minghui; Tieri, David; Fine, Effie; Thompson, James; Holland, Murray
2014-05-01
We present a system that exhibits quantum synchronization as a modern analogue of the Huygens experiment which is implemented using state-of-the-art neutral atom lattice clocks of the highest precision. In particular, we study the correlated phase dynamics of two mesoscopic ensembles of atoms through their collective coupling to an optical cavity. We find a dynamical quantum phase transition induced by pump noise and cavity output-coupling. The spectral properties of the superradiant light emitted from the cavity show that at a critical pump rate the system undergoes a transition from the independent behavior of two disparate oscillators to the phase-locking that is the signature of quantum synchronization. Besides being of fundamental importance in nonequilibrium quantum many-body physics, this work could have broad implications for many practical applications of ultrastable lasers and precision measurements. This work was supported by the DARPA QuASAR program, the NSF, and NIST.
Nonideal mixing of phosphatidylserine and phosphatidylcholine in the fluid lamellar phase.
Huang, J; Swanson, J E; Dibble, A R; Hinderliter, A K; Feigenson, G W
1993-01-01
The mixing of phosphatidylserine (PS) and phosphatidylcholine (PC) in fluid bilayer model membranes was studied by measuring binding of aqueous Ca2+ ions. The measured [Ca2+]aq was used to derive the activity coefficient for PS, gamma PS, in the lipid mixture. For (16:0, 18:1) PS in binary mixtures with either (16:0, 18:1)PC, (14:1, 14:1)PC, or (18:1, 18:1)PC, gamma PS > 1; i.e., mixing is nonideal, with PS and PC clustered rather than randomly distributed, despite the electrostatic repulsion between PS headgroups. To understand better this mixing behavior, Monte Carlo simulations of the PS/PC distributions were performed, using Kawasaki relaxation. The excess energy was divided into an electrostatic term Uel and one adjustable term including all other nonideal energy contributions, delta Em. Uel was calculated using a discrete charge theory. Kirkwood's coupling parameter method was used to calculate the excess free energy of mixing, delta GEmix, hence In gamma PS,calc. The values of In gamma PS,calc were equalized by adjusting delta Em in order to find the simulated PS/PC distribution that corresponded to the experimental results. We were thus able to compare the smeared charge calculation of [Ca2+]surf with a calculation ("masked evaluation method") that recognized clustering of the negatively charged PS: clustering was found to have a modest effect on [Ca2+]surf, relative to the smeared charge model. Even though both PS and PC tend to cluster, the long-range nature of the electrostatic repulsion reduces the extent of PS clustering at low PS mole fraction compared to PC clustering at an equivalent low PC mole fraction. PMID:8457667
Nonideal mixing of phosphatidylserine and phosphatidylcholine in the fluid lamellar phase.
Huang, J; Swanson, J E; Dibble, A R; Hinderliter, A K; Feigenson, G W
1993-02-01
The mixing of phosphatidylserine (PS) and phosphatidylcholine (PC) in fluid bilayer model membranes was studied by measuring binding of aqueous Ca2+ ions. The measured [Ca2+]aq was used to derive the activity coefficient for PS, gamma PS, in the lipid mixture. For (16:0, 18:1) PS in binary mixtures with either (16:0, 18:1)PC, (14:1, 14:1)PC, or (18:1, 18:1)PC, gamma PS > 1; i.e., mixing is nonideal, with PS and PC clustered rather than randomly distributed, despite the electrostatic repulsion between PS headgroups. To understand better this mixing behavior, Monte Carlo simulations of the PS/PC distributions were performed, using Kawasaki relaxation. The excess energy was divided into an electrostatic term Uel and one adjustable term including all other nonideal energy contributions, delta Em. Uel was calculated using a discrete charge theory. Kirkwood's coupling parameter method was used to calculate the excess free energy of mixing, delta GEmix, hence In gamma PS,calc. The values of In gamma PS,calc were equalized by adjusting delta Em in order to find the simulated PS/PC distribution that corresponded to the experimental results. We were thus able to compare the smeared charge calculation of [Ca2+]surf with a calculation ("masked evaluation method") that recognized clustering of the negatively charged PS: clustering was found to have a modest effect on [Ca2+]surf, relative to the smeared charge model. Even though both PS and PC tend to cluster, the long-range nature of the electrostatic repulsion reduces the extent of PS clustering at low PS mole fraction compared to PC clustering at an equivalent low PC mole fraction.
A low jitter PLL clock used for phase change memory
NASA Astrophysics Data System (ADS)
Xiao, Hong; Houpeng, Chen; Zhitang, Song; Daolin, Cai; Xi, Li
2013-02-01
A fully integrated low-jitter, precise frequency CMOS phase-locked loop (PLL) clock for the phase change memory (PCM) drive circuit is presented. The design consists of a dynamic dual-reset phase frequency detector (PFD) with high frequency acquisition, a novel low jitter charge pump, a CMOS ring oscillator based voltage-controlled oscillator (VCO), a 2nd order passive loop filter, and a digital frequency divider. The design is fabricated in 0.35 μm CMOS technology and consumes 20 mW from a supply voltage of 5 V. In terms of the PCM's program operation requirement, the output frequency range is from 1 to 140 MHz. For the 140 MHz output frequency, the circuit features a cycle-to-cycle jitter of 28 ps RMS and 250 ps peak-to-peak.
NASA Astrophysics Data System (ADS)
Lu, Zenghai; Kasaragod, Deepa K.; Matcher, Stephen J.
2012-03-01
We demonstrate theoretically and experimentally that the phase retardance and relative optic-axis orientation of a sample can be calculated without prior knowledge of the actual value of the phase modulation amplitude when using a polarization-sensitive optical coherence tomography system based on continuous polarization modulation (CPM-PS-OCT). We also demonstrate that the sample Jones matrix can be calculated at any values of the phase modulation amplitude in a reasonable range depending on the system effective signal-to-noise ratio. This has fundamental importance for the development of clinical systems by simplifying the polarization modulator drive instrumentation and eliminating its calibration procedure. This was validated on measurements of a three-quarter waveplate and an equine tendon sample by a fiber-based swept-source CPM-PS-OCT system.
Intra- and interbrain synchronization and network properties when playing guitar in duets
Sänger, Johanna; Müller, Viktor; Lindenberger, Ulman
2012-01-01
To further test and explore the hypothesis that synchronous oscillatory brain activity supports interpersonally coordinated behavior during dyadic music performance, we simultaneously recorded the electroencephalogram (EEG) from the brains of each of 12 guitar duets repeatedly playing a modified Rondo in two voices by C.G. Scheidler. Indicators of phase locking and of within-brain and between-brain phase coherence were obtained from complex time-frequency signals based on the Gabor transform. Analyses were restricted to the delta (1–4 Hz) and theta (4–8 Hz) frequency bands. We found that phase locking as well as within-brain and between-brain phase-coherence connection strengths were enhanced at frontal and central electrodes during periods that put particularly high demands on musical coordination. Phase locking was modulated in relation to the experimentally assigned musical roles of leader and follower, corroborating the functional significance of synchronous oscillations in dyadic music performance. Graph theory analyses revealed within-brain and hyperbrain networks with small-worldness properties that were enhanced during musical coordination periods, and community structures encompassing electrodes from both brains (hyperbrain modules). We conclude that brain mechanisms indexed by phase locking, phase coherence, and structural properties of within-brain and hyperbrain networks support interpersonal action coordination (IAC). PMID:23226120
NASA Astrophysics Data System (ADS)
Khanzadeh, Alireza; Pourgholi, Mahdi
2016-08-01
In the conventional chaos synchronization methods, the time at which two chaotic systems are synchronized, is usually unknown and depends on initial conditions. In this work based on Lyapunov stability theory a sliding mode controller with time-varying switching surfaces is proposed to achieve chaos synchronization at a pre-specified time for the first time. The proposed controller is able to synchronize chaotic systems precisely at any time when we want. Moreover, by choosing the time-varying switching surfaces in a way that the reaching phase is eliminated, the synchronization becomes robust to uncertainties and exogenous disturbances. Simulation results are presented to show the effectiveness of the proposed method of stabilizing and synchronizing chaotic systems with complete robustness to uncertainty and disturbances exactly at a pre-specified time.
NASA Astrophysics Data System (ADS)
Rodrigues, A. C.; Machado, B. S.; Florence, G.; Hamad, A. P.; Sakamoto, A. C.; Fujita, A.; Baccalá, L. A.; Amaro, E.; Sameshima, K.
2014-12-01
Here we propose and evaluate a new approach to analyse multichannel mesial temporal lobe epilepsy EEG data from eight patients through complex network and synchronization theories. The method employs a Granger causality test to infer the directed connectivity graphs and a wavelet transform based phase synchronization measure whose characteristics allow studying dynamical transitions during epileptic seizures. We present a new combined graph measure that quantifies the level of network hub formation, called network hub out-degree, which closely reflects the level of synchronization observed during the ictus.
Ma, Meng; He, Zhoukun; Yang, Jinghui; Chen, Feng; Wang, Ke; Zhang, Qin; Deng, Hua; Fu, Qiang
2011-11-01
In this Article, the morphological evolution in the blend thin film of polystyrene (PS)/poly(ε-caprolactone) (PCL) was investigated via mainly AFM. It was found that an enriched two-layer structure with PS at the upper layer and PCL at the bottom layer was formed during spinning coating. By changing the solution concentration, different kinds of crystal morphologies, such as finger-like, dendritic, and spherulitic-like, could be obtained at the bottom PCL layer. These different initial states led to the morphological evolution processes to be quite different from each other, so the phase separation, dewetting, and crystalline morphology of PS/PCL blend films as a function of time were studied. It was interesting to find that the morphological evolution of PS at the upper layer was largely dependent on the film thickness. For the ultrathin (15 nm) blend film, a liquid-solid/liquid-liquid dewetting-wetting process was observed, forming ribbons that rupture into discrete circular PS islands on voronoi finger-like PCL crystal. For the thick (30 nm) blend film, the liquid-liquid dewetting of the upper PS layer from the underlying adsorbed PCL layer was found, forming interconnected rim structures that rupture into discrete circular PS islands embedded in the single lamellar PCL dendritic crystal due to Rayleigh instability. For the thicker (60 nm) blend film, a two-step liquid-liquid dewetting process with regular holes decorated with dendritic PCL crystal at early annealing stage and small holes decorated with spherulite-like PCL crystal among the early dewetting holes at later annealing stage was observed. The mechanism of this unusual morphological evolution process was discussed on the basis of the entropy effect and annealing-induced phase separation.
Polymer blend lithography: A versatile method to fabricate nanopatterned self-assembled monolayers.
Huang, Cheng; Moosmann, Markus; Jin, Jiehong; Heiler, Tobias; Walheim, Stefan; Schimmel, Thomas
2012-01-01
A rapid and cost-effective lithographic method, polymer blend lithography (PBL), is reported to produce patterned self-assembled monolayers (SAM) on solid substrates featuring two or three different chemical functionalities. For the pattern generation we use the phase separation of two immiscible polymers in a blend solution during a spin-coating process. By controlling the spin-coating parameters and conditions, including the ambient atmosphere (humidity), the molar mass of the polystyrene (PS) and poly(methyl methacrylate) (PMMA), and the mass ratio between the two polymers in the blend solution, the formation of a purely lateral morphology (PS islands standing on the substrate while isolated in the PMMA matrix) can be reproducibly induced. Either of the formed phases (PS or PMMA) can be selectively dissolved afterwards, and the remaining phase can be used as a lift-off mask for the formation of a nanopatterned functional silane monolayer. This "monolayer copy" of the polymer phase morphology has a topographic contrast of about 1.3 nm. A demonstration of tuning of the PS island diameter is given by changing the molar mass of PS. Moreover, polymer blend lithography can provide the possibility of fabricating a surface with three different chemical components: This is demonstrated by inducing breath figures (evaporated condensed entity) at higher humidity during the spin-coating process. Here we demonstrate the formation of a lateral pattern consisting of regions covered with 1H,1H,2H,2H-perfluorodecyltrichlorosilane (FDTS) and (3-aminopropyl)triethoxysilane (APTES), and at the same time featuring regions of bare SiO(x). The patterning process could be applied even on meter-sized substrates with various functional SAM molecules, making this process suitable for the rapid preparation of quasi two-dimensional nanopatterned functional substrates, e.g., for the template-controlled growth of ZnO nanostructures [1].
Structural, Optical and Electrical Properties of ZnS/Porous Silicon Heterostructures
NASA Astrophysics Data System (ADS)
Wang, Cai-Feng; Li, Qing-Shan; Lv, Lei; Zhang, Li-Chun; Qi, Hong-Xia; Chen, Hou
2007-03-01
ZnS films are deposited by pulsed laser deposition on porous silicon (PS) substrates formed by electrochemical anodization of p-type (100) silicon wafer. Scanning electron microscope images reveal that the surface of ZnS films is unsmoothed, and there are some cracks in the ZnS films due to the roughness of the PS surface. The x-ray diffraction patterns show that the ZnS films on PS surface are grown in preferring orientation along cubic phase β-ZnS (111) direction. White light emission is obtained by combining the blue-green emission from ZnS films with the orange-red emission from PS layers. Based on the I-V characteristic, the ZnS/PS heterojunction exhibits the rectifying junction behaviour, and an ideality factor n is calculated to be 77 from the I-V plot.
Repp, Bruno H
2003-04-01
Four experiments showed that both single and periodic distractor tones affected the timing of finger taps produced in synchrony with an isochronous auditory target sequence. Single distractors had only small effects, but periodic distractors occurring at various fixed or changing phase relationships exerted strong phase attraction. The attraction was asymmetric, being stronger when distractors preceded target tones than when they lagged behind. A large pitch difference between target and distractor tones (20 vs. 3 semitones) did not reduce phase attraction substantially, although in the case of continuously changing phase relationships it did prevent complete capture of the taps by the distractors. The results support the hypothesis that phase attraction is an automatic process that is sensitive primarily to event onsets.
NASA Astrophysics Data System (ADS)
Seto, Keisuke; Tarumi, Takashi; Tokunaga, Eiji
2018-06-01
Noise cancellation of the light source is an important method to enhance the signal-to-noise ratio (SNR) and facilitate high-speed detection in pump/probe measurements. We developed a method to eliminate the noise for the multichannel spectral pump/probe measurements with a spectral dispersion of a white probe pulse light. In this method, the sample-induced intensity modulation is converted to the phase modulation of the pulse repetition irrespective of the intensity noise of the light source. The SNR is enhanced through the phase detection of the observed signal with the signal synchronized to the pulse repetition serving as the phase reference (synchronized signal). However, the shot-noise limited performance is not achieved with an intense probe light. In this work, we demonstrate that the performance limitation below the shot noise limit is caused by the amplitude-phase cross talk. It converts the amplitude noise into the phase noise and is caused by the space-charge effect in the photodetector, the reverse bias voltage drop across the load impedance, and the phase detection circuit. The phase delay occurs with an intense light at a PIN photodiode, whereas the phase is advanced in an avalanche photodiode. Although the amplitude distortion characteristics also reduce the performance, the distortion effect is equivalent to the amplitude-phase cross talk. We also propose possible ways to compensate the cross talk effect by using the phase modulation of the synchronized signal for the phase detection based on the instantaneous amplitude.
Phase-locked loop with controlled phase slippage
Mestha, L.K.
1994-03-29
A system for synchronizing a first subsystem controlled by a changing frequency sweeping from a first frequency to a second frequency, with a second subsystem operating at a steady state second frequency is described. Trip plan parameters are calculated in advance to determine the phase relationship between the frequencies of the first subsystem and second subsystem in order to obtain synchronism at the end of the frequency sweep of the first subsystem. During the time in which the frequency of the first subsystem is sweeping from the first frequency to the second frequency, the phase locked system compares the actual phase difference with the trip plan phase difference and incrementally changes the sweep frequency in a manner so that phase lock is achieved when the first subsystem reaches a frequency substantially identical to that of the second subsystem. 10 figures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Ke; Li Yanqiu; Wang Hai
Characterization of measurement accuracy of the phase-shifting point diffraction interferometer (PS/PDI) is usually performed by two-pinhole null test. In this procedure, the geometrical coma and detector tilt astigmatism systematic errors are almost one or two magnitude higher than the desired accuracy of PS/PDI. These errors must be accurately removed from the null test result to achieve high accuracy. Published calibration methods, which can remove the geometrical coma error successfully, have some limitations in calibrating the astigmatism error. In this paper, we propose a method to simultaneously calibrate the geometrical coma and detector tilt astigmatism errors in PS/PDI null test. Basedmore » on the measurement results obtained from two pinhole pairs in orthogonal directions, the method utilizes the orthogonal and rotational symmetry properties of Zernike polynomials over unit circle to calculate the systematic errors introduced in null test of PS/PDI. The experiment using PS/PDI operated at visible light is performed to verify the method. The results show that the method is effective in isolating the systematic errors of PS/PDI and the measurement accuracy of the calibrated PS/PDI is 0.0088{lambda} rms ({lambda}= 632.8 nm).« less
Photosystem I assembly on chemically tailored SAM/ Au substrates for bio-hybrid device fabrication
NASA Astrophysics Data System (ADS)
Mukherjee, Dibyendu; Khomami, Bamin
2011-03-01
Photosystem I (PS I), a supra-molecular protein complex and a biological photodiode responsible for driving natural photosynthesis mechanism, charge separates upon exposure to light. Effective use of the photo-electrochemical activities of PS I for future bio-hybrid electronic devices requires controlled attachment of these proteins onto organic/ inorganic substrates. Our results indicate that various experimental parameters alter the surface topography of PS I deposited from colloidal aqueous buffer suspensions onto OH-terminated alkanethiolate SAM /Au substrates, thereby resulting in complex columnar structures that affect the electron capture pathway of PS I. Specifically, solution phase characterizations indicate that specific detergents used for PS I stabilization in buffer solutions drive the unique colloidal chemistry to tune protein-protein interactions and prevent aggregation, thereby allowing us to tailor the morphology of surface immobilized PS I. We present surface topographical, adsorption, and electrochemical characterizations of PSI /SAM/Au substrates to elucidate protein-surface attachment dynamics and its effect on the photo-activated electronic activities of surface immobilized PS I. Sustainable Energy Education and Research Center (SEERC).
First Principles Calculations of Transition Metal Binary Alloys: Phase Stability and Surface Effects
NASA Astrophysics Data System (ADS)
Aspera, Susan Meñez; Arevalo, Ryan Lacdao; Shimizu, Koji; Kishida, Ryo; Kojima, Kazuki; Linh, Nguyen Hoang; Nakanishi, Hiroshi; Kasai, Hideaki
2017-06-01
The phase stability and surface effects on binary transition metal nano-alloy systems were investigated using density functional theory-based first principles calculations. In this study, we evaluated the cohesive and alloying energies of six binary metal alloy bulk systems that sample each type of alloys according to miscibility, i.e., Au-Ag and Pd-Ag for the solid solution-type alloys (SS), Pd-Ir and Pd-Rh for the high-temperature solid solution-type alloys (HTSS), and Au-Ir and Ag-Rh for the phase-separation (PS)-type alloys. Our results and analysis show consistency with experimental observations on the type of materials in the bulk phase. Varying the lattice parameter was also shown to have an effect on the stability of the bulk mixed alloy system. It was observed, particularly for the PS- and HTSS-type materials, that mixing gains energy from the increasing lattice constant. We furthermore evaluated the surface effects, which is an important factor to consider for nanoparticle-sized alloys, through analysis of the (001) and (111) surface facets. We found that the stability of the surface depends on the optimization of atomic positions and segregation of atoms near/at the surface, particularly for the HTSS and the PS types of metal alloys. Furthermore, the increase in energy for mixing atoms at the interface of the atomic boundaries of PS- and HTSS-type materials is low enough to overcome by the gain in energy through entropy. These, therefore, are the main proponents for the possibility of mixing alloys near the surface.
The National Cancer Institute's Physical Sciences - Oncology Network
NASA Astrophysics Data System (ADS)
Espey, Michael Graham
In 2009, the NCI launched the Physical Sciences - Oncology Centers (PS-OC) initiative with 12 Centers (U54) funded through 2014. The current phase of the Program includes U54 funded Centers with the added feature of soliciting new Physical Science - Oncology Projects (PS-OP) U01 grant applications through 2017; see NCI PAR-15-021. The PS-OPs, individually and along with other PS-OPs and the Physical Sciences-Oncology Centers (PS-OCs), comprise the Physical Sciences-Oncology Network (PS-ON). The foundation of the Physical Sciences-Oncology initiative is a high-risk, high-reward program that promotes a `physical sciences perspective' of cancer and fosters the convergence of physical science and cancer research by forming transdisciplinary teams of physical scientists (e.g., physicists, mathematicians, chemists, engineers, computer scientists) and cancer researchers (e.g., cancer biologists, oncologists, pathologists) who work closely together to advance our understanding of cancer. The collaborative PS-ON structure catalyzes transformative science through increased exchange of people, ideas, and approaches. PS-ON resources are leveraged to fund Trans-Network pilot projects to enable synergy and cross-testing of experimental and/or theoretical concepts. This session will include a brief PS-ON overview followed by a strategic discussion with the APS community to exchange perspectives on the progression of trans-disciplinary physical sciences in cancer research.
Impact of adaptation currents on synchronization of coupled exponential integrate-and-fire neurons.
Ladenbauer, Josef; Augustin, Moritz; Shiau, LieJune; Obermayer, Klaus
2012-01-01
The ability of spiking neurons to synchronize their activity in a network depends on the response behavior of these neurons as quantified by the phase response curve (PRC) and on coupling properties. The PRC characterizes the effects of transient inputs on spike timing and can be measured experimentally. Here we use the adaptive exponential integrate-and-fire (aEIF) neuron model to determine how subthreshold and spike-triggered slow adaptation currents shape the PRC. Based on that, we predict how synchrony and phase locked states of coupled neurons change in presence of synaptic delays and unequal coupling strengths. We find that increased subthreshold adaptation currents cause a transition of the PRC from only phase advances to phase advances and delays in response to excitatory perturbations. Increased spike-triggered adaptation currents on the other hand predominantly skew the PRC to the right. Both adaptation induced changes of the PRC are modulated by spike frequency, being more prominent at lower frequencies. Applying phase reduction theory, we show that subthreshold adaptation stabilizes synchrony for pairs of coupled excitatory neurons, while spike-triggered adaptation causes locking with a small phase difference, as long as synaptic heterogeneities are negligible. For inhibitory pairs synchrony is stable and robust against conduction delays, and adaptation can mediate bistability of in-phase and anti-phase locking. We further demonstrate that stable synchrony and bistable in/anti-phase locking of pairs carry over to synchronization and clustering of larger networks. The effects of adaptation in aEIF neurons on PRCs and network dynamics qualitatively reflect those of biophysical adaptation currents in detailed Hodgkin-Huxley-based neurons, which underscores the utility of the aEIF model for investigating the dynamical behavior of networks. Our results suggest neuronal spike frequency adaptation as a mechanism synchronizing low frequency oscillations in local excitatory networks, but indicate that inhibition rather than excitation generates coherent rhythms at higher frequencies.
Impact of Adaptation Currents on Synchronization of Coupled Exponential Integrate-and-Fire Neurons
Ladenbauer, Josef; Augustin, Moritz; Shiau, LieJune; Obermayer, Klaus
2012-01-01
The ability of spiking neurons to synchronize their activity in a network depends on the response behavior of these neurons as quantified by the phase response curve (PRC) and on coupling properties. The PRC characterizes the effects of transient inputs on spike timing and can be measured experimentally. Here we use the adaptive exponential integrate-and-fire (aEIF) neuron model to determine how subthreshold and spike-triggered slow adaptation currents shape the PRC. Based on that, we predict how synchrony and phase locked states of coupled neurons change in presence of synaptic delays and unequal coupling strengths. We find that increased subthreshold adaptation currents cause a transition of the PRC from only phase advances to phase advances and delays in response to excitatory perturbations. Increased spike-triggered adaptation currents on the other hand predominantly skew the PRC to the right. Both adaptation induced changes of the PRC are modulated by spike frequency, being more prominent at lower frequencies. Applying phase reduction theory, we show that subthreshold adaptation stabilizes synchrony for pairs of coupled excitatory neurons, while spike-triggered adaptation causes locking with a small phase difference, as long as synaptic heterogeneities are negligible. For inhibitory pairs synchrony is stable and robust against conduction delays, and adaptation can mediate bistability of in-phase and anti-phase locking. We further demonstrate that stable synchrony and bistable in/anti-phase locking of pairs carry over to synchronization and clustering of larger networks. The effects of adaptation in aEIF neurons on PRCs and network dynamics qualitatively reflect those of biophysical adaptation currents in detailed Hodgkin-Huxley-based neurons, which underscores the utility of the aEIF model for investigating the dynamical behavior of networks. Our results suggest neuronal spike frequency adaptation as a mechanism synchronizing low frequency oscillations in local excitatory networks, but indicate that inhibition rather than excitation generates coherent rhythms at higher frequencies. PMID:22511861
A Parameter Communication Optimization Strategy for Distributed Machine Learning in Sensors
Zhang, Jilin; Tu, Hangdi; Ren, Yongjian; Wan, Jian; Zhou, Li; Li, Mingwei; Wang, Jue; Yu, Lifeng; Zhao, Chang; Zhang, Lei
2017-01-01
In order to utilize the distributed characteristic of sensors, distributed machine learning has become the mainstream approach, but the different computing capability of sensors and network delays greatly influence the accuracy and the convergence rate of the machine learning model. Our paper describes a reasonable parameter communication optimization strategy to balance the training overhead and the communication overhead. We extend the fault tolerance of iterative-convergent machine learning algorithms and propose the Dynamic Finite Fault Tolerance (DFFT). Based on the DFFT, we implement a parameter communication optimization strategy for distributed machine learning, named Dynamic Synchronous Parallel Strategy (DSP), which uses the performance monitoring model to dynamically adjust the parameter synchronization strategy between worker nodes and the Parameter Server (PS). This strategy makes full use of the computing power of each sensor, ensures the accuracy of the machine learning model, and avoids the situation that the model training is disturbed by any tasks unrelated to the sensors. PMID:28934163
Circuit increases capability of hysteresis synchronous motor
NASA Technical Reports Server (NTRS)
Markowitz, I. N.
1967-01-01
Frequency and phase detector circuit enables a hysteresis synchronous motor to drive a load of given torque value at a precise speed determined by a stable reference. This technique permits driving larger torque loads with smaller motors and lower power drain.
Synchronization of natural convection in thermostatically-controlled adjacent cavities
NASA Astrophysics Data System (ADS)
Chavez-Martinez, Rafael; Sanchez-Lopez, Mario; Solorio-Ordaz, Francisco Javier; Sen, Mihir
2017-11-01
Synchronization is a phenomenon observed in complex dynamical systems. It was first noticed by Huygens in the 17th century, and since then has been observed in systems of different types such as mechanical, biological and social. In thermal systems, numerical and analytical studies have found that two or more similar heat sources, with independent thermostatic temperature control and communicating with each other through a common interface, can have temperature oscillations. In the present study, laboratory experiments were carried out to study the thermal synchronization in two cuboid rooms separated by a common wall. Computer-based thermostats independently control the temperature of each cavity. The experiments show the effect of the ambient temperature and the initial condition in the cavities on the phase difference Δϕ . The results demonstrate in-phase and out-of-phase synchronization. An increase of the temperature difference between the cavity and the ambient, ΔT , increases Δϕ . When ΔT <2° C, Δϕ oscillates around zero. Δϕ is negative independently of the initial condition. The results of these experiments will be useful in the desing of heating in full-scale buildings. This work is supported by DGAPA-UNAM Grant PAPIIT-IN114216.
Hopkins, David James [Livermore, CA
2008-05-13
A control system and method for actively reducing vibration in a spindle housing caused by unbalance forces on a rotating spindle, by measuring the force-induced spindle-housing motion, determining control signals based on synchronous demodulation, and provide compensation for the measured displacement to cancel or otherwise reduce or attenuate the vibration. In particular, the synchronous demodulation technique is performed to recover a measured spindle housing displacement signal related only to the rotation of a machine tool spindle, and consequently rejects measured displacement not related to spindle motion or synchronous to a cycle of revolution. Furthermore, the controller actuates at least one voice-coil (VC) motor, to cancel the original force-induced motion, and adapts the magnitude of voice coil signal until this measured displacement signal is brought to a null. In order to adjust the signal to a null, it must have the correct phase relative to the spindle angle. The feedback phase signal is used to adjust a common (to both outputs) commutation offset register (offset relative to spindle encoder angle) to force the feedback phase signal output to a null. Once both of these feedback signals are null, the system is compensating properly for the spindle-induced motion.
2011-05-06
electric fields. For that, we are going to use PS - b - P2VP block copolymers as a model system, utilizing the quite versatile chemistry of the P2VP ...displays. Our efforts at Hanyang have focused on tunable PBG materials self-assembled from polystyrene- b -poly(2-vinyl pyridine) ( PS - b - P2VP ) block...small angle x-ray scattering measurements during swelling of low molecular weight PS - P2VP polymers at the Cornell High Energy Synchrotron Source
NASA Astrophysics Data System (ADS)
Jin, Feng; Feng, Qiyuan; Guo, Zhuang; Lan, Da; Wang, Lingfei; Gao, Guanyin; Xu, Haoran; Chen, Binbin; Chen, Feng; Lu, Qingyou; Wu, Wenbin
2017-11-01
Epitaxial strain and chemical doping are two different methods that are commonly used to tune the physical properties of epitaxial perovskite oxide films, but their cooperative effects are less addressed. Here we try to tune the phase separation (PS) in (La1-xP rx) 2 /3C a1 /3Mn O3 (0 ≤x ≤0.4 , LPCMO) films via cooperatively controlling the anisotropic epitaxial strain (AES) and the Pr doping. These films are grown simultaneously on NdGa O3(110 ) ,(LaAlO3) 0.3(SrAl0.5Ta0.5O3 ) 0.7(001 ) , and NdGa O3(001 ) substrates with progressively increased in-plane AES, and probed by x-ray diffraction, magnetotransport, and magnetic force microscopy (MFM) measurements. Although it is known that for x =0 the AES can enhance the orthorhombicity of the films yielding a phase diagram with the antiferromagnetic charge-ordered insulator (AF-COI) state induced, which is quite different from the bulk one, we illustrate that the Pr doping can further drive the films towards a more robust COI state. This cooperative effect is reflected by the increasing magnetic fields needed to melt the COI phase as a function of AES and the doping level. More strikingly, by directly imaging the phase competition morphology of the LPCMO /NdGa O3(001 ) films via MFM, we find that during COI melting the PS domain structure is subject to both AES and the quenched disorder. However, in the reverse process, as the magnetic field is decreased, the COI phase reappears and the AES dominates leaving a crystalline-orientation determined self-organized microstructure. This finding suggests that the PS states and the domain configurations can be selectively controlled by the AES and/or the quenched disorder, which may shed some light on the engineering of PS domains for device fabrications.
Miller, Joseph D; Roy, Sukesh; Slipchenko, Mikhail N; Gord, James R; Meyer, Terrence R
2011-08-01
High-repetition-rate, single-laser-shot measurements are important for the investigation of unsteady flows where temperature and species concentrations can vary significantly. Here, we demonstrate single-shot, pure-rotational, hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps RCARS) thermometry based on a kHz-rate fs laser source. Interferences that can affect nanosecond (ns) and ps CARS, such as nonresonant background and collisional dephasing, are eliminated by selecting an appropriate time delay between the 100-fs pump/Stokes pulses and the pulse-shaped 8.4-ps probe. A time- and frequency-domain theoretical model is introduced to account for rotational-level dependent collisional dephasing and indicates that the optimal probe-pulse time delay is 13.5 ps to 30 ps. This time delay allows for uncorrected best-fit N2-RCARS temperature measurements with ~1% accuracy. Hence, the hybrid fs/ps RCARS approach can be performed with kHz-rate laser sources while avoiding corrections that can be difficult to predict in unsteady flows.
NASA Astrophysics Data System (ADS)
Miller, Joseph D.; Roy, Sukesh; Slipchenko, Mikhail N.; Gord, James R.; Meyer, Terrence R.
2011-08-01
High-repetition-rate, single-laser-shot measurements are important for the investigation of unsteady flows where temperature and species concentrations can vary significantly. Here, we demonstrate single-shot, pure-rotational, hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps RCARS) thermometry based on a kHz-rate fs laser source. Interferences that can affect nanosecond (ns) and ps CARS, such as nonresonant background and collisional dephasing, are eliminated by selecting an appropriate time delay between the 100-fs pump/Stokes pulses and the pulse-shaped 8.4-ps probe. A time- and frequency-domain theoretical model is introduced to account for rotational-level dependent collisional dephasing and indicates that the optimal probe-pulse time delay is 13.5 ps to 30 ps. This time delay allows for uncorrected best-fit N2-RCARS temperature measurements with ~1% accuracy. Hence, the hybrid fs/ps RCARS approach can be performed with kHz-rate laser sources while avoiding corrections that can be difficult to predict in unsteady flows.
Iida, Asako; Yamashita, Toshiya; Yamada, Yasuyuki; Morikawa, Hiromichi
1991-01-01
Plasmid DNA pB1221 harboring β-glucuronidase gene was delivered to synchronized cultured tobacco (Nicotiana tabacum L. cv Bright Yellow-2) cells of different cell cycle stages by a pneumatic particle gun. The cells bombarded at M and G2 phases gave 4 to 6 times higher transformation efficiency than those bombarded at the S and G1 phases. ImagesFigure 2 PMID:16668589
2012-08-01
The first phase consisted of Shared Services , Threat Detection and Reporting, and the Remote Weapon Station (RWS) build up and validation. The...Awareness build up and validation. The first phase consisted of the development of the shared services or core services that are required by many...C4ISR/EW systems. The shared services include: time synchronization, position, direction of travel, and orientation. Time synchronization is
Performance of synchronous optical receivers using atmospheric compensation techniques.
Belmonte, Aniceto; Khan, Joseph
2008-09-01
We model the impact of atmospheric turbulence-induced phase and amplitude fluctuations on free-space optical links using synchronous detection. We derive exact expressions for the probability density function of the signal-to-noise ratio in the presence of turbulence. We consider the effects of log-normal amplitude fluctuations and Gaussian phase fluctuations, in addition to local oscillator shot noise, for both passive receivers and those employing active modal compensation of wave-front phase distortion. We compute error probabilities for M-ary phase-shift keying, and evaluate the impact of various parameters, including the ratio of receiver aperture diameter to the wave-front coherence diameter, and the number of modes compensated.
Mutual information as an order parameter for quantum synchronization
NASA Astrophysics Data System (ADS)
Ameri, V.; Eghbali-Arani, M.; Mari, A.; Farace, A.; Kheirandish, F.; Giovannetti, V.; Fazio, R.
2015-01-01
Spontaneous synchronization is a fundamental phenomenon, important in many theoretical studies and applications. Recently, this effect has been analyzed and observed in a number of physical systems close to the quantum-mechanical regime. In this work we propose mutual information as a useful order parameter which can capture the emergence of synchronization in very different contexts, ranging from semiclassical to intrinsically quantum-mechanical systems. Specifically, we first study the synchronization of two coupled Van der Pol oscillators in both classical and quantum regimes and later we consider the synchronization of two qubits inside two coupled optical cavities. In all these contexts, we find that mutual information can be used as an appropriate figure of merit for determining the synchronization phases independently of the specific details of the system.
Self-mode-locked chromium-doped forsterite laser generates 50-fs pulses
NASA Technical Reports Server (NTRS)
Seas, A.; Petricevic, V.; Alfano, R. R.
1993-01-01
Stable transform-limited (delta nu-delta tau = 0.32) femtosecond pulses with a FWHM of 50 fs were generated from a self-mode-locked chromium-doped forsterite laser. The forsterite laser was synchronously pumped by a CW mode-locked Nd:YAG (82 MHz) laser that generated picosecond pulses (200-300 ps) and provided the starting mechanism for self-mode-locked operation. Maximum output power was 45 mW for 3.9 W of absorbed pumped power with the use of an output coupler with 1 percent transmission. The self-mode-locked forsterite laser was tuned from 1240 to 1270 nm.
Pump-probe micro-spectroscopy by means of an ultra-fast acousto-optics delay line.
Audier, Xavier; Balla, Naveen; Rigneault, Hervé
2017-01-15
We demonstrate femtosecond pump-probe transient absorption spectroscopy using a programmable dispersive filter as an ultra-fast delay line. Combined with fast synchronous detection, this delay line allows for recording of 6 ps decay traces at 34 kHz. With such acquisition speed, we perform single point pump-probe spectroscopy on bulk samples in 80 μs and hyperspectral pump-probe imaging over a field of view of 100 μm in less than a second. The usability of the method is illustrated in a showcase experiment to image and discriminate between two pigments in a mixture.
2013-01-01
A new approach, the projective system approach, is proposed to realize modified projective synchronization between two different chaotic systems. By simple analysis of trajectories in the phase space, a projective system of the original chaotic systems is obtained to replace the errors system to judge the occurrence of modified projective synchronization. Theoretical analysis and numerical simulations show that, although the projective system may not be unique, modified projective synchronization can be achieved provided that the origin of any of projective systems is asymptotically stable. Furthermore, an example is presented to illustrate that even a necessary and sufficient condition for modified projective synchronization can be derived by using the projective system approach. PMID:24187522
Transitions amongst synchronous solutions in the stochastic Kuramoto model
NASA Astrophysics Data System (ADS)
DeVille, Lee
2012-05-01
We consider the Kuramoto model of coupled oscillators with nearest-neighbour coupling and additive white noise. We show that synchronous solutions which are stable without the addition of noise become metastable and that we have transitions amongst synchronous solutions on long timescales. We compute these timescales and, moreover, compute the most likely path in phase space that transitions will follow. We show that these transition timescales do not increase as the number of oscillators in the system increases, and are roughly constant in the system size. Finally, we show that the transitions correspond to a splitting of one synchronous solution into two communities which move independently for some time and which rejoin to form a different synchronous solution.
Experimental study on synchronization of three coupled mechanical metronomes
NASA Astrophysics Data System (ADS)
Hu, Qiang; Liu, Weiqing; Yang, Hujiang; Xiao, Jinghua; Qian, Xiaolan
2013-03-01
In this paper, a CCD acquisition system is set up to explore the dynamics of three coupled mechanical metronomes in order to compensate for the defects of visual observation. The facility is efficient to observe rich dynamics in an experiment, such as phase synchronization, partial phase synchronization and quasi-periodical oscillation, by accurately recording the trajectory of three coupled metronomes. The parameters, e.g., pendulum length and rolling friction are deemed to significantly influence the dynamics of three coupled mechanical metronomes judging from the experimental phenomena. The experimental results are confirmed by the numerical simulation based on the model with different intrinsic frequencies between three metronomes. The metronome and CCD acquisition systems are excellent demonstration apparatuses for a class and an undergraduate physics laboratory.
Metastable state en route to traveling-wave synchronization state
NASA Astrophysics Data System (ADS)
Park, Jinha; Kahng, B.
2018-02-01
The Kuramoto model with mixed signs of couplings is known to produce a traveling-wave synchronized state. Here, we consider an abrupt synchronization transition from the incoherent state to the traveling-wave state through a long-lasting metastable state with large fluctuations. Our explanation of the metastability is that the dynamic flow remains within a limited region of phase space and circulates through a few active states bounded by saddle and stable fixed points. This complex flow generates a long-lasting critical behavior, a signature of a hybrid phase transition. We show that the long-lasting period can be controlled by varying the density of inhibitory/excitatory interactions. We discuss a potential application of this transition behavior to the recovery process of human consciousness.
Nakamura, A; Watanabe, T
2001-04-01
Reversed-phase HPLC conditions for separation of chlorophyll (Chl) a, Chl a' (the C132-epimer of Chl a), pheophytin (Pheo) a (the primary electron acceptor of photosystem (PS) II), and phylloquinone (PhQ) (the secondary electron acceptor of PS 1), have been developed. Pigment extraction conditions were optimized in terms of pigment alteration and extraction efficiency. Pigment composition analysis of light-harvesting complex II, which would not contain Chl a' nor Pheo a, showed the Chl a'/Chl a ratio of 3-4 x 10(-4) and the Pheo a/Chl a ratio of 4-5 x 10(-4), showing that the conditions developed here were sufficiently inert for Chl analysis. Preliminary analysis of thylakoid membranes with this analytical system gave the PhQ/Chl a' ratio of 0.58 +/- 0.03 (n = 4), in line with the stoichiometry of one molecule of Chl a' per PS I.
Phase diagram of the Hubbard-Holstein model on a four-leg tube system at quarter filling
NASA Astrophysics Data System (ADS)
Reja, Sahinur; Nishimoto, Satoshi
2018-06-01
We derive an effective electronic Hamiltonian for the square lattice Hubbard-Holstein model (HHM) in the strong electron-electron (e -e ) and electron-phonon (e -p h ) coupling regime and under nonadiabatic conditions (t /ω0≤1 ), t and ω0 being the electron hopping and phonon frequency respectively. Using the density matrix renormalization-group method, we simulate this effective electronic model on a four-leg cylinder system at quarter filling and present a phase diagram in the g -U plane where g and U are the e -p h coupling constant and Hubbard on-site interaction respectively. For larger g , we find that a cluster of spins, i.e., phase separation (PS), gives way to a charge density wave (CDW) phase made of nearest-neighbor singlets which abruptly goes to another CDW phase as we increase U . But for smaller g , we find a metallic phase sandwiched between PS and the singlet CDW phase. This phase is characterized by a vanishing charge gap but a finite spin gap, suggesting a singlet superconducting phase.
Modulation and synchronization technique for MF-TDMA system
NASA Technical Reports Server (NTRS)
Faris, Faris; Inukai, Thomas; Sayegh, Soheil
1994-01-01
This report addresses modulation and synchronization techniques for a multi-frequency time division multiple access (MF-TDMA) system with onboard baseband processing. The types of synchronization techniques analyzed are asynchronous (conventional) TDMA, preambleless asynchronous TDMA, bit synchronous timing with a preamble, and preambleless bit synchronous timing. Among these alternatives, preambleless bit synchronous timing simplifies onboard multicarrier demultiplexer/demodulator designs (about 2:1 reduction in mass and power), requires smaller onboard buffers (10:1 to approximately 3:1 reduction in size), and provides better frame efficiency as well as lower onboard processing delay. Analysis and computer simulation illustrate that this technique can support a bit rate of up to 10 Mbit/s (or higher) with proper selection of design parameters. High bit rate transmission may require Doppler compensation and multiple phase error measurements. The recommended modulation technique for bit synchronous timing is coherent QPSK with differential encoding for the uplink and coherent QPSK for the downlink.
Becher, Ann-Katrin; Höhne, Marlene; Axmacher, Nikolai; Chaieb, Leila; Elger, Christian E; Fell, Juergen
2015-01-01
Auditory stimulation with monaural or binaural auditory beats (i.e. sine waves with nearby frequencies presented either to both ears or to each ear separately) represents a non-invasive approach to influence electrical brain activity. It is still unclear exactly which brain sites are affected by beat stimulation. In particular, an impact of beat stimulation on mediotemporal brain areas could possibly provide new options for memory enhancement or seizure control. Therefore, we examined how electroencephalography (EEG) power and phase synchronization are modulated by auditory stimulation with beat frequencies corresponding to dominant EEG rhythms based on intracranial recordings in presurgical epilepsy patients. Monaural and binaural beat stimuli with beat frequencies of 5, 10, 40 and 80 Hz and non-superposed control signals were administered with low amplitudes (60 dB SPL) and for short durations (5 s). EEG power was intracranially recorded from mediotemporal, temporo-basal and temporo-lateral and surface sites. Evoked and total EEG power and phase synchronization during beat vs. control stimulation were compared by the use of Bonferroni-corrected non-parametric label-permutation tests. We found that power and phase synchronization were significantly modulated by beat stimulation not only at temporo-basal, temporo-lateral and surface sites, but also at mediotemporal sites. Generally, more significant decreases than increases were observed. The most prominent power increases were seen after stimulation with monaural 40-Hz beats. The most pronounced power and synchronization decreases resulted from stimulation with monaural 5-Hz and binaural 80-Hz beats. Our results suggest that beat stimulation offers a non-invasive approach for the modulation of intracranial EEG characteristics. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Demiral, Şükrü Barış; Golosheykin, Simon; Anokhin, Andrey P
2017-05-01
Detection and evaluation of the mismatch between the intended and actually obtained result of an action (reward prediction error) is an integral component of adaptive self-regulation of behavior. Extensive human and animal research has shown that evaluation of action outcome is supported by a distributed network of brain regions in which the anterior cingulate cortex (ACC) plays a central role, and the integration of distant brain regions into a unified feedback-processing network is enabled by long-range phase synchronization of cortical oscillations in the theta band. Neural correlates of feedback processing are associated with individual differences in normal and abnormal behavior, however, little is known about the role of genetic factors in the cerebral mechanisms of feedback processing. Here we examined genetic influences on functional cortical connectivity related to prediction error in young adult twins (age 18, n=399) using event-related EEG phase coherence analysis in a monetary gambling task. To identify prediction error-specific connectivity pattern, we compared responses to loss and gain feedback. Monetary loss produced a significant increase of theta-band synchronization between the frontal midline region and widespread areas of the scalp, particularly parietal areas, whereas gain resulted in increased synchrony primarily within the posterior regions. Genetic analyses showed significant heritability of frontoparietal theta phase synchronization (24 to 46%), suggesting that individual differences in large-scale network dynamics are under substantial genetic control. We conclude that theta-band synchronization of brain oscillations related to negative feedback reflects genetically transmitted differences in the neural mechanisms of feedback processing. To our knowledge, this is the first evidence for genetic influences on task-related functional brain connectivity assessed using direct real-time measures of neuronal synchronization. Copyright © 2016 Elsevier B.V. All rights reserved.
Timing performance of phased-locked loops in optical pulse position modulation communication systems
NASA Technical Reports Server (NTRS)
Lafaw, D. A.; Gardner, C. S.
1984-01-01
An optical digital communication system requires that an accurate clock signal be available at the receiver for proper synchronization with the transmitted signal. Phase synchronization is especially critical in M-ary pulse position modulation (PPM) systems where the optimum decision scheme is an energy detector which compares the energy in each of M time slots to decide which of M possible words was sent. Timing errors cause energy spillover into adjacent time slots (a form of intersymbol interference) so that only a portion of the signal energy may be attributed to the correct time slot. This effect decreases the effective signal, increases the effective noise, and increases the probability of error. A timing subsystem for a satellite-to-satellite optical PPM communication link is simulated. The receiver employs direct photodetection, preprocessing of the detected signal, and a phase-locked loop for timing synchronization. The variance of the relative phase error is examined under varying signal strength conditions as an indication of loop performance, and simulation results are compared to theoretical calculations.
Timing performance of phased-locked loops in optical pulse position modulation communication systems
NASA Astrophysics Data System (ADS)
Lafaw, D. A.; Gardner, C. S.
1984-08-01
An optical digital communication system requires that an accurate clock signal be available at the receiver for proper synchronization with the transmitted signal. Phase synchronization is especially critical in M-ary pulse position modulation (PPM) systems where the optimum decision scheme is an energy detector which compares the energy in each of M time slots to decide which of M possible words was sent. Timing errors cause energy spillover into adjacent time slots (a form of intersymbol interference) so that only a portion of the signal energy may be attributed to the correct time slot. This effect decreases the effective signal, increases the effective noise, and increases the probability of error. A timing subsystem for a satellite-to-satellite optical PPM communication link is simulated. The receiver employs direct photodetection, preprocessing of the detected signal, and a phase-locked loop for timing synchronization. The variance of the relative phase error is examined under varying signal strength conditions as an indication of loop performance, and simulation results are compared to theoretical calculations.
Power System Observation by using Synchronized Phasor Measurements as a Smart Device
NASA Astrophysics Data System (ADS)
Mitani, Yasunori
Phasor Measurement Unit (PMU) is an apparatus which detects the absolute value of phase angle in sinusoidal signal. When more than two units are located distantly apart from each other, and they are synchronized with GPS signal which tells us the information on exact time, it becomes ready to get phase differences between two distant places. Thus, PMU with GPS receiver is applied to the monitoring of AC power system dynamics and usually installed at substations of transmission lines. The states of power network are uniquely determined by the active and reactive power and the magnitude and phase angle of voltage in each node. Among these values the phase angle had not been easily obtained until the scheme of time synchronism with GPS appeared. In this report, the history of GPS and PMU, and the current status of the applications in power systems in the world are presented. In Japan we are developing a power system monitoring system with PMUs installed at University's campuses with 100V outlets, which is called Campus WAMS. This report also introduces some results from the Campus WAMS briefly.