Science.gov

Sample records for phase transformation temperature

  1. Temperature limited heaters using phase transformation of ferromagnetic material

    DOEpatents

    Vitek, John Michael [Oak Ridge, TN; Brady, Michael Patrick [Oak Ridge, TN

    2009-10-06

    Systems, methods, and heaters for treating a subsurface formation are described herein. Systems and methods for making heaters are described herein. At least one heater includes a ferromagnetic conductor and an electrical conductor. The electrical conductor is electrically coupled to the ferromagnetic conductor. The heater provides a first amount of heat at a lower temperature. The heater may provide a second reduced amount of heat when the heater reaches a selected temperature, or enters a selected temperature range, at which the ferromagnetic conductor undergoes a phase transformation.

  2. Transformation temperatures of martensite in beta-phase nickel aluminide.

    NASA Technical Reports Server (NTRS)

    Smialek, J. L.; Hehemann, R. F.

    1973-01-01

    Resistivity and thermal arrest measurements determined that the compositional dependence of M sub s temperatures for NiAl martensite was linear between 60 and 69 at. % Ni, with M sub s = (124 Ni - 7410)K. Resistivity and surface relief experiments for selected alloys indicated the presence of thermoelastic martensite. Some aspects of the transformation were studied by hot-stage microscopy and related to the behavior observed for alloys exhibiting the shape-memory effect.

  3. Transformation temperatures of martensite in beta phase nickel aluminide

    NASA Technical Reports Server (NTRS)

    Smialek, J. L.; Hehemann, R. F.

    1972-01-01

    Resistivity and thermal arrest measurements determined that the compositional dependence of Ms (martensite state) temperatures for NiAl martensite was linear between 60 and 69 atomic percent nickel, with Ms = 124 Ni - 7410 K. Resistivity and surface relief experiments indicated the presence of thermoelastic martensite for selected alloys. Some aspects of the transformation were studied by hot stage microscopy and related to the behavior observed for alloys exhibiting the shape-memory effect.

  4. High-temperature phase transformations. The properties of the phases and their equilibrium under shock loading.

    NASA Astrophysics Data System (ADS)

    Zaretsky, Eugene

    2011-06-01

    Introducing the temperature as a variable parameter in shock wave experiments extends essentially the scope of these investigations. The influence of the temperature variations on either high strain rate elastic-plastic response of solids or parameters of the shock-induces phase transformations are not trivial and are not quite clear yet. The technique of VISAR-monitored planar impact experiments with the samples preheated up to 1400 K was developed and used for the studies of the effect of the preheating on the impact response and on the ``dynamic'' phase diagrams of pure metals (U, Ti, Fe, Co, Ag), and ionic compounds (KCl, KBr). The studies show that the increase of the shear strength of the shock-loaded metal with temperature (first reported by Kanel et al. 1996) is typical for pure FCC (Al, Ag, Cu) and some other (Sn, U) metals, and for the ionic crystals. In the metals with BCC lattice (Mo: Duffy and Ahrens 1994, Fe: Zaretsky 2009) such thermal hardening was not found. The abrupt strength anomalies (either yield or spall or both) were observed in a narrow vicinity of the temperature of any, polymorphic, magnetic, or melting, phase transformation. It was found that when a pure element approaches the phase boundary (the line of either first or second order phase transition) the result is a 50-100-% increase of the shear strength of the low-temperature phase. At the same time the presence of a small (~0.5%) amount of impurities may lead to a five-fold decrease of the strength as it takes place in the vicinity of the Curie point of Ni. The same technique being applied to the study of the shear stress relaxation (elastic precursor decay) near the transformation line may be useful for understanding the mechanisms responsible of these anomalies.

  5. Multiphase phase field theory for temperature- and stress-induced phase transformations

    NASA Astrophysics Data System (ADS)

    Levitas, Valery I.; Roy, Arunabha M.

    2015-05-01

    Thermodynamic Ginzburg-Landau potential for temperature- and stress-induced phase transformations (PTs) between n phases is developed. It describes each of the PTs with a single order parameter without an explicit constraint equation, which allows one to use an analytical solution to calibrate each interface energy, width, and mobility; reproduces the desired PT criteria via instability conditions; introduces interface stresses; and allows for a controlling presence of the third phase at the interface between the two other phases. A finite-element approach is developed and utilized to solve the problem of nanostructure formation for multivariant martensitic PTs. Results are in a quantitative agreement with the experiment. The developed approach is applicable to various PTs between multiple solid and liquid phases and grain evolution and can be extended for diffusive, electric, and magnetic PTs.

  6. Low temperature phase transformations in the metallic phases of iron and stony-iron meteorites

    SciTech Connect

    Reuter, K.B.; Williams, D.B.; Goldstein, J.I. )

    1988-03-01

    Analytical electron microscopy techniques were used to determine the Ni content and structure of kamacite and decomposed taenite (clear taenite 1 (tetrataenite), the cloudy zone, and clear taenite 2) in the metallic phases of meteorites. Clear taenite 1 contains 51.4-45.6 {plus minus} 1.3 wt% Ni and is ordered FeNi with three variants of the L1{sub 0} superstructure. The structure formed by an order/disorder transformation below 320{degree}C. The cloudy zone formed through spinodal decomposition resulting in a two-phase structure consisting of a globular phase and a surrounding honeycomb phase. The globular phase contains 50.9 {plus minus} 1.4 wt% Ni and is ordered FeNi; the honeycomb contains 11.7 {plus minus} 0.5 wt% Ni and is martensite. Clear taenite 2 contains 25.8 to 28.1 wt% Ni and may be ordered Fe{sub 3}Ni with the L1{sub 2} superstructure. Clear taenite 2 was found in all of the iron meteorite groups studied and in the pallasites, but not in the mesosiderites. Using this chemical and structural information, and a newly determined Fe-Ni phase diagram, a better understanding of the low temperature transformations in the metallic regions of meteorites has been obtained.

  7. Low-temperature solid-state phase transformations in 2H silicon carbide.

    NASA Technical Reports Server (NTRS)

    Powell, J. A.; Will, H. A.

    1972-01-01

    Study of the phase transformations taking place in 2H SiC single crystals at temperatures as low as 400 C. Some crystals transformed to a structure with one-dimensional disorder along the crystal c axis. Others transformed to a faulted cubic/6H structure. The transformation is time and temperature dependent, and is greatly enhanced by dislocations. The transformation takes place by means of a slip process perpendicular to the c axis. Cubic SiC crystals were observed to undergo a solid-state transformation above 1400 C.

  8. Low-temperature solid-state phase transformations in 2H silicon carbide

    NASA Technical Reports Server (NTRS)

    Will, H. A.; Powell, J. A.

    1972-01-01

    Single crystals of 2H SiC were observed to undergo phase transformations at temperatures as low as 400 C. Some 2H crystals transformed to a structure with one-dimensional disorder along the crystal c axis. Others transformed to a faulted cubic/6H structure. The transformation is time and temperature dependent and is greatly enhanced by dislocations. Observations indicate that the transformation takes place by means of a slip process perpendicular to the c axis. Cubic SiC crystals were observed to undergo a solid state transformation above 1400 C.

  9. Interplay between diffusive and displacive phase transformations: time-temperature-transformation diagrams and microstructures.

    PubMed

    Bouville, Mathieu; Ahluwalia, Rajeev

    2006-08-01

    Materials which can undergo extremely fast displacive transformations as well as very slow diffusive transformations are studied using a Ginzburg-Landau framework. This simple model captures the essential physics behind microstructure formation and time-temperature-transformation diagrams in alloys such as steels. It also predicts the formation of mixed microstructures by an interplay between diffusive and displacive mechanisms. The intrinsic volume changes associated with the transformations stabilize mixed microstructures such as martensite-retained austenite (responsible for the existence of a martensite finish temperature) and martensite-pearlite.

  10. Pressure and Temperature effects on the High Pressure Phase Transformation in Zirconium

    SciTech Connect

    Escobedo-Diaz, Juan P.; Cerreta, Ellen K.; Brown, Donald W.; Trujillo, Carl P.; Rigg, Paulo A.; Bronkhorst, Curt A.; Addessio, Francis L.; Lookman, Turab

    2012-06-20

    At high pressure zirconium is known to undergo a phase transformation from the hexagonal close packed (HCP) alpha phase ({alpha}) to the simple hexagonal omega phase ({omega}). Under conditions of shock loading, the high-pressure omega phase is retained upon release. However, the hysteresis in this transformation is not well represented by equilibrium phase diagrams. For this reason, the influence of peak shock pressure and temperature on the retention of omega phase in Zr is explored in this study. In situ VISAR measurements along with post-mortem metallographic and neutron diffraction characterization of soft recovered specimens have been utilized to quantify the volume fraction of retained omega phase, morphology of the shocked alpha and omega phases, and qualitatively understand the kinetics of this transformation. This understanding of the role of peak shock stress will be utilized to address physics to be encoded in our present macro-scale models.

  11. Temperature-induced phase transformation of Fe1-xNix alloys: molecular-dynamics approach

    NASA Astrophysics Data System (ADS)

    Sak-Saracino, Emilia; Urbassek, Herbert M.

    2015-07-01

    Using molecular-dynamics simulation, we study the temperature induced bcc/fcc phase transformation of random Fe1-xNix alloys in the concentration range of x ≤ 40 at%. The Meyer-Entel potential describes faithfully the decrease of the transition temperature with increasing Ni concentration. The austenite transformation proceeds by homogeneous nucleation and results in a fine-grained poly-crystalline structure. The transformation follows the Nishiyama-Wassermann orientation relationship. The martensite phase nucleates at the grain boundaries (heterogeneous nucleation). Even for the largest crystallite studied (2.75 × 105 atoms) the back-transformation results in a single-crystalline grain containing only a small amount of defects. The morphological changes in the transformed material show no significant dependence on Ni content.

  12. Phase transformations in amorphous fullerite C60 under high pressure and high temperature

    NASA Astrophysics Data System (ADS)

    Borisova, P. A.; Blanter, M. S.; Brazhkin, V. V.; Somenkov, V. A.; Filonenko, V. P.

    2015-08-01

    First phase transformations of amorphous fullerite C60 at high temperatures (up to 1800 K) and high pressures (up to 8 GPa) have been investigated and compared with the previous studies on the crystalline fullerite. The study was conducted using neutron diffraction and Raman spectroscopy. The amorphous fullerite was obtained by ball-milling. We have shown that under thermobaric treatment no crystallization of amorphous fullerite into С60 molecular modification is observed, and it transforms into amorphous-like or crystalline graphite. A kinetic diagram of phase transformation of amorphous fullerite in temperature-pressure coordinates was constructed for the first time. Unlike in crystalline fullerite, no crystalline polymerized phases were formed under thermobaric treatment on amorphous fullerite. We found that amorphous fullerite turned out to be less resistant to thermobaric treatment, and amorphous-like or crystalline graphite were formed at lower temperatures than in crystalline fullerite.

  13. Phase transformations in the Zn-Al eutectoid alloy after quenching from the high temperature triclinic beta phase

    SciTech Connect

    Sandoval-Jimenez, A.; Torres-Villasenor, G.

    2010-11-15

    Ribbons of the Zn-Al eutectoid alloy obtained by melt-spinning, were heat treated at 350 deg. C during 30 min in a free atmosphere furnace, and then quenched in liquid nitrogen. The temperature correspond to {beta} phase zone, which has a triclinic crystalline structure [1, 2]. Some evidence, obtained by X-ray diffraction, show that the structures present in the just quenched material are both close-packed hexagonal ({eta}-phase) and rhombohedral (R-phase). X-ray diffractograms taken in the same ribbons after annealed 500 h at room temperature, show that the R phase its transform to {alpha} and {eta} phases.

  14. Phase transformation of oxide film in zirconium alloy in high temperature hydrogenated water

    SciTech Connect

    Kim, Taeho; Kim, Jongjin; Choi, Kyoung Joon; Yoo, Seung Chang; Kim, Seung Hyun; Kim, Ji Hyun

    2015-07-23

    The effect of the variation of the dissolved hydrogen concentration on the oxide phase transformation under high-temperature hydrogenated water conditions was investigated using in situ Raman spectroscopy. The Raman spectrum in 50 cm(3)/kg of dissolved hydrogen concentration indicated the formation of monoclinic and tetragonal zirconium oxide at the water-substrate interface. As the dissolved hydrogen concentration decreased to 30 cm(3)/kg, the Raman peaks corresponding to the zirconium oxide phase changed, indicating an oxide phase transformation. And, the results of SEM and TEM analyses were compared with those of in situ analyses obtained for the oxide structure formed on the zirconium alloy.

  15. Temperature-dependent mechanical deformation of silicon at the nanoscale: Phase transformation versus defect propagation

    SciTech Connect

    Kiran, M. S. R. N. Tran, T. T.; Smillie, L. A.; Subianto, D.; Williams, J. S.; Bradby, J. E.; Haberl, B.

    2015-05-28

    This study uses high-temperature nanoindentation coupled with in situ electrical measurements to investigate the temperature dependence (25–200 °C) of the phase transformation behavior of diamond cubic (dc) silicon at the nanoscale. Along with in situ indentation and electrical data, ex situ characterizations, such as Raman and cross-sectional transmission electron microscopy, have been used to reveal the indentation-induced deformation mechanisms. We find that phase transformation and defect propagation within the crystal lattice are not mutually exclusive deformation processes at elevated temperature. Both can occur at temperatures up to 150 °C but to different extents, depending on the temperature and loading conditions. For nanoindentation, we observe that phase transformation is dominant below 100 °C but that deformation by twinning along (111) planes dominates at 150 °C and 200 °C. This work, therefore, provides clear insight into the temperature dependent deformation mechanisms in dc-Si at the nanoscale and helps to clarify previous inconsistencies in the literature.

  16. Effect of Cold Rolling on Phase Transformation Temperatures of NiTi Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Pattabi, Manjunatha; Murari, M. S.

    2015-02-01

    The effect of cold rolling and heat treatment on the phase transformation behavior of NiTi shape memory alloy (SMA) heat treated at 660 °C has been investigated. Four sets of samples were cold rolled after heat treatment. The austenite-to-martensite and martensite-to-austenite transformation temperatures for samples without any cold rolling are determined through differential scanning calorimetry (DSC). The austenitic start temperature gets shifted to the higher temperature side with increase in the percentage of the cold rolling up to 12.5%. Austenitic finish temperature could not be detected in cold-rolled samples. Martensitic start temperature increases slightly with increased cold rolling while martensitc finish temperature slightly decreases. Beyond 12.5% cold work, the shape memory effect (SME) is completely lost. The evolution of austenitic phase in SMA subjected to cold rolling was studied through powder x-ray diffraction (XRD) at different temperatures in the range 25 to 160 °C at intervals of 10 °C, during heating and cooling. The XRD results agree with those of DSC. Two sets of cold-rolled samples were again heat treated to 300 and 500 °C and the transformation behavior was studied using DSC. Heat treatment at 300 °C brings back the SME, but with the presence of an intermediate R-Phase due to the additional dislocations present. Even with a heat treatment at 500 °C, the effect of cold work is not completely removed and a single-step transformation is not observed. Another set of samples subjected to cold work were heat treated at 660 °C and the transformation is studied. The effect of cold work even up to 25% is completely removed with this heat treatment as indicated by DSC. The complete regaining of the SME is further confirmed by electrical resistivity measurements also.

  17. Evidence for the temperature dependence of phase transformation behavior of silicon at nanoscale

    DOE PAGES

    Mangalampalli S. R. N. Kiran; Tran, Tuan; Smillie, Lachlan; Haberl, Bianca; Subianto, D.; Williams, James S.; Bradby, Jodie E.

    2015-05-27

    This study uses the in-situ high-temperature nanoindentation coupled with electrical measurements to investigate the temperature dependence (25 to 200 C) of the phase transformation behavior of crystalline silicon (dc-Si) at the nanoscale. Along with in-situ indentation and electrical data, ex-situ characterizations such as Raman and cross-sectional transmission electron microscopy (XTEM) have been used to reveal the dominant mode of deformation under the indenter. In contrast to the previous studies, the dominant mode of deformation under the nanoindenter at elevated temperatures is not the dc-Si to metallic phase ( -Sn) transformation. Instead, XTEM images from 150 C indents reveal that themore » dominant mode of deformation is twinning along {111} planes. While the in-situ high-temperature electrical measurements show an increase in the current due to metallic phase formation up to 125 C, it is absent 150 C, revealing that the formation of the metallic phase is negligible in this regime. Thus, this work provides clear insight into the temperature dependent deformation mechanisms in dc-Si at the nanoscale.« less

  18. Evidence for the temperature dependence of phase transformation behavior of silicon at nanoscale

    SciTech Connect

    Mangalampalli S. R. N. Kiran; Tran, Tuan; Smillie, Lachlan; Haberl, Bianca; Subianto, D.; Williams, James S.; Bradby, Jodie E.

    2015-05-27

    This study uses the in-situ high-temperature nanoindentation coupled with electrical measurements to investigate the temperature dependence (25 to 200 C) of the phase transformation behavior of crystalline silicon (dc-Si) at the nanoscale. Along with in-situ indentation and electrical data, ex-situ characterizations such as Raman and cross-sectional transmission electron microscopy (XTEM) have been used to reveal the dominant mode of deformation under the indenter. In contrast to the previous studies, the dominant mode of deformation under the nanoindenter at elevated temperatures is not the dc-Si to metallic phase ( -Sn) transformation. Instead, XTEM images from 150 C indents reveal that the dominant mode of deformation is twinning along {111} planes. While the in-situ high-temperature electrical measurements show an increase in the current due to metallic phase formation up to 125 C, it is absent 150 C, revealing that the formation of the metallic phase is negligible in this regime. Thus, this work provides clear insight into the temperature dependent deformation mechanisms in dc-Si at the nanoscale.

  19. In-situ Phase Transformation and Deformation of Iron at High Pressure andTemperature

    SciTech Connect

    Miyagi, Lowell; Kunz, Martin; Knight, Jason; Nasiatka, James; Voltolini, Marco; Wenk, Hans-Rudolf

    2008-07-01

    With a membrane based mechanism to allow for pressure change of a sample in aradial diffraction diamond anvil cell (rDAC) and simultaneous infra-red laser heating, itis now possible to investigate texture changes during deformation and phasetransformations over a wide range of temperature-pressure conditions. The device isused to study bcc (alpha), fcc (gamma) and hcp (epislon) iron. In bcc iron, room temperature compression generates a texture characterized by (100) and (111) poles parallel to the compression direction. During the deformation induced phase transformation to hcp iron, a subset of orientations are favored to transform to the hcp structure first and generate a texture of (01-10) at high angles to the compression direction. Upon further deformation, the remaining grains transform, resulting in a texture that obeys the Burgers relationship of (110)bcc // (0001)hcp. This is in contrast to high temperature results that indicate that texture is developed through dominant pyramidal {2-1-12}<2-1-13> and basal (0001)-{2-1-10} slip based on polycrystal plasticity modeling. We also observe that the high temperature fcc phase develops a 110 texture typical for fcc metals deformed in compression.

  20. In situ high temperature microscopy study of the surface oxidation and phase transformations in titanium alloys.

    PubMed

    Malinov, S; Sha, W; Voon, C S

    2002-09-01

    Two popular commercial titanium alloys, Ti-6Al-4V and Ti-6Al-2Sn-4Zr-2Mo-0.08Si, were used for in situ high temperature microscopy study. The experiments were performed on an optical microscope equipped with high temperature stage using both normal and florescence lights. Two kinds of experiments were performed, at continuous heating/cooling with different rates and in isothermal conditions at different temperatures. The changes taking place on the sample surface during the experiments were monitored. The morphology of the alpha ==> beta ==> alpha phase transformation was recorded at different heat treatment conditions using the effect of thermal etching. An effect of sample surface oxidation and deoxidation was observed during continuous heating. The appearance and disappearance of ordered titanium oxides Ti3O and Ti2O are discussed based on the phase equilibrium diagram. The kinetics of the surface oxidation was monitored in both isothermal and continuous cooling conditions.

  1. Effect of calcination temperature on phase transformation of HfO{sub 2} nanoparticles

    SciTech Connect

    Tripathi, S. K.; Kaur, Charanpreet; Kaur, Ramneek; Kaur, Jagdish

    2015-08-28

    Oxides nanomaterials exhibit unique physical, chemical and structural properties and motivated a big research that focus in the integration of these materials for various optoelectronic device applications. In present work, hafnium oxide (HfO{sub 2}) nanoparticles (NPs) have been synthesized using precipitation method. Hafnium tetrachloride and sodium hydroxide has been used as starting precursors. Prepared oxide material has been characterized by X-Ray Diffraction (XRD), Fourier Transform Infra-Red (FTIR) and UV-Vis spectroscopy. The phase transformation from amorphous to monoclinic is observed with the increase in calcination temperature from 500 °C and 800 °C. In FTIR spectra, the characteristic bands at ν ∼ 758.53 and 509.57 cm{sup −1} reveals the monoclinic phase of prepared HfO{sub 2} NPs. UV-Vis spectroscopy shows an absorption peak at 204 nm and the bandgap calculated is 6.07 eV.

  2. Effect of calcination temperature on phase transformation of HfO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Tripathi, S. K.; Kaur, Charanpreet; Kaur, Ramneek; Kaur, Jagdish

    2015-08-01

    Oxides nanomaterials exhibit unique physical, chemical and structural properties and motivated a big research that focus in the integration of these materials for various optoelectronic device applications. In present work, hafnium oxide (HfO2) nanoparticles (NPs) have been synthesized using precipitation method. Hafnium tetrachloride and sodium hydroxide has been used as starting precursors. Prepared oxide material has been characterized by X-Ray Diffraction (XRD), Fourier Transform Infra-Red (FTIR) and UV-Vis spectroscopy. The phase transformation from amorphous to monoclinic is observed with the increase in calcination temperature from 500 °C and 800 °C. In FTIR spectra, the characteristic bands at ν ˜ 758.53 and 509.57 cm-1 reveals the monoclinic phase of prepared HfO2 NPs. UV-Vis spectroscopy shows an absorption peak at 204 nm and the bandgap calculated is 6.07 eV.

  3. Pressure, temperature, and electric field dependence of phase transformations in niobium modified 95/5 lead zirconate titanate

    SciTech Connect

    Dong, Wen D.; Carlos Valadez, J.; Gallagher, John A.; Jo, Hwan R.; Lynch, Christopher S.; Sahul, Raffi; Hackenberger, Wes

    2015-06-28

    Ceramic niobium modified 95/5 lead zirconate-lead titanate (PZT) undergoes a pressure induced ferroelectric to antiferroelectric phase transformation accompanied by an elimination of polarization and a volume reduction. Electric field and temperature drive the reverse transformation from the antiferroelectric to ferroelectric phase. The phase transformation was monitored under pressure, temperature, and electric field loading. Pressures and temperatures were varied in discrete steps from 0 MPa to 500 MPa and 25 °C to 125 °C, respectively. Cyclic bipolar electric fields were applied with peak amplitudes of up to 6 MV m{sup −1} at each pressure and temperature combination. The resulting electric displacement–electric field hysteresis loops were open “D” shaped at low pressure, characteristic of soft ferroelectric PZT. Just below the phase transformation pressure, the hysteresis loops took on an “S” shape, which split into a double hysteresis loop just above the phase transformation pressure. Far above the phase transformation pressure, when the applied electric field is insufficient to drive an antiferroelectric to ferroelectric phase transformation, the hysteresis loops collapse to linear dielectric behavior. Phase stability maps were generated from the experimental data at each of the temperature steps and used to form a three dimensional pressure–temperature–electric field phase diagram.

  4. Temperature measurement of an axisymmetric flame using phase shift holographic interferometry with fast Fourier transform

    NASA Astrophysics Data System (ADS)

    Tieng, S. M.; Lai, W. Z.

    Because of the importance of the temperature scalar measurements in combination diagonostics, application of phase shift holographic interferometry to temperature measurement of an axisymmetrically premixed flame was experimentally investigated. The test apparatus is an axisymmetric Bunsen burner. Propane of 99 percent purity is used as the gaseous fuel. A fast Fourier transform, a more efficient and accurate approach for Abel inversion, is used for reconstructed the axisymmetric temperature field from the interferometric data. The temperature distribution is compared with the thermocouple-measured values. The comparison shows that the proposed technique is satisfactory. The result errors are analyzed in detail. It is shown that this technique overcomes most of the earlier problems and limitations detrimental to the conventional holographic interferometry.

  5. Influence of annealing temperature on the phase transformation of Al2O3

    NASA Astrophysics Data System (ADS)

    Mahat, Annie Maria; Mastuli, Mohd Sufri; Kamarulzaman, Norlida

    2016-02-01

    In the present study, Al2O3 powders were prepared via a self-propagating combustion method using citric acid as a combustion agent. Effects of annealing temperature on the phase transformation of the prepared powders were studied on samples annealed at 800 °C and 1000 °C. The Al2O3 samples were characterized using X-Ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and N2 adsorption-desorption measurements. The XRD results showed that pure η-phase and pure α-phase of Al2O3 were obtained at 800 °C and 1000 °C, respectively. Their crystallite sizes are totally different as can be seen clearly from the FESEM micrographs. The η-Al2O3 sample annealed at low temperature has crystallite size smaller than 10 nm compared to the α-Al2O3 sample annealed at higher temperature which has crystallites from few microns to hundreds microns in size. From the BET (Brunauer-Emmett-Teller) method, the specific surface area for both samples are 59.4 m2g-1 and 3.1 m2g-1, respectively. It is proposed that the annealing temperature less pronounced for the morphology, but, it is significant for the phase transitions as well as the size and the specific surface area of the Al2O3 samples.

  6. High temperature phase transformation studies in magnetite nanoparticles doped with Co2+ ion

    NASA Astrophysics Data System (ADS)

    Pati, S. S.; Gopinath, S.; Panneerselvam, G.; Antony, M. P.; Philip, John

    2012-09-01

    We investigate the effect of Co2+ ion doping in magnetite (Fe3O4) on its crystal structure, magnetic properties, and phase stability during air and vacuum annealing. The nanoparticles are prepared by co-precipitation method and the particles are characterized by XRD, small angle x-ray scattering (SAXS), themogravimetric and differential scanning calorimetry (DSC), and vibrating sample magnetometer. The SAXS analysis on the doped samples show the most probable size, shape, and the polydispersity of particles, synthesized with different fractions (0-0.6) of Co2+ ion doping remains almost the same. On increasing cobalt content ferrimagnetic to the antiferromagnetic hematite (α-Fe2O3) phase transformation temperature is found to increase dramatically. For 0.1 fraction of Co2+ metal ion doping, an enhancement of 100 °C in the γ-Fe2O3 to α-Fe2O3 phase transition temperature is observed in the air annealed samples, whereas magnetic nature remains stable up to 1000 °C in vacuum annealed samples. On increasing the cobalt fractions beyond 0.2, air annealed samples show no change in the phase transition temperature. The observed enhancement in the phase transition temperature is attributed to the increased activation energy for phase transformation in presence of Co2+. Further, the DSC results corroborate the finding of an increase in the maghemite to hematite phase transition temperature with increase in cobalt fraction (x). The decrease in enthalpy from 89.86 to 17.62 J g-1 with an increase in cobalt content indicates that the degree of conversion of maghemite to hematite decreases with the cobalt content, which is in good agreement with the Rietveld analysis. The decrease in the Ms value in air annealed sample is attributed to the re-distribution of cations in the tetrahedral and octahedral sites, as the Fe3+A-Fe3+B super-exchange interaction is different from the Co2+A-Fe3+B interaction. These results suggest that a very small percentage of Co2+ metal ion doping can

  7. Identification of Defect Prone Peritectic Steel Grades by Analyzing High-Temperature Phase Transformations

    NASA Astrophysics Data System (ADS)

    Presoly, Peter; Pierer, Robert; Bernhard, Christian

    2013-12-01

    Continuous casting of peritectic steels is often difficult and critical; bad surface quality, cracks, and even breakouts may occur. The initial solidification of peritectic steels within the mold leads to formation of surface depressions and uneven shell growth. As commercial steels are always multicomponent alloys, the influence also of the alloying elements besides carbon on the peritectic phase transition needs to be taken into account. Information on the solidification sequence and phase diagrams for initial solidification are lacking especially for new steel grades, like high-alloyed TRIP-steels with high Mn, Si, and particularly high Al contents. Based on a comprehensive method development, the current study shows that differential scanning calorimeter measurements allow a clear prediction if an alloy is peritectic ( i.e., critical to cast). In order to confirm these results, thermo-optical analyses with a high-temperature laser-scanning-confocal-microscope are performed to observe the phase transformations in situ up to the melting point.

  8. Instantaneous phase shift of annual subsurface temperature cycles derived by the Hilbert-Huang transform

    NASA Astrophysics Data System (ADS)

    Sun, Yang-Yi; Chen, Chieh-Hung; Liu, Jann-Yenq; Wang, Chung-Ho; Chen, Deng-Lung

    2015-03-01

    This study uses the Hilbert-Huang transform to compute the instantaneous (daily) phase shift between temperature signals at the ground surface and at a depth of 5 m. This approach is not restricted to the stationary harmonic surface temperature assumptions invoked by analytical solutions. The annual cycles are extracted from the ground surface temperatures and the shallow subsurface temperatures at 5 m depth recorded at the Hualien (23.98°N, 121.61°E) and Ilan (24.77°N, 121.75°E) meteorology stations of Central Weather Bureau in Taiwan from 1952 to 2008. Significant reductions in the phase shift and increases in the estimated thermal diffusivity from 1980s to 1990s are found and suggest that the recent warming of the Pacific Decadal Oscillation may affect heat transport in the subsurface environment. The marginal spectra of the instantaneous phase shifts and the precipitation intensity records at Hualien and Ilan reveal that precipitation may play a role in the evolution of seasonal variation in shallow subsurface heat transport.

  9. Low-temperature phase transformation studies in the stearic acid: C form

    NASA Astrophysics Data System (ADS)

    de Sousa, F. F.; Freire, P. T. C.; de Menezes, A. S.; Pinheiro, G. S.; Cardoso, L. P.; Alcantara, P.; Moreira, S. G. C.; Melo, F. E. A.; Mendes Filho, J.; Saraiva, G. D.

    2015-09-01

    This paper reports the temperature-dependent measurements in the C form of stearic acid. Raman scattering, X-ray diffraction, and differential scanning calorimetry measurements were performed at low temperatures. The polarized Raman spectra were measured for temperatures ranging from 8 to 300 K over the spectral range of 30-3000 cm-1. The spectral changes observed in both the lattice vibrational modes and the internal vibrational modes regions of the Raman spectrum, allowed to identify a phase transition undergone by the stearic acid crystal occurring between 210 and 170 K and a change in the structure continues to be observed down to 8 K. The anharmonicity of some vibrational modes and the possible space groups presented by the crystal at low temperatures were also discussed. Low-temperature X-ray diffraction measurements were performed from 290 to 80 K and the results showed slight changes in the lattice parameters at ∼200 K. Furthermore, the evidence of the phase transformation was provided by the differential scanning calorimetry measurements, which identified an enthalpic anomaly at about 160 K.

  10. Low-temperature phase transformation studies in the stearic acid: C form.

    PubMed

    de Sousa, F F; Freire, P T C; de Menezes, A S; Pinheiro, G S; Cardoso, L P; Alcantara, P; Moreira, S G C; Melo, F E A; Mendes Filho, J; Saraiva, G D

    2015-09-01

    This paper reports the temperature-dependent measurements in the C form of stearic acid. Raman scattering, X-ray diffraction, and differential scanning calorimetry measurements were performed at low temperatures. The polarized Raman spectra were measured for temperatures ranging from 8 to 300 K over the spectral range of 30-3000 cm(-1). The spectral changes observed in both the lattice vibrational modes and the internal vibrational modes regions of the Raman spectrum, allowed to identify a phase transition undergone by the stearic acid crystal occurring between 210 and 170 K and a change in the structure continues to be observed down to 8 K. The anharmonicity of some vibrational modes and the possible space groups presented by the crystal at low temperatures were also discussed. Low-temperature X-ray diffraction measurements were performed from 290 to 80 K and the results showed slight changes in the lattice parameters at ∼200 K. Furthermore, the evidence of the phase transformation was provided by the differential scanning calorimetry measurements, which identified an enthalpic anomaly at about 160 K.

  11. Nanoscale conductive niobium oxides made through low temperature phase transformation for electrocatalyst support

    SciTech Connect

    Huang, K; Li, YF; Yan, LT; Xing, YC

    2014-01-01

    We report an effective approach to synthesize nanoscale Nb2O5 coated on carbon nanotubes (CNTs) and transform it at low temperatures to the conductive form of NbO2. The latter, when used as a Pt electrocatalyst support, shows significant enhancement in catalyst activity and durability in the oxygen reduction reaction (ORR). Direct phase transformation of Nb2O5 to NbO2 often requires temperatures above 1000 degrees C. Here we show that this can be achieved at a much lower temperature (e.g. 700 degrees C) if the niobium oxide is first activated with carbon. Low temperature processing allows retaining nanostructures of the oxide without sintering, keeping its high surface areas needed for being a catalyst support. We further show that Pt supported on the conductive oxides on CNTs has two times higher mass activity for the ORR than on bare CNTs. The electrochemical stability of Pt was also outstanding, with only ca. 5% loss in electrochemical surface areas and insignificant reduction in half-wave potential in ORR after 5000 potential cycles.

  12. Influence of Temperature on Fatigue-Induced Martensitic Phase Transformation in a Metastable CrMnNi-Steel

    NASA Astrophysics Data System (ADS)

    Biermann, Horst; Glage, Alexander; Droste, Matthias

    2016-01-01

    Metastable austenitic steels can exhibit a fatigue-induced martensitic phase transformation during cyclic loading. It is generally agreed that a certain strain amplitude and a threshold of the cumulated plastic strain must be exceeded to trigger martensitic phase transformation under cyclic loading. With respect to monotonic loading, the martensitic phase transformation takes place up to a critical temperature—the so-called M d temperature. The goal of the present investigation is to determine an M d,c temperature which would be the highest temperature at which a fatigue-induced martensitic phase transformation can take place. For this purpose, fatigue tests controlled by the total strain were performed at different temperatures. The material investigated was a high-alloy metastable austenitic steel X3CrMnNi16.7.7 (16.3Cr-7.2Mn-6.6Ni-0.03C-0.09N-1.0Si) produced using the hot pressing technique. The temperatures were set in the range of 283 K (10 °C) ≤ T ≤ 473 K (200 °C). Depending on the temperature and strain amplitude, the onset of the martensitic phase transformation shifted to different values of the cumulated plastic strain, or was inhibited completely. Moreover, it is known that metastable austenitic CrMnNi steels with higher nickel contents can exhibit the deformation-induced twinning effect. Thus, at higher temperatures and strain amplitudes, a transition from the deformation-induced martensitic transformation to deformation-induced twinning takes place. The fatigue-induced martensitic phase transformation was monitored during cyclic loading using a ferrite sensor. The microstructure after the fatigue tests was examined using the back-scattered electrons, the electron channeling contrast imaging and the electron backscatter diffraction techniques to study the temperature-dependent dislocation structures and phase transformations.

  13. Phase Transformations During the Low-Temperature Nitriding of AISI 2205 Duplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Yan, Jing; Gu, Tan; Qiu, Shaoyu; Wang, Jun; Xiong, Ji; Fan, Hongyuan

    2015-02-01

    Liquid nitriding of type AISI 2205 duplex stainless steel was conducted at 723 K (450 °C), using one type of novel low-temperature liquid chemical thermo-treatment. The transformation of the nitrided surface microstructure was systematically studied. Experimental results revealed that a nitrided layer formed on the sample surface with the thickness ranging from 3 to 28 μm, depending on nitriding time. After the 2205 duplex stainless steel was subjected to liquid nitriding 723 K (450 °C) for less than 8 hours, the pre-existing ferrite region on the surface transformed into the expanded austenite (S phase) by the infusion of nitrogen atoms, most of which stay in the interstitial sites. Generally, the dominant phase of the nitrided layer was the expanded austenite. When the nitriding time prolonged up to 16 hours, some pre-existing ferrite in expanded austenite was decomposed and ɛ-nitride precipitated subsequently. When the treatment time went up to 40 hours, large amount of ɛ-nitride and CrN precipitates were observed in the pre-existing ferritic region in the expanded austenite. Furthermore, many nitrides precipitated from the pre-austenite region. Acicular nitride was identified by transmission electron microscopy. The thickness of the nitrided layer increased with increasing nitriding time. The growth of the nitrided layer is mainly due to nitrogen diffusion in accordance with the expected parabolic rate law. Liquid nitriding effectively increased the surface hardness of 2205 duplex stainless steel by a factor of 3.

  14. Mechanism of the gamma-beta phase transformation of Mg2SiO4 at high temperature and pressure

    NASA Technical Reports Server (NTRS)

    Rubie, D. C.; Brearley, A. J.

    1990-01-01

    The results of experiments on the phase transformation of Mg2SiO4 olivine at 15 GPa pressure in a multianvil cell are reported. At this pressure and a temperature of 900 C, early formed metastable gamma-spinel transforms partially to the beta-phase. The observed microstructures, which are similar to those in shocked meteorites, show that the gamma-to-beta transformation can occur either by diffusion-controlled growth or by a martensitic mechanism, depending on how far the pressure-temperature conditions deviate from their values at phase equilibrium. The results suggest that the diffusion-controlled mechanism is most likely to operate at the beta/gamma phase boundary in the mantle, but martensitic beta-to-gamma transformation might occur in subduction zones and could reduce the shear strength of the subducting slab.

  15. Phase Transformation Behavior at Low Temperature in Hydrothermal Treatment of Stable and Unstable Titania Sol

    PubMed

    So; Park; Kim; Moon

    1997-07-15

    Nanosize titania sol was prepared from titanium tetraisopropoxide (TTIP) and conditions for the formation of stable sol were identified. As the H+/TTIP mole ratio decreased and H2O/TTIP mole ratio increased, stable sol was likely to be formed. The size and crystallinity remained unchanged after hydrothermal treatment of the stable sol at between 160 and 240°C. However, hydrothermal treatment of unstable sol produced rod-like particles and crystallinity of particles was changed from anatase to rutile. This difference in phase transformation at low hydrothermal treatment temperature was likely to be caused by the fact that stable sol remained to be stable even after hydrothermal treatment, while unstable sol had a tendency to be aggregated. PMID:9268523

  16. Low temperature phase transformations in the metallic phases of iron and stony-iron meteorites

    NASA Astrophysics Data System (ADS)

    Reuter, K. B.; Williams, D. B.; Goldstein, J. I.

    1988-03-01

    The nickel content and the structure of kamacite and decomposed taenite (clear taenite 1, CT-1; the cloudy zone, CZ; and clear taenite 2, CT-2) in the metallic phases of meteorites were determined using X-ray microanalysis techniques in the AEM. The kamacite near the CT-1 interface was found to contain about 4 wt pct Ni. The CT-1 structure contains 51.4-45.6 wt pct Ni; it is ordered FeNi with the L1(0) superstructure. The CZ structure consists of two phases: a globular phase (ordered FeNi containing 50.9 wt pct Ni) and a surrounding honeycomb martensitic phase containing 11.7 wt pct Ni. The CT-2 was found in all of the iron meteorite groups studied and in the pallasites, but not in the mesosiderites. Based on the preliminary evidence, this region is believed to be ordered Fe3Ni. Possible mechanisms for the decomposition of taenite are discussed.

  17. Phase Transformation and Creep Behavior in Ti50Pd30Ni20 High Temperature Shape Memory Alloy in Compression

    NASA Technical Reports Server (NTRS)

    Kumar, Parikshith K.; Desai, Uri; Monroe, James; Lagoudas, Dimitris C.; Karaman, Ibrahim; Noebe, Ron; Bigelow, Glenn

    2010-01-01

    The creep behavior and the phase transformation of Ti50Pd30Ni20 High Temperature Shape Memory Alloy (HTSMA) is investigated by standard creep tests and thermomechanical tests. Ingots of the alloy are induction melted, extruded at high temperature, from which cylindrical specimens are cut and surface polished. A custom high temperature test setup is assembled to conduct the thermomechanical tests. Following preliminary monotonic tests, standard creep tests and thermally induced phase transformation tests are conducted on the specimen. The creep test results suggest that over the operating temperatures and stresses of this alloy, the microstructural mechanisms responsible for creep change. At lower stresses and temperatures, the primary creep mechanism is a mixture of dislocation glide and dislocation creep. As the stress and temperature increase, the mechanism shifts to predominantly dislocation creep. If the operational stress or temperature is raised even further, the mechanism shifts to diffusion creep. The thermally induced phase transformation tests show that actuator performance can be affected by rate independent irrecoverable strain (transformation induced plasticity + retained martensite) as well as creep. The rate of heating and cooling can adversely impact the actuators performance. While the rate independent irrecoverable strain is readily apparent early in the actuators life, viscoplastic strain continues to accumulate over the lifespan of the HTSMA. Thus, in order to get full actuation out of the HTSMA, the heating and cooling rates must be sufficiently high enough to avoid creep.

  18. Low-temperature phase transformations in 4-cyano-4‧-pentyl-biphenyl (5CB) filled by multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lebovka, N.; Melnyk, V.; Mamunya, Ye.; Klishevich, G.; Goncharuk, A.; Pivovarova, N.

    2013-08-01

    The effects of multiwalled carbon nanotubes (NTs) on low-temperature phase transformations in 5CB were studied by means of differential scanning calorimetry (DSC), low-temperature photoluminescence and measurements of electrical conductivity. The concentration of NTs was varied within 0-1 wt% The experimental data, obtained for pure 5CB by DSC and measurements of photoluminescence in the heating mode, evidenced the presence of two crystallization processes at T≈229 K and T≈262 K, which correspond to C1a→C1b, and C1b→C2 phase transformations. Increase of temperature T from 10 K tо 229 K provoked the red shift of photoluminescence spectral band that was explained by flattening of 5CB molecule conformation. Moreover, the photoluminescence data allow to conclude that crystallization at T≈229 K results in conformation transition to non-planar 5CB structure characteristic to ideal crystal. The non-planar conformations were dominating in nematic phase, i.e., at T>297 K. Electrical conductivity data for 5CB-NT composites revealed supplementary anomaly inside the stable crystalline phase C2, identified earlier in the temperature range 229-296.8 K. It can reflect the influence of phase transformation of 5CB in interfacial layers on the transport of charge carriers between NTs.

  19. Deformation and Phase Transformation Processes in Polycrystalline NiTi and NiTiHf High Temperature Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Benafan, Othmane

    2012-01-01

    The deformation and transformation mechanisms of polycrystalline Ni49.9Ti50.1 and Ni50.3Ti29.7Hf20 (in at.%) shape memory alloys were investigated by combined experimental and modeling efforts aided by an in situ neutron diffraction technique at stress and temperature. The thermomechanical response of the low temperature martensite, the high temperature austenite phases, and changes between these two states during thermomechanical cycling were probed and reported. In the cubic austenite phase, stress-induced martensite, deformation twinning and slip processes were observed which helped in constructing a deformation map that contained the limits over which each of the identified mechanisms was dominant. Deformation of the monoclinic martensitic phase was also investigated where the microstructural changes (texture, lattice strains, and phase fractions) during room-temperature deformation and subsequent thermal cycling were compared to the bulk macroscopic response. When cycling between these two phases, the evolution of inelastic strains, along with the shape setting procedures were examined and used for the optimization of the transformation properties as a function of deformation levels and temperatures. Finally, this work was extended to the development of multiaxial capabilities at elevated temperatures for the in situ neutron diffraction measurements of shape memory alloys on the VULCAN Diffractometer at Oak Ridge National Laboratory.

  20. Phase Transformation and Lattice Parameter Changes of Trivalent Rare Earth Doped YSZ as a Function of Temperature

    NASA Astrophysics Data System (ADS)

    Jiang, S. L.; Huang, X.; He, Z.

    2016-09-01

    Yttria-stabilized zirconia (YSZ) co-doped with trivalent oxide Sc2O3 and Yb2O3 is prepared using mechanical alloying and high-temperature sintering. High-temperature XRD analysis was performed to study the phase transformation and lattice parameter changes of various phases in the baseline YSZ and co-doped samples. The results show that the structure for the co-doped samples tends to be more thermally stable at test temperature above critical value. The lattice parameters for all samples increase with temperature at which XRD is carried out, and the lattice parameters for the two trivalent rare earth oxides co-doped YSZ are smaller than that for 7YSZ under the same temperature.

  1. Phase-shift detection in a Fourier-transform method for temperature sensing using a tapered fiber microknot resonator.

    PubMed

    Larocque, Hugo; Lu, Ping; Bao, Xiaoyi

    2016-04-01

    Phase-shift detection in a fast-Fourier-transform (FFT)-based spectrum analysis technique for temperature sensing using a tapered fiber microknot resonator is proposed and demonstrated. Multiple transmission peaks in the FFT spectrum of the device were identified as optical modes having completed different amounts of round trips within the ring structure. Temperature variation induced phase shifts for each set of peaks were characterized, and experimental results show that different peaks have distinct temperature sensitivities reaching values up to -0.542  rad/°C, which is about 10 times greater than that of a regular adiabatic taper Mach-Zehnder interferometer when using similar phase-tracking schemes. PMID:27192232

  2. The effect of tempering temperature on the features of phase transformations in the ferritic-martensitic steel EK-181

    NASA Astrophysics Data System (ADS)

    Polekhina, N. A.; Litovchenko, I. Yu.; Tyumentsev, A. N.; Astafurova, Е. G.; Chernov, V. M.; Leontyeva-Smirnova, M. V.

    2014-12-01

    Using the methods of dilatometry and differential scanning calorimetry, critical points of phase transformations in the low-activation ferritic-martensitic steel EK-181 (RUSFER-EK-181) are identified. The characteristic temperature intervals of precipitation of carbide phases are revealed. It is shown that particles of the metastable carbide M3C are formed within the temperature range (500-600) °C. Formation of the stable phases М23С6 and V(CN) begins at the temperatures higher than Т = 650 °С. An important feature of microstructure after tempering at Т = 720 °С is high density of nanoparticles (⩽10 nm) of vanadium carbonitride V(CN).

  3. High temperature x-ray and calorimetric studies of phase transformations in quasicrystalline Ti{endash}Zr{endash}Ni alloys

    SciTech Connect

    Stroud, R.M.; Kelton, K.F.; Misture, S.T.

    1997-02-01

    We present the first high temperature x-ray diffraction (HTXRD) studies of {ital in situ} quasicrystal-crystal and crystal-crystal transformations in Ti{endash}Zr{endash}Ni alloys. Together with differential scanning calorimetry studies, these x-ray measurements indicate three separate paths for the Ti{endash}Zr{endash}Ni quasicrystal-crystal transformation: single exothermic, single endothermic, or multiple endothermic. The mode of transformation depends on the alloy composition and the level of environmental oxygen. The crystalline products include the Ti{sub 2}Ni, MgZn{sub 2} Laves, {alpha}{endash}(Ti,Zr) and {beta}{endash}(Ti,Zr) phases. In the absence of oxygen, the endothermic transformation of the quasicrystal demonstrates that it is the lowest free energy (stable) phase at the Ti{sub 53}Zr{sub 27}Ni{sub 20} composition. Oxygen stabilizes the Ti{sub 2}Ni phase, eliminating both the quasicrystal and the MgZn{sub 2} Laves phase, at partial pressures as low as a few hundred ppm. {copyright} {ital 1997 Materials Research Society.}

  4. Phase transformation and long-term service of high-temperature martensitic chromium steels

    NASA Astrophysics Data System (ADS)

    Kalashnikov, I. S.; Tarasenko, L.; Acselrad, O.; Pereira, L. C.; Shalkevich, A.; Soboleva, G.

    2000-02-01

    Martensitic high Cr (10 - 16%) steels alloyed with Ni (Co), Mo, W, V, and N are widely used in constructions subjected to cyclic loads at temperatures up to 600 degrees Celsius, in general after quenching from 1100 - 1150 degrees Celsius followed by tempering at 650 - 690 degrees Celsius. Due to long term service exposure at high temperatures, different microstructural changes take place, such as second-phases precipitation, formation of low-angle grain boundaries, as well as internal damage caused by cyclic loads and creep. Specific phase diagrams are presented that can be used to define time periods for reliable operation of parts with given composition, based on the time required for the appearance of second phase particles known to be detrimental to mechanical strength and performance. Restoring thermal treatments to be applied after long time exposure at service conditions, aiming at increasing service life, are also presented and discussed. The combined use of the diagrams and the restoring treatment ensures prediction of a reliable service-life period for components made of these steels.

  5. Phase transformation and long-term service of high-temperature martensitic chromium steels

    NASA Astrophysics Data System (ADS)

    Kalashnikov, I. S.; Tarasenko, L.; Acselrad, O.; Pereira, L. C.; Shalkevich, A.; Soboleva, G.

    2001-02-01

    Martensitic high Cr (10 - 16%) steels alloyed with Ni (Co), Mo, W, V, and N are widely used in constructions subjected to cyclic loads at temperatures up to 600 degrees Celsius, in general after quenching from 1100 - 1150 degrees Celsius followed by tempering at 650 - 690 degrees Celsius. Due to long term service exposure at high temperatures, different microstructural changes take place, such as second-phases precipitation, formation of low-angle grain boundaries, as well as internal damage caused by cyclic loads and creep. Specific phase diagrams are presented that can be used to define time periods for reliable operation of parts with given composition, based on the time required for the appearance of second phase particles known to be detrimental to mechanical strength and performance. Restoring thermal treatments to be applied after long time exposure at service conditions, aiming at increasing service life, are also presented and discussed. The combined use of the diagrams and the restoring treatment ensures prediction of a reliable service-life period for components made of these steels.

  6. Low-temperature FCC to L10 phase transformation in CoPt(Bi) nanoparticles

    NASA Astrophysics Data System (ADS)

    Abel, Frank M.; Tzitzios, Vasilis; Sellmyer, David J.; Hadjipanayis, George C.

    2016-05-01

    This work is focused on the effects of Bi substitution on the synthesis of CoPt nanoparticles with the L10 structure using a modified organometallic approach. The structural and magnetic properties of the nanoparticles have been studied and compared directly with those of CoPt nanoparticles synthesized by the same technique but in the absence of Bi substitution. The as-synthesized particles at 330 °C have an average size of 11.7 nm and a partially ordered L10 phase with a coercivity of 1 kOe. The coercivity is increased to 9.3 kOe and 12.4 kOe after annealing for 1 hour at 600 and 700 °C. The structural and magnetic properties suggest that Bi promotes the formation of ordered L10 phase at low temperatures leading to the development of high coercivities.

  7. The effects of salinity and temperature on phase transformation of copper-laden sludge.

    PubMed

    Hsieh, Ching-Hong; Shih, Kaimin; Hu, Ching-Yao; Lo, Shang-Lien; Li, Nien-Hsun; Cheng, Yi-Ting

    2013-01-15

    To stabilize the copper and aluminum ions in simulated sludge, a series of sintering processes were conducted to transform Cu/Al precipitation into spinel structure, CuAl(2)O(4). The results indicated that the large amount of salt content in the simulated sludge would hinder the formation of crystalline CuAl(2)O(4) generated from the incorporation of CuO and Al(2)O(3), even after the sintering process at 1200 °C. Opposite to the amorphous CuAl(2)O(4), the crystalline CuAl(2)O(4) can be formed in the sintering process at 700-1100 °C for 3 h with the desalinating procedure. According to the theory of free energy, the experimental data and references, the best formation temperature of CuAl(2)O(4) was determined at 900-1000 °C. As the temperature rose to 1200 °C, CuAlO(2) was formed with the dissociation of CuAl(2)O(4). The XPS analysis also showed that the binding energy of copper species in the simulated sludge was switched from 933.8 eV for Cu(II) to 932.8 eV for Cu(I) with the variation of temperature. In this system, the leaching concentration of copper and aluminum ions from sintered simulated sludge was decreased with ascending temperature and reached the lowest level at 1000 °C. Furthermore, the descending tendency coincided with the formation tendency of spinel structure and the diminishing of copper oxide. PMID:23177249

  8. Phase Transformations and Earthquakes

    NASA Astrophysics Data System (ADS)

    Green, H. W.

    2011-12-01

    Phase transformations have been cited as responsible for, or at least involved in, "deep" earthquakes for many decades (although the concept of "deep" has varied). In 1945, PW Bridgman laid out in detail the string of events/conditions that would have to be achieved for a solid/solid transformation to lead to a faulting instability, although he expressed pessimism that the full set of requirements would be simultaneously achieved in nature. Raleigh and Paterson (1965) demonstrated faulting during dehydration of serpentine under stress and suggested dehydration embrittlement as the cause of intermediate depth earthquakes. Griggs and Baker (1969) produced a thermal runaway model of a shear zone under constant stress, culminating in melting, and proposed such a runaway as the origin of deep earthquakes. The discovery of Plate Tectonics in the late 1960s established the conditions (subduction) under which Bridgman's requirements for earthquake runaway in a polymorphic transformation could be possible in nature and Green and Burnley (1989) found that instability during the transformation of metastable olivine to spinel. Recent seismic correlation of intermediate-depth-earthquake hypocenters with predicted conditions of dehydration of antigorite serpentine and discovery of metastable olivine in 4 subduction zones, suggests strongly that dehydration embrittlement and transformation-induced faulting are the underlying mechanisms of intermediate and deep earthquakes, respectively. The results of recent high-speed friction experiments and analysis of natural fault zones suggest that it is likely that similar processes occur commonly during many shallow earthquakes after initiation by frictional failure.

  9. Temperature-mediated phase transformation, pore geometry and pore hysteresis transformation of borohydride derived in-born porous zirconium hydroxide nanopowders

    PubMed Central

    Nayak, Nadiya B.; Nayak, Bibhuti B.

    2016-01-01

    Development of in-born porous nature of zirconium hydroxide nanopowders through a facile hydrogen (H2) gas-bubbles assisted borohydride synthesis route using sodium borohydride (NaBH4) and novel information on the temperature-mediated phase transformation, pore geometry as well as pore hysteresis transformation of in-born porous zirconium hydroxide nanopowders with the help of X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) isotherm and Transmission Electron Microscopy (TEM) images are the main theme of this research work. Without any surfactants or pore forming agents, the borohydride derived amorphous nature of porous powders was stable up to 500 °C and then the seed crystals start to develop within the loose amorphous matrix and trapping the inter-particulate voids, which led to develop the porous nature of tetragonal zirconium oxide at 600 °C and further sustain this porous nature as well as tetragonal phase of zirconium oxide up to 800 °C. The novel hydrogen (H2) gas-bubbles assisted borohydride synthesis route led to develop thermally stable porous zirconium hydroxide/oxide nanopowders with an adequate pore size, pore volume, and surface area and thus these porous materials are further suggested for promising use in different areas of applications. PMID:27198738

  10. Temperature-mediated phase transformation, pore geometry and pore hysteresis transformation of borohydride derived in-born porous zirconium hydroxide nanopowders

    NASA Astrophysics Data System (ADS)

    Nayak, Nadiya B.; Nayak, Bibhuti B.

    2016-05-01

    Development of in-born porous nature of zirconium hydroxide nanopowders through a facile hydrogen (H2) gas-bubbles assisted borohydride synthesis route using sodium borohydride (NaBH4) and novel information on the temperature-mediated phase transformation, pore geometry as well as pore hysteresis transformation of in-born porous zirconium hydroxide nanopowders with the help of X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) isotherm and Transmission Electron Microscopy (TEM) images are the main theme of this research work. Without any surfactants or pore forming agents, the borohydride derived amorphous nature of porous powders was stable up to 500 °C and then the seed crystals start to develop within the loose amorphous matrix and trapping the inter-particulate voids, which led to develop the porous nature of tetragonal zirconium oxide at 600 °C and further sustain this porous nature as well as tetragonal phase of zirconium oxide up to 800 °C. The novel hydrogen (H2) gas-bubbles assisted borohydride synthesis route led to develop thermally stable porous zirconium hydroxide/oxide nanopowders with an adequate pore size, pore volume, and surface area and thus these porous materials are further suggested for promising use in different areas of applications.

  11. The evolution of phase transformation in Ni/Ni3Al laminated composite under high temperature treatments

    NASA Astrophysics Data System (ADS)

    Shmorgun, V.; Gurevich, L.; Bogdanov, A.; Trunov, M.

    2016-02-01

    In this study the impact of isothermal annealing on the phase transformation rate in laminated Ni/Ni2Al3 composite was investigated. The method of nickel-aluminide coatings of the required chemical composition fabrication was proposed.

  12. Low-temperature solid state synthesis and in situ phase transformation to prepare nearly pure cBN.

    PubMed

    Lian, Gang; Zhang, Xiao; Tan, Miao; Zhang, Shunjie; Cui, Deliang; Wang, Qilong

    2011-07-14

    Cubic boron nitride (cBN) is synthesized by a low-temperature solid state synthesis and in situ phase transformation route with NH(4)BF(4), B, NaBH(4) and KBH(4) as the boron sources and NaN(3) as the nitrogen source. Furthermore, two new strategies are developed, i.e., applying pressure on the reactants during the reaction process and introducing the structural induction effect. These results reveal that the relative contents of cBN are greatly increased by applying these new strategies. Finally, almost pure cBN (∼90%) crystals are obtained by reacting NH(4)BF(4) and NaN(3) at 250 °C and 450 MPa for 24 h, with NaF as the structural induction material. The heterogeneous nucleation mechanism can commendably illuminate the structure induction effect of NaF with face center cubic structure. In addition, the induction effect results in the cBN nanocrystals presenting obvious oriented growth of {111} planes.

  13. Investigation of an unusual low-temperature phase transformation in RbBH{sub 4} by neutron diffraction

    SciTech Connect

    Kitchen, Brian B.; Verdal, Nina; Udovic, Terrence J.; Rush, John J.; Hartman, Michael R.; DeVries, Daniel J.

    2013-07-15

    To investigate the previously reported low-temperature phase transition in rubidium borohydride (RbBH{sub 4}) near 48.5 K, we carried out neutron powder diffraction and vibrational spectroscopy measurements both above and below this temperature on an isotopically-enriched sample of Rb{sup 11}BD{sub 4}. Our diffraction data reflected an average cubic Fm3{sup ¯}m structure with BD{sub 4}{sup −} anion orientational disorder at all temperatures, with no hint of extra Bragg peaks due to long-range orientational order below the transition temperature as reported by others. These structural results and careful analysis of torsional vibrations in RbBD{sub 4} corroborate the results of prior neutron vibrational spectroscopy measurements suggesting that the low-temperature RbBH{sub 4} structure indeed possesses some orientational ordering of the BH{sub 4}{sup −} anions, but of a shorter-ranged nature insensitive to powder diffraction methods. - The neutron powder diffraction pattern of RbBD{sub 4} below the phase transition temperature (shown here in black) is indistinguishable from that collected above the phase transition temperature. The inset depicts the cubic structure that fits the data at both temperatures. - Highlights: • We investigated the nature of the RbBD{sub 4} phase transition using NVS and NPD. • A change in shape of the RbBD{sub 4} torsion mode was observed across the transition. • The RbBD{sub 4} diffraction pattern across this phase transition was unchanged. • The phase transition in RbBD{sub 4} appears to produce only short-range ordering of BD{sub 4}{sup −}.

  14. Crystalline phase transition information induced by high temperature susceptibility transformations in bulk PMP-YBCO superconductor growth in-situ

    NASA Astrophysics Data System (ADS)

    Zhang, C. P.; Chaud, X.; Beaugnon, E.; Zhou, L.

    2015-01-01

    The dynamic susceptibility transformations of bulk HTSC PMP-YBCO growth have been investigated from 200 °C up to 1060 °C by the Faraday Balance in-situ. It revealed that the crystalline phase transitions of bulk PMP-YBCO growth in process. A new discovery of Y123 phase pre-formed then melted in heating stage has been found. It also discovered that Y123 crystal solidification started at 1004 °C in cooling stage. Before Y123 solidification the liquid phase CuO change to Cu2O reciprocally as well as the copper ion valence changed between divalent Cu2+ and trivalent Cu1+ each other. It was essential to keep quantities of CuO phase instead of the Cu2O for Y123 crystal solidification.

  15. EBSD characterization of high-temperature phase transformations in an Al-Si coating on Cr-Mo steel

    SciTech Connect

    Cheng, Wei-Jen Wang, Chaur-Jeng

    2012-02-15

    5Cr-0.5Mo steel was coated by hot-dipping in a molten bath containing Al-10 wt.% Si. The phase transformation in the aluminide layer during diffusion at 750 Degree-Sign C in static air was analyzed by electron backscatter diffraction. The results show the aluminide layer of the as-coated specimen consisted of an outer Al-Si topcoat, a middle layer formed of scattered {tau}{sub 5(C)}-Al{sub 7}(Fe,Cr){sub 2}Si particles and minor plate-shaped {tau}{sub 4}-Al{sub 4}FeSi{sub 2} and {tau}{sub 6}-Al{sub 4}FeSi phases in the Al-Si matrix and an inner continuous {tau}{sub 5(H)}-Al{sub 7}Fe{sub 2}Si layer, respectively from the coating surface to the steel substrate. The formation of FeAl{sub 3} and Fe{sub 2}Al{sub 5} with {tau}{sub 1}-(Al,Si){sub 5}Fe{sub 3} precipitates can be observed with increasing exposure time at 750 Degree-Sign C. After 5 h of exposure, the Al-Si topcoat has been consumed, and the aluminide layer consisted of Fe{sub 2}Al{sub 5} and a few {tau}{sub 1}-(Al,Si){sub 5}Fe{sub 3} precipitates. The FeAl phase not only formed at the interface between Fe{sub 2}Al{sub 5} and the steel substrate, but also transformed from {tau}{sub 1}-(Al,Si){sub 5}Fe{sub 3} after diffusion for 10 h. With prolonged exposure, the aluminide layer comprised only FeAl{sub 2} and FeAl. - Highlights: Black-Right-Pointing-Pointer EBSD can differentiate phases in aluminide layer with similar chemical compositions. Black-Right-Pointing-Pointer Mapping and EBSPs functions in EBSD provide a reliable phase identification. Black-Right-Pointing-Pointer A phase transformation in the aluminide layer has been described in detail. Black-Right-Pointing-Pointer 5 Fe-Al-Si and 4 Fe-Al intermetallic phases are performed during the diffusion. Black-Right-Pointing-Pointer Cubic {tau}{sub 5(C)}-Al{sub 7} (Fe,Cr){sub 2}Si and hexagonal {tau}{sub 5(H)}-Al{sub 7}(Fe,Cr){sub 2}Si are identified.

  16. Low temperature transformation from antiferromagnetic to ferromagnetic order in impurity system Ge:As near the insulator-metal phase transition

    SciTech Connect

    Veinger, A. I.; Zabrodskii, A. G.; Tisnek, T. V.; Goloshchapov, S. I.; Semenikhin, P. V.; Makarova, T. L.

    2014-08-20

    The low-temperature transformation from antiparallel to parallel spin orientation in a nonmagnetic compensated system Ge:As semiconductor near the metal-insulator phase transition has been experimentally observed. This effect is manifested in the temperature dependences of the impurity magnetic susceptibility obtained by integration of the spin resonance absorption line. These dependences show that the spin density falls in the medium temperature range (10-100 K) and grows at low temperatures. The effect is confirmed by the specific temperature features of the g-factor and inverse magnetic susceptibility. As the relative content of a compensating impurity (gallium) is made lower than 0.7, the transition temperature begins to decrease and, at a degree of compensation < 0.3, falls outside the temperature range under study (i.e., below 2 K)

  17. Method of forming high density oxide pellets by hot pressing at 50$sup 0$ to 100$sup 0$C above the cubic to monoclinic phase transformation temperature

    DOEpatents

    Pasto, A.E.

    1975-08-01

    A process for low temperature sintering of rare earth and actinide oxides which have a cubic to monoclinic transformation is described. The process involves hot pressing a powder compact at a temperature just above the transformation temperature. (auth)

  18. Shock temperatures in silica glass - Implications for modes of shock-induced deformation, phase transformation, and melting with pressure

    NASA Technical Reports Server (NTRS)

    Schmitt, Douglas R.; Ahrens, Thomas J.

    1989-01-01

    Observations of shock-induced radiative thermal emissions are used to determine the gray body temperatures and emittances of silica glass under shock compression between 10 and 30 GPa. The results suggest that fused quartz deforms heterogeneously in this shock pressure range. It is shown that the 10-16 GPa range coincides with the permanent densification region, while the 16-30 GPa range coincides with the inferred mixed phase region along the silica glass Hugoniot. Low emittances in the mixed phase region are thought to represent the melting temperature of the high-pressure phase, stishovite. Also, consideration is given to the effects of pressure on melting relations for the system SiO2-Mg2SiO4.

  19. Temperature variations at nano-scale level in phase transformed nanocrystalline NiTi shape memory alloys adjacent to graphene layers.

    PubMed

    Amini, Abbas; Cheng, Chun; Naebe, Minoo; Church, Jeffrey S; Hameed, Nishar; Asgari, Alireza; Will, Frank

    2013-07-21

    The detection and control of the temperature variation at the nano-scale level of thermo-mechanical materials during a compression process have been challenging issues. In this paper, an empirical method is proposed to predict the temperature at the nano-scale level during the solid-state phase transition phenomenon in NiTi shape memory alloys. Isothermal data was used as a reference to determine the temperature change at different loading rates. The temperature of the phase transformed zone underneath the tip increased by ∼3 to 40 °C as the loading rate increased. The temperature approached a constant with further increase in indentation depth. A few layers of graphene were used to enhance the cooling process at different loading rates. Due to the presence of graphene layers the temperature beneath the tip decreased by a further ∼3 to 10 °C depending on the loading rate. Compared with highly polished NiTi, deeper indentation depths were also observed during the solid-state phase transition, especially at the rate dependent zones. Larger superelastic deformations confirmed that the latent heat transfer through the deposited graphene layers allowed a larger phase transition volume and, therefore, more stress relaxation and penetration depth. PMID:23744099

  20. Temperature variations at nano-scale level in phase transformed nanocrystalline NiTi shape memory alloys adjacent to graphene layers

    NASA Astrophysics Data System (ADS)

    Amini, Abbas; Cheng, Chun; Naebe, Minoo; Church, Jeffrey S.; Hameed, Nishar; Asgari, Alireza; Will, Frank

    2013-06-01

    The detection and control of the temperature variation at the nano-scale level of thermo-mechanical materials during a compression process have been challenging issues. In this paper, an empirical method is proposed to predict the temperature at the nano-scale level during the solid-state phase transition phenomenon in NiTi shape memory alloys. Isothermal data was used as a reference to determine the temperature change at different loading rates. The temperature of the phase transformed zone underneath the tip increased by ~3 to 40 °C as the loading rate increased. The temperature approached a constant with further increase in indentation depth. A few layers of graphene were used to enhance the cooling process at different loading rates. Due to the presence of graphene layers the temperature beneath the tip decreased by a further ~3 to 10 °C depending on the loading rate. Compared with highly polished NiTi, deeper indentation depths were also observed during the solid-state phase transition, especially at the rate dependent zones. Larger superelastic deformations confirmed that the latent heat transfer through the deposited graphene layers allowed a larger phase transition volume and, therefore, more stress relaxation and penetration depth.

  1. Temperature variations at nano-scale level in phase transformed nanocrystalline NiTi shape memory alloys adjacent to graphene layers.

    PubMed

    Amini, Abbas; Cheng, Chun; Naebe, Minoo; Church, Jeffrey S; Hameed, Nishar; Asgari, Alireza; Will, Frank

    2013-07-21

    The detection and control of the temperature variation at the nano-scale level of thermo-mechanical materials during a compression process have been challenging issues. In this paper, an empirical method is proposed to predict the temperature at the nano-scale level during the solid-state phase transition phenomenon in NiTi shape memory alloys. Isothermal data was used as a reference to determine the temperature change at different loading rates. The temperature of the phase transformed zone underneath the tip increased by ∼3 to 40 °C as the loading rate increased. The temperature approached a constant with further increase in indentation depth. A few layers of graphene were used to enhance the cooling process at different loading rates. Due to the presence of graphene layers the temperature beneath the tip decreased by a further ∼3 to 10 °C depending on the loading rate. Compared with highly polished NiTi, deeper indentation depths were also observed during the solid-state phase transition, especially at the rate dependent zones. Larger superelastic deformations confirmed that the latent heat transfer through the deposited graphene layers allowed a larger phase transition volume and, therefore, more stress relaxation and penetration depth.

  2. Phase Transformations in Confined Nanosystems

    SciTech Connect

    Shield, Jeffrey E.; Belashchenko, Kirill

    2014-04-29

    This project discovered that non-equilibrium structures, including chemically ordered structures not observed in bulk systems, form in isolated nanoscale systems. Further, a generalized model was developed that effectively explained the suppression of equilibrium phase transformations. This thermodynamic model considered the free energy decrease associated with the phase transformation was less than the increase in energy associated with the formation of an interphase interface, therefore inhibiting the phase transformation. A critical diameter exists where the system transitions to bulk behavior, and a generalized equation was formulated that successfully predicted this transition in the Fe-Au system. This provided and explains a new route to novel structures not possible in bulk systems. The structural characterization was accomplished using transmission electron microscopy in collaboration with Matthew Kramer of Ames Laboratory. The PI and graduate student visited Ames Laboratory several times a year to conduct the experiments.

  3. Hydrofluoric Acid Controlled TiO2 Phase Transformation from Rutile to Anatase at Room Temperature and Their Photocatalytic Performance.

    PubMed

    Ge, Suxiang; Li, Dapeng; Jia, Gaoyang; Wang, Beibei; Yang, Zhen; Yang, Zongyang; Qiao, Hui; Zhang, Yange; Zheng, Zhi

    2015-09-01

    In this study, we first present rutile TiO2 superstructures could be successfully transformed into anatase TiO2 nanoparticles at room temperature by adjusting the amount of hydrofluoric acid (HF) used in aqueous solution. Photocatalytic experiments demonstrated that the as prepared anatase TiO2 exhibited better photocatalytic performance than that of rutile TiO2. We further studied the photocatalytic degradation of RhB on different TiO2 via active species trapping experiments and confirmed that the presence of surface F- on TiO2 was beneficial for the formation of *OH, which was thought to be mainly responsible for the enhancement of photocatalytic performance.

  4. Phase Transformation in Cast Superaustenitic Stainless Steels

    SciTech Connect

    Lee Phillips, Nathaniel Steven

    2006-01-01

    Superaustenitic stainless steels constitute a group of Fe-based alloys that are compositionally balanced to have a purely austenitic matrix and exhibit favorable pitting and crevice corrosion resistant properties and mechanical strength. However, intermetallic precipitates such as sigma and Laves can form during casting or exposure to high-temperature processing, which degrade the corrosion and mechanical properties of the material. The goal of this study was to accurately characterize the solid-solid phase transformations seen in cast superaustenitic stainless steels. Heat treatments were performed to understand the time and temperature ranges for intermetallic phase formations in alloys CN3MN and CK3MCuN. Microstructures were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy and wavelength dispersive spectroscopy (EDS, WDS). The equilibrium microstructures, composed primarily of sigma and Laves within purely austenitic matrices, showed slow transformation kinetics. Factors that determine the extent of transformation, including diffusion, nucleation, and growth, are discussed.

  5. Phase transformations in nickel-rich nickel-titanium alloys: Influence of strain-rate, temperature, thermomechanical treatment and nickel composition on the shape memory and superelastic characteristics

    NASA Astrophysics Data System (ADS)

    Adharapurapu, Raghavendra R.

    Nearly four decades of academic research and industrial interest on Nitinol has largely focused on the superelastic applications in the bio-medical sector and in the development of 'smart' shape-memory based sensors involving the low-strain rate (˜0.001/s) response of NiTi. It is only within the last decade that there has been a growing interest in the exploitation of Nitinol towards high-strain rate applications such as seismic damping, blast-mitigation or energy-absorbing applications. However, a systematic study of the influence of high-strain rate and temperature on the shape memory characteristics of NiTi is severely lacking. The current research program reports the findings on: (1) The phase-transformation mechanisms in Ni-rich Ni-Ti alloys. These include (a) diffusionless multiple-stage martensitic transformations and (b) diffusion-based phase transformations that govern the precipitation reactions in Ni-rich alloys and the overall time-temperature-transformation (TTT) curves. (2) The systematic study of the high-strain rate response of Ni-rich NiTi alloys as a function of temperature (between -196°C and 400°C) and thermomechanical treatment, viz., fully annealed, work-hardened and precipitation hardened conditions. Two Ni-rich Nitinol alloys, a commercial 50.8-NiTi (at.%) and a new 55-NiTi (at.%), were selected for the study, since the Ni composition determines the precipitation processes and, critically, the transformation temperatures in NiTi alloys. It was observed that the presence of dislocations (through work-hardening) and the presence of Ni-rich precipitates (through age-hardening) contribute to a more complex two-stage or multiple-stage transformations and also improve the overall strength of the NiTi alloy. Based on the microstructural changes, such as recovery, recrystallization and precipitation formation in 50.8-NiTi alloys, the current work uniquely provides a unified and general understanding of the various multiple-stage transformations

  6. Non isothermal effects on phase transformation kinetics

    NASA Astrophysics Data System (ADS)

    Sista, Vivekanand

    Cyclic thermal processing has been shown to accelerate the kinetics of several phase transformations, with a significant beneficial impact on productivity and energy consumption of the energy intensive operations like cyclic grain growth kinetics, recrystallization kinetics and austempering. Austempering is an important thermal processing operation, where strong and tough bainitic steel is produced in a single heat treatment. A new process called cyclic austempering was developed where the steel is first austenized and then cooled rapidly to just above the martensite start temperature where the bainitic transformation is carried out in a controlled fluctuating temperature profile, by continuous heating and cooling segments between two temperature limits. Both isothermal and cyclic austempering experiments were performed on 1080 steel. The powerful dilatometry technique was used to measure the diametrical change as a function of transformation time and temperature. The time taken for the complete bainitic transformation in both isothermal and cyclic austempering processes were calculated to see whether the bainitic kinetics are accelerated or not. Asymmetric cyclic austempering was also performed to determine the heating and cooling rate effects on the transformation. Cyclic austempering resulted in accelerating kinetics to about an 80% reduction in time compared to that of conventional isothermal austempering. Incubation times were calculated to propose a possible mechanism for the accelerated kinetics. Microstructure analysis and hardness analysis was used to establish the cyclic transformation kinetics.

  7. In situ variable temperature X-ray diffraction studies on the transformations of nano-precursors to La-Ni-O phases

    SciTech Connect

    Weng Xiaole; Knowles, Jonathan C.; Abrahams, Isaac; Wu Zhongbiao; Darr, Jawwad A.

    2011-07-15

    In situ variable temperature XRD (VT-XRD) measurements on the transformation of nano-precursors to La-Ni-O phases are presented. Experimental results showed that LaNiO{sub 3} and La{sub 2}NiO{sub 4} phases were formed at ca. 700 deg. C via the reaction of La{sub 2}O{sub 3} and NiO (from the initial nano-precursors), where a relatively low temperature of 700 deg. C was found for the synthesis of La{sub 2}NiO{sub 4}. The formation of La{sub 3}Ni{sub 2}O{sub 7} at higher temperature (up to 1150 deg.C) appeared to proceed through a further reaction of La{sub 2}NiO{sub 4} with unreacted NiO, whilst the formation of La{sub 4}Ni{sub 3}O{sub 10} (at 1075 deg. C) proceeded via a further decomposition of LaNiO{sub 3}. Although phase pure La{sub 3}Ni{sub 2}O{sub 7} and La{sub 4}Ni{sub 3}O{sub 10} were not directly obtained under the processing conditions herein, the results of this study allow for a better understanding of formation pathways, particularly for the higher order La-Ni-O phases. - Graphical abstract: In situ variable temperature XRD showing the phase formation pathway of La{sub n+1}Ni{sub n}O{sub 3n+1} at evaluated temperatures. Highlights: > In situ VT-XRD was utilized to study the pathways for La{sub n+1}Ni{sub n}O{sub 3n+1} formations. > LaNiO{sub 3} and La{sub 2}NiO{sub 4} phases were formed via the reaction of La{sub 2}O{sub 3} and NiO, respectively. > La{sub 3}Ni{sub 2}O{sub 7} phase was formed via further reaction of La{sub 2}NiO{sub 4} phase with unreacted NiO. > La{sub 4}Ni{sub 3}O{sub 10} phase was formed via further decomposition of LaNiO{sub 3} phase.

  8. The Kinetics of Phase Transformation in Welds

    SciTech Connect

    Elmer, J W; Wong, J; Palmer, T

    2002-02-06

    The fundamentals of welding-induced phase transformations in metals and alloys are being investigated using a combination of advanced synchrotron based experimental methods and modem computational science tools. In-situ experimental methods have been developed using a spatially resolved x-ray probe to enable direct observations of phase transformations under the real non- isothermal conditions experienced during welding. These experimental techniques represent a major step forward in the understanding of phase transformations that occur during welding, and are now being used to aid in the development of models to predict microstructural evolution under the severe temperature gradients, high peak temperatures and rapid thermal fluctuations characteristic of welds. Titanium alloys, stainless steels and plain carbon steels are currently under investigation, and the phase transformation data being obtained here cannot be predicted or measured using conventional metallurgical approaches. Two principal synchrotron-based techniques have been developed and refined for in-situ investigations of phase transformation dynamics in the heat-affected zone (HAZ) and fusion zone (FZ) of welds: Spatially Resolved X-Ray Diffraction (SRXRD) and Time Resolved X-Ray Diffraction (TRXRD). Both techniques provide real-time observations of phases that exist during welding, and both have been developed at the Stanford Synchrotron Radiation Laboratory (SSRL) using a high flux wiggler beam line. The SRXRD technique enables direct observations of the phases existing in the HAZ of quasi-stationary moving arc welds, and is used to map the HAZ phases by sequentially jogging the weld with respect to the x-ray beam while taking x-ray diffraction (XRD) patterns at each new location. These spatially resolved XRD patterns are collected in linear traverses perpendicular to the direction of weld travel. The XRD data contained in multiple traverses is later compiled to produce an areal map of the phases

  9. Phase transformation of strontium hexagonal ferrite

    NASA Astrophysics Data System (ADS)

    Bilovol, V.; Martínez-García, R.

    2015-11-01

    The phase transformation of strontium hexagonal ferrite (SrFe12O19) to magnetite (Fe3O4) as main phase and strontium carbonate (SrCO3) as secondary phase is reported here. SrFe12O19 powder was obtained by a heat treatment at 250 °C under controlled oxygen flow. It was observed that the phase transformation occurred when the SrFe12O19 ferrite was heated up to 625 °C in confinement conditions. This transformation took place by a combination of three factors: the presence of stresses in the crystal lattice of SrFe12O19 due to a low synthesis temperature, the reduction of Fe3+ to Fe2+ during the heating up to 625 °C, and the similarity of the coordination spheres of the iron atoms present in the S-block of SrFe12O19 and Fe3O4. X-ray diffraction analysis confirmed the existence of strain and crystal deformation in SrFe12O19 and the absence of them in the material after the phase transformation. Dispersive X-ray absorption spectroscopy and Fe57 Mössbauer spectroscopy provided evidences of the reduction of Fe3+ to Fe2+ in the SrFe12O19 crystal.

  10. Phase transformations and defect clusters in single crystal SrTiO3 irradiated at different temperatures

    NASA Astrophysics Data System (ADS)

    Zhuo, M. J.; Yan, L.; Fu, E. G.; Wang, Y. Q.; Misra, A.; Nastasi, M.; Uberuaga, B. P.; Jia, Q. X.

    2013-11-01

    Radiation damage mechanisms in single crystal SrTiO3 irradiated with 250 keV Ne ions to a fluence of 1.11 × 1020 ions/m2 at both room temperature and 773 K were systematically investigated. The irradiation-induced microstructural evolution was characterized using transmission electron microscopy. Ion irradiation at room temperature results in amorphization of crystalline SrTiO3 near the peak damage region at this fluence. On the other hand, ion irradiation at high temperature leads to less irradiation-induced damage in SrTiO3 due to the higher recovery rate of defects. Nevertheless, the formation of dislocation loops has been observed in the SrTiO3 crystals irradiated at high temperature. These dislocation loops were determined to be unfaulted loops with Burgers vector along <0 1 1>.

  11. Coal transformation under high-temperature catagenesis

    SciTech Connect

    Melenevsky, V.N.; Sokol, E.V.; Fomin, A.N.

    2006-07-01

    In this paper we consider products of natural pyrolysis of lignite, which resulted from the high-temperature spontaneous combustion of spoil heaps of the Chelyabinsk coal basin. These products were studied by pyrolysis, element and petrographic analyses, chromatomass spectrometry, and X-ray diffraction method. We have established that under reducing conditions, the degree of pyrogenic coal transformation and the composition of pyrolysis products vary greatly, from graphite-like phases to bitumens, and depend on the temperature and degree of the system openness.

  12. Phase Transformations in Cast Duplex Stainless Steels

    SciTech Connect

    Kim, Yoon-Jun

    2004-01-01

    Duplex stainless steels (DSS) constitute both ferrite and austenite as a matrix. Such a microstructure confers a high corrosion resistance with favorable mechanical properties. However, intermetallic phases such as σ and χ can also form during casting or high-temperature processing and can degrade the properties of the DSS. This research was initiated to develop time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams of two types of cast duplex stainless steels, CD3MN (Fe-22Cr-5Ni-Mo-N) and CD3MWCuN (Fe-25Cr-7Ni-Mo-W-Cu-N), in order to understand the time and temperature ranges for intermetallic phase formation. The alloys were heat treated isothermally or under controlled cooling conditions and then characterized using conventional metallographic methods that included tint etching, and also using electron microscopy (SEM, TEM) and wavelength dispersive spectroscopy (WDS). The kinetics of intermetallic-phase (σ + χ) formation were analyzed using the Johnson-Mehl-Avrami (MA) equation in the case of isothermal transformations and a modified form of this equation in the case of continuous cooling transformations. The rate of intermetallic-phase formation was found to be much faster in CD3MWCuN than CD3MN due mainly to differences in the major alloying contents such as Cr, Ni and Mo. To examine in more detail the effects of these elements of the phase stabilities; a series of eight steel castings was designed with the Cr, Ni and Mo contents systematically varied with respect to the nominal composition of CD3MN. The effects of varying the contents of alloying additions on the formation of intermetallic phases were also studied computationally using the commercial thermodynamic software package, Thermo-Calc. In general, σ was stabilized with increasing Cr addition and χ by increasing Mo addition. However, a delicate balance among Ni and other minor elements such as N and Si also exists. Phase equilibria in DSS can be affected by

  13. Crystal Level Continuum Modeling of Phase Transformations: The (alpha) <--> (epsilon) Transformation in Iron

    SciTech Connect

    Barton, N R; Benson, D J; Becker, R; Bykov, Y; Caplan, M

    2004-10-18

    We present a crystal level model for thermo-mechanical deformation with phase transformation capabilities. The model is formulated to allow for large pressures (on the order of the elastic moduli) and makes use of a multiplicative decomposition of the deformation gradient. Elastic and thermal lattice distortions are combined into a single lattice stretch to allow the model to be used in conjunction with general equation of state relationships. Phase transformations change the mass fractions of the material constituents. The driving force for phase transformations includes terms arising from mechanical work, from the temperature dependent chemical free energy change on transformation, and from interaction energy among the constituents. Deformation results from both these phase transformations and elasto-viscoplastic deformation of the constituents themselves. Simulation results are given for the {alpha} to {epsilon} phase transformation in iron. Results include simulations of shock induced transformation in single crystals and of compression of polycrystals. Results are compared to available experimental data.

  14. Phase transformation of boron nitride under hypothermal conditions

    SciTech Connect

    Lian Gang; Zhang Xiao; Zhu Lingling; Cui Deliang; Wang Qilong; Tao Xutang

    2009-06-15

    Phase transformation among different boron nitride (BN) phases in hydrothermal solution was investigated. It was found that hexagonal boron nitride (hBN) firstly formed in the solution at relatively low temperature (i.e., 220 deg. C). After that, a spot of hBN began to transform into wurtzite boron nitride (wBN) and cubic boron nitride (cBN) at 230 deg. C. More and more hBN converted into wBN and cBN with the increase in temperature, and this transformation process completed at 300 deg. C. In this paper, we have explained the mechanism of the above phase transformation by using a reported 'puckering mechanism'. - Graphical abstract: Phase transformations from hBN to wBN and cBN happened with the temperature increasing from 230 to 300 deg. C under hypothermal conditions, and nearly pure cBN has been synthesized at 300 deg. C and 12 MPa.

  15. Temperature induced phase transformations at Mt. Etna (Italy) volcano: implications for the mechanical weakening of the volcanic edifice under magmatic stresses

    NASA Astrophysics Data System (ADS)

    Vinciguerra, S.; Mollo, S.; Iarocci, A.; Iezzi, G.; Heap, M. J.

    2009-12-01

    up to 760°C. Chemical and XRD analyses revealed that phase transformations took place over two different temperature intervals. i) From 25 to 600°C kaolinite disappears, as dehydroxylation of phyllosilicates takes place; ii) From 600 to 760°C decarbonation process occur, which shrink the calcite content from ~75 to ~11 wt%. Above 600°C, CaO produced during ii) reacts with silica and atmospheric water, forming ~37 wt% of larnite (Ca2SiO4) and ~27 wt% of portlandite (Ca(OH)2), respectively. Preliminary results on limestones reveal that drop of velocity from ~3.5 and ~4.5 km s-1 respectively to ~1.5 and ~2.5 km s-1 , by temperatures up to 800°C. The bulk of decarbonation occurs after 700°C. The main implication of this study is that temperature induced phase transformations trigger weakening of the sedimentary basement and can promote instability processes at stresses much below the ones expected.

  16. FAST TRACK COMMUNICATION: Field dependence of temperature induced irreversible transformations of magnetic phases in Pr0.5Ca0.5Mn0.975Al0.025O3 crystalline oxide

    NASA Astrophysics Data System (ADS)

    Lakhani, Archana; Kushwaha, Pallavi; Rawat, R.; Kumar, Kranti; Banerjee, A.; Chaddah, P.

    2010-01-01

    Glass-like arrest has recently been reported in various magnetic materials. As in structural glasses, the kinetics of a first order transformation is arrested while retaining the higher entropy phase as a non-ergodic state. We show visual mesoscopic evidence of the irreversible transformation of the arrested antiferromagnetic-insulating phase in Pr0.5Ca0.5Mn0.975Al0.025O3 to its equilibrium ferromagnetic-metallic phase with an isothermal increase of magnetic field, similar to its iso-field transformation on warming. The magnetic field dependence of the non-equilibrium to equilibrium transformation temperature is shown to be governed by Le Chatelier's principle.

  17. Field dependence of temperature induced irreversible transformations of magnetic phases in Pr(0.5)Ca(0.5)Mn(0.975)Al(0.025)O(3) crystalline oxide.

    PubMed

    Lakhani, Archana; Kushwaha, Pallavi; Rawat, R; Kumar, Kranti; Banerjee, A; Chaddah, P

    2010-01-27

    Glass-like arrest has recently been reported in various magnetic materials. As in structural glasses, the kinetics of a first order transformation is arrested while retaining the higher entropy phase as a non-ergodic state. We show visual mesoscopic evidence of the irreversible transformation of the arrested antiferromagnetic-insulating phase in Pr(0.5)Ca(0.5)Mn(0.975)Al(0.025)O(3) to its equilibrium ferromagnetic-metallic phase with an isothermal increase of magnetic field, similar to its iso-field transformation on warming. The magnetic field dependence of the non-equilibrium to equilibrium transformation temperature is shown to be governed by Le Chatelier's principle. PMID:21386273

  18. Effect of aging on the phase transformation and mechanical behavior of Ti{sub 36}Ni{sub 49}Hf{sub 15} high temperature shape memory alloy

    SciTech Connect

    Meng, X.L.; Zheng, Y.F.; Wang, Z.; Zhao, L.C.

    2000-01-31

    The TiNiHf alloys are newly developed as high temperature shape memory alloys with the high transformation temperatures and with lower cost in comparison with TiNiX (X = Pd, Pt) alloys. Until now, no results about the effects of aging at high temperature (above 953K) in the TiNiHf alloys are reported. The purpose of the present work is to investigate the microstructure, transformation temperature, mechanical properties and shape memory effects (SMEs) for Ti{sub 36}Ni{sub 49}Hf{sub 15} alloy aged at 973K for different hours by transmission electron microscopy (TEM), X-ray diffraction (XRD) techniques, electrical resistance-temperature measurement, bending and tensile tests.

  19. Effect of calcination temperature on phase transformation, structural and optical properties of sol-gel derived ZrO2 nanostructures

    NASA Astrophysics Data System (ADS)

    Kumar, Sachin; Bhunia, Snehasis; Ojha, Animesh K.

    2015-02-01

    Zirconia (ZrO2) nanostructures of various sizes have been synthesized using sol-gel method followed by calcination of the samples from 500 to 700 °C. The calcined ZrO2 powder samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transform infra-red spectroscopy (FT-IR), UV-visible spectroscopy (UV-vis.), Raman spectroscopy (RS) and thermogravimetric analysis (TGA). The phase transformation from tetragonal (t) to monoclinic (m) was observed. The average diameter of the ZrO2 nanostructures calcined at 500, 600 and 700 °C was calculated to be 8, 17 and 10 nm, respectively. The ZrO2 sample calcined at 500 °C with tetragonal phase shows a direct optical band gap of 5.1 eV. The value of optical band gap is decreased to 4.3 eV for the ZrO2 calcined at 600 °C, which contains both tetragonal (73%) and monoclinic (27%) phases. On further calcination at 700 °C, where the ZrO2 nanostructures have 36% tetragonal and 64% monoclinic phases, the optical band gap is calculated to be 4.8 eV. The enhancement in optical band gap for ZrO2 calcined at 700 °C may be due to the rod like shape of ZrO2 nanostructures. The tetragonal to monoclinic phase transformation was also confirmed by analyzing Raman spectroscopic data. The TG analysis revealed that the ZrO2 nanostructure with dominance of monoclinic phase is found to be more stable over the tetragonal phase. In order to confirm the phase stability of the two phases of ZrO2, single point energy is calculated corresponding to its monoclinic and tetragonal structures using density functional theory (DFT) calculations. The results obtained by theoretical calculations are in good agreement with the experimental findings.

  20. METHODOLOGICAL NOTES: Metastable phases, phase transformations, and phase diagrams in physics and chemistry

    NASA Astrophysics Data System (ADS)

    Brazhkin, Vadim V.

    2006-07-01

    Concepts of a 'phase' and a 'phase transition' are discussed for stable and metastable states of matter. While condensed matter physics primarily considers equilibrium states and treats metastable phases as exceptions, organic chemistry overwhelmingly deals with metastable states. It is emphasized that many simple light-element compounds — including most hydrocarbons; nitrogen oxides, hydrides, and carbides; carbon monoxide CO; alcohols and glycerin — are also metastable at normal pressure in the sense that they do not correspond to a minimum Gibbs free energy for a given chemical composition. At moderate temperatures and pressures, the phase transformations for these metastable phases are reversible with the fulfilment of all laws of equilibrium thermodynamics over the entire range of experimentally accessible times. At sufficiently high pressures (> 1-10 GPa), most of the metastable molecular phases irreversibly transform to lower-energy polymer phases, stable or metastable. These transitions do not correspond to the equality of the Gibbs free energy for the involved phases before and after the transition and so they are not first-order in the 'classical' sense. At normal pressure, the resulting polymer phases can exist at temperatures above the melting point of the original metastable molecular phase, as the examples of polyethylene and polymerized CO dramatically illustrate. As pressure is increased further to 20-50 GPa, the PV contribution to Gibbs free energy gives rise to stable high-density atomic phases. Many of the intermediate-energy polymer phases can likely be synthesized by methods of 'classical' chemistry at normal pressure.

  1. Phase transformations in xerogels of mullite composition

    NASA Technical Reports Server (NTRS)

    Hyatt, Mark J.; Bansal, Narottam P.

    1988-01-01

    Monophasic and diphasic xerogels have been prepared as precursors for mullite (3Al2O3-2SiO2). Monophasic xerogel was synthesized from tetraethyl orthosilicate and aluminum nitrate nanohydrate and the diphasic xerogel from colloidal suspension of silica and boehmite. The chemical and structural evolutions, as a function of thermal treatment, in these two types of sol-gel derived mullite precursor powders have been characterized by DTA, TGA, X-ray diffraction, SEM and infrared spectroscopy. Monophasic xerogel transforms to an Al-Si spinel from an amorphous structure at approximately 980 C. The spinel then changes into mullite on further heating. Diphasic xerogel forms mullite at approximately 1360 C. The components of the diphasic powder react independently up to the point of mullite formation. The transformation in the monophasic powder occurs rapidly and yields strongly crystalline mullite with no other phases present. The diphasic powder, however, transforms rather slowly and contains remnants of the starting materials (alpha-Al2O3, cristobalite) even after heating at high temperatures for long times (1600 C, 6 hr). The diphasic powder could be sintered to high density but not the monophasic powder in spite of its molecular level homogeneity.

  2. Phase Equilibria, Phase Diagrams and Phase Transformations - 2nd Edition

    NASA Astrophysics Data System (ADS)

    Hillert, Mats

    2006-03-01

    Computational tools allow material scientists to model and analyze increasingly complicated systems to appreciate material behavior. Accurate use and interpretation however, requires a strong understanding of the thermodynamic principles that underpin phase equilibrium, transformation and state. This fully revised and updated edition covers the fundamentals of thermodynamics, with a view to modern computer applications. The theoretical basis of chemical equilibria and chemical changes is covered with an emphasis on the properties of phase diagrams. Starting with the basic principles, discussion moves to systems involving multiple phases. New chapters cover irreversible thermodynamics, extremum principles, and the thermodynamics of surfaces and interfaces. Theoretical descriptions of equilibrium conditions, the state of systems at equilibrium and the changes as equilibrium is reached, are all demonstrated graphically. With illustrative examples - many computer calculated - and worked examples, this textbook is an valuable resource for advanced undergraduates and graduate students in materials science and engineering. Fully revised and updated edition covering the fundamentals of thermodynamics with a view to modern computer applications such as Thermo-Calc Emphasis is placed on phase diagrams, the key application of thermodynamics Contains numerous illustrative examples, many computer-calculated and some for real systems, and worked examples to help demonstrate the principles

  3. Transformer winding temperature estimation based on tank surface temperature

    NASA Astrophysics Data System (ADS)

    Guo, Wenyu; Wijaya, Jaury; Martin, Daniel; Lelekakis, Nick

    2011-04-01

    Power transformers are among the most valuable assets of the electrical grid. Since the largest units cost in the order of millions of dollars, it is desirable to operate them in such a manner that extends their remaining lives. Operating these units at high temperature will cause excessive insulation ageing in the windings. Consequently, it is necessary to study the thermal performance of these expensive items. Measuring or estimating the winding temperature of power transformers is beneficial to a utility because this provides them with the data necessary to make informed decisions on how best to use their assets. Fiber optic sensors have recently become viable for the direct measurement of winding temperatures while a transformer is energized. However, it is only practical to install a fiber optic temperature sensor during the manufacture of a transformer. For transformers operating without fiber optic sensors, the winding temperature can be estimated with calculations using the temperature of the oil at the top of the transformer tank. When the oil temperature measurement is not easily available, the temperature of the tank surface may be used as an alternative. This paper shows how surface temperature may be utilized to estimate the winding temperature within a transformer designed for research purposes.

  4. Microstructure and phase transformations in FeSe superconductor

    NASA Astrophysics Data System (ADS)

    Diko, P.; Antal, V.; Kavečansky, V.; Yang, Ch.; Chen, I.

    2012-06-01

    It is shown that a FeSe bulk superconductor prepared by solidification in an inert atmosphere contains an acicular β(Fe1-xSe) phase with a residual δ(Fe1-xSe) high temperature phase. Four different crystal orientations of the β(Fe1-xSe) phase formed from one δ(Fe1-xSe) grain were detected by polarised light microscopy. This behaviour is typical for diffusion-less transformations. The diffusion-less character of δ(Fe1-xSe) to β(Fe1-xSe) transformation was confirmed by thermal analysis.

  5. Parameters of high-temperature superconducting transformers

    NASA Astrophysics Data System (ADS)

    Volkov, E. P.; Dzhafarov, E. A.

    2015-12-01

    Parameters of the high-temperature superconducting (HTSC) transformer with a core-type magnetic circuit and with coaxial and symmetrical interleaved windings made of the first-generation HTSC wire with a localized magnetic field are considered. The parameters of the most widespread core-type transformer with a coaxial HTSC winding are compared with those of a conventional transformer with a copper wire winding. Advantages of the HTSC transformers, such as reduction in the leakage inductive reactance and the HTSC winding's cross section, volume, and mass, as compared with the same parameters of conventional transformers with a copper wire winding are demonstrated. The efficiency of the HTSC transformers has proven to be determined predominantly by the core loss. In order to increase the efficiency of the HTSC transformer, it is proposed to use the amorphous electrical steel as the material of its magnetic circuit.

  6. Atomic Structure and Phase Transformations in Pu Alloys

    SciTech Connect

    Schwartz, A J; Cynn, H; Blobaum, K M; Wall, M A; Moore, K T; Evans, W J; Farber, D L; Jeffries, J R; Massalski, T B

    2008-04-28

    Plutonium and plutonium-based alloys containing Al or Ga exhibit numerous phases with crystal structures ranging from simple monoclinic to face-centered cubic. Only recently, however, has there been increased convergence in the actinides community on the details of the equilibrium form of the phase diagrams. Practically speaking, while the phase diagrams that represent the stability of the fcc {delta}-phase field at room temperature are generally applicable, it is also recognized that Pu and its alloys are never truly in thermodynamic equilibrium because of self-irradiation effects, primarily from the alpha decay of Pu isotopes. This article covers past and current research on several properties of Pu and Pu-(Al or Ga) alloys and their connections to the crystal structure and the microstructure. We review the consequences of radioactive decay, the recent advances in understanding the electronic structure, the current research on phase transformations and their relations to phase diagrams and phase stability, the nature of the isothermal martensitic {delta} {yields} {alpha}{prime} transformation, and the pressure-induced transformations in the {delta}-phase alloys. New data are also presented on the structures and phase transformations observed in these materials following the application of pressure, including the formation of transition phases.

  7. Effect of silicon on the phase formation in mechanically activated systems based on Fe(75)C(25): Temperature-induced transformations in mechanosynthesized composites

    NASA Astrophysics Data System (ADS)

    Volkov, V. A.; Chulkina, A. A.; Ul'yanov, A. I.; Elsukov, E. P.

    2012-04-01

    Transformations realized in mechanosynthesized amorphous-nanocrystalline Fe(75)C(25 - x)Si( x) (0 ≤ x ≤ 10 at %) alloys during heating have been studied using dynamic magnetic susceptibility measurements, X-ray diffraction, and metallography. In contrast to mechanosynthesized alloys consisting of α-Fe, Fe3C, and amorphous phases, the annealed alloys with x > 5 at % were found to exhibit the formation of an additional phase such as Fe5SiC. After heating to 700 and 800°C, the powder particles of alloys contain a large amount of uniformly distributed graphite particles of ˜0.5 μm in size. The formation of particles results from the cementite decomposition, which is accelerated at the expense of partial silicon dissolution in cementite and in the presence of α-Fe nanograins as well.

  8. Phase Transformation in Tantalum under Extreme Laser Deformation.

    PubMed

    Lu, C-H; Hahn, E N; Remington, B A; Maddox, B R; Bringa, E M; Meyers, M A

    2015-10-19

    The structural and mechanical response of metals is intimately connected to phase transformations. For instance, the product of a phase transformation (martensite) is responsible for the extraordinary range of strength and toughness of steel, making it a versatile and important structural material. Although abundant in metals and alloys, the discovery of new phase transformations is not currently a common event and often requires a mix of experimentation, predictive computations, and luck. High-energy pulsed lasers enable the exploration of extreme pressures and temperatures, where such discoveries may lie. The formation of a hexagonal (omega) phase was observed in recovered monocrystalline body-centered cubic tantalum of four crystallographic orientations subjected to an extreme regime of pressure, temperature, and strain-rate. This was accomplished using high-energy pulsed lasers. The omega phase and twinning were identified by transmission electron microscopy at 70 GPa (determined by a corresponding VISAR experiment). It is proposed that the shear stresses generated by the uniaxial strain state of shock compression play an essential role in the transformation. Molecular dynamics simulations show the transformation of small nodules from body-centered cubic to a hexagonal close-packed structure under the same stress state (pressure and shear).

  9. Phase Transformation in Tantalum under Extreme Laser Deformation

    PubMed Central

    Lu, C.-H.; Hahn, E. N.; Remington, B. A.; Maddox, B. R.; Bringa, E. M.; Meyers, M. A.

    2015-01-01

    The structural and mechanical response of metals is intimately connected to phase transformations. For instance, the product of a phase transformation (martensite) is responsible for the extraordinary range of strength and toughness of steel, making it a versatile and important structural material. Although abundant in metals and alloys, the discovery of new phase transformations is not currently a common event and often requires a mix of experimentation, predictive computations, and luck. High-energy pulsed lasers enable the exploration of extreme pressures and temperatures, where such discoveries may lie. The formation of a hexagonal (omega) phase was observed in recovered monocrystalline body-centered cubic tantalum of four crystallographic orientations subjected to an extreme regime of pressure, temperature, and strain-rate. This was accomplished using high-energy pulsed lasers. The omega phase and twinning were identified by transmission electron microscopy at 70 GPa (determined by a corresponding VISAR experiment). It is proposed that the shear stresses generated by the uniaxial strain state of shock compression play an essential role in the transformation. Molecular dynamics simulations show the transformation of small nodules from body-centered cubic to a hexagonal close-packed structure under the same stress state (pressure and shear). PMID:26478106

  10. Phase Transformation in Tantalum under Extreme Laser Deformation.

    PubMed

    Lu, C-H; Hahn, E N; Remington, B A; Maddox, B R; Bringa, E M; Meyers, M A

    2015-01-01

    The structural and mechanical response of metals is intimately connected to phase transformations. For instance, the product of a phase transformation (martensite) is responsible for the extraordinary range of strength and toughness of steel, making it a versatile and important structural material. Although abundant in metals and alloys, the discovery of new phase transformations is not currently a common event and often requires a mix of experimentation, predictive computations, and luck. High-energy pulsed lasers enable the exploration of extreme pressures and temperatures, where such discoveries may lie. The formation of a hexagonal (omega) phase was observed in recovered monocrystalline body-centered cubic tantalum of four crystallographic orientations subjected to an extreme regime of pressure, temperature, and strain-rate. This was accomplished using high-energy pulsed lasers. The omega phase and twinning were identified by transmission electron microscopy at 70 GPa (determined by a corresponding VISAR experiment). It is proposed that the shear stresses generated by the uniaxial strain state of shock compression play an essential role in the transformation. Molecular dynamics simulations show the transformation of small nodules from body-centered cubic to a hexagonal close-packed structure under the same stress state (pressure and shear). PMID:26478106

  11. Phase transformation in tantalum under extreme laser deformation

    SciTech Connect

    Lu, C. -H.; Hahn, E. N.; Remington, B. A.; Maddox, B. R.; Bringa, E. M.; Meyers, M. A.

    2015-10-19

    The structural and mechanical response of metals is intimately connected to phase transformations. For instance, the product of a phase transformation (martensite) is responsible for the extraordinary range of strength and toughness of steel, making it a versatile and important structural material. Although abundant in metals and alloys, the discovery of new phase transformations is not currently a common event and often requires a mix of experimentation, predictive computations, and luck. High-energy pulsed lasers enable the exploration of extreme pressures and temperatures, where such discoveries may lie. The formation of a hexagonal (omega) phase was observed in recovered monocrystalline body-centered cubic tantalum of four crystallographic orientations subjected to an extreme regime of pressure, temperature, and strain-rate. This was accomplished using high-energy pulsed lasers. The omega phase and twinning were identified by transmission electron microscopy at 70 GPa (determined by a corresponding VISAR experiment). It is proposed that the shear stresses generated by the uniaxial strain state of shock compression play an essential role in the transformation. In conclusion, molecular dynamics simulations show the transformation of small nodules from body-centered cubic to a hexagonal close-packed structure under the same stress state (pressure and shear).

  12. Phase transformation in tantalum under extreme laser deformation

    DOE PAGES

    Lu, C. -H.; Hahn, E. N.; Remington, B. A.; Maddox, B. R.; Bringa, E. M.; Meyers, M. A.

    2015-10-19

    The structural and mechanical response of metals is intimately connected to phase transformations. For instance, the product of a phase transformation (martensite) is responsible for the extraordinary range of strength and toughness of steel, making it a versatile and important structural material. Although abundant in metals and alloys, the discovery of new phase transformations is not currently a common event and often requires a mix of experimentation, predictive computations, and luck. High-energy pulsed lasers enable the exploration of extreme pressures and temperatures, where such discoveries may lie. The formation of a hexagonal (omega) phase was observed in recovered monocrystalline body-centeredmore » cubic tantalum of four crystallographic orientations subjected to an extreme regime of pressure, temperature, and strain-rate. This was accomplished using high-energy pulsed lasers. The omega phase and twinning were identified by transmission electron microscopy at 70 GPa (determined by a corresponding VISAR experiment). It is proposed that the shear stresses generated by the uniaxial strain state of shock compression play an essential role in the transformation. In conclusion, molecular dynamics simulations show the transformation of small nodules from body-centered cubic to a hexagonal close-packed structure under the same stress state (pressure and shear).« less

  13. Magnetostructural phase transformations in Tb 1-x Mn 2

    DOE PAGES

    Zou, Junding; Paudyal, Durga; Liu, Jing; Mudryk, Yaroslav; Pecharsky, Vitalij K.; Gschneidner, Karl A.

    2015-01-16

    Magnetism and phase transformations in non-stoichiometric Tb1-xMn2 (x = 0.056, 0.039) have been studied as functions of temperature and magnetic field using magnetization, heat capacity, and X-ray powder diffraction measurements. Lowering the temperature, the compounds sequentially order ferrimagnetically and antiferromagnetically, and finally, exhibit spin reorientation transitions. Moreover, these structural distortions from room temperature cubic to low temperature rhombohedral structures occur at TN, and are accompanied by large volume changes reaching ~-1.27% and -1.42%, respectively. First principles electronic structure calculations confirm the phase transformation from the ferrimagnetic cubic structure to the antiferromagnetic rhombohedral structure in TbMn2.

  14. Phase transformations in binary colloidal monolayers.

    PubMed

    Yang, Ye; Fu, Lin; Marcoux, Catherine; Socolar, Joshua E S; Charbonneau, Patrick; Yellen, Benjamin B

    2015-03-28

    Phase transformations can be difficult to characterize at the microscopic level due to the inability to directly observe individual atomic motions. Model colloidal systems, by contrast, permit the direct observation of individual particle dynamics and of collective rearrangements, which allows for real-space characterization of phase transitions. Here, we study a quasi-two-dimensional, binary colloidal alloy that exhibits liquid-solid and solid-solid phase transitions, focusing on the kinetics of a diffusionless transformation between two crystal phases. Experiments are conducted on a monolayer of magnetic and nonmagnetic spheres suspended in a thin layer of ferrofluid and exposed to a tunable magnetic field. A theoretical model of hard spheres with point dipoles at their centers is used to guide the choice of experimental parameters and characterize the underlying materials physics. When the applied field is normal to the fluid layer, a checkerboard crystal forms; when the angle between the field and the normal is sufficiently large, a striped crystal assembles. As the field is slowly tilted away from the normal, we find that the transformation pathway between the two phases depends strongly on crystal orientation, field strength, and degree of confinement of the monolayer. In some cases, the pathway occurs by smooth magnetostrictive shear, while in others it involves the sudden formation of martensitic plates. PMID:25677504

  15. Shock Condition Forensics and Cryptic Phase Transformations from Crystallographic Orientation Relationships in Zircon

    NASA Astrophysics Data System (ADS)

    Timms, N. E.; Erickson, T. M.; Cavosie, A. J.; Pearce, M. A.; Reddy, S. M.; Zanetti, M.; Tohver, E.; Schmieder, M.; Nemchin, A. A.; Wittmann, A.

    2016-08-01

    We present an approach to constrain pressure and temperature conditions during impact events involving identification of cryptic histories of phase transformations from orientation relationships in shocked zircon, linked to new P-T phase diagrams.

  16. Kinetics of Phase Transformations in CuAu Alloys

    NASA Astrophysics Data System (ADS)

    Malis, O.; Ludwig, K.

    1997-03-01

    We have performed time resolved x-ray scattering studies of the kinetics of phase transformations in CuAu alloys. The equilibrium phase diagram of CuAu presents two first-order ordering transitions which separate the stability range of a high temperature disordered phase and two ordered phases: CuAuI and CuAuII. CuAuII is a modulated phase having a wavelength ten times larger than CuAuI. Our study focused on the competition between CuAuI and CuAuII as well as on the interaction between order and strain as the lattice changes from cubic in the disordered phase to tetragonal in CuAuI. During CuAuI formation from the disordered phase, CuAuII appears and persists even for quenches deep below the coexistence point of CuAuI and CuAuII. We have also found that the formation of CuAuI from CuAuII is considerably slower than the formation of CuAuI from the disordered phase for equal quench temperatures. Langevin simulations based on EMT are in good qualitative agreement with the x-ray results(Elder, Malis, Ludwig, Chakraborty, Goldenfeld in preparation.). With increasing quench depth we also observe a change in kinetics from an incoherent nucleation process to a continuous transformation of the lattice while ordering.

  17. Role of valence electrons in phase transformation kinetics of thallium and its dilute alloys

    NASA Technical Reports Server (NTRS)

    Ahmed, R.; Ahmed, S.

    1991-01-01

    The kinetics of the phase transformation of thallium and its dilute alloys were investigated using XRD and calorimetry. Pure thallium exhibits a beta(bcc) to alpha(hcp) phase transformation on cooling at 508 K. With alloying additions, the crystal structure for each phase does not change, although the size of the unit cell increases. The enthalpy and the temperature of phase transformation of each alloy have been determined. The chemical free energy change associated with the phase transformation of each alloy was calculated. The valence electrons make an outstanding contribution to the chemical free energy change required for the phase change.

  18. The HCP To BCC Phase Transformation in Ti Characterized by Nanosecond Electron Microscopy

    SciTech Connect

    Campbell, G; LaGrange, T; King, W; Colvin, J; Ziegler, A; Browning, N; Kleinschmidt, H; Bostanjoglo, O

    2005-06-21

    The general class of martensitic phase transformations occurs by a rapid lattice-distortive mechanism, where kinetics and morphology of the transformation are dominated by the strain energy. Since transformation is diffusionless, phase fronts propagate through a crystal with great speed that can approach the speed of sound. We have observed a particular example of this class of phase transformation, the hexagonal close packed (HCP) to body centered cubic (BCC) transformation in titanium that is driven by a rapid increase in temperature. We have used a novel nanosecond electron microscope (the dynamic transmission electron microscope, DTEM) to acquire diffraction and imaging information on the transformation, which is driven in-situ by nanosecond laser irradiation. Using nanosecond exposure times that are possible in the DTEM, data can be collected about the transient events in these fast transformations. We have identified the phase transformation with diffraction patterns and correlated the time of the phase transformation with calculated conditions in the sample.

  19. Phase transformations in some hafnium-tantalum-titanium-zirconium alloys

    SciTech Connect

    Ohriner, E.K.; Kapoor, D.

    1997-11-01

    Phase transformations in hafnium alloys are of interest as a means of achieving a material which exhibits flow softening and high localized strains during deformation at high strain rates. Hafnium transforms from a body-centered-cubic beta phase to a hexagonal alpha phase upon cooling below 1749{degrees}C. Hafnium-based alloys containing up to 17.5% Ti, up to 17.5% Ta, and up to 7.3% Zr by weight were button-arc melted and, in some cases, hot extruded to obtain a refined grain size. A number of alloys were shown to have beta solvus temperatures in the range of 1100 to 1300{degrees}C and showed evidence of a shear transformation upon water quenching. The Vickers microhardness of the quenched materials are typically above 350 HV as compared to 300 HV or less for materials with an alpha plus beta structure. Quenching dilatometry indicates a martensite start temperature of about 750{degrees}C for the Hf-7.5 Ta-10 Ti-1 Zr alloy and 800{degrees}C or more for the Hf-7.5 Ta-7.5 Ti-1 Zr alloy. Tensile tests at 1 s{sup {minus}1} strain rate show a constant ultimate tensile strength for temperatures up to 600{degrees}C for the above two alloys and a rapid decrease in strength with a further increase in temperature.

  20. Shock-induced phase transformation in tantalum

    NASA Astrophysics Data System (ADS)

    Hsiung, Luke L.

    2010-09-01

    A TEM study of pure tantalum and tantalum-tungsten alloys explosively shocked at a peak pressure of 30 GPa is presented. While no omega phase was found in shock-recovered pure Ta and Ta-5W which mainly contain a cellular dislocation structure, a shock-induced omega phase was found in Ta-10W which contains evenly distributed dislocations with a density higher than 1 × 1012 cm - 2. The shock-induced \\alpha ~\\mathrm {(bcc)}\\rightarrow \\omega (hexagonal) transition occurs when the dynamic recovery of dislocations becomes largely suppressed in Ta-10W shocked under dynamic-pressure conditions. A dislocation-based mechanism is proposed for the shock-induced phase transformation.

  1. Phase field modeling of tetragonal to monoclinic phase transformation in zirconia

    NASA Astrophysics Data System (ADS)

    Mamivand, Mahmood

    Zirconia based ceramics are strong, hard, inert, and smooth, with low thermal conductivity and good biocompatibility. Such properties made zirconia ceramics an ideal material for different applications form thermal barrier coatings (TBCs) to biomedicine applications like femoral implants and dental bridges. However, this unusual versatility of excellent properties would be mediated by the metastable tetragonal (or cubic) transformation to the stable monoclinic phase after a certain exposure at service temperatures. This transformation from tetragonal to monoclinic, known as LTD (low temperature degradation) in biomedical application, proceeds by propagation of martensite, which corresponds to transformation twinning. As such, tetragonal to monoclinic transformation is highly sensitive to mechanical and chemomechanical stresses. It is known in fact that this transformation is the source of the fracture toughening in stabilized zirconia as it occurs at the stress concentration regions ahead of the crack tip. This dissertation is an attempt to provide a kinetic-based model for tetragonal to monoclinic transformation in zirconia. We used the phase field technique to capture the temporal and spatial evolution of monoclinic phase. In addition to morphological patterns, we were able to calculate the developed internal stresses during tetragonal to monoclinic transformation. The model was started form the two dimensional single crystal then was expanded to the two dimensional polycrystalline and finally to the three dimensional single crystal. The model is able to predict the most physical properties associated with tetragonal to monoclinic transformation in zirconia including: morphological patterns, transformation toughening, shape memory effect, pseudoelasticity, surface uplift, and variants impingement. The model was benched marked with several experimental works. The good agreements between simulation results and experimental data, make the model a reliable tool for

  2. Phase transformation and growth of hygroscopic aerosols

    SciTech Connect

    Tang, I.N.

    1995-09-01

    Ambient aerosols frequently contain large portions of hygroscopic inorganic salts such as chlorides, nitrates, and sulfates in either pure or mixed forms. Such inorganic salt aerosols exhibit the properties of deliquescence and efflorescence in air. The phase transformation from a solid particle to a saline droplet usually occurs spontaneously when the relative humidity of the atmosphere reaches a level specific to the chemical composition of the aerosol particle. Conversely, when the relative humidity decreases and becomes low enough, the saline droplet will evaporate and suddenly crystallize, expelling all its water content. The phase transformation and growth of aerosols play an important role in many atmospheric processes affecting air quality, visibility degradation, and climate changes. In this chapter, an exposition of the underlying thermodynamic principles is given, and recent advances in experimental methods utilizing single-particle levitation are discussed. In addition, pertinent and available thermodynamic data, which are needed for predicting the deliquescence properties of single and multi-component aerosols, are compiled. This chapter is useful to research scientists who are either interested in pursuing further studies of aerosol thermodynamics, or required to model the dynamic behavior of hygroscopic aerosols in a humid environment.

  3. Phase transformation diffusion bonding of titanium alloy with stainless steel

    SciTech Connect

    Qin, B. . E-mail: jjj-jenny@163.com; Sheng, G.M.; Huang, J.W.; Zhou, B.; Qiu, S.Y.; Li, C.

    2006-01-15

    Phase transformation diffusion bonding between a titanium alloy (TA17) and an austenitic stainless steel (0Cr18Ni9Ti) has been carried out in vacuum. Relationships between the bonding parameters and the tensile strength of the joints were investigated, and the optimum bond parameters were obtained: maximum cyclic temperature = 890 deg. C, minimum cyclic temperature = 800 deg. C, number of cycles = 10, bonding pressure = 5 MPa and heating rate = 30 deg. C/s. The maximum tensile strength of the joint was 307 MPa. The reaction products and the interface structure of the joints were investigated by light optical and scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. The study indicated the existence of {sigma} phase, Fe{sub 2}Ti, Fe-Ti intermetallic and {beta}-Ti in the reaction zone. The presence of the brittle Fe-Ti intermetallic phase lowered both the strength and the ductility of the phase transformation diffusion-bonded joint significantly.

  4. Novel microporous zirconium silicate (K{sub 2}ZrSi{sub 3}O{sub 9}.2H{sub 2}O) from high temperature phase transformation

    SciTech Connect

    Ferreira, Artur; Lin Zhi; Soares, Maria R.; Rocha, Joao

    2010-12-15

    A new microporous zirconosilicate K{sub 2}ZrSi{sub 3}O{sub 9}.2H{sub 2}O (AV-15) has been prepared by high-temperature phase transformation at 910 {sup o}C. Its structure has been determined ab initio from powder X-ray diffraction data. The unit cell is orthorhombic, space group C222{sub 1} (no. 20), Z=4 with cell dimensions: a=8.105(3), b=10.684(5), c=12.030(5) A, V=1041.76(7) A{sup 3}. The framework connection of AV-15 is essentially the same as the previously reported sodium stannosilicate AV-10 while the locations of potassium and water molecules in the former are quite different from those of the sodium and water molecules in AV-10. In AV-10 sodium and water molecules form a sinucoidal chain, while potassium and water molecules build up a linear chain in AV-15. The water molecules in AV-15 are lost on heating with a typical zeolitic behaviour. SEM shows that the particle sizes and habits of AV-15 and parent umbite material are the same. The {sup 29}Si MAS NMR spectrum of AV-15 displays two resonances at ca. -89.4 and -90.1 ppm in a 1:2 intensity ratio. Thermogravimetry analysis confirms the existence of water in this material. -- Graphical abstract: A new microporous zirconosilicate has been prepared by high temperature phase transformation at 910 {sup o}C. Its structure has been determined ab initio from powder X-ray diffraction data. The water molecules in this material are lost below 125 {sup o}C in a way typical of zeolites and molecular sieves. Display Omitted

  5. α-Phase transformation kinetics of U - 8 wt% Mo established by in situ neutron diffraction

    NASA Astrophysics Data System (ADS)

    Steiner, M. A.; Calhoun, C. A.; Klein, R. W.; An, K.; Garlea, E.; Agnew, S. R.

    2016-08-01

    The α-phase transformation kinetics of as-cast U - 8 wt% Mo below the eutectoid temperature have been established by in situ neutron diffraction. α-phase weight fraction data acquired through Rietveld refinement at five different isothermal hold temperatures can be modeled accurately utilizing a simple Johnson-Mehl-Avrami-Kolmogorov impingement-based theory, and the results are validated by a corresponding evolution in the γ-phase lattice parameter during transformation that follows Vegard's law. Neutron diffraction data is used to produce a detailed Time-Temperature-Transformation diagram that improves upon inconsistencies in the current literature, exhibiting a minimum transformation start time of 40 min at temperatures between 500 °C and 510 °C. The transformation kinetics of U - 8 wt% Mo can vary significantly from as-cast conditions after extensive heat treatments, due to homogenization of the typical dendritic microstructure which possesses non-negligible solute segregation.

  6. Phase Change Fabrics Control Temperature

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Originally featured in Spinoff in 1997, Outlast Technologies Inc. (formerly Gateway Technologies Inc.) has built its entire product line on microencapsulated phase change materials, developed in Small Business Innovation Research (SBIR) contracts with Johnson Space Center after initial development for the U.S. Air Force. The Boulder, Colorado-based company acquired the exclusive patent rights and now integrates these materials into textiles or onto finished apparel, providing temperature regulation in bedding materials and a full line of apparel for both ordinary and extreme conditions.

  7. Stress and phase transformation phenomena in oxide films

    SciTech Connect

    Exarhos, G.J.; Hess, N.J.

    1992-04-01

    In situ optical methods are reviewed for characterization of phase transformation processes and evaluation of residual stress in solution- deposited metastable oxide films. Such low density films most often are deposited as disordered phases making them prone to crystallization and attendant densification when subjected to increased temperature and/or applied pressure. Inherent stress imparted during film deposition and its evolution during the transformation are evaluated from phonon frequency shifts seen in Raman spectra (TiO{sub 2}) or from changes in the laser-induced fluorescence emission spectra for films containing rare earth (Sm{sup +3}:Y{sub 3}Al{sub 5}O{sub 12}) or transition metal (Cr{sup +3}:Al{sub 2}O{sub 3}) dopants. The data in combination with measured increases in line intensities intrinsic to the evolving phase are used to follow crystallization processes in thin films. In general, film deposition parameters are found to influence the crystallite ingrowth kinetics and the magnitude of stress and stress relaxation in the film during the transformation. The utility of these methods to probe crystallization phenomena in oxide films will be addressed.

  8. Deformation-induced {alpha}{sub 2} {yields} {gamma} phase transformation in TiAl alloys

    SciTech Connect

    Chen, C.L.; Lu, W.; Sun Dai; He, L.L.; Ye, H.Q.

    2010-11-15

    Deformation-induced {alpha}{sub 2} {yields} {gamma} phase transformation in high Nb containing TiAl alloys was investigated using high-resolution transmission electron microscopy (HREM) and energy dispersive X-ray spectroscopy (EDS). The dislocations appearing at the tip of deformation-induced {gamma} plate (DI-{gamma}) and the stacking sequence change of the {alpha}{sub 2} matrix were two key evidences for determining the occurrence of the deformation-induced {alpha}{sub 2} {yields} {gamma} phase transformation. Compositional analysis revealed that the product phase of the room-temperature transformation was not standard {gamma} phase; on the contrary, the product phase of the high-temperature transformation was standard {gamma} phase.

  9. Phase-field modeling of shock-induced α- γ phase transformation of RDX

    NASA Astrophysics Data System (ADS)

    Rahul, -; de, Suvranu

    2015-06-01

    A thermodynamically consistent continuum phase field model has been developed to investigate the role of shock-induced α- γ phase transition in the sensitivity of RDX. Dislocations and phase transformations are distinguished and modeled within a crystal plasticity framework. The Landau potential is derived for the finite elastic deformation analysis. The response of the shock loaded RDX crystal is obtained by solving the continuum momentum equation along with phase evolution equation using a Helmholtz free energy functional, which consists of elastic potential energy and local interfacial energy that follows from the Cahn-Hilliard formalism. We observe that the orientations for which there is a resolved shear stress along the slip direction, the material absorbs large shear strain through plastic deformation, allowing it to be less sensitive as less mechanical work is available for temperature rise. Therefore, plastic slip should be associated with greater shear relaxation and, hence, decreased sensitivity. For elastic orientations, large shear stress arises from steric hindrance that may provides much more mechanical work to increase the temperature and hence more sensitive to detonation. Our simulations suggest that the α- γ phase transformation in RDX may be associated with the increased temperature rise and hence the shock sensitivity. The authors gratefully acknowledge the support of this work through Office of Naval Research (ONR) Grants N000140810462 and N000141210527 with Dr. Clifford Bedford as the cognizant Program Manager.

  10. Investigation of phase transformations in ductile cast iron of differential scanning calorimetry

    NASA Astrophysics Data System (ADS)

    Przeliorz, R.; Piątkowski, J.

    2011-05-01

    The effect of heating rate on phase transformations to austenite range in ductile cast iron of the EN-GJS-450-10 grade was investigated. For studies of phase transformations, the technique of differential scanning calorimetry (DSC) was used. Micro structure was examined by optical microscopy. The calorimetric examinations have proved that on heating three transformations occur in this grade of ductile iron, viz. magnetic transformation at the Curie temperature, pearlite→austenite transformation and ferrite→austenite transformation. An increase in the heating rate shifts the pearlite→austenite and ferrite→austenite transformations to higher temperature range. At the heating rate of 5 and 15 °C min-1, local extrema have been observed to occur: for pearlite→austenite transformation at 784 °C and 795 °C, respectively, and for ferrite+ graphite →austenite transformation at 805 °C and 821 °C, respectively. The Curie temperature of magnetic transformation was extrapolated to a value of 740 °C. Each transformation is related with a specific thermal effect. The highest value of enthalpy is accompanying the ferrite→austenite transformation, the lowest occurs in the case of pearlite→austenite transformation.

  11. Rate controlling processes in solvent-mediated phase transformations

    NASA Astrophysics Data System (ADS)

    Davey, R. J.; Cardew, P. T.; McEwan, D.; Sadler, D. E.

    1986-12-01

    Transformations between solid phases in contact with a solvent can proceed by a mechanism in which crystals of the stable phase grow and those of the metastable phase dissolve. The kinetics of such a transformation are determined by the relative rates of dissolution and growth of the two phases. Measurement of the concentration profile in solution during a transformation is the best means of quantifying these kinetics. In this paper two solvent-mediated phase transformations, one for a dyestuff, the other for paclobutrazol, a plant growth regulator manufactured by ICI, have been studied. A combination of direct observation of the solid phases and measurement of the solution concentrations with time during the transformations allowed the kinetics to be described in terms of the relative rates of dissolution and growth of the metastable and stable phases.

  12. High temperature measurements of martensitic transformations using digital holography.

    PubMed

    Thiesing, Benjamin P; Mann, Christopher J; Dryepondt, Sebastien

    2013-07-01

    During thermal cycling of nickel-aluminum-platinum (NiAlPt) and single crystal iron-chromium-nickel (FeCrNi) alloys, the structural changes associated with the martensite to austenite phase transformation were measured using dual-wavelength digital holography. Real-time in situ measurements reveal the formation of striations within the NiAlPt alloy at 70°C and the FeCrNi alloy at 520°C. The results demonstrate that digital holography is an effective technique for acquiring noncontact, high precision information of the surface evolution of alloys at high temperatures.

  13. High Temperature Measurements Of Martensitic transformations Using Digital Holography

    SciTech Connect

    Thiesing, Benjamin; Mann, Christopher J; Dryepondt, Sebastien N

    2013-01-01

    During thermal cycling of nickel-aluminum-platinum (NiAlPt) and single crystal Fe-15Cr-15Ni alloys, the structural changes associated with the martensite to austenite phase transformation were measured using dual-wavelength digital holography. Real-time in-situ measurements reveal the formation of striations within the NiPtAl alloy at 70 C and the FeCrNi alloy at 520 C. The results demonstrate that digital holography is an effective technique for acquiring non-contact, high precision information of the surface evolution of alloys at high temperatures.

  14. High temperature measurements of martensitic transformations using digital holography.

    PubMed

    Thiesing, Benjamin P; Mann, Christopher J; Dryepondt, Sebastien

    2013-07-01

    During thermal cycling of nickel-aluminum-platinum (NiAlPt) and single crystal iron-chromium-nickel (FeCrNi) alloys, the structural changes associated with the martensite to austenite phase transformation were measured using dual-wavelength digital holography. Real-time in situ measurements reveal the formation of striations within the NiAlPt alloy at 70°C and the FeCrNi alloy at 520°C. The results demonstrate that digital holography is an effective technique for acquiring noncontact, high precision information of the surface evolution of alloys at high temperatures. PMID:23842235

  15. Fundamental Mechanisms Driving the Amorphous to Crystalline Phase Transformation

    SciTech Connect

    Reed, B W; Browning, N D; Santala, M K; LaGrange, T; Gilmer, G H; Masiel, D J; Campbell, G H; Raoux, S; Topuria, T; Meister, S; Cui, Y

    2011-01-04

    -stabilized metastable rock salt structure. Each transformation takes {approx}10-100 ns, and the cycle can be driven repeatedly a very large number of times with a nanosecond laser such as the DTEM's sample drive laser. These materials are widely used in optical storage devices such as rewritable CDs and DVDs, and they are also applied in a novel solid state memory technology - phase change memory (PCM). PCM has the potential to produce nonvolatile memory systems with high speed, extreme density, and very low power requirements. For PCM applications several materials properties are of great importance: the resistivities of both phases, the crystallization temperature, the melting point, the crystallization speed, reversibility (number of phase-transformation cycles without degradation) and stability against crystallization at elevated temperature. For a viable technology, all these properties need to have good scaling behavior, as dimensions of the memory cells will shrink with every generation. In this LDRD project, we used the unique single-shot nanosecond in situ experimentation capabilities of the DTEM to watch these transformations in GST on the time and length scales most relevant for device applications. Interpretation of the results was performed in conjunction with atomistic and finite-element computations. Samples were provided by collaborators at IBM and Stanford University. We observed, and measured the kinetics of, the amorphous-crystalline and melting-solidification transitions in uniform thin-film samples. Above a certain threshold, the crystal nucleation rate was found to be enormously high (with many nuclei appearing per cubic {micro}m even after nanosecond-scale incubation times), in agreement with atomistic simulation and consistent with an extremely low nucleation barrier. We developed data reduction techniques based on principal component analysis (PCA), revealing the complex, multi-dimensional evolution of the material while suppressing noise and irrelevant

  16. Phase-field-crystal methodology for modeling of structural transformations.

    PubMed

    Greenwood, Michael; Rottler, Jörg; Provatas, Nikolas

    2011-03-01

    We introduce and characterize free-energy functionals for modeling of solids with different crystallographic symmetries within the phase-field-crystal methodology. The excess free energy responsible for the emergence of periodic phases is inspired by classical density-functional theory, but uses only a minimal description for the modes of the direct correlation function to preserve computational efficiency. We provide a detailed prescription for controlling the crystal structure and introduce parameters for changing temperature and surface energies, so that phase transformations between body-centered-cubic (bcc), face-centered-cubic (fcc), hexagonal-close-packed (hcp), and simple-cubic (sc) lattices can be studied. To illustrate the versatility of our free-energy functional, we compute the phase diagram for fcc-bcc-liquid coexistence in the temperature-density plane. We also demonstrate that our model can be extended to include hcp symmetry by dynamically simulating hcp-liquid coexistence from a seeded crystal nucleus. We further quantify the dependence of the elastic constants on the model control parameters in two and three dimensions, showing how the degree of elastic anisotropy can be tuned from the shape of the direct correlation functions. PMID:21517507

  17. Nanoscale heat transfer and phase transformation surrounding intensely heated nanoparticles

    NASA Astrophysics Data System (ADS)

    Sasikumar, Kiran

    Over the last decade there has been significant ongoing research to use nanoparticles for hyperthermia-based destruction of cancer cells. In this regard, the investigation of highly non-equilibrium thermal systems created by ultrafast laser excitation is a particularly challenging and important aspect of nanoscale heat transfer. It has been observed experimentally that noble metal nanoparticles, illuminated by radiation at the plasmon resonance wavelength, can act as localized heat sources at nanometer-length scales. Achieving biological response by delivering heat via nanoscale heat sources has also been demonstrated. However, an understanding of the thermal transport at these scales and associated phase transformations is lacking. A striking observation made in several laser-heating experiments is that embedded metal nanoparticles heated to extreme temperatures may even melt without an associated boiling of the surrounding fluid. This unusual phase stability is not well understood and designing experiments to understand the physics of this phenomenon is a challenging task. In this thesis, we will resort to molecular dynamics (MD) simulations, which offer a powerful tool to investigate this phenomenon, without assumptions underlying continuum-level model formulations. We present the results from a series of steady state and transient non-equilibrium MD simulations performed on an intensely heated nanoparticle immersed in a model liquid. For small nanoparticles (1-10 nm in diameter) we observe a stable liquid phase near the nanoparticle surface, which can be at a temperature well above the boiling point. Furthermore, we report the existence of a critical nanoparticle size (4 nm in diameter) below which we do not observe formation of vapor even when local fluid temperatures exceed the critical temperature. Instead, we report the existence of a stable fluid region with a density much larger than that of the vapor phase. We explain this stability in terms of the

  18. Effect of Bonding Temperature on Phase Transformation of Diffusion-Bonded Joints of Duplex Stainless Steel and Ti-6Al-4V Using Nickel and Copper as Composite Intermediate Metals

    NASA Astrophysics Data System (ADS)

    Kundu, Sukumar; Thirunavukarasu, Gopinath; Chatterjee, Subrata; Mishra, Brajendra

    2015-12-01

    In the present study, the effect of bonding temperature on phase transformation of diffusion-bonded joints of duplex stainless steel (DSS) and Ti-6Al-4V (Ti64) using simultaneously both nickel (Ni) and copper (Cu) interlayers was investigated in the temperature range of 1148 K to 1223 K (875 °C to 950 °C) insteps of 25 K (25 °C) for 60 minutes under 4 MPa uniaxial pressure in vacuum. Interfaces were characterized by scanning electron microscopy and interdiffusion of the chemical species across the diffusion interfaces were witnessed by electron probe microanalysis. At 1148 K (875 °C), layer-wise Cu4Ti, Cu2Ti, Cu4Ti3, CuTi, and CuTi2 phases were observed at the Cu-Ti64 interface; however, DSS-Ni and Ni-Cu interfaces were free from any intermetallic. At 1173 K and 1198 K (900 °C and 925 °C), Cu interlayer could not restrict the diffusion of atoms from Ti64 to Ni, and vice versa; and Ni-Ti-based intermetallics were formed at the Ni-Cu interface and throughout the Cu zone as well; however, at 1223 K (950 °C), both Ni and Cu interlayers could not inhibit the diffusion of atoms from Ti64 to DSS, and vice versa. The maximum shear strength of ~377 MPa was obtained for the diffusion couple processed at 1148 K (875 °C) and strength of the bonded joints gradually decreased with the increasing bonding temperature due to the widening of brittle intermetallics at the diffusion zone. Fracture path indicated that failure took place through the Cu4Ti intermetallic at the Cu-Ti64 interface when bonding was processed at 1148 K (875 °C). When bonding was processed at 1173 K and 1198 K (900 °C and 925 °C), fracture took place through the Ni3Ti intermetallic at the Ni-(Ni + Cu + Ti64 diffusion reaction) interface; however, at 1223 K (950 °C), fracture morphology indicated the brittle nature and the fracture took place apparently through the σ phase at the DSS-(DSS + Ni + Cu + Ti64 diffusion reaction) interface.

  19. Phase transformations in a model mesenchymal tissue

    NASA Astrophysics Data System (ADS)

    Newman, Stuart A.; Forgacs, Gabor; Hinner, Bernhard; Maier, Christian W.; Sackmann, Erich

    2004-06-01

    Connective tissues, the most abundant tissue type of the mature mammalian body, consist of cells suspended in complex microenvironments known as extracellular matrices (ECMs). In the immature connective tissues (mesenchymes) encountered in developmental biology and tissue engineering applications, the ECMs contain varying amounts of randomly arranged fibers, and the physical state of the ECM changes as the fibers secreted by the cells undergo fibril and fiber assembly and organize into networks. In vitro composites consisting of assembling solutions of type I collagen, containing suspended polystyrene latex beads (~6 µm in diameter) with collagen-binding surface properties, provide a simplified model for certain physical aspects of developing mesenchymes. In particular, assembly-dependent topological (i.e., connectivity) transitions within the ECM could change a tissue from one in which cell-sized particles (e.g., latex beads or cells) are mechanically unlinked to one in which the particles are part of a mechanical continuum. Any particle-induced alterations in fiber organization would imply that cells could similarly establish physically distinct microdomains within tissues. Here we show that the presence of beads above a critical number density accelerates the sol-gel transition that takes place during the assembly of collagen into a globally interconnected network of fibers. The presence of this suprathreshold number of beads also dramatically changes the viscoelastic properties of the collagen matrix, but only when the initial concentration of soluble collagen is itself above a critical value. Our studies provide a starting point for the analysis of phase transformations of more complex biomaterials including developing and healing tissues as well as tissue substitutes containing living cells.

  20. In-Situ Phase Mapping and Direct Observations of Phase Transformations During Arc Welding of 1045 Steel

    SciTech Connect

    Elmer, J; Palmer, T

    2005-09-13

    In-situ Spatially Resolved X-Ray Diffraction (SRXRD) experiments were performed during gas tungsten arc (GTA) welding of AISI 1045 C-Mn steel. Ferrite ({alpha}) and austenite ({gamma}) phases were identified and quantified in the weld heat-affected zone (HAZ) from the real time x-ray diffraction data. The results were compiled along with weld temperatures calculated using a coupled thermal fluids weld model to create a phase map of the HAZ. This map shows the {alpha} {yields} {gamma} transformation taking place during weld heating and the reverse {gamma} {yields} {alpha} transformation taking place during weld cooling. Superheating is required to complete the {alpha} {yields} {gamma} phase transformation, and the amount of superheat above the A3 temperature was shown to vary with distance from the centerline of the weld. Superheat values as high as 250 C above the A3 temperature were observed at heating rates of 80 C/s. The SRXRD experiments also revealed details about the {gamma} phase not observable by conventional techniques, showing that {gamma} is present with two distinct lattice parameters as a result of inhomogeneous distribution of carbon and manganese in the starting pearlitic/ferritic microstructure. During cooling, the reverse {gamma} {yields} {alpha} phase transformation was shown to depend on the HAZ location. In the fine grained region of the HAZ, at distances greater than 2 mm from the fusion line, the {gamma} {yields} {alpha} transformation begins near the A3 temperature and ends near the A1 temperature. In this region of the HAZ where the cooling rates are below 40 C/s, the transformation occurs by nucleation and growth of pearlite. For HAZ locations closer to the fusion line, undercoolings of 200 C or more below the A1 temperature are required to complete the {gamma} {yields} {alpha} transformation. In this region of the HAZ, grain growth coupled with cooling rates in excess of 50 C/s causes the transformation to occur by a bainitic mechanism.

  1. Characterization, Modeling, and Energy Harvesting of Phase Transformations in Ferroelectric Materials

    NASA Astrophysics Data System (ADS)

    Dong, Wenda

    Solid state phase transformations can be induced through mechanical, electrical, and thermal loading in ferroelectric materials that are compositionally close to morphotropic phase boundaries. Large changes in strain, polarization, compliance, permittivity, and coupling properties are typically observed across the phase transformation regions and are phenomena of interest for energy harvesting and transduction applications where increased coupling behavior is desired. This work characterized and modeled solid state phase transformations in ferroelectric materials and assessed the potential of phase transforming materials for energy harvesting applications. Two types of phase transformations were studied. The first type was ferroelectric rhombohedral to ferroelectric orthorhombic observed in lead indium niobate lead magnesium niobate lead titanate (PIN-PMN-PT) and driven by deviatoric stress, temperature, and electric field. The second type of phase transformation is ferroelectric to antiferroelectric observed in lead zirconate titanate (PZT) and driven by pressure, temperature, and electric field. Experimental characterizations of the phase transformations were conducted in both PIN-PMN-PT and PZT in order to understand the thermodynamic characteristics of the phase transformations and map out the phase stability of both materials. The ferroelectric materials were characterized under combinations of stress, electric field, and temperature. Material models of phase transforming materials were developed using a thermodynamic based variant switching technique and thermodynamic observations of the phase transformations. These models replicate the phase transformation behavior of PIN-PMN-PT and PZT under mechanical and electrical loading conditions. The switching model worked in conjunction with linear piezoelectric equations as ferroelectric/ferroelastic constitutive equations within a finite element framework that solved the mechanical and electrical field equations

  2. High temperature co-axial winding transformers

    NASA Technical Reports Server (NTRS)

    Divan, Deepakraj M.; Novotny, Donald W.

    1993-01-01

    The analysis and design of co-axial winding transformers is presented. The design equations are derived and the different design approaches are discussed. One of the most important features of co-axial winding transformers is the fact that the leakage inductance is well controlled and can be made low. This is not the case in conventional winding transformers. In addition, the power density of co-axial winding transformers is higher than conventional ones. Hence, using co-axial winding transformers in a certain converter topology improves the power density of the converter. The design methodology used in meeting the proposed specifications of the co-axial winding transformer specifications are presented and discussed. The final transformer design was constructed in the lab. Co-axial winding transformers proved to be a good choice for high power density and high frequency applications. They have a more predictable performance compared with conventional transformers. In addition, the leakage inductance of the transformer can be controlled easily to suit a specific application. For space applications, one major concern is the extraction of heat from power apparatus to prevent excessive heating and hence damaging of these units. Because of the vacuum environment, the only way to extract heat is by using a cold plate. One advantage of co-axial winding transformers is that the surface area available to extract heat from is very large compared to conventional transformers. This stems from the unique structure of the co-axial transformer where the whole core surface area is exposed and can be utilized for cooling effectively. This is a crucial issue here since most of the losses are core losses.

  3. Investigations of pressure induced structural phase transformations in pentaerythritol

    NASA Astrophysics Data System (ADS)

    Garg, Nandini; Sharma, Surinder M.; Sikka, S. K.

    2005-10-01

    We have investigated the pressure induced structural changes in pentaerythritol {2,2-bis-(hydroxymethyl)-1,3-propanediol} with the help of X-ray diffraction studies. Our results show that this compound undergoes transformations to a lower symmetry phase between 5.2-5.9 GPa. It further undergoes phase transformations at ˜8.5 and ˜11 GPa; eventually evolving to a disordered phase beyond 14-15 GPa in agreement with our earlier Raman studies. On release of pressure from 18.5 GPa, the compound transforms back to the initial tetragonal phase.

  4. Pressure-temperature phase diagram for a tin modified lead zirconate titanate ceramic.

    SciTech Connect

    Grubbs, Robert K.; DiAntonio, Christopher Brian; Yang, Pin; Roesler, Alexander William; Montgomery, Stephen Tedford; Moore, Roger Howard

    2010-06-01

    Structural phase transformations between ferroelectric (FE), antiferroelectric (AFE), and paraelectric (FE) phases are frequently observed in the zirconia-rich phase region on the lead zirconate-titanate (PZT) phase diagram. Since the free energy difference among these phases is small, phase transformation can be easily induced by temperature, pressure and electric field. These induced transformation characteristics have been used for many practical applications. This study focuses on a hydrostatic pressure induced FE-to-AFE phase transformation in a tin modified PZT ceramic (PSZT). The relative phase stability between FE and AFE phases is determined by the dielectric permittivity measurement as a function of temperature from -60 C to 125 C. A pressure-temperature phase diagram for the PSZT system will be presented.

  5. Local phase transformation in alloys during charged-particle irradiation

    SciTech Connect

    Lam, N.Q.; Okamoto, P.R.

    1984-10-01

    Among the various mechanisms and processes by which energetic irradiation can alter the phase stability of alloys, radiation-induced segregation is one of the most important phenomena. Radiation-induced segregation in alloys occurs as a consequence of preferential coupling between persistent fluxes of excess defects and solute atoms, leading to local enrichment or depletion of alloying elements. Thus, this phenomenon tends to drive alloy systems away from thermodynamic equilibrium, on a local scale. During charged-particle irradiations, the spatial nonuniformity in the defect production gives rise to a combination of persistent defect fluxes, near the irradiated surface and in the peak-damage region. This defect-flux combination can modify the alloy composition in a complex fashion, i.e., it can destabilize pre-existing phases, causing spatially- and temporally-dependent precipitation of new metastable phases. The effects of radiation-induced segregation on local phase transformations in Ni-based alloys during proton bombardment and high-voltage electron-microscope irradiation at elevated temperatures are discussed.

  6. The investigation of the dynamics of the phase transformation in triolein and oleic acid under pressure

    NASA Astrophysics Data System (ADS)

    Tefelski, D. B.; Siegoczyński, R. M.; Rostocki, A. J.; Kos, A.; Kościesza, R.; Wieja, K.

    2008-07-01

    An aim of our work is the understanding of processes happening during phase transformations under the pressure in triglycerides and unsaturated fatty acids. Particles of investigated liquids possess the double bond between carbon atoms, which causes the bended shape of the particle and makes its free rotation impossible. This property causes low temperatures of melting point and high temperatures of boiling and also investigated by us phase transformations. For study of the dynamics of phase transformation in these liquids we measured light transmission and light scattering at 90 degrees angle, temperature, permittivity and internal pressure versus time. We applied pressure using computer controlled pump with a stepping motor, which makes increase of the pressure steady. The phase transformation in oleic acid lasts several seconds, in triolein it lasts several minutes. We think that the elongated time of phase transformation is caused by a hooked shape of particles of triolein and the dynamics of that process is determined by the tangling of particles. We checked the influence of smaller particles of oleic acid on the phase transformation by investigating the mixture of these liquids.

  7. Phase transformations in ternary monotectic aluminum alloys

    NASA Astrophysics Data System (ADS)

    Gröbner, Joachim; Schmid-Fetzer, Rainer

    2005-09-01

    Monotectic aluminum alloys are of interest for the development of new alloys for technological applications such as self-lubricating bearings. In contrast to the well-known binary phase diagrams, many of the ternary systems are not well established. Moreover, in a ternary monotectic alloy one may encounter the four-phase equilibrium L‧+L″+solid1+solid2, whereas in a binary system only a three-phase equilibrium L‧+L″+solid1 is possible. This opens a window for generating entirely new monotectic microstructures. The basis for such developments is the knowledge of the ternary phase diagrams and the conditions under which such four-phase reactions or different extensions of the binary monotectic reactions may form. This work presents a systematic classification of monotectic ternary aluminum alloys, illustrated by real systems. The study employs thermodynamic calculations of the ternary phase diagrams.

  8. Non-gauge phase transformations in quantum transition amplitudes

    NASA Technical Reports Server (NTRS)

    Reiss, H. R.

    1993-01-01

    The prescription for introducing a gauge transformation into a quantum transition amplitude, nominally well known, contains an ambiguous feature. It is presumed by some authors that an appropriate transformation of the phase of a wave function will generate the associated gauge transformation. It is shown that this is a necessary but not sufficient step. Examples from the literature are cited to show the consequences of the failure of this procedure. One must distinguish between true gauge transformations and unitary transformations within a fixed gauge.

  9. Zig-zag twins and helical phase transformations.

    PubMed

    Ganor, Yaniv; Dumitrică, Traian; Feng, Fan; James, Richard D

    2016-04-28

    We demonstrate the large bending deformation induced by an array of permanent magnets (applied field ∼0.02 T) designed to minimize poles in the bent state of the crystal. Planar cantilevers of NiMnGa (5M modulated martensite) ferromagnetic shape memory alloy deform into an arched shape according to theory, with a zig-zag microstructure that complies with the kinematic and magnetic compatibility between adjacent twin variants. A general theory of bent and twisted states is given, applicable to both twinning and austenite/martensite transformations. Some of these configurations achieve order-of-magnitude amplification of rotation and axial strain. We investigate also atomistic analogues of these bent and twisted configurations with perfect interfaces between phases. These mechanisms of large deformation, induced by small magnetic fields or temperature changes, have potential application to the development of new actuation technologies for micro-robotic systems. PMID:27002072

  10. Zig-zag twins and helical phase transformations.

    PubMed

    Ganor, Yaniv; Dumitrică, Traian; Feng, Fan; James, Richard D

    2016-04-28

    We demonstrate the large bending deformation induced by an array of permanent magnets (applied field ∼0.02 T) designed to minimize poles in the bent state of the crystal. Planar cantilevers of NiMnGa (5M modulated martensite) ferromagnetic shape memory alloy deform into an arched shape according to theory, with a zig-zag microstructure that complies with the kinematic and magnetic compatibility between adjacent twin variants. A general theory of bent and twisted states is given, applicable to both twinning and austenite/martensite transformations. Some of these configurations achieve order-of-magnitude amplification of rotation and axial strain. We investigate also atomistic analogues of these bent and twisted configurations with perfect interfaces between phases. These mechanisms of large deformation, induced by small magnetic fields or temperature changes, have potential application to the development of new actuation technologies for micro-robotic systems.

  11. Phase transformations and residual stresses in environmental barrier coatings

    NASA Astrophysics Data System (ADS)

    Harder, Bryan J.

    Silicon-based ceramics (SiC, Si3N4) are promising materials for high-temperature structural applications in turbine engines. However, the silica layer that forms on these materials is susceptible to attack from water vapor present in combustion environments. To protect against this degradation, environmental barrier coatings (EBCs) were developed to protect the underlying substrate. In the case of silicon carbide (SiC), multilayer coating systems consist of a Ba1-xSrxAl2Si 2O8 (BSAS) topcoat, a mullite or mullite + SrAl2Si 2O8 (SAS) interlayer, and a silicon bond coat. In this work, biaxial strains were measured on as-sprayed and heat-treated samples to analyze the stress and phase evolution in the coating system as a function of depth and temperature. Models were used to compare the results with an ideal coating system. In the assprayed state, tensile stresses as high as 175 MPa were measured, and cracking was observed. After thermally cycling the samples, stresses were significantly reduced and cracks in the topcoat had closed. The addition of SAS to the interlayer increased the compressive stress in the BSAS topcoat in thermally-cycled samples, which was desirable for EBC applications. The BSAS topcoat transformed from the as-deposited hexacelsian state to the stable celsian above 1200°C. This phase transformation is accompanied by a CTE reduction. The kinetics of the hexacelsian-to-celsian transformation were quantified for freestanding plasma-sprayed BSAS. Activation energies for bulk bars and crushed powder were determined to be ˜340 kJ/mol and ˜500 kJ/mol, respectively. X-ray diffraction and electron backscatter diffraction were used to establish how microstructural constraints reduce the transformation energy. Barrier coating lifetime and stability are also influenced by exposure to reactive, low-melting point calcium-magnesium-aluminosilicate (CMAS) deposits formed from dust and sand. Multilayer doped aluminosilicate coatings and bulk BSAS material were

  12. Low Temperature Phase Instability of the Gamma Phase in SnIn Alloys

    SciTech Connect

    Chu, S; Yanar, C; Schwartz, A J; Massalski, T B; Laughlin, D E

    2005-08-19

    The Sn-rich side of the Sn-In phase diagram has been investigated at temperatures ranging from 77 to 500 K by using X-ray diffraction, thermal analysis, and magnetization measurements. It is confirmed that the {beta}-Sn(In)-phase can remain as a metastable phase down to 77 K within the composition range of 86.3-94 at% of Sn. An isothermal displacive (martensitic) transition of the {gamma} phase to the metastable {beta} phase is suggested as the mechanism of the transformation.

  13. TIME-TEMPERATURE-TRANSFORMATION (TTT) DIAGRAMS FOR FUTURE WASTE COMPOSITIONS

    SciTech Connect

    Billings, A.; Edwards, T.

    2010-07-08

    As a part of the Waste Acceptance Product Specifications (WAPS) for Vitrified High-Level Waste Forms defined by the Department of Energy - Office of Environmental Management, the waste form stability must be determined for each of the projected high-level waste (HLW) types at the Savannah River Site (SRS). Specifically, WAPS 1.4.1 requires the glass transition temperature (T{sub g}) to be defined and time-temperature-transformation (TTT) diagrams to be developed. The T{sub g} of a glass is an indicator of the approximate temperature where the supercooled liquid converts to a solid on cooling or conversely, where the solid begins to behave as a viscoelastic solid on heating. A TTT diagram identifies the crystalline phases that can form as a function of time and temperature for a given waste type or more specifically, the borosilicate glass waste form. In order to assess durability, the Product Consistency Test (PCT) was used and the durability results compared to the Environmental Assessment (EA) glass. The measurement of glass transition temperature and the development of TTT diagrams have already been performed for the seven Defense Waste Processing Facility (DWPF) projected compositions as defined in the Waste Form Compliance Plan (WCP) and in SRNL-STI-2009-00025. Additional phase transformation information exists for other projected compositions, but overall these compositions did not cover composition regions estimated for future waste processing. To develop TTT diagrams for future waste types, the Savannah River National Laboratory (SRNL) fabricated two caches of glass from reagent grade oxides to simulate glass compositions which would be likely processed with and without Al dissolution. These were used for glass transition temperature measurement and TTT diagram development. The glass transition temperatures of both glasses were measured using differential scanning calorimetry (DSC) and were recorded to be 448 C and 452 C. Using the previous TTT diagrams as

  14. Design of electromagnetic refractor and phase transformer using coordinate transformation theory.

    PubMed

    Lin, Lan; Wang, Wei; Cui, Jianhua; Du, Chunlei; Luo, Xiangang

    2008-05-12

    We designed an electromagnetic refractor and a phase transformer using form-invariant coordinate transformation of Maxwell's equations. The propagation direction of electromagnetic energy in these devices can be modulated as desired. Unlike the conventional dielectric refractor, electromagnetic fields at our refraction boundary do not conform to the Snell's law in isotropic materials and the impedance at this boundary is matched which makes the reflection extremely low; and the transformation of the wave front from cylindrical to plane can be realized in the phase transformer with a slab structure. Two dimensional finite-element simulations were performed to confirm the theoretical results.

  15. White Layer Formation Due to Phase Transformation to Orthogonal machine of AISI 1045 Annealed Steel

    SciTech Connect

    Han, Sangil; Melkote, Shreyes N; Haluska, Dr. Michael S; Watkins, Thomas R

    2008-01-01

    It is commonly believed that the white layer formed during machining of steels is caused primarily by a thermally induced phase transformation resulting from rapid heating and quenching. As a result, it is often assumed that if the temperature at the tool flank-workpiece interface exceeds the nominal phase transformation temperature for the steel, a white layer forms. However, no attempt has been made to actually measure the temperatures produced at the tool flank-workpiece interface and correlate it with microstructural evidence of phase transformation. This paper aims to address these limitations through suitably designed experiments and analysis. Orthogonal machining tests were performed on AISI 1045 annealed steel at different cutting speeds and tool flank wear. During machining, temperature measurements at the tool flank-workpiece interface were made using an exposed thermocouple technique. Metallographic studies of the machined sub-surface and X-ray diffraction (XRD) measurements were performed to determine the presence and depth of white layer, and the presence of the retained austenite phase in the machined surface layer, respectively. Analysis of the data shows that the white layer can form due to phase transformation at temperatures below the nominal austenitization temperature of the steel. Possible causes of this result are presented.

  16. Typical Phases of Transformative Learning: A Practice-Based Model

    ERIC Educational Resources Information Center

    Nohl, Arnd-Michael

    2015-01-01

    Empirical models of transformative learning offer important insights into the core characteristics of this concept. Whereas previous analyses were limited to specific social groups or topical terrains, this article empirically typifies the phases of transformative learning on the basis of a comparative analysis of various social groups and topical…

  17. Diffusion and Phase Transformations of Transition Metals on Silicon Surfaces

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Yi.

    The role of surface diffusion and surface phase reaction kinetics of nickel (Ni) and cobalt (Co) on Si(111) and Si(100) are investigated under Ultra High Vacuum (UHV) conditions using Auger Spectroscopy (AES), Reflection High Electron Energy Diffraction (RHEED) and surface X-ray diffraction. The surface segregation phenomenon and the formation conditions for Si(111)-sqrt{19 } x sqrt{19}- rm R+/-23.4^circ phase (hereafter called sqrt{19}) for Ni/Si(111) are studied by RHEED and AES. Quench cooling induces surface segregation which restores the total accumulated dose of Ni to two surfaces of the wafer. The coverage dependence of phases thus produced follows: 7 x 7 to 1 x 1-RC(0.05Ml) to sqrt{19} (0.16Ml) then to B-type NiSi_2. It is found that there are 3 Ni atoms in the sqrt{19 } unit cell. A "race" of bulk diffusion versus surface diffusion for Ni in/on Si(111) is studied by depositing a laterally confined dot of metal on one side of the double side polished and UHV cleaned Si wafer and then measuring the lateral Auger profile on the reverse side following annealing and quenching. Ni reaches the far side of the wafer at temperatures as low as 500C via bulk diffusion with no measurable contribution from the surface paths, which are short-circuited by numerous, fast bulk paths. Similar results are found for Ni and Co on Si(111) and Si(100). The diffusivity and solid solubility calculated from the experiments are close to the bulk values known from the literature. In addition, the thermal stability, phase transformation and different dissolution mechanisms of sqrt {19} and 1 x 1-RC surface phases of Ni/Si(111) are carefully examined. The activation energies of these processes are compared on an Arrhenius plot. These are discussed in terms of the migration and formation mechanisms involved in these phase transformations. An energy level diagram is used to summarize the atomistic kinetics.

  18. Study of the transformation sequence on a high temperature martensitic transformation Ni-Mn-Ga-Co shape memory alloy

    NASA Astrophysics Data System (ADS)

    Recarte, V.; Pérez-Landazábal, J. I.; Sánchez-Alarcos, V.; Rodríguez-Velamazán, J. A.

    2014-11-01

    Ni-Mn-Ga alloys show the highest magnetic-field-induced strain among ferromagnetic shape memory alloys. A great effort is being done in this alloy system to increase the application temperature range. In this sense, the addition of small amounts of Cobalt to NiMnGa alloys has been proved to increase the MT temperatures through the increase of the electron per atom relation (e/a). In this work, the analysis of the crystal structure of the present phases and the phase transformations has been performed on a Ni-Mn-Ga-Co alloy by neutron diffraction measurements from 10 K to 673 K. The study has been completed by means of calorimetric and magnetic measurements. On cooling the alloy undergoes a martensitic transformation from a face centered cubic structure to a nonmodulated tetragonal martensite. The appearance of intermartensite transformations can be disregarded in the whole temperature range below the martensitic transformation. However, a jump in the unit-cell volume of the tetragonal martensite has been observed at 325 K. Since this temperature is close to the Curie temperature of the alloy both, the structural and magnetic contributions are taken into account to explain the results.

  19. Texture Evolution and Phase Transformation in Titanium Investigated by In-Situ Neutron Diffraction

    SciTech Connect

    Ma, Dong; Stoica, Alexandru Dan; An, Ke; Yang, Ling; Bei, Hongbin; Mills, Rebecca A; Skorpenske, Harley David; Wang, Xun-Li

    2011-01-01

    We report in-situ neutron diffraction studies of texture evolution and the (hcp) (bcc) phase transformation in commercially pure cold-drawn titanium upon continuous heating and cooling, complemented by differential scanning calorimetry (DSC) measurements. We show that the recrystallization of the phase at elevated temperature enhanced the preexisting fiber texture, which eventually facilitated the nucleation and growth of the phase favored by the Burgers orientation relationship, i.e., {0001} //{110} . More strikingly, upon completion of the transformation, the {110} texture (or preferred orientation) in was eliminated immediately by the rapid grain growth of intergranular allotriomorphs. This resulted in the loss of the original -texture when Ti was transformed back to from to upon subsequent cooling, distinct from the known texture memory effect for rolling textures in titanium. Our present work provides useful experimental results for understanding the mechanisms of texture evolution and phase transformation in titanium and its alloys and, by and large, low-symmetry alloys such as zirconium.

  20. Characterization of Solid State Phase Transformation in Continuously Heated and Cooled Ferritic Weld Metal

    SciTech Connect

    Narayana, B; Mills, Michael J.; Specht, Eliot D; Santella, Michael L; Babu, Sudarsanam Suresh

    2010-12-01

    Arc welding processes involve cooling rates that vary over a wide range (1-100 K/s). The final microstructire is thus a product of the heating and cooling cycles experienced by the weld in addition to the weld composition. It has been shown that the first phase to form under weld cooling conditions may not be that predicted by equilibrium calculations. The partitioning of different interstitial/substitutional alloying elements at high temperatures can dramatically affect the subsequent phase transformations. In order to understand the effect of alloying on phase transformation temperatures and final microstructures time-resolved X-ray diffraction technique has been successfully used for characterization. The work by Jacot and Rappaz on pearlitic steels provided insight into austenitization of hypoeutectic steels using a finite volume model. However there is very little work done on the effect of heating and cooling rates on the phase transformation paths in bainitic/martensitic steels and weld metals. Previous work on a weld with higher aluminum content, deposited with a FCAW-S process indicated that even at aluminum levels where the primary phase to solidify from liquid should be delta ferrite, non-equilibrium austenite was observed. The presence of inhomogeneity in composition of the parent microstructure has been attributed to differences in transformation modes, temperatures and microstructures in dual-phase, TRIP steels and ferritic welds. The objectives of the work included the identification of the stability regions of different phases during heating and cooling, differences in the effect of weld heating and cooling rates on the phase transformation temperatures, and the variation in phase fractions of austenite and ferrite in the two phase regions as a function of temperature. The base composition used for the present work is a Fe-1%Al-2%Mn-1%Ni-0.04%C weld metal. A pseudo-binary phase diagram shows the expected solidification path under equilibrium

  1. Microstructure and Phase Transformation of a Sinter Bearing Low Ti During Reduction

    NASA Astrophysics Data System (ADS)

    Zhang, Jianliang; Zhang, Yapeng; Li, Kejiang; Wang, Yaozu; Liu, Zhengjian; Wang, Guangwei

    2016-10-01

    To discuss the reduction behaviors and the transformation mechanism of the Fe containing phases and slag phases of low Ti-bearing sinter (LTS), reduction experiments of the LTS were conducted. The reduction of the LTS was divided into four stages based on the reduction rate, deformation quantity of LTS particle column, phase changes, and microstructural changes. The reduction process could be explained with quasi unreacted core model as three stratifications with different phases and microstructures were observed clearly in the medium-temperature reducing stage. For the reduction of Ti-SFCA, a middle phase of the reduction was found and the phase was surrounded by metallic iron. According to the composites of the reduced Ti-SFCA, the middle phase was a solid solution and difficult to be reduced which consisted mainly of brownmillerite-perovskite and monocalcium silicate. The phase transformation and microstructure changes were mutual coupling in the complicated reduction process of the LTS.

  2. Molecular dynamics simulation of the martensitic phase transformation in NiAl alloys.

    PubMed

    Pun, G P Purja; Mishin, Y

    2010-10-01

    Using molecular dynamics simulations with an embedded-atom interatomic potential, we study the effect of chemical composition and uniaxial mechanical stresses on the martensitic phase transformation in Ni-rich NiAl alloys. The martensitic phase has a tetragonal crystal structure and can contain multiple twins arranged in domains and plates. The transformation is reversible and is characterized by a significant temperature hysteresis. The magnitude of the hysteresis depends on the chemical composition and stress. We show that applied compressive and tensile stresses reduce and can even eliminate the hysteresis. Crystalline defects such as free surfaces, dislocations and anti-phase boundaries reduce the martensitic transformation temperature and affect the microstructure of the martensite. Their effect can be explained by heterogeneous nucleation of the new phase in defected regions.

  3. Conductor requirements for high-temperature superconducting utility power transformers

    SciTech Connect

    Pleva, E. F.; Mehrotra, V.; Schwenterly, S W

    2010-01-01

    High-temperature superconducting (HTS) coated conductors in utility power transformers must satisfy a set of operating requirements that are driven by two major considerations-HTS transformers must be economically competitive with conventional units, and the conductor must be robust enough to be used in a commercial manufacturing environment. The transformer design and manufacturing process will be described in order to highlight the various requirements that it imposes on the HTS conductor. Spreadsheet estimates of HTS transformer costs allow estimates of the conductor cost required for an HTS transformer to be competitive with a similarly performing conventional unit.

  4. Phase transformation of Mg-Fe alloys

    SciTech Connect

    Yoneda, Yasuhiro; Abe, Hiroshi; Ohshima, Takeshi; Uchida, Hirohisa

    2010-05-15

    An Mg-Fe alloy system prepared through mechanical alloying (MA) was structurally analyzed. MA can produce single-phase bcc alloys using Mg concentrations up to about 15 mol %. Use of conventional average structure analysis and x-ray pair-distribution function method enabled the long-range and short-range order structures of the Mg-Fe alloys to be bridged. The substituted Mg atoms were randomly arranged in the low-Mg composition but started to have an order structure. The partially ordered Mg-Fe alloy undergoes an austenitic (cubic) to martensitic (orthorhombic) phase change, as increasing Mg composition.

  5. X-ray diffraction studies of phase transformations in heavy-metal fluoride glasses

    NASA Technical Reports Server (NTRS)

    Bansal, N. P.; Doremus, R. H.

    1985-01-01

    Powder X-ray diffraction and differential scanning calorimetry studies of the crystallization properties of five ZrF4-based glass compositions have indicated that the crystalline phase in Zr-Ba-La-Pb fluoride glass is beta-BaZrF6; no such identification of crystal phases was obtainable, however, for the other glasses. Reversible polymorphic phase transformations occur in Zr-Ba-La-Li and Zr-Ba-La-Na fluoride glasses, upon heating to higher temperatures.

  6. Room-Temperature Liquid Crystal Blue Phases

    NASA Astrophysics Data System (ADS)

    Taushanoff, Stefanie; van Le, Khoa; Twieg, Robert; Jakli, Antal

    2009-03-01

    The ``blue phases'' of a highly chiral liquid crystal are defect-studded structures of double-twist cylinders that are laced together. The three phases, BPI*, BPII* and BPIII* differ only in the packing of the double-twist cylinders. Until recently, blue phases were of limited practical use because they appeared for only a very narrow temperature range. Mixtures that show BPI* and BPII* phases for wide temperature ranges at or around room temperature are now available [1]. Relatively wide temperature BPIII (the blue fog) phase so far was available only at very high temperatures [2]. Here we present mixtures with room-temperature wide range BPIII* phase and compare the ability of chiral dopants to form the different blue phases in a base nematic mixture. PDLC films cast with blue-phase material are also examined.[3pt] [1] H. Coles and M. Pivnenko, Nature 2005 436-18 997-1000 [0pt] [2] C. V. Yelamaggad, I. S. Shashikala, G. Liao, D.S. Shankar Rao, S. K. Prasad , Q. Li A. Jakli, Chem. Mater Comm, 2006, 18, 6100-6102

  7. Phase transformations in SrAl2Si2O8 glass

    NASA Technical Reports Server (NTRS)

    Drummond, Charles H., III; Bansal, Narottam P.

    1992-01-01

    Bulk glass of SrAl2Si2O8 composition crystallized at temperatures below 1000 C into hexacelsian, a hexagonal phase which undergoes a reversible, rapid transformation to an orthorhombic phase at 758 C, and at higher temperatures crystallized as celsian, a monoclinic phase. The glass transition temperature and crystallization onset temperature were determined to be 883 C and 1086 C, respectively, from DSC at a heating rate of 20 C/min. Thermal expansion of the various phases and density and bend strengths of cold isostatically pressed glass powder bars, sintered at various temperatures, were measured. The kinetics of the hexacelsian-to-celsian transformation for SrAl2Si2O8 were studied. Hexacelsian flakes were isothermally heat treated at temperatures from 1025-1200 C for various times. Avrami plots were determined by quantitatively measuring the amount of monoclinic celsian formed at various times using x ray diffraction. The Avrami constant was determined to be 1.1, suggesting a diffusionless, one dimensional transformation mechanism. The activation energy was determined from an Arrhenius plot of 1n k vs. 1/T to be 125 kilocal/mole. This value is consistent with a mechanism which transforms the layered hexacelsian structure to a three dimensional framework celsian structure and involves the breaking of Si-O bonds.

  8. Model of High Temperature Phase Transitions in Metals

    NASA Astrophysics Data System (ADS)

    Filippov, E. S.

    2016-04-01

    On the basis of the assumption of the electron density fluctuation at the band degradation, a calculation parameter (the radius R) of the half-width of the probability distribution over the coordinate R is identified at the level of the maximum electron density fluctuation (at a maximum of the Gaussian function). Based on an analysis of the crystallization process and high polymorphic transformations bcc → fcc, the reasons for the formation of bcc, fcc, hexagonal, and tetragonal structures from the liquid phase, as well as for the high temperature bcc → hcp transition in the solid phase are established using the calculated parameter (the radius R) in the solid and liquid phases.

  9. A new phase transformation path from nanodiamond to new-diamond via an intermediate carbon onion.

    PubMed

    Xiao, J; Li, J L; Liu, P; Yang, G W

    2014-12-21

    The investigation of carbon allotropes such as graphite, diamond, fullerenes, nanotubes and carbon onions and mechanisms that underlie their mutual phase transformation is a long-standing problem of great fundamental importance. New diamond (n-diamond) is a novel metastable phase of carbon with a face-centered cubic structure; it is called "new diamond" because many reflections in its electron diffraction pattern are similar to those of diamond. However, producing n-diamond from raw carbon materials has so far been challenging due to n-diamond's higher formation energy than that of diamond. Here, we, for the first time, demonstrate a new phase transformation path from nanodiamond to n-diamond via an intermediate carbon onion in the unique process of laser ablation in water, and establish that water plays a crucial role in the formation of n-diamond. When a laser irradiates colloidal suspensions of nanodiamonds at ambient pressure and room temperature, nanodiamonds are first transformed into carbon onions serving as an intermediate phase, and sequentially carbon onions are transformed into n-diamonds driven by the laser-induced high temperature and high pressure from the carbon onion as a nanoscaled temperature and pressure cell upon the process of laser irradiation in a liquid. This phase transformation not only provides new insight into the physical mechanism involved, but also offers one suitable opportunity for breaking controllable pathways between n-diamond and carbon allotropes such as diamond and carbon onions.

  10. Kinetics of Propagating Phase Transformation in Compressed Bismuth

    SciTech Connect

    Bastea, M; Bastea, S; Emig, J; Springer, P; Reisman, D

    2004-08-18

    The authors observed dynamically driven phase transitions in isentropically compressed bismuth. By changing the stress loading conditions they explored two distinct cases one in which the experimental signature of the phase transformation corresponds to phase-boundary crossings initiated at both sample interfaces, and another in which the experimental trace is due to a single advancing transformation front in the bulk of the material. They introduce a coupled kinetics-hydrodynamics model that for this second case enables them, under suitable simplifying assumptions, to directly extract characteristic transition times from the experimental measurements.

  11. Crystalline-crystalline phase transformation in two-dimensional In2Se3 thin layers.

    PubMed

    Tao, Xin; Gu, Yi

    2013-08-14

    We report, for the first time, the fabrication of single-crystal In2Se3 thin layers using mechanical exfoliation and studies of crystalline-crystalline (α → β) phase transformations as well as the corresponding changes of the electrical properties in these thin layers. Particularly, using electron microscopy and correlative in situ micro-Raman and electrical measurements, we show that, in contrast to bulk single crystals, the β phase can persist in single-crystal thin layers at room temperature (RT). The single-crystal nature of the layers before and after the phase transition allows for unambiguous determination of changes in the electrical resistivity. Specifically, the β phase has an electrical resistivity about 1-2 orders of magnitude lower than the α phase. Furthermore, we find that the temperature of the α → β phase transformation increases by as much as 130 K with the layer thickness decreasing from ~87 nm to ~4 nm. These single-crystal thin layers are ideal for studying the scaling behavior of the phase transformations and associated changes of the electrical properties. For these In2Se3 thin layers, the accessibility of the β phase at RT, with distinct electrical properties than the α phase, provides the basis for multilevel phase-change memories in a single material system.

  12. Phase transformation near the classical limit of stability

    SciTech Connect

    Maibaum, Lutz

    2008-11-06

    Successful theories of phase transformation processes include classical nucleation theory (CNT), which envisions a local equilibrium between coexisting phases, and non--equilibrium kinetic cluster theories. Using computer simulations of the magnetization reversal of the Ising model in three different ensembles we make quantitative connections between these physical pictures. We show that the critical nucleus size of CNT is strongly correlated with a dynamical measure of metastability, and that the metastable phase persists to thermodynamic conditions previously thought of as unstable.

  13. Nanoscale Transforming Mineral Phases in Fresh Nacre.

    PubMed

    DeVol, Ross T; Sun, Chang-Yu; Marcus, Matthew A; Coppersmith, Susan N; Myneni, Satish C B; Gilbert, Pupa U P A

    2015-10-21

    Nacre, or mother-of-pearl, the iridescent inner layer of many mollusk shells, is a biomineral lamellar composite of aragonite (CaCO3) and organic sheets. Biomineralization frequently occurs via transient amorphous precursor phases, crystallizing into the final stable biomineral. In nacre, despite extensive attempts, amorphous calcium carbonate (ACC) precursors have remained elusive. They were inferred from non-nacre-forming larval shells, or from a residue of amorphous material surrounding mature gastropod nacre tablets, and have only once been observed in bivalve nacre. Here we present the first direct observation of ACC precursors to nacre formation, obtained from the growth front of nacre in gastropod shells from red abalone (Haliotis rufescens), using synchrotron spectromicroscopy. Surprisingly, the abalone nacre data show the same ACC phases that are precursors to calcite (CaCO3) formation in sea urchin spicules, and not proto-aragonite or poorly crystalline aragonite (pAra), as expected for aragonitic nacre. In contrast, we find pAra in coral. PMID:26403582

  14. High pressure phase transformation in iron under fast compression

    SciTech Connect

    Bastea, M; Bastea, S; Becker, R

    2009-07-07

    We present experimental results on the solid-solid, {alpha} to {epsilon} phase transformation kinetics of iron under high pressure dynamic compression. We observe kinetic features - velocity loops - similar with the ones recently reported to occur when water is frozen into its ice VII phase under comparable experimental conditions. We analyze this behavior in terms of general ideas coupling the steady sample compression with phase nucleation and growth with a pressure dependent phase interface velocity. The model is used to predict the response of iron when steadily driven across the {alpha} - {epsilon} phase boundary on very short time scales, including those envisioned to be achieved in ultra-fast laser experiments.

  15. Partially transformed relaxor ferroelectric single crystals with distributed phase transformation behavior

    NASA Astrophysics Data System (ADS)

    Gallagher, John A.

    2015-11-01

    Relaxor ferroelectric single crystals such as PMN-PT and PIN-PMN-PT undergo field driven phase transformations when electrically or mechanically loaded in crystallographic directions that provide a positive driving force for the transformation. The observed behavior in certain compositions is a phase transformation distributed over a range of fields without a distinct forward or reverse coercive field. This work focuses on the material behavior that is observed when the crystals are loaded sufficiently to drive a partial transformation and then unloaded, as might occur when driving a transducer to achieve high power levels. Distributed transformations have been modeled using a normal distribution of transformation thresholds. A set of experiments was conducted to characterize the hysteresis loops that occur with the partial transformations. In this work the normal distribution model is extended to include the partial transformations that occur when the field is reversed before the transformation is complete. The resulting hysteresis loops produced by the model are in good agreement with the experimental results.

  16. Interaction between phase transformations and dislocations at the nanoscale. Part 1. General phase field approach

    NASA Astrophysics Data System (ADS)

    Levitas, Valery I.; Javanbakht, Mahdi

    2015-09-01

    Thermodynamically consistent, three-dimensional (3D) phase field approach (PFA) for coupled multivariant martensitic transformations (PTs), including cyclic PTs, variant-variant transformations (i.e., twinning), and dislocation evolution is developed at large strains. One of our key points is in the justification of the multiplicative decomposition of the deformation gradient into elastic, transformational, and plastic parts. The plastic part includes four mechanisms: dislocation motion in martensite along slip systems of martensite and slip systems of austenite inherited during PT and dislocation motion in austenite along slip systems of austenite and slip systems of martensite inherited during reverse PT. The plastic part of the velocity gradient for all these mechanisms is defined in the crystal lattice of the austenite utilizing just slip systems of austenite and inherited slip systems of martensite, and just two corresponding types of order parameters. The explicit expressions for the Helmholtz free energy and the transformation and plastic deformation gradients are presented to satisfy the formulated conditions related to homogeneous thermodynamic equilibrium states of crystal lattice and their instabilities. In particular, they result in a constant (i.e., stress- and temperature-independent) transformation deformation gradient and Burgers vectors. Thermodynamic treatment resulted in the determination of the driving forces for change of the order parameters for PTs and dislocations. It also determined the boundary conditions for the order parameters that include a variation of the surface energy during PT and exit of dislocations. Ginzburg-Landau equations for dislocations include variation of properties during PTs, which in turn produces additional contributions from dislocations to the Ginzburg-Landau equations for PTs. A complete system of coupled PFA and mechanics equations is presented. A similar theory can be developed for PFA to dislocations and other

  17. High temperature growth of Ag phases on Ge(111)

    SciTech Connect

    Mullet, Cory H.; Chiang, Shirley

    2013-03-15

    The growth of the (3 Multiplication-Sign 1) and ({radical}3 Multiplication-Sign {radical}3)R30 Degree-Sign phases of Ag on Ge(111) on substrates at temperatures from 540 to 660 Degree-Sign C is characterized with low energy electron microscopy (LEEM) and low energy electron diffraction (LEED). From 540 Degree-Sign C to the Ag desorption temperature of 575 Degree-Sign C, LEEM images show that growth of the (3 Multiplication-Sign 1) phase begins at step edges. Upon completion of the (3 Multiplication-Sign 1) phase, the ({radical}3 Multiplication-Sign {radical}3)R30 Degree-Sign phase is observed with a dendritic growth morphology that is not much affected by steps. For sufficiently high deposition rates, Ag accumulates on the sample above the desorption temperature. From 575 to 640 Degree-Sign C, the growth proceeded in a manner similar to that at lower temperatures, with growth of the (3 Multiplication-Sign 1) phase to completion, followed by growth of the ({radical}3 Multiplication-Sign {radical}3)R30 Degree-Sign phase. Increasing the substrate temperature to 660 Degree-Sign C resulted in only (3 Multiplication-Sign 1) growth. In addition, for samples with Ag coverage less than 0.375ML, LEEM and LEED images were used to follow a reversible phase transformation near 575 Degree-Sign C, between a mixed high coverage phase of [(4 Multiplication-Sign 4) + (3 Multiplication-Sign 1)] and the high temperature, lower coverage (3 Multiplication-Sign 1) phase.

  18. Phase transformation kinetics in finite inhomogeneously nucleated systems

    NASA Technical Reports Server (NTRS)

    Weinberg, Michael; Kapral, Raymond

    1989-01-01

    Phase transformation kinetics that occur by a nucleation and growth process are investigated. A simple discrete space and time model is used for the dynamics and analytical results are obtained for the volume fraction of the material transformed for both finite systems and a special example of an inhomogeneously nucleated system. The theory is developed for two cases, initial nucleation, and continuous nucleation. The results are compared with simulations of the model.

  19. Phase equilibria and transformations in the Ti-Al-Nb system

    NASA Astrophysics Data System (ADS)

    Mishurda, Joseph Constantine

    The phase equilibria and transformations in the Nb-Ti-Al system in the vicinity of the Sigma phase field have been examined with respect to the Liquidus Surface (Phase 1), the Phase Equilibria and Equilibrium Transformations (Phase II), and the Phase Transformations, Mechanisms and Kinetics (Phase III). Eight alloy compositions were produced by arc melting. The alloys were characterized by differential thermal analysis, metallography, X-ray diffraction, scanning electron microscopy (BSEI), electron probe microanalysis and transmission electron microscopy. The liquidus examination shed new light on previous microstructural interpretations, opening up new possibilities for microstructural development and control of multiphase alloys. Differential thermal analysis has identified the existence of a beta to sigma + gamma transformation in an alloy where it was not previously thought to exist. The results differed from the calculated diagram by higher titanium solubility in the sigma and delta phases than predicted at lower temperatures and a lower solubility of alpha2 and gamma. The high temperature betao transforms to gamma + sigma in a eutectoid fashion resulting in a desirable lamellar structure of sigma and gamma. The existence of a new body centered tetragonal crystal structure ao = 5.11A and co 28.12A with a point group symmetry of P4/mmm, at 700°C was discovered. A plethel section was found for the sigma + beta two phase alloys. A betao + O + sigma three phase field passes through the alloys between 981 and 1000°C. The plethel section at the transformation has an eutectoid characteristic, however, the nature of the transformation changes to a peritectoid. At temperatures below 970°C, the first transformation to occur is the decomposition of the metastable betao phase to an intermediate metastable phase O'. Reasonable values for Q were obtained, applicable to the diffusion limited region of the TTT-curve. The microstructure evolution of the sigma + beta

  20. Phase transformations in superconducting and non-superconducting perovskites

    SciTech Connect

    Mitchell, T.E.

    1992-01-01

    Most of the high {Tc} superconductors and other perovskite-related cuprates exhibit some kind of structural instability. For example, tetragonal-to-orthorhombic phase transformations occur in the Y-Ba-Cu-O and La-Sr-Cu-O systems while crystal structures in the Bi-Ca-Sr-Cu-O and Tl-Ba-Ca-Cu-O systems have incommensurate periodicities associated with displacements of the heavy cations. In YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}}, the transformation is due to the ordering of oxygen vacancies while in La{sub 2-x}Sr{sub x}CuO{sub 4} the transformation is accompanied by tilting of the (CuO{sub 6}) octahedra. Such tilting and distortion of the co-ordination octahedra commonly occur in perovskite-related compounds and transformations between the structures are frequently martensitic. Phase transformations in the superconducting cuprates have been investigated by transmission electron microscopy but none of them appear to be martensitic. The phase transformations are accompanied by twinning and the resulting configurations are used to calculate twin boundary energies.

  1. Phase transformations in superconducting and non-superconducting perovskites

    SciTech Connect

    Mitchell, T.E.

    1992-07-01

    Most of the high {Tc} superconductors and other perovskite-related cuprates exhibit some kind of structural instability. For example, tetragonal-to-orthorhombic phase transformations occur in the Y-Ba-Cu-O and La-Sr-Cu-O systems while crystal structures in the Bi-Ca-Sr-Cu-O and Tl-Ba-Ca-Cu-O systems have incommensurate periodicities associated with displacements of the heavy cations. In YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}}, the transformation is due to the ordering of oxygen vacancies while in La{sub 2-x}Sr{sub x}CuO{sub 4} the transformation is accompanied by tilting of the [CuO{sub 6}] octahedra. Such tilting and distortion of the co-ordination octahedra commonly occur in perovskite-related compounds and transformations between the structures are frequently martensitic. Phase transformations in the superconducting cuprates have been investigated by transmission electron microscopy but none of them appear to be martensitic. The phase transformations are accompanied by twinning and the resulting configurations are used to calculate twin boundary energies.

  2. Temperature-Transformed ``Minimal Coupling'': Magnetofluid Unification

    NASA Astrophysics Data System (ADS)

    Mahajan, S. M.

    2003-01-01

    The dynamics of a relativistic, hot charged fluid is expressed in terms of a hybrid magnetofluid field which unifies the electromagnetic field with an appropriately defined but analogous flow field. The unification is affected by a well-defined prescription that allows the derivation of the equations of motion of a plasma embedded in an electromagnetic field from the field-free equations. The relationship of this prescription with the minimal coupling prescription of particle dynamics is discussed; the changes brought about by the plasma temperature are highlighted. A few consequences of the unification are worked out.

  3. Low-temperature criticality of martensitic transformations of Cu nanoprecipitates in α-Fe.

    PubMed

    Erhart, Paul; Sadigh, Babak

    2013-07-12

    Nanoprecipitates form during nucleation of multiphase equilibria in phase segregating multicomponent systems. In spite of their ubiquity, their size-dependent physical chemistry, in particular, at the boundary between phases with incompatible topologies, is still rather arcane. Here, we use extensive atomistic simulations to map out the size-temperature phase diagram of Cu nanoprecipitates in α-Fe. The growing precipitates undergo martensitic transformations from the body-centered cubic (bcc) phase to multiply twinned 9R structures. At high temperatures, the transitions exhibit strong first-order character and prominent hysteresis. Upon cooling, the discontinuities become less pronounced and the transitions occur at ever smaller cluster sizes. Below 300 K, the hysteresis vanishes while the transition remains discontinuous with a finite but diminishing latent heat. This unusual size-temperature phase diagram results from the entropy generated by the soft modes of the bcc-Cu phase, which are stabilized through confinement by the α-Fe lattice.

  4. Using Neural Networks to Describe Complex Phase Transformation Behavior

    SciTech Connect

    Vitek, J.M.; David, S.A.

    1999-05-24

    Final microstructures can often be the end result of a complex sequence of phase transformations. Fundamental analyses may be used to model various stages of the overall behavior but they are often impractical or cumbersome when considering multicomponent systems covering a wide range of compositions. Neural network analysis may be a useful alternative method of identifying and describing phase transformation beavior. A neural network model for ferrite prediction in stainless steel welds is described. It is shown that the neural network analysis provides valuable information that accounts for alloying element interactions. It is suggested that neural network analysis may be extremely useful for analysis when more fundamental approaches are unavailable or overly burdensome.

  5. Metallurgical Properties and Phase Transformations of Barium-Strontium Modifier

    NASA Astrophysics Data System (ADS)

    Platonov, M. A.; Sulimova, I. S.; Rozhikhina, I. D.; Dmitrienko, V. I.; Horoshun, G. V.

    2016-04-01

    Metallurgical properties and phase transformations of barium-strontium modifier were tested in laboratory conditions resembling steel processing in furnace and ladle. When heating barium-strontium modifier start of melting, kinetics of decomposition, phase and structure transformation were studied. The concentrate under consideration has been revealed to be a complex mineral compound containing barytocalcite, calcite, calciostrontianite, dolomite and siderite. The reaction kinetics of decomposing mineral components of barium-strontium modifier to oxides does not considerably affect slag formation in conditions of out-of-furnace steel processing.

  6. Phase transformations in steels: Processing, microstructure, and performance

    SciTech Connect

    Gibbs, Paul J.

    2014-04-03

    In this study, contemporary steel research is revealing new processing avenues to tailor microstructure and properties that, until recently, were only imaginable. Much of the technological versatility facilitating this development is provided by the understanding and utilization of the complex phase transformation sequences available in ferrous alloys. Today we have the opportunity to explore the diverse phenomena displayed by steels with specialized analytical and experimental tools. Advances in multi-scale characterization techniques provide a fresh perspective into microstructural relationships at the macro- and micro-scale, enabling a fundamental understanding of the role of phase transformations during processing and subsequent deformation.

  7. ISOTHERMAL PHASE TRANSFORMATION CYCLING IN STEEL BY APPLICATION OF A HIGH MAGNETIC FIELD

    SciTech Connect

    Ludtka, Gerard Michael; Jaramillo, Roger A; Ludtka, Gail Mackiewicz-; Kisner, Roger A; Wilgen, John B

    2007-01-01

    A phase transformation reversal via the application and removal of a large magnetic field was investigated. Because a large magnetic field can alter the phase equilibrium between paramagnetic austenite and ferromagnetic ferrite, volume fractions for each phase constituent can be modified at constant temperature by changing the magnetic field strength. In this research elevated temperature isothermal hold experiments were performed for 5160 steel. During the isothermal hold, the magnetic field was cycled between 0 and 30 Tesla. As companion experiments, temperature cycling and isothermal holds were performed without magnetic fields. The resulting microstructures were examined using optical and SEM metallography. These microstructures indicate that a portion of the microstructure experiences isothermal transformation cycling between austenite and ferrite due to the application and removal of the 30T (Tesla) magnetic field.

  8. Structure, phase transformations, mechanical characteristics, and cold resistance of low-carbon martensitic steels

    NASA Astrophysics Data System (ADS)

    Kozvonin, V. A.; Shatsov, A. A.; Ryaposov, I. V.; Zakirova, M. G.; Generalova, K. N.

    2016-08-01

    Temper-resistant low-carbon Cr-Mn-Ni-Mo-V-Nb steels with concentrations of carbon of 0.15 and 0.27 wt % have been studied. It has been shown that, upon quenching, various morphological types of the α phase can be formed. The structure of the steels is stable in the course of heating below critical temperatures and remains a lath-type structure in the intercritical temperature range. Specific features of structural and phase transformations, as well as the dependence of the mechanical characteristics of the steels, on the tempering temperature have been determined.

  9. Concurrent ordering and phase transformation in SmCo7 nanograins.

    PubMed

    Seyring, Martin; Song, Xiaoyan; Zhang, Zhexu; Rettenmayr, Markus

    2015-07-28

    Sm-Co alloys with the stabilized SmCo7 phase are most prominent candidates for advanced high temperature permanent magnets, where the stabilization of the SmCo7 phase can be effectuated by nanostructuring. The complex concurrent processes of ordering and phase transformation in a SmCo7 nanograin are characterized on the atomic scale. For the first time early stages of the phase transformation are made visible by highlighting specific superstructures in single nanograins using Fourier reconstruction of high-resolution transmission electron microscopy images. The superstructures are only detectable and can only be distinguished in specific crystallographic orientations. The evolution of the atom arrangement in the crystal structures is demonstrated for the concurrent ordering process and phase transformation. During decomposition of the metastable SmCo7 phase, the hexagonal Sm2Co17 superstructure (2:17H) forms at first as a precursor of the rhombohedral Sm2Co17 superstructure (2:17R) – this can only be detected by analysis of individual grains and has not been described so far. By extensive crystallographic analysis of individual nanograins, a distinct correlation between the fraction of the superstructure phases and the grain size is found, showing directly and unambiguously the grain size dependence of the phase transformation in the nanocrystalline alloy, a phenomenon that so far has only been shown indirectly using volume averaging methods.

  10. Mössbauer studies of phase transformations in iron alloys

    NASA Astrophysics Data System (ADS)

    Mercader, R. C.; Desimoni, J.

    1997-09-01

    Procedures related to the preparation of samples for Mössbauer spectroscopy studies of phase transformations in metals research are discussed in examples of works undertaken by the authors; (i) determination of austempering kinetics of compacted graphite cast irons, (ii) CEMS studies aimed at finding suitable polishing treatments that reproduce the bulk phase proportions, (iii) CEMS investigations on samples polished by spark planing, and (iv) the research of surface processes produced by laser melting treatments.

  11. Magnetostructural phase transformations in Tb 1-x Mn 2

    SciTech Connect

    Zou, Junding; Paudyal, Durga; Liu, Jing; Mudryk, Yaroslav; Pecharsky, Vitalij K.; Gschneidner, Karl A.

    2015-01-16

    Magnetism and phase transformations in non-stoichiometric Tb1-xMn2 (x = 0.056, 0.039) have been studied as functions of temperature and magnetic field using magnetization, heat capacity, and X-ray powder diffraction measurements. Lowering the temperature, the compounds sequentially order ferrimagnetically and antiferromagnetically, and finally, exhibit spin reorientation transitions. Moreover, these structural distortions from room temperature cubic to low temperature rhombohedral structures occur at TN, and are accompanied by large volume changes reaching ~-1.27% and -1.42%, respectively. First principles electronic structure calculations confirm the phase transformation from the ferrimagnetic cubic structure to the antiferromagnetic rhombohedral structure in TbMn2.

  12. Direct observations of welding-induced solid-state phase transformations

    SciTech Connect

    Elmer, J.W.; Wong, J.; Waide, P.A.

    1994-12-31

    A new diagnostic tool that uses time-resolved x-ray diffraction (TRXRD) for in-situ, spatially resolved, phase identification around a weld is presented for the purpose of mapping the location of phase fields during welding. In this investigation, TRXRD experiments were conducted at the Stanford Sychrotron Radiation Laboratory where a high-intensity tunable synchrotron x-ray `probe` was available. The high spatial resolution of the x-ray probe (1mm) allowed precise mapping of specific phase fields around the weld, while the high intensity of the beam (10{sup 11} photons/s) yielded high signal-to-noise ratio of the diffracted x-rays. These characteristics enabled the crystal structure to be characterized during a 1-s x-ray integration time, thus providing real-time data to be gathered about welding-induced phase transformations. Experiments were performed on unalloyed Grade 4 titanium (Ti, 0.28%Fe, 0.38%O), which has an allotropic phase transition that occurs at 922{degrees}C, where the low temperature hcp phase transforms to the high temperature bcc phase. Welds were made using a semi-automatic tungsten inert gas procedure to establish a quasisteady-state thermal profile on 4.5 in. diameter titanium bar, which was rotated at a speed of 0.5 rpm beneath a 3.5 kW arc. Characteristic hcp, bcc, and liquid diffraction peaks were measured along x-ray probe scans traveling from the base metal through the heat-affected zone and into the weld pool, respectively. The results of this study clearly demonstrate the feasibility of using TRXRD for in-situ investigations of welding-induced phase transformations, thus allowing verification of welding models, the creation of transformation diagrams during rapid thermal cycling of materials, and the ability for real-time investigations of the nucleation and growth behavior of solid-state phase transformations.

  13. Relativistic Random Phase Approximation At Finite Temperature

    SciTech Connect

    Niu, Y. F.; Paar, N.; Vretenar, D.; Meng, J.

    2009-08-26

    The fully self-consistent finite temperature relativistic random phase approximation (FTRRPA) has been established in the single-nucleon basis of the temperature dependent Dirac-Hartree model (FTDH) based on effective Lagrangian with density dependent meson-nucleon couplings. Illustrative calculations in the FTRRPA framework show the evolution of multipole responses of {sup 132}Sn with temperature. With increased temperature, in both monopole and dipole strength distributions additional transitions appear in the low energy region due to the new opened particle-particle and hole-hole transition channels.

  14. In-situ characterization of transformation plasticity during an isothermal austenite-to-bainite phase transformation

    SciTech Connect

    Holzweissig, M.J.; Canadinc, D.; Maier, H.J.

    2012-03-15

    This paper elucidates the stress-induced variant selection process during the isothermal austenite-to-bainite phase transformation in a tool steel. Specifically, a thorough set of experiments combining electron backscatter diffraction and in-situ digital image correlation (DIC) was carried out to establish the role of superimposed stress level on the evolution of transformation plasticity (TP) strains. The important finding is that TP increases concomitant with the superimposed stress level, and strain localization accompanies phase transformation at all stress levels considered. Furthermore, TP strain distribution within the whole material becomes more homogeneous with increasing stress, such that fewer bainitic variants are selected to grow under higher stresses, yielding a more homogeneous strain distribution. In particular, the bainitic variants oriented along [101] and [201] directions are favored to grow parallel to the loading axis and are associated with large TP strains. Overall, this very first in-situ DIC investigation of the austenite-to-bainite phase transformation in steels evidences the clear relationship between the superimposed stress level, variant selection, and evolution of TP strains. - Highlights: Black-Right-Pointing-Pointer Local variations of strain were observed by DIC throughout the phase transformation. Black-Right-Pointing-Pointer The study clearly established the role of the stress-induced variant selection. Black-Right-Pointing-Pointer Variant selection is a key parameter that governs distortion.

  15. Anomalous compression behavior of germanium during phase transformation

    SciTech Connect

    Yan, Xiaozhi; Tan, Dayong; Ren, Xiangting; Yang, Wenge E-mail: duanweihe@scu.edu.cn; He, Duanwei E-mail: duanweihe@scu.edu.cn; Mao, Ho-Kwang

    2015-04-27

    In this article, we present the abnormal compression and plastic behavior of germanium during the pressure-induced cubic diamond to β-tin structure transition. Between 8.6 GPa and 13.8 GPa, in which pressure range both phases are co-existing, first softening and followed by hardening for both phases were observed via synchrotron x-ray diffraction and Raman spectroscopy. These unusual behaviors can be interpreted as the volume misfit between different phases. Following Eshelby, the strain energy density reaches the maximum in the middle of the transition zone, where the switch happens from softening to hardening. Insight into these mechanical properties during phase transformation is relevant for the understanding of plasticity and compressibility of crystal materials when different phases coexist during a phase transition.

  16. Phase Transformations in CuAu: Morphologies and Kinetics from Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Elder, Ken; Chakraborty, Bulbul; Goldenfeld, Nigel

    1996-03-01

    The existence of a modulated superlattice at intermediate temperatures in CuAu gives rise to a rich and complex set of phase transformations. For example, quenches from high and low temperatures into the modulated region leads respectively to the nucleation of labyrinth and bullseye patterns. In this alloy even the formation of the ordered superlattice from a disordered phase is dramatically different than that which occurs in standard disorder/order transformations. This transformation is strongly influenced by the presence of small metastable droplets that are the size of the modulated wavelength. A theoretical description(Bulbul Chakraborty, Ken Elder and Nigel Goldenfeld, Physica A, in press (1995)) of these kinetics and morphologies will be presented and compared to experiment. This description is based on a time-dependent Ginzburg-Landau equation that was derived from a quantum mechanical Hamiltonian using the embedded atom method(Bulbul Chakraborty and Zhigang Xi, Phys. Rev. Lett 68), 2039 (1992).

  17. In situ phase transformation of Laves phase from Chi-phase in Mo-containing Fe–Cr–Ni alloys

    DOE PAGES

    Tan, L.; Yang, Y.

    2015-11-01

    For an in situ phase transformation of the Chi (χ) phase to the Laves phase we observed in a Fe–Cr–Ni–Mo model alloy. The morphology, composition, and crystal structure of the χ and Laves phases, and their orientation relationship with the matrix austenite phase were investigated. The resulted Laves phase has larger lattice mismatch with the matrix phase than the χ phase, leading to the increase of local strain fields and the formation of dislocations. Moreover, this finding is helpful to understand the precipitation behavior of the intermetallic phases in the Mo-containing austenitic stainless steels.

  18. Water-driven structure transformation in nanoparticles at room temperature.

    PubMed

    Zhang, Hengzhong; Gilbert, Benjamin; Huang, Feng; Banfield, Jillian F

    2003-08-28

    The thermodynamic behaviour of small particles differs from that of the bulk material by the free energy term gammaA--the product of the surface (or interfacial) free energy and the surface (or interfacial) area. When the surfaces of polymorphs of the same material possess different interfacial free energies, a change in phase stability can occur with decreasing particle size. Here we describe a nanoparticle system that undergoes structural changes in response to changes in the surface environment rather than particle size. ZnS nanoparticles (average diameter 3 nm) were synthesized in methanol and found to exhibit a reversible structural transformation accompanying methanol desorption, indicating that the particles readily adopt minimum energy structural configurations. The binding of water to the as-formed particles at room temperature leads to a dramatic structural modification, significantly reducing distortions of the surface and interior to generate a structure close to that of sphalerite (tetrahedrally coordinated cubic ZnS). These findings suggest a route for post-synthesis control of nanoparticle structure and the potential use of the nanoparticle structural state as an environmental sensor. Furthermore, the results imply that the structure and reactivity of nanoparticles at planetary surfaces, in interplanetary dust and in the biosphere, will depend on both particle size and the nature of the surrounding molecules. PMID:12944961

  19. Low-Temperature Phase Transformations in Weakly Doped Quantum Paraelectrics: Novel Features and Quantum Reentrant Dipolar Glass State in KTa0.982Nb0.018O3

    SciTech Connect

    Trepakov, V. A.; Prosandeev, S. A.; Savinov, M. E.; Galinetto, P.; Samoggia, G.; Kapphan, S. E.; Jastrabik, L.; Boatner, Lynn A

    2004-01-01

    An unusual sequence of phase transitions (PT) and reentrant dipole glass-like phase formation at low temperatures was found recently in KTaO{sub 3} weakly doped with Li and Nb (K{sub 0.9986}Li{sub 0.0014}Ta{sub 0.976}Nb{sub 0.024}O{sub 3}) [Phys. Rev. B 63 (2001) 172]. We report on detailed low frequency (100 Hz-1 MHz) permittivity and Raman light scattering studies of similar composition, but without Li admixture, KTa{sub 1-x}Nb{sub x}O{sub 3} with x = 0.018 (KTN1.8). The aim of the study is to answer the question if the reentrant dipole glass-like phase exists in KTN1.8 and what is the microscopic origin of this phase. A detailed study of the sharp low-temperature PT observed at T{sub C} {approx} 27 K revealed properties inherent to the reentrant glass-type state at lower temperatures. The substitution of Nb for Ta influences the TO{sub 1} soft lattice mode and leads to PT with the long-range ferroelectric ordering. A crossover to an order-disorder polar microregion dynamics with a non-standard {var_epsilon}(T) behaviour and dipole glass-like formation were found below T{sub C} (at {approx}15 K), which is attributed to the randomness of the Nb distribution. A crossover to the long-range order was found under a dc bias field.

  20. Rotational Rehybridization and the High Temperature Phase of UC2

    SciTech Connect

    Wen, Xiaodong; Rudin, Sven P.; Batista, Enrique R.; Clark, David L.; Scuseria, Gustavo E.; Martin, Richard L.

    2012-12-03

    The screened hybrid approximation (HSE) of density functional theory (DFT) is used to examine the structural, optical, and electronic properties of the high temperature phase, cubic UC(2). This phase contains C(2) units with a computed C-C distance of 1.443 Å which is in the range of a CC double bond; U is formally 4+, C(2) 4-. The closed shell paramagnetic state (NM) was found to lie lowest. Cubic UC(2) is found to be a semiconductor with a narrow gap, 0.4 eV. Interestingly, the C(2) units connecting two uranium sites can rotate freely up to an angle of 30°, indicating a hindered rotational solid. Ab-initio molecular dynamic simulations (HSE) show that the rotation of C(2) units in the low temperature phase (tetragonal UC(2)) occurs above 2000 K, in good agreement with experiment. The computed energy barrier for the phase transition from tetragonal UC(2) to cubic UC(2) is around 1.30 eV per UC(2). What is fascinating about this system is that at high temperature, the phase transformation to the cubic phase is associated with a rehybridization of the C atoms from sp to sp(3).

  1. Study of phase transformations in CMSX-6 and CMSX-8 superalloys

    NASA Astrophysics Data System (ADS)

    Szczotok, Agnieszka; Wierzbicka-Miernik, Anna

    2014-09-01

    Nickel-based superalloys are extensively used mainly in the aircraft and aeronautic industry, particularly in the hottest parts of engines or turbo-reactors. The phase reactions occurring in these heat-resistant materials play a crucial role in many aspects of the processing and service of the highly alloyed materials. Cast Ni-based superalloys are obtained in a complex way and their structure is complicated. Differential scanning calorimetry (DSC) technique was applied for determination of temperature ranges of the phase transformations occurring in the CMSX-6 and CMSX-8 superalloys during heating/cooling processes. Thermophysical properties, including temperatures of the phase transformation, are the critical input parameters in mathematical models of solidification and casting of metallic materials. The literature data concerning phase transformations and performance of the heat treatment for CMSX-6 and CMSX-8 are incomplete and ambiguous. DSC results accompanied by scanning electron microscopy characterization of microstructure of CMSX-6 and CMSX-8 superalloy was applied. The present study will improve the understanding of the fundamental mechanisms of phase transformations of single-crystal nickel-based superalloys.

  2. Iterative-Transform Phase Retrieval Using Adaptive Diversity

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H.

    2007-01-01

    A phase-diverse iterative-transform phase-retrieval algorithm enables high spatial-frequency, high-dynamic-range, image-based wavefront sensing. [The terms phase-diverse, phase retrieval, image-based, and wavefront sensing are defined in the first of the two immediately preceding articles, Broadband Phase Retrieval for Image-Based Wavefront Sensing (GSC-14899-1).] As described below, no prior phase-retrieval algorithm has offered both high dynamic range and the capability to recover high spatial-frequency components. Each of the previously developed image-based phase-retrieval techniques can be classified into one of two categories: iterative transform or parametric. Among the modifications of the original iterative-transform approach has been the introduction of a defocus diversity function (also defined in the cited companion article). Modifications of the original parametric approach have included minimizing alternative objective functions as well as implementing a variety of nonlinear optimization methods. The iterative-transform approach offers the advantage of ability to recover low, middle, and high spatial frequencies, but has disadvantage of having a limited dynamic range to one wavelength or less. In contrast, parametric phase retrieval offers the advantage of high dynamic range, but is poorly suited for recovering higher spatial frequency aberrations. The present phase-diverse iterative transform phase-retrieval algorithm offers both the high-spatial-frequency capability of the iterative-transform approach and the high dynamic range of parametric phase-recovery techniques. In implementation, this is a focus-diverse iterative-transform phaseretrieval algorithm that incorporates an adaptive diversity function, which makes it possible to avoid phase unwrapping while preserving high-spatial-frequency recovery. The algorithm includes an inner and an outer loop (see figure). An initial estimate of phase is used to start the algorithm on the inner loop, wherein

  3. Strain-Temperature-Transformation (STT) Diagram for Soft Solids

    NASA Astrophysics Data System (ADS)

    Li, Shoubo; Xiong, Wentao; Wang, Xiaorong

    Soft materials comprise a variety of physical states that are easily deformed by shear stains or thermal fluctuations. They include suspensions, colloids, polymers, foams, gels, liquid crystals, and a number of biological materials. In this contribution, a generalized strain-temperature-transformation (STT) diagram for many soft materials is presented in which the physical states encountered are related to the strain and temperature changes. The boundary defined for the solid-to-liquid transformation in the STT diagram displays a surprising Z-shaped curve. We discuss this feature with respect to the physical nature of materials.

  4. Isomorphic phase transformation in shocked cerium using molecular dynamics

    SciTech Connect

    Dupont, Virginie; Germann, Timothy C; Chen, Shao - Ping

    2010-08-12

    Cerium (Ce) undergoes a significant ({approx}16%) volume collapse associated with an isomorphic fcc-fcc phase transformation when subject to compressive loading. We present here a new Embedded Atom Method (EAM) potential for Cerium that models two minima for the two fcc phases. We show results from its use in Molecular Dynamics (MD) simulations of Ce samples subjected to shocks with pressures ranging from 0.5 to 25 GPa. A split wave structure is observed, with an elastic precursor followed by a plastic wave. The plastic wave causes the expected fcc-fcc phase transformation. Comparisons to experiments and MD simulations on Cesium (Cs) indicate that three waves could be observed. The construction of the EAM potential may be the source of the difference.

  5. Nanowire growth by an electron beam induced massive phase transformation

    DOE PAGES

    Sood, Shantanu; Kisslinger, Kim; Gouma, Perena

    2014-11-15

    Tungsten trioxide nanowires of a high aspect ratio have been synthesized in-situ in a TEM under an electron beam of current density 14A/cm² due to a massive polymorphic reaction. Sol-gel processed pseudocubic phase nanocrystals of tungsten trioxide were seen to rapidly transform to one dimensional monoclinic phase configurations, and this reaction was independent of the substrate on which the material was deposited. The mechanism of the self-catalyzed polymorphic transition and accompanying radical shape change is a typical characteristic of metastable to stable phase transformations in nanostructured polymorphic metal oxides. A heuristic model is used to confirm the metastable to stablemore » growth mechanism. The findings are important to the control electron beam deposition of nanowires for functional applications starting from colloidal precursors.« less

  6. Reconstructing solute-induced phase transformations within individual nanocrystals.

    PubMed

    Narayan, Tarun C; Baldi, Andrea; Koh, Ai Leen; Sinclair, Robert; Dionne, Jennifer A

    2016-07-01

    Strain and defects can significantly impact the performance of functional nanomaterials. This effect is well exemplified by energy storage systems, in which structural changes such as volume expansion and defect generation govern the phase transformations associated with charging and discharging. The rational design of next-generation storage materials therefore depends crucially on understanding the correlation between the structure of individual nanoparticles and their solute uptake and release. Here, we experimentally reconstruct the spatial distribution of hydride phases within individual palladium nanocrystals during hydrogen absorption, using a combination of electron spectroscopy, dark-field imaging, and electron diffraction in an environmental transmission electron microscope. We show that single-crystalline cubes and pyramids exhibit a uniform hydrogen distribution at equilibrium, whereas multiply twinned icosahedra exclude hydrogen from regions of high compressive strains. Our technique offers unprecedented insight into nanoscale phase transformations in reactive environments and can be extended to a variety of functional nanomaterials. PMID:27088234

  7. Nanowire growth by an electron beam induced massive phase transformation

    SciTech Connect

    Sood, Shantanu; Kisslinger, Kim; Gouma, Perena

    2014-11-15

    Tungsten trioxide nanowires of a high aspect ratio have been synthesized in-situ in a TEM under an electron beam of current density 14A/cm² due to a massive polymorphic reaction. Sol-gel processed pseudocubic phase nanocrystals of tungsten trioxide were seen to rapidly transform to one dimensional monoclinic phase configurations, and this reaction was independent of the substrate on which the material was deposited. The mechanism of the self-catalyzed polymorphic transition and accompanying radical shape change is a typical characteristic of metastable to stable phase transformations in nanostructured polymorphic metal oxides. A heuristic model is used to confirm the metastable to stable growth mechanism. The findings are important to the control electron beam deposition of nanowires for functional applications starting from colloidal precursors.

  8. Enhanced reversibility and unusual microstructure of a phase-transforming material.

    PubMed

    Song, Yintao; Chen, Xian; Dabade, Vivekanand; Shield, Thomas W; James, Richard D

    2013-10-01

    Materials undergoing reversible solid-to-solid martensitic phase transformations are desirable for applications in medical sensors and actuators, eco-friendly refrigerators and energy conversion devices. The ability to pass back and forth through the phase transformation many times without degradation of properties (termed 'reversibility') is critical for these applications. Materials tuned to satisfy a certain geometric compatibility condition have been shown to exhibit high reversibility, measured by low hysteresis and small migration of transformation temperature under cycling. Recently, stronger compatibility conditions called the 'cofactor conditions' have been proposed theoretically to achieve even better reversibility. Here we report the enhanced reversibility and unusual microstructure of the first martensitic material, Zn45Au30Cu25, that closely satisfies the cofactor conditions. We observe four striking properties of this material. (1) Despite a transformation strain of 8%, the transformation temperature shifts less than 0.5 °C after more than 16,000 thermal cycles. For comparison, the transformation temperature of the ubiquitous NiTi alloy shifts up to 20 °C in the first 20 cycles. (2) The hysteresis remains approximately 2 °C during this cycling. For comparison, the hysteresis of the NiTi alloy is up to 70 °C (refs 9, 12). (3) The alloy exhibits an unusual riverine microstructure of martensite not seen in other martensites. (4) Unlike that of typical polycrystal martensites, its microstructure changes drastically in consecutive transformation cycles, whereas macroscopic properties such as transformation temperature and latent heat are nearly reproducible. These results promise a concrete strategy for seeking ultra-reliable martensitic materials.

  9. Microstructural Evidence for Conditioning-dependent (delta) -> (alpha)' Transformations in Retained (delta)-phase Pu-Ga

    SciTech Connect

    Jeffries, J R; Blobaum, K M; Wall, M A; Schwartz, A J

    2008-06-16

    The retained {delta} phase of a Pu-1.9 at.% Ga alloy is metastable with respect to the martensitic {delta} {yields} {alpha}{prime} transformation that occurs at low temperatures. This transformation has been shown to proceed by means of an isothermal martensitic mode, but the kinetics of the transformation are atypical. The transformation exhibits a 'double-C' in a time-temperature-transformation diagram, wherein there exist two temperatures where a given amount of transformation occurs in a minimum amount of time. The cause of the double-C kinetics remains uncertain, eliciting proposals of multiple mechanisms, multiple paths, or different morphologies as possible origins. Recently, a 'conditioning' treatment was found to affect the {delta} {yields} {alpha}{prime} transformation, but the underlying mechanism by which the conditioning treatment influences the transformation has not yet been resolved. In this study, microstructural characterization as a function of temperature, time, and conditioning has been employed to illuminate the role of conditioning in the {delta} {yields} {alpha}{prime} transformation. Conditioning is found to enhance transformation in the upper-C and to enable transformation in the lower-C. The data garnered from these experiments suggest that conditioning is intimately linked to nucleation processes and of little consequence to the growth and morphology of the {alpha}{prime} product phase.

  10. Thickness-induced structural phase transformation of layered gallium telluride.

    PubMed

    Zhao, Q; Wang, T; Miao, Y; Ma, F; Xie, Y; Ma, X; Gu, Y; Li, J; He, J; Chen, B; Xi, S; Xu, L; Zhen, H; Yin, Z; Li, J; Ren, J; Jie, W

    2016-07-28

    The thickness-dependent electronic states and physical properties of two-dimensional materials suggest great potential applications in electronic and optoelectronic devices. However, the enhanced surface effect in ultra-thin materials might significantly influence the structural stability, as well as the device reliability. Here, we report a spontaneous phase transformation of gallium telluride (GaTe) that occurred when the bulk was exfoliated to a few layers. Transmission electron microscopy (TEM) results indicate a structural variation from a monoclinic to a hexagonal structure. Raman spectra suggest a critical thickness for the structural transformation. First-principle calculations and thermodynamic analysis show that the surface energy and the interlayer interaction compete to dominate structural stability in the thinning process. A two-stage transformation process from monoclinic (m) to tetragonal (T) and then from tetragonal to hexagonal (h) is proposed to understand the phase transformation. The results demonstrate the crucial role of interlayer interactions in the structural stability, which provides a phase engineering strategy for device applications. PMID:27198938

  11. Thickness-induced structural phase transformation of layered gallium telluride.

    PubMed

    Zhao, Q; Wang, T; Miao, Y; Ma, F; Xie, Y; Ma, X; Gu, Y; Li, J; He, J; Chen, B; Xi, S; Xu, L; Zhen, H; Yin, Z; Li, J; Ren, J; Jie, W

    2016-07-28

    The thickness-dependent electronic states and physical properties of two-dimensional materials suggest great potential applications in electronic and optoelectronic devices. However, the enhanced surface effect in ultra-thin materials might significantly influence the structural stability, as well as the device reliability. Here, we report a spontaneous phase transformation of gallium telluride (GaTe) that occurred when the bulk was exfoliated to a few layers. Transmission electron microscopy (TEM) results indicate a structural variation from a monoclinic to a hexagonal structure. Raman spectra suggest a critical thickness for the structural transformation. First-principle calculations and thermodynamic analysis show that the surface energy and the interlayer interaction compete to dominate structural stability in the thinning process. A two-stage transformation process from monoclinic (m) to tetragonal (T) and then from tetragonal to hexagonal (h) is proposed to understand the phase transformation. The results demonstrate the crucial role of interlayer interactions in the structural stability, which provides a phase engineering strategy for device applications.

  12. Solid-gaseous phase transformation of elemental contaminants during the gasification of biomass.

    PubMed

    Jiang, Ying; Ameh, Abiba; Lei, Mei; Duan, Lunbo; Longhurst, Philip

    2016-09-01

    Disposal of plant biomass removed from heavy metal contaminated land via gasification achieves significant volume reduction and can recover energy. However, these biomass often contain high concentrations of heavy metals leading to hot-corrosion of gasification facilities and toxic gaseous emissions. Therefore, it is of significant interest to gain a further understanding of the solid-gas phase transition of metal(loid)s during gasification. Detailed elemental analyses (C, H, O, N and key metal/metalloid elements) were performed on five plant species collected from a contaminated site. Using multi-phase equilibria modelling software (MTDATA), the analytical data allows modelling of the solid/gas transformation of metal(loid)s during gasification. Thermodynamic modelling based on chemical equilibrium calculations was carried out in this study to predict the fate of metal(loid) elements during typical gasification conditions and to show how these are influenced by metal(loid) composition in the biomass and operational conditions. As, Cd, Zn and Pb tend to transform to their gaseous forms at relatively low temperatures (<1000°C). Ni, Cu, Mn and Co converts to gaseous forms within the typical gasification temperature range of 1000-1200°C. Whereas Cr, Al, Fe and Mg remain in solid phase at higher temperatures (>1200°C). Simulation of pressurised gasification conditions shows that higher pressures increase the temperature at which solid-to-gaseous phase transformations takes place. PMID:26603198

  13. Solid-gaseous phase transformation of elemental contaminants during the gasification of biomass.

    PubMed

    Jiang, Ying; Ameh, Abiba; Lei, Mei; Duan, Lunbo; Longhurst, Philip

    2016-09-01

    Disposal of plant biomass removed from heavy metal contaminated land via gasification achieves significant volume reduction and can recover energy. However, these biomass often contain high concentrations of heavy metals leading to hot-corrosion of gasification facilities and toxic gaseous emissions. Therefore, it is of significant interest to gain a further understanding of the solid-gas phase transition of metal(loid)s during gasification. Detailed elemental analyses (C, H, O, N and key metal/metalloid elements) were performed on five plant species collected from a contaminated site. Using multi-phase equilibria modelling software (MTDATA), the analytical data allows modelling of the solid/gas transformation of metal(loid)s during gasification. Thermodynamic modelling based on chemical equilibrium calculations was carried out in this study to predict the fate of metal(loid) elements during typical gasification conditions and to show how these are influenced by metal(loid) composition in the biomass and operational conditions. As, Cd, Zn and Pb tend to transform to their gaseous forms at relatively low temperatures (<1000°C). Ni, Cu, Mn and Co converts to gaseous forms within the typical gasification temperature range of 1000-1200°C. Whereas Cr, Al, Fe and Mg remain in solid phase at higher temperatures (>1200°C). Simulation of pressurised gasification conditions shows that higher pressures increase the temperature at which solid-to-gaseous phase transformations takes place.

  14. Phase transformations in Ti-6.8Mo-4.5Fe-1.5Al

    SciTech Connect

    Azimzadeh, S.; Rack, H.J.

    1998-10-01

    Phase transformations during artificial and isothermal aging of Ti-6.8Mo-4.5Fe-1.5Al have been investigated over the temperature range from 300 C to 750 C utilizing hardness measurements, X-ray diffraction, optical microscopy, and electron microscopy. Artificial aging following solution treatment and water quenching initially involved growth of the athermal {omega} phase. This was followed by formation of the {alpha} phase, either in association with the {omega} phase, through homogeneous precipitation within the matrix, or through heterogeneous grain-boundary nucleation. Similarly, isothermal decomposition of the metastable {beta} phase resulted in the precipitation of {omega} phase exhibiting an ellipsoidal morphology. While precipitation of {omega} was immediate at 345 C, an incubation period was observed upon aging at 390 C. Isothermal aging above this temperature involved direct precipitation of the {alpha} phase, either homogeneously within the {beta} matrix or heterogeneously at {beta} grain boundaries. The extent of homogeneous vs heterogeneous {alpha} nucleation during isothermal aging depended upon aging temperature; low aging temperatures promote homogeneous nucleation and higher aging temperatures promote {alpha} heterogeneous nucleation. Finally, continued aging resulted, independent of aging path, in coarsening and spheroidization of the {alpha} phase.

  15. Characterization of solid phases and study of transformation kinetics in m-chlorofluorobenzene by 35Cl nuclear quadrupole resonance.

    PubMed

    Pérez, Silvina; Wolfenson, Alberto

    2012-02-01

    Polymorphism is of widespread occurrence in the world of molecular crystals. In this work we present experimental results showing the existence of four solid phases in m-chlorofluorobenzene. A glass structure is achieved by quenching the liquid phase at 77 K. This glassy state crystallizes in a disordered phase at T~143 K, which in turn transforms to the high-temperature stable phase (phase I) at T~153 K. Depending on the thermal history of the sample, a different ordered phase (phase III) can be obtained. The disorder is attributed to a molecular orientational disorder. There is no evidence of molecular reorientation in any phase. A study of the disorder-order phase transformation kinetics, using nuclear quadrupole resonance, is presented. The results are analyzed following Cahn's theory. Nucleation seems to take place at grain boundaries. Growth rates for different temperatures have been determined.

  16. Additional losses in three-phase transformer cores

    NASA Astrophysics Data System (ADS)

    Valković, Z.

    1984-02-01

    The influences of T-joint design and of the holes in yoke lamination on the magnetic properties have been investigated on scale models of three-phase three-limbed transformer core. Four variants of V-45° T-joint have been compared, and it has been found that they have virtually equal power losses, while the differences in magnetizing currents amount up to 60%. The variations of losses and magnetizing currents with hole diameter and flux density in the core are given. In distribution transformers of usual dimensions, a 2-4% increase of power losses due to holes in the yoke has been estimated.

  17. The Binary Temperature-Composition Phase Diagram

    ERIC Educational Resources Information Center

    Sanders, Philip C.; Reeves, James H.; Messina, Michael

    2006-01-01

    The equations for the liquid and gas lines in the binary temperature-composition phase diagram are derived by approximating that delta(H)[subscript vap] of the two liquids are equal. It is shown that within this approximation, the resulting equations are not too difficult to present in an undergraduate physical chemistry lecture.

  18. Phase Transformations and Formation of Ultra-Fine Microstructure During Hydrogen Sintering and Phase Transformation (HSPT) Processing of Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Sun, Pei; Fang, Zhigang Zak; Koopman, Mark; Xia, Yang; Paramore, James; Ravi Chandran, K. S.; Ren, Yang; Lu, Jun

    2015-12-01

    The hydrogen sintering and phase transformation (HSPT) process is a novel powder metallurgy method for producing Ti alloys, particularly the Ti-6Al-4V alloy, with ultra-fine microstructure in the as-sintered state. The ultra-fine microstructure is obtained as a direct result of the use of H2 gas during sintering. The refinement of the microstructure during HSPT is similar to that of thermal hydrogen processing (THP) of bulk Ti alloys. For both THP and HSPT of Ti-6Al-4V alloy, the mechanisms of the grain refinement depend on the phase equilibria and phase transformations in the presence of hydrogen, which are surprisingly still not well established to date and are still subjected to research and debate. In recent work by the present authors, a pseudo-binary phase diagram of (Ti-6Al-4V)-H has been determined by using in situ synchrotron XRD and TGA/DSC techniques. Aided by this phase diagram, the current paper focuses on the series of phase transformations during sintering and cooling of Ti-6Al-4V in a hydrogen atmosphere and the mechanisms for the formation of the ultra-fine microstructures obtained. Using experimental techniques, including in situ synchrotron XRD, SEM, EBSD, and TEM, the microstructural refinement was found to be the result of (1) the precipitation of ultra-fine α/α2 within coarse β grains during an isothermal hold at intermediate temperatures, and (2) the eutectoid transformation of β → α + δ at approximately 473 K (200 °C).

  19. Phase diagram of the Co-Al-W system. structure and phase transformations near the Co3(Al, W) intermetallic composition range

    NASA Astrophysics Data System (ADS)

    Kazantseva, N. V.; Demakov, S. L.; Yurovskikh, A. S.; Stepanova, N. N.; Vinogradova, N. I.; Davydov, D. I.; Lepikhin, S. V.

    2016-07-01

    Low-temperature portion of the polythermal section for the Co-Al-W system in the vicinity of the Co3(Al, W) intermetallic composition has been studied experimentally using electron microscopy and hightemperature X-ray diffraction analysis. Low-temperature structural phase transformations and temperature ranges of the existence of phases have been determined. The morphology of Co3(Al, W) intermetallic particles was studied as a function of the tungsten content in alloys.

  20. The use of Fourier reverse transforms in crystallographic phase refinement

    SciTech Connect

    Ringrose, S.

    1997-10-08

    Often a crystallographer obtains an electron density map which shows only part of the structure. In such cases, the phasing of the trial model is poor enough that the electron density map may show peaks in some of the atomic positions, but other atomic positions are not visible. There may also be extraneous peaks present which are not due to atomic positions. A method for determination of crystal structures that have resisted solution through normal crystallographic methods has been developed. PHASER is a series of FORTRAN programs which aids in the structure solution of poorly phased electron density maps by refining the crystallographic phases. It facilitates the refinement of such poorly phased electron density maps for difficult structures which might otherwise not be solvable. The trial model, which serves as the starting point for the phase refinement, may be acquired by several routes such as direct methods or Patterson methods. Modifications are made to the reverse transform process based on several assumptions. First, the starting electron density map is modified based on the fact that physically the electron density map must be non-negative at all points. In practice a small positive cutoff is used. A reverse Fourier transform is computed based on the modified electron density map. Secondly, the authors assume that a better electron density map will result by using the observed magnitudes of the structure factors combined with the phases calculated in the reverse transform. After convergence has been reached, more atomic positions and less extraneous peaks are observed in the refined electron density map. The starting model need not be very large to achieve success with PHASER; successful phase refinement has been achieved with a starting model that consists of only 5% of the total scattering power of the full molecule. The second part of the thesis discusses three crystal structure determinations.

  1. A new phase transformation path from nanodiamond to new-diamond via an intermediate carbon onion

    NASA Astrophysics Data System (ADS)

    Xiao, J.; Li, J. L.; Liu, P.; Yang, G. W.

    2014-11-01

    The investigation of carbon allotropes such as graphite, diamond, fullerenes, nanotubes and carbon onions and mechanisms that underlie their mutual phase transformation is a long-standing problem of great fundamental importance. New diamond (n-diamond) is a novel metastable phase of carbon with a face-centered cubic structure; it is called ``new diamond'' because many reflections in its electron diffraction pattern are similar to those of diamond. However, producing n-diamond from raw carbon materials has so far been challenging due to n-diamond's higher formation energy than that of diamond. Here, we, for the first time, demonstrate a new phase transformation path from nanodiamond to n-diamond via an intermediate carbon onion in the unique process of laser ablation in water, and establish that water plays a crucial role in the formation of n-diamond. When a laser irradiates colloidal suspensions of nanodiamonds at ambient pressure and room temperature, nanodiamonds are first transformed into carbon onions serving as an intermediate phase, and sequentially carbon onions are transformed into n-diamonds driven by the laser-induced high temperature and high pressure from the carbon onion as a nanoscaled temperature and pressure cell upon the process of laser irradiation in a liquid. This phase transformation not only provides new insight into the physical mechanism involved, but also offers one suitable opportunity for breaking controllable pathways between n-diamond and carbon allotropes such as diamond and carbon onions.The investigation of carbon allotropes such as graphite, diamond, fullerenes, nanotubes and carbon onions and mechanisms that underlie their mutual phase transformation is a long-standing problem of great fundamental importance. New diamond (n-diamond) is a novel metastable phase of carbon with a face-centered cubic structure; it is called ``new diamond'' because many reflections in its electron diffraction pattern are similar to those of diamond

  2. Phase transformations in multiferroics Bi1- x Ca x Fe1- x Mn x O3

    NASA Astrophysics Data System (ADS)

    Troyanchuk, I. O.; Bushinsky, M. V.; Karpinsky, D. V.; Chobot, A. N.; Tereshko, N. V.; Franz, A.

    2016-09-01

    The crystal structure and the magnetic properties of multiferroics Bi1- x Ca x Fe1- x Mn x O3 ( x ≤ 0.22) have been studied. It has been found that the stoichiometric compositions undergo a crystal-structure transformation from the rhombohedral (space group R3 c) polar phase ( x ≤ 0.18) to the orthorhombic (space group Pnma) nonpolar phase ( x ≥ 0.20) via a two-phase structural state. The polar phase is antiferromagnetic at x < 0.10 and exhibits a metamagnetic behavior. The polar ( x ≥ 0.10) and nonpolar phases are weak ferromagnets at room temperature with a spontaneous magnetization close to 0.07 emu/g ( x = 0.18 and 0.22). A decrease in temperature leads to the transition to a state close to an antiferromagnetic one.

  3. Numerical estimation of phase transformations in solid state during Yb:YAG laser heating of steel sheets

    SciTech Connect

    Kubiak, Marcin Piekarska, Wiesława; Domański, Tomasz; Saternus, Zbigniew; Stano, Sebastian

    2015-03-10

    This work concerns the numerical modeling of heat transfer and phase transformations in solid state occurring during the Yb:YAG laser beam heating process. The temperature field is obtained by the numerical solution into transient heat transfer equation with convective term. The laser beam heat source model is developed using the Kriging interpolation method with experimental measurements of Yb:YAG laser beam profile taken into account. Phase transformations are calculated on the basis of Johnson - Mehl - Avrami (JMA) and Koistinen - Marburger (KM) kinetics models as well as continuous heating transformation (CHT) and continuous cooling transformation (CCT) diagrams for S355 steel. On the basis of developed numerical algorithms 3D computer simulations are performed in order to predict temperature history and phase transformations in Yb:YAG laser heating process.

  4. Phase Field Modeling of Cyclic Austenite-Ferrite Transformations in Fe-C-Mn Alloys

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Zhu, Benqiang; Militzer, Matthias

    2016-08-01

    Three different approaches for considering the effect of Mn on the austenite-ferrite interface migration in an Fe-0.1C-0.5Mn alloy have been coupled with a phase field model (PFM). In the first approach (PFM-I), only long-range C diffusion is considered while Mn is assumed to be immobile during the phase transformations. Both long-range C and Mn diffusions are considered in the second approach (PFM-II). In the third approach (PFM-III), long-range C diffusion is considered in combination with the Gibbs energy dissipation due to Mn diffusion inside the interface instead of solving for long-range diffusion of Mn. The three PFM approaches are first benchmarked with isothermal austenite-to-ferrite transformation at 1058.15 K (785 °C) before considering cyclic phase transformations. It is found that PFM-II can predict the stagnant stage and growth retardation experimentally observed during cycling transformations, whereas PFM-III can only replicate the stagnant stage but not the growth retardation and PFM-I predicts neither the stagnant stage nor the growth retardation. The results of this study suggest a significant role of Mn redistribution near the interface on reducing transformation rates, which should, therefore, be considered in future simulations of austenite-ferrite transformations in steels, particularly at temperatures in the intercritical range and above.

  5. Critical kinetic control of non-stoichiometric intermediate phase transformation for efficient perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Rong, Yaoguang; Venkatesan, Swaminathan; Guo, Rui; Wang, Yanan; Bao, Jiming; Li, Wenzhi; Fan, Zhiyong; Yao, Yan

    2016-06-01

    Organometal trihalide perovskites (OTP) have attracted significant attention as a low-cost and high-efficiency solar cell material. Due to the strong coordination between lead iodide (PbI2) and dimethyl sulfoxide (DMSO) solvent, a non-stoichiometric intermediate phase of MA2Pb3I8(DMSO)2 (MA = CH3NH3+) usually forms in the one-step deposition method that plays a critical role in attaining high power conversion efficiency. However, the kinetic understanding of how the non-stoichiometric intermediate phase transforms during thermal annealing is currently absent. In this work, we investigated such a phase transformation and provided a clear picture of three phase transition pathways as a function of annealing conditions. The interdiffusion of MAI and DMSO varies strongly with the annealing temperature and time, thus determining the final film composition and morphology. A surprising finding reveals that the best performing cells contain ~18% of the non-stoichiometric intermediate phase, instead of pure phase OTP. The presence of such an intermediate phase enables smooth surface morphology and enhances the charge carrier lifetime. Our results highlight the importance of the intermediate phase growth kinetics that could lead to large-scale production of efficient solution processed perovskite solar cells.Organometal trihalide perovskites (OTP) have attracted significant attention as a low-cost and high-efficiency solar cell material. Due to the strong coordination between lead iodide (PbI2) and dimethyl sulfoxide (DMSO) solvent, a non-stoichiometric intermediate phase of MA2Pb3I8(DMSO)2 (MA = CH3NH3+) usually forms in the one-step deposition method that plays a critical role in attaining high power conversion efficiency. However, the kinetic understanding of how the non-stoichiometric intermediate phase transforms during thermal annealing is currently absent. In this work, we investigated such a phase transformation and provided a clear picture of three phase transition

  6. Calcium carbonate phase transformations during the carbonation reaction of calcium heavy alkylbenzene sulfonate overbased nanodetergents preparation.

    PubMed

    Chen, Zhaocong; Xiao, Shan; Chen, Feng; Chen, Dongzhong; Fang, Jianglin; Zhao, Min

    2011-07-01

    The preparation and application of overbased nanodetergents with excess alkaline calcium carbonate is a good example of nanotechnology in practice. The phase transformation of calcium carbonate is of extensive concern since CaCO(3) serves both as an important industrial filling material and as the most abundant biomineral in nature. Industrially valuable overbased nanodetergents have been prepared based on calcium salts of heavy alkylbenzene sulfonate by a one-step process under ambient pressure, the carbonation reaction has been monitored by the instantaneous temperature changes and total base number (TBN). A number of analytical techniques such as TGA, DLS, SLS, TEM, FTIR, and XRD have been utilized to explore the carbonation reaction process and phase transformation mechanism of calcium carbonate. An enhanced understanding on the phase transformation of calcium carbonate involved in calcium sulfonate nanodetergents has been achieved and it has been unambiguously demonstrated that amorphous calcium carbonate (ACC) transforms into the vaterite polymorph rather than calcite, which would be of crucial importance for the preparation and quality control of lubricant additives and greases. Our results also show that a certain amount of residual Ca(OH)(2) prevents the phase transformation from ACC to crystalline polymorphs. Moreover, a vaterite nanodetergent has been prepared for the first time with low viscosity, high base number, and uniform particle size, nevertheless a notable improvement on its thermal stability is required for potential applications.

  7. Application of phase coherent transform to cloud clutter suppression

    SciTech Connect

    Ng, L.C.

    1994-11-15

    This paper describes a tracking algorithm using frame-to-frame correlation with frequency domain clutter suppression. Clutter suppression was mechanized via a `Phase Coherent Transform` (PCT) approach. This approach was applied to explore the feasibility of tracking a post-boost rocket from a low earth orbit satellite with real cloud background data. Simulation results show that the PCT/correlation tracking algorithm can perform satisfactorily at signal-to-clutter ratio (SCR) as low as 5 or 7 dB.

  8. Experimental evidence of α → β phase transformation in SiC quantum dots and their size-dependent luminescence

    SciTech Connect

    Guo, Xiaoxiao; Dai, Dejian; Fan, Baolu; Fan, Jiyang

    2014-11-10

    Phase transformation can occur among different SiC polytypes under extreme conditions such as high pressure or temperature. It remains unknown whether phase transformation can occur under normal conditions. We demonstrate that the α → β phase transformation can occur at ambient temperature and pressure in nanoscale SiC. The microstructural characterization and light absorption and emission spectroscopy demonstrate the occurrence of this phase transformation. It is found that the quantum-confinement luminescence dominates in larger SiC quantum dots (QDs) and the surface-defect luminescence dominates in ultrasmall SiC QDs. The rare phenomenon of multiple-phonon-assisted light absorption is observed in the SiC QDs.

  9. Interband electronic transitions and phase transformation of multiferroic Bi{sub 1−x}La{sub x}Fe{sub 1−y}Ti{sub y}O{sub 3} ceramics revealed by temperature-dependent spectroscopic ellipsometry

    SciTech Connect

    Xu, L. P.; Jiang, P. P.; Duan, Z. H.; Hu, Z. G. Zhu, Z. Q.; Chu, J. H.; Zhang, L. L.; Yu, J.

    2013-12-21

    Optical properties and phase transition of Bi{sub 1−x}La{sub x}Fe{sub 1−y}Ti{sub y}O{sub 3} (BLFTO) ceramics with different composition (0.02 ≤ x ≤ 0.10, 0.01 ≤ y ≤ 0.06) have been investigated by spectroscopic ellipsometry (SE) in the temperature range of −70–450 °C. The real part of the complex dielectric function ε{sub 1} increases with the temperature. Meanwhile, the imaginary part ε{sub 2} in the low-energy region decreases with the temperature and has an opposite trend in the high-energy side. Four typical interband transitions (E{sub a} ∼ 2.50 eV, E{sub b} ∼ 2.70 eV, E{sub c} ∼ 3.60 eV, and E{sub d} ∼ 4.25 eV) can be observed from the second derivative of the complex dielectric functions with aid of the standard critical point model. The critical point (CP) transition becomes broadening and shifts to a lower energy side as La and Ti compositions increase. Moreover, the CP transition energies show a red-shift trend with increasing the temperature until 320 °C, due to the lattice thermal expansion and electron-phonon interaction. The typical interband transitions and partial spectral weight present anomalies in the proximity of antiferromagnetic transition owing to the coupling between magnetic and ferroelectric order parameters and spin-lattice coupling for BLFTO multiferroic materials. It was found that the Néel temperature of BLFTO ceramics decreases from 364 to 349 °C with increasing doping composition of La and Ti elements. These phenomena can be attributed to the modification of electronic structure and magnetic order because the differences of electronegativity and ionic radii between Bi and La, Fe and Ti induce the variations on the bond angle and bond length between cations and anions. Moreover, the substitution for magnetic Fe{sup 3+} ions with nonmagnetic Ti{sup 4+} ions can reduce the exchange interaction between adjacent magnetic moments. Therefore, SE technique can be sensitive for

  10. Deformation and Phase Transformations During Cyclic Oxidation of Ni-Al and Ni-Pt-Al

    SciTech Connect

    Pint, Bruce A; Speakman, Scott A; Rawn, Claudia J; Zhang, Ying

    2006-01-01

    The reversible high-temperature {gamma}' to {beta} phase transformation may be critical to explaining the unusual high-temperature oxidation behavior of (Ni,Pt)Al alloys and coatings. During high-temperature, high-frequency (1 h) cyclic oxidation in dry, flowing O{sub 2}, unprecedented macroscopic deformation was observed in two-phase ({gamma}'+{beta}) cast specimens of Hf-doped Ni-Al at 1,150 C and Hf-doped Ni-Pt-Al at 1,100 and 1,150 C, Outside of this two-phase field or when the cycle frequency was decreased to 100h, no deformation was observed. Using high-temperature x-ray diffraction in an inert environment, the {beta}-to-{gamma}' phase ratio was observed to increase above 1,000 C, causing a 2.5% volume change. The addition of platinum appeared to lower the transformation temperature consistent with the deformation observed in castalloys and rumpling of simple and platinum-modified aluminide coatings.

  11. Patterning Oxide Nanopillars at the Atomic Scale by Phase Transformation.

    PubMed

    Chen, Chunlin; Wang, Zhongchang; Lichtenberg, Frank; Ikuhara, Yuichi; Bednorz, Johannes Georg

    2015-10-14

    Phase transformations in crystalline materials are common in nature and often modify dramatically properties of materials. The ability to precisely control them with a high spatial precision represents a significant step forward in realizing new functionalities in confined dimensions. However, such control is extremely challenging particularly at the atomic scale due to the intricacies in governing thermodynamic conditions with a high spatial accuracy. Here, we apply focused electron beam of a scanning transmission electron microscope to irradiate SrNbO3.4 crystals and demonstrate a precise control of a phase transformation from layered SrNbO3.4 to perovskite SrNbO3 at the atomic scale. By purposely squeezing O atoms out of the vertex-sharing NbO6 octahedral slabs, their neighboring slabs zip together, resulting in a patterning of SrNbO3 nanopillars in SrNbO3.4 matrix. Such phase transformations can be spatially manipulated with an atomic precision, opening up a novel avenue for materials design and processing and also for advanced nanodevice fabrication.

  12. Construction of a Fourier-transform phase-modulation fluorometer

    NASA Astrophysics Data System (ADS)

    Iwata, Tetsuo; Shibata, Hironobu; Araki, Tsutomu

    2005-11-01

    We have constructed a Fourier-transform phase-modulation fluorometer (FT-PMF) by which a fluorescence decay waveform can be obtained. In the FT-PMF, the modulation frequency of the excitation light source is swept continuously from a direct current (dc) to a high frequency fmax with a time duration T. The resultant fluorescence signal waveform is Fourier transformed to obtain its amplitude and phase spectra. The ratio of the amplitude spectrum and the difference of the phase spectrum over those of the reference spectra from an excitation waveform are calculated, respectively, and the pair of both spectral data is inverse-Fourier-transformed again to obtain the fluorescence decay waveform. The light source used was an ultraviolet light-emitting diode (UV LED) whose operating condition was fmax = 50-120 MHz and T = 10 µs. To demonstrate the performance of the FT-PMF, we carried out (1) the measurement of a fluorescent decay waveform of YAG materials enclosed in a white LED and (2) determinations of fluorescence lifetimes of 10 ppm quinine sulfate in 0.1 N H2SO4 and 10 ppm rhodamine 6G in ethanol.

  13. Construction of a Fourier-transform phase-modulation fluorometer

    NASA Astrophysics Data System (ADS)

    Shibata, Hironobu; Iwata, Tetsuo

    2005-12-01

    We have constructed a Fourier-transform phase-modulation fluorometer (FT-PMF) by which a fluorescence decay waveform can be obtained. In the FT-PMF, the modulation frequency of the excitation light source is swept continuously from a direct current (dc) to a high frequency f max with a time duration T. The resultant fluorescence signal waveform is Fourier-transformed to obtain its amplitude and phase spectra. The ratio of the amplitude spectrum and the difference of the phase spectrum over those of the reference spectra that are obtained from a non-fluorescent material are calculated, respectively, and the pair of both spectral data is inverse-Fourier-transformed again to obtain the fluorescence decay waveform. The light source used was an ultraviolet light emitting- diode (UV LED) whose typical operating condition was f max = 100 MHz and T = 10 μs. To demonstrate the performance of the FT-PMF, we carried out (1) measurement of a fluorescent decay waveform of YAG materials packed in a white LED, and (2) determination of fluorescence lifetime of 10 ppm quinine sulfate in 0.1N H IISO 4.

  14. Phase transformation of Ho[subscript 2]O[subscript 3] at high pressure

    SciTech Connect

    Jiang, Sheng; Liu, Jing; Li, Xiaodong; Bai, Ligang; Xiao, Wansheng; Zhang, Yufeng; Lin, Chuanlong; Li, Yanchun; Tang, Lingyun

    2012-01-20

    The structural stability of cubic Ho{sub 2}O{sub 3} under high pressure has been investigated by angle-dispersive x-ray diffraction (ADXD) in a diamond anvil cell up to 63.0 GPa at room temperature. The diffraction data reveal two structural transformations on compression. The structural transformation from a cubic to a monoclinic structure starts at 8.9 GPa and is complete at 16.3 GPa with an {approx}8.1% volume collapse. A hexagonal phase begins to appear at {approx}14.8 GPa and becomes dominant at 26.4 GPa. This high-pressure hexagonal phase with a small amount of retained monoclinic phase is stable up to the highest pressure of 63.0 GPa in this study. After release of pressure, the hexagonal phase transforms to a monoclinic structure. A third-order Birch-Murnaghan fit yields zero pressure bulk moduli (B{sub 0}) of 206(3), 200(7) and 204(19) GPa and their pressure derivatives (B'{sub 0}) of 4.8(4), 2.1(4), 3.8(5) for the cubic, monoclinic and hexagonal phases, respectively. Comparing with other rare-earth sesquioxides, it is suggested that the transition pressure from cubic to monoclinic phase, as well as the bulk modulus of the cubic phase, increases with the decreasing of the cation radius of rare-earth sesquioxides.

  15. Phase transformation of PZST-86/14-5-2Nb ceramic under quasi-static loading conditions.

    SciTech Connect

    Broome, Scott Thomas; Scofield, Timothy W.; Montgomery, Stephen Tedford; Bauer, Stephen J.; Hofer, John H.

    2010-02-01

    Specimens of poled and unpoled PZST ceramic were tested under hydrostatic loading conditions at temperatures of -55, 25, and 75 C. The objective of this experimental study was to obtain the electro-mechanical properties of the ceramic and the criteria of FE (Ferroelectric) to AFE (Antiferroelectric) phase transformations of the PZST ceramic to aid grain-scale modeling efforts in developing and testing realistic response models for use in simulation codes. As seen in previous studies, the poled ceramic from PZST undergoes anisotropic deformation during the transition from a FE to an AFE phase at -55 C. Warmer temperature tests exhibit anisotropic deformation in both the FE and AFE phase. The phase transformation is permanent at -55 C for all ceramics tests, whereas the transformation can be completely reversed at 25 and 75 C. The change in the phase transformation pressures at different temperatures were practically identical for both unpoled and poled PZST specimens. Bulk modulus for both poled and unpoled material was lowest in the FE phase, intermediate in the transition phase, and highest in the AFE phase. Additionally, bulk modulus varies with temperature in that PZST is stiffer as temperature decreases. Results from one poled-biased test for PZST and four poled-biased tests from PNZT 95/5-2Nb are presented. A bias of 1kV did not show noticeable differences in phase transformation pressure for the PZST material. However, with PNZT 95/5-2Nb phase transformation pressure increased with increasing voltage bias up to 4.5kV.

  16. Effects of Quenching Media on Phase Transformation Characteristics and Hardness of Cu-Al-Ni-Co Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Saud, Safaa N.; Hamzah, E.; Abubakar, T.; Farahany, S.; Bakhsheshi-Rad, H. R.

    2015-04-01

    This paper presents the investigation on the effects of various thermal treatments and quenching media on the phase transformation behaviour of Cu-Al-Ni-Co shape memory alloys (SMAs). The transformation temperatures were determined using a differential scanning calorimeter. The variation of cooling rates had a consequential effect on the phase transformation characteristics of the Cu-Al-Ni-Co SMAs. Nevertheless, the transformation temperature peaks were varied in terms of location as well as heat flow. The results indicated that there was an improvement in transformation temperatures whenever ice water was used as quenching medium. It was also observed that the forward transformation temperatures were higher than the reverse transformation. It was verified that the required heat for the transformation of martensite into austenite was more than the transformation of austenite into martensite. Moreover, thermodynamic parameters, such as enthalpy and entropy, tended to decrease and increase as a result of the changes in the cooling rates of each medium. To clarify the variations of the structures and properties of Cu-Al-Ni-Co SMA quenched samples, x-ray diffraction, atomic force microscopy, field emission scanning electron microscopy, energy dispersive spectroscopy, and Vickers hardness were used.

  17. Phase transformations of sputtered ZrV{sub 2} films after annealing and hydrogenation

    SciTech Connect

    Shi, L.Q.; Xu, S.L.

    2006-03-15

    ZrV{sub 2} thin films were prepared using a direct current (dc)-magnetron-sputtering method. The composition and the phase structure after annealing and hydrogenation were investigated by Rutherford backscattering and x-ray-diffraction technologies. The composition of the films deposited at different substrate temperatures are uniformly distributed along the depth of films. The amorphous phase consisting of Zr and V atoms was achieved when the substrate temperature was less than 400 deg. C. But at high temperatures, e.g., 600 deg. C, the multiphase mixture consisted of C14 (MgZn{sub 2}) and C15 (MgCu{sub 2}) Laves phases, Zr{sub 3}V{sub 3}O, {alpha}-Zr, and V forms. The annealing caused the segregation of Zr and V in the film by strain-driven diffusion and leads to nonhomogeneity, which is the main reason why the multiphase coexists there. With increasing annealing temperature, the amount of the stable C15 phase increases, while the amount of the other C14, {alpha}-Zr, and V phases decreases. Hydrogenation could spur phase transformation from the multiphase structure to a stable Laves structure at relatively low temperature.

  18. Phase demodulation using adaptive windowed Fourier transform based on Hilbert-Huang transform.

    PubMed

    Wang, Chenxing; Da, Feipeng

    2012-07-30

    The phase demodulation method of adaptive windowed Fourier transform (AWFT) is proposed based on Hilbert-Huang transform (HHT). HHT is analyzed and performed on fringe pattern to obtain instantaneous frequencies firstly. These instantaneous frequencies are further analyzed based on the condition of AWFT to locate local stationary areas where the fundamental spectrum will not be interfered by high-order spectrum. Within each local stationary area, the fundamental spectrum can be extracted accurately and adaptively by using AWFT with the background, which has been determined previously with the presented criterion during HHT, being eliminated to remove the zero-spectrum. This method is adaptive and unconstrained by any precondition for the measured phase. Experiments demonstrate its robustness and effectiveness for measuring the object with discontinuities or complex surface.

  19. Optical bandgap widening and phase transformation of nitrogen doped cupric oxide

    NASA Astrophysics Data System (ADS)

    Masudy-Panah, Saeid; Radhakrishnan, K.; Kumar, Avishek; Wong, Ten It; Yi, Ren; Dalapati, Goutam Kumar

    2015-12-01

    The structural and optical properties of sputter deposited nitrogen (N) doped CuO (CuO(N)) thin films are systematically investigated. It is found that the incorporation of N into CuO causes an enlargement of optical bandgap and reduction in resistivity of the CuO(N) films. Furthermore, a gradual phase transformation from CuO to Cu2O is observed with the increase in N concentration. The effects of annealing temperature on the structural properties of CuO (N) and its dependence on N concentration are also investigated. It is observed that the phase transformation process from CuO to Cu2O significantly depends on the N concentration and the annealing temperature. Heterojunction solar cells of p-type CuO(N) on n-type silicon (Si) substrate, p-CuO(N)/n-Si, are fabricated to investigate the impact of N doping on its photovoltaic properties.

  20. Rapidly reversible redox transformation in nanophase manganese oxides at room temperature triggered by changes in hydration

    PubMed Central

    Birkner, Nancy; Navrotsky, Alexandra

    2014-01-01

    Chemisorption of water onto anhydrous nanophase manganese oxide surfaces promotes rapidly reversible redox phase changes as confirmed by calorimetry, X-ray diffraction, and titration for manganese average oxidation state. Surface reduction of bixbyite (Mn2O3) to hausmannite (Mn3O4) occurs in nanoparticles under conditions where no such reactions are seen or expected on grounds of bulk thermodynamics in coarse-grained materials. Additionally, transformation does not occur on nanosurfaces passivated by at least 2% coverage of what is likely an amorphous manganese oxide layer. The transformation is due to thermodynamic control arising from differences in surface energies of the two phases (Mn2O3 and Mn3O4) under wet and dry conditions. Such reversible and rapid transformation near room temperature may affect the behavior of manganese oxides in technological applications and in geologic and environmental settings. PMID:24733903

  1. Rapidly reversible redox transformation in nanophase manganese oxides at room temperature triggered by changes in hydration.

    PubMed

    Birkner, Nancy; Navrotsky, Alexandra

    2014-04-29

    Chemisorption of water onto anhydrous nanophase manganese oxide surfaces promotes rapidly reversible redox phase changes as confirmed by calorimetry, X-ray diffraction, and titration for manganese average oxidation state. Surface reduction of bixbyite (Mn2O3) to hausmannite (Mn3O4) occurs in nanoparticles under conditions where no such reactions are seen or expected on grounds of bulk thermodynamics in coarse-grained materials. Additionally, transformation does not occur on nanosurfaces passivated by at least 2% coverage of what is likely an amorphous manganese oxide layer. The transformation is due to thermodynamic control arising from differences in surface energies of the two phases (Mn2O3 and Mn3O4) under wet and dry conditions. Such reversible and rapid transformation near room temperature may affect the behavior of manganese oxides in technological applications and in geologic and environmental settings.

  2. Fourier transform infrared phase shift cavity ring down spectrometer

    NASA Astrophysics Data System (ADS)

    Schundler, Elizabeth; Mansur, David J.; Vaillancourt, Robert; Benedict-Gill, Ryan; Newbry, Scott P.; Engel, James R.; Rentz Dupuis, Julia

    2013-05-01

    We report on our current status towards the development of a prototype Fourier transform infrared phase shift cavity ring down spectrometer (FTIR-PS-CRDS) system under a U.S. EPA SBIR contract. Our system uses the inherent wavelength-dependent modulation imposed by the FTIR on a broadband thermal source for the phase shift measurement. This spectrally-dependent phase shift is proportional to the spectrally-dependent ring down time, which is proportional to the losses of the cavity including those due to molecular absorption. Our approach is a broadband and spectral range enhancement to conventional CRDS which is typically done in the near IR at a single wavelength; at the same time our approach is a sensitivity enhancement to traditional FTIR owing to the long effective path of the resonant cavity. In this paper we present a summary of the theory including performance projections and the design details of the prototype FTIR-PS-CRDS system.

  3. A study of geometric phase topology using Fourier transform method

    NASA Astrophysics Data System (ADS)

    Samlan, C. T.; Naik, Dinesh N.; Viswanathan, Nirmal K.

    2016-07-01

    Topological aspect of the geometric phase (GP) due to pure polarization projection is studied using the 2D Fourier transform (2D-FT) method. Projection of orthogonal polarization state results in a phase singularity in the 2D parameter space of ellipticity and orientation of polarization ellipse. Projection of its surrounding states results in an accumulation of GP in different amount that form a spiral structure. A half wave plate-quarter wave plate combination is used to generate different polarization states which are projected using a polarizer. The accumulated phase for each orientation of the wave plate is extracted from 2D-FT of the interferogram, obtained by interfering it with a reference beam in a Mach-Zehnder like interferometer.

  4. The influence of martensite shape, concentration, and phase transformation strain on the deformation behavior of stable dual-phase steels

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, A.; Sakaki, T.; Weng, G. J.

    1993-02-01

    A continuum model is developed to examine the influence of martensite shape, volume fraction, phase transformation strain, and thermal mismatch on the initial plastic state of the ferrite matrix following phase transformation and on the subsequent stress-strain behavior of the dual-phase steels upon loading. The theory is developed based on a relaxed constraint in the ductile matrix and an energy criterion to define its effective stress. In addition, it also assumes the martensite islands to possess a spheroidal shape and to be randomly oriented and homogenously dispersed in the ferrite matrix. It is found that for a typical water-quenched process from an intercritical temperature of 760 °C, the critical martensite volume fraction needed to induce plastic deformation in the ferrite matrix is very low, typically below 1 pct, regardless of the martensite shape. Thus, when the two-phase system is subjected to an external load, plastic deformation commences immediately, resulting in the widely observed “continuous yielding” behavior in dual-phase steels. The subsequent deformation of the dual-phase system is shown to be rather sensitive to the martensite shape, with the disc-shaped morphology giving rise to a superior overall response (over the spherical type). The stress-strain relations are also dependent upon the magnitude of the prior phase transformation strain. The strength coefficient h and the work-hardening exponent n of the smooth, parabolic-type stress-strain curves of the dual-phase system also increase with increasing martensite content for each selected inclusion shape. Comparison with an exact solution and with one set of experimental data indicates that the theory is generally within a reasonable range of accuracy.

  5. Isothermal Martensitic and Pressure-Induced ? to ?? Phase Transformations in a Pu-Ga Alloy

    SciTech Connect

    Schwartz, A J; Wall, M A; Farber, D L; Moore, K T; Blobaum, K M

    2007-09-10

    A Pu-2 at.% Ga alloy specimen is slowly compressed to {approx}1 GPa in a large volume moissanite anvil cell to induce the face-centered cubic {delta} to simple monoclinic {alpha}{prime} phase transformation. Optical microscopy, x-ray diffraction, and transmission electron microscopy of the specimen recovered to ambient pressure reveal that the vast majority of the microstructure consists of the {alpha}{prime} phase with grain sizes ranging from 10 nm to several hundred nm, with the remainder being {delta} phase dispersed between the {alpha}{prime} grains. This morphology is in contrast to the transformation product of the low-temperature isothermal martensite in which the lath-shaped {alpha}{prime} particles are {approx}20 {micro}m by 2 {micro}m.

  6. Texture evolution during nitinol martensite detwinning and phase transformation

    SciTech Connect

    Cai, S.; Schaffer, J. E.; Ren, Y.

    2013-12-09

    Nitinol has been widely used to make medical devices for years due to its unique shape memory and superelastic properties. However, the texture of the nitinol wires has been largely ignored due to inherent complexity. In this study, in situ synchrotron X-ray diffraction has been carried out during uniaxial tensile testing to investigate the texture evolution of the nitinol wires during martensite detwinning, variant reorientation, and phase transformation. It was found that the thermal martensitic nitinol wire comprised primarily an axial (1{sup ¯}20), (120), and (102)-fiber texture. Detwinning initially converted the (120) and (102) fibers to the (1{sup ¯}20) fiber and progressed to a (1{sup ¯}30)-fiber texture by rigid body rotation. At strains above 10%, the (1{sup ¯}30)-fiber was shifted to the (110) fiber by (21{sup ¯}0) deformation twinning. The austenitic wire exhibited an axial (334)-fiber, which transformed to the near-(1{sup ¯}30) martensite texture after the stress-induced phase transformation.

  7. Experimental and computational investigation of the effect of phase transformation on fracture parameters of an SMA

    NASA Astrophysics Data System (ADS)

    Haghgouyan, Behrouz; Shafaghi, Nima; Aydıner, C. Can; Anlas, Gunay

    2016-07-01

    A comprehensive, multi-method experimental characterization of fracture is conducted on shape memory alloy NiTi that exhibits superelasticity due to austenite-to-martensite stress induced phase transformation. This characterization includes (i) load-based measurement of critical stress intensity factor (K max) using ASTM standard E399, (ii) measurement of crack tip opening displacement (CTOD) per ASTM standard E1290, (iii) the digital image correlation (DIC) characterization of the transformation zone as well as the displacement-field based measurement of K max from the DIC data. Samples have also been tested at T = 100 °C to suppress the martensitic transformation to investigate transformation toughening. The experimental investigation is complemented with finite element (FE) analysis that uses Auricchio-Taylor-Lubliner constitutive model. A direct observation with DIC revealed a small scale transformation (K-dominance). K max of the transforming material is higher than that of the transformation-suppressed material tested at 100 °C, suggesting transformation toughening. At 100 °C, the material becomes quite brittle with a very small crack-tip plastic zone when the transformation mechanism is blocked. By measures of critical CTOD, the gap widens even more between the superelastic and transformation-suppressed cases, particularly because of the side effect that, in this very interesting material, material modulus increases with temperature. Evaluating the transformation zone from the DIC strains with reference to the uniaxial stress-strain curve, an equivalent strain form is proposed in conjunction with the plane stress FE prediction.

  8. Experimental and computational investigation of the effect of phase transformation on fracture parameters of an SMA

    NASA Astrophysics Data System (ADS)

    Haghgouyan, Behrouz; Shafaghi, Nima; Aydıner, C. Can; Anlas, Gunay

    2016-07-01

    A comprehensive, multi-method experimental characterization of fracture is conducted on shape memory alloy NiTi that exhibits superelasticity due to austenite-to-martensite stress induced phase transformation. This characterization includes (i) load-based measurement of critical stress intensity factor (K max) using ASTM standard E399, (ii) measurement of crack tip opening displacement (CTOD) per ASTM standard E1290, (iii) the digital image correlation (DIC) characterization of the transformation zone as well as the displacement-field based measurement of K max from the DIC data. Samples have also been tested at T = 100 °C to suppress the martensitic transformation to investigate transformation toughening. The experimental investigation is complemented with finite element (FE) analysis that uses Auricchio–Taylor–Lubliner constitutive model. A direct observation with DIC revealed a small scale transformation (K-dominance). K max of the transforming material is higher than that of the transformation-suppressed material tested at 100 °C, suggesting transformation toughening. At 100 °C, the material becomes quite brittle with a very small crack-tip plastic zone when the transformation mechanism is blocked. By measures of critical CTOD, the gap widens even more between the superelastic and transformation-suppressed cases, particularly because of the side effect that, in this very interesting material, material modulus increases with temperature. Evaluating the transformation zone from the DIC strains with reference to the uniaxial stress–strain curve, an equivalent strain form is proposed in conjunction with the plane stress FE prediction.

  9. Structure and thermoelastic martensitic transformations in ternary Ni-Ti-Hf alloys with a high-temperature shape memory effect

    NASA Astrophysics Data System (ADS)

    Pushin, V. G.; Kuranova, N. N.; Pushin, A. V.; Uksusnikov, A. N.; Kourov, N. I.

    2016-07-01

    The effect of alloying by 12-20 at % Hf on the structure, the phase composition, and the thermoelastic martensitic transformations in ternary alloys of the quasi-binary NiTi-NiHf section is studied by transmission electron microscopy, scanning electron microscopy, electron diffraction, and X-ray diffraction. The electrical resistivity is measured at various temperatures to determine the critical transformation temperatures. The data on phase composition are used to plot a full diagram for the high-temperature thermoelastic B2 ↔ B19' martensitic transformations, which occur in the temperature range 320-600 K when the hafnium content increases from 12 to 20 at %. The lattice parameters of the B2 and B19' phases are measured, and the microstructure of the B19' martensite is analyzed.

  10. Time-temperature-transformation diagrams with more than one nose

    NASA Technical Reports Server (NTRS)

    Weinberg, Michael C.

    1992-01-01

    The structures of time-temperature-transformation diagrams of glasses which crystallize the combined homogeneous and heterogeneous crystallization mechanisms are examined. Considerations are given to the factors which might produce more than one extremum in such diagrams. Specific nucleation and growth models are used, and the influence of the parameters which appear in the nucleation and growth rate expressions upon the structure of the diagrams is evaluated.

  11. Nonequilibrium phase transformations in bcc titanium and niobium alloys

    NASA Astrophysics Data System (ADS)

    Doherty, Kevin James

    The major goal throughout this entire study was to find a bulk beta-titanium amorphous system. In this case, the feasibility of bulk amorphization by destabilizing the crystalline phase in bcc titanium alloys is developed. The binary Ti-Cr system was previously reported, by others, to undergo spontaneous vitrification. This work was later proven to be irreproducible by several other groups. With the proper alloying additions to the Ti-Cr system, the resultant bcc matrix is extremely unstable, however, the formation of alpha, o, and intermetallics is inhibited. Powders of the complex system Ti65Cr13Cu 16Mn4Fe2 transform to a fully amorphous structure after just 3 to 4 hours of mechanical milling. In bulk, this system forms nanoscale disordered regions, totaling 20 to 30% of the microstructure, upon annealing of the metastable bcc phase. The phase separation, beta → beta + beta' accompanies this transformation and induces strain into the matrix. Analytical high resolution transmission electron microscopy (TEM) is used to characterize the decomposition behavior by obtaining physical measurements of the microstructure and chemistry, and to determine the mechanism of the phase separation. High resolution and analytical TEM data map the development of successive chromium rich (copper poor) and chromium poor (copper rich) regions formed in <100> directions during heat treatment. This reaction is shown to occur by spinodal decomposition. A known bcc, binary spinodal decomposition system, Nb-Zr, was chosen as a reference system to verify the spinodal mechanism in the 5-component titanium system and to validate the use of analytical TEM to characterize spinodal decomposition. The Ti-Cr system is also investigated for comparison with the complex Ti-Cr-Cu-Mn-Fe system and to resolve some of the issues presented during the earlier spontaneous vitrification studies. Finally, a combination of high resolution TEM and chemical analysis is utilized to differentiate between the

  12. THERMODYNAMICS AND KINETICS OF PHASE TRANSFORMATIONS IN PLUTONIUM ALLOYS - PART I

    SciTech Connect

    Turchi, P A; Kaufman, L; Liu, Z; Zhou, S

    2004-08-18

    In this report we investigate order, stability, and phase transformations for a series of actinide-based alloys. The statics and kinetics of precipitation and ordering in this class of alloys are modeled with a scheme that couples fundamental information on the alloy energetics obtained from experimental and assessed thermo-chemical data to the CALPHAD approach commonly used in industry for designing alloys with engineering specificity with the help of the Thermo-Calc software application. The CALPHAD approach is applied to the study of the equilibrium thermodynamic properties of Pu-based alloys, Pu-X, where X=Al, Fe, Ga. The assessment of the equilibrium phase diagrams in the whole range of alloy composition has been performed with the PARROT module of the Thermo-Calc application software. Predictions are made on the low temperature and Pu-rich side of the phase diagrams of Pu-Ga and Pu-Al for which controversy has been noted in the past. The validity of the assessed thermo-chemical database will be discussed by comparing predicted heats of transformation for pure Pu with measured values from differential scanning calorimetry analysis. An overall picture for the stability properties of Pu-Ga and Pu-Al that reconciles the results of past studies carried out on these alloys is proposed. Results on phase stability in the ternary Fe-Ga-Pu and Al-Fe-Pu alloys are discussed. The information collected in this study is then used to model metastability, long-term stability and aging for this class of alloys by coupling Thermo-Calc with DICTRA, a series of modules that allow the analysis of DIffusion Controlled TRAnsformations. Kinetics information is then summarized in so-called TTT (temperature-time-transformations) diagrams for the most relevant phases of actinide alloys. Specifically, results are presented on kinetics of phase transformations associated with the eutectoid-phase decomposition reaction occurring at low temperature, and with the martensitic transformation

  13. In-situ measurement of phase transformation kinetics in austempered ductile iron

    SciTech Connect

    Meier, Leopold; Hofmann, Michael; Saal, Patrick; Volk, Wolfram; Hoffmann, Hartmut

    2013-11-15

    Austempered ductile iron (ADI) alloyed with 0.42% Mn and 0.72% Cu was heat treated in a mirror furnace and the phase transitions were studied in-situ by neutron diffraction. The heat treatment consisted of austenitisation at 920 °C and isothermal austempering at 400 °C, 350 °C and 300 °C, respectively. Due to the growth of ferrite platelets, the austenite content decreases rapidly at all temperatures within the first 15–20 min and reaches a stable plateau after 35 min (400 °C) to 80 min (300 °C). The carbon content of the residual austenite, which was monitored and characterised by the change of the lattice parameter, increases up to 1.6 wt.% caused by redistribution from the newly formed ferrite. While at higher austempering temperatures this takes place almost parallel to the phase transformation, at 300 °C the redistribution of carbon to austenite lags behind considerably. Furthermore the neutron data revealed an austenite peak asymmetry during austempering which is attributed to successive phase transformation. It results temporarily in two fractions of austenite, an initial low-carbon and an enriched high-carbon modification. - Highlights: • The heat treatment of ADI was studied in detail by in-situ neutron diffraction. • The phase fractions were monitored and evaluated quantitatively. • The austenite carbon content increased up to 1.6 wt.% during austempering. • Peak asymmetries indicate two austenite fractions during highest transformation rates.

  14. Transformation behavior of Ni-Mn-Ga in the low-temperature limit.

    PubMed

    Pérez-Landazábal, J I; Recarte, V; Sánchez-Alarcos, V; Chernenko, V A; Barandiarán, J M; Lázpita, P; Rodriguez Fernández, J; Righi, L

    2012-07-11

    The magnetic, magnetocaloric and thermal characteristics have been studied in a Ni(50.3)Mn(20.8)Ga(27.6)V(1.3) ferromagnetic shape memory alloy (FSMA) transforming martensitically at around 40 K. The alloy shows first a transformation from austenite to an intermediate phase and then a partial transformation to an orthorhombic martensite, all the phases being ferromagnetically ordered. The thermomagnetization dependences enabled observation of the magnetocaloric effect in the vicinity of the martensitic transformation (MT). The Debye temperature and the density of states at the Fermi level are equal to θ(D) = (276 ± 4) K and 1.3 states/atom eV , respectively, and scarcely dependent on the magnetic field. The MT exhibited by Ni-Mn-Ga FSMAs at very low temperatures is distinctive in the sense that it is accompanied by a hardly detectable entropy change as a sign of a small driving force. The enhanced stability of the cubic phase and the low driving force of the MT stem from the reduced density of states near the Fermi level.

  15. Phase transformation upon cooling path in Ca2SiO4: Possible geological implication

    NASA Astrophysics Data System (ADS)

    Chang, Yun-Ting; Kung, Jennifer; Hsu, Han

    2016-04-01

    At the contact metamorphism zone two different Ca2SiO4 phases can be found; calcio-olivine (γ phase) and larnite (β phase). In-situ experiments illustrated the existence of five various polymorphs in Ca2SiO4, i.e., α, α'H, α'L, β and γ. The path of phase transformation and the transformation temperatures are shown as follows. γ → α'L(700° C) → α'H(1100° C) → α (1450° C) α'L → β (680° C) → γ (500° C) Experiments showed that the phase transitions at lower temperature is not reversible and seemed to be complicated; β phase is only stable from 500° C to 680° C upon cooling. To understand the possible mechanism of the β phase being metastable at room temperature, atmosphere condition, we were motivated to investigate the route of phase transition in Ca2SiO4 in different thermal process. Powder samples were synthesized by the solid-state reaction. Pure reagent oxides CaCO3 and SiO2 were mixed in 2:1 stoichiometric mole. Two control factors were designated in the experiments; the sintering temperature of starting materials and the cooling path. The sintering temperature was set within the range of stable phase field of α'L phase (˜900° C) and α'H phase (1300° C). The cooling process was designed in three different routes: 1) the quenched procedure from sintering temperature with rate of 900° C/min and 1300° C/min, 2) the furnace cooling procedure, 3) set a slow cooling rate (0.265 ° C/min). The products were examined for the crystal structure by X-ray powder diffraction. First-principle calculation was also applied to investigate the thermodynamic properties of α'H, β and γ phases. A major finding in this study showed that the γ phase presented in the final product when the sintering temperature was set at the stable field of α'H phase; on the other hand, the β phase would present when the sintering temperature was set within the field of α'L phase. It was noted that the existing phase in the product would be modified by the

  16. Ambient-temperature Conditioning as a Probe of Double-C Transformation Mechanisms in Pu-2.0 at. % Ga

    SciTech Connect

    Jeffries, J R; Blobaum, K M; Wall, M A; Schwartz, A J

    2008-04-02

    The gallium-stabilized Pu-2.0 at. % Ga alloy undergoes a partial or incomplete low-temperature martensitic transformation from the metastable {delta} phase to the gallium-containing, monoclinic {alpha}{prime} phase near -100 C. This transformation has been shown to occur isothermally and it displays anomalous double-C kinetics in a time-temperature-transformation (TTT) diagram, where two nose temperatures anchoring an upper- and lower-C describe minima in the time for the initiation of transformation. The underlying mechanisms responsible for the double-C behavior are currently unresolved, although recent experiments suggest that a conditioning treatment--wherein, following an anneal at 375 C, the sample is held at a sub-anneal temperature for a period of time--significantly influences the upper-C of the TTT diagram. As such, elucidating the effects of the conditioning treatment upon the {delta} {yields} {alpha}{prime} transformation can provide valuable insights into the fundamental mechanisms governing the double-C kinetics of the transition. Following a high-temperature anneal, a differential scanning calorimeter (DSC) was used to establish an optimal conditioning curve that depicts the amount of {alpha}{prime} formed during the transformation as a function of conditioning temperature for a specified time. With the optimal conditioning curve as a baseline, the DSC was used to explore the circumstances under which the effects of the conditioning treatment were destroyed, resulting in little or no transformation.

  17. Structural transformation of Sb-based high-speed phase-change material.

    PubMed

    Matsunaga, Toshiyuki; Kojima, Rie; Yamada, Noboru; Kubota, Yoshiki; Kifune, Kouichi

    2012-12-01

    The crystal structure of a phase-change recording material (the compound Ag(3.4)In(3.7)Sb(76.4)Te(16.5)) enclosed in a vacuum capillary tube was investigated at various temperatures in a heating process using a large Debye-Scherrer camera installed in BL02B2 at SPring-8. The amorphous phase of this material turns into a crystalline phase at around 416 K; this crystalline phase has an A7-type structure with atoms of Ag, In, Sb or Te randomly occupying the 6c site in the space group. This structure was maintained up to around 545 K as a single phase, although thermal expansion of the crystal lattice was observed. However, above this temperature, phase separation into AgInTe(2) and Sb-Te transpired. The first fragment, AgInTe(2), reliably maintained its crystal structure up to the melting temperature. On the other hand, the atomic configuration of the Sb-Te gradually varied with increasing temperature. This gradual structural transformation can be described as a continuous growth of the modulation period γ. PMID:23165592

  18. LiMO{sub 2} (M=Mn, Fe, and Co): Energetics, polymorphism and phase transformation

    SciTech Connect

    Wang Miaojun; Navrotsky, Alexandra . E-mail: anavrotsky@ucdavis.edu

    2005-04-15

    LiMO{sub 2} materials (M=Mn, Fe, and Co) with different structures were synthesized and their enthalpies of formation from oxides (Li{sub 2}O and M{sub 2}O{sub 3}, M=Mn and Fe), or from oxides (Li{sub 2}O and CoO) plus oxygen at 25{sup o}C were determined by high-temperature oxide melt solution calorimetry. The relative stability of the polymorphs of the compound LiMO{sub 2} was established based on their enthalpies of formation. Phase transformations in LiFeO{sub 2} were investigated by differential scanning calorimetry and high-temperature oxide melt solution calorimetry. The phase transition enthalpies at 25{sup o}C for {beta}->{alpha}, {gamma}->{beta}, and {gamma}->{alpha} are 4.9+/-0.7, 4.3+/-0.8 and 9.2+/-0.9kJ/mol, respectively. Thus the {gamma} phase (ordered cations) is the stable form of LiFeO{sub 2} at room temperature, the {alpha} phase (disordered cations) is stable at high temperature and the {beta} phase may have a stability field at intermediate temperatures.

  19. Characterization of Low Temperature Ferrite/Austenite Transformations in the Heat Affected Zone of 2205 Duplex Stainless Steel Arc Welds

    SciTech Connect

    Palmer, T A; Elmer, J W; Babu, S S; Vitek, J M

    2003-08-20

    Spatially Resolved X-Ray Diffraction (SRXRD) has been used to identify a previously unobserved low temperature ferrite ({delta})/austenite({gamma}) phase transformation in the heat affected zone (HAZ) of 2205 Duplex Stainless Steel (DSS) welds. In this ''ferrite dip'' transformation, the ferrite transforms to austenite during heating to peak temperatures on the order of 750 C, and re-transforms to ferrite during cooling, resulting in a ferrite volume fraction equivalent to that in the base metal. Time Resolved X-Ray Diffraction (TRXRD) and laser dilatometry measurements during Gleeble{reg_sign} thermal simulations are performed in order to verify the existence of this low temperature phase transformation. Thermodynamic and kinetic models for phase transformations, including both local-equilibrium and para-equilibrium diffusion controlled growth, show that diffusion of substitutional alloying elements does not provide a reasonable explanation for the experimental observations. On the other hand, the diffusion of interstitial alloying elements may be rapid enough to explain this behavior. Based on both the experimental and modeling results, two mechanisms for the ''ferrite dip'' transformation, including the formation and decomposition of secondary austenite and an athermal martensitic-type transformation of ferrite to austenite, are considered.

  20. Two-dimensional phase transformation probed by second harmonic generation: Oscillatory transformation of the K/Al(111) system

    SciTech Connect

    Ying, Z.C.; Plummer, E.W. |

    1995-12-31

    The technique of optical second harmonic generation is used to study phase transformations at two-dimensional surfaces and interfaces. Examples are given to illustrate that changes in surface symmetry, adsorption configuration, and electronic structure can be detected by this nonlinear optical technique. An oscillatory phase transformation of potassium adsorbed atoms on Al(111) probed by second harmonic generation is analyzed in detail.

  1. Target tracking using log-polar transform-based shifted phase-encoded joint transform correlation

    NASA Astrophysics Data System (ADS)

    Islam, Mohammed Nazrul; Bitew, Worku T.

    2014-04-01

    Automatic target detection and tracking requires efficient recognition of the target pattern in variable environmental conditions. Optical joint transform correlation (JTC) method has been proven to be efficient in recognizing a target without requiring complex optical set up. However, the classical JTC suffers from poor correlation performance, which can be improved through the use of different and modified designs. A very successful scheme is developed by employing phase-shifted and phase-encoded fringe-adjusted JTC (SPFJTC), which provides with a high discrimination between a target and non-target objects in a given scene and better utilization of the space-bandwidth resource. Further enhancement of the target detection performance can be achieved by incorporating log-polar transform in the SPFJTC technique. We applied the SPFJTC technique to the log-polar transformation of both the reference image and the input scene that makes the pattern recognition invariant to rotation and scale variations. Peak-to-side lobe ratio is measured and a threshold operation is employed to detect and track a target in an unknown input scene.

  2. Dynamics of Structural Transformations between Lamellar and Inverse Bicontinuous Cubic Lyotropic Phases

    SciTech Connect

    Conn, Charlotte E.; Ces, Oscar; Mulet, Xavier; Seddon, John M.; Templer, Richard H.; Finet, Stephanie; Winter, Roland

    2006-03-17

    The liquid crystalline lamellar (L{sub {alpha}}) to double-diamond inverse bicontinuous cubic (Q{sub II}{sup D}) phase transition for the amphiphile monoelaidin in excess water exhibits a remarkable sequence of structural transformations for pressure or temperature jumps. Our data imply that the transition dynamics depends on a coupling between changes in molecular shape and the geometrical and topological constraints of domain size. We propose a qualitative model for this coupling based on theories of membrane fusion via stalks and existing knowledge of the structure and energetics of bicontinuous cubic phases.

  3. A comparison of dilatometry and in-situ neutron diffraction in tracking bulk phase transformations in a martensitic stainless steel

    SciTech Connect

    Christien, F.; Telling, M.T.F.; Knight, K.S.

    2013-08-15

    Phase transformations in the 17-4PH martensitic stainless steel have been studied using different in-situ techniques, including dilatometry and high resolution neutron diffraction. Neutron diffraction patterns were quantitatively processed using the Rietveld refinement method, allowing the determination of the temperature-dependence of martensite (α′, bcc) and austenite (γ, fcc) phase fractions and lattice parameters on heating to 1000 °C and then cooling to room temperature. It is demonstrated in this work that dilatometry doesn't permit an accurate determination of the end temperature (Ac3) of the α′ → γ transformation which occurs upon heating to high temperature. The analysis of neutron diffraction data has shown that the respective volumes of the two phases become very close to each other at high temperature, thus making the dilatometric technique almost insensitive in that temperature range. However, there is a very good agreement between neutron diffraction and dilatometry at lower temperature. The martensitic transformation occurring upon cooling has been analysed using the Koistinen–Marburger equation. The thermal expansion coefficients of the two phases have been determined in addition. A comparison of the results obtained in this work with data from literature is presented. - Highlights: • Martensite is still present at very high temperature (> 930 °C) upon heating. • The end of austenitisation cannot be accurately monitored by dilatometry. • The martensite and austenite volumes become similar at high temperature (> ∼ 850 °C)

  4. Study of phase transformation and crystal structure for 1D carbon-modified titania ribbons

    SciTech Connect

    Zhou, Lihui Zhang, Fang; Li, Jinxia

    2014-02-15

    One-dimensional hydrogen titanate ribbons were successfully prepared with hydrothermal reaction in a highly basic solution. A series of one-dimensional carbon-modified TiO{sub 2} ribbons were prepared via calcination of the mixture of hydrogen titanate ribbons and sucrose solution under N{sub 2} flow at different temperatures. The phase transformation process of hydrogen titanate ribbons was investigated by in-situ X-ray diffraction at various temperatures. Besides, one-dimensional carbon-modified TiO{sub 2} ribbons calcined at different temperatures were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, nitrogen adsorption isotherms, diffuse reflectance ultraviolet–visible spectroscopy, and so on. Carbon-modified TiO{sub 2} ribbons showed one-dimensional ribbon crystal structure and various crystal phases of TiO{sub 2}. After being modified with carbon, a layer of uniform carbon film was coated on the surface of TiO{sub 2} ribbons, which improved their adsorption capacity for methyl orange as a model organic pollutant. One-dimensional carbon-modified TiO{sub 2} ribbons also exhibited enhanced visible-light absorbance with the increase of calcination temperatures. - Highlights: • The synthesis of 1D carbon-modified TiO{sub 2} ribbons. • The phase transformation of 1D carbon-modified TiO{sub 2} ribbons. • 1D carbon-modified TiO{sub 2} exhibites enhanced visible-light absorbance.

  5. A New, More Stable Polymorphic Form of Otilonium Bromide: Solubility, Crystal Structure, and Phase Transformation.

    PubMed

    Vega, Daniel R; Halac, Emilia; Segovia, Luciano; Baggio, Ricardo

    2016-10-01

    A new polymorphic form of otilonium bromide is presented (Form I), and a thorough analysis of its crystal and molecular structure is performed. The compound suffers a temperature-driven first-order phase transition at about 396 K, which transforms it into the polymorph reported by Dapporto P and Sega A (Acta Cryst. 1986;C42:474-478) (Form II). Through thermal analysis and solubility experiments the relative stability of both crystal modifications were determined, confirming that at room temperature this new Form I is the more stable one, Form II existing just in a metastable state. PMID:27444388

  6. A New, More Stable Polymorphic Form of Otilonium Bromide: Solubility, Crystal Structure, and Phase Transformation.

    PubMed

    Vega, Daniel R; Halac, Emilia; Segovia, Luciano; Baggio, Ricardo

    2016-10-01

    A new polymorphic form of otilonium bromide is presented (Form I), and a thorough analysis of its crystal and molecular structure is performed. The compound suffers a temperature-driven first-order phase transition at about 396 K, which transforms it into the polymorph reported by Dapporto P and Sega A (Acta Cryst. 1986;C42:474-478) (Form II). Through thermal analysis and solubility experiments the relative stability of both crystal modifications were determined, confirming that at room temperature this new Form I is the more stable one, Form II existing just in a metastable state.

  7. Fourier transform infrared study of a phase transition in solid chlorodifluoromethane

    NASA Astrophysics Data System (ADS)

    Anderson, A.; Beardsall, A. J.; Fraser, Jim

    1994-01-01

    Infrared spectra of solid chlorodifluoromethane (CHClF2 or Freon 22) at temperatures between 12 K and 105 K have been recorded. Both lattice and internal mode regions have been investigated by utilizing two Fourier transform spectrometers, one for the far-infrared region (20 - 400 cm-1) and the other for the mid-infrared region (400 - 4000 cm-1). Evidence for a solid state phase transition at 55 +/- 5 K is presented. Multiplet structure for the nine internal modes is observed over a wide range of temperature and in most cases is shown to result from crystal field rather than isotopic or other effects. This indicates that both phases are ordered with rather large unit cells, and that the phase transition is therefore of a displacive type.

  8. "Burst-like" Characteristics of the delta/alpha-prime Phase Transformation in Pu-Ga Alloys

    SciTech Connect

    Blobaum, K; Krenn, C; Haslam, J; Wall, M; Schwartz, A

    2003-11-10

    The {delta} to {alpha}' phase transformation in Pu-Ga alloys is intriguing for both scientific and technological reasons. On cooling, the ductile fcc d-phase transforms martensitically to the brittle monoclinic {alpha}'-phase at approximately -120 C (depending on composition). This exothermic transformation involves a 20% volume contraction and a significant increase in resistivity. The reversion of {alpha}' to {delta} involves a large temperature hysteresis beginning just above room temperature. In an attempt to better understand the underlying thermodynamics and kinetics responsible for these unusual features, we examined the {delta}/{alpha}' transformations in a 0.6 wt% Pu-Ga alloy using differential scanning calorimetry (DSC) and resistometry. Both techniques indicate that the martensite start temperature is -120 C and the austenite start temperature is 35 C. The heat of transformation is approximately 3 kJ/mole. During the {alpha}' {yields} {delta} reversion, ''spikes'' and ''steps'' are observed in DSC and resistometry scans, respectively. These spikes and steps are periodic, and their periodicity with respect to temperature does not vary with heating rate. With an appropriate annealing cycle, including a ''rest'' at room temperature, these spikes and steps can be reproduced through many thermal cycles of a single sample.

  9. Modelling a single phase voltage controlled rectifier using Laplace transforms

    NASA Technical Reports Server (NTRS)

    Kraft, L. Alan; Kankam, M. David

    1992-01-01

    The development of a 20 kHz, AC power system by NASA for large space projects has spurred a need to develop models for the equipment which will be used on these single phase systems. To date, models for the AC source (i.e., inverters) have been developed. It is the intent of this paper to develop a method to model the single phase voltage controlled rectifiers which will be attached to the AC power grid as an interface for connected loads. A modified version of EPRI's HARMFLO program is used as the shell for these models. The results obtained from the model developed in this paper are quite adequate for the analysis of problems such as voltage resonance. The unique technique presented in this paper uses the Laplace transforms to determine the harmonic content of the load current of the rectifier rather than a curve fitting technique. Laplace transforms yield the coefficient of the differential equations which model the line current to the rectifier directly.

  10. On Cyclical Phase Transformations in Driven Alloy Systems

    NASA Astrophysics Data System (ADS)

    Lee, Jong K.

    2008-05-01

    Cyclical phase transformations occurring in driven materials syntheses such as ball milling are described in terms of a free energy minimization process of participant phases. The oscillatory flow behavior of metals with low stacking fault energies during hot working is taken as a prototype in which a ductile crystalline phase sustains undulation in its free energy, due to the alternate succession of work-hardening and work-softening mechanisms. A time-dependent, oscillatory free energy function is then obtained by solving a delay differential equation (DDE), which accounts for a time lag due to diffusion. To understand cyclical transitions on an atomistic scale, work is extended to molecular dynamics simulations. Under shear deformation, a two-dimensional nanocrystal shows cyclical transitions between an equilibrium rhombus and a nonequilibrium square phase. Three-dimensional simulations show crystalline-to-glass transitions at high strain rates, but very high shear strain rates are found to lead to a latticelike network structure in the plane perpendicular to the shear direction, with strings of atoms parallel to the shear direction.

  11. Effect of dc bias and hydrostatic pressure on the ferroelectric-antiferroelectric phase transformation in a tin modified lead zirconate titanate ceramic.

    SciTech Connect

    Grubbs, Robert K.; DiAntonio, Christopher Brian; Yang, Pin; Roesler, Alexander William; Montgomery, Stephen Tedford; Moore, Roger Howard

    2010-06-01

    Phase transformation between the ferroelectric (FE) and the antiferroelectric (AFE) phases in tin modified lead zirconate titanate (PSZT) ceramics can be influenced by pressure and electric field. Increasing the pressure has the tendency to favor the AFE phase while electric field favors the FE phase. In this study, these phase transformations are studied as functions of external pressure, temperature, and dc bias. The shifting of transformation temperature and the relative phase stability between FE and AFE with respect to these external parameters will be presented. Results will be compared to a pressure-induced depoling behavior (or FE-to-AFE phase transformation) for the PSZT ceramic. Fundamental issues relates to the relative phase stability will be discussed from the perspective of lattice dynamics theory.

  12. Study of Martensitic Phase transformation in a NiTiCu Thin Film Shape Memory Alloy Using Photoelectron Emission Microscopy

    SciTech Connect

    Cai, Mingdong; Langford, Stephen C.; Wu, Maggie J.; Huang, W. M.; Xiong, Gang; Droubay, Timothy C.; Joly, Alan G.; Beck, Kenneth; Hess, Wayne P.; Dickinson, J. T.

    2007-01-01

    The thermally-induced martensitic phase transformation in a polycrystalline NiTiCu thin film shape memory alloy was probed by photoelectron emission microscopy (PEEM). In situ PEEM images reveal distinct changes in microstructure and photoemission intensity at the phase transition temperatures. In particular, images of the low temperature, martensite phase are brighter than that of the high temperature, austenite phase, due to the relatively lower work function of the martensite. Ultra-violet photoelectron spectroscopy shows that the effective work function changes by about 0.16 eV during thermal cycling. In situ PEEM images also show that the network of trenches observed on the room temperature film disappear suddenly during heating and reappear suddenly during subsequent cooling. These trenches are also characterized by atomic force microscopy at selected temperatures. We describe implications of these observations with respect to the spatial distribution of phases during thermal cycling in this thin film shape memory alloy.

  13. Instrumental phase-based method for Fourier transform spectrometer measurements processing

    SciTech Connect

    Saggin, Bortolino; Scaccabarozzi, Diego; Tarabini, Marco

    2011-04-20

    Phase correction is a critical procedure for most space-borne Fourier transform spectrometers (FTSs) whose accuracy (owing to often poor signal-to-noise ratio, SNR) can be jeopardized from many uncontrollable environmental conditions. This work considers the phase correction in an FTS working under significant temperature change during the measurement and affected by mechanical disturbances. The implemented method is based on the identification of an instrumental phase that is dependent on the interferometer temperature and on the extraction of a linear phase component through a least-squares approach. The use of an instrumental phase parameterized with the interferometer temperature eases the determination of the linear phase that can be extracted using only a narrow spectral region selected to be immune from disturbances. The procedure, in this way, is made robust against phase errors arising from instrumental effects, a key feature to reduce the disturbances through spectra averaging. The method was specifically developed for the Mars IR Mapper spectrometer, that was designed for operation onboard a rover on the Mars surface; the validation was performed using ground and in-flight measurements of the Fourier transform IR spectrometer planetary Fourier spectrometer, onboard the MarsExpress mission. The symmetrization has been exploited also for the spectra calibration, highlighting the issues deriving from the cases of relevant beamsplitter emission. The applicability of this procedure to other instruments is conditional to the presence in the spectra of at least one spectral region with a large SNR along with a negligible (or known) beamsplitter emission. For the PFS instrument, the processing of data with relevant beamsplitter emission has been performed exploiting the absorption carbon dioxide bands present in Martian spectra.

  14. Instrumental phase-based method for Fourier transform spectrometer measurements processing.

    PubMed

    Saggin, Bortolino; Scaccabarozzi, Diego; Tarabini, Marco

    2011-04-20

    Phase correction is a critical procedure for most space-borne Fourier transform spectrometers (FTSs) whose accuracy (owing to often poor signal-to-noise ratio, SNR) can be jeopardized from many uncontrollable environmental conditions. This work considers the phase correction in an FTS working under significant temperature change during the measurement and affected by mechanical disturbances. The implemented method is based on the identification of an instrumental phase that is dependent on the interferometer temperature and on the extraction of a linear phase component through a least-squares approach. The use of an instrumental phase parameterized with the interferometer temperature eases the determination of the linear phase that can be extracted using only a narrow spectral region selected to be immune from disturbances. The procedure, in this way, is made robust against phase errors arising from instrumental effects, a key feature to reduce the disturbances through spectra averaging. The method was specifically developed for the Mars IR Mapper spectrometer, that was designed for operation onboard a rover on the Mars surface; the validation was performed using ground and in-flight measurements of the Fourier transform IR spectrometer planetary Fourier spectrometer, onboard the MarsExpress mission. The symmetrization has been exploited also for the spectra calibration, highlighting the issues deriving from the cases of relevant beamsplitter emission. The applicability of this procedure to other instruments is conditional to the presence in the spectra of at least one spectral region with a large SNR along with a negligible (or known) beamsplitter emission. For the PFS instrument, the processing of data with relevant beamsplitter emission has been performed exploiting the absorption carbon dioxide bands present in Martian spectra. PMID:21509063

  15. Instrumental phase-based method for Fourier transform spectrometer measurements processing.

    PubMed

    Saggin, Bortolino; Scaccabarozzi, Diego; Tarabini, Marco

    2011-04-20

    Phase correction is a critical procedure for most space-borne Fourier transform spectrometers (FTSs) whose accuracy (owing to often poor signal-to-noise ratio, SNR) can be jeopardized from many uncontrollable environmental conditions. This work considers the phase correction in an FTS working under significant temperature change during the measurement and affected by mechanical disturbances. The implemented method is based on the identification of an instrumental phase that is dependent on the interferometer temperature and on the extraction of a linear phase component through a least-squares approach. The use of an instrumental phase parameterized with the interferometer temperature eases the determination of the linear phase that can be extracted using only a narrow spectral region selected to be immune from disturbances. The procedure, in this way, is made robust against phase errors arising from instrumental effects, a key feature to reduce the disturbances through spectra averaging. The method was specifically developed for the Mars IR Mapper spectrometer, that was designed for operation onboard a rover on the Mars surface; the validation was performed using ground and in-flight measurements of the Fourier transform IR spectrometer planetary Fourier spectrometer, onboard the MarsExpress mission. The symmetrization has been exploited also for the spectra calibration, highlighting the issues deriving from the cases of relevant beamsplitter emission. The applicability of this procedure to other instruments is conditional to the presence in the spectra of at least one spectral region with a large SNR along with a negligible (or known) beamsplitter emission. For the PFS instrument, the processing of data with relevant beamsplitter emission has been performed exploiting the absorption carbon dioxide bands present in Martian spectra.

  16. Effect of phase transformation on optical and dielectric properties of pulsed laser deposited ZnTiO3 thin films

    NASA Astrophysics Data System (ADS)

    Jain, Praveen K.; Salim, Mohammad; Kaur, Davinder

    2016-04-01

    Zinc titanate (ZnTiO3) ceramics were prepared by conventional solid state reaction method using ZnO and TiO2 in a molar ratio of 1:1 with optimized parameters. It was found that the sample sintered at 800 °C for 12 h exhibit single hexagonal phase of ZnTiO3. ZnTiO3 thin film have been deposited on ITO coated glass substrate using pulsed laser deposition (PLD) technique employing a KrF laser source (λ = 248 nm). In present work, the effect of substrate temperature, which leads to transformation of hexagonal phase to cubic phase, has been studied. The XRD pattern revealed that pure hexagonal phase of ZnTiO3 appear upto 400 °C and more increment in substrate temperature leads to transformation of hexagonal phase to cubic phase. We have observed the blue shift in absorption edge at lower temperature. When the substrate temperature increases from 300 to 400 °C the band gap decreases due to strong hexagonal phase, but more increment in substrate temperature increases the band gap causes by change of phase from hexagonal to cubic. The dielectric constant of ZnTiO3 thin film increases as the substrate temperature increases due to the enhancement in crystallinity and improved morphology.

  17. Large-strain cyclic response and martensitic transformation of austenitic stainless steel at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Hamasaki, H.; Nakano, T.; Ishimaru, E.; Yoshida, F.

    2016-08-01

    Cyclic tension-compression tests were carried out for austenitic stainless steel (SUS304) at elevated temperatures. The significant Bauschinger effect was found in the obtained stress-strain curve. In addition, stagnation of deformation induced martensitic transformation was observed just after stress reversal until the equivalent stress reached the maximum value in the course of experiment. The constitutive model for SUS304 at room temperature was developed, in which homogenized stress of SUS304 was expressed by the weighed summation of stresses of austenite and martensite phases. The calculated stress-strain curves and predicted martensite volume fraction were well correlated with those experimental results.

  18. Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Kirby, Stephen H.; Stein, Seth; Okal, Emile A.; Rubie, David C.

    1996-05-01

    should cease at depths near 700 km, because the seismogenic phase transformations in the slab are completed or can no longer occur. Substantial metastability is expected only in old, cold slabs, consistent with the observed restriction of deep earthquakes to those settings. Earthquakes should be restricted to the cold cores of slabs, as in any model in which the seismicity is temperature controlled, via the distribution of metastability. However, the geometries of recent large deep earthquakes pose a challenge for any such models. Transformational faulting may give insight into why deep shocks lack appreciable aftershocks and why their source characteristics, including focal mechanisms indicating localized shear failure rather than implosive deformation, are so similar to those of shallow earthquakes. Finally, metastable phase changes in slabs would produce an internal source of stress in addition to those due to the weight of the sinking slab. Such internal stresses may explain the occurrence of earthquakes in portions of lithosphere which have foundered to the bottom of the transition zone and/or are detached from subducting slabs. Metastability in downgoing slabs could have considerable geodynamic significance. Metastable wedges would reduce the negative buoyancy of slabs, decrease the driving force for subduction, and influence the state of stress in slabs. Heat released by metastable phase changes would raise temperatures within slabs and facilitate the transformation of spinel to the lower mantle mineral assemblage, causing slabs to equilibrate more rapidly with the ambient mantle and thus contribute to the cessation of deep seismicity. Because wedge formation should occur only for fast subducting slabs, it may act as a "parachute" and contribute to regulating plate speeds. Wedge formation would also have consequences for mantle evolution because the density of a slab stagnated near the bottom of the transition zone would increase as it heats up and the wedge

  19. Thermodynamic properties, nonstoichiometry and phase transformation parameters of oxides in the Eu-O system

    NASA Astrophysics Data System (ADS)

    Sukhushina, I.; Vasiljeva, I.; Balabajeva, R.

    1998-01-01

    The influence of nonstoichiometry on the partial thermodynamic properties of oxygen and the {C to B} transformation parameters of europium sesquioxide within a temperature range from 1200 K to 1400 K using e.m.f., DTA and DSC methods, has been determined. A tentative phase diagram in the {Cto B} transformation region is proposed. L'influence de la nonstoechiométrie sur les propriétés thermodynamiques partielles de l'oxygène et sur les paramètres de la transition {C to B} de Eu2O3 dans l'intervalle de températures de 1200 K à 1400 K a été étudiée par les méthodes EMF, DTA, DSC. Une variante de diagramme de phases dans la région de la transition {Cto B} est présentée.

  20. Transformation toughened ceramics for the heavy duty diesel engine technology program, phase 2

    NASA Technical Reports Server (NTRS)

    Musikant, S.; Samanta, S. C.; Architetto, P.; Feingold, E.

    1985-01-01

    The objective of this program is to develop an insulating structural ceramic for application in a heavy duty adiabatic diesel engine. The approach is to employ transformation toughening (TT) by additions of zirconia-hafnia solid solution (ZHSS). The feasibility of using ZHSS as a toughening agent in mullite and alumina has been demonstrated in Phase 1 of this work. Based on Phase 1 results, a decision was made to concentrate the Phase 2 effort on process optimization of the TT mullite. A strong factor in that decision was the low thermal conductivity and high thermal shock resistance of the mullite. Results of the Phase 2 effort indicate that optimum toughening of mullite by additions of ZHSS is difficult to achieve due to apparent sensitivity to morphology. The 48 ksi room temperature modulus-of-rupture (MOR) achieved in selected specimens is approximately 50% of the original strength target. The MOR deteriorated to 34 ksi at 800 C.

  1. Phase coexistence and transformations in field-cooled ternary piezoelectric single crystals near the morphotropic phase boundary

    SciTech Connect

    Luo, Chengtao; Wang, Yaojin Wang, Zhiguang; Ge, Wenwei; Li, Jiefang; Viehland, D.; Luo, Haosu

    2014-12-08

    Structural phase transformations in (100)-oriented Pb(In{sub 1/2}Nb{sub 1/2})O{sub 3}-Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-PbTiO{sub 3} single crystals have been investigated by X-ray diffraction. A cubic (C) → tetragonal (T) → monoclinic-C (M{sub C}) transformation sequence was observed in the field-cooled condition. Two phase coexistence regions of C + T and T + M{sub C} were found. In addition to an increase in the C → T phase transition temperature and a decrease of the T → M{sub C} one, a broadening of the coexistence regions was also found with increasing field. This broadening can be explained by the presence of polar nano regions within the C, T, and M{sub C} phase regions.

  2. Temperature- and pressure-dependent phase behavior of monoacylglycerides monoolein and monoelaidin.

    PubMed Central

    Czeslik, C; Winter, R; Rapp, G; Bartels, K

    1995-01-01

    We used x-ray and neutron diffraction to study the temperature- and pressure-dependent structure and phase behavior of the monoacylglycerides 1-monoelaidin (ME) and 1-monoolein (MO) in excess water. The monoacylglycerides were chosen for investigation of their phase behavior because they exhibit mesomorphic phases with one-, two-, and three-dimensional periodicity, such as lamellar, an inverted hexagonal and bicontinuous cubic phases, in a rather easily accessible temperature and pressure range. We studied the structure, stability, and transformations of the different phases over a wide temperature and pressure range, explored the epitaxial relations that exist between different phases, and established a relationship between the chemical structure of the lipid molecules and their phase behavior. For both systems, a temperature-pressure phase diagram has been determined in the temperature range from 0 to 100 degrees C at pressures from ambient up to 1400 bar, and drastic differences in phase behavior are found for the two systems. In MO-water dispersions, the cubic phase Pn3m extends over a large phase field in the T,p-plane. At temperatures above 95 degrees C, the inverted hexagonal phase is found. In the lower temperature region, a crystalline lamellar phase is induced at higher pressures. The phases found in ME-water include the lamellar crystalline Lc phase, the L beta gel phase, the L alpha liquid-crystalline phase, and two cubic phases belonging to the crystallographic space groups Im3m and Pn3m. In addition, the existence of metastable phases has been exploited. Between coexisting metastable cubic structures, a metric relationship has been found that is predicted theoretically on the basis of the curvature elastic energy approximation only. Images FIGURE 1 PMID:7787028

  3. Single beam Fourier transform digital holographic quantitative phase microscopy

    SciTech Connect

    Anand, A. Chhaniwal, V. K.; Mahajan, S.; Trivedi, V.; Faridian, A.; Pedrini, G.; Osten, W.; Dubey, S. K.; Javidi, B.

    2014-03-10

    Quantitative phase contrast microscopy reveals thickness or height information of a biological or technical micro-object under investigation. The information obtained from this process provides a means to study their dynamics. Digital holographic (DH) microscopy is one of the most used, state of the art single-shot quantitative techniques for three dimensional imaging of living cells. Conventional off axis DH microscopy directly provides phase contrast images of the objects. However, this process requires two separate beams and their ratio adjustment for high contrast interference fringes. Also the use of two separate beams may make the system more vulnerable to vibrations. Single beam techniques can overcome these hurdles while remaining compact as well. Here, we describe the development of a single beam DH microscope providing whole field imaging of micro-objects. A hologram of the magnified object projected on to a diffuser co-located with a pinhole is recorded with the use of a commercially available diode laser and an arrayed sensor. A Fourier transform of the recorded hologram directly yields the complex amplitude at the image plane. The method proposed was investigated using various phase objects. It was also used to image the dynamics of human red blood cells in which sub-micrometer level thickness variation were measurable.

  4. Fourier transform infrared phase shift cavity ring down spectrometer

    NASA Astrophysics Data System (ADS)

    Schundler, Elizabeth; Mansur, David J.; Vaillancourt, Robert; Benedict-Gill, Ryan; Newbry, Scott P.; Engel, James R.; Dupuis, Julia Rentz

    2014-05-01

    OPTRA has developed a Fourier transform infrared phase shift cavity ring down spectrometer (FTIR-PS-CRDS) system under a U.S. EPA SBIR contract. This system uses the inherent wavelength-dependent modulation imposed by the FTIR on a broadband thermal source for the phase shift measurement. This spectrally-dependent phase shift is proportional to the spectrally-dependent ring down time. The spectral dependence of both of these values is introduced by the losses of the cavity including those due to the molecular absorption of the sample. OPTRA's approach allows broadband detection of chemicals across the feature-rich fingerprint region of the long-wave infrared. This represents a broadband and spectral range enhancement to conventional CRDS which is typically done at a single wavelength in the near IR; at the same time the approach is a sensitivity enhancement to traditional FTIR, owing to the long effective path of the resonant cavity. In previous papers1,2, OPTRA has presented a breadboard system aimed at demonstrating the feasibility of the approach and a prototype design implementing performance enhancements based on the results of breadboard testing. In this final paper in the series, we will present test results illustrating the realized performance of the fully assembled and integrated breadboard, thereby demonstrating the utility of the approach.

  5. Effect of lattice anharmonicity in the structural phase transformation of Laves phase HfV2 alloy: A first-principles investigation

    SciTech Connect

    Krcmar, Maja; Fu, Chong Long

    2013-01-01

    First-principles theory was developed to study the structural phase transformations in the Laves phase HfV2 alloy. We explored the energy landscape and established the role of lattice anharmonicity underlying the structural phase transitions. Our approach is based on a phenomenological Landau theory for the structural phase transition and a mean-field approximation for the free energy. First-principles calculations were utilized to obtain the distortion energy as a function of relevant deformations, and to deduce parameters for constructing the free energy. Our result for the phase transition temperature of HfV2 is in good agreement with experiment. We find that the high-temperature cubic C15 phase is stabilized by the effect of lattice anharmonicity. The theory also predicts an anomalous increase in shear modulus with increasing temperature for systems where the anharmonicity is pronounced.

  6. Phase Transformation and Magnetic Property of Ni-Mn-Ga Powders Prepared by Dry Ball Milling

    NASA Astrophysics Data System (ADS)

    Tian, B.; Chen, F.; Tong, Y. X.; Li, L.; Zheng, Y. F.

    2012-12-01

    This study investigated the phase transformations and magnetic properties of Ni-Mn-Ga alloy powders prepared by dry ball milling in argon atmosphere. The Fe and Cr elements were found to be introduced in the alloy after ball milling, which should result from the severe collision and friction among the particles, balls, and vial. The x-ray diffraction result indicated that the Fe and Cr elements should have alloyed with the Ni-Mn-Ga matrix. The martensitic transformation temperature and Curie temperature of the 800 °C annealed powders decreased by ~33 °C and increased by ~28 °C, respectively, as compared to that of the bulk alloy. The comprehensive effect of the changing of valence electron concentration of the alloy due to the introduction of Fe and Cr and the grain refinement of the alloy caused by ball milling should be responsible for the reduction of martensitic transformation temperature. The saturation magnetization of the 800 °C annealed powders became larger (~5 emu/g) than that of the bulk alloy. The enhancement of magnetic properties, such as the increase of Curie temperature and enhancement of saturation magnetization of the annealed Ni-Mn-Ga powders, should be attributed to the increase of magnetic exchange caused by introduction of Fe in the alloy. The contaminations of Fe and Cr elements emerging from the dry ball milling process changed the phase transformation and magnetic properties of the Ni-Mn-Ga alloy. Therefore, the dry ball milling process is difficult to control the contamination from the milling medium and not suitable to prepare Ni-Mn-Ga powders. On the contrary, the wet ball milling method under liquid medium should be a better method to prevent the contamination and fabricate pure Ni-Mn-Ga ferromagnetic shape memory alloy powders.

  7. In situ observation of quasimelting of diamond and reversible graphite-diamond phase transformations.

    PubMed

    Huang, J Y

    2007-08-01

    Because of technique difficulties in achieving the extreme high-pressure and high-temperature (HPHT) simultaneously, direct observation of the structures of carbon at extreme HPHT conditions has not been possible. Banhart and Ajayan discovered remarkably that carbon onions can act as nanoscopic pressure cells to generate high pressures. By heating carbon onions to approximately 700 degrees C and under electron beam irradiation, the graphite-to-diamond transformation was observed in situ by transmission electron microscopy (TEM). However, the highest achievable temperature in a TEM heating holder is less than 1000 degrees C. Here we report that, by using carbon nanotubes as heaters and carbon onions as high-pressure cells, temperatures higher than 2000 degrees C and pressures higher than 40 GPa were achieved simultaneously in carbon onions. At such HPHT conditions and facilitated by electron beam irradiation, the diamond formed in the carbon onion cores frequently changed its shape, size, orientation, and internal structure and moved like a fluid, implying that it was in a quasimelting state. The fluctuation between the solid phase of diamond and the fluid/amorphous phase of diamond-like carbon, and the changes of the shape, size, and orientation of the solid diamond, were attributed to the dynamic crystallization of diamond crystal from the quasimolten state and the dynamic graphite-diamond phase transformations. Our discovery offers unprecedented opportunities to studying the nanostructures of carbon at extreme conditions in situ and at an atomic scale.

  8. Effect of structural phase transformation in FeGaO{sub 3} on its magnetic and ferroelectric properties

    SciTech Connect

    Lone, A. G. Bhowmik, R. N.

    2015-06-24

    We investigate the structural phase transformation from orthorhombic to rhombohedral structure in FeGaO{sub 3} by adopting a combined effect of mechanical alloying/milling and solid state sintering techniques. The structural phase formation of the FeGaO{sub 3} compound has been characterized by X-ray diffraction pattern. Mechanical milling played a significant role on the stabilization of rhombohedral phase in FeGaO{sub 3}, where as high temperature sintering stabilized the system in orthorhombic phase. A considerable difference has been observed in magnetic and ferroelectric properties of the system in two phases. The system in rhombohedral (R-3c) phase exhibited better ferromagnetic and of ferroelectric properties at room temperature in comparison to orthorhombic (Pc2{sub 1}n) phase. The rhombohedral phase appears to be good for developing metal doped hematite system for spintronics applications and in that process mechanical milling played an important role.

  9. Phase-field modeling of the beta to omega phase transformation in Zr–Nb alloys

    DOE PAGES

    Yeddu, Hemantha Kumar; Lookman, Turab

    2015-05-01

    A three-dimensional elastoplastic phase-field model is developed, using the Finite Element Method (FEM), for modeling the athermal beta to omega phase transformation in Zr–Nb alloys by including plastic deformation and strain hardening of the material. The microstructure evolution during athermal transformation as well as under different stress states, e.g. uni-axial tensile and compressive, bi-axial tensile and compressive, shear and tri-axial loadings, is studied. The effects of plasticity, stress states and the stress loading direction on the microstructure evolution as well as on the mechanical properties are studied. The input data corresponding to a Zr – 8 at.% Nb alloy aremore » acquired from experimental studies as well as by using the CALPHAD method. Our simulations show that the four different omega variants grow as ellipsoidal shaped particles. Our results show that due to stress relaxation, the athermal phase transformation occurs slightly more readily in the presence of plasticity compared to that in its absence. The evolution of omega phase is different under different stress states, which leads to the differences in the mechanical properties of the material. The variant selection mechanism, i.e. formation of different variants under different stress loading directions, is also nicely captured by our model.« less

  10. Iron phase transformations resulting from the respiration of Shewanella putrefaciens on a mixed mineral phase

    NASA Astrophysics Data System (ADS)

    Boyanov, M. I.; O'Loughlin, E. J.; Kemner, K. M.

    2009-11-01

    The initial Fe(III) minerals and the secondary mineralization products of Shewanella putrefaciens CN32 grown in the presence of dissolved phosphate and a commercial Fe(III) oxide, nominally nanoparticulate lepidocrocite, were determined using XRD and XAFS. The starting material was transformed by the bacteria from a reddish brown, rust colour mineral to a dark green phase over 90 days. Acid extraction of the bioreduced solids with 0.75 M HCl recovered 83% of the total iron as Fe(II), leaving a solid, acid-resistant phase. The latter was identified as nanoparticulate hematite by EXAFS. Subsequently, the starting Fe(III) phase was determined to be a mixture of 60% lepidocrocite, 26% ferrihydrite, and 14% hematite, using linear combination EXAFS analysis. For the acid-extractable phase, XANES and EXAFS indicated a predominantly Fe(II) valence state and a spectrum consistent with a mixture of brucite-type minerals(e.g., green rust or ferrous hydroxide) and siderite. The observed transformations suggest that in this mixed-mineral system, lepidocrocite and ferrihydrite are readily reducible to green rust and siderite, whereas hematite is less amenable to bacterial reduction. This study also demonstrates the utility of XAFS spectroscopy in the quantitative characterization of dissimilatory metal transformations, particularly in complex systems such as nanoparticulate minerals in hydrated mineral-bacteria assemblages.

  11. Phase-field modeling of the beta to omega phase transformation in Zr–Nb alloys

    SciTech Connect

    Yeddu, Hemantha Kumar; Lookman, Turab

    2015-05-01

    A three-dimensional elastoplastic phase-field model is developed, using the Finite Element Method (FEM), for modeling the athermal beta to omega phase transformation in Zr–Nb alloys by including plastic deformation and strain hardening of the material. The microstructure evolution during athermal transformation as well as under different stress states, e.g. uni-axial tensile and compressive, bi-axial tensile and compressive, shear and tri-axial loadings, is studied. The effects of plasticity, stress states and the stress loading direction on the microstructure evolution as well as on the mechanical properties are studied. The input data corresponding to a Zr – 8 at.% Nb alloy are acquired from experimental studies as well as by using the CALPHAD method. Our simulations show that the four different omega variants grow as ellipsoidal shaped particles. Our results show that due to stress relaxation, the athermal phase transformation occurs slightly more readily in the presence of plasticity compared to that in its absence. The evolution of omega phase is different under different stress states, which leads to the differences in the mechanical properties of the material. The variant selection mechanism, i.e. formation of different variants under different stress loading directions, is also nicely captured by our model.

  12. Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere

    USGS Publications Warehouse

    Kirby, S.H.; Stein, S.; Okal, E.A.; Rubie, David C.

    1996-01-01

    should cease at depths near 700 km, because the seismogenic phase transformations in the slab are completed or can no longer occur. Substantial metastability is expected only in old, cold slabs, consistent with the observed restriction of deep earthquakes to those settings. Earthquakes should be restricted to the cold cores of slabs, as in any model in which the seismicity is temperature controlled, via the distribution of metastability. However, the geometries of recent large deep earthquakes pose a challenge for any such models. Transformational faulting may give insight into why deep shocks lack appreciable aftershocks and why their source characteristics, including focal mechanisms indicating localized shear failure rather than implosive deformation, are so similar to those of shallow earthquakes. Finally, metastable phase changes in slabs would produce an internal source of stress in addition to those due to the weight of the sinking slab. Such internal stresses may explain the occurrence of earthquakes in portions of lithosphere which have foundered to the bottom of the transition zone and/or are detached from subducting slabs. Metastability in downgoing slabs could have considerable geodynamic significance. Metastable wedges would reduce the negative buoyancy of slabs, decrease the driving force for subduction, and influence the state of stress in slabs. Heat released by metastable phase changes would raise temperatures within slabs and facilitate the transformation of spinel to the lower mantle mineral assemblage, causing slabs to equilibrate more rapidly with the ambient mantle and thus contribute to the cessation of deep seismicity. Because wedge formation should occur only for fast subducting slabs, it may act as a "parachute" and contribute to regulating plate speeds. Wedge formation would also have consequences for mantle evolution because the density of a slab stagnated near the bottom of the transition zone would increase as it heats up and the wedge tra

  13. Electric-field-induced paraelectric to ferroelectric phase transformation in prototypical polycrystalline BaTiO{sub 3}

    SciTech Connect

    Wang, Zhiyang; Hinterstein, Manuel; Daniels, John E.; Webber, Kyle G.; Hudspeth, Jessica M.

    2014-10-20

    An electric-field-induced paraelectric cubic to ferroelectric tetragonal phase transformation has been directly observed in prototypical polycrystalline BaTiO{sub 3} at temperatures above the Curie point (T{sub C}) using in situ high-energy synchrotron X-ray diffraction. The transformation persisted to a maximum temperature of 4 °C above T{sub C}. The nature of the observed field-induced transformation and the resulting development of domain texture within the induced phase were dependent on the proximity to the transition temperature, corresponding well to previous macroscopic measurements. The transition electric field increased with increasing temperature above T{sub C}, while the magnitude of the resultant tetragonal domain texture at the maximum electric field (4 kV mm{sup −1}) decreased at higher temperatures. These results provide insights into the phase transformation behavior of a prototypical ferroelectric and have important implications for the development of future large-strain phase-change actuator materials.

  14. Phase transformation and thermoelectric properties of bismuth-telluride nanowires.

    PubMed

    Hsin, Cheng-Lun; Wingert, Matthew; Huang, Chun-Wei; Guo, Hua; Shih, Ten-Jen; Suh, Joonki; Wang, Kevin; Wu, Junqiao; Wu, Wen-Wei; Chen, Renkun

    2013-06-01

    Thermoelectric materials have attracted much attention due to the current interest in energy conversion and recent advancements in nano-engineering. A simple approach to synthesize BiTe and Bi2Te3 micro/nanowires was developed by combining solution chemistry reactions and catalyst-free vapor-solid growth. A pathway to transform the as-grown BiTe nanostructures into Bi2Te3 can be identified through the Bi-Te phase diagram. Structural characterization of these products was identified using standard microscopy practices. Meanwhile, thermoelectric properties of individual Bi-Te compound micro/nanowires were determined by the suspended microdevice technique. This approach provides an applicable route to synthesize advanced high performance thermoelectric materials in quantities and can be used for a wide range of low-dimensional structures. PMID:23619552

  15. Phase transformation and thermoelectric properties of bismuth-telluride nanowires

    NASA Astrophysics Data System (ADS)

    Hsin, Cheng-Lun; Wingert, Matthew; Huang, Chun-Wei; Guo, Hua; Shih, Ten-Jen; Suh, Joonki; Wang, Kevin; Wu, Junqiao; Wu, Wen-Wei; Chen, Renkun

    2013-05-01

    Thermoelectric materials have attracted much attention due to the current interest in energy conversion and recent advancements in nano-engineering. A simple approach to synthesize BiTe and Bi2Te3 micro/nanowires was developed by combining solution chemistry reactions and catalyst-free vapor-solid growth. A pathway to transform the as-grown BiTe nanostructures into Bi2Te3 can be identified through the Bi-Te phase diagram. Structural characterization of these products was identified using standard microscopy practices. Meanwhile, thermoelectric properties of individual Bi-Te compound micro/nanowires were determined by the suspended microdevice technique. This approach provides an applicable route to synthesize advanced high performance thermoelectric materials in quantities and can be used for a wide range of low-dimensional structures.Thermoelectric materials have attracted much attention due to the current interest in energy conversion and recent advancements in nano-engineering. A simple approach to synthesize BiTe and Bi2Te3 micro/nanowires was developed by combining solution chemistry reactions and catalyst-free vapor-solid growth. A pathway to transform the as-grown BiTe nanostructures into Bi2Te3 can be identified through the Bi-Te phase diagram. Structural characterization of these products was identified using standard microscopy practices. Meanwhile, thermoelectric properties of individual Bi-Te compound micro/nanowires were determined by the suspended microdevice technique. This approach provides an applicable route to synthesize advanced high performance thermoelectric materials in quantities and can be used for a wide range of low-dimensional structures. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00876b

  16. Phase transformation and phonon anomalies in Ni{sub 2}MnGa

    SciTech Connect

    Zheludev, A.; Shapiro, S.M.; Wochner, P.; Schwartz, A.; Wall, M.; Tanner, L.E.

    1995-07-01

    Inelastic neutron scattering experiments and transmission electron microscopy have been used to study a single crystal of the Ni{sub 2}MnGa shape memory Hustler alloy in a wide temperature range covering the parent phase (T>T{sub 1}=265 K), a recently discovered pemartensitic (T{sub 1}T>T{sub M}) and martensitic (Tphase regions. A temperature-dependent anomaly in the TA{sub 2} phonon dispersion in the parent phase was observed and related to the phase transformations. The premartensitic phase involves a transverse modulation of the parent cubic structure with a simple periodicity of 1/3 [110]. The approximately tetragonal lattice of the low-temperature martensite is distorted by transverse modulations with incommensurate wave vectors [{zeta}M {zeta}M {sup 0}] and [{sup 2}{zeta}M {sup 2}{zeta}M {sup 0}], {zeta}M {approx}0.43. The observed phenomena are attributed to electron-phonon interactions and anharmonic effects.

  17. Kinetics of hexacelsian to celsian phase transformation in SrAl2Si2O8

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Drummond, Charles H., III

    1992-01-01

    The kinetics of hexacelsian to celsian phase transformation in SrAl2Si2O8 have been investigated. Phase pure hexacelsian was prepared by heat treatment of glass flakes at 990 C for 10 h. Bulk hexacelsian was isothermally heat treated at 1026, 1050, 1100, 1152, and 1200 C for various times. The amounts of monoclinic celsian formed were determined using quantitative X-ray diffraction. Values of reaction rate constant, k, at various temperatures were evaluated from the Avrami equation. The Avrami parameter was determined to be 1.1, suggesting a diffusionless, one-dimensional transformation mechanism. From the temperature dependence of k, the activation energy for this reaction was evaluated to be 527 plus or minus 50 kJ/mole (126 plus or minus 12 kcal/mole). This value is consistent with a mechanism involving the transformation of the layered hexacelsian structure to a three-dimensional network celsian structure which necessitates breaking of the strongest bonds, the Si-O bonds.

  18. Study of thermomechanical treatment on mechanical-induced phase transformation of NiTi and TiNiCu wires.

    PubMed

    Seyyed Aghamiri, S M; Nili Ahmadabadi, M; Shahmir, H; Naghdi, F; Raygan, Sh

    2013-05-01

    The nickel-titanium shape memory alloys have been used in orthodontic application due to their unique properties like superelasticity and biocompatibility. The phase transformation behavior of these alloys can be changed by alloying elements and thermomechanical processing conditions. In this study, two types of NiTi and TiNiCu wires of 0.4mm diameter were produced via thermomechanical treatments with final step of 20% cold drawing followed by annealing at different temperatures of 300 and 400 °C for varying times of 10, 30 and 60 min. The processed wires were characterized by oral cavity configuration three point bending (OCTPB) test at 37 °C to specify the mechanical transformation features. Also, differential scanning calorimetry (DSC) was used to analyze the thermal transformation temperatures of selected wires. The results showed the thermomechanical treatment at 300 °C for 30 min was the suitable process in terms of superelasticity and transformation temperatures for orthodontic application.

  19. Phase equilibrium modeling for high temperature metallization on GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Chung, M. A.; Davison, J. E.; Smith, S. R.

    1991-01-01

    Recent trends in performance specifications and functional requirements have brought about the need for high temperature metallization technology to be developed for survivable DOD space systems and to enhance solar cell reliability. The temperature constitution phase diagrams of selected binary and ternary systems were reviewed to determine the temperature and type of phase transformation present in the alloy systems. Of paramount interest are the liquid-solid and solid-solid transformations. Data are being utilized to aid in the selection of electrical contact materials to gallium arsenide solar cells. Published data on the phase diagrams for binary systems is readily available. However, information for ternary systems is limited. A computer model is being developed which will enable the phase equilibrium predictions for ternary systems where experimental data is lacking.

  20. Phase transformation of poled "chem-prep" PZT 95/5-2Nb ceramic under quasi-static loading conditions.

    SciTech Connect

    Lee, Moo Yul; Montgomery, Stephen Tedford; Hofer, John H.

    2004-10-01

    Specimens of poled 'chem-prep' PNZT ceramic from batch HF803 were tested under hydrostatic, uniaxial, and constant stress difference loading conditions at three temperatures of -55, 25, and 75 C and pressures up to 500 MPa. The objective of this experimental study was to obtain the electro-mechanical properties of the ceramic and the criteria of FE (Ferroelectric) to AFE (Antiferroelectric) phase transformations so that grain-scale modeling efforts can develop and test models and codes using realistic parameters. The poled ceramic undergoes anisotropic deformation during the transition from a FE to an AFE structure. The lateral strain measured parallel to the poling direction was typically 35 % greater than the strain measured perpendicular to the poling direction. The rates of increase in the phase transformation pressures per temperature changes were practically identical for both unpoled and poled PNZT HF803 specimens. We observed that the retarding effect of temperature on the kinetics of phase transformation appears to be analogous to the effect of shear stress. We also observed that the FE-to-AFE phase transformation occurs in poled ceramic when the normal compressive stress, acting perpendicular to a crystallographic plane about the polar axis, equals the hydrostatic pressure at which the transformation otherwise takes place.

  1. Controllable Phase Transformation and Mid-infrared Emission from Er3+-Doped Hexagonal-/Cubic-NaYF4 Nanocrystals

    NASA Astrophysics Data System (ADS)

    Yang, Dandan; Chen, Dongdan; He, Huilin; Pan, Qiwen; Xiao, Quanlan; Qiu, Jianrong; Dong, Guoping

    2016-07-01

    The morphology of hexagonal phase NaYF4:Er3+ nanorods synthesized by hydrothermal method changed greatly after a continuing calcination, along with a phase transformation to cubic phase. Photoluminescence (PL) spectra indicated that mid-infrared (MIR) emission was obtained in both hexagonal and cubic phase NaYF4:Er3+ nanocrystals for the first time. And the MIR emission of NaYF4:Er3+ nanocrystals enhanced remarkably at higher calcination temperature. To prevent uncontrollable morphology from phase transformation, the cubic phase NaYF4:Er3+ nanospheres with an average size of ~100 nm were prepared via a co-precipitation method directly. In contrast, the results showed better morphology and size of cubic phase NaYF4:Er3+ nanocrystals have realized when calcined at different temperatures. And PL spectra demonstrated a more intense MIR emission in the cubic phase NaYF4:Er3+ nanocrystals with an increasing temperature. Besides, the MIR emission peak of Er3+ ions had an obvious splitting in cubic phase NaYF4. Therefore, cubic phase NaYF4:Er3+ nanospheres with more excellent MIR luminescent properties seems to provide a new material for nanocrystal-glass composites, which is expected to open a broad new field for the realization of MIR lasers gain medium.

  2. Controllable Phase Transformation and Mid-infrared Emission from Er3+-Doped Hexagonal-/Cubic-NaYF4 Nanocrystals

    PubMed Central

    Yang, Dandan; Chen, Dongdan; He, Huilin; Pan, Qiwen; Xiao, Quanlan; Qiu, Jianrong; Dong, Guoping

    2016-01-01

    The morphology of hexagonal phase NaYF4:Er3+ nanorods synthesized by hydrothermal method changed greatly after a continuing calcination, along with a phase transformation to cubic phase. Photoluminescence (PL) spectra indicated that mid-infrared (MIR) emission was obtained in both hexagonal and cubic phase NaYF4:Er3+ nanocrystals for the first time. And the MIR emission of NaYF4:Er3+ nanocrystals enhanced remarkably at higher calcination temperature. To prevent uncontrollable morphology from phase transformation, the cubic phase NaYF4:Er3+ nanospheres with an average size of ~100 nm were prepared via a co-precipitation method directly. In contrast, the results showed better morphology and size of cubic phase NaYF4:Er3+ nanocrystals have realized when calcined at different temperatures. And PL spectra demonstrated a more intense MIR emission in the cubic phase NaYF4:Er3+ nanocrystals with an increasing temperature. Besides, the MIR emission peak of Er3+ ions had an obvious splitting in cubic phase NaYF4. Therefore, cubic phase NaYF4:Er3+ nanospheres with more excellent MIR luminescent properties seems to provide a new material for nanocrystal-glass composites, which is expected to open a broad new field for the realization of MIR lasers gain medium. PMID:27453150

  3. Controllable Phase Transformation and Mid-infrared Emission from Er(3+)-Doped Hexagonal-/Cubic-NaYF4 Nanocrystals.

    PubMed

    Yang, Dandan; Chen, Dongdan; He, Huilin; Pan, Qiwen; Xiao, Quanlan; Qiu, Jianrong; Dong, Guoping

    2016-01-01

    The morphology of hexagonal phase NaYF4:Er(3+) nanorods synthesized by hydrothermal method changed greatly after a continuing calcination, along with a phase transformation to cubic phase. Photoluminescence (PL) spectra indicated that mid-infrared (MIR) emission was obtained in both hexagonal and cubic phase NaYF4:Er(3+) nanocrystals for the first time. And the MIR emission of NaYF4:Er(3+) nanocrystals enhanced remarkably at higher calcination temperature. To prevent uncontrollable morphology from phase transformation, the cubic phase NaYF4:Er(3+) nanospheres with an average size of ~100 nm were prepared via a co-precipitation method directly. In contrast, the results showed better morphology and size of cubic phase NaYF4:Er(3+) nanocrystals have realized when calcined at different temperatures. And PL spectra demonstrated a more intense MIR emission in the cubic phase NaYF4:Er(3+) nanocrystals with an increasing temperature. Besides, the MIR emission peak of Er(3+) ions had an obvious splitting in cubic phase NaYF4. Therefore, cubic phase NaYF4:Er(3+) nanospheres with more excellent MIR luminescent properties seems to provide a new material for nanocrystal-glass composites, which is expected to open a broad new field for the realization of MIR lasers gain medium. PMID:27453150

  4. Ab Initio Simulations of Temperature Dependent Phase Stability and Martensitic Transitions in NiTi

    NASA Technical Reports Server (NTRS)

    Haskins, Justin B.; Thompson, Alexander E.; Lawson, John W.

    2016-01-01

    For NiTi based alloys, the shape memory effect is governed by a transition from a low-temperature martensite phase to a high-temperature austenite phase. Despite considerable experimental and computational work, basic questions regarding the stability of the phases and the martensitic phase transition remain unclear even for the simple case of binary, equiatomic NiTi. We perform ab initio molecular dynamics simulations to describe the temperature-dependent behavior of NiTi and resolve several of these outstanding issues. Structural correlation functions and finite temperature phonon spectra are evaluated to determine phase stability. In particular, we show that finite temperature, entropic effects stabilize the experimentally observed martensite (B19') and austenite (B2) phases while destabilizing the theoretically predicted (B33) phase. Free energy computations based on ab initio thermodynamic integration confirm these results and permit estimates of the transition temperature between the phases. In addition to the martensitic phase transition, we predict a new transition between the B33 and B19' phases. The role of defects in suppressing these phase transformations is discussed.

  5. α-Phase transformation kinetics of U – 8 wt% Mo established by in situ neutron diffraction

    DOE PAGES

    Garlea, Elena; Steiner, M. A.; Calhoun, C. A.; Klein, R. W.; An, K.; Agnew, S. R.

    2016-05-08

    The α-phase transformation kinetics of as-cast U - 8 wt% Mo below the eutectoid temperature have been established by in situ neutron diffraction. α-phase weight fraction data acquired through Rietveld refinement at five different isothermal hold temperatures can be modeled accurately utilizing a simple Johnson-Mehl-Avrami-Kolmogorov impingement-based theory, and the results are validated by a corresponding evolution in the γ-phase lattice parameter during transformation that follows Vegard’s law. Neutron diffraction data is used to produce a detailed Time-Temperature-Transformation diagram that improves upon inconsistencies in the current literature, exhibiting a minimum transformation start time of 40 min at temperatures between 500 °Cmore » and 510 °C. Lastly, the transformation kinetics of U – 8 wt% Mo can vary significantly from as-cast conditions after extensive heat treatments, due to homogenization of the typical dendritic microstructure which possesses non-negligible solute segregation.« less

  6. PHONON PRECURSORS TO THE HIGH TEMPERATURE MARTENSITIC TRANSFORMATION IN TI50PD42CR8.

    SciTech Connect

    SHAPIRO,S.M.; WINN,B.L.; SCHLAGEL,D.L.; LOGRASSO,T.; ERWIN,R.

    2002-06-10

    Inelastic neutron scattering measurements were carried out on the Ti{sub 50}Pd{sub 50-x}Cr{sub x} alloy, which has the potential for being a high temperature shape memory material. For x = 0, the transformation temperature is {approx}800K and for the composition studied (x = 8 at.%) T{sub M} {approx} 400K. The majority of the measurements were performed in the parent, {beta}-phase, up to 873K. Most of the phonons propagating along the three symmetry directions [{zeta}00], [{zeta}{zeta}{zeta}], and [{zeta}{zeta}0] were well defined with the exception of the [{zeta}{zeta}0] transverse acoustic mode with displacements along the [-{zeta}{zeta}0] corresponding to the C{prime} = 1/2(C{sub 11}-C{sub 12}) elastic constant. These phonons are well defined for small {zeta}, but for {zeta} > 0.15 they are strongly overdamped near the transition temperature, but become better defined at higher temperatures. An elastic peak develop in the cubic phase at {zeta} = 0.22 and increases in intensity as T{sub M} is approached. However, this dispersion curves show no anomaly at this particular wavevector, in marked contrast to the lattice dynamic studies of other systems exhibiting Martensitic transformations.

  7. The Effect of Hardenability Variation on Phase Transformation of Spiral Bevel Gear in Quenching Process

    NASA Astrophysics Data System (ADS)

    Zhang, Yingtao; Shi, Wankai; Yang, Lin; Gu, Zhifei; Li, Zhichao

    2016-07-01

    The hardenability of gear steel is dependent on the composition of alloying elements and is one of important criteria to assess process of phase transformation. The variation of hardenability has to be considered in control of the microstructures and distortion during gear quenching. In this paper, the quantitative effect of hardenability has been investigated on phase transformations of spiral bevel gears in die quenching. The hardenability deviation of 22CrMoH steel was assessed by using Jominy test. The dilatometry experiments were conducted to build phase transformation kinetic models for steels with low and high hardenability, respectively. The complete die quenching process of spiral bevel gear was modeled to reveal the significant difference on microstructures and temperature history with variation of hardenability. The final microstructures of the gear are martensite in surface layer after quenching process. There are bainite inside the gear tooth and the mixture of bainite and ferrite inside gear for the gear with low hardenability. The microstructure is bainite inside the gear with high hardenability.

  8. Volume and Mass Estimation of Three-Phase High Power Transformers for Space Applications

    NASA Technical Reports Server (NTRS)

    Kimnach, Greg L.

    2004-01-01

    Spacecraft historically have had sub-1kW(sub e), electrical requirements for GN&C, science, and communications: Galileo at 600W(sub e), and Cassini at 900W(sub e), for example. Because most missions have had the same order of magnitude power requirements, the Power Distribution Systems (PDS) use existing, space-qualified technology and are DC. As science payload and mission duration requirements increase, however, the required electrical power increases. Subsequently, this requires a change from a passive energy conversion (solar arrays and batteries) to dynamic (alternator, solar dynamic, etc.), because dynamic conversion has higher thermal and conversion efficiencies, has higher power densities, and scales more readily to higher power levels. Furthermore, increased power requirements and physical distribution lengths are best served with high-voltage, multi-phase AC to maintain distribution efficiency and minimize voltage drops. The generated AC-voltage must be stepped-up (or down) to interface with various subsystems or electrical hardware. Part of the trade-space design for AC distribution systems is volume and mass estimation of high-power transformers. The volume and mass are functions of the power rating, operating frequency, the ambient and allowable temperature rise, the types and amount of heat transfer available, the core material and shape, the required flux density in a core, the maximum current density, etc. McLyman has tabulated the performance of a number of transformers cores and derived a "cookbook" methodology to determine the volume of transformers, whereas Schawrze had derived an empirical method to estimate the mass of single-phase transformers. Based on the work of McLyman and Schwarze, it is the intent herein to derive an empirical solution to the volume and mass estimation of three-phase, laminated EI-core power transformers, having radiated and conducted heat transfer mechanisms available. Estimation of the mounting hardware, connectors

  9. Phase Transformation Hysteresis in a Plutonium Alloy System: Modeling the Resistivity during the Transformation

    SciTech Connect

    Haslam, J J; Wall, M A; Johnson, D L; Mayhall, D J; Schwartz, A J

    2001-11-14

    We have induced, measured, and modeled the {delta}-{alpha}' martensitic transformation in a Pu-Ga alloy by a resistivity technique on a 2.8-mm diameter disk sample. Our measurements of the resistance by a 4-probe technique were consistent with the expected resistance obtained from a finite element analysis of the 4-point measurement of resistivity in our round disk configuration. Analysis by finite element methods of the postulated configuration of {alpha}' particles within model {delta} grains suggests that a considerable anisotropy in the resistivity may be obtained depending on the arrangement of the {alpha}' lens shaped particles within the grains. The resistivity of these grains departs from the series resistance model and can lead to significant errors in the predicted amount of the {alpha}' phase present in the microstructure. An underestimation of the amount of {alpha}' in the sample by 15%, or more, appears to be possible.

  10. Phase-Transformation-Induced Extra Thermal Expansion Behavior of (SrxBa1-x)TiO3/Cu Composite.

    PubMed

    Sheng, Jie; Wang, Lidong; Li, Shouwei; Yin, Benke; Liu, Xiangli; Fei, Wei-Dong

    2016-01-01

    The properties of metal matrix composites (MMCs) can be optimized effectively through adjusting the type or the volume fraction of reinforcement. Generally, the coefficient of thermal expansion (CTE) of MMCs can be reduced by increasing the volume fraction of the reinforcement with lower CTE than metal matrix. However, it is great challenge to fabricate low CTE MMCs with low reinforcement volume fraction because of the limitation of reinforcement CTEs. SrxBa1-xTiO3 (SBT) powder presents negative thermal expansion behavior during the phase transformation from tetragonal to cubic phase. Here, we demonstrate that the phase transformation of SBT can be utilized to reduce and design the thermal expansion properties of SBT particle-reinforced Cu (SBT/Cu) composite, and ultralow CTE can be obtained in SBT/Cu composite. The X-ray diffraction analysis on heating indicates that the temperature range of phase transformation is extended greatly, therefore, the low CTE can be achieved within wide temperature range. Landau-Devonshire theory study on the phase transformation behaviors of SBT particles in the composite indicates that thermal mismatch stress significantly affects the Curie temperature of SBT particles and the CTE of the composite. The results given in the present study provide a new approach to design the MMCs with low CTE. PMID:27255420

  11. Phase-Transformation-Induced Extra Thermal Expansion Behavior of (SrxBa1-x)TiO3/Cu Composite.

    PubMed

    Sheng, Jie; Wang, Lidong; Li, Shouwei; Yin, Benke; Liu, Xiangli; Fei, Wei-Dong

    2016-01-01

    The properties of metal matrix composites (MMCs) can be optimized effectively through adjusting the type or the volume fraction of reinforcement. Generally, the coefficient of thermal expansion (CTE) of MMCs can be reduced by increasing the volume fraction of the reinforcement with lower CTE than metal matrix. However, it is great challenge to fabricate low CTE MMCs with low reinforcement volume fraction because of the limitation of reinforcement CTEs. SrxBa1-xTiO3 (SBT) powder presents negative thermal expansion behavior during the phase transformation from tetragonal to cubic phase. Here, we demonstrate that the phase transformation of SBT can be utilized to reduce and design the thermal expansion properties of SBT particle-reinforced Cu (SBT/Cu) composite, and ultralow CTE can be obtained in SBT/Cu composite. The X-ray diffraction analysis on heating indicates that the temperature range of phase transformation is extended greatly, therefore, the low CTE can be achieved within wide temperature range. Landau-Devonshire theory study on the phase transformation behaviors of SBT particles in the composite indicates that thermal mismatch stress significantly affects the Curie temperature of SBT particles and the CTE of the composite. The results given in the present study provide a new approach to design the MMCs with low CTE.

  12. Phase-Transformation-Induced Extra Thermal Expansion Behavior of (SrxBa1-x)TiO3/Cu Composite

    NASA Astrophysics Data System (ADS)

    Sheng, Jie; Wang, Lidong; Li, Shouwei; Yin, Benke; Liu, Xiangli; Fei, Wei-Dong

    2016-06-01

    The properties of metal matrix composites (MMCs) can be optimized effectively through adjusting the type or the volume fraction of reinforcement. Generally, the coefficient of thermal expansion (CTE) of MMCs can be reduced by increasing the volume fraction of the reinforcement with lower CTE than metal matrix. However, it is great challenge to fabricate low CTE MMCs with low reinforcement volume fraction because of the limitation of reinforcement CTEs. SrxBa1-xTiO3 (SBT) powder presents negative thermal expansion behavior during the phase transformation from tetragonal to cubic phase. Here, we demonstrate that the phase transformation of SBT can be utilized to reduce and design the thermal expansion properties of SBT particle-reinforced Cu (SBT/Cu) composite, and ultralow CTE can be obtained in SBT/Cu composite. The X-ray diffraction analysis on heating indicates that the temperature range of phase transformation is extended greatly, therefore, the low CTE can be achieved within wide temperature range. Landau-Devonshire theory study on the phase transformation behaviors of SBT particles in the composite indicates that thermal mismatch stress significantly affects the Curie temperature of SBT particles and the CTE of the composite. The results given in the present study provide a new approach to design the MMCs with low CTE.

  13. Copper-zirconium tungstate composites exhibiting low and negative thermal expansion influenced by reinforcement phase transformations

    NASA Astrophysics Data System (ADS)

    Balch, Dorian K.; Dunand, David C.

    2004-03-01

    A fully-dense Cu-75 vol pct ZrW2O8 metal matrix composite was fabricated by hot isostatic pressing of Cu-coated ZrW2O8 particles. A small amount of the high-pressure γ-ZrW2O8 phase was created during the cooldown and depressurization following densification; near complete transformation to γ-ZrW2O8 was achieved by subsequent cold isostatic pressing. The thermal expansion behavior of the composite between 25°C and 325°C was altered by the cold isostatic pressing treatment, and also depended on the length of time that had passed between thermal cycles. The measured thermal expansion coefficients within specific temperature ranges varied from -6·10-6 K-1 to far above the thermal expansion coefficient of the copper matrix. The complex temperature-dependent expansion/contraction behavior could be justified by considering the evolution of phase transformations taking place in the ZrW2O8 phase, which were observed by in-situ synchrotron X-ray diffraction measurements.

  14. TRANSFORMATION

    SciTech Connect

    LACKS,S.A.

    2003-10-09

    Transformation, which alters the genetic makeup of an individual, is a concept that intrigues the human imagination. In Streptococcus pneumoniae such transformation was first demonstrated. Perhaps our fascination with genetics derived from our ancestors observing their own progeny, with its retention and assortment of parental traits, but such interest must have been accelerated after the dawn of agriculture. It was in pea plants that Gregor Mendel in the late 1800s examined inherited traits and found them to be determined by physical elements, or genes, passed from parents to progeny. In our day, the material basis of these genetic determinants was revealed to be DNA by the lowly bacteria, in particular, the pneumococcus. For this species, transformation by free DNA is a sexual process that enables cells to sport new combinations of genes and traits. Genetic transformation of the type found in S. pneumoniae occurs naturally in many species of bacteria (70), but, initially only a few other transformable species were found, namely, Haemophilus influenzae, Neisseria meningitides, Neisseria gonorrheae, and Bacillus subtilis (96). Natural transformation, which requires a set of genes evolved for the purpose, contrasts with artificial transformation, which is accomplished by shocking cells either electrically, as in electroporation, or by ionic and temperature shifts. Although such artificial treatments can introduce very small amounts of DNA into virtually any type of cell, the amounts introduced by natural transformation are a million-fold greater, and S. pneumoniae can take up as much as 10% of its cellular DNA content (40).

  15. A condensed variational model for thermo-mechanically coupled phase transformations in polycrystalline shape memory alloys

    NASA Astrophysics Data System (ADS)

    Junker, Philipp; Hackl, Klaus

    2013-11-01

    We derive an energy-based material model for thermomechanically coupled phase transformations in polycrystalline shape memory alloys. For the variational formulation of the model, we use the principle of the minimum of the dissipation potential for nonisothermal processes for which only a minimal number of constitutive assumptions has to be made. By introducing a condensed formulation for the representative orientation distribution function, the resulting material model is numerically highly efficient. For a first analysis, we present the results of material point calculations, where the evolution of temperature as well as its influence on the mechanical material response is investigated.

  16. Influence of Ni on Martensitic Phase Transformations in NiTi Shape Memory Alloys

    SciTech Connect

    Frenzel, J.; George, Easo P; Dlouhy, A.; Somsen, Ch.; Wagner, M. F.-X; Eggeler, G.

    2010-01-01

    High-precision data on phase transformation temperatures in NiTi, including numerical expressions for the effect of Ni on M{sub S}, M{sub F}, A{sub S}, A{sub F} and T{sub 0}, are obtained, and the reasons for the large experimental scatter observed in previous studies are discussed. Clear experimental evidence is provided confirming the predictions of Tang et al. 1999 regarding deviations from a linear relation between the thermodynamic equilibrium temperature and Ni concentration. In addition to affecting the phase transition temperatures, increasing Ni contents are found to decrease the width of thermal hysteresis and the heat of transformation. These findings are rationalized on the basis of the crystallographic data of Prokoshkin et al. 2004 and the theory of Ball and James. The results show that it is important to document carefully the details of the arc-melting procedure used to make shape memory alloys and that, if the effects of processing are properly accounted for, precise values for the Ni concentration of the NiTi matrix can be obtained.

  17. A comparative first-principles study of martensitic phase transformations in TiPd2 and TiPd

    SciTech Connect

    Krcmar, Maja; Morris, James R

    2014-01-01

    Martensitic phase transformations in TiPd2 and TiPd alloys are studied employing density-functional, first-principles calculations. We examine the transformation of tetragonal C11b TiPd2 to the low-temperature orthorhombic phase (C11b oI6), and the transformation of cubic B2 TiPd under orthorhombic (B2 B19) and subsequent monoclinic transformations (B19 B19 ) as the system is cooled. To evaluate the transition temperature for TiPd2 we employ a theoretical approach based on a phenomenological Landau theory of the structural phase transition and a mean-field approximation for the free energy, utilizing first-principles calculations to obtain the deformation energy as a function of strains and to deduce parameters for constructing the free energy. The predicted transition temperature for the TiPd2 C11b oI6 transition temperature is in good agreement with reported experimental results. To investigate the TiPd B2 B19 transformation, we employ both the Cauchy-Born rule and a soft-mode- based approach, and elucidate on the importance of coupling of lattice distortion and atomic displacements (i.e., shuffling) in the formation of the final structure. The estimated B2 B19 transition temperature for TiPd system agrees well with the experimental results. We also find that there exists a very small but finite (0.0005 eV/atom) energy barrier of B19 TiPd under monoclinic deformation for B19 B19 structural phase transformation.

  18. Dynamic observation of phase transformation behaviors in indium(III) selenide nanowire based phase change memory.

    PubMed

    Huang, Yu-Ting; Huang, Chun-Wei; Chen, Jui-Yuan; Ting, Yi-Hsin; Lu, Kuo-Chang; Chueh, Yu-Lun; Wu, Wen-Wei

    2014-09-23

    Phase change random access memory (PCRAM) has been extensively investigated for its potential applications in next-generation nonvolatile memory. In this study, indium(III) selenide (In2Se3) was selected due to its high resistivity ratio and lower programming current. Au/In2Se3-nanowire/Au phase change memory devices were fabricated and measured systematically in an in situ transmission electron microscope to perform a RESET/SET process under pulsed and dc voltage swept mode, respectively. During the switching, we observed the dynamic evolution of the phase transformation process. The switching behavior resulted from crystalline/amorphous change and revealed that a long pulse width would induce the amorphous or polycrystalline state by different pulse amplitudes, supporting the improvement of the writing speed, retention, and endurance of PCRAM. PMID:25133955

  19. Nanoalloying and phase transformations during thermal treatment of physical mixtures of Pd and Cu nanoparticles

    NASA Astrophysics Data System (ADS)

    Mukundan, Vineetha; Yin, Jun; Joseph, Pharrah; Luo, Jin; Shan, Shiyao; Zakharov, Dmitri N.; Zhong, Chuan-Jian; Malis, Oana

    2014-04-01

    Nanoscale alloying and phase transformations in physical mixtures of Pd and Cu ultrafine nanoparticles are investigated in real time with in situ synchrotron-based x-ray diffraction complemented by ex situ high-resolution transmission electron microscopy. The combination of metal-support interaction and reactive/non-reactive environment was found to determine the thermal evolution and ultimate structure of this binary system. At 300 °C, the nanoparticles supported on silica and carbon black intermix to form a chemically ordered CsCl-type (B2) alloy phase. The B2 phase transforms into a disordered fcc alloy at higher temperature (> 450 °C). The alloy nanoparticles supported on silica and carbon black are homogeneous in volume, but evidence was found of Pd surface enrichment. In sharp contrast, when supported on alumina, the two metals segregated at 300 °C to produce almost pure fcc Cu and Pd phases. Upon further annealing of the mixture on alumina above 600 °C, the two metals interdiffused, forming two distinct disordered alloys of compositions 30% and 90% Pd. The annealing atmosphere also plays a major role in the structural evolution of these bimetallic nanoparticles. The nanoparticles annealed in forming gas are larger than the nanoparticles annealing in helium due to reduction of the surface oxides that promotes coalescence and sintering.

  20. Phase transformations and the spectral reflectance of solid sulfur - Can metastable sulfur allotropes exist on Io?

    NASA Technical Reports Server (NTRS)

    Moses, Julianne I.; Nash, Douglas B.

    1991-01-01

    Laboratory investigations have been conducted on the effects of variations in sulfur sample histories on their solid-state transformation rate and the corresponding spectral variation of freshly frozen sulfur. The temporal variations in question may be due to differences in the amount and type of metastable allotropes present in the sulfur after solidification, as well as to the physics of the phase-transformation process itself. The results obtained are pertinent to the physical behavior and spectral variation of such freshly solidified sulfur as may exist on the Jupiter moon Io; this would initially solidify into a glassy solid or monoclinic crystalline lattice, then approach ambient dayside temperatures. Laboratory results imply that the monoclinic or polymeric allotropes can in these circumstances be maintained, and will take years to convert to the stable orthorhombic crystalline form.

  1. Three-dimensional phase transformation by impedance-matched dielectric slabs and generation of hollow beams based on transformation optics

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Yang, Shuaisai; Tang, Zhixiang; Shu, Weixing

    2016-10-01

    We propose a three-dimensional (3D) phase transformation method by an impedance-matched dielectric slab and apply it to generating hollow beams. We first employ transformation optics to establish a method for the transformation between two arbitrary 3D wavefronts through a flat dielectric and impedance-matched material. Then the method is used to convert a solid beam into a hollow beam with desired wavefront. By tuning the transformation surface, different hollow beams can be produced. The results are further validated by 3D finite-difference time-domain simulations.

  2. Effects of Stoichiometry on Transformation Temperatures and Actuator-Type Performance of NiTiPd and NiTiPdX High-Temperature Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Bigelow, Glen S.; Gaydosh, Darrell; Garg, Anita; Padula, Santo A., II; Noebe, Ronald D.

    2007-01-01

    High-temperature shape memory NiTiPd and NiTiPdX (X=Au, Pt, Hf) alloys were produced with titanium equivalent (Ti+Hf) compositions of 50.5, 50.0, 49.5, and 49.0 at.%. Thermo-mechanical testing in compression was used to evaluate the transformation temperatures, transformation strain, work output, and permanent deformation behavior of each alloy to study the effects of quaternary alloying and stoichiometry on high-temperature shape memory alloy behavior. Microstructural evaluation showed the presence of second phases for all alloy compositions. No load transformation temperatures in the stoichiometric alloys were relatively unchanged by Au and Pt substitutions, while the substitution of Hf for Ti causes a drop in transformation temperatures. The NiTiPd, NiTiPdAu and NiTiPdHf alloys exhibited transformation temperatures that were highest in the Ti-rich compositions, slightly lower at stoichiometry, and significantly reduced when the Ti equivalent composition was less than 50 at.%. For the NiTiPdPt alloy, transformation temperatures were highest for the Ti-rich compositions, lowest at stoichiometry, and slightly higher in the Ni-rich composition. When thermally cycled under constant stresses of up to 300 MPa, all of the alloys had transformation strains, and therefore work outputs, which increased with increasing stress. In each series of alloys, the transformation strain and thus work output was highest for stoichiometric or Ti-rich compositions while permanent strain associated with the constant-load thermal cycling was lowest for alloys with Ni-equivalent-rich compositions. Based on these results, basic rules for optimizing the composition of NiTiPd alloys for actuator performance will be discussed.

  3. Probing the structural changes in the phase transitions of a Bi{sub 2}MoO{sub 6} catalyst: The nature of the intermediate-temperature phase

    SciTech Connect

    Sankar, G.; Roberts, M.A.; Thomas, J.M.

    1995-10-01

    The nature of the phase transitions of Bi{sub 2}MoO{sub 6} has been investigated by the combined use of X-ray diffraction and X-ray absorption spectroscopy. The distorted MoO{sub 6} octahedra in the low-temperature form are shown to undergo further distortion in the intermediate-temperature form before transforming to MoO{sub 4} tetrahedra in the high-temperature phase.

  4. In Situ Study of the Influence of Nickel on the Phase Transformation Kinetics in Austempered Ductile Iron

    NASA Astrophysics Data System (ADS)

    Saal, Patrick; Meier, Leopold; Li, Xiaohu; Hofmann, Michael; Hoelzel, Markus; Wagner, Julia N.; Volk, Wolfram

    2016-02-01

    Phase fractions and austenite carbon contents in austempered ductile iron samples with three different nickel contents were determined by in situ neutron diffraction. The samples were austenitized at 1178 K (905 °C) for 30 minutes and austempered for 3.5 hours at temperatures between 523 K and 723 K (250 °C and 450 °C) using a mirror furnace. Based on the in situ neutron diffraction studies, plateau times were derived, which determine the end of stage I reaction. The austenite contents increase for higher austempering temperatures when the austempering times are selected properly, considering the accelerated phase transformation at higher temperature. Appropriate austempering times were derived for austempering temperatures between 523 K and 723 K (250 °C and 450 °C). Increased nickel contents lead to higher austenite phase fractions. Moreover the retarding effect of nickel on the phase transformation was quantified. The plateau values of phase fraction and the according austempering times were converted to TTT diagrams. The evolution of the austenite carbon content shows a maximum at 623 K (350 °C) austempering temperature. This can be explained by temperature-dependent carbide precipitation and carbon diffusion into lattice defects. Fine carbides within the ferrite could be found by preliminary APT analysis.

  5. Temperature-induced phase transition and temperature sensing behavior in Yb3+ sensitized Er3+ doped YPO4 phosphors

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangtong; Fu, Zuoling; Sun, Zhen; Liu, Guofeng; Jeong, Jung Hyun; Wu, Zhijian

    2016-10-01

    YPO4:Er3+, Yb3+ microcrystals have been manufactured using hydrothermal synthesis and annealed at different temperature for 3 h. With the increases of calcination temperature, the phase transformation of yttrium phosphate from hexagonal to tetragonal phase is reported base on the representation of X-ray diffraction (XRD). Besides, the size and morphology of yttrium phosphate have been clearly observed by employing field-emission scanning electron microscopy (FE-SEM). By selective annealing temperature and doped concentration procedure, YPO4:1%Er3+, 15%Yb3+ phosphors that annealed at 1000 °C for 3 h after hydrothermal synthesis show the strongest luminescence intensity under a 980 nm laser diode excitation. The temperature sensing behavior of YPO4:1%Er3+, 15%Yb3+ phosphors has also been investigated in detail. The result indicated that YPO4:1%Er3+, 15%Yb3+ phosphors could be considered as potential materials for optical temperature sensors.

  6. Magnetic-field-induced shape recovery by reverse phase transformation.

    PubMed

    Kainuma, R; Imano, Y; Ito, W; Sutou, Y; Morito, H; Okamoto, S; Kitakami, O; Oikawa, K; Fujita, A; Kanomata, T; Ishida, K

    2006-02-23

    Large magnetic-field-induced strains have been observed in Heusler alloys with a body-centred cubic ordered structure and have been explained by the rearrangement of martensite structural variants due to an external magnetic field. These materials have attracted considerable attention as potential magnetic actuator materials. Here we report the magnetic-field-induced shape recovery of a compressively deformed NiCoMnIn alloy. Stresses of over 100 MPa are generated in the material on the application of a magnetic field of 70 kOe; such stress levels are approximately 50 times larger than that generated in a previous ferromagnetic shape-memory alloy. We observed 3 per cent deformation and almost full recovery of the original shape of the alloy. We attribute this deformation behaviour to a reverse transformation from the antiferromagnetic (or paramagnetic) martensitic to the ferromagnetic parent phase at 298 K in the Ni45Co5Mn36.7In13.3 single crystal.

  7. Electronic correlations determine the phase stability of iron up to the melting temperature

    PubMed Central

    Leonov, I.; Poteryaev, A. I.; Gornostyrev, Yu. N.; Lichtenstein, A. I.; Katsnelson, M. I.; Anisimov, V. I.; Vollhardt, D.

    2014-01-01

    We present theoretical results on the high-temperature phase stability and phonon spectra of paramagnetic bcc iron which explicitly take into account many-body effects. Several peculiarities, including a pronounced softening of the [110] transverse (T1) mode and a dynamical instability of the bcc lattice in harmonic approximation are identified. We relate these features to the α-to-γ and γ-to-δ phase transformations in iron. The high-temperature bcc phase is found to be highly anharmonic and appears to be stabilized by the lattice entropy. PMID:24998330

  8. Structural transformations in Ge2Sb2Te5 under high pressure and temperature

    NASA Astrophysics Data System (ADS)

    Mio, A. M.; Privitera, S.; D'Arrigo, G.; Ceppatelli, M.; Gorelli, F.; Santoro, M.; Miritello, M.; Bini, R.; Rimini, E.

    2015-08-01

    The structural transformations occurring in Ge2Sb2Te5 films heated at temperature up to 400 °C, and under hydrostatic pressure up to 12 GPa, have been investigated through in-situ X ray diffraction measurements. The adopted experimental conditions are close to those experienced by the phase change material during the SET (crystallization)/RESET (amorphization) processes in a nonvolatile memory device. The compression enhances the thermal stability of the amorphous phase, which remains stable up to 180 °C at 8 GPa and to 230 °C at 12 GPa. The structure of the crystalline phases is also modified, with the formation of a CsCl-type structure instead of rock-salt and of a GeS-type structure at the temperature at which usually the trigonal stable phase is formed. Overall, the stability of the stable phase appears to be more affected by the compression. We argue that the presence of weak bonds associated to the van der Waals gaps is a determining factor for the observed reduced stability.

  9. Phase transformation of "chem-prep" PZT 95/5-2Nb HF1035 ceramic under quasi-static loading conditions.

    SciTech Connect

    Montgomery, Stephen Tedford; Lee, Moo Yul; Meier, Diane A.; Hofer, John H.

    2006-07-01

    Specimens of poled and unpoled ''chem-prep'' PNZT ceramic from batch HF1035 were tested under hydrostatic, uniaxial, and constant stress difference loading conditions at -55, 25, and 75 C. The objective of this experimental study was to characterize the mechanical properties and conditions for the ferroelectric (FE) to antiferroelectric (AFE) phase transformations of this ''chem-prep'' PNZT ceramic to aid grain-scale modeling efforts in developing and testing realistic response models for use in simulation codes. As seen from a previously characterized material (batch HF803), poled ceramic from HF1035 was seen to undergo anisotropic deformation during the transition from a FE to an AFE phase. Also, the phase transformation was found to be permanent for the two low temperature conditions, whereas the transformation can be completely reversed at the highest temperature. The rates of increase in the phase transformation pressures with temperature were practically identical for both unpoled and poled PNZT HF1035 specimens. We observed that temperature spread the phase transformation over mean stress analogous to the observed spread over mean stress due to shear stress. Additionally, for poled ceramic samples, the FE to AFE phase transformation was seen to occur when the normal compressive stress, acting perpendicular to a crystallographic plane about the polar axis, equals the hydrostatic pressure at which the transformation otherwise takes place.

  10. An investigation of phase transformation of titania slag using microwave heating

    NASA Astrophysics Data System (ADS)

    Chen, Guo; Chen, Jin; Peng, Jinhui

    2016-09-01

    The influences of microwave heating on the phase transformation of titania slag were systematically investigated. The thermal stability, surface chemical functional groups and microstructure of the titania slag before and after microwave heating, at a temperature of 950 °C for 60 min, were also analyzed using thermogravimetry and differential thermal analysis (TG-DSC), Fourier transform infrared spectroscopy (FT-IR) spectrum and scanning electron microscope (SEM), respectively. The TG-DSC analysis revealed that the phase transformation of the titania slag from anatase TiO2 to rutile TiO2 occurred between 750 and 1000 °C. The FT-IR rustles demonstrate that the banding form of Ti4+, Ti3+ and Ti2+ ions and the methyl groups on the surface of the titania slag has changed and a new chemical bond Ti-OH was formed. The results of SEM showed that a large number of regulation rutile TiO2 crystals were found on the surface of the microwave-treated samples and the synthetic rutile has been synthesized successfully using microwave heating.

  11. Identification of material parameters for continuum modeling of phase transformations in multicomponent systems

    NASA Astrophysics Data System (ADS)

    Umantsev, Alex

    2007-01-01

    The continuum (field theoretic) method has become the method of choice for multiscale structure-formation modeling of very different phase transformations in the past decade. One of the challenges in application of the method to transformations in real materials is to obtain the mesoscopic parameters, which characterize the thermodynamic system of interest. Significant progress has been made in the case of pure systems; however, one would like to know what changes need to be made in the case of binary or multicomponent systems. We consider an exactly solvable case of the linear multicomponent system undergoing a phase transformation and derive equations that relate parameters of the continuum method, like barrier height, gradient energy, and relaxation coefficients, to the measurable quantities, like interface energy, interfacial thickness, and kinetic coefficient. We find that the contribution of chemical interactions in the system can be expressed as the renormalization of the barrier-height parameter of the continuum method and replacement of the latent heat with the chemical modulus. Atomic-scale simulations data for a solid/liquid transition in a binary Cu-Ni system were chosen for comparison with the theory and the fitting yields the estimates for the continuum-method parameters. Analysis of the temperature dependence of the interfacial energy allowed us to shed light on the magnitudes of the internal energy and entropy contributions into the solid/liquid interface.

  12. Effect of Nb and Sc doping on the phase transformation of sol-gel processed TiO2 nanoparticles.

    PubMed

    Ahmad, A; Buzby, S; Ni, C; Ismat Shah, S

    2008-05-01

    Nb and Sc doped TiO2 nanoparticles were synthesized via sol-gel technique. Dopant concentration of each element was varied from 0.5 to 1.5 atomic%. The effect of metal ion doping and calcination temperatures on anatase to rutile phase transformation has been investigated. Samples were analyzed by various analytical methods such as X-ray diffraction (XRD), Transmission Electron Microscope (TEM), X-ray Photoelectron Spectroscopy (XPS) and Energy Dispersive X-ray Spectroscopy (EDS). XRD analyses showed that Nb and Sc doped samples calcined at 300 degrees C and 350 degrees C, respectively, were crystalline and had an anatase structure. Results showed that anatase was stable up to 700 degrees C annealing temperature for samples doped with 0.5 atomic% Nb. There was a sharp transition from anatase to rutile phase above 700 degrees C and complete rutile structure was obtained at 750 degrees C. However, the transformation from anatase to rutile was not so sharp in samples doped with 1.0 atomic% and 1.5 atomic% Nb. Results indicated that higher concentration of Nb helps to stabilize the anatase phase. For samples doped with 0.5 atomic% Sc, anatase phase is stable up to 650 degrees C. Transformation from anatase to rutile starts at temperature above 650 degrees C and 100% rutile phase was obtained at 800 degrees C while for samples doped with 1.0 atomic% and 1.5 atomic% Sc, the complete transformation from anatase to rutile takes place at an even higher temperature. Results indicate that increasing the calcination time from 0.5 to 2.0 hours at 500 degrees C does not affect the stability of anatase phase. However, TEM and XRD data showed that the increase in the annealing time leads to an increase in particles size. The rutile to anatase concentration ratio increased with temperature above the phase transformation temperature. The activation energy for the phase transformation from anatase to rutile for doped and undoped samples was also measured. There was a general rise in

  13. A phase-field approach to nonequilibrium phase transformations in elastic solids via an intermediate phase (melt) allowing for interface stresses.

    PubMed

    Momeni, Kasra; Levitas, Valery I

    2016-04-28

    A phase-field approach for phase transformations (PTs) between three different phases at nonequilibrium temperatures is developed. It includes advanced mechanics, thermodynamically consistent interfacial stresses, and interface interactions. A thermodynamic Landau-Ginzburg potential developed in terms of polar order parameters satisfies the desired instability and equilibrium conditions for homogeneous phases. The interfacial stresses were introduced with some terms from large-strain formulation even though the small-strain assumption was utilized. The developed model is applied to study the PTs between two solid phases via a highly disordered intermediate phase (IP) or an intermediate melt (IM) hundreds of degrees below the melting temperature. In particular, the β ↔ δ PTs in HMX energetic crystals via IM are analyzed. The effects of various parameters (temperature, ratios of widths and energies of solid-solid (SS) to solid-melt (SM) interfaces, elastic energy, and interfacial stresses) on the formation, stability, and structure of the IM within a propagating SS interface are studied. Interfacial and elastic stresses within a SS interphase and their relaxation and redistribution with the appearance of a partial or complete IM are analyzed. The energy and structure of the critical nucleus (CN) of the IM are studied as well. In particular, the interfacial stresses increase the aspect-ratio of the CN. Although including elastic energy can drastically reduce the energy of the CN of the IM, the activation energy of the CN of the IM within the SS interface increases when interfacial tension is taken into account. The developed thermodynamic potential can also be modified to model other multiphase physical phenomena, such as multi-variant martensitic PTs, grain boundary and surface-induced pre-melting and PTs, as well as developing phase diagrams for IPs.

  14. Nutrient transformation during aerobic composting of pig manure with biochar prepared at different temperatures.

    PubMed

    Li, Ronghua; Wang, Quan; Zhang, Zengqiang; Zhang, Guangjie; Li, Zhonghong; Wang, Li; Zheng, Jianzhong

    2015-01-01

    The effects of the corn stalk charred biomass (CB) prepared at different pyrolysis temperatures as additives on nutrient transformation during aerobic composting of pig manure were investigated. The results showed that the addition of CB carbonized at different temperatures to pig manure compost significantly influenced the compost temperature, moisture, pH, electrical conductivity, organic matter degradation, total nitrogen, [Formula: see text] and NH3 variations during composting. Compared with control and adding CB charred at lower temperature treatments, the addition of CB prepared over 700°C resulted in higher pH (over 9.2) and NH3 emission and lower potherb mustard seed germination index value during the thermophilic phase. Peak temperatures of composts appeared at 7 days for control and 11 days for CB added treatments. During 90 days composting, the organic matter degradation could be increased over 14.8-29.6% after adding of CB in the compost mixture. The introduction of CB in pig manure could prolong the thermophilic phase, inhibit moisture reduce, facilitate the organic matter decomposition, reduce diethylene triamine pentaacetic acid (DTPA) extractable Zn and Cu contents in pig manure composts and increase ryegrass growth. The study indicated that the corn stalk CB prepared around 500°C was a suitable additive in pig manure composting. PMID:25209736

  15. Multi-Length Scale Modeling of High-Pressure-Induced Phase Transformations in Soda-Lime Glass

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Bell, W. C.; Glomski, P. S.; Pandurangan, B.; Cheeseman, B. A.; Fountzoulas, C.; Patel, P.

    2011-10-01

    Molecular-level modeling and simulations are employed to study room-temperature micro-structural and mechanical response of soda-lime glass when subjected to high (i.e., several giga-Pascal) uniaxial-strain stresses/pressure. The results obtained revealed the occurrence of an irreversible phase-transformation at ca. 4 GPa which was associated with a (permanent) 3-7% volume reduction. Close examination of molecular-level topology revealed that the pressure-induced phase transformation in question is associated with an increase in the average coordination number of the silicon atoms, and the creation of two- to fourfold (smaller, high packing-density) Si-O rings. The associated loading and unloading axial-stress versus specific-volume isotherms were next converted into the corresponding loading Hugoniot and unloading isentrope axial-stress versus specific-volume relations. These were subsequently used to analyze the role of the pressure-induced phase-transformation/irreversible-densification in mitigating the effects of blast and ballistic impact loading onto a prototypical glass plate used in monolithic and laminated transparent armor applications. The results of this part of the study revealed that pressure-induced phase-transformation can provide several beneficial effects such as lowering of the loading/unloading stress-rates and stresses, shock/release-wave dispersion, and energy absorption associated with the study of phase-transformation.

  16. Fatigue properties of a metastable beta-type titanium alloy with reversible phase transformation.

    PubMed

    Li, S J; Cui, T C; Hao, Y L; Yang, R

    2008-03-01

    Due to recent concern about allergic and toxic effects of Ni ions released from TiNi alloy into human body, much attention has been focused on the development of new Ni-free, metastable beta-type biomedical titanium alloys with a reversible phase transformation between the beta phase and the alpha'' martensite. This study investigates the effect of the stress-induced alpha'' martensite on the mechanical and fatigue properties of Ti-24Nb-4Zr-7.6Sn (wt.%) alloy. The results show that the as-forged alloy has a low dynamic Young's modulus of 55GPa and a recoverable tensile strain of approximately 3%. Compared with Ti-6Al-4V ELI, the studied alloy has quite a high low-cycle fatigue strength because of the effective suppression of microplastic deformation by the reversible martensitic transformation. Due to the low critical stress required to induce the martensitic transformation, it has low fatigue endurance comparable to that of Ti-6Al-4V ELI. Cold rolling produces a beta+alpha'' two-phase microstructure that is characterized by regions of nano-size beta grains interspersed with coarse grains containing alpha'' martensite plates. Cold rolling increases fatigue endurance by approximately 50% while decreasing the Young's modulus to 49GPa along the rolling direction but increasing it to 68GPa along the transverse direction. Due to the effective suppression of the brittle isothermal omega phase, balanced properties of high strength, low Young's modulus and good ductility can be achieved through ageing treatment at intermediate temperature.

  17. In situ HVEM studies of phase transformation in Zr alloys and compounds under irradiation

    SciTech Connect

    Motta, A.T.; Faldowski, J.A.; Howe, L.M.; Okamoto, P.R.

    1996-01-01

    The High Voltage Electron Microscope (HVEM)/Tandem facility at Argonne National Laboratory has been used to conduct detailed studies of the phase stability and microstructural evolution in zirconium alloys and compounds under ion and electron irradiation. Detailed kinetic studies of the crystalline-to-amorphous transformation of the intermetallic compounds Zr{sub 3}(Fe{sub 1-x}Ni{sub x}), Zr(Fe{sub 1-x},Cr{sub x}){sub 2}, Zr{sub 3}Fe, and Zr{sub 1.5} Nb{sub 1.5} Fe, both as second phase precipitates and in bulk form, have been performed using the in-situ capabilities of the Argonne facility, under a variety of irradiation conditions (temperature, dose rate). Results include a verification of a dose rate effect on amorphization and the influence of material variables (stoichiometry x, presence of stacking faults, crystal structure) on the critical temperature and on the critical dose for amorphization. Studies were also conducted of the microstructural evolution under irradiation of specially tailored binary and ternary model alloys. The stability of the {omega}-phase in Zr-20%Nb under electron and Ar ion irradiation was investigated as well as the {beta}-phase precipitation in Zr-2.5%Nb under Ar ion irradiation. The ensemble of these results is discussed in terms of theoretical models of amorphization and of irradiation-altered solubility.

  18. Numerical modeling of dielectrics electrocaloric effect near the ferroelectric-paraelectric phase transformation

    NASA Astrophysics Data System (ADS)

    Wang, Yixing; Liu, Liwu; Liu, Yanju; Leng, Jinsong

    2013-08-01

    Dielectrics with great electrocaloric effect (ECE) have great potential to be applied in modern refrigeration industry. Compared with the traditional refrigeration technology, it is environmentally friendly and has a higher efficiency. Researchers have found that compared with ECE occurring in ferroelectric phase, ECE in paraelectric state is giant. This paper is determined on calculating the ECE of several kinds of polar dielectric material so as to find some materials with giant ECE. First, we investigate the theoretical framework of ECE near the Ferroelectric-Paraelectric phase transformation, and we show the formula derivation of ECE near the Ferroelectric-Paraelectric phase transformation in the analytical method of the calculus derivation. Then we deduce the expression of phenomenological study parameters. Finally, we calculate the maximum temperature change, entropy change and the mechanical work of several kinds of dielectrics based on the expression deduced. We successfully find some dielectrics with giant ECE. The paper should offer great help in finding the dielectrics with giant ECE, which is of great value in application.

  19. Grain size control and phase transformations in nanocrystalline ZrO(2)-Al(2)O(3)

    NASA Astrophysics Data System (ADS)

    Smyser, Bridget Maureen

    1998-12-01

    An effort has been made to develop nanocrystalline ZrOsb2-Alsb2Osb3 powders that exhibit grain size and phase stability during one thermal cycle from room temperature to 1100-1200sp°C for potential use as thermal barrier coating materials. For this use, the tetragonal phase of ZrOsb2 must be maintained. Tetragonal ZrOsb2 can be prevented from transforming to the monoclinic form by maintaining the grain size below a critical value. Alsb2Osb3 was intended to provide this grain size control due to its immiscibility with ZrOsb2. Several sol-gel and precipitation methods of producing the powders were compared, along with two different forms of high energy mixing. The powders were subsequently calcined and heat treated in order to assess their ability to maintain the desired phase distribution during thermal cycling. The powders were characterized by x-ray diffraction and transmission electron microscopy. The method producing the greatest fraction of tetragonal ZrOsb2 with the least amount of added Alsb2Osb3 was that in which a commercial colloidal solution of ZrOsb2 was mixed with an aluminum nitrate solution. The critical grain size of ZrOsb2 in this system was 30 nm. The grain size was controlled not by a pinning mechanism as is often seen in conventional, high Alsb2Osb3,\\ Alsb2Osb3-ZrOsb2 ceramics, but instead by mutual constraint of surrounding grains aided by sluggish grain boundary diffusion. The grain growth kinetics in all the phases tended to be slower than in micron sized materials, and a range of grain growth exponents from n = 1 to n = 30 were determined for the various phases. Transformation kinetics in ZrOsb2 followed classic Avrami behavior. Alsb2Osb3 phase transformation kinetics were not specifically determined, however, gamma-Alsb2Osb3 was identified at temperatures well beyond its usual stability, which is possibly a grain size effect.

  20. Magnetic and structural phase transitions in erbium at low temperatures and high pressures

    SciTech Connect

    Thomas, Sarah A.; Tsoi, Georgiy M.; Wenger, Lowell E.; Vohra, Yogesh K.

    2012-02-07

    Electrical resistance and crystal structure measurements have been carried out on polycrystalline erbium (Er) at temperatures down to 10 K and pressures up to 20 GPa. An abrupt change in the slope of the resistance is observed with decreasing temperature below 84 K, which is associated with the c-axis modulated (CAM) antiferromagnetic (AFM) ordering of the Er moments. With increasing pressure the temperature of the resistance slope change and the corresponding AFM ordering temperature decrease until vanishing above 10.6 GPa. The disappearance of the slope change in the resistance occurs at similar pressures where the hcp structural phase of Er is transformed to a nine-layer {alpha}-Sm structural phase, as confirmed by our high-pressure synchrotron x-ray diffraction studies. These results suggest that the disappearance in the AFM ordering of Er moments is strongly correlated to the structural phase transition at high pressures and low temperatures.

  1. Phase change based cooling for high burst mode heat loads with temperature regulation above the phase change temperature

    DOEpatents

    The United States of America as represented by the United States Department of Energy

    2009-12-15

    An apparatus and method for transferring thermal energy from a heat load is disclosed. In particular, use of a phase change material and specific flow designs enables cooling with temperature regulation well above the fusion temperature of the phase change material for medium and high heat loads from devices operated intermittently (in burst mode). Exemplary heat loads include burst mode lasers and laser diodes, flight avionics, and high power space instruments. Thermal energy is transferred from the heat load to liquid phase change material from a phase change material reservoir. The liquid phase change material is split into two flows. Thermal energy is transferred from the first flow via a phase change material heat sink. The second flow bypasses the phase change material heat sink and joins with liquid phase change material exiting from the phase change material heat sink. The combined liquid phase change material is returned to the liquid phase change material reservoir. The ratio of bypass flow to flow into the phase change material heat sink can be varied to adjust the temperature of the liquid phase change material returned to the liquid phase change material reservoir. Varying the flowrate and temperature of the liquid phase change material presented to the heat load determines the magnitude of thermal energy transferred from the heat load.

  2. A comparative first-principles study of martensitic phase transformations in TiPd2 and TiPd intermetallics.

    PubMed

    Krcmar, M; Morris, James R

    2014-04-01

    Martensitic phase transformations in TiPd2 and TiPd alloys are studied employing density-functional, first-principles calculations. We examine the transformation of tetragonal C11b TiPd2 to the low-temperature orthorhombic phase (C11b → oI6), and the transformation of cubic B2 TiPd under orthorhombic (B2→B19) and subsequent monoclinic transformations (B19→B19') as the system is cooled. We employ a theoretical approach based on a phenomenological Landau theory of the structural phase transitions and a mean-field approximation for the free energy, utilizing first-principles calculations to obtain the deformation energy as a function of strains and to deduce parameters for constructing the free energy. The predicted transition temperature for the TiPd2 C11b → oI6 transition is in good agreement with reported experimental results. To investigate the TiPd B2→B19 transformation, we employ both the Cauchy-Born rule and a soft-mode-based approach, and elucidate the importance of the coupling between lattice distortion and atomic displacements (i.e. shuffling) in the formation of the final structure. The calculated B2→B19 transition temperature for TiPd alloy agrees well with the experimental results. We also find that there exists a very small but finite (0.0005 eV/atom) energy barrier of B19 TiPd under monoclinic deformation for B19→B19' structural phase transformation. PMID:24625683

  3. Solid-state synthesis and phase transformations in Ni/Fe films: Structural and magnetic studies

    NASA Astrophysics Data System (ADS)

    Myagkov, V. G.; Zhigalov, V. C.; Bykova, L. E.; Bondarenko, G. N.

    2006-10-01

    We have used X-ray diffraction, volume magnetocrystalline anisotropy constant and resistance measurements to study solid-state synthesis in Ni(0 0 1)/Fe(0 0 1), Ni/Fe(0 0 1) and Ni/Fe thin films with the atomic ratio between Fe and Ni of 1:1 (1Fe:1Ni), and 3:1 (3Fe:1Ni). We have found that the formation of Ni 3Fe and NiFe phases in the 1Fe:1Ni films takes place at temperatures ˜620 and ˜720 K, correspondingly. In the case of the 3Fe:1Ni films the solid-state synthesis starts with Ni 3Fe and NiFe phase formation at the same temperatures as for the 1Fe:1Ni films. The increasing of annealing temperature above 820 K leads to the nucleation of a paramagnetic γpar phase at the FeNi/Fe interface. The final products of solid-state synthesis in the Ni(0 0 1)/Fe(0 0 1) thin films are crystallites which consist of the epitaxially intergrown NiFe and γpar phases according to the [1 0 0](0 0 1)NiFe||[1 0 0](0 0 1) γpar orientation relationship. The crystalline perfection and epitaxial growth of the (NiFe+ γpar) crystallites on the MgO(0 0 1) surface allow to distinguish (0 0 2) γpar and (0 0 2)NiFe X-ray peaks (the cell parameters are: a( γpar)=0.3600±0.0005 nm and a(NiFe)=0.3578±0.0005 nm, correspondingly). At low temperatures the paramagnetic γpar phase undergoes the martensite γ→α' phase transition which can be hindered by thermal and epitaxial strains and epitaxial clamping with a MgO substrate. On the basis of the studies of the thin-film solid-state synthesis we predict the existence of two novel structural phase transformations at the temperatures of about 720 and 820 K for alloys of the invar region of the Fe-Ni system.

  4. Near-equilibrium polymorphic phase transformations in Praseodymium under dynamic compression

    SciTech Connect

    Bastea, M; Reisman, D

    2007-02-12

    We report the first experimental observation of sequential, multiple polymorphic phase transformations occurring in Praseodymium dynamically compressed using a ramp wave. The experiments also display the signatures of reverse transformations occuring upon pressure release and reveal the presence of small hysteresys loops. The results are in very good agreement with equilibrium hydrodynamic calculations performed using a thermodynamically consistent, multi-phase equation of state for Praseodymium, suggesting a near-equilibrium transformation behavior.

  5. Phase Stability and Stress-Induced Transformations in Beta Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Kolli, R. Prakash; Joost, William J.; Ankem, Sreeramamurthy

    2015-06-01

    In this article, we provide a brief review of the recent developments related to the relationship between phase stability and stress-induced transformations in metastable body-centered-cubic β-phase titanium alloys. Stress-induced transformations occur during tensile, compressive, and creep loading and influence the mechanical response. These transformations are not fully understood and increased understanding of these mechanisms will permit future development of improved alloys for aerospace, biomedical, and energy applications. In the first part of this article, we review phase stability and discuss a few recent developments. In the second section, we discuss the current status of understanding stress-induced transformations and several areas that require further study. We also provide our perspective on the direction of future research efforts. Additionally, we address the occurrence of the hcp ω-phase and the orthorhombic α″-martensite phase stress-induced transformations.

  6. Transformation twinning of Ni-Mn-Ga characterized with temperature-controlled atomic force microscopy.

    PubMed

    Reinhold, Matthew; Watson, Chad; Knowlton, William B; Müllner, Peter

    2010-06-01

    The magnetomechanical properties of ferromagnetic shape memory alloy Ni-Mn-Ga single crystals depend strongly on the twin microstructure, which can be modified through thermomagnetomechanical training. Atomic force microscopy (AFM) and magnetic force microscopy (MFM) were used to characterize the evolution of twin microstructures during thermomechanical training of a Ni-Mn-Ga single crystal. Experiments were performed in the martensite phase at 25 degrees C and in the austenite phase at 55 degrees C. Two distinct twinning surface reliefs were observed at room temperature. At elevated temperature (55 degrees C), the surface relief of one twinning mode disappeared while the other relief remained unchanged. When cooled back to 25 degrees C, the twin surface relief recovered. The relief persisting at elevated temperature specifies the positions of twin boundaries that were present when the sample was polished prior to surface characterization. AFM and MFM following thermomechanical treatment provide a nondestructive method to identify the crystallographic orientation of each twin and of each twin boundary plane. Temperature dependent AFM and MFM experiments reveal the twinning history thereby establishing the technique as a unique predictive tool for revealing the path of the martensitic and reverse transformations of magnetic shape memory alloys.

  7. Phase diagram of the Y–Y{sub 2}Se{sub 3} system, enthalpies of phase transformations

    SciTech Connect

    Andreev, O.V.; Kharitontsev, V.B.; Polkovnikov, A.A.; Elyshev, A.V.; Andreev, P.O.

    2015-10-15

    A phase diagram for the Y–Y{sub 2}Se{sub 3} system has been constructed in which the YSe and Y{sub 2}Se{sub 3} phases melt congruently. The daltonide type YSe phase (ST Y{sub 0,75}Se, a=1.1393 nm, melting point=2380 K, H=2200 MPa) forms a double-sided solid solution from 49–50–53 at% Se. In the 50–53 at% Se range, the unit cell parameter increases to 1.1500 nm, the microhardness increases to 4100 MPa and electrical resistivity increases from 0.018 to 0.114 Ω m. These changes are caused by the dominating influx of newly formed structural cationic vacancies arising from the selenium anions that are surplus for the 1:1 Y:Se stoichiometry. The full-valence Y{sub 2}Se{sub 3} composition exists as a low-temperature modification of ε-Y{sub 2}Se{sub 3} (ST Sc{sub 2}S{sub 3}, a=1.145 nm, b=0.818 nm, c=2.438 nm, melting point=1780 K, ∆fusion enthalpy=4±0.4 J/g) and transforms into a modification of ξ-Y{sub 2}Se{sub 3} that does not undergo fixing by thermo-hardening. The eutectic melting point between the YSe and Y{sub 2}Se{sub 3} phases is 1625±5 K, with a eutectic composition that is assumed to be 57.5 at% Se and have an enthalpy of fusion of 43±4.3 J/g. The eutectic for the Y and YSe phases appears at a temperature of 1600 K and 5 at% Se. - Highlights: • Phase equilibria in the Y–Y{sub 2}Se{sub 3} system from 1000 K to melt were studies. • High-temperature polymorphic transition for Y{sub 2}Se{sub 3} were observed. • Singular points in solid solutions areas for YSe and Y{sub 2}Se{sub 3} were found.

  8. Study of the magnetic properties, structure, and phase transformation in the alloys of the Co-Al-W system

    SciTech Connect

    Davidov, D. I. Stepanova, N. N. Kazantseva, N. V. Rigmant, M. B. Shishkin, D. A.

    2015-10-27

    An experimental study of phase transformations in the system of Co-Al-W in the concentration area of the intermetallic compound Co{sub 3}(Al, W) is presented. The structure and phase composition of the Co–9 at % Al–X at % W (X = 4.5, 6.8, 8.5, 10, 12.5) alloys in depending on the tungsten content are analyzed. The Curie temperature and magnetic properties of the alloys with the different phase composition are determined.

  9. Phase retrieval by using the transport-of-intensity equation with Hilbert transform.

    PubMed

    Li, Wei-Shuo; Chen, Chun-Wei; Lin, Kuo-Feng; Chen, Hou-Ren; Tsai, Chih-Ya; Chen, Chyong-Hua; Hsieh, Wen-Feng

    2016-04-01

    Phase recovery by solving the transport-of-intensity equation (TIE) is a non-iterative and non-interferometric phase retrieval technique. From solving the TIE with conventional, one partial derivative and Hilbert transform methods for both the periodic and aperiodic samples, we demonstrate that the Hilbert transform method can provide the smoother phase images with edge enhancement and fine structures. Furthermore, compared with the images measured by optical and atomic force microscopy, the Hilbert transform method has the ability to quantitatively map out the phase images for both the periodic and aperiodic structures. PMID:27192301

  10. Effect of Bi Substitution on the FCC to L10 Phase Transformation in CoPt(Bi) Nanoparticles

    NASA Astrophysics Data System (ADS)

    Abel, Frank; Tzitzios, Vasilis; Sellmyer, David; Hadjipanayis, George

    The transformation from the fcc to fct structure L10 in CoPt requires annealing at temperatures over 6000 C, as compared to FePt which can occur at 5500 C. In the past, similar attempts to lower the transformation temperature in CoPt have been unsuccessful. In this work, we report for the first time a decrease in the phase transformation temperature of chemically synthesized CoPt nanoparticles by the addition of a small amount of bismuth. Our studies have shown that the phase transformation occurs in as-made CoPt(Bi) nanoparticles at refluxing temperatures as low as 330 0C, which is significantly lower than previously reported values in CoPt nanoparticles and thin films. The as-made CoPt nanoparticles with 5% atomic weight Bi show partial L10 ordering with an average size of 11.7 nm, as shown by TEM imaging, and have a coercivity of 1 kOe and saturation magnetization of 32 emu/g. Annealing of the CoPt(Bi) nanoparticles produced maximum coercivities of 12.4 kOe when annealed at 700 0C for 1 hour. The effect of amount of Bi addition on the formation and ordering of L10 structure will be discussed.

  11. Metastable phases in the aluminum-germanium alloy system: Synthesis by mechanical alloying and pressure induced transformations

    SciTech Connect

    Yvon, P.

    1994-01-01

    Al and Ge form a simple equilibrium eutectic with limited mutual solubility and no intermetallic intermediate phases. We used a regular solution approach to model effects of pressure on Al-Ge. Effects of pressure are to extend solubility of Ge in Al, to displace the eutectic composition towards the Ge rich side, and to slightly decrease the eutectic temperature. We designed thermobaric treatments to induce crystal-to-glass transformations in fine grain mixtures of Al and Ge. We used Merrill-Bassett diamond anvil cells to perform experiments at high pressures. We built an x-ray apparatus to determine the structure of alloys at pressure and from cryogenic temperatures to 400C. Two-phase Al-Ge samples with fine microstructures were prepared by splat-quenching and mechanical alloying. We observed a crystal-to-glass transformation at about 80 kbar. The amorphous phase formed was metastable at ambient temperature after pressure release. This was confirmed by TEM. The amorphous phase obtained by pressurization was found to have a liquid-like structure and was metallic. In the TEM samples we also observed the presence of a second amorphous phase formed upon release of the pressure. This second phase had a tetrahedrally-bonded continuous random network structure, similar to that of semi-conducting amorphous germanium.

  12. In Situ TEM Nanoindentation Studies on Stress-Induced Phase Transformations in Metallic Materials

    DOE PAGES

    Liu, Y.; Wang, H.; Zhang, X.

    2015-11-30

    Though abundant phase transformations are in general thermally driven processes, there are many examples wherein stresses can induce phase transformations. We applied numerous in situ techniques, such as in situ x-ray diffraction and neutron diffraction in order to reveal phase transformations. Recently, an in situ nanoindentation technique coupled with transmission electron microscopy demonstrated the capability to directly correlating stresses with phase transformations and microstructural evolutions at a submicron length scale. We briefly review in situ studies on stress-induced diffusional and diffusionless phase transformations in amorphous CuZrAl alloy and NiFeGa shape memory alloy. Moreover, in the amorphous CuZrAl, in situ nanoindentationmore » studies show that the nucleation of nanocrystals (a diffusional process) occurs at ultra-low stresses manifested by a prominent stress drop. In the NiFeGa shape memory alloy, two distinctive types of martensitic (diffusionless) phase transformations accompanied by stress plateaus are observed, including a reversible gradual phase transformation at low stress levels, and an irreversible abrupt phase transition at higher stress levels.« less

  13. In Situ TEM Nanoindentation Studies on Stress-Induced Phase Transformations in Metallic Materials

    SciTech Connect

    Liu, Y.; Wang, H.; Zhang, X.

    2015-11-30

    Though abundant phase transformations are in general thermally driven processes, there are many examples wherein stresses can induce phase transformations. We applied numerous in situ techniques, such as in situ x-ray diffraction and neutron diffraction in order to reveal phase transformations. Recently, an in situ nanoindentation technique coupled with transmission electron microscopy demonstrated the capability to directly correlating stresses with phase transformations and microstructural evolutions at a submicron length scale. We briefly review in situ studies on stress-induced diffusional and diffusionless phase transformations in amorphous CuZrAl alloy and NiFeGa shape memory alloy. Moreover, in the amorphous CuZrAl, in situ nanoindentation studies show that the nucleation of nanocrystals (a diffusional process) occurs at ultra-low stresses manifested by a prominent stress drop. In the NiFeGa shape memory alloy, two distinctive types of martensitic (diffusionless) phase transformations accompanied by stress plateaus are observed, including a reversible gradual phase transformation at low stress levels, and an irreversible abrupt phase transition at higher stress levels.

  14. High pressure–low temperature phase diagram of barium: Simplicity versus complexity

    SciTech Connect

    Desgreniers, Serge; Tse, John S.; Matsuoka, Takahiro; Ohishi, Yasuo

    2015-11-30

    Barium holds a distinctive position among all elements studied upon densification. Indeed, it was the first example shown to violate the long-standing notion that high compression of simple metals should preserve or yield close-packed structures. From modest pressure conditions at room temperature, barium transforms at higher pressures from its simple structures to the extraordinarily complex atomic arrangements of the incommensurate and self-hosting Ba-IV phases. By a detailed mapping of the pressure/temperature structures of barium, we demonstrate the existence of another crystalline arrangement of barium, Ba-VI, at low temperature and high pressure. The simple structure of Ba-VI is unlike that of complex Ba-IV, the phase encountered in a similar pressure range at room temperature. First-principles calculations predict Ba-VI to be stable at high pressure and superconductive. The results illustrate the complexity of the low temperature-high pressure phase diagram of barium and the significant effect of temperature on structural phase transformations.

  15. Nanostructures and porous silicon: activity and phase transformation in sensors and photocatalytic reactors

    NASA Astrophysics Data System (ADS)

    Gole, James L.; Lewis, Stephen E.; Fedorov, Andrei; Prokes, Sharka

    2005-08-01

    Porous interfaces are being transformed within the framework of nanotechnology to develop highly efficient sensors, nanostructure modified microreactors, and active battery electrodes. We demonstrate the rapid and reversible sensing of HCl, NH3, CO, SO2, H2S, and NOx at or below the ppm level. Gold and tin-based nanostructured coatings are introduced to improve the detection of NH3, CO, and NOx as these coatings form the initial basis for introducing significant selectivity. These sensor suites are being extended to develop microreactors, with a goal to introduce quantum dot (QD) based photocatalysts within the porous interface structure. Highly efficient, visible light absorbing, anatase TiO2-xNx nanophotocatalysts have been formed in seconds at room temperature via the direct nitridation of anatase TiO2 nanocolloids. A tunability throughout the visible is found to depend upon the degree of nanoparticle agglomeration and upon the ready ability to seed these nanoparticles with metal (metal ions) including Pt, Co, and Ni. This metal ion seeding also leads to unique efficient phase transformations, including that of anatase to rutile TiO2, at room temperature. The visible light absorbing photocatalysts readily photodegrade methylene blue and gaseous ethylene. They can be transformed from liquids to gels and, in addition, can be placed on the surfaces of sensor and microreactor based configurations 1) to produce an improved photocatalytically induced solar based sensor response, and 2) with a goal to facilitate catalytically induced disinfection of airborne pathogens. In contrast to the nitridation process which is facile at the nanoscale, we find little or no direct nitridation of micrometer sized anatase or rutile TiO2 powders at room temperature. Thus, we illustrate an example of how a traversal to the nanoscale can vastly improve the efficiency for producing important submicron particles.

  16. Phase transformation and mechanical behavior in annealed 2205 duplex stainless steel welds

    SciTech Connect

    Badji, Riad Bouabdallah, Mabrouk; Bacroix, Brigitte; Kahloun, Charlie; Belkessa, Brahim; Maza, Halim

    2008-04-15

    The phase transformations and mechanical behaviour during welding and subsequent annealing treatment of 2205 duplex stainless steel have been investigated. Detailed microstructural examination showed the presence of higher ferrite amounts in the heat affected zone (HAZ), while higher amounts of austenite were recorded in the centre region of the weld metal. Annealing treatments in the temperature range of 800-1000 deg. C resulted in a precipitation of {sigma} phase and M{sub 23}C{sub 6} chromium carbides at the {gamma}/{delta} interfaces that were found to be preferential precipitation sites. Above 1050 deg. C, the volume fraction of {delta} ferrite increases with annealing temperature. The increase of {delta} ferrite occurs at a faster rate in the HAZ than in the base metal and fusion zone. Optimal mechanical properties and an acceptable ferrite/austenite ratio throughout the weld regions corresponds to annealing at 1050 deg. C. Fractographic examinations showed that the mode of failure changed from quasi-cleavage fracture to dimple rupture with an increase in the annealing temperature from 850 to 1050 deg. C.

  17. Identifying the multiplicity of crystallographically equivalent variants generated by iterative phase transformations in Ti.

    PubMed

    Grammatikopoulos, Panagiotis; Pond, Robert Charles

    2016-02-01

    This work describes phase transformations in Ti from a purely crystallographic perspective. Iterative heating and cooling above and below 1155 K induce phase transitions between a low-temperature h.c.p. (hexagonal close packed) (6/m mm) and a high-temperature b.c.c. (body centred cubic) (m3m) structure. The crystallography of the two phases has been found to be related by the Burgers Orientation Relationship (Burgers OR). The transitions are accompanied by changes in texture, as an ever-increasing number of crystallographically equivalent variants occur with every cycle. Identifying their multiplicity is important to relate the textures before and after the transformation, in order to predict the resultant one and refine its microstructure. The four-dimensional Frank space was utilized to describe both h.c.p. and b.c.c. structures within the same orthogonal framework, and thus allow for their easy numerical manipulation through matrix algebra. Crystallographic group decomposition showed that the common symmetry maintained in both groups was that of group 2/m; therefore, the symmetry operations that generated the variants were of groups 3m and 23 for cubic and hexagonal generations, respectively. The number of all potential variants was determined for the first three variant generations, and degeneracy was indeed detected, reducing the number of variants from 72 to 57 and from 432 to 180 for the second and third generations, respectively. Degeneracy was attributed on some special alignments of symmetry operators, as a result of the Burgers OR connecting the relative orientation of the two structures. PMID:26830797

  18. Metastable phase transformation and hcp-ω transformation pathways in Ti and Zr under high hydrostatic pressures

    NASA Astrophysics Data System (ADS)

    Gao, Lei; Ding, Xiangdong; Lookman, Turab; Sun, Jun; Salje, E. K. H.

    2016-07-01

    The energy landscape of Zr at high hydrostatic pressure suggests that its transformation behavior is strongly pressure dependent. This is in contrast to the known transition mechanism in Ti, which is essentially independent of hydrostatic pressure. Generalized solid-state nudged elastic band calculations at constant pressure shows that α-Zr transforms like Ti only at the lowest pressure inside the stability field of ω-phase. Different pathways apply at higher pressures where the energy landscape contains several high barriers so that metastable states are expected, including the appearance of a transient bcc phase at ca. 23 GPa. The global driving force for the hcp-ω transition increases strongly with increasing pressure and reaches 23.7 meV/atom at 23 GPa. Much of this energy relates to the excess volume of the hcp phase compared with its ω phase.

  19. Stripe phases in high-temperature superconductors

    PubMed Central

    Emery, V. J.; Kivelson, S. A.; Tranquada, J. M.

    1999-01-01

    Stripe phases are predicted and observed to occur in a class of strongly correlated materials describable as doped antiferromagnets, of which the copper-oxide superconductors are the most prominent representatives. The existence of stripe correlations necessitates the development of new principles for describing charge transport and especially superconductivity in these materials. PMID:10430848

  20. Isomorphism in Fluid Phase Diagrams: Kulinskii Transformations Related to the Acentric Factor

    SciTech Connect

    Wei, Q; Herschbach, DR

    2013-10-31

    For a wide class of molecular fluids, the temperature-density phase diagrams exhibit two prominent generic properties: a nearly linear locus, termed the Zeno line, along which the compressibility factor, Z = P/rho RT = 1 (same as an ideal gas), and the widely arching border of the vapor-liquid coexistence region, termed the binodal curve, with gas and liquid branches meeting at the critical point. The Zeno and binodal loci have been known for more than a century, yet only during the past two decades were striking empirical correlations between them recognized. Recently, Kulinskii introduced a remarkably simple projective transformation, wherein the linearity of the Zeno line and its relation to the binodal curve are geometrical consequences of an approximate isomorphism of the fluid with a venerable theoretical model, the lattice gas (equivalent to the Ising spin model). Here we show the Kulinskii transformation is significantly improved in accuracy and scope by using as input, in place of the lattice gas, the original van der Waals equation or simulation results for the Lennard-Jones potential. Moreover, the key parameters in these transformations can be expressed in terms of the acentric factor, introduced by Pitzer to extend corresponding states.

  1. Phase diagram of ammonium perchlorate: Raman spectroscopic constrains at high pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Dunuwille, Mihindra; Yoo, Choong-Shik

    2016-06-01

    We present the pressure-temperature (PT) induced physical and chemical transformations in ammonium perchlorates (APs) up to 50 GPa and 450 °C, using diamond anvil cells and confocal micro-Raman spectroscopy, which provide new constraints for the phase diagram of AP. The results show spectral evidences for three new polymorphs (III, IV, and VI) of AP, in addition to two previously known phases (I and II), at various PT conditions with varying degrees of hydrogen bonding and lack of strong spectral evidence for previously known high-temperature cubic phase (phase V). Upon further heating, AP chemically decomposes to N2, N2O, and H2O. The present phase diagram is, therefore, in sharp contrast to the previous one, underscoring a rich polymorphism, a large stability field for solids, and a replacement of the melt with a decomposition line.

  2. Solution-mediated phase transformation: significance during dissolution and implications for bioavailability.

    PubMed

    Greco, Kristyn; Bogner, Robin

    2012-09-01

    Solubility improvement of poorly soluble drug compounds is a key approach to ensuring the successful development of many new drugs. Methods used to improve the solubility of drug compounds include forming a salt, cocrystal, or amorphous solid. These methods of improving solubility can often lead to a phenomenon called solution-mediated phase transformation, a phase change that is facilitated through exposure to solution. Solution-mediated phase transformation occurs in three steps: dissolution to create a supersaturated solution followed by nucleation of less soluble phase and the growth of that phase. When the growth of the less soluble phase occurs on the surface of the metastable solid, this phenomenon can cause a marked decrease in dissolution rate during in vitro dissolution evaluation, and ultimately in vivo. Therefore, transformation to a less soluble solid during dissolution is an important aspect to consider when evaluating approaches to increase the solubility of a poorly soluble drug. Identification of solution-mediated phase transformation during dissolution is reviewed for powder dissolution, rotating disk method, and channel flow-through apparatus. Types of solution-mediated phase transformation are described in this report, including those involving salts, polymorphs, amorphous solids, and cocrystals. Many experimental examples are provided. Evidence of potential solution-mediated phase transformation in vivo is discussed to better understand the relationship between in vitro dissolution evaluation and in vivo performance.

  3. Nanoindentation-induced phase transformation and structural deformation of monocrystalline germanium: a molecular dynamics simulation investigation

    PubMed Central

    2013-01-01

    Molecular dynamics simulations were conducted to study the nanoindentation of monocrystalline germanium. The path of phase transformation and distribution of transformed region on different crystallographic orientations were investigated. The results indicate the anisotropic behavior of monocrystalline germanium. The nanoindentation-induced phase transformation from diamond cubic structure to β-tin-Ge was found in the subsurface region beneath the tool when indented on the (010) plane, while direct amorphization was observed in the region right under the indenter when the germanium was loaded along the [101] and [111] directions. The transformed phases extend along the < 110 > slip direction of germanium. The depth and shape of the deformed layers after unloading are quite different according to the crystal orientation of the indentation plane. The study results suggest that phase transformation is the dominant mechanism of deformation of monocrystalline germanium film in nanoindentation. PMID:23947487

  4. Comparison between thermochemical and phase stability data for the quartz-coesite-stishovite transformations

    NASA Technical Reports Server (NTRS)

    Weaver, J. S.; Chipman, D. W.; Takahashi, T.

    1979-01-01

    Phase stability and elasticity data have been used to calculate the Gibbs free energy, enthalpy, and entropy changes at 298 K and 1 bar associated with the quartz-coesite and coesite-stishovite transformations in the system SiO2. For the quartz-coesite transformation, these changes disagree by a factor of two or three with those obtained by calorimetric techniques. The phase boundary for this transformation appears to be well determined by experiment; the discrepancy, therefore, suggests that the calorimetric data for coesite are in error. Although the calorimetric and phase stability data for the coesite-stishovite transformation yield the same transition pressure at 298 K, the phase-boundary slopes disagree by a factor of two. At present, it is not possible to determine which of the data are in error. Thus serious inconsistencies exist in the thermodynamic data for the polymorphic transformations of silica.

  5. Thermal stability and phase transformations of martensitic Ti-Nb alloys

    NASA Astrophysics Data System (ADS)

    Bönisch, Matthias; Calin, Mariana; Waitz, Thomas; Panigrahi, Ajit; Zehetbauer, Michael; Gebert, Annett; Skrotzki, Werner; Eckert, Jürgen

    2013-10-01

    Aiming at understanding the governing microstructural phenomena during heat treatments of Ni-free Ti-based shape memory materials for biomedical applications, a series of Ti-Nb alloys with Nb concentrations up to 29 wt% was produced by cold-crucible casting, followed by homogenization treatment and water quenching. Despite the large amount of literature available concerning the thermal stability and ageing behavior of Ti-Nb alloys, only few studies were performed dealing with the isochronal transformation behavior of initially martensitic Ti-Nb alloys. In this work, the formation of martensites (α‧ and α″) and their stability under different thermal processing conditions were investigated by a combination of x-ray diffraction, differential scanning calorimetry, dilatometry and electron microscopy. The effect of Nb additions on the structural competition in correlation with stable and metastable phase diagrams was also studied. Alloys with 24 wt% Nb or less undergo a \\alpha '/\\alpha '' \\to \\alpha + \\beta \\to \\beta transformation sequence on heating from room temperature to 1155 K. In alloys containing >24 wt% Nb α″ martensitically reverts back to β0, which is highly unstable against chemical demixing by formation of isothermal ωiso. During slow cooling from the single phase β domain α precipitates and only very limited amounts of α″ martensite form.

  6. Carbon deposition and phase transformations in red mud on exposure to methane.

    PubMed

    Sushil, S; Alabdulrahman, A M; Balakrishnan, M; Batra, V S; Blackley, R A; Clapp, J; Hargreaves, J S J; Monaghan, A; Pulford, I D; Rico, J L; Zhou, W

    2010-08-15

    A characterization study detailing the phase transformations and microstructural nature of the carbon deposited during methane decomposition over red mud has been undertaken. In situ XRD was carried out to study the phase transformation sequences of red mud during the reaction. Scanning electron microscopy, high resolution transmission electron microscopy, thermogravimetric analysis, BET surface area determination and CHN analysis were carried out to investigate the properties of the post-reaction samples. Exposure to methane with increasing temperature caused a stepwise reduction of iron oxides in red mud and promoted methane cracking leading to carbon deposition. The presence of carbon nanostructures was confirmed by HRTEM observations. The carbon formed was graphitic in nature and the spent red mud, rich in Fe and Fe(3)C formed as a result of the reduction of the iron oxide, was magnetic in nature. The surface area of the material was enhanced upon reaction. In addition, reactivity comparisons between goethite and red mud were carried out to study the formation of carbon oxides during reaction. PMID:20462696

  7. Phase transformation and fluorescent enhancement of ErF3 at high pressure

    NASA Astrophysics Data System (ADS)

    Li, Wentao; Ren, Xiangting; Huang, Yanwei; Yu, Zhenhai; Mi, Zhongying; Tamura, Nobumichi; Li, Xiaodong; Peng, Fang; Wang, Lin

    2016-09-01

    Pressure-induced phase transformation and fluorescent properties of ErF3 were investigated here using in-situ synchrotron X-ray diffraction and photoluminescence up to 32.1 GPa at room temperature. Results showed that ErF3 underwent a reversible pressure-induced phase transition from the β-YF3-type to the fluocerite LaF3-type at 9.8 GPa. The bulk moduli B0 for low- and high-pressure phases were determined to be 130 and 208 GPa, respectively. Photoluminescencent studies showed that new emission lines belonging to the transition of 2H11/2→4I15/2, 4S3/2→4I15/2, and 4F9/2→4I15/2 appeared during phase transition, suggesting pressure-induced electronic band splitting. Remarkably, significant pressure-induced enhancement of photoluminescence was observed, which was attributed to lattice distortion of the material under high pressure.

  8. Dual phase transformation and resultant magnetic properties in Fe{sub 3}Pt thin films

    SciTech Connect

    Hsiao, S. N.; Lee, H. Y.; Chen, S. K.; Liu, S. H.

    2012-04-01

    Fifty-nm-thick Fe{sub 75}Pt{sub 25} thin films have been made on glass substrates by rf magnetron sputtering at room temperature, and subsequently annealed at 300 -700 deg. C (T{sub a}) for 1 h. The as-deposited Fe{sub 3}Pt film exhibits high magnetization of 1530 emu/cm{sup 3} and a disordered bcc structure, confirmed by high-resolution synchrotron radiation x-ray diffractometry. First-phase transformation from the bcc to disorder fcc structure occurs for samples annealed at 300 deg. C. With increasing of T{sub a} up to 375 deg. C, the film displays a nearly disordered fcc phase with low magnetization of 1083 emu/cm{sup 3}. The fcc phase changes to ordered L1{sub 2} structure for samples with T{sub a} {>=} 400 deg. C. The highly ordered L1{sub 2} phase with magnetization of 1270 emu/cm{sup 3} and coercivity of 66 Oe was obtained in Fe{sub 3}Pt film at 700 deg. C-annealing.

  9. An Exploratory Study of the Viscoelasticity of Phase-Transforming Material

    SciTech Connect

    Li, L.; Wang, L; Vaughan, M

    2009-01-01

    Attenuation and modulus dispersion are typically associated with shear stress and strain. Time-dependent volume changes accompanying pressure variations can give rise to bulk modulus attenuation and dispersion. Phase transformations in a two-phase region are candidates for such phenomena. Here we report laboratory data that are consistent with bulk modulus softening as pressure is cycled in a region of coexisting olivine and spinel. We use Fay70For30 olivine as our sample. Experiments are performed in a multi-anvil high-pressure apparatus (Deformation DIA) using synchrotron (NSLS) X-ray radiation as the probing tool. Pressure is up to 12 GPa and temperature is up to 1450 C. Measurements were carried out within the binary loop where the olivine and spinel phases coexist. We apply a uniaxial oscillation stress onto the sample and Young's modulus and Q{sup -1} are measured at frequencies of 0.1-0.01 Hz. Our results indicate that the sinusoidal force applied to the sample in olivine-ringwoodite region has much lower bulk modulus and higher Q{sup -1} than in the single-phase regions. Our data are consistent with the diffusion controlled model of (Jackson, I., 2007. Physical origins of anelasticity and attenuation in rock, In: Price, G.D. (Ed.) Mineral Physics. Treatise On Geophysics. Elsevier), where the characteristic time decreases with decreasing strain.

  10. An exploratory study of the viscoelasticity of phase-transforming material

    NASA Astrophysics Data System (ADS)

    Li, Li; Wang, Liping; Vaughan, Michael

    2009-05-01

    Attenuation and modulus dispersion are typically associated with shear stress and strain. Time-dependent volume changes accompanying pressure variations can give rise to bulk modulus attenuation and dispersion. Phase transformations in a two-phase region are candidates for such phenomena. Here we report laboratory data that are consistent with bulk modulus softening as pressure is cycled in a region of coexisting olivine and spinel. We use Fay70For30 olivine as our sample. Experiments are performed in a multi-anvil high-pressure apparatus (Deformation DIA) using synchrotron (NSLS) X-ray radiation as the probing tool. Pressure is up to 12 GPa and temperature is up to 1450 °C. Measurements were carried out within the binary loop where the olivine and spinel phases coexist. We apply a uniaxial oscillation stress onto the sample and Young's modulus and Q-1 are measured at frequencies of 0.1-0.01 Hz. Our results indicate that the sinusoidal force applied to the sample in olivine-ringwoodite region has much lower bulk modulus and higher Q-1 than in the single-phase regions. Our data are consistent with the diffusion controlled model of [Jackson, I., 2007. Physical origins of anelasticity and attenuation in rock, In: Price, G.D. (Ed.) Mineral Physics. Treatise On Geophysics. Elsevier], where the characteristic time decreases with decreasing strain.

  11. Experimental investigation of grain-scale microstructure evolution during olivine-wadsleyite phase transformation under "dry" conditions

    NASA Astrophysics Data System (ADS)

    Mohiuddin, A.; Karato, S. I.

    2015-12-01

    We investigate the evolution of grain-scale microstructure during the olivine to wadsleyite transformation through high pressure and temperature experiments. The grain-size evolution and the spatial distribution of newly formed fine grains during the phase transformation in the mantle transition zone have potentially large influence on the strength of a slab in the transition zone that has an important control on the slab deformation. However, most of previous experimental studies on the processes of phase transformations have focused on the kinetics of phase transformation and no experimental studies have been published on these microstructural issues. The key issues that we investigate include (i) the size of new grains and (ii) spatial distribution of new grains (critical conditions for percolation). We conduct high-pressure, temperature annealing experiments and investigate the grain-scale microstructure evolution. We find that olivine transforms to wadsleyite mainly via grain boundary nucleated transformation mechanism: New grains are formed on pre-existing olivine-olivine grain-boundaries in all cases. In some runs, we identified the time for site saturation on grain-boundaries and together with the grain-size at site saturation we calculated both nucleation and growth rate. During early stages of transformation a grain boundary percolated microstructure develops and this may be very crucial in decreasing the overall strength of composite during this step. The grain size at the site saturation seems to decrease with overpressure. We also find that inadequate annealing of defects may give rise to apparent kinetic parameters interpretation of which may not be straightforward. We report inferred functional forms of nucleation and growth rate and discuss possible implications of these experimental observations on the weakening of a slab in the mantle transition zone.

  12. Compensating temperature-induced ultrasonic phase and amplitude changes

    NASA Astrophysics Data System (ADS)

    Gong, Peng; Hay, Thomas R.; Greve, David W.; Junker, Warren R.; Oppenheim, Irving J.

    2016-04-01

    In ultrasonic structural health monitoring (SHM), environmental and operational conditions, especially temperature, can significantly affect the propagation of ultrasonic waves and thus degrade damage detection. Typically, temperature effects are compensated using optimal baseline selection (OBS) or optimal signal stretch (OSS). The OSS method achieves compensation by adjusting phase shifts caused by temperature, but it does not fully compensate phase shifts and it does not compensate for accompanying signal amplitude changes. In this paper, we develop a new temperature compensation strategy to address both phase shifts and amplitude changes. In this strategy, OSS is first used to compensate some of the phase shifts and to quantify the temperature effects by stretching factors. Based on stretching factors, empirical adjusting factors for a damage indicator are then applied to compensate for the temperature induced remaining phase shifts and amplitude changes. The empirical adjusting factors can be trained from baseline data with temperature variations in the absence of incremental damage. We applied this temperature compensation approach to detect volume loss in a thick wall aluminum tube with multiple damage levels and temperature variations. Our specimen is a thick-walled short tube, with dimensions closely comparable to the outlet region of a frac iron elbow where flow-induced erosion produces the volume loss that governs the service life of that component, and our experimental sequence simulates the erosion process by removing material in small damage steps. Our results show that damage detection is greatly improved when this new temperature compensation strategy, termed modified-OSS, is implemented.

  13. Investigation on phase transformation mechanism of zeolite NaY under alkaline hydrothermal conditions

    SciTech Connect

    Li, Peng Ding, Tian Liu, Liping Xiong, Guang

    2013-12-15

    The phase transformation mechanism of zeolite NaY under alkaline hydrothermal conditions was investigated by UV Raman spectroscopy, X-ray diffraction, X-ray fluorescence and scanning electron microscopy techniques. The results revealed that the products and transformation rate are dependent on the alkalinities. All of the starting and resulting zeolites are constructed with the 4-ring and 6-ring secondary building units. The products have lower Si/Al ratio, higher framework density and smaller pore size, which are more stable under alkaline hydrothermal condition. During the phase transformation the fragments of faujasite are formed, then the fragments combine to form different zeolites depending on basicity. Zeolite NaY crystals are consumed as the reservoir for the transformation products during the recrystallization process. For the first time, a 4-membered ring intermediate was found at the early stage of the recrystallization process. A cooperative interaction of liquid and solid phases is required for inducing the phase transformation. - Graphical Abstract: Phase transformation of NaY zeolite under alkaline hydrothermal condition is achieved by the cooperative interaction of the liquid and solid phases. A 4-membered ring species is an intermediate for recrystallization process. Highlights: • The products and transformation rate are dependent on the alkalinity. • A 4-membered ring species is an intermediate for recrystallization process. • A cooperative interaction of liquid and solid phases is required.

  14. Phase transformation in Mn-doped titania hollow spheres and their biocompatibility studies

    NASA Astrophysics Data System (ADS)

    Kalita, Himani; Konar, Suraj; Tantubay, Sangeeta; Mahto, Madhusudan Kr.; Pathak, Amita

    2015-11-01

    Mn-doped titania hollow nanospheres were prepared via sacrificial core templating method at room temperature, using carbon spheres as the sacrificial core and template. X-ray diffraction and thermal studies showed the phase transformation of titania from anatase to rutile at temperature as low as 550 °C, when the dopant (i.e., Mn) concentration was increased from 1 to 6 mol % (with respect to Ti). Fourier transform infra red spectroscopic studies have been carried out to determine the surface functional groups, while the spherical and hollow morphology of the titania nanostructures have been confirmed through scanning electron microscopic as well as transmission electron microscopic studies. The chemical composition of the samples has been determined through X-ray photoelectron spectroscopic studies, while their magnetic properties have been studied using superconducting quantum interference device analysis. The biocompatibility and suitability of the nanospheres for intracellular applications has been tested through conventional MTT assay using MDA-MB 231 human breast cancer cell lines.

  15. Synthesis of new Diamond-like B-C Phases under High Pressure and Temperatures

    SciTech Connect

    Ming, L. C.; Zinin, P. V.; Sharma, S. K.

    2014-04-22

    A cubic BC3 (c-BC3) phase was synthesized by direct transformation from graphitic phases at a pressure of 39 GPa and temperature of 2200 K in a laser-heated diamond anvil cell (DAC). A combination of x-ray diffraction (XRD), electron diffraction (ED), transmission electron microscopy (TEM) imaging, and electron energy loss spectroscopy (EELS) measurements lead us to conclude that the obtained phase is hetero-nano-diamond, c-BC3. The EELS measurements show that the atoms inside the cubic structure are bonded by sp3 bonds.

  16. Fast 3D shape measurement using Fourier transform profilometry without phase unwrapping

    NASA Astrophysics Data System (ADS)

    Song, Kechen; Hu, Shaopeng; Wen, Xin; Yan, Yunhui

    2016-09-01

    This paper presents a novel, simple, yet fast 3D shape measurement method using Fourier transform profilometry. Different from the conventional Fourier transform profilometry, this proposed method introduces the binocular stereo vision and employs two image pairs (i.e., original image pairs and fringe image pairs) to restructure 3D shape. In this proposed method, instead of phase unwrapping algorithm, a coarse disparity map is adopted as a constraint condition to realize phase matching using wrapped phase. Since the local phase matching and sub-pixel disparity refinement are proposed to obtain high measuring accuracy, high-quality phase is not required. The validity of the proposed method is verified by experiments.

  17. Effects of Forming Induced Phase Transformation on Crushing Behavior of TRIP Steel

    SciTech Connect

    Liu, Wenning N.; Choi, Kyoo Sil; Soulami, Ayoub; Sun, Xin; Khaleel, Mohammad A.

    2010-04-15

    In this paper, results of finite element crash simulation are presented for a TRIP steel side rail with and without considering the phase transformation during forming operations. A homogeneous phase transformation model is adapted to model the mechanical behavior of the austenite-to-martensite phase. The forming process of TRIP steels is simulated with the implementation of the material model. The distribution and volume fraction of the martensite in TRIP steels may be greatly influenced by various factors during forming process and subsequently contribute to the behavior of the formed TRIP steels during the crushing process. The results indicate that, with the forming induced phase transformation, higher energy absorption of the side rail can be achieved. The phase transformation enhances the strength of the side rail

  18. Visualization of anisotropic-isotropic phase transformation dynamics in battery electrode particles

    PubMed Central

    Wang, Jiajun; Karen Chen-Wiegart, Yu-chen; Eng, Christopher; Shen, Qun; Wang, Jun

    2016-01-01

    Anisotropy, or alternatively, isotropy of phase transformations extensively exist in a number of solid-state materials, with performance depending on the three-dimensional transformation features. Fundamental insights into internal chemical phase evolution allow manipulating materials with desired functionalities, and can be developed via real-time multi-dimensional imaging methods. Here, we report a five-dimensional imaging method to track phase transformation as a function of charging time in individual lithium iron phosphate battery cathode particles during delithiation. The electrochemically driven phase transformation is initially anisotropic with a preferred boundary migration direction, but becomes isotropic as delithiation proceeds further. We also observe the expected two-phase coexistence throughout the entire charging process. We expect this five-dimensional imaging method to be broadly applicable to problems in energy, materials, environmental and life sciences. PMID:27516044

  19. Visualization of anisotropic-isotropic phase transformation dynamics in battery electrode particles.

    PubMed

    Wang, Jiajun; Karen Chen-Wiegart, Yu-Chen; Eng, Christopher; Shen, Qun; Wang, Jun

    2016-01-01

    Anisotropy, or alternatively, isotropy of phase transformations extensively exist in a number of solid-state materials, with performance depending on the three-dimensional transformation features. Fundamental insights into internal chemical phase evolution allow manipulating materials with desired functionalities, and can be developed via real-time multi-dimensional imaging methods. Here, we report a five-dimensional imaging method to track phase transformation as a function of charging time in individual lithium iron phosphate battery cathode particles during delithiation. The electrochemically driven phase transformation is initially anisotropic with a preferred boundary migration direction, but becomes isotropic as delithiation proceeds further. We also observe the expected two-phase coexistence throughout the entire charging process. We expect this five-dimensional imaging method to be broadly applicable to problems in energy, materials, environmental and life sciences. PMID:27516044

  20. Phase Transformations of an Fe-0.85 C-17.9 Mn-7.1 Al Austenitic Steel After Quenching and Annealing

    NASA Astrophysics Data System (ADS)

    Cheng, Wei-Chun

    2014-09-01

    Low-density Mn-Al steels could potentially be substitutes for commercial Ni-Cr stainless steels. However, the development of the Mn-Al stainless steels requires knowledge of the phase transformations that occur during the steel making processes. Phase transformations of an Fe-0.85 C-17.9 Mn-7.1 Al (wt.%) austenitic steel, which include spinodal decomposition, precipitation transformations, and cellular transformations, have been studied after quenching and annealing. The results show that spinodal decomposition occurs prior to the precipitation transformation in the steel after quenching and annealing at temperatures below 1023 K and that coherent fine particles of L12-type carbide precipitate homogeneously in the austenite. The cellular transformation occurs during the transformation of high-temperature austenite into lamellae of austenite, ferrite, and kappa carbide at temperatures below 1048 K. During annealing at temperatures below 923 K, the austenite decomposes into lamellar austenite, ferrite, κ-carbide, and M23C6 carbide grains for another cellular transformation. Last, when annealing at temperatures below 873 K, lamellae of ferrite and κ-carbide appear in the austenite.

  1. High Temperature Phase Change Materials for Thermal Energy Storage Applications: Preprint

    SciTech Connect

    Gomez, J.; Glatzmaier, G. C.; Starace, A.; Turchi, C.; Ortega, J.

    2011-08-01

    To store thermal energy, sensible and latent heat storage materials are widely used. Latent heat thermal energy storage (TES) systems using phase change materials (PCM) are useful because of their ability to charge and discharge a large amount of heat from a small mass at constant temperature during a phase transformation. Molten salt PCM candidates for cascaded PCMs were evaluated for the temperatures near 320 degrees C, 350 degrees C, and 380 degrees C. These temperatures were selected to fill the 300 degrees C to 400 degrees C operating range typical for parabolic trough systems, that is, as one might employ in three-PCM cascaded thermal storage. Based on the results, the best candidate for temperatures near 320 degrees C was the molten salt KNO3-4.5wt%KCl. For the 350 degrees C and 380 degrees C temperatures, the evaluated molten salts are not good candidates because of the corrosiveness and the high vapor pressure of the chlorides.

  2. Temperature-insensitive phase-matched optical harmonic conversion crystal

    DOEpatents

    Barker, Charles E.; Eimerl, David; Velsko, Stephan P.; Roberts, David

    1993-01-01

    Temperature-insensitive, phase-matched harmomic frequency conversion of laser light at a preferred wavelength of 1.064 microns can be achieved by use of a crystal of deuterated l-arginine phosphate. The crystal is cut and oriented so that the laser light propagates inside the crystal along one of several required directions, which correspond to a temperature-insensitive, phase-matching locus. The method of measuring and calculating the temperature-insensitive, phase-matching angles can be extended to other fundamental wavelengths and other crystal compositions.

  3. Temperature-insensitive phase-matched optical harmonic conversion crystal

    DOEpatents

    Barker, C.E.; Eimerl, D.; Velsko, S.P.; Roberts, D.

    1993-11-23

    Temperature-insensitive, phase-matched harmonic frequency conversion of laser light at a preferred wavelength of 1.064 microns can be achieved by use of a crystal of deuterated l-arginine phosphate. The crystal is cut and oriented so that the laser light propagates inside the crystal along one of several required directions, which correspond to a temperature-insensitive, phase-matching locus. The method of measuring and calculating the temperature-insensitive, phase-matching angles can be extended to other fundamental wavelengths and other crystal compositions. 12 figures.

  4. Temperature dependence of diffusivities, preliminary definition phase

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Banish, R. Michael; Nadarajah, Arunan

    1993-01-01

    During the six months definition phase of the instrument development program, research personnel at the Center for Microgravity and Materials Research of the University of Alabama in Huntsville (UAH) were to furnish all of the necessary labor, services, materials, and facilities necessary to provide science requirement definition, initiate hardware development activities, requirements and timetable for integration and experimental accommodation of the GAS payload into the Shuttle cargo bay and an updated ground-based research flight program proposal consistent with the NRA selection letter. These activities were to be accomplished in parallel and consistent with the necessary research and development work toward the accomplishment of the overall objectives of the selected proposal.

  5. Temperature-dependent indentation behavior of transformation-toughened zirconia-based ceramics

    NASA Technical Reports Server (NTRS)

    Tikare, Veena; Heuer, Arthur H.

    1991-01-01

    Indentation behavior of Ce-TZP, Y-TZP, and Mg-PSZ between room temperature and 1300 C was investigated. Hardness decreased with increasing temperature for all three materials, but indentation cracking increased with increasing temperature. The opposing temperature dependences are discussed in terms of dislocation and transformation plasticity.

  6. Atomistic Modeling of Diffusion and Phase Transformations in Metals and Alloys

    NASA Astrophysics Data System (ADS)

    Purja Pun, Ganga Prasad

    Dissertation consists of multiple works. The first part is devoted to self-diffusion along dislocation cores in aluminum followed by the development of embedded atom method potentials for Co, NiAl, CoAl and CoNi systems. The last part focuses on martensitic phase transformation (MPT) in Ni xAl1--x and Al xCoyNi1-- x--y alloys. New calculation methods were developed to predict diffusion coefficients in metal as functions of temperature. Self-diffusion along screw and edge dislocations in aluminum was studied by molecular dynamic (MD) simulations. Three types of simulations were performed with and without (intrinsic) pre-existing vacancies and interstitials in the dislocation core. We found that the diffusion along the screw dislocation was dominated by the intrinsic mechanism, whereas the diffusion along the edge dislocation was dominated by the vacancy mechanism. The diffusion along the screw dislocation was found to be significantly faster than the diffusion along the edge dislocation, and the both diffusivities were in reasonable agreement with experimental data. The intrinsic diffusion mechanism can be associated with the formation of dynamic Frenkel pairs, possibly activated by thermal jogs and/or kinks. The simulations show that at high temperatures the dislocation core becomes an effective source/sink of point defects and the effect of pre-existing defects on the core diffusivity diminishes. First and the foremost ingredient needed in all atomistic computer simulations is the description of interaction between atoms. Interatomic potentials for Co, NiAl, CoAl and CoNi systems were developed within the Embedded Atom Method (EAM) formalism. The binary potentials were based on previously developed accurate potentials for pure Ni and pure Al and pure Co developed in this work. The binaries constitute a version of EAM potential of AlCoNi ternary system. The NiAl potential accurately reproduces a variety of physical properties of the B2-NiAl and L12--Ni3Al phases

  7. Estimation of Time-Temperature-Transformation Diagrams of Mold Powder Slags from Thermo-analysis of Non-isothermal Crystallization

    NASA Astrophysics Data System (ADS)

    Maldonado, Yadira G.; Barraza de la P., Claudia; Rodríguez A., Sergio; Castillejos E., A. Humberto; Thomas, Brian G.

    2015-02-01

    The temperature range across the mold powder slag in the interfacial gap between the continuous casting mold and strand leads through different transformation behavior into crystalline phases. The transformation rates play a key role in determining the proportion of glassy and crystalline phases present, and thus greatly influence mold heat transfer and lubrication. Although thermal analysis has held great promise to quantify the crystallization of mold slags, so far the information it has provided is scarce. This work shows how differential scanning calorimetry, DSC, data allow evaluation of Time-Temperature-Transformation, TTT, diagrams of mold powder slags, when analyzed with the induction period and the Kissinger methods. The data required for estimating this important tool for the analysis and design of mold powders are onset temperature, T i, peak maximum temperature, T m, shape index, S, and conversion at peak maximum, x m, of the crystallization peaks appearing on thermograms obtained at various heating and cooling rates, ϕ or - ϕ, respectively. Industrial mold powders for casting low- and medium-carbon steels were analyzed to obtain TTT diagrams which correctly portray their different crystallization behavior. The diagrams reveal the start and end curves of the crystalline phases forming at each DSC crystallization peak. The estimated TTT curves present a correct picture of the degree of transformation observed in glass disks (~3 mm thick) treated isothermally for specified time intervals, quenched and examined with a scanning electron microscope. Additionally, the procedure developed for DSC-based TTT diagram calculation is supported by the good agreement between expected transformations and qualitative or quantitative X-ray diffraction results obtained from mold glass-powdered samples treated isothermally in a muffle furnace.

  8. Estimation of Time-Temperature-Transformation Diagrams of Mold Powder Slags from Thermo-analysis of Non-isothermal Crystallization

    NASA Astrophysics Data System (ADS)

    Maldonado, Yadira G.; Barraza de la P., Claudia; Rodríguez A., Sergio; Castillejos E., A. Humberto; Thomas, Brian G.

    2014-09-01

    The temperature range across the mold powder slag in the interfacial gap between the continuous casting mold and strand leads through different transformation behavior into crystalline phases. The transformation rates play a key role in determining the proportion of glassy and crystalline phases present, and thus greatly influence mold heat transfer and lubrication. Although thermal analysis has held great promise to quantify the crystallization of mold slags, so far the information it has provided is scarce. This work shows how differential scanning calorimetry, DSC, data allow evaluation of Time-Temperature-Transformation, TTT, diagrams of mold powder slags, when analyzed with the induction period and the Kissinger methods. The data required for estimating this important tool for the analysis and design of mold powders are onset temperature, T i, peak maximum temperature, T m, shape index, S, and conversion at peak maximum, x m, of the crystallization peaks appearing on thermograms obtained at various heating and cooling rates, ϕ or -ϕ, respectively. Industrial mold powders for casting low- and medium-carbon steels were analyzed to obtain TTT diagrams which correctly portray their different crystallization behavior. The diagrams reveal the start and end curves of the crystalline phases forming at each DSC crystallization peak. The estimated TTT curves present a correct picture of the degree of transformation observed in glass disks (~3 mm thick) treated isothermally for specified time intervals, quenched and examined with a scanning electron microscope. Additionally, the procedure developed for DSC-based TTT diagram calculation is supported by the good agreement between expected transformations and qualitative or quantitative X-ray diffraction results obtained from mold glass-powdered samples treated isothermally in a muffle furnace.

  9. Transformation from molecular to polymeric nitrogen at high pressures and temperatures: In situ x-ray diffraction study

    SciTech Connect

    Trojan, I.A.; Eremets, M.I.; Medvedev, S.A.; Gavriliuk, A.G.; Prakapenka, V.B.

    2010-09-17

    We studied the mechanism of the structural transformation of molecular nitrogen to atomic single-bonded nitrogen with a cubic gauche (cg-N) crystal structure using x-ray diffraction in situ at a pressure of - 140 GPa and temperatures up to 2000 K in a diamond anvil cell. The anvils, with a toroidal shape, allowed us to drastically increase the volume of the sample, reduce the acquisition time of the diffraction pattern, and improve the quality of the Raman spectra. Molecular nitrogen transforms to the cg-N phase through an intermediate disordered state. The Raman spectra are in good agreement with recent theoretical calculations.

  10. Shear-induced phase transition of nanocrystalline hexagonal boron nitride to wurtzitic structure at room temperature and lower pressure.

    PubMed

    Ji, Cheng; Levitas, Valery I; Zhu, Hongyang; Chaudhuri, Jharna; Marathe, Archis; Ma, Yanzhang

    2012-11-20

    Disordered structures of boron nitride (BN), graphite, boron carbide (BC), and boron carbon nitride (BCN) systems are considered important precursor materials for synthesis of superhard phases in these systems. However, phase transformation of such materials can be achieved only at extreme pressure-temperature conditions, which is irrelevant to industrial applications. Here, the phase transition from disordered nanocrystalline hexagonal (h)BN to superhard wurtzitic (w)BN was found at room temperature under a pressure of 6.7 GPa after applying large plastic shear in a rotational diamond anvil cell (RDAC) monitored by in situ synchrotron X-ray diffraction (XRD) measurements. However, under hydrostatic compression to 52.8 GPa, the same hBN sample did not transform to wBN but probably underwent a reversible transformation to a high-pressure disordered phase with closed-packed buckled layers. The current phase-transition pressure is the lowest among all reported direct-phase transitions from hBN to wBN at room temperature. Usually, large plastic straining leads to disordering and amorphization; here, in contrast, highly disordered hBN transformed to crystalline wBN. The mechanisms of strain-induced phase transformation and the reasons for such a low transformation pressure are discussed. Our results demonstrate a potential of low pressure-room temperature synthesis of superhard materials under plastic shear from disordered or amorphous precursors. They also open a pathway of phase transformation of nanocrystalline materials and materials with disordered and amorphous structures under extensive shear.

  11. Shear-induced phase transition of nanocrystalline hexagonal boron nitride to wurtzitic structure at room temperature and lower pressure

    PubMed Central

    Ji, Cheng; Levitas, Valery I.; Zhu, Hongyang; Chaudhuri, Jharna; Marathe, Archis; Ma, Yanzhang

    2012-01-01

    Disordered structures of boron nitride (BN), graphite, boron carbide (BC), and boron carbon nitride (BCN) systems are considered important precursor materials for synthesis of superhard phases in these systems. However, phase transformation of such materials can be achieved only at extreme pressure–temperature conditions, which is irrelevant to industrial applications. Here, the phase transition from disordered nanocrystalline hexagonal (h)BN to superhard wurtzitic (w)BN was found at room temperature under a pressure of 6.7 GPa after applying large plastic shear in a rotational diamond anvil cell (RDAC) monitored by in situ synchrotron X-ray diffraction (XRD) measurements. However, under hydrostatic compression to 52.8 GPa, the same hBN sample did not transform to wBN but probably underwent a reversible transformation to a high-pressure disordered phase with closed-packed buckled layers. The current phase-transition pressure is the lowest among all reported direct-phase transitions from hBN to wBN at room temperature. Usually, large plastic straining leads to disordering and amorphization; here, in contrast, highly disordered hBN transformed to crystalline wBN. The mechanisms of strain-induced phase transformation and the reasons for such a low transformation pressure are discussed. Our results demonstrate a potential of low pressure–room temperature synthesis of superhard materials under plastic shear from disordered or amorphous precursors. They also open a pathway of phase transformation of nanocrystalline materials and materials with disordered and amorphous structures under extensive shear. PMID:23129624

  12. Anomalous Size-Induced Crystalline to Amorphous Uphill Phase Transformation of Hydroxyapatite Nanoparticles

    SciTech Connect

    Mossaad, Christina; Starr, Matthew; Payzant, E Andrew; Howe, Jane Y; Riman, Richard E

    2011-01-01

    The objective of the present paper was to produce nanoscale hydroxyapatite at room temperature under 10 nm through a simple method that requires no specialized equipment, surfactants, or additives. The Ca(C2H3O2)2-K3PO4-H2O synthesis system explored in previous literature was employed and the nanoscale powder product completely characterized through x-ray diffraction, transmission electron microscopy, BET nitrogen surface area adsorption, helium pycnometry, TGA and Karl Fisher titration. In accordance with other materials, it was found that hydroxyapatite under 5 nm produced by this chemistry undergoes an uphill phase transformation when left in dry storage over 5 months. Although it is possible to produce hydroxyapatite (and other materials) in this size range, it is imperative that care is taken through storage alterations to prevent any undesirable changes in structure or surface chemistry

  13. Temperature Gradients Induce Phase Separation in a Miscible Polymer Solution

    NASA Astrophysics Data System (ADS)

    Kumaki, Jiro; Hashimoto, Takeji; Granick, Steve

    1996-09-01

    Phase separation occurred up to 20 °C above the coexistence temperature in a polymer solution (polystyrene-polybutadiene-dioctylphthalate) to which small temperature gradients ( ~2 °C) were applied. Before convection began, spinodal-like patterns with characteristic spacing that grew in proportion to time elapsed persisted for times up to hours. The cause appears to be thermally driven concentration gradients normal to the surface, large enough to induce phase separation parallel to the surface, although temperatures throughout the mixture exceeded the thermodynamic coexistence temperature.

  14. Phase transformation and deformation behavior of NiTi-Nb eutectic joined NiTi wires.

    PubMed

    Wang, Liqiang; Wang, Cong; Zhang, Lai-Chang; Chen, Liangyu; Lu, Weijie; Zhang, Di

    2016-01-01

    NiTi wires were brazed together via eutectic reaction between NiTi and Nb powder deposited at the wire contact region. Phase transformation and deformation behavior of the NiTi-Nb eutectic microstructure were investigated using transmission electron microscopy (TEM) and cyclic loading-unloading tests. Results show that R phase and B19' martensite transformation are induced by plastic deformation. R phase transformation, which significantly contributes to superelasticity, preferentially occurs at the interfaces between NiTi and eutectic region. Round-shaped Nb-rich phase with rod-like and lamellar-type eutectics are observed in eutectic regions. These phases appear to affect the deformation behavior of the brazed NiTi-Nb region via five distinct stages in stress-strain curves: (I) R phase reorientation, (II) R phase transformation from parent phase, (III) elastic deformation of reoriented martensite accompanied by the plastic deformation of Nb-rich phase and lamellar NiTi-Nb eutectic, (IV) B19' martensitic transformation, and (V) plastic deformation of the specimen. PMID:27049025

  15. Phase transformation and deformation behavior of NiTi-Nb eutectic joined NiTi wires

    PubMed Central

    Wang, Liqiang; Wang, Cong; Zhang, Lai-Chang; Chen, Liangyu; Lu, Weijie; Zhang, Di

    2016-01-01

    NiTi wires were brazed together via eutectic reaction between NiTi and Nb powder deposited at the wire contact region. Phase transformation and deformation behavior of the NiTi-Nb eutectic microstructure were investigated using transmission electron microscopy (TEM) and cyclic loading-unloading tests. Results show that R phase and B19′ martensite transformation are induced by plastic deformation. R phase transformation, which significantly contributes to superelasticity, preferentially occurs at the interfaces between NiTi and eutectic region. Round-shaped Nb-rich phase with rod-like and lamellar-type eutectics are observed in eutectic regions. These phases appear to affect the deformation behavior of the brazed NiTi-Nb region via five distinct stages in stress-strain curves: (I) R phase reorientation, (II) R phase transformation from parent phase, (III) elastic deformation of reoriented martensite accompanied by the plastic deformation of Nb-rich phase and lamellar NiTi-Nb eutectic, (IV) B19′ martensitic transformation, and (V) plastic deformation of the specimen. PMID:27049025

  16. Phase transformation and deformation behavior of NiTi-Nb eutectic joined NiTi wires.

    PubMed

    Wang, Liqiang; Wang, Cong; Zhang, Lai-Chang; Chen, Liangyu; Lu, Weijie; Zhang, Di

    2016-04-06

    NiTi wires were brazed together via eutectic reaction between NiTi and Nb powder deposited at the wire contact region. Phase transformation and deformation behavior of the NiTi-Nb eutectic microstructure were investigated using transmission electron microscopy (TEM) and cyclic loading-unloading tests. Results show that R phase and B19' martensite transformation are induced by plastic deformation. R phase transformation, which significantly contributes to superelasticity, preferentially occurs at the interfaces between NiTi and eutectic region. Round-shaped Nb-rich phase with rod-like and lamellar-type eutectics are observed in eutectic regions. These phases appear to affect the deformation behavior of the brazed NiTi-Nb region via five distinct stages in stress-strain curves: (I) R phase reorientation, (II) R phase transformation from parent phase, (III) elastic deformation of reoriented martensite accompanied by the plastic deformation of Nb-rich phase and lamellar NiTi-Nb eutectic, (IV) B19' martensitic transformation, and (V) plastic deformation of the specimen.

  17. Effect of temperature in reversed phase liquid chromatography.

    PubMed

    Guillarme, D; Heinisch, S; Rocca, J L

    2004-10-15

    The high temperature liquid chromatography (HTLC) reveals interesting chromatographic properties but even now, it misses some theoretical aspects concerning the influence of high temperature on thermodynamic and kinetic aspects of chromatography: such a knowledge is very essential for method development. In this work, the effect of temperature on solute behavior has been studied using various stationary phases which are representative of the available thermally stable materials present on the market. The thermodynamic properties were evaluated by using different mobile phases: acetonitrile-water, methanol-water and pure water. The obtained results were discussed on the basis of both type of mobile phases and type of stationary phases. Type of mobile phase was found to play an important role on the retention of solutes. The kinetic aspect was studied at various temperatures ranging from ambient temperature to high temperature (typically from about 30 to 200 degrees C) by fitting the experimental data with the Knox equation and it was shown that the efficiency is improved significantly when the temperature is increased. In this paper, we also discussed the problem of temperature control for thermostating columns which may represent a significant source of peak broadening: by taking into account the three main parameters such as heat transfer, pressure drop and band broadening resulting from the preheating tube, suitable rules are set up for a judicious choice of the column internal diameter. PMID:15527119

  18. Influence of phase transformations on dynamical elastic modulus and anelasticity of beta Ti-Nb-Fe alloys for biomedical applications.

    PubMed

    Chaves, J M; Florêncio, O; Silva, P S; Marques, P W B; Afonso, C R M

    2015-06-01

    Recent studies in materials for biomedical applications have focused on β-titanium alloys that are highly biocompatible, free of toxic elements and with an elastic modulus close to that of human bone (10-40 GPa). Beta Ti-xNb-3Fe (x=10, 15, 20 and 25 wt%) alloys were obtained by rapid solidification and characterized by anelastic relaxation measurements at temperatures between 140 K and 770 K, using a free-decay elastometer, as well as analysis by Differential Scanning Calorimetry (DSC), X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The observed stabilization of the β-phase with rising Nb content was linked to the strength of the relaxation peak around 570 K. The phase transformations detected in the anelastic relaxation spectra agreed with those observed in the DSC curves. However, the results from anelastic relaxation spectra provide more detailed information about the kinetics of phase transformations. At temperatures between 140 K and 300 K, there was an indication of a reversible transformation in the alloys studied. The elastic modulus measurements showed a hardening of the material, between 400 K and 620 K, related to the ω-phase precipitation. However, the starting temperature of ω-phase precipitation was clearly influenced by the Nb content, showing a shift to high temperature with increasing percentage of Nb. At temperatures above 620 K, a fall was observed in the dynamical elastic modulus, accompanied by a relaxation peak centered at 660 K, which was attributed to the growing α-phase arising from the ω-phase, which acts as a nucleation sites or from the decomposition of the metastable β-phase. XRD patterns confirmed the formation of β, α and ω phases after mechanical relaxation measurements. A predominant β phase with dendritic morphology was observed, which became more stable with 25 wt% Nb. The lowest elastic modulus was of 65 GPa obtained in the Ti-25Nb-3Fe alloy, representing a

  19. Experiment and Modeling of Simultaneous Creep, Plasticity and Transformation of High Temperature Shape Memory Alloys During Cyclic Actuation

    NASA Technical Reports Server (NTRS)

    Kumar, Parikshith K.; Desai, Uri; Chatzigeorgiou, George; Lagoudas, Dimitris C.; Monroe, James; Karaman, Ibrahim; Noebe, Ron; Bigelow, Glen

    2010-01-01

    The present work is focused on studying the cycling actuation behavior of HTSMAs undergoing simultaneous creep and transformation. For the thermomechanical testing, a high temperature test setup was assembled on a MTS frame with the capability to test up to temperatures of 600 C. Constant stress thermal cycling tests were conducted to establish the actuation characteristics and the phase diagram for the chosen HTSMA. Additionally, creep tests were conducted at constant stress levels at different test temperatures to characterize the creep behavior of the alloy over the operational range. A thermodynamic constitutive model is developed and extended to take into account a) the effect of multiple thermal cycling on the generation of plastic strains due to transformation (TRIP strains) and b) both primary and secondary creep effects. The model calibration is based on the test results. The creep tests and the uniaxial tests are used to identify the viscoplastic behavior of the material. The parameters for the SMA properties, regarding the transformation and transformation induced plastic strain evolutions, are obtained from the material phase diagram and the thermomechanical tests. The model is validated by predicting the material behavior at different thermomechanical test conditions.

  20. Structural evolution of calcite at high temperatures: Phase V unveiled

    PubMed Central

    Ishizawa, Nobuo; Setoguchi, Hayato; Yanagisawa, Kazumichi

    2013-01-01

    The calcite form of calcium carbonate CaCO3 undergoes a reversible phase transition between Rc and Rm at ~1240 K under a CO2 atmosphere of ~0.4 MPa. The joint probability density function obtained from the single-crystal X-ray diffraction data revealed that the oxygen triangles of the CO3 group in the high temperature form (Phase V) do not sit still at specified positions in the space group Rm, but migrate along the undulated circular orbital about carbon. The present study also shows how the room temperature form (Phase I) develops into Phase V through an intermediate form (Phase IV) in the temperature range between ~985 K and ~1240 K. PMID:24084871

  1. Uncovering the intrinsic size dependence of hydriding phase transformations in nanocrystals

    NASA Astrophysics Data System (ADS)

    Bardhan, Rizia; Hedges, Lester O.; Pint, Cary L.; Javey, Ali; Whitelam, Stephen; Urban, Jeffrey J.

    2013-10-01

    A quantitative understanding of nanocrystal phase transformations would enable more efficient energy conversion and catalysis, but has been hindered by difficulties in directly monitoring well-characterized nanoscale systems in reactive environments. We present a new in situ luminescence-based probe enabling direct quantification of nanocrystal phase transformations, applied here to the hydriding transformation of palladium nanocrystals. Our approach reveals the intrinsic kinetics and thermodynamics of nanocrystal phase transformations, eliminating complications of substrate strain, ligand effects and external signal transducers. Clear size-dependent trends emerge in nanocrystals long accepted to be bulk-like in behaviour. Statistical mechanical simulations show these trends to be a consequence of nanoconfinement of a thermally driven, first-order phase transition: near the phase boundary, critical nuclei of the new phase are comparable in size to the nanocrystal itself. Transformation rates are then unavoidably governed by nanocrystal dimensions. Our results provide a general framework for understanding how nanoconfinement fundamentally impacts broad classes of thermally driven solid-state phase transformations relevant to hydrogen storage, catalysis, batteries and fuel cells.

  2. The correlation of local deformation and stress-assisted local phase transformations in MMC foams

    SciTech Connect

    Berek, H.; Ballaschk, U.; Aneziris, C.G.; Losch, K.; Schladitz, K.

    2015-09-15

    Cellular structures are of growing interest for industry, and are of particular importance for lightweight applications. In this paper, a special case of metal matrix composite foams (MMCs) is investigated. The investigated foams are composed of austenitic steel exhibiting transformation induced plasticity (TRIP) and magnesia partially stabilized zirconia (Mg-PSZ). Both components exhibit martensitic phase transformation during deformation, thus generating the potential for improved mechanical properties such as strength, ductility, and energy absorption capability. The aim of these investigations was to show that stress-assisted phase transformations within the ceramic reinforcement correspond to strong local deformation, and to determine whether they can trigger martensitic phase transformations in the steel matrix. To this end, in situ interrupted compression experiments were performed in an X-ray computed tomography device (XCT). By using a recently developed registration algorithm, local deformation could be calculated and regions of interest could be defined. Corresponding cross sections were prepared and used to analyze the local phase composition by electron backscatter diffraction (EBSD). The results show a strong correlation between local deformation and phase transformation. - Graphical abstract: Display Omitted - Highlights: • In situ compressive deformation on MMC foams was performed in an XCT. • Local deformation fields and their gradient amplitudes were estimated. • Cross sections were manufactured containing defined regions of interest. • Local EBSD phase analysis was performed. • Local deformation and local phase transformation are correlated.

  3. Power Electronic Transformer based Three-Phase PWM AC Drives

    NASA Astrophysics Data System (ADS)

    Basu, Kaushik

    A Transformer is used to provide galvanic isolation and to connect systems at different voltage levels. It is one of the largest and most expensive component in most of the high voltage and high power systems. Its size is inversely proportional to the operating frequency. The central idea behind a power electronic transformer (PET) also known as solid state transformer is to reduce the size of the transformer by increasing the frequency. Power electronic converters are used to change the frequency of operation. Steady reduction in the cost of the semiconductor switches and the advent of advanced magnetic materials with very low loss density and high saturation flux density implies economic viability and feasibility of a design with high power density. Application of PET is in generation of power from renewable energy sources, especially wind and solar. Other important application include grid tied inverters, UPS e.t.c. In this thesis non-resonant, single stage, bi-directional PET is considered. The main objective of this converter is to generate adjustable speed and magnitude pulse width modulated (PWM) ac waveforms from an ac or dc grid with a high frequency ac link. The windings of a high frequency transformer contains leakage inductance. Any switching transition of the power electronic converter connecting the inductive load and the transformer requires commutation of leakage energy. Commutation by passive means results in power loss, decrease in the frequency of operation, distortion in the output voltage waveform, reduction in reliability and power density. In this work a source based partially loss-less commutation of leakage energy has been proposed. This technique also results in partial soft-switching. A series of converters with novel PWM strategies have been proposed to minimize the frequency of leakage inductance commutation. These PETs achieve most of the important features of modern PWM ac drives including 1) Input power factor correction, 2) Common

  4. Stress-induced phase transformation in nanocrystalline UO2

    SciTech Connect

    Uberuaga, Blas Pedro; Desai, Tapan

    2009-01-01

    We report a stress-induced phase transfonnation in stoichiometric UO{sub 2} from fluorite to the {alpha}-PbO{sub 2} structure using molecular dynamics (MD) simulations and density functional theory (DFT) calculations. MD simulations, performed on nanocrystalline microstructure under constant-stress tensile loading conditions, reveal a heterogeneous nucleation of the {alpha}-PbO{sub 2} phase at the grain boundaries followed by the growth of this phase towards the interior of the grain. The DFT calculations confinn the existence of the {alpha}-PbO{sub 2} structure, showing that it is energetically favored under tensile loading conditions.

  5. Phase Transformation Behavior of Hot Isostatically Pressed NiTi-X (X = Ag, Nb, W) Alloys for Functional Engineering Applications

    NASA Astrophysics Data System (ADS)

    Bitzer, M.; Bram, M.; Buchkremer, H. P.; Stöver, D.

    2012-12-01

    Owing to their unique properties, NiTi-based shape memory alloys (SMAs) are highly attractive candidates for a lot of functional engineering applications like biomedical implants (stents), actuators, or coupling elements. Adding a third element is an effective measure to adjust or stabilize the phase transformation behavior to a certain extent. In this context, addition of alloying elements, which are low soluble or almost insoluble in the NiTi matrix is a promising approach and—with the exception of adding Nb—has rarely been reported in the literature so far, especially if the manufacturing of the net-shaped parts of these alloys is aspired. In the case of addition of elemental Nb, broadening of hysteresis between austenitic and martensitic phase transformation temperatures after plastic deformation of the Nb phase is a well-known effect, which is the key of function of coupling elements already established on the market. In the present study, we replaced Nb with additions of elemental Ag and W, both of which are almost insoluble in the NiTi matrix. Compared with Nb, Ag is characterized by higher ductility in combination with lower melting point, enabling liquid phase sintering already at moderate temperatures. Vice versa, addition of W might act in opposite manner considering its inherent brittleness combined with high melting temperature. In the present study, hot isostatic pressing was used for manufacturing such alloys starting from prealloyed NiTi powder and with the additions of Nb, Ag, and W as elemental powders. Microstructures, interdiffusion phenomena, phase transformation behaviors, and impurity contents were investigated aiming to better understand the influence of insoluble phases on bulk properties of NiTi SMAs.

  6. Mechanism of the α -ɛ phase transformation in iron

    NASA Astrophysics Data System (ADS)

    Dewaele, A.; Denoual, C.; Anzellini, S.; Occelli, F.; Mezouar, M.; Cordier, P.; Merkel, S.; Véron, M.; Rausch, E.

    2015-05-01

    The α -Fe↔ɛ -Fe pressure-induced transformation under pure hydrostatic static compression has been characterized with in situ x-ray diffraction using α -Fe single crystals as starting samples. The forward transition starts at 14.9 GPa, and the reverse at 12 GPa, with a width of α -ɛ coexistence domain of the order of 2 GPa. The elastic stress in the sample increases in this domain, and partially relaxes after completion of the transformation. Orientation relations between parent α -Fe and child ɛ -Fe have been determined, which definitely validates the Burgers path for the direct transition. On the reverse transition, an unexpected variant selection is observed. X-ray diffraction data, complemented with ex situ microstructural observations, suggest that this selection is caused by defects and stresses accumulated during the direct transition.

  7. Origins of asymmetric stress-strain response in phase transformations

    SciTech Connect

    Sehitoglu, H.; Gall, K.

    1997-12-31

    It has been determined that the transformation stress-strain behavior of CuZnAl and NiTi shape memory alloys is dependent on the applied stress state. The uniaxial compressive stress necessary to macroscopically trigger the transformation is approximately 34% (CuZnAl) and 26% (NiTi) larger than the required uniaxial tensile stress. For three dimensional stress states, the response of either alloy system is dependent on the directions of the dominant principal stresses along with the hydrostatic stress component of the stress state. The stress state effects are dominated by the favored growth and nucleation of more martensite plates in tension versus compression. The effect of different hydrostatic pressure levels between stress states on martensite plates volume change is considered small.

  8. Phase changes of filled ice Ih methane hydrate under low temperature and high pressure.

    PubMed

    Tanaka, Takehiko; Hirai, Hisako; Matsuoka, Takahiro; Ohishi, Yasuo; Yagi, Takehiko; Ohtake, Michika; Yamamoto, Yoshitaka; Nakano, Satoshi; Irifune, Tetsuo

    2013-09-14

    Low-temperature and high-pressure experiments were performed with filled ice Ih structure of methane hydrate under 2.0-77.0 GPa and 30-300 K using diamond anvil cells and a helium-refrigeration cryostat. In situ X-ray diffractometry revealed distinct changes in the compressibility of the axial ratios of the host framework with pressure. Raman spectroscopy showed a split in the C-H vibration modes of the guest methane molecules, which was previously explained by the orientational ordering of the guest molecules. The pressure and temperature conditions at the split of the vibration modes agreed well with those of the compressibility change. The results indicate the following: (i) the orientational ordering of the guest methane molecules from an orientationally disordered state occurred at high pressures and low temperatures; and (ii) this guest ordering led to anisotropic contraction in the host framework. Such guest orientational ordering and subsequent anisotropic contraction of the host framework were similar to that reported previously for filled ice Ic hydrogen hydrate. Since phases with different guest-ordering manners were regarded as different phases, existing regions of the guest disordered-phase and the guest ordered-phase were roughly estimated by the X-ray study. In addition, above the pressure of the guest-ordered phase, another high-pressure phase developed in the low-temperature region. The deuterated-water host samples were also examined, and the influence of isotopic effects on guest ordering and phase transformation was observed.

  9. Grid-Based Fourier Transform Phase Contrast Imaging

    NASA Astrophysics Data System (ADS)

    Tahir, Sajjad

    Low contrast in x-ray attenuation imaging between different materials of low electron density is a limitation of traditional x-ray radiography. Phase contrast imaging offers the potential to improve the contrast between such materials, but due to the requirements on the spatial coherence of the x-ray beam, practical implementation of such systems with tabletop (i.e. non-synchrotron) sources has been limited. One recently developed phase imaging technique employs multiple fine-pitched gratings. However, the strict manufacturing tolerances and precise alignment requirements have limited the widespread adoption of grating-based techniques. In this work, we have investigated a technique recently demonstrated by Bennett et al. that utilizes a single grid of much coarser pitch. Our system consisted of a low power 100 microm spot Mo source, a CCD with 22 microm pixel pitch, and either a focused mammography linear grid or a stainless steel woven mesh. Phase is extracted from a single image by windowing and comparing data localized about harmonics of the grid in the Fourier domain. A Matlab code was written to perform the image processing. For the first time, the effects on the diffraction phase contrast and scattering amplitude images of varying grid types and periods, and of varying the window function type used to separate the harmonics, and the window widths, were investigated. Using the wire mesh, derivatives of the phase along two orthogonal directions were obtained and new methods investigated to form improved phase contrast images.

  10. Phases transitions and interfaces in temperature-sensitive colloidal systems

    NASA Astrophysics Data System (ADS)

    Nguyen, Duc; Schall, Peter

    2013-03-01

    Colloids are widely used because of their exceptional properties. Beside their own applications in food, petrol, cosmetics and drug industries, photonic, optical filters and chemical sensor, they are also known as powerful model systems to study molecular phase behavior. Here, we examine both aspects of colloids using temperature-sensitive colloidal systems to fully investigate colloidal phase behavior and colloidal assembly.

  11. A phase-field model for incoherent martensitic transformations including plastic accommodation processes in the austenite

    NASA Astrophysics Data System (ADS)

    Kundin, J.; Raabe, D.; Emmerich, H.

    2011-10-01

    If alloys undergo an incoherent martensitic transformation, then plastic accommodation and relaxation accompany the transformation. To capture these mechanisms we develop an improved 3D microelastic-plastic phase-field model. It is based on the classical concepts of phase-field modeling of microelastic problems (Chen, L.Q., Wang Y., Khachaturyan, A.G., 1992. Philos. Mag. Lett. 65, 15-23). In addition to these it takes into account the incoherent formation of accommodation dislocations in the austenitic matrix, as well as their inheritance into the martensitic plates based on the crystallography of the martensitic transformation. We apply this new phase-field approach to the butterfly-type martensitic transformation in a Fe-30 wt%Ni alloy in direct comparison to recent experimental data (Sato, H., Zaefferer, S., 2009. Acta Mater. 57, 1931-1937). It is shown that the therein proposed mechanisms of plastic accommodation during the transformation can indeed explain the experimentally observed morphology of the martensitic plates as well as the orientation between martensitic plates and the austenitic matrix. The developed phase-field model constitutes a general simulations approach for different kinds of phase transformation phenomena that inherently include dislocation based accommodation processes. The approach does not only predict the final equilibrium topology, misfit, size, crystallography, and aspect ratio of martensite-austenite ensembles resulting from a transformation, but it also resolves the associated dislocation dynamics and the distribution, and the size of the crystals itself.

  12. Novel monolithic phase shifter combining ferroelectrics and high temperature superconductors

    NASA Astrophysics Data System (ADS)

    Jackson, Charles M.; Kobayashi, June H.; Lee, Alfred; Pettiette-Hall, Claire; Burch, John F.; Hu, Roger; Hilton, Rick; McDade, Jim

    1992-12-01

    A novel phase shifter that combines the dielectric properties of a ferroelectric material SrTiO3 and the low loss of high-temperature superconductor (HTS) films is presented. Results show that the maximum phase shift of 8 percent was obtained at 29 K and greater phase shifts are possible with higher voltage bias values. Particular attention is given to the compatability of YBa2Cu3O7-x and a broad class of ferroelectric materials.

  13. Nonequilibrium Phase Chemistry in High Temperature Structure Alloys

    NASA Technical Reports Server (NTRS)

    Wang, R.

    1991-01-01

    Titanium and nickel aluminides of nonequilibrium microstructures and in thin gauge thickness were identified, characterized and produced for potential high temperature applications. A high rate sputter deposition technique for rapid surveillance of the microstructures and nonequilibrium phase is demonstrated. Alloys with specific compositions were synthesized with extended solid solutions, stable dispersoids, and specific phase boundaries associated with different heat treatments. Phase stability and mechanical behavior of these nonequilibrium alloys were investigated and compared.

  14. In-situ Monitoring of Dynamic Phenomena during Solidification and Phase Transformation Processing

    SciTech Connect

    Clarke, Amy J.; Cooley, Jason C.; Morris, Christopher; Merrill, Frank E.; Hollander, Brian J.; Mariam, Fesseha G.; Patterson, Brian M.; Imhoff, Seth D.; Lee, Wah Keat; Fezzaa, Kamel; Deriy, Alex; Tucker, Tim J.; Clarke, Kester D.; Field, Robert D.; Thoma, Dan J.; Teter, David F.; Beard, Timothy V.; Hudson, Richard W.; Freibert, Franz J.; Korzekwa, Deniece R.; Farrow, Adam M.; Cross, Carl E.; Mihaila, Bogdan; Lookman, Turab; Hunter, Abigail; Choudhury, Samrat; Karma, Alain; Ott, Thomas J. Jr.; Barker, Martha R.; O'Neill, Finian; Hill, Joshua; Emigh, Megan G.

    2012-07-30

    The purpose of this project is to: (1) Directly observe phase transformations and microstructure evolution using proton (and synchrotron x-ray) radiography and tomography; (2) Constrain phase-field models for microstructure evolution; (3) Experimentally control microstructure evolution during processing to enable co-design; and (4) Advance toward the MaRIE vision. Understand microstructure evolution and chemical segregation during solidification {yields} solid-state transformations in Pu-Ga.

  15. Phase Transformation in Sm{sub 2}O{sub 3} at High Pressure: in Situ Synchrotron X-Ray Diffraction Study And Ab Initio DFT Calculation

    SciTech Connect

    Guo, Q.X.; Zhao, Y.S.; Jiang, C.; Mao, W.L.; Wang, Z.W.; /Cornell U., CHESS

    2009-06-09

    Sm{sub 2}O{sub 3} was compressed at room temperature up to 44.0 GPa and then decompressed back to ambient pressure. In situ X-ray diffraction was used to monitor the structural changes in the sample. A cubic to hexagonal phase transformation was observed in Sm{sub 2}O{sub 3} for the first time. After decompression back to ambient pressure, the hexagonal phase was not quenchable and transformed to a monoclinic phase. Ab initio Density-Functional-Theory (DFT) calculations were performed to obtain theoretical data for comparison with the experimental results and elucidation of the transformation mechanism. A possible phase transformation mechanism that is consistent with the experimental results and theoretical calculations is proposed.

  16. An investigation of electrical current induced phase transformations in the NiPtSi/polysilicon system

    NASA Astrophysics Data System (ADS)

    Kim, Deok-kee; Domenicucci, Anthony; Iyer, Subramanian S.

    2008-04-01

    We studied phase transformations and microstructural changes of NiPtSi/polysilicon fuses programmed with three different current densities (under, optimal, and over programming). Electromigration of NiPt toward the anode occurred in all three cases studied. Achieving high resistance after the fuse programming strongly depends on the kinetics of the electromigration and dopant diffusion processes which operate during the fuse blow. A thick silicide region was formed after electrically programmable fuse programming by the reaction of the electromigrated NiPt with the polysilicon layer underneath. The low tails of the underprogrammed fuses seemed to result from the incomplete electromigration and the incomplete dopant depletion due to the insufficient programming current density, while the depletion of the implanted dopants due to the sufficiently elevated temperature seemed to make the postresistance of the optimally programmed fuse higher. In the overprogrammed fuse, the newly formed silicide seemed to have further electromigrated due to the sufficiently high temperature during programming, which caused voids and hillocks. The high temperature caused melting of the polysilicon and the surrounding nitride layer, and their reaction as well. The conduction paths created by the unremoved silicide in fuse link caused the postprogramming resistance of the overprogrammed fuse to be low.

  17. Structural and phase transformations in Hadfield steel upon frictional loading in liquid nitrogen

    NASA Astrophysics Data System (ADS)

    Korshunov, L. G.; Sagaradze, V. V.; Chernenko, N. L.

    2016-08-01

    Structural transformations that occur in 110G13 steel (Hadfield) upon sliding friction in liquid nitrogen (-196°C) have been investigated by metallographic, electron-microscopic, and X-ray diffraction methods. The frictional action was performed through the reciprocating sliding of a cylindrical indenter of quenched 110G13 steel over a plate of the studied steel. A like friction pair was immersed into a bath with liquid nitrogen. It has been shown that the Hadfield steel quenched from 1100°C under the given temperature conditions of frictional loading retains the austenitic structure completely. The frictional action forms in a surface layer up to 10 μm thick the nanocrystalline structure with austenite grains 10-50 nm in size and a hardness 6 GPa. Upon subsequent low-temperature friction, the tempering of steel at 400°C (3 h) and at 600°C (5 min and 5 h) brings about the formation of a large amount (tens of vol %) of ɛ (hcp) martensite in steel. The formation of this phase under friction is supposedly a consequence of the reduction in the stacking fault energy of Hadfield steel, which is achieved due to the combined action of the following factors: low-temperature cooling, a decrease in the carbon content in the austenite upon tempering, and the presence of high compressive stresses in the friction-contact zone.

  18. Phase transformation based pyroelectric waste heat energy harvesting with improved practicality

    NASA Astrophysics Data System (ADS)

    Ryul Jo, Hwan; Lynch, Christopher S.

    2016-03-01

    In 2014, almost 60% of thermal energy produced in the United States was lost to the environment as waste heat. Ferroelectric based pyroelectric devices can be used to convert some of this waste heat into usable electrical energy using the Olsen cycle, an ideal thermodynamic cycle, but there are a number of barriers to its realization in a practical device. This study uses the Olsen cycle to benchmark a less efficient thermodynamic cycle that is more easily implemented in devices. The ferroelectric pyroelectric material used was (Pb0.97La0.02)(Zr0.55Sn0.32Ti0.13)O3 ceramic, a ferroelectric material that undergoes a temperature driven phase transformation. A net energy density of 0.27 J cm-3 per cycle was obtained from the ferroelectric material using the modified cycle with a temperature change between 25°C and 180°C. This is 15.5% of the Olsen cycle result with the same temperature range and 1-8 MV m-1 applied electric field range. The power density was estimated to 13.5 mW cm-3 with given experimental conditions. A model is presented that quantitatively describes the effect of several parameters on output energy density and can be used to design ferroelectric based pyroelectric energy converters. The model indicates that optimization of material geometry and heating conditions can increase the output power by an order or magnitude.

  19. Phase behaviors and membrane properties of model liposomes: temperature effect.

    PubMed

    Wu, Hsing-Lun; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2014-09-28

    The phase behaviors and membrane properties of small unilamellar vesicles have been explored at different temperatures by dissipative particle dynamics simulations. The vesicles spontaneously formed by model lipids exhibit pre-transition from gel to ripple phase and main transition from ripple to liquid phase. The vesicle shape exhibits the faceted feature at low temperature, becomes more sphere-like with increasing temperature, but loses its sphericity at high temperature. As the temperature rises, the vesicle size grows but the membrane thickness declines. The main transition (Tm) can be identified by the inflection point. The membrane structural characteristics are analyzed. The inner and outer leaflets are asymmetric. The length of the lipid tail and area density of the lipid head in both leaflets decrease with increasing temperature. However, the mean lipid volume grows at low temperature but declines at high temperature. The membrane mechanical properties are also investigated. The water permeability grows exponentially with increasing T but the membrane tension peaks at Tm. Both the bending and stretching moduli have their minima near Tm. Those results are consistent with the experimental observations, indicating that the main signatures associated with phase transition are clearly observed in small unilamellar vesicles.

  20. High-Temperature Phase Change Materials (PCM) Candidates for Thermal Energy Storage (TES) Applications

    SciTech Connect

    Gomez, J. C.

    2011-09-01

    It is clearly understood that lower overall costs are a key factor to make renewable energy technologies competitive with traditional energy sources. Energy storage technology is one path to increase the value and reduce the cost of all renewable energy supplies. Concentrating solar power (CSP) technologies have the ability to dispatch electrical output to match peak demand periods by employing thermal energy storage (TES). Energy storage technologies require efficient materials with high energy density. Latent heat TES systems using phase change material (PCM) are useful because of their ability to charge and discharge a large amount of heat from a small mass at constant temperature during a phase transformation like melting-solidification. PCM technology relies on the energy absorption/liberation of the latent heat during a physical transformation. The main objective of this report is to provide an assessment of molten salts and metallic alloys proposed as candidate PCMs for TES applications, particularly in solar parabolic trough electrical power plants at a temperature range from 300..deg..C to 500..deg.. C. The physical properties most relevant for PCMs service were reviewed from the candidate selection list. Some of the PCM candidates were characterized for: chemical stability with some container materials; phase change transformation temperatures; and latent heats.

  1. Nanostructures formation in ferroelectrics in the process of phase transformation

    NASA Astrophysics Data System (ADS)

    Ishchuk, V.; Spiridonov, N.; Sobolev, V.

    2014-11-01

    Inhomogeneous states caused by the coexistence of the ferroelectric (FE) and antiferroelectric (AFE) phases in lead-zirconate-titanate based solid solutions have been investigated. It has been found that the domains of the FE and AFE phases with sizes of the order of 20 nm to 30 nm coexist in the bulk of the samples due to a small difference in the free energies of these phases. The coherent character of the interphase boundaries (IPBs) leads to the concentration of the elastic stresses along these boundaries. These elastic stresses cause the local decomposition of the solid solution and formation of segregates near the IPBS due to the condition that equivalent positions of the crystal lattice are occupied by the ions with different sizes. The sizes of the segregates formed in this way are of the order 8 nm to 15 nm. Some physical effects caused by the presence of these segregate nanostructures are analyzed and discussed.

  2. Amphiphilic phase-transforming catalysts for transesterification of triglycerides

    NASA Astrophysics Data System (ADS)

    Nawaratna, Gayan Ivantha

    Heterogeneous catalytic reactions that involve immiscible liquid-phase reactants are challenging to conduct due to limitations associated with mass transport. Nevertheless, there are numerous reactions such as esterification, transesterification, etherification, and hydrolysis where two immiscible liquid reactants (such as polar and non-polar liquids) need to be brought into contact with a catalyst. With the intention of alleviating mass transport issues associated with such systems but affording the ability to separate the catalyst once the reaction is complete, the overall goal of this study is geared toward developing a catalyst that has emulsification properties as well as the ability to phase-transfer (from liquid-phase to solid-phase) while the reaction is ongoing and evaluating the effectiveness of such a catalytic process in a practical reaction. To elucidate this concept, the transesterification reaction was selected. Metal-alkoxides that possess acidic and basic properties (to catalyze the reaction), amphiphilic properties (to stabilize the alcohol/oil emulsion) and that can undergo condensation polymerization when heated (to separate as a solid subsequent to the completion of the reaction) were used to test the concept. Studies included elucidating the effect of metal sites and alkoxide sites and their concentration effects on transesterification reaction, effect of various metal alkoxide groups on the phase stability of the reactant system, and kinetic effects of the reaction system. The studies revealed that several transition-metal alkoxides, especially, titanium and yttrium based, responded positively to this reaction system. These alkoxides were able to be added to the reaction medium in liquid phase and were able to stabilize the alcohol/oil system. The alkoxides were selective to the transesterification reaction giving a range of ester yields (depending on the catalyst used). It was also observed that transition-metal alkoxides were able to be

  3. Phase transformation of calcium oxalate dihydrate-monohydrate: Effects of relative humidity and new spectroscopic data

    NASA Astrophysics Data System (ADS)

    Conti, Claudia; Casati, Marco; Colombo, Chiara; Realini, Marco; Brambilla, Luigi; Zerbi, Giuseppe

    2014-07-01

    New data on vibrational properties of calcium oxalates and their controversial transformation mechanism are presented. We have focused on whewellite (CaC2O4·H2O) and weddellite [CaC2O4·(2 + x) H2O], the most common phases of calcium oxalate; these compounds occur in many organisms, in kidney stones and in particular kinds of films found on the surface of many works of art. Low temperature experiments carried out by Fourier transform infrared spectroscopy have highlighted both the high structural order in the crystalline state of whewellite and the disordered distribution of the zeolitic water molecules in weddellite. The synthesised nanocrystals of weddellite have been kept under different hygrometric conditions in order to study, by X-ray powder diffraction, the role of “external” water molecules on their stability. Moreover, in order to identify the different kinds of water molecules, a re-investigation, supported by quantum chemical calculations, of the observed vibrational spectra (IR and Raman) of whewellite has been conducted.

  4. Phase Change Material Systems for High Temperature Heat Storage.

    PubMed

    Perraudin, David Y S; Binder, Selmar R; Rezaei, Ehsan; Ortonaa, Alberto; Haussener, Sophia

    2015-01-01

    Efficient, cost effective, and stable high-temperature heat storage material systems are important in applications such as high-temperature industrial processes (metal processing, cement and glass manufacturing, etc.), or electricity storage using advanced adiabatic compressed air energy storage. Incorporating phase change media into heat storage systems provides an advantage of storing and releasing heat at nearly constant temperature, allowing steady and optimized operation of the downstream processes. The choice of, and compatibility of materials and encapsulation for the phase change section is crucial, as these must guarantee good and stable performance and long lifetime at low cost. Detailed knowledge of the material properties and stability, and the coupled heat transfer, phase change, and fluid flow are required to allow for performance and lifetime predictions. We present coupled experimental-numerical techniques allowing prediction of the long-term performance of a phase change material-based high-temperature heat storage system. The experimental investigations focus on determination of material properties (melting temperature, heat of fusion, etc.) and phase change material and encapsulation interaction (stability, interface reactions, etc.). The computational investigations focus on an understanding of the multi-mode heat transfer, fluid flow, and phase change processes in order to design the material system for enhanced performance. The importance of both the experimental and numerical approaches is highlighted and we give an example of how both approaches can be complementarily used for the investigation of long-term performance. PMID:26842330

  5. Kinetics of phase transformations in glass forming systems

    NASA Technical Reports Server (NTRS)

    Ray, Chandra S.

    1994-01-01

    A nucleation rate like curve for a glass can be determined from the functional dependence of the maximum height of its DTA crystallization peak, (delta T)(sub p), on the nucleation temperature, T(sub n). This nucleation rate curve provides information for the temperature range where nucleation for the glass can occur and the temperature where the nucleation rate is a maximum. However, this curve does not provide information for the nucleation rate, I, for the glass at different temperatures. A method for estimating I at different temperatures from (delta T)(sub p) was developed using a Li2O.2SiO2 (LS2) glass. Also, the dielectric constant (epsilon) and the loss factor (tan delta) of a glass-ceramic depend, in part, upon the amount of crystallinity which, in turn, depends upon the nucleation density in the starting glass. It is therefore expected that epsilon and tan delta should have a relationship with nucleation density and hence on the nucleation rate.

  6. Infrared study and phase transformation of the new lithium-diphenyl carbazide complex (LiDPC)

    NASA Astrophysics Data System (ADS)

    El-Kabbany, F.; Taha, S.; Hafez, M.; Abdel Aziz, N. R.

    2015-07-01

    A complete IR investigation (400-4000 cm-1) of orthorhombic, amorphous DPC and crystalline LiDPC (at room temperature and 80 °C) is performed and new results are reported. Introducing lithium ions into diphenyl carbazide C13H14N4O forms a completely new complex associated with new properties. The IR spectroscopic analysis includes measurements and interpretation of the IR spectral band shape, intensities, and frequencies of the internal modes of vibrations. The principle modes of vibrations of amorphous DPC found to be 3445 cm-1, 3292 cm-1, 3052 cm-1, 1670 cm-1, 1602 cm-1, 1495 cm-1, 1305 cm-1, 1254 cm-1, 974 cm-1, and 577 cm-1 correspond to normal vibrations of Nsbnd H, Csbnd H, Nsbnd N, Cdbnd O and monosubstituted benzene. A marked change could be recorded for these modes of vibrations in the presence of Li+ ions. The results strongly confirm the formation of a metal-organic complex. Anomalous spectroscopic changes could be recorded in LiDPC spectra. A proposed Li+ position in LiDPC complex is proposed. X-ray diffraction analysis is used to find out the crystal structure and parameters of LiDPC complex. The results obtained show triclinic crystal structure with a = 5.6929 Å, b = 7.6378 Å, c = 17.8739 Å, α = 119.176°, β = 63.322°, γ = 85.378°. The results reveal the presence of an order-disorder phase transition in LiDPC complex at 60 °C. The transformation process is monitored by clear variations in the spectral shape, band intensities and new eight different modes appeared in the high temperature disordered phase. An energy model is suggested for the interpretation of such phase transition process.

  7. Phase and structural transformations in U and U-Nb alloy upon severe deformation and heat treatments

    NASA Astrophysics Data System (ADS)

    Zuev, Yu. N.; Sagaradze, V. V.; Pecherkina, N. L.; Kabanova, I. I.; Svyatov, I. L.; Bondarchuk, S. V.; Belyaev, D. V.

    2013-12-01

    Transmission electron microscopy was used to analyze the twin and dislocation structure of samples of commercial uranium in the initial (undeformed) state and after severe deformation using explosive loading by plane and spherical waves of various intensity. It has been shown that an increase in the intensity of explosive loading by a plane wave leads, first, to an increase in the density of randomly distributed dislocations and twins and, then, to the development of polygonization processes with the formation of a subgrain structure of the α phase. Crystallographic analysis of the initial and deformation-induced twins in uranium has shown the presence of predominantly {130} twins of mixed type and, in singular cases, {172} and {176} twins of the second kind. It has been established that the retained spherical shells have a distinctly pronounced zonal structure, which contains information on the forward and reverse martensitic phase transformations of uranium (α ↔ β(γ) ↔ L, etc.) that occur under shock-wave loading by spherical waves. Conditions are determined for the manifestation of structural heredity in the U-6 wt % Nb alloy with recovery of the size and shape of grains of the initial high-temperature γ phase during the forward γ → α″ martensitic transformation upon cooling and during reverse α″ → γ transformation upon heating. Elimination of the structural heredity with significant grain refinement of the high-temperature γ phase occurs in the process of repeated quenching from 700°C after one type of preliminary treatments (cold deformation of α″ martensite, recrystallization of the deformed α″ phase, high-temperature aging of the initial α″ martensite, and eutectoid decomposition).

  8. Understanding metastable phase transformation during crystallization of RDX, HMX and CL-20: experimental and DFT studies.

    PubMed

    Ghosh, Mrinal; Banerjee, Shaibal; Shafeeuulla Khan, Md Abdul; Sikder, Nirmala; Sikder, Arun Kanti

    2016-09-14

    Multiphase growth during crystallization severely affects deliverable output of explosive materials. Appearance and incomplete transformation of metastable phases are a major source of polymorphic impurities. This article presents a methodical and molecular level understanding of the metastable phase transformation mechanism during crystallization of cyclic nitramine explosives, viz. RDX, HMX and CL-20. Instantaneous reverse precipitation yielded metastable γ-HMX and β-CL-20 which undergo solution mediated transformation to the respective thermodynamic forms, β-HMX and ε-CL-20, following 'Ostwald's rule of stages'. However, no metastable phase, anticipated as β-RDX, was evidenced during precipitation of RDX, which rather directly yielded the thermodynamically stable α-phase. The γ→β-HMX and β→ε-CL-20 transformations took 20 and 60 minutes respectively, whereas formation of α-RDX was instantaneous. Density functional calculations were employed to identify the possible transition state conformations and to obtain activation barriers for transformations at wB97XD/6-311++G(d,p)(IEFPCM)//B3LYP/6-311G(d,p) level of theory. The computed activation barriers and lattice energies responsible for transformation of RDX, HMX and CL-20 metastable phases to thermodynamic ones conspicuously supported the experimentally observed order of phase stability. This precise result facilitated an understanding of the occurrence of a relatively more sensitive and less dense β-CL-20 phase in TNT based melt-cast explosive compositions, a persistent and critical problem unanswered in the literature. The crystalline material recovered from such compositions revealed a mixture of β- and ε-CL-20. However, similar compositions of RDX and HMX never showed any metastable phase. The relatively long stability with the highest activation barrier is believed to restrict complete β→ε-CL-20 transformation during processing. Therefore a method is suggested to overcome this issue.

  9. Understanding metastable phase transformation during crystallization of RDX, HMX and CL-20: experimental and DFT studies.

    PubMed

    Ghosh, Mrinal; Banerjee, Shaibal; Shafeeuulla Khan, Md Abdul; Sikder, Nirmala; Sikder, Arun Kanti

    2016-09-14

    Multiphase growth during crystallization severely affects deliverable output of explosive materials. Appearance and incomplete transformation of metastable phases are a major source of polymorphic impurities. This article presents a methodical and molecular level understanding of the metastable phase transformation mechanism during crystallization of cyclic nitramine explosives, viz. RDX, HMX and CL-20. Instantaneous reverse precipitation yielded metastable γ-HMX and β-CL-20 which undergo solution mediated transformation to the respective thermodynamic forms, β-HMX and ε-CL-20, following 'Ostwald's rule of stages'. However, no metastable phase, anticipated as β-RDX, was evidenced during precipitation of RDX, which rather directly yielded the thermodynamically stable α-phase. The γ→β-HMX and β→ε-CL-20 transformations took 20 and 60 minutes respectively, whereas formation of α-RDX was instantaneous. Density functional calculations were employed to identify the possible transition state conformations and to obtain activation barriers for transformations at wB97XD/6-311++G(d,p)(IEFPCM)//B3LYP/6-311G(d,p) level of theory. The computed activation barriers and lattice energies responsible for transformation of RDX, HMX and CL-20 metastable phases to thermodynamic ones conspicuously supported the experimentally observed order of phase stability. This precise result facilitated an understanding of the occurrence of a relatively more sensitive and less dense β-CL-20 phase in TNT based melt-cast explosive compositions, a persistent and critical problem unanswered in the literature. The crystalline material recovered from such compositions revealed a mixture of β- and ε-CL-20. However, similar compositions of RDX and HMX never showed any metastable phase. The relatively long stability with the highest activation barrier is believed to restrict complete β→ε-CL-20 transformation during processing. Therefore a method is suggested to overcome this issue. PMID

  10. Nanoclusters first: a hierarchical phase transformation in a novel Mg alloy

    PubMed Central

    Okuda, Hiroshi; Yamasaki, Michiaki; Kawamura, Yoshihito; Tabuchi, Masao; Kimizuka, Hajime

    2015-01-01

    The Mg-Y-Zn ternary alloy system contains a series of novel structures known as long-period stacking ordered (LPSO) structures. The formation process and its key concept from a viewpoint of phase transition are not yet clear. The current study reveals that the phase transformation process is not a traditional spinodal decomposition or structural transformation but, rather a novel hierarchical phase transformation. In this transformation, clustering occurs first, and the spatial rearrangement of the clusters induce a secondary phase transformation that eventually lead to two-dimensional ordering of the clusters. The formation process was examined using in situ synchrotron radiation small-angle X-ray scattering (SAXS). Rapid quenching from liquid alloy into thin ribbons yielded strongly supersaturated amorphous samples. The samples were heated at a constant rate of 10 K/min. and the scattering patterns were acquired. The SAXS analysis indicated that small clusters grew to sizes of 0.2 nm after they crystallized. The clusters distributed randomly in space grew and eventually transformed into a microstructure with two well-defined cluster-cluster distances, one for the segregation periodicity of LPSO and the other for the in-plane ordering in segregated layer. This transformation into the LPSO structure concomitantly introduces the periodical stacking fault required for the 18R structures. PMID:26387813

  11. Nanoclusters first: a hierarchical phase transformation in a novel Mg alloy.

    PubMed

    Okuda, Hiroshi; Yamasaki, Michiaki; Kawamura, Yoshihito; Tabuchi, Masao; Kimizuka, Hajime

    2015-01-01

    The Mg-Y-Zn ternary alloy system contains a series of novel structures known as long-period stacking ordered (LPSO) structures. The formation process and its key concept from a viewpoint of phase transition are not yet clear. The current study reveals that the phase transformation process is not a traditional spinodal decomposition or structural transformation but, rather a novel hierarchical phase transformation. In this transformation, clustering occurs first, and the spatial rearrangement of the clusters induce a secondary phase transformation that eventually lead to two-dimensional ordering of the clusters. The formation process was examined using in situ synchrotron radiation small-angle X-ray scattering (SAXS). Rapid quenching from liquid alloy into thin ribbons yielded strongly supersaturated amorphous samples. The samples were heated at a constant rate of 10 K/min. and the scattering patterns were acquired. The SAXS analysis indicated that small clusters grew to sizes of 0.2 nm after they crystallized. The clusters distributed randomly in space grew and eventually transformed into a microstructure with two well-defined cluster-cluster distances, one for the segregation periodicity of LPSO and the other for the in-plane ordering in segregated layer. This transformation into the LPSO structure concomitantly introduces the periodical stacking fault required for the 18R structures.

  12. Adenovirus type 12 gene 401 function and temperature sensitivity of cytochalasin B effects on transformed cells.

    PubMed

    Ledinko, N; Bhe, F T

    1980-01-01

    Rat (3Y1) cells transformed by wild-type adenovirus type 12 or the temperature-sensitive mutant ts401 with an active function required for transformation maintenance were exposed at the permissive(36 degrees) or nonpermissive (40 degrees) temperature to cytochalasin B (CB). At 40 degrees, the ts401-transformed cells, but not the wild-type transformants, exhibited, at least partially, the untransformed 3Y1 cell phenotype; most of the cells became bi- and trinucleated and DNA synthesis was inhibited. AT 36 degrees, both groups of cells became highly multinucleated, and there was no apparent inhibition of DNA synthesis by CB. These characteristics were exhibited also by the wild-type transformants at 40 degrees. These findings provide additional evidence that an active 401 gene function is required for maintenance of the adenovirus-transformed cell phenotype. PMID:7251331

  13. Phase Separation in a Polarized Fermi Gas at Zero Temperature

    SciTech Connect

    Pilati, S.; Giorgini, S.

    2008-01-25

    We investigate the phase diagram of asymmetric two-component Fermi gases at zero temperature as a function of polarization and interaction strength. The equations of state of the uniform superfluid and normal phase are determined using quantum Monte Carlo simulations. We find three different mixed states, where the superfluid and the normal phase coexist in equilibrium, corresponding to phase separation between (a) the polarized superfluid and the fully polarized normal gas, (b) the polarized superfluid and the partially polarized normal gas, and (c) the unpolarized superfluid and the partially polarized normal gas.

  14. High-coercivity, thermally stable and low unblocking temperature magnetic phase: Implications for Archeomagnetic studies

    NASA Astrophysics Data System (ADS)

    Hartmann, G. A.; Gallet, Y.; Trindade, R. I.; Genevey, A.; Berquo, T. S.; Neumann, R.; Le Goff, M.

    2013-05-01

    The thermoremanent magnetization in baked clay archeological materials provide very useful information on the time evolution of the Earth's magnetic field over the past few millennia. In these materials, a thermally stable magnetic phase characterized by high coercivities (>400 mT) and low unblocking temperatures (~200 degrees Celsius) has recently been recognized in European bricks, tiles, kilns and hearth samples. Both the identification and the origin of this phase remain, however, poorly constrained. The very same high-coercivity, thermally stable, low unblocking temperature (HCSLT) magnetic phase has been identified in Brazilian bricks fragments dated of the past five centuries. We report here a large set of measurements on a selected collection of samples showing variable contributions of the HCSLT phase. These measurements include low-field magnetic susceptibility vs. temperature curves, hysteresis loops, isothermal remanent magnetization (IRM) acquisition, thermal demagnetization of the three-axis IRM, first order reversal curves (FORC), low-temperature magnetization experiments (remanent magnetization curves and alternating current susceptibility), Mössbauer spectroscopy and X-ray diffraction. Results show the coexistence of low-coercivity magnetic minerals (magnetite and titanomagnetite) and high-coercivity minerals (hematite, HCSLT phase and, in some cases, goethite). We note that the HCSLT magnetic phase is always found in association with hematite. We further observe that the Mössbauer spectroscopy, X-ray diffraction spectra, and the FORC diagrams are also very similar to results previously obtained from annealed clays in which nontronite or iron-rich montmorillonite was transformed into Al-substituted hematite by heating. The HCSLT magnetic phase is thus confidently identified as being hematite with Al substitution. Moreover, considering the abundance of montmorillonite in clay mining settings, we suggest that the widespread occurrence of HCSLT in

  15. Broadband CARS spectral phase retrieval using a time-domain Kramers-Kronig transform.

    PubMed

    Liu, Yuexin; Lee, Young Jong; Cicerone, Marcus T

    2009-05-01

    We describe a closed-form approach for performing a Kramers-Kronig (KK) transform that can be used to rapidly and reliably retrieve the phase, and thus the resonant imaginary component, from a broadband coherent anti-Stokes Raman scattering (CARS) spectrum with a nonflat background. In this approach we transform the frequency-domain data to the time domain, perform an operation that ensures a causality criterion is met, then transform back to the frequency domain. The fact that this method handles causality in the time domain allows us to conveniently account for spectrally varying nonresonant background from CARS as a response function with a finite rise time. A phase error accompanies KK transform of data with finite frequency range. In examples shown here, that phase error leads to small (<1%) errors in the retrieved resonant spectra.

  16. Ab initio molecular dynamics simulation of pressure-induced phase transformation of BeO

    SciTech Connect

    Xiao, H. Y.; Duan, G.; Zu, X. T.; Weber, W. J.

    2011-05-05

    Ab initio molecular dynamics (MD) method has been used to study high pressure-induced phase transformation in BeO based on the local density approximation (LDA) and the generalized gradient approximation (GGA). Both methods show that the wurtzite (WZ) and zinc blende (ZB) BeO transforms to the rocksalt (RS) structure smoothly at high pressure. The transition pressures obtained from the LDA method are about 40 GPa larger than the GGA result for both WZ → RS and ZB → RS phase transformations, and the phase transformation mechanisms revealed by the LDA and GGA methods are different. For WZ → RS phase transformations both mechanisms obtained from the LDA and GGA methods are not comparable to the previous ab initio MD simulations of WZ BeO at 700 GPa based on the GGA method. It is suggested that the phase transformation mechanisms of BeO revealed by the ab initio MD simulations are affected remarkably by the exchange–correlation functional employed and the way of applying pressure.

  17. Study of phase transformation of guanosine 5'-monophosphate in drowning-out crystallization.

    PubMed

    Kang, Jeongki; Tuan, Nguyen Anh; Kim, Jong-Min; Chang, Sang-Mok; Kim, Woo-Sik

    2010-01-01

    The present study used a mechanistic approach to control the phase transformation of guanosine 5'-monophosphate (GMP) via the operating conditions of agitation and feed concentration during drowning-out crystallization. First, Fourier transform infrared and UV/vis spectrophotometry were successfully applied to monitor the mass fraction of GMP polymorphs (amorphous and hydrate crystalline GMPs) and GMP supersaturation, respectively, during the crystallization. The phase transformation of amorphous GMP into hydrate crystals was significantly influenced by the agitation, which promoted the mass transfer of GMP dissolution and growth. Therefore, the phase transformation was quickly finished when increasing the agitation speed. However, a high agitation caused breakage of the hydrate crystals, resulting in a reduced crystal size with a bimodal distribution. The phase transformation was also influenced by the GMP feed concentration, as the crystal growth was promoted and the crystal size increased when increasing the feed concentration up to 61 g/l. However, a further increase in the feed concentration caused secondary nucleation due to the induction of a high supersaturation level during the phase transformation, leading to a small crystal size with a bimodal distribution. In addition, the rectangular-shaped hydrate GMP crystals exhibited a higher growth rate in the b direction rather than the a direction. Therefore, the crystal morphology shifted from a long rectangle to a square when increasing the feed concentration. PMID:19031052

  18. High pressure phase transformations of cubic boron nitride from amorphous boron nitride using magnesium boron nitride as the catalyst

    NASA Astrophysics Data System (ADS)

    Singh, B. P.; Nover, G.; Will, G.

    1995-07-01

    Results are described of high pressure phase transformations of amorphous boron nitride (aBN) to cubic boron nitride (cBN) using magnesium boron nitride (Mg 3B 2N 4) as a catalyst-solvent. It was observed that amorphous boron nitride undergoes various structural modifications under high pressures and high temperatures leading to the formation of hexagonal, cubic and wurtzitic phases of boron nitride. The minimum pressure at which aBN starts transforming into cBN was found to be 25 kbar at 1800°C. This is the lowest pressure for cBN formation employing the catalyst-solvent process and is reported here for the first time.

  19. Multi phase field model for solid state transformation with elastic strain

    NASA Astrophysics Data System (ADS)

    Steinbach, I.; Apel, M.

    2006-05-01

    A multi phase field model is presented for the investigation of the effect of transformation strain on the transformation kinetics, morphology and thermodynamic stability in multi phase materials. The model conserves homogeneity of stress in the diffuse interface between elastically inhomogeneous phases, in which respect it differs from previous models. The model is formulated consistently with the multi phase field model for diffusional and surface driven phase transitions [I. Steinbach, F. Pezzolla, B. Nestler, M. Seeßelberg, R. Prieler, G.J. Schmitz, J.L.L. Rezende, A phase field concept for multiphase systems, Physica D 94 (1996) 135-147; J. Tiaden, B. Nestler, H.J. Diepers, I. Steinbach, The multiphase-field model with an integrated concept for modeling solute diffusion, Physica D 115 (1998) 73-86; I. Steinbach, F. Pezzolla, A generalized field method for multiphase transformations using interface fields, Physica D 134 (1999) 385] and gives a consistent description of interfacial tension, multi phase thermodynamics and elastic stress balance in multiple junctions between an arbitrary number of grains and phases. Some aspects of the model are demonstrated with respect to numerical accuracy and the relation between transformation strain, external stress and thermodynamic equilibrium.

  20. Kinetics of the structural transformations in a carbon fiber on its high-temperature treatment

    SciTech Connect

    Fedoseev, S.D.; Puchkov, S.V.

    1982-01-01

    On the basis of experimental results, a mathematical description is proposed of the two-stage process of structural transformations in a carbon fiber on its high-temperature treatment. A characteristic feature of the structural transformations was the change in the rate of propagation of a longitudinal ultrasonic wave. The effective activation energies of the process have been calculated.

  1. Double-image self-encoding and hiding based on phase-truncated Fourier transforms and phase retrieval

    NASA Astrophysics Data System (ADS)

    Wang, Xiaogang; Zhao, Daomu

    2011-09-01

    We propose a method to encrypt two covert images into an overt image based on phase-truncated Fourier transforms and phase retrieval. In this method, the two original images are self-encoded in the manner that one of the two images is directly separated into two phase masks (PMs) and used as keys for encryption, and then multiplied by a PM which is generated by using phase retrieval algorithm. At last, the whole encryption process is completed by a Fourier transform operation. In the decryption process, the image without a separation and the two PMs used as keys for encryption are all treated as encoded data. The cryptosystem is asymmetric which means the keys for encryption are different from those for decryption. Numerical simulations are presented to show the viability and good performance of the proposed method.

  2. Effect of Quarterly Element Addition of Cobalt on Phase Transformation Characteristics of Cu-Al-Ni Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Saud, Safaa Najah; Abu Bakar, Tuty Asma; Hamzah, Esah; Ibrahim, Mustafa Khaleel; Bahador, Abollah

    2015-08-01

    In the current study, a new type of Cu-based shape memory alloys with the function of shape memory effect was successfully produced with the introduction of high-purity Co precipitates between the phases of Cu-Al-Ni shape memory alloy. The microstructure, transformation characteristics, and mechanical properties were systematically investigated by means of differential scanning calorimetry, field emission scanning electron microscopy, energy dispersive spectroscopy (EDS), transmission electron microscopy, X-ray diffraction (XRD), a tensile test, a hardness test, and a shape memory effect test. The typical microstructures show that a new phase was formed, known as the γ 2 phase, and the volume friction and the size of this phase were gradually increased with the increasing Co content. According to the results of the XRD and EDS, it was confirmed that the γ 2 phase represents a compound of Al75Co22Ni3. However, the presence of γ 2 phase in the modified alloys was found to result in an increase of the transformation temperatures in comparison with the unmodified alloy. Nevertheless, it was found that with 1 wt pct of Co addition, a maximum ductility of 7 pct was achieved, corresponding to an increase in the strain recovery by the shape memory effect to 95 pct with respect to the unmodified alloy of 50 pct.

  3. Deep-cryogenic-treatment-induced phase transformation in the Al-Zn-Mg-Cu alloy

    NASA Astrophysics Data System (ADS)

    Li, Chun-mei; Cheng, Nan-pu; Chen, Zhi-qian; Guo, Ning; Zeng, Su-min

    2015-01-01

    An aluminum alloy (Al-Zn-Mg-Cu) subjected to deep cryogenic treatment (DCT) was systematically investigated. The results show that a DCT-induced phase transformation varies the microstructures and affects the mechanical properties of the Al alloy. Both Guinier-Preston (GP) zones and a metastable η' phase were observed by high-resolution transmission electron microscopy. The phenomenon of the second precipitation of the GP zones in samples subjected to DCT after being aged was observed. The viability of this phase transformation was also demonstrated by first-principles calculations.

  4. Detection of indentation induced Fe-to-Afe phase transformation in lead zirconate titanate.

    SciTech Connect

    Baddorf, Arthur P.; Shin, Junsoo; Gogotsi, Yury G.; Buchheit, Thomas Edward; Watson, Chad Samuel; Kalinin, Sergei; Juliano, Thomas F.

    2005-08-01

    Instrumented indentation was combined with microscopy and spectroscopy analysis to investigate the local mechanically induced ferroelectric to anti-ferroelectric phase transformation of niobium-modified lead zirconate titanate 95/5. Indentation experiments to a depth of 2 {micro}m were performed using a Berkovich pyramidal three-sided diamond tip. Subsequent Raman spectroscopy and piezoelectric force microscopy revealed that indentation locally induced the ferroelectric to antiferroelectric phase transformation. Piezoelectric force microscopy demonstrated the ability to map the individual phases within and near indented regions on the niobium-modified lead zirconate titanate ceramics.

  5. Detection of Indentation Induced FE-to-AFE Phase Transformation in Lead Zirconate Titanate

    SciTech Connect

    Baddorf, Arthur P; Kalinin, Sergei V; Shin, Junsoo; Juliano, Thomas F.; Gogotsi, Yury G.; Buchheit, Thomas E.; Watson, Chad S.

    2006-01-01

    Instrumented indentation was combined with microscopy and spectroscopy analysis to investigate the local mechanically induced ferroelectric to anti-ferroelectric phase transformation of niobium-modified lead zirconate titanate 95/5. Indentation experiments to a depth of 2 {micro}m were performed using a Berkovich pyramidal three-sided diamond tip. Subsequent Raman spectroscopy and piezoelectric force microscopy revealed that indentation locally induced the ferroelectric to antiferroelectric phase transformation. Piezoelectric force microscopy demonstrated the ability to map the individual phases within and near indented regions on the niobium-modified lead zirconate titanate ceramics.

  6. Ultra-fast dynamic compression technique to study kinetics of phase transformations in Bismuth

    SciTech Connect

    Smith, R F; Kane, J O; Eggert, J H; Saculla, M D; Jankowski, A F; Bastea, M; Hicks, D G; Collins, G W

    2007-12-28

    Pre-heated Bi was ramp compressed within 30 ns to a peak stress of {approx}11 GPa to explore structural phase transformation kinetics under dynamic loading conditions. Under these ultra-fast compression time-scales the equilibrium Bi I-II phase boundary is overpressurized by {Delta}P {approx} 0.8 GPa. {Delta}P is observed to increase logarithmically with strain rate, {var_epsilon}, above 10{sup 6} s{sup -1}. Estimates from a kinetics model predict that the Bi I phase is fully transformed within 3 ns.

  7. Phase stability and magnetic behavior of hexagonal phase of N2-O2 system with kagome lattice under high pressure and low temperature

    NASA Astrophysics Data System (ADS)

    Akahama, Y.; Ishihara, D.; Yamashita, H.; Fujihisa, H.; Hirao, N.; Ohishi, Y.

    2016-08-01

    The pressure-temperature (P -T ) phase diagram of N2-O2 mixture with a composition of N2-48 mol % O2 has been investigated using x-ray diffraction and the phase stability of a hexagonal phase (space group: P 6 /mmm), with the kagome lattice examined under high-pressure and low-temperature conditions. While the phase appears as a low-temperature phase of the cubic phase (P m 3 n ) with the structure of γ -O2 or δ -N2 and is stable in a wide range of pressures and temperatures, it transforms to lower symmetry monoclinic or orthorhombic phases at lower temperature, accompanied with a distortion of the kagome lattice. Based on Rietveld refinements, the monoclinic and orthorhombic phases are found to be in the P 21/a and Cmmm space groups, respectively. In magnetization measurements, a magnetic transition is observed with a relatively large drop of magnetization, corresponding to the cubic-to-hexagonal phase transition. This suggests that the hexagonal phase has a certain magnetic ordered state that arises from the molecular magnetic moment of O2.

  8. Phase transformation and nanometric flow cause extreme weakening during fault slip

    NASA Astrophysics Data System (ADS)

    Green, H. W., II; Shi, F.; Bozhilov, K.; Xia, G.; Reches, Z.

    2015-06-01

    Earthquake instability requires fault weakening during slip. The mechanism of this weakening is central to understanding earthquake sliding and, in many cases, has been attributed to fluids. It is also unclear why major faults such as the San Andreas Fault do not exhibit significant thermal anomalies due to shear heating during sliding and whether or not fault rocks that have been melted--pseudotachylytes--are rare. High-speed friction experiments on a wide variety of rock types have shown that they all exhibit extreme weakening and that the sliding surface is nanometric and contains phases not present at the start. Here we use electron microscopy to examine these two key observations in high-speed friction experiments and compare them with high-pressure faulting experiments. We show that phase transformations occur in both cases and that they are associated with profound weakening. However, fluid is not necessary for such weakening; the nanometric fault filling is inherently weak at seismic sliding rates and it flows by grain boundary sliding. These observations suggest that pseudotachylytes are rare in nature because shear-heating-induced endothermic reactions in fault zones prevent temperature rise to melting. Microstructures preserved in the Punchbowl Fault, an ancestral branch of the San Andreas Fault, suggest similar processes during natural faulting and offer an explanation for the lack of a thermal aureole around major faults.

  9. The backward phase flow and FBI-transform-based Eulerian Gaussian beams for the Schroedinger equation

    SciTech Connect

    Leung Shingyu; Qian Jianliang

    2010-11-20

    We propose the backward phase flow method to implement the Fourier-Bros-Iagolnitzer (FBI)-transform-based Eulerian Gaussian beam method for solving the Schroedinger equation in the semi-classical regime. The idea of Eulerian Gaussian beams has been first proposed in . In this paper we aim at two crucial computational issues of the Eulerian Gaussian beam method: how to carry out long-time beam propagation and how to compute beam ingredients rapidly in phase space. By virtue of the FBI transform, we address the first issue by introducing the reinitialization strategy into the Eulerian Gaussian beam framework. Essentially we reinitialize beam propagation by applying the FBI transform to wavefields at intermediate time steps when the beams become too wide. To address the second issue, inspired by the original phase flow method, we propose the backward phase flow method which allows us to compute beam ingredients rapidly. Numerical examples demonstrate the efficiency and accuracy of the proposed algorithms.

  10. Digital carrier superposition by Hilbert-Huang transform for optical phase recovery in speckle shearing interferometry

    NASA Astrophysics Data System (ADS)

    Amar, Said; Bahich, Mustapha; Dalimi, Hanane; Barj, ElMostapha; Afifi, Mohamed

    2015-01-01

    Industrial production constraints often require technical tests and controls. Optical metrology methods allow a non destructive test of wide range of parameters, such as defects and displacements, with very good accuracy. The phase retrieval is an effective way that allows three-dimensional profile reconstruction from intensity shearograms. This research work focuses on the extraction of the phase from one uncarrier shearogram using the Hilbert-Huang transform. An algorithm for the phase calculation based on the bidimensional empirical mode decomposition, Hilbert transform (HT), and Fourier transform (FT) is presented. A spatial digital carrier has been superimposed before the application of the FT or HT which uses two π/2 shifted shearograms, to get access to the phase map via a global analysis of intensity images. An evaluation was made through a numerical simulation to validate and confirm the performance of the proposed algorithm. The main advantage of this technique is its ability to provide a metrological solution for fast dynamic analysis.

  11. Phase transformation of Mg-calcite to aragonite in active-forming hot spring travertines

    NASA Astrophysics Data System (ADS)

    Greer, Heather F.; Zhou, Wuzong; Guo, Li

    2015-08-01

    A travertine specimen collected from the western part of Yunnan Province of China was subjected to microstructural analysis by powder X-ray diffraction, scanning electron microscopy, high resolution transmission electron microscopy and energy dispersive X-ray spectroscopy. A new formation mechanism was proposed whereby polycrystalline rhombohedral particles of magnesium-containing calcite underwent a phase transformation into sheaf-like clusters of aragonite microrods. It is proposed that a high concentration of magnesium ions and embedded biological matter poisoned the growth of calcite and therefore instigated the phase transformation of the core of the rhombohedral calcite particles to an aragonite phase with a higher crystallinity. The single crystalline aragonite microrods with a higher density than the Mg-calcite nanocrystallites grew at the expense of the latter to generate sheaf-like clusters. This newly discovered formation mechanism is expected to enhance previous knowledge on this geologically important phase transformation from a morphology point of view.

  12. A Synthetic Quadrature Phase Detector/Demodulator for Fourier Transform Transform Spectrometers

    NASA Technical Reports Server (NTRS)

    Campbell, Joel

    2008-01-01

    A method is developed to demodulate (velocity correct) Fourier transform spectrometer (FTS) data that is taken with an analog to digital converter that digitizes equally spaced in time. This method makes it possible to use simple low cost, high resolution audio digitizers to record high quality data without the need for an event timer or quadrature laser hardware, and makes it possible to use a metrology laser of any wavelength. The reduced parts count and simplicity implementation makes it an attractive alternative in space based applications when compared to previous methods such as the Brault algorithm.

  13. Prevention of low-temperature surface transformation by surface recrystallization in yttria-doped tetragonal zirconia

    SciTech Connect

    Whalen, P.J.; Reidinger, F.; Antrim, R.F.

    1989-02-01

    The low-temperature (100/sup 0/ to 400/sup 0/C) tetragonal to monoclinic transformation in yttria-doped tetragonal zirconia (Y-TZP) can be inhibited by a postsintering grinding and annealing treatment. The surface region so treated contains fine tetragonal grains which have recrystallized from the severely damaged ground surface. The various features of the recrystallized surface that may affect the low-temperature transformation are analyzed.

  14. High-Pressure High-Temperature Phase Diagram of the Organic Crystal Paracetamol

    NASA Astrophysics Data System (ADS)

    Smith, Spencer; Montgomery, Jeffrey; Vohra, Yogesh

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped diamond as heating anvil. The HPHT data obtained from boron-doped diamond heater is cross-checked with data obtained using a standard block heater diamond anvil cell. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in a number of different experiments. Solid state phase transitions from monoclinic Form I --> orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II --> unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. Our previous angle dispersive x-ray diffraction studies at the Advanced Photon Source has confirmed the existence of two unknown crystal structures Form IV and Form V of paracetamol at high pressure and ambient temperature. The phase transformation from Form II to Form IV occurs at ~8.5 GPa and from Form IV to Form V occurs at ~11 GPa at ambient temperature. Our new data is combined with the previous ambient temperature high-pressure Raman and X- ray diffraction data to create the first HPHT phase diagram of paracetamol. Doe-NNSA Carnegie DOE Alliance Center (CDAC) under Grant Number DE-NA0002006.

  15. Magnetic field-induced phase transformation and variant reorientation in nickel-manganese-gallium and nickel-manganese-cobalt-indium magnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Karaca, Haluk Ersin

    The purpose of this work is to reveal the governing mechanisms responsible for the magnetic field-induced (i) martensite reorientation in Ni 2MnGa single crystals, (ii) stress-assisted phase transformation in Ni2MnGa single crystals and (iii) phase transformation in NiMnCoIn alloys. The ultimate goal of utilizing these mechanisms is to increase the actuation stress levels in magnetic shape memory alloys (MSMAs). Extensive experimental work on magneto-thermo-mechanical (MTM) characterization of these materials enabled us to (i) better understand the ways to increase the actuation stress and strain and decrease the required magnetic field for actuation in MSMAs, (ii) determine the effects of main MTM parameters on reversible magnetic field induced phase transformation, such as magnetocrystalline anisotropy energy (MAE), Zeeman energy (ZE), stress hysteresis, thermal hysteresis, critical stress for the stress induced phase transformation and crystal orientation, (iii) find out the feasibility of employing polycrystal MSMAs, and (iv) formulate a thermodynamical framework to capture the energetics of magnetic field-induced phase transformations in MSMAs. Magnetic shape memory properties of Ni2MnGa single crystals were characterized by monitoring magnetic field-induced strain (MFIS) as a function of compressive stress and stress-induced strain as a function of magnetic field. It is revealed that the selection of the operating temperature with respect to martensite start and Curie temperatures is critical in optimizing actuator performance. The actuation stress of 5 MPa and work output of 157 kJm-3 are obtained by the field-induced variant reorientation in NiMnGa alloys. Reversible and one-way stress-assisted field-induced phase transformations are observed in Ni2MnGa single crystals under low field magnitudes (<0.7T) and resulted in at least an order of magnitude higher actuation stress levels. It is very promising to provide higher work output levels and operating

  16. Low temperature phase transition and crystal structure of CsMgPO4

    NASA Astrophysics Data System (ADS)

    Orlova, Maria; Khainakov, Sergey; Michailov, Dmitriy; Perfler, Lukas; Langes, Christoph; Kahlenberg, Volker; Orlova, Albina

    2015-01-01

    CsMgPO4 doped with radioisotopes is a promising compound for usage as a radioactive medical source. However, a low temperature phase transition at temperatures close to ambient conditions (~-40 °C) was observed. Information about such kind of structural changes is important in order to understand whether it can cause any problem for medical use of this compound. The phase transition has been investigated in detail using synchrotron powder diffraction, Raman spectroscopy and DFT calculations. The structure undergoes a transformation from an orthorhombic modification, space group Pnma (RT phase) to a monoclinic polymorph, space group P21/n (LT phase). New LT modification adopts similar to RT but slightly distorted unit cell: a=9.58199(2) Å, b=8.95501(1) Å, c=5.50344(2) Å, β=90.68583(1)°, V=472.198(3) Å3. CsMgPO4 belongs to the group of framework compounds and is made up of strictly alternating MgO4- and PO4-tetrahedra sharing vertices. The cesium counter cations are located in the resulting channel-like cavities. Upon the transformation a combined tilting of the tetrahedra is observed. A comparison with other phase transitions in ABW-type framework compounds is given.

  17. Devil's vortex Fresnel lens phase masks on an asymmetric cryptosystem based on phase-truncation in gyrator wavelet transform domain

    NASA Astrophysics Data System (ADS)

    Singh, Hukum

    2016-06-01

    An asymmetric scheme has been proposed for optical double images encryption in the gyrator wavelet transform (GWT) domain. Grayscale and binary images are encrypted separately using double random phase encoding (DRPE) in the GWT domain. Phase masks based on devil's vortex Fresnel Lens (DVFLs) and random phase masks (RPMs) are jointly used in spatial as well as in the Fourier plane. The images to be encrypted are first gyrator transformed and then single-level discrete wavelet transformed (DWT) to decompose LL , HL , LH and HH matrices of approximation, horizontal, vertical and diagonal coefficients. The resulting coefficients from the DWT are multiplied by other RPMs and the results are applied to inverse discrete wavelet transform (IDWT) for obtaining the encrypted images. The images are recovered from their corresponding encrypted images by using the correct parameters of the GWT, DVFL and its digital implementation has been performed using MATLAB 7.6.0 (R2008a). The mother wavelet family, DVFL and gyrator transform orders associated with the GWT are extra keys that cause difficulty to an attacker. Thus, the scheme is more secure as compared to conventional techniques. The efficacy of the proposed scheme is verified by computing mean-squared-error (MSE) between recovered and the original images. The sensitivity of the proposed scheme is verified with encryption parameters and noise attacks.

  18. Phase Transformation in Radially Merged Wurtzite GaAs Nanowires

    PubMed Central

    2015-01-01

    III–V Nanowires (NWs) grown with metal–organic chemical vapor deposition commonly show a polytypic crystal structure, allowing growth of structures not found in the bulk counterpart. In this paper we studied the radial overgrowth of pure wurtzite (WZ) GaAs nanowires and characterized the samples with high resolution X-ray diffraction (XRD) to reveal the crystal structure of the grown material. In particular, we investigated what happens when adjacent WZ NWs radially merge with each other by analyzing the evolution of XRD peaks for different amounts of radial overgrowth and merging. By preparing cross-sectional lamella samples we also analyzed the local crystal structure of partly merged NWs by transmission electron microscopy. Once individual NWs start to merge, the crystal structure of the merged segments is transformed progressively from initial pure WZ to a mixed WZ/ZB structure. The merging process is then modeled using a simple combinatorial approach, which predicts that merging of two or more WZ NWs will result in a mixed crystal structure containing WZ, ZB, and 4H. The existence large and relaxed segments of 4H structure within the merged NWs was confirmed by XRD, allowing us to accurately determine the lattice parameters of GaAs 4H. We compare the measured WZ and 4H unit cells with an ideal tetrahedron and find that both the polytypes are elongated in the c-axis and compressed in the a-axis compared to the geometrically converted cubic ZB unit cell. PMID:26494983

  19. Organizational transformation into the operational phase of the GTC

    NASA Astrophysics Data System (ADS)

    van der Hoeven, Michiel; Rutten, René; Alvarez Martin, Pedro

    2012-09-01

    In this paper we review various organizational issues encountered when GRANTECAN, the Spanish organization responsible for the construction and operation of the GTC telescope, evolved from the construction phase of a large telescope facility into the phase of scientific operation. GRANTECAN now operates and further develops the 10.4m segmented telescope, GTC. The advent of operational pressures to scientifically exploit the telescope enforced a number of organizational changes as priorities shifted towards achieving the best possible level of operational effectiveness. In this paper we will treat the GRANTECAN experience as a case study of the limitations and problems that were encountered throughout this change. We will focus on the processes and strategies applied in order to achieve the necessary changes. We will place our experience in the framework of the McKinsey 7S model, highlight a number of key performance indicators, and will indicate the organizational changes that have taken place, that influenced the way the objectives are achieved. We will present a forward look based on our experience to date.

  20. Are Karakoram temperatures out of phase compared to hemispheric trends?

    NASA Astrophysics Data System (ADS)

    Asad, Fayaz; Zhu, Haifeng; Zhang, Hui; Liang, Eryuan; Muhammad, Sher; Farhan, Suhaib Bin; Hussain, Iqtidar; Wazir, Muhammad Atif; Ahmed, Moinuddin; Esper, Jan

    2016-07-01

    In contrast to a global retreating trend, glaciers in the Karakoram showed stability and/or mass gaining during the past decades. This "Karakoram Anomaly" has been assumed to result from an out-of-phase temperature trend compared to hemispheric scales. However, the short instrumental observations from the Karakoram valley bottoms do not support a quantitative assessment of long-term temperature trends in this high mountain area. Here, we presented a new April-July temperature reconstruction from the Karakoram region in northern Pakistan based on a high elevation (~3600 m a.s.l.) tree-ring chronology covering the past 438 years (AD 1575-2012). The reconstruction passes all statistical calibration and validation tests and represents 49 % of the temperature variance recorded over the 1955-2012 instrumental period. It shows a substantial warming accounting to about 1.12 °C since the mid-twentieth century, and 1.94 °C since the mid-nineteenth century, and agrees well with the Northern Hemisphere temperature reconstructions. These findings provide evidence that the Karakoram temperatures are in-phase, rather than out-of-phase, compared to hemispheric scales since the AD 1575. The synchronous temperature trends imply that the anomalous glacier behavior reported from the Karakoram may need further explanations beyond basic regional thermal anomaly.

  1. Finite element analysis of the tetragonal to monoclinic phase transformation during oxidation of zirconium alloys

    NASA Astrophysics Data System (ADS)

    Platt, P.; Frankel, P.; Gass, M.; Howells, R.; Preuss, M.

    2014-11-01

    Corrosion is a key limiting factor in the degradation of zirconium alloys in light water reactors. Developing a mechanistic understanding of the corrosion process offers a route towards improving safety and efficiency as demand increases for higher burn-up of fuel. Oxides formed on zirconium alloys are composed of both monoclinic and meta-stable tetragonal phases, and are subject to a number of potential mechanical degradation mechanisms. The work presented investigates the link between the tetragonal to monoclinic oxide phase transformation and degradation of the protective character of the oxide layer. To achieve this, Abaqus finite element analysis of the oxide phase transformation has been carried out. Study of the change in transformation strain energy shows how relaxation of oxidation induced stress and fast fracture at the metal-oxide interface could destabilise the tetragonal phase. Central to this is the identification of the transformation variant most likely to form, and understanding why twinning of the transformed grain is likely to occur. Development of transformation strain tensors and analysis of the strain components allows some separation of dilatation and shear effects. Maximum principal stress is used as an indication of fracture in the surrounding oxide layer. Study of the stress distributions shows the way oxide fracture is likely to occur and the differing effects of dilatation and shape change. Comparison with literature provides qualitative validation of the finite element simulations.

  2. Phase transformations and phase relations in Ti{sub 50}Pd{sub (50-x)}TM{sub x} alloys

    SciTech Connect

    Schwartz, A.J.; Sluiter, M.H.; Harmon, B.N.; Tanner, L.E.

    1994-07-15

    The effect of transition metal (TM) substitution for Pd in Ti{sub 5O}Pd{sub (50-x}TM{sub x} alloys with x between 5 and 37.5 at.% and TM = V, Cr, Mn and Fe are being characterized by transmission electron microscopy and First-Principles Alloy Theory modeling. The goal is to obtain detailed structural information related to the ternary phase relations and transformations that are necessary for effective shape-memory alloy development. Thus far, the authors have found that the tend to have pseudobinary eutectoid-like configurations with a terminal TiPd and a non-close-packed long period ordered structure type crystal structure) based on the stoichiometry Ti{sub 2}PdTM. The systems exhibit a conventional martensitic transformation, as well as a new type of displacive transformation that shear-modulates B2 to produce a periodically distorted, but non-close-packed metastable product phase.

  3. Thermodynamics of Manganese Oxides at Bulk and Nanoscale: Phase Formation, Transformation, Oxidation-Reduction, and Hydration

    NASA Astrophysics Data System (ADS)

    Birkner, Nancy R.

    Natural manganese oxides are generally formed in surficial environments that are near ambient temperature and water-rich, and may be exposed to wet-dry cycles and a variety of adsorbate species that influence dramatically their level of hydration. Manganese oxide minerals are often poorly crystalline, nanophase, and hydrous. In the near-surface environment they are involved in processes that are important to life, such as water column oxygen cycling, biomineralization, and transport of minerals/nutrients through soils and water. These processes, often involving transformations among manganese oxide polymorphs, are governed by a complex interplay between thermodynamics and kinetics. Manganese oxides are also used in technology as catalysts, and for other applications. The major goal of this dissertation is to examine the energetics of bulk and nanophase manganese oxide phases as a function of particle size, composition, and surface hydration. Careful synthesis and characterization of manganese oxide phases with different surface areas provided samples for the study of enthalpies of formation by high temperature oxide melt solution calorimetry and of the energetics of water adsorption on their surfaces. These data provide a quantitative picture of phase stability and how it changes at the nanoscale. The surface energy of the hydrous surface of Mn3O4 is 0.96 +/- 0.08 J/m2, of Mn2O3 is 1.29 +/- 0.10 J/m2, and of MnO2 is 1.64 +/- 0.10 J/m2. The surface energy of the anhydrous surface of Mn3O4 is 1.62 +/- 0.08 J/m 2, of Mn2O3 is 1.77 +/- 0.10 J/m 2, and of MnO2 is 2.05 +/- 0.10 J/m2. Supporting preliminary findings (Navrotsky et al., 2010), the spinel phase (Mn3O4) has a lower surface energy (more stabilizing) than bixbyite, while the latter has a smaller surface energy than pyrolusite. These differences significantly change the positions in oxygen fugacity---temperature space of the redox couples Mn3O4-Mn2O 3 and Mn2O3-MnO2 favoring the lower surface enthalpy phase (the

  4. Understanding strain-induced phase transformations in BiFeO3 thin films

    DOE PAGES

    Dixit, Hemant; Beekman, Christianne; Schlepütz, Christian M.; Siemons, Wolter; Yang, Yongsoo; Senabulya, Nancy; Clarke, Roy; Chi, Miaofang; Christen, Hans M.; Cooper, Valentino R.

    2015-05-01

    Experiments demonstrate that under large epitaxial strain a coexisting striped phase emerges in BiFeO₃ thin films, which comprises a tetragonal-like (T´) and an intermediate S´ polymorph. It exhibits a relatively large piezoelectric response when switching between the coexisting phase and a uniform T´ phase. This strain-induced phase transformation is investigated through a synergistic combination of first-principles theory and experiments. The results show that the S´ phase is energetically very close to the T´ phase, but is structurally similar to the bulk rhombohedral (R) phase. By fully characterizing the intermediate S´ polymorph, it is demonstrated that the flat energy landscape resultingmore » in the absence of an energy barrier between the T´ and S´ phases fosters the above-mentioned reversible phase transformation. This ability to readily transform between the S´ and T´ polymorphs, which have very different octahedral rotation patterns and c/a ratios, is crucial to the enhanced piezoelectricity in strained BiFeO3 films. Additionally, a blueshift in the band gap when moving from R to S´ to T´ is observed. These results emphasize the importance of strain engineering for tuning electromechanical responses or, creating unique energy harvesting photonic structures, in oxide thin film architectures.« less

  5. Understanding strain-induced phase transformations in BiFeO3 thin films

    SciTech Connect

    Dixit, Hemant; Beekman, Christianne; Schlepütz, Christian M.; Siemons, Wolter; Yang, Yongsoo; Senabulya, Nancy; Clarke, Roy; Chi, Miaofang; Christen, Hans M.; Cooper, Valentino R.

    2015-05-01

    Experiments demonstrate that under large epitaxial strain a coexisting striped phase emerges in BiFeO₃ thin films, which comprises a tetragonal-like (T´) and an intermediate S´ polymorph. It exhibits a relatively large piezoelectric response when switching between the coexisting phase and a uniform T´ phase. This strain-induced phase transformation is investigated through a synergistic combination of first-principles theory and experiments. The results show that the S´ phase is energetically very close to the T´ phase, but is structurally similar to the bulk rhombohedral (R) phase. By fully characterizing the intermediate S´ polymorph, it is demonstrated that the flat energy landscape resulting in the absence of an energy barrier between the T´ and S´ phases fosters the above-mentioned reversible phase transformation. This ability to readily transform between the S´ and T´ polymorphs, which have very different octahedral rotation patterns and c/a ratios, is crucial to the enhanced piezoelectricity in strained BiFeO3 films. Additionally, a blueshift in the band gap when moving from R to S´ to T´ is observed. These results emphasize the importance of strain engineering for tuning electromechanical responses or, creating unique energy harvesting photonic structures, in oxide thin film architectures.

  6. Simultaneous probing of phase transformations in Ni-Ti thin film shape memory alloy by synchrotron radiation-based X-ray diffraction and electrical resistivity

    SciTech Connect

    Braz Fernandes, F.M.; Silva, R.J.C.

    2013-02-15

    Nickel–Titanium (Ni–Ti) thin film shape memory alloys (SMAs) have been widely projected as novel materials which can be utilized in microdevices. Characterization of their physical properties and its correlation with phase transformations has been a challenging issue. In the present study, X-ray beam diffraction has been utilized to obtain the structural information at different temperatures while cooling. Simultaneously, electrical resistivity (ER) was measured in the phase transformation temperature range. The variation of ER and integral area of the individual diffraction peaks of the different phases as a function of temperature have been compared. A mismatch between the conventional interpretation of ER variation and the results of the XRD data has been clearly identified. - Highlights: ► Phase transformation characterization of Ni–Ti thin film SMA has been carried out. ► Simultaneous monitoring of the XRD and ER with temperature is performed. ► The variation of ER and integral area of the diffraction peaks have been compared. ► A shift of the transformation temperatures obtained by two techniques is discussed.

  7. Low temperature phase transition and crystal structure of CsMgPO{sub 4}

    SciTech Connect

    Orlova, Maria; Khainakov, Sergey; Michailov, Dmitriy; Perfler, Lukas; Langes, Christoph; Kahlenberg, Volker; Orlova, Albina

    2015-01-15

    CsMgPO{sub 4} doped with radioisotopes is a promising compound for usage as a radioactive medical source. However, a low temperature phase transition at temperatures close to ambient conditions (∼−40 °C) was observed. Information about such kind of structural changes is important in order to understand whether it can cause any problem for medical use of this compound. The phase transition has been investigated in detail using synchrotron powder diffraction, Raman spectroscopy and DFT calculations. The structure undergoes a transformation from an orthorhombic modification, space group Pnma (RT phase) to a monoclinic polymorph, space group P2{sub 1}/n (LT phase). New LT modification adopts similar to RT but slightly distorted unit cell: a=9.58199(2) Å, b=8.95501(1) Å, c=5.50344(2) Å, β=90.68583(1)°, V=472.198(3) Å{sup 3}. CsMgPO{sub 4} belongs to the group of framework compounds and is made up of strictly alternating MgO{sub 4}- and PO{sub 4}-tetrahedra sharing vertices. The cesium counter cations are located in the resulting channel-like cavities. Upon the transformation a combined tilting of the tetrahedra is observed. A comparison with other phase transitions in ABW-type framework compounds is given. - Graphical abstract: Structural behavior of β-tridymite-type phosphate CsMgPO{sub 4}, considered as potential chemical form for radioactive Cs-source has been studied at near ambient temperatures. A phase transition at (∼−40 °C) has been found and investigated. It has been established that the known orthorhombic RT modification, space group Pnma, adopts a monoclinic cell with space group P2{sub 1}/n at low temperatures. In this paper, we present results of structural analysis of changes accompanying this phase transition and discuss its possible impact on the application properties. - Highlights: • β-Tridymite type phosphate CsMgPO{sub 4} undergoes so called translationengleiche phase transition of index 2 at −40 °C. • The structure

  8. Earth physics and phase transformations program: A concept and proposal

    NASA Technical Reports Server (NTRS)

    Bonavito, N. L.; Tanaka, T.

    1971-01-01

    A program to study the geophysical characteristics of the earth is presented as an integration of the different disciplines that constitute the earth sciences, through the foundation of a generalized geodynamic theory of earth physics. A program is considered for defining the physical constants of the earth's material which parametrize the hydrodynamic equation in the microscopic solid state behavior of the crystals of the lithosphere. In addition, in order to lay the foundation for a generalized theory in earth physics, specific research areas are considered, such as the nature of the kinetics of the phase transitions in mineral assemblages, the equilibrium thermodynamic properties of crystals which are major constituents of mineral assemblages, and the transport properties of pure crystals which are major constituents of mineral assemblages.

  9. Thermodynamics and Kinetics of Phase Transformations in Hydrogen Storage Materials

    SciTech Connect

    Ceder, Gerbrand; Marzari, Nicola

    2011-08-31

    The aim of this project is to develop and apply computational materials science tools to determine and predict critical properties of hydrogen storage materials. By better understanding the absorption/desorption mechanisms and characterizing their physical properties it is possible to explore and evaluate new directions for hydrogen storage materials. Particular emphasis is on the determination of the structure and thermodynamics of hydrogen storage materials, the investigation of microscopic mechanisms of hydrogen uptake and release in various materials and the role of catalysts in this process. As a team we have decided to focus on a single material, NaAlH{sub 4}, in order to fully be able to study the many aspects of hydrogen storage. We have focused on phase stability, mass transport and size-dependent reaction mechanisms in this material.

  10. Effects of heating rates and alloying elements (Sn, Cu and Cr) on the α → α + β phase transformation of Zr-Sn-Nb-Fe-(Cu, Cr) alloys

    NASA Astrophysics Data System (ADS)

    Qiu, R. S.; Luan, B. F.; Chai, L. J.; Zhang, X. Y.; Liu, Q.

    2014-10-01

    In this investigation, differential scanning calorimetry (DSC) and metallographic experiments supplemented by back-scattered electron imaging (BSEI) and electron back-scattered diffraction (EBSD) techniques were performed to study the effects of heating rates and alloying elements on the α → α + β phase transformation of Zr-Sn-Nb-Fe-(Cu, Cr) alloys. Results show that the α → α + β phase transformation peaks shift to higher temperature with increasing heating rates, indicating that the reactions are thermally activated and kinetically controlled processes. The α → α + β phase transformation temperature (Tα→α+β) are affected by the solid solubility limit as well as the diffusivities of various elements in these alloys. For the zirconium alloys with low Nb contents, the Tα→α+β increases with an increase of Sn content. The addition of Cu in zirconium alloys decrease the Tα→α+β, while the addition of Cr increase it.

  11. Phase change material for temperature control and material storage

    NASA Technical Reports Server (NTRS)

    Wessling, Jr., Francis C. (Inventor); Blackwood, James M. (Inventor)

    2011-01-01

    A phase change material comprising a mixture of water and deuterium oxide is described, wherein the mole fraction of deuterium oxide is selected so that the mixture has a selected phase change temperature within a range between 0.degree. C. and 4.degree. C. The mixture is placed in a container and used for passive storage and transport of biomaterials and other temperature sensitive materials. Gels, nucleating agents, freezing point depression materials and colorants may be added to enhance the characteristics of the mixture.

  12. Development of coherent Raman measurements of temperature in condensed phases

    SciTech Connect

    Mcgrane, Shawn D; Dang, Nhan C; Bolme, Cindy A; Moore, David S

    2010-12-08

    We report theoretical considerations and preliminary data on various forms of coherent Raman spectroscopy that have been considered as candidates for measurement of temperature in condensed phase experiments with picosecond time resolution. Due to the inherent broadness and congestion of vibrational features in condensed phase solids, particularly at high temperatures and pressures, only approaches that rely on the ratio of anti-Stokes to Stokes spectral features are considered. Methods that rely on resolution of vibrational progressions, calibration of frequency shifts with temperature and pressure in reference experiments, or detailed comparison to calculation are inappropriate or impossible for our applications. In particular, we consider femtosecond stimulated Raman spectroscopy (FSRS), femtosecond/picosecond hybrid coherent Raman spectroscopy (multiplex CARS), and optical heterodyne detected femtosecond Raman induced Kerr Effect spectroscopy (OHD-FRIKES). We show that only FSRS has the ability to measure temperature via an anti-Stokes to Stokes ratio of peaks.

  13. Residual stresses and phase transformations in Ytterbium silicate environmental barrier coatings

    NASA Astrophysics Data System (ADS)

    Stolzenburg, Fabian

    Due to their high melting temperature, low density, and good thermomechanical stability, silicon-based ceramics (SiC, Si3N4) are some of the most promising materials systems for high temperature structural applications in gas turbine engines. However, their silica surface layer reacts with water vapor contained in combustion environments. The resulting hydroxide layer volatilizes, leading to component recession. Environmental barrier coatings (EBCs) have been developed to shield the substrate from degradation. Next generation coatings for silicon-based ceramics based on ytterbium silicates have shown a promising combination of very low and good thermomechanical properties. The focus of this thesis is threefold: In the first part, phase transformations in plasma sprayed ytterbium silicates were investigated. Plasma sprayed materials are known to contain large amounts of amorphous material. Phase changes during the conversion from amorphous to crystalline materials were investigated as they have been known to lead to failure in many coatings. The second part of this work focused on measuring residual stresses in multilayer EBCs using synchrotron X-ray diffraction (XRD). Strains were resolved spatially, with probe sizes as small as 20 um. Stresses were calculated using mechanical properties of ytterbium silicates, determined with in-situ loading and heating experiments. In-situ and ex-situ heating experiments allowed for the study of changes in stress states that occur in these EBC materials during heating and cooling cycles. Lastly, the interaction of ytterbium silicates with low-melting environmental calcium-magnesium-aluminosilicate (CMAS) glasses was studied. Synchrotron XRD was used to study the influence of CMAS on the stress state in the coating, X-ray computed tomography was used to provide 3D images of coatings, and EDS and TEM analysis were used to study the interactions at the CMAS/ytterbium silicate interface in detail.

  14. Macroscopic phase separation in high-temperature superconductors

    PubMed Central

    Wen, Hai-Hu

    2000-01-01

    High-temperature superconductivity is recovered by introducing extra holes to the Cu-O planes, which initially are insulating with antiferromagnetism. In this paper I present data to show the macroscopic electronic phase separation that is caused by either mobile doping or electronic instability in the overdoped region. My results clearly demonstrate that the electronic inhomogeneity is probably a general feature of high-temperature superconductors. PMID:11027323

  15. Crystal chemistry of the high temperature product of transformation of cement-asbestos.

    PubMed

    Viani, Alberto; Gualtieri, Alessandro F; Pollastri, Simone; Rinaudo, Caterina; Croce, Alessandro; Urso, Giancarlo

    2013-03-15

    In this work, the high-temperature inertization product of a representative batch of samples of cement-asbestos (CA) from different localities in Italy have been characterized with a multidisciplinary approach. All the raw CA samples were heated at 1200°C for 15 min. After firing, they underwent a series of solid state reactions leading to global structural changes of the matrix. Effects of annealing time and temperature on the crystallization kinetics were thoroughly investigated. Both factors acted in favour of equilibrium. Three classes of CA were identified with the aid of phase diagrams and of specific plots relating chemical and mineralogical parameters. This result was considered of importance in view of the potential use of transformed cement-asbestos as a secondary raw material. In principle, the content of CA packages removed from the environment and their corresponding heat-treated products can be classified simply using XRF. This method allows for the selection of appropriate fractions in function of the most suitable recycling solution adopted. Samples belonging to the class called larnite-rich, turned out to be of great interest as possible candidate for substituting a fraction of cement in many building materials and innovative green cement productions. PMID:23380447

  16. Phase transformations of nano-sized cubic boron nitride to white graphene and white graphite

    SciTech Connect

    Dang, Hongli; Liu, Yingdi; Xue, Wenhua; Anderson, Ryan S.; Sewell, Cody R.; Xue, Sha; Crunkleton, Daniel W.; Shen, Yaogen; Wang, Sanwu

    2014-03-03

    We report quantum-mechanical investigations that predict the formation of white graphene and nano-sized white graphite from the first-order phase transformations of nano-sized boron nitride thin-films. The phase transformations from the nano-sized diamond-like structure, when the thickness d > 1.4 nm, to the energetically more stable nano-sized white graphite involve low activation energies of less than 1.0 eV. On the other hand, the diamond-like structure transforms spontaneously to white graphite when d ≤ 1.4 nm. In particular, the two-dimensional structure with single-layer boron nitride, the so-called white graphene, could be formed as a result of such transformation.

  17. Phase Transformations of Cobalt Oxides in CoxOy-ZnO Multipod Nanostructures via Combustion from Thermopower Waves.

    PubMed

    Lee, Kang Yeol; Hwang, Hayoung; Choi, Wonjoon

    2015-09-01

    The study of combustion at the interfaces of materials and chemical fuels has led to developments in diverse fields such as materials chemistry and energy conversion. Recently, it has been suggested that thermopower waves can utilize chemical-thermal-electrical-energy conversion in hybrid structures comprising nanomaterials and combustible fuels to produce enhanced combustion waves with concomitant voltage generation. In this study, this is the first time that the direct phase transformation of Co-doped ZnO via instant combustion waves and its applications to thermopower waves is presented. It is demonstrated that the chemical combustion waves at the surfaces of Co3O4-ZnO multipod nanostructures (deep brown in color) enable direct phase transformations to newly formed CoO-ZnO(1-x) nanoparticles (olive green in color). The oxygen molecules are released from Co3O4-ZnO to CoO-ZnO(1-x) under high-temperature conditions in the reaction front regime in combustion, whereas the CoO-ZnO multipod nanoparticles do not undergo any transformations and thus do not experience any color change. This oxygen-release mechanism is applicable to thermopower waves, enhances the self-propagating combustion velocity, and forms lattice defects that interrupt the charge-carrier movements inside the nanostructures. The chemical transformation and corresponding energy transport observed in this study can contribute to diverse potential applications, including direct-combustion synthesis and energy conversion.

  18. Real-time monitoring and calculation of the derating of single-phase transformers under nonsinusoidal operation

    NASA Astrophysics Data System (ADS)

    Batan, Tufan

    The extensive use of power electronic devices in the last two decades have degraded the quality of the power system by introducing voltage and current harmonics as well as DC excitations. Such phenomena cause additional losses in transformers, resulting in elevated temperatures of transformers above their rated temperatures. This added heat degrades the insulating material of the windings, decreasing the rated lifetime of transformers. For this reason, transformers feeding nonlinear loads must be derated; that is. by limiting either their output apparent or real power such that rated temperatures are not exceeded. It is of advantage to measure the derating of transformers which are already in service, for given nonlinear loads and to calculate the derating of large transformers that cannot readily be tested in laboratories. It is one of the objectives of this thesis to validate the computed derating values of transformers with corroborating measurements. A 25kVA 7200V/240V single-phase pole transformer is analyzed using two dimensional field analysis based on the diffusion equation, employing either rectangular or polycentric grid structures. Such a field analysis allows us to visualize the complex vector potential and flux density distributions inside the unsaturated transformer operating under short-circuit conditions. One can calculate the eddy currents within conducting materials, such as copper and aluminum windings, from complex vector potential values. Short-circuit tests applied to low and high voltage windings allow us to calculate the eddy currents inside each winding and consequently their eddy-current losses. The frequency dependent AC winding resistance RAC as well as the per-unit eddy-current loss coefficient PEC-R are computed. These values are used to determine the derating of transformers via either the K-factor as proposed by Underwriters Laboratory, Inc., or via the harmonic loss factor FHL, as favored by IEEE and IEC. A new digital data

  19. Effect of gas flow rates on the anatase-rutile transformation temperature of nanocrystalline TiO2 synthesised by chemical vapour synthesis.

    PubMed

    Ahmad, Md Imteyaz; Bhattacharya, S S; Fasel, Claudia; Hahn, Horst

    2009-09-01

    Of the three crystallographic allotropes of nanocrystalline titania (rutile, anatase and brookite), anatase exhibits the greatest potential for a variety of applications, especially in the area of catalysis and sensors. However, with rutile being thermodynamically the most stable phase, anatase tends to transform into rutile on heating to temperatures in the range of 500 degrees C to 700 degrees C. Efforts made to stabilize the anatase phase at higher temperatures by doping with metal oxides suffer from the problems of having a large amorphous content on synthesis as well as the formation of secondary impurity phases on doping. Recent studies have suggested that the as-synthesised phase composition, crystallite size, initial surface area and processing conditions greatly influence the anatase to rutile transformation temperature. In this study nanocrystalline titania was synthesised in the anatase form bya chemical vapour synthesis (CVS) method using titanium tetra iso-propoxide (TTIP) as a precursor under varying flow rates of oxygen and helium. The anatase to rutile transformation was studied using high temperature X-ray diffraction (HTXRD) and simultaneous thermogravimetric analysis (STA), followed by transmission electron microscopy (TEM). It was demonstrated that the anatase-rutile transformation temperatures were dependent on the oxygen to helium flow rate ratio during CVS and the results are presented and discussed. PMID:19928267

  20. Kinetics of hexacelsian-to-celsian phase transformation in SrAl2Si2O8

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Drummond, Charles H., III

    1993-01-01

    The kinetics of hexacelsian to celsian phase transformation in SrAl2Si2O8 have been investigated. Phase pure hexacelsian was prepared by heat treatment of glass flakes at 990 C for 10 h. Bulk hexacelsian was isothermally heat treated at 1026, 1050, 1100, 1152, and 1200 C for various times. The amounts of monoclinic celsian formed were determined using quantitative X-ray diffraction. Values of reaction rate constant, k, at various temperatures were evaluated from the Avrami equation. The Avrami parameter was determined to be 1.1, suggesting a diffusionless, one-dimensional transformation mechanism. From the temperature dependence of k, the activation energy for this reaction was evaluated to be 527 plus or minus 50 kJ/mole (126 plus or minus 12 kcal/mole). This value is consistent with a mechanism involving the transformation of the layered hexacelsian structure to a three-dimensional network celsian structure which necessitates breaking of the strongest bonds, the Si-O bonds.

  1. Thermal stability of field-forced and field-assisted antiferroelectric-ferroelectric phase transformations in Pb(Zr,Sn,Ti)O sub 3

    SciTech Connect

    Yang, P.; Payne, D.A. )

    1992-02-01

    Antiferroelectric (AFE)-ferroelectric phase transformations in tin-modified lead zirconate titanate, i.e., Pb(Zr,Sn,Ti)O{sub 3} are reported. A martensitic-type approach is developed to explain the observed thermal hysteresis and field-induced transformation behavior. A model is proposed with transformation fields where the forward {ital E}{sub {ital F}} and reverse {ital E}{sub {ital A}} field strengths are related to the transformation barrier to the ferroelectric state, and to the AFE sublattice coupling, respectively. The thermal stability of the AFE state can therefore be determined with respect to the field-induced transformation behavior. A distinction is made between field-forced and field-assisted transformations, which depend on temperature and thermal hysteresis, and which are related to reversible and irreversible field-induced characteristics. Data are reported for polarizations and strains, and discussed with respect to the proposed thermodynamic model and device applications.

  2. Molecular Dynamics at Electrical- and Optical-Driven Phase Transitions: Time-Resolved Infrared Studies Using Fourier-Transform Spectrometers

    NASA Astrophysics Data System (ADS)

    Peterseim, Tobias; Dressel, Martin

    2016-06-01

    The time-dependent optical properties of molecular systems are investigated by step-scan Fourier-transform spectroscopy in order to explore the dynamics at phase transitions and molecular orientation in the milli- and microsecond range. The electrical switching of liquid crystals traced by vibrational spectroscopy reveals a rotation of the molecules with a relaxation time of 2 ms. The photo-induced neutral-ionic transition in TTF-CA takes place by a suppression of the dimerization in the ionic phase and creation of neutral domains. The time-dependent infrared spectra, employed to investigate the domain-wall dynamics, depend on temperature and laser pulse intensity; the relaxation of the spectra follows a stretched-exponential decay with relaxation times in the microsecond range strongly dependent on temperature and laser intensity. We present all details of the experimental setups and thoroughly discuss the technical challenges.

  3. A test of the Johnson-Mehl-Avrami equation. [for phase transformations

    NASA Technical Reports Server (NTRS)

    Weinberg, Michael C.

    1987-01-01

    The accuracy of the Johnson-Mehl-Avrami (JMA) equation is evaluated for the special case of two-dimensional crystallization. The volume fraction transformed is determined directly by computer modeling, and the evaluation of the secondary phase obtained is compared with predictions of the JMA equation. The JMA equation if found to be highly acccurate over virtually the entire range of the transformation process.

  4. Phase transformation sequence and magnetic properties of melt-spun SmCo-based alloy after isochronal heat treatment

    SciTech Connect

    Xiong, X. Y.; Finlayson, T. R.

    2008-11-15

    The phase transformation sequence, microstructure and compositions, and magnetic properties for a melt-spun Sm(Co{sub 0.68}Fe{sub 0.2}Cu{sub 0.1}Zr{sub 0.02}){sub 7.5} alloy after isochronal heat treatments have been studied by using x-ray diffraction, transmission electron microscopy, three-dimensional atom probe (3DAP), and magnetometry. The as-spun ribbons had a single phase with the Cu{sub 7}Tb structure. After being aged at 720 deg. C, the single phase decomposed into two major phases: 2:17R and 1:5H, and one minor CoFeZr-rich phase. The formation of the Z-phase happened after the cellular structure, requiring a higher temperature than that for the cellular structure. The 3DAP analysis showed that Zr was depleted from the 2:17R and 1:5H phases by a half while the other elements remained almost unchanged when the aging temperature increased from 720 to 840 deg. C. In contrast to the sintered permanent magnets, Cu was enriched in the 1:5H phase with a much higher concentration (>40 at. %). The Cu enrichment also occurred at the boundary of the Z-phase. The coercivity achieved was H{sub c}=4.34 kOe following aging at 720 deg. C. The highest maximum energy product, (BH){sub max}, was 6.48 MG Oe after aging at 800 deg. C and the remanence to saturation magnetization ratio, M{sub r}/M{sub s}, was 0.69. This relatively low H{sub c} and high M{sub r}/M{sub s} ratio may be a consequence of the formation of a significant volume fraction of the CoFeZr-rich nanocrystalline phase.

  5. Theory of the amplitude-phase retrieval in any linear-transform system and its applications

    NASA Astrophysics Data System (ADS)

    Yang, Guozhen; Gu, Ben-Yuan; Dong, Bi-Zhen

    1992-12-01

    This paper is a summary of the theory of the amplitude-phase retrieval problem in any linear transform system and its applications based on our previous works in the past decade. We describe the general statement on the amplitude-phase retrieval problem in an imaging system and derive a set of equations governing the amplitude-phase distribution in terms of the rigorous mathematical derivation. We then show that, by using these equations and an iterative algorithm, a variety of amplitude-phase problems can be successfully handled. We carry out the systematic investigations and comprehensive numerical calculations to demonstrate the utilization of this new algorithm in various transform systems. For instance, we have achieved the phase retrieval from two intensity measurements in an imaging system with diffraction loss (non-unitary transform), both theoretically and experimentally, and the recovery of model real image from its Hartley-transform modulus only in one and two dimensional cases. We discuss the achievement of the phase retrieval problem from a single intensity only based on the sampling theorem and our algorithm. We also apply this algorithm to provide an optimal design of the phase-adjusted plate for a phase-adjustment focusing laser accelerator and a design approach of single phase-only element for implementing optical interconnect. In order to closely simulate the really measured data, we examine the reconstruction of image from its spectral modulus corrupted by a random noise in detail. The results show that the convergent solution can always be obtained and the quality of the recovered image is satisfactory. We also indicated the relationship and distinction between our algorithm and the original Gerchberg- Saxton algorithm. From these studies, we conclude that our algorithm shows great capability to deal with the comprehensive phase-retrieval problems in the imaging system and the inverse problem in solid state physics. It may open a new way to

  6. Stress-induced phase transformation and optical coupling of silver nanoparticle superlattices into mechanically stable nanowires

    NASA Astrophysics Data System (ADS)

    Li, Binsong; Wen, Xiaodong; Li, Ruipeng; Wang, Zhongwu; Clem, Paul G.; Fan, Hongyou

    2014-06-01

    One-dimensional silver materials display unique optical and electrical properties with promise as functional blocks for a new generation of nanoelectronics. To date, synthetic approaches and property engineering of silver nanowires have primarily focused on chemical methods. Here we report a simple physical method of metal nanowire synthesis, based on stress-induced phase transformation and sintering of spherical Ag nanoparticle superlattices. Two phase transformations of nanoparticles under stress have been observed at distinct length scales. First, the lattice dimensions of silver nanoparticle superlattices may be reversibly manipulated between 0-8 GPa compressive stresses to enable systematic and reversible changes in mesoscale optical coupling between silver nanoparticles. Second, stresses greater than 8 GPa induced an atomic lattice phase transformation, which induced sintering of silver nanoparticles into micron-length scale nanowires. The nanowire synthesis mechanism displays a dependence on both nanoparticle crystal surface orientation and presence of particular grain boundaries to enable nanoparticle consolidation into nanowires.

  7. Neural network calibration of a snapshot birefringent Fourier transform spectrometer with periodic phase errors.

    PubMed

    Luo, David; Kudenov, Michael W

    2016-05-16

    Systematic phase errors in Fourier transform spectroscopy can severely degrade the calculated spectra. Compensation of these errors is typically accomplished using post-processing techniques, such as Fourier deconvolution, linear unmixing, or iterative solvers. This results in increased computational complexity when reconstructing and calibrating many parallel interference patterns. In this paper, we describe a new method of calibrating a Fourier transform spectrometer based on the use of artificial neural networks (ANNs). In this way, it is demonstrated that a simpler and more straightforward reconstruction process can be achieved at the cost of additional calibration equipment. To this end, we provide a theoretical model for general systematic phase errors in a polarization birefringent interferometer. This is followed by a discussion of our experimental setup and a demonstration of our technique, as applied to data with and without phase error. The technique's utility is then supported by comparison to alternative reconstruction techniques using fast Fourier transforms (FFTs) and linear unmixing.

  8. Neural network calibration of a snapshot birefringent Fourier transform spectrometer with periodic phase errors.

    PubMed

    Luo, David; Kudenov, Michael W

    2016-05-16

    Systematic phase errors in Fourier transform spectroscopy can severely degrade the calculated spectra. Compensation of these errors is typically accomplished using post-processing techniques, such as Fourier deconvolution, linear unmixing, or iterative solvers. This results in increased computational complexity when reconstructing and calibrating many parallel interference patterns. In this paper, we describe a new method of calibrating a Fourier transform spectrometer based on the use of artificial neural networks (ANNs). In this way, it is demonstrated that a simpler and more straightforward reconstruction process can be achieved at the cost of additional calibration equipment. To this end, we provide a theoretical model for general systematic phase errors in a polarization birefringent interferometer. This is followed by a discussion of our experimental setup and a demonstration of our technique, as applied to data with and without phase error. The technique's utility is then supported by comparison to alternative reconstruction techniques using fast Fourier transforms (FFTs) and linear unmixing. PMID:27409947

  9. Influence of Laser Peening on Phase Transformation and Corrosion Resistance of AISI 321 steel

    NASA Astrophysics Data System (ADS)

    Karthik, D.; Swaroop, S.

    2016-07-01

    The objective of this study is to investigate the influence of laser peening without coating (LPwC) on austenitic to martensitic (γ → α') phase transformation and corrosion behavior of austenitic stainless steel AISI 321 in 3.5% NaCl environment. Results indicate that LPwC induces a large compressive residual stresses of nearly -854 MPa and γ → α' phase transformation of about 18% (volume fraction). Microstructures of peened surface confirmed the γ → α' phase transformation and showed no grain refinement. Hardness increased slightly with a case depth of 900 μm. Despite the smaller surface roughness introduced, corrosion resistance improved after peening due to compressive residual stresses.

  10. Analysis of Transformation Plasticity in Steel Using a Finite Element Method Coupled with a Phase Field Model

    PubMed Central

    Cho, Yi-Gil; Kim, Jin-You; Cho, Hoon-Hwe; Cha, Pil-Ryung; Suh, Dong-Woo; Lee, Jae Kon; Han, Heung Nam

    2012-01-01

    An implicit finite element model was developed to analyze the deformation behavior of low carbon steel during phase transformation. The finite element model was coupled hierarchically with a phase field model that could simulate the kinetics and micro-structural evolution during the austenite-to-ferrite transformation of low carbon steel. Thermo-elastic-plastic constitutive equations for each phase were adopted to confirm the transformation plasticity due to the weaker phase yielding that was proposed by Greenwood and Johnson. From the simulations under various possible plastic properties of each phase, a more quantitative understanding of the origin of transformation plasticity was attempted by a comparison with the experimental observation. PMID:22558295

  11. Analysis of transformation plasticity in steel using a finite element method coupled with a phase field model.

    PubMed

    Cho, Yi-Gil; Kim, Jin-You; Cho, Hoon-Hwe; Cha, Pil-Ryung; Suh, Dong-Woo; Lee, Jae Kon; Han, Heung Nam

    2012-01-01

    An implicit finite element model was developed to analyze the deformation behavior of low carbon steel during phase transformation. The finite element model was coupled hierarchically with a phase field model that could simulate the kinetics and micro-structural evolution during the austenite-to-ferrite transformation of low carbon steel. Thermo-elastic-plastic constitutive equations for each phase were adopted to confirm the transformation plasticity due to the weaker phase yielding that was proposed by Greenwood and Johnson. From the simulations under various possible plastic properties of each phase, a more quantitative understanding of the origin of transformation plasticity was attempted by a comparison with the experimental observation. PMID:22558295

  12. Linear canonical transformations of coherent and squeezed states in the Wigner phase space

    NASA Technical Reports Server (NTRS)

    Han, D.; Kim, Y. S.; Noz, Marilyn E.

    1988-01-01

    It is shown that classical linear canonical transformations are possible in the Wigner phase space. Coherent and squeezed states are shown to be linear canonical transforms of the ground-state harmonic oscillator. It is therefore possible to evaluate the Wigner functions for coherent and squeezed states from that for the harmonic oscillator. Since the group of linear canonical transformations has a subgroup whose algebraic property is the same as that of the (2+1)-dimensional Lorentz group, it may be possible to test certain properties of the Lorentz group using optical devices. A possible experiment to measure the Wigner rotation angle is discussed.

  13. Neutron Scattering Studies of Pre-Transitional Effects in Solid-Solid Phase Transformations

    SciTech Connect

    Shapiro, S. M.

    1999-06-30

    Neutron scattering studies have played a fundamental role in understanding solid-solid phase transformations, particularly in studying the lattice dynamical behavior associated with precursor effects. A review of the studies performed on solids exhibiting Martensitic transformations is given below. The mode softening and associated elastic diffuse scattering, previously observed in NiAl alloys, will be discussed as well as more recent work on Ni{sub 2}MnGa, a system exhibiting magnetic order as well as a Martensitic transformation. Also, new results on the precursor effects in ordered and disordered FePt alloys will be presented.

  14. Continuous wavelet transform for non-stationary vibration detection with phase-OTDR.

    PubMed

    Qin, Zengguang; Chen, Liang; Bao, Xiaoyi

    2012-08-27

    We propose the continuous wavelet transform for non-stationary vibration measurement by distributed vibration sensor based on phase optical time-domain reflectometry (OTDR). The continuous wavelet transform approach can give simultaneously the frequency and time information of the vibration event. Frequency evolution is obtained by the wavelet ridge detection method from the scalogram of the continuous wavelet transform. In addition, a novel signal processing algorithm based on the global wavelet spectrum is used to determine the location of vibration. Distributed vibration measurements of 500 Hz and 500 Hz to 1 kHz sweep events over 20 cm fiber length are demonstrated using a single mode fiber.

  15. Radiation-Induced Phase Transformations in Ilmenite-Group Minerals

    SciTech Connect

    Mitchell, J. N.

    1997-12-31

    Transmission electron microscopy (TEM) is a powerful tool for characterizing and understanding radiation-induced structural changes in materials. We have irradiated single crystals of ilmenite (FeTiO{sub 3}) and geikielite (MgTiO{sub 3}) using ions and electrons to better understand the response of complex oxides to radiation. Ion irradiation experiments of bulk single crystals at 100 K show that ilmenite amorphized at doses of less than 1x10(exp15) Ar(2+)/sq cm and at a damage level in the peak damage region of 1 displacement per atom (dpa). Transmission electron microscopy and electron diffraction of a cross-sectioned portion of this crystal confirmed the formation of a 150 am thick amorphous layer. Geikielite proved to be more radiation resistant, requiring a flux of 2x10(exp 15) Xe(2+)/sq cm to induce amorphization at 100 K. This material did not amorphize at 470 K, despite a dose of 2.5 x10(exp 16) Xe(2+)/sq cm and a damage level as high as 25 dpa. Low temperature irradiations of electron- transparent crystals with 1 MeV Kr(+) also show that ilmenite amorphized after a damage level of 2.25 dpa at 175 K.Similar experiments on geikielite show that the microstructure is partially amorphous and partially crystalline after 10 dpa at 150 K. Concurrent ion and electron irradiation of both materials with 1 MeV Kr(+) and 0.9 MeV electrons produced dislocation loops in both materials, but no amorphous regions were formed. Differences in the radiation response of these isostructural oxides suggests that in systems with Mg-Fe solid solution, the Mg-rich compositions may be more resistant to structural changes.

  16. Double image encryption based on phase-amplitude mixed encoding and multistage phase encoding in gyrator transform domains

    NASA Astrophysics Data System (ADS)

    Wang, Qu; Guo, Qing; Lei, Liang

    2013-06-01

    We present a novel method for double image encryption that is based on amplitude-phase mixed encoding and multistage random phase encoding in gyrator transform (GT) domains. In the amplitude-phase mixed encoding operation, a random binary distribution matrix is defined to mixed encode two primitive images to a single complex-valued image, which is then encrypted into a stationary white noise distribution by the multistage phase encoding with GTs. Compared with the earlier methods that uses fully phase encoding, the proposed method reduces the difference between two primitive images in key space and sensitivity to the GT orders. The primitive images can be recovered exactly by applying correct keys with initial conditions of chaotic system, the GT orders and the pixel scrambling operation. Numerical simulations demonstrate that the proposed scheme has considerably high security level and certain robustness against data loss and noise disturbance.

  17. Structural and phase transformations in zinc and brass wires under heating with high-density current pulse

    NASA Astrophysics Data System (ADS)

    Pervikov, A. V.

    2016-06-01

    The work is focused on revealing the mechanism of structure and phase transformations in the metal wires under heating with a high-density current pulse (the electric explosion of wires, EEWs). It has been demonstrated on the example of brass and zinc wires that the transition of a current pulse with the density of j ≈ 3.3 × 107 A/cm2 results in homogeneous heating of the crystalline structure of the metal/alloy. It has been determined that under heating with a pulse of high-density current pulse, the electric resistance of the liquid phases of zinc and brass decreases as the temperature increases. The results obtained allow for a conclusion that the presence of the particles of the condensed phase in the expanding products of EEW is the result of overheating instabilities in the liquid metal.

  18. Titanium α -ω phase transformation pathway and a predicted metastable structure

    NASA Astrophysics Data System (ADS)

    Zarkevich, N. A.; Johnson, D. D.

    2016-01-01

    As titanium is a highly utilized metal for structural lightweighting, its phases, transformation pathways (transition states), and structures have scientific and industrial importance. Using a proper solid-state nudged elastic band method employing two climbing images combined with density functional theory DFT + U methods for accurate energetics, we detail the pressure-induced α (ductile) to ω (brittle) transformation at the coexistence pressure. We find two transition states along the minimal-enthalpy path and discover a metastable body-centered orthorhombic structure, with stable phonons, a lower density than the end-point phases, and decreasing stability with increasing pressure.

  19. Titanium α-ω phase transformation pathway and a predicted metastable structure

    DOE PAGES

    Zarkevich, Nickolai A.; Johnson, Duane D.

    2016-01-15

    A titanium is a highly utilized metal for structural lightweighting and its phases, transformation pathways (transition states), and structures have scientific and industrial importance. Using a proper solid-state nudged elastic band method employing two climbing images combined with density functional theory DFT + U methods for accurate energetics, we detail the pressure-induced α (ductile) to ω (brittle) transformation at the coexistence pressure. We also find two transition states along the minimal-enthalpy path and discover a metastable body-centered orthorhombic structure, with stable phonons, a lower density than the end-point phases, and decreasing stability with increasing pressure.

  20. Low-temperature elastic and electronic properties of MAX phases

    NASA Astrophysics Data System (ADS)

    Finkel, Peter

    The Mn+1AXn phases (where M is an early transition metal, A is an A-group element and, X is C and/or N and n = 1 to 3) represent a new class of carbides and nitrides and can be best described as polycrystalline nanolaminates. They combine some of the best properties of ceramics and metals. Their physical properties (stiffness, damage and thermal shock resistance, high thermal and electrical conductivity) along with the fact they are readily machinable, make them extremely attractive in terms of the potential technological applications. Knowledge of low-temperature behavior is vital because it can provide insight into Mn+1AXn-phases' physical properties. This work entails the systematic study of the elastic, electrical, galvanomagnetic and thermal properties of these materials in the 4--300 K temperature range. The elastic constants of these compounds (Ti3SiC2, Ti3AlC2 and Ti4AlN3) were measured over the 20--300 K temperature range. Their Young's and shear modulii determined from ultrasonic velocities were in 300--335 and 124--140 GPa range, respectively; both moduli increase slowly with decreasing temperature and reaching a maximum at temperatures below 125 K; Poisson's ratio is 0.2. The Debye temperatures, thetaD, of these compounds calculated from the mean ultrasonic velocity are in 650--780K range which is in agreement with data obtained from low-temperature heat capacity measurements. To characterize the electronic transport properties, the resistivity, magnetoresistance, Hall effect, Seebeck coefficient and magnetic susceptibility were measured in the 4--300K range, and in magnetic fields up to 9T. All MAX-phases exhibit metal-like temperature dependence of the resistivity rho(T). theta D for most of the MAX-phases determined by fitting rho(T) with the Bloch T5 formula were in good agreement with the values determined from elastic and calorimetric measurements. The carrier density of electrons n (or holes, p) and their mobilities were calculated utilizing a

  1. Phase-Transformation-Induced Extra Thermal Expansion Behavior of (SrxBa1–x)TiO3/Cu Composite

    PubMed Central

    Sheng, Jie; Wang, Lidong; Li, Shouwei; Yin, Benke; Liu, Xiangli; Fei, Wei-Dong

    2016-01-01

    The properties of metal matrix composites (MMCs) can be optimized effectively through adjusting the type or the volume fraction of reinforcement. Generally, the coefficient of thermal expansion (CTE) of MMCs can be reduced by increasing the volume fraction of the reinforcement with lower CTE than metal matrix. However, it is great challenge to fabricate low CTE MMCs with low reinforcement volume fraction because of the limitation of reinforcement CTEs. SrxBa1−xTiO3 (SBT) powder presents negative thermal expansion behavior during the phase transformation from tetragonal to cubic phase. Here, we demonstrate that the phase transformation of SBT can be utilized to reduce and design the thermal expansion properties of SBT particle-reinforced Cu (SBT/Cu) composite, and ultralow CTE can be obtained in SBT/Cu composite. The X-ray diffraction analysis on heating indicates that the temperature range of phase transformation is extended greatly, therefore, the low CTE can be achieved within wide temperature range. Landau-Devonshire theory study on the phase transformation behaviors of SBT particles in the composite indicates that thermal mismatch stress significantly affects the Curie temperature of SBT particles and the CTE of the composite. The results given in the present study provide a new approach to design the MMCs with low CTE. PMID:27255420

  2. Phase-Transformation-Induced Extra Thermal Expansion Behavior of (SrxBa1–x)TiO3/Cu Composite

    NASA Astrophysics Data System (ADS)

    Sheng, Jie; Wang, Lidong; Li, Shouwei; Yin, Benke; Liu, Xiangli; Fei, Wei-Dong

    2016-06-01

    The properties of metal matrix composites (MMCs) can be optimized effectively through adjusting the type or the volume fraction of reinforcement. Generally, the coefficient of thermal expansion (CTE) of MMCs can be reduced by increasing the volume fraction of the reinforcement with lower CTE than metal matrix. However, it is great challenge to fabricate low CTE MMCs with low reinforcement volume fraction because of the limitation of reinforcement CTEs. SrxBa1‑xTiO3 (SBT) powder presents negative thermal expansion behavior during the phase transformation from tetragonal to cubic phase. Here, we demonstrate that the phase transformation of SBT can be utilized to reduce and design the thermal expansion properties of SBT particle-reinforced Cu (SBT/Cu) composite, and ultralow CTE can be obtained in SBT/Cu composite. The X-ray diffraction analysis on heating indicates that the temperature range of phase transformation is extended greatly, therefore, the low CTE can be achieved within wide temperature range. Landau-Devonshire theory study on the phase transformation behaviors of SBT particles in the composite indicates that thermal mismatch stress significantly affects the Curie temperature of SBT particles and the CTE of the composite. The results given in the present study provide a new approach to design the MMCs with low CTE.

  3. On the melting temperatures of low-temperature phases of polymorphic metals

    NASA Technical Reports Server (NTRS)

    Ohsaka, K.; Trinh, E. H.

    1992-01-01

    An improved analytical formula for determining the melting temperatures of the low-temperature phases of polymorphic metals is proposed which uses the specific heat differences at the equilibrium transition temperatures. The formula is solved by an iterative method, with no more than one iteration necessary to converge. The results obtained using the formula proposed here are generally in good agreement with the analytical solution.

  4. Avalanching strain dynamics during the hydriding phase transformation in individual palladium nanoparticles

    SciTech Connect

    Ulvestad, A.; Welland, M. J.; Collins, S. S. E.; Harder, R.; Maxey, E.; Wingert, J.; Singer, A.; Hy, S.; Mulvaney, P.; Zapol, P.; Shpyrko, O. G.

    2015-12-11

    Phase transitions in reactive environments are crucially important in energy and information storage, catalysis and sensors. Nanostructuring active particles can yield faster charging/ discharging kinetics, increased lifespan and record catalytic activities. However, establishing the causal link between structure and function is challenging for nanoparticles, as ensemble measurements convolve intrinsic single-particle properties with sample diversity. Here we study the hydriding phase transformation in individual palladium nanocubes in situ using coherent X-ray diffractive imaging. The phase transformation dynamics, which involve the nucleation and propagation of a hydrogen-rich region, are dependent on absolute time (aging) and involve intermittent dynamics (avalanching). A hydrogen-rich surface layer dominates the crystal strain in the hydrogen-poor phase, while strain inversion occurs at the cube corners in the hydrogen-rich phase. A three-dimensional phase-field model is used to interpret the experimental results. In conclusion, our experimental and theoretical approach provides a general framework for designing and optimizing phase transformations for single nanocrystals in reactive environments.

  5. Avalanching strain dynamics during the hydriding phase transformation in individual palladium nanoparticles

    DOE PAGES

    Ulvestad, A.; Welland, M. J.; Collins, S. S. E.; Harder, R.; Maxey, E.; Wingert, J.; Singer, A.; Hy, S.; Mulvaney, P.; Zapol, P.; et al

    2015-12-11

    Phase transitions in reactive environments are crucially important in energy and information storage, catalysis and sensors. Nanostructuring active particles can yield faster charging/ discharging kinetics, increased lifespan and record catalytic activities. However, establishing the causal link between structure and function is challenging for nanoparticles, as ensemble measurements convolve intrinsic single-particle properties with sample diversity. Here we study the hydriding phase transformation in individual palladium nanocubes in situ using coherent X-ray diffractive imaging. The phase transformation dynamics, which involve the nucleation and propagation of a hydrogen-rich region, are dependent on absolute time (aging) and involve intermittent dynamics (avalanching). A hydrogen-rich surfacemore » layer dominates the crystal strain in the hydrogen-poor phase, while strain inversion occurs at the cube corners in the hydrogen-rich phase. A three-dimensional phase-field model is used to interpret the experimental results. In conclusion, our experimental and theoretical approach provides a general framework for designing and optimizing phase transformations for single nanocrystals in reactive environments.« less

  6. Avalanching strain dynamics during the hydriding phase transformation in individual palladium nanoparticles

    PubMed Central

    Ulvestad, A.; Welland, M. J.; Collins, S. S. E.; Harder, R.; Maxey, E.; Wingert, J.; Singer, A.; Hy, S.; Mulvaney, P.; Zapol, P.; Shpyrko, O. G.

    2015-01-01

    Phase transitions in reactive environments are crucially important in energy and information storage, catalysis and sensors. Nanostructuring active particles can yield faster charging/discharging kinetics, increased lifespan and record catalytic activities. However, establishing the causal link between structure and function is challenging for nanoparticles, as ensemble measurements convolve intrinsic single-particle properties with sample diversity. Here we study the hydriding phase transformation in individual palladium nanocubes in situ using coherent X-ray diffractive imaging. The phase transformation dynamics, which involve the nucleation and propagation of a hydrogen-rich region, are dependent on absolute time (aging) and involve intermittent dynamics (avalanching). A hydrogen-rich surface layer dominates the crystal strain in the hydrogen-poor phase, while strain inversion occurs at the cube corners in the hydrogen-rich phase. A three-dimensional phase-field model is used to interpret the experimental results. Our experimental and theoretical approach provides a general framework for designing and optimizing phase transformations for single nanocrystals in reactive environments. PMID:26655832

  7. The effects of silicon and titanium on void swelling and phase transformations in neutron irradiated 12Cr-15Ni steels

    NASA Astrophysics Data System (ADS)

    Boothby, R. M.; Williams, T. M.

    1988-05-01

    12Cr-15Ni-0.25Ti steels with Si additions of 0.5, 0.9 and 1.4 wt% have been irradiated to a maximum dose of 47 dpa at temperatures ranging from 399 to 649°C. Detailed microstructural examinations of void swelling, precipitation behaviour and austenite instability have been made. Assessments of swelling and matrix phase transformations have also been made using density and induced magnetization measurements respectively. Austenite instability was increased by Si additions; the transformation product was usually ferrite although some martensite was also observed, and compositional fluctuations in untransformed austenite were detected. Precipitation, particularly of G phase, became more extensive and swelling in solution-treated alloys was reduced at higher Si contents. Enhanced growth of voids attached to G phase precipitates was observed. Cold-working decreased both swelling and ferrite formation. A fine dispersion of TiC was effective in suppressing swelling at high irradiation temperature as long as the precipitates remained stable. The stability of TiC was increased by cold-working but reduced by Si additions.

  8. Analyzing the impact of ambient temperature indicators on transformer life in different regions of Chinese mainland.

    PubMed

    Bai, Cui-fen; Gao, Wen-Sheng; Liu, Tong

    2013-01-01

    Regression analysis is applied to quantitatively analyze the impact of different ambient temperature characteristics on the transformer life at different locations of Chinese mainland. 200 typical locations in Chinese mainland are selected for the study. They are specially divided into six regions so that the subsequent analysis can be done in a regional context. For each region, the local historical ambient temperature and load data are provided as inputs variables of the life consumption model in IEEE Std. C57.91-1995 to estimate the transformer life at every location. Five ambient temperature indicators related to the transformer life are involved into the partial least squares regression to describe their impact on the transformer life. According to a contribution measurement criterion of partial least squares regression, three indicators are conclusively found to be the most important factors influencing the transformer life, and an explicit expression is provided to describe the relationship between the indicators and the transformer life for every region. The analysis result is applicable to the area where the temperature characteristics are similar to Chinese mainland, and the expressions obtained can be applied to the other locations that are not included in this paper if these three indicators are known.

  9. Nanoscale Fe(0) particles for pentachlorophenol removal from aqueous solution: temperature effect and particles transformation.

    PubMed

    Cheng, Rong; Zheng, Xiang; Liu, Peng; Wang, Jian-Long

    2014-09-01

    Pentachlorophenol (PCP), as an important contaminant which was toxic and intractable, has received extensive attention. In this paper, the temperature effect during the transformation of PCP using nanoscale Fe(0) particles was studied, and the transformation processes of PCP and iron particles was explained. The results revealed that the removal processes of PCP followed pseudo first-order kinetics. The scale of dechlorination to the transformation of PCP increased with the increase of temperature, though the transformation rate decreased after reacting for 2 h under the experimental condition. However, the initial apparent transformation rate constants were calculated to be 0.312-0.536 h(-1) at the temperature of 20-50 degrees C, which showed an increase of transformation rate along with the increase of temperature. And the surface-area-normalized rate constants were calculated to be 9.50 x 10-3-1.63 x 10-2 L . h-1 . m-2. The experimental activation energy was calculated to be 15.0 kJ x mol(-1) from these rate constants using Arrhenius equation. A phenomenon observed at 50 degrees C indicated that more than one chlorine atom was removed from PCP and suggested β-elimination might be the major pathway for transformation. Sorption experiments showed that the sorption process on the surface of particles could be ignored in the kinetics and thermodynamics models. The changes of morphologies of nanoparticles before and after reaction indicated the transformation process of iron particles, and could be used to explain the changes of activity of nanoparticles. Magnetite (Fe3O4) and/or maghemite (Fe2O3) and lepidocrocite (γ-FeOOH) were corrosion products of iron. And along with the increase of temperature, the increased intensity of XRD peaks revealed the related a better crystallizing.

  10. Structural transformation of implanted diamond layers during high temperature annealing

    NASA Astrophysics Data System (ADS)

    Rubanov, S.; Fairchild, B. A.; Suvorova, A.; Olivero, P.; Prawer, S.

    2015-12-01

    In the recent years graphitization of ion-beam induced amorphous layers became the basic tool for device fabrication in diamond. The etchable graphitic layers can be removed to form free-standing membranes into which the desired structures can be sculpted using FIB milling. The optical properties of the devices fabricated using this method are assumed on the model of sharp diamond-air interface. The real quality of this interface could depend on degree of graphitization of the amorphous damage layers after annealing. In the present work the graphitization process was studied using conventional and analytical TEM. It was found that annealing at 550 °C results in a partial graphitization of the implanted volume with formation of the nano-crystalline graphitic phase sandwiched between layers of tetrahedral amorphous carbon. Annealing at 1400 °C resulted in complete graphitization of the amorphous layers. The average size of graphite nano-crystals did not exceed 5 nm with predominant orientation of c-planes normal to the sample surface.

  11. Phase cycling for optical two-dimensional Fourier-transform spectroscopy

    NASA Astrophysics Data System (ADS)

    Autry, Travis; Moody, Galan; Li, Hebin; Siemens, Mark; Cundiff, Steven

    2011-03-01

    Phase-cycling has been implemented in optical two-dimensional Fourier-transform spectroscopy to extract signals from quantum wells and quantum dots and to eliminate noise such as pump scatter co-propagating with the four-wave mixing signal. Experiments using actively phase-stabilized interferometers to cycle the excitation pulse optical phases suffer from partial noise cancellation because excitation and phase-control laser wavelengths are incommensurate. To obtain full noise elimination, we have incorporated liquid crystal variable retarders capable of imposing a π phase shift for wavelengths 650-950 nm. We present non-rephasing spectra of potassium vapor contained in a ~ 20 μ m transmission cell and show that this phase cycling method removes all noise from pump scatter while drastically reducing the data acquisition time compared to mechanical phase-delay techniques. This work was supported by an NSF-REU grant at the University of Colorado- Boulder.

  12. Effect of time and temperature on transformation-toughened zirconias. Final report

    SciTech Connect

    Schioler, L.J.

    1987-06-01

    The effects of exposure to elevated temperatures (900 to 1300 C) for times ranging from 50 to 500 hours on toughened oxide ceramics intended for use in heat engines were examined. The materials were magnesia-stabilized transformation-toughened zirconia, yttria-stabilized tetragonal zirconia polycrystal, and zirconia-toughened alumina, as well as untoughened zirconias for comparison. The materials were heat treated, and physical and mechanical properties were then measured at room temperature. High-temperature mechanical tests performed were stress rupture and stepped temperature stress rupture. The results of the tests indicate that the mechanical properties of magnesia-stabilized transformation-toughened zirconia degrade substantially after relatively short times at the moderate temperatures expected in low-heat-rejection diesel engines. The yttria-stabilized tetragonal zirconia polycrystal and the untoughened partially stabilized zirconia materials appear to be more stable against the effects of time and temperature.

  13. Benzene under high pressure: A story of molecular crystals transforming to saturated networks, with a possible intermediate metallic phase

    SciTech Connect

    Wen, Xiao-Dong; Hoffmann, Roald; Ashcroft, N. W.

    2011-01-01

    In a theoretical study, benzene is compressed up to 300 GPa. The transformations found between molecular phases generally match the experimental findings in the moderate pressure regime (<20 GPa): phase I (Pbca) is found to be stable up to 4 GPa, while phase II (P43212) is preferred in a narrow pressure range of 4–7 GPa. Phase III (P21/c) is at lowest enthalpy at higher pressures. Above 50 GPa, phase V (P21 at 0 GPa; P21/c at high pressure) comes into play, slightly more stable than phase III in the range of 50–80 GP, but unstable to rearrangement to a saturated, four-coordinate (at C), one-dimensional polymer. Actually, throughout the entire pressure range, crystals of graphane possess lower enthalpy than molecular benzene structures; a simple thermochemical argument is given for why this is so. In several of the benzene phases there nevertheless are substantial barriers to rearranging the molecules to a saturated polymer, especially at low temperatures. Even at room temperature these barriers should allow one to study the effect of pressure on the metastable molecular phases. Molecular phase III (P21/c) is one such; it remains metastable to higher pressures up to ~200 GPa, at which point it too rearranges spontaneously to a saturated, tetracoordinate CH polymer. At 300 K the isomerization transition occurs at a lower pressure. Nevertheless, there may be a narrow region of pressure, between P = 180 and 200 GPa, where one could find a metallic, molecular benzene state. We explore several lower dimensional models for such a metallic benzene. We also probe the possible first steps in a localized, nucleated benzene polymerization by studying the dimerization of benzene molecules. Several new (C6H6)2 dimers are predicted.

  14. [A phase error correction method for the new Fourier transforms spectrometer].

    PubMed

    Wang, Ning; Gong, Tian-Cheng; Chen, Jian-Jun; Li, Yang; Yang, Yi-Ning; Zhu, Yong; Zhang, Jie; Chen, Wei-Min

    2014-11-01

    To decrease the distortion of the recovered spectrum, improve the quantity of the recovered spectrum and decrease the influence of the phase error of the new spectrum detection system based on MEMS (micro-electro-mechanical systems) micro-mirrors, a new phase error correction method for this system is proposed in the present paper. The source of phase error of the spectrum detection system based on MEMS micro-mirrors is analyzed firstly. The analyzed result indicated that the phase error of the new spectral Fourier transform detection system is the zero drift of the optical path difference, and the phase error can be corrected by Zero-crossing sampling which is realized by improving the structure of the interferometer system and Mertz product The spectrum detection system is set up and the phase error correction method is verified by this system. The experiment result is show that the quantity of the recovered spectrum of the spectrum detection is improved obviously by using the improved interferometer system and Mertz product, and the recovered spectrum has no negative peaks and the side lobes is suppressed markedly. This correction method can reduce the influence caused by phase error to the system performance well and improve the spectral detection performance effectively. In this paper, the origin of the system phase error based on the new MEMS micromirror Fourier transform spectroscopy detection system is analyzed, and the phase error correction method is proposed. This method can improve the performance of the spectrum detection system.

  15. [A phase error correction method for the new Fourier transforms spectrometer].

    PubMed

    Wang, Ning; Gong, Tian-Cheng; Chen, Jian-Jun; Li, Yang; Yang, Yi-Ning; Zhu, Yong; Zhang, Jie; Chen, Wei-Min

    2014-11-01

    To decrease the distortion of the recovered spectrum, improve the quantity of the recovered spectrum and decrease the influence of the phase error of the new spectrum detection system based on MEMS (micro-electro-mechanical systems) micro-mirrors, a new phase error correction method for this system is proposed in the present paper. The source of phase error of the spectrum detection system based on MEMS micro-mirrors is analyzed firstly. The analyzed result indicated that the phase error of the new spectral Fourier transform detection system is the zero drift of the optical path difference, and the phase error can be corrected by Zero-crossing sampling which is realized by improving the structure of the interferometer system and Mertz product The spectrum detection system is set up and the phase error correction method is verified by this system. The experiment result is show that the quantity of the recovered spectrum of the spectrum detection is improved obviously by using the improved interferometer system and Mertz product, and the recovered spectrum has no negative peaks and the side lobes is suppressed markedly. This correction method can reduce the influence caused by phase error to the system performance well and improve the spectral detection performance effectively. In this paper, the origin of the system phase error based on the new MEMS micromirror Fourier transform spectroscopy detection system is analyzed, and the phase error correction method is proposed. This method can improve the performance of the spectrum detection system. PMID:25752034

  16. Warming and drought reduce temperature sensitivity of nitrogen transformations.

    PubMed

    Novem Auyeung, Dolaporn S; Suseela, Vidya; Dukes, Jeffrey S

    2013-02-01

    Shifts in nitrogen (N) mineralization and nitrification rates due to global changes can influence nutrient availability, which can affect terrestrial productivity and climate change feedbacks. While many single-factor studies have examined the effects of environmental changes on N mineralization and nitrification, few have examined these effects in a multifactor context or recorded how these effects vary seasonally. In an old-field ecosystem in Massachusetts, USA, we investigated the combined effects of four levels of warming (up to 4 °C) and three levels of precipitation (drought, ambient, and wet) on net N mineralization, net nitrification, and potential nitrification. We also examined the treatment effects on the temperature sensitivity of net N mineralization and net nitrification and on the ratio of C mineralization to net N mineralization. During winter, freeze-thaw events, snow depth, and soil freezing depth explained little of the variation in net nitrification and N mineralization rates among treatments. During two years of treatments, warming and altered precipitation rarely influenced the rates of N cycling, and there was no evidence of a seasonal pattern in the responses. In contrast, warming and drought dramatically decreased the apparent Q10 of net N mineralization and net nitrification, and the warming-induced decrease in apparent Q10 was more pronounced in ambient and wet treatments than the drought treatment. The ratio of C mineralization to net N mineralization varied over time and was sensitive to the interactive effects of warming and altered precipitation. Although many studies have found that warming tends to accelerate N cycling, our results suggest that warming can have little to no effect on N cycling in some ecosystems. Thus, ecosystem models that assume that warming will consistently increase N mineralization rates and inputs of plant-available N may overestimate the increase in terrestrial productivity and the magnitude of an important

  17. Warming and drought reduce temperature sensitivity of nitrogen transformations.

    PubMed

    Novem Auyeung, Dolaporn S; Suseela, Vidya; Dukes, Jeffrey S

    2013-02-01

    Shifts in nitrogen (N) mineralization and nitrification rates due to global changes can influence nutrient availability, which can affect terrestrial productivity and climate change feedbacks. While many single-factor studies have examined the effects of environmental changes on N mineralization and nitrification, few have examined these effects in a multifactor context or recorded how these effects vary seasonally. In an old-field ecosystem in Massachusetts, USA, we investigated the combined effects of four levels of warming (up to 4 °C) and three levels of precipitation (drought, ambient, and wet) on net N mineralization, net nitrification, and potential nitrification. We also examined the treatment effects on the temperature sensitivity of net N mineralization and net nitrification and on the ratio of C mineralization to net N mineralization. During winter, freeze