The transition to chaotic phase synchronization
NASA Astrophysics Data System (ADS)
Mosekilde, E.; Laugesen, J. L.; Zhusubaliyev, Zh. T.
2012-08-01
The transition to chaotic phase synchronization for a periodically driven spiral-type chaotic oscillator is known to involve a dense set of saddle-node bifurcations. By following the synchronization transition through the cascade of period-doubling bifurcations in a forced Rössler system, this paper describes how these saddle-node bifurcations arise and how their characteristic cyclic organisation develops. We identify the cycles that are involved in the various saddle-node bifurcations and descibe how the formation of multi-layered resonance cycles in the synchronization domain is related to the torus doubling bifurcations that take place outside this domain. By examining a physiology-based model of the blood flow regulation to the individual functional unit (nephron) of the kidney we demonstrate how a similar bifurcation structure may arise in this system as a response to a periodically varying arterial blood pressure. The paper finally discusses how an alternative transition to chaotic phase synchronization may occur in the mutual synchronization of two chaotically oscillating period-doubling systems.
Synchronization of Oscillators: An Ideal Introduction to Phase Transitions
ERIC Educational Resources Information Center
English, L. Q.
2008-01-01
The spontaneous synchronization of phase-coupled, non-identical oscillators is explored numerically via the famous Kuramoto model. The conditions for synchronization are examined as a function of the coupling network. I argue that such a numerical exploration provides a feasible way to introduce the topic of phase transitions early in the physics…
Synchronization of Oscillators: An Ideal Introduction to Phase Transitions
ERIC Educational Resources Information Center
English, L. Q.
2008-01-01
The spontaneous synchronization of phase-coupled, non-identical oscillators is explored numerically via the famous Kuramoto model. The conditions for synchronization are examined as a function of the coupling network. I argue that such a numerical exploration provides a feasible way to introduce the topic of phase transitions early in the physics…
Explosive transitions to synchronization in networks of phase oscillators
Leyva, I.; Navas, A.; Sendiña-Nadal, I.; Almendral, J. A.; Buldú, J. M.; Zanin, M.; Papo, D.; Boccaletti, S.
2013-01-01
The emergence of dynamical abrupt transitions in the macroscopic state of a system is currently a subject of the utmost interest. The occurrence of a first-order phase transition to synchronization of an ensemble of networked phase oscillators was reported, so far, for very particular network architectures. Here, we show how a sharp, discontinuous transition can occur, instead, as a generic feature of networks of phase oscillators. Precisely, we set conditions for the transition from unsynchronized to synchronized states to be first-order, and demonstrate how these conditions can be attained in a very wide spectrum of situations. We then show how the occurrence of such transitions is always accompanied by the spontaneous setting of frequency-degree correlation features. Third, we show that the conditions for abrupt transitions can be even softened in several cases. Finally, we discuss, as a possible application, the use of this phenomenon to express magnetic-like states of synchronization. PMID:23412391
Spike synchronization of chaotic oscillators as a phase transition.
Ciszak, M; Montina, A; Arecchi, F T
2009-02-01
We study how a locally coupled array of spiking chaotic systems synchronizes to an external driving in a short time. Synchronization means spike separation at adjacent sites much shorter than the average inter-spike interval; a local lack of synchronization is called a defect. The system displays sudden spontaneous defect disappearance at a critical coupling strength suggesting an existence of a phase transition. Below critical coupling, the system reaches order at a definite amplitude of an external input; this order persists for a fixed time slot. Thus, the array behaves as an excitable-like system, even though the single element lacks such a property.
Phase synchronization in the cochlea at transition from mechanical waves to electrical spikes.
Bader, Rolf
2015-10-01
Measured auditory nervous spikes often show synchronization, phase-locking, or entrainment (P. Cariani, Neural Plast. 6(4), 142-172 (1999) and Kumaresana et al., J. Acoust. Soc. Am. 133(6), 4290-4310 (2013). Physiologically synchronization is found in the anteroventral cochlear nucleus (Joris et al., J. Neurophysiol. 71(3), 1022-1036 (1994)) or in the trapezoid body also between critical bandwidths (Louage et al., Auditory Signal Processing: Physiology, Psychoacoustics, and Models (Springer, New York, 2004), pp. 100-106). The effect is an enhancement of pitch detection, spatial localization, or speech intelligibility. To investigate the presence of synchronization already in the cochlea, in the present paper, a finite-difference time-domain model of the cochlea is implemented with conditions for spike excitation caused by mechanical basilar membrane displacement. This model shows synchronization already in the cochlea at the transition from mechanical waves to nerve spike excitation. Using a sound as model input consisting of ten harmonic overtones with random phase relations, the output spikes are strongly phase aligned after this transition. When using a two-sinusoidal complex as input, and altering the phase relations between the two sinusoidals, the output spikes show the higher sinusoidal shifting the phase of the lower one in its direction in a systematic way. Therefore, already during the transition from mechanical to electrical excitation within the cochlea, synchronization appears to be improving perception of pitch, speech, or localization.
Phase synchronization in the cochlea at transition from mechanical waves to electrical spikes
NASA Astrophysics Data System (ADS)
Bader, Rolf
2015-10-01
Measured auditory nervous spikes often show synchronization, phase-locking, or entrainment (P. Cariani, Neural Plast. 6(4), 142-172 (1999) and Kumaresana et al., J. Acoust. Soc. Am. 133(6), 4290-4310 (2013). Physiologically synchronization is found in the anteroventral cochlear nucleus (Joris et al., J. Neurophysiol. 71(3), 1022-1036 (1994)) or in the trapezoid body also between critical bandwidths (Louage et al., Auditory Signal Processing: Physiology, Psychoacoustics, and Models (Springer, New York, 2004), pp. 100-106). The effect is an enhancement of pitch detection, spatial localization, or speech intelligibility. To investigate the presence of synchronization already in the cochlea, in the present paper, a finite-difference time-domain model of the cochlea is implemented with conditions for spike excitation caused by mechanical basilar membrane displacement. This model shows synchronization already in the cochlea at the transition from mechanical waves to nerve spike excitation. Using a sound as model input consisting of ten harmonic overtones with random phase relations, the output spikes are strongly phase aligned after this transition. When using a two-sinusoidal complex as input, and altering the phase relations between the two sinusoidals, the output spikes show the higher sinusoidal shifting the phase of the lower one in its direction in a systematic way. Therefore, already during the transition from mechanical to electrical excitation within the cochlea, synchronization appears to be improving perception of pitch, speech, or localization.
Nonlocal chaotic phase synchronization
NASA Astrophysics Data System (ADS)
Zhan, Meng; Zheng, Zhi-Gang; Hu, Gang; Peng, Xi-Hong
2000-09-01
A novel synchronization behavior, nonlocal chaotic phase synchronization, is investigated. For two coupled Rossler oscillators with only one forced by an injected periodic signal, the phase of the unforced oscillator can be locked to the phase of the periodic signal while the forced one is well unlocked by the signal; in a chain of coupled chaotic oscillators with nearest coupling, the phase of an oscillator (or a cluster) can be locked to another nonneighbor one. Moreover, the mechanism underlying the transition to nonlocal synchronization is discussed in detail.
Experimental Evidence for Phase Synchronization Transitions in the Human Cardiorespiratory System
NASA Astrophysics Data System (ADS)
Bartsch, Ronny; Kantelhardt, Jan W.; Penzel, Thomas; Havlin, Shlomo
2007-02-01
Transitions in the dynamics of complex systems can be characterized by changes in the synchronization behavior of their components. Taking the human cardiorespiratory system as an example and using an automated procedure for screening the synchrograms of 112 healthy subjects we study the frequency and the distribution of synchronization episodes under different physiological conditions that occur during sleep. We find that phase synchronization between heartbeat and breathing is significantly enhanced during non-rapid-eye-movement (non-REM) sleep (deep sleep and light sleep) and reduced during REM sleep. Our results suggest that the synchronization is mainly due to a weak influence of the breathing oscillator upon the heartbeat oscillator, which is disturbed in the presence of long-term correlated noise, superimposed by the activity of higher brain regions during REM sleep.
NASA Astrophysics Data System (ADS)
Teodorescu, Razvan
2009-10-01
Systems of oscillators coupled non-linearly (stochastically or not) are ubiquitous in nature and can explain many complex phenomena: coupled Josephson junction arrays, cardiac pacemaker cells, swarms or flocks of insects and birds, etc. They are know to have a non-trivial phase diagram, which includes chaotic, partially synchronized, and fully synchronized phases. A traditional model for this class of problems is the Kuramoto system of oscillators, which has been studied extensively for the last three decades. The model is a canonical example for non-equilibrium, dynamical phase transitions, so little understood in physics. From a stochastic analysis point of view, the transition is described by the large deviations principle, which offers little information on the scaling behavior near the critical point. I will discuss a special case of the model, which allows a rigorous analysis of the critical properties of the model, and reveals a new, anomalous scaling behavior in the vicinity of the critical point.
NASA Astrophysics Data System (ADS)
Bartsch, Ronny P.; Ivanov, Plamen Ch.
2012-02-01
Recent studies have focused on various features of cardiac and respiratory dynamics with the aim to better understand key aspects of the underlying neural control of these systems. We investigate how sleep influences cardio-respiratory coupling, and how the degree of this coupling changes with transitions across sleep stages in healthy young and elderly subjects. We analyze full night polysomnographic recordings of 189 healthy subjects (age range: 20 to 90 years). To probe cardio-respiratory coupling, we apply a novel phase synchronization analysis method to quantify the adjustment of rhythms between heartbeat and breathing signals. We investigate how cardio-respiratory synchronization changes with sleep-stage transitions and under healthy aging. We find a statistically significant difference in the degree of cardio-respiratory synchronization during different sleep stages for both young and elderly subjects and a significant decline of synchronization with age. This is a first evidence of how sleep regulation and aging influence a key nonlinear mechanism of physiologic coupling as quantified by the degree of phase synchronization between the cardiac and respiratory systems, which is of importance to develop adequate modeling approaches.
Robust spin crossover platforms with synchronized spin switch and polymer phase transition
Novio, F.; Evangelio, E.; Vazquez-Mera, N.; González-Monje, P.; Bellido, E.; Mendes, S.; Kehagias, N.; Ruiz-Molina, D.
2013-01-01
The idea of developing magnetic molecular materials into real functional electronic devices with low-cost and scalable techniques appeared with the emergence of the field several years ago. Today, even though great advances have been done with this aim, the promise of a functional device working at the micro-/nanoscale and at room temperature has unfortunately not completely materialized yet, as their use still strongly depends on the fabrication methodology of a robust device that can be handled and integrated without compromising their functionality. Here we propose the use of polymeric matrices as a platform for the development of such robust switchable structures exhibiting reproducible results independently of the dimension -from macro to micro-/nanoscale- and morphology -from thin-films to nanoparticles and nanoimprinted motives- while allowing to induce an irreversible hysteresis, reminiscent of a non-volatile memory, by synchronization with the polymer phase transition.
Kim, Minkyung; Kim, Seunghwan; Mashour, George A; Lee, UnCheol
2017-01-01
How the brain reconstitutes consciousness and cognition after a major perturbation like general anesthesia is an important question with significant neuroscientific and clinical implications. Recent empirical studies in animals and humans suggest that the recovery of consciousness after anesthesia is not random but ordered. Emergence patterns have been classified as progressive and abrupt transitions from anesthesia to consciousness, with associated differences in duration and electroencephalogram (EEG) properties. We hypothesized that the progressive and abrupt emergence patterns from the unconscious state are associated with, respectively, continuous and discontinuous synchronization transitions in functional brain networks. The discontinuous transition is explainable with the concept of explosive synchronization, which has been studied almost exclusively in network science. We used the Kuramato model, a simple oscillatory network model, to simulate progressive and abrupt transitions in anatomical human brain networks acquired from diffusion tensor imaging (DTI) of 82 brain regions. To facilitate explosive synchronization, distinct frequencies for hub nodes with a large frequency disassortativity (i.e., higher frequency nodes linking with lower frequency nodes, or vice versa) were applied to the brain network. In this simulation study, we demonstrated that both progressive and abrupt transitions follow distinct synchronization processes at the individual node, cluster, and global network levels. The characteristic synchronization patterns of brain regions that are "progressive and earlier" or "abrupt but delayed" account for previously reported behavioral responses of gradual and abrupt emergence from the unconscious state. The characteristic network synchronization processes observed at different scales provide new insights into how regional brain functions are reconstituted during progressive and abrupt emergence from the unconscious state. This theoretical
Kim, Minkyung; Kim, Seunghwan; Mashour, George A.; Lee, UnCheol
2017-01-01
How the brain reconstitutes consciousness and cognition after a major perturbation like general anesthesia is an important question with significant neuroscientific and clinical implications. Recent empirical studies in animals and humans suggest that the recovery of consciousness after anesthesia is not random but ordered. Emergence patterns have been classified as progressive and abrupt transitions from anesthesia to consciousness, with associated differences in duration and electroencephalogram (EEG) properties. We hypothesized that the progressive and abrupt emergence patterns from the unconscious state are associated with, respectively, continuous and discontinuous synchronization transitions in functional brain networks. The discontinuous transition is explainable with the concept of explosive synchronization, which has been studied almost exclusively in network science. We used the Kuramato model, a simple oscillatory network model, to simulate progressive and abrupt transitions in anatomical human brain networks acquired from diffusion tensor imaging (DTI) of 82 brain regions. To facilitate explosive synchronization, distinct frequencies for hub nodes with a large frequency disassortativity (i.e., higher frequency nodes linking with lower frequency nodes, or vice versa) were applied to the brain network. In this simulation study, we demonstrated that both progressive and abrupt transitions follow distinct synchronization processes at the individual node, cluster, and global network levels. The characteristic synchronization patterns of brain regions that are “progressive and earlier” or “abrupt but delayed” account for previously reported behavioral responses of gradual and abrupt emergence from the unconscious state. The characteristic network synchronization processes observed at different scales provide new insights into how regional brain functions are reconstituted during progressive and abrupt emergence from the unconscious state. This
NASA Astrophysics Data System (ADS)
Fiderer, Lukas J.; Kuś, Marek; Braun, Daniel
2016-09-01
We study mechanisms that allow one to synchronize the quantum phase of two qubits relative to a fixed basis. Starting from one qubit in a fixed reference state and the other in an unknown state, we find that, contrary to the impossibility of perfect quantum cloning, the quantum phase can be synchronized perfectly through a joined unitary operation. When both qubits are initially in a pure unknown state, perfect quantum-phase synchronization through unitary operations becomes impossible. In this situation we determine the maximum average quantum-phase synchronization fidelity and the distribution of relative phases and fidelities, and we identify optimal quantum circuits that achieve this maximum fidelity. A subset of these optimal quantum circuits enable perfect quantum-phase synchronization for a class of unknown initial states restricted to the equatorial plane of the Bloch sphere.
The prisoner's dilemma with semi-synchronous updates: evidence for a first-order phase transition
NASA Astrophysics Data System (ADS)
Ali Saif, M.; Gade, Prashant M.
2009-07-01
The emergence of cooperation in self-centered individuals has been a major puzzle in the study of evolutionary ethics. Reciprocal altruism is one of the explanations put forward and the prisoner's dilemma has been a paradigm in this context. The emergence of cooperation was demonstrated for the prisoner's dilemma on a lattice with synchronous update. However, the cooperation disappeared for asynchronous update and the general validity of the conclusions was questioned. Neither synchronous nor asynchronous updates are realistic for natural systems. In this paper, we make a detailed study of a more realistic system of semi-synchronous updates where pN agents are updated at every time instant. We observe a transition from an all-defector state to a mixed state as a function of p. Our studies indicate that despite it being a transition from an absorbing state, it is a first-order transition. Furthermore, we used a damage spreading technique to demonstrate that the transition in this system could be classified as a frozen-chaotic transition.
Spontaneous phase transition from free flow to synchronized flow in traffic on a single-lane highway
NASA Astrophysics Data System (ADS)
Jin, Cheng-Jie; Wang, Wei; Jiang, Rui; Zhang, H. M.; Wang, Hao
2013-01-01
Traffic flow complexity comes from the car-following and lane-changing behavior. Based on empirical data for individual vehicle speeds and time headways measured on a single-lane highway section, we have studied the traffic flow properties induced by pure car-following behavior. We have found that a spontaneous sudden drop in velocity could happen in a platoon of vehicles when the velocity of the leading vehicle is quite high (˜70 km/h). In contrast, when the velocity of the leading vehicle in a platoon slows down, such a spontaneous sudden drop of velocity has not been observed. Our finding indicates that traffic breakdown on a single-lane road might be a phase transition from free flow to synchronized flow (F→S transition). We have found that the flow rate within the emergent synchronized flow can be either smaller or larger than the flow rate in the free flow within which the synchronized flow propagates. Our empirical findings support Kerner's three-phase theory in which traffic breakdown is associated with an F→S transition.
Jin, Cheng-Jie; Wang, Wei; Jiang, Rui; Zhang, H M; Wang, Hao
2013-01-01
Traffic flow complexity comes from the car-following and lane-changing behavior. Based on empirical data for individual vehicle speeds and time headways measured on a single-lane highway section, we have studied the traffic flow properties induced by pure car-following behavior. We have found that a spontaneous sudden drop in velocity could happen in a platoon of vehicles when the velocity of the leading vehicle is quite high (~70 km/h). In contrast, when the velocity of the leading vehicle in a platoon slows down, such a spontaneous sudden drop of velocity has not been observed. Our finding indicates that traffic breakdown on a single-lane road might be a phase transition from free flow to synchronized flow (F→S transition). We have found that the flow rate within the emergent synchronized flow can be either smaller or larger than the flow rate in the free flow within which the synchronized flow propagates. Our empirical findings support Kerner's three-phase theory in which traffic breakdown is associated with an F→S transition.
NASA Astrophysics Data System (ADS)
Parihar, Abhinav; Shukla, Nikhil; Datta, Suman; Raychowdhury, Arijit
2015-02-01
Computing with networks of synchronous oscillators has attracted wide-spread attention as novel materials and device topologies have enabled realization of compact, scalable and low-power coupled oscillatory systems. Of particular interest are compact and low-power relaxation oscillators that have been recently demonstrated using MIT (metal-insulator-transition) devices using properties of correlated oxides. Further the computational capability of pairwise coupled relaxation oscillators has also been shown to outperform traditional Boolean digital logic circuits. This paper presents an analysis of the dynamics and synchronization of a system of two such identical coupled relaxation oscillators implemented with MIT devices. We focus on two implementations of the oscillator: (a) a D-D configuration where complementary MIT devices (D) are connected in series to provide oscillations and (b) a D-R configuration where it is composed of a resistor (R) in series with a voltage-triggered state changing MIT device (D). The MIT device acts like a hysteresis resistor with different resistances in the two different states. The synchronization dynamics of such a system has been analyzed with purely charge based coupling using a resistive (RC) and a capacitive (CC) element in parallel. It is shown that in a D-D configuration symmetric, identical and capacitively coupled relaxation oscillator system synchronizes to an anti-phase locking state, whereas when coupled resistively the system locks in phase. Further, we demonstrate that for certain range of values of RC and CC, a bistable system is possible which can have potential applications in associative computing. In D-R configuration, we demonstrate the existence of rich dynamics including non-monotonic flows and complex phase relationship governed by the ratios of the coupling impedance. Finally, the developed theoretical formulations have been shown to explain experimentally measured waveforms of such pairwise coupled
Wavelet phase synchronization and chaoticity.
Postnikov, E B
2009-11-01
It has been shown that the so-called "wavelet phase" (or "time-scale") synchronization of chaotic signals is actually synchronization of smoothed functions with reduced chaotic fluctuations. This fact is based on the representation of the wavelet transform with the Morlet wavelet as a solution of the Cauchy problem for a simple diffusion equation with initial condition in a form of harmonic function modulated by a given signal. The topological background of the resulting effect is discussed. It is argued that the wavelet phase synchronization provides information about the synchronization of an averaged motion described by bounding tori instead of the fine-level classical chaotic phase synchronization.
Clustering versus non-clustering phase synchronizations
Liu, Shuai; Zhan, Meng
2014-03-15
Clustering phase synchronization (CPS) is a common scenario to the global phase synchronization of coupled dynamical systems. In this work, a novel scenario, the non-clustering phase synchronization (NPS), is reported. It is found that coupled systems do not transit to the global synchronization until a certain sufficiently large coupling is attained, and there is no clustering prior to the global synchronization. To reveal the relationship between CPS and NPS, we further analyze the noise effect on coupled phase oscillators and find that the coupled oscillator system can change from CPS to NPS with the increase of noise intensity or system disorder. These findings are expected to shed light on the mechanism of various intriguing self-organized behaviors in coupled systems.
Friction and Phase Synchronization
NASA Astrophysics Data System (ADS)
Braiman, Y.; Protopopescu, V.; Family, F.; Hentschel, H. G. E.
2000-03-01
Spatiotemporal fluctuations in small discrete nonlinear arrays affect the dynamics of the center of mass. We derive the equations describing the dynamics of the center of mass and the spatial fluctuations for each coherent mode of the array. Analysis of these equations indicates that depending on array stiffness, size, and the external forcing - quantized jumps occur in the minimum friction (maximum velocity) of the array. We propose an analytical formalism to determine the occurrences of these jumps. We present numerical evidence indicating that phase synchronization is related to the frictional properties of sliding objects at the atomic scale and discuss mechanisms of tuning and controlling nanoscale friction. Y. Braiman, F. Family, H. G. E. Hentschel, C. Mak, and J. Krim, Phys. Rev. E 59, R4737 (1999). H. G. E. Hentschel, F. Family, and Y. Braiman, Phys. Rev. Lett. 83, 104 (1999).
Continuous and discontinuous transitions to synchronization
NASA Astrophysics Data System (ADS)
Wang, Chaoqing; Garnier, Nicolas B.
2016-11-01
We describe how the transition to synchronization in a system of globally coupled Stuart-Landau oscillators changes from continuous to discontinuous when the nature of the coupling is moved from diffusive to reactive. We explain this drastic qualitative change as resulting from the co-existence of a particular synchronized macrostate together with the trivial incoherent macrostate, in a range of parameter values for which the latter is linearly stable. In contrast to the paradigmatic Kuramoto model, this particular state observed at the synchronization transition contains a finite, non-vanishing number of synchronized oscillators, which results in a discontinuous transition. We consider successively two situations where either a fully synchronized state or a partially synchronized state exists at the transition. Thermodynamic limit and finite size effects are briefly discussed, as well as connections with recently observed discontinuous transitions.
Dynamical inference: Where phase synchronization and generalized synchronization meet
NASA Astrophysics Data System (ADS)
Stankovski, Tomislav; McClintock, Peter V. E.; Stefanovska, Aneta
2014-06-01
Synchronization is a widespread phenomenon that occurs among interacting oscillatory systems. It facilitates their temporal coordination and can lead to the emergence of spontaneous order. The detection of synchronization from the time series of such systems is of great importance for the understanding and prediction of their dynamics, and several methods for doing so have been introduced. However, the common case where the interacting systems have time-variable characteristic frequencies and coupling parameters, and may also be subject to continuous external perturbation and noise, still presents a major challenge. Here we apply recent developments in dynamical Bayesian inference to tackle these problems. In particular, we discuss how to detect phase slips and the existence of deterministic coupling from measured data, and we unify the concepts of phase synchronization and general synchronization. Starting from phase or state observables, we present methods for the detection of both phase and generalized synchronization. The consistency and equivalence of phase and generalized synchronization are further demonstrated, by the analysis of time series from analog electronic simulations of coupled nonautonomous van der Pol oscillators. We demonstrate that the detection methods work equally well on numerically simulated chaotic systems. In all the cases considered, we show that dynamical Bayesian inference can clearly identify noise-induced phase slips and distinguish coherence from intrinsic coupling-induced synchronization.
Intermittent phase synchronization in human epileptic brain
NASA Astrophysics Data System (ADS)
Moskalenko, Olga I.; Koloskova, Anastasya D.; Zhuravlev, Maksim O.; Koronovskii, Alexey A.; Hramov, Alexander E.
2017-03-01
We found the intermittent phase synchronization in human epileptic brain. We show that the phases of the synchronous behavior are observed both during the epileptic seizures and in the fields of the background activity of the brain. We estimate the degree of intermittent phase synchronization in both considered cases and found that the epileptic seizures are characterized by the higher degree of synchronization in comparison with the fields of background activity. For estimation of synchronization degree the modification of the method for estimation of zero conditional Lyapunov exponent from time series proposed in [PRE 92 (2015) 012913] has been used.
Detecting anomalous phase synchronization from time series
Tokuda, Isao T.; Kumar Dana, Syamal; Kurths, Juergen
2008-06-15
Modeling approaches are presented for detecting an anomalous route to phase synchronization from time series of two interacting nonlinear oscillators. The anomalous transition is characterized by an enlargement of the mean frequency difference between the oscillators with an initial increase in the coupling strength. Although such a structure is common in a large class of coupled nonisochronous oscillators, prediction of the anomalous transition is nontrivial for experimental systems, whose dynamical properties are unknown. Two approaches are examined; one is a phase equational modeling of coupled limit cycle oscillators and the other is a nonlinear predictive modeling of coupled chaotic oscillators. Application to prototypical models such as two interacting predator-prey systems in both limit cycle and chaotic regimes demonstrates the capability of detecting the anomalous structure from only a few sets of time series. Experimental data from two coupled Chua circuits shows its applicability to real experimental system.
NASA Astrophysics Data System (ADS)
Gitterman, Moshe
2014-09-01
In discussing phase transitions, the first thing that we have to do is to define a phase. This is a concept from thermodynamics and statistical mechanics, where a phase is defined as a homogeneous system. As a simple example, let us consider instant coffee. This consists of coffee powder dissolved in water, and after stirring it we have a homogeneous mixture, i.e., a single phase. If we add to a cup of coffee a spoonful of sugar and stir it well, we still have a single phase -- sweet coffee. However, if we add ten spoonfuls of sugar, then the contents of the cup will no longer be homogeneous, but rather a mixture of two homogeneous systems or phases, sweet liquid coffee on top and coffee-flavored wet sugar at the bottom...
NASA Astrophysics Data System (ADS)
Gao, Kun; Jiang, Rui; Wang, Bing-Hong; Wu, Qing-Song
2009-08-01
In this paper, we incorporate a limitation on the interaction range between neighboring vehicles into the cellular automaton model proposed by Gao and Jiang et al. [K. Gao, R. Jiang, S. X. Hu, B. H. Wang and Q. S. Wu, Phys. Rev. E 76 (2007) 026105], which was established within the framework of Kerner’s three-phase traffic theory and has been shown to be able to reproduce the three-phase traffic flow. This modification eliminates an unrealistic phenomenon found in the previous model, where the velocity-adaptation effect between neighboring vehicles can exist even if those vehicles are infinitely far away from each other. Therefore, in the improved model, we regulate that such interactions can only occur within a finite distance. For simplicity, we suppose a constant value to describe this distance in this paper. As a result, when compared to the previous model, the improved model mainly simulates the following results which are believed to be an improvement. (1) The improved model successfully reproduces the expected discontinuous transition from free flow to synchronized flow and the related “moving synchronized flow pattern”, which are both absent in the original model but have been observed in real traffic. (2) The improved model simulates the correlation functions, time headway distributions and optimal velocity functions which are all more consistent with the empirical data than the previous model and most of the other models published before. (3) Together with the previous two models considering the velocity-difference effect, this model finally accomplishes a significative process of developing traffic flow models from the traditional “fundamental diagram approach” to the three-phase traffic theory. This process should be helpful for us to understand the traffic dynamics and mechanics further and deeper.
On the estimation of phase synchronization, spurious synchronization and filtering.
Rios Herrera, Wady A; Escalona, Joaquín; Rivera López, Daniel; Müller, Markus F
2016-12-01
Phase synchronization, viz., the adjustment of instantaneous frequencies of two interacting self-sustained nonlinear oscillators, is frequently used for the detection of a possible interrelationship between empirical data recordings. In this context, the proper estimation of the instantaneous phase from a time series is a crucial aspect. The probability that numerical estimates provide a physically relevant meaning depends sensitively on the shape of its power spectral density. For this purpose, the power spectrum should be narrow banded possessing only one prominent peak [M. Chavez et al., J. Neurosci. Methods 154, 149 (2006)]. If this condition is not fulfilled, band-pass filtering seems to be the adequate technique in order to pre-process data for a posterior synchronization analysis. However, it was reported that band-pass filtering might induce spurious synchronization [L. Xu et al., Phys. Rev. E 73, 065201(R), (2006); J. Sun et al., Phys. Rev. E 77, 046213 (2008); and J. Wang and Z. Liu, EPL 102, 10003 (2013)], a statement that without further specification causes uncertainty over all measures that aim to quantify phase synchronization of broadband field data. We show by using signals derived from different test frameworks that appropriate filtering does not induce spurious synchronization. Instead, filtering in the time domain tends to wash out existent phase interrelations between signals. Furthermore, we show that measures derived for the estimation of phase synchronization like the mean phase coherence are also useful for the detection of interrelations between time series, which are not necessarily derived from coupled self-sustained nonlinear oscillators.
On the estimation of phase synchronization, spurious synchronization and filtering
NASA Astrophysics Data System (ADS)
Rios Herrera, Wady A.; Escalona, Joaquín; Rivera López, Daniel; Müller, Markus F.
2016-12-01
Phase synchronization, viz., the adjustment of instantaneous frequencies of two interacting self-sustained nonlinear oscillators, is frequently used for the detection of a possible interrelationship between empirical data recordings. In this context, the proper estimation of the instantaneous phase from a time series is a crucial aspect. The probability that numerical estimates provide a physically relevant meaning depends sensitively on the shape of its power spectral density. For this purpose, the power spectrum should be narrow banded possessing only one prominent peak [M. Chavez et al., J. Neurosci. Methods 154, 149 (2006)]. If this condition is not fulfilled, band-pass filtering seems to be the adequate technique in order to pre-process data for a posterior synchronization analysis. However, it was reported that band-pass filtering might induce spurious synchronization [L. Xu et al., Phys. Rev. E 73, 065201(R), (2006); J. Sun et al., Phys. Rev. E 77, 046213 (2008); and J. Wang and Z. Liu, EPL 102, 10003 (2013)], a statement that without further specification causes uncertainty over all measures that aim to quantify phase synchronization of broadband field data. We show by using signals derived from different test frameworks that appropriate filtering does not induce spurious synchronization. Instead, filtering in the time domain tends to wash out existent phase interrelations between signals. Furthermore, we show that measures derived for the estimation of phase synchronization like the mean phase coherence are also useful for the detection of interrelations between time series, which are not necessarily derived from coupled self-sustained nonlinear oscillators.
Coupled lasers: phase versus chaos synchronization.
Reidler, I; Nixon, M; Aviad, Y; Guberman, S; Friesem, A A; Rosenbluh, M; Davidson, N; Kanter, I
2013-10-15
The synchronization of chaotic lasers and the optical phase synchronization of light originating in multiple coupled lasers have both been extensively studied. However, the interplay between these two phenomena, especially at the network level, is unexplored. Here, we experimentally compare these phenomena by controlling the heterogeneity of the coupling delay times of two lasers. While chaotic lasers exhibit deterioration in synchronization as the time delay heterogeneity increases, phase synchronization is found to be independent of heterogeneity. The experimental results are found to be in agreement with numerical simulations for semiconductor lasers.
Fu, Chenbo; Lin, Weijie; Huang, Liang; Wang, Xingang
2014-05-01
Synchronization transition in networks of nonlocally coupled chaotic oscillators is investigated. It is found that in reaching the state of global synchronization the networks can stay in various states of partial synchronization. The stability of the partial synchronization states is analyzed by the method of eigenvalue analysis, in which the important roles of the network topological symmetry on synchronization transition are identified. Moreover, for networks possessing multiple topological symmetries, it is found that the synchronization transition can be divided into different stages, with each stage characterized by a unique synchronous pattern of the oscillators. Synchronization transitions in networks of nonsymmetric topology and nonidentical oscillators are also investigated, where the partial synchronization states, although unstable, are found to be still playing important roles in the transitions.
Phase synchronization of two anharmonic nanomechanical oscillators.
Matheny, Matthew H; Grau, Matt; Villanueva, Luis G; Karabalin, Rassul B; Cross, M C; Roukes, Michael L
2014-01-10
We investigate the synchronization of oscillators based on anharmonic nanoelectromechanical resonators. Our experimental implementation allows unprecedented observation and control of parameters governing the dynamics of synchronization. We find close quantitative agreement between experimental data and theory describing reactively coupled Duffing resonators with fully saturated feedback gain. In the synchronized state we demonstrate a significant reduction in the phase noise of the oscillators, which is key for sensor and clock applications. Our work establishes that oscillator networks constructed from nanomechanical resonators form an ideal laboratory to study synchronization--given their high-quality factors, small footprint, and ease of cointegration with modern electronic signal processing technologies.
Phase synchronization of a new chaotic system
NASA Astrophysics Data System (ADS)
Vahedi, Shahed; Md Noorani, Mohd Salmi
2013-09-01
In this paper, we are going to apply phase and anti-phase synchronization on a recently studied chaotic system by the authors. The technique we employ to extract the phase at each time is EMD and we show that the corresponding intrinsic modes of the two systems are well phase locked after activating the control functions.
Synchronization and Phase Dynamics of Oscillating Foils
NASA Astrophysics Data System (ADS)
Finkel, Cyndee L.
In this work, a two-dimensional model representing the vortices that animals produce, when they are ying/swimming, was constructed. A D{shaped cylinder and an oscillating airfoil were used to mimic these body{shed and wing{generated vortices, respectively. The parameters chosen are based on the Reynolds numbers similar to that which is observed in nature (˜10 4). In order to imitate the motion of ying/swimming, the entire system was suspended into a water channel from frictionless air{bearings. The position of the apparatus in the channel was regulated with a linear, closed loop PI controller. Thrust/drag forces were measured with strain gauges and particle image velocimetry (PIV) was used to examine the wake structure that develops. The Strouhal number of the oscillating airfoil was compared to the values observed in nature as the system transitions between the accelerated and steady states. The results suggest that self-regulation restricts the values of the Strouhal number to a certain range where no other external sensory input is necessary. As suggested by previous work, this self-regulation is a result of a limit cycle process that stems from nonlinear periodic oscillations. The limit cycles were used to examine the synchronous conditions due to the coupling of the foil and wake vortices. Noise is a factor that can mask details of the synchronization. In order to control its effect, we study the locking conditions using an analytic technique that only considers the phases. Our results show that the phase locking indices are dependent on the Strouhal value as it converges to a frequency locking ratio of ≃0:5. This indicates that synchronization occurs during cruising between the motion of the foil and the measured thrust/drag response of the uid forces. The results suggest that Strouhal number selection in steady forward natural swimming and ying is the result of a limit cycle process and not actively controlled by an organism. An implication of this is
Markers of criticality in phase synchronization
Botcharova, Maria; Farmer, Simon F.; Berthouze, Luc
2014-01-01
The concept of the brain as a critical dynamical system is very attractive because systems close to criticality are thought to maximize their dynamic range of information processing and communication. To date, there have been two key experimental observations in support of this hypothesis: (i) neuronal avalanches with power law distribution of size and (ii) long-range temporal correlations (LRTCs) in the amplitude of neural oscillations. The case for how these maximize dynamic range of information processing and communication is still being made and because a significant substrate for information coding and transmission is neural synchrony it is of interest to link synchronization measures with those of criticality. We propose a framework for characterizing criticality in synchronization based on an analysis of the moment-to-moment fluctuations of phase synchrony in terms of the presence of LRTCs. This framework relies on an estimation of the rate of change of phase difference and a set of methods we have developed to detect LRTCs. We test this framework against two classical models of criticality (Ising and Kuramoto) and recently described variants of these models aimed to more closely represent human brain dynamics. From these simulations we determine the parameters at which these systems show evidence of LRTCs in phase synchronization. We demonstrate proof of principle by analysing pairs of human simultaneous EEG and EMG time series, suggesting that LRTCs of corticomuscular phase synchronization can be detected in the resting state and experimentally manipulated. The existence of LRTCs in fluctuations of phase synchronization suggests that these fluctuations are governed by non-local behavior, with all scales contributing to system behavior. This has important implications regarding the conditions under which one should expect to see LRTCs in phase synchronization. Specifically, brain resting states may exhibit LRTCs reflecting a state of readiness facilitating
Markers of criticality in phase synchronization.
Botcharova, Maria; Farmer, Simon F; Berthouze, Luc
2014-01-01
The concept of the brain as a critical dynamical system is very attractive because systems close to criticality are thought to maximize their dynamic range of information processing and communication. To date, there have been two key experimental observations in support of this hypothesis: (i) neuronal avalanches with power law distribution of size and (ii) long-range temporal correlations (LRTCs) in the amplitude of neural oscillations. The case for how these maximize dynamic range of information processing and communication is still being made and because a significant substrate for information coding and transmission is neural synchrony it is of interest to link synchronization measures with those of criticality. We propose a framework for characterizing criticality in synchronization based on an analysis of the moment-to-moment fluctuations of phase synchrony in terms of the presence of LRTCs. This framework relies on an estimation of the rate of change of phase difference and a set of methods we have developed to detect LRTCs. We test this framework against two classical models of criticality (Ising and Kuramoto) and recently described variants of these models aimed to more closely represent human brain dynamics. From these simulations we determine the parameters at which these systems show evidence of LRTCs in phase synchronization. We demonstrate proof of principle by analysing pairs of human simultaneous EEG and EMG time series, suggesting that LRTCs of corticomuscular phase synchronization can be detected in the resting state and experimentally manipulated. The existence of LRTCs in fluctuations of phase synchronization suggests that these fluctuations are governed by non-local behavior, with all scales contributing to system behavior. This has important implications regarding the conditions under which one should expect to see LRTCs in phase synchronization. Specifically, brain resting states may exhibit LRTCs reflecting a state of readiness facilitating
Quantum-coherent phase oscillations in synchronization
NASA Astrophysics Data System (ADS)
Weiss, Talitha; Walter, Stefan; Marquardt, Florian
2017-04-01
Recently, several studies have investigated synchronization in quantum-mechanical limit-cycle oscillators. However, the quantum nature of these systems remained partially hidden, since the dynamics of the oscillator's phase was overdamped and therefore incoherent. We show that there exist regimes of underdamped and even quantum-coherent phase motion, opening up new possibilities to study quantum synchronization dynamics. To this end, we investigate the Van der Pol oscillator (a paradigm for a self-oscillating system) synchronized to an external drive. We derive an effective quantum model which fully describes the regime of underdamped phase motion and additionally allows us to identify the quality of quantum coherence. Finally, we identify quantum limit cycles of the phase itself.
Reversible Transitions between Synchronization States of the Cardiorespiratory System
NASA Astrophysics Data System (ADS)
Stefanovska, A.; Haken, H.; McClintock, P. V. E.; HožiČ, M.; Bajrović, F.; Ribarič, S.
2000-11-01
Phase synchronization between cardiac and respiratory oscillations is investigated during anesthesia in rats. Synchrograms and time evolution of synchronization indices are used to show that the system passes reversibly through a sequence of different phase-synchronized states as the anesthesia level changes, indicating that it can undergo phase transitionlike phenomena. It appears that the synchronization state may be used to characterize the depth of anesthesia.
Phase synchronization inside a superradiant laser
NASA Astrophysics Data System (ADS)
Weiner, Joshua M.; Cox, Kevin C.; Bohnet, Justin G.; Thompson, James K.
2017-03-01
Superradiant lasers may soon achieve state-of-the-art frequency purity, with linewidths of 1 mHz or less. In a superradiant (or bad-cavity) laser, coherence is primarily stored in the atomic gain medium instead of the optical field. This phase storage is characterized by spontaneous quantum synchronization of the optical dipole moments of each atom. To observe this synchronization, we create two independent superradiant atomic ensembles lasing in a single optical cavity and observe the dynamics of phase realignment, collective power enhancement, and steady-state frequency locking. This work introduces superradiant ensembles as a testbed for fundamental study of quantum synchronization as well and informs research on narrow linewidth superradiant lasers.
Cosmological phase transitions
Kolb, E.W. |
1993-10-01
If modern ideas about the role of spontaneous symmetry breaking in fundamental physics are correct, then the Universe should have undergone a series of phase transitions early in its history. The study of cosmological phase transitions has become an important aspect of early-Universe cosmology. In this lecture I review some very recent work on three aspects of phase transitions: the electroweak transition, texture, and axions.
NASA Astrophysics Data System (ADS)
Wang, Qingyun; Duan, Zhisheng; Perc, Matjaž; Chen, Guanrong
2008-09-01
Synchronization transitions are investigated in small-world neuronal networks that are locally modeled by the Rulkov map with additive spatiotemporal noise. In particular, we investigate the impact of different information transmission delays and rewiring probability. We show that short delays induce zigzag fronts of excitations, whereas intermediate delays can further detriment synchrony in the network due to a dynamic clustering anti-phase synchronization transition. Detailed investigations reveal, however, that for longer delay lengths the synchrony of excitations in the network can again be enhanced due to the emergence of in-phase synchronization. In addition, we show that an appropriate small-world topology can restore synchronized behavior provided information transmission delays are either short or long. On the other hand, within the intermediate delay region, which is characterized by anti-phase synchronization and clustering, differences in the network topology do not notably affect the synchrony of neuronal activity.
Phase Synchronization Detection of Financial Market Crises
NASA Astrophysics Data System (ADS)
Yang, Chun-Xia; Wu, Hong-Fa; Zhang, Ying-Chao; Xia, Bing-Ying; Itoh, Masaru
Financial market is a complex system whose characteristic behaviors can be caught in corresponding time series. Analyzing such time series by appropriate methods will aid in making inferences and predictions. Here phase synchronization approach is used for visual pattern recognition of crises. Based on Empirical Mode Decomposition and the Hilbert transform, phase evolution of various rhythmic components exiting in the market is extracted. Then the concept of synchronization can be successfully applied to crises detection. Unlike other approaches, this detection distinguishes crises from normal state according to variations of interaction among rhythmic components. The empirical results mentioned here convince us of the fact that financial crises take place at the time when the adjustment processes of other quasi-periodic oscillations and the trend are out of synchronization. On the contrary, when other rhythmic oscillations can be synchronized with the trend, the market will develop healthily. The presence and duration of synchronization reflect dynamics of financial market. All these results will enlighten people to disclose its reasons and probe methods for controlling its pathological rhythms.
Phase Synchronization of Coupled Rossler Oscillators: Amplitude Effect
NASA Astrophysics Data System (ADS)
Li, Xiao-Wen; Zheng, Zhi-Gang
2007-02-01
Phase synchronization of two linearly coupled Rossler oscillators with parameter misfits is explored. It is found that depending on parameter mismatches, the synchronization of phases exhibits different manners. The synchronization regime can be divided into three regimes. For small mismatches, the amplitude-insensitive regime gives the phase-dominant synchronization; When the parameter misfit increases, the amplitudes and phases of oscillators are correlated, and the amplitudes will dominate the synchronous dynamics for very large mismatches. The lag time among phases exhibits a power law when phase synchronization is achieved.
GPS synchronized power system phase angle measurements
NASA Astrophysics Data System (ADS)
Wilson, Robert E.; Sterlina, Patrick S.
1994-09-01
This paper discusses the use of Global Positioning System (GPS) synchronized equipment for the measurement and analysis of key power system quantities. Two GPS synchronized phasor measurement units (PMU) were installed before testing. It was indicated that PMUs recorded the dynamic response of the power system phase angles when the northern California power grid was excited by the artificial short circuits. Power system planning engineers perform detailed computer generated simulations of the dynamic response of the power system to naturally occurring short circuits. The computer simulations use models of transmission lines, transformers, circuit breakers, and other high voltage components. This work will compare computer simulations of the same event with field measurement.
Yu, Haitao; Wang, Jiang; Du, Jiwei; Deng, Bin; Wei, Xile
2015-02-01
Effects of time delay on the local and global synchronization in small-world neuronal networks with chemical synapses are investigated in this paper. Numerical results show that, for both excitatory and inhibitory coupling types, the information transmission delay can always induce synchronization transitions of spiking neurons in small-world networks. In particular, regions of in-phase and out-of-phase synchronization of connected neurons emerge intermittently as the synaptic delay increases. For excitatory coupling, all transitions to spiking synchronization occur approximately at integer multiples of the firing period of individual neurons; while for inhibitory coupling, these transitions appear at the odd multiples of the half of the firing period of neurons. More importantly, the local synchronization transition is more profound than the global synchronization transition, depending on the type of coupling synapse. For excitatory synapses, the local in-phase synchronization observed for some values of the delay also occur at a global scale; while for inhibitory ones, this synchronization, observed at the local scale, disappears at a global scale. Furthermore, the small-world structure can also affect the phase synchronization of neuronal networks. It is demonstrated that increasing the rewiring probability can always improve the global synchronization of neuronal activity, but has little effect on the local synchronization of neighboring neurons.
NASA Astrophysics Data System (ADS)
Koloskova, A. D.; Moskalenko, O. I.
2017-05-01
The phenomenon of intermittent phase synchronization during development of epileptic activity in human beings has been discovered based on EEG data. The presence of synchronous behavior phases has been detected both during spike-wave discharges and in the regions of background activity of the brain. The degree of synchronism in the intermittent phase-synchronization regime in both cases has been determined, and it has been established that spike-wave discharges are characterized by a higher degree of synchronism than exists in the regions of background activity of the brain. To determine the degree of synchronism, a modified method of evaluating zero conditional Lyapunov exponents from time series is proposed.
Phase synchronization of instrumental music signals
NASA Astrophysics Data System (ADS)
Mukherjee, Sayan; Palit, Sanjay Kumar; Banerjee, Santo; Ariffin, M. R. K.; Bhattacharya, D. K.
2014-06-01
Signal analysis is one of the finest scientific techniques in communication theory. Some quantitative and qualitative measures describe the pattern of a music signal, vary from one to another. Same musical recital, when played by different instrumentalists, generates different types of music patterns. The reason behind various patterns is the psycho-acoustic measures - Dynamics, Timber, Tonality and Rhythm, varies in each time. However, the psycho-acoustic study of the music signals does not reveal any idea about the similarity between the signals. For such cases, study of synchronization of long-term nonlinear dynamics may provide effective results. In this context, phase synchronization (PS) is one of the measures to show synchronization between two non-identical signals. In fact, it is very critical to investigate any other kind of synchronization for experimental condition, because those are completely non identical signals. Also, there exists equivalence between the phases and the distances of the diagonal line in Recurrence plot (RP) of the signals, which is quantifiable by the recurrence quantification measure τ-recurrence rate. This paper considers two nonlinear music signals based on same raga played by two eminent sitar instrumentalists as two non-identical sources. The psycho-acoustic study shows how the Dynamics, Timber, Tonality and Rhythm vary for the two music signals. Then, long term analysis in the form of phase space reconstruction is performed, which reveals the chaotic phase spaces for both the signals. From the RP of both the phase spaces, τ-recurrence rate is calculated. Finally by the correlation of normalized tau-recurrence rate of their 3D phase spaces and the PS of the two music signals has been established. The numerical results well support the analysis.
NASA Astrophysics Data System (ADS)
Vojta, Matthias
2003-12-01
In recent years, quantum phase transitions have attracted the interest of both theorists and experimentalists in condensed matter physics. These transitions, which are accessed at zero temperature by variation of a non-thermal control parameter, can influence the behaviour of electronic systems over a wide range of the phase diagram. Quantum phase transitions occur as a result of competing ground state phases. The cuprate superconductors which can be tuned from a Mott insulating to a d-wave superconducting phase by carrier doping are a paradigmatic example. This review introduces important concepts of phase transitions and discusses the interplay of quantum and classical fluctuations near criticality. The main part of the article is devoted to bulk quantum phase transitions in condensed matter systems. Several classes of transitions will be briefly reviewed, pointing out, e.g., conceptual differences between ordering transitions in metallic and insulating systems. An interesting separate class of transitions is boundary phase transitions where only degrees of freedom of a subsystem become critical; this will be illustrated in a few examples. The article is aimed at bridging the gap between high-level theoretical presentations and research papers specialized in certain classes of materials. It will give an overview on a variety of different quantum transitions, critically discuss open theoretical questions, and frequently make contact with recent experiments in condensed matter physics.
Synchronization of phase oscillators with frequency-weighted coupling
Xu, Can; Sun, Yuting; Gao, Jian; Qiu, Tian; Zheng, Zhigang; Guan, Shuguang
2016-01-01
Recently, the first-order synchronization transition has been studied in systems of coupled phase oscillators. In this paper, we propose a framework to investigate the synchronization in the frequency-weighted Kuramoto model with all-to-all couplings. A rigorous mean-field analysis is implemented to predict the possible steady states. Furthermore, a detailed linear stability analysis proves that the incoherent state is only neutrally stable below the synchronization threshold. Nevertheless, interestingly, the amplitude of the order parameter decays exponentially (at least for short time) in this regime, resembling the Landau damping effect in plasma physics. Moreover, the explicit expression for the critical coupling strength is determined by both the mean-field method and linear operator theory. The mechanism of bifurcation for the incoherent state near the critical point is further revealed by the amplitude expansion theory, which shows that the oscillating standing wave state could also occur in this model for certain frequency distributions. Our theoretical analysis and numerical results are consistent with each other, which can help us understand the synchronization transition in general networks with heterogenous couplings. PMID:26903110
Synchronization of phase oscillators with frequency-weighted coupling
NASA Astrophysics Data System (ADS)
Xu, Can; Sun, Yuting; Gao, Jian; Qiu, Tian; Zheng, Zhigang; Guan, Shuguang
2016-02-01
Recently, the first-order synchronization transition has been studied in systems of coupled phase oscillators. In this paper, we propose a framework to investigate the synchronization in the frequency-weighted Kuramoto model with all-to-all couplings. A rigorous mean-field analysis is implemented to predict the possible steady states. Furthermore, a detailed linear stability analysis proves that the incoherent state is only neutrally stable below the synchronization threshold. Nevertheless, interestingly, the amplitude of the order parameter decays exponentially (at least for short time) in this regime, resembling the Landau damping effect in plasma physics. Moreover, the explicit expression for the critical coupling strength is determined by both the mean-field method and linear operator theory. The mechanism of bifurcation for the incoherent state near the critical point is further revealed by the amplitude expansion theory, which shows that the oscillating standing wave state could also occur in this model for certain frequency distributions. Our theoretical analysis and numerical results are consistent with each other, which can help us understand the synchronization transition in general networks with heterogenous couplings.
Holographic magnetic phase transition
Lifschytz, Gilad; Lippert, Matthew
2009-09-15
We study four-dimensional interacting fermions in a strong magnetic field, using the holographic Sakai-Sugimoto model of intersecting D4- and D8-branes in the deconfined, chiral-symmetric parallel phase. We find that as the magnetic field is varied, while staying in the parallel phase, the fermions exhibit a first-order phase transition in which their magnetization jumps discontinuously. Properties of this transition are consistent with a picture in which some of the fermions jump to the lowest Landau level. Similarities to known magnetic phase transitions are discussed.
Multivariate singular spectrum analysis and the road to phase synchronization
NASA Astrophysics Data System (ADS)
Groth, Andreas; Ghil, Michael
2010-05-01
Singular spectrum analysis (SSA) and multivariate SSA (M-SSA) are based on the classical work of Kosambi (1943), Loeve (1945) and Karhunen (1946) and are closely related to principal component analysis. They have been introduced into information theory by Bertero, Pike and co-workers (1982, 1984) and into dynamical systems analysis by Broomhead and King (1986a,b). Ghil, Vautard and associates have applied SSA and M-SSA to the temporal and spatio-temporal analysis of short and noisy time series in climate dynamics and other fields in the geosciences since the late 1980s. M-SSA provides insight into the unknown or partially known dynamics of the underlying system by decomposing the delay-coordinate phase space of a given multivariate time series into a set of data-adaptive orthonormal components. These components can be classified essentially into trends, oscillatory patterns and noise, and allow one to reconstruct a robust "skeleton" of the dynamical system's structure. For an overview we refer to Ghil et al. (Rev. Geophys., 2002). In this talk, we present M-SSA in the context of synchronization analysis and illustrate its ability to unveil information about the mechanisms behind the adjustment of rhythms in coupled dynamical systems. The focus of the talk is on the special case of phase synchronization between coupled chaotic oscillators (Rosenblum et al., PRL, 1996). Several ways of measuring phase synchronization are in use, and the robust definition of a reasonable phase for each oscillator is critical in each of them. We illustrate here the advantages of M-SSA in the automatic identification of oscillatory modes and in drawing conclusions about the transition to phase synchronization. Without using any a priori definition of a suitable phase, we show that M-SSA is able to detect phase synchronization in a chain of coupled chaotic oscillators (Osipov et al., PRE, 1996). Recently, Muller et al. (PRE, 2005) and Allefeld et al. (Intl. J. Bif. Chaos, 2007) have
Synthesis and evaluation of phase detectors for active bit synchronizers
NASA Technical Reports Server (NTRS)
Mcbride, A. L.
1974-01-01
Self-synchronizing digital data communication systems usually use active or phase-locked loop (PLL) bit synchronizers. The three main elements of PLL synchronizers are the phase detector, loop filter, and the voltage controlled oscillator. Of these three elements, phase detector synthesis is the main source of difficulty, particularly when the received signals are demodulated square-wave signals. A phase detector synthesis technique is reviewed that provides a physically realizable design for bit synchronizer phase detectors. The development is based upon nonlinear recursive estimation methods. The phase detector portion of the algorithm is isolated and analyzed.
Synchronous Phase-Resolving Flash Range Imaging
NASA Technical Reports Server (NTRS)
Pain, Bedabrata; Hancock, Bruce
2007-01-01
An apparatus, now undergoing development, for range imaging based on measurement of the round-trip phase delay of a pulsed laser beam is described. The apparatus would operate in a staring mode. A pulsed laser would illuminate a target. Laser light reflected from the target would be imaged on a verylarge- scale integrated (VLSI)-circuit image detector, each pixel of which would contain a photodetector and a phase-measuring circuit. The round-trip travel time for the reflected laser light incident on each pixel, and thus the distance to the portion of the target imaged in that pixel, would be measured in terms of the phase difference between (1) the photodetector output pulse and (2) a local-oscillator signal that would have a frequency between 10 and 20 MHz and that would be synchronized with the laser-pulse-triggering signal.
2011-05-01
Park, NC 27709-2211 15. SUBJECT TERMS Quantum Thoery Phase transitions Subir Sachdev Harvard University Office of Sponsored Research 1350...magnetism, and solvable models obtained from string theory. After introducing the basic theory, it moves on to a detailed description of the canonical...students and researchers in condensed matter physics and particle and string theory. Print | Close Quantum Phase Transitions 2nd Edition Subir Sachdev
The comfortable driving model revisited: traffic phases and phase transitions
NASA Astrophysics Data System (ADS)
Knorr, Florian; Schreckenberg, Michael
2013-07-01
We study the spatiotemporal patterns resulting from different boundary conditions for a microscopic traffic model and contrast them with empirical results. By evaluating the time series of local measurements, the local traffic states are assigned to the different traffic phases of Kerner’s three-phase traffic theory. For this classification we use the rule-based FOTO-method, which provides ‘hard’ rules for this assignment. Using this approach, our analysis shows that the model is indeed able to reproduce three qualitatively different traffic phases: free flow (F), synchronized traffic (S), and wide moving jams (J). In addition, we investigate the likelihood of transitions between the three traffic phases. We show that a transition from free flow to a wide moving jam often involves an intermediate transition: first from free flow to synchronized flow and then from synchronized flow to a wide moving jam. This is supported by the fact that the so-called F → S transition (from free flow to synchronized traffic) is much more likely than a direct F → J transition. The model under consideration has a functional relationship between traffic flow and traffic density. The fundamental hypothesis of the three-phase traffic theory, however, postulates that the steady states of synchronized flow occupy a two-dimensional region in the flow-density plane. Due to the obvious discrepancy between the model investigated here and the postulate of the three-phase traffic theory, the good agreement that we found could not be expected. For a more detailed analysis, we also studied vehicle dynamics at a microscopic level and provide a comparison of real detector data with simulated data of the identical highway segment.
Phase synchronized quasiperiodicity in power electronic inverter systems
NASA Astrophysics Data System (ADS)
Zhusubaliyev, Zhanybai T.; Mosekilde, Erik; Andriyanov, Alexey I.; Shein, Vladimir V.
2014-02-01
The development of switch-mode operated power electronic converter systems has provided a broad range of new effective approaches to the conversion of electric power. In this paper we describe the transitions from regular periodic operation to quasiperiodicity and high-periodic resonance behavior that can be observed in a pulse-width modulated DC/AC converter operating with high feedback gain. We demonstrate the occurrence of two different types of torus birth bifurcations and present a series of phase portraits illustrating the appearance of phase-synchronized quasiperiodicity. Our numerical findings are verified through comparison with an experimental inverter system. The results shed light on the transitions to quasiperiodicity and to various forms of three-frequency dynamics in non-smooth systems.
Tass, P A; Fieseler, T; Dammers, J; Dolan, K; Morosan, P; Majtanik, M; Boers, F; Muren, A; Zilles, K; Fink, G R
2003-02-28
We present a noninvasive technique which allows the anatomical localization of phase synchronized neuronal populations in the human brain with magnetoencephalography. We study phase synchronization between the reconstructed current source density (CSD) of different brain areas as well as between the CSD and muscular activity. We asked four subjects to tap their fingers in synchrony with a rhythmic tone, and to continue tapping at the same rate after the tone was switched off. The phase synchronization behavior of brain areas relevant for movement coordination, inner voice, and time estimation changes drastically when the transition to internal pacing occurs, while their averaged amplitudes remain unchanged. Information of this kind cannot be derived with standard neuroimaging techniques like functional magnetic resonance imaging or positron emission tomography.
Anderson, G.W.
1991-09-16
An analytic treatment of the one Higgs doublet, electroweak phase transition is given. The phase transition is first order, occurs by the nucleation of thin walled bubbles and completes at a temperature where the order parameter, {l_angle}{phi}{r_angle}{sub T} is significantly smaller than it is when the origin becomes absolutely unstable. The rate of anomalous baryon number violation is an exponentially function of {l_angle}{phi}{r_angle}{sub T}. In very minimal extensions of the standard model it is quite easy to increase {l_angle}{phi}{r_angle}{sub T} so that anomalous baryon number violation is suppressed after completion of the phase transition. Hence baryogenesis at the electroweak phase transition is tenable in minimal of the standard model. In some cases additional phase transitions are possible. For a light Higgs boson, when the top quark mass is sufficiently large, the state where the Higgs field has a vacuum expectation value {l_angle}{phi}{r_angle} = 246 GeV is not the true minimum of the Higgs potential. When this is the case, and when the top quark mass exceeds some critical value, thermal fluctuations in the early universe would have rendered the state {l_angle}{phi}{r_angle} = 246 GeV unstable. The requirement that the state {l_angle}{phi}{r_angle} = 246 GeV is sufficiently long lived constrains the masses of the Higgs boson and the top quark. Finally, we consider whether local phase transitions can be induced by heavy particles which act as seeds for deformations in the scalar field.
Anderson, G.W.
1991-09-16
An analytic treatment of the one Higgs doublet, electroweak phase transition is given. The phase transition is first order, occurs by the nucleation of thin walled bubbles and completes at a temperature where the order parameter, {l angle}{phi}{r angle}{sub T} is significantly smaller than it is when the origin becomes absolutely unstable. The rate of anomalous baryon number violation is an exponentially function of {l angle}{phi}{r angle}{sub T}. In very minimal extensions of the standard model it is quite easy to increase {l angle}{phi}{r angle}{sub T} so that anomalous baryon number violation is suppressed after completion of the phase transition. Hence baryogenesis at the electroweak phase transition is tenable in minimal of the standard model. In some cases additional phase transitions are possible. For a light Higgs boson, when the top quark mass is sufficiently large, the state where the Higgs field has a vacuum expectation value {l angle}{phi}{r angle} = 246 GeV is not the true minimum of the Higgs potential. When this is the case, and when the top quark mass exceeds some critical value, thermal fluctuations in the early universe would have rendered the state {l angle}{phi}{r angle} = 246 GeV unstable. The requirement that the state {l angle}{phi}{r angle} = 246 GeV is sufficiently long lived constrains the masses of the Higgs boson and the top quark. Finally, we consider whether local phase transitions can be induced by heavy particles which act as seeds for deformations in the scalar field.
NASA Astrophysics Data System (ADS)
Chen, Zhi; Yu, Clare C.
2006-03-01
Noise is present in many physical systems and is often viewed as a nuisance. Yet it can also be a probe of microscopic fluctuations. There have been indications recently that the noise in the resistivity increases in the vicinity of the metal-insulator transition. But what are the characteristics of the noise associated with well-understood first and second order phase transitions? It is well known that critical fluctuations are associated with second order phase transitions, but do these fluctuations lead to enhanced noise? We have addressed these questions using Monte Carlo simulations to study the noise in the 2D Ising model which undergoes a second order phase transition, and in the 5-state Potts model which undergoes a first order phase transition. We monitor these systems as the temperature drops below the critical temperature. At each temperature, after equilibration is established, we obtain the time series of quantities characterizing the properties of the system, i.e., the energy and magnetization per site. We apply different methods, such as the noise power spectrum, the Detrended Fluctuation Analysis (DFA) and the second spectrum of the noise, to analyze the fluctuations in these quantities.
Phase synchronization based on a Dual-Tree Complex Wavelet Transform
NASA Astrophysics Data System (ADS)
Ferreira, Maria Teodora; Domingues, Margarete Oliveira; Macau, Elbert E. N.
2016-11-01
In this work, we show the applicability of our Discrete Complex Wavelet Approach (DCWA) to verify the phenomenon of phase synchronization transition in two coupled chaotic Lorenz systems. DCWA is based on the phase assignment from complex wavelet coefficients obtained by using a Dual-Tree Complex Wavelet Transform (DT-CWT). We analyzed two coupled chaotic Lorenz systems, aiming to detect the transition from non-phase synchronization to phase synchronization. In addition, we check how good is the method in detecting periods of 2π phase-slips. In all experiments, DCWA is compared with classical phase detection methods such as the ones based on arctangent and Hilbert transform showing a much better performance.
Detection of Nonverbal Synchronization through Phase Difference in Human Communication.
Kwon, Jinhwan; Ogawa, Ken-ichiro; Ono, Eisuke; Miyake, Yoshihiro
2015-01-01
Nonverbal communication is an important factor in human communication, and body movement synchronization in particular is an important part of nonverbal communication. Some researchers have analyzed body movement synchronization by focusing on changes in the amplitude of body movements. However, the definition of "body movement synchronization" is still unclear. From a theoretical viewpoint, phase difference is the most important factor in synchronization analysis. Therefore, there is a need to measure the synchronization of body movements using phase difference. The purpose of this study was to provide a quantitative definition of the phase difference distribution for detecting body movement synchronization in human communication. The phase difference distribution was characterized using four statistical measurements: density, mean phase difference, standard deviation (SD) and kurtosis. To confirm the effectiveness of our definition, we applied it to human communication in which the roles of speaker and listener were defined. Specifically, we examined the difference in the phase difference distribution between two different communication situations: face-to-face communication with visual interaction and remote communication with unidirectional visual perception. Participant pairs performed a task supposing lecture in the face-to-face communication condition and in the remote communication condition via television. Throughout the lecture task, we extracted a set of phase differences from the time-series data of the acceleration norm of head nodding motions between two participants. Statistical analyses of the phase difference distribution revealed the characteristics of head nodding synchronization. Although the mean phase differences in synchronized head nods did not differ significantly between the conditions, there were significant differences in the densities, the SDs and the kurtoses of the phase difference distributions of synchronized head nods. These
String mediated phase transitions
NASA Technical Reports Server (NTRS)
Copeland, ED; Haws, D.; Rivers, R.; Holbraad, S.
1988-01-01
It is demonstrated from first principles how the existence of string-like structures can cause a system to undergo a phase transition. In particular, the role of topologically stable cosmic string in the restoration of spontaneously broken symmetries is emphasized. How the thermodynamic properties of strings alter when stiffness and nearest neighbor string-string interactions are included is discussed.
Phase-lag synchronization in networks of coupled chemical oscillators.
Totz, Jan F; Snari, Razan; Yengi, Desmond; Tinsley, Mark R; Engel, Harald; Showalter, Kenneth
2015-08-01
Chemical oscillators with a broad frequency distribution are photochemically coupled in network topologies. Experiments and simulations show that the network synchronization occurs by phase-lag synchronization of clusters of oscillators with zero- or nearly zero-lag synchronization. Symmetry also plays a role in the synchronization, the extent of which is explored as a function of coupling strength, frequency distribution, and the highest frequency oscillator location. The phase-lag synchronization occurs through connected synchronized clusters, with the highest frequency node or nodes setting the frequency of the entire network. The synchronized clusters successively "fire," with a constant phase difference between them. For low heterogeneity and high coupling strength, the synchronized clusters are made up of one or more clusters of nodes with the same permutation symmetries. As heterogeneity is increased or coupling strength decreased, the phase-lag synchronization occurs partially through clusters of nodes sharing the same permutation symmetries. As heterogeneity is further increased or coupling strength decreased, partial synchronization and, finally, independent unsynchronized oscillations are observed. The relationships between these classes of behavior are explored with numerical simulations, which agree well with the experimentally observed behavior.
NASA Astrophysics Data System (ADS)
Sun, Xiaojuan; Perc, Matjaž; Kurths, Jürgen
2017-05-01
In this paper, we study effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks. Our focus is on the impact of two parameters, namely the time delay τ and the probability of partial time delay pdelay, whereby the latter determines the probability with which a connection between two neurons is delayed. Our research reveals that partial time delays significantly affect phase synchronization in this system. In particular, partial time delays can either enhance or decrease phase synchronization and induce synchronization transitions with changes in the mean firing rate of neurons, as well as induce switching between synchronized neurons with period-1 firing to synchronized neurons with period-2 firing. Moreover, in comparison to a neuronal network where all connections are delayed, we show that small partial time delay probabilities have especially different influences on phase synchronization of neuronal networks.
Phase synchronization and topological defects in inhomogeneous media.
Davidsen, Jörn; Kapral, Raymond
2002-11-01
The influence of topological defects on phase synchronization and phase coherence in two-dimensional arrays of locally coupled, nonidentical, chaotic oscillators is investigated. The motion of topological defects leads to a breakdown of phase synchronization in the vicinities of the defects; however, the system is much more phase coherent as long as the coupling between the oscillators is strong enough to prohibit the continuous dynamical creation and annihilation of defects. The generic occurrence of topological defects in two and higher dimensions implies that the concept of phase synchronization has to be modified for these systems.
Detection of Nonverbal Synchronization through Phase Difference in Human Communication
Kwon, Jinhwan; Ogawa, Ken-ichiro; Ono, Eisuke; Miyake, Yoshihiro
2015-01-01
Nonverbal communication is an important factor in human communication, and body movement synchronization in particular is an important part of nonverbal communication. Some researchers have analyzed body movement synchronization by focusing on changes in the amplitude of body movements. However, the definition of “body movement synchronization” is still unclear. From a theoretical viewpoint, phase difference is the most important factor in synchronization analysis. Therefore, there is a need to measure the synchronization of body movements using phase difference. The purpose of this study was to provide a quantitative definition of the phase difference distribution for detecting body movement synchronization in human communication. The phase difference distribution was characterized using four statistical measurements: density, mean phase difference, standard deviation (SD) and kurtosis. To confirm the effectiveness of our definition, we applied it to human communication in which the roles of speaker and listener were defined. Specifically, we examined the difference in the phase difference distribution between two different communication situations: face-to-face communication with visual interaction and remote communication with unidirectional visual perception. Participant pairs performed a task supposing lecture in the face-to-face communication condition and in the remote communication condition via television. Throughout the lecture task, we extracted a set of phase differences from the time-series data of the acceleration norm of head nodding motions between two participants. Statistical analyses of the phase difference distribution revealed the characteristics of head nodding synchronization. Although the mean phase differences in synchronized head nods did not differ significantly between the conditions, there were significant differences in the densities, the SDs and the kurtoses of the phase difference distributions of synchronized head nods. These
Belan, S
2015-12-01
Decentralized control of autonomous phase oscillators integrated into networked systems is of great interest for many technological applications, from clock synchronization in sensor nets to coordinated motion in swarm robotics. In the simplest distributed synchronization scheme, each oscillator updates its phase from time to time to a new value equal to the average of its present phase and the phases of its neighbors. Here we describe the resulting synchronization dynamics within a mean-field model where the update actions of different oscillators are completely asynchronous. In particular, it is shown how the steady-state level of synchrony depends on noise intensity and frequency diversity for any given rate of updates. The central part of the analysis is devoted to the case when the correction rate positively correlates with the degree of macroscopic coherence. We demonstrate that depending on relation between correction rate and phase coherence the oscillators may exhibit both continuous and discontinuous transition from incoherence to synchrony upon the change of interaction constant. To illustrate our analytical results, numerical simulations have been performed for a large population of phase oscillators with the proposed type of coupling.
Emergence and Phase Transitions
NASA Astrophysics Data System (ADS)
Sikkema, Arnold
2006-05-01
Phase transitions are well defined in physics through concepts such as spontaneous symmetry breaking, order parameter, entropy, and critical exponents. But emergence --- also exhibiting whole-part relations (such as top-down influence), unpredictability, and insensitivity to microscopic detail --- is a loosely-defined concept being used in many disciplines, particularly in psychology, biology, philosophy, as well as in physics[1,2]. I will review the concepts of emergence as used in the various fields and consider the extent to which the methods of phase transitions can clarify the usefulness of the concept of emergence both within the discipline of physics and beyond.1. Robert B. Laughlin, A Different Universe: Reinventing Physics from the Bottom Down (New York: Basic Books, 2005). 2. George F.R. Ellis, ``Physics and the Real World'', Physics Today, vol. 58, no. 7 (July 2005) pp. 49-54.
NASA Technical Reports Server (NTRS)
Maestrello, Lucio
2002-01-01
Acoustic and turbulent boundary layer flow loadings over a flexible structure are used to study the spatial-temporal dynamics of the response of the structure. The stability of the spatial synchronization and desynchronization by an active external force is investigated with an array of coupled transducers on the structure. In the synchronous state, the structural phase is locked, which leads to the formation of spatial patterns while the amplitude peaks exhibit chaotic behaviors. Large amplitude, spatially symmetric loading is superimposed on broadband, but in the desynchronized state, the spectrum broadens and the phase space is lost. The resulting pattern bears a striking resemblance to phase turbulence. The transition is achieved by using a low power external actuator to trigger broadband behaviors from the knowledge of the external acoustic load inducing synchronization. The changes are made favorably and efficiently to alter the frequency distribution of power, not the total power level. Before synchronization effects are seen, the panel response to the turbulent boundary layer loading is discontinuously spatio-temporally correlated. The stability develops from different competing wavelengths; the spatial scale is significantly shorter than when forced with the superimposed external sound. When the external sound level decreases and the synchronized phases are lost, changes in the character of the spectra can be linked to the occurrence of spatial phase transition. These changes can develop broadband response. Synchronized responses of fuselage structure panels have been observed in subsonic and supersonic aircraft; results from two flights tests are discussed.
Global and partial synchronism in phase-locked loop networks.
Monteiro, L A; Canto, N F; Chaui-Berlinck, J G; Orsatti, F M; Piqueira, J C
2003-01-01
We analytically investigate the existence of global and partial synchronism in neural networks where each node is represented by a phase oscillator. Partial synchronism, which is important to pattern recognition, can be caused by increasing the natural frequency of an oscillator and restricting the frequencies of others in certain ranges.
Geometric framework for phase synchronization in coupled noisy nonlinear systems
NASA Astrophysics Data System (ADS)
Balakrishnan, J.
2006-03-01
A geometric approach is introduced for understanding the phenomenon of phase synchronization in coupled nonlinear systems in the presence of additive noise. We show that the emergence of cooperative behavior through a change of stability via a Hopf bifurcation entails the spontaneous appearance of a gauge structure in the system, arising from the evolution of the slow dynamics, but induced by the fast variables. The conditions for the oscillators to be synchronised in phase are obtained. The role of weak noise appears to be to drive the system towards a more synchronized behavior. Our analysis provides a framework to explain recent experimental observations on noise-induced phase synchronization in coupled nonlinear systems.
Condensation phase transitions in ferrofluids.
Iskakova, L Yu; Smelchakova, G A; Zubarev, A Yu
2009-01-01
Experiments show that under suitable conditions magnetic particles in ferrofluids and other polar suspensions undergo condensation phase transitions and form dense liquidlike or solidlike phases. The problem of fundamental features and scenarios of the phase transitions is one of the central problems of the physics of these systems. This work deals with the theoretical study of scenarios of condensation phase transitions in ferrofluids, consisting of identical magnetic particles. Our results show that, unlike the classical condensation phase transitions, the appearance of the linear chains precedes the magnetic particle bulk condensation. The effect of the chains on the diagrams of the equilibrium phase transitions is studied.
Chaotic phase synchronization in bursting-neuron models driven by a weak periodic force.
Ando, Hiroyasu; Suetani, Hiromichi; Kurths, Jürgen; Aihara, Kazuyuki
2012-07-01
We investigate the entrainment of a neuron model exhibiting a chaotic spiking-bursting behavior in response to a weak periodic force. This model exhibits two types of oscillations with different characteristic time scales, namely, long and short time scales. Several types of phase synchronization are observed, such as 1:1 phase locking between a single spike and one period of the force and 1:l phase locking between the period of slow oscillation underlying bursts and l periods of the force. Moreover, spiking-bursting oscillations with chaotic firing patterns can be synchronized with the periodic force. Such a type of phase synchronization is detected from the position of a set of points on a unit circle, which is determined by the phase of the periodic force at each spiking time. We show that this detection method is effective for a system with multiple time scales. Owing to the existence of both the short and the long time scales, two characteristic phenomena are found around the transition point to chaotic phase synchronization. One phenomenon shows that the average time interval between successive phase slips exhibits a power-law scaling against the driving force strength and that the scaling exponent has an unsmooth dependence on the changes in the driving force strength. The other phenomenon shows that Kuramoto's order parameter before the transition exhibits stepwise behavior as a function of the driving force strength, contrary to the smooth transition in a model with a single time scale.
Coupling among three chemical oscillators: Synchronization, phase death, and frustration
NASA Astrophysics Data System (ADS)
Yoshimoto, Minoru; Yoshikawa, Kenichi; Mori, Yoshihito
1993-02-01
Various modes in three coupled chemical oscillators in a triangular arrangement were observed. As a well-defined nonlinear oscillator, the Belousov-Zhabotinsky reaction was studied in a continuous-flow stirred tank reactor (CSTR). Coupling among CSTR's was performed by mass exchange. The coupling strength was quantitatively controlled by changing the flow rate of reacting solutions among the three CSTR's using peristaltic pumps between each pair of the reactors. As a key parameter to control the model of coupling, we changed the symmetry of the interaction between the oscillators. In the case of the symmetric coupling, a quasiperiodic state or a biperiodic mode, an all-death mode and two kinds of synchronized modes appeared, depending on the coupling strength. On the other hand, under the asymmetric coupling, a quasiperiodic state or a biperiodic mode, an all death mode and four kinds of synchronized modes appeared. Those modes have been discussed in relation to the idea of ``frustration'' in the Ising spin system, where the three-phase mode appears as a transition from the Ising spin system to the XY spin system.
In-phase and anti-phase synchronization in noisy Hodgkin-Huxley neurons.
Ao, Xue; Hänggi, Peter; Schmid, Gerhard
2013-09-01
We numerically investigate the influence of intrinsic channel noise on the dynamical response of delay-coupling in neuronal systems. The stochastic dynamics of the spiking is modeled within a stochastic modification of the standard Hodgkin-Huxley model wherein the delay-coupling accounts for the finite propagation time of an action potential along the neuronal axon. We quantify this delay-coupling of the Pyragas-type in terms of the difference between corresponding presynaptic and postsynaptic membrane potentials. For an elementary neuronal network consisting of two coupled neurons we detect characteristic stochastic synchronization patterns which exhibit multiple phase-flip bifurcations: The phase-flip bifurcations occur in form of alternate transitions from an in-phase spiking activity towards an anti-phase spiking activity. Interestingly, these phase-flips remain robust for strong channel noise and in turn cause a striking stabilization of the spiking frequency. Copyright © 2013 Elsevier Inc. All rights reserved.
Phase Synchronization in Coupled Complex Systems - From Neuroscience to Climate
NASA Astrophysics Data System (ADS)
Kurths, Juergen
2001-03-01
The phenomenon of phase synchronization, especially in weakly coupled complex systems will be explained. Next it will be discussed how to identify epochs of phase synchronization in noisy data. In the second part I will demonstrate the potential of this approach for some examples from natural systems; in particular for brain and muscle activity of Parkinsonian patients, cardio-respiratory interactions in humans and rats and for a chaotically forced climate system.
Experimental observation of phase-flip transitions in the brain
NASA Astrophysics Data System (ADS)
Dotson, Nicholas M.; Gray, Charles M.
2016-10-01
The phase-flip transition has been demonstrated in a host of coupled nonlinear oscillator models, many pertaining directly to understanding neural dynamics. However, there is little evidence that this phenomenon occurs in the brain. Using simultaneous microelectrode recordings in the nonhuman primate cerebral cortex, we demonstrate the presence of phase-flip transitions between oscillatory narrow-band local field potential signals separated by several centimeters. Specifically, we show that sharp transitions between in-phase and antiphase synchronization are accompanied by a jump in synchronization frequency. These findings are significant for two reasons. First, they validate predictions made by model systems. Second, they have potentially far reaching implications for our understanding of the mechanisms underlying corticocortical communication, which are thought to rely on narrow-band oscillatory synchronization with specific relative phase relationships.
Application of Soft Computing in Coherent Communications Phase Synchronization
NASA Technical Reports Server (NTRS)
Drake, Jeffrey T.; Prasad, Nadipuram R.
2000-01-01
The use of soft computing techniques in coherent communications phase synchronization provides an alternative to analytical or hard computing methods. This paper discusses a novel use of Adaptive Neuro-Fuzzy Inference Systems (ANFIS) for phase synchronization in coherent communications systems utilizing Multiple Phase Shift Keying (MPSK) modulation. A brief overview of the M-PSK digital communications bandpass modulation technique is presented and it's requisite need for phase synchronization is discussed. We briefly describe the hybrid platform developed by Jang that incorporates fuzzy/neural structures namely the, Adaptive Neuro-Fuzzy Interference Systems (ANFIS). We then discuss application of ANFIS to phase estimation for M-PSK. The modeling of both explicit, and implicit phase estimation schemes for M-PSK symbols with unknown structure are discussed. Performance results from simulation of the above scheme is presented.
Synchronization of phase oscillators with coupling mediated by a diffusing substance
NASA Astrophysics Data System (ADS)
Batista, C. A. S.; Szezech, J. D.; Batista, A. M.; Macau, E. E. N.; Viana, R. L.
2017-03-01
We investigate the transition to phase and frequency synchronization in a one-dimensional chain of phase oscillator "cells" where the coupling is mediated by the local concentration of a chemical which can diffuse in the inter-oscillator medium and it is both secreted and absorbed by the oscillator "cells", influencing their dynamical behavior. This coupling has the advantage of having a tunable parameter which makes it possible to pass continuously from a global (all-to-all) to a local (nearest-neighbor) coupling form. We have verified that synchronous behavior depends on the coupling strength and coupling length.
Quantum phase transition in space
Damski, Bogdan; Zurek, Wojciech H
2008-01-01
A quantum phase transition between the symmetric (polar) phase and the phase with broken symmetry can be induced in a ferromagnetic spin-1 Bose-Einstein condensate in space (rather than in time). We consider such a phase transition and show that the transition region in the vicinity of the critical point exhibits scalings that reflect a compromise between the rate at which the transition is imposed (i.e., the gradient of the control parameter) and the scaling of the divergent healing length in the critical region. Our results suggest a method for the direct measurement of the scaling exponent {nu}.
Anticipated synchronization in neuronal circuits unveiled by a phase-response-curve analysis
NASA Astrophysics Data System (ADS)
Matias, Fernanda S.; Carelli, Pedro V.; Mirasso, Claudio R.; Copelli, Mauro
2017-05-01
Anticipated synchronization (AS) is a counterintuitive behavior that has been observed in several systems. When AS occurs in a sender-receiver configuration, the latter can predict the future dynamics of the former for certain parameter values. In particular, in neuroscience AS was proposed to explain the apparent discrepancy between information flow and time lag in the cortical activity recorded in monkeys. Despite its success, a clear understanding of the mechanisms yielding AS in neuronal circuits is still missing. Here we use the well-known phase-response-curve (PRC) approach to study the prototypical sender-receiver-interneuron neuronal motif. Our aim is to better understand how the transitions between delayed to anticipated synchronization and anticipated synchronization to phase-drift regimes occur. We construct a map based on the PRC method to predict the phase-locking regimes and their stability. We find that a PRC function of two variables, accounting simultaneously for the inputs from sender and interneuron into the receiver, is essential to reproduce the numerical results obtained using a Hodgkin-Huxley model for the neurons. On the contrary, the typical approximation that considers a sum of two independent single-variable PRCs fails for intermediate to high values of the inhibitory coupling strength of the interneuron. In particular, it loses the delayed-synchronization to anticipated-synchronization transition.
Thermodynamics aspects of noise-induced phase synchronization.
Pinto, Pedro D; Oliveira, Fernando A; Penna, André L A
2016-05-01
In this article, we present an approach for the thermodynamics of phase oscillators induced by an internal multiplicative noise. We analytically derive the free energy, entropy, internal energy, and specific heat. In this framework, the formulation of the first law of thermodynamics requires the definition of a synchronization field acting on the phase oscillators. By introducing the synchronization field, we have consistently obtained the susceptibility and analyzed its behavior. This allows us to characterize distinct phases in the system, which we have denoted as synchronized and parasynchronized phases, in analogy with magnetism. The system also shows a rich complex behavior, exhibiting ideal gas characteristics for low temperatures and susceptibility anomalies that are similar to those present in complex fluids such as water.
Thermodynamics aspects of noise-induced phase synchronization
NASA Astrophysics Data System (ADS)
Pinto, Pedro D.; Oliveira, Fernando A.; Penna, André L. A.
2016-05-01
In this article, we present an approach for the thermodynamics of phase oscillators induced by an internal multiplicative noise. We analytically derive the free energy, entropy, internal energy, and specific heat. In this framework, the formulation of the first law of thermodynamics requires the definition of a synchronization field acting on the phase oscillators. By introducing the synchronization field, we have consistently obtained the susceptibility and analyzed its behavior. This allows us to characterize distinct phases in the system, which we have denoted as synchronized and parasynchronized phases, in analogy with magnetism. The system also shows a rich complex behavior, exhibiting ideal gas characteristics for low temperatures and susceptibility anomalies that are similar to those present in complex fluids such as water.
Segregation induced by phase synchronization in a bidisperse granular layer
NASA Astrophysics Data System (ADS)
Wang, Tai-Yuan; Hong, T. M.
2008-12-01
We propose an alternative segregation mechanism where the species-dependent interactions are dynamically induced by the phase synchronization of beads. Based on this scenario, we report an alternative segregation among beads of different restitution coefficients by molecular dynamics simulations. Since the beads are of equal size and mass, this is not related to the Brazilian-nut effect, nor can it be explained by the depletion force. Instead, this phenomenon derives from the phase synchronization, a concept which helps us determine the criteria for segregation and the phase boundaries that agree excellently with the simulation results.
Adaptive coupling and enhanced synchronization in coupled phase oscillators
NASA Astrophysics Data System (ADS)
Ren, Quansheng; Zhao, Jianye
2007-07-01
We study the dynamics of an adaptive coupled array of phase oscillators. The adaptive law is designed in such a way that the coupling grows stronger for the pairs which have larger phase incoherence. The proposed scheme enhances the synchronization and achieves a more reasonable coupling dynamics for the network of oscillators with different intrinsic frequencies. The synchronization speed and the steady-state phase difference can be adjusted by the parameters of the adaptive law. Besides global coupling, nearest-neighbor ring coupling is also considered to demonstrate the generality of the method.
Phase synchronization of a pair of spiral waves.
Zhan, Meng; Wang, Xingang; Gong, Xiaofeng; Lai, C-H
2005-03-01
The interaction of a pair of spiral waves with different independent rotation frequencies is studied. In a very large frequency mismatch searching region, we observe three different pattern formation phenomena: (a) phase-synchronization-induced invasion under a relatively small frequency mismatch, i.e., the spiral wave with slower frequency (longer period) is swept away by a traveling wave, which is induced and phase synchronized by the faster spiral wave; (b) the coexistence of two spiral waves at sufficiently large parameter mismatch; and (c) an intermediate state, a non-phase-synchronous invasion, that is, similarly the slower spiral wave is swept by an approximate planar wave, whose frequency, however, is intermediate between those of the faster and slower waves. A point-source model is studied to analyze all these phenomena in a unified way.
Explosive transitions in complex networks' structure and dynamics: Percolation and synchronization
NASA Astrophysics Data System (ADS)
Boccaletti, S.; Almendral, J. A.; Guan, S.; Leyva, I.; Liu, Z.; Sendiña-Nadal, I.; Wang, Z.; Zou, Y.
2016-11-01
Percolation and synchronization are two phase transitions that have been extensively studied since already long ago. A classic result is that, in the vast majority of cases, these transitions are of the second-order type, i.e. continuous and reversible. Recently, however, explosive phenomena have been reported in complex networks' structure and dynamics, which rather remind first-order (discontinuous and irreversible) transitions. Explosive percolation, which was discovered in 2009, corresponds to an abrupt change in the network's structure, and explosive synchronization (which is concerned, instead, with the abrupt emergence of a collective state in the networks' dynamics) was studied as early as the first models of globally coupled phase oscillators were taken into consideration. The two phenomena have stimulated investigations and debates, attracting attention in many relevant fields. So far, various substantial contributions and progresses (including experimental verifications) have been made, which have provided insights on what structural and dynamical properties are needed for inducing such abrupt transformations, as well as have greatly enhanced our understanding of phase transitions in networked systems. Our intention is to offer here a monographic review on the main-stream literature, with the twofold aim of summarizing the existing results and pointing out possible directions for future research.
Phase transitions in disordered systems
NASA Astrophysics Data System (ADS)
Hrahsheh, Fawaz Y.
Disorder can have a wide variety of consequences for the physics of phase transitions. Some transitions remain unchanged in the presence of disorder while others are completely destroyed. In this thesis we study the effects of disorder on several classical and quantum phase transitions in condensed matter systems. After a brief introduction, we study the ferromagnetic phase transition in a randomly layered Heisenberg magnet using large-scale Monte-Carlo simulations. Our results provide numerical evidence for the exotic infinite-randomness scenario. We study classical and quantum smeared phase transitions in substitutional alloys A1-xBx. Our results show that the disorder completely destroys the phase transition with a pronounced tail of the ordered phase developing for all compositions x < 1. In addition, we find that short-ranged disorder correlations can have a dramatic effect on the transition. Moreover, we show an experimental realization of the composition-tuned ferromagnetic-to-paramagnetic quantum phase transition in Sr1-xCa xRuO3. We investigate the effects of disorder on first-order quantum phase transitions on the example of the N-color quantum Ashkin-Teller model. By means of a strong disorder renormalization group, we demonstrate that disorder rounds the first-order transition to a continuous one for both weak and strong coupling between the colors. Finally, we investigate the superfluid-insulator quantum phase transition of one-dimensional bosons with off-diagonal disorder by means of large-scale Monte-Carlo simulations. Beyond a critical disorder strength, we find nonuniversal, disorder dependent critical behavior.
NASA Astrophysics Data System (ADS)
Komarov, Maxim; Gupta, Shamik; Pikovsky, Arkady
2014-05-01
We study a generic model of globally coupled rotors that includes the effects of noise, phase shift in the coupling, and distributions of moments of inertia and natural frequencies of oscillation. As particular cases, the setup includes previously studied Sakaguchi-Kuramoto, Hamiltonian and Brownian mean-field, and Tanaka-Lichtenberg-Oishi and Acebrón-Bonilla-Spigler models. We derive an exact solution of the self-consistent equations for the order parameter in the stationary state, valid for arbitrary parameters in the dynamics, and demonstrate nontrivial phase transitions to synchrony that include reentrant synchronous regimes.
Fluctuation driven electroweak phase transition
NASA Technical Reports Server (NTRS)
Gleiser, Marcelo; Kolb, Edward W.
1991-01-01
We examine the dynamics of the electroweak phase transition in the early Universe. For Higgs masses in the range 46 less than or = M sub H less than or = 150 GeV and top quark masses less than 200 GeV, regions of symmetric and asymmetric vacuum coexist to below the critical temperature, with thermal equilibrium between the two phases maintained by fluctuations of both phases. We propose that the transition to the asymmetric vacuum is completed by percolation of these subcritical fluctuations. Our results are relevant to scenarios of baryogenesis that invoke a weakly first-order phase transition at the electroweak scale.
Explosive synchronization as a process of explosive percolation in dynamical phase space
Zhang, Xiyun; Zou, Yong; Boccaletti, S.; Liu, Zonghua
2014-01-01
Explosive synchronization and explosive percolation are currently two independent phenomena occurring in complex networks, where the former takes place in dynamical phase space while the latter in configuration space. It has been revealed that the mechanism of EP can be explained by the Achlioptas process, where the formation of a giant component is controlled by a suppressive rule. We here introduce an equivalent suppressive rule for ES. Before the critical point of ES, the suppressive rule induces the presence of multiple, small sized, synchronized clusters, while inducing the abrupt formation of a giant cluster of synchronized oscillators at the critical coupling strength. We also show how the explosive character of ES degrades into a second-order phase transition when the suppressive rule is broken. These results suggest that our suppressive rule can be considered as a dynamical counterpart of the Achlioptas process, indicating that ES and EP can be unified into a same framework. PMID:24903808
Estimating the phase of synchronized oscillators
NASA Astrophysics Data System (ADS)
Revzen, Shai; Guckenheimer, John M.
2008-11-01
The state of a collection of phase-locked oscillators is determined by a single phase variable or cyclic coordinate. This paper presents a computational method, Phaser, for estimating the phase of phase-locked oscillators from limited amounts of multivariate data in the presence of noise and measurement errors. Measurements are assumed to be a collection of multidimensional time series. Each series consists of several cycles of the same or similar systems. The oscillators within each system are not assumed to be identical. Using measurements of the noise covariance for the multivariate input, data from the individual oscillators in the system are combined to reduce the variance of phase estimates for the whole system. The efficacy of the algorithm is demonstrated on experimental and model data from biomechanics of cockroach running and on simulated oscillators with varying levels of noise.
Phase transitions in metastable phases of silicon
NASA Astrophysics Data System (ADS)
Zeng, Zhidan; Zeng, Qiaoshi; Mao, Wendy L.; Qu, Shaoxing
2014-03-01
Phase transitions in indentation induced Si-III/XII phases were investigated using a diamond anvil cell and nanoindentation combined with micro-Raman spectroscopy. The in situ high pressure Raman results demonstrate that the Si-III and Si-XII phases have very similar Raman spectra, indicating their relative amount cannot be determined if they are both present in a sample. The Si-III and Si-XII phases coexist in the indentations produced by a nanoindenter on a single crystalline silicon wafer as a result of the local residual compressive stresses near 1 GPa. High power laser annealing on the indentations can initiate a rapid Si-III/XII → Si-I phase transition. The newly formed polycrystalline Si-I phase initially has very small grain size, and the grains grow when the annealing time is extended. Si-IV phase was not observed in our experiment.
Delay-induced intermittent transition of synchronization in neuronal networks with hybrid synapses
NASA Astrophysics Data System (ADS)
Wang, Qingyun; Chen, Guanrong
2011-03-01
We study the dependence of synchronization transitions in scale-free networks of bursting neurons with hybrid synapses on the information transmission delay and the probability of inhibitory synapses. It is shown that, irrespective of the probability of inhibitory synapses, the delay always plays a subtle role during synchronization transition of the scale-free neuronal networks. In particular, regions of irregular and regular propagating excitatory fronts appear intermittently as the delay increases. These delay-induced synchronization transitions are manifested as well-expressed minima in the measure for spatiotemporal synchrony. In addition, it is found that, for smaller and larger probability of inhibitory synapses, intermittent synchronization transition is relatively profound, while for the moderate probability of inhibitory synapses, synchronization transition seems less profound. More interestingly, it is found that as the probability of inhibitory synapses is large, regions of synchronization are upscattering.
Time-synchronized VLF phase-tracking receiver
NASA Technical Reports Server (NTRS)
Ward, S. C.
1973-01-01
Coded signals transmitted at very low frequencies by National Bureau of Standards via its radio facility WWVL contain both primary time and frequency information. Synchronization of local time with WWVL signal standard requires comparison of phase differences between transmitted signal and output of traveling atomic clock such as rubidium frequency standard.
Kuramoto-type phase transition with metronomes
NASA Astrophysics Data System (ADS)
Boda, Sz; Ujvári, Sz; Tunyagi, A.; Néda, Z.
2013-11-01
Metronomes placed on the perimeter of a disc-shaped platform, which can freely rotate in a horizontal plane, are used for a simple classroom illustration of the Kuramoto-type phase transition. The rotating platform induces a global coupling between the metronomes, and the strength of this coupling can be varied by tilting the metronomes’ swinging plane relative to the radial direction on the disc. As a function of the tilting angle, a transition from spontaneously synchronized to unsynchronized states is observable. By varying the number of metronomes on the disc, finite-size effects are also exemplified. A realistic theoretical model is introduced and used to reproduce the observed results. Computer simulations of this model allow a detailed investigation of the emerging collective behaviour in this system.
Learning phase transitions by confusion
NASA Astrophysics Data System (ADS)
van Nieuwenburg, Evert P. L.; Liu, Ye-Hua; Huber, Sebastian D.
2017-02-01
Classifying phases of matter is key to our understanding of many problems in physics. For quantum-mechanical systems in particular, the task can be daunting due to the exponentially large Hilbert space. With modern computing power and access to ever-larger data sets, classification problems are now routinely solved using machine-learning techniques. Here, we propose a neural-network approach to finding phase transitions, based on the performance of a neural network after it is trained with data that are deliberately labelled incorrectly. We demonstrate the success of this method on the topological phase transition in the Kitaev chain, the thermal phase transition in the classical Ising model, and the many-body-localization transition in a disordered quantum spin chain. Our method does not depend on order parameters, knowledge of the topological content of the phases, or any other specifics of the transition at hand. It therefore paves the way to the development of a generic tool for identifying unexplored phase transitions.
Phase transition in Liouville theory
Johnston, D. )
1989-11-15
We suggest that the vortices arising in a Kosterlitz-Thouless phase transition in Liouville theory correspond to transitions between different genera, producing the plumber's nightmare'' and other phases that have been predicted in fluid membrane theory from energetic considerations. This transition has previously been invoked by Cates to explain the degeneration of numerical simulations of Gaussian random surfaces into branched polymers. The difficulty in quantizing Liouville theory for {ital d}{gt}1 is conjectured to be due to our insistence on working at a fixed genus.
Phase transition in Liouville theory
NASA Astrophysics Data System (ADS)
Johnston, D.
1989-11-01
We suggest that the vortices arising in a Kosterlitz-Thouless phase transition in Liouville theory correspond to transitions between different genera, producing the ``plumber's nightmare'' and other phases that have been predicted in fluid membrane theory from energetic considerations. This transition has previously been invoked by Cates to explain the degeneration of numerical simulations of Gaussian random surfaces into branched polymers. The difficulty in quantizing Liouville theory for d>1 is conjectured to be due to our insistence on working at a fixed genus.
Phase transitions in traffic flow on multilane roads.
Kerner, Boris S; Klenov, Sergey L
2009-11-01
Based on empirical and numerical analyses of vehicular traffic, the physics of spatiotemporal phase transitions in traffic flow on multilane roads is revealed. The complex dynamics of moving jams observed in single vehicle data measured by video cameras on American highways is explained by the nucleation-interruption effect in synchronized flow, i.e., the spontaneous nucleation of a narrow moving jam with the subsequent jam dissolution. We find that (i) lane changing, vehicle merging from on-ramps, and vehicle leaving to off-ramps result in different traffic phases-free flow, synchronized flow, and wide moving jams-occurring and coexisting in different road lanes as well as in diverse phase transitions between the traffic phases; (ii) in synchronized flow, the phase transitions are responsible for a non-regular moving jam dynamics that explains measured single vehicle data: moving jams emerge and dissolve randomly at various road locations in different lanes; (iii) the phase transitions result also in diverse expanded general congested patterns occurring at closely located bottlenecks.
Synchronization of coupled Boolean phase oscillators
NASA Astrophysics Data System (ADS)
Rosin, David P.; Rontani, Damien; Gauthier, Daniel J.
2014-04-01
We design, characterize, and couple Boolean phase oscillators that include state-dependent feedback delay. The state-dependent delay allows us to realize an adjustable coupling strength, even though only Boolean signals are exchanged. Specifically, increasing the coupling strength via the range of state-dependent delay leads to larger locking ranges in uni- and bidirectional coupling of oscillators in both experiment and numerical simulation with a piecewise switching model. In the unidirectional coupling scheme, we unveil asymmetric triangular-shaped locking regions (Arnold tongues) that appear at multiples of the natural frequency of the oscillators. This extends observations of a single locking region reported in previous studies. In the bidirectional coupling scheme, we map out a symmetric locking region in the parameter space of frequency detuning and coupling strength. Because of the large scalability of our setup, our observations constitute a first step towards realizing large-scale networks of coupled oscillators to address fundamental questions on the dynamical properties of networks in a new experimental setting.
Clustering and phase synchronization in populations of coupled phase oscillators
NASA Astrophysics Data System (ADS)
Cascallares, Guadalupe; Gleiser, Pablo M.
2015-10-01
In many species daily rhythms are endogenously generated by groups of coupled neurons that play the role of a circadian pacemaker. The adaptation of the circadian clock to environmental and seasonal changes has been proposed to be regulated by a dual oscillator system. In order to gain insight into this model, we analyzed the synchronization properties of two fully coupled groups of Kuramoto oscillators. Each group has an internal coupling parameter and the interaction between the two groups can be controlled by two parameters allowing for symmetric or non-symmetric coupling. We show that even for such a simple model counterintuitive behaviours take place, such as a global decrease in synchrony when the coupling between the groups is increased. Through a detailed analysis of the local synchronization processes we explain this behaviour.
Nayak, Chetan S; Bhowmik, Aakash; Prasad, Pradeep D; Pati, Sandipan; Choudhury, Kalyan K; Majumdar, Kaushik K
2017-01-01
Electrical activity in the brain is presumed to arise from a combination of tonic asynchronous neuronal firing during wake and a synchronized, burst-pause firing of large number of neurons during sleep. This study aims to compare the phase synchronization index (SI) across multiple channels during wake and various sleep stages on scalp electroencephalographic recordings. Forty healthy subjects were subjected to overnight polysomnography using 8-channel electroencephalography. Electroencephalographic phase synchronization during awake, non-rapid eye movement (N1, N2, N3), and rapid eye movement sleep states was studied using ensemble measure (multichannel measure across all the eight channels based on Hilbert transformation between any two pairs). With the progression of states of wakefulness to non-rapid eye movement sleep, there was progressive increase in phase SI in delta band while SI decreased in alpha band (P < 0.001). The SI in delta band during rapid eye movement was comparable with that of awake state (P < 0.001). In theta band, SI tends to decrease in N2 and increase in N3 (P < 0.001). In beta band, there was progressive increase in SI from awake to non-rapid eye movement stages that decreased in rapid eye movement stage (P < 0.001). This is the first study that has used an ensemble measure to assess the long-range cortical phase synchronization during awake and various sleep stages. The findings support the previous view of increased delta synchrony during non-rapid eye movement sleep and alpha synchrony during wakefulness. Rapid eye movement stage was characterized by marked desynchrony in all frequency bands. These findings suggest the possible role of cortical synchronization in influencing the occurrence of epileptic activity during sleep and awake states.
Phase transitions in traffic flow on multilane roads
NASA Astrophysics Data System (ADS)
Kerner, Boris S.; Klenov, Sergey L.
2009-11-01
Based on empirical and numerical analyses of vehicular traffic, the physics of spatiotemporal phase transitions in traffic flow on multilane roads is revealed. The complex dynamics of moving jams observed in single vehicle data measured by video cameras on American highways is explained by the nucleation-interruption effect in synchronized flow, i.e., the spontaneous nucleation of a narrow moving jam with the subsequent jam dissolution. We find that (i) lane changing, vehicle merging from on-ramps, and vehicle leaving to off-ramps result in different traffic phases—free flow, synchronized flow, and wide moving jams—occurring and coexisting in different road lanes as well as in diverse phase transitions between the traffic phases; (ii) in synchronized flow, the phase transitions are responsible for a non-regular moving jam dynamics that explains measured single vehicle data: moving jams emerge and dissolve randomly at various road locations in different lanes; (iii) the phase transitions result also in diverse expanded general congested patterns occurring at closely located bottlenecks.
Synchronous transitions of up and down states in a network model based on stimulations.
Xu, Xuying; Ni, Li; Wang, Rubin
2017-01-07
The phenomenon of spontaneous periodic up and down transitions is considered to be a significant characteristic of slow oscillations. Our previous theoretical studies have shown that the single neuron and network model can both exhibit spontaneous up and down transitions. Another characteristic of up and down dynamics is the synchronicity. So in this paper, we focused on the synchronized characteristic of up and down transitions in the network based on stimulations. Spontaneous activities showed no synchronous transitions between neurons. However, the external stimulation, mainly the stimulation frequency and the number of neurons stimulated on were related to the synchronous transitions of up and down states. The simulation results suggested that simultaneous high frequency excitation or firing of neurons in the network was responsible for the generation of synchronous transitions of up and down states. Through the observation and analysis of the findings, we have tried to explain the reason for synchronous up and down transitions and to lay the foundation for further work on the role of these synchronized transitions in cortex activity.
Yu, Yi; Yu, Changyuan
2015-05-04
In this paper, a novel optical signal to noise ratio (OSNR) monitoring method using 2-dimension (2-D) phase portrait is proposed and demonstrated, which is generated by using a single low-speed sampling channel with software synchronization technique. Moreover, variable phase difference is proposed to generate the X-Y pairs, which increases the tolerance of synchronization accuracy significantly. This method is a cost effective solution with simple system setup.
Phase Transitions in Brownian Pumps
NASA Astrophysics Data System (ADS)
Dierl, Marcel; Dieterich, Wolfgang; Einax, Mario; Maass, Philipp
2014-04-01
We study stochastic particle transport between two reservoirs along a channel, where the particles are pumped against a bias by a traveling wave potential. It is shown that phase transitions of period-averaged densities or currents occur inside the channel when exclusion interactions between the particles are taken into account. These transitions reflect those known for the asymmetric simple exclusion process. We argue that their occurrence is a generic feature of Brownian motors operating in open systems.
Martensitic phase transition involving dislocations
NASA Astrophysics Data System (ADS)
Le, K. C.; Günther, C.
2015-06-01
A model of solid-solid phase transition involving dislocations in crystals is proposed within the nonlinear continuum dislocation theory (CDT). The co-existence of phases having piecewise constant plastic slip in laminates is possible for the two-well free energy density. The jumps of the plastic slip across the phase interfaces determine the surface dislocation densities at those incoherent boundaries. The number of phase interfaces should be determined by comparing the energy of dislocation arrays and the relaxed energy minimized among uniform plastic slips.
Siclari, Francesca; Bernardi, Giulio; Riedner, Brady A.; LaRocque, Joshua J.; Benca, Ruth M.; Tononi, Giulio
2014-01-01
Objectives: To assess how the characteristics of slow waves and spindles change in the falling-asleep process. Design: Participants undergoing overnight high-density electroencephalographic recordings were awakened at 15- to 30-min intervals. One hundred forty-one falling-asleep periods were analyzed at the scalp and source level. Setting: Sleep laboratory. Participants: Six healthy participants. Interventions: Serial awakenings. Results: The number and amplitude of slow waves followed two dissociated, intersecting courses during the transition to sleep: slow wave number increased slowly at the beginning and rapidly at the end of the falling-asleep period, whereas amplitude at first increased rapidly and then decreased linearly. Most slow waves occurring early in the transition to sleep had a large amplitude, a steep slope, involved broad regions of the cortex, predominated over frontomedial regions, and preferentially originated from the sensorimotor and the posteromedial parietal cortex. Most slow waves occurring later had a smaller amplitude and slope, involved more circumscribed parts of the cortex, and had more evenly distributed origins. Spindles were initially sparse, fast, and involved few cortical regions, then became more numerous and slower, and involved more areas. Conclusions: Our results provide evidence for two types of slow waves, which follow dissociated temporal courses in the transition to sleep and have distinct cortical origins and distributions. We hypothesize that these two types of slow waves result from two distinct synchronization processes: (1) a “bottom-up,” subcorticocortical, arousal system-dependent process that predominates in the early phase and leads to type I slow waves, and (2) a “horizontal,” corticocortical synchronization process that predominates in the late phase and leads to type II slow waves. The dissociation between these two synchronization processes in time and space suggests that they may be differentially
Phase transitions in nuclear matter
Glendenning, N.K.
1984-11-01
The rather general circumstances under which a phase transition in hadronic matter at finite temperature to an abnormal phase in which baryon effective masses become small and in which copious baryon-antibaryon pairs appear is emphasized. A preview is also given of a soliton model of dense matter, in which at a density of about seven times nuclear density, matter ceases to be a color insulator and becomes increasingly color conducting. 22 references.
Spike phase synchronization in multiplex cortical neural networks
NASA Astrophysics Data System (ADS)
Jalili, Mahdi
2017-01-01
In this paper we study synchronizability of two multiplex cortical networks: whole-cortex of hermaphrodite C. elegans and posterior cortex in male C. elegans. These networks are composed of two connection layers: network of chemical synapses and the one formed by gap junctions. This work studies the contribution of each layer on the phase synchronization of non-identical spiking Hindmarsh-Rose neurons. The network of male C. elegans shows higher phase synchronization than its randomized version, while it is not the case for hermaphrodite type. The random networks in each layer are constructed such that the nodes have the same degree as the original network, thus providing an unbiased comparison. In male C. elegans, although the gap junction network is sparser than the chemical network, it shows higher contribution in the synchronization phenomenon. This is not the case in hermaphrodite type, which is mainly due to significant less density of gap junction layer (0.013) as compared to chemical layer (0.028). Also, the gap junction network in this type has stronger community structure than the chemical network, and this is another driving factor for its weaker synchronizability.
Wu, Yanan; Gong, Yubing; Wang, Qi
2015-04-01
In this paper, we numerically study the effect of autapse on the synchronization of Newman-Watts small-world Hodgkin-Huxley neuron network. It is found that the neurons exhibit synchronization transitions as autaptic self-feedback delay is varied, and the phenomenon becomes strongest when autaptic self-feedback strength is optimal. This phenomenon also changes with the change of coupling strength and network randomness and become strongest when they are optimal. There are similar synchronization transitions for electrical and chemical autapse, but the synchronization transitions for chemical autapse occur more frequently and are stronger than those for electrical synapse. The underlying mechanisms are briefly discussed in quality. These results show that autaptic activity plays a subtle role in the synchronization of the neuronal network. These findings may find potential implications of autapse for the information processing and transmission in neural systems.
NASA Astrophysics Data System (ADS)
Wu, Yanan; Gong, Yubing; Wang, Qi
2015-04-01
In this paper, we numerically study the effect of autapse on the synchronization of Newman-Watts small-world Hodgkin-Huxley neuron network. It is found that the neurons exhibit synchronization transitions as autaptic self-feedback delay is varied, and the phenomenon becomes strongest when autaptic self-feedback strength is optimal. This phenomenon also changes with the change of coupling strength and network randomness and become strongest when they are optimal. There are similar synchronization transitions for electrical and chemical autapse, but the synchronization transitions for chemical autapse occur more frequently and are stronger than those for electrical synapse. The underlying mechanisms are briefly discussed in quality. These results show that autaptic activity plays a subtle role in the synchronization of the neuronal network. These findings may find potential implications of autapse for the information processing and transmission in neural systems.
Magnetic fields from phase transitions
NASA Astrophysics Data System (ADS)
Hindmarsh, Mark; Everett, Allen
1998-11-01
The generation of primordial magnetic fields from cosmological phase transitions is discussed, paying particular attention to the electroweak transition and to the various definitions of the ``average'' field that have been put forward. It is emphasized that only the volume average has dynamical significance as a seed for galactic dynamos. On rather general grounds of causality and energy conservation, it is shown that, in the absence of MHD effects that transfer power in the magnetic field from small to large scales, processes occurring at the electroweak transition cannot generate fields stronger than 10-20 G on a scale of 0.5 Mpc. However, it is implausible that this upper bound could ever be reached, as it would require all the energy in the Universe to be turned into a magnetic field coherent at the horizon scale. Non-linear MHD effects seem therefore to be necessary if the electroweak transition is to create a primordial seed field.
NASA Astrophysics Data System (ADS)
Rybalova, Elena; Semenova, Nadezhda; Strelkova, Galina; Anishchenko, Vadim
2017-06-01
We study the transition from coherence (complete synchronization) to incoherence (spatio-temporal chaos) in ensembles of nonlocally coupled chaotic maps with nonhyperbolic and hyperbolic attractors. As basic models of a partial element we use the Henon map and the Lozi map. We show that the transition to incoherence in a ring of coupled Henon maps occurs through the appearance of phase and amplitude chimera states. An ensemble of coupled Lozi maps demonstrates the coherence-incoherence transition via solitary states and no chimera states are observed in this case.
Wetzel, Lucas; Jörg, David J.; Pollakis, Alexandros; Rave, Wolfgang; Fettweis, Gerhard; Jülicher, Frank
2017-01-01
Self-organized synchronization occurs in a variety of natural and technical systems but has so far only attracted limited attention as an engineering principle. In distributed electronic systems, such as antenna arrays and multi-core processors, a common time reference is key to coordinate signal transmission and processing. Here we show how the self-organized synchronization of mutually coupled digital phase-locked loops (DPLLs) can provide robust clocking in large-scale systems. We develop a nonlinear phase description of individual and coupled DPLLs that takes into account filter impulse responses and delayed signal transmission. Our phase model permits analytical expressions for the collective frequencies of synchronized states, the analysis of stability properties and the time scale of synchronization. In particular, we find that signal filtering introduces stability transitions that are not found in systems without filtering. To test our theoretical predictions, we designed and carried out experiments using networks of off-the-shelf DPLL integrated circuitry. We show that the phase model can quantitatively predict the existence, frequency, and stability of synchronized states. Our results demonstrate that mutually delay-coupled DPLLs can provide robust and self-organized synchronous clocking in electronic systems. PMID:28207779
Phase-response curves and synchronized neural networks
Smeal, Roy M.; Ermentrout, G. Bard; White, John A.
2010-01-01
We review the principal assumptions underlying the application of phase-response curves (PRCs) to synchronization in neuronal networks. The PRC measures how much a given synaptic input perturbs spike timing in a neural oscillator. Among other applications, PRCs make explicit predictions about whether a given network of interconnected neurons will synchronize, as is often observed in cortical structures. Regarding the assumptions of the PRC theory, we conclude: (i) The assumption of noise-tolerant cellular oscillations at or near the network frequency holds in some but not all cases. (ii) Reduced models for PRC-based analysis can be formally related to more realistic models. (iii) Spike-rate adaptation limits PRC-based analysis but does not invalidate it. (iv) The dependence of PRCs on synaptic location emphasizes the importance of improving methods of synaptic stimulation. (v) New methods can distinguish between oscillations that derive from mutual connections and those arising from common drive. (vi) It is helpful to assume linear summation of effects of synaptic inputs; experiments with trains of inputs call this assumption into question. (vii) Relatively subtle changes in network structure can invalidate PRC-based predictions. (viii) Heterogeneity in the preferred frequencies of component neurons does not invalidate PRC analysis, but can annihilate synchronous activity. PMID:20603361
Phase synchronization of oscillations in cardiovascular and respiratory systems in humans
NASA Astrophysics Data System (ADS)
Tankanag, Arina V.; Grinevich, Andrey A.; Tikhonova, Irina V.; Chaplygina, Alina V.; Chemeris, Nikolay K.
2017-04-01
Phase synchronization between blood flow oscillations of left and right forearm skin sites, heart rate variability (HRV) and breath rate were studied from healthy volunteers at rest. The degree of synchronization between the phases of the analyzed signals was estimated from the value of the wavelet phase coherence. High medians of values of phase wavelet coherence function were obtained for the endothelial, neurogenic, myogenic and cardiac intervals. Significant phase synchronization were demonstrated between HRV and skin blood flow oscillations in both left and right forearms in a wide frequency range from 0.04 to 0.4 Hz. Six participants exhibited low phase synchronization (< 0.5) between the breath rate and HRV, while nine participants had high phase synchronization (> 0.5). This distribution was not affected by the sex or sympathovagal status of volunteers. Participants with low phase synchronization between breath rate and HRV featured low phase synchronization (< 0.5) between breath rate and blood flow oscillations in both forearms. Contrariwise, in subjects with high phase synchronization between respiratory rhythm and HRV both low and high phase synchronization between breath rate and blood flow oscillations in both forearms was observed. The results obtained allow us to suggest that the organism possesses a mechanism mediating the synchronization of blood flow oscillations in the skin microvasculature with all other periodical processes across the cardiovascular system, in particular, with HRV and breath rate over a wide frequency range.
Time-varying coupling functions: Dynamical inference and cause of synchronization transitions
NASA Astrophysics Data System (ADS)
Stankovski, Tomislav
2017-02-01
Interactions in nature can be described by their coupling strength, direction of coupling, and coupling function. The coupling strength and directionality are relatively well understood and studied, at least for two interacting systems; however, there can be a complexity in the interactions uniquely dependent on the coupling functions. Such a special case is studied here: synchronization transition occurs only due to the time variability of the coupling functions, while the net coupling strength is constant throughout the observation time. To motivate the investigation, an example is used to present an analysis of cross-frequency coupling functions between delta and alpha brain waves extracted from the electroencephalography recording of a healthy human subject in a free-running resting state. The results indicate that time-varying coupling functions are a reality for biological interactions. A model of phase oscillators is used to demonstrate and detect the synchronization transition caused by the varying coupling functions during an invariant coupling strength. The ability to detect this phenomenon is discussed with the method of dynamical Bayesian inference, which was able to infer the time-varying coupling functions. The form of the coupling function acts as an additional dimension for the interactions, and it should be taken into account when detecting biological or other interactions from data.
Time-varying coupling functions: Dynamical inference and cause of synchronization transitions.
Stankovski, Tomislav
2017-02-01
Interactions in nature can be described by their coupling strength, direction of coupling, and coupling function. The coupling strength and directionality are relatively well understood and studied, at least for two interacting systems; however, there can be a complexity in the interactions uniquely dependent on the coupling functions. Such a special case is studied here: synchronization transition occurs only due to the time variability of the coupling functions, while the net coupling strength is constant throughout the observation time. To motivate the investigation, an example is used to present an analysis of cross-frequency coupling functions between delta and alpha brain waves extracted from the electroencephalography recording of a healthy human subject in a free-running resting state. The results indicate that time-varying coupling functions are a reality for biological interactions. A model of phase oscillators is used to demonstrate and detect the synchronization transition caused by the varying coupling functions during an invariant coupling strength. The ability to detect this phenomenon is discussed with the method of dynamical Bayesian inference, which was able to infer the time-varying coupling functions. The form of the coupling function acts as an additional dimension for the interactions, and it should be taken into account when detecting biological or other interactions from data.
GENERAL: A Possible Population-Driven Phase Transition in Cicada Chorus
NASA Astrophysics Data System (ADS)
Gu, Si-Yuan; Jin, Yu-Liang; Zhao, Xiao-Xue; Huang, Ji-Ping
2009-06-01
We investigate the collective synchronization of cicada chirping. Using both experimental and phenomenological numerical techniques, here we show that the onset of a periodic two-state acoustic synchronous behavior in cicada chorus depends on a critical size of population Nc = 21, above which a typical chorus state appears periodically with a 30 second-silence state in between, and further clarify its possibility concerning a new class of phase transition, which is unusually driven by population. This work has relevance to acoustic synchronization and to general physics of phase transition.
Sliding Over a Phase Transition
NASA Astrophysics Data System (ADS)
Tosatti, Erio; Benassi, Andrea; Vanossi, Andrea; Santoro, Giuseppe E.
2011-03-01
The frictional response experienced by a stick-slip slider when a phase transition occurs in the underlying solid substrate is a potentially exciting, poorly explored problem. We show, based on 2-dimensional simulations modeling the sliding of a nanotip, that indeed friction may be heavily affected by a continuous structural transition. First, friction turns nonmonotonic as temperature crosses the transition, peaking at the critical temperature Tc where fluctuations are strongest. Second, below Tc friction depends upon order parameter directions, and is much larger for those where the frictional slip can cause a local flip. This may open a route towards control of atomic scale friction by switching the order parameter direction by an external field or strain, with possible application to e.g., displacive ferroelectrics such as BaTi O3 , as well as ferro- and antiferro-distortive materials. Supported by project ESF FANAS/AFRI sponsored by the Italian Research Council (CNR).
NASA Astrophysics Data System (ADS)
Wang, Qi; Gong, Yubing; Wu, Yanan
2015-04-01
Autapse is a special synapse that connects a neuron to itself. In this work, we numerically study the effect of chemical autapse on the synchronization of Newman-Watts Hodgkin-Huxley neuron network with time delays. It is found that the neurons exhibit synchronization transitions as autaptic self-feedback delay is varied, and the phenomenon enhances when autaptic self-feedback strength increases. Moreover, this phenomenon becomes strongest when network time delay or coupling strength is optimal. It is also found that the synchronization transitions by network time delay can be enhanced by autaptic activity and become strongest when autaptic delay is optimal. These results show that autaptic delayed self-feedback activity can intermittently enhance and reduce the synchronization of the neuronal network and hence plays an important role in regulating the synchronization of the neurons. These findings could find potential implications for the information processing and transmission in neural systems.
NASA Astrophysics Data System (ADS)
Zheng, Zhigang; Wang, Xingang; Cross, Michael C.
2002-05-01
Generalized synchronization in an array of mutually (bidirectionally) coupled nonidentical chaotic oscillators is studied. Coupled Lorenz oscillators and coupled Lorenz-Rossler oscillators are adopted as our working models. With increasing the coupling strengths, the system experiences a cascade of transitions from the partial to the global generalized synchronizations, i.e., different oscillators are gradually entrained through a clustering process. This scenario of transitions reveals an intrinsic self-organized order in groups of interacting units, which generalizes the idea of generalized synchronizations in drive-response systems.
Chaotic transition in a three-coupled phase-locked loop system.
Tsuruda, Hidekatsu; Shirahama, Hiroyuki; Fukushima, Kazuhiro; Nagadome, Masakazu; Inoue, Masayoshi
2001-06-01
The chaotic transition is observed in a three-coupled phase-locked loop (PLL) system in both experiments and numerical simulations. In this system, three PLL oscillators are connected with the periodic boundary condition. Intermittency is found in partially synchronized phase, in which two of three oscillators synchronize with each other and form a pair, and the chaotic transition occurs due to the recombination of synchronized pairs so that different pair is re-formed. In this phase, on-off intermittency is also observed and statistical analyses are carried out for on-off intermittent time series. This intermittency is considered as a hybrid type of intermittency with both on-off intermittency and intermittency due to the recombination of synchronized pairs present in the same time series. We also show the chaotic transition phenomena in a three-coupled logistic map system. (c) 2001 American Institute of Physics.
Carrier Synchronization of Offset Quadrature Phase-Shift Keying
NASA Astrophysics Data System (ADS)
Simon, M. K.
1998-01-01
This article contains analyses of the performance of various carrier synchronization loops for offset quadrature phase-shift-keying (OQPSK) modulation, all motivated in one form or another by the maximum a posteriori (MAP) estimation of carrier phase. When they are implemented as either high or low signal-to-noise ratio (SNR) approximations to the generic implementation suggested by the MAP estimation of carrier phase for an OQPSK signal, it is shown that the loops behave more like biphase than quadriphase loops in that they only exhibit a 180-deg phase ambiguity rather than the 90-deg phase ambiguity typical of the latter. This phase ambiguity advantage coupled with the mean-square tracking-error performance advantage that results and its ultimate effect on average error probability performance offer a potentially significant justification for using OQPSK rather than QPSK even on a linear transmission channel, where it often is reasoned (based on the assumption of an ideal environment) that the two modulation schemes perform identically.
Noise-enhanced phase synchronization in time-delayed systems.
Senthilkumar, D V; Shrii, M Manju; Kurths, J
2012-02-01
We investigate the phenomenon of noise-enhanced phase synchronization (PS) in coupled time-delay systems, which usually exhibit non-phase-coherent attractors with complex topological properties. As a delay system is essentially an infinite dimensional in nature with multiple characteristic time scales, it is interesting and crucial to understand the interplay of noise and the time scales in achieving PS. In unidirectionally coupled systems, the response system adjust all its time scales to that of the drive, whereas both subsystems adjust their rhythms to a single (main time scale of the uncoupled system) time scale in bidirectionally coupled systems. We find similar effects for both a common and an independent additive Gaussian noise.
Phase synchronization between collective rhythms of fully locked oscillator groups
NASA Astrophysics Data System (ADS)
Kawamura, Yoji
2014-04-01
A system of coupled oscillators can exhibit a rich variety of dynamical behaviors. When we investigate the dynamical properties of the system, we first analyze individual oscillators and the microscopic interactions between them. However, the structure of a coupled oscillator system is often hierarchical, so that the collective behaviors of the system cannot be fully clarified by simply analyzing each element of the system. For example, we found that two weakly interacting groups of coupled oscillators can exhibit anti-phase collective synchronization between the groups even though all microscopic interactions are in-phase coupling. This counter-intuitive phenomenon can occur even when the number of oscillators belonging to each group is only two, that is, when the total number of oscillators is only four. In this paper, we clarify the mechanism underlying this counter-intuitive phenomenon for two weakly interacting groups of two oscillators with global sinusoidal coupling.
Phase synchronization between collective rhythms of fully locked oscillator groups.
Kawamura, Yoji
2014-04-29
A system of coupled oscillators can exhibit a rich variety of dynamical behaviors. When we investigate the dynamical properties of the system, we first analyze individual oscillators and the microscopic interactions between them. However, the structure of a coupled oscillator system is often hierarchical, so that the collective behaviors of the system cannot be fully clarified by simply analyzing each element of the system. For example, we found that two weakly interacting groups of coupled oscillators can exhibit anti-phase collective synchronization between the groups even though all microscopic interactions are in-phase coupling. This counter-intuitive phenomenon can occur even when the number of oscillators belonging to each group is only two, that is, when the total number of oscillators is only four. In this paper, we clarify the mechanism underlying this counter-intuitive phenomenon for two weakly interacting groups of two oscillators with global sinusoidal coupling.
NASA Astrophysics Data System (ADS)
Groth, Andreas; Ghil, Michael; Hallegatte, Stephane; Dumas, Patrice
2010-05-01
Over the last two decades, singular spectrum analysis (SSA) and multivariate SSA (M-SSA) have proven their power in the temporal and spatio-temporal analysis of short and noisy time series in numerous fields of the geosciences and of other disciplines. M-SSA provides insight into the unknown or partially known dynamics of the underlying system by decomposing the delay-coordinate phase space of a given multivariate time series into a set of data-adaptive orthonormal components. These components can be classified essentially into trends, oscillatory patterns and noise, and allow one to reconstruct a robust "skeleton" of the dynamical system's structure. For an overview we refer to Ghil et al. (Rev. Geophys., 2002). We first present M-SSA in the context of synchronization analysis and illustrate its ability to unveil information about the mechanisms behind the adjustment of rhythms in coupled dynamical systems. This poster deals with the special case of phase synchronization between coupled chaotic oscillators (Rosenblum et al., PRL, 1996). Several ways of measuring phase synchronization are in use, and the robust definition of a reasonable phase for each oscillator is critical in each of them. We illustrate here the advantages of M-SSA in the automatic identification of oscillatory modes and in drawing conclusions about the transition to phase synchronization. Without using any a priori definition of a suitable phase, we show that M-SSA is able to detect phase synchronization in a chain of coupled chaotic oscillators (Osipov et al., PRE, 1996). The key application of these theoretical results in this poster is to U.S. macroeconomic data for 1954--2005. M-SSA helps us draw conclusions about the cyclical behavior of the U.S. economy and its underlying dynamical properties. The recurrence of expansions and recessions, at approximately 5--6-year intervals, is referred to as business cycles; their origin is still a matter of considerable controversy. Our analysis sheds
Synchronization Dynamics in the Presence of Coupling Delays and Phase Shifts
NASA Astrophysics Data System (ADS)
Jörg, David J.; Morelli, Luis G.; Ares, Saúl; Jülicher, Frank
2014-05-01
In systems of coupled oscillators, the effects of complex signaling can be captured by time delays and phase shifts. Here, we show how time delays and phase shifts lead to different oscillator dynamics and how synchronization rates can be regulated by substituting time delays by phase shifts at a constant collective frequency. For spatially extended systems with time delays, we show that the fastest synchronization can occur for intermediate wavelengths, giving rise to novel synchronization scenarios.
Synchronization in networks of mutually delay-coupled phase-locked loops
NASA Astrophysics Data System (ADS)
Pollakis, Alexandros; Wetzel, Lucas; Jörg, David J.; Rave, Wolfgang; Fettweis, Gerhard; Jülicher, Frank
2014-11-01
Electronic components that perform tasks in a concerted way rely on a common time reference. For instance, parallel computing demands synchronous clocking of multiple cores or processors to reliably carry out joint computations. Here, we show that mutually coupled phase-locked loops (PLLs) enable synchronous clocking in large-scale systems with transmission delays. We present a phase description of coupled PLLs that includes filter kernels and delayed signal transmission. We find that transmission delays in the coupling enable the existence of stable synchronized states, while instantaneously coupled PLLs do not tend to synchronize. We show how filtering and transmission delays govern the collective frequency and the time scale of synchronization.
Phase transitions in random surfaces
NASA Astrophysics Data System (ADS)
Baig, M.; Espriu, D.; Wheater, J. F.
1989-03-01
We investigate the statistical properties of triangulated random surfaces of fixed connectivity embedded in d-dimensional space and weighted with an action that contains the extrinsic curvature of the surface as well as the usual Nambu-Goto term. Numerically, we find no second-order phase transition for finite values of the rigidity coupling, in contrast to results obtained by Kantor and Nelson using a different action. Rather, there is a third order "crumpling" transition which, however, is not associated with an infinite correlation length between the normals to the surface. We compare the Monte Carlo results with several approximations, particularly with the mean field solution of the model. Our results indicate that there are no fixed points other than those already found in perturbation theory. We comment on several other aspects of random surfaces.
Interacting Weyl fermions: Phases, phase transitions, and global phase diagram
NASA Astrophysics Data System (ADS)
Roy, Bitan; Goswami, Pallab; Juričić, Vladimir
2017-05-01
We study the effects of short-range interactions on a generalized three-dimensional Weyl semimetal, where the band touching points act as the (anti)monopoles of Abelian Berry curvature of strength n . We show that any local interaction has a negative scaling dimension -2 /n . Consequently, all Weyl semimetals are stable against weak short-range interactions. For sufficiently strong interactions, we demonstrate that the Weyl semimetal either undergoes a first-order transition into a band insulator or a continuous transition into a symmetry breaking phase. A translational symmetry breaking axion insulator and a rotational symmetry breaking semimetal are two prominent candidates for the broken symmetry phase. At the one-loop order, the correlation length exponent for continuous transitions is ν =n /2 , indicating their non-Gaussian nature for any n >1 . We also discuss the scaling of the thermodynamic and transport quantities in general Weyl semimetals as well as inside broken symmetry phases.
NASA Astrophysics Data System (ADS)
Mormann, Florian; Lehnertz, Klaus; David, Peter; E. Elger, Christian
2000-10-01
We apply the concept of phase synchronization of chaotic and/or noisy systems and the statistical distribution of the relative instantaneous phases to electroencephalograms (EEGs) recorded from patients with temporal lobe epilepsy. Using the mean phase coherence as a statistical measure for phase synchronization, we observe characteristic spatial and temporal shifts in synchronization that appear to be strongly related to pathological activity. In particular, we observe distinct differences in the degree of synchronization between recordings from seizure-free intervals and those before an impending seizure, indicating an altered state of brain dynamics prior to seizure activity.
Data Synchronization in a Network of Coupled Phase Oscillators
NASA Astrophysics Data System (ADS)
Miyano, Takaya; Tsutsui, Takako
2007-01-01
We devised a new method of data mining for a large-scale database. In the method, a network of locally coupled phase oscillators subject to Kuramoto’s model substitutes for given multivariate data to generate major features through phase locking of the oscillators, i.e., phase transition of the data set. We applied the method to the national database of care needs certification for the Japanese public long-term care insurance program, and found three major patterns in the aging process of the frail elderly. This work revealed the latent utility of Kuramoto’s model for data processing.
Phases and phase transitions in disordered quantum systems
NASA Astrophysics Data System (ADS)
Vojta, Thomas
2013-08-01
These lecture notes give a pedagogical introduction to phase transitions in disordered quantum systems and to the exotic Griffiths phases induced in their vicinity. We first review some fundamental concepts in the physics of phase transitions. We then derive criteria governing under what conditions spatial disorder or randomness can change the properties of a phase transition. After introducing the strong-disorder renormalization group method, we discuss in detail some of the exotic phenomena arising at phase transitions in disordered quantum systems. These include infinite-randomness criticality, rare regions and quantum Griffiths singularities, as well as the smearing of phase transitions. We also present a number of experimental examples.
Brain Performance versus Phase Transitions
NASA Astrophysics Data System (ADS)
Torres, Joaquín J.; Marro, J.
2015-07-01
We here illustrate how a well-founded study of the brain may originate in assuming analogies with phase-transition phenomena. Analyzing to what extent a weak signal endures in noisy environments, we identify the underlying mechanisms, and it results a description of how the excitability associated to (non-equilibrium) phase changes and criticality optimizes the processing of the signal. Our setting is a network of integrate-and-fire nodes in which connections are heterogeneous with rapid time-varying intensities mimicking fatigue and potentiation. Emergence then becomes quite robust against wiring topology modification—in fact, we considered from a fully connected network to the Homo sapiens connectome—showing the essential role of synaptic flickering on computations. We also suggest how to experimentally disclose significant changes during actual brain operation.
Synchronization in area-preserving maps: Effects of mixed phase space and coherent structures.
Mahata, Sasibhusan; Das, Swetamber; Gupte, Neelima
2016-06-01
The problem of synchronization of coupled Hamiltonian systems presents interesting features due to the mixed nature (regular and chaotic) of the phase space. We study these features by examining the synchronization of unidirectionally coupled area-preserving maps coupled by the Pecora-Caroll method. The master stability function approach is used to study the stability of the synchronous state and to identify the percentage of synchronizing initial conditions. The transient to synchronization shows intermittency with an associated power law. The mixed nature of the phase space of the studied map has notable effects on the synchronization times as is seen in the case of the standard map. Using finite-time Lyapunov exponent analysis, we show that the synchronization of the maps occurs in the neighborhood of invariant curves in the phase space. The phase differences of the coevolving trajectories show intermittency effects, due to the existence of stable periodic orbits contributing locally stable directions in the synchronizing neighborhoods. Furthermore, the value of the nonlinearity parameter, as well as the location of the initial conditions play an important role in the distribution of synchronization times. We examine drive response combinations which are chaotic-chaotic, chaotic-regular, regular-chaotic, and regular-regular. A range of scaling behavior is seen for these cases, including situations where the distributions show a power-law tail, indicating long synchronization times for at least some of the synchronizing trajectories. The introduction of coherent structures in the system changes the situation drastically. The distribution of synchronization times crosses over to exponential behavior, indicating shorter synchronization times, and the number of initial conditions which synchronize increases significantly, indicating an enhancement in the basin of synchronization. We discuss the implications of our results.
Work and quantum phase transitions: quantum latency.
Mascarenhas, E; Bragança, H; Dorner, R; França Santos, M; Vedral, V; Modi, K; Goold, J
2014-06-01
We study the physics of quantum phase transitions from the perspective of nonequilibrium thermodynamics. For first-order quantum phase transitions, we find that the average work done per quench in crossing the critical point is discontinuous. This leads us to introduce the quantum latent work in analogy with the classical latent heat of first order classical phase transitions. For second order quantum phase transitions the irreversible work is closely related to the fidelity susceptibility for weak sudden quenches of the system Hamiltonian. We demonstrate our ideas with numerical simulations of first, second, and infinite order phase transitions in various spin chain models.
NASA Astrophysics Data System (ADS)
Ott, Edward; Antonsen, Thomas M.
2017-05-01
A common observation is that large groups of oscillatory biological units often have the ability to synchronize. A paradigmatic model of such behavior is provided by the Kuramoto model, which achieves synchronization through coupling of the phase dynamics of individual oscillators, while each oscillator maintains a different constant inherent natural frequency. Here we consider the biologically likely possibility that the oscillatory units may be capable of enhancing their synchronization ability by adaptive frequency dynamics. We propose a simple augmentation of the Kuramoto model which does this. We also show that, by the use of a previously developed technique [Ott and Antonsen, Chaos 18, 037113 (2008)], it is possible to reduce the resulting dynamics to a lower dimensional system for the macroscopic evolution of the oscillator ensemble. By employing this reduction, we investigate the dynamics of our system, finding a characteristic hysteretic behavior and enhancement of the quality of the achieved synchronization.
Onset of chaotic phase synchronization in complex networks of coupled heterogeneous oscillators.
Ricci, Francesco; Tonelli, Roberto; Huang, Liang; Lai, Ying-Cheng
2012-08-01
Existing studies on network synchronization focused on complex networks possessing either identical or nonidentical but simple nodal dynamics. We consider networks of both complex topologies and heterogeneous but chaotic oscillators, and investigate the onset of global phase synchronization. Based on a heuristic analysis and by developing an efficient numerical procedure to detect the onset of phase synchronization, we uncover a general scaling law, revealing that chaotic phase synchronization can be facilitated by making the network more densely connected. Our methodology can find applications in probing the fundamental network dynamics in realistic situations, where both complex topology and complicated, heterogeneous nodal dynamics are expected.
Methods, systems and apparatus for synchronous current regulation of a five-phase machine
Gallegos-Lopez, Gabriel; Perisic, Milun
2012-10-09
Methods, systems and apparatus are provided for controlling operation of and regulating current provided to a five-phase machine when one or more phases has experienced a fault or has failed. In one implementation, the disclosed embodiments can be used to synchronously regulate current in a vector controlled motor drive system that includes a five-phase AC machine, a five-phase inverter module coupled to the five-phase AC machine, and a synchronous current regulator.
QCD Phase Transitions, Volume 15
Schaefer, T.; Shuryak, E.
1999-03-20
The title of the workshop, ''The QCD Phase Transitions'', in fact happened to be too narrow for its real contents. It would be more accurate to say that it was devoted to different phases of QCD and QCD-related gauge theories, with strong emphasis on discussion of the underlying non-perturbative mechanisms which manifest themselves as all those phases. Before we go to specifics, let us emphasize one important aspect of the present status of non-perturbative Quantum Field Theory in general. It remains true that its studies do not get attention proportional to the intellectual challenge they deserve, and that the theorists working on it remain very fragmented. The efforts to create Theory of Everything including Quantum Gravity have attracted the lion share of attention and young talent. Nevertheless, in the last few years there was also a tremendous progress and even some shift of attention toward emphasis on the unity of non-perturbative phenomena. For example, we have seen some efforts to connect the lessons from recent progress in Supersymmetric theories with that in QCD, as derived from phenomenology and lattice. Another example is Maldacena conjecture and related development, which connect three things together, string theory, super-gravity and the (N=4) supersymmetric gauge theory. Although the progress mentioned is remarkable by itself, if we would listen to each other more we may have chance to strengthen the field and reach better understanding of the spectacular non-perturbative physics.
Phase locked loop synchronization for direct detection optical PPM communication systems
NASA Technical Reports Server (NTRS)
Chen, C. C.; Gardner, C. S.
1985-01-01
Receiver timing synchronization of an optical pulse position modulation (PPM) communication system can be achieved using a phase locked loop (PLL) if the photodetector output is properly processed. The synchronization performance is shown to improve with increasing signal power and decreasing loop bandwidth. Bit error rate (BER) of the PLL synchronized PPM system is analyzed and compared to that for the perfectly synchronized system. It is shown that the increase in signal power needed to compensate for the imperfect synchronization is small (less than 0.1 dB) for loop bandwidths less than 0.1% of the slot frequency.
Dynamics of a Quantum Phase Transition
Zurek, Wojciech H.; Dorner, Uwe; Zoller, Peter
2005-09-02
We present two approaches to the dynamics of a quench-induced phase transition in the quantum Ising model. One follows the standard treatment of thermodynamic second order phase transitions but applies it to the quantum phase transitions. The other approach is quantum, and uses Landau-Zener formula for transition probabilities in avoided level crossings. We show that predictions of the two approaches of how the density of defects scales with the quench rate are compatible, and discuss the ensuing insights into the dynamics of quantum phase transitions.
Zhang, Huaguang; Wang, Junyi; Wang, Zhanshan; Liang, Hongjing
2017-03-01
This paper investigates the problem of sampled-data synchronization for Markovian neural networks with generally incomplete transition rates. Different from traditional Markovian neural networks, each transition rate can be completely unknown or only its estimate value is known in this paper. Compared with most of existing Markovian neural networks, our model is more practical because the transition rates in Markovian processes are difficult to precisely acquire due to the limitations of equipment and the influence of uncertain factors. In addition, the time-dependent Lyapunov-Krasovskii functional is proposed to synchronize drive system and response system. By applying an extended Jensen's integral inequality and Wirtinger's inequality, new delay-dependent synchronization criteria are obtained, which fully utilize the upper bound of variable sampling interval and the sawtooth structure information of varying input delay. Moreover, the desired sampled-data controllers are obtained. Finally, two examples are provided to illustrate the effectiveness of the proposed method.
Steady-State Visual Evoked Potentials and Phase Synchronization in Migraine Patients
NASA Astrophysics Data System (ADS)
Angelini, L.; Tommaso, M. De; Guido, M.; Hu, K.; Ivanov, P. Ch.; Marinazzo, D.; Nardulli, G.; Nitti, L.; Pellicoro, M.; Pierro, C.; Stramaglia, S.
2004-07-01
We investigate phase synchronization in EEG recordings from migraine patients. We use the analytic signal technique, based on the Hilbert transform, and find that migraine brains are characterized by enhanced alpha band phase synchronization in the presence of visual stimuli. Our findings show that migraine patients have an overactive regulatory mechanism that renders them more sensitive to external stimuli.
Cortico-pontine theta synchronization phase shift following monoaminergic lesion in rat.
Kalauzi, A; Kesic, S; Saponjic, J
2009-12-01
The experiments were performed in 14 adult, male Sprague Dawley rats chronically instrumented for sleep recording and recorded during baseline condition, following sham injection (saline i.p. 1 ml/kg), and every week for 5 weeks following injection of the systemic neurotoxins (DSP-4 or PCA; 1 ml/kg, i.p.) for chemical axotomy of the locus coeruleus (LC) and dorsal raphe (DR) axon terminals. In our former study we demonstrated that the systemically induced lesion of the noradrenergic or serotonergic axon terminals did not affect the sleep-wake distribution from control condition. In this study, by using spectral analysis and phase shift spectra of the cortical and pontine EEG we analyzed cortico-pontine theta oscillation synchronization phase shift on 6-hour recordings in control condition and 28 days following the monoaminergic lesions, as a time for permanently established DR or LC chemical axotomy. Our results demonstrated for the first time that chronically decreased brain monoamines in freely moving rats changed cortico-pontine theta synchronization phase shift. Pons became a leading theta oscillator. We assume that deficit of monoamines induced predominance of the NREM/REM transitions, characterized with phasic theta oscillations (the increased density of clustered P waves which intrinsic frequency corresponds to theta frequency oscillations), and may produced preceding phasic theta versus tonic theta oscillation drive.
Cloud regimes as phase transitions
NASA Astrophysics Data System (ADS)
Stechmann, Samuel N.; Hottovy, Scott
2016-06-01
Clouds are repeatedly identified as a leading source of uncertainty in future climate predictions. Of particular importance are stratocumulus clouds, which can appear as either (i) closed cells that reflect solar radiation back to space or (ii) open cells that allow solar radiation to reach the Earth's surface. Here we show that these clouds regimes -- open versus closed cells -- fit the paradigm of a phase transition. In addition, this paradigm characterizes pockets of open cells as the interface between the open- and closed-cell regimes, and it identifies shallow cumulus clouds as a regime of higher variability. This behavior can be understood using an idealized model for the dynamics of atmospheric water as a stochastic diffusion process. With this new conceptual viewpoint, ideas from statistical mechanics could potentially be used for understanding uncertainties related to clouds in the climate system and climate predictions.
Nenadovic, Vera; Perez Velazquez, Jose Luis; Hutchison, James Saunders
2014-01-01
Brain injury from trauma, cardiac arrest or stroke is the most important cause of death and acquired disability in the paediatric population. Due to the lifetime impact of brain injury, there is a need for methods to stratify patient risk and ultimately predict outcome. Early prognosis is fundamental to the implementation of interventions to improve recovery, but no clinical model as yet exists. Healthy physiology is associated with a relative high variability of physiologic signals in organ systems. This was first evaluated in heart rate variability research. Brain variability can be quantified through electroencephalographic (EEG) phase synchrony. We hypothesised that variability in brain signals from EEG recordings would correlate with patient outcome after brain injury. Lower variability in EEG phase synchronization, would be associated with poor patient prognosis. A retrospective study, spanning 10 years (2000–2010) analysed the scalp EEGs of children aged 1 month to 17 years in coma (Glasgow Coma Scale, GCS, <8) admitted to the paediatric critical care unit (PCCU) following brain injury from TBI, cardiac arrest or stroke. Phase synchrony of the EEGs was evaluated using the Hilbert transform and the variability of the phase synchrony calculated. Outcome was evaluated using the 6 point Paediatric Performance Category Score (PCPC) based on chart review at the time of hospital discharge. Outcome was dichotomized to good outcome (PCPC score 1 to 3) and poor outcome (PCPC score 4 to 6). Children who had a poor outcome following brain injury secondary to cardiac arrest, TBI or stroke, had a higher magnitude of synchrony (R index), a lower spatial complexity of the synchrony patterns and a lower temporal variability of the synchrony index values at 15 Hz when compared to those patients with a good outcome. PMID:24752289
Pattern recognition via synchronization in phase-locked loop neural networks.
Hoppensteadt, F C; Izhikevich, E M
2000-01-01
We propose a novel architecture of an oscillatory neural network that consists of phase-locked loop (PLL) circuits. It stores and retrieves complex oscillatory patterns as synchronized states with appropriate phase relations between neurons.
Joint Carrier-Phase Synchronization and LDPC Decoding
NASA Technical Reports Server (NTRS)
Simon, Marvin; Valles, Esteban
2009-01-01
A method has been proposed to increase the degree of synchronization of a radio receiver with the phase of a suppressed carrier signal modulated with a binary- phase-shift-keying (BPSK) or quaternary- phase-shift-keying (QPSK) signal representing a low-density parity-check (LDPC) code. This method is an extended version of the method described in Using LDPC Code Constraints to Aid Recovery of Symbol Timing (NPO-43112), NASA Tech Briefs, Vol. 32, No. 10 (October 2008), page 54. Both methods and the receiver architectures in which they would be implemented belong to a class of timing- recovery methods and corresponding receiver architectures characterized as pilotless in that they do not require transmission and reception of pilot signals. The proposed method calls for the use of what is known in the art as soft decision feedback to remove the modulation from a replica of the incoming signal prior to feeding this replica to a phase-locked loop (PLL) or other carrier-tracking stage in the receiver. Soft decision feedback refers to suitably processed versions of intermediate results of iterative computations involved in the LDPC decoding process. Unlike a related prior method in which hard decision feedback (the final sequence of decoded symbols) is used to remove the modulation, the proposed method does not require estimation of the decoder error probability. In a basic digital implementation of the proposed method, the incoming signal (having carrier phase theta theta (sub c) plus noise would first be converted to inphase (I) and quadrature (Q) baseband signals by mixing it with I and Q signals at the carrier frequency [wc/(2 pi)] generated by a local oscillator. The resulting demodulated signals would be processed through one-symbol-period integrate and- dump filters, the outputs of which would be sampled and held, then multiplied by a soft-decision version of the baseband modulated signal. The resulting I and Q products consist of terms proportional to the cosine
Aspects of the electroweak phase transition
Huet, P.
1992-11-01
The electroweak phase transition is reviewed in light of some recent developments. Emphasis is on the issue whether the transition is first or second order and its possible role in the generation of the baryon asymmetry of the universe.
Effect of phase response curve skew on synchronization with and without conduction delays
Canavier, Carmen C.; Wang, Shuoguo; Chandrasekaran, Lakshmi
2013-01-01
A central problem in cortical processing including sensory binding and attentional gating is how neurons can synchronize their responses with zero or near-zero time lag. For a spontaneously firing neuron, an input from another neuron can delay or advance the next spike by different amounts depending upon the timing of the input relative to the previous spike. This information constitutes the phase response curve (PRC). We present a simple graphical method for determining the effect of PRC shape on synchronization tendencies and illustrate it using type 1 PRCs, which consist entirely of advances (delays) in response to excitation (inhibition). We obtained the following generic solutions for type 1 PRCs, which include the pulse-coupled leaky integrate and fire model. For pairs with mutual excitation, exact synchrony can be stable for strong coupling because of the stabilizing effect of the causal limit region of the PRC in which an input triggers a spike immediately upon arrival. However, synchrony is unstable for short delays, because delayed inputs arrive during a refractory period and cannot trigger an immediate spike. Right skew destabilizes antiphase and enables modes with time lags that grow as the conduction delay is increased. Therefore, right skew favors near synchrony at short conduction delays and a gradual transition between synchrony and antiphase for pairs coupled by mutual excitation. For pairs with mutual inhibition, zero time lag synchrony is stable for conduction delays ranging from zero to a substantial fraction of the period for pairs. However, for right skew there is a preferred antiphase mode at short delays. In contrast to mutual excitation, left skew destabilizes antiphase for mutual inhibition so that synchrony dominates at short delays as well. These pairwise synchronization tendencies constrain the synchronization properties of neurons embedded in larger networks. PMID:24376399
Synchronization of Plant Circadian Oscillators with a Phase Delay Effect of the Vein Network
NASA Astrophysics Data System (ADS)
Fukuda, Hirokazu; Nakamichi, Norihito; Hisatsune, Mihoe; Murase, Haruhiko; Mizuno, Takeshi
2007-08-01
Synchronization phenomena in coupled circadian oscillators of plant leaves were investigated experimentally using bioluminescence technology for a clock gene. Analyzing the phase of circadian oscillation, the phase-wave propagations and the phase delay caused by the vein network were observed. We describe these phase dynamics using a two-layer model with coupled Stuart-Landau equations. Global synchronization of circadian oscillators in the leaf is also investigated.
Current fluctuations at a phase transition
NASA Astrophysics Data System (ADS)
Gerschenfeld, A.; Derrida, B.
2011-10-01
The ABC model is a simple diffusive one-dimensional non-equilibrium system which exhibits a phase transition. Here we show that the cumulants of the currents of particles through the system become singular near the phase transition. At the transition, they exhibit an anomalous dependence on the system size (an anomalous Fourier's law). An effective theory for the dynamics of the single mode which becomes unstable at the transition allows one to predict this anomalous scaling.
Experimental observation of phase-flip transitions in two inductively coupled glow discharge plasmas
NASA Astrophysics Data System (ADS)
Chaubey, Neeraj; Mukherjee, S.; Sen, A.; Iyengar, A. N. Sekar
2016-12-01
We report an experimental observation of a phase-flip transition in the frequency synchronization of two dc glow discharge plasma sources that are coupled in a noninvasive fashion. When the fundamental oscillation frequency of the potential fluctuations of one of the sources is progressively increased, by raising its discharge voltage, a frequency pulling regime is observed, followed by a synchronized regime that shows a frequency jump phenomenon. The jump is associated with a phase-flip transition that takes the synchronized state from an in-phase to an antiphase state. When the process is reversed, the transition takes place at a different frequency, thereby exhibiting a hysteresis effect. A heuristic model, consisting of two van der Pol oscillators that are coupled to each other through a dynamic common medium, eminently captures the essential features of our experimental observations.
NASA Astrophysics Data System (ADS)
Wang, Bao-Ying; Gong, Yu-Bing
2015-11-01
We numerically study the effect of the channel noise on the spiking synchronization of a scale-free Hodgkin-Huxley neuron network with time delays. It is found that the time delay can induce synchronization transitions at an intermediate and proper channel noise intensity, and the synchronization transitions become strongest when the channel noise intensity is optimal. The neurons can also exhibit synchronization transitions as the channel noise intensity is varied, and this phenomenon is enhanced at around the time delays that can induce the synchronization transitions. It is also found that the synchronization transitions induced by the channel noise are dependent on the coupling strength and the network average degree, and there is an optimal coupling strength or network average degree with which the synchronization transitions become strongest. These results show that by inducing synchronization transitions, the channel noise has a big regulation effect on the synchronization of the neuronal network. These findings could find potential implications for the information transmission in neural systems. Project supported by the Natural Science Foundation of Shandong Province of China (Grant No. ZR2012AM013).
NASA Astrophysics Data System (ADS)
Moskalenko, O. I.; Koronovskii, A. A.; Hramov, A. E.; Zhuravlev, M. O.
2016-04-01
A method for determining the degree of synchronization of intermittent phase synchronization regime from a time series has been proposed on the basis of estimating the zero conditional Lyapunov exponent. The efficiency of the method has been tested on model systems near the boundary of the appearance of the synchronous regime. The method has been used to determine the degree of synchronization between various regions of the brain of rats of the WAG/Rij line having a genetic predisposition to epilepsy.
Wang, Qi; Gong, Yubing; Wu, Yanan
2015-11-01
Introducing adaptive coupling in delayed neuronal networks and regulating the dissipative parameter (DP) of adaptive coupling by noise, we study the effect of fluctuations of the changing rate of adaptive coupling on the synchronization of the neuronal networks. It is found that time delay can induce synchronization transitions for intermediate DP values, and the synchronization transitions become strongest when DP is optimal. As the intensity of DP noise is varied, the neurons can also exhibit synchronization transitions, and the phenomenon is delay-dependent and is enhanced for certain time delays. Moreover, the synchronization transitions change with the change of DP and become strongest when DP is optimal. These results show that randomly changing adaptive coupling can considerably change the synchronization of the neuronal networks, and hence could play a crucial role in the information processing and transmission in neural systems.
Smith, Stephen F.; Moore, James A.
2011-02-01
Systems and methods are described for carrier phase synchronization for improved AM and TV broadcast reception. A method includes synchronizing the phase of a carrier frequency of a broadcast signal with the phase of a remote reference frequency. An apparatus includes a receiver to detect the phase of a reference signal; a phase comparator coupled to the reference signal-phase receiver; a voltage controlled oscillator coupled to the phase comparator; and a phase-controlled radio frequency output coupled to the voltage controlled oscillator.
Smith, Stephen F [Loudon, TN; Moore, James A [Powell, TN
2009-09-08
Systems and methods are described for carrier phase synchronization for improved AM and TV broadcast reception. A method includes synchronizing the phase of a carrier frequency of a broadcast signal with the phase of a remote reference frequency. An apparatus includes a receiver to detect the phase of a reference signal; a phase comparator coupled to the reference signal-phase receiver; a voltage controlled oscillator coupled to the phase comparator; and a phase-controlled radio frequency output coupled to the voltage controlled oscillator.
Quantum phase transitions in disordered antiferromagnets
NASA Astrophysics Data System (ADS)
Yu, Rong
Recently quantum phase transitions have attracted the interest of both theorists and experimentalists in condensed matter physics. Quantum magnets provide a perfect playground for studying these phase transitions since they can be triggered by many control parameters such as frustration, lattice dimerization, and magnetic field. Most previous studies have focused on the magnetic properties in pure systems. In these systems, responses to the triggering parameters are found to be uniform, leading to homogeneous phases. However little progress has been made so far on the phase transitions and properties in disordered quantum magnets because they are more complicated systems, and few theoretical tools can be applied. In this thesis we use the stochastic series expansion quantum Monte Carlo method to study quantum phase transitions in disordered magnets. We find that disordered magnets can behave quite differently from pure systems. The system inhomogeneity can strongly affect phase transitions by changing their universality class. We also find order-disorder transitions are often accompanied by the appearance of novel quantum disordered phases, in which magnetic properties behave highly nontrivial, even singular. In this thesis two examples are studied in great detail. The first one is the phase diagram of an inhomogeneous, bond-diluted two-dimensional antiferromagnet near the percolation threshold. We show that the magnetic transition can be tuned by the inhomogeneity of the dilution from a classical percolation to a quantum phase transition. Interestingly the quantum transition still takes the nature of a renormalized percolative transition, with continuously varying critical exponents. A gapless quantum disordered phase with no magnetic long-range order but geometric percolation is found. The low-temperature uniform susceptibility diverges as a non-universal power-law of the temperature in this phase, indicating that this is a quantum Griffiths phase. In the second
Amplitude and phase effects on the synchronization of delay-coupled oscillators
D'Huys, O.; Vicente, R.; Danckaert, J.; Fischer, I.
2010-12-15
We consider the behavior of Stuart-Landau oscillators as generic limit-cycle oscillators when they are interacting with delay. We investigate the role of amplitude and phase instabilities in producing symmetry-breaking/restoring transitions. Using analytical and numerical methods we compare the dynamics of one oscillator with delayed feedback, two oscillators mutually coupled with delay, and two delay-coupled elements with self-feedback. Taking only the phase dynamics into account, no chaotic dynamics is observed, and the stability of the identical synchronization solution is the same in each of the three studied networks of delay-coupled elements. When allowing for a variable oscillation amplitude, the delay can induce amplitude instabilities. We provide analytical proof that, in case of two mutually coupled elements, the onset of an amplitude instability always results in antiphase oscillations, leading to a leader-laggard behavior in the chaotic regime. Adding self-feedback with the same strength and delay as the coupling stabilizes the system in the transverse direction and, thus, promotes the onset of identically synchronized behavior.
Phase transitions of quadrupolar fluids
NASA Astrophysics Data System (ADS)
O'Shea, Seamus F.; Dubey, Girija S.; Rasaiah, Jayendran C.
1997-07-01
Gibbs ensemble simulations are reported for Lennard-Jones particles with embedded quadrupoles of strength Q*=Q/(ɛσ5)1/2=2.0 where ɛ and σ are the Lennard-Jones parameters. Calculations revealing the effect of the dispersive forces on the liquid-vapor coexistence were carried out by scaling the attractive r-6 term in the Lennard-Jones pair potential by a factor λ ranging from 0 to 1. Liquid-vapor coexistence is observed for all values of λ including λ=0 for Q*=2.0, unlike the corresponding dipolar fluid studied by van Leeuwen and Smit et al. [Phys. Rev. Lett. 71, 3991 (1993)] which showed no phase transition below λ=0.35 when the reduced dipole moment μ*=2.0. The simulation data are analyzed to estimate the critical properties of the quadrupolar fluid and their dependence on the strength λ of the dispersive force. The critical temperature and pressure show a clear quadratic dependence on λ, while the density is less confidently identified as being linear in λ. The compressibility is roughly linear in λ.
Gong, Yubing; Wang, Baoying; Xie, Huijuan
2016-12-01
In this paper, we numerically study the effect of spike-timing-dependent plasticity (STDP) on synchronization transitions induced by autaptic activity in adaptive Newman-Watts Hodgkin-Huxley neuron networks. It is found that synchronization transitions induced by autaptic delay vary with the adjusting rate Ap of STDP and become strongest at a certain Ap value, and the Ap value increases when network randomness or network size increases. It is also found that the synchronization transitions induced by autaptic delay become strongest at a certain network randomness and network size, and the values increase and related synchronization transitions are enhanced when Ap increases. These results show that there is optimal STDP that can enhance the synchronization transitions induced by autaptic delay in the adaptive neuronal networks. These findings provide a new insight into the roles of STDP and autapses for the information transmission in neural systems.
NASA Astrophysics Data System (ADS)
Fukuyama, Takao; Hagimine, Kengo; Miyazaki, Ren
2017-09-01
The improvement of phase synchronization between two coupled chaotic oscillators achieved using a pulse as the external force in a glow discharge plasma is experimentally demonstrated. The effect of coupling and pulse application on the dynamic behaviors of systems is investigated. From the viewpoint of the phase of oscillations, experimental results show that phase synchronization between two coupled chaotic oscillators is improved by applying a pulse.
Anti-phase synchronization and ergodicity in arrays of oscillators coupled by an elastic force
NASA Astrophysics Data System (ADS)
Dilão, Rui
2014-04-01
We have proposed a mechanism of interaction between two non-linear dissipative oscillators, leading to exact and robust anti-phase and in-phase synchronization. The system we have analyzed is a model for the Huygens's two pendulum clocks system, as well as a model for synchronization mediated by an elastic media. Here, we extend these results to arrays, finite or infinite, of conservative pendula coupled by linear elastic forces. We show that, for two interacting pendula, this mechanism leads always to synchronized anti-phase small amplitude oscillations, and it is robust upon variation of the parameters. For three or more interacting pendula, this mechanism leads always to ergodic non-synchronized oscillations. In the continuum limit, the pattern of synchronization is described by a quasi-periodic longitudinal wave.
NASA Technical Reports Server (NTRS)
Natarajan, Suresh; Gardner, C. S.
1987-01-01
Receiver timing synchronization of an optical Pulse-Position Modulation (PPM) communication system can be achieved using a phased-locked loop (PLL), provided the photodetector output is suitably processed. The magnitude of the PLL phase error is a good indicator of the timing error at the receiver decoder. The statistics of the phase error are investigated while varying several key system parameters such as PPM order, signal and background strengths, and PPL bandwidth. A practical optical communication system utilizing a laser diode transmitter and an avalanche photodiode in the receiver is described, and the sampled phase error data are presented. A linear regression analysis is applied to the data to obtain estimates of the relational constants involving the phase error variance and incident signal power.
NASA Astrophysics Data System (ADS)
Wang, Qingyun; Perc, Matjaž; Duan, Zhisheng; Chen, Guanrong
2009-08-01
We investigate front propagation and synchronization transitions in dependence on the information transmission delay and coupling strength over scale-free neuronal networks with different average degrees and scaling exponents. As the underlying model of neuronal dynamics, we use the efficient Rulkov map with additive noise. We show that increasing the coupling strength enhances synchronization monotonously, whereas delay plays a more subtle role. In particular, we found that depending on the inherent oscillation frequency of individual neurons, regions of irregular and regular propagating excitatory fronts appear intermittently as the delay increases. These delay-induced synchronization transitions manifest as well-expressed minima in the measure for spatial synchrony, appearing at every multiple of the oscillation frequency. Larger coupling strengths or average degrees can broaden the region of regular propagating fronts by a given information transmission delay and further improve synchronization. These results are robust against variations in system size, intensity of additive noise, and the scaling exponent of the underlying scale-free topology. We argue that fine-tuned information transmission delays are vital for assuring optimally synchronized excitatory fronts on complex neuronal networks and, indeed, they should be seen as important as the coupling strength or the overall density of interneuronal connections. We finally discuss some biological implications of the presented results.
NASA Astrophysics Data System (ADS)
Balázsi, Gábor; Cornell-Bell, Ann H.; Moss, Frank
2003-06-01
Stochastic synchronization analysis is applied to intracellular calcium oscillations in astrocyte cultures prepared from epileptic human temporal lobe. The same methods are applied to astrocyte cultures prepared from normal rat hippocampus. Our results indicate that phase-repulsive coupling in epileptic human astrocyte cultures is stronger, leading to an increased synchronization in epileptic human compared to normal rat astrocyte cultures.
Local bias-induced phase transitions
Seal, Katyayani; Baddorf, Arthur P.; Jesse, Stephen; Kalinin, Sergei V.; Nikiforov, Maxim; Proksch, Roger; Rodriguez, Brian J.; Maksymovych, Petro; Kholkin, Andrei L.
2008-11-27
Electrical bias-induced phase transitions underpin a wide range of applications from data storage to energy generation and conversion. The mechanisms behind these transitions are often quite complex and in many cases are extremely sensitive to local defects that act as centers for local transformations or pinning. Furthermore, using ferroelectrics as an example, we review methods for probing bias-induced phase transitions and discuss the current limitations and challenges for extending the methods to field-induced phase transitions and electrochemical reactions in energy storage, biological and molecular systems.
Local bias-induced phase transitions
Seal, Katyayani; Baddorf, Arthur P.; Jesse, Stephen; ...
2008-11-27
Electrical bias-induced phase transitions underpin a wide range of applications from data storage to energy generation and conversion. The mechanisms behind these transitions are often quite complex and in many cases are extremely sensitive to local defects that act as centers for local transformations or pinning. Furthermore, using ferroelectrics as an example, we review methods for probing bias-induced phase transitions and discuss the current limitations and challenges for extending the methods to field-induced phase transitions and electrochemical reactions in energy storage, biological and molecular systems.
Phase transitions in the web of science
NASA Astrophysics Data System (ADS)
Phillips, J. C.
2015-06-01
The Internet age is changing the structure of science, and affecting interdisciplinary interactions. Publication profiles connecting mathematics with molecular biology and condensed matter physics over the last 40 years exhibit common phase transitions indicative of the critical role played by specific interdisciplinary interactions. The strengths of the phase transitions quantify the importance of interdisciplinary interactions.
NASA Astrophysics Data System (ADS)
Ogawa, Yutaro; Ikeda, Akira; Kotani, Kiyoshi; Jimbo, Yasuhiko
In this study, we propose the EEG phase synchronization analysis including not only the average strength of the synchronization but also the distribution and directions under the conditions that evoked emotion by musical stimuli. The experiment is performed with the two different musical stimuli that evoke happiness or sadness for 150 seconds. It is found that the average strength of synchronization indicates no difference between the right side and the left side of the frontal lobe during the happy stimulus, the distribution and directions indicate significant differences. Therefore, proposed analysis is useful for detecting emotional condition because it provides information that cannot be obtained only by the average strength of synchronization.
Cancer as a dynamical phase transition.
Davies, Paul Cw; Demetrius, Lloyd; Tuszynski, Jack A
2011-08-25
This paper discusses the properties of cancer cells from a new perspective based on an analogy with phase transitions in physical systems. Similarities in terms of instabilities and attractor states are outlined and differences discussed. While physical phase transitions typically occur at or near thermodynamic equilibrium, a normal-to-cancer (NTC) transition is a dynamical non-equilibrium phenomenon, which depends on both metabolic energy supply and local physiological conditions. A number of implications for preventative and therapeutic strategies are outlined.
Analysis of Nuclear Quantum Phase Transitions
Li, Z. P.; Meng, J.; Niksic, T.; Vretenar, D.; Lalazissis, G. A.; Ring, P.
2009-08-26
A microscopic analysis, based on nuclear energy density functionals, is presented for shape phase transitions in Nd isotopes. Low-lying excitation spectra and transition probabilities are calculated starting from a five-dimensional Hamiltonian, with parameters determined by constrained relativistic mean-field calculations for triaxial shapes. The results reproduce available data, and show that there is an abrupt change of structure at N = 90, that corresponds to a first-order quantum phase transition between spherical and axially deformed shapes.
Phase transition in a super superspin glass
NASA Astrophysics Data System (ADS)
Mathieu, R.; De Toro, J. A.; Salazar, D.; Lee, S. S.; Cheong, J. L.; Nordblad, P.
2013-06-01
We here confirm the occurrence of spin glass phase transition and extract estimates of associated critical exponents of a highly monodisperse and densely compacted system of bare maghemite nanoparticles. This system has earlier been found to behave like an archetypal spin glass, with, e.g., a sharp transition from paramagnetic to non-equilibrium behavior, suggesting that this system undergoes a spin glass phase transition at a relatively high temperature, Tg ∼ 140 K.
Geometric phases and quantum phase transitions in open systems.
Nesterov, Alexander I; Ovchinnikov, S G
2008-07-01
The relationship is established between quantum phase transitions and complex geometric phases for open quantum systems governed by a non-Hermitian effective Hamiltonian with accidental crossing of the eigenvalues. In particular, the geometric phase associated with the ground state of the one-dimensional dissipative Ising model in a transverse magnetic field is evaluated, and it is demonstrated that the related quantum phase transition is of the first order.
Quantum phase transitions in disordered magnets
NASA Astrophysics Data System (ADS)
Nozadze, David
We study the effects of quenched weak disorder on quantum phase transitions in disordered magnets. The presence of disorder in the system can lead to a variety of exotic phenomena, e.g., the smearing of transitions or quantum Griffiths singularities. Phase transitions are smeared if individual spatial regions can order independently of the bulk system. In paper I, we study smeared quantum phase transitions in binary alloys A1-xBx that are tuned by changing the composition x. We show that in this case the ordered phase is extended over all compositions x < 1. We also study the composition dependence of observables. In paper II, we investigate the influence of spatial disorder correlations on smeared phase transitions. As an experimental example, we demonstrate in paper III, that the composition-driven ferromagnetic-toparamagnetic quantum phase transition in Sr1-xCaxRuO3 is smeared. When individual spatial regions cannot order but fluctuate slowly, the phase transition is characterized by strong singularities in the quantum Griffiths phase. In paper IV, we develop a theory of the quantum Griffiths phases in disordered ferromagnetic metals. We show that the quantum Griffiths singularities are stronger than the usual power-law quantum Griffiths singularities in insulating magnets. In paper V, we present an efficient numerical method for studying quantum phase transitions in disordered systems with O(N) order parameter symmetry in the large-N limit. Our algorithm solves iteratively the large-N self-consistent equations for the renormalized distances from criticality. Paper VI is devoted to the study of transport properties in the quantum Griffiths phase associated with the antiferromagnetic quantum phase transition in a metal. We find unusual behavior of transport properties which is in contrast to the normal Fermi-liquid behavior.
Exploring structural phase transitions of ion crystals
Yan, L. L.; Wan, W.; Chen, L.; Zhou, F.; Gong, S. J.; Tong, X.; Feng, M.
2016-01-01
Phase transitions have been a research focus in many-body physics over past decades. Cold ions, under strong Coulomb repulsion, provide a repealing paradigm of exploring phase transitions in stable confinement by electromagnetic field. We demonstrate various conformations of up to sixteen laser-cooled 40Ca+ ion crystals in a home-built surface-electrode trap, where besides the usually mentioned structural phase transition from the linear to the zigzag, two additional phase transitions to more complicated two-dimensional configurations are identified. The experimental observation agrees well with the numerical simulation. Heating due to micromotion of the ions is analysed by comparison of the numerical simulation with the experimental observation. Our investigation implies very rich and complicated many-body behaviour in the trapped-ion systems and provides effective mechanism for further exploring quantum phase transitions and quantum information processing with ultracold trapped ions. PMID:26865229
First-Order Dynamical Phase Transitions
NASA Astrophysics Data System (ADS)
Canovi, Elena; Werner, Philipp; Eckstein, Martin
2014-12-01
Recently, dynamical phase transitions have been identified based on the nonanalytic behavior of the Loschmidt echo in the thermodynamic limit [Heyl et al., Phys. Rev. Lett. 110, 135704 (2013)]. By introducing conditional probability amplitudes, we show how dynamical phase transitions can be further classified, both mathematically, and potentially in experiment. This leads to the definition of first-order dynamical phase transitions. Furthermore, we develop a generalized Keldysh formalism which allows us to use nonequilibrium dynamical mean-field theory to study the Loschmidt echo and dynamical phase transitions in high-dimensional, nonintegrable models. We find dynamical phase transitions of first order in the Falicov-Kimball model and in the Hubbard model.
Jiancheng, Shi; Min, Luo; Chusheng, Huang
2017-08-01
The cooperative effect of random coupling strength and time-periodic coupling strengh on synchronization transitions in one-way coupled neural system has been investigated by mean field approach. Results show that cooperative coupling strength (CCS) plays an active role for the enhancement of synchronization transitions. There exist an optimal frequency of CCS which makes the system display the best CCS-induced synchronization transitions, a critical frequency of CCS which can not further affect the CCS-induced synchronization transitions, and a critical amplitude of CCS which can not occur the CCS-induced synchronization transitions. Meanwhile, noise intensity plays a negative role for the CCS-induced synchronization transitions. Furthermore, it is found that the novel CCS amplitude-induced synchronization transitions and CCS frequency-induced synchronization transitions are found.
Microscopic Description of Nuclear Quantum Phase Transitions
Niksic, T.; Vretenar, D.; Lalazissis, G. A.; Ring, P.
2007-08-31
The relativistic mean-field framework, extended to include correlations related to restoration of broken symmetries and to fluctuations of the quadrupole deformation, is applied to a study of shape transitions in Nd isotopes. It is demonstrated that the microscopic self-consistent approach, based on global effective interactions, can describe not only general features of transitions between spherical and deformed nuclei, but also the singular properties of excitation spectra and transition rates at the critical point of quantum shape phase transition.
Solid-solid phase transition measurements in iron
Schwartz, Cynthia Louise
2010-01-01
Previously, dynamic experiments on iron have observed a non-zero transition time and width in the solid-solid {alpha}-{var_epsilon} phase transition. Using Proton Radiography at the Los Alamos Neutron Science Center, we have performed plate impact experiments on iron to further study the {alpha}-{var_epsilon} phase transition which occurs at 13GPa. A 40mm bore powder gun was coupled to a proton radiography beam line and imaging system and synchronized to the impact of the projectile on the target sample with the proton beam pattern. A typical experimental configuration for the iron study, as shown below in 3 color-enhanced radiographs, is a 40mm diameter aluminum sabot impacting a 40mm diameter of polycrystalline ARMCO iron. The iron is backed by a sapphire optical window for velocimetry measurements. The aluminum flyer on the left of the iron is barely visible for visual display purposes. Direct density jumps were measured which corresponded to calculations to within 1% using a Wondy mUlti-phase equation of state model. In addition, shock velocities were measured using an edge fitting technique and followed that edge movement from radiograph to radiograph, where radiographs are separated in time by 500 ns. Preliminary measurements give a shock velocity (P1 wave) of 5.251 km/s. The projectile velocity was 0.725 km/s which translate to a peak stress of 17.5 GPa. Assuming the P1 wave is instantaneous, we are able to calibrate the chromatic, motion, object and camera blur by measuring the width of the P1 wave. This approximation works in this case since each of the two density jumps are small compared to the density of the object. Subtracting the measured width of the P1 wave in quadrature from the width of the P2 wave gives a preliminary measurement of the transition length of 265 {mu}m. Therefore, a preliminary measured phase transition relaxation time {tau} = transition length/u{sub s} = 265 {mu}m/5.251 km/s = 50 ns. Both Boettger and Jensen conclude that the
Lowet, Eric; Roberts, Mark J.; Bonizzi, Pietro; Karel, Joël; De Weerd, Peter
2016-01-01
Synchronization or phase-locking between oscillating neuronal groups is considered to be important for coordination of information among cortical networks. Spectral coherence is a commonly used approach to quantify phase locking between neural signals. We systematically explored the validity of spectral coherence measures for quantifying synchronization among neural oscillators. To that aim, we simulated coupled oscillatory signals that exhibited synchronization dynamics using an abstract phase-oscillator model as well as interacting gamma-generating spiking neural networks. We found that, within a large parameter range, the spectral coherence measure deviated substantially from the expected phase-locking. Moreover, spectral coherence did not converge to the expected value with increasing signal-to-noise ratio. We found that spectral coherence particularly failed when oscillators were in the partially (intermittent) synchronized state, which we expect to be the most likely state for neural synchronization. The failure was due to the fast frequency and amplitude changes induced by synchronization forces. We then investigated whether spectral coherence reflected the information flow among networks measured by transfer entropy (TE) of spike trains. We found that spectral coherence failed to robustly reflect changes in synchrony-mediated information flow between neural networks in many instances. As an alternative approach we explored a phase-locking value (PLV) method based on the reconstruction of the instantaneous phase. As one approach for reconstructing instantaneous phase, we used the Hilbert Transform (HT) preceded by Singular Spectrum Decomposition (SSD) of the signal. PLV estimates have broad applicability as they do not rely on stationarity, and, unlike spectral coherence, they enable more accurate estimations of oscillatory synchronization across a wide range of different synchronization regimes, and better tracking of synchronization-mediated information
Lowet, Eric; Roberts, Mark J; Bonizzi, Pietro; Karel, Joël; De Weerd, Peter
2016-01-01
Synchronization or phase-locking between oscillating neuronal groups is considered to be important for coordination of information among cortical networks. Spectral coherence is a commonly used approach to quantify phase locking between neural signals. We systematically explored the validity of spectral coherence measures for quantifying synchronization among neural oscillators. To that aim, we simulated coupled oscillatory signals that exhibited synchronization dynamics using an abstract phase-oscillator model as well as interacting gamma-generating spiking neural networks. We found that, within a large parameter range, the spectral coherence measure deviated substantially from the expected phase-locking. Moreover, spectral coherence did not converge to the expected value with increasing signal-to-noise ratio. We found that spectral coherence particularly failed when oscillators were in the partially (intermittent) synchronized state, which we expect to be the most likely state for neural synchronization. The failure was due to the fast frequency and amplitude changes induced by synchronization forces. We then investigated whether spectral coherence reflected the information flow among networks measured by transfer entropy (TE) of spike trains. We found that spectral coherence failed to robustly reflect changes in synchrony-mediated information flow between neural networks in many instances. As an alternative approach we explored a phase-locking value (PLV) method based on the reconstruction of the instantaneous phase. As one approach for reconstructing instantaneous phase, we used the Hilbert Transform (HT) preceded by Singular Spectrum Decomposition (SSD) of the signal. PLV estimates have broad applicability as they do not rely on stationarity, and, unlike spectral coherence, they enable more accurate estimations of oscillatory synchronization across a wide range of different synchronization regimes, and better tracking of synchronization-mediated information
Astrophysical Implications of the QCD Phase Transition
Schaffner-Bielich, J.; Sagert, I.; Hempel, M.; Pagliara, G.; Fischer, T.; Mezzacappa, Anthony; Thielemann, Friedrich-Karl W.; Liebendoerfer, Matthias
2009-01-01
The possible role of a first order QCD phase transition at nonvanishing quark chemical potential and temperature for cold neutron stars and for supernovae is delineated. For cold neutron stars, we use the NJL model with a nonvanishing color superconducting pairing gap, which describes the phase transition to the 2SC and the CFL quark matter phases at high baryon densities. We demonstrate that these two phase transitions can both be present in the core of neutron stars and that they lead to the appearance of a third family of solution for compact stars. In particular, a core of CFL quark matter can be present in stable compact star configurations when slightly adjusting the vacuum pressure to the onset of the chiral phase transition from the hadronic model to the NJL model. We show that a strong first order phase transition can have a strong impact on the dynamics of core collapse supernovae. If the QCD phase transition sets in shortly after the first bounce, a second outgoing shock wave can be generated which leads to an explosion. The presence of the QCD phase transition can be read off from the neutrino and antineutrino signal of the supernova.
de Tommaso, Marina; Marinazzo, Daniele; Guido, Marco; Libro, Giuseppe; Stramaglia, Sebastiano; Nitti, Luigi; Lattanzi, Gianluca; Angelini, Leonardo; Pellicoro, Mario
2005-09-01
This study aimed to compute phase synchronization of the alpha band from a multichannel electroencephalogram (EEG) recorded under repetitive flash stimulation from migraine patients without aura. This allowed examination of ongoing EEG activity during visual stimulation in the pain-free phase of migraine. Flash stimuli at frequencies of 3, 6, 9, 12, 15, 18, 21, 24, and 27 Hz were delivered to 15 migraine patients without aura and 15 controls, with the EEG recorded from 18 scalp electrodes, referred to the linked earlobes. The EEG signals were filtered in the alpha (7.5-13 Hz) band. For all stimulus frequencies that we evaluated, the phase synchronization index was based on the Hilbert transformation. Phase synchronization separated the patients and controls for the 9, 24 and 27 Hz stimulus frequencies; hyper phase synchronization was observed in patients, whereas healthy subjects were characterized by a reduced phase synchronization. These differences were found in all regions of the scalp. During migraine, the brain synchronizes to the idling rhythm of the visual areas under certain photic stimulations; in normal subjects however, brain regions involved in the processing of sensory information demonstrate desynchronized activity. Hypersynchronization of the alpha rhythm may suggest a state of cortical hypoexcitability during the interictal phase of migraine. The employment of non-linear EEG analysis may identify subtle functional changes in the migraine brain.
Optical phase dynamics in mutually coupled diode laser systems exhibiting power synchronization
NASA Astrophysics Data System (ADS)
Pal, Vishwa; Prasad, Awadhesh; Ghosh, R.
2011-12-01
We probe the physical mechanism behind the known phenomenon of power synchronization of two diode lasers that are mutually coupled via their delayed optical fields. In a diode laser, the amplitude and the phase of the optical field are coupled by the so-called linewidth enhancement factor, α. In this work, we explore the role of optical phases of the electric fields in amplitude (and hence power) synchronization through α in such mutually delay-coupled diode laser systems. Our numerical results show that the synchronization of optical phases drives the powers of lasers to synchronized death regimes. We also find that as α varies for different diode lasers, the system goes through a sequence of in-phase amplitude-death states. Within the windows between successive amplitude-death regions, the cross-correlation between the field amplitudes exhibits a universal power-law behaviour with respect to α.
Phase transitions in liquid crystal + aerosil gels
NASA Astrophysics Data System (ADS)
Ramazanoglu, Mehmet Kerim
Liquid Crystals (LCs) are found in many different phases, the most well-known, basic ones being Isotropic (I), Nematic (N), and Smectic-A (SmA). LCs show a rich variety of phase transitions between these phases. This makes them very interesting materials in which to study the basics of phase transitions and related topics. In the low symmetry phases, LCs show both positional and directional orders. X-ray scattering is an important tool to study these phase transitions as it probes the instantaneous positional correlations in these phases. Random forces have a nontrivial effect on ordering in nature, and the problem of phase transitions in the presence of a random field is a current and not well-understood topic. It has been found that aerosils posses a quenched randomness in the mixture of LC+aerosil samples, forming a gel random network which destroys long-range order (LRO) in the SmA phase. This can be modeled as a random field problem. In the N to SmA phase transition in 4O.8 LC (butyloxybenzlidene octylaniline), orientational order (N ) is modified by a 1-D density wave describing 2-D fluid layer spacing structure (SmA). Likewise the I to Sm A phase transition in 10CB LC (decylcyanobiphenyl), a transitional ordered phase develops without going through an orientational ordered phase. To study these phase transitions with aerosil dispersion carries the opportunity to probe the effect of induced quenched random disorder on phase transitions, which are 2nd order in the first case and 1st order in the second case. A two-component line-shape analysis is developed to define the phases in all temperature ranges. It consists of the thermal and the static structure factors. The reentered nematic (RN) phase of the [6:8]OCB+aerosil gels ([6:8]OCB is a mixture of hexyloxycyanobiphenyl and octyloxcyanobiphenyl) is another interesting case in which to study the quenched random disorder effects. The weak SmA phase of [6:8]OCB+aerosil gels is followed by a RN phase at low
Electroweak phase transition in ultraminimal technicolor
Jaervinen, Matti; Sannino, Francesco; Ryttov, Thomas A.
2009-05-01
We unveil the temperature-dependent electroweak phase transition in new extensions of the standard model in which the electroweak symmetry is spontaneously broken via strongly coupled, nearly conformal dynamics achieved by the means of multiple matter representations. In particular, we focus on the low energy effective theory introduced to describe ultra minimal walking technicolor at the phase transition. Using the one-loop effective potential with ring improvement, we identify regions of parameter space, which yield a strong first-order transition. A striking feature of the model is the existence of a second phase transition associated to the electroweak-singlet sector. The interplay between these two transitions leads to an extremely rich phase diagram.
Phase-lag synchronization analysis in complex systems with directed inter-relations
NASA Astrophysics Data System (ADS)
Martins, V. S. G.; Rodrigues, A. C.; Cerdeira, H. A.; Machado, B. S.
2016-02-01
In this work, we proposed a novel way to estimate phase-lag synchronization in coupled systems. This approach was applied into two systems: a directed-coupled Rössler-Lorenz system and a network of Izhikevich neurons. For the former case, the phase-lag synchronization revealed an increase in complexity for the Lorenz subsystem components, when the coupling is activated. The opposite behavior was observed when the Izhikevich network were organized in a hierarchical way. Our results point out to emergent synchronism related to causal interactions in coupled complex systems.
Generalized Entanglement and Quantum Phase Transitions
NASA Astrophysics Data System (ADS)
Somma, Rolando; Barnum, Howard; Knill, Emanuel; Ortiz, Gerardo; Viola, Lorenzo
2006-07-01
Quantum phase transitions in matter are characterized by qualitative changes in some correlation functions of the system, which are ultimately related to entanglement. In this work, we study the second-order quantum phase transitions present in models of relevance to condensed-matter physics by exploiting the notion of generalized entanglement [Barnum et al., Phys. Rev. A 68, 032308 (2003)]. In particular, we focus on the illustrative case of a one-dimensional spin-1/2 Ising model in the presence of a transverse magnetic field. Our approach leads to tools useful for distinguishing between the ordered and disordered phases in the case of broken-symmetry quantum phase transitions. Possible extensions to the study of other kinds of phase transitions as well as of the relationship between generalized entanglement and computational efficiency are also discussed.
Generalized Entanglement and Quantum Phase Transitions
NASA Astrophysics Data System (ADS)
Somma, Rolando; Barnum, Howard; Knill, Emanuel; Ortiz, Gerardo; Viola, Lorenzo
Quantum phase transitions in matter are characterized by qualitative changes in some correlation functions of the system, which are ultimately related to entanglement. In this work, we study the second-order quantum phase transitions present in models of relevance to condensed-matter physics by exploiting the notion of generalized entanglement [Barnum et al., Phys. Rev. A 68, 032308 (2003)]. In particular, we focus on the illustrative case of a one-dimensional spin-1/2 Ising model in the presence of a transverse magnetic field. Our approach leads to tools useful for distinguishing between the ordered and disordered phases in the case of broken-symmetry quantum phase transitions. Possible extensions to the study of other kinds of phase transitions as well as of the relationship between generalized entanglement and computational efficiency are also discussed.
Phase transitions in QCD and string theory
NASA Astrophysics Data System (ADS)
Campell, Bruce A.; Ellis, John; Kalara, S.; Nanopoulos, D. V.; Olive, Keith A.
1991-02-01
We develop a unified effective field theory approach to the high-temperature phase transitions in QCD and string theory, incorporating winding modes (time-like Polyakov loops, vortices) as well as low-mass states (pseudoscalar mesons and glueballs, matter and dilaton supermultiplets). Anomalous scale invariance and the Z3 structure of the centre of SU(3) decree a first-order phase transition with simultaneous deconfinement and Polyakov loop condensation in QCD, whereas string vortex condensation is a second-order phase transition breaking a Z2 symmetry. We argue that vortex condensation is accompanied by a dilaton phase transition to a strong coupling regime, and comment on the possible role of soliton degrees of freedom in the high-temperature string phase. On leave of absence from the School of Physics & Astronomy, University of Minnesota, Minneapolis, Minnesota, USA.
Phase transition of aragonite in abalone nacre
NASA Astrophysics Data System (ADS)
An, Yuanlin; Liu, Zhiming; Wu, Wenjian
2013-04-01
Nacre is composed of about 95 vol.% aragonite and 5 vol.% biopolymer and famous for its "brick and mortar" microstructure. The phase transition temperature of aragonite in nacre is lower than the pure aragonite. In situ XRD was used to identify the phase transition temperature from aragonite to calcite in nacre, based on the analysis of TG-DSC of fresh nacre and demineralized nacre. The results indicate that the microstructure and biopolymer are the two main factors that influence the phase transition temperature of aragonite in nacre.
Kinetics of Solid-Solid Phase Transition in Iron (u)
Schwartz, Cynthia, L
2011-01-27
Previously, dynamic experiments on iron have observed a non-zero transition time and width in the solid-solid {alpha}-{var_epsilon} phase transition. Using Proton Radiography at the los Alamos Neutron Science Center, we have performed plate impact experiments on iron to further study the {alpha}-{var_epsilon} phase transition which occurs at 13GPa. A 40mm bore powder gun was coupled to a proton radiography beam line and imaging system and synchronized to the impact of the projectile on the target sample with the proton beam pattern. A typical experimental configuration for the iron study, as shown below in 3 color-enhanced radiographs, is a 40mm diameter aluminum sabot impacting a 40mm diameter of polycrystalline ARMCO iron. The iron is backed by a sapphire optical window for velocimetry measurements. The aluminum flyer on the left of the iron is barely visible for visual display purposes. Direct density jumps were measured which corresponded to calculations to within 1% using a Wondy multi-phase equation of state model. In addition, shock velocities were measured using an edge fitting technique and followed that edge movement from radiograph to radiograph, where rad iographs are separated in time by 500 ns. Preliminary measurements give a shock velocity (P1 wave) of 5.251 km/s. The projectile velocity was 0.725 km/s which translate to a peak stress of 17.5 GPa. Assuming the P1 wave is instantaneous, we are able to calibrate the chromatic, motion, object and camera blur by measuring the width of the P1 wave. This approximation works in this case since each of the two density jumps are small compared to the density of the object. Subtracting the measured width of the P1 wave in quadrature from the width of the P2 wave gives a preliminary measurement of the transition length of 265 {micro}m. Therefore, a preliminary measured phase transition relaxation time {tau} = transition length/u{sub s} = 265 {micro}m/5.251 km/s = 50 ns. Both Boettger1 & Jensen2 conclude that
NASA Astrophysics Data System (ADS)
Jalili, Mahdi
2013-03-01
In this paper, we investigated phase synchronization in delayed dynamical networks. Non-identical spiking Hindmarsh-Rose neurons were considered as individual dynamical systems and coupled through a number of network structures such as scale-free, Erdős-Rényi, and modular. The individual neurons were coupled through excitatory chemical synapses with uniform or distributed time delays. The profile of spike phase synchrony was different when the delay was uniform across the edges as compared to the case when it was distributed, i.e., different delays for the edges. When an identical transmission delay was considered, a quasi-periodic pattern was observed in the spike phase synchrony. There were specific values of delay where the phase synchronization reached to its peaks. The behavior of the phase synchronization in the networks with non-uniform delays was different with the former case, where the phase synchrony decreased as distributed delays introduced to the networks.
NASA Technical Reports Server (NTRS)
Drake, Jeffrey T.; Prasad, Nadipuram R.
1999-01-01
This paper surveys recent advances in communications that utilize soft computing approaches to phase synchronization. Soft computing, as opposed to hard computing, is a collection of complementary methodologies that act in producing the most desirable control, decision, or estimation strategies. Recently, the communications area has explored the use of the principal constituents of soft computing, namely, fuzzy logic, neural networks, and genetic algorithms, for modeling, control, and most recently for the estimation of phase in phase-coherent communications. If the receiver in a digital communications system is phase-coherent, as is often the case, phase synchronization is required. Synchronization thus requires estimation and/or control at the receiver of an unknown or random phase offset.
NASA Technical Reports Server (NTRS)
Drake, Jeffrey T.; Prasad, Nadipuram R.
1999-01-01
This paper surveys recent advances in communications that utilize soft computing approaches to phase synchronization. Soft computing, as opposed to hard computing, is a collection of complementary methodologies that act in producing the most desirable control, decision, or estimation strategies. Recently, the communications area has explored the use of the principal constituents of soft computing, namely, fuzzy logic, neural networks, and genetic algorithms, for modeling, control, and most recently for the estimation of phase in phase-coherent communications. If the receiver in a digital communications system is phase-coherent, as is often the case, phase synchronization is required. Synchronization thus requires estimation and/or control at the receiver of an unknown or random phase offset.
Discovering phase transitions with unsupervised learning
NASA Astrophysics Data System (ADS)
Wang, Lei
2016-11-01
Unsupervised learning is a discipline of machine learning which aims at discovering patterns in large data sets or classifying the data into several categories without being trained explicitly. We show that unsupervised learning techniques can be readily used to identify phases and phases transitions of many-body systems. Starting with raw spin configurations of a prototypical Ising model, we use principal component analysis to extract relevant low-dimensional representations of the original data and use clustering analysis to identify distinct phases in the feature space. This approach successfully finds physical concepts such as the order parameter and structure factor to be indicators of a phase transition. We discuss the future prospects of discovering more complex phases and phase transitions using unsupervised learning techniques.
Critical behaviours of contact near phase transitions
Chen, Y.-Y.; Jiang, Y.-Z.; Guan, X.-W.; Zhou, Qi
2014-01-01
A central quantity of importance for ultracold atoms is contact, which measures two-body correlations at short distances in dilute systems. It appears in universal relations among thermodynamic quantities, such as large momentum tails, energy and dynamic structure factors, through the renowned Tan relations. However, a conceptual question remains open as to whether or not contact can signify phase transitions that are insensitive to short-range physics. Here we show that, near a continuous classical or quantum phase transition, contact exhibits a variety of critical behaviours, including scaling laws and critical exponents that are uniquely determined by the universality class of the phase transition, and a constant contact per particle. We also use a prototypical exactly solvable model to demonstrate these critical behaviours in one-dimensional strongly interacting fermions. Our work establishes an intrinsic connection between the universality of dilute many-body systems and universal critical phenomena near a phase transition. PMID:25346226
Phase transition phenomenon: A compound measure analysis
NASA Astrophysics Data System (ADS)
Kang, Bo Soo; Park, Chanhi; Ryu, Doojin; Song, Wonho
2015-06-01
This study investigates the well-documented phenomenon of phase transition in financial markets using combined information from both return and volume changes within short time intervals. We suggest a new measure for the phase transition behaviour of markets, calculated as a return distribution conditional on local variance in volume imbalance, and show that this measure successfully captures phase transition behaviour under various conditions. We analyse the intraday trade and quote dataset from the KOSPI 200 index futures, which includes detailed information on the original order size and the type of each initiating investor. We find that among these two competing factors, the submitted order size yields more explanatory power on the phenomenon of market phase transition than the investor type.
NASA Astrophysics Data System (ADS)
Takeshita, Daisuke; Tsytsarev, Vassiliy; Bahar, Sonya
2008-03-01
Epileptic seizures are generally held to result from excess and synchronized neural activity. However, recent studies have suggested that this is not necessarily the case. We investigate how the spatiotemporal pattern of synchronization changes during drug-induced in vivo neocortical seizures in rats. Epileptic seizures are caused by the potassium channel blocker 4-aminopyridine, which is often used in experiments to induce epileptic seizures. In our experiments, the neocortex is stained with the voltage-sensitive dye RH-1691. The intensity changes in dye fluorescence are measured by a CCD camera and are consistent with the signal from local field potential recording. We apply phase synchronization analysis to the voltage-sensitive dye signals from pairs of pixels in order to investigate the degree to which synchronization occurs, and how spatial patterns of synchrony may change, during the course of the seizure. Our preliminary results show that two distant pixels are well synchronized during a seizure event.
Detecting synchronization in coupled stochastic ecosystem networks
NASA Astrophysics Data System (ADS)
Kouvaris, N.; Provata, A.; Kugiumtzis, D.
2010-01-01
Instantaneous phase difference, synchronization index and mutual information are considered in order to detect phase transitions, collective behaviours and synchronization phenomena that emerge for different levels of diffusive and reactive activity in stochastic networks. The network under investigation is a spatial 2D lattice which serves as a substrate for Lotka-Volterra dynamics with 3rd order nonlinearities. Kinetic Monte Carlo simulations demonstrate that the system spontaneously organizes into a number of asynchronous local oscillators, when only nearest neighbour interactions are considered. In contrast, the oscillators can be correlated, phase synchronized and completely synchronized when introducing different interactivity rules (diffusive or reactive) for nearby and distant species. The quantitative measures of synchronization show that long distance diffusion coupling induces phase synchronization after a well defined transition point, while long distance reaction coupling induces smeared phase synchronization.
Magnetic fields from the electroweak phase transition
Tornkvist, O.
1998-02-01
I review some of the mechanisms through which primordial magnetic fields may be created in the electroweak phase transition. I show that no magnetic fields are produced initially from two-bubble collisions in a first-order transition. The initial field produced in a three-bubble collision is computed. The evolution of fields at later times is discussed.
Electrically driven phase transition in magnetite nanostructures.
Lee, Sungbae; Fursina, Alexandra; Mayo, John T; Yavuz, Cafer T; Colvin, Vicki L; Sofin, R G Sumesh; Shvets, Igor V; Natelson, Douglas
2008-02-01
Magnetite (Fe3O4), an archetypal transition-metal oxide, has been used for thousands of years, from lodestones in primitive compasses to a candidate material for magnetoelectronic devices. In 1939, Verwey found that bulk magnetite undergoes a transition at TV approximately 120 K from a high-temperature 'bad metal' conducting phase to a low-temperature insulating phase. He suggested that high-temperature conduction is through the fluctuating and correlated valences of the octahedral iron atoms, and that the transition is the onset of charge ordering on cooling. The Verwey transition mechanism and the question of charge ordering remain highly controversial. Here, we show that magnetite nanocrystals and single-crystal thin films exhibit an electrically driven phase transition below the Verwey temperature. The signature of this transition is the onset of sharp conductance switching in high electric fields, hysteretic in voltage. We demonstrate that this transition is not due to local heating, but instead is due to the breakdown of the correlated insulating state when driven out of equilibrium by electrical bias. We anticipate that further studies of this newly observed transition and its low-temperature conducting phase will shed light on how charge ordering and vibrational degrees of freedom determine the ground state of this important compound.
Electrically driven phase transition in magnetite nanostructures
NASA Astrophysics Data System (ADS)
Lee, Sungbae; Fursina, Alexandra; Mayo, John T.; Yavuz, Cafer T.; Colvin, Vicki L.; Sumesh Sofin, R. G.; Shvets, Igor V.; Natelson, Douglas
2008-02-01
Magnetite (Fe3O4), an archetypal transition-metal oxide, has been used for thousands of years, from lodestones in primitive compasses to a candidate material for magnetoelectronic devices. In 1939, Verwey found that bulk magnetite undergoes a transition at TV~120K from a high-temperature `bad metal' conducting phase to a low-temperature insulating phase. He suggested that high-temperature conduction is through the fluctuating and correlated valences of the octahedral iron atoms, and that the transition is the onset of charge ordering on cooling. The Verwey transition mechanism and the question of charge ordering remain highly controversial. Here, we show that magnetite nanocrystals and single-crystal thin films exhibit an electrically driven phase transition below the Verwey temperature. The signature of this transition is the onset of sharp conductance switching in high electric fields, hysteretic in voltage. We demonstrate that this transition is not due to local heating, but instead is due to the breakdown of the correlated insulating state when driven out of equilibrium by electrical bias. We anticipate that further studies of this newly observed transition and its low-temperature conducting phase will shed light on how charge ordering and vibrational degrees of freedom determine the ground state of this important compound.
Persistent homology analysis of phase transitions
NASA Astrophysics Data System (ADS)
Donato, Irene; Gori, Matteo; Pettini, Marco; Petri, Giovanni; De Nigris, Sarah; Franzosi, Roberto; Vaccarino, Francesco
2016-05-01
Persistent homology analysis, a recently developed computational method in algebraic topology, is applied to the study of the phase transitions undergone by the so-called mean-field XY model and by the ϕ4 lattice model, respectively. For both models the relationship between phase transitions and the topological properties of certain submanifolds of configuration space are exactly known. It turns out that these a priori known facts are clearly retrieved by persistent homology analysis of dynamically sampled submanifolds of configuration space.
Persistent homology analysis of phase transitions.
Donato, Irene; Gori, Matteo; Pettini, Marco; Petri, Giovanni; De Nigris, Sarah; Franzosi, Roberto; Vaccarino, Francesco
2016-05-01
Persistent homology analysis, a recently developed computational method in algebraic topology, is applied to the study of the phase transitions undergone by the so-called mean-field XY model and by the ϕ^{4} lattice model, respectively. For both models the relationship between phase transitions and the topological properties of certain submanifolds of configuration space are exactly known. It turns out that these a priori known facts are clearly retrieved by persistent homology analysis of dynamically sampled submanifolds of configuration space.
Polymorphic Phase Transition in Superhydrous Phase B
Koch-Muller,M.; Dera, P.; Fei, Y.; Hellwig, H.; Liu, Z.; Van Orman, J.; Wirth, R.
2005-01-01
We synthesized superhydrous phase B (shy-B) at 22 GPa and two different temperatures: 1200 C (LT) and 1400 C (HT) using a multi-anvil apparatus. The samples were investigated by transmission electron microscopy (TEM), single crystal X-ray diffraction, Raman and IR spectroscopy. The IR spectra were collected on polycrystalline thin-films and single crystals using synchrotron radiation, as well as a conventional IR source at ambient conditions and in situ at various pressures (up to 15 GPa) and temperatures (down to -180 C). Our studies show that shy-B exists in two polymorphic forms. As expected from crystal chemistry, the LT polymorph crystallizes in a lower symmetry space group (Pnn2), whereas the HT polymorph assumes a higher symmetry space group (Pnnm). TEM shows that both modifications consist of nearly perfect crystals with almost no lattice defects or inclusions of additional phases. IR spectra taken on polycrystalline thin films exhibit just one symmetric OH band and 29 lattice modes for the HT polymorph in contrast to two intense but asymmetric OH stretching bands and at least 48 lattice modes for the LT sample. The IR spectra differ not only in the number of bands, but also in the response of the bands to changes in pressure. The pressure derivatives for the IR bands are higher for the HT polymorph indicating that the high symmetry form is more compressible than the low symmetry form. Polarized, low-temperature single-crystal IR spectra indicate that in the LT-polymorph extensive ordering occurs not only at the Mg sites but also at the hydrogen sites.
Contemporary research of dynamically induced phase transitions
NASA Astrophysics Data System (ADS)
Hull, L. M.
2017-01-01
Dynamically induced phase transitions in metals, within the present discussion, are those that take place within a time scale characteristic of the shock waves and any reflections or rarefactions involved in the loading structure along with associated plastic flow. Contemporary topics of interest include the influence of loading wave shape, the effect of shear produced by directionality of the loading relative to the sample dimensions and initial velocity field, and the loading duration (kinetic effects, hysteresis) on the appearance and longevity of a transformed phase. These topics often arise while considering the loading of parts of various shapes with high explosives, are typically two or three-dimensional, and are often selected because of the potential of the transformed phase to significantly modify the motion. In this paper, we look at current work on phase transitions in metals influenced by shear reported in the literature, and relate recent work conducted at Los Alamos on iron's epsilon phase transition that indicates a significant response to shear produced by reflected elastic waves. A brief discussion of criteria for the occurrence of stress induced phase transitions is provided. Closing remarks regard certain physical processes, such as fragmentation and jet formation, which may be strongly influenced by phase transitions.
Contemporary Research of Dynamically Induced Phase Transitions
NASA Astrophysics Data System (ADS)
Hull, Lawrence
2015-06-01
Dynamically induced phase transitions in metals, within the present discussion, are those that take place within a time scale characteristic of the shock waves and any reflections or rarefactions involved in the loading structure along with associated plastic flow. Contemporary topics of interest include the influence of loading wave shape, the effect of shear produced by directionality of the loading relative to the sample dimensions and initial velocity field, and the loading duration (kinetic effects, hysteresis) on the appearance and longevity of a transformed phase. These topics often arise while considering the loading of parts of various shapes with high explosives, are typically two or three-dimensional, and are often selected because of the potential of the transformed phase to significantly modify the motion. In this paper, we look at current work on phase transitions in metals influenced by shear reported in the literature, and relate recent work conducted at Los Alamos on iron's epsilon phase transition that indicates a significant response to shear produced by reflected elastic waves. A brief discussion of criteria for the occurrence of stress induced phase transitions is provided. Closing remarks regard certain physical processes, such as fragmentation and jet formation, which may be strongly influenced by phase transitions. Supported by the DoD/DOE Joint Munitions Technology Development Program.
Time concurrency/phase-time synchronization in digital communications networks
NASA Technical Reports Server (NTRS)
Kihara, Masami; Imaoka, Atsushi
1990-01-01
Digital communications networks have the intrinsic capability of time synchronization which makes it possible for networks to supply time signals to some applications and services. A practical estimation method for the time concurrency on terrestrial networks is presented. By using this method, time concurrency capability of the Nippon Telegraph and Telephone Corporation (NTT) digital communications network is estimated to be better than 300 ns rms at an advanced level, and 20 ns rms at final level.
Cancer as a dynamical phase transition
2011-01-01
This paper discusses the properties of cancer cells from a new perspective based on an analogy with phase transitions in physical systems. Similarities in terms of instabilities and attractor states are outlined and differences discussed. While physical phase transitions typically occur at or near thermodynamic equilibrium, a normal-to-cancer (NTC) transition is a dynamical non-equilibrium phenomenon, which depends on both metabolic energy supply and local physiological conditions. A number of implications for preventative and therapeutic strategies are outlined. PMID:21867509
Walking on a Vertically Oscillating Treadmill: Phase Synchronization and Gait Kinematics.
Nessler, Jeff A; Heredia, Severne; Bélair, Jacques; Milton, John
2017-01-01
Sensory motor synchronization can be used to alter gait behavior. This type of therapy may be useful in a rehabilitative setting, though several questions remain regarding the most effective way to promote and sustain synchronization. The purpose of this study was to describe a new technique for using synchronization to influence a person's gait and to compare walking behavior under this paradigm with that of side by side walking. Thirty one subjects walked on a motorized treadmill that was placed on a platform that oscillated vertically at various frequencies and amplitudes. Synchronization with the platform and stride kinematics were recorded during these walking trials and compared with previously reported data from side by side walking. The results indicated that vertical oscillation of the treadmill surface at frequencies that matched subjects preferred stride or step frequency resulted in greater unintentional synchronization when compared with side by side walking data (up to 78.6±8.3% of the trial vs 59.2±17.4%). While intermittent phase locking was observed in all cases, periods of synchronization occurred more frequently and lasted longer while walking on the oscillating treadmill (mean length of periods of phase locking 11.85 steps vs 5.18 steps). Further, stride length, height and duration were altered by changing the frequency of treadmill oscillation. These results suggest that synchronization to a haptic signal may hold implications for use in a clinical setting.
Walking on a Vertically Oscillating Treadmill: Phase Synchronization and Gait Kinematics
Heredia, Severne; Bélair, Jacques; Milton, John
2017-01-01
Sensory motor synchronization can be used to alter gait behavior. This type of therapy may be useful in a rehabilitative setting, though several questions remain regarding the most effective way to promote and sustain synchronization. The purpose of this study was to describe a new technique for using synchronization to influence a person’s gait and to compare walking behavior under this paradigm with that of side by side walking. Thirty one subjects walked on a motorized treadmill that was placed on a platform that oscillated vertically at various frequencies and amplitudes. Synchronization with the platform and stride kinematics were recorded during these walking trials and compared with previously reported data from side by side walking. The results indicated that vertical oscillation of the treadmill surface at frequencies that matched subjects preferred stride or step frequency resulted in greater unintentional synchronization when compared with side by side walking data (up to 78.6±8.3% of the trial vs 59.2±17.4%). While intermittent phase locking was observed in all cases, periods of synchronization occurred more frequently and lasted longer while walking on the oscillating treadmill (mean length of periods of phase locking 11.85 steps vs 5.18 steps). Further, stride length, height and duration were altered by changing the frequency of treadmill oscillation. These results suggest that synchronization to a haptic signal may hold implications for use in a clinical setting. PMID:28099517
Supercooling and phase coexistence in cosmological phase transitions
Megevand, Ariel; Sanchez, Alejandro D.
2008-03-15
Cosmological phase transitions are predicted by particle physics models, and have a variety of important cosmological consequences, which depend strongly on the dynamics of the transition. In this work we investigate in detail the general features of the development of a first-order phase transition. We find thermodynamical constraints on some quantities that determine the dynamics, namely, the latent heat, the radiation energy density, and the false-vacuum energy density. Using a simple model with a Higgs field, we study numerically the amount and duration of supercooling and the subsequent reheating and phase coexistence. We analyze the dependence of the dynamics on the different parameters of the model, namely, the energy scale, the number of degrees of freedom, and the couplings of the scalar field with bosons and fermions. We also inspect the implications for the cosmological outcomes of the phase transition.
NASA Astrophysics Data System (ADS)
Batyrshin, E. S.; Krekhov, A. P.; Skaldin, O. A.; Delev, V. A.
2014-12-01
The spatiotemporal dynamics of oscillating electroconvective structures appearing in a nematic liquid crystal (NLC) under the combined action of applied alternating (ac) and direct (dc) electric voltages has been experimentally studied. It is established that an increase in the dc component of the applied voltage leads to synchronization of the hydrodynamic mode with the orientational twist mode of the NLC director. The synchronization parameter and the phase shift of the modes are determined as function of the applied dc voltage. The results confirm the flexoelectric mechanism of synchronization.
Adaptive Phase Synchronization Techniques for Unbalanced and Distorted Three-Phase Voltage System
NASA Astrophysics Data System (ADS)
Woinowsky-Krieger, Alexis
Interfacing and operating AC power electronic systems requires rapid and accurate estimation of the phase angle of the power source, and specifically of the positive sequence of the three-phase utility grid voltage. This is needed to ensure reliable operation of the power control devices and of the resulting power flow. However, the quality of this information is undermined by various distortions and unbalanced conditions of the three-phase grid voltage. Phase estimation and power control can both be performed in real time by a DSP, but a DSP typically has limited computational resources, especially in regards to speed and memory, which motivates the search for computationally efficient algorithms to accomplish these tasks. In contrast to conventional PLL techniques, recent approaches have used adaptive amplitude estimation to enhance the acquisition of the phase information, resulting in faster response and improved performance. This thesis presents a novel technique to estimate the phase of the positive sequence of a three-phase voltage in the presence of frequency variations and unbalanced conditions, referred to as hybrid negative sequence adaptive synchronous amplitude estimation with PLL, or H-NSASAE-PLL. The key feature consists of a feedback structure which embeds a positive sequence PLL and an adaptive synchronous negative sequence estimator to enhance the performance of the PLL. The resulting benefits include faster estimation of the phase of the positive sequence under unbalanced conditions with zero steady state error, simplified tuning of PLL parameters to address a wide range of application requirements, robust performance with respect to distortions and PLL parameters, a structure of minimal dynamical order (fifth) to estimate the main signal parameters of interest, simplified discretization, and reduced computational costs, making the proposed technique suitable for real time execution on a DSP. The H-NSASAE-PLL is developed in the Matlab
Electroweak phase transition in nearly conformal technicolor
Cline, James M.; Jaervinen, Matti; Sannino, Francesco
2008-10-01
We examine the temperature-dependent electroweak phase transition in extensions of the standard model in which the electroweak symmetry is spontaneously broken via strongly coupled, nearly conformal dynamics. In particular, we focus on the low energy effective theory used to describe minimal walking technicolor at the phase transition. Using the one-loop effective potential with ring improvement, we identify significant regions of parameter space which yield a sufficiently strong first-order transition for electroweak baryogenesis. The composite particle spectrum corresponding to these regions can be produced and studied at the Large Hadron Collider experiment. We note the possible emergence of a second phase transition at lower temperatures. This occurs when the underlying technicolor theory possesses a nontrivial center symmetry.
Global phase synchronization in an array of time-delay systems.
Suresh, R; Senthilkumar, D V; Lakshmanan, M; Kurths, J
2010-07-01
We report the identification of global phase synchronization (GPS) in a linear array of unidirectionally coupled Mackey-Glass time-delay systems exhibiting highly non-phase-coherent chaotic attractors with complex topological structure. In particular, we show that the dynamical organization of all the coupled time-delay systems in the array to form GPS is achieved by sequential synchronization as a function of the coupling strength. Further, the asynchronous ones in the array with respect to the main sequentially synchronized cluster organize themselves to form clusters before they achieve synchronization with the main cluster. We have confirmed these results by estimating instantaneous phases including phase difference, average phase, average frequency, frequency ratio, and their differences from suitably transformed phase coherent attractors after using a nonlinear transformation of the original non-phase-coherent attractors. The results are further corroborated using two other independent approaches based on recurrence analysis and the concept of localized sets from the original non-phase-coherent attractors directly without explicitly introducing the measure of phase.
Theory of smeared quantum phase transitions.
Hoyos, José A; Vojta, Thomas
2008-06-20
We present an analytical strong-disorder renormalization group theory of the quantum phase transition in the dissipative random transverse-field Ising chain. For Ohmic dissipation, we solve the renormalization flow equations analytically, yielding asymptotically exact results for the low-temperature properties of the system. We find that the interplay between quantum fluctuations and Ohmic dissipation destroys the quantum critical point by smearing. We also determine the phase diagram and the behavior of observables in the vicinity of the smeared quantum phase transition.
Sensorless sliding mode observer for a five-phase permanent magnet synchronous motor drive.
Hosseyni, Anissa; Trabelsi, Ramzi; Mimouni, Med Faouzi; Iqbal, Atif; Alammari, Rashid
2015-09-01
This paper deals with the sensorless vector controlled five-phase permanent magnet synchronous motor (PMSM) drive based on a sliding mode observer (SMO). The observer is designed considering the back electromotive force (EMF) of five-phase permanent magnet synchronous motor. The SMO structure and design are illustrated. Stability of the proposed observer is demonstrated using Lyapunov stability criteria. The proposed strategy is asymptotically stable in the context of Lyapunov theory. Simulated results on a five-phase PMSM drive are displayed to validate the feasibility and the effectiveness of the proposed control strategy.
Random fields at a nonequilibrium phase transition.
Barghathi, Hatem; Vojta, Thomas
2012-10-26
We study nonequilibrium phase transitions in the presence of disorder that locally breaks the symmetry between two equivalent macroscopic states. In low-dimensional equilibrium systems, such random-field disorder is known to have dramatic effects: it prevents spontaneous symmetry breaking and completely destroys the phase transition. In contrast, we show that the phase transition of the one-dimensional generalized contact process persists in the presence of random-field disorder. The ultraslow dynamics in the symmetry-broken phase is described by a Sinai walk of the domain walls between two different absorbing states. We discuss the generality and limitations of our theory, and we illustrate our results by large-scale Monte Carlo simulations.
Hayashi, Yoshikatsu; Sawada, Yasuji
2013-08-01
Proactive motion in hand tracking and in finger bending, in which the body motion occurs prior to the reference signal, has been previously reported when a periodic target signal was shown to the subjects at relatively high frequencies. These phenomena indicate that the human sensory-motor system tends to choose an anticipatory mode rather than a reactive mode, when the target motion is relatively fast. The present research was undertaken to study what kind of mode appears in the sensory-motor system when two persons were asked to track the hand position of the partner at various mean tracking frequency. The experimental results showed that a transition from a mutual error-correction mode to a synchronization mode occurred in the same region of the transition frequency with the one from a reactive error-correction mode to a proactive anticipatory mode reported previously in the target tracking experiments of the single subjects. Present research indicated that synchronization of body motion occurred only when both of the pair subjects operated in a proactive anticipatory mode. We also presented mathematical models to explain the behavior of the error-correction mode and the synchronization mode.
Transition from an antiphase error-correction mode to a synchronization mode in mutual hand tracking
NASA Astrophysics Data System (ADS)
Hayashi, Yoshikatsu; Sawada, Yasuji
2013-08-01
Proactive motion in hand tracking and in finger bending, in which the body motion occurs prior to the reference signal, has been previously reported when a periodic target signal was shown to the subjects at relatively high frequencies. These phenomena indicate that the human sensory-motor system tends to choose an anticipatory mode rather than a reactive mode, when the target motion is relatively fast. The present research was undertaken to study what kind of mode appears in the sensory-motor system when two persons were asked to track the hand position of the partner at various mean tracking frequency. The experimental results showed that a transition from a mutual error-correction mode to a synchronization mode occurred in the same region of the transition frequency with the one from a reactive error-correction mode to a proactive anticipatory mode reported previously in the target tracking experiments of the single subjects. Present research indicated that synchronization of body motion occurred only when both of the pair subjects operated in a proactive anticipatory mode. We also presented mathematical models to explain the behavior of the error-correction mode and the synchronization mode.
Topics in Phase Transitions at Interfaces.
NASA Astrophysics Data System (ADS)
Nikas, Yvonne Jiang
This dissertation addresses three subjects in the area of phase transitions at interfaces. First, a study of wetting phenomena and wetting transitions in oil -water-surfactant mixtures is presented. We have studied the wetting phase behavior of this system systematically using mean-field approximations on a lattice model. Due to the delicate balance of interfacial tensions between various phases, the wetting phase diagrams are very profuse under the conditions of three-phase coexistence, and the reentrant wetting and dewetting transitions are very common. In the case of oil-water-microemulsion coexistence, we observe a first-order wetting transition by the microemulsion phase at the oil-water interface; the qualitative features of the transition agree with the experimental observations. In the second part of the dissertation, the phenomenon of surface melting is discussed. Using the molecular dynamics simulation technique, we monitor the melting process in a thin solid argon film adsorbed on graphite. Our study reveals that the melting begins from the surface and proceeds layer by layer. From diffusion coefficients data, we find that from the beginning of melting until the temperature reaches 97% of the melting temperature, the fraction of atoms in the liquid state increases as | ln(T_{m}-T)| in our five -layer system. Finally we present a study of the phase transitions in lipid monolayers at air-water interfaces. This study is mainly focused on the microscopic structures formed in monolayers at the transition from liquid to solid phase. We propose a lattice model, which captures all the essential features of the system, and combine analytical calculations, mean-field theory, and Monte Carlo simulations to study the behavior of the film at zero and finite temperatures. We find that for typical lipids, the striped phase has a lower energy than the hexagonal phase at zero temperature, but because the latter has a higher mixing entropy, there is a transition from the
Synchronized chaotic phase masks for encrypting and decrypting images
NASA Astrophysics Data System (ADS)
Rueda, Edgar; Vera, Carlos A.; Rodríguez, Boris; Torroba, Roberto
2008-12-01
This paper presents an alternative to secure exchange of encrypted information through public open channels. Chaotic encryption introduces a security improvement by an efficient masking of the message with a chaotic signal. Message extraction by an authorized end user is done using a synchronization procedure, thus allowing a continuous change of the encrypting and decrypting keys. And optical implementation with a 4f optical encrypting architecture is suggested. Digital simulations, including the effects of missing data, corrupted data and noise addition are shown. These results proof the consistency of the proposal, and demonstrate a practical way to operate with it.
Microgravity Two-Phase Flow Transition
NASA Technical Reports Server (NTRS)
Parang, M.; Chao, D.
1999-01-01
Two-phase flows under microgravity condition find a large number of important applications in fluid handling and storage, and spacecraft thermal management. Specifically, under microgravity condition heat transfer between heat exchanger surfaces and fluids depend critically on the distribution and interaction between different fluid phases which are often qualitatively different from the gravity-based systems. Heat transfer and flow analysis in two-phase flows under these conditions require a clear understanding of the flow pattern transition and development of appropriate dimensionless scales for its modeling and prediction. The physics of this flow is however very complex and remains poorly understood. This has led to various inadequacies in flow and heat transfer modeling and has made prediction of flow transition difficult in engineering design of efficient thermal and flow systems. In the present study the available published data for flow transition under microgravity condition are considered for mapping. The transition from slug to annular flow and from bubbly to slug flow are mapped using dimensionless variable combination developed in a previous study by the authors. The result indicate that the new maps describe the flow transitions reasonably well over the range of the data available. The transition maps are examined and the results are discussed in relation to the presumed balance of forces and flow dynamics. It is suggested that further evaluation of the proposed flow and transition mapping will require a wider range of microgravity data expected to be made available in future studies.
Phase transitions in Abelian lattice gauge theories
NASA Astrophysics Data System (ADS)
Cheluvaraja, Srinath
2000-02-01
We study the phase transition in the U (1) lattice gauge theory using the Wilson-Polyakov line as the order parameter. The Wilson-Polyakov line remains very small at strong coupling and becomes non-zero at weak coupling, signalling a confinement-to-deconfinement phase transition. The decondensation of monopole loops is responsible for this phase transition. A finite size scaling analysis of the susceptibility of the Wilson line gives a ratio for icons/Journals/Common/gamma" ALT="gamma" ALIGN="TOP"/> /icons/Journals/Common/nu" ALT="nu" ALIGN="TOP"/> which is quite close to the corresponding value in the three-dimensional planar model. A scaling behaviour of the monopole loop distribution function is also established at the point of the second-order phase transition. A measurement of the plaquette susceptibility at the transition point shows that it does not scale with the four-dimensional volume as is expected of a first-order bulk transition.
Optimal phase synchronization in networks of phase-coherent chaotic oscillators
NASA Astrophysics Data System (ADS)
Skardal, P. S.; Sevilla-Escoboza, R.; Vera-Ávila, V. P.; Buldú, J. M.
2017-01-01
We investigate the existence of an optimal interplay between the natural frequencies of a group of chaotic oscillators and the topological properties of the network they are embedded in. We identify the conditions for achieving phase synchronization in the most effective way, i.e., with the lowest possible coupling strength. Specifically, we show by means of numerical and experimental results that it is possible to define a synchrony alignment function J (ω ,L ) linking the natural frequencies ωi of a set of non-identical phase-coherent chaotic oscillators with the topology of the Laplacian matrix L, the latter accounting for the specific organization of the network of interactions between oscillators. We use the classical Rössler system to show that the synchrony alignment function obtained for phase oscillators can be extended to phase-coherent chaotic systems. Finally, we carry out a series of experiments with nonlinear electronic circuits to show the robustness of the theoretical predictions despite the intrinsic noise and parameter mismatch of the electronic components.
Optimal phase synchronization in networks of phase-coherent chaotic oscillators.
Skardal, P S; Sevilla-Escoboza, R; Vera-Ávila, V P; Buldú, J M
2017-01-01
We investigate the existence of an optimal interplay between the natural frequencies of a group of chaotic oscillators and the topological properties of the network they are embedded in. We identify the conditions for achieving phase synchronization in the most effective way, i.e., with the lowest possible coupling strength. Specifically, we show by means of numerical and experimental results that it is possible to define a synchrony alignment function J(ω,L) linking the natural frequencies ωi of a set of non-identical phase-coherent chaotic oscillators with the topology of the Laplacian matrix L, the latter accounting for the specific organization of the network of interactions between oscillators. We use the classical Rössler system to show that the synchrony alignment function obtained for phase oscillators can be extended to phase-coherent chaotic systems. Finally, we carry out a series of experiments with nonlinear electronic circuits to show the robustness of the theoretical predictions despite the intrinsic noise and parameter mismatch of the electronic components.
Phase transition in a mixture of adaptive cruise control vehicles and manual vehicles
NASA Astrophysics Data System (ADS)
Jiang, R.; Hu, M.-B.; Jia, B.; Wang, R.; Wu, Q.-S.
2007-07-01
In this paper, we have investigated the effects of adaptive cruise control (ACC) vehicles in a mixture with manually-controlled (manual) vehicles. The manual vehicles are simulated by using the modified comfortable driving model, which can describe synchronized traffic flow. The phase transition probabilities from free flow to synchronized flow and from synchronized flow to jams are studied. The impact of ACC vehicles on the flow rates in free flow and synchronized flow and on the propagation velocity of the downstream front of jams are investigated. The dependence of microscopic properties of traffic flow, including the spatiotemporal patterns and the velocity distribution, is explored. Our results are expected to be useful for developing ACC systems.
Shaping Crystal-Crystal Phase Transitions
NASA Astrophysics Data System (ADS)
Du, Xiyu; van Anders, Greg; Dshemuchadse, Julia; Glotzer, Sharon
Previous computational and experimental studies have shown self-assembled structure depends strongly on building block shape. New synthesis techniques have led to building blocks with reconfigurable shape and it has been demonstrated that building block reconfiguration can induce bulk structural reconfiguration. However, we do not understand systematically how this transition happens as a function of building block shape. Using a recently developed ``digital alchemy'' framework, we study the thermodynamics of shape-driven crystal-crystal transitions. We find examples of shape-driven bulk reconfiguration that are accompanied by first-order phase transitions, and bulk reconfiguration that occurs without any thermodynamic phase transition. Our results suggest that for well-chosen shapes and structures, there exist facile means of bulk reconfiguration, and that shape-driven bulk reconfiguration provides a viable mechanism for developing functional materials.
Phase transitions in multiplicative competitive processes.
Shimazaki, Hideaki; Niebur, Ernst
2005-07-01
We introduce a discrete multiplicative process as a generic model of competition. Players with different abilities successively join the game and compete for finite resources. Emergence of dominant players and evolutionary development occur as a phase transition. The competitive dynamics underlying this transition is understood from a formal analogy to statistical mechanics. The theory is applicable to bacterial competition, predicting novel population dynamics near criticality.
Phase transitions in multiplicative competitive processes
Shimazaki, Hideaki; Niebur, Ernst
2005-07-01
We introduce a discrete multiplicative process as a generic model of competition. Players with different abilities successively join the game and compete for finite resources. Emergence of dominant players and evolutionary development occur as a phase transition. The competitive dynamics underlying this transition is understood from a formal analogy to statistical mechanics. The theory is applicable to bacterial competition, predicting novel population dynamics near criticality.
Friction forces on phase transition fronts
Mégevand, Ariel
2013-07-01
In cosmological first-order phase transitions, the microscopic interaction of the phase transition fronts with non-equilibrium plasma particles manifests itself macroscopically as friction forces. In general, it is a nontrivial problem to compute these forces, and only two limits have been studied, namely, that of very slow walls and, more recently, ultra-relativistic walls which run away. In this paper we consider ultra-relativistic velocities and show that stationary solutions still exist when the parameters allow the existence of runaway walls. Hence, we discuss the necessary and sufficient conditions for the fronts to actually run away. We also propose a phenomenological model for the friction, which interpolates between the non-relativistic and ultra-relativistic values. Thus, the friction depends on two friction coefficients which can be calculated for specific models. We then study the velocity of phase transition fronts as a function of the friction parameters, the thermodynamic parameters, and the amount of supercooling.
Thermogeometric phase transition in a unified framework
NASA Astrophysics Data System (ADS)
Banerjee, Rabin; Majhi, Bibhas Ranjan; Samanta, Saurav
2017-04-01
Using geomterothermodynamics (GTD), we investigate the phase transition of black hole in a metric independent way. We show that for any black hole, curvature scalar (of equilibrium state space geometry) is singular at the point where specific heat diverges. Previously such a result could only be shown by taking specific examples on a case by case basis. A different type of phase transition, where inverse specific heat diverges, is also studied within this framework. We show that in the latter case, metric (of equilibrium state space geometry) is singular instead of curvature scalar. Since a metric singularity may be a coordinate artifact, we propose that GTD indicates that it is the singularity of specific heat and not inverse specific heat which indicates a phase transition of black holes.
Quantum phase transitions with dynamical flavors
NASA Astrophysics Data System (ADS)
Bea, Yago; Jokela, Niko; Ramallo, Alfonso V.
2016-07-01
We study the properties of a D6-brane probe in the Aharony-Bergman-Jafferis-Maldacena (ABJM) background with smeared massless dynamical quarks in the Veneziano limit. Working at zero temperature and nonvanishing charge density, we show that the system undergoes a quantum phase transition in which the topology of the brane embedding changes from a black hole to a Minkowski embedding. In the unflavored background the phase transition is of second order and takes place when the charge density vanishes. We determine the corresponding critical exponents and show that the scaling behavior near the quantum critical point has multiplicative logarithmic corrections. In the background with dynamical quarks the phase transition is of first order and occurs at nonzero charge density. In this case we compute the discontinuity of several physical quantities as functions of the number Nf of unquenched quarks of the background.
Late-time cosmological phase transitions
NASA Technical Reports Server (NTRS)
Schramm, David N.
1991-01-01
It is shown that the potential galaxy formation and large scale structure problems of objects existing at high redshifts (Z approx. greater than 5), structures existing on scales of 100 M pc as well as velocity flows on such scales, and minimal microwave anisotropies ((Delta)T/T) (approx. less than 10(exp -5)) can be solved if the seeds needed to generate structure form in a vacuum phase transition after decoupling. It is argued that the basic physics of such a phase transition is no more exotic than that utilized in the more traditional GUT scale phase transitions, and that, just as in the GUT case, significant random Gaussian fluctuations and/or topological defects can form. Scale lengths of approx. 100 M pc for large scale structure as well as approx. 1 M pc for galaxy formation occur naturally. Possible support for new physics that might be associated with such a late-time transition comes from the preliminary results of the SAGE solar neutrino experiment, implying neutrino flavor mixing with values similar to those required for a late-time transition. It is also noted that a see-saw model for the neutrino masses might also imply a tau neutrino mass that is an ideal hot dark matter candidate. However, in general either hot or cold dark matter can be consistent with a late-time transition.
Late-time cosmological phase transitions
Schramm, D.N. Fermi National Accelerator Lab., Batavia, IL )
1990-11-01
It is shown that the potential galaxy formation and large-scale structure problems of objects existing at high redshifts (Z {approx gt} 5), structures existing on scales of 100M pc as well as velocity flows on such scales, and minimal microwave anisotropies ({Delta}T/T) {approx lt} 10{sup {minus}5} can be solved if the seeds needed to generate structure form in a vacuum phase transition after decoupling. It is argued that the basic physics of such a phase transition is no more exotic than that utilized in the more traditional GUT scale phase transitions, and that, just as in the GUT case, significant random gaussian fluctuations and/or topological defects can form. Scale lengths of {approximately}100M pc for large-scale structure as well as {approximately}1 M pc for galaxy formation occur naturally. Possible support for new physics that might be associated with such a late-time transition comes from the preliminary results of the SAGE solar neutrino experiment, implying neutrino flavor mixing with values similar to those required for a late-time transition. It is also noted that a see-saw model for the neutrino masses might also imply a tau neutrino mass that is an ideal hot dark matter candidate. However, in general either hot or cold dark matter can be consistent with a late-time transition. 47 refs., 2 figs.
NASA Astrophysics Data System (ADS)
Kerner, Boris S.; Klenov, Sergey L.; Schreckenberg, Michael
2014-05-01
Physical features of induced phase transitions in a metastable free flow at an on-ramp bottleneck in three-phase and two-phase cellular automaton (CA) traffic-flow models have been revealed. It turns out that at given flow rates at the bottleneck, to induce a moving jam (F→J transition) in the metastable free flow through the application of a time-limited on-ramp inflow impulse, in both two-phase and three-phase CA models the same critical amplitude of the impulse is required. If a smaller impulse than this critical one is applied, neither F→J transition nor other phase transitions can occur in the two-phase CA model. We have found that in contrast with the two-phase CA model, in the three-phase CA model, if the same smaller impulse is applied, then a phase transition from free flow to synchronized flow (F→S transition) can be induced at the bottleneck. This explains why rather than the F→J transition, in the three-phase theory traffic breakdown at a highway bottleneck is governed by an F→S transition, as observed in real measured traffic data. None of two-phase traffic-flow theories incorporates an F→S transition in a metastable free flow at the bottleneck that is the main feature of the three-phase theory. On the one hand, this shows the incommensurability of three-phase and two-phase traffic-flow theories. On the other hand, this clarifies why none of the two-phase traffic-flow theories can explain the set of fundamental empirical features of traffic breakdown at highway bottlenecks.
Kerner, Boris S; Klenov, Sergey L; Schreckenberg, Michael
2014-05-01
Physical features of induced phase transitions in a metastable free flow at an on-ramp bottleneck in three-phase and two-phase cellular automaton (CA) traffic-flow models have been revealed. It turns out that at given flow rates at the bottleneck, to induce a moving jam (F → J transition) in the metastable free flow through the application of a time-limited on-ramp inflow impulse, in both two-phase and three-phase CA models the same critical amplitude of the impulse is required. If a smaller impulse than this critical one is applied, neither F → J transition nor other phase transitions can occur in the two-phase CA model. We have found that in contrast with the two-phase CA model, in the three-phase CA model, if the same smaller impulse is applied, then a phase transition from free flow to synchronized flow (F → S transition) can be induced at the bottleneck. This explains why rather than the F → J transition, in the three-phase theory traffic breakdown at a highway bottleneck is governed by an F → S transition, as observed in real measured traffic data. None of two-phase traffic-flow theories incorporates an F → S transition in a metastable free flow at the bottleneck that is the main feature of the three-phase theory. On the one hand, this shows the incommensurability of three-phase and two-phase traffic-flow theories. On the other hand, this clarifies why none of the two-phase traffic-flow theories can explain the set of fundamental empirical features of traffic breakdown at highway bottlenecks.
Qian, Yu
2014-01-01
The synchronization transitions in Newman-Watts small-world neuronal networks (SWNNs) induced by time delay and long-range connection (LRC) probability have been investigated by synchronization parameter and space-time plots. Four distinct parameter regions, that is, asynchronous region, transition region, synchronous region, and oscillatory region have been discovered at certain LRC probability as time delay is increased. Interestingly, desynchronization is observed in oscillatory region. More importantly, we consider the spatiotemporal patterns obtained in delayed Newman-Watts SWNNs are the competition results between long-range drivings (LRDs) and neighboring interactions. In addition, for moderate time delay, the synchronization of neuronal network can be enhanced remarkably by increasing LRC probability. Furthermore, lag synchronization has been found between weak synchronization and complete synchronization as LRC probability is a little less than 1.0. Finally, the two necessary conditions, moderate time delay and large numbers of LRCs, are exposed explicitly for synchronization in delayed Newman-Watts SWNNs. PMID:24810595
Phase transitions in phosphatidylcholine multibilayers
Westerman, Philip W.; Vaz, Maria João; Strenk, Lawrence M.; Doane, J. William
1982-01-01
The 2H NMR spectrum of a multilamellar dispersion of 1-myristoyl-2-[14,14,14-2H3]myristoyl-sn-glycero-3-phosphocholine with 1 mol% cholesterol in excess water has been recorded at temperatures between -15°C and 36°C. Motionally averaged quadrupole coupling constants 〈νQ〉 and motionally induced asymmetry parameters η are obtained by spectral analysis. Values of these quantities indicate that, at temperatures below -4°C, any rotational motion of the molecules about their molecular long axis is slow on the NMR time scale. At temperatures immediately above the pretransition these same parameters show that a fast-rotational motion is occurring about the molecular long axis. This rotational motion is hindered in that the molecules flip about a twofold symmetry axis. Between -4°C and the pretransition, spectra appear as the superposition of two powder patterns, one corresponding to the pattern observed below -4°C and the other to the pattern above the pretransition. The relative contribution of the latter increases with temperature until the pretransition is reached. These data have been interpreted in two ways: either the sample between -4°C and the pretransition contains two populations of rapidly and slowly rotating molecules, or there is only a single population of molecules undergoing a 180° flipping motion on the time scale of the NMR measurement. The latter interpretation is more consistent with other experimental findings. At the temperature of the main transition the hydrocarbon chains melt. In the absence of cholesterol, spectra are more complex in that the line shape is reproduced by the superposition of three spectral powder patterns between -4°C and the pretransition and by the superposition of two spectral patterns above the pretransition. It is postulated that these two patterns observed above the pretransition are in direct correspondence to the two ripple structures observed by freeze-fracture electron microscopy in the absence of
Shape phase transitions and critical points
Alonso, C. E.; Arias, J. M.; Fortunato, L.; Vitturi, A.
2009-05-04
We investigate different aspects connected with shape phase transitions in nuclei and the possible occurrence of dynamical symmetries at the critical points. We discuss in particular the behaviour of the neighbour odd nuclei at the vicinity of the critical points in the even nuclei. We consider both the case of the transition from the vibrational behaviour to the gamma-unstable deformation (characterized within the collective Bohr hamiltonian by the E(5) critical point symmetry) and the case of the transition from the vibrational behaviour to the stable axial deformation (characterized by the X(5) symmetry). The odd particle is assumed to be moving in the three single particle orbitals j = 1/2,3/2,5/2, a set of orbitals that is known to lead to possible supersymmetric cases. The coupling of the odd particle to the Bohr hamiltonian does lead in fact in the former case at the critical point to the E(5/12) boson-fermion dynamical symmetry. An alternative approach to the two shape transitions is based on the Interacting Boson Fermion Model. In this case suitably parametrized boson-fermion hamiltonians can describe the evolution of the odd system along the shape transitions. At the critical points both energy spectra and electromagnetic transitions were found to display characteristic patterns similar to those displayed by the even nuclei at the corresponding critical point. The behaviour of the odd nuclei can therefore be seen as necessary complementary signatures of the occurrence of the phase transitions.
Entangled states and superradiant phase transitions
Aparicio Alcalde, M.; Cardenas, A. H.; Svaiter, N. F.; Bezerra, V. B.
2010-03-15
The full Dicke model is composed of a single bosonic mode and an ensemble of N identical two-level atoms. In the model, the coupling between the bosonic mode and the atoms generates resonant and nonresonant processes. We also consider a dipole-dipole interaction between the atoms, which is able to generate entangled states in the atomic system. By assuming thermal equilibrium with a reservoir at temperature {beta}{sup -1}, the transition from fluorescent to superradiant phase and the quantum phase transition are investigated. It is shown that the critical behavior of the full Dicke model is not modified by the introduction of the dipole-dipole interaction.
Jumping phase control in interband photonic transition.
Liu, Ye; Zhu, Jiang; Gao, Zhuoyang; Zhu, Haibin; Jiang, Chun
2014-03-10
Indirect interband photonic transition provides a nonmagnetic and linear scheme to achieve optical isolation in integrated photonics. In this paper, we demonstrate that the nonreciprocal transition can be induced through two pathways respectively by different modulation designs. At the end of those pathways, the two final modes have π phaseshift. We call this phenomenon jumping phase control since this approach provides a method to control the mode phase after the conversion. This approach also yields a novel way to generate nonreciprocal phaseshift and may contribute to chip-scale optoelectronic applications.
Metamagnetic Anomalies near Dynamic Phase Transitions
NASA Astrophysics Data System (ADS)
Riego, P.; Vavassori, P.; Berger, A.
2017-03-01
We report the existence of anomalous metamagnetic fluctuations in the vicinity of the dynamic phase transition (DPT) that do not occur for the corresponding thermodynamic behavior of simple ferromagnets. Our results demonstrate that key characteristics associated with the DPT are qualitatively different from conventional thermodynamic phase transitions. We also provide evidence that these differences are tunable by showing that the presence of metamagnetic fluctuations and the size of the critical scaling regime depend strongly on the amplitude of the oscillating field that is driving the DPT in the first place.
Solid-liquid phase transition in argon
NASA Technical Reports Server (NTRS)
Tsang, T.; Tang, H. T.
1978-01-01
Starting from the Lennard-Jones interatomic potential, a modified cell theory has been used to describe the solid-liquid phase transition in argon. The cell-size variations may be evaluated by a self-consistent condition. With the inclusion of cell-size variations, the transition temperature, the solid and liquid densities, and the liquid-phase radial-distribution functions have been calculated. These ab initio results are in satisfactory agreement with molecular-dynamics calculations as well as experimental data on argon.
Phase transition in sarcosine phosphite single crystals
NASA Astrophysics Data System (ADS)
Lemanov, V. V.; Popov, S. N.; Pankova, G. A.
2011-06-01
Single crystals of sarcosine phosphite (SarcH3PO3) have been grown. The amino acid sarcosine is an isomer of the protein amino acid alanine. Both amino acids are described by the same chemical formula but have different structures; or, more specifically, in contrast to the alanine molecule, the sarcosine molecule has a symmetric structure. It has been found that the sarcosine phosphite compound undergoes a structural phase transition at a temperature of approximately 200 K. This result has demonstrated that compounds of achiral amino acids are more susceptible to structural phase transitions.
Calculation of Impedance from Multibunch Synchronous Phases: Theory and Experimental Results
Prabhakar, Shyam
1998-10-20
A novel beam-based method for measuring the longitudinal impedance spectrum is demonstrated using experimental data from the PEP-II High Energy Ring (HER). The method uses a digital longitudinal feedback system from which the charge and synchronous phase are measured for every bucket. Calculation of the transfer function from fill shape to synchronous phase yields the impedance seen by the beam at revolution harmonics. The experimentally-derived longitudinal impedance function and lab measurements of the impedance of parked RF cavities are compared to suggest a mechanism for the occasional instability of low-order coupled bunch modes observed in the HER during commissioning in October 1997.
Liquid crystalline phase transitions in hydrogels
NASA Astrophysics Data System (ADS)
Alsayed, A. M.; Dogic, Z.; Islam, M. F.; Yodh, A. G.; Angler, A.; Discher, D. E.
2003-03-01
We investigate the isotropic-nematic (IN) phase transition of fd rods dissolved in P(NIPAAm) gel. The P(NIPAAm) gel exhibits a first order phase transition at 32 C from a low temperature expanded state to a high temperature collapsed state. Surprisingly we found it is possible to induce the nematic phase by keeping the volume of the gel constant and changing temperature. The sample exhibits a continuous and reversible transition from isotropic to nematic phase as the temperature is changed between 24-31 C. This unusual behavior is correlated with the presence of heterogeneities in the gel. Dissolving the rods into the gel effectively changes this concentration dependent lyotropic liquid crystal into temperature dependant system. The possibility that fd/gel system exhibits soft elasticity is currently being explored. Additionally we observe a temperature dependent nematic-smectic phase transition in this system and we studied its kinetics. This work is partially supported by NSF grants DMR-0203378, the PENN MRSEC, DMR-0079909, and NASA grant NAG8-2172.
Closed-loop carrier phase synchronization techniques motivated by likelihood functions
NASA Technical Reports Server (NTRS)
Tsou, H.; Hinedi, S.; Simon, M.
1994-01-01
This article reexamines the notion of closed-loop carrier phase synchronization motivated by the theory of maximum a posteriori phase estimation with emphasis on the development of new structures based on both maximum-likelihood and average-likelihood functions. The criterion of performance used for comparison of all the closed-loop structures discussed is the mean-squared phase error for a fixed-loop bandwidth.
Daume, Jonathan; Gruber, Thomas; Engel, Andreas K; Friese, Uwe
2016-11-30
It has been suggested that cross-frequency phase-amplitude coupling (PAC) particularly in temporal brain structures serves as a neural mechanism for coordinated working memory storage. In this magnetoencephalography study, we show that during visual working memory maintenance, temporal cortex regions, which exhibit enhanced PAC, interact with prefrontal cortex via enhanced low-frequency phase synchronization. Healthy human participants were engaged in a visual delayed-matching-to-sample task with pictures of natural objects. During the delay period, we observed increased spectral power of beta (20-28 Hz) and gamma band (40-94 Hz) as well as decreased power of theta/alpha band (7-9 Hz) oscillations in visual sensory areas. Enhanced PAC between the phases of theta/alpha and the amplitudes of beta oscillations was found in the left inferior temporal cortex (IT) - an area known to be involved in visual object memory. Furthermore, the IT was functionally connected to the prefrontal cortex by increased low-frequency phase synchronization within the theta/alpha band. Taken together, these results point to a mechanism, in which the combination of PAC and long-range phase synchronization subserves enhanced large-scale brain communication. They suggest that distant brain regions might coordinate their activity in the low-frequency range to engage local stimulus-related processing in higher frequencies via the combination of long-range within-frequency phase synchronization and local cross-frequency PAC. Working memory maintenance, like other cognitive functions, requires the coordinated engagement of brain areas in local and large-scale networks. However, the mechanisms by which spatially distributed brain regions share and combine information remain largely unknown. We show that the combination of long-range low-frequency phase synchronization and local cross-frequency phase-amplitude coupling might serve as a mechanism to coordinate memory processes across distant brain
Daume, Jonathan; Gruber, Thomas; Engel, Andreas K; Friese, Uwe
2017-01-11
It has been suggested that cross-frequency phase-amplitude coupling (PAC), particularly in temporal brain structures, serves as a neural mechanism for coordinated working memory storage. In this magnetoencephalography study, we show that during visual working memory maintenance, temporal cortex regions, which exhibit enhanced PAC, interact with prefrontal cortex via enhanced low-frequency phase synchronization. Healthy human participants were engaged in a visual delayed match-to-sample task with pictures of natural objects. During the delay period, we observed increased spectral power of beta (20-28 Hz) and gamma (40-94 Hz) bands as well as decreased power of theta/alpha band (7-9 Hz) oscillations in visual sensory areas. Enhanced PAC between the phases of theta/alpha and the amplitudes of beta oscillations was found in the left inferior temporal cortex (IT), an area known to be involved in visual object memory. Furthermore, the IT was functionally connected to the prefrontal cortex by increased low-frequency phase synchronization within the theta/alpha band. Together, these results point to a mechanism in which the combination of PAC and long-range phase synchronization subserves enhanced large-scale brain communication. They suggest that distant brain regions might coordinate their activity in the low-frequency range to engage local stimulus-related processing in higher frequencies via the combination of long-range, within-frequency phase synchronization and local cross-frequency PAC. Working memory maintenance, like other cognitive functions, requires the coordinated engagement of brain areas in local and large-scale networks. However, the mechanisms by which spatially distributed brain regions share and combine information remain primarily unknown. We show that the combination of long-range, low-frequency phase synchronization and local cross-frequency phase-amplitude coupling might serve as a mechanism to coordinate memory processes across distant brain areas
Improved Closed-Loop Carrier-Phase Synchronization In BPSK
NASA Technical Reports Server (NTRS)
Simon, Marvin K.; Tsou, Haiping; Hinedi, Sami M.
1996-01-01
Scheme motivated by maximum-likelihood approach offers advantages over other well-known schemes. Proposed signal-processing system generates error signal proportional to derivative of conditional probability density function with respect to estimated carrier phase. Signal serves as feedback signal in carrier-phase-tracking loop.
Hysteresis in the phase transition of chocolate
NASA Astrophysics Data System (ADS)
Ren, Ruilong; Lu, Qunfeng; Lin, Sihua; Dong, Xiaoyan; Fu, Hao; Wu, Shaoyi; Wu, Minghe; Teng, Baohua
2016-01-01
We designed an experiment to reproduce the hysteresis phenomenon of chocolate appearing in the heating and cooling process, and then established a model to relate the solidification degree to the order parameter. Based on the Landau-Devonshire theory, our model gave a description of the hysteresis phenomenon in chocolate, which lays the foundations for the study of the phase transition behavior of chocolate.
Chaos: Butterflies also Generate Phase Transitions
NASA Astrophysics Data System (ADS)
Leplaideur, Renaud
2015-10-01
We exhibit examples of mixing subshifts of finite type and of continuous potentials such that there are phase transitions but the pressure is always strictly convex. More surprisingly, we show that the pressure can be analytic on some interval although there exist several equilibrium states.
Polymorphic phase transition mechanism of compressed coesite.
Hu, Q Y; Shu, J-F; Cadien, A; Meng, Y; Yang, W G; Sheng, H W; Mao, H-K
2015-03-20
Silicon dioxide is one of the most abundant natural compounds. Polymorphs of SiO₂ and their phase transitions have long been a focus of great interest and intense theoretical and experimental pursuits. Here, compressing single-crystal coesite SiO₂ under hydrostatic pressures of 26-53 GPa at room temperature, we discover a new polymorphic phase transition mechanism of coesite to post-stishovite, by means of single-crystal synchrotron X-ray diffraction experiment and first-principles computational modelling. The transition features the formation of multiple previously unknown triclinic phases of SiO₂ on the transition pathway as structural intermediates. Coexistence of the low-symmetry phases results in extensive splitting of the original coesite X-ray diffraction peaks that appear as dramatic peak broadening and weakening, resembling an amorphous material. This work sheds light on the long-debated pressure-induced amorphization phenomenon of SiO₂, but also provides new insights into the densification mechanism of tetrahedrally bonded structures common in nature.
Polymorphic phase transition mechanism of compressed coesite
NASA Astrophysics Data System (ADS)
Hu, Q. Y.; Shu, J.-F.; Cadien, A.; Meng, Y.; Yang, W. G.; Sheng, H. W.; Mao, H.-K.
2015-03-01
Silicon dioxide is one of the most abundant natural compounds. Polymorphs of SiO2 and their phase transitions have long been a focus of great interest and intense theoretical and experimental pursuits. Here, compressing single-crystal coesite SiO2 under hydrostatic pressures of 26-53 GPa at room temperature, we discover a new polymorphic phase transition mechanism of coesite to post-stishovite, by means of single-crystal synchrotron X-ray diffraction experiment and first-principles computational modelling. The transition features the formation of multiple previously unknown triclinic phases of SiO2 on the transition pathway as structural intermediates. Coexistence of the low-symmetry phases results in extensive splitting of the original coesite X-ray diffraction peaks that appear as dramatic peak broadening and weakening, resembling an amorphous material. This work sheds light on the long-debated pressure-induced amorphization phenomenon of SiO2, but also provides new insights into the densification mechanism of tetrahedrally bonded structures common in nature.
Caloric materials near ferroic phase transitions.
Moya, X; Kar-Narayan, S; Mathur, N D
2014-05-01
A magnetically, electrically or mechanically responsive material can undergo significant thermal changes near a ferroic phase transition when its order parameter is modified by the conjugate applied field. The resulting magnetocaloric, electrocaloric and mechanocaloric (elastocaloric or barocaloric) effects are compared here in terms of history, experimental method, performance and prospective cooling applications.
Caloric materials near ferroic phase transitions
NASA Astrophysics Data System (ADS)
Moya, X.; Kar-Narayan, S.; Mathur, N. D.
2014-05-01
A magnetically, electrically or mechanically responsive material can undergo significant thermal changes near a ferroic phase transition when its order parameter is modified by the conjugate applied field. The resulting magnetocaloric, electrocaloric and mechanocaloric (elastocaloric or barocaloric) effects are compared here in terms of history, experimental method, performance and prospective cooling applications.
Problem of phase transitions in nuclear structure
Scharff-Goldhaber, G
1980-01-01
Phase transitions between rotational and vibrational nuclei are discussed from the point of view of the variable moment of inertia model. A three-dimensional plot of the ground-state moments of inertia of even-even nuclei vs N and Z is shown. 3 figures. (RWR)
Network of phase-locking oscillators and a possible model for neural synchronization
NASA Astrophysics Data System (ADS)
Piqueira, José Roberto C.
2011-09-01
In order to model the synchronization of brain signals, a three-node fully-connected network is presented. The nodes are considered to be voltage control oscillator neurons (VCON) allowing to conjecture about how the whole process depends on synaptic gains, free-running frequencies and delays. The VCON, represented by phase-locked loops (PLL), are fully-connected and, as a consequence, an asymptotically stable synchronous state appears. Here, an expression for the synchronous state frequency is derived and the parameter dependence of its stability is discussed. Numerical simulations are performed providing conditions for the use of the derived formulae. Model differential equations are hard to be analytically treated, but some simplifying assumptions combined with simulations provide an alternative formulation for the long-term behavior of the fully-connected VCON network. Regarding this kind of network as models for brain frequency signal processing, with each PLL representing a neuron (VCON), conditions for their synchronization are proposed, considering the different bands of brain activity signals and relating them to synaptic gains, delays and free-running frequencies. For the delta waves, the synchronous state depends strongly on the delays. However, for alpha, beta and theta waves, the free-running individual frequencies determine the synchronous state.
Double-Diffusive Layers and Phase Transitions
NASA Astrophysics Data System (ADS)
Dude, Sabine; Hansen, Ulrich
2015-04-01
Researching the thermal evolution of the Earth's mantle on numerical base is very challenging. During the last decade different approaches are put forward in oder to understand the picture of the today's Earth's mantle. One way is to incorporate all the known features and physics (plate tectonics, phase transitions, CMB-topography, ...) into numerical models and make them as complex (or 'complete') as possible to capture Earth's mantle processes and surface signals. Another way is, to take a step back and look at less complex models which account for single processes and their interaction and evolution. With these 'simpler' models one is able look in detail into the physical processes and dependencies on certain parameters. Since the knowledge of slab stagnation in the transitions zone of the Earth's mantle the question whether the mantle is or at least has been layered to some degree is still under debate. On this basis we address two important features that lead to layered mantle convection and may affect each other and with this the thermal evolution of the mantle. It is commonly known the main mantle mineral olivine pass through various phase changes with depth [1]. Detailed numerical studies had been carried out to ascertain the influence on convective motion and planetary evolution [2]. It is still heavily discussed whether the endothermic phase change at 660km depth can lead an isolated lower mantle. Most of the numerical studies favour a model which has phases of layering that are disrupted by catastrophic events. In the last years double-diffusive convection has also been intensively studied with regard to planetary mantle evolution such as pile formation and core-mantle boundary topography [3]. However, another striking feature still posing open questions are evolving layers self-organised from a previous non layered state. Considering a chemical component that influences the density of a fluid in addition to the temperature leads to dynamical phenomena
Phase synchronization of multiple klystrons in RF system
Kwon, S.; Regan, A.; Wang, Y.M.; Rohlev, T.
1998-12-31
The Low Energy Demonstration Accelerator (LEDA) being constructed at Los Alamos National Laboratory will serve as the prototype for the low energy section of the Acceleration Production of Tritium (APT) accelerator. The first LEDA RF system includes three, 1.2 MW, 350 MHz, continuous wave, klystrons driving a radio frequency quadrupole (RFQ). A phase control loop is necessary for each individual klystron in order to guarantee the phase matching of these klystrons. To meet this objective, they propose adaptive PI controllers which are based on simple adaptive control. These controllers guarantee not only phase matching but also amplitude matching.
Nonuniversal surface behavior of dynamic phase transitions
NASA Astrophysics Data System (ADS)
Riego, Patricia; Berger, Andreas
2015-06-01
We have studied the dynamic phase transition (DPT) of the kinetic Ising model in systems with surfaces within the mean-field approximation. Varying the surface exchange coupling strength Js, the amplitude of the externally applied oscillating field h0, and its period P , we explore the dynamic behavior of the layer-dependent magnetization and the associated DPTs. The surface phase diagram shows several features that resemble those of the equilibrium case, with an extraordinary bulk transition and a surface transition for high Js values, independent from the value of h0. For low Js, however, h0 is found to be a crucial parameter that leads to nonuniversal surface behavior at the ordinary bulk transition point. Specifically, we observed here a bulk-supported surface DPT for high field amplitudes h0 and correspondingly short critical periods Pc, whereas this surface transition simultaneous to the bulk one is suppressed for slow critical dynamics occurring for low values of h0. The suppression of the DPT for low h0 not only occurs for the topmost surface layer, but also affects a significant number of subsurface layers. We find that the key physical quantity that explains this nonuniversal behavior is the time correlation between the dynamic surface and bulk magnetizations at the bulk critical point. This time correlation has to pass a threshold value to trigger a bulk-induced DPT in the surface layers. Otherwise, dynamic phase transitions are absent at the surface in stark contrast to the equilibrium behavior of the corresponding thermodynamic Ising model. Also, we have analyzed the penetration depth of the dynamically ordered phase for the surface DPT that occurs for large Js values. Here we find that the penetration depth depends strongly on Js and behaves identically to the corresponding equilibrium Ising model.
Remarks on the Phase Transition in QCD
NASA Astrophysics Data System (ADS)
Wilczek, Frank
The significance of the question of the order of the phase transition in QCD, and recent evidence that real-world QCD is probably close to having a single second order transition as a function of temperature, is reviewed. Although this circumstance seems to remove the possibility that the QCD transition during the big bang might have had spectacular cosmological consequences, there is some good news: it allows highly non-trivial yet reliable quantitative predictions to be made for the behavior near the transition. These predictions can be tested in numerical simulations and perhaps even eventually in heavy ion collisions. The present paper is a very elementary discussion of the relevant concepts, meant to be an accessible introduction for those innocent of the renormalization group approach to critical phenomena and/or the details of QCD.
Phase Space Transition States for Deterministic Thermostats
NASA Astrophysics Data System (ADS)
Ezra, Gregory; Wiggins, Stephen
2009-03-01
We describe the relation between the phase space structure of Hamiltonian and non-Hamiltonian deterministic thermostats. We show that phase space structures governing reaction dynamics in Hamiltonian systems, such as the transition state, map to the same type of phase space structures for the non-Hamiltonian isokinetic equations of motion for the thermostatted Hamiltonian. Our results establish a general theoretical framework for analyzing thermostat dynamics using concepts and methods developed in reaction rate theory. Numerical results are presented for the isokinetic thermostat.
Fujita, Tomohiro; Fukai, Tomoki; Kitano, Katsunori
2012-06-01
The activity patterns of the globus pallidus (GPe) and subthalamic nucleus (STN) are closely associated with motor function and dysfunction in the basal ganglia. In the pathological state caused by dopamine depletion, the STN-GPe network exhibits rhythmic synchronous activity accompanied by rebound bursts in the STN. Therefore, the mechanism of activity transition is a key to understand basal ganglia functions. As synchronization in GPe neurons could induce pathological STN rebound bursts, it is important to study how synchrony is generated in the GPe. To clarify this issue, we applied the phase-reduction technique to a conductance-based GPe neuronal model in order to derive the phase response curve (PRC) and interaction function between coupled GPe neurons. Using the PRC and interaction function, we studied how the steady-state activity of the GPe network depends on intrinsic membrane properties, varying ionic conductances on the membrane. We noted that a change in persistent sodium current, fast delayed rectifier Kv3 potassium current, M-type potassium current and small conductance calcium-dependent potassium current influenced the PRC shape and the steady state. The effect of those currents on the PRC shape could be attributed to extension of the firing period and reduction of the phase response immediately after an action potential. In particular, the slow potassium current arising from the M-type potassium and the SK current was responsible for the reduction of the phase response. These results suggest that the membrane property modulation controls synchronization/asynchronization in the GPe and the pathological pattern of STN-GPe activity.
NASA Astrophysics Data System (ADS)
Xia, Ying; Wang, Shiyu; Sun, Wenjia; Xiu, Jie
2017-01-01
The electromagnetically induced parametric vibration of the symmetrical three-phase induction stator is examined. While it can be analyzed by an approximate analytical or numerical method, more accurate and simple analytical method is desirable. This work proposes a new method based on the field-synchronous coordinates. A mechanical-electromagnetic coupling model is developed under this frame such that a time-invariant governing equation with gyroscopic term can be developed. With the general vibration theory, the eigenvalue is formulated; the transition curves between the stable and unstable regions, and response are all determined as closed-form expressions of basic mechanical-electromagnetic parameters. The dependence of these parameters on the instability behaviors is demonstrated. The results imply that the divergence and flutter instabilities can occur even for symmetrical motors with balanced, constant amplitude and sinusoidal voltage. To verify the analytical predictions, this work also builds up a time-variant model of the same system under the conventional inertial frame. The Floquét theory is employed to predict the parametric instability and the numerical integration is used to obtain the parametric response. The parametric instability and response are both well compared against those under the field-synchronous coordinates. The proposed field-synchronous coordinates allows a quick estimation on the electromagnetically induced vibration. The convenience offered by the body-fixed coordinates is discussed across various fields.
Behn, Andrew; Zimmerman, Paul M; Bell, Alexis T; Head-Gordon, Martin
2011-12-13
The growing string method is a powerful tool in the systematic study of chemical reactions with theoretical methods which allows for the rapid identification of transition states connecting known reactant and product structures. However, the efficiency of this method is heavily influenced by the choice of interpolation scheme when adding new nodes to the string during optimization. In particular, the use of Cartesian coordinates with cubic spline interpolation often produces guess structures which are far from the final reaction path and require many optimization steps (and thus many energy and gradient calculations) to yield a reasonable final structure. In this paper, we present a new method for interpolating and reparameterizing nodes within the growing string method using the linear synchronous transit method of Halgren and Lipscomb. When applied to the alanine dipeptide rearrangement and a simplified cationic alkyl ring condensation reaction, a significant speedup in terms of computational cost is achieved (30-50%).
Dynamic transitions among multiple oscillators of synchronized bursts in cultured neural networks
NASA Astrophysics Data System (ADS)
Hoan Kim, June; Heo, Ryoun; Choi, Joon Ho; Lee, Kyoung J.
2014-04-01
Synchronized neural bursts are a salient dynamic feature of biological neural networks, having important roles in brain functions. This report investigates the deterministic nature behind seemingly random temporal sequences of inter-burst intervals generated by cultured networks of cortical cells. We found that the complex sequences were an intricate patchwork of several noisy ‘burst oscillators’, whose periods covered a wide dynamic range, from a few tens of milliseconds to tens of seconds. The transition from one type of oscillator to another favored a particular passage, while the dwelling time between two neighboring transitions followed an exponential distribution showing no memory. With different amounts of bicuculline or picrotoxin application, we could also terminate the oscillators, generate new ones or tune their periods.
Holographic phase transitions at finite chemical potential
NASA Astrophysics Data System (ADS)
Mateos, David; Matsuura, Shunji; Myers, Robert C.; Thomson, Rowan M.
2007-11-01
Recently, holographic techniques have been used to study the thermal properties of Script N = 2 super-Yang-Mills theory, with gauge group SU(Nc) and coupled to Nf << Nc flavours of fundamental matter, at large Nc and large 't Hooft coupling. Here we consider the phase diagram as a function of temperature and baryon chemical potential μb. For fixed μb < NcMq there is a line of first order thermal phase transitions separating a region with vanishing baryon density and one with nonzero density. For fixed μb>Nc Mq there is no phase transition as a function of the temperature and the baryon density is always nonzero. We also compare the present results for the grand canonical ensemble with those for canonical ensemble in which the baryon density is held fixed [1].
Phase locked periodic solutions and synchronous chaos in a model of two coupled molecular lasers
NASA Astrophysics Data System (ADS)
Doedel, Eusebius J.; Lambruschini, Carlos L. Pando
2016-11-01
We study a rate-equation model for two coupled molecular lasers with a saturable absorber. A numerical bifurcation study shows the existence of isolas for in-phase periodic solutions as physical parameters change. In addition there are other non-isola families of in-phase, anti-phase and intermediate-phase periodic oscillations. In this model the unstable periodic orbits belonging to the in-phase isolas constitute a skeleton of the attractor, when chaotic synchronization sets in for a set of physically relevant control parameters.
NASA Astrophysics Data System (ADS)
Fuwape, Ibiyinka A.; Ogunjo, Samuel T.; Dada, Joseph B.; Ashidi, Gabriel A.; Emmanuel, Israel
2016-11-01
This study investigated linear and nonlinear relationship between the amount of rainfall and radio refractivity in a tropical country, Nigeria using forty seven locations scattered across the country. Correlation and Phase synchronization measures were used for the linear and nonlinear relationship respectively. Weak correlation and phase synchronization was observed between seasonal mean rainfall amount and radio refractivity while strong phase synchronization was found for the detrended data suggesting similar underlying dynamics between rainfall amount and radio refractivity. Causation between rainfall and radio refractivity in a tropical location was studied using Granger causality test. In most of the Southern locations, rainfall was found to Granger cause radio refractivity. Furthermore, it was observed that there is strong correlation between mean rainfall amount and the phase synchronization index over Nigeria. Coupling between rainfall and radio refractivity has been found to be due to water vapour in the atmosphere. Frequency planning and budgeting for microwave propagation during periods of high rainfall should take into consideration this nonlinear relationship.
Seasonal Synchronization of Diapause Phases in Aedes albopictus (Diptera: Culicidae).
Lacour, Guillaume; Chanaud, Lionel; L'Ambert, Grégory; Hance, Thierry
2015-01-01
In temperate areas, population dynamics of the invasive Asian tiger mosquito Aedes albopictus are strongly affected by winter. The work we present here analyzes the adaptive synchronization of the diapause process in the wintry generation of A. albopictus, where the egg stage is exposed to adverse winter conditions. The seasonal pattern of egg laying activity of a French Mediterranean population of the Asian tiger mosquito was monitored weekly for 2 years with ovitraps. The field diapause incidence and the critical photoperiod (CPP, i.e. the maternal day length inducing diapause in 50% of the eggs), were determined by hatching experiments on the collected eggs. The period of diapause termination was estimated by a field survey of the first hatchings for both years. The CPP is equal to 13.5 hours of light and occurs in the field on the 25th of August. Thus, it is on September 11th, 17 days after the CPP, that 50% of the eggs are in a prediapause stage in the field. The egg diapause rate increases rapidly during September, whereas the mean number of eggs laid decreases sharply after mid-September. Surprisingly, after having reached a peak of 95% at the end of September, from mid-October the diapause incidence declined and stayed below 50%. Indeed, both years the diapause initiates before the rapid decrease of the environmental temperature. This leaves a sufficient period of time to the complete development of one generation of A. albopictus with effective induction of diapause in the laid eggs. The very first larvae hatched were sampled both years in the first half of March. With 20 to 26 weeks in the egg stage and about 7 weeks in the larval stages, the first annual generation spends a long time in immature stages. On a practical point of view, this long development time represents a wide window for eggs and larvae control in early spring.
Seasonal Synchronization of Diapause Phases in Aedes albopictus (Diptera: Culicidae)
Lacour, Guillaume; Chanaud, Lionel; L’Ambert, Grégory; Hance, Thierry
2015-01-01
In temperate areas, population dynamics of the invasive Asian tiger mosquito Aedes albopictus are strongly affected by winter. The work we present here analyzes the adaptive synchronization of the diapause process in the wintry generation of A. albopictus, where the egg stage is exposed to adverse winter conditions. The seasonal pattern of egg laying activity of a French Mediterranean population of the Asian tiger mosquito was monitored weekly for 2 years with ovitraps. The field diapause incidence and the critical photoperiod (CPP, i.e. the maternal day length inducing diapause in 50% of the eggs), were determined by hatching experiments on the collected eggs. The period of diapause termination was estimated by a field survey of the first hatchings for both years. The CPP is equal to 13.5 hours of light and occurs in the field on the 25th of August. Thus, it is on September 11th, 17 days after the CPP, that 50% of the eggs are in a prediapause stage in the field. The egg diapause rate increases rapidly during September, whereas the mean number of eggs laid decreases sharply after mid-September. Surprisingly, after having reached a peak of 95% at the end of September, from mid-October the diapause incidence declined and stayed below 50%. Indeed, both years the diapause initiates before the rapid decrease of the environmental temperature. This leaves a sufficient period of time to the complete development of one generation of A. albopictus with effective induction of diapause in the laid eggs. The very first larvae hatched were sampled both years in the first half of March. With 20 to 26 weeks in the egg stage and about 7 weeks in the larval stages, the first annual generation spends a long time in immature stages. On a practical point of view, this long development time represents a wide window for eggs and larvae control in early spring. PMID:26683460
A Two-Phase Time Synchronization-Free Localization Algorithm for Underwater Sensor Networks.
Luo, Junhai; Fan, Liying
2017-03-30
Underwater Sensor Networks (UWSNs) can enable a broad range of applications such as resource monitoring, disaster prevention, and navigation-assistance. Sensor nodes location in UWSNs is an especially relevant topic. Global Positioning System (GPS) information is not suitable for use in UWSNs because of the underwater propagation problems. Hence, some localization algorithms based on the precise time synchronization between sensor nodes that have been proposed for UWSNs are not feasible. In this paper, we propose a localization algorithm called Two-Phase Time Synchronization-Free Localization Algorithm (TP-TSFLA). TP-TSFLA contains two phases, namely, range-based estimation phase and range-free evaluation phase. In the first phase, we address a time synchronization-free localization scheme based on the Particle Swarm Optimization (PSO) algorithm to obtain the coordinates of the unknown sensor nodes. In the second phase, we propose a Circle-based Range-Free Localization Algorithm (CRFLA) to locate the unlocalized sensor nodes which cannot obtain the location information through the first phase. In the second phase, sensor nodes which are localized in the first phase act as the new anchor nodes to help realize localization. Hence, in this algorithm, we use a small number of mobile beacons to help obtain the location information without any other anchor nodes. Besides, to improve the precision of the range-free method, an extension of CRFLA achieved by designing a coordinate adjustment scheme is updated. The simulation results show that TP-TSFLA can achieve a relative high localization ratio without time synchronization.
A Two-Phase Time Synchronization-Free Localization Algorithm for Underwater Sensor Networks
Luo, Junhai; Fan, Liying
2017-01-01
Underwater Sensor Networks (UWSNs) can enable a broad range of applications such as resource monitoring, disaster prevention, and navigation-assistance. Sensor nodes location in UWSNs is an especially relevant topic. Global Positioning System (GPS) information is not suitable for use in UWSNs because of the underwater propagation problems. Hence, some localization algorithms based on the precise time synchronization between sensor nodes that have been proposed for UWSNs are not feasible. In this paper, we propose a localization algorithm called Two-Phase Time Synchronization-Free Localization Algorithm (TP-TSFLA). TP-TSFLA contains two phases, namely, range-based estimation phase and range-free evaluation phase. In the first phase, we address a time synchronization-free localization scheme based on the Particle Swarm Optimization (PSO) algorithm to obtain the coordinates of the unknown sensor nodes. In the second phase, we propose a Circle-based Range-Free Localization Algorithm (CRFLA) to locate the unlocalized sensor nodes which cannot obtain the location information through the first phase. In the second phase, sensor nodes which are localized in the first phase act as the new anchor nodes to help realize localization. Hence, in this algorithm, we use a small number of mobile beacons to help obtain the location information without any other anchor nodes. Besides, to improve the precision of the range-free method, an extension of CRFLA achieved by designing a coordinate adjustment scheme is updated. The simulation results show that TP-TSFLA can achieve a relative high localization ratio without time synchronization. PMID:28358342
Determining computational complexity from characteristic `phase transitions'
NASA Astrophysics Data System (ADS)
Monasson, Rémi; Zecchina, Riccardo; Kirkpatrick, Scott; Selman, Bart; Troyansky, Lidror
1999-07-01
Non-deterministic polynomial time (commonly termed `NP-complete') problems are relevant to many computational tasks of practical interest-such as the `travelling salesman problem'-but are difficult to solve: the computing time grows exponentially with problem size in the worst case. It has recently been shown that these problems exhibit `phase boundaries', across which dramatic changes occur in the computational difficulty and solution character-the problems become easier to solve away from the boundary. Here we report an analytic solution and experimental investigation of the phase transition in K -satisfiability, an archetypal NP-complete problem. Depending on the input parameters, the computing time may grow exponentially or polynomially with problem size; in the former case, we observe a discontinuous transition, whereas in the latter case a continuous (second-order) transition is found. The nature of these transitions may explain the differing computational costs, and suggests directions for improving the efficiency of search algorithms. Similar types of transition should occur in other combinatorial problems and in glassy or granular materials, thereby strengthening the link between computational models and properties of physical systems.
NASA Astrophysics Data System (ADS)
Shaffer, Annabelle; Follmann, Rosangela; Harris, Allison L.; Postnova, Svetlana; Braun, Hans; Rosa, Epaminondas
2017-06-01
A transition between tonic and bursting neuronal behaviors is studied using a linear chain of three electrically coupled model neurons. Numerical simulations show that, depending on their individual dynamical states, the neurons first synchronize either in a tonic or in a bursting regime. Additionally, a characteristic firing rate, mediating tonic-to-bursting transitions in networked neurons, is found to be associated with a firing rate encountered in the single neuron's equivalent transition. A few cases describing this peculiar phenomenon are presented.
NASA Astrophysics Data System (ADS)
Ferreira, Maria Teodora; Follmann, Rosangela; Domingues, Margarete O.; Macau, Elbert E. N.; Kiss, István Z.
2017-08-01
Phase synchronization may emerge from mutually interacting non-linear oscillators, even under weak coupling, when phase differences are bounded, while amplitudes remain uncorrelated. However, the detection of this phenomenon can be a challenging problem to tackle. In this work, we apply the Discrete Complex Wavelet Approach (DCWA) for phase assignment, considering signals from coupled chaotic systems and experimental data. The DCWA is based on the Dual-Tree Complex Wavelet Transform (DT-CWT), which is a discrete transformation. Due to its multi-scale properties in the context of phase characterization, it is possible to obtain very good results from scalar time series, even with non-phase-coherent chaotic systems without state space reconstruction or pre-processing. The method correctly predicts the phase synchronization for a chemical experiment with three locally coupled, non-phase-coherent chaotic processes. The impact of different time-scales is demonstrated on the synchronization process that outlines the advantages of DCWA for analysis of experimental data.
News and views in discontinuous phase transitions
NASA Astrophysics Data System (ADS)
Nagler, Jan
2014-03-01
Recent progress in the theory of discontinuous percolation allow us to better understand the the sudden emergence of large-scale connectedness both in networked systems and on the lattice. We analytically study mechanisms for the amplification of critical fluctuations at the phase transition point, non-self-averaging and power law fluctuations. A single event analysis allow to establish criteria for discontinuous percolation transitions, even on the high-dimensional lattice. Some applications such as salad bowl percolation, and inverse fragmentation are discussed.
Percolation quantum phase transitions in diluted magnets.
Vojta, Thomas; Schmalian, Jörg
2005-12-02
We show that the interplay of geometric criticality and quantum fluctuations leads to a novel universality class for the percolation quantum phase transition in diluted magnets. All critical exponents involving dynamical correlations are different from the classical percolation values, but in two dimensions they can nonetheless be determined exactly. We develop a complete scaling theory of this transition, and we relate it to recent experiments in La2Cu(1-p)(Zn,Mg)(p)O4. Our results are also relevant for disordered interacting boson systems.
Phase Transition of DNA Coated Nanogold Networks
NASA Astrophysics Data System (ADS)
Kiang, Ching-Hwa; Sun, Young; Harris, Nolan; Wickremasinghe, Nissanka
2004-03-01
Melting and hybridization of DNA-coated gold nanoparticle networks are investigated with optical absorption spectroscopy and tansmission electron microscopy. Single-stranded DNA-coated nanogold are linked with complementary, single-stranded linker DNA to form particle networks. Network formation results in a solution color change, which can be used for DNA detection. Compared to free DNA, networked DNA-nanoparticle systems result in a sharp melting transition. Melting curves calculated from percolation theory agree with our experimental results(1). (1) C.-H. Kiang, ``Phase Transition of DNA-Linked Gold Nanoparticles,'' Physica A, 321 (2003) 164--169.
NASA Astrophysics Data System (ADS)
Huang, Xu-Hui; Hu, Gang
2014-10-01
Phase transitions widely exist in nature and occur when some control parameters are changed. In neural systems, their macroscopic states are represented by the activity states of neuron populations, and phase transitions between different activity states are closely related to corresponding functions in the brain. In particular, phase transitions to some rhythmic synchronous firing states play significant roles on diverse brain functions and disfunctions, such as encoding rhythmical external stimuli, epileptic seizure, etc. However, in previous studies, phase transitions in neuronal networks are almost driven by network parameters (e.g., external stimuli), and there has been no investigation about the transitions between typical activity states of neuronal networks in a self-organized way by applying plastic connection weights. In this paper, we discuss phase transitions in electrically coupled and lattice-based small-world neuronal networks (LBSW networks) under spike-timing-dependent plasticity (STDP). By applying STDP on all electrical synapses, various known and novel phase transitions could emerge in LBSW networks, particularly, the phenomenon of self-organized phase transitions (SOPTs): repeated transitions between synchronous and asynchronous firing states. We further explore the mechanics generating SOPTs on the basis of synaptic weight dynamics.
Phase transitions in Pareto optimal complex networks
NASA Astrophysics Data System (ADS)
Seoane, Luís F.; Solé, Ricard
2015-09-01
The organization of interactions in complex systems can be described by networks connecting different units. These graphs are useful representations of the local and global complexity of the underlying systems. The origin of their topological structure can be diverse, resulting from different mechanisms including multiplicative processes and optimization. In spatial networks or in graphs where cost constraints are at work, as it occurs in a plethora of situations from power grids to the wiring of neurons in the brain, optimization plays an important part in shaping their organization. In this paper we study network designs resulting from a Pareto optimization process, where different simultaneous constraints are the targets of selection. We analyze three variations on a problem, finding phase transitions of different kinds. Distinct phases are associated with different arrangements of the connections, but the need of drastic topological changes does not determine the presence or the nature of the phase transitions encountered. Instead, the functions under optimization do play a determinant role. This reinforces the view that phase transitions do not arise from intrinsic properties of a system alone, but from the interplay of that system with its external constraints.
Dimensional phase transition in small Yukawa clusters
Sheridan, T. E.; Wells, K. D.
2010-01-15
We investigate the one- to two-dimensional zigzag transition in clusters consisting of a small number of particles interacting through a Yukawa (Debye) potential and confined in a two-dimensional biharmonic potential well. Dusty (complex) plasma clusters with n<=19 monodisperse particles are characterized experimentally for two different confining wells. The well anisotropy is accurately measured, and the Debye shielding parameter is determined from the longitudinal breathing frequency. Debye shielding is shown to be important. A model for this system is used to predict equilibrium particle configurations. The experiment and model exhibit excellent agreement. The critical value of n for the zigzag transition is found to be less than that predicted for an unshielded Coulomb interaction. The zigzag transition is shown to behave as a continuous phase transition from a one-dimensional to a two-dimensional state, where the state variables are the number of particles, the well anisotropy and the Debye shielding parameter. A universal critical exponent for the zigzag transition is identified for transitions caused by varying the Debye shielding parameter.
Kim, Won Kyu; Hyeon, Changbong; Sung, Wokyung
2012-01-01
In addition to thermal noise, which is essential to promote conformational transitions in biopolymers, the cellular environment is replete with a spectrum of athermal fluctuations that are produced from a plethora of active processes. To understand the effect of athermal noise on biological processes, we studied how a small oscillatory force affects the thermally induced folding and unfolding transition of an RNA hairpin, whose response to constant tension had been investigated extensively in both theory and experiments. Strikingly, our molecular simulations performed under overdamped condition show that even at a high (low) tension that renders the hairpin (un)folding improbable, a weak external oscillatory force at a certain frequency can synchronously enhance the transition dynamics of RNA hairpin and increase the mean transition rate. Furthermore, the RNA dynamics can still discriminate a signal with resonance frequency even when the signal is mixed among other signals with nonresonant frequencies. In fact, our computational demonstration of thermally induced resonance in RNA hairpin dynamics is a direct realization of the phenomena called stochastic resonance and resonant activation. Our study, amenable to experimental tests using optical tweezers, is of great significance to the folding of biopolymers in vivo that are subject to the broad spectrum of cellular noises. PMID:22908254
Kim, Won Kyu; Hyeon, Changbong; Sung, Wokyung
2012-09-04
In addition to thermal noise, which is essential to promote conformational transitions in biopolymers, the cellular environment is replete with a spectrum of athermal fluctuations that are produced from a plethora of active processes. To understand the effect of athermal noise on biological processes, we studied how a small oscillatory force affects the thermally induced folding and unfolding transition of an RNA hairpin, whose response to constant tension had been investigated extensively in both theory and experiments. Strikingly, our molecular simulations performed under overdamped condition show that even at a high (low) tension that renders the hairpin (un)folding improbable, a weak external oscillatory force at a certain frequency can synchronously enhance the transition dynamics of RNA hairpin and increase the mean transition rate. Furthermore, the RNA dynamics can still discriminate a signal with resonance frequency even when the signal is mixed among other signals with nonresonant frequencies. In fact, our computational demonstration of thermally induced resonance in RNA hairpin dynamics is a direct realization of the phenomena called stochastic resonance and resonant activation. Our study, amenable to experimental tests using optical tweezers, is of great significance to the folding of biopolymers in vivo that are subject to the broad spectrum of cellular noises.
Chandrasekar, A; Rakkiyappan, R; Cao, Jinde
2015-10-01
This paper studies the impulsive synchronization of Markovian jumping randomly coupled neural networks with partly unknown transition probabilities via multiple integral approach. The array of neural networks are coupled in a random fashion which is governed by Bernoulli random variable. The aim of this paper is to obtain the synchronization criteria, which is suitable for both exactly known and partly unknown transition probabilities such that the coupled neural network is synchronized with mixed time-delay. The considered impulsive effects can be synchronized at partly unknown transition probabilities. Besides, a multiple integral approach is also proposed to strengthen the Markovian jumping randomly coupled neural networks with partly unknown transition probabilities. By making use of Kronecker product and some useful integral inequalities, a novel Lyapunov-Krasovskii functional was designed for handling the coupled neural network with mixed delay and then impulsive synchronization criteria are solvable in a set of linear matrix inequalities. Finally, numerical examples are presented to illustrate the effectiveness and advantages of the theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Srinivasan, K.; Senthilkumar, D. V.; Raja Mohamed, I.; Murali, K.; Lakshmanan, M.; Kurths, J.
2012-06-01
We construct a new RC phase shift network based Chua's circuit, which exhibits a period-doubling bifurcation route to chaos. Using coupled versions of such a phase-shift network based Chua's oscillators, we describe a new method for achieving complete synchronization (CS), approximate lag synchronization (LS), and approximate anticipating synchronization (AS) without delay or parameter mismatch. Employing the Pecora and Carroll approach, chaos synchronization is achieved in coupled chaotic oscillators, where the drive system variables control the response system. As a result, AS or LS or CS is demonstrated without using a variable delay line both experimentally and numerically.
Corsi-Cabrera, María; Figueredo-Rodríguez, Pedro; del Río-Portilla, Yolanda; Sánchez-Romero, Jorge; Galán, Lídice; Bosch-Bayard, Jorge
2012-01-01
Introduction: Cognitive and brain hyperactivation have been associated with trouble falling asleep and sleep misperception in patients with primary insomnia (PI). Activation and synchronization/temporal coupling in frontal and frontoparietal regions involved in executive control and endogenous attention might be implicated in these symptoms. Methods: Standard polysomnography (PSG) and electroencephalogram (EEG) were recorded in 10 unmedicated young patients (age 19-34 yr) with PI with no other sleep/medical condition, and in 10 matched control subjects. Absolute power, temporal coupling, and topographic source distribution (variable resolution electromagnetic tomography or VARETA) were obtained for all time spent in waking, Stage 1 and Stage 2 of the wake-sleep transition period (WSTP), and the first 3 consecutive min of N3. Subjective sleep quality and continuity were evaluated. Results: In comparison with control subjects, patients with PI exhibited significantly higher frontal beta power and current density, and beta and gamma frontoparietal temporal coupling during waking and Stage 1. Conclusion: These findings suggest that frontal deactivation and disengagement of brain regions involved in executive control, attention, and self-awareness are impaired in patients with PI. The persistence of this activated and coherent network during the wake-sleep transition period (WSTP) may contribute to a better understanding of underlying mechanisms involved in difficulty in falling asleep, in sleep misperception, and in the lighter, poorer, and nonrefreshing sleep experienced by some patients with PI. Citation: Corsi-Cabrera M; Figueredo-Roríguez P; del Río-Portilla Y; Sánchez-Romero J; Galán L; Bosch-Bayard J. Enhanced frontoparietal synchronized activation during the wake-sleep transition in patients with primary insomnia. SLEEP 2012;35(4):501-511. PMID:22467988
Balanced optical-microwave phase detector for sub-femtosecond optical-RF synchronization
Peng, Michael Y.; Kalaydzhyan, Aram; Kärtner, Franz X.
2014-10-23
We demonstrate that balanced optical-microwave phase detectors (BOMPD) are capable of optical-RF synchronization with sub-femtosecond residual timing jitter for large-scale timing distribution systems. RF-to-optical synchronization is achieved with a long-term stability of < 1 fs RMS and < 7 fs pk-pk drift for over 10 hours and short-term stability of < 2 fs RMS jitter integrated from 1 Hz to 200 kHz as well as optical-to-RF synchronization with 0.5 fs RMS jitter integrated from 1 Hz to 20 kHz. Moreover, we achieve a –161 dBc/Hz noise floor that integrates well into the sub-fs regime and measure a nominal 50-dB AM-PMmore » suppression ratio with potential improvement via DC offset adjustment.« less
Balanced optical-microwave phase detector for sub-femtosecond optical-RF synchronization
Peng, Michael Y.; Kalaydzhyan, Aram; Kärtner, Franz X.
2014-10-23
We demonstrate that balanced optical-microwave phase detectors (BOMPD) are capable of optical-RF synchronization with sub-femtosecond residual timing jitter for large-scale timing distribution systems. RF-to-optical synchronization is achieved with a long-term stability of < 1 fs RMS and < 7 fs pk-pk drift for over 10 hours and short-term stability of < 2 fs RMS jitter integrated from 1 Hz to 200 kHz as well as optical-to-RF synchronization with 0.5 fs RMS jitter integrated from 1 Hz to 20 kHz. Moreover, we achieve a –161 dBc/Hz noise floor that integrates well into the sub-fs regime and measure a nominal 50-dB AM-PM suppression ratio with potential improvement via DC offset adjustment.
Phase Transitions in Models of Bird Flocking
NASA Astrophysics Data System (ADS)
Christodoulidi, H.; van der Weele, K.; Antonopoulos, Ch. G.; Bountis, T.
2014-12-01
The aim of the present paper is to elucidate the transition from collective to random behavior exhibited by various mathematical models of bird flocking. In particular, we compare Vicsek's model [Vicsek et al., Phys. Rev. Lett. 75, 1226-1229 (1995)] with one based on topological considerations. The latter model is found to exhibit a first order phase transition from flocking to decoherence, as the "noise parameter" of the problem is increased, whereas Vicsek's model gives a second order transition. Refining the topological model in such a way that birds are influenced mostly by the birds in front of them, less by the ones at their sides and not at all by those behind them (because they do not see them), we find a behavior that lies in between the two models. Finally, we propose a novel mechanism for preserving the flock's cohesion, without imposing artificial boundary conditions or attractive forces.
Gravitational Waves from a Dark Phase Transition.
Schwaller, Pedro
2015-10-30
In this work, we show that a large class of models with a composite dark sector undergo a strong first order phase transition in the early Universe, which could lead to a detectable gravitational wave signal. We summarize the basic conditions for a strong first order phase transition for SU(N) dark sectors with n_{f} flavors, calculate the gravitational wave spectrum and show that, depending on the dark confinement scale, it can be detected at eLISA or in pulsar timing array experiments. The gravitational wave signal provides a unique test of the gravitational interactions of a dark sector, and we discuss the complementarity with conventional searches for new dark sectors. The discussion includes the twin Higgs and strongly interacting massive particle models as well as symmetric and asymmetric composite dark matter scenarios.
Structural phase transitions in layered perovskitelike crystals
Aleksandrov, K.S.
1995-03-01
Possible symmetry changes due to small tilts of octahedra are considered for layered perovskite-like crystals containing slabs of several ({ell}) layers of comer-sharing octahedra. In the crystals with {ell} > 1, four types of distortions are possible; as a rule, these distortions correspond to the librational modes of the parent lattice. Condensation of these soft modes is the reason for structural phase transitions or sequences of phase transitions. The results obtained are compared with the known experimental data for a number of layered ferroelectric and ferroelastic perovskite-like compounds. An application of the results to the initial stage of determining unknown structures is discussed with particular attention paid to high-temperature superconductors. 76 refs., 9 figs., 7 tabs.
Phase transition in the countdown problem
NASA Astrophysics Data System (ADS)
Lacasa, Lucas; Luque, Bartolo
2012-07-01
We present a combinatorial decision problem, inspired by the celebrated quiz show called Countdown, that involves the computation of a given target number T from a set of k randomly chosen integers along with a set of arithmetic operations. We find that the probability of winning the game evidences a threshold phenomenon that can be understood in the terms of an algorithmic phase transition as a function of the set size k. Numerical simulations show that such probability sharply transitions from zero to one at some critical value of the control parameter, hence separating the algorithm's parameter space in different phases. We also find that the system is maximally efficient close to the critical point. We derive analytical expressions that match the numerical results for finite size and permit us to extrapolate the behavior in the thermodynamic limit.
Phase transition in the countdown problem.
Lacasa, Lucas; Luque, Bartolo
2012-07-01
We present a combinatorial decision problem, inspired by the celebrated quiz show called Countdown, that involves the computation of a given target number T from a set of k randomly chosen integers along with a set of arithmetic operations. We find that the probability of winning the game evidences a threshold phenomenon that can be understood in the terms of an algorithmic phase transition as a function of the set size k. Numerical simulations show that such probability sharply transitions from zero to one at some critical value of the control parameter, hence separating the algorithm's parameter space in different phases. We also find that the system is maximally efficient close to the critical point. We derive analytical expressions that match the numerical results for finite size and permit us to extrapolate the behavior in the thermodynamic limit.
A nonequilibrium phase transition in immune response
NASA Astrophysics Data System (ADS)
Zhang, Wei; Qi, An-Shen
2004-07-01
The dynamics of immune response correlated to signal transduction in immune thymic cells (T cells) is studied. In particular, the problem of the phosphorylation of the immune-receptor tyrosine-based activation motifs (ITAM) is explored. A nonlinear model is established on the basis of experimental observations. The behaviours of the model can be well analysed using the concepts of nonequilibrium phase transitions. In addition, the Riemann-Hugoniot cusp catastrophe is demonstrated by the model. Due to the application of the theory of nonequilibrium phase transitions, the biological phenomena can be clarified more precisely. The results can also be used to further explain the signal transduction and signal discrimination of an important type of immune T cell.
Gravitational Waves from a Dark Phase Transition
NASA Astrophysics Data System (ADS)
Schwaller, Pedro
2015-10-01
In this work, we show that a large class of models with a composite dark sector undergo a strong first order phase transition in the early Universe, which could lead to a detectable gravitational wave signal. We summarize the basic conditions for a strong first order phase transition for SU (N ) dark sectors with nf flavors, calculate the gravitational wave spectrum and show that, depending on the dark confinement scale, it can be detected at eLISA or in pulsar timing array experiments. The gravitational wave signal provides a unique test of the gravitational interactions of a dark sector, and we discuss the complementarity with conventional searches for new dark sectors. The discussion includes the twin Higgs and strongly interacting massive particle models as well as symmetric and asymmetric composite dark matter scenarios.
Phase transitions: An overview with a view
Gleiser, M.
1997-10-01
The dynamics of phase transitions plays a crucial role in the so- called interface between high energy particle physics and cosmology. Many of the interesting results generated during the last fifteen years or so rely on simplified assumptions concerning the complex mechanisms typical of nonequilibrium field theories. After reviewing well-known results concerning the dynamics of first and second order phase transitions, I argue that much is yet to be understood, in particular in situations where homogeneous nucleation theory does not apply. I present a method to deal with departures from homogeneous nucleation, and compare its efficacy with numerical simulations. Finally, I discuss the interesting problem of matching numerical simulations of stochastic field theories with continuum models.
Electroweak monopoles and the electroweak phase transition
NASA Astrophysics Data System (ADS)
Arunasalam, Suntharan; Kobakhidze, Archil
2017-07-01
We consider an isolated electroweak monopole solution within the Standard Model with a nonlinear Born-Infeld extension of the hypercharge gauge field. Monopole (and dyon) solutions in such an extension are regular and their masses are predicted to be proportional to the Born-Infeld mass parameter. We argue that cosmological production of electroweak monopoles may delay the electroweak phase transition and make it more strongly first order for monopole masses M≳ 9.3 {\\cdot } 10^3 TeV, while the nucleosynthesis constraints on the abundance of relic monopoles impose the bound M≲ 2.3\\cdot 10^4 TeV. The monopoles with a mass in this shallow range may be responsible for the dynamical generation of the matter-antimatter asymmetry during the electroweak phase transition.
Phase transitions in unstable cancer cell populations
NASA Astrophysics Data System (ADS)
Solé, R. V.
2003-09-01
The dynamics of cancer evolution is studied by means of a simple quasispecies model involving cells displaying high levels of genetic instability. Both continuous, mean-field and discrete, bit-string models are analysed. The string model is simulated on a single-peak landscape. It is shown that a phase transition exists at high levels of genetic instability, thus separating two phases of slow and rapid growth. The results suggest that, under a conserved level of genetic instability the cancer cell population will be close to the threshold level. Implications for therapy are outlined.
Evolution of structure during phase transitions
Martin, J.E.; Wilcoxon, J.P.; Anderson, R.A.
1996-03-01
Nanostructured materials can be synthesized by utilizing the domain growth that accompanies first-order phase separation. Structural control can be achieved by appropriately selecting the quench depth and the quench time, but in order to do this in a mindful fashion one must understand the kinetics of domain growth. The authors have completed detailed light scattering studies of the evolution of structure in both temperature- and field-quenched phase transitions in two and three dimensional systems. They have studied these systems in the quiescent state and in shear and have developed theoretical models that account for the experimental results.
Structural phase transitions in monolayer molybdenum dichalcogenides
NASA Astrophysics Data System (ADS)
Choe, Duk-Hyun; Sung, Ha June; Chang, Kee Joo
2015-03-01
The recent discovery of two-dimensional materials such as graphene and transition metal dichalcogenides (TMDs) has provided opportunities to develop ultimate thin channel devices. In contrast to graphene, the existence of moderate band gap and strong spin-orbit coupling gives rise to exotic electronic properties which vary with layer thickness, lattice structure, and symmetry. TMDs commonly appear in two structures with distinct symmetries, trigonal prismatic 2H and octahedral 1T phases which are semiconducting and metallic, respectively. In this work, we investigate the structural and electronic properties of monolayer molybdenum dichalcogenides (MoX2, where X = S, Se, Te) through first-principles density functional calculations. We find a tendency that the semiconducting 2H phase is more stable than the metallic 1T phase. We show that a spontaneous symmetry breaking of 1T phase leads to various distorted octahedral (1T') phases, thus inducing a metal-to-semiconductor transition. We discuss the effects of carrier doping on the structural stability and the modification of the electronic structure. This work was supported by the National Research Foundation of Korea (NRF) under Grant No. NRF-2005-0093845 and Samsung Science and Technology Foundation under Grant No. SSTFBA1401-08.
Extracellular ice phase transitions in insects.
Hawes, T C
2014-01-01
At temperatures below their temperature of crystallization (Tc), the extracellular body fluids of insects undergo a phase transition from liquid to solid. Insects that survive the transition to equilibrium (complete freezing of the body fluids) are designated as freeze tolerant. Although this phenomenon has been reported and described in many Insecta, current nomenclature and theory does not clearly delineate between the process of transition (freezing) and the final solid phase itself (the frozen state). Thus freeze tolerant insects are currently, by convention, described in terms of the temperature at which the crystallization of their body fluids is initiated, Tc. In fact, the correct descriptor for insects that tolerate freezing is the temperature of equilibrium freezing, Tef. The process of freezing is itself a separate physical event with unique physiological stresses that are associated with ice growth. Correspondingly there are a number of insects whose physiological cryo-limits are very specifically delineated by this transitional envelope. The distinction also has considerable significance for our understanding of insect cryobiology: firstly, because the ability to manage endogenous ice growth is a fundamental segregator of cryotype; and secondly, because our understanding of internal ice management is still largely nascent.
A magnetic phase transition temperature calibration device
NASA Astrophysics Data System (ADS)
Garcia, F.; Cernicchiaro, G. R. C.; Takeuchi, A. Y.
1999-04-01
We have devised a technique of manufacturing temperature sensor calibration devices based on the magnetic properties of the pseudobinary compounds of formula (RxR1-x')Co2, where R and R' are heavy rare earth elements. The device is a solid sensor which provides an easily detectable first order magnetic phase transition at fixed temperature points. It is known that a first order magnetic phase transition from ferrimagnetism to paramagnetism is observed in compounds as TmCo2 (3.70 K), ErCo2 (32.05 K), HoCo2 (77.12 K), and DyCo2 (136.55 K). These transitions correspond to a large anomaly in the characteristic properties as function of temperature. In this work, we present the electrical resistivity and magnetization measurements of (Er, Ho)Co2 series and DyCo2 compounds showing the viability of the proposed devices from 32.05 up to 136.55 K. This range can be extended below and above by substitution of the chemical components and the stoichiometric composition. The number of transitions can be fixed by a convenient arrangement of several elements.
Topological phase transitions in frustrated magnets
NASA Astrophysics Data System (ADS)
Southern, B. W.; Peles, A.
2006-06-01
The role of topological excitations in frustrated Heisenberg antiferromagnets between two and three spatial dimensions is considered. In particular, the antiferromagnetic Heisenberg model on a stacked triangular geometry with a finite number of layers is studied using Monte Carlo methods. A phase transition that is purely topological in nature occurs at a finite temperature for all film thicknesses. The results indicate that topological excitations are important for a complete understanding of the critical properties of the model between two and three dimensions.
Nonequilibrium Phase Transitions. Appendix A-F
1988-09-20
equilibrium whereas the dissipation of energy goes to zero as the excess energy vanishes at equilibrium. In a system that is not isolated the dissipation...polymer molecule cannot undergo a phase transition with zero change in free energy unless it does so with no change in conformation. This is the...solidification can never occur with a zero change in free energy . Only when the polymer molecule has a reasonable probability of occupying the same conformation
Gravitation, phase transitions, and the big bang
Krauss, L.M.
1982-11-08
Introduced here is a model of the early universe based on the possibility of a first-order phase transition involving gravity, and arrived at by a consideration of instabilities in the semiclassical theory. The evolution of the system is very different from the standard Friedmann-Robertson-Walker big-bang scenario, indicating the potential importance of semiclassical finite-temperature gravitational effects. Baryosynthesis and monopole production in this scenario are also outlined.
Phase transitions in Nowak Sznajd opinion dynamics
NASA Astrophysics Data System (ADS)
Wołoszyn, Maciej; Stauffer, Dietrich; Kułakowski, Krzysztof
2007-05-01
The Nowak modification of the Sznajd opinion dynamics model on the square lattice assumes that with probability β the opinions flip due to mass-media advertising from down to up, and vice versa. Besides, with probability α the Sznajd rule applies that a neighbour pair agreeing in its two opinions convinces all its six neighbours of that opinion. Our Monte Carlo simulations and mean-field theory find sharp phase transitions in the parameter space.
Phase transitions in planar bilayer membranes.
White, S H
1975-01-01
Temperature-dependent structural changes in planar bilayer membranes formed from glycerol monooleate (GMO) dispersed in various n-alkane solvents (C12-C17) have been studied using precise measurements of specific geometric capacitance (Cg). Cg generally increases as temperature (T) decreases. A change in the slope of Cg(T) occurs between 15 and 18 degrees C for all solvent systems examined. Measurements of the interfacial tension (gamma) of the bulk GMO-alkane dispersions against 0.1 M NaCl show that gamma generally decreases with decreasing temperature. The data can be fitted with two straight lines of different slope which intersect on the average at 17 degrees C. Pagano et al. (1973, Science (Wash. D.C.). 181:557) have shown using calorimetry that GMO has a phase transition at about 15 degrees C. Thus, the changes in Cg and gamma with temperature are likely to result from a GMO phase transition. A second structural change is observed to occur between 5 and 10 degrees C which has not been detected calorimetrically. Calculations of Cg based on various estimates of the hydrocarbon dielectric coefficient (epsilon-b) and/or hydrocarbon thickness (delta-b) leads to models for the structure of the bilayer above and below the phase transition temperature. PMID:1111634
Dynamical quantum phase transitions (Review Article)
NASA Astrophysics Data System (ADS)
Zvyagin, A. A.
2016-11-01
During recent years the interest to dynamics of quantum systems has grown considerably. Quantum many body systems out of equilibrium often manifest behavior, different from the one predicted by standard statistical mechanics and thermodynamics in equilibrium. Since the dynamics of a many-body quantum system typically involve many excited eigenstates, with a non-thermal distribution, the time evolution of such a system provides an unique way for investigation of non-equilibrium quantum statistical mechanics. Last decade such new subjects like quantum quenches, thermalization, pre-thermalization, equilibration, generalized Gibbs ensemble, etc. are among the most attractive topics of investigation in modern quantum physics. One of the most interesting themes in the study of dynamics of quantum many-body systems out of equilibrium is connected with the recently proposed important concept of dynamical quantum phase transitions. During the last few years a great progress has been achieved in studying of those singularities in the time dependence of characteristics of quantum mechanical systems, in particular, in understanding how the quantum critical points of equilibrium thermodynamics affect their dynamical properties. Dynamical quantum phase transitions reveal universality, scaling, connection to the topology, and many other interesting features. Here we review the recent achievements of this quickly developing part of low-temperature quantum physics. The study of dynamical quantum phase transitions is especially important in context of their connection to the problem of the modern theory of quantum information, where namely non-equilibrium dynamics of many-body quantum system plays the major role.
Recent theoretical advances on superradiant phase transitions
NASA Astrophysics Data System (ADS)
Baksic, Alexandre; Nataf, Pierre; Ciuti, Cristiano
2013-03-01
The Dicke model describing a single-mode boson field coupled to two-level systems is an important paradigm in quantum optics. In particular, the physics of ``superradiant phase transitions'' in the ultrastrong coupling regime is the subject of a vigorous research activity in both cavity and circuit QED. Recently, we explored the rich physics of two interesting generalizations of the Dicke model: (i) A model describing the coupling of a boson mode to two independent chains A and B of two-level systems, where chain A is coupled to one quadrature of the boson field and chain B to the orthogonal quadrature. This original model leads to a quantum phase transition with a double symmetry breaking and a fourfold ground state degeneracy. (ii) A generalized Dicke model with three-level systems including the diamagnetic term. In contrast to the case of two-level atoms for which no-go theorems exist, in the case of three-level system we prove that the Thomas-Reich-Kuhn sum rule does not always prevent a superradiant phase transition.
Selection of G1 Phase Yeast Cells for Synchronous Meiosis and Sporulation.
Stuart, David T
2017-01-01
Centrifugal elutriation is a procedure that allows the fractionation of cell populations based upon their size and shape. This allows cells in distinct cell cycle stages can be captured from an asynchronous population. The technique is particularly helpful when performing an experiment to monitor the progression of cells through the cell cycle or meiosis. Yeast sporulation like gametogenesis in other eukaryotes initiates from the G1 phase of the cell cycle. Conveniently, S. cerevisiae arrest in G1 phase when starved for nutrients and so withdrawal of nitrogen and glucose allows cells to abandon vegetative growth in G1 phase before initiating the sporulation program. This simple starvation protocol yields a partial synchronization that has been used extensively in studies of progression through meiosis and sporulation. By using centrifugal elutriation it is possible to isolate a homogeneous population of G1 phase cells and induce them to sporulate synchronously, which is beneficial for investigating progression through meiosis and sporulation. An additionally benefit of this protocol is that cell populations can be isolated based upon size and both large and small cell populations can be tested for progression through meiosis and sporulation. Here we present a protocol for purification of G1 phase diploid cells for examining synchronous progression through meiosis and sporulation.
Phase Transitions in Model Active Systems
NASA Astrophysics Data System (ADS)
Redner, Gabriel S.
The amazing collective behaviors of active systems such as bird flocks, schools of fish, and colonies of microorganisms have long amazed scientists and laypeople alike. Understanding the physics of such systems is challenging due to their far-from-equilibrium dynamics, as well as the extreme diversity in their ingredients, relevant time- and length-scales, and emergent phenomenology. To make progress, one can categorize active systems by the symmetries of their constituent particles, as well as how activity is expressed. In this work, we examine two categories of active systems, and explore their phase behavior in detail. First, we study systems of self-propelled spherical particles moving in two dimensions. Despite the absence of an aligning interaction, this system displays complex emergent dynamics, including phase separation into a dense active solid and dilute gas. Using simulations and analytic modeling, we quantify the phase diagram and separation kinetics. We show that this nonequilibrium phase transition is analogous to an equilibrium vapor-liquid system, with binodal and spinodal curves and a critical point. We also characterize the dense active solid phase, a unique material which exhibits the structural signatures of a crystalline solid near the crystal-hexatic transition point, as well as anomalous dynamics including superdiffusive motion on intermediate timescales. We also explore the role of interparticle attraction in this system. We demonstrate that attraction drastically changes the phase diagram, which contains two distinct phase-separated regions and is reentrant as a function of propulsion speed. We interpret this complex situation with a simple kinetic model, which builds from the observed microdynamics of individual particles to a full description of the macroscopic phase behavior. We also study active nematics, liquid crystals driven out of equilibrium by energy-dissipating active stresses. The equilibrium nematic state is unstable in these
Dodla, Ramana; Wilson, Charles J.
2013-01-01
We investigate why electrically coupled neuronal oscillators synchronize or fail to synchronize using the theory of weakly coupled oscillators. Stability of synchrony and antisynchrony is predicted analytically and verified using numerical bifurcation diagrams. The shape of the phase response curve (PRC), the shape of the voltage time course, and the frequency of spiking are freely varied to map out regions of parameter spaces that hold stable solutions. We find that type-1 and type-2 PRCs can both hold synchronous and antisynchronous solutions, but the shape of the PRC and the voltage determine the extent of their stability. This is achieved by introducing a five-piecewise linear model to the PRC, and a three-piecewise linear model to the voltage time course, and then analyzing the resultant eigenvalue equations that determine the stability of the phase-locked solutions. A single time parameter defines the skewness of the PRC, and another single time parameter defines the spike width and frequency. Our approach gives a comprehensive picture of the relation between the PRC shape, voltage time course and the stability of the resultant synchronous and antisynchronous solutions. PMID:23777519
Phase transitions in complex network dynamics
NASA Astrophysics Data System (ADS)
Squires, Shane
Two phase transitions in complex networks are analyzed. The first of these is a percolation transition, in which the network develops a macroscopic connected component as edges are added to it. Recent work has shown that if edges are added "competitively" to an undirected network, the onset of percolation is abrupt or "explosive." A new variant of explosive percolation is introduced here for directed networks, whose critical behavior is explored using numerical simulations and finite-size scaling theory. This process is also characterized by a very rapid percolation transition, but it is not as sudden as in undirected networks. The second phase transition considered here is the emergence of instability in Boolean networks, a class of dynamical systems that are widely used to model gene regulation. The dynamics, which are determined by the network topology and a set of update rules, may be either stable or unstable, meaning that small perturbations to the state of the network either die out or grow to become macroscopic. Here, this transition is analytically mapped onto a well-studied percolation problem, which can be used to predict the average steady-state distance between perturbed and unperturbed trajectories. This map applies to specific Boolean networks with few restrictions on network topology, but can only be applied to two commonly used types of update rules. Finally, a method is introduced for predicting the stability of Boolean networks with a much broader range of update rules. The network is assumed to have a given complex topology, subject only to a locally tree-like condition, and the update rules may be correlated with topological features of the network. While past work has addressed the separate effects of topology and update rules on stability, the present results are the first widely applicable approach to studying how these effects interact. Numerical simulations agree with the theory and show that such correlations between topology and update
Phase transitions of ε-HNIW in compound systems
Zhang, Jing-yuan; Guo, Xue-yong Jiao, Qing-jie; Zhang, Pu
2016-05-15
The heat-induced phase transitions of ε-HNIW, both neat and coated with various additives used in plastic bonded explosives, were investigated using powder X-ray diffraction and differential scanning calorimetry. It was found that ε-HNIW, after being held at 70°C for 60 h, remained in the ε-phase. Applying other conditions, various phase transition parameters were determined, including T{sub c} (the critical phase transition temperature), T{sub 50} (the temperature at which 50% of the phase transition is complete) and T{sub 180} (the percentage of γ-HNIW present in samples heated to 180°C). According to the above three parameters, additives were divided into three categories: those that delay phase transition, those that raise the critical temperature and the transition rate, and those that promote the phase transition. Based on the above data, a phase transition mechanism is proposed.
NASA Astrophysics Data System (ADS)
Radhakrishnan, Srinivasan; Duvvuru, Arjun; Sultornsanee, Sivarit; Kamarthi, Sagar
2016-02-01
The cross correlation coefficient has been widely applied in financial time series analysis, in specific, for understanding chaotic behaviour in terms of stock price and index movements during crisis periods. To better understand time series correlation dynamics, the cross correlation matrices are represented as networks, in which a node stands for an individual time series and a link indicates cross correlation between a pair of nodes. These networks are converted into simpler trees using different schemes. In this context, Minimum Spanning Trees (MST) are the most favoured tree structures because of their ability to preserve all the nodes and thereby retain essential information imbued in the network. Although cross correlations underlying MSTs capture essential information, they do not faithfully capture dynamic behaviour embedded in the time series data of financial systems because cross correlation is a reliable measure only if the relationship between the time series is linear. To address the issue, this work investigates a new measure called phase synchronization (PS) for establishing correlations among different time series which relate to one another, linearly or nonlinearly. In this approach the strength of a link between a pair of time series (nodes) is determined by the level of phase synchronization between them. We compare the performance of phase synchronization based MST with cross correlation based MST along selected network measures across temporal frame that includes economically good and crisis periods. We observe agreement in the directionality of the results across these two methods. They show similar trends, upward or downward, when comparing selected network measures. Though both the methods give similar trends, the phase synchronization based MST is a more reliable representation of the dynamic behaviour of financial systems than the cross correlation based MST because of the former's ability to quantify nonlinear relationships among time
Song, Zhiwen; Wu, Ye; Liu, Weiqing; Xiao, Jinghua
2015-01-01
It has recently been observed in numerical simulations that the phases of two coupled nonlinear oscillators can become locked into an irrational ratio, exhibiting the phenomenon of irrational phase synchronization (IPS) [Phys. Rev. E 69, 056228 (2004)]. Here, using two coupled nonidentical periodic mechanical metronomes, we revisit this interesting phenomenon through experimental studies. It is demonstrated that under suitable couplings, the phases of the metronomes indeed can become locked into irrational ratios. Numerical simulations confirm the experimental observations and also reveal that in the IPS state, the system dynamics are chaotic. Our studies provide a solid step toward further studies of IPS. PMID:25786222
Quantum Phase Transitions in Antiferromagnets and Superfluids
NASA Astrophysics Data System (ADS)
Sachdev, Subir
2000-03-01
A general introduction to the non-zero temperature dynamic and transport properties of low-dimensional systems near a quantum phase transition shall be presented. Basic results will be reviewed in the context of experiments on the spin-ladder compounds. Recent large N computations (M. Vojta and S. Sachdev, Phys. Rev. Lett. 83), 3916 (1999) on an extended t-J model motivate a global scenario of the quantum phases and transitions in the high temperature superconductors, and connections will be made to numerous experiments. A universal theory (S. Sachdev, C. Buragohain, and M. Vojta, Science, in press M. Vojta, C. Buragohain, and S. Sachdev, cond- mat/9912020) of quantum impurities in spin-gap antiferromagnets near a magnetic ordering transition will be compared quantitatively to experiments on Zn doped Y Ba2 Cu3 O7 (Fong et al.), Phys. Rev. Lett. 82, 1939 (1999)
Lowet, Eric; Roberts, Mark; Hadjipapas, Avgis; Peter, Alina; van der Eerden, Jan; De Weerd, Peter
2015-01-01
Fine-scale temporal organization of cortical activity in the gamma range (∼25–80Hz) may play a significant role in information processing, for example by neural grouping (‘binding’) and phase coding. Recent experimental studies have shown that the precise frequency of gamma oscillations varies with input drive (e.g. visual contrast) and that it can differ among nearby cortical locations. This has challenged theories assuming widespread gamma synchronization at a fixed common frequency. In the present study, we investigated which principles govern gamma synchronization in the presence of input-dependent frequency modulations and whether they are detrimental for meaningful input-dependent gamma-mediated temporal organization. To this aim, we constructed a biophysically realistic excitatory-inhibitory network able to express different oscillation frequencies at nearby spatial locations. Similarly to cortical networks, the model was topographically organized with spatially local connectivity and spatially-varying input drive. We analyzed gamma synchronization with respect to phase-locking, phase-relations and frequency differences, and quantified the stimulus-related information represented by gamma phase and frequency. By stepwise simplification of our models, we found that the gamma-mediated temporal organization could be reduced to basic synchronization principles of weakly coupled oscillators, where input drive determines the intrinsic (natural) frequency of oscillators. The gamma phase-locking, the precise phase relation and the emergent (measurable) frequencies were determined by two principal factors: the detuning (intrinsic frequency difference, i.e. local input difference) and the coupling strength. In addition to frequency coding, gamma phase contained complementary stimulus information. Crucially, the phase code reflected input differences, but not the absolute input level. This property of relative input-to-phase conversion, contrasting with latency
Lowet, Eric; Roberts, Mark; Hadjipapas, Avgis; Peter, Alina; van der Eerden, Jan; De Weerd, Peter
2015-02-01
Fine-scale temporal organization of cortical activity in the gamma range (∼25-80Hz) may play a significant role in information processing, for example by neural grouping ('binding') and phase coding. Recent experimental studies have shown that the precise frequency of gamma oscillations varies with input drive (e.g. visual contrast) and that it can differ among nearby cortical locations. This has challenged theories assuming widespread gamma synchronization at a fixed common frequency. In the present study, we investigated which principles govern gamma synchronization in the presence of input-dependent frequency modulations and whether they are detrimental for meaningful input-dependent gamma-mediated temporal organization. To this aim, we constructed a biophysically realistic excitatory-inhibitory network able to express different oscillation frequencies at nearby spatial locations. Similarly to cortical networks, the model was topographically organized with spatially local connectivity and spatially-varying input drive. We analyzed gamma synchronization with respect to phase-locking, phase-relations and frequency differences, and quantified the stimulus-related information represented by gamma phase and frequency. By stepwise simplification of our models, we found that the gamma-mediated temporal organization could be reduced to basic synchronization principles of weakly coupled oscillators, where input drive determines the intrinsic (natural) frequency of oscillators. The gamma phase-locking, the precise phase relation and the emergent (measurable) frequencies were determined by two principal factors: the detuning (intrinsic frequency difference, i.e. local input difference) and the coupling strength. In addition to frequency coding, gamma phase contained complementary stimulus information. Crucially, the phase code reflected input differences, but not the absolute input level. This property of relative input-to-phase conversion, contrasting with latency codes
Current harmonics elimination control method for six-phase PM synchronous motor drives.
Yuan, Lei; Chen, Ming-liang; Shen, Jian-qing; Xiao, Fei
2015-11-01
To reduce the undesired 5th and 7th stator harmonic current in the six-phase permanent magnet synchronous motor (PMSM), an improved vector control algorithm was proposed based on vector space decomposition (VSD) transformation method, which can control the fundamental and harmonic subspace separately. To improve the traditional VSD technology, a novel synchronous rotating coordinate transformation matrix was presented in this paper, and only using the traditional PI controller in d-q subspace can meet the non-static difference adjustment, the controller parameter design method is given by employing internal model principle. Moreover, the current PI controller parallel with resonant controller is employed in x-y subspace to realize the specific 5th and 7th harmonic component compensation. In addition, a new six-phase SVPWM algorithm based on VSD transformation theory is also proposed. Simulation and experimental results verify the effectiveness of current decoupling vector controller.
Bursting frequency versus phase synchronization in time-delayed neuron networks
NASA Astrophysics Data System (ADS)
Nordenfelt, Anders; Used, Javier; Sanjuán, Miguel A. F.
2013-05-01
We investigate the dependence of the average bursting frequency on time delay for neuron networks with randomly distributed time-delayed chemical synapses. The result is compared with the corresponding curve for the phase synchronization and it turns out that, in some intervals, these have a very similar shape and appear as almost mirror images of each other. We have analyzed both the map-based chaotic Rulkov model and the continuous Hindmarsh-Rose model, yielding the same conclusions. In order to gain further insight, we also analyzed time-delayed Kuramoto models displaying an overall behavior similar to that observed on the neuron network models. For the Kuramoto models, we were able to derive analytical formulas providing an implicit functional relationship between the mean frequency and the phase synchronization. These formulas suggest a strong dependence between those two measures, which could explain the similarities in shape between the curves.
Etude et simulation des groupes convertisseurs-machines synchrones a six phases
NASA Astrophysics Data System (ADS)
Doyon, Jean-Francois
Since many years, multiphase (n > 3) machines represent a growing research interest in the electrical machines domain. This type of machine can be used for many systems like automotive electrical traction, electric ship propulsion, wind farms or high-power industrial applications. Above all multiphase machines, the six phases wounded rotor synchronous machine brings a huge interest. Subsequently, using that kind of machine in any application requires a good understanding of the machine model and its respective converters. Hence, simulation represents a great way to study the behaviour and design of such applications that uses six phases wounded rotor synchronous machines. The present research concerns the study and simulation of six phase synchronous machinesconverters systems. From this project resulted the implementation of the six phases wound rotor salient pole synchronous machine in the Demos library of Matlab SimPowerSytems. In terms of study, a six phase machine electric drive is designed as well as a six phase machine implementation in a type 4 wind farm. The modeling of the six phase synchronous machine is fully detailed for the electrical part and the mechanical part. Then, the voltage source inverter electric drive with hysteresis control is conceived. Simulations of torque control, speed control and degraded mode of the machine are executed. The results illustrate the electric drive efficiency. This is followed by the type 4 wind turbine application of the machine. The wind farm is connected to a 120 kV grid, where a voltage drop fault appears at the 120 kV bar for a duration of six 60 Hz cycles. The results show a good operation of the regulators during the fault. This application is also subjected to a degraded mode, where results illustrate once again a good system regulation. Also, for the electric drive and the wind farm applications, a comparative study is made for the use of an asymmetrical versus symmetrical winding configuration of the machine
Phase transitions of nuclear matter beyond mean field theory
Tran Huu Phat; Nguyen Tuan Anh; Nguyen Van Long; Le Viet Hoa
2007-10-15
The Cornwall-Jackiw-Tomboulis (CJT) effective action approach is applied to study the phase transition of nuclear matter modeled by the four-nucleon interaction. It is shown that in the Hartree-Fock approximation (HFA) a first-order phase transition takes place at low temperature, whereas the phase transition is of second order at higher temperature.
Dynamical phase transitions in quantum mechanics
NASA Astrophysics Data System (ADS)
Rotter, Ingrid
2012-02-01
The nucleus is described as an open many-body quantum system with a non-Hermitian Hamilton operator the eigenvalues of which are complex, in general. The eigenvalues may cross in the complex plane (exceptional points), the phases of the eigenfunctions are not rigid in approaching the crossing points and the widths bifurcate. By varying only one parameter, the eigenvalue trajectories usually avoid crossing and width bifurcation occurs at the critical value of avoided crossing. An analog spectroscopic redistribution takes place for discrete states below the particle decay threshold. By this means, a dynamical phase transition occurs in the many-level system starting at a critical value of the level density. Hence the properties of the low-lying nuclear states (described well by the shell model) and those of highly excited nuclear states (described by random ensembles) differ fundamentally from one another. The statement of Niels Bohr on the collective features of compound nucleus states at high level density is therefore not in contradiction to the shell-model description of nuclear (and atomic) states at low level density. Dynamical phase transitions are observed experimentally in different quantum mechanical systems by varying one or two parameters.
Magnetoelastic effects on antiferromagnetic phase transitions (invited)
Wolf, W.P.; Huan, C.H.A.
1988-04-15
The effect of elastic strains on antiferromagnetic phase transitions is considered. For cases in which the magnetic and chemical unit cells coincide, the combination of a strain and an applied field is found to lead to the possibility of a linear magnetoelastic (LME) coupling which may induce antiferromagnetic order, even in the normally paramagnetic phase. Such an effect can, in principle, destroy any second-order phase transition. An order of magnitude estimate shows that the effect is small but not negligible, and that it may explain a number of unusual effects observed in dysprosium aluminum garnet, including anomalous neutron scattering, magnetic hysteresis and magnetostriction. Similar strain-induced effects may be important in many other antiferromagnets, including CoF/sub 2/, FeF/sub 2/, MnF/sub 2/, and ..cap alpha..Fe/sub 2/O/sub 3/, as well as in mixed crystals with the same structures. Strain gradients may produce similar effects in other antiferromagnets which are magnetoelectric, including DyPO/sub 4/, DyAlO/sub 3/, and Cr/sub 2/O/sub 3/.
Lee, Boah; Song, Taegeun; Lee, Kayoung; Kim, Jaeyoon; Han, Seungmin; Berggren, Per-Olof; Ryu, Sung Ho; Jo, Junghyo
2017-01-01
Insulin is secreted in a pulsatile manner from multiple micro-organs called the islets of Langerhans. The amplitude and phase (shape) of insulin secretion are modulated by numerous factors including glucose. The role of phase modulation in glucose homeostasis is not well understood compared to the obvious contribution of amplitude modulation. In the present study, we measured Ca2+ oscillations in islets as a proxy for insulin pulses, and we observed their frequency and shape changes under constant/alternating glucose stimuli. Here we asked how the phase modulation of insulin pulses contributes to glucose regulation. To directly answer this question, we developed a phenomenological oscillator model that drastically simplifies insulin secretion, but precisely incorporates the observed phase modulation of insulin pulses in response to glucose stimuli. Then, we mathematically modeled how insulin pulses regulate the glucose concentration in the body. The model of insulin oscillation and glucose regulation describes the glucose-insulin feedback loop. The data-based model demonstrates that the existence of phase modulation narrows the range within which the glucose concentration is maintained through the suppression/enhancement of insulin secretion in conjunction with the amplitude modulation of this secretion. The phase modulation is the response of islets to glucose perturbations. When multiple islets are exposed to the same glucose stimuli, they can be entrained to generate synchronous insulin pulses. Thus, we conclude that the phase modulation of insulin pulses is essential for glucose regulation and inter-islet synchronization. PMID:28235104
Lee, Boah; Song, Taegeun; Lee, Kayoung; Kim, Jaeyoon; Han, Seungmin; Berggren, Per-Olof; Ryu, Sung Ho; Jo, Junghyo
2017-01-01
Insulin is secreted in a pulsatile manner from multiple micro-organs called the islets of Langerhans. The amplitude and phase (shape) of insulin secretion are modulated by numerous factors including glucose. The role of phase modulation in glucose homeostasis is not well understood compared to the obvious contribution of amplitude modulation. In the present study, we measured Ca2+ oscillations in islets as a proxy for insulin pulses, and we observed their frequency and shape changes under constant/alternating glucose stimuli. Here we asked how the phase modulation of insulin pulses contributes to glucose regulation. To directly answer this question, we developed a phenomenological oscillator model that drastically simplifies insulin secretion, but precisely incorporates the observed phase modulation of insulin pulses in response to glucose stimuli. Then, we mathematically modeled how insulin pulses regulate the glucose concentration in the body. The model of insulin oscillation and glucose regulation describes the glucose-insulin feedback loop. The data-based model demonstrates that the existence of phase modulation narrows the range within which the glucose concentration is maintained through the suppression/enhancement of insulin secretion in conjunction with the amplitude modulation of this secretion. The phase modulation is the response of islets to glucose perturbations. When multiple islets are exposed to the same glucose stimuli, they can be entrained to generate synchronous insulin pulses. Thus, we conclude that the phase modulation of insulin pulses is essential for glucose regulation and inter-islet synchronization.
Liao, Fuyuan; Jan, Yih-Kuen
2012-01-01
The study of skin microcirculation may be used to assess risk for pressure ulcers. It is observed that local heating not only causes an increase in blood flow of the heated skin but also in the adjacent non-heated skin. The underlying physiological mechanism of this indirect vasodilation of the non-heated skin remains unclear. We hypothesized that blood flow oscillations (BFO) in the adjacent non-heated skin area synchronize with BFO in the heated skin, thus inducing a vasodilatory response. We investigated BFO in the heated and adjacent non-heated skin (12.1±1.2 cm distance) on the sacrum in 12 healthy participants. The ensemble empirical mode decomposition (EEMD) was used to decompose blood flow signals into a set of intrinsic mode functions (IMFs), and the IMFs with power spectra over the frequency range of 0.0095–0.02 Hz, 0.02–0.05 Hz, and 0.05–0.15 Hz were chosen as the characteristic components corresponding to metabolic, neurogenic, and myogenic regulations, respectively. Then, the instantaneous phase of the characteristic components was calculated using the Hilbert transform. From the time series of phase difference between a pair of characteristic components, the epochs of phase synchronization were detected. The results showed that myogenic and neurogenic BFO exhibit self-phase synchronization during the slower vasodilation of the heated skin. In the non-heated skin, the degree of synchronization of BFO is associated with the changes in blood flow. PMID:22936012
Phases and phase transitions in the algebraic microscopic shell model
NASA Astrophysics Data System (ADS)
Georgieva, A. I.; Drumev, K. P.
2016-01-01
We explore the dynamical symmetries of the shell model number conserving algebra, which define three types of pairing and quadrupole phases, with the aim to obtain the prevailing phase or phase transition for the real nuclear systems in a single shell. This is achieved by establishing a correspondence between each of the pairing bases with the Elliott's SU(3) basis that describes collective rotation of nuclear systems. This allows for a complete classification of the basis states of different number of particles in all the limiting cases. The probability distribution of the SU(3) basis states within theirs corresponding pairing states is also obtained. The relative strengths of dynamically symmetric quadrupole-quadrupole interaction in respect to the isoscalar, isovector and total pairing interactions define a control parameter, which estimates the importance of each term of the Hamiltonian in the correct reproduction of the experimental data for the considered nuclei.
Swarms, phase transitions, and collective intelligence
Millonas, M.M. . Dept. of Physics)
1992-01-01
A model of the collective behavior of a large number of locally acting organisms is proposed. The model is intended to be realistic, but turns out to fit naturally into the category of connectionist models, Like all connectionist models, its properties can be divided into the categories of structure, dynamics, and learning. The space in which the organisms move is discretized, and is modeled by a lattice of nodes, or cells. Each cell hag a specified volume, and is connected to other cells in the space in a definite way. Organisms move probabilistically between local cells in this space, but with weights dependent on local morphogenic substances, or morphogens. The morphogens are in turn are effected by the passage of an organism. The evolution of the morphogens, and the corresponding constitutes of the organisms constitutes the collective behavior of the group. The generic properties of such systems are analyzed, and a number of results are obtained. The model has various types of phase transitions and self-organizing properties controlled both by the level of the noise, and other parameters. It is hoped that the present mode; might serve as a paradigmatic example of a complex cooperative system in nature. In particular this model can be used to explore the relation of phase transitions to at least three important issues encountered in artificial life. Firstly, that of emergence as complex adaptive behavior. Secondly, as an exploration of second order phase transitions in biological systems. Lastly, to derive behavioral criteria for the evolution of collective behavior in social organisms. The model is then applied to the specific case of ants moving on a lattice. The local behavior of the ants is inspired by the actual behavior observed in the laboratory, and analytic results for the collective behavior are compared to the corresponding laboratory results. Monte carlo simulations are used as illustrations.
Swarms, phase transitions, and collective intelligence
Millonas, M.M.
1992-12-31
A model of the collective behavior of a large number of locally acting organisms is proposed. The model is intended to be realistic, but turns out to fit naturally into the category of connectionist models, Like all connectionist models, its properties can be divided into the categories of structure, dynamics, and learning. The space in which the organisms move is discretized, and is modeled by a lattice of nodes, or cells. Each cell hag a specified volume, and is connected to other cells in the space in a definite way. Organisms move probabilistically between local cells in this space, but with weights dependent on local morphogenic substances, or morphogens. The morphogens are in turn are effected by the passage of an organism. The evolution of the morphogens, and the corresponding constitutes of the organisms constitutes the collective behavior of the group. The generic properties of such systems are analyzed, and a number of results are obtained. The model has various types of phase transitions and self-organizing properties controlled both by the level of the noise, and other parameters. It is hoped that the present mode; might serve as a paradigmatic example of a complex cooperative system in nature. In particular this model can be used to explore the relation of phase transitions to at least three important issues encountered in artificial life. Firstly, that of emergence as complex adaptive behavior. Secondly, as an exploration of second order phase transitions in biological systems. Lastly, to derive behavioral criteria for the evolution of collective behavior in social organisms. The model is then applied to the specific case of ants moving on a lattice. The local behavior of the ants is inspired by the actual behavior observed in the laboratory, and analytic results for the collective behavior are compared to the corresponding laboratory results. Monte carlo simulations are used as illustrations.
Waves of Cdk1 Activity in S Phase Synchronize the Cell Cycle in Drosophila Embryos.
Deneke, Victoria E; Melbinger, Anna; Vergassola, Massimo; Di Talia, Stefano
2016-08-22
Embryos of most metazoans undergo rapid and synchronous cell cycles following fertilization. While diffusion is too slow for synchronization of mitosis across large spatial scales, waves of Cdk1 activity represent a possible process of synchronization. However, the mechanisms regulating Cdk1 waves during embryonic development remain poorly understood. Using biosensors of Cdk1 and Chk1 activities, we dissect the regulation of Cdk1 waves in the Drosophila syncytial blastoderm. We show that Cdk1 waves are not controlled by the mitotic switch but by a double-negative feedback between Cdk1 and Chk1. Using mathematical modeling and surgical ligations, we demonstrate a fundamental distinction between S phase Cdk1 waves, which propagate as active trigger waves in an excitable medium, and mitotic Cdk1 waves, which propagate as passive phase waves. Our findings show that in Drosophila embryos, Cdk1 positive feedback serves primarily to ensure the rapid onset of mitosis, while wave propagation is regulated by S phase events.
Chiral phase transition from string theory.
Parnachev, Andrei; Sahakyan, David A
2006-09-15
The low energy dynamics of a certain D-brane configuration in string theory is described at weak t'Hooft coupling by a nonlocal version of the Nambu-Jona-Lasinio model. We study this system at finite temperature and strong t'Hooft coupling, using the string theory dual. We show that for sufficiently low temperatures chiral symmetry is broken, while for temperatures larger then the critical value, it gets restored. We compute the latent heat and observe that the phase transition is of the first order.
Early Work on Defect Driven Phase Transitions
NASA Astrophysics Data System (ADS)
Kosterlitz, J. Michael; Thouless, David J.
2016-12-01
This article summarizes the early history of the theory of phase transitions driven by topological defects, such as vortices in superfluid helium films or dislocations and disclinations in two-dimensional solids. We start with a review of our two earliest papers, pointing out their errors and omissions as well as their insights. We then describe the work, partly done by Kosterlitz but mostly done by other people, which corrected these oversights, and applied these ideas to experimental systems, and to numerical and experimental simulations.
Dependence of phase transitions on small changes
NASA Astrophysics Data System (ADS)
Stoop, R.
1993-06-01
In this contribution, the generalized thermodynamic formalism is applied to a nonhyperbolic dynamical system in two comparable situations. The change from one situation to the other is small in the sense that the grammar and the singularities of the system are preserved. For the discussion of the effects generated by this change, the generalized entropy functions are calculated and the sets of the specific scaling functions which reflect the phase transition of the system are investigated. It is found that even under mild variations, this set is not invariant.
Quantum coherence and quantum phase transitions
Li, Yan-Chao; Lin, Hai-Qing
2016-01-01
We study the connections between local quantum coherence (LQC) based on Wigner-Yanase skew information and quantum phase transitions (QPTs). When applied on the one-dimensional Hubbard, XY spin chain with three-spin interaction, and Su-Schrieffer-Heeger models, the LQC and its derivatives are used successfully to detect different types of QPTs in these spin and fermionic systems. Furthermore, the LQC is effective as the quantum discord (QD) in detecting QPTs at finite temperatures, where the entanglement has lost its effectiveness. We also demonstrate that the LQC can exhibit different behaviors in many forms compared with the QD. PMID:27193057
Phase transition of physically confined 2-decanol
NASA Astrophysics Data System (ADS)
Griffin, Harrisonn; Amanuel, Samuel
2014-03-01
We have studied phase transition of physically confined 2-decanol in nano porous silica using power compensated differential scanning calorimeter (DSC). Like bulk, the physically confined also exhibit hysteresis between its melting and freezing temperature. However, its thermal history plays significant role in determining its freezing temperature. The melting temperature, on the other hand, did not show similar changes with respect to thermal history, suggesting that it is truly driven thermodynamically rather than kinetically. In addition, there seems to be a cutoff in size where crystallization front could not proceed.
Zhang, Honghui; Wang, Qingyun; He, Xiaoyan; Chen, Guanrong
2014-01-01
This paper investigates synchronization stability and firing transition in two types of the modified canonical class I neuronal networks, where the short-term plasticity of synapse is introduced. We mainly consider both unidirectional chain and global coupling configurations. Previous studies have shown that the coupled class I neurons can spontaneously de-synchronize. Presently, the short-term plasticity of synapse is considered to check the universality of this phenomenon. Based on the theoretical analysis and numerical simulation, it is shown that unidirectionally chain coupled class I neurons can realize synchronization, whereas bidirectionally coupled chain neurons cannot synchronize, and globally coupled class I neurons de-synchronize. Furthermore, the dynamics of coupled neurons with different firing modes are also studied in numerical simulations, and interesting transitions of different firing modes can be induced by the short-term plasticity. The obtained results can be helpful to further understand important effects of the short-term synaptic plasticity on realistic neuronal systems. Copyright © 2013 Elsevier Ltd. All rights reserved.
Quantum Phase Transition in Josephson Junction Arrays
NASA Astrophysics Data System (ADS)
Moon, K.; Girvin, S. M.
1997-03-01
One-dimensional Josephson junction arrays of SQUIDS exhibit a novel superconductor-insulator phase transition. The critical regime can be accessed by tuning the effective Josephson coupling energy using a weak magnetic field applied to the SQUIDS. The role of instantons induced by quantum fluctuations will be discussed. One novel feature of these systems which can be explained in terms of quantum phase slips is that in some regimes, the array resistance decreases with increasing length of the array. We calculate the finite temperature crossover function for the array resistance and compare our theoretical results with the recent experiments by D. Haviland and P. Delsing at Chalmers. This work is supported by DOE grant #DE-FG02-90ER45427 and by NSF DMR-9502555.
Phase transitions in fluids and biological systems
NASA Astrophysics Data System (ADS)
Sipos, Maksim
metric to 16S rRNA metagenomic studies of 6 vertebrate gastrointestinal microbiomes and find that they assembled through a highly non-neutral process. I then consider a phase transition that may occur in nutrient-poor environments such as ocean surface waters. In these systems, I find that the experimentally observed genome streamlining, specialization and opportunism may well be generic statistical phenomena.
Becher, Ann-Katrin; Höhne, Marlene; Axmacher, Nikolai; Chaieb, Leila; Elger, Christian E; Fell, Juergen
2015-01-01
Auditory stimulation with monaural or binaural auditory beats (i.e. sine waves with nearby frequencies presented either to both ears or to each ear separately) represents a non-invasive approach to influence electrical brain activity. It is still unclear exactly which brain sites are affected by beat stimulation. In particular, an impact of beat stimulation on mediotemporal brain areas could possibly provide new options for memory enhancement or seizure control. Therefore, we examined how electroencephalography (EEG) power and phase synchronization are modulated by auditory stimulation with beat frequencies corresponding to dominant EEG rhythms based on intracranial recordings in presurgical epilepsy patients. Monaural and binaural beat stimuli with beat frequencies of 5, 10, 40 and 80 Hz and non-superposed control signals were administered with low amplitudes (60 dB SPL) and for short durations (5 s). EEG power was intracranially recorded from mediotemporal, temporo-basal and temporo-lateral and surface sites. Evoked and total EEG power and phase synchronization during beat vs. control stimulation were compared by the use of Bonferroni-corrected non-parametric label-permutation tests. We found that power and phase synchronization were significantly modulated by beat stimulation not only at temporo-basal, temporo-lateral and surface sites, but also at mediotemporal sites. Generally, more significant decreases than increases were observed. The most prominent power increases were seen after stimulation with monaural 40-Hz beats. The most pronounced power and synchronization decreases resulted from stimulation with monaural 5-Hz and binaural 80-Hz beats. Our results suggest that beat stimulation offers a non-invasive approach for the modulation of intracranial EEG characteristics. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Nuclear Binding Near a Quantum Phase Transition
NASA Astrophysics Data System (ADS)
Elhatisari, Serdar; Li, Ning; Rokash, Alexander; Alarcón, Jose Manuel; Du, Dechuan; Klein, Nico; Lu, Bing-nan; Meißner, Ulf-G.; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A.; Lee, Dean; Rupak, Gautam
2016-09-01
How do protons and neutrons bind to form nuclei? This is the central question of ab initio nuclear structure theory. While the answer may seem as simple as the fact that nuclear forces are attractive, the full story is more complex and interesting. In this work we present numerical evidence from ab initio lattice simulations showing that nature is near a quantum phase transition, a zero-temperature transition driven by quantum fluctuations. Using lattice effective field theory, we perform Monte Carlo simulations for systems with up to twenty nucleons. For even and equal numbers of protons and neutrons, we discover a first-order transition at zero temperature from a Bose-condensed gas of alpha particles (4He nuclei) to a nuclear liquid. Whether one has an alpha-particle gas or nuclear liquid is determined by the strength of the alpha-alpha interactions, and we show that the alpha-alpha interactions depend on the strength and locality of the nucleon-nucleon interactions. This insight should be useful in improving calculations of nuclear structure and important astrophysical reactions involving alpha capture on nuclei. Our findings also provide a tool to probe the structure of alpha cluster states such as the Hoyle state responsible for the production of carbon in red giant stars and point to a connection between nuclear states and the universal physics of bosons at large scattering length.
Nuclear Binding Near a Quantum Phase Transition.
Elhatisari, Serdar; Li, Ning; Rokash, Alexander; Alarcón, Jose Manuel; Du, Dechuan; Klein, Nico; Lu, Bing-Nan; Meißner, Ulf-G; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A; Lee, Dean; Rupak, Gautam
2016-09-23
How do protons and neutrons bind to form nuclei? This is the central question of ab initio nuclear structure theory. While the answer may seem as simple as the fact that nuclear forces are attractive, the full story is more complex and interesting. In this work we present numerical evidence from ab initio lattice simulations showing that nature is near a quantum phase transition, a zero-temperature transition driven by quantum fluctuations. Using lattice effective field theory, we perform Monte Carlo simulations for systems with up to twenty nucleons. For even and equal numbers of protons and neutrons, we discover a first-order transition at zero temperature from a Bose-condensed gas of alpha particles (^{4}He nuclei) to a nuclear liquid. Whether one has an alpha-particle gas or nuclear liquid is determined by the strength of the alpha-alpha interactions, and we show that the alpha-alpha interactions depend on the strength and locality of the nucleon-nucleon interactions. This insight should be useful in improving calculations of nuclear structure and important astrophysical reactions involving alpha capture on nuclei. Our findings also provide a tool to probe the structure of alpha cluster states such as the Hoyle state responsible for the production of carbon in red giant stars and point to a connection between nuclear states and the universal physics of bosons at large scattering length.
Phase transition in the ABC model
NASA Astrophysics Data System (ADS)
Clincy, M.; Derrida, B.; Evans, M. R.
2003-06-01
Recent studies have shown that one-dimensional driven systems can exhibit phase separation even if the dynamics is governed by local rules. The ABC model, which comprises three particle species that diffuse asymmetrically around a ring, shows anomalous coarsening into a phase separated steady state. In the limiting case in which the dynamics is symmetric and the parameter q describing the asymmetry tends to one, no phase separation occurs and the steady state of the system is disordered. In the present work, we consider the weak asymmetry regime q=exp(-β/N), where N is the system size, and study how the disordered state is approached. In the case of equal densities, we find that the system exhibits a second-order phase transition at some nonzero βc. The value of βc=2π(3) and the optimal profiles can be obtained by writing the exact large deviation functional. For nonequal densities, we write down mean-field equations and analyze some of their predictions.
Phase transition in the ABC model.
Clincy, M; Derrida, B; Evans, M R
2003-06-01
Recent studies have shown that one-dimensional driven systems can exhibit phase separation even if the dynamics is governed by local rules. The ABC model, which comprises three particle species that diffuse asymmetrically around a ring, shows anomalous coarsening into a phase separated steady state. In the limiting case in which the dynamics is symmetric and the parameter q describing the asymmetry tends to one, no phase separation occurs and the steady state of the system is disordered. In the present work, we consider the weak asymmetry regime q=exp(-beta/N), where N is the system size, and study how the disordered state is approached. In the case of equal densities, we find that the system exhibits a second-order phase transition at some nonzero beta(c). The value of beta(c)=2pi square root 3 and the optimal profiles can be obtained by writing the exact large deviation functional. For nonequal densities, we write down mean-field equations and analyze some of their predictions.
Phase transitions of monolayers on graphene
NASA Astrophysics Data System (ADS)
Kahn, Joshua; Dzyubenko, Boris; Vilches, Oscar; Cobden, David
We have studied physisorbed layers of monatomic and diatomic gases on graphene. We used devices in which few-layer graphene, ranging from monolayer to trilayer, is suspended across a trench between two platinum contacts and are cleaned by thermal and current annealing. We found that the density of adsorbates is revealed by the conductance, similar to the case with nanotubes. The conductance change for a monolayer can be large. On trilayer graphene the adsorbed gases can be seen to exhibit transitions between two-dimensional phases identical to those on bulk graphite, including incommensurate and commensurate solid, fluid and vapor and multiple layers. New features appear in the conductance at the boundaries of the commensurate phase of Kr. We are able to measure single-particle binding energies very accurately and see how it depends on thickness; investigate the effects of changing disorder by gradually current annealing; and search for new phases in the case of monolayer graphene where atoms adsorbed on both sides can interact. We can map out the 2d phase diagrams very quickly by ohmic heating, which gives nearly instantaneous control of the temperature.
Phase transitions in Thirring’s model
NASA Astrophysics Data System (ADS)
Campa, Alessandro; Casetti, Lapo; Latella, Ivan; Pérez-Madrid, Agustín; Ruffo, Stefano
2016-07-01
In his pioneering work on negative specific heat, Walter Thirring introduced a model that is solvable in the microcanonical ensemble. Here, we give a complete description of the phase-diagram of this model in both the microcanonical and the canonical ensemble, highlighting the main features of ensemble inequivalence. In both ensembles, we find a line of first-order phase transitions which ends in a critical point. However, neither the line nor the point have the same location in the phase-diagram of the two ensembles. We also show that the microcanonical and canonical critical points can be analytically related to each other using a Landau expansion of entropy and free energy, respectively, in analogy with what has been done in (Cohen and Mukamel 2012 J. Stat. Mech. P12017). Examples of systems with certain symmetries restricting the Landau expansion have been considered in this reference, while no such restrictions are present in Thirring’s model. This leads to a phase diagram that can be seen as a prototype for what happens in systems of particles with kinematic degrees of freedom dominated by long-range interactions.
Phase transitions and doping in semiconductor nanocrystals
NASA Astrophysics Data System (ADS)
Sahu, Ayaskanta
impurities (or doping) allows further control over the electrical and optical properties of nanocrystals. However, while impurity doping in bulk semiconductors is now routine, doping of nanocrystals remains challenging. In particular, evidence for electronic doping, in which additional electrical carriers are introduced into the nanocrystals, has been very limited. Here, we adopt a new approach to electronic doping of nanocrystals. We utilize a partial cation exchange to introduce silver impurities into cadmium selenide (CdSe) and lead selenide (PbSe) nanocrystals. Results indicate that the silver-doped CdSe nanocrystals show a significant increase in fluorescence intensity, as compared to pure CdSe nanocrystals. We also observe a switching from n- to p-type doping in the silver-doped CdSe nanocrystals with increased silver amounts. Moreover, the silver-doping results in a change in the conductance of both PbSe and CdSe nanocrystals and the magnitude of this change depends on the amount of silver incorporated into the nanocrystals. In the bulk, silver chalcogenides (Ag2E, E=S, Se, and Te) possess a wide array of intriguing properties, including superionic conductivity. In addition, they undergo a reversible temperature-dependent phase transition which induces significant changes in their electronic and ionic properties. While most of these properties have been examined extensively in bulk, very few studies have been conducted at the nanoscale. We have recently developed a versatile synthesis that yields colloidal silver chalcogenide nanocrystals. Here, we study the size dependence of their phase-transition temperatures. We utilize differential scanning calorimetry and in-situ X-ray diffraction analyses to observe the phase transition in nanocrystal assemblies. We observe a significant deviation from the bulk alpha (low-temperature) to beta (high-temperature) phase-transition temperature when we reduce their size to a few nanometers. Hence, these nanocrystals provide great
Synchronization of coupled noisy oscillators: Coarse graining from continuous to discrete phases
NASA Astrophysics Data System (ADS)
Escaff, Daniel; Rosas, Alexandre; Toral, Raúl; Lindenberg, Katja
2016-11-01
The theoretical description of synchronization phenomena often relies on coupled units of continuous time noisy Markov chains with a small number of states in each unit. It is frequently assumed, either explicitly or implicitly, that coupled discrete-state noisy Markov units can be used to model mathematically more complex coupled noisy continuous phase oscillators. In this work we explore conditions that justify this assumption by coarse graining continuous phase units. In particular, we determine the minimum number of states necessary to justify this correspondence for Kuramoto-like oscillators.
Synchronization of coupled noisy oscillators: Coarse graining from continuous to discrete phases.
Escaff, Daniel; Rosas, Alexandre; Toral, Raúl; Lindenberg, Katja
2016-11-01
The theoretical description of synchronization phenomena often relies on coupled units of continuous time noisy Markov chains with a small number of states in each unit. It is frequently assumed, either explicitly or implicitly, that coupled discrete-state noisy Markov units can be used to model mathematically more complex coupled noisy continuous phase oscillators. In this work we explore conditions that justify this assumption by coarse graining continuous phase units. In particular, we determine the minimum number of states necessary to justify this correspondence for Kuramoto-like oscillators.
Multifractality and Network Analysis of Phase Transition
Li, Wei; Yang, Chunbin; Han, Jihui; Su, Zhu; Zou, Yijiang
2017-01-01
Many models and real complex systems possess critical thresholds at which the systems shift dramatically from one sate to another. The discovery of early-warnings in the vicinity of critical points are of great importance to estimate how far the systems are away from the critical states. Multifractal Detrended Fluctuation analysis (MF-DFA) and visibility graph method have been employed to investigate the multifractal and geometrical properties of the magnetization time series of the two-dimensional Ising model. Multifractality of the time series near the critical point has been uncovered from the generalized Hurst exponents and singularity spectrum. Both long-term correlation and broad probability density function are identified to be the sources of multifractality. Heterogeneous nature of the networks constructed from magnetization time series have validated the fractal properties. Evolution of the topological quantities of the visibility graph, along with the variation of multifractality, serve as new early-warnings of phase transition. Those methods and results may provide new insights about the analysis of phase transition problems and can be used as early-warnings for a variety of complex systems. PMID:28107414
Gravitational waves from the electroweak phase transition
Leitao, Leonardo; Mégevand, Ariel; Sánchez, Alejandro D. E-mail: megevand@mdp.edu.ar
2012-10-01
We study the generation of gravitational waves in the electroweak phase transition. We consider a few extensions of the Standard Model, namely, the addition of scalar singlets, the minimal supersymmetric extension, and the addition of TeV fermions. For each model we consider the complete dynamics of the phase transition. In particular, we estimate the friction force acting on bubble walls, and we take into account the fact that they can propagate either as detonations or as deflagrations preceded by shock fronts, or they can run away. We compute the peak frequency and peak intensity of the gravitational radiation generated by bubble collisions and turbulence. We discuss the detectability by proposed spaceborne detectors. For the models we considered, runaway walls require significant fine tuning of the parameters, and the gravitational wave signal from bubble collisions is generally much weaker than that from turbulence. Although the predicted signal is in most cases rather low for the sensitivity of LISA, models with strongly coupled extra scalars reach this sensitivity for frequencies f ∼ 10{sup −4} Hz, and give intensities as high as h{sup 2}Ω{sub GW} ∼ 10{sup −8}.
Szymanski, Caroline; Pesquita, Ana; Brennan, Allison A; Perdikis, Dionysios; Enns, James T; Brick, Timothy R; Müller, Viktor; Lindenberger, Ulman
2017-05-15
Working together feels easier with some people than with others. We asked participants to perform a visual search task either alone or with a partner while simultaneously measuring each participant's EEG. Local phase synchronization and inter-brain phase synchronization were generally higher when subjects jointly attended to a visual search task than when they attended to the same task individually. Some participants searched the visual display more efficiently and made faster decisions when working as a team, whereas other dyads did not benefit from working together. These inter-team differences in behavioral performance gain in the visual search task were reliably associated with inter-team differences in local and inter-brain phase synchronization. Our results suggest that phase synchronization constitutes a neural correlate of social facilitation, and may help to explain why some teams perform better than others. Copyright © 2017 Elsevier Inc. All rights reserved.
Quark–hadron phase transition in massive gravity
Atazadeh, K.
2016-11-15
We study the quark–hadron phase transition in the framework of massive gravity. We show that the modification of the FRW cosmological equations leads to the quark–hadron phase transition in the early massive Universe. Using numerical analysis, we consider that a phase transition based on the chiral symmetry breaking after the electroweak transition, occurred at approximately 10 μs after the Big Bang to convert a plasma of free quarks and gluons into hadrons.
Quark-hadron phase transition in massive gravity
NASA Astrophysics Data System (ADS)
Atazadeh, K.
2016-11-01
We study the quark-hadron phase transition in the framework of massive gravity. We show that the modification of the FRW cosmological equations leads to the quark-hadron phase transition in the early massive Universe. Using numerical analysis, we consider that a phase transition based on the chiral symmetry breaking after the electroweak transition, occurred at approximately 10 μs after the Big Bang to convert a plasma of free quarks and gluons into hadrons.
Does sex induce a phase transition?
NASA Astrophysics Data System (ADS)
de Oliveira, P. M. C.; Moss de Oliveira, S.; Stauffer, D.; Cebrat, S.; Pękalski, A.
2008-05-01
We discovered a dynamic phase transition induced by sexual reproduction. The dynamics is a pure Darwinian rule applied to diploid bit-strings with both fundamental ingredients to drive Darwin's evolution: (1) random mutations and crossings which act in the sense of increasing the entropy (or diversity); and (2) selection which acts in the opposite sense by limiting the entropy explosion. Selection wins this competition if mutations performed at birth are few enough, and thus the wild genotype dominates the steady-state population. By slowly increasing the average number m of mutations, however, the population suddenly undergoes a mutational degradation precisely at a transition point mc. Above this point, the “bad” alleles (represented by 1-bits) spread over the genetic pool of the population, overcoming the selection pressure. Individuals become selectively alike, and evolution stops. Only below this point, m < mc, evolutionary life is possible. The finite-size-scaling behaviour of this transition is exhibited for large enough “chromosome” lengths L, through lengthy computer simulations. One important and surprising observation is the L-independence of the transition curves, for large L. They are also independent on the population size. Another is that mc is near unity, i.e. life cannot be stable with much more than one mutation per diploid genome, independent of the chromosome length, in agreement with reality. One possible consequence is that an eventual evolutionary jump towards larger L enabling the storage of more genetic information would demand an improved DNA copying machinery in order to keep the same total number of mutations per offspring.
Western Wind and Solar Integration Study Phase 3A: Low Levels of Synchronous Generation
Miller, Nicholas W.; Leonardi, Bruno; D'Aquila, Robert; Clark, Kara
2015-11-17
The stability of the North American electric power grids under conditions of high penetrations of wind and solar is a significant concern and possible impediment to reaching renewable energy goals. The 33% wind and solar annual energy penetration considered in this study results in substantial changes to the characteristics of the bulk power system. This includes different power flow patterns, different commitment and dispatch of existing synchronous generation, and different dynamic behavior from wind and solar generation. The Western Wind and Solar Integration Study (WWSIS), sponsored by the U.S. Department of Energy, is one of the largest regional solar and wind integration studies to date. In multiple phases, it has explored different aspects of the question: Can we integrate large amounts of wind and solar energy into the electric power system of the West? The work reported here focused on the impact of low levels of synchronous generation on the transient stability performance in one part of the region in which wind generation has displaced synchronous thermal generation under highly stressed, weak system conditions. It is essentially an extension of WWSIS-3. Transient stability, the ability of the power system to maintain synchronism among all elements following disturbances, is a major constraint on operations in many grids, including the western U.S. and Texas systems. These constraints primarily concern the performance of the large-scale bulk power system. But grid-wide stability concerns with high penetrations of wind and solar are still not thoroughly understood. This work focuses on 'traditional' fundamental frequency stability issues, such as maintaining synchronism, frequency, and voltage. The objectives of this study are to better understand the implications of low levels of synchronous generation and a weak grid on overall system performance by: 1) Investigating the Western Interconnection under conditions of both high renewable generation (e
Weyl semimetals and topological phase transitions
NASA Astrophysics Data System (ADS)
Murakami, Shuichi
Weyl semimetals are semimetals with nondegenerate 3D Dirac cones in the bulk. We showed that in a transition between different Z2 topological phases, i.e. between the normal insulator (NI) and topological insulator (TI), the Weyl semimetal phase necessarily appears when inversion symmetry is broken. In the presentation we show that this scenario holds for materials with any space groups without inversion symmetry. Namely, let us take any band insulator without inversion symmetry, and assume that the gap is closed by a change of an external parameter. In such cases we found that the system runs either into (i) a Weyl semimetal or (ii) a nodal-line semimetal, but no insulator-to-insulator transition happens. This is confirmed by classifying the gap closing in terms of the space groups and the wavevector. In the case (i), the number of Weyl nodes produced at the gap closing ranges from 2 to 12 depending on the symmetry. In (ii) the nodal line is protected by mirror symmetry. In the presentation, we explain some Weyl semimetal and nodal-line semimetals which we find by using this classification. As an example, we explain our result on ab initio calculation on tellurium (Te). Tellurium consists of helical chains, and therefore lacks inversion and mirror symmetries. At high pressure the band gap of Te decreases and finally it runs into a Weyl semimetal phase, as confirmed by our ab initio calculation. In such chiral systems as tellurium, we also theoretically propose chiral transport in systems with such helical structures; namely, an orbital magnetization is induced by a current along the chiral axis, in analogy with a solenoid.
Aida, Hiroki; Arahata, Masaya; Okumura, Haruka; Koizumi, Hayato; Uchida, Atsushi; Yoshimura, Kazuyuki; Muramatsu, Jun; Davis, Peter
2012-05-21
We experimentally and numerically observe the synchronization between two semiconductor lasers induced by common optical injection with constant-amplitude and random-phase modulation in configurations with and without optical feedback. Large cross correlation (~0.9) between the intensity oscillations of the two response lasers can be achieved although the correlation between the drive laser and either one of the two response lasers is very small (~0.2). High quality synchronization is achieved in the presence of optical feedback in response lasers with matched feedback phase offset. We investigate the dependence of synchronization on parameter values over wide parameter ranges.
Phase transitions in Ge-Sb phase change materials
Raoux, Simone; Virwani, Kumar; Hitzbleck, Martina; Salinga, Martin; Madan, Anita; Pinto, Teresa L.
2009-03-15
Thin films of the phase change material Ge-Sb with Ge concentrations between 7.3 and 81.1 at. % were deposited by cosputtering from elemental targets. Their crystallization behavior was studied using time-resolved x-ray diffraction, Auger electron spectroscopy, differential scanning calorimetry, x-ray reflectivity, profilometry, optical reflectivity, and resistivity versus temperature measurements. It was found that the crystallization temperature increases with Ge content. Calculations of the glass transition temperature (which is a lower limit for the crystallization temperature T{sub x}) also show an increase with Ge concentration closely tracking the measured values of T{sub x}. For low Ge content samples, Sb x-ray diffraction peaks occurred during a heating ramp at lower temperature than Ge diffraction peaks. The appearance of Ge peaks is related to Ge precipitation and agglomeration. For Ge concentrations of 59.3 at. % and higher, Sb and Ge peaks occurred at the same temperature. Upon crystallization, film mass density and optical reflectivity increase as well as electrical contrast (ratio of resistivity in amorphous phase to crystalline phase) all showed a maximum for the eutectic alloy (14.5 at. % Ge). For the alloy with 59.3 at. % Ge there was very little change in any of these parameters, while the alloy with 81.1 at. % Ge behaved opposite to a typical phase change alloy and showed reduced mass density and reflectivity and increased resistivity.
QCD PHASE TRANSITIONS-VOLUME 15.
SCHAFER,T.
1998-11-04
The title of the workshop, ''The QCD Phase Transitions'', in fact happened to be too narrow for its real contents. It would be more accurate to say that it was devoted to different phases of QCD and QCD-related gauge theories, with strong emphasis on discussion of the underlying non-perturbative mechanisms which manifest themselves as all those phases. Before we go to specifics, let us emphasize one important aspect of the present status of non-perturbative Quantum Field Theory in general. It remains true that its studies do not get attention proportional to the intellectual challenge they deserve, and that the theorists working on it remain very fragmented. The efforts to create Theory of Everything including Quantum Gravity have attracted the lion share of attention and young talent. Nevertheless, in the last few years there was also a tremendous progress and even some shift of attention toward emphasis on the unity of non-perturbative phenomena. For example, we have seen some. efforts to connect the lessons from recent progress in Supersymmetric theories with that in QCD, as derived from phenomenology and lattice. Another example is Maldacena conjecture and related development, which connect three things together, string theory, super-gravity and the (N=4) supersymmetric gauge theory. Although the progress mentioned is remarkable by itself, if we would listen to each other more we may have chance to strengthen the field and reach better understanding of the spectacular non-perturbative physics.
Phase transitions in biogenic amorphous calcium carbonate
NASA Astrophysics Data System (ADS)
Gong, Yutao
Geological calcium carbonate exists in both crystalline phases and amorphous phases. Compared with crystalline calcium carbonate, such as calcite, aragonite and vaterite, the amorphous calcium carbonate (ACC) is unstable. Unlike geological calcium carbonate crystals, crystalline sea urchin spicules (99.9 wt % calcium carbonate and 0.1 wt % proteins) do not present facets. To explain this property, crystal formation via amorphous precursors was proposed in theory. And previous research reported experimental evidence of ACC on the surface of forming sea urchin spicules. By using X-ray absorption near-edge structure (XANES) spectroscopy and photoelectron emission microscopy (PEEM), we studied cross-sections of fresh sea urchin spicules at different stages (36h, 48h and 72h after fertilization) and observed the transition sequence of three mineral phases: hydrated ACC → dehydrated ACC → biogenic calcite. In addition, we unexpectedly found hydrated ACC nanoparticles that are surrounded by biogenic calcite. This observation indicates the dehydration from hydrated ACC to dehydrated ACC is inhibited, resulting in stabilization of hydrated ACC nanoparticles. We thought that the dehydration was inhibited by protein matrix components occluded within the biomineral, and we designed an in vitro assay to test the hypothesis. By utilizing XANES-PEEM, we found that SM50, the most abundant occluded matrix protein in sea urchin spicules, has the function to stabilize hydrated ACC in vitro.
Exotic quantum phase transitions of strongly interacting topological insulators
NASA Astrophysics Data System (ADS)
Slagle, Kevin; You, Yi-Zhuang; Xu, Cenke
2015-03-01
Using determinant quantum Monte Carlo simulations, we demonstrate that an extended Hubbard model on a bilayer honeycomb lattice has two novel quantum phase transitions. The first is a quantum phase transition between the weakly interacting gapless Dirac fermion phase and a strongly interacting fully gapped and symmetric trivial phase, which cannot be described by the standard Gross-Neveu model. The second is a quantum critical point between a quantum spin Hall insulator with spin Sz conservation and the previously mentioned strongly interacting fully gapped phase. At the latter quantum critical point the single-particle excitations remain gapped, while spin and charge gaps both close. We argue that the first quantum phase transition is related to the Z16 classification of the topological superconductor 3He-B phase with interactions, while the second quantum phase transition is a topological phase transition described by a bosonic O (4 ) nonlinear sigma model field theory with a Θ term.
How Synchronous was the Transition into the Younger Dryas across the Euro-Atlantic Region?
NASA Astrophysics Data System (ADS)
Schenk, F.; Muschitiello, F.; Heikkilä, M. P.; Väliranta, M.; Tarasov, L.; Brandefelt, J.; Johansson, A. V.; Naslund, J. O.; Wohlfarth, B.
2015-12-01
Observations of a currently weakening subpolar gyre south of Greenland has again increased scientific attention regarding the role of the Atlantic Meridional Overturning Circulation (AMOC) for the regional to global climate. The rapid climate shift of the Younger Dryas (YD, GS-1) cold reversal during the last deglaciation is attributed to an abrupt slowdown or collapse of the AMOC due to a strong meltwater pulse and/or the rapid disintegration of the Laurentide Ice sheet. Although such a dramatic event is not expected for the future, the spatiotemporal climatic response to such a slowdown is an interesting test case. Two recently well dated proxy records around the North Sea region suggest a non-synchronous early cooling/onset of the YD compared to Greenland (NGRIP). Presentation #61803 discusses the hypothesis of a local cooling as a response to increased ice berg calving and/or meltwater from Fenno-Scandinavian Ice Sheet (FIS) during the late Alleröd warm phase (GI-1a). Here we study CCSM3 model output from the quasi-transient atmosphere-ocean simulation (TraCE) where no strong contribution from FIS is considered from the late Alleröd into the YD. We evaluate to which extent the spatiotemporal temperature response to the AMOC slowdown of the simulation is synchronous over the Euro-Atlantic region and how atmospheric teleconnections reorganize during the rapid shift into the YD. In addition, we run time-slice experiments at high spatial resolution of around 100 km with the Community Earth System Model CESM1.0.5 for the late Alleröd and YD to compare spatial climatic differences for both periods taking into account the regional influence from continental ice sheets in more detail.
Theory of frequency and phase synchronization in a rocked bistable stochastic system.
Casado-Pascual, Jesús; Gómez-Ordóñez, José; Morillo, Manuel; Lehmann, Jörg; Goychuk, Igor; Hänggi, Peter
2005-01-01
We investigate the role of noise in the phenomenon of stochastic synchronization of switching events in a rocked, overdamped bistable potential driven by white Gaussian noise, the archetype description of stochastic resonance. We present an approach to the stochastic counting process of noise-induced switching events: starting from the Markovian dynamics of the nonstationary, continuous particle dynamics, one finds upon contraction onto two states a non-Markovian renewal dynamics. A proper definition of an output discrete phase is given, and the time rate of change of its noise average determines the corresponding output frequency. The phenomenon of noise-assisted phase synchronization is investigated in terms of an effective, instantaneous phase diffusion. The theory is applied to rectangular-shaped rocking signals versus increasing input-noise strengths. In this case, for an appropriate choice of the parameter values, the system exhibits a noise-induced frequency locking accompanied by a very pronounced suppression of the phase diffusion of the output signal. Precise numerical simulations corroborate very favorably our analytical results. The novel theoretical findings are also compared with prior ones.
Valleytronics and phase transition in silicene
NASA Astrophysics Data System (ADS)
Aftab, Tayyaba
2017-03-01
Magnetic and transport properties of silicene in the presence of perpendicular electromagnetic fields and a ferromagnetic material are studied. It is shown that for small exchange field, the magnetic moment associated with each valley is opposite for the other and it gives a shift in band energy, by a Zeeman-like coupling term. Thus opening a new horizon for valley-orbit coupling. Magnetic proximity effect is seen to adjust the spintronics of each valley. Valley polarization is calculated using the semi classical formulation of electron dynamics. It can be modified and measured due to its contribution in Hall conductivity. Quantum phase transitions are observed in silicene, providing a tool to control the topological state experimentally. The strong dependence of the physical properties on valley degree of freedom is an important step towards valleytronics.
Switchable Metal-Insulator Phase Transition Metamaterials.
Hajisalem, Ghazal; Nezami, Mohammadreza S; Gordon, Reuven
2017-05-10
We investigate the switching of a gap plasmon tunnel junction between conducting and insulating states. Hysteresis is observed in the second and the third harmonic generation power dependence, which arises by thermally induced disorder ("melting") of a two-carbon self-assembled monolayer between an ultraflat gold surface and metal nanoparticles. The hysteresis is observed for a variety of nanoparticle sizes, but not for larger tunnel junctions where there is no appreciable tunneling. By combining quantum corrected finite-difference time-domain simulations with nonlinear scattering theory, we calculate the changes in the harmonic generation between the tunneling and the insulating states, and good agreement is found with the experiments. This paves the way to a new class of metal-insulator phase transition switchable metamaterials, which may provide next-generation information processing technologies.
Scaling theory of topological phase transitions
NASA Astrophysics Data System (ADS)
Chen, Wei
2016-02-01
Topologically ordered systems are characterized by topological invariants that are often calculated from the momentum space integration of a certain function that represents the curvature of the many-body state. The curvature function may be Berry curvature, Berry connection, or other quantities depending on the system. Akin to stretching a messy string to reveal the number of knots it contains, a scaling procedure is proposed for the curvature function in inversion symmetric systems, from which the topological phase transition can be identified from the flow of the driving energy parameters that control the topology (hopping, chemical potential, etc) under scaling. At an infinitesimal operation, one obtains the renormalization group (RG) equations for the driving energy parameters. A length scale defined from the curvature function near the gap-closing momentum is suggested to characterize the scale invariance at critical points and fixed points, and displays a universal critical behavior in a variety of systems examined.
MAGNETIC FIELDS FROM QCD PHASE TRANSITIONS
Tevzadze, Alexander G.; Kisslinger, Leonard; Kahniashvili, Tina; Brandenburg, Axel
2012-11-01
We study the evolution of QCD phase transition-generated magnetic fields (MFs) in freely decaying MHD turbulence of the expanding universe. We consider an MF generation model that starts from basic non-perturbative QCD theory and predicts stochastic MFs with an amplitude of the order of 0.02 {mu}G and small magnetic helicity. We employ direct numerical simulations to model the MHD turbulence decay and identify two different regimes: a 'weakly helical' turbulence regime, when magnetic helicity increases during decay, and 'fully helical' turbulence, when maximal magnetic helicity is reached and an inverse cascade develops. The results of our analysis show that in the most optimistic scenario the magnetic correlation length in the comoving frame can reach 10 kpc with the amplitude of the effective MF being 0.007 nG. We demonstrate that the considered model of magnetogenesis can provide the seed MF for galaxies and clusters.
Generalized fidelity susceptibility at phase transitions
NASA Astrophysics Data System (ADS)
You, Wen-Long; He, Li
2015-05-01
In the present work, we investigate the intrinsic relation between quantum fidelity susceptibility (QFS) and the dynamical structure factor. We give a concise proof of the QFS beyond the perturbation theory. With the QFS in the Lehmann representation, we point out that the QFS is actually the negative-two-power moment of dynamical structure factor and illuminate the inherent relation between physical quantities in the linear response theory. Moreover, we discuss the generalized fidelity susceptibility (GFS) of any quantum relevant operator, that may not be coupled to the driving parameter, and present similar scaling behaviors. Finally, we demonstrate that the QFS cannot capture the fourth-order quantum phase transition in a spin-1/2 anisotropic XY chain in the transverse alternating field, while a lower-order GFS can seize the criticalities.
Information Dynamics at a Phase Transition
NASA Astrophysics Data System (ADS)
Sowinski, Damian; Gleiser, Marcelo
2017-03-01
We propose a new way of investigating phase transitions in the context of information theory. We use an information-entropic measure of spatial complexity known as configurational entropy (CE) to quantify both the storage and exchange of information in a lattice simulation of a Ginzburg-Landau model with a scalar order parameter coupled to a heat bath. The CE is built from the Fourier spectrum of fluctuations around the mean-field and reaches a minimum at criticality. In particular, we investigate the behavior of CE near and at criticality, exploring the relation between information and the emergence of ordered domains. We show that as the temperature is increased from below, the CE displays three essential scaling regimes at different spatial scales: scale free, turbulent, and critical. Together, they offer an information-entropic characterization of critical behavior where the storage and fidelity of information processing is maximized at criticality.
Thermotropic and barotropic phase transitions on diacylphosphatidylethanolamine bilayer membranes.
Matsuki, Hitoshi; Endo, Shigeru; Sueyoshi, Ryosuke; Goto, Masaki; Tamai, Nobutake; Kaneshina, Shoji
2017-07-01
The bilayer phase transitions of four diacylphosphatidylethanolamines (PEs) with matched saturated acyl chains (Cn=12, 14, 16 and 18) and two PEs with matched unsaturated acyl chains containing a different kind of double bonds were observed by differential scanning calorimetry under atmospheric pressure and light-transmittance measurements under high pressure. The temperature-pressure phase diagrams for these PE bilayer membranes were constructed from the obtained phase-transition data. The saturated PE bilayer membranes underwent two different phase transitions related to the liquid crystalline (Lα) phase, the transition from the hydrated crystalline (Lc) phase and the chain melting (gel (Lβ) to Lα) transition, depending on the thermal history. Pressure altered the gel-phase stability of the bilayer membranes of PEs with longer chains at a low pressure. Comparing the thermodynamic quantities of the saturated PE bilayer membranes with those of diacylphosphatidylcholine (PC) bilayer membranes, the PE bilayer membranes showed higher phase-transition temperatures and formed more stable Lc phase, which originates from the strong interaction between polar head groups of PE molecules. On the other hand, the unsaturated PE bilayer membranes underwent the transition from the Lα phase to the inverted hexagonal (HII) phase at a high temperature and this transition showed a small transition enthalpy but high pressure-responsivity. It turned out that the kind of double bonds markedly affects both bilayer-bilayer and bilayer-nonbilayer transitions and the Lα/HII transition is a volume driven transition for the reconstruction of molecular packing. Further, the phase-transition behavior was explained by chemical potential curves of bilayer phases. Copyright © 2017 Elsevier B.V. All rights reserved.
Phase Transitions in Living Neural Networks
NASA Astrophysics Data System (ADS)
Williams-Garcia, Rashid Vladimir
Our nervous systems are composed of intricate webs of interconnected neurons interacting in complex ways. These complex interactions result in a wide range of collective behaviors with implications for features of brain function, e.g., information processing. Under certain conditions, such interactions can drive neural network dynamics towards critical phase transitions, where power-law scaling is conjectured to allow optimal behavior. Recent experimental evidence is consistent with this idea and it seems plausible that healthy neural networks would tend towards optimality. This hypothesis, however, is based on two problematic assumptions, which I describe and for which I present alternatives in this thesis. First, critical transitions may vanish due to the influence of an environment, e.g., a sensory stimulus, and so living neural networks may be incapable of achieving "critical" optimality. I develop a framework known as quasicriticality, in which a relative optimality can be achieved depending on the strength of the environmental influence. Second, the power-law scaling supporting this hypothesis is based on statistical analysis of cascades of activity known as neuronal avalanches, which conflate causal and non-causal activity, thus confounding important dynamical information. In this thesis, I present a new method to unveil causal links, known as causal webs, between neuronal activations, thus allowing for experimental tests of the quasicriticality hypothesis and other practical applications.
Where the electroweak phase transition ends
NASA Astrophysics Data System (ADS)
Gürtler, M.; Ilgenfritz, E.-M.; Schiller, A.
1997-10-01
We give a more precise characterization of the end of the electroweak phase transition in the framework of the effective three-dimensional SU(2)-Higgs lattice model than has been given before. The model has now been simulated at gauge couplings βG=12 and 16 for Higgs boson masses M*H=70, 74, 76, and 80 GeV up to lattices 963 and the data have been used for reweighting. The breakdown of finite volume scaling of the Lee-Yang zeroes indicates the change from a first order transition to a crossover at λ3/g23=0.102(2) in rough agreement with results of Karsch, Neuhaus, Patkós, and Rank at βG=9 and smaller lattices. The infinite volume extrapolation of the discontinuity Δ<φ+φ>/g23 turns out to be zero at λ3/g23=0.107(2) being an upper limit. We comment on the limitations of the second method.
Phase transitions in Hidden Markov Models
NASA Astrophysics Data System (ADS)
Bechhoefer, John; Lathouwers, Emma
In Hidden Markov Models (HMMs), a Markov process is not directly accessible. In the simplest case, a two-state Markov model ``emits'' one of two ``symbols'' at each time step. We can think of these symbols as noisy measurements of the underlying state. With some probability, the symbol implies that the system is in one state when it is actually in the other. The ability to judge which state the system is in sets the efficiency of a Maxwell demon that observes state fluctuations in order to extract heat from a coupled reservoir. The state-inference problem is to infer the underlying state from such noisy measurements at each time step. We show that there can be a phase transition in such measurements: for measurement error rates below a certain threshold, the inferred state always matches the observation. For higher error rates, there can be continuous or discontinuous transitions to situations where keeping a memory of past observations improves the state estimate. We can partly understand this behavior by mapping the HMM onto a 1d random-field Ising model at zero temperature. We also present more recent work that explores a larger parameter space and more states. Research funded by NSERC, Canada.
Global quantum discord and quantum phase transition in XY model
Liu, Si-Yuan; Zhang, Yu-Ran; Yang, Wen-Li; Fan, Heng
2015-11-15
We study the relationship between the behavior of global quantum correlations and quantum phase transitions in XY model. We find that the two kinds of phase transitions in the studied model can be characterized by the features of global quantum discord (GQD) and the corresponding quantum correlations. We demonstrate that the maximum of the sum of all the nearest neighbor bipartite GQDs is effective and accurate for signaling the Ising quantum phase transition, in contrast, the sudden change of GQD is very suitable for characterizing another phase transition in the XY model. This may shed lights on the study of properties of quantum correlations in different quantum phases.
Topological and geometrical aspects of phase transitions
NASA Astrophysics Data System (ADS)
Santos, F. A. N.; Rehn, J. A.; Coutinho-Filho, M. D.
2014-03-01
In the first part of this review, we use a topological approach to describe the frustration- and field-induced phase transitions exhibited by the infinite-range XY model on the AB2 chain, including noncollinear spin structures. For this purpose, we have computed the Euler characteristic, χ, as well as other topological invariants, which are found to behave similarly as a function of the energy level in the context of Morse theory. Our findings and those available in the literature suggest that the cusp-like singularity exhibited by χ at the critical energy, Ec, put together with the divergence of the density of Jacobian's critical points emerge as necessary and sufficient conditions for the occurrence of finite-temperature topology-induced phase transitions. In the second part, we present an alternative solution of the Ising chain in a field under free and periodic boundary conditions, in the microcanonical, canonical, and grand canonical ensembles, from a unified combinatorial and topological perspective. In particular, the computation of the per-site entropy as a function of the energy unveils a residual value for critical values of the magnetic field, a phenomenon for which we provide a topological interpretation and a connection with the Fibonacci sequence. We also show that, in the thermodynamic limit, the per-site microcanonical entropy is equal to the logarithm of the per-site Euler characteristic. Finally, we emphasize that our combinatorial approach to the canonical ensemble allows exact computation of the thermally averaged value <χ>(T) of the Euler characteristic; our results show that the conjecture <χ>(Tc)= 0, where Tc is the critical temperature, is valid for the Ising chain.
Formamidinium iodide: crystal structure and phase transitions
Goodilin, Eugene A.; Tarasov, Alexey B.; Dorovatovskii, Pavel V.
2017-01-01
At a temperature of 100 K, CH5N2 +·I− (I), crystallizes in the monoclinic space group P21/c. The formamidinium cation adopts a planar symmetrical structure [the r.m.s. deviation is 0.002 Å, and the C—N bond lengths are 1.301 (7) and 1.309 (8) Å]. The iodide anion does not lie within the cation plane, but deviates from it by 0.643 (10) Å. The cation and anion of I form a tight ionic pair by a strong N—H⋯I hydrogen bond. In the crystal of I, the tight ionic pairs form hydrogen-bonded zigzag-like chains propagating toward [20-1] via strong N—H⋯I hydrogen bonds. The hydrogen-bonded chains are further packed in stacks along [100]. The thermal behaviour of I was studied by different physicochemical methods (thermogravimetry, differential scanning calorimetry and powder diffraction). Differential scanning calorimetry revealed three narrow endothermic peaks at 346, 387 and 525 K, and one broad endothermic peak at ∼605 K. The first and second peaks are related to solid–solid phase transitions, while the third and fourth peaks are attributed to the melting and decomposition of I. The enthalpies of the phase transitions at 346 and 387 K are estimated as 2.60 and 2.75 kJ mol−1, respectively. The X-ray powder diffraction data collected at different temperatures indicate the existence of I as the monoclinic (100–346 K), orthorhombic (346–387 K) and cubic (387–525 K) polymorphic modifications. PMID:28435723
Jerath, R; Cearley, S M; Jensen, M
2016-01-01
Located within the ascending reticular activating system are nuclei which release neurotransmitters such as acetylcholine, serotonin, dopamine, and norepinephrine. These nuclei have widespread projections that extend into the limbic system and throughout cortex. Activation of these neurotransmitters during awake states leads to arousal, while inhibition leads to the loss of consciousness experienced during slow-wave sleep. Previously, we proposed a mechanism in which cardiorespiratory synchronization may underlie the widespread hyperpolarization that occurs throughout the brain during slow-wave sleep. We further propose that a similar homeostatic mechanism may be involved in sleep-wake transitions and maintaining various arousal states including rapid eye movement sleep, waking, and anxiety. Widespread depolarization associated with more rapid, shallow breathing and desynchronized cardiorespiratory oscillatory activity may underlie waking, anxiety, and rapid eye movement sleep states. The exact voltage values of these widespread membrane potential changes remain unknown and possibly highly variable between different neural areas and cell types. Here, we place these consciousness states on a spectrum of approximated widespread membrane potential values with anxiety states being the most depolarized, followed by waking states, and rapid eye movement sleep. We propose that although these widespread membrane potential changes are minor, they may underlie transitions between and maintenance of varying levels of arousal. Further research on these mechanisms could provide insights into how the brain functions. This homeodynamic arousal mechanism involves the established feed-forward and feedback signaling between the ascending reticular activating system and the hypothalamus, as well as the modulation by cardiorespiratory oscillatory feedback from the body. Understanding the basic mechanisms responsible for the states of sleep, waking, and anxiety could lead to better
As the World Turns: Discrete Observations of a Pseudo-Synchronized Eccentric Transiting Planet
NASA Astrophysics Data System (ADS)
Croll, Bryce; Jayawardhana, Ray; Lafreniere, David; Langton, Jonathan; Laughlin, Gregory; Murray, Norman
2008-03-01
We propose to obtain precise IRAC 8-micron observations of the eccentric transiting exoplanet HD 17156 b over three planetary spin periods. This newly discovered transiting system is notable because (a) it experiences a 26-fold increase in stellar insolation over its swing-in from apastron to periastron, and (b) it is expected that tidal evolution has brought it in pseudo-synchronization, with a resulting spin period of ~3.8d. This means that a single face of the planet will be flash heated near periastron by an intense blast of stellar irradiation that exceeds a 1000 times the solar flux at Earth. The timescales for radiative cooling and advective transport of energy to the other hemisphere after periastron passage have not yet been measured observationally, and are a source of significant uncertainty in theoretical models. Our proposed 8-micron observations will finely sample temperature variations over one spin period of the planet near periastron, and coarsely sample them over the preceding and following spin periods. To achieve the best possible photometric precision, and approach the photon noise limit, we will simultaneously observe (in full-array mode) a nearby reference star of similar magnitude, thus minimizing systematic effects. Our observations are timely as they require the unique high-precision mid-infrared capabilities of a cryogenic Spitzer. These observations will allow us to determine the radiative and advective timescales of this massive, gaseous exoplanet. An observational constraint on these timescales for this planet will considerably advance our understanding of the atmospheres of both eccentric gaseous and conventional hot Jupiters.
Kawasaki, Masahiro; Kitajo, Keiichi; Yamaguchi, Yoko
2014-01-01
In humans, theta phase (4-8 Hz) synchronization observed on electroencephalography (EEG) plays an important role in the manipulation of mental representations during working memory (WM) tasks; fronto-temporal synchronization is involved in auditory-verbal WM tasks and fronto-parietal synchronization is involved in visual WM tasks. However, whether or not theta phase synchronization is able to select the to-be-manipulated modalities is uncertain. To address the issue, we recorded EEG data from subjects who were performing auditory-verbal and visual WM tasks; we compared the theta synchronizations when subjects performed either auditory-verbal or visual manipulations in separate WM tasks, or performed both two manipulations in the same WM task. The auditory-verbal WM task required subjects to calculate numbers presented by an auditory-verbal stimulus, whereas the visual WM task required subjects to move a spatial location in a mental representation in response to a visual stimulus. The dual WM task required subjects to manipulate auditory-verbal, visual, or both auditory-verbal and visual representations while maintaining auditory-verbal and visual representations. Our time-frequency EEG analyses revealed significant fronto-temporal theta phase synchronization during auditory-verbal manipulation in both auditory-verbal and auditory-verbal/visual WM tasks, but not during visual manipulation tasks. Similarly, we observed significant fronto-parietal theta phase synchronization during visual manipulation tasks, but not during auditory-verbal manipulation tasks. Moreover, we observed significant synchronization in both the fronto-temporal and fronto-parietal theta signals during simultaneous auditory-verbal/visual manipulations. These findings suggest that theta synchronization seems to flexibly connect the brain areas that manipulate WM.
Kawasaki, Masahiro; Kitajo, Keiichi; Yamaguchi, Yoko
2014-01-01
In humans, theta phase (4–8 Hz) synchronization observed on electroencephalography (EEG) plays an important role in the manipulation of mental representations during working memory (WM) tasks; fronto-temporal synchronization is involved in auditory-verbal WM tasks and fronto-parietal synchronization is involved in visual WM tasks. However, whether or not theta phase synchronization is able to select the to-be-manipulated modalities is uncertain. To address the issue, we recorded EEG data from subjects who were performing auditory-verbal and visual WM tasks; we compared the theta synchronizations when subjects performed either auditory-verbal or visual manipulations in separate WM tasks, or performed both two manipulations in the same WM task. The auditory-verbal WM task required subjects to calculate numbers presented by an auditory-verbal stimulus, whereas the visual WM task required subjects to move a spatial location in a mental representation in response to a visual stimulus. The dual WM task required subjects to manipulate auditory-verbal, visual, or both auditory-verbal and visual representations while maintaining auditory-verbal and visual representations. Our time-frequency EEG analyses revealed significant fronto-temporal theta phase synchronization during auditory-verbal manipulation in both auditory-verbal and auditory-verbal/visual WM tasks, but not during visual manipulation tasks. Similarly, we observed significant fronto-parietal theta phase synchronization during visual manipulation tasks, but not during auditory-verbal manipulation tasks. Moreover, we observed significant synchronization in both the fronto-temporal and fronto-parietal theta signals during simultaneous auditory-verbal/visual manipulations. These findings suggest that theta synchronization seems to flexibly connect the brain areas that manipulate WM. PMID:24672496
The dynamic and geometric phase transition in the cellular network of pancreatic islet
NASA Astrophysics Data System (ADS)
Wang, Xujing
2013-03-01
The pancreatic islet is a micro-organ that contains several thousands of endocrine cells, majority of which being the insulin releasing β - cells . - cellsareexcitablecells , andarecoupledtoeachother through gap junctional channels. Here, using percolation theory, we investigate the role of network structure in determining the dynamics of the β-cell network. We show that the β-cell synchronization depends on network connectivity. More specifically, as the site occupancy is reducing, initially the β-cell synchronization is barely affected, until it reaches around a critical value, where the synchronization exhibit a sudden rapid decline, followed by an slow exponential tail. This critical value coincides with the critical site open probability for percolation transition. The dependence over bond strength is similar, exhibiting critical-behavior like dependence around a certain value of bond strength. These results suggest that the β-cell network undergoes a dynamic phase transition when the network is percolated. We further apply the findings to study diabetes. During the development of diabetes, the β - cellnetworkconnectivitydecreases . Siteoccupancyreducesfromthe reducing β-cell mass, and the bond strength is increasingly impaired from β-cell stress and chronic hyperglycemia. We demonstrate that the network dynamics around the percolation transition explain the disease dynamics around onset, including a long time mystery in diabetes, the honeymoon phenomenon.
Magnetically ordered phase near transition to Bose-glass phase
NASA Astrophysics Data System (ADS)
Syromyatnikov, A. V.; Sizanov, A. V.
2017-01-01
We discuss a magnetically ordered ("superfluid") phase near quantum transition to the Bose-glass phase in a simple modeling system, a Heisenberg antiferromagnet with spatial dimension d >2 in an external magnetic field with disorder in exchange coupling constants. Our analytical consideration is based on hydrodynamic description of long-wavelength excitations. Results obtained are valid in the entire critical region near the quantum critical point (QCP), allowing us to describe a possible crossover from one critical behavior to another. We demonstrate that the system behaves in full agreement with predictions by M. P. Fisher et al. [Phys. Rev. B 40, 546 (1989), 10.1103/PhysRevB.40.546] in close vicinity to the QCP. We find as an extension to that analysis that the anomalous dimension η =2 -d and β =ν d /2 , where β and ν are critical exponents of the order parameter and the correlation length, respectively. The density of states per spin of low-energy localized excitations is found to be independent of d ("superuniversal"). We show that many recent experimental and numerical results obtained in various three-dimensional (3D) systems can be described by our formulas using percolation critical exponents. Then, it is a possibility that a percolation critical regime arises in the ordered phase in some 3D systems not very close to the QCP.
Thermotropic and barotropic phase transitions of dilauroylphosphatidylcholine bilayer.
Tada, Kaori; Goto, Masaki; Tamai, Nobutake; Matsuki, Hitoshi; Kaneshina, Shoji
2008-06-01
The bilayer phase transitions of dilauroylphosphatidylcholine (DLPC), containing two linear acyl chains with 12 carbon atoms, were observed by means of differential scanning calorimetry (DSC) under ambient pressure and light transmittance under high pressure. When the heating scan for the DLPC bilayer in 50 wt.% aqueous ethylene glycol (EG) solution began at -30 degrees C after cold storage, the DSC thermogram showed two endothermic peaks at 1.7 and 4.5 degrees C, which correspond to the transition from the lamellar crystalline (Lc) phase to the intermediate liquid crystalline (Lx) phase and the transition from the Lx phase to the liquid crystalline (L) phase, respectively. Extremely large enthalpy change (32.9 kJ mol(-1)) is characteristic of the Lc/Lx phase transition. The DSC thermogram for the heating scan beginning from -10 degrees C showed a single endothermic peak with 9.2 kJ mol(-1) at -0.4 degrees C, which was assigned as the so-called main transition between the metastable ripple gel (P'(beta)) and metastable Lalpha phases. The DLPC bilayer under high pressure underwent three kinds of transitions in EG solution, whereas only one transition was observed in water under high pressure. The middle-temperature transition in EG solution could be assigned to the main transition because of its consistency with the main transition in water. The lower-temperature transition is probably assigned as transition from the Lc phase to the P'(beta) phase. Since the slope (dT/dp) of the Lc/P'(beta) phase boundary is smaller than that for the main transition, the Lc/P'(beta) phase boundary and the main transition curves crossed each other at 40 MPa on the temperature-pressure phase diagram. The higher-temperature transition in EG solution refers to the transition from the Lx phase to the Lalpha phase. The Lx phase disappeared at about 180 MPa, and the direct transition from the P'(beta) phase to the Lalpha phase was observed at high pressures above 180 MPa.
Medina-Reyes, Estefany I; Bucio-López, Laura; Freyre-Fonseca, Verónica; Sánchez-Pérez, Yesennia; García-Cuéllar, Claudia M; Morales-Bárcenas, Rocío; Pedraza-Chaverri, José; Chirino, Yolanda I
2015-03-01
Titanium dioxide has been classified in the 2B group as a possible human carcinogen by the International Agency for Research on Cancer, and amid concerns of its exposure, cell cycle alterations are an important one. However, several studies show inconclusive effects, mainly because it is difficult to compare cell cycle effects caused by TiO2 nanoparticle (NP) exposure between different shapes and sizes of NP, cell culture types, and time of exposure. In addition, cell cycle is frequently analyzed without cell cycle synchronization, which may also mask some effects. We hypothesized that synchronization after TiO2 NP exposure could reveal dissimilar cell cycle progression when compared with unsynchronized cell population. To test our hypothesis, we exposed lung epithelial cells to 1 and 10 μg/cm(2) TiO2 NPs for 7 days and one population was synchronized by serum starvation and inhibition of ribonucleotide reductase using hydroxyurea. Another cell population was exposed to TiO2 NPs under the same experimental conditions, but after treatments, cell cycle was analyzed without synchronization. Our results showed that TiO2 NP-exposed cells without synchronization had no changes in cell cycle distribution; however, cell population synchronized after 1 and 10 μg/cm(2) TiO2 NP treatment showed a 1.5-fold and 1.66-fold increase, respectively, in proliferation. Synchronized cells also reveal a faster capability of TiO2 NP-exposed cells to increase cell population in the G2/M phase in the following 9 h after synchronization. We conclude that synchronization discloses a greater percentage of cells in the G2/M phase and higher proliferation than TiO2 NP-synchronized cells.
On-off intermittency and amplitude-phase synchronization in Keplerian shear flows
NASA Astrophysics Data System (ADS)
Miranda, R. A.; Rempel, E. L.; Chian, A. C.-L.
2015-03-01
We study the development of coherent structures in local simulations of the magnetorotational instability in accretion discs in regimes of on-off intermittency. In a previous paper, we have shown that the laminar and bursty states due to the on-off spatiotemporal intermittency in a one-dimensional model of non-linear waves correspond, respectively, to non-attracting coherent structures with higher and lower degrees of amplitude-phase synchronization. In this paper, we extend these results to a three-dimensional model of magnetized Keplerian shear flows. Keeping the kinetic Reynolds number and the magnetic Prandtl number fixed, we investigate two different intermittent regimes by varying the plasma beta parameter. The first regime is characterized by turbulent patterns interrupted by the recurrent emergence of a large-scale coherent structure known as two-channel flow, where the state of the system can be described by a single Fourier mode. The second regime is dominated by the turbulence with sporadic emergence of coherent structures with shapes that are reminiscent of a perturbed channel flow. By computing the Fourier power and phase spectral entropies in three dimensions, we show that the large-scale coherent structures are characterized by a high degree of amplitude-phase synchronization.
Bachman, J; Kanan, S M; Patterson, H H
2001-01-01
Bioventing is an improved method of soil remediation that is being used with increasing frequency. In this paper, we refine techniques to measure the progress of petroleum hydrocarbon decomposition by monitoring vapor phase composition with synchronous scan fluorescence spectroscopy (SSFS). Analysis of the vapor phase has advantages compared to standard extraction techniques that require extensive sample handling and clean up. For comparison, hydrocarbon contamination in the soil was measured by analysis of Soxhlet extractions with gas chromatography-mass spectrometry (GC-MS). Comparison of the GC-MS and SSFS data showed that changes in hydrocarbon composition measured in the vapor phase provide an accurate measure of decomposition reactions taking place in the soil.
Chembo Kouomou, Y; Woafo, P
2003-04-01
We study the spatiotemporal dynamics of a ring of diffusely coupled single-well Duffing oscillators. The transitions from spatiotemporal chaos to cluster and complete synchronization states are particularly investigated, as well as the Hopf bifurcations to instability. It is found that the underlying mechanism of these transitions relies on the motion of the representative points corresponding to the system's nondegenerated spatial transverse Fourier modes in the parametric Strutt diagram. A scaling law is used to demonstrate that the compact interval of the scalar coupling parameter values leading to cluster synchronization broadens in a square-power-like fashion as the number of oscillators is increased. The analytical approach is confirmed by numerical simulations.
Complex phase synchronization in epileptic seizures: Evidence for a devil's staircase
NASA Astrophysics Data System (ADS)
Perez Velazquez, J. L.; Garcia Dominguez, L.; Wennberg, R.
2007-01-01
We describe multifrequency phase synchronization in epileptic seizures. Using magnetoencephalographic recordings from three patients suffering generalized seizures, the evidence is presented that, in addition to the commonly studied 1:1 frequency locking, there exists complex multifrequency coordination that, in some cases, follows a classical “devil’s staircase.” Within the limitations of observing this phenomenon in a clinical experimental setting, these observations reveal that in pathological brain activity, complex frequency locking can be found similar to that identified in certain pathological cardiac re-entrant arrhythmias. This may suggest the existence of similar re-entrant mechanisms active in cerebral neocortex during epileptic seizures.
NASA Astrophysics Data System (ADS)
Timms, L.; English, L. Q.
2014-03-01
We explore both analytically and numerically an ensemble of coupled phase oscillators governed by a Kuramoto-type system of differential equations. However, we have included the effects of time delay (due to finite signal-propagation speeds) and network plasticity (via dynamic coupling constants) inspired by the Hebbian learning rule in neuroscience. When time delay and learning effects combine, interesting synchronization phenomena are observed. We investigate the formation of spatiotemporal patterns in both one- and two-dimensional oscillator lattices with periodic boundary conditions and comment on the role of dimensionality.
NASA Astrophysics Data System (ADS)
Kohara, Tatsuya; Noguchi, Toshihiko; Kondo, Seiji
In recent years, parallel-operation of inverters is employed to increase reliability and capacity in an uninterruptible power supply (UPS) system. A phase error in PWM carrier-signals of each inverter causes high frequency loop current between inverters. Therefore, the PWM carrier-signal of each inverter should be adjusted in phase. This paper proposes a detection method of phase error in PWM carrier-signal and its application to synchronization control for parallel-connected inverters. A simple definite-integral circuit achieves the detection of carrier phase error from high frequency loop current using no signal line between inverters. The detected carrier phase error is applied to synchronize the PWM carrier-signal through a PI-compensator, and then the high frequency loop current can be suppressed. Several experimental test-results show the validity of the proposed detection method and synchronization control.
Minati, Ludovico E-mail: ludovico.minati@unitn.it
2014-12-01
In this paper, experimental evidence of multiple synchronization phenomena in a large (n = 30) ring of chaotic oscillators is presented. Each node consists of an elementary circuit, generating spikes of irregular amplitude and comprising one bipolar junction transistor, one capacitor, two inductors, and one biasing resistor. The nodes are mutually coupled to their neighbours via additional variable resistors. As coupling resistance is decreased, phase synchronization followed by complete synchronization is observed, and onset of synchronization is associated with partial synchronization, i.e., emergence of communities (clusters). While component tolerances affect community structure, the general synchronization properties are maintained across three prototypes and in numerical simulations. The clusters are destroyed by adding long distance connections with distant notes, but are otherwise relatively stable with respect to structural connectivity changes. The study provides evidence that several fundamental synchronization phenomena can be reliably observed in a network of elementary single-transistor oscillators, demonstrating their generative potential and opening way to potential applications of this undemanding setup in experimental modelling of the relationship between network structure, synchronization, and dynamical properties.
Minati, Ludovico
2014-12-01
In this paper, experimental evidence of multiple synchronization phenomena in a large (n = 30) ring of chaotic oscillators is presented. Each node consists of an elementary circuit, generating spikes of irregular amplitude and comprising one bipolar junction transistor, one capacitor, two inductors, and one biasing resistor. The nodes are mutually coupled to their neighbours via additional variable resistors. As coupling resistance is decreased, phase synchronization followed by complete synchronization is observed, and onset of synchronization is associated with partial synchronization, i.e., emergence of communities (clusters). While component tolerances affect community structure, the general synchronization properties are maintained across three prototypes and in numerical simulations. The clusters are destroyed by adding long distance connections with distant notes, but are otherwise relatively stable with respect to structural connectivity changes. The study provides evidence that several fundamental synchronization phenomena can be reliably observed in a network of elementary single-transistor oscillators, demonstrating their generative potential and opening way to potential applications of this undemanding setup in experimental modelling of the relationship between network structure, synchronization, and dynamical properties.
Endogenous Crisis Waves: Stochastic Model with Synchronized Collective Behavior
NASA Astrophysics Data System (ADS)
Gualdi, Stanislao; Bouchaud, Jean-Philippe; Cencetti, Giulia; Tarzia, Marco; Zamponi, Francesco
2015-02-01
We propose a simple framework to understand commonly observed crisis waves in macroeconomic agent-based models, which is also relevant to a variety of other physical or biological situations where synchronization occurs. We compute exactly the phase diagram of the model and the location of the synchronization transition in parameter space. Many modifications and extensions can be studied, confirming that the synchronization transition is extremely robust against various sources of noise or imperfections.
Gravitational waves from global second order phase transitions
Jr, John T. Giblin; Price, Larry R.; Siemens, Xavier; Vlcek, Brian E-mail: larryp@caltech.edu E-mail: bvlcek@uwm.edu
2012-11-01
Global second-order phase transitions are expected to produce scale-invariant gravitational wave spectra. In this manuscript we explore the dynamics of a symmetry-breaking phase transition using lattice simulations. We explicitly calculate the stochastic gravitational wave background produced during the transition and subsequent self-ordering phase. We comment on this signal as it compares to the scale-invariant spectrum produced during inflation.
Nonequilibrium quantum phase transitions in the Dicke model.
Bastidas, V M; Emary, C; Regler, B; Brandes, T
2012-01-27
We establish a set of nonequilibrium quantum phase transitions in the Dicke model by considering a monochromatic nonadiabatic modulation of the atom-field coupling. For weak driving the system exhibits a set of sidebands which allow the circumvention of the no-go theorem which otherwise forbids the occurrence of superradiant phase transitions. At strong driving we show that the system exhibits a rich multistable structure and exhibits both first- and second-order nonequilibrium quantum phase transitions.
Phase transitions in the Nb-D(H) system: Superlattice reflections near the '-US phase transition
Chasnov, R.; Birnbaum, H.K.; Shapiro, S.M.
1986-02-01
An experimental study of NbD/sub x/(H/sub x/) alloys (0.70 < x < 0.85) in the vicinity of the '-US phase transition was conducted using x-ray and elastic neutron scattering techniques in the temperature range 300 < T < 473 K. ''Superlattice'' reflections between the Bragg peaks of the bcc ' phase were observed for both x-ray and neutron scattering but there were significant differences between observations carried out with the two types of radiation. The temperature dependence of these weak reflections was determined in the ' phase. These superlattice reflections were interpreted as being due to periodic modulations of the metal lattice caused by the partial ordering of deuterium atoms in the ' phase.
Chiral phase transition in lattice QCD as a metal-insulator transition
Garcia-Garcia, Antonio M.; Osborn, James C.
2007-02-01
We investigate the lattice QCD Dirac operator with staggered fermions at temperatures around the chiral phase transition. We present evidence of a metal-insulator transition in the low lying modes of the Dirac operator around the same temperature as the chiral phase transition. This strongly suggests the phenomenon of Anderson localization drives the QCD vacuum to the chirally symmetric phase in a way similar to a metal-insulator transition in a disordered conductor. We also discuss how Anderson localization affects the usual phenomenological treatment of phase transitions a la Ginzburg-Landau.
Effects of frequency-degree correlation on synchronization transition in scale-free networks
NASA Astrophysics Data System (ADS)
Liu, Weiqing; Wu, Ye; Xiao, Jinghua; Zhan, Meng
2013-02-01
Explosive synchronization in the scale-free network with a positive frequency-degree correlation has been reported recently (Gomez G. J. et al., Phys. Rev. Lett., 106 (2011) 128701). In this article, we generalize this study and find that the explosive synchronization is replaced by a kind of hierarchical synchronization if the microscopic correlation between the frequency and the interacting topology of the network becomes negative. A star network model is set to prove this novel behavior. We also find that the degree assortativity has significant influence on the explosive synchronization but slight impact on the hierarchical synchronization. These findings are meaningful for revealing unusual effects of correlations between dynamics and structure of complex networks.
He, Wei; Wei, Pengfei; Zhou, Yi; Wang, Liping
2014-01-01
Transcranial direct current stimulation (tDCS) has been demonstrated that it can enhance the cortex excitability and modulate the event-related desynchronization (ERD) in motor imagery (MI). Phase synchronization is an important signature in the brain that reflects the neural interaction and integration, which has been adopted as an important EEG pattern for Brian-Computer Interface (BCI) control. In this study, we designed an experiment paradigm and investigated whether the tDCS can modulate the phase synchronization between the primary motor cortex (M1) and the supplementary motor area (SMA) in MI. Ten healthy subjects were selected and separated into two groups randomly. They performed the left and right hand MI task in two successive sessions. According to the different groups, anodal or sham stimulation were administrated to the right side of the M1. The phase locking value (PLV), which is a reliable measurement of phase synchronization in MI, was calculated. The pre and post-stimulation normalized PLV in the left hand MI task were compared. The result manifests that the normalized PLV of the entire subjects in anodal stimulation group increases after the stimulation, which shows a statistically significant difference (paired t-test p = 0.0371, n = 5). Our study reveals that the tDCS can impact the neural coupling between different brain regions and modulate phase synchronization in MI. Moreover, intervention of phase synchronization by tDCS might contribute to the rehabilitation of people with motor disorder and neurological disorders.
Fault tolerance control of phase current in permanent magnet synchronous motor control system
NASA Astrophysics Data System (ADS)
Chen, Kele; Chen, Ke; Chen, Xinglong; Li, Jinying
2014-08-01
As the Photoelectric tracking system develops from earth based platform to all kinds of moving platform such as plane based, ship based, car based, satellite based and missile based, the fault tolerance control system of phase current sensor is studied in order to detect and control of failure of phase current sensor on a moving platform. By using a DC-link current sensor and the switching state of the corresponding SVPWM inverter, the failure detection and fault control of three phase current sensor is achieved. Under such conditions as one failure, two failures and three failures, fault tolerance is able to be controlled. The reason why under the method, there exists error between fault tolerance control and actual phase current, is analyzed, and solution to weaken the error is provided. The experiment based on permanent magnet synchronous motor system is conducted, and the method is proven to be capable of detecting the failure of phase current sensor effectively and precisely, and controlling the fault tolerance simultaneously. With this method, even though all the three phase current sensors malfunction, the moving platform can still work by reconstructing the phase current of the motor.
Kinetics of solid-solid phase transitions in metals using proton radiography (u)
Schwartz, Cynthia L; Rigg, Paulo A; Hixson, Rob S; Jensen, Brian J
2011-01-25
When a compressed material changes phase it doesn't do so instantly. Instead it transitions through a mixed phase as it transforms to the end state phase for a given pressure, volume and temperature. Common phase diagrams show the phase boundaries as sharp lines when compression has been slowly applied and held for an infinite amount of time. When the compression is applied with high strain rate, however, the phase boundaries are no longer crisp as the kinetic effects of the crystal reorientation delay the transitions, resulting in regions of mixed phase. This opens up the possibility that some degree of metastability exists for such transition in dynamic compression. The compression path can go past the equilibrium phase boundary and the transition happen from a metastable state because of the very short timescale of the compression process. Molecular dynamics (MD) simulations recently have been used to examine shock-induced phase transitions in single crystal materials illustrating an orientation dependence of the transition stress, mechanisms, kinetics, and Hugoniot response. For example, the [100] orientation of iron had a simulated transition stress higher than the experimentally determined polycrystalline value of 13 GPa by 2 GPa. Previously, dynamic experiments on iron have observed a non-zero transition time and width in the solid-solid {alpha}-{var_epsilon} phase transition. Using Proton Radiography at the Los Alamos Neutron Science Center, we have performed plate impact experiments on iron to further study the {alpha}-{var_epsilon} phase transition which occurs at 13 GPa. A 40mm bore powder gun was coupled to a proton radiography beam line and imaging system and synchronized to the impact of the projectile on the target sample with the proton beam pattern. A typical experimental configuration for the iron study, as shown below in 3 color-enhanced radiographs, is a 40mm diameter aluminum sabot impacting a 40mm diameter sample of polycrystalline ARMCO iron
NASA Astrophysics Data System (ADS)
Jamal, Wasifa; Das, Saptarshi; Maharatna, Koushik; Pan, Indranil; Kuyucu, Doga
2015-09-01
Degree of phase synchronization between different Electroencephalogram (EEG) channels is known to be the manifestation of the underlying mechanism of information coupling between different brain regions. In this paper, we apply a continuous wavelet transform (CWT) based analysis technique on EEG data, captured during face perception tasks, to explore the temporal evolution of phase synchronization, from the onset of a stimulus. Our explorations show that there exists a small set (typically 3-5) of unique synchronized patterns or synchrostates, each of which are stable of the order of milliseconds. Particularly, in the beta (β) band, which has been reported to be associated with visual processing task, the number of such stable states has been found to be three consistently. During processing of the stimulus, the switching between these states occurs abruptly but the switching characteristic follows a well-behaved and repeatable sequence. This is observed in a single subject analysis as well as a multiple-subject group-analysis in adults during face perception. We also show that although these patterns remain topographically similar for the general category of face perception task, the sequence of their occurrence and their temporal stability varies markedly between different face perception scenarios (stimuli) indicating toward different dynamical characteristics for information processing, which is stimulus-specific in nature. Subsequently, we translated these stable states into brain complex networks and derived informative network measures for characterizing the degree of segregated processing and information integration in those synchrostates, leading to a new methodology for characterizing information processing in human brain. The proposed methodology of modeling the functional brain connectivity through the synchrostates may be viewed as a new way of quantitative characterization of the cognitive ability of the subject, stimuli and information integration
2015-03-01
ADAPTable Sensor Systems Phase 2 STRATEGIC TECHNOLOGY OFFICE DARPA-BAA-12-61 Topic 2: Reusable Core Software Distributed Synchronization...Software for the Sensor Nodes Final Report Michigan Technological University PI: Saeid Nooshabadi (saeid@mtu.edu) 1 Report Documentation Page...DATES COVERED 00-00-2013 to 00-00-2015 4. TITLE AND SUBTITLE Reusable Core Software Distributed Synchronization Software for the Sensor Nodes 5a
Pressure induced phase transitions in ceramic compounds containing tetragonal zirconia
Sparks, R.G.; Pfeiffer, G.; Paesler, M.A.
1988-12-01
Stabilized tetragonal zirconia compounds exhibit a transformation toughening process in which stress applied to the material induces a crystallographic phase transition. The phase transition is accompanied by a volume expansion in the stressed region thereby dissipating stress and increasing the fracture strength of the material. The hydrostatic component of the stress required to induce the phase transition can be investigated by the use of a high pressure technique in combination with Micro-Raman spectroscopy. The intensity of Raman lines characteristic for the crystallographic phases can be used to calculate the amount of material that has undergone the transition as a function of pressure. It was found that pressures on the order of 2-5 kBar were sufficient to produce an almost complete transition from the original tetragonal to the less dense monoclinic phase; while a further increase in pressure caused a gradual reversal of the transition back to the original tetragonal structure.
Frequency and phase synchronization in neuromagnetic cortical responses to flickering-color stimuli
NASA Astrophysics Data System (ADS)
Timashev, S. F.; Polyakov, Yu. S.; Yulmetyev, R. M.; Demin, S. A.; Panischev, O. Yu.; Shimojo, S.; Bhattacharya, J.
2010-03-01
In our earlier study dealing with the analysis of neuromagnetic responses (magnetoencephalograms—MEG) to flickering-color stimuli for a group of control human subjects (9 volunteers) and a patient with photosensitive epilepsy (a 12-year old girl), it was shown that Flicker-Noise Spectroscopy (FNS) was able to identify specific differences in the responses of each organism. The high specificity of individual MEG responses manifested itself in the values of FNS parameters for both chaotic and resonant components of the original signal. The present study applies the FNS cross-correlation function to the analysis of correlations between the MEG responses simultaneously measured at spatially separated points of the human cortex processing the red-blue flickering color stimulus. It is shown that the cross-correlations for control (healthy) subjects are characterized by frequency and phase synchronization at different points of the cortex, with the dynamics of neuromagnetic responses being determined by the low-frequency processes that correspond to normal physiological rhythms. But for the patient, the frequency and phase synchronization breaks down, which is associated with the suppression of cortical regulatory functions when the flickering-color stimulus is applied, and higher frequencies start playing the dominating role. This suggests that the disruption of correlations in the MEG responses is the indicator of pathological changes leading to photosensitive epilepsy, which can be used for developing a method of diagnosing the disease based on the analysis with the FNS cross-correlation function.
Genuine and Spurious Phase Synchronization Strengths during Consciousness and General Anesthesia
Lee, UnCheol; Lee, HeonSoo; Müller, Markus; Noh, Gyu-Jeong; Mashour, George A.
2012-01-01
Spectral content in a physiological dataset of finite size has the potential to produce spurious measures of coherence. This is especially true for electroencephalography (EEG) during general anesthesia because of the significant alteration of the power spectrum. In this study we quantitatively evaluated the genuine and spurious phase synchronization strength (PSS) of EEG during consciousness, general anesthesia, and recovery. A computational approach based on the randomized data method was used for evaluating genuine and spurious PSS. The validity of the method was tested with a simulated dataset. We applied this method to the EEG of normal subjects undergoing general anesthesia and investigated the finite size effects of EEG references, data length and spectral content on phase synchronization. The most influential factor for genuine PSS was the type of EEG reference; the most influential factor for spurious PSS was the spectral content. Genuine and spurious PSS showed characteristic temporal patterns for each frequency band across consciousness and anesthesia. Simultaneous measurement of both genuine and spurious PSS during general anesthesia is necessary in order to avoid incorrect interpretations regarding states of consciousness. PMID:23056281
Ren, Peng; Zhao, Weihua; Zhao, Zhiying; Bringas-Vega, Maria L; Valdes-Sosa, Pedro A; Kendrick, Keith M
2016-02-01
Previous studies have revealed that gait rhythm fluctuations convey important information, which is useful for understanding certain types of neurodegenerative diseases such as Amyotrophic Lateral Sclerosis (ALS), Huntington's disease (HD) and Parkinson's disease (PD). However, previous investigations only focused on the locomotor patterns of each individual foot rather than the relations between both feet. Therefore, in our study, phase synchronization (the index ρ) and conditional entropy (Hc) were applied to the five types of time series pairs of gait rhythms (stride time, swing time, stance time, % swing time and % stance time). The results revealed that compared with the patients with ALS, HD and PD, gait rhythms of normal subjects have the strongest phase synchronization property and minimum conditional entropy value. In addition, the indices ρ and Hc cannot only significantly differentiate among the four groups of subjects (ALS, HD, PD and control) but also have the ability to discriminate between any two of these subject groups. Finally, three representative classifiers were utilized in order to evaluate the possible capabilities of the indices ρ and Hc to distinguish the patients with neurodegenerative diseases from the healthy subjects, and achieved maximum area under the curve (AUC) values of 0.959, 0.928 and 0.824 for HD, PD and ALS detection, respectively. In summary, our study provides insight into the relational analysis between gait rhythms measured from both feet, and suggests that it should be considered seriously in the future studies investigating the impact of neurodegenerative disease and potential therapeutic intervention.
NASA Astrophysics Data System (ADS)
Sahy, Diana; Condon, Daniel J.; Terry, Dennis O.; Fischer, Anne U.; Kuiper, Klaudia F.
2015-10-01
Records of terrestrial environmental change indicate that continental cooling and/or aridification may have predated the greenhouse-icehouse climate shift at the Eocene-Oligocene transition (EOT) by ca. 600 kyr. In North America, marine-terrestrial environmental change asynchronicity is inferred from a direct comparison between the astronomically tuned marine EOT record and published 40Ar/39Ar geochronology of volcanic tuffs from the White River Group (WRG) sampled at Flagstaff Rim (Wyoming) and Toadstool Geologic Park (Nebraska), which are type sections for the Chadronian and Orellan North American Land Mammal Ages. We present a new age-model for the WRG, underpinned by high-precision 206Pb/238U zircon dates from 15 volcanic tuffs, including six tuffs previously dated using the 40Ar/39Ar technique. Weighted mean zircon 206Pb/238U dates from this study are up to 1.0 Myr younger than published anorthoclase and biotite 40Ar/39Ar data (calibrated relative to Fish Canyon sanidine at 28.201 Ma). Giving consideration to the complexities, strengths, and limitations associated with both the 40Ar/39Ar and 206Pb/238U datasets, our interpretation is that the recalculated 40Ar/39Ar dates are anomalously old, and the 206Pb/238U (zircon) dates more accurately constrain deposition. 206Pb/238U calibrated age-depth models were developed in order to facilitate a robust intercomparison between marine and terrestrial archives of environmental change, and indicate that: (i) early Orellan (terrestrial) cooling recorded at Toadstool Geologic Park was synchronous with the onset of early Oligocene Antarctic glaciation and (ii) the last appearance datums of key Chadronian mammal taxa are diachronous by ca. 0.7 Myr between central Wyoming and NW Nebraska.
Highly birefringent crystal for Raman transitions with phase modulators
NASA Astrophysics Data System (ADS)
Arias, Nieves; Abediyeh, Vahide; Hamzeloui, Saeed; Jeronimo-Moreno, Yasser; Gomez, Eduardo
2016-05-01
We present a system to excite Raman transitions with minimum phase noise. The system uses a phase modulator to generate the phase locked beams required for the transition. We use a long calcite crystal to filter out one of the sidebands, avoiding the cancellation that appears at high detunings for phase modulation. The measured phase noise is limited by the quality of the microwave synthesizer. We use the calcite crystal a second time to produce a co-propagating Raman pair with perpendicular polarizations to drive velocity insensitive Raman transitions. Support from CONACYT and Fundacion Marcos Moshinsky.
Van der Waals phase transition in the framework of holography
NASA Astrophysics Data System (ADS)
Zeng, Xiao-Xiong; Li, Li-Fang
2017-01-01
Phase structure of the quintessence Reissner-Nordström-AdS black hole is probed by the nonlocal observables such as holographic entanglement entropy and two point correlation function. Our result shows that, as the case of the thermal entropy, both the observables exhibit the Van der Waals-like phase transition. To reinforce this conclusion, we further check the equal area law for the first order phase transition and critical exponent of the heat capacity for the second order phase transition. We also discuss the effect of the state parameter on the phase structure of the nonlocal observables.
Quantum thermodynamic cycle with quantum phase transition
NASA Astrophysics Data System (ADS)
Ma, Yu-Han; Su, Shan-He; Sun, Chang-Pu
2017-08-01
With the Lipkin-Meshkov-Glick (LMG) model as an illustration, we construct a thermodynamic cycle composed of two isothermal processes and two isomagnetic field processes, and we study the thermodynamic performance of this cycle accompanied by the quantum phase transition (QPT). We find that for a finite particle system working below the critical temperature, the efficiency of the cycle is capable of approaching the Carnot limit when the external magnetic field λ1 corresponding to one of the isomagnetic processes reaches the cross point of the ground states' energy level, which can become the critical point of the QPT in the large-N limit. Our analysis proves that the system's energy level crossings at low-temperature limits can lead to a significant improvement in the efficiency of the quantum heat engine. In the case of the thermodynamics limit (N →∞ ) , the analytical partition function is obtained to study the efficiency of the cycle at high- and low-temperature limits. At low temperatures, when the magnetic fields of the isothermal processes are located on both sides of the critical point of the QPT, the cycle reaches maximum efficiency, and the Carnot efficiency can be achieved. This observation demonstrates that the QPT of the LMG model below critical temperature is beneficial to the thermodynamic cycle's operation.
Phononic Crystal Tunable via Ferroelectric Phase Transition
NASA Astrophysics Data System (ADS)
Xu, Chaowei; Cai, Feiyan; Xie, Shuhong; Li, Fei; Sun, Rong; Fu, Xianzhu; Xiong, Rengen; Zhang, Yi; Zheng, Hairong; Li, Jiangyu
2015-09-01
Phononic crystals (PCs) consisting of periodic materials with different acoustic properties have potential applications in functional devices. To realize more smart functions, it is desirable to actively control the properties of PCs on demand, ideally within the same fabricated system. Here, we report a tunable PC made of Ba0.7Sr0.3Ti O3 (BST) ceramics, wherein a 20-K temperature change near room temperature results in a 20% frequency shift in the transmission spectra induced by a ferroelectric phase transition. The tunability phenomenon is attributed to the structure-induced resonant excitation of A0 and A1 Lamb modes that exist intrinsically in the uniform BST plate, while these Lamb modes are sensitive to the elastic properties of the plate and can be modulated by temperature in a BST plate around the Curie temperature. The study finds opportunities for creating tunable PCs and enables smart temperature-tuned devices such as the Lamb wave filter or sensor.
Phase transitions in random quantum satisfiability
NASA Astrophysics Data System (ADS)
Laumann, Chris; Moessner, Roderich; Scardicchio, Antonello; Sondhi, Shivaji
2009-03-01
The potential power of quantum computers is a subject of great current interest and the raison d'etre for the intense effort and progress to build them. Naturally much theoretical interest has focused on algorithms that outperform their classical counterpart but recent developments in quantum complexity theory suggest that we already know problems, those shown to be QMA-complete, whose worst case instances would take a quantum computer exponentially long to solve. As in classical complexity theory the supposed difficulty of QMA complete problems follows from the existence of polynomial transformations relating any of the large class of QMA problems to instances of QMA-complete questions. This does not directly address the question of why this problem has hard instances and what features they posses. In this work we attempt to investigate the features of hard instances of a QMA complete problem introduced by S. Bravyi: quantum k-SAT. We use techniques of statistical physics of disordered systems in order to study a random ensemble of quantum k-SAT instances parametrized by clause density α in a program that is analogous to recent studies of classical random k-SAT. We establish a phase transition in satisfiability as a function of clause density and show that the problem almost always reduces to identifying a classical graph property.
Emergence and reduction combined in phase transitions
NASA Astrophysics Data System (ADS)
Butterfield, Jeremy; Bouatta, Nazim
2012-06-01
In another paper (Butterfield 2011), one of us argued that emergence and reduction are compatible, and presented four examples illustrating both. The main purpose of this paper is to develop this position for the example of phase transitions. We take it that emergence involves behaviour that is novel compared with what is expected: often, what is expected from a theory of the system's microscopic constituents. We take reduction as deduction, aided by appropriate definitions. Then the main idea of our reconciliation of emergence and reduction is that one makes the deduction after taking a limit of an appropriate parameter N. Thus our first main claim will be that in some situations, one can deduce a novel behaviour, by taking a limit N → ∞. Our main illustration of this will be Lee-Yang theory. But on the other hand, this does not show that the N = ∞ limit is "physically real". For our second main claim will be that in such situations, there is a logically weaker, yet still vivid, novel behaviour that occurs before the limit, i.e. for finite N. And it is this weaker behaviour which is physically real. Our main illustration of this will be the renormalization group description of cross-over phenomena.
Quantum thermodynamic cycle with quantum phase transition.
Ma, Yu-Han; Su, Shan-He; Sun, Chang-Pu
2017-08-01
With the Lipkin-Meshkov-Glick (LMG) model as an illustration, we construct a thermodynamic cycle composed of two isothermal processes and two isomagnetic field processes, and we study the thermodynamic performance of this cycle accompanied by the quantum phase transition (QPT). We find that for a finite particle system working below the critical temperature, the efficiency of the cycle is capable of approaching the Carnot limit when the external magnetic field λ_{1} corresponding to one of the isomagnetic processes reaches the cross point of the ground states' energy level, which can become the critical point of the QPT in the large-N limit. Our analysis proves that the system's energy level crossings at low-temperature limits can lead to a significant improvement in the efficiency of the quantum heat engine. In the case of the thermodynamics limit (N→∞), the analytical partition function is obtained to study the efficiency of the cycle at high- and low-temperature limits. At low temperatures, when the magnetic fields of the isothermal processes are located on both sides of the critical point of the QPT, the cycle reaches maximum efficiency, and the Carnot efficiency can be achieved. This observation demonstrates that the QPT of the LMG model below critical temperature is beneficial to the thermodynamic cycle's operation.
Phase transitions in models of human cooperation
NASA Astrophysics Data System (ADS)
Perc, Matjaž
2016-08-01
If only the fittest survive, why should one cooperate? Why should one sacrifice personal benefits for the common good? Recent research indicates that a comprehensive answer to such questions requires that we look beyond the individual and focus on the collective behavior that emerges as a result of the interactions among individuals, groups, and societies. Although undoubtedly driven also by culture and cognition, human cooperation is just as well an emergent, collective phenomenon in a complex system. Nonequilibrium statistical physics, in particular the collective behavior of interacting particles near phase transitions, has already been recognized as very valuable for understanding counterintuitive evolutionary outcomes. However, unlike pairwise interactions among particles that typically govern solid-state physics systems, interactions among humans often involve group interactions, and they also involve a larger number of possible states even for the most simplified description of reality. Here we briefly review research done in the realm of the public goods game, and we outline future research directions with an emphasis on merging the most recent advances in the social sciences with methods of nonequilibrium statistical physics. By having a firm theoretical grip on human cooperation, we can hope to engineer better social systems and develop more efficient policies for a sustainable and better future.
Consistent lattice Boltzmann equations for phase transitions.
Siebert, D N; Philippi, P C; Mattila, K K
2014-11-01
Unlike conventional computational fluid dynamics methods, the lattice Boltzmann method (LBM) describes the dynamic behavior of fluids in a mesoscopic scale based on discrete forms of kinetic equations. In this scale, complex macroscopic phenomena like the formation and collapse of interfaces can be naturally described as related to source terms incorporated into the kinetic equations. In this context, a novel athermal lattice Boltzmann scheme for the simulation of phase transition is proposed. The continuous kinetic model obtained from the Liouville equation using the mean-field interaction force approach is shown to be consistent with diffuse interface model using the Helmholtz free energy. Density profiles, interface thickness, and surface tension are analytically derived for a plane liquid-vapor interface. A discrete form of the kinetic equation is then obtained by applying the quadrature method based on prescribed abscissas together with a third-order scheme for the discretization of the streaming or advection term in the Boltzmann equation. Spatial derivatives in the source terms are approximated with high-order schemes. The numerical validation of the method is performed by measuring the speed of sound as well as by retrieving the coexistence curve and the interface density profiles. The appearance of spurious currents near the interface is investigated. The simulations are performed with the equations of state of Van der Waals, Redlich-Kwong, Redlich-Kwong-Soave, Peng-Robinson, and Carnahan-Starling.
Consistent lattice Boltzmann equations for phase transitions
NASA Astrophysics Data System (ADS)
Siebert, D. N.; Philippi, P. C.; Mattila, K. K.
2014-11-01
Unlike conventional computational fluid dynamics methods, the lattice Boltzmann method (LBM) describes the dynamic behavior of fluids in a mesoscopic scale based on discrete forms of kinetic equations. In this scale, complex macroscopic phenomena like the formation and collapse of interfaces can be naturally described as related to source terms incorporated into the kinetic equations. In this context, a novel athermal lattice Boltzmann scheme for the simulation of phase transition is proposed. The continuous kinetic model obtained from the Liouville equation using the mean-field interaction force approach is shown to be consistent with diffuse interface model using the Helmholtz free energy. Density profiles, interface thickness, and surface tension are analytically derived for a plane liquid-vapor interface. A discrete form of the kinetic equation is then obtained by applying the quadrature method based on prescribed abscissas together with a third-order scheme for the discretization of the streaming or advection term in the Boltzmann equation. Spatial derivatives in the source terms are approximated with high-order schemes. The numerical validation of the method is performed by measuring the speed of sound as well as by retrieving the coexistence curve and the interface density profiles. The appearance of spurious currents near the interface is investigated. The simulations are performed with the equations of state of Van der Waals, Redlich-Kwong, Redlich-Kwong-Soave, Peng-Robinson, and Carnahan-Starling.
The control of developmental phase transitions in plants.
Huijser, Peter; Schmid, Markus
2011-10-01
Plant development progresses through distinct phases: vegetative growth, followed by a reproductive phase and eventually seed set and senescence. The transitions between these phases are controlled by distinct genetic circuits that integrate endogenous and environmental cues. In recent years, however, it has become evident that the genetic networks that underlie these phase transitions share some common factors. Here, we review recent advances in the field of plant phase transitions, highlighting the role of two microRNAs - miR156 and miR172 - and their respective targets during these transitions. In addition, we discuss the evolutionary conservation of the functions of these miRNAs in regulating the control of plant developmental phase transitions.
Lavrov, Roman; Peil, Michael; Jacquot, Maxime; Larger, Laurent; Udaltsov, Vladimir; Dudley, John
2009-08-01
We demonstrate experimentally how nonlinear optical phase dynamics can be generated with an electro-optic delay oscillator. The presented architecture consists of a linear phase modulator, followed by a delay line, and a differential phase-shift keying demodulator (DPSK-d). The latter represents the nonlinear element of the oscillator effecting a nonlinear transformation. This nonlinearity is considered as nonlocal in time since it is ruled by an intrinsic differential delay, which is significantly greater than the typical phase variations. To study the effect of this specific nonlinearity, we characterize the dynamics in terms of the dependence of the relevant feedback gain parameter. Our results reveal the occurrence of regular GHz oscillations (approximately half of the DPSK-d free spectral range), as well as a pronounced broadband phase-chaotic dynamics. Beyond this, the observed dynamical phenomena offer potential for applications in the field of microwave photonics and, in particular, for the realization of novel chaos communication systems. High quality and broadband phase-chaos synchronization is also reported with an emitter-receiver pair of the setup.
Uniaxial phase transition in Si: Ab initio calculations
NASA Astrophysics Data System (ADS)
Cheng, C.
2003-04-01
Based on a previously proposed thermodynamic analysis, [C. Cheng, W. H. Huang, and H. J. Li, Phys. Rev. B 63, 153202 (2001)] we study the relative stabilities of five Si phases under uniaxial compression using ab initio methods. The five phases are diamond, βSn, simple-hexagonal (sh), simple-cubic, and hexagonal closed-packed structures. The possible phase-transition patterns were investigated by considering the phase transitions between any two chosen phases of the five phases. By analyzing the different contributions to the relative phase stability, we identified the most important factors in reducing the phase-transition pressures at uniaxial compression. We also show that it is possible to have phase transitions occur only when the phases are under uniaxial compression, in spite of no phase transition when under hydrostatic compression. Taking all five phases into consideration, the phase diagram at uniaxial compression was constructed for pressures up to 20 GPa. The stable phases were found to be diamond, βSn, and sh structures, i.e., the same as those when under hydrostatic condition. According to the phase diagram, direct phase transition from the diamond to the sh phase is possible if the applied uniaxial pressures, on increasing, satisfy the condition Px>Pz. Similarly, the sh-to-βSn transition on increasing pressures is also possible if the applied uniaxial pressures are varied from the condition of Px>Pz, on which the phase of sh is stable to the condition Px
NASA Astrophysics Data System (ADS)
Kagawa, Yuki; Takamatsu, Atsuko
2009-04-01
To reveal the relation between network structures found in two-dimensional biological systems, such as protoplasmic tube networks in the plasmodium of true slime mold, and spatiotemporal oscillation patterns emerged on the networks, we constructed coupled phase oscillators on weighted planar networks and investigated their dynamics. Results showed that the distribution of edge weights in the networks strongly affects (i) the propensity for global synchronization and (ii) emerging ratios of oscillation patterns, such as traveling and concentric waves, even if the total weight is fixed. In-phase locking, traveling wave, and concentric wave patterns were, respectively, observed most frequently in uniformly weighted, center weighted treelike, and periphery weighted ring-shaped networks. Controlling the global spatiotemporal patterns with the weight distribution given by the local weighting (coupling) rules might be useful in biological network systems including the plasmodial networks and neural networks in the brain.
Unconventional phase transitions in a constrained single polymer chain
NASA Astrophysics Data System (ADS)
Klushin, L. I.; Skvortsov, A. M.
2011-11-01
Phase transitions were recognized among the most fascinating phenomena in physics. Exactly solved models are especially important in the theory of phase transitions. A number of exactly solved models of phase transitions in a single polymer chain are discussed in this review. These are three models demonstrating the second order phase transitions with some unusual features: two-dimensional model of β-structure formation, the model of coil-globule transition and adsorption of a polymer chain grafted on the solid surface. We also discuss models with first order phase transitions in a single macromolecule which admit not only exact analytical solutions for the partition function with explicit finite-size effects but also the non-equilibrium free energy as a function of the order parameter (Landau function) in closed analytical form. One of them is a model of mechanical desorption of a macromolecule, which demonstrates an unusual first order phase transition with phase coexistence within a single chain. Features of first and second order transitions become mixed here due to phase coexistence which is not accompanied by additional interfacial free energy. Apart from that, there exist several single-chain models belonging to the same class (adsorption of a polymer chain tethered near the solid surface or liquid-liquid interface, and escape transition upon compressing a polymer between small pistons) that represent examples of a highly unconventional first order phase transition with several inter-related unusual features: no simultaneous phase coexistence, and hence no phase boundary, non-concave thermodynamic potential and non-equivalence of conjugate ensembles. An analysis of complex zeros of partition functions upon approaching the thermodynamic limit is presented for models with and without phase coexistence.
Interplay between micelle formation and waterlike phase transitions
NASA Astrophysics Data System (ADS)
Heinzelmann, G.; Figueiredo, W.; Girardi, M.
2010-02-01
A lattice model for amphiphilic aggregation in the presence of a structured waterlike solvent is studied through Monte Carlo simulations. We investigate the interplay between the micelle formation and the solvent phase transition in two different regions of temperature-density phase diagram of pure water. A second order phase transition between the gaseous (G) and high density liquid (HDL) phases that occurs at very high temperatures, and a first order phase transition between the low density liquid (LDL) and (HDL) phases that takes place at lower temperatures. In both cases, we find the aggregate size distribution curve and the critical micellar concentration as a function of the solvent density across the transitions. We show that micelle formation drives the LDL-HDL first order phase transition to lower solvent densities, while the transition G-HDL is driven to higher densities, which can be explained by the markedly different degrees of micellization in both cases. The diffusion coefficient of surfactants was also calculated in the LDL and HDL phases, changing abruptly its behavior due to the restructuring of waterlike solvent when we cross the first order LDL-HDL phase transition. To understand such behavior, we calculate the solvent density and the number of hydrogen bonds per water molecule close to micelles. The curves of the interfacial solvent density and the number of hydrogen bonds per water molecule in the first hydration signal a local phase change of the interfacial water, clarifying the diffusion mechanism of free surfactants in the solvent.
78 FR 30951 - SBIR/STTR Phase I to Phase II Transition Benchmarks
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-23
... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION SBIR/STTR Phase I to Phase II Transition Benchmarks AGENCY: U.S. Small Business Administration. ACTION: Notice for Small Business Innovation Research Program Phase I to Phase II Transition...
Strain glass state as the boundary of two phase transitions
Zhou, Zhijian; Cui, Jian; Ren, Xiaobing
2015-01-01
A strain glass state was found to be located between B2-B19’ (cubic to monoclinic) phase transition and B2-R (cubic to rhombohedral) phase transition in Ti49Ni51 alloys after aging process. After a short time aging, strong strain glass transition was observed, because the size of the precipitates is small, which means the strain field induced by the precipitates is isotropic and point-defect-like, and the distribution of the precipitates is random. After a long time aging, the average size of the precipitates increases. The strong strain field induced by the precipitates around them forces the symmetry of the matrix materials to conform to the symmetry of the crystalline structure of the precipitates, which results in the new phase transition. The experiment shows that there exists no well-defined boundary in the evolution from the strain glass transition to the new phase transition. Due to its generality, this glass mediated phase transition divergence scheme can be applied to other proper material systems to induce a more important new phase transition path, which can be useful in the field of phase transition engineering. PMID:26307500
Quantum phase transitions in the presence of disorder and dissipation
NASA Astrophysics Data System (ADS)
Kotabage, Chetan
A quantum phase transition is a phase transition at absolute zero occurring under variations in an external non-thermal parameter such as magnetic field or pressure. Quantum phase transitions are one among the important topics currently investigated in condensed matter physics. They are observed in various systems, e.g., in the ferromagnetic-paramagnetic phase transition in LiHoF 4 or in the superconductor-metal phase transition in nanowires. A particular class of quantum phase transitions, which is phase transitions in the presence of disorder and dissipation, is investigated here. An example of this class is the ferromagnetic-paramagnetic phase transition in Ni 1-xVx or CePd 1-xRhx caused by variations in chemical composition. In these system, disorder is due to random positions of doping element and the dynamics of order-parameter fluctuations is dissipative due to conduction electrons. These quantum phase transitions are explained using the following approach: The Landau-Ginzberg-Wilson functional, which is derived from a microscopic Hamiltonian, is treated by the strong-disorder renormalization group method. For ohmic damping, phase transitions are strongly influenced by disorder and the critical point is an infinite-randomness fixed point, which is in the universality class same as that of the random transverse-field Ising model. The scaling form of observable quantities is activated type rather than conventional power-law type. For superohmic damping, the strong-disorder renormalization group method yields one of the recursion relationships different from ohmic damping. This difference indicates a more conventional transition for superohmic damping.
Method for identifying and probing phase transitions in materials
Asay, Blaine W.; Henson, Bryan F.; Sander, Robert K.; Robinson, Jeanne M.; Son, Steven F.; Dickson, Peter M.
2002-01-01
The present invention includes a method for identifying and probing phase transitions in materials. A polymorphic material capable of existing in at least one non-centrosymmetric phase is interrogated with a beam of laser light at a chosen wavelength and frequency. A phase transition is induced in the material while it is interrogated. The intensity of light scattered by the material and having a wavelength equal to one half the wavelength of the interrogating laser light is detected. If the phase transition results in the production of a non-centrosymmetric phase, the intensity of this scattered light increases; if the phase transition results in the disappearance of a non-centrosymmetric phase, the intensity of this scattered light decreases.
Pressure-Induced Phase Transitions of n-Tridecane
NASA Astrophysics Data System (ADS)
Yamashita, Motoi
Pressure-induced phase transition behavior of n-tridecane from the ordered phase through the rotator phase into the liquid phase has been investigated by using Fourier transform infrared spectroscopy at 25 °C. The transition between the ordered and rotator phases has been observed in the pressure range of 270-220 MPa and the transition between the rotator and liquid phases has been observed in the pressure range of 171-112 MPa, within the experimental error of ±50 MPa. The populations of the -gtg- + -gtg'-, -gg- and gt- defects determined from the methylene wagging mode are smaller in the rotator phase than in the liquid phase and are smaller under higher pressure in both of the rotator and liquid phases. A relationship has been found between the conformation and the intensity of the 890 cm-1 band, which has been assigned as the methyl rocking mode and has been considered as insensitive to conformation.
Broadening of a nonequilibrium phase transition by extended structural defects.
Vojta, Thomas
2004-08-01
We study the effects of quenched extended impurities on nonequilibrium phase transitions in the directed percolation universality class. We show that these impurities have a dramatic effect: they completely destroy the sharp phase transition by smearing. This is caused by rare strongly coupled spatial regions which can undergo the phase transition independently from the bulk system. We use extremal statistics to determine the stationary state as well as the dynamics in the tail of the smeared transition, and we illustrate the results by computer simulations.
Bi-phase transition diagrams of metallic thin multilayers
Li, J.C.; Liu, W.; Jiang, Q. . E-mail: jiangq@jlu.edu.cn
2005-02-01
Phase transitions of metallic multilayers induced by differences in interface energy are considered thermodynamically, based on a thermodynamic model for interface energy and the Goldschmidt premise for lattice contraction. Bi-phase transition diagrams of Co/Cr, Zr/Nb, Ti/Nb and Ti/Al multilayers are constructed, which are in agreement with experimental results.
On the Phase Transition of N-Isopropylcarbazole.
1986-05-01
vacinity of the phase transition (ca. T 137 + 40 K). We propose a semiquantitative interpretation of the phase transition in NIPC based on this assumption...the order parameter fluctuations in the vacinity of TO . V. Conclusions. The elastic properties of NIPC in the temperature range 90 K - 295 K have
Quantum Monte Carlo simulation of topological phase transitions
NASA Astrophysics Data System (ADS)
Yamamoto, Arata; Kimura, Taro
2016-12-01
We study the electron-electron interaction effects on topological phase transitions by the ab initio quantum Monte Carlo simulation. We analyze two-dimensional class A topological insulators and three-dimensional Weyl semimetals with the long-range Coulomb interaction. The direct computation of the Chern number shows the electron-electron interaction modifies or extinguishes topological phase transitions.
Surface phonons near structural phase transitions of fluoridic perovskites
NASA Astrophysics Data System (ADS)
Prade, J.; Kulkarni, A. D.; De Wette, F. W.; Reiger, R.; Schröder, U.; Kress, W.
1989-04-01
The fluoridic perovskite KMnF 3 exhibits an antiferrodistortive phase transition which goes along with a soft mode at the R-point of the Brillouin zone. We investigate in this paper the surface phonons of the KF(001) surface at temperatures near this phase transition. The calculations are carried out for relaxed and reconstructed (001) slabs.
NASA Astrophysics Data System (ADS)
Taylor, Dane; Larremore, Daniel B.
2012-09-01
The formation and fragmentation of networks are typically studied using percolation theory, but most previous research has been restricted to studying a phase transition in cluster size, examining the emergence of a giant component. This approach does not study the effects of evolving network structure on dynamics that occur at the nodes, such as the synchronization of oscillators and the spread of information, epidemics, and neuronal excitations. We introduce and analyze an alternative link-formation rule, called social climber (SC) attachment, that may be combined with arbitrary percolation models to produce a phase transition using the largest eigenvalue of the network adjacency matrix as the order parameter. This eigenvalue is significant in the analyses of many network-coupled dynamical systems in which it measures the quality of global coupling and is hence a natural measure of connectivity. We highlight the important self-organized properties of SC attachment and discuss implications for controlling dynamics on networks.
NASA Astrophysics Data System (ADS)
Kerner, Boris S.
2014-03-01
Three-phase traffic flow theory of city traffic has been developed. Based on simulations of a stochastic microscopic traffic flow model, features of moving synchronized flow patterns (MSP) have been studied, which are responsible for a random time-delayed breakdown of a green-wave (GW) organized in a city. A possibility of GW control leading to the prevention of GW breakdown has been demonstrated. A diagram of traffic breakdown in under-saturated traffic (transition from under- to over-saturated city traffic) at the signal has been found; the diagram presents regions of the average arrival flow rate, within which traffic breakdown can occur, in dependence of parameters of the time-function of the arrival flow rate or/and signal parameters. Physical reasons for a crucial difference between results of classical theory of city traffic and three-phase theory are explained. In particular, we have found that under-saturated traffic at the signal can exist during a long time interval, when the average arrival flow rate is larger than the capacity of the classical theory; the classical capacity is equal to a minimum capacity in three-phase theory. Within a range of the average arrival flow rate between the minimum and maximum signal capacities, under-saturated traffic is in a metastable state with respect to traffic breakdown. We have distinguished the following possible causes for the metastability of under-saturated traffic: (i) The arrival flow rate during the green phase is larger than the saturation flow rate. (ii) The length of the upstream front of a queue at the signal is a finite value. (iii) The outflow rate from a MSP (the rate of MSP discharge) is larger than the saturation flow rate.
The Condensation Phase Transition in Random Graph Coloring
NASA Astrophysics Data System (ADS)
Bapst, Victor; Coja-Oghlan, Amin; Hetterich, Samuel; Raßmann, Felicia; Vilenchik, Dan
2016-01-01
Based on a non-rigorous formalism called the "cavity method", physicists have put forward intriguing predictions on phase transitions in diluted mean-field models, in which the geometry of interactions is induced by a sparse random graph or hypergraph. One example of such a model is the graph coloring problem on the Erdős-Renyi random graph G( n, d/ n), which can be viewed as the zero temperature case of the Potts antiferromagnet. The cavity method predicts that in addition to the k-colorability phase transition studied intensively in combinatorics, there exists a second phase transition called the condensation phase transition (Krzakala et al. in Proc Natl Acad Sci 104:10318-10323, 2007). In fact, there is a conjecture as to the precise location of this phase transition in terms of a certain distributional fixed point problem. In this paper we prove this conjecture for k exceeding a certain constant k 0.
Chiral phase transition in QED3 at finite temperature
NASA Astrophysics Data System (ADS)
Yin, Pei-Lin; Xiao, Hai-Xiao; Wei, Wei; Feng, Hong-Tao; Zong, Hong-Shi
2016-12-01
In the framework of Dyson-Schwinger equations, we employ two kinds of criteria (one kind is the chiral condensate, the other kind is thermodynamic quantities, such as the pressure, the entropy, and the specific heat) to investigate the nature of chiral phase transitions in QED3 for different fermion flavors. It is found that the chiral phase transitions in QED3 for different fermion flavors are all typical second-order phase transitions; the critical temperature and order of the chiral phase transition obtained from the chiral condensate and susceptibility are the same with that obtained by the thermodynamic quantities, which means that they are equivalent in describing the chiral phase transition; the critical temperature decreases as the number of fermion flavors increases and there is a boundary that separates the Tc-Nf plane into chiral symmetry breaking and restoration regions.
Thermodynamic phase transition of a black hole in rainbow gravity
NASA Astrophysics Data System (ADS)
Feng, Zhong-Wen; Yang, Shu-Zheng
2017-09-01
In this letter, using the rainbow functions that were proposed by Magueijo and Smolin, we investigate the thermodynamics and the phase transition of rainbow Schwarzschild black hole. First, we calculate the rainbow gravity corrected Hawking temperature. From this modification, we then derive the local temperature, free energy, and other thermodynamic quantities in an isothermal cavity. Finally, we analyze the critical behavior, thermodynamic stability, and phase transition of the rainbow Schwarzschild black hole. The results show that the rainbow gravity can stop the Hawking radiation in the final stages of black holes' evolution and lead to the remnants of black holes. Furthermore, one can observe that the rainbow Schwarzschild black hole has one first-order phase transition, two second-order phase transitions, and three Hawking-Page-type phase transitions in the framework of rainbow gravity theory.
High pressure ferroelastic phase transition in SrTiO₃.
Salje, E K H; Guennou, M; Bouvier, P; Carpenter, M A; Kreisel, J
2011-07-13
High pressure measurements of the ferroelastic phase transition of SrTiO₃ (Guennou et al 2010 Phys. Rev. B 81 054115) showed a linear pressure dependence of the transition temperature between the cubic and tetragonal phase. Furthermore, the pressure induced transition becomes second order while the temperature dependent transition is near a tricritical point. The phase transition mechanism is characterized by the elongation and tilt of the TiO₆ octahedra in the tetragonal phase, which leads to strongly nonlinear couplings between the structural order parameter, the volume strain and the applied pressure. The phase diagram is derived from the Clausius-Clapeyron relationship and is directly related to a pressure dependent Landau potential. The nonlinearities of the pressure dependent strains lead to an increase of the fourth order Landau coefficient with increasing pressure and, hence, to a tricritical-second order crossover. This behaviour is reminiscent of the doping related crossover in isostructural KMnF₃.
Electron microscopy: Phase transition singled out
Browning, Nigel D.
2013-04-23
One of the fundamental challenges within nanotechnology is to understand and control how nanoscale properties are initiated, evolve, and eventually terminate as a system moves from an individual nanostructure towards the meso- and macro-scale ensembles that are used in most applications. The ability to directly observe individual nanostructures and characterize their structure and composition has long been within the purview of transmission electron microscopy (TEM). The almost ubiquitous application of spherical aberration correction in TEM and in scanning-TEM (STEM) that has occurred over the last 10 years, now means it is possible to routinely characterize such nanostructures with both atomic resolution and sensitivity [1,2]. The development of temporal resolution in the TEM and the ability to study fast dynamics, on the other hand, has only recently come to the forefront of instrumentation development and is currently defined by two different approaches in the use of photoemission sources: the single shot s-ns dynamic TEM (DTEM) [3] and the stroboscopic ps-fs 4-D EM [4]. In the case of the DTEM, the goal is to observe the longer timescale irreversible structural changes that occur during nucleation and growth phenomena (here the single shot approach means there are enough electrons in a single pulsed beam to form a complete image). The 4-D EM focuses on a stroboscopic approach with the goal of studying very rapid reversible effects that occur during phase transitions (here an image is composed of thousands of pump-probe events each occurring with exactly the same time signature, with an individual pulse containing only a few electrons).
Phase transitions in pancreatic islet cellular networks and implications for type-1 diabetes
NASA Astrophysics Data System (ADS)
Stamper, I. J.; Jackson, Elais; Wang, Xujing
2014-01-01
In many aspects the onset of a chronic disease resembles a phase transition in a complex dynamic system: Quantitative changes accumulate largely unnoticed until a critical threshold is reached, which causes abrupt qualitative changes of the system. In this study we examine a special case, the onset of type-1 diabetes (T1D), a disease that results from loss of the insulin-producing pancreatic islet β cells. Within each islet, the β cells are electrically coupled to each other via gap-junctional channels. This intercellular coupling enables the β cells to synchronize their insulin release, thereby generating the multiscale temporal rhythms in blood insulin that are critical to maintaining blood glucose homeostasis. Using percolation theory we show how normal islet function is intrinsically linked to network connectivity. In particular, the critical amount of β-cell death at which the islet cellular network loses site percolation is consistent with laboratory and clinical observations of the threshold loss of β cells that causes islet functional failure. In addition, numerical simulations confirm that the islet cellular network needs to be percolated for β cells to synchronize. Furthermore, the interplay between site percolation and bond strength predicts the existence of a transient phase of islet functional recovery after onset of T1D and introduction of treatment, potentially explaining the honeymoon phenomenon. Based on these results, we hypothesize that the onset of T1D may be the result of a phase transition of the islet β-cell network.
Phase transitions in pancreatic islet cellular networks and implications for type-1 diabetes
Stamper, I. J.; Jackson, Elais; Wang, Xujing
2014-01-01
In many aspects the onset of a chronic disease resembles a phase transition in a complex dynamic system: Quantitative changes accumulate largely unnoticed until a critical threshold is reached, which causes abrupt qualitative changes of the system. In this study we examine a special case, the onset of type-1 diabetes (T1D), a disease that results from loss of the insulin-producing pancreatic islet β cells. Within each islet, the β cells are electrically coupled to each other via gap-junctional channels. This intercellular coupling enables the β cells to synchronize their insulin release, thereby generating the multiscale temporal rhythms in blood insulin that are critical to maintaining blood glucose homeostasis. Using percolation theory we show how normal islet function is intrinsically linked to network connectivity. In particular, the critical amount of β-cell death at which the islet cellular network loses site percolation is consistent with laboratory and clinical observations of the threshold loss of β cells that causes islet functional failure. In addition, numerical simulations confirm that the islet cellular network needs to be percolated for β cells to synchronize. Furthermore, the interplay between site percolation and bond strength predicts the existence of a transient phase of islet functional recovery after onset of T1D and introduction of treatment, potentially explaining the honeymoon phenomenon. Based on these results, we hypothesize that the onset of T1D may be the result of a phase transition of the islet β-cell network. PMID:24580269
Fluctuation-driven electroweak phase transition. [in early universe
NASA Technical Reports Server (NTRS)
Gleiser, Marcelo; Kolb, Edward W.
1992-01-01
We examine the dynamics of the electroweak phase transition in the early Universe. For Higgs masses in the range 46 less than or = M sub H less than or = 150 GeV and top quark masses less than 200 GeV, regions of symmetric and asymmetric vacuum coexist to below the critical temperature, with thermal equilibrium between the two phases maintained by fluctuations of both phases. We propose that the transition to the asymmetric vacuum is completed by percolation of these subcritical fluctuations. Our results are relevant to scenarios of baryogenesis that invoke a weakly first-order phase transition at the electroweak scale.
Fluctuation-driven electroweak phase transition. [in early universe
NASA Technical Reports Server (NTRS)
Gleiser, Marcelo; Kolb, Edward W.
1992-01-01
We examine the dynamics of the electroweak phase transition in the early Universe. For Higgs masses in the range 46 less than or = M sub H less than or = 150 GeV and top quark masses less than 200 GeV, regions of symmetric and asymmetric vacuum coexist to below the critical temperature, with thermal equilibrium between the two phases maintained by fluctuations of both phases. We propose that the transition to the asymmetric vacuum is completed by percolation of these subcritical fluctuations. Our results are relevant to scenarios of baryogenesis that invoke a weakly first-order phase transition at the electroweak scale.
Decoupling translational and rotational effects on the phase synchronization of rotating helices
NASA Astrophysics Data System (ADS)
Tu, Jonathan H.; Arcak, Murat; Maharbiz, Michel M.
2015-02-01
The locomotion of swimming microorganisms often relies on synchronized motions; examples include the bundling of flagella and metachronal coordination of cilia. It is now generally accepted that such behavior can result from hydrodynamic interactions alone. In this paper we consider the interactions between two side-by-side rigid helices driven by constant torques. We use the method of regularized Stokeslets to simulate an end-pinned model, in which restoring forces and torques are applied at one end of each helix. This allows us to decouple the respective effects of translation and rotation on phase synchronization. We find that while translational freedom leads to synchrony, rotational freedom can result in either synchrony or antisynchrony, depending on the stiffness of the system. In addition, we characterize the nature of the physical mechanisms driving these behaviors, focusing on the individual effects of each applied force and torque. For translational freedom, there is a single underlying mechanism in which the interaction forces indirectly influence the helix rotation rates. Multiple mechanisms are at play for rotational freedom: the interaction torques may exert either direct or indirect influence depending on stiffness. These characterizations are important to the future development of reduced-order models, which should capture not only the expected end behaviors (synchrony or antisynchrony), but also the nature of the driving mechanisms.
NASA Astrophysics Data System (ADS)
Noyelles, Benoît
2017-01-01
Most of the main planetary satellites of our Solar System are expected to be in synchronous rotation, the departures from the strict synchronicity being a signature of the interior. Librations have been measured for the Moon, Phobos, and some satellites of Saturn. I here revisit the theory of the longitudinal librations in considering that part of the interior is not hydrostatic, i.e. has not been shaped by the rotational and tidal deformations, but is fossil. This consideration affects the rotational behavior. For that, I derive the tensor of inertia of the satellite in splitting these two parts, before proposing an analytical solution that I validate with numerical simulations. I apply this new theory on Mimas and Epimetheus, for which librations have been measured from Cassini data. I show that the large measured libration amplitude of these bodies can be explained by an excess of triaxiality that would not result from the hydrostatic theory. This theory cannot explain the phase shift which has been measured in the diurnal librations of Mimas. This speaks against a solid structure for Mimas, i.e. Mimas could have a global internal ocean.
Insight into Structural Phase Transitions from Density Functional Theory
NASA Astrophysics Data System (ADS)
Ruzsinszky, Adrienn
2014-03-01
Structural phase transitions caused by high pressure or temperature are very relevant in materials science. The high pressure transitions are essential to understand the interior of planets. Pressure or temperature induced phase transitions can be relevant to understand other phase transitions in strongly correlated systems or molecular crystals.Phase transitions are important also from the aspect of method development. Lower level density functionals, LSDA and GGAs all fail to predict the lattice parameters of different polymorphs and the phase transition parameters at the same time. At this time only nonlocal density functionals like HSE and RPA have been proved to resolve the geometry-energy dilemma to some extent in structural phase transitions. In this talk I will report new results from the MGGA_MS family of meta-GGAs and give an insight why this type of meta-GGAs can give a systematic improvement of the geometry and phase transition parameters together. I will also present results from the RPA and show a possible way to improve beyond RPA.
Quantum phase transitions of topological insulators without gap closing.
Rachel, Stephan
2016-10-12
We consider two-dimensional Chern insulators and time-reversal invariant topological insulators and discuss the effect of perturbations breaking either particle-number conservation or time-reversal symmetry. The appearance of trivial mass terms is expected to cause quantum phase transitions into trivial phases when such a perturbation overweighs the topological term. These phase transitions are usually associated with a bulk-gap closing. In contrast, the chiral Chern insulator is unaffected by particle-number breaking perturbations. Moreover, the [Formula: see text] topological insulator undergoes phase transitions into topologically trivial phases without bulk-gap closing in the presence of any of such perturbations. In certain cases, these phase transitions can be circumvented and the protection restored by another U(1) symmetry, e.g. due to spin conservation. These findings are discussed in the context of interacting topological insulators.
CO2 Capture from Flue Gas by Phase Transitional Absorption
Liang Hu
2009-06-30
A novel absorption process called Phase Transitional Absorption was invented. What is the Phase Transitional Absorption? Phase Transitional Absorption is a two or multi phase absorption system, CO{sub 2} rich phase and CO{sub 2} lean phase. During Absorption, CO{sub 2} is accumulated in CO{sub 2} rich phase. After separating the two phases, CO{sub 2} rich phase is forward to regeneration. After regeneration, the regenerated CO{sub 2} rich phase combines CO{sub 2} lean phase to form absorbent again to complete the cycle. The advantage for Phase Transitional Absorption is obvious, significantly saving on regeneration energy. Because CO{sub 2} lean phase was separated before regeneration, only CO{sub 2} rich phase was forward to regeneration. The absorption system we developed has the features of high absorption rate, high loading and working capacity, low corrosion, low regeneration heat, no toxic to environment, etc. The process evaluation shows that our process is able to save 80% energy cost by comparing with MEA process.
Detecting of Multi Phase Inter Turn Short Circuit in the Five Permanent Magnet Synchronous Motor
NASA Astrophysics Data System (ADS)
Yassa, N.; Rachek, M.; Djerdir, A.; Becherif, M.
2016-10-01
This paper proposes a general model of five phase permanent magnet synchronous machine (PMSM) which is capable of representing the multiphase Inter Turn Short Circuit (ITSC) occurring in several phase simultaneously this model is based on a coupled magnetic circuit approach leading to a differential equations system goveming the induction machine behavior. The obtained time-differential state equations system is implemented under Matlab environment and numerically solved using the fourth order Rung-Kutta method with variable step time corrected at each rotor displacement through the electromagnetic torque. Also, Fast Fourier Transform and (FFT) analysis is performed to the phase current signal to detect the frequency spectrum, Power Spectral Density (PSD) is chosen as a classification method. Its efficiency depends on its ability to discriminate between various faults generating the same range of harmonics in the stator current spectrum and on its ability to evaluate the fault severity. So, in order to improve the efficiency of these diagnosis methods, one needs a relatively accurate model to simulate the five-phase PMSM in the case of inter-tum short circuit fault helping to predict performances andor to extract fault signature in the machine main quantities. Simulation work has been carried out using MATLAB to verify the performance of the proposed detection/diagnosis method.
Theta Phase Synchronization Is the Glue that Binds Human Associative Memory.
Clouter, Andrew; Shapiro, Kimron L; Hanslmayr, Simon
2017-10-04
Episodic memories are information-rich, often multisensory events that rely on binding different elements [1]. The elements that will constitute a memory episode are processed in specialized but distinct brain modules. The binding of these elements is most likely mediated by fast-acting long-term potentiation (LTP), which relies on the precise timing of neural activity [2]. Theta oscillations in the hippocampus orchestrate such timing as demonstrated by animal studies in vitro [3, 4] and in vivo [5, 6], suggesting a causal role of theta activity for the formation of complex memory episodes, but direct evidence from humans is missing. Here, we show that human episodic memory formation depends on phase synchrony between different sensory cortices at the theta frequency. By modulating the luminance of visual stimuli and the amplitude of auditory stimuli, we directly manipulated the degree of phase synchrony between visual and auditory cortices. Memory for sound-movie associations was significantly better when the stimuli were presented in phase compared to out of phase. This effect was specific to theta (4 Hz) and did not occur in slower (1.7 Hz) or faster (10.5 Hz) frequencies. These findings provide the first direct evidence that episodic memory formation in humans relies on a theta-specific synchronization mechanism. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ferruzzo Correa, Diego Paolo; Wulff, Claudia; Piqueira, José Roberto Castilho
2015-05-01
In recent years there has been an increasing interest in studying time-delayed coupled networks of oscillators since these occur in many real life applications. In many cases symmetry patterns can emerge in these networks, as a consequence a part of the system might repeat itself, and properties of this subsystem are representative of the dynamics on the whole phase space. In this paper an analysis of the second order N-node time-delay fully connected network is presented which is based on previous work: synchronous states in time-delay coupled periodic oscillators: a stability criterion. Correa and Piqueira (2013), for a 2-node network. This study is carried out using symmetry groups. We show the existence of multiple eigenvalues forced by symmetry, as well as the existence of Hopf bifurcations. Three different models are used to analyze the network dynamics, namely, the full-phase, the phase, and the phase-difference model. We determine a finite set of frequencies ω , that might correspond to Hopf bifurcations in each case for critical values of the delay. The Sn map is used to actually find Hopf bifurcations along with numerical calculations using the Lambert W function. Numerical simulations are used in order to confirm the analytical results. Although we restrict attention to second order nodes, the results could be extended to higher order networks provided the time-delay in the connections between nodes remains equal.
Phase synchronization analysis of EEG signals: an evaluation based on surrogate tests.
Junfeng Sun; Xiangfei Hong; Shanbao Tong
2012-08-01
Phase synchronization (PS) analysis has been demonstrated to be a useful method to infer functional connectivity with multichannel neural signals, e.g., electroencephalography (EEG). Methodological problems on quantifying functional connectivity with PS analysis have been investigated extensively, but some of them have not been fully solved yet. For example, how long a segment of EEG signal should be used in estimating PS index? Which methods are more suitable to infer the significant level of estimated PS index? To address these questions, this paper performs an intensive computation study on PS analysis based on surrogate tests with 1) artificial surrogate data generated by shuffling the rank order, the phase spectra, or the instantaneous frequency of original EEG signals, and 2) intersubject EEG pairs under the assumption that the EEG signals of different subjects are independent. Results show that 1) the phase-shuffled surrogate method is workable for significance test of estimated PS index and yields results similar to those by intersubject EEG surrogate test; 2) generally, a duration of EEG waves covering about 3 16 cycles is suitable for PS analysis; and 3) the PS index based on mean phase coherence is more suitable for PS analysis of EEG signals recorded at relatively low sampling rate.
The OCD phase transition and supernova core collapse
Gentile, N.A.; Mathews, G.J.; Wilson, J.R.
1993-10-01
We examine the implications for stellar core collapse of a phase transition occurring at densities of a few times nuclear matter density. We use an equation of state that describes a phase transition between bulk nuclear matter and a phase consisting of unbound quarks and gluons. We analyze the effect on the prompt shock, the production of strange matter, and the effect on the neutrino signal and the delayed mechanism.
Modeling high-order synchronization epochs and transitions in the cardiovascular system
NASA Astrophysics Data System (ADS)
García-Álvarez, David; Bahraminasab, Alireza; Stefanovska, Aneta; McClintock, Peter V. E.
2007-12-01
We study a system consisting of two coupled phase oscillators in the presence of noise. This system is used as a model for the cardiorespiratory interaction in wakefulness and anaesthesia. We show that longrange correlated noise produces transitions between epochs with different n:m synchronisation ratios, as observed in the cardiovascular system. Also, we see that, the smaller the noise (specially the one acting on the slower oscillator), the bigger the synchronisation time, exactly as happens in anaesthesia compared with wakefulness. The dependence of the synchronisation time on the couplings, in the presence of noise, is studied; such dependence is softened by low-frequency noise. We show that the coupling from the slow oscillator to the fast one (respiration to heart) plays a more important role in synchronisation. Finally, we see that the isolines with same synchronisation time seem to be a linear combination of the two couplings.
Complex and transitive synchronization in a frustrated system of calling frogs
NASA Astrophysics Data System (ADS)
Aihara, Ikkyu; Takeda, Ryu; Mizumoto, Takeshi; Otsuka, Takuma; Takahashi, Toru; Okuno, Hiroshi G.; Aihara, Kazuyuki
2011-03-01
This letter reports synchronization phenomena and mathematical modeling on a frustrated system of living beings, or Japanese tree frogs (Hyla japonica). While an isolated male Japanese tree frog calls nearly periodically, he can hear sounds including calls of other males. Therefore, the spontaneous calling behavior of interacting males can be understood as a system of coupled oscillators. We construct a simple but biologically reasonable model based on the experimental results of two frogs, extend the model to a system of three frogs, and theoretically predict the occurrence of rich synchronization phenomena, such as triphase synchronization and 1:2 antiphase synchronization. In addition, we experimentally verify the theoretical prediction by ethological experiments on the calling behavior of three frogs and time series analysis on recorded sound data. Note that the calling behavior of three male Japanese tree frogs is frustrated because almost perfect antiphase synchronization is robustly observed in a system of two male frogs. Thus, nonlinear dynamics of the three-frogs system should be far from trivial.
Quantum phase transition in strongly correlated systems
NASA Astrophysics Data System (ADS)
Jiang, Longhua
In this thesis, we investigated the strongly correlated phenomena in bilayer quantum Hall effect, inhomogeneous superconductivity and Boson Hubbard model. Bilayer quantum Hall system is studied in chapter 2. By using the Composite Boson (CB) theory developed by J. Ye, we derive the ground state, quasihole and a quasihole-pair wave functions from the CB theory and its dual action. We find that the ground state wave function is the product of two parts, one in the charge sector which is the well known Halperin's (111) wave function and the other in the spin sector which is non-trivial at any finite d due to the gapless mode. So the total groundstate wave function differs from the well known (111) wave function at any finite d. In addition to commonly known multiplicative factors, the quasihole and quasihole-pair wave functions also contain non-trivial normalization factors multiplying the correct ground state wave function. Then we continue to study the quantum phase transition from the excitonic superfluid (ESF) to a possible pseudo-spin density wave (PSDW) at some intermediate distances driven by the magneto-roton minimum collapsing at a finite wavevector. We analyze the properties of the PSDW and explicitly show that a square lattice is the favored lattice. We suggest that correlated hopping of vacancies in the active and passive layers in the PSDW state leads to very large and temperature-dependent drag, consistent with the experimental data. Comparisons with previous microscopic numerical calculations are made. Further experimental implications are given. In chapter 3, we investigate inhomogeneous superconductivity. Starting from the Ginzburg-Landau free energy describing the normal state to Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state transition, we evaluate the free energy of seven most common lattice structures: stripe, square, triangular, Simple Cubic (SC), Face centered Cubic (FCC), Body centered Cubic (BCC) and Quasicrystal (QC). We find that the stripe
Rangaprakash, D; Hu, Xiaoping; Deshpande, Gopikrishna
2013-04-01
It is increasingly being recognized that resting state brain connectivity derived from functional magnetic resonance imaging (fMRI) data is an important marker of brain function both in healthy and clinical populations. Though linear correlation has been extensively used to characterize brain connectivity, it is limited to detecting first order dependencies. In this study, we propose a framework where in phase synchronization (PS) between brain regions is characterized using a new metric "correlation between probabilities of recurrence" (CPR) and subsequent graph-theoretic analysis of the ensuing networks. We applied this method to resting state fMRI data obtained from human subjects with and without administration of propofol anesthetic. Our results showed decreased PS during anesthesia and a biologically more plausible community structure using CPR rather than linear correlation. We conclude that CPR provides an attractive nonparametric method for modeling interactions in brain networks as compared to standard correlation for obtaining physiologically meaningful insights about brain function.
The electroweak phase transition in the Inert Doublet Model
Blinov, Nikita; Profumo, Stefano; Stefaniak, Tim E-mail: profumo@ucsc.edu
2015-07-01
We study the strength of a first-order electroweak phase transition in the Inert Doublet Model (IDM), where particle dark matter (DM) is comprised of the lightest neutral inert Higgs boson. We improve over previous studies in the description and treatment of the finite-temperature effective potential and of the electroweak phase transition. We focus on a set of benchmark models inspired by the key mechanisms in the IDM leading to a viable dark matter particle candidate, and illustrate how to enhance the strength of the electroweak phase transition by adjusting the masses of the yet undiscovered IDM Higgs states. We argue that across a variety of DM masses, obtaining a strong enough first-order phase transition is a generic possibility in the IDM. We find that due to direct dark matter searches and collider constraints, a sufficiently strong transition and a thermal relic density matching the universal DM abundance is possible only in the Higgs funnel regime.
The electroweak phase transition in the Inert Doublet Model
Blinov, Nikita; Profumo, Stefano; Stefaniak, Tim
2015-07-21
We study the strength of a first-order electroweak phase transition in the Inert Doublet Model (IDM), where particle dark matter (DM) is comprised of the lightest neutral inert Higgs boson. We improve over previous studies in the description and treatment of the finite-temperature effective potential and of the electroweak phase transition. We focus on a set of benchmark models inspired by the key mechanisms in the IDM leading to a viable dark matter particle candidate, and illustrate how to enhance the strength of the electroweak phase transition by adjusting the masses of the yet undiscovered IDM Higgs states. We argue that across a variety of DM masses, obtaining a strong enough first-order phase transition is a generic possibility in the IDM. We find that due to direct dark matter searches and collider constraints, a sufficiently strong transition and a thermal relic density matching the universal DM abundance is possible only in the Higgs funnel regime.
The effects of Venusian mantle convection with multiple phase transitions
NASA Technical Reports Server (NTRS)
Steinbach, V.; Yuen, D. A.; Christensen, U. R.
1992-01-01
Recently there was a flurry of activities in studying the effects of phase transitions in the Earth's mantle. From petrological and geophysical considerations, phase-transitions would also play an important role in venusian dynamics. The basic differences between the two planets are the surface boundary conditions, both thermally and mechanically. In this vein we have studied time-dependent mantle convection with multiple phase transitions and depth-dependent thermal expansivity (alpha is approximately rho(exp -6)), based on high-pressure and temperature measurements. Both the olivine-spinel and spinel-perovskite transitions were simulated by introducing an effective thermal expansivity, as described. Used together with the extended Boussinesq Approximation this method serves as a powerful tool to examine the effects of phase transitions on convection at relatively low computational costs.
Analysis of a phase synchronized functional network based on the rhythm of brain activities
NASA Astrophysics Data System (ADS)
Li, Ling; Jin, Zhen-Lan; Li, Bin
2011-03-01
Rhythm of brain activities represents oscillations of postsynaptic potentials in neocortex, therefore it can serve as an indicator of the brain activity state. In order to check the connectivity of brain rhythm, this paper develops a new method of constructing functional network based on phase synchronization. Electroencephalogram (EEG) data were collected while subjects looking at a green cross in two states, performing an attention task and relaxing with eyes-open. The EEG from these two states was filtered by three band-pass filters to obtain signals of theta (4-7 Hz), alpha (8-13 Hz) and beta (14-30 Hz) bands. Mean resultant length was used to estimate strength of phase synchronization in three bands to construct networks of both states, and mean degree K and cluster coefficient C of networks were calculated as a function of threshold. The result shows higher cluster coefficient in the attention state than in the eyes-open state in all three bands, suggesting that cluster coefficient reflects brain state. In addition, an obvious fronto-parietal network is found in the attention state, which is a well-known attention network. These results indicate that attention modulates the fronto-parietal connectivity in different modes as compared with the eyes-open state. Taken together this method is an objective and important tool to study the properties of neural networks of brain rhythm. Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 30800242). yCorresponding author. E-mail: libin@uestc.edu.cn
Brunetti, Enzo; Maldonado, Pedro E.; Aboitiz, Francisco
2013-01-01
During monitoring of the discourse, the detection of the relevance of incoming lexical information could be critical for its incorporation to update mental representations in memory. Because, in these situations, the relevance for lexical information is defined by abstract rules that are maintained in memory, a central aspect to elucidate is how an abstract level of knowledge maintained in mind mediates the detection of the lower-level semantic information. In the present study, we propose that neuronal oscillations participate in the detection of relevant lexical information, based on “kept in mind” rules deriving from more abstract semantic information. We tested our hypothesis using an experimental paradigm that restricted the detection of relevance to inferences based on explicit information, thus controlling for ambiguities derived from implicit aspects. We used a categorization task, in which the semantic relevance was previously defined based on the congruency between a kept in mind category (abstract knowledge), and the lexical semantic information presented. Our results show that during the detection of the relevant lexical information, phase synchronization of neuronal oscillations selectively increases in delta and theta frequency bands during the interval of semantic analysis. These increments occurred irrespective of the semantic category maintained in memory, had a temporal profile specific for each subject, and were mainly induced, as they had no effect on the evoked mean global field power. Also, recruitment of an increased number of pairs of electrodes was a robust observation during the detection of semantic contingent words. These results are consistent with the notion that the detection of relevant lexical information based on a particular semantic rule, could be mediated by increasing the global phase synchronization of neuronal oscillations, which may contribute to the recruitment of an extended number of cortical regions. PMID:23785341
Wang, Zhenhua; Tian, Changhai; Dhamala, Mukesh; Liu, Zonghua
2017-04-03
We here study explosive synchronization transitions and network activity propagation in networks of coupled neurons to provide a new understanding of the relationship between network topology and explosive dynamical transitions as in epileptic seizures and their propagations in the brain. We model local network motifs and configurations of coupled neurons and analyze the activity propagations between a group of active neurons to their inactive neuron neighbors in a variety of network configurations. We find that neuronal activity propagation is limited to local regions when network is highly clustered with modular structures as in the normal brain networks. When the network cluster structure is slightly changed, the activity propagates to the entire network, which is reminiscent of epileptic seizure propagation in the brain. Finally, we analyze intracranial electroencephalography (IEEG) recordings of a seizure episode from a epilepsy patient and uncover that explosive synchronization-like transition occurs around the clinically defined onset of seizure. These findings may provide a possible mechanism for the recurrence of epileptic seizures, which are known to be the results of aberrant neuronal network structure and/or function in the brain.
High pressure structural phase transitions of PbPo
NASA Astrophysics Data System (ADS)
Bencherif, Y.; Boukra, A.; Zaoui, A.; Ferhat, M.
2012-09-01
First-principles calculations have been performed to investigate the high pressure phase transitions and dynamical properties of the less known lead polonium compound. The calculated ground state parameters for the NaCl phase show good agreement with the experimental data. The obtained results show that the intermediate phase transition for this compound is the orthorhombic Pnma phase. The PbPo undergoes from the rocksalt to Pnma phase at 4.20 GPa. Further structural phase transition from intermediate to CsCl phase has been found at 8.5 GPa. In addition, phonon dispersion spectra were derived from linear-response to density functional theory. In particular, we show that the dynamical properties of PbPo exhibit some peculiar features compared to other III-V compounds. Finally, thermodynamics properties have been also addressed from quasiharmonic approximation.
Deviatoric stress-induced phase transitions in diamantane
Yang, Fan; Lin, Yu; Dahl, Jeremy E. P.; Carlson, Robert M. K.; Mao, Wendy L.
2014-10-21
The high-pressure behavior of diamantane was investigated using angle-dispersive synchrotron x-ray diffraction (XRD) and Raman spectroscopy in diamond anvil cells. Our experiments revealed that the structural transitions in diamantane were extremely sensitive to deviatoric stress. Under non-hydrostatic conditions, diamantane underwent a cubic (space group Pa3) to a monoclinic phase transition at below 0.15 GPa, the lowest pressure we were able to measure. Upon further compression to 3.5 GPa, this monoclinic phase transformed into another high-pressure monoclinic phase which persisted to 32 GPa, the highest pressure studied in our experiments. However, under more hydrostatic conditions using silicone oil as a pressure medium, the transition pressure to the first high-pressure monoclinic phase was elevated to 7–10 GPa, which coincided with the hydrostatic limit of silicone oil. In another experiment using helium as a pressure medium, no phase transitions were observed to the highest pressure we reached (13 GPa). In addition, large hysteresis and sluggish transition kinetics were observed upon decompression. Over the pressure range where phase transitions were confirmed by XRD, only continuous changes in the Raman spectra were observed. This suggests that these phase transitions are associated with unit cell distortions and modifications in molecular packing rather than the formation of new carbon-carbon bonds under pressure.
Ethylene Epoxidation at the Phase Transition of Copper Oxides.
Greiner, Mark T; Jones, Travis E; Klyushin, Alexander; Knop-Gericke, Axel; Schlögl, Robert
2017-08-30
Catalytic materials tend to be metastable. When a material becomes metastable close to a thermodynamic phase transition it can exhibit unique catalytic behavior. Using in situ photoemission spectroscopy and online product analysis, we have found that close to the Cu2O-CuO phase transition there is a boost in activity for a kinetically driven reaction, ethylene epoxidation, giving rise to a 20-fold selectivity enhancement relative to the selectivity observed far from the phase transition. By tuning conditions toward low oxygen chemical potential, this metastable state and the resulting enhanced selectivity can be sustained. Using density functional theory, we find that metastable O precursors to the CuO phase can account for the selectivity enhancements near the phase transition.
Homogeneous nucleation of a noncritical phase near a continuous phase transition
Sear, Richard P.
2001-06-01
Homogeneous nucleation of a new phase near a second, continuous, transition, is considered. The continuous transition is in the metastable region associated with the first-order phase transition, one of whose coexisting phases is nucleating. Mean-field calculations show that as the continuous transition is approached, the size of the nucleus varies as the response function of the order parameter of the continuous transition. This response function diverges at the continuous transition, as does the temperature derivative of the free-energy barrier to nucleation. This rapid drop of the barrier as the continuous transition is approached means that the continuous transition acts to reduce the barrier to nucleation at the first-order transition. This may be useful in the crystallization of globular proteins.
Problem-Solving Phase Transitions During Team Collaboration.
Wiltshire, Travis J; Butner, Jonathan E; Fiore, Stephen M
2017-02-18
Multiple theories of problem-solving hypothesize that there are distinct qualitative phases exhibited during effective problem-solving. However, limited research has attempted to identify when transitions between phases occur. We integrate theory on collaborative problem-solving (CPS) with dynamical systems theory suggesting that when a system is undergoing a phase transition it should exhibit a peak in entropy and that entropy levels should also relate to team performance. Communications from 40 teams that collaborated on a complex problem were coded for occurrence of problem-solving processes. We applied a sliding window entropy technique to each team's communications and specified criteria for (a) identifying data points that qualify as peaks and (b) determining which peaks were robust. We used multilevel modeling, and provide a qualitative example, to evaluate whether phases exhibit distinct distributions of communication processes. We also tested whether there was a relationship between entropy values at transition points and CPS performance. We found that a proportion of entropy peaks was robust and that the relative occurrence of communication codes varied significantly across phases. Peaks in entropy thus corresponded to qualitative shifts in teams' CPS communications, providing empirical evidence that teams exhibit phase transitions during CPS. Also, lower average levels of entropy at the phase transition points predicted better CPS performance. We specify future directions to improve understanding of phase transitions during CPS, and collaborative cognition, more broadly. Copyright © 2017 Cognitive Science Society, Inc.
Capillary Condensation in Polymer Blends: an Analysis of Phase Transitions
NASA Astrophysics Data System (ADS)
Ilie, Carolina C.; Jira, Nicholas C.; Evans, Ian R.; Cohen, Matthew; D'Rozario, Julia R.; Romano, Marie T.; Sabirianov, Ildar
We explore herein the capillary condensation for various geometries. Capillary condensation is studied in the presence of van der Waals forces. We derive the grand free energy, and we analyze the phase transitions, the absorption isotherms and the triple point. Phase transitions between full, empty and two films are investigated and the shape of the liquid is calculated. We also analyze an important application of wetting phenomena and capillary condensation in binary polymer blends and investigate the type of wetting transitions presented and the phase diagram. SUNY Oswego SCAC Grant, NSF Noyce Grant.
Tunable Bragg filters with a phase transition material defect layer
Wang, Xi; Gong, Zilun; Dong, Kaichen; ...
2016-01-01
We propose an all-solid-state tunable Bragg filter with a phase transition material as the defect layer. Bragg filters based on a vanadium dioxide defect layer sandwiched between silicon dioxide/titanium dioxide Bragg gratings are experimentally demonstrated. Temperature dependent reflection spectroscopy shows the dynamic tunability and hysteresis properties of the Bragg filter. Temperature dependent Raman spectroscopy reveals the connection between the tunability and the phase transition of the vanadium dioxide defect layer. This work paves a new avenue in tunable Bragg filter designs and promises more applications by combining phase transition materials and optical cavities.
Disorder-induced rounding of certain quantum phase transitions.
Vojta, Thomas
2003-03-14
We study the influence of quenched disorder on quantum phase transitions in systems with overdamped dynamics. For Ising order-parameter symmetry disorder destroys the sharp phase transition by rounding because a static order parameter can develop on rare spatial regions. This leads to an exponential dependence of the order parameter on the coupling constant. At finite temperatures the static order on the rare regions is destroyed. This restores the phase transition and leads to a double-exponential relation between critical temperature and coupling strength. We discuss the behavior based on Lifshitz-tail arguments and illustrate the results by simulations of a model system.
Superradiant phase transitions with three-level systems
NASA Astrophysics Data System (ADS)
Baksic, Alexandre; Nataf, Pierre; Ciuti, Cristiano
2013-02-01
We determine the phase diagram of N identical three-level systems interacting with a single photonic mode in the thermodynamical limit (N→∞) by accounting for the so-called diamagnetic term and the inequalities imposed by the Thomas-Reich-Kuhn (TRK) oscillator strength sum rule. The key role of transitions between excited levels and the occurrence of first-order phase transitions is discussed. We show that, in contrast to two-level systems, in the three-level case the TRK inequalities do not always prevent a superradiant phase transition in the presence of a diamagnetic term.
Problem of Phase Transition in Spin-fluctuation Theory
NASA Astrophysics Data System (ADS)
Melnikov, N. B.; Paradezhenko, G. V.
A first-order phase transition is a characteristic feature of the Gaussian approximation in spin-fluctuation theory. We describe a method for taking into account the fourth-order terms of the free energy expansion using partial averaging. In the example of the Ising model, we show that renormalization of the magnetic susceptibility leads to the second-order phase transition, which is experimentally observed in metals. Near the phase transition, we use the parameter substitution method to compute temperature dependencies. We perform a qualitative analysis and explain the mechanism of the renormalization.
Geometrical phase transitions on hierarchical lattices and universality
NASA Astrophysics Data System (ADS)
Hauser, P. R.; Saxena, V. K.
1986-12-01
In order to examine the validity of the principle of universality for phase transitions on hierarchical lattices, we have studied percolation on a variety of hierarchical lattices, within exact position-space renormalization-group schemes. It is observed that the percolation critical exponent νp strongly depends on the topology of the lattices, even for lattices with the same intrinsic dimensions and connectivities. These results support some recent similar results on thermal phase transitions on hierarchical lattices and point out the possible violation of universality in phase transitions on hierarchical lattices.
Topology-driven magnetic quantum phase transition in topological insulators.
Zhang, Jinsong; Chang, Cui-Zu; Tang, Peizhe; Zhang, Zuocheng; Feng, Xiao; Li, Kang; Wang, Li-Li; Chen, Xi; Liu, Chaoxing; Duan, Wenhui; He, Ke; Xue, Qi-Kun; Ma, Xucun; Wang, Yayu
2013-03-29
The breaking of time reversal symmetry in topological insulators may create previously unknown quantum effects. We observed a magnetic quantum phase transition in Cr-doped Bi2(SexTe1-x)3 topological insulator films grown by means of molecular beam epitaxy. Across the critical point, a topological quantum phase transition is revealed through both angle-resolved photoemission measurements and density functional theory calculations. We present strong evidence that the bulk band topology is the fundamental driving force for the magnetic quantum phase transition. The tunable topological and magnetic properties in this system are well suited for realizing the exotic topological quantum phenomena in magnetic topological insulators.
Magnetostructural phase transitions in NiO and MnO: Neutron diffraction data
NASA Astrophysics Data System (ADS)
Balagurov, A. M.; Bobrikov, I. A.; Sumnikov, S. V.; Yushankhai, V. Yu.; Mironova-Ulmane, N.
2016-07-01
Structural and magnetic phase transitions in NiO and MnO antiferromagnets have been studied by high-precision neutron diffraction. The experiments have been performed on a high-resolution Fourier diffractometer (pulsed reactor IBR-2), which has the record resolution for the interplanar distance and a high intensity in the region of large interplanar distances; as a result, the characteristics of both transitions have been determined simultaneously. It has been shown that the structural and magnetic transitions in MnO occur synchronously and their temperatures coincide within the experimental errors: T str ≈ T mag ≈ (119 ± 1) K. The measurements for NiO have been performed with powders with different average sizes of crystallites (~1500 nm and ~138 nm). It has been found that the transition temperatures differ by ~50 K: T str = (471 ± 3) K, T mag = (523 ± 2) K. It has been argued that a unified mechanism of the "unsplit" magnetic and structural phase transition at a temperature of T mag is implemented in MnO and NiO. Deviation from this scenario in the behavior of NiO is explained by the quantitative difference—a weak coupling between the magnetic and secondary structural order parameters.
Sim, Taeyong; Choi, Ahnryul; Lee, Soeun; Mun, Joung Hwan
2017-10-01
The transition phase of a golf swing is considered to be a decisive instant required for a powerful swing. However, at the same time, the low back torsional loads during this phase can have a considerable effect on golf-related low back pain (LBP). Previous efforts to quantify the transition phase were hampered by problems with accuracy due to methodological limitations. In this study, vector-coding technique (VCT) method was proposed as a comprehensive methodology to quantify the precise transition phase and examine low back torsional load. Towards this end, transition phases were assessed using three different methods (VCT, lead hand speed and X-factor stretch) and compared; then, low back torsional load during the transition phase was examined. As a result, the importance of accurate transition phase quantification has been documented. The largest torsional loads were observed in healthy professional golfers (10.23 ± 1.69 N · kg(-1)), followed by professional golfers with a history of LBP (7.93 ± 1.79 N · kg(-1)), healthy amateur golfers (1.79 ± 1.05 N · kg(-1)) and amateur golfers with a history of LBP (0.99 ± 0.87 N · kg(-1)), which order was equal to that of the transition phase magnitudes of each group. These results indicate the relationship between the transition phase and LBP history and the dependency of the torsional load magnitude on the transition phase.
Safety performance of traffic phases and phase transitions in three phase traffic theory.
Xu, Chengcheng; Liu, Pan; Wang, Wei; Li, Zhibin
2015-12-01
Crash risk prediction models were developed to link safety to various phases and phase transitions defined by the three phase traffic theory. Results of the Bayesian conditional logit analysis showed that different traffic states differed distinctly with respect to safety performance. The random-parameter logit approach was utilized to account for the heterogeneity caused by unobserved factors. The Bayesian inference approach based on the Markov Chain Monte Carlo (MCMC) method was used for the estimation of the random-parameter logit model. The proposed approach increased the prediction performance of the crash risk models as compared with the conventional logit model. The three phase traffic theory can help us better understand the mechanism of crash occurrences in various traffic states. The contributing factors to crash likelihood can be well explained by the mechanism of phase transitions. We further discovered that the free flow state can be divided into two sub-phases on the basis of safety performance, including a true free flow state in which the interactions between vehicles are minor, and a platooned traffic state in which bunched vehicles travel in successions. The results of this study suggest that a safety perspective can be added to the three phase traffic theory. The results also suggest that the heterogeneity between different traffic states should be considered when estimating the risks of crash occurrences on freeways.
Pontine respiratory activity involved in inspiratory/expiratory phase transition
Mörschel, Michael; Dutschmann, Mathias
2009-01-01
Control of the timing of the inspiratory/expiratory (IE) phase transition is a hallmark of respiratory pattern formation. In principle, sensory feedback from pulmonary stretch receptors (Breuer–Hering reflex, BHR) is seen as the major controller for the IE phase transition, while pontine-based control of IE phase transition by both the pontine Kölliker–Fuse nucleus (KF) and parabrachial complex is seen as a secondary or backup mechanism. However, previous studies have shown that the BHR can habituate in vivo. Thus, habituation reduces sensory feedback, so the role of the pons, and specifically the KF, for IE phase transition may increase dramatically. Pontine-mediated control of the IE phase transition is not completely understood. In the present review, we discuss existing models for ponto-medullary interaction that may be involved in the control of inspiratory duration and IE transition. We also present intracellular recordings of pontine respiratory units derived from an in situ intra-arterially perfused brainstem preparation of rats. With the absence of lung inflation, this preparation generates a normal respiratory pattern and many of the recorded pontine units demonstrated phasic respiratory-related activity. The analysis of changes in membrane potentials of pontine respiratory neurons has allowed us to propose a number of pontine-medullary interactions not considered before. The involvement of these putative interactions in pontine-mediated control of IE phase transitions is discussed. PMID:19651653
NASA Astrophysics Data System (ADS)
Gonze, Didier; Markadieu, Nicolas; Goldbeter, Albert
2008-09-01
On the basis of experimental observations, it has been suggested that glycolytic oscillations underlie the pulsatile secretion of insulin by pancreatic β cells, with a periodicity of about 13min. If β cells within an islet are synchronized through gap junctions, the question arises as to how β cells located in different islets of Langerhans synchronize to produce oscillations in plasma levels of insulin. We address this question by means of a minimal model that incorporates the secretion of insulin by cells undergoing glycolytic oscillations. Global coupling and synchronization result from the inhibition exerted by insulin on the production of glucose, which serves as the substrate for metabolic oscillations. Glycolytic oscillations are described by a simple two-variable model centered on the product-activated reaction catalyzed by the allosteric enzyme phosphofructokinase. We obtain bifurcation diagrams for the cases in which insulin secretion is controlled solely by the product or by the substrate of the metabolic oscillator. Remarkably, we find that the oscillating cells in these conditions synchronize, respectively, in phase or out of phase. Numerical simulations show that in-phase and out-of-phase synchronization can sometimes coexist when insulin release is controlled by both the substrate and the product of the metabolic oscillator. The results provide an example of a system in which the selection of in-phase or out-of-phase synchronization is governed by the nature of the coupling between the intracellular oscillations and the secretion of the biochemical signal through which the oscillating cells are globally coupled.
Computer simulation of fluid phase transitions
NASA Astrophysics Data System (ADS)
Wilding, Nigel B.
2001-11-01
The goal of accurately locating fluid phase boundaries by means of computer simulation is hampered by difficulties associated with sampling both coexisting phases in a single simulation. We explain the background to these difficulties and describe how they can be tackled using a synthesis of biased Monte Carlo sampling and histogram extrapolation methods, in conjunction with a standard fluid simulation algorithm. The combined approach provides a powerful method for tracing fluid phase boundaries.