Effect of point defects and disorder on structural phase transitions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toulouse, J.
1997-06-01
Since the beginning in 1986, the object of this project has been Structural Phase Transitions (SPT) in real as opposed to ideal materials. The first stage of the study has been centered around the role of Point Defects in SPT`s. Our intent was to use the previous knowledge we had acquired in the study of point defects in non-transforming insulators and apply it to the study of point defects in insulators undergoing phase transitions. In non-transforming insulators, point defects, in low concentrations, marginally affect the bulk properties of the host. It is nevertheless possible by resonance or relaxation methods tomore » study the point defects themselves via their local motion. In transforming solids, however, close to a phase transition, atomic motions become correlated over very large distances; there, even point defects far removed from one another can undergo correlated motions which may strongly affect the transition behavior of the host. Near a structural transition, the elastic properties win be most strongly affected so as to either raise or decrease the transition temperature, prevent the transition from taking place altogether, or simply modify its nature and the microstructure or domain structure of the resulting phase. One of the well known practical examples is calcium-stabilized zirconia in which the high temperature cubic phase is stabilized at room temperature with greatly improved mechanical properties.« less
Materials science of the gel to fluid phase transition in a supported phospholipid bilayer.
Xie, Anne Feng; Yamada, Ryo; Gewirth, Andrew A; Granick, Steve
2002-12-09
We report the results of in situ AFM measurements examining the phase transition of bilayers formed from the zwitterionic phospholipid, DMPC, 1,2-dimyristoyl-sn-glycero-3-phosphocholine, supported on mica. The images show that the fluid to gel phase transition process features substantial tearing of the bilayer due to the density change between the two phases. The gel to fluid transition is strongly affected by the resultant stress introduced into the gel phase, which changes the degree of cooperativity, the shape of developing fluid phase regions, and the course of the transition.
On entropy change measurements around first order phase transitions in caloric materials.
Caron, Luana; Ba Doan, Nguyen; Ranno, Laurent
2017-02-22
In this work we discuss the measurement protocols for indirect determination of the isothermal entropy change associated with first order phase transitions in caloric materials. The magneto-structural phase transitions giving rise to giant magnetocaloric effects in Cu-doped MnAs and FeRh are used as case studies to exemplify how badly designed protocols may affect isothermal measurements and lead to incorrect entropy change estimations. Isothermal measurement protocols which allow correct assessment of the entropy change around first order phase transitions in both direct and inverse cases are presented.
NASA Astrophysics Data System (ADS)
Urata, Yumi; Kuge, Keiko; Kase, Yuko
2015-02-01
Phase transitions of pore water have never been considered in dynamic rupture simulations with thermal pressurization (TP), although they may control TP. From numerical simulations of dynamic rupture propagation including TP, in the absence of any water phase transition process, we predict that frictional heating and TP are likely to change liquid pore water into supercritical water for a strike-slip fault under depth-dependent stress. This phase transition causes changes of a few orders of magnitude in viscosity, compressibility, and thermal expansion among physical properties of water, thus affecting the diffusion of pore pressure. Accordingly, we perform numerical simulations of dynamic ruptures with TP, considering physical properties that vary with the pressure and temperature of pore water on a fault. To observe the effects of the phase transition, we assume uniform initial stress and no fault-normal variations in fluid density and viscosity. The results suggest that the varying physical properties decrease the total slip in cases with high stress at depth and small shear zone thickness. When fault-normal variations in fluid density and viscosity are included in the diffusion equation, they activate TP much earlier than the phase transition. As a consequence, the total slip becomes greater than that in the case with constant physical properties, eradicating the phase transition effect. Varying physical properties do not affect the rupture velocity, irrespective of the fault-normal variations. Thus, the phase transition of pore water has little effect on dynamic ruptures. Fault-normal variations in fluid density and viscosity may play a more significant role.
NASA Astrophysics Data System (ADS)
Li, Hui-Ling; Yang, Shu-Zheng; Zu, Xiao-Tao
2017-01-01
In the framework of holography, we survey the phase structure for a higher dimensional hairy black hole including the effects of the scalar field hair. It is worth emphasizing that, not only black hole entropy, but also entanglement entropy and two point correlation function exhibit the Van der Waals-like phase transition in a fixed scalar charge ensemble. Furthermore, by making use of numerical computation, we show that the Maxwell's equal area law is valid for the first order phase transition. In addition, we also discuss how the hair parameter affects the black hole's phase transition.
Boundary-field-driven control of discontinuous phase transitions on hyperbolic lattices
NASA Astrophysics Data System (ADS)
Lee, Yoju; Verstraete, Frank; Gendiar, Andrej
2016-08-01
The multistate Potts models on two-dimensional hyperbolic lattices are studied with respect to various boundary effects. The free energy is numerically calculated using the corner transfer matrix renormalization group method. We analyze phase transitions of the Potts models in the thermodynamic limit with respect to contracted boundary layers. A false phase transition is present even if a couple of the boundary layers are contracted. Its significance weakens, as the number of the contracted boundary layers increases, until the correct phase transition (deep inside the bulk) prevails over the false one. For this purpose, we derive a thermodynamic quantity, the so-called bulk excess free energy, which depends on the contracted boundary layers and memorizes additional boundary effects. In particular, the magnetic field is imposed on the outermost boundary layer. While the boundary magnetic field does not affect the second-order phase transition in the bulk if suppressing all the boundary effects on the hyperbolic lattices, the first-order (discontinuous) phase transition is significantly sensitive to the boundary magnetic field. Contrary to the phase transition on the Euclidean lattices, the discontinuous phase transition on the hyperbolic lattices can be continuously controlled (within a certain temperature coexistence region) by varying the boundary magnetic field.
Role of phonons in the metal-insulator phase transition.
NASA Technical Reports Server (NTRS)
Langer, W. D.
1972-01-01
Review, for the transition series oxides, of the Mattis and Lander model, which is one of electrons interacting with lattice vibrations (electron and phonon interaction). The model displays superconducting, insulating, and metallic phases. Its basic properties evolve from a finite crystallographic distortion associated with a dominant phonon mode and the splitting of the Brillouin zone into two subzones, a property of simple cubic and body centered cubic lattices. The order of the metal-insulator phase transition is examined. The basic model has a second-order phase transition and the effects of additional mechanisms on the model are calculated. The way in which these mechanisms affect the magnetically ordered transition series oxides as described by the Hubbard model is discussed.
Sim, Taeyong; Choi, Ahnryul; Lee, Soeun; Mun, Joung Hwan
2017-10-01
The transition phase of a golf swing is considered to be a decisive instant required for a powerful swing. However, at the same time, the low back torsional loads during this phase can have a considerable effect on golf-related low back pain (LBP). Previous efforts to quantify the transition phase were hampered by problems with accuracy due to methodological limitations. In this study, vector-coding technique (VCT) method was proposed as a comprehensive methodology to quantify the precise transition phase and examine low back torsional load. Towards this end, transition phases were assessed using three different methods (VCT, lead hand speed and X-factor stretch) and compared; then, low back torsional load during the transition phase was examined. As a result, the importance of accurate transition phase quantification has been documented. The largest torsional loads were observed in healthy professional golfers (10.23 ± 1.69 N · kg -1 ), followed by professional golfers with a history of LBP (7.93 ± 1.79 N · kg -1 ), healthy amateur golfers (1.79 ± 1.05 N · kg -1 ) and amateur golfers with a history of LBP (0.99 ± 0.87 N · kg -1 ), which order was equal to that of the transition phase magnitudes of each group. These results indicate the relationship between the transition phase and LBP history and the dependency of the torsional load magnitude on the transition phase.
27Al-NMR studies of the structural phase transition in LaPd2Al2
NASA Astrophysics Data System (ADS)
Aoyama, Taisuke; Kobayashi, Fumiaki; Kotegawa, Hisashi; Tou, Hideki; Doležal, Petr; Kriegner, Dominik; Javorský, Pavel; Uhlířová, Klára
2018-05-01
We performed 27Al-NMR measurements for the CaBe2Ge2 type single crystalline LaPd2Al2 in the temperature range from 100 K to 5 K to investigate the origin of the structural phase transition. We found that the line profile of the 27Al-NMR spectrum does not change entirely on passing through the structural phase transition at Tst. Meanwhile, the peak position of the central line slightly change (≈ 30 ppm) below 70 K, suggesting the orbital shift changes below Tst. The present 27Al-NMR studies evidence that the local electronic state at Al site is hardly affected by the structural phase transition.
NASA Astrophysics Data System (ADS)
Weinstein, B. A.; Lindberg, G. P.
Pressure-Raman spectroscopy in ZnSe and ZnTe single crystals reveals that Se and Te nano-crystals (NCs) precipitate in these II-VI hosts for pressures far below their I-II phase transitions. The inclusions are evident from the appearance and negative pressure-shift of the A1 Raman peaks of Se and Te (trigonal phase). The Se and Te NCs nucleate at dislocations and grain boundaries that arise from pressure-induced plastic flow. This produces chemical and structural inhomogeneities in the zincblende phase of the host. At substantially higher pressures, the I-II transition proceeds in the presence of these inhomogenities. This can affect the transition's onset pressure Pt and width ΔPt, and the occurrence of metastable phases along the transition path. Precipitation models in metals show that nucleation of inclusions depends on the Peierls stress τp and a parameter α related to the net free energy gained on nucleation. For favorable values of τp and α, NC precipitation at pressures below the I-II transition could occur in other compounds. We propose criteria to judge whether this is likely based on the observed ranges of τp in the hosts, and estimates of α derived from the cohesive energy densities of the NC materials. One finds trends that can serve as a useful guide, both to test the proposed criteria, and to decide when closer scrutiny of phase transition experiments is warranted, e.g., in powders where high dislocation densities are initially created
Pressure induced structural phase transition of OsB 2: First-principles calculations
NASA Astrophysics Data System (ADS)
Ren, Fengzhu; Wang, Yuanxu; Lo, V. C.
2010-04-01
Orthorhombic OsB 2 was synthesized at 1000 °C and its compressibility was measured by using the high-pressure X-ray diffraction in a Diacell diamond anvil cell from ambient pressure to 32 GPa [R.W. Cumberland, et al. (2005)]. First-principles calculations were performed to study the possibility of the phase transition of OsB 2. An analysis of the calculated enthalpy shows that orthorhombic OsB 2 can transfer to the hexagonal phase at 10.8 GPa. The calculated results with the quasi-harmonic approximation indicate that this phase transition pressure is little affected by the thermal effect. The calculated phonon band structure shows that the hexagonal P 6 3/ mmc structure (high-pressure phase) is stable for OsB 2. We expect the phase transition can be further confirmed by the experimental work.
Characterization of biomaterials using FT-Raman spectroscopy
NASA Astrophysics Data System (ADS)
Söderholm, S.; Roos, Y. H.; Meinander, N.; Hotokka, M.
1998-06-01
Carbohydrates play an important role in the quality and preservation of pharmaceutical and food materials. The storage temperature and water content is very critical in storage and, therefore, it is very important to understand how the physical state of carbohydrates is affected by water. Carbohydrates in foods and pharmaceuticals are usually present in the amorphous form even if other substances present affect the physical properties of carbohydrates it is mainly temperature and water content that determine the physical state. Amorphous carbohydrates show a second order phase transition, the glass transition, that is critical for stability. When carbohydrates are stored above their glass transition temperature they loose stability. Crystallization above the glass transition temperature may result in loss of quality. Raman spectroscopy offers a useful tool in the characterization of phase transitions and effects of temperature and water content on material properties at a molecular level.
The role of solid-solid phase transitions in mantle convection
NASA Astrophysics Data System (ADS)
Faccenda, Manuele; Dal Zilio, Luca
2017-01-01
With changing pressure and temperature conditions, downwelling and upwelling crustal and mantle rocks experience several solid-solid phase transitions that affect the mineral physical properties owing to structural changes in the crystal lattice and to the absorption or release of latent heat. Variations in density, together with phase boundary deflections related to the non-null reaction slope, generate important buoyancy forces that add to those induced by thermal perturbations. These buoyancy forces are proportional to the density contrast between reactant and product phases, their volume fraction, the slope and the sharpness of the reaction, and affect the style of mantle convection depending on the system composition. In a homogeneous pyrolitic mantle there is little tendency for layered convection, with slabs that may stagnate in the transition zone because of the positive buoyancy caused by post-spinel and post-ilmenite reactions, and hot plumes that are accelerated by phase transformations in the 600-800 km depth range. By adding chemical and mineralogical heterogeneities as on Earth, phase transitions introduce bulk rock and volatiles filtering effects that generate a compositional gradient throughout the entire mantle, with levels that are enriched or depleted in one or more of these components. Phase transitions often lead to mechanical softening or hardening that can be related to a different intrinsic mechanical behaviour and volatile solubility of the product phases, the heating or cooling associated with latent heat, and the transient grain size reduction in downwelling cold material. Strong variations in viscosity would enhance layered mantle convection, causing slab stagnation and plume ponding. At low temperatures and relatively dry conditions, reactions are delayed due to the sluggish kinetics, so that non-equilibrium phase aggregates can persist metastably beyond the equilibrium phase boundary. Survival of low-density metastable olivine, Ringwoodite, pyroxene and pyrope garnet in the transition zone and uppermost lower mantle produces positive buoyancy forces that decrease the subduction velocity and may lead to slab stagnation in the transition zone. The presence of deep metastable portions is still debated, and should not be associated a-priori with a completely dry slab as field observations suggest that heterogeneously hydrated oceanic plates could contain metastable dry portions surrounded by transformed wet rocks.
NASA Astrophysics Data System (ADS)
Fernandes, Rafael M.; Schmalian, Jörg
2011-02-01
We show that the critical behavior of the XY quantum-rotor model undergoing a percolation transition is dramatically affected by its topological Berry phase 2πρ. In particular, for irrational ρ, its low-energy excitations emerge as spinless fermions with fractal spectrum. As a result, critical properties not captured by the usual Ginzburg-Landau-Wilson description of phase transitions arise, such as complex critical exponents, log-periodic oscillations and dynamically broken scale invariance.
Gamma-radiation and isotopic effect on the critical behavior in triglycine selenate crystals
NASA Astrophysics Data System (ADS)
Kassem, M. E.; Hamed, A. E.; Abulnasr, L.; Abboudy, S.
1994-11-01
Isotopic effects in pure and γ-irradiated triglycine selenate crystals were investigated using the specific heat ( Cp) technique. The obtained results showed an interesting dependence of the critical behavior of Cp on the deuterium content. With increasing content of deuterium, the character of the phase transition changed from a second order (γ-type) to a first order transition. After γ-irradiation, the behavior of Cp around the phase transition region was essentially affected. The transition temperature, Tc, decreased and Δ Cp depressed, and the transition became broad. It was noted that the effect of γ-irradiation is opposite to the isotopic effect.
Effect of silver on the phase transition and wettability of titanium oxide films
Mosquera, Adolfo A.; Albella, Jose M.; Navarro, Violeta; Bhattacharyya, Debabrata; Endrino, Jose L.
2016-01-01
The effect of silver on the phase transition and microstructure of titanium oxide films grown by pulsed cathodic arc had been investigated by XRD, SEM and Raman spectroscopy. Following successive thermal annealing up to 1000 °C, microstructural analysis of annealed Ag-TiO2 films reveals that the incorporation of Ag nanoparticles strongly affects the transition temperature from the initial metastable amorphous phase to anatase and stable rutile phase. An increase of silver content into TiO2 matrix inhibits the amorphous to anatase phase transition, raising its temperature boundary and, simultaneously reduces the transition temperature to promote rutile structure at lower value of 600 °C. The results are interpreted in terms of the steric effects produced by agglomeration of Ag atoms into larger clusters following annealing which hinders diffusion of Ti and O ions for anatase formation and constrains the volume available for the anatase lattice, thus disrupting its structure to form rutile phase. The effect of silver on the optical and wetting properties of TiO2 was evaluated to demonstrate its improved photocatalytic performance. PMID:27571937
First Principles Study on Topological-Phase Transition in Ferroelectric Oxides
NASA Astrophysics Data System (ADS)
Yamauchi, Kunihiko; Barone, Paolo; Picozzi, Silvia
Graphene is known as a 2D topological insulator with zero energy gap and Dirac cone. In this study, we theoretically designed a honeycomb structure of Au ions embedded in a ferroelectric host oxide, in order to exploit structural distortions to control topological properties. We show that the polar structural distortion induces the emergence of spin-valley coupling, together with a topological transition from a quantum spin-Hall insulating phase to a trivial band insulator. The phase transition also affects the Berry curvature and spin-valley selection rules. Analogously to graphene, the microscopic origin of this topological phase is ascribed to a spin-valley-sublattice coupling, which arises from the interplay between trigonal crystal field and an ``effective'' spin-orbit interaction due to virtual excitations between eg and t2g states of transition-metal ions.
On the stress calculation within phase-field approaches: a model for finite deformations
NASA Astrophysics Data System (ADS)
Schneider, Daniel; Schwab, Felix; Schoof, Ephraim; Reiter, Andreas; Herrmann, Christoph; Selzer, Michael; Böhlke, Thomas; Nestler, Britta
2017-08-01
Numerical simulations based on phase-field methods are indispensable in order to investigate interesting and important phenomena in the evolution of microstructures. Microscopic phase transitions are highly affected by mechanical driving forces and therefore the accurate calculation of the stresses in the transition region is essential. We present a method for stress calculations within the phase-field framework, which satisfies the mechanical jump conditions corresponding to sharp interfaces, although the sharp interface is represented as a volumetric region using the phase-field approach. This model is formulated for finite deformations, is independent of constitutive laws, and allows using any type of phase inherent inelastic strains.
NASA Astrophysics Data System (ADS)
Shojaee, S. A.; Harriman, T. A.; Han, G. S.; Lee, J.-K.; Lucca, D. A.
2017-07-01
We examine the effects of substrates on the low temperature photoluminescence (PL) spectra and phase transition in methylammonium lead iodide hybrid perovskite (CH3NH3PbI3) thin films. Structural characterization at room temperature with X-ray diffraction (XRD), scanning electron microscopy (SEM), and Raman spectroscopy indicated that while the chemical structure of films deposited on glass and quartz was similar, the glass substrate induced strain in the perovskite films and suppressed the grain growth. The luminescence response and phase transition of the perovskite thin films were studied by PL spectroscopy. The induced strain was found to affect both the room temperature and low temperature PL spectra of the hybrid perovskite films. In addition, it was found that the effects of the glass substrate inhibited a tetragonal to orthorhombic phase transition such that it occurred at lower temperatures.
New insights in the electroweak phase transition in the NMSSM
NASA Astrophysics Data System (ADS)
Huang, Weicong; Kang, Zhaofeng; Shu, Jing; Wu, Peiwen; Yang, Jin Min
2015-01-01
We perform a detailed semianalytical analysis of the electroweak phase transition (EWPT) property in the Next-to-Minimal Supersymmetric standard model, which serves as a good benchmark model in which the 126 GeV Higgs mixes with a singlet. In this case, a strongly first-order electroweak phase transition (SFOEWPT) is achieved by the tree-level effects, and the phase transition strength γc is determined by the vacua energy gap at T =0 . We make an anatomy of the energy gap at both tree level and loop level and extract out a dimensionless phase transition parameter Rκ≡4 κ vs/Aκ, which can replace Aκ in the parameterization and affect the light CP-odd/even Higgs spectra. We find that SFOEWPT only occurs in Rκ˜-1 and positive Rκ≲O (10 ), which in the non-PQ limit case would prefer either a relatively light CP-odd or CP-even Higgs boson ˜(60 ,100 ) GeV , and therefore serves as a smoking gun signal and requires new search strategies at the LHC.
NASA Astrophysics Data System (ADS)
Wu, Tai-Lung; Whittaker, Luisa; Patridge, C. J.; Banerjee, S.; Sambandamurthy, G.
2011-03-01
Vanadium oxide is a well-know material to study the metal-insulator transition (MIT) in correlated electron systems. Upon heating to about 340 K, VO2 undergoes orders of magnitude drop in resistance from an insulating phase (I) to a metallic phase (M) and accompanies a lattice structural phase transition from a low-temperature monoclinical phase (M1) to a high-temperature tetragonal phase (R). We present results from combined electrical transport and Raman spectroscopic measurements to discern the effects of doping in controllably tuning the MIT in individual nanowires of single crystal WxV1 - xO2 . The MIT temperature (Tc) in our WxV1 - xO2 nanowires can be tuned through a wide range from 280 to 330 K by controlling the dopant concentration. The M-I transition can also driven electrically in these nanowires. Our simultaneous measurement of electrical transport and Raman spectroscopic measurement help us understand the role of structural transition in affecting the macroscopic electrical transition in individual wires.
Highly repeatable nanoscale phase coexistence in vanadium dioxide films
NASA Astrophysics Data System (ADS)
Huffman, T. J.; Lahneman, D. J.; Wang, S. L.; Slusar, T.; Kim, Bong-Jun; Kim, Hyun-Tak; Qazilbash, M. M.
2018-02-01
It is generally believed that in first-order phase transitions in materials with imperfections, the formation of phase domains must be affected to some extent by stochastic (probabilistic) processes. The stochasticity would lead to unreliable performance in nanoscale devices that have the potential to exploit the transformation of physical properties in a phase transition. Here we show that stochasticity at nanometer length scales is completely suppressed in the thermally driven metal-insulator transition (MIT) in sputtered vanadium dioxide (V O2 ) films. The nucleation and growth of domain patterns of metallic and insulating phases occur in a strikingly reproducible way. The completely deterministic nature of domain formation and growth in films with imperfections is a fundamental and unexpected finding about the kinetics of this material. Moreover, it opens the door for realizing reliable nanoscale devices based on the MIT in V O2 and similar phase-change materials.
NASA Astrophysics Data System (ADS)
Besagni, G.; Inzoli, F.; De Guido, G.; Pellegrini, L. A.
2017-01-01
This paper discusses the effects of the liquid velocity and the liquid phase properties on the gas holdup and the flow regime transition in a large-diameter and large-scale counter-current two-phase bubble column. In particular, we compared and analysed the experimental data obtained in our previous experimental studies. The bubble column is 5.3 m in height, has an inner diameter of 0.24 m, it was operated with gas superficial velocities in the range of 0.004-0.20 m/s and, in the counter-current mode, the liquid was recirculated up to a superficial velocity of -0.09 m/s. Air was used as the dispersed phase and various fluids (tap water, aqueous solutions of sodium chloride, ethanol and monoethylene glycol) were employed as liquid phases. The experimental dataset consist in gas holdup measurements and was used to investigate the global fluid dynamics and the flow regime transition between the homogeneous flow regime and the transition flow regime. We found that the liquid velocity and the liquid phase properties significantly affect the gas holdup and the flow regime transition. In this respect, a possible relationship (based on the lift force) between the flow regime transition and the gas holdup was proposed.
How tetraquarks can generate a second chiral phase transition
Pisarski, Robert D.; Skokov, Vladimir V.
2016-09-09
We consider how tetraquarks can affect the chiral phase transition in theories like QCD, with light quarks coupled to three colors. For two flavors the tetraquark field is an isosinglet, and its effect is minimal. For three flavors, however, the tetraquark field transforms in the same representation of the chiral symmetry group as the usual chiral order parameter, and so for very light quarks there may be two chiral phase transitions, which are both of first order. In QCD, results from the lattice indicate that any transition from the tetraquark condensate is a smooth crossover. In the plane of temperature,more » T, and quark chemical potential, μ, though, a crossover line for the tetraquark condensate is naturally related to the transition line for color superconductivity. For four flavors we suggest that a triquark field, antisymmetric in both flavor and color, combine to form hexaquarks.« less
The quark-hadron transition in cosmology and astrophysics.
Olive, K A
1991-03-08
A transition from normal hadronic matter (such as protons and neutrons) to quark-gluon matter is expected at both high temperatures and densities. In physical situations, this transition may occur in heavy ion collisions, the early universe, and in the cores of neutron stars. Astrophysics and cosmology can be greatly affected by such a phase transition. With regard to the early universe, big bang nucleosynthesis, the theory describing the primordial origin of the light elements, can be affected by inhomogeneities produced during the transition. A transition to quark matter in the interior by neutron stars further enhances our uncertainties regarding the equation of state of dense nuclear matter and neutron star properties such as the maximum mass and rotation frequencies.
In, Juneho; Yoo, Youngdong; Kim, Jin-Gyu; Seo, Kwanyong; Kim, Hyunju; Ihee, Hyotchel; Oh, Sang Ho; Kim, Bongsoo
2010-11-10
Laterally epitaxial single crystalline Ag2Te nanowires (NWs) are synthesized on sapphire substrates by the vapor transport method. We observed the phase transitions of these Ag2Te NWs via in situ transmission electron microscopy (TEM) after covering them with Pt layers. The constrained NW shows phase transition from monoclinic to a body-centered cubic (bcc) structure near the interfaces, which is ascribed to the thermal stress caused by differences in the thermal expansion coefficients. Furthermore, we observed the nucleation and growth of bcc phase penetrating into the face-centered cubic matrix at 200 °C by high-resolution TEM in real time. Our results would provide valuable insight into how compressive stresses imposed by overlayers affect behaviors of nanodevices.
Bertoldo Menezes, D; Reyer, A; Musso, M
2018-02-05
The Brill transition is a phase transition process in polyamides related with structural changes between the hydrogen bonds of the lateral functional groups (CO) and (NH). In this study, we have used the potential of Raman spectroscopy for exploring this phase transition in polyamide 6,6 (nylon 6,6), due to the sensitivity of this spectroscopic technique to small intermolecular changes affecting vibrational properties of relevant functional groups. During a step by step heating and cooling process of the sample we collected Raman spectra allowing us from two-dimensional Raman correlation spectroscopy to identify which spectral regions suffered the largest influence during the Brill transition, and from Terahertz Stokes and anti-Stokes Raman spectroscopy to obtain complementary information, e.g. on the temperature of the sample. This allowed us to grasp signatures of the Brill transition from peak parameters of vibrational modes associated with (CC) skeletal stretches and (CNH) bending, and to verify the Brill transition temperature at around 160°C, as well as the reversibility of this phase transition. Copyright © 2017 Elsevier B.V. All rights reserved.
Methodology for modeling the microbial contamination of air filters.
Joe, Yun Haeng; Yoon, Ki Young; Hwang, Jungho
2014-01-01
In this paper, we propose a theoretical model to simulate microbial growth on contaminated air filters and entrainment of bioaerosols from the filters to an indoor environment. Air filter filtration and antimicrobial efficiencies, and effects of dust particles on these efficiencies, were evaluated. The number of bioaerosols downstream of the filter could be characterized according to three phases: initial, transitional, and stationary. In the initial phase, the number was determined by filtration efficiency, the concentration of dust particles entering the filter, and the flow rate. During the transitional phase, the number of bioaerosols gradually increased up to the stationary phase, at which point no further increase was observed. The antimicrobial efficiency and flow rate were the dominant parameters affecting the number of bioaerosols downstream of the filter in the transitional and stationary phase, respectively. It was found that the nutrient fraction of dust particles entering the filter caused a significant change in the number of bioaerosols in both the transitional and stationary phases. The proposed model would be a solution for predicting the air filter life cycle in terms of microbiological activity by simulating the microbial contamination of the filter.
Phototropic liquid crystal materials containing naphthopyran dopants
NASA Astrophysics Data System (ADS)
Rumi, Mariacristina; Cazzell, Seth; Kosa, Tamas; Sukhomlinova, Ludmila; Taheri, Bahman; Bunning, Timothy; White, Timothy
2015-03-01
Dopant molecules dispersed in a liquid crystalline material usually affects the order of the system and the transition temperature between various phases. If the dopants undergo photoisomerization between conformers with different shapes, the interactions with the liquid crystal molecules can be different for the material in the dark and during exposure to light of appropriate wavelength. This can be used to achieve isothermal photoinduced phase transitions (phototropism). With proper selection of materials components, both order-to-disorder and disorder-to-order photoinduced transition have been demonstrated. Isothermal order-increasing transitions have been observed recently using naphthopyran derivatives as dopants. We are investigating the changes in order parameter and transition temperature of liquid crystal mixtures containing naphthopyrans and how they are related to exposure conditions and to the concentration and molecular structure of the dopants. We are also studying the nature of the photoinduced phase transitions, and comparing the behavior with that of azobenzene-doped mixtures, in which exposure to light leads to a decrease, instead of an increase, in the order of the system.
Nonlocal optical response in topological phase transitions in the graphene family
NASA Astrophysics Data System (ADS)
Rodriguez-Lopez, Pablo; Kort-Kamp, Wilton J. M.; Dalvit, Diego A. R.; Woods, Lilia M.
2018-01-01
We investigate the electromagnetic response of staggered two-dimensional materials of the graphene family, including silicene, germanene, and stanene, as they are driven through various topological phase transitions using external fields. Utilizing Kubo formalism, we compute their optical conductivity tensor taking into account the frequency and wave vector of the electromagnetic excitations, and study its behavior over the full electronic phase diagram of the materials. In particular, we find that the resonant behavior of the nonlocal Hall conductivity is strongly affected by the various topological phases present in these materials. We also consider the plasmon excitations in the graphene family and find that nonlocality in the optical response can affect the plasmon dispersion spectra of the various phases. We find a regime of wave vectors for which the plasmon relations for phases with trivial topology are essentially indistinguishable, while those for phases with nontrivial topology are distinct and are redshifted as the corresponding Chern number increases. The expressions for the conductivity components are valid for the entire graphene family and can be readily used by others.
Nonlocal optical response in topological phase transitions in the graphene family
Rodriguez-Lopez, Pablo; de Melo Kort-Kamp, Wilton Junior; Dalvit, Diego Alejandro Roberto; ...
2018-01-22
We investigate the electromagnetic response of staggered two-dimensional materials of the graphene family, including silicene, germanene, and stanene, as they are driven through various topological phase transitions using external fields. Utilizing Kubo formalism, we compute their optical conductivity tensor taking into account the frequency and wave vector of the electromagnetic excitations, and study its behavior over the full electronic phase diagram of the materials. In particular, we find that the resonant behavior of the nonlocal Hall conductivity is strongly affected by the various topological phases present in these materials. We also consider the plasmon excitations in the graphene family andmore » find that nonlocality in the optical response can affect the plasmon dispersion spectra of the various phases. Here, we find a regime of wave vectors for which the plasmon relations for phases with trivial topology are essentially indistinguishable, while those for phases with nontrivial topology are distinct and are redshifted as the corresponding Chern number increases. Finally, the expressions for the conductivity components are valid for the entire graphene family and can be readily used by others.« less
Nonlocal optical response in topological phase transitions in the graphene family
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez-Lopez, Pablo; de Melo Kort-Kamp, Wilton Junior; Dalvit, Diego Alejandro Roberto
We investigate the electromagnetic response of staggered two-dimensional materials of the graphene family, including silicene, germanene, and stanene, as they are driven through various topological phase transitions using external fields. Utilizing Kubo formalism, we compute their optical conductivity tensor taking into account the frequency and wave vector of the electromagnetic excitations, and study its behavior over the full electronic phase diagram of the materials. In particular, we find that the resonant behavior of the nonlocal Hall conductivity is strongly affected by the various topological phases present in these materials. We also consider the plasmon excitations in the graphene family andmore » find that nonlocality in the optical response can affect the plasmon dispersion spectra of the various phases. Here, we find a regime of wave vectors for which the plasmon relations for phases with trivial topology are essentially indistinguishable, while those for phases with nontrivial topology are distinct and are redshifted as the corresponding Chern number increases. Finally, the expressions for the conductivity components are valid for the entire graphene family and can be readily used by others.« less
NASA Technical Reports Server (NTRS)
Burke, Michael; Judge, Russell; Pusey, Marc
2000-01-01
Chicken egg white lysozyme has a well characterized thermally driven phase transition. Between pH 4.2 and 5.2, the transition temperature, as defined by the point where the tetragonal and orthorhombic solubilities are equal, is a function of the pH, salt (precipitant) type and concentration, and most likely of the buffer concentration as well. This phase transition can be carried out with protein solution alone, prior to addition of precipitant solution. Warming a lysozyme solution above the phase transition point, then cooling it back below this point, has been shown to affect the subsequent nucleation rate, as determined by the numbers and size of crystals formed, but not the growth rate for the tetragonal crystal form . We have now measured the kinetics of this process and investigated its reversibility. The transition effects are progressive with temperature, having a half time of about 1 hour at 37C at pH 4.8. After holding a lysozyme solution at 37C (prior to addition of precipitant) for 16 hours, then cooling it back to 4C no return to the pre-warmed nucleation kinetics are observed after at least 4 weeks. Orthorhombic lysozyme crystals apparently do not undergo the flow-induced growth cessation of tetragonal lysozyme crystals. Putting the protein in the orthorhombic form does not affect the averaged face growth kinetics, only nucleation, for tetragonal crystals. This differential behaviour may be exploited to elucidate how and where flow affects the lysozyme crystal growth process. The presentation will focus on the results of these and ongoing studies in this area.
Mitra, Aditi
2012-12-28
A renormalization group approach is used to show that a one-dimensional system of bosons subject to a lattice quench exhibits a finite-time dynamical phase transition where an order parameter within a light cone increases as a nonanalytic function of time after a critical time. Such a transition is also found for a simultaneous lattice and interaction quench where the effective scaling dimension of the lattice becomes time dependent, crucially affecting the time evolution of the system. Explicit results are presented for the time evolution of the boson interaction parameter and the order parameter for the dynamical transition as well as for more general quenches.
Effect of chemical pressure on the electronic phase transition in Ca 1-x Sr x Mn 7 O 12 films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huon, A.; Lee, D.; Herklotz, A.
Here, we demonstrate how chemical pressure affects the structural and electronic phase transitions of the quadruple perovskite CaMn 7O 12 by Sr doping, a compound that exhibits a charge-ordering transition above room temperature making it a candidate for oxide electronics. We also have synthesized Ca 1-xSr xMn 7O 12 (0 ≤ x ≤ 0.6) thin films by oxide molecular beam epitaxy on (LaAlO 3) 0.3(SrAl 0.5Ta 0.5O 3) 0.7 (LSAT) substrates. The substitution of Sr for Ca results in a linear expansion of the lattice, as revealed by X-ray diffraction. Temperature-dependent resistivity and X-ray diffraction measurements are used to demonstratemore » that the coupled charge-ordering and structural phase transitions can be tuned with Sr doping. An increase in Sr concentration acts to decrease the phase transition temperature (T*) from 426 K at x = 0 to 385 K at x = 0.6. Furthemore, the presence of a tunable electronic phase transition, above room temperature, points to the potential applicability of Ca 1-xSr xMn 7O 12 in sensors or oxide electronics, for example, via charge doping.« less
Effect of chemical pressure on the electronic phase transition in Ca 1-x Sr x Mn 7 O 12 films
Huon, A.; Lee, D.; Herklotz, A.; ...
2017-09-18
Here, we demonstrate how chemical pressure affects the structural and electronic phase transitions of the quadruple perovskite CaMn 7O 12 by Sr doping, a compound that exhibits a charge-ordering transition above room temperature making it a candidate for oxide electronics. We also have synthesized Ca 1-xSr xMn 7O 12 (0 ≤ x ≤ 0.6) thin films by oxide molecular beam epitaxy on (LaAlO 3) 0.3(SrAl 0.5Ta 0.5O 3) 0.7 (LSAT) substrates. The substitution of Sr for Ca results in a linear expansion of the lattice, as revealed by X-ray diffraction. Temperature-dependent resistivity and X-ray diffraction measurements are used to demonstratemore » that the coupled charge-ordering and structural phase transitions can be tuned with Sr doping. An increase in Sr concentration acts to decrease the phase transition temperature (T*) from 426 K at x = 0 to 385 K at x = 0.6. Furthemore, the presence of a tunable electronic phase transition, above room temperature, points to the potential applicability of Ca 1-xSr xMn 7O 12 in sensors or oxide electronics, for example, via charge doping.« less
NASA Astrophysics Data System (ADS)
Bartz, Sean P.; Jacobson, Theodore
2018-04-01
The phase transition from hadronic matter to chirally symmetric quark-gluon plasma is expected to be a rapid crossover at zero quark chemical potential (μ ), becoming first order at some finite value of μ , indicating the presence of a critical point. Using a three-flavor soft-wall model of anti-de Sitter/QCD, we investigate the effect of varying the light and strange quark masses on the order of the chiral phase transition. At zero quark chemical potential, we reproduce the Columbia Plot, which summarizes the results of lattice QCD and other holographic models. We then extend this holographic model to examine the effects of finite quark chemical potential. We find that the the chemical potential does not affect the critical line that separates first-order from rapid crossover transitions. This excludes the possibility of a critical point in this model, suggesting that a different setup is necessary to reproduce all the features of the QCD phase diagram.
Electric field driven mesoscale phase transition in polarized colloids
NASA Astrophysics Data System (ADS)
Khusid, Boris; Elele, Ezinwa; Lei, Qian
2016-11-01
A mesoscale phase transition in a polarized suspension was reported by Kumar, Khusid, Acrivos, PRL95, 2005 and Agarwal, Yethiraj, PRL102, 2009. Following the application of a strong AC field, particles aggregated head-to-tail into chains that bridged the interelectrode gap and then formed a cellular pattern, in which large particle-free domains were enclosed by particle-rich thin walls. Cellular structures were not observed in numerous simulations of field induced phase transitions in a polarized suspension. A requirement for matching the particle and fluid densities to avoid particle settling limits terrestrial experiments to negatively polarized particles. We present data on the phase diagram and kinetics of the phase transition in a neutrally buoyant, negatively polarized suspension subjected to a combination of AC and DC. Surprisingly, a weak DC component drastically speeds up the formation of a cellular pattern but does not affect its key characteristic. However, the application of a strong DC field destroys the cellular pattern, but it restores as the DC field strength is reduced. We also discuss the design of experiments to study phase transitions in a suspension of positively polarized, non-buoyancy-matched particles in the International Space Station. Supported by NASA's Physical Science Research Program, NNX13AQ53G.
Suppressing epidemic spreading in multiplex networks with social-support
NASA Astrophysics Data System (ADS)
Chen, Xiaolong; Wang, Ruijie; Tang, Ming; Cai, Shimin; Stanley, H. Eugene; Braunstein, Lidia A.
2018-01-01
Although suppressing the spread of a disease is usually achieved by investing in public resources, in the real world only a small percentage of the population have access to government assistance when there is an outbreak, and most must rely on resources from family or friends. We study the dynamics of disease spreading in social-contact multiplex networks when the recovery of infected nodes depends on resources from healthy neighbors in the social layer. We investigate how degree heterogeneity affects the spreading dynamics. Using theoretical analysis and simulations we find that degree heterogeneity promotes disease spreading. The phase transition of the infected density is hybrid and increases smoothly from zero to a finite small value at the first invasion threshold and then suddenly jumps at the second invasion threshold. We also find a hysteresis loop in the transition of the infected density. We further investigate how an overlap in the edges between two layers affects the spreading dynamics. We find that when the amount of overlap is smaller than a critical value the phase transition is hybrid and there is a hysteresis loop, otherwise the phase transition is continuous and the hysteresis loop vanishes. In addition, the edge overlap allows an epidemic outbreak when the transmission rate is below the first invasion threshold, but suppresses any explosive transition when the transmission rate is above the first invasion threshold.
The puzzling first-order phase transition in water–glycerol mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popov, Ivan; Greenbaum; Sokolov, Alexei P.
2015-06-05
Over the last decade, discussions on a possible liquid-liquid transition (LLT) have strongly intensified. The LLT proposed by several authors focused mostly on explaining the anomalous properties of water in a deeply supercooled state. However, there have been no direct experimental observations yet of LLT in bulk water in the so-called 'no man's land', where water exists only in the crystalline states. Recently, a novel experimental strategy to detect LLT in water has been employed using water-glycerol (W-G) mixtures, because glycerol can generate a strong hindrance for water crystallization. As a result, the observed first-order phase transition at a concentrationmore » of glycerol around c(g) approximate to 20 mol% was ascribed to the LLT. Here we show unambiguously that the first order phase transition in W-G mixtures is caused by the ice formation. We provide additional dielectric measurements, applying specific annealing temperature protocols in order to reinforce this conclusion. We also provide an explanation, why such a phase transition occurs only in the narrow glycerol concentration range. These results clearly demonstrate the danger of analysis of phase-separating liquids to gain better insights into water dynamics. These liquids have complex phase behavior that is affected by temperature, phase stability and segregation, viscosity and nucleation, and finally by crystallization, that might lead to significant misinterpretations.« less
Methodology for Modeling the Microbial Contamination of Air Filters
Joe, Yun Haeng; Yoon, Ki Young; Hwang, Jungho
2014-01-01
In this paper, we propose a theoretical model to simulate microbial growth on contaminated air filters and entrainment of bioaerosols from the filters to an indoor environment. Air filter filtration and antimicrobial efficiencies, and effects of dust particles on these efficiencies, were evaluated. The number of bioaerosols downstream of the filter could be characterized according to three phases: initial, transitional, and stationary. In the initial phase, the number was determined by filtration efficiency, the concentration of dust particles entering the filter, and the flow rate. During the transitional phase, the number of bioaerosols gradually increased up to the stationary phase, at which point no further increase was observed. The antimicrobial efficiency and flow rate were the dominant parameters affecting the number of bioaerosols downstream of the filter in the transitional and stationary phase, respectively. It was found that the nutrient fraction of dust particles entering the filter caused a significant change in the number of bioaerosols in both the transitional and stationary phases. The proposed model would be a solution for predicting the air filter life cycle in terms of microbiological activity by simulating the microbial contamination of the filter. PMID:24523908
Active-to-absorbing-state phase transition in an evolving population with mutation.
Sarkar, Niladri
2015-10-01
We study the active to absorbing phase transition (AAPT) in a simple two-component model system for a species and its mutant. We uncover the nontrivial critical scaling behavior and weak dynamic scaling near the AAPT that shows the significance of mutation and highlights the connection of this model with the well-known directed percolation universality class. Our model should be a useful starting point to study how mutation may affect extinction or survival of a species.
Effects of aspect ratio on the phase diagram of spheroidal particles
NASA Astrophysics Data System (ADS)
Kutlu, Songul; Haaga, Jason; Rickman, Jeffrey; Gunton, James
Ellipsoidal particles occur in both colloidal and protein science. Models of protein phase transitions based on interacting spheroidal particles can often be more realistic than those based on spherical molecules. One of the interesting questions is how the aspect ratio of spheroidal particles affects the phase diagram. Some results have been obtained in an earlier study by Odriozola (J. Chem. Phys. 136:134505 (2012)). In this poster we present results for the phase diagram of hard spheroids interacting via a quasi-square-well potential, for different aspect ratios. These results are obtained from Monte Carlo simulations using the replica exchange method. We find that the phase diagram, including the crystal phase transition, is sensitive to the choice of aspect ratio. G. Harold and Leila Y. Mathers Foundation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeager, John David; Watkins, Erik Benjamin; Duque, Amanda Lynn
Thermal ignition via self-heating (cook-off) of cyclotetramethylene-tetranitramine (HMX)-containing plastic-bonded explosives (PBXs) is driven by the β → δ phase transition in the HMX, which is affected if not dominated by microstructure. Here, we studied the HMX-binder interface and phase transition for several variations of PBX 9404 (HMX with plasticized nitrocellulose [NC] binder). Neutron reflectometry was used to examine the interface under several conditions—pristine, after aging, and after thermal treatment. The initial interfacial structure depended on the plasticizer, but the interface homogenized over time. Thermal and optical analyses showed that all formulated materials had higher transition temperatures than neat HMX. Thismore » effect increased with NC content.« less
Mesoscopic Metal-Insulator Transition at Ferroelastic Domain Walls in VO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Keith M; Kalinin, Sergei V; Kolmakov, Andrei
2010-01-01
The novel phenomena induced by symmetry breaking at homointerfaces between ferroic variants in ferroelectric and ferroelastic materials have attracted recently much attention. Using variable temperature scanning microwave microscopy, we demonstrate the mesoscopic strain-induced metal-insulator phase transitions in the vicinity of ferroelastic domain walls in the semiconductive VO2 that nucleated at temperatures as much as 10-12 C below bulk transition, resulting in the formation of conductive channels in the material. Density functional theory is used to rationalize the process low activation energy. This behavior, linked to the strain inhomogeneity inherent in ferroelastic materials, can strongly affect interpretation of phase-transition studies inmore » VO2 and similar materials with symmetry-lowering transitions, and can also be used to enable new generations of electronic devices though strain engineering of conductive and semiconductive regions.« less
Monte Carlo modeling the phase diagram of magnets with the Dzyaloshinskii - Moriya interaction
NASA Astrophysics Data System (ADS)
Belemuk, A. M.; Stishov, S. M.
2017-11-01
We use classical Monte Carlo calculations to model the high-pressure behavior of the phase transition in the helical magnets. We vary values of the exchange interaction constant J and the Dzyaloshinskii-Moriya interaction constant D, which is equivalent to changing spin-spin distances, as occurs in real systems under pressure. The system under study is self-similar at D / J = constant , and its properties are defined by the single variable J / T , where T is temperature. The existence of the first order phase transition critically depends on the ratio D / J . A variation of J strongly affects the phase transition temperature and width of the fluctuation region (the ;hump;) as follows from the system self-similarity. The high-pressure behavior of the spin system depends on the evolution of the interaction constants J and D on compression. Our calculations are relevant to the high pressure phase diagrams of helical magnets MnSi and Cu2OSeO3.
Yu, Haitao; Wang, Jiang; Du, Jiwei; Deng, Bin; Wei, Xile
2015-02-01
Effects of time delay on the local and global synchronization in small-world neuronal networks with chemical synapses are investigated in this paper. Numerical results show that, for both excitatory and inhibitory coupling types, the information transmission delay can always induce synchronization transitions of spiking neurons in small-world networks. In particular, regions of in-phase and out-of-phase synchronization of connected neurons emerge intermittently as the synaptic delay increases. For excitatory coupling, all transitions to spiking synchronization occur approximately at integer multiples of the firing period of individual neurons; while for inhibitory coupling, these transitions appear at the odd multiples of the half of the firing period of neurons. More importantly, the local synchronization transition is more profound than the global synchronization transition, depending on the type of coupling synapse. For excitatory synapses, the local in-phase synchronization observed for some values of the delay also occur at a global scale; while for inhibitory ones, this synchronization, observed at the local scale, disappears at a global scale. Furthermore, the small-world structure can also affect the phase synchronization of neuronal networks. It is demonstrated that increasing the rewiring probability can always improve the global synchronization of neuronal activity, but has little effect on the local synchronization of neighboring neurons.
Emergence of Collective Motion in a Model of Interacting Brownian Particles.
Dossetti, Victor; Sevilla, Francisco J
2015-07-31
By studying a system of Brownian particles that interact among themselves only through a local velocity-alignment force that does not affect their speed, we show that self-propulsion is not a necessary feature for the flocking transition to take place as long as underdamped particle dynamics can be guaranteed. Moreover, the system transits from stationary phases close to thermal equilibrium, with no net flux of particles, to far-from-equilibrium ones exhibiting collective motion, phase coexistence, long-range order, and giant number fluctuations, features typically associated with ordered phases of models where self-propelled particles with overdamped dynamics are considered.
NASA Astrophysics Data System (ADS)
Dremov, V. V.; Ionov, G. V.; Sapozhnikov, F. A.; Smirnov, N. A.; Karavaev, A. V.; Vorobyova, M. A.; Ryzhkov, M. V.
2015-09-01
The present work is devoted to classical molecular dynamics investigation into microscopic mechanisms of the bcc-hcp transition in iron. The interatomic potential of EAM type used in the calculations was tested for the capability to reproduce ab initio data on energy evolution along the bcc-hcp transformation path (Burgers deformation + shuffe) and then used in the large-scale MD simulations. The large-scale simulations included constant volume deformation along the Burgers path to study the origin and nature of the plasticity, hydrostatic volume compression of defect free samples above the bcc to hcp transition threshold to observe the formation of new phase embryos, and the volume compression of samples containing screw dislocations to study the effect of the dislocations on the probability of the new phase critical embryo formation. The volume compression demonstrated high level of metastability. The transition starts at pressure much higher than the equilibrium one. Dislocations strongly affect the probability of the critical embryo formation and significantly reduce the onset pressure of transition. The dislocations affect also the resulting structure of the samples upon the transition. The formation of layered structure is typical for the samples containing the dislocations. The results of the simulations were compared with the in-situ experimental data on the mechanism of the bcc-hcp transition in iron.
The α–β phase transition in volcanic cristobalite
Damby, David E.; Llewellin, Edward W.; Horwell, Claire J.; Williamson, Ben J.; Najorka, Jens; Cressey, Gordon; Carpenter, Michael
2014-01-01
Cristobalite is a common mineral in volcanic ash produced from dome-forming eruptions. Assessment of the respiratory hazard posed by volcanic ash requires understanding the nature of the cristobalite it contains. Volcanic cristobalite contains coupled substitutions of Al3+ and Na+ for Si4+; similar co-substitutions in synthetic cristobalite are known to modify the crystal structure, affecting the stability of the α and β forms and the observed transition between them. Here, for the first time, the dynamics and energy changes associated with the α–β phase transition in volcanic cristobalite are investigated using X-ray powder diffraction with simultaneous in situ heating and differential scanning calorimetry. At ambient temperature, volcanic cristobalite exists in the α form and has a larger cell volume than synthetic α-cristobalite; as a result, its diffraction pattern sits between ICDD α- and β-cristobalite library patterns, which could cause ambiguity in phase identification. On heating from ambient temperature, volcanic cristobalite exhibits a lower degree of thermal expansion than synthetic cristobalite, and it also has a lower α–β transition temperature (∼473 K) compared with synthetic cristobalite (upwards of 543 K); these observations are discussed in relation to the presence of Al3+ and Na+ defects. The transition shows a stable and reproducible hysteresis loop with α and β phases coexisting through the transition, suggesting that discrete crystals in the sample have different transition temperatures. PMID:25242910
The α-β phase transition in volcanic cristobalite.
Damby, David E; Llewellin, Edward W; Horwell, Claire J; Williamson, Ben J; Najorka, Jens; Cressey, Gordon; Carpenter, Michael
2014-08-01
Cristobalite is a common mineral in volcanic ash produced from dome-forming eruptions. Assessment of the respiratory hazard posed by volcanic ash requires understanding the nature of the cristobalite it contains. Volcanic cristobalite contains coupled substitutions of Al 3+ and Na + for Si 4+ ; similar co-substitutions in synthetic cristobalite are known to modify the crystal structure, affecting the stability of the α and β forms and the observed transition between them. Here, for the first time, the dynamics and energy changes associated with the α-β phase transition in volcanic cristobalite are investigated using X-ray powder diffraction with simultaneous in situ heating and differential scanning calorimetry. At ambient temperature, volcanic cristobalite exists in the α form and has a larger cell volume than synthetic α-cristobalite; as a result, its diffraction pattern sits between ICDD α- and β-cristobalite library patterns, which could cause ambiguity in phase identification. On heating from ambient temperature, volcanic cristobalite exhibits a lower degree of thermal expansion than synthetic cristobalite, and it also has a lower α-β transition temperature (∼473 K) compared with synthetic cristobalite (upwards of 543 K); these observations are discussed in relation to the presence of Al 3+ and Na + defects. The transition shows a stable and reproducible hysteresis loop with α and β phases coexisting through the transition, suggesting that discrete crystals in the sample have different transition temperatures.
Orientational Glass Formation in Substituted Hybrid Perovskites
Mozur, Eve M.; Maughan, Annalise E.; Cheng, Yongqiang; ...
2017-11-07
Hybrid organic-inorganic perovskites have gained notoriety in the photovoltaic community for their composition-tunable band gaps and long-lived electronic excited states, which are known to be related to the crystalline phase. While indirect evidence suggests that coupling between polar organic cations affects the phase behavior, it remains unclear how the coupling manifests in hybrid perovskites such as methylammonium lead halides (CH 3NH 3PbX 3). Here, we present crystallographic and spectroscopic data for the series (CH 3NH 3) 1-xCs xPbBr 3. CH 3NH 3PbBr 3 behaves as a plastic crystal in the high temperature cubic phase, and substitution of CH 3NH 3more » + with Cs + leads to the formation of an orientational glass. While the organic molecule exhibits slow, glassy reorientational dynamics, the inorganic framework continues to undergo crystallographic phase transitions. These crystallographic transitions occur in the absence of thermodynamic signatures in the specific heat, which suggests that the phase transitions result from underlying instabilities intrinsic to the inorganic lattice. However, these transitions are not decoupled from the reorientations of the organic molecule, as indicated by inelastic and quasielastic neutron scattering. Observation of a reentrant phase transition in (CH 3NH 3) 0.8Cs 0.2PbBr 3 permits the resolution of these complex behaviors within the context of strain mediated interactions. Lastly, together, these results provide critical insight into the coupled phase behavior and dynamics in hybrid perovskites.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mozur, Eve M.; Maughan, Annalise E.; Cheng, Yongqiang
Hybrid organic-inorganic perovskites have gained notoriety in the photovoltaic community for their composition-tunable band gaps and long-lived electronic excited states, which are known to be related to the crystalline phase. While indirect evidence suggests that coupling between polar organic cations affects the phase behavior, it remains unclear how the coupling manifests in hybrid perovskites such as methylammonium lead halides (CH 3NH 3PbX 3). Here, we present crystallographic and spectroscopic data for the series (CH 3NH 3) 1-xCs xPbBr 3. CH 3NH 3PbBr 3 behaves as a plastic crystal in the high temperature cubic phase, and substitution of CH 3NH 3more » + with Cs + leads to the formation of an orientational glass. While the organic molecule exhibits slow, glassy reorientational dynamics, the inorganic framework continues to undergo crystallographic phase transitions. These crystallographic transitions occur in the absence of thermodynamic signatures in the specific heat, which suggests that the phase transitions result from underlying instabilities intrinsic to the inorganic lattice. However, these transitions are not decoupled from the reorientations of the organic molecule, as indicated by inelastic and quasielastic neutron scattering. Observation of a reentrant phase transition in (CH 3NH 3) 0.8Cs 0.2PbBr 3 permits the resolution of these complex behaviors within the context of strain mediated interactions. Lastly, together, these results provide critical insight into the coupled phase behavior and dynamics in hybrid perovskites.« less
The role of community structure on the nature of explosive synchronization.
Lotfi, Nastaran; Rodrigues, Francisco A; Darooneh, Amir Hossein
2018-03-01
In this paper, we analyze explosive synchronization in networks with a community structure. The results of our study indicate that the mesoscopic structure of the networks could affect the synchronization of coupled oscillators. With the variation of three parameters, the degree probability distribution exponent, the community size probability distribution exponent, and the mixing parameter, we could have a fast or slow phase transition. Besides, in some cases, we could have communities which are synchronized inside but not with other communities and vice versa. We also show that there is a limit in these mesoscopic structures which suppresses the transition from the second-order phase transition and results in explosive synchronization. This could be considered as a tuning parameter changing the transition of the system from the second order to the first order.
Probing critical behavior of 2D Ising ferromagnet with diluted bonds using Wang-Landau algorithm
NASA Astrophysics Data System (ADS)
Ridha, N. A.; Mustamin, M. F.; Surungan, T.
2018-03-01
Randomness is an important subject in the study of phase transition as defect and impurity may present in any real material. The pre-existing ordered phase of a pure system can be affected or even ruined by the presence of randomness. Here we study ferromagnetic Ising model on a square lattice with a presence of randomness in the form of bond dilution. The pure system of this model is known to experience second order phase transition, separating between the high temperature paramagnetic and low-temperature ferromagnetic phase. We used Wang-Landau algorithm of Monte Carlo method to obtain the density of states from which we extract the ensemble average of energy and the specific heat. We observed the signature of phase transition indicated by the diverging peak of the specific heat as system sizes increase. These peaks shift to the lower temperature side as the dilution increases. The lower temperature ordered phase preserves up to certain concentration of dilution and is totally ruined when the bonds no longer percolates.
On the Ising character of the quantum-phase transition in LiHoF4
NASA Astrophysics Data System (ADS)
Skomski, R.
2016-05-01
It is investigated how a transverse magnetic field affects the quantum-mechanical character of LiHoF4, a system generally considered as a textbook example for an Ising-like quantum-phase transition. In small magnetic fields, the low-temperature behavior of the ions is Ising-like, involving the nearly degenerate low-lying Jz = ± 8 doublet. However, as the transverse field increases, there is a substantial admixture of states having |Jz| < 8. Near the quantum-phase-transition field, the system is distinctively non-Ising like, and all Jz eigenstates yield ground-state contributions of comparable magnitude. A classical analog to this mechanism is the micromagnetic single point in magnets with uniaxial anisotropy. Since Ho3+ has J = 8, the ion's behavior is reminiscent of the classical limit (J = ∞), but quantum corrections remain clearly visible.
The Thermal and Microstructural Effect of Plasticizing HMX-Nitrocellulose Composites
Yeager, John David; Watkins, Erik Benjamin; Duque, Amanda Lynn; ...
2017-03-15
Thermal ignition via self-heating (cook-off) of cyclotetramethylene-tetranitramine (HMX)-containing plastic-bonded explosives (PBXs) is driven by the β → δ phase transition in the HMX, which is affected if not dominated by microstructure. Here, we studied the HMX-binder interface and phase transition for several variations of PBX 9404 (HMX with plasticized nitrocellulose [NC] binder). Neutron reflectometry was used to examine the interface under several conditions—pristine, after aging, and after thermal treatment. The initial interfacial structure depended on the plasticizer, but the interface homogenized over time. Thermal and optical analyses showed that all formulated materials had higher transition temperatures than neat HMX. Thismore » effect increased with NC content.« less
The Thermal and Microstructural Effect of Plasticizing HMX-Nitrocellulose Composites
NASA Astrophysics Data System (ADS)
Yeager, John D.; Watkins, Erik B.; Higginbotham Duque, Amanda L.; Majewski, Jaroslaw
2018-01-01
Thermal ignition via self-heating (cook-off) of cyclotetramethylene-tetranitramine (HMX)-containing plastic-bonded explosives (PBXs) is driven by the β → δ phase transition in the HMX, which is affected if not dominated by microstructure. Here, the HMX-binder interface and phase transition were studied for several variations of PBX 9404 (HMX with plasticized nitrocellulose [NC] binder). Neutron reflectometry was used to examine the interface under several conditions-pristine, after aging, and after thermal treatment. The initial interfacial structure depended on the plasticizer, but the interface homogenized over time. Thermal and optical analyses showed that all formulated materials had higher transition temperatures than neat HMX. This effect increased with NC content.
NASA Astrophysics Data System (ADS)
Rodríguez-Hidalgo, María del Rosario; Soto-Figueroa, César; Vicente, Luis
2018-03-01
Structural morphologies of diblock AB and triblock BAB copolymers (A = poly(N-isopropylacrylamide), B = polystyrene) in aqueous environment have been investigated by dissipative particle dynamics (DPD). In triblock copolymers insoluble PS blocks contract while soluble pNIPAM blocks stay at the periphery forming looped chains as corona. As the temperature is increased there is a continuous morphological transition and micelles form ellipsoidal structures with segregated polymer zones. The phase transition of looped pNIPAM chains occurs at lower temperature than for linear chains and within broader temperature range. It is discussed how the chain topology of pNIPAM affects the phase transition.
Influence of longitudinal spin fluctuations on the phase transition features in chiral magnets
NASA Astrophysics Data System (ADS)
Belemuk, A. M.; Stishov, S. M.
2018-04-01
Using the classical Monte Carlo calculations, we investigate the effects of longitudinal spin fluctuations on the helimagnetic transition in a Heisenberg magnet with the Dzyaloshinskii-Moriya interaction. We use variable spin amplitudes in the framework of the spin-lattice Hamiltonian. It is this kind of fluctuations that naturally occur in an itinerant system. We show that the basic features of the helical phase transition are not changed much by the longitudinal spin fluctuations though the transition temperature Tc and the fluctuation hump seen in specific heat at T >Tc is significantly affected. We report thermodynamic and structural effects of these fluctuations. By increasing the system size in the Monte Carlo modeling, we are able to reproduce the ring shape scattering intensity above the helimagnetic transition temperature Tc, which transforms into the spiral spots seen below Tc in the neutron scattering experiments.
Entanglement scaling at first order quantum phase transitions
NASA Astrophysics Data System (ADS)
Yuste, A.; Cartwright, C.; De Chiara, G.; Sanpera, A.
2018-04-01
First order quantum phase transitions (1QPTs) are signalled, in the thermodynamic limit, by discontinuous changes in the ground state properties. These discontinuities affect expectation values of observables, including spatial correlations. When a 1QPT is crossed in the vicinity of a second order one, due to the correlation length divergence of the latter, the corresponding ground state is modified and it becomes increasingly difficult to determine the order of the transition when the size of the system is finite. Here we show that, in such situations, it is possible to apply finite size scaling (FSS) to entanglement measures, as it has recently been done for the order parameters and the energy gap, in order to recover the correct thermodynamic limit (Campostrini et al 2014 Phys. Rev. Lett. 113 070402). Such a FSS can unambiguously discriminate between first and second order phase transitions in the vicinity of multicritical points even when the singularities displayed by entanglement measures lead to controversial results.
Lesions Responsible for Delayed Oral Transit Time in Post-stroke Dysphagia.
Moon, Hyun Im; Yoon, Seo Yeon; Yi, Tae Im; Jeong, Yoon Jeong; Cho, Tae Hwan
2018-06-01
Some stroke patients show oral phase dysphagia, characterized by a markedly prolonged oral transit time that hinders oral feeding. The aim of this study was to clarify the clinical characteristics and lesions responsible for delayed swallowing. We reviewed 90 patients with stroke. The oral processing time plus the postfaucial aggregation time required to swallow semisolid food was assessed. The patients were divided into two groups according to oral transit time, and we analyzed the differences in characteristics such as demographic factors, lesion factors, and cognitive function. Logistic regression analyses were performed to examine the predictors of delayed oral transit time. Lesion location and volume were measured on brain magnetic resonance images. We generated statistic maps of lesions related to delayed oral phase in swallowing using voxel-based lesion symptom mapping (VLSM). The group of patients who showed delayed oral transit time had significantly low cognitive function. Also, in a regression model, delayed oral phase was predicted with low K-MMSE (Korean version of the Mini Mental Status Exam). Using VLSM, we found the lesion location to be associated with delayed oral phase after adjusting for K-MMSE score. Although these results did not reach statistical significance, they showed the lesion pattern with predominant distribution in the left frontal lobe. Delayed oral phase in post-stroke patients was not negligible clinically. Patients' cognitive impairments affect the oral transit time. When adjusting it, we found a trend that the lesion responsible for delayed oral phase was located in the left frontal lobe, though the association did not reach significance. The delay might be related to praxis function.
Sequence Directionality Dramatically Affects LCST Behavior of Elastin-Like Polypeptides.
Li, Nan K; Roberts, Stefan; Quiroz, Felipe Garcia; Chilkoti, Ashutosh; Yingling, Yaroslava G
2018-04-30
Elastin-like polypeptides (ELP) exhibit an inverse temperature transition or lower critical solution temperature (LCST) transition phase behavior in aqueous solutions. In this paper, the thermal responsive properties of the canonical ELP, poly(VPGVG), and its reverse sequence poly(VGPVG) were investigated by turbidity measurements of the cloud point behavior, circular dichroism (CD) measurements, and all-atom molecular dynamics (MD) simulations to gain a molecular understanding of mechanism that controls hysteretic phase behavior. It was shown experimentally that both poly(VPGVG) and poly(VGPVG) undergo a transition from soluble to insoluble in aqueous solution upon heating above the transition temperature ( T t ). However, poly(VPGVG) resolubilizes upon cooling below its T t , whereas the reverse sequence, poly(VGPVG), remains aggregated despite significant undercooling below the T t . The results from MD simulations indicated that a change in sequence order results in significant differences in the dynamics of the specific residues, especially valines, which lead to extensive changes in the conformations of VPGVG and VGPVG pentamers and, consequently, dissimilar propensities for secondary structure formation and overall structure of polypeptides. These changes affected the relative hydrophilicities of polypeptides above T t , where poly(VGPVG) is more hydrophilic than poly(VPGVG) with more extended conformation and larger surface area, which led to formation of strong interchain hydrogen bonds responsible for stabilization of the aggregated phase and the observed thermal hysteresis for poly(VGPVG).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Rong; Cai, Weizhao; Bi, Tiange
We report synchrotron X-ray diffraction, photoconductivity, and photoluminescence investigations of methylammonium-lead-bromide (MAPbBr3) under various stress conditions, supported by density-functional-theory (DFT) calculations. The properties of MAPbBr3 show substantial dependence on the hydrostatic conditions. While nonhydrostatic compression of MAPbBr3 leads to amorphization above 2.4 GPa, under quasi-hydrostatic (Ar) and hydrostatic (He) pressure, the sample remains in crystalline phases. A sequence of phase transitions between two cubic phases and orthorhombic Pnma phase is observed when using Ar, or no pressure-transmitting-medium (PTM). In helium-PTM only transitions between the two cubic structures and a new isostructural phase transition with a large volume collapse to amore » third cubic-phase at 2.7 GPa was observed. The photoluminescence measurements indicate a pressure-induced band gap-narrowing in the cubic phase I, and a blue-shift in the orthorhombic structure. DFT calculations illustrate that the dynamics of the organic molecules and the inorganic lattice, coupled via the N–H···Br hydrogen-bonding interactions, affect the Pb–Br distance and the bandgap evolution under pressure.« less
The Effect of SiC Polytypes on the Heat Distribution Efficiency of a Phase Change Memory.
NASA Astrophysics Data System (ADS)
Aziz, M. S.; Mohammed, Z.; Alip, R. I.
2018-03-01
The amorphous to crystalline transition of germanium-antimony-tellurium (GST) using three types of silicon carbide’s structure as a heating element was investigated. Simulation was done using COMSOL Multiphysic 5.0 software with separate heater structure. Silicon carbide (SiC) has three types of structure; 3C-SiC, 4H-SiC and 6H-SiC. These structures have a different thermal conductivity. The temperature of GST and phase transition of GST can be obtained from the simulation. The temperature of GST when using 3C-SiC, 4H-SiC and 6H-SiC are 467K, 466K and 460K, respectively. The phase transition of GST from amorphous to crystalline state for three type of SiC’s structure can be determined in this simulation. Based on the result, the thermal conductivity of SiC can affecting the temperature of GST and changed of phase change memory (PCM).
Phase change references for in-flight recalibration of orbital thermometry
NASA Astrophysics Data System (ADS)
Topham, T. S.; Latvakoski, H.; Watson, M.
2013-09-01
Several critical questions need to be answered to determine the potential utility of phase change materials as long-term orbital references: How accurate and repeatable will phase change reference implementations be after incorporating necessary design trade-offs to accommodate launch and the space environment? How can the temperature of phase transitions be transferred to something useful for calibration such as a black body. How, if at all, will the microgravity environment affect the phase transitions? To help answer some of these questions, three experiments will be conducted on the International Space Station (ISS). The experiments will test melts and freezes of three different phase change materials in various containment apparatus. This paper addresses the current status of the ISS experiments, as well as results from ground testing of several concepts for space application of PCM recalibration systems in the CORSAIR (Calibration Observations of Radiance Spectra in the far Infrared) black body.
Density functional theory of freezing of a system of highly elongated ellipsoidal oligomer solutions
NASA Astrophysics Data System (ADS)
Dwivedi, Shikha; Mishra, Pankaj
2017-05-01
We have used the density functional theory of freezing to study the liquid crystalline phase behavior of a system of highly elongated ellipsoidal conjugated oligomers dispersed in three different solvents namely chloroform, toluene and their equimolar mixture. The molecules are assumed to interact via solvent-implicit coarse-grained Gay-Berne potential. Pair correlation functions needed as input in the density functional theory have been calculated using the Percus-Yevick (PY) integral equation theory. Considering the isotropic and nematic phases, we have calculated the isotropic-nematic phase transition parameters and presented the temperature-density and pressure-temperature phase diagrams. Different solvent conditions are found not only to affect the transition parameters but also determine the capability of oligomers to form nematic phase in various thermodynamic conditions. In principle, our results are verifiable through computer simulations.
Examination of directed flow as a signal for a phase transition in relativistic nuclear collisions
NASA Astrophysics Data System (ADS)
Steinheimer, J.; Auvinen, J.; Petersen, H.; Bleicher, M.; Stöcker, H.
2014-05-01
The sign change of the slope of the directed flow of baryons has been predicted as a signal for a first order phase transition within fluid dynamical calculations. Recently, the directed flow of identified particles was measured by the STAR Collaboration in the beam energy scan program. In this article, we examine the collision energy dependence of directed flow v1 in fluid dynamical model descriptions of heavy ion collisions for √sNN =3-20 GeV. The first step is to reproduce the existing predictions within pure fluid dynamical calculations. As a second step we investigate the influence of the order of the phase transition on the anisotropic flow within a state-of-the-art hybrid approach that describes other global observables reasonably well. We find that, in the hybrid approach, there seems to be no sensitivity of the directed flow on the equation of state and in particular on the existence of a first order phase transition. In addition, we explore more subtle sensitivities such as the Cooper-Frye transition criterion and discuss how momentum conservation and the definition of the event plane affects the results. At this point, none of our calculations matches qualitatively the behavior of the STAR data; the values of the slopes are always larger than in the data.
Dynamics of social contagions with local trend imitation.
Zhu, Xuzhen; Wang, Wei; Cai, Shimin; Stanley, H Eugene
2018-05-09
Research on social contagion dynamics has not yet included a theoretical analysis of the ubiquitous local trend imitation (LTI) characteristic. We propose a social contagion model with a tent-like adoption probability to investigate the effect of this LTI characteristic on behavior spreading. We also propose a generalized edge-based compartmental theory to describe the proposed model. Through extensive numerical simulations and theoretical analyses, we find a crossover in the phase transition: when the LTI capacity is strong, the growth of the final adoption size exhibits a second-order phase transition. When the LTI capacity is weak, we see a first-order phase transition. For a given behavioral information transmission probability, there is an optimal LTI capacity that maximizes the final adoption size. Finally we find that the above phenomena are not qualitatively affected by the heterogeneous degree distribution. Our suggested theoretical predictions agree with the simulation results.
Thermal fluctuations of dilaton black holes in gravity's rainbow
NASA Astrophysics Data System (ADS)
Dehghani, M.
2018-06-01
In this work, thermodynamics and phase transition of some new dilaton black hole solutions have been explored in the presence of the rainbow functions. By introducing an energy dependent space time, the dilaton potential has been obtained as the linear combination of two Liouville-type potentials and three new classes of black hole solutions have been constructed. The conserved and thermodynamic quantities of the new dilaton black holes have been calculated in the energy dependent space times. It has been shown that, even if some of the thermodynamic quantities are affected by the rainbow functions, the thermodynamical first law still remains valid. Also, the impacts of rainbow functions on the stability or phase transition of the new black hole solutions have been investigated. Finally, the quantum gravitational effects on the thermodynamics and phase transition of the solutions have been studied through consideration of the thermal fluctuations.
Collapse of superconductivity in cuprates via ultrafast quenching of phase coherence
Boschini, F.; da Silva Neto, E. H.; Razzoli, E.; ...
2018-04-02
The possibility of driving phase transitions in low-density condensates through the loss of phase coherence alone has far-reaching implications for the study of quantum phases of matter. This has inspired the development of tools to control and explore the collective properties of condensate phases via phase fluctuations. Electrically gated oxide interfaces, ultracold Fermi atoms and cuprate superconductors, which are characterized by an intrinsically small phase stiffness, are paradigmatic examples where these tools are having a dramatic impact. In this study, we use light pulses shorter than the internal thermalization time to drive and probe the phase fragility of the Bimore » 2Sr 2CaCu 2O 8+δ cuprate superconductor, completely melting the superconducting condensate without affecting the pairing strength. The resulting ultrafast dynamics of phase fluctuations and charge excitations are captured and disentangled by time-resolved photoemission spectroscopy. This work demonstrates the dominant role of phase coherence in the superconductor-to-normal state phase transition and offers a benchmark for non-equilibrium spectroscopic investigations of the cuprate phase diagram.« less
Collapse of superconductivity in cuprates via ultrafast quenching of phase coherence
NASA Astrophysics Data System (ADS)
Boschini, F.; da Silva Neto, E. H.; Razzoli, E.; Zonno, M.; Peli, S.; Day, R. P.; Michiardi, M.; Schneider, M.; Zwartsenberg, B.; Nigge, P.; Zhong, R. D.; Schneeloch, J.; Gu, G. D.; Zhdanovich, S.; Mills, A. K.; Levy, G.; Jones, D. J.; Giannetti, C.; Damascelli, A.
2018-05-01
The possibility of driving phase transitions in low-density condensates through the loss of phase coherence alone has far-reaching implications for the study of quantum phases of matter. This has inspired the development of tools to control and explore the collective properties of condensate phases via phase fluctuations. Electrically gated oxide interfaces1,2, ultracold Fermi atoms3,4 and cuprate superconductors5,6, which are characterized by an intrinsically small phase stiffness, are paradigmatic examples where these tools are having a dramatic impact. Here we use light pulses shorter than the internal thermalization time to drive and probe the phase fragility of the Bi2Sr2CaCu2O8+δ cuprate superconductor, completely melting the superconducting condensate without affecting the pairing strength. The resulting ultrafast dynamics of phase fluctuations and charge excitations are captured and disentangled by time-resolved photoemission spectroscopy. This work demonstrates the dominant role of phase coherence in the superconductor-to-normal state phase transition and offers a benchmark for non-equilibrium spectroscopic investigations of the cuprate phase diagram.
Collapse of superconductivity in cuprates via ultrafast quenching of phase coherence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boschini, F.; da Silva Neto, E. H.; Razzoli, E.
The possibility of driving phase transitions in low-density condensates through the loss of phase coherence alone has far-reaching implications for the study of quantum phases of matter. This has inspired the development of tools to control and explore the collective properties of condensate phases via phase fluctuations. Electrically gated oxide interfaces, ultracold Fermi atoms and cuprate superconductors, which are characterized by an intrinsically small phase stiffness, are paradigmatic examples where these tools are having a dramatic impact. In this study, we use light pulses shorter than the internal thermalization time to drive and probe the phase fragility of the Bimore » 2Sr 2CaCu 2O 8+δ cuprate superconductor, completely melting the superconducting condensate without affecting the pairing strength. The resulting ultrafast dynamics of phase fluctuations and charge excitations are captured and disentangled by time-resolved photoemission spectroscopy. This work demonstrates the dominant role of phase coherence in the superconductor-to-normal state phase transition and offers a benchmark for non-equilibrium spectroscopic investigations of the cuprate phase diagram.« less
Alpha tumor necrosis factor contributes to CD8{sup +} T cell survival in the transition phase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Meiqing; Ye, Zhenmin; Umeshappa, Keshav Sokke
Cytokine and costimulation signals determine CD8{sup +} T cell responses in proliferation phase. In this study, we assessed the potential effect of cytokines and costimulations to CD8{sup +} T cell survival in transition phase by transferring in vitro ovalbumin (OVA)-pulsed dendritic cell-activated CD8{sup +} T cells derived from OVA-specific T cell receptor transgenic OT I mice into wild-type C57BL/6 mice or mice with designated gene knockout. We found that deficiency of IL-10, IL-12, IFN-{gamma}, CD28, CD40, CD80, CD40L, and 41BBL in recipients did not affect CD8{sup +} T cell survival after adoptive transfer. In contrast, TNF-{alpha} deficiency in both recipientsmore » and donor CD8{sup +} effector T cells significantly reduced CD8{sup +} T cell survival. Therefore, our data demonstrate that the host- and T cell-derived TNF-{alpha} signaling contributes to CD8{sup +} effector T cell survival and their transition to memory T cells in the transition phase, and may be useful information when designing vaccination.« less
Zuo, Yi Y.; Keating, Eleonora; Zhao, Lin; Tadayyon, Seyed M.; Veldhuizen, Ruud A. W.; Petersen, Nils O.; Possmayer, Fred
2008-01-01
Monolayers of a functional pulmonary surfactant (PS) can reach very low surface tensions well below their equilibrium value. The mechanism by which PS monolayers reach such low surface tensions and maintain film stability remains unknown. As shown previously by fluorescence microscopy, phospholipid phase transition and separation seem to be important for the normal biophysical properties of PS. This work studied phospholipid phase transitions and separations in monolayers of bovine lipid extract surfactant using atomic force microscopy. Atomic force microscopy showed phospholipid phase separation on film compression and a monolayer-to-multilayer transition at surface pressure 40–50 mN/m. The tilted-condensed phase consisted of domains not only on the micrometer scale, as detected previously by fluorescence microscopy, but also on the nanometer scale, which is below the resolution limits of conventional optical methods. The nanodomains were embedded uniformly within the liquid-expanded phase. On compression, the microdomains broke up into nanodomains, thereby appearing to contribute to tilted-condensed and liquid-expanded phase remixing. Addition of surfactant protein A altered primarily the nanodomains and promoted the formation of multilayers. We conclude that the nanodomains play a predominant role in affecting the biophysical properties of PS monolayers and the monolayer-to-multilayer transition. PMID:18212010
Age-related changes in tree growth and physiology
Andrew Groover
2017-01-01
Trees pass through specific developmental phases as they age, including juvenile to adult, and vegetative to reproductive phases. The timing of these transitions is regulated genetically but is also highly influenced by the environment. Tree species have evolved different strategies and life histories that affect how they age â for example some pioneer species are fast...
Phase Transition in all-trans-β-Carotene Crystal: Temperature-Dependent Raman Spectra.
da Silva, Kleber J R; Paschoal, Waldomiro; Belo, Ezequiel A; Moreira, Sanclayton G C
2015-09-24
In this study, we studied the stability of an all-trans-β-carotene single crystal using Raman spectroscopy with line excitation at 632.8 nm, in the temperature range 20–300 K. The Raman spectra exhibit clear modifications in the spectral range of the lattice and internal vibrational modes. The temperature dependence of the most intense vibrational modes ν1 (1511 cm(–1)) and ν2 (1156 cm(–1)) that are related to the C═C and C—C stretching vibrations of the polyene chain, respectively, shows an upward shift on the Raman modes. This behavior is similar to that stated in the theoretical work of Wei-Long Liu et al. We conclude that the all-trans-β-carotene crystal undergoes a temperature-induced phase transition at approximately 219 K. This transition is interpreted as a rotation experienced by β-ring groups at each end of the all-trans-β-carotene molecule around the dihedral angle. At low temperatures, the new molecular configuration affects the sliding plane of the space group C2h(5)(P2(1)/n), and the phase transition leads to an unchanged monoclinic structure; however, the original space group is possibly lowered to the space group C2. In the temperature range 200–220 K, the spectral ratio (S) of the integrated intensities of the spectral modes around the symmetric and asymmetric stretching wavenumbers of the methyl group (CH3) changes as a function of temperature in agreement with the phase transition. Furthermore, according to phase transition undergone by the all-trans-β-carotene, the thermal results obtained by differential scanning calorimetry show an exothermic process that occurs near the transition temperature assigned by the Raman spectra.
Percolation Features on Climate Network under Attacks of El Niño Events
NASA Astrophysics Data System (ADS)
Lu, Z.
2015-12-01
Percolation theory under different attacks is one of the main research areas in complex networks but never be applied to investigate climate network. In this study, for the first time we construct a climate network of surface air temperature field to analyze its percolation features. Here, we regard El Niño event as a kind of naturally attacks generated from Pacific Ocean to attack its upper climate network. We find that El Niño event leads an abrupt percolation phase transition to the climate network which makes it splitting and unstable suddenly. Comparing the results of the climate network under three different forms of attacks, including most connected attack (MA), localized attack (LA) and random attack (RA) respectively, it is found that both MA and LA lead first-order transition and RA leads second-order transition to the climate network. Furthermore, we find that most real attacks consist of all these three forms of attacks. With El Niño event emerging, the ratios of LA and MA increase and dominate the style of attack while RA decreasing. It means the percolation phase transition due to El Niño events is close to first-order transition mostly affected by LA and MA. Our research may help us further understand two questions from perspective of percolation on network: (1) Why not all warming in Pacific Ocean but El Niño events could affect the climate. (2) Why the climate affected by El Niño events changes abruptly.
Temperature anomalies of shock and isentropic waves of quark-hadron phase transition
NASA Astrophysics Data System (ADS)
Konyukhov, A. V.; Iosilevskiy, I. L.; Levashov, P. R.; Likhachev, A. P.
2018-01-01
In this work, we consider a phenomenological equation of state, which combinesstatistical description for hadron gas and a bag-model-based approach for the quark-gluon plasma. The equation of state is based on the excluded volume method in its thermodynamically consistent variant from Satarov et al [2009 Phys. At. Nucl. 72 1390]. The characteristic shape of the Taub adiabats and isentropes in the phase diagram is affected by the anomalous pressure-temperature dependence along the curve of phase equilibrium. The adiabats have kink points at the boundary of the two-phase region, inside which the temperature decreases with compression. Thermodynamic properties of matter observed in the quark-hadron phase transition region lead to hydrodynamic anomalies (in particular, to the appearance of composite compression and rarefaction waves). On the basis of relativistic hydrodynamics equations we investigate and discuss the structure and anomalous temperature behavior in these waves.
Optimal community structure for social contagions
NASA Astrophysics Data System (ADS)
Su, Zhen; Wang, Wei; Li, Lixiang; Stanley, H. Eugene; Braunstein, Lidia A.
2018-05-01
Community structure is an important factor in the behavior of real-world networks because it strongly affects the stability and thus the phase transition order of the spreading dynamics. We here propose a reversible social contagion model of community networks that includes the factor of social reinforcement. In our model an individual adopts a social contagion when the number of received units of information exceeds its adoption threshold. We use mean-field approximation to describe our proposed model, and the results agree with numerical simulations. The numerical simulations and theoretical analyses both indicate that there is a first-order phase transition in the spreading dynamics, and that a hysteresis loop emerges in the system when there is a variety of initially adopted seeds. We find an optimal community structure that maximizes spreading dynamics. We also find a rich phase diagram with a triple point that separates the no-diffusion phase from the two diffusion phases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kitazawa, Yuzo; Ueki, Takeshi; McIntosh, Lucas D.
2016-04-29
Here we investigate a hierarchical morphology change and accompanying sol–gel transition using a doubly thermosensitive ABC-triblock copolymer in an ionic liquid (IL). The triblock copolymer contains two different lower critical solution temperature (LCST) thermosensitive polymers, poly(benzyl methacrylate) (PBnMA) and poly(2-phenylethyl methacrylate) (PPhEtMA), as the end blocks and poly(methyl methacrylate) (PMMA) as the middle block (PBnMA-b-PMMA-b-PPhEtMA: BMP). BMP undergoes a hierarchical phase transition corresponding to the self-assembly of each of the thermosensitive blocks in the IL, and a sol–gel transition was observed in concentrated, above 10 wt %, polymer solutions. The gelation behavior was affected by polymer concentration, and at 20more » wt %, the BMP/IL composite showed a phase transition, with increasing temperature, from solution through a jammed micelle suspension to a physically cross-linked gel. For each phase was formed reversibly and rapidly over the corresponding temperature range. Finally, the jammed micelle and cross-linked gel states were characterized using viscoelastic measurements and small-angle X-ray scattering (SAXS).« less
Stable-unstable transition for a Bose-Hubbard chain coupled to an environment
NASA Astrophysics Data System (ADS)
Guo, Chu; de Vega, Ines; Schollwöck, Ulrich; Poletti, Dario
2018-05-01
Interactions in quantum systems may induce transitions to exotic correlated phases of matter which can be vulnerable to coupling to an environment. Here, we study the stability of a Bose-Hubbard chain coupled to a bosonic bath at zero and nonzero temperature. We show that only above a critical interaction the chain loses bosons and its properties are significantly affected. The transition is of a different nature than the superfluid-Mott-insulator transition and occurs at a different critical interaction. We explain such a stable-unstable transition by the opening of a global charge gap. The comparison of accurate matrix product state simulations to approximative approaches that miss this transition reveals its many-body origin.
Dissipation-driven phase transitions in superconducting wires
NASA Astrophysics Data System (ADS)
Lobos, Alejandro; Iucci, Aníbal; Müller, Markus; Giamarchi, Thierry
2010-03-01
Narrow superconducting wires with diameter dξ0 (where ξ0 is the bulk superconducting coherence length) are quasi-1D systems in which fluctuations of the order parameter strongly affect low-temperature properties. Indeed, fluctuations cause the magnitude of the order parameter to temporarily vanish at some point along the wire, allowing its phase to slip by 2π, and to produce finite resistivity for all temperatures below Tc. In this work, we show that a weak coupling to a diffusive metallic film reinforces superconductivity in the wire through a quench of phase fluctuations. We analyze the effective phase-only action of the system by a perturbative renormalization-group and a self-consistent variational approach to obtain the critical points and phases at T=0. We predict a quantum phase transition towards a superconducting phase with long-range order as a function of the wire stiffness and coupling to the metal. Finally we discuss implications for the DC resistivity of the wire.
7 CFR 1717.155 - Transitional assistance affecting new and preexisting loans.
Code of Federal Regulations, 2010 CFR
2010-01-01
... stress after the deferment period. (2) Section 12 deferment may be available following any merger where... review rates, rate disparity, and likely mitigating effects of the proposed phase-in plan. (3) The...
Bulpett, Jennifer M; Snow, Tim; Quignon, Benoit; Beddoes, Charlotte M; Tang, T-Y D; Mann, Stephen; Shebanova, Olga; Pizzey, Claire L; Terrill, Nicholas J; Davis, Sean A; Briscoe, Wuge H
2015-12-07
This study focuses on how the mesophase transition behaviour of the phospholipid dioleoyl phosphatidylethanolamine (DOPE) is altered by the presence of 10 nm hydrophobic and 14 nm hydrophilic silica nanoparticles (NPs) at different concentrations. The lamellar to inverted hexagonal phase transition (Lα-HII) of phospholipids is energetically analogous to the membrane fusion process, therefore understanding the Lα-HII transition with nanoparticulate additives is relevant to how membrane fusion may be affected by these additives, in this case the silica NPs. The overriding observation is that the HII/Lα boundaries in the DOPE p-T phase diagram were shifted by the presence of NPs: the hydrophobic NPs enlarged the HII phase region and thus encouraged the inverted hexagonal (HII) phase to occur at lower temperatures, whilst hydrophilic NPs appeared to stabilise the Lα phase region. This effect was also NP-concentration dependent, with a more pronounced effect for higher concentration of the hydrophobic NPs, but the trend was less clear cut for the hydrophilic NPs. There was no evidence that the NPs were intercalated into the mesophases, and as such it was likely that they might have undergone microphase separation and resided at the mesophase domain boundaries. Whilst the loci and exact roles of the NPs invite further investigation, we tentatively discuss these results in terms of both the surface chemistry of the NPs and the effect of their curvature on the elastic bending energy considerations during the mesophase transition.
Liu, Guanxiong; Debnath, Bishwajit; Pope, Timothy R; Salguero, Tina T; Lake, Roger K; Balandin, Alexander A
2016-10-01
The charge-density-wave (CDW) phase is a macroscopic quantum state consisting of a periodic modulation of the electronic charge density accompanied by a periodic distortion of the atomic lattice in quasi-1D or layered 2D metallic crystals. Several layered transition metal dichalcogenides, including 1T-TaSe 2 , 1T-TaS 2 and 1T-TiSe 2 exhibit unusually high transition temperatures to different CDW symmetry-reducing phases. These transitions can be affected by the environmental conditions, film thickness and applied electric bias. However, device applications of these intriguing systems at room temperature or their integration with other 2D materials have not been explored. Here, we demonstrate room-temperature current switching driven by a voltage-controlled phase transition between CDW states in films of 1T-TaS 2 less than 10 nm thick. We exploit the transition between the nearly commensurate and the incommensurate CDW phases, which has a transition temperature of 350 K and gives an abrupt change in current accompanied by hysteresis. An integrated graphene transistor provides a voltage-tunable, matched, low-resistance load enabling precise voltage control of the circuit. The 1T-TaS 2 film is capped with hexagonal boron nitride to provide protection from oxidation. The integration of these three disparate 2D materials in a way that exploits the unique properties of each yields a simple, miniaturized, voltage-controlled oscillator suitable for a variety of practical applications.
Polymorphism and mesomorphism of oligomeric surfactants: effect of the degree of oligomerization.
Jurašin, D; Pustak, A; Habuš, I; Šmit, I; Filipović-Vinceković, N
2011-12-06
A series of cationic oligomeric surfactants (quaternary dodecyldimethylammonium ions with two, three, or four chains connected by an ethylene spacer at the headgroup level, abbreviated as dimer, trimer, and tetramer) were synthesized and characterized. The influence of the degree of oligomerization on their polymorphic and mesomorphic properties was investigated by means of X-ray diffraction, polarizing optical microscopy, thermogravimetry, and differential scanning calorimetry. All compounds display layered arrangements with interdigitated dodecyl chains. The increase in the degree of oligomerization increases the interlayer distance and decreases the ordering in the solid phase; whereas the dimer sample is fully crystalline with well-developed 3D ordering and the trimer and tetramer crystallize as highly ordered crystal smectic phases. The number of thermal phase transitions and sequence of phases are markedly affected by the number of dodecyl chains. Anhydrous samples exhibit polymorphism and thermotropic mesomorphism of the smectic type, with the exception of the tetramer that displays only transitions at higher temperature associated with decomposition and melting. All hydrated compounds form lyotropic mesophases showing reversible phase transitions upon heating and cooling. The sequence of liquid-crystalline phases for the dimer, typical of concentrated ionic surfactant systems, comprises a hexagonal phase at lower temperatures and a smectic phase at higher temperatures. In contrast, the trimer and tetramer reveal textures of the hexagonal phase. © 2011 American Chemical Society
Transitions of tethered chain molecules under tension.
Luettmer-Strathmann, Jutta; Binder, Kurt
2014-09-21
An applied tension force changes the equilibrium conformations of a polymer chain tethered to a planar substrate and thus affects the adsorption transition as well as the coil-globule and crystallization transitions. Conversely, solvent quality and surface attraction are reflected in equilibrium force-extension curves that can be measured in experiments. To investigate these effects theoretically, we study tethered chains under tension with Wang-Landau simulations of a bond-fluctuation lattice model. Applying our model to pulling experiments on biological molecules we obtain a good description of experimental data in the intermediate force range, where universal features dominate and finite size effects are small. For tethered chains in poor solvent, we observe the predicted two-phase coexistence at transitions from the globule to stretched conformations and also discover direct transitions from crystalline to stretched conformations. A phase portrait for finite chains constructed by evaluating the density of states for a broad range of solvent conditions and tensions shows how increasing tension leads to a disappearance of the globular phase. For chains in good solvents tethered to hard and attractive surfaces we find the predicted scaling with the chain length in the low-force regime and show that our results are well described by an analytical, independent-bond approximation for the bond-fluctuation model for the highest tensions. Finally, for a hard or slightly attractive surface the stretching of a tethered chain is a conformational change that does not correspond to a phase transition. However, when the surface attraction is sufficient to adsorb a chain it will undergo a desorption transition at a critical value of the applied force. Our results for force-induced desorption show the transition to be discontinuous with partially desorbed conformations in the coexistence region.
Transitions induced by solubilized fat into reverse hexagonal mesophases.
Amar-Yuli, Idit; Garti, Nissim
2005-06-25
Lyotropic liquid crystals of glycerol monooleate (GMO) and water binary mixtures have been extensively studied and their resemblance to human membranes has intrigued many scientists. Biological systems as well as food mixtures are composed of lipids and fat components including triacylglycerols (TAGs, triglycerides) that can affect the nature of the assembly of the mesophase. The present study examines the effect of TAGs of different chain lengths (C(2)-C(18)) at various water/GMO compositions, on phase transitions from lamellar or cubic to reverse hexagonal (L(alpha)-H(II) and Q-H(II)). The ability of the triglycerides to promote the formation of an H(II) mesophase is chain length-dependent. It was found that TAG molecules with very short acyl chains (triacetin) can hydrate the head groups of the lipid and do not affect the critical packing parameter (CPP) of the amphiphile; therefore, they do not affect the self-assembly of the GMO in water, and the mesophase remains lamellar or cubic. However, TAGs with medium chain fatty acids will solvate the tails of the lipid, and will affect the CPP of the GMO, and transform the lamellar or cubic phases into hexagonal mesophase. TAGs with long chain fatty acids are very bulky, not very miscible with the GMO, and therefore, kinetically are very slow to solvate the lipid tails of the amphiphile and are difficult to accommodate into the lipophilic parts of the GMO. Their effect on the transitions from a lamellar or cubic phase to hexagonal is detected only after months of equilibration. In order to enhance the effect of the TAG on the phase transitions in the GMO/triglyceride/water systems, temperature and electrolytes effects were examined. In the presence of short and medium chain triglycerides, increasing temperature caused a transition from lamellar or hexagonal to L(2) phase (highest CPP value). However, in the presence of long chain TAGs, increasing temperature to ca. 40 degrees C caused a formation of H(II) mesophase. In addition, it was found that in tricaprylin/GMO/water systems, the increase in temperature caused a decrease in the lattice parameter. The effect of NaCl on the H(II) mesophase revealed interesting results. At low concentration of tricaprylin (5 wt%), the addition of only 0.1 wt% of NaCl was sufficient to cause the formation of well-defined H(II) mesophase, while further addition of electrolyte increased the hexagonal lattice parameters. At higher TAGs concentrations (10 wt%), addition of electrolyte resulted in the formation of H(II) with modifications of the lattice parameter. All the examined effects were more pronounced with increasing water content.
Label-free proteome profiling reveals developmental-dependent patterns in young barley grains.
Kaspar-Schoenefeld, Stephanie; Merx, Kathleen; Jozefowicz, Anna Maria; Hartmann, Anja; Seiffert, Udo; Weschke, Winfriede; Matros, Andrea; Mock, Hans-Peter
2016-06-30
Due to its importance as a cereal crop worldwide, high interest in the determination of factors influencing barley grain quality exists. This study focusses on the elucidation of protein networks affecting early grain developmental processes. NanoLC-based separation coupled to label-free MS detection was applied to gain insights into biochemical processes during five different grain developmental phases (pre-storage until storage phase, 3days to 16days after flowering). Multivariate statistics revealed two distinct developmental patterns during the analysed grain developmental phases: proteins showed either highest abundance in the middle phase of development - in the transition phase - or at later developmental stages - within the storage phase. Verification of developmental patterns observed by proteomic analysis was done by applying hypothesis-driven approaches, namely Western Blot analysis and enzyme assays. High general metabolic activity of the grain with regard to protein synthesis, cell cycle regulation, defence against oxidative stress, and energy production via photosynthesis was observed in the transition phase. Proteins upregulated in the storage phase are related towards storage protein accumulation, and interestingly to the defence of storage reserves against pathogens. A mixed regulatory pattern for most enzymes detected in our study points to regulatory mechanisms at the level of protein isoforms. In-depth understanding of early grain developmental processes of cereal caryopses is of high importance as they influence final grain weight and quality. Our knowledge about these processes is still limited, especially on proteome level. To identify key mechanisms in early barley grain development, a label-free data-independent proteomics acquisition approach has been applied. Our data clearly show, that proteins either exhibit highest expression during cellularization and the switch to the storage phase (transition phase, 5-7 DAF), or during storage product accumulation (10-16 DAF). The results highlight versatile cellular metabolic activity in the transition phase and strong convergence towards storage product accumulation in the storage phase. Notably, both phases are characterized by particular protective mechanism, such as scavenging of oxidative stress and defence against pathogens, during the transition and the storage phase, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
Role of cell deformability in the two-dimensional melting of biological tissues
NASA Astrophysics Data System (ADS)
Li, Yan-Wei; Ciamarra, Massimo Pica
2018-04-01
The size and shape of a large variety of polymeric particles, including biological cells, star polymers, dendrimes, and microgels, depend on the applied stresses as the particles are extremely soft. In high-density suspensions these particles deform as stressed by their neighbors, which implies that the interparticle interaction becomes of many-body type. Investigating a two-dimensional model of cell tissue, where the single particle shear modulus is related to the cell adhesion strength, here we show that the particle deformability affects the melting scenario. On increasing the temperature, stiff particles undergo a first-order solid/liquid transition, while soft ones undergo a continuous solid/hexatic transition followed by a discontinuous hexatic/liquid transition. At zero temperature the melting transition driven by the decrease of the adhesion strength occurs through two continuous transitions as in the Kosterlitz, Thouless, Halperin, Nelson, and Young scenario. Thus, there is a range of adhesion strength values where the hexatic phase is stable at zero temperature, which suggests that the intermediate phase of the epithelial-to-mesenchymal transition could be hexatic type.
Cosmic transit and anisotropic models in f(R,T) gravity
NASA Astrophysics Data System (ADS)
Sahu, S. K.; Tripathy, S. K.; Sahoo, P. K.; Nath, A.
2017-06-01
Accelerating cosmological models are constructed in a modified gravity theory dubbed as $f(R,T)$ gravity at the backdrop of an anisotropic Bianchi type-III universe. $f(R,T)$ is a function of the Ricci scalar $R$ and the trace $T$ of the energy-momentum tensor and it replaces the Ricci scalar in the Einstein-Hilbert action of General Relativity. The models are constructed for two different ways of modification of the Einstein-Hilbert action. Exact solutions of the field equations are obtained by a novel method of integration. We have explored the behaviour of the cosmic transit from an decelerated phase of expansion to an accelerated phase to get the dynamical features of the universe. Within the formalism of the present work, it is found that, the modification of the Einstein-Hilbert action does not affect the scale factor. However the dynamics of the effective dark energy equation of state is significantly affected.
NASA Astrophysics Data System (ADS)
Cesana, G.; Waliser, D. E.; Jiang, X.; Li, J. L. F.
2014-12-01
The ubiquitous presence of clouds within the troposphere contributes to modulate the radiative balance of the earth-atmosphere system. Depending on their cloud phase, clouds may have different microphysical and macrophysical properties, and hence, different radiative effects. In this study, we took advantage of climate runs from the GASS-YoTC and AMIP multi-model experiments to document the differences associated to the cloud phase parameterizations of 16 GCMs. A particular emphasize has been put on the vertical structure of the transition between liquid and ice in clouds. A way to intercompare the models regardless of their cloud fraction is to study the ratio of the ice mass to the total mass of the condensed water. To address the challenge of evaluating the modeled cloud phase, we profited from the cloud phase climatology so called CALIPSO-GOCCP, which separates liquid clouds from ice clouds at global scale, with a high vertical resolution (480m), above all surfaces. We also used reanalysis data and GPCP satellite observations to investigate the influence of the temperature, the relative humidity, the vertical wind speed and the precipitations on the cloud phase transition. In 12 (of 16) models, there are too few super cooled liquid in clouds compared to observations, mostly in the high troposphere. We exhibited evidences of the link between the cloud phase transition and the humidity, the vertical wind speed as well as the precipitations. Some cloud phase schemes are more affected by the humidity and the vertical velocity and some other by the precipitations. Although a few models can reproduce the observe relation between cloud phase and temperature, humidity, vertical velocity or precipitations, none of them perform well for all the parameters. An important result of this study is that the T-dependent phase parameterizations do not allow simulating the complexity of the observed cloud phase transition. Unfortunately, more complex microphysics schemes do not succeed to reproduce all the processes neither. Finally, thanks to the combined use of CALIPSO-GOCCP and ECMWF water vapor pressure, we showed an updated version of the Clausius-Clapeyron water vapor phase diagram. This diagram represents a new tool to improve the simulation of the cloud phase transition in climate models.
NASA Astrophysics Data System (ADS)
He, Hao; Sevick, Edith M.; Williams, David R. M.
2018-04-01
We examine a solution of non-adaptive two-state rotaxane molecules which can switch from a short state of length L to a long state of length qL, using statistical thermodynamics. This molecular switching is externally driven and can result in an isotropic-nematic phase transition without altering temperature and concentration. Here we concentrate on the limitation imposed by switching inefficiency, i.e., on the case where molecular switching is not quantitative, leading to a solution of rotaxanes in different states. We present switching diagrams that can guide in the design of rotaxanes which affect a macroscopic phase change.
The ice VII-ice X phase transition with implications for planetary interiors
NASA Astrophysics Data System (ADS)
Aarestad, B.; Frank, M. R.; Scott, H.; Bricker, M.; Prakapenka, V.
2008-12-01
A significant amount of research on the high pressure polymorphs of H2O have detailed the lattice structure and density of these phases, namely ice VI, ice VII, and ice X. These high pressure ices are noteworthy as they may comprise a considerable part of the interior of large icy planets and satellites. However, there is a dearth of data on how the incorporation of an impurity, charged or non-charged, affects the ice VII-ice X transition. This study examined the ice VII-ice X transition that occurs at approximately 62 GPa with a pure system and two select impure systems. Solutions of pure H2O, 1.6 mole percent NaCl in H2O, and 1.60 mole percent CH3OH in H2O were compressed in a diamond anvil cell (DAC). The experiments were performed at the GSECARS 13-BM-D beam line at the Advanced Photon Source at Argonne National Laboratory. Powder diffraction data of the ice samples were collected using monochromatic X-ray radiation, 0.2755 Å, and a MAR 345 online imaging system at intervals of approximately 2 GPa up to ~71.5, ~74.5, and ~68 GPa, respectively. Analyses of the data provided volume-pressure relations (at 298 K) which were used to detail the ice VII-ice X phase transition. The pressure of the phase transition, based upon an interpretation of the X-ray diffraction data, was found to vary as a function of the impurity type. Thus, the depth of the ice VII-ice X phase transition within an ice-rich planetary body can be influenced by trace-level impurities.
NASA Astrophysics Data System (ADS)
Carbone, Anna; Gilli, Marco; Mazzetti, Piero; Ponta, Linda
2010-12-01
An array of resistively and capacitively shunted Josephson junctions with nonsinusoidal current-phase relation is considered for modeling the transition in high-Tc superconductors. The emergence of higher harmonics, besides the simple sinusoid Ic sin ϕ, is expected for dominant d-wave symmetry of the Cooper pairs, random distribution of potential drops, dirty grains, or nonstationary conditions. We show that additional cosine and sine terms act, respectively, by modulating the global resistance and by changing the Josephson coupling of the mixed superconductive-normal states. First, the approach is applied to simulate the transition in disordered granular superconductors with the weak-links characterized by nonsinusoidal current-phase relation. In granular superconductors, the emergence of higher-order harmonics affects the slope of the transition. Then, arrays of intrinsic Josephson junctions, naturally formed by the CuO2 planes in cuprates, are considered. The critical temperature suppression, observed at values of hole doping close to p =1/8, is investigated. Such suppression, related to the sign change and modulation of the Josephson coupling across the array, is quantified in terms of the intensities of the first and second sinusoids of the current-phase relation. Applications are envisaged for the design and control of quantum devices based on stacks of intrinsic Josephson junctions.
DNA bending-induced phase transition of encapsidated genome in phage λ
Lander, Gabriel C.; Johnson, John E.; Rau, Donald C.; Potter, Clinton S.; Carragher, Bridget; Evilevitch, Alex
2013-01-01
The DNA structure in phage capsids is determined by DNA–DNA interactions and bending energy. The effects of repulsive interactions on DNA interaxial distance were previously investigated, but not the effect of DNA bending on its structure in viral capsids. By varying packaged DNA length and through addition of spermine ions, we transform the interaction energy from net repulsive to net attractive. This allowed us to isolate the effect of bending on the resulting DNA structure. We used single particle cryo-electron microscopy reconstruction analysis to determine the interstrand spacing of double-stranded DNA encapsidated in phage λ capsids. The data reveal that stress and packing defects, both resulting from DNA bending in the capsid, are able to induce a long-range phase transition in the encapsidated DNA genome from a hexagonal to a cholesteric packing structure. This structural observation suggests significant changes in genome fluidity as a result of a phase transition affecting the rates of viral DNA ejection and packaging. PMID:23449219
Combining phase-field crystal methods with a Cahn-Hilliard model for binary alloys
NASA Astrophysics Data System (ADS)
Balakrishna, Ananya Renuka; Carter, W. Craig
2018-04-01
Diffusion-induced phase transitions typically change the lattice symmetry of the host material. In battery electrodes, for example, Li ions (diffusing species) are inserted between layers in a crystalline electrode material (host). This diffusion induces lattice distortions and defect formations in the electrode. The structural changes to the lattice symmetry affect the host material's properties. Here, we propose a 2D theoretical framework that couples a Cahn-Hilliard (CH) model, which describes the composition field of a diffusing species, with a phase-field crystal (PFC) model, which describes the host-material lattice symmetry. We couple the two continuum models via coordinate transformation coefficients. We introduce the transformation coefficients in the PFC method to describe affine lattice deformations. These transformation coefficients are modeled as functions of the composition field. Using this coupled approach, we explore the effects of coarse-grained lattice symmetry and distortions on a diffusion-induced phase transition process. In this paper, we demonstrate the working of the CH-PFC model through three representative examples: First, we describe base cases with hexagonal and square symmetries for two composition fields. Next, we illustrate how the CH-PFC method interpolates lattice symmetry across a diffuse phase boundary. Finally, we compute a Cahn-Hilliard type of diffusion and model the accompanying changes to lattice symmetry during a phase transition process.
Long-range interactions, wobbles, and phase defects in chains of model cilia
NASA Astrophysics Data System (ADS)
Brumley, Douglas R.; Bruot, Nicolas; Kotar, Jurij; Goldstein, Raymond E.; Cicuta, Pietro; Polin, Marco
2016-12-01
Eukaryotic cilia and flagella are chemo-mechanical oscillators capable of generating long-range coordinated motions known as metachronal waves. Pair synchronization is a fundamental requirement for these collective dynamics, but it is generally not sufficient for collective phase-locking, chiefly due to the effect of long-range interactions. Here we explore experimentally and numerically a minimal model for a ciliated surface: hydrodynamically coupled oscillators rotating above a no-slip plane. Increasing their distance from the wall profoundly affects the global dynamics, due to variations in hydrodynamic interaction range. The array undergoes a transition from a traveling wave to either a steady chevron pattern or one punctuated by periodic phase defects. Within the transition between these regimes the system displays behavior reminiscent of chimera states.
Military Wives' Transition and Coping: Deployment and the Return Home
Marnocha, Suzanne
2012-01-01
The objective of this qualitative study is to explore the experiences of wives of deployed soldiers. Semistructured interviews were used to answer the research questions. Meleis' Transitions Theory was used to guide the understanding of the wives' experiences. Phase One: news of deployment, property of awareness, themes of emotional chaos and making preparations. Phase Two: during deployment, property of engagement, themes of taking the reins and placing focus elsewhere, along with the property of change and difference, with themes of emotional and physical turmoil, staying strong, and reaching out. Phase Three: after deployment, property of time span, themes of absence makes the heart grow fonder and reestablishing roles. The study concluded that the wife often feels forgotten during deployment. Nurses can give better care by understanding how the different phases of deployment and separation affect the wife's coping ability and her physical and emotional health. PMID:22844613
Mechanocaloric effects in shape memory alloys.
Mañosa, Lluís; Planes, Antoni
2016-08-13
Shape memory alloys (SMA) are a class of ferroic materials which undergo a structural (martensitic) transition where the associated ferroic property is a lattice distortion (strain). The sensitiveness of the transition to the conjugated external field (stress), together with the latent heat of the transition, gives rise to giant mechanocaloric effects. In non-magnetic SMA, the lattice distortion is mostly described by a pure shear and the martensitic transition in this family of alloys is strongly affected by uniaxial stress, whereas it is basically insensitive to hydrostatic pressure. As a result, non-magnetic alloys exhibit giant elastocaloric effects but negligible barocaloric effects. By contrast, in a number of magnetic SMA, the lattice distortion at the martensitic transition involves a volume change in addition to the shear strain. Those alloys are affected by both uniaxial stress and hydrostatic pressure and they exhibit giant elastocaloric and barocaloric effects. The paper aims at providing a critical survey of available experimental data on elastocaloric and barocaloric effects in magnetic and non-magnetic SMA.This article is part of the themed issue 'Taking the temperature of phase transitions in cool materials'. © 2016 The Author(s).
Mechanocaloric effects in shape memory alloys
2016-01-01
Shape memory alloys (SMA) are a class of ferroic materials which undergo a structural (martensitic) transition where the associated ferroic property is a lattice distortion (strain). The sensitiveness of the transition to the conjugated external field (stress), together with the latent heat of the transition, gives rise to giant mechanocaloric effects. In non-magnetic SMA, the lattice distortion is mostly described by a pure shear and the martensitic transition in this family of alloys is strongly affected by uniaxial stress, whereas it is basically insensitive to hydrostatic pressure. As a result, non-magnetic alloys exhibit giant elastocaloric effects but negligible barocaloric effects. By contrast, in a number of magnetic SMA, the lattice distortion at the martensitic transition involves a volume change in addition to the shear strain. Those alloys are affected by both uniaxial stress and hydrostatic pressure and they exhibit giant elastocaloric and barocaloric effects. The paper aims at providing a critical survey of available experimental data on elastocaloric and barocaloric effects in magnetic and non-magnetic SMA. This article is part of the themed issue ‘Taking the temperature of phase transitions in cool materials’. PMID:27402931
Dynamics of Choice: Relative Rate and Amount Affect Local Preference at Three Different Time Scales
ERIC Educational Resources Information Center
Aparicio, Carlos F.; Baum, William M.
2009-01-01
To examine extended control over local choice, the present study investigated preference in transition as food-rate ratio provided by two levers changed across seven components within daily sessions, and food-amount ratio changed across phases. Phase 1 arranged a food-amount ratio of 4:1 (i.e., the left lever delivered four pellets and the right…
NASA Astrophysics Data System (ADS)
Lin, Jung-Fu; Fei, Yingwei; Sturhahn, Wolfgang; Zhao, Jiyong; Mao, Ho-kwang; Hemley, Russell J.
2004-09-01
Magnetic, elastic, thermodynamic, and vibrational properties of the most iron-rich sulfide, Fe3S, known to date have been studied with synchrotron Mössbauer spectroscopy (SMS) and nuclear resonant inelastic X-ray scattering (NRIXS) up to 57 GPa at room temperature. The magnetic hyperfine fields derived from the time spectra of the synchrotron Mössbauer spectroscopy show that the low-pressure magnetic phase displays two magnetic hyperfine field sites and that a magnetic collapse occurs at 21 GPa. The magnetic to non-magnetic transition significantly affects the elastic, thermodynamic, and vibrational properties of Fe3S. The magnetic collapse of Fe3S may also affect the phase relations in the iron-sulfur system, changing the solubility of sulfur in iron under higher pressures. Determination of the physical properties of the non-magnetic Fe3S phase is important for the interpretation of the amount and properties of sulfur present in the planetary cores. Sound velocities of Fe3S obtained from the measured partial phonon density of states (PDOS) for 57Fe incorporated in the alloy show that Fe3S has higher compressional and shear wave velocity than those of hcp-Fe and hcp-Fe0.92Ni0.08 alloy under high pressures, making sulfur a potential light element in the Earth's core based on geophysical arguments. The VP and VS of the non-magnetic Fe3S follow a Birch's law trend whereas the slopes decrease in the magnetic phase, indicating that the decrease of the magnetic moment significantly affects the sound velocities. If the Martian core is in the solid state containing 14.2 wt.% sulfur, it is likely that the non-magnetic Fe3S phase is a dominant component and that our measured sound velocities of Fe3S can be used to construct the corresponding velocity profile of the Martian core. It is also conceivable that Fe3P and Fe3C undergo similar magnetic phase transitions under high pressures.
Phase transition at N = 92 in 158Dy
NASA Astrophysics Data System (ADS)
Gupta, J. B.
2016-09-01
Beyond the shape phase transition from the spherical vibrator to the deformed rotor regime at N = 90, the interplay of β- and γ-degrees of freedom becomes important, which affects the relative positions of the Kπ = 0+β- and Kπ = 2+γ-bands. In the microscopic approach of the dynamic pairing plus quadrupole model, a correlation of the strength of the quadrupole force and the formation of the β- and γ-bands in 158Dy is described. The role of the potential energy surface is illustrated. The E2 transition rates in the lower three K-bands and the multi-phonon bands with Kπ = 0+, 2+ and 4+ are well reproduced. The absolute B(E2, 2i+ = 0 2+) (i = 2, 3) serves as a good measure of the quadrupole strength. The role of the single particle Nilsson orbits is also described.
Convection Models for Ice-Water System: Dynamical Investigation of Phase Transition
NASA Astrophysics Data System (ADS)
Allu Peddinti, D.; McNamara, A. K.
2012-12-01
Ever since planetary missions of Voyager and Galileo revealed a dynamically altered surface of the icy moon Europa, a possible subsurface ocean under an icy shell has been speculated and surface features have been interpreted from an interior dynamics perspective. The physics of convection in a two phase water-ice system is governed by a wide set of physical parameters that include melting viscosity of ice, the variation of viscosity due to pressure and temperature, temperature contrast across and tidal heating within the system, and the evolving thickness of each layer. Due to the extreme viscosity contrast between liquid water and solid ice, it is not feasible to model the entire system to study convection. However, using a low-viscosity proxy (higher viscosity than the liquid water but much lower than solid ice) for the liquid phase provides a convenient approximation of the system, and allows for a relatively realistic representation of convection within the ice layer while also providing a self-consistent ice layer thickness that is a function of the thermal state of the system. In order to apply this method appropriately, we carefully examine the upper bound of viscosity required for the low-viscosity proxy to adequately represent the liquid phase. We identify upper bounds on the viscosity of the proxy liquid such that convective dynamics of the ice are not affected by further reductions of viscosity. Furthermore, we investigate how the temperature contrast across the system and viscosity contrast between liquid and ice control ice layer thickness. We also investigate ice shell thickening as a function of cooling, particularly how viscosity affects the conduction-to-convection transition within the ice shell. Finally, we present initial results that investigate the effects that latent heat of fusion (due to the ice-water phase transition) has on ice convection.
Nanomechanics of Ferroelectric Thin Films and Heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yulan; Hu, Shenyang Y.; Chen , L.Q.
2016-08-31
The focus of this chapter is to provide basic concepts of how external strains/stresses altering ferroelectric property of a material and how to evaluate quantitatively the effect of strains/stresses on phase stability, domain structure, and material ferroelectric properties using the phase-field method. The chapter starts from a brief introduction of ferroelectrics and the Landau-Devinshire description of ferroelectric transitions and ferroelectric phases in a homogeneous ferroelectric single crystal. Due to the fact that ferroelectric transitions involve crystal structure change and domain formation, strains and stresses can be produced inside of the material if a ferroelectric transition occurs and it is confined.more » These strains and stresses affect in turn the domain structure and material ferroelectric properties. Therefore, ferroelectrics and strains/stresses are coupled to each other. The ferroelectric-mechanical coupling can be used to engineer the material ferroelectric properties by designing the phase and structure. The followed section elucidates calculations of the strains/stresses and elastic energy in a thin film containing a single domain, twinned domains to complicated multidomains constrained by its underlying substrate. Furthermore, a phase field model for predicting ferroelectric stable phases and domain structure in a thin film is presented. Examples of using substrate constraint and temperature to obtain interested ferroelectric domain structures in BaTiO3 films are demonstrated b phase field simulations.« less
NASA Astrophysics Data System (ADS)
Deckers, Jef; van der Voet, Eva
2018-04-01
The Mesozoic rifts in the southern North Sea area were affected by Late Cretaceous to Paleocene inversion. Two main inversion phases were traditionally identified in this interval: the Sub-Hercynian and the Laramide phases. The Sub-Hercynian phase started in the early Late Cretaceous, peaked during the Campanian and ended in the late Maastrichtian, while the Laramide phase started in the late Danian and ended in the Thanetian. The Late Cretaceous Sub-Hercynian phase was strong and occurred in several pulses. These pulses led to basin-scale uplift by large reverse movements along basin-bounding faults and resulted in large amounts of erosion (up to 2 km) of Mesozoic and older sediments. The middle Paleocene Laramide phase on the other hand resulted in mild, domal uplift of some Late Cretaceous inverted basins and subsidence (into depocenters) of others. The subsequent Cenozoic inversion phases displayed similar or lower amplitudes and wavelengths of vertical surface movements as the Laramide phase. The transition from the Sub-Hercynian to the Laramide phase in the southern North Sea area therefore coincides with the overall transition from fault-controlled inversion to broad domal vertical surface movements.
TCRP H-37 Characteristics of Premium Transit Services That Affect Mode Choice: Summary of Phase 1
DOT National Transportation Integrated Search
2010-11-15
This research seeks to improve the understanding of the full range of determinants for mode choice behavior and to offer practical solutions to practitioners on representing and distinguishing these characteristics in travel demand forecasting models...
Experimental Program to Stimulate Competitive Research (EPSCoR)
NASA Technical Reports Server (NTRS)
Dingerson, Michael R.
1997-01-01
Report includes: (1) CLUSTER: "Studies in Macromolecular Behavior in Microgravity Environment": The Role of Protein Oligomers in Protein Crystallization; Phase Separation Phenomena in Microgravity; Traveling Front Polymerizations; Investigating Mechanisms Affecting Phase Transition Response and Changes in Thermal Transport Properties in ER-Fluids under Normal and Microgravity Conditions. (2) CLUSTER: "Computational/Parallel Processing Studies": Flows in Local Chemical Equilibrium; A Computational Method for Solving Very Large Problems; Modeling of Cavitating Flows.
Nucleation in the presence of long-range interactions. [performed on ferroelectric barium titanate
NASA Technical Reports Server (NTRS)
Chandra, P.
1989-01-01
Unlike droplet nucleation near a liquid-gas critical point, the decay of metastable phases in crystalline materials is strongly affected by the presence of long-range forces. Field quench experiments performed on the ferroelectric barium titanate indicate that nucleation in this material is markedly different from that observed in liquids. In this paper, a theory for nucleation at a first-order phase transition in which the mediating forces are long range is presented. It is found that the long-range force induces cooperative nucleation and growth processes, and that this feedback mechanism produces a well-defined delay time with a sharp onset in the transformation to the stable phase. Closed-form expressions for the characteristic onset time and width of the transition are developed, in good agreement with numerical and experimental results.
Dremov, V. V.; Sapozhnikov, F. A.; Ionov, G. V.; ...
2013-05-14
We present classical molecular dynamics (MD) with Modified Embedded Atom Model (MEAM) simulations to investigate the role of primary radiation defects and radiogenic helium as factors affecting the phase stability of PuGa alloys in cooling–heating cycles at ambient pressure. The models of PuGa alloys equilibrated at ambient conditions were subjected to cooling–heating cycles in which they were initially cooled down to 100 K and then heated up to 500 K at ambient pressure. The rate of temperature change in the cycles was 10 K/ns. The simulations showed that the initial FCC phase of PuGa alloys undergo polymorphous transition in coolingmore » to a lower symmetry α'-phase. All the alloys undergo direct and reverse polymorphous transitions in the cooling–heating cycles. The alloys containing vacancies shift in both transitions to lower temperatures relative to the defect-free alloys. The radiogenic helium has much less effect on the phase stability compared to that of primary radiation defects (in spite of the fact that helium concentration is twice of that for the primary radiation defects). Lastly, this computational result agrees with experimental data on unconventional stabilization mechanism of PuGa alloys.« less
NASA Astrophysics Data System (ADS)
Lee, Ka Yee C.; Gopal, Ajaykumar; von Nahmen, Anja; Zasadzinski, Joseph A.; Majewski, Jaroslaw; Smith, Gregory S.; Howes, Paul B.; Kjaer, Kristian
2002-01-01
Palmitic acid (PA) and 1-hexadecanol (HD) strongly affect the phase transition temperature and molecular packing of dipalmitoylphosphatidylcholine (DPPC) monolayers at the air-water interface. The phase behavior and morphology of mixed DPPC/PA as well as DPPC/HD monolayers were determined by pressure-area-isotherms and fluorescence microscopy. The molecular organization was probed by synchrotron grazing incidence x-ray diffraction using a liquid surface diffractometer. Addition of PA or HD to DPPC monolayers increases the temperature of the liquid-expanded to condensed phase transition. X-ray diffraction shows that DPPC forms mixed crystals both with PA and HD over a wide range of mixing ratios. At a surface pressure (π) of 40 mN/m, increasing the amount of the single chain surfactant leads to a reduction in tilt angle of the aliphatic chains from nearly 30° for pure DPPC to almost 0° in a 1:1 molar ratio of DPPC and PA or HD. At this composition we also find closest packing of the aliphatic chains. Further increase of the amount of PA or HD does not change the lattice or the tilt.
The finite-size effect in thin liquid crystal systems
NASA Astrophysics Data System (ADS)
Śliwa, I.
2018-05-01
Effects of surface ordering in liquid crystal systems confined between cell plates are of great theoretical and experimental interest. Liquid crystals introduced in thin cells are known to be strongly stabilized and ordered by cell plates. We introduce a new theoretical method for analyzing the effect of surfaces on local molecular ordering in thin liquid crystal systems with planar geometry of the smectic layers. Our results show that, due to the interplay between pair long-range intermolecular forces and nonlocal, relatively short-range, surface interactions, both orientational and translational orders of liquid crystal molecules across confining cells are very complex. In particular, it is demonstrated that the SmA, nematic, and isotropic phases can coexist. The phase transitions from SmA to nematic, as well as from nematic to isotropic phases, occur not simultaneously in the whole volume of the system but begin to appear locally in some regions of the LC sample. Phase transition temperatures are demonstrated to be strongly affected by the thickness of the LC system. The dependence of the corresponding shifts of phase transition temperatures on the layer number is shown to exhibit a power law character. This new type of scaling behavior is concerned with the coexistence of local phases in finite systems. The influence of a specific character of interactions of molecules with surfaces and other molecules on values of the resulting critical exponents is also analyzed.
Multi-band magnetotransport in exfoliated thin films of Cu x Bi2Se3
NASA Astrophysics Data System (ADS)
Alexander-Webber, J. A.; Huang, J.; Beilsten-Edmands, J.; Čermák, P.; Drašar, Č.; Nicholas, R. J.; Coldea, A. I.
2018-04-01
We report magnetotransport studies in thin (<100 nm) exfoliated films of Cu x Bi2Se3 and we detect an unusual electronic transition at low temperatures. Bulk crystals show weak superconductivity with T_c∼3.5 K and a possible electronic phase transition around 200 K. Following exfoliation, superconductivity is supressed and a strongly temperature dependent multi-band conductivity is observed for T < 30 K. This transition between competing conducting channels may be enhanced due to the presence of electronic ordering, and could be affected by the presence of an effective internal stress due to Cu intercalation. By fitting to the weak antilocalisation conductivity correction at low magnetic fields we confirm that the low temperature regime maintains a quantum phase coherence length Lφ> 100 nm indicating the presence of topologically protected surface states.
NASA Astrophysics Data System (ADS)
Li, Zhen; Huang, Fei; Feng, Xin; Yan, Aihua; Dong, Haiming; Hu, Miao; Li, Qi
2018-06-01
A two-phase-coexistence technique offers intriguing variables to maneuver novel and enhanced functionality in a single-component material. Most importantly, new band alignment and perfect interfaces between two phases can strongly affect local photoelectronic properties. However, previous efforts to achieve two-phase coexistence were mainly restricted to specific systems and methods. Here we demonstrate a phase-transition route to acquire two-phase-coexistence niobium oxyfluoride (Nb3O7F) nanocrystals for the first time. Based on key distinguishing features of the experimental results and theoretical analysis, the phase transition of Nb3O7F involves an organic/inorganic hybrid, heat treating, Al-doping, lattice deformation and structural rearrangement. The band gap can be effectively tuned from 3.03 eV to 2.84 eV, and the VBM can be tuned from 1.49 eV to 1.69 eV according to the phase proportion. Benefiting from uniform nanocrystal size, tunable band alignment and an optimized interfacial structure, the two-phase coexistence markedly enhances visible-light harvesting and the photocatalytic performance of Nb3O7F nanocrystals. The results not only demonstrate an opportunity to explore two-phase coexistence of novel nanocrystals, but also illustrate the role of two-phase coexistence in achieving enhanced photoelectronic properties.
Li, Zhen; Huang, Fei; Feng, Xin; Yan, Aihua; Dong, Haiming; Hu, Miao; Li, Qi
2018-06-01
A two-phase-coexistence technique offers intriguing variables to maneuver novel and enhanced functionality in a single-component material. Most importantly, new band alignment and perfect interfaces between two phases can strongly affect local photoelectronic properties. However, previous efforts to achieve two-phase coexistence were mainly restricted to specific systems and methods. Here we demonstrate a phase-transition route to acquire two-phase-coexistence niobium oxyfluoride (Nb 3 O 7 F) nanocrystals for the first time. Based on key distinguishing features of the experimental results and theoretical analysis, the phase transition of Nb 3 O 7 F involves an organic/inorganic hybrid, heat treating, Al-doping, lattice deformation and structural rearrangement. The band gap can be effectively tuned from 3.03 eV to 2.84 eV, and the VBM can be tuned from 1.49 eV to 1.69 eV according to the phase proportion. Benefiting from uniform nanocrystal size, tunable band alignment and an optimized interfacial structure, the two-phase coexistence markedly enhances visible-light harvesting and the photocatalytic performance of Nb 3 O 7 F nanocrystals. The results not only demonstrate an opportunity to explore two-phase coexistence of novel nanocrystals, but also illustrate the role of two-phase coexistence in achieving enhanced photoelectronic properties.
Glass transitions and physical aging of cassava starch - corn oil blends.
Pérez, Adriana; Sandoval, Aleida J; Cova, Aura; Müller, Alejandro J
2014-05-25
Glass transition temperatures and physical aging of amorphous cassava starch and their blends with corn oil were assessed by differential scanning calorimetry (DSC). Two enthalpic relaxation endotherms, well separated in temperature values, were exhibited by neat amorphous cassava starch with 10.6% moisture content, evidencing two amorphous regions within the starch with different degrees of mobility. The phase segregation of these two amorphous regions was favored by added corn oil at low moisture contents during storage. The presence of amylose-lipid complexes in this matrix, may also affect the molecular dynamics of these two amorphous regions at low moisture contents. Increasing moisture content, leads to a homogeneous amorphous phase, with an aging process characterized by a single enthalpic relaxation peak. In all cases, after deleting the thermal history of the samples only one glass transition temperature was detected (during DSC second heating runs) indicating that a single homogeneous amorphous phase was attained after erasing the effects of physical aging. Trends of the enthalpic relaxation parameters were also different at the two moisture contents considered in this work. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zu, Mengjie; Liu, Jun; Tong, Hua; Xu, Ning
2016-08-01
We find that both continuous and discontinuous hexatic-liquid transitions can happen in the melting of two-dimensional solids of soft-core disks. For three typical model systems, Hertzian, harmonic, and Gaussian-core models, we observe the same scenarios. These systems exhibit reentrant crystallization (melting) with a maximum melting temperature Tm happening at a crossover density ρm. The hexatic-liquid transition at a density smaller than ρm is discontinuous. Liquid and hexatic phases coexist in a density interval, which becomes narrower with increasing temperature and tends to vanish approximately at Tm. Above ρm, the transition is continuous, in agreement with the Kosterlitz-Thouless-Halperin-Nelson-Young theory. For these soft-core systems, the nature of the hexatic-liquid transition depends on density (pressure), with the melting at ρm being a plausible transition point from discontinuous to continuous hexatic-liquid transition.
Does Warming a Lysozyme Solution Cook Ones Data?
NASA Technical Reports Server (NTRS)
Pusey, Marc; Burke, Michael; Judge, Russell
2000-01-01
Chicken egg white lysozyme has a well characterized thermally driven phase transition. Between pH 4.0 and 5.2, the transition temperature, as defined by the point where the tetragonal and orthorhombic solubility are equal, is a function of the pH, salt (precipitant) type and concentration, and most likely of the buffer concentration as well. This phase transition can be carried out with protein solution alone, prior to the initiation of the crystallization process. We have now measured the kinetics of this process and investigated its reversibility. An aliquot of a stock protein solution is held at a given temperature, and at periodic intervals used to set up batch crystallization experiments. The batch solutions were incubated at 20 C until macroscopic crystals were obtained, at which point the number of crystals in each well were counted. The transition effects increased with temperature, slowly falling off at 30 C with a half time (time to approx. 1/2 the t = 0 number of crystals) of approx. 5 hours, and an estimated half time of approx. 0.5 hours at 43 C. Further, the process was not reversible by simple cooling. After holding a lysozyme solution at 37 C (prior to addition of precipitant) for 16 hours, then cooling and holding it at 4 C, no return to the pre-warmed nucleation kinetics are observed after at least 4 weeks. Thus every thermal excursion above the phase transition point results in a further decrease in the nucleation rate of that solution, the extent being a function of the time and temperature. Orthorhombic lysozyme crystals apparently do not undergo the flow-induced growth cessation of tetragonal lysozyme crystals. We have previously shown that putting the protein in the orthorhombic form does not affect the averaged face growth kinetics, only nucleation, for tetragonal crystals. We may be able to use this differential behavior to elucidate how flow affects tile lysozyme crystal growth process.
Phase transformations during the growth of paracetamol crystals from the vapor phase
NASA Astrophysics Data System (ADS)
Belyaev, A. P.; Rubets, V. P.; Antipov, V. V.; Bordei, N. S.
2014-07-01
Phase transformations during the growth of paracetamol crystals from the vapor phase are studied by differential scanning calorimetry. It is found that the vapor-crystal phase transition is actually a superposition of two phase transitions: a first-order phase transition with variable density and a second-order phase transition with variable ordering. The latter, being a diffuse phase transition, results in the formation of a new, "pretransition," phase irreversibly spent in the course of the transition, which ends in the appearance of orthorhombic crystals. X-ray diffraction data and micrograph are presented.
Information cascade on networks
NASA Astrophysics Data System (ADS)
Hisakado, Masato; Mori, Shintaro
2016-05-01
In this paper, we discuss a voting model by considering three different kinds of networks: a random graph, the Barabási-Albert (BA) model, and a fitness model. A voting model represents the way in which public perceptions are conveyed to voters. Our voting model is constructed by using two types of voters-herders and independents-and two candidates. Independents conduct voting based on their fundamental values; on the other hand, herders base their voting on the number of previous votes. Hence, herders vote for the majority candidates and obtain information relating to previous votes from their networks. We discuss the difference between the phases on which the networks depend. Two kinds of phase transitions, an information cascade transition and a super-normal transition, were identified. The first of these is a transition between a state in which most voters make the correct choices and a state in which most of them are wrong. The second is a transition of convergence speed. The information cascade transition prevails when herder effects are stronger than the super-normal transition. In the BA and fitness models, the critical point of the information cascade transition is the same as that of the random network model. However, the critical point of the super-normal transition disappears when these two models are used. In conclusion, the influence of networks is shown to only affect the convergence speed and not the information cascade transition. We are therefore able to conclude that the influence of hubs on voters' perceptions is limited.
Quarantine-generated phase transition in epidemic spreading
NASA Astrophysics Data System (ADS)
Lagorio, C.; Dickison, M.; Vazquez, F.; Braunstein, L. A.; Macri, P. A.; Migueles, M. V.; Havlin, S.; Stanley, H. E.
2011-02-01
We study the critical effect of quarantine on the propagation of epidemics on an adaptive network of social contacts. For this purpose, we analyze the susceptible-infected-recovered model in the presence of quarantine, where susceptible individuals protect themselves by disconnecting their links to infected neighbors with probability w and reconnecting them to other susceptible individuals chosen at random. Starting from a single infected individual, we show by an analytical approach and simulations that there is a phase transition at a critical rewiring (quarantine) threshold wc separating a phase (w
Quarantine generated phase transition in epidemic spreading
NASA Astrophysics Data System (ADS)
Dicksion, Mark; Lagorio, Cecilia; Vazquez, F.; Braunstein, L.; Macri, P. A.; Migueles, M. V.; Havlin, S.; Stanley, H. E.
2011-03-01
We study the critical effect of quarantine on the propagation of epidemics on an adaptive network of social contacts. For this purpose, we analyze the susceptible-infected-recovered (SIR) model in the presence of quarantine, where susceptible individuals protect themselves by disconnecting their links to infected neighbors with probability w, and reconnecting them to other susceptible individuals chosen at random. Starting from a single infected individual, we show by an analytical approach and simulations that there is a phase transition at a critical rewiring (quarantine) threshold wc separating a phase (w
Schmidt, Silke; Herrmann-Garitz, Carsten; Bomba, Franziska; Thyen, Ute
2016-03-01
The aim of the study was to test the effects of a generic transition-oriented patient education program on adolescents' health service participation and quality of life (QoL). We conducted a controlled trial comparing participants of 29 transition workshops with treatment as usual in 274 adolescents (16.8 mean age, SD=1.76) diagnosed with type I diabetes (DM), cystic fibrosis (CF) or inflammatory bowel disease (IBD). A two-day transition workshop was carried out at 12 sites in Germany, focusing in standardized modules on adjustment to adult care settings, organization of future disease management, career choices and partnership. Study outcomes were health-related transition competence, self-efficacy, satisfaction with care, patient activation and QoL. Measures were assessed at baseline and six-month follow-up. Repeated-measurement covariance analysis using age as a covariate showed that the transition workshop significantly affected transition competence, self-efficacy and satisfaction with school care six months post intervention. The intervention did not significantly affect patient activation and QoL. However, post-hoc analysis suggested different effects across conditions. The program has a positive effect on the competence of adolescents in the transition phase. The study demonstrates that an intervention can be effective in preparing adolescents with chronic conditions for transitions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Dalgaard, Karen Marie; Thorsell, Georg; Delmar, Charlotte
2010-02-01
This article describes the significance of the identification and explicit communication of the different clinical phases in incurable illness trajectories in a hospital setting. The article is part of a qualitative study carried out in a Danish haematology department. The data were obtained through a total of 157 hours of participant observation and informal interviews with patients, families, doctors and nurses and four focus group interviews with doctors and nursing staff. Grounded theory was applied for the data analysis. The findings outline how the unpredictability of certain haematological malignancies and barriers in professional practice tended to postpone identifications of transitions between clinical phases. The study has identified ten barriers including personal, professional, time-related, cultural and organizational-for an open dialogue between staff, patients and families about illness progression. The quality of palliative care was affected as different clinical phases require different treatment and care strategies. Complex intervention is called for.
Metal-Insulator Transition in Copper Oxides Induced by Apex Displacements
NASA Astrophysics Data System (ADS)
Acharya, Swagata; Weber, Cédric; Plekhanov, Evgeny; Pashov, Dimitar; Taraphder, A.; Van Schilfgaarde, Mark
2018-04-01
High temperature superconductivity has been found in many kinds of compounds built from planes of Cu and O, separated by spacer layers. Understanding why critical temperatures are so high has been the subject of numerous investigations and extensive controversy. To realize high temperature superconductivity, parent compounds are either hole doped, such as La2 CuO4 (LCO) with Sr (LSCO), or electron doped, such as Nd2 CuO4 (NCO) with Ce (NCCO). In the electron-doped cuprates, the antiferromagnetic phase is much more robust than the superconducting phase. However, it was recently found that the reduction of residual out-of-plane apical oxygen dramatically affects the phase diagram, driving those compounds to a superconducting phase. Here we use a recently developed first-principles method to explore how displacement of the apical oxygen (AO) in LCO affects the optical gap, spin and charge susceptibilities, and superconducting order parameter. By combining quasiparticle self-consistent GW (QS GW) and dynamical mean-field theory (DMFT), we show that LCO is a Mott insulator, but small displacements of the apical oxygen drive the compound to a metallic state through a localization-delocalization transition, with a concomitant maximum in d -wave order parameter at the transition. We address the question of whether NCO can be seen as the limit of LCO with large apical displacements, and we elucidate the deep physical reasons why the behavior of NCO is so different from the hole-doped materials. We shed new light on the recent correlation observed between Tc and the charge transfer gap, while also providing a guide towards the design of optimized high-Tc superconductors. Further, our results suggest that strong correlation, enough to induce a Mott gap, may not be a prerequisite for high-Tc superconductivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Llave, F.; Gall, B.; Gao, H., Scott, L., Cook, I.
Selected surfactant systems containing a series of ethoxylated nonionic surfactants in combination with an anionic surfactant system have been studied to evaluate phase behavior as well as oil recovery potential. These experiments were conducted to evaluate possible improved phase behavior and overall oil recovery potential of mixed surfactant systems over a broad range of conditions. Both polyacrylamide polymers and Xanthan biopolymers were evaluated. Studies were initiated to use a chemical flooding simulation program, UTCHEM, to simulate oil recovery for laboratory and field applications and evaluate its use to simulate oil saturation distributions obtained in CT-monitoring of oil recovery experiments. Themore » phase behavior studies focused on evaluating the effect of anionic-nonionic surfactant proportion on overall phase behavior. Two distinct transition behaviors were observed, depending on the dominant surfactant in the overall system. The first type of transition corresponded to more conventional behavior attributed to nonionic-dominant surfactant systems. This behavior is manifested by an oil-water-surfactant system that inverts from a water-external (highly conducting) microemulsion to an oil-external (nonconducting) one, as a function of temperature. The latter type which inverts in an opposite manner can be attributed to the separation of the anionic-nonionic mixtures into water- and oil-soluble surfactants. Both types of transition behavior can still be used to identify relative proximity to optimal areas. Determining these transition ranges provided more insight on how the behavior of these surfactant mixtures was affected by altering component proportions. Efforts to optimize the chemical system for oil displacement experiments were also undertaken. Phase behavior studies with systems formulated with biopolymer in solution were conducted.« less
NASA Astrophysics Data System (ADS)
Hsu, H.; Huang, S. C.; Wei, C. M.; Hsing, C. R.
2015-12-01
Iron-bearing magnesium carbonates (Mg,Fe)CO3 are believed the major carbon carriers in the Earth's deep lower mantle; they may play a crucial role in the Earth's deep carbon cycle. Knowledge of the physical and chemical properties of these carbonates is thus essential for our understanding of the mantle's role in global carbon cycle. Experiments have shown that (Mg,Fe)CO3 ferromagnesite (calcite structure) can be stable up to 80-100 GPa. At 45-50 GPa, ferromangsite undergoes a high-spin to low-spin transition, accompanied by a volume reduction and elastic anomalies. Starting ~100 GPa, ferromagnesite goes through a complicated structural transition. The detail of this transition and the atomic structures of high-pressure (Mg,Fe)CO3 phases are still highly debated. Experimental observations and theoretical results are inconsistent so far. In experiments, several distinct high-pressure (Mg,Fe)CO3 structures have been reported, including a P21/c phase [1] and a Pmm2 phase [2]. In theory, a C2/m phase [3] and a P-1 phase [4] have been suggested, while the Pmm2 phase is not found. One possible reason for such a discrepancy is that all available theoretical calculations so far are based on pure MgCO3, while experimental works are performed using (Mg,Fe)CO3 with high iron concentration ( > 50%). Clearly, the concentration of iron and the possible iron spin crossover can significantly affect the stability of these high-pressure (Mg,Fe)CO3 phases. Here, we use density functional theory + self-consistent Hubbard U (DFT+Usc) calculations to study this structural transition. The effects of composition and iron spin state on these (Mg,Fe)CO3 phases are also discussed. Our results can be expected to provide insightful information for better understanding the Earth's deep carbon cycle.[1] E. Boulard et al., Proc. Natl. Acad. Sci. USA 108, 5184 (2011).[2] J. Liu et al., Sci. Rep. 5, 7640 (2015). [3] A. R. Oganov et al., Earth Planet. Sci. Lett. 273, 38 (2008). [4] C. J. Pickard and R. J. Needs, Phys. Rev. B 91, 104101 (2015).
NASA Astrophysics Data System (ADS)
Loan, Trinh Thi; Bang, Ngac An; Huong, Vu Hoang; Long, Nguyen Ngoc
2017-07-01
TiO2 powders doped with different amounts of Cr3+ions (from 0 to 10 mol%) have been prepared by hydrothermal technique. TiO2:Cr3+ powders were characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy, diffuse reflection, absorption, photoluminescence and photoluminescence excitation spectra. The results showed that the Cr3+ dopant concentrations did not affect on the lattice constants of TiO2 crystal, but affected on shift and broadening of the Raman modes for both anatase and rutile phases. The band gap of both the anatase and rutile TiO2 host lattice was strongly decreased with increasing Cr3+ dopant concentration. The photoluminescence spectra of TiO2:Cr3+ anatase phase exhibited a weak narrow peak (the so-called R-line) at 698 nm, meanwhile those of TiO2:Cr3+ rutile phase consisted of a very intense narrow zero-phonon R-line at 695 nm assigned to the 2E(2G) → 4A2(4F) transition of Cr3+ ions in strong octahedral field and its phonon-sidebands. In particular, in the PL spectrum of TiO2:Cr3+ rutile phase is also observed an abroad emission band centered at 813 nm assigned to the 4T2(4F) → 4A2(4F) transition of ions Cr3+ in weak octahedral field.
NASA Astrophysics Data System (ADS)
Kouvela, Eirini; Hernandez-Martinez, Paul; Croft, Tony
2018-06-01
This paper explores the messages that first-year mathematics students receive in the context of their academic studies during their transition from school to university mathematics. Through observations of lectures and discussions with first-year mathematics undergraduates in an English university, we identified and analysed the messages that two of their lecturers transmitted to them during this transitional phase. The results suggest that strongly framed messages are more easily perceived by students and affect them during their transition. Additionally, messages that have been received in the school context continue to have control over students' thinking and on many occasions can impede adjustment to the new setting.
Wilson loop's phase transition probed by non-local observable
NASA Astrophysics Data System (ADS)
Li, Hui-Ling; Feng, Zhong-Wen; Yang, Shu-Zheng; Zu, Xiao-Tao
2018-04-01
In order to give further insights into the holographic Van der Waals phase transition, it would be of great interest to investigate the behavior of Wilson loop across the holographic phase transition for a higher dimensional hairy black hole. We offer a possibility to proceed with a numerical calculation in order to discussion on the hairy black hole's phase transition, and show that Wilson loop can serve as a probe to detect a phase structure of the black hole. Furthermore, for a first order phase transition, we calculate numerically the Maxwell's equal area construction; and for a second order phase transition, we also study the critical exponent in order to characterize the Wilson loop's phase transition.
Pressure dependence of band-gap and phase transitions in bulk CuX (X = Cl, Br, I)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azhikodan, Dilna; Nautiyal, Tashi; Sharma, S.
2016-05-06
Usually a phase transition, in theoretical studies, is explored or verified by studying the total energy as a function of the volume considering various plausible phases. The intersection point, if any, of the free energy vs. volume curves for the different phases is then the indicator of the phase transition(s). The question is, can the theoretical study of a single phase alone indicate a phase transition? i.e. can we look beyond the phase under consideration through such a study? Using density-functional theory, we report a novel approach to suggest phase transition(s) through theoretical study of a single phase. Copper halidesmore » have been engaged for this study. These are direct band-gap semiconductors, with zinc blende structure at ambient conditions, and are reported to exhibit many phase transitions. We show that the study of volume dependence of energy band-gap in a single phase facilitates looking beyond the phase under consideration. This, when translated to pressures, reflects the phase transition pressures for CuX (X = Cl, Br, I) with an encouraging accuracy. This work thus offers a simple, yet reliable, approach based on electronic structure calculations to investigate new semiconducting materials for phase changes under pressure.« less
NASA Astrophysics Data System (ADS)
Zhao, Bo
Phase transitions are one of the most exciting physical phenomena ever discovered. The understanding of phase transitions has long been of interest. Recently eigenstate phase transitions have been discovered and studied; they are drastically different from traditional thermal phase transitions. In eigenstate phase transitions, a sharp change is exhibited in properties of the many-body eigenstates of the Hamiltonian of a quantum system, but not the thermal equilibrium properties of the same system. In this thesis, we study two different types of eigenstate phase transitions. The first is the eigenstate phase transition within the ferromagnetic phase of an infinite-range spin model. By studying the interplay of the eigenstate thermalization hypothesis and Ising symmetry breaking, we find two eigenstate phase transitions within the ferromagnetic phase: In the lowest-temperature phase the magnetization can macroscopically oscillate by quantum tunneling between up and down. The relaxation of the magnetization is always overdamped in the remainder of the ferromagnetic phase, which is further divided into phases where the system thermally activates itself over the barrier between the up and down states, and where it quantum tunnels. The second is the many-body localization phase transition. The eigenstates on one side of the transition obey the eigenstate thermalization hypothesis; the eigenstates on the other side are many-body localized, and thus thermal equilibrium need not be achieved for an initial state even after evolving for an arbitrary long time. We study this many-body localization phase transition in the strong disorder renormalization group framework. After setting up a set of coarse-graining rules for a general one dimensional chain, we get a simple "toy model'' and obtain an almost purely analytical solution to the infinite-randomness critical fixed point renormalization group equation. We also get an estimate of the correlation length critical exponent nu ≈ 2.5.
NASA Astrophysics Data System (ADS)
Belyaev, A. P.; Rubets, V. P.; Antipov, V. V.; Bordei, N. S.; Zarembo, V. I.
2014-03-01
We report on the structural and technological investigations of the vapor-crystal phase transition during synthesis of paracetamol films of the monoclinic system by vacuum evaporation and condensation in the temperature range 220-320 K. The complex nature of the transformation accompanied by the formation of a gel-like phase is revealed. The results are interpreted using a model according to which the vapor-crystal phase transition is not a simple first-order phase transition, but is a nonlinear superposition of two phase transitions: a first-order transition with a change in density and a second-order phase transition with a change in ordering. Micrographs of the surface of the films are obtained at different phases of formation.
Phase transitions in a multistate majority-vote model on complex networks
NASA Astrophysics Data System (ADS)
Chen, Hanshuang; Li, Guofeng
2018-06-01
We generalize the original majority-vote (MV) model from two states to arbitrary p states and study the order-disorder phase transitions in such a p -state MV model on complex networks. By extensive Monte Carlo simulations and a mean-field theory, we show that for p ≥3 the order of phase transition is essentially different from a continuous second-order phase transition in the original two-state MV model. Instead, for p ≥3 the model displays a discontinuous first-order phase transition, which is manifested by the appearance of the hysteresis phenomenon near the phase transition. Within the hysteresis loop, the ordered phase and disordered phase are coexisting, and rare flips between the two phases can be observed due to the finite-size fluctuation. Moreover, we investigate the type of phase transition under a slightly modified dynamics [Melo et al., J. Stat. Mech. (2010) P11032, 10.1088/1742-5468/2010/11/P11032]. We find that the order of phase transition in the three-state MV model depends on the degree heterogeneity of networks. For p ≥4 , both dynamics produce the first-order phase transitions.
Tsui, Lokman; Huang, Yen-Ta; Jiang, Hong-Chen; ...
2017-03-27
The study of continuous phase transitions triggered by spontaneous symmetry breaking has brought revolutionary ideas to physics. Recently, through the discovery of symmetry protected topological phases, it is realized that continuous quantum phase transition can also occur between states with the same symmetry but different topology. Here in this paper we study a specific class of such phase transitions in 1+1 dimensions – the phase transition between bosonic topological phases protected by Z n × Z n. We find in all cases the critical point possesses two gap opening relevant operators: one leads to a Landau-forbidden symmetry breaking phase transitionmore » and the other to the topological phase transition. We also obtained a constraint on the central charge for general phase transitions between symmetry protected bosonic topological phases in 1+1D.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsui, Lokman; Huang, Yen-Ta; Jiang, Hong-Chen
The study of continuous phase transitions triggered by spontaneous symmetry breaking has brought revolutionary ideas to physics. Recently, through the discovery of symmetry protected topological phases, it is realized that continuous quantum phase transition can also occur between states with the same symmetry but different topology. Here in this paper we study a specific class of such phase transitions in 1+1 dimensions – the phase transition between bosonic topological phases protected by Z n × Z n. We find in all cases the critical point possesses two gap opening relevant operators: one leads to a Landau-forbidden symmetry breaking phase transitionmore » and the other to the topological phase transition. We also obtained a constraint on the central charge for general phase transitions between symmetry protected bosonic topological phases in 1+1D.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Müller, S. H.; Conway, G. D.; Birkenmeier, G.
A reciprocating Langmuir probe was used to directly measure the behavior of turbulence and flows in the X-point region during transitions between low-(L) and high-confinement (H) mode in ASDEX Upgrade. The probe traverses the divertor horizontally in 140 ms, typically 2–5 cm below the X-point. Toroidal Mach number, density, floating potential (ϕ{sub f}), and electron temperature (T{sub e}) are measured. In the regime accessible to the probe (P{sub inj}<1.5 MW, line-integrated core density <4×10{sup 19} m{sup −2}), the L-H transition features an intermediate phase (I-phase), characterized by limit-cycle oscillations at 0.5–3 kHz [Conway et al., Phys. Rev. Lett. 106, 065001 (2011)]. The probe measurements revealmore » that this pulsing affects both the density and the toroidal Mach number. It is present in both the low-(LFS) and high-field sides (HFS) of the scrape-off layer, while high-amplitude broadband turbulence usually dominates the private-flux region. Profile comparisons between L-mode and I-phase show lower density in pulsing regions and small shifts in T{sub e}, directed oppositely on LFS and HFS, which are compensated by shifts in ϕ{sub f} to yield a surprisingly unchanged plasma potential profile. Directly observed L-I-phase transitions reveal that the onset of the pulsing is preceded by a fast 50% density drop in the HFS X-point region. Back transitions to L-mode occur essentially symmetrically, with the pulsing stopping first, followed by a fast recovery to L-mode density levels in the divertor.« less
Marty, Amber J.; Broman, Aimee T.; Zarnowski, Robert; Dwyer, Teigan G.; Bond, Laura M.; Lounes-Hadj Sahraoui, Anissa; Fontaine, Joël; Ntambi, James M.; Keleş, Sündüz; Kendziorski, Christina; Gauthier, Gregory M.
2015-01-01
In response to temperature, Blastomyces dermatitidis converts between yeast and mold forms. Knowledge of the mechanism(s) underlying this response to temperature remains limited. In B. dermatitidis, we identified a GATA transcription factor, SREB, important for the transition to mold. Null mutants (SREBΔ) fail to fully complete the conversion to mold and cannot properly regulate siderophore biosynthesis. To capture the transcriptional response regulated by SREB early in the phase transition (0–48 hours), gene expression microarrays were used to compare SREB∆ to an isogenic wild type isolate. Analysis of the time course microarray data demonstrated SREB functioned as a transcriptional regulator at 37°C and 22°C. Bioinformatic and biochemical analyses indicated SREB was involved in diverse biological processes including iron homeostasis, biosynthesis of triacylglycerol and ergosterol, and lipid droplet formation. Integration of microarray data, bioinformatics, and chromatin immunoprecipitation identified a subset of genes directly bound and regulated by SREB in vivo in yeast (37°C) and during the phase transition to mold (22°C). This included genes involved with siderophore biosynthesis and uptake, iron homeostasis, and genes unrelated to iron assimilation. Functional analysis suggested that lipid droplets were actively metabolized during the phase transition and lipid metabolism may contribute to filamentous growth at 22°C. Chromatin immunoprecipitation, RNA interference, and overexpression analyses suggested that SREB was in a negative regulatory circuit with the bZIP transcription factor encoded by HAPX. Both SREB and HAPX affected morphogenesis at 22°C; however, large changes in transcript abundance by gene deletion for SREB or strong overexpression for HAPX were required to alter the phase transition. PMID:26114571
Study of a structural phase transition by two dimensional Fourier transform NMR method
NASA Astrophysics Data System (ADS)
Trokiner, A.; Man, P. P.; Théveneau, H.; Papon, P.
1985-09-01
The fluoroperovskite RbCaF 3 undergoes a structural phase transition at 195.5 K, from a cubic phase where the 87Rb nuclei have no quadrupolar interaction ( ωQ= 0) to a tetragonal phase where ω Q ≠ O. The transition is weakly first-order. A two-dimensional FT NMR experiment has been performed on 87Rb ( I = {3}/{2}) in a single crystal in both phases and in the vicinity of the phase transition. Our results show the coexistence of the two phases at the phase transition.
Superfluid phase stiffness in electron doped superconducting Gd-123
NASA Astrophysics Data System (ADS)
Das, P.; Ghosh, Ajay Kumar
2018-05-01
Current-voltage characteristics of Ce substituted Gd-123 superconductor exhibits nonlinearity below a certain temperature below the critical temperature. An exponent is extracted using the nonlinearity of current-voltage relation. Superfluid phase stiffness has been studied as a function of temperature following the Ambegaokar-Halperin-Nelson-Siggia (AHNS) theory. Phase stiffness of the superfluid below the superconducting transition is found to be sensitive to the change in the carrier concentration in superconducting system. There may be a crucial electron density which affects superfluid stiffness strongly. Electron doping is found to be effective even if the coupling of the superconducting planes is changed.
NASA Technical Reports Server (NTRS)
Nickel, Craig; Parker, Joel; Dichmann, Don; Lebois, Ryan; Lutz, Stephen
2016-01-01
The Transiting Exoplanet Survey Satellite (TESS) will be injected into a highly eccentric Earth orbit and fly 3.5 phasing loops followed by a lunar flyby to enter a mission orbit with lunar 2:1 resonance. Through the phasing loops and mission orbit, the trajectory is significantly affected by lunar and solar gravity. We have developed a trajectory design to achieve the mission orbit and meet mission constraints, including eclipse avoidance and a 30-year geostationary orbit avoidance requirement. A parallelized Monte Carlo simulation was performed to validate the trajectory after injecting common perturbations, including launch dispersions, orbit determination errors, and maneuver execution errors. The Monte Carlo analysis helped identify mission risks and is used in the trajectory selection process.
Kerner, Boris S; Klenov, Sergey L; Schreckenberg, Michael
2014-05-01
Physical features of induced phase transitions in a metastable free flow at an on-ramp bottleneck in three-phase and two-phase cellular automaton (CA) traffic-flow models have been revealed. It turns out that at given flow rates at the bottleneck, to induce a moving jam (F → J transition) in the metastable free flow through the application of a time-limited on-ramp inflow impulse, in both two-phase and three-phase CA models the same critical amplitude of the impulse is required. If a smaller impulse than this critical one is applied, neither F → J transition nor other phase transitions can occur in the two-phase CA model. We have found that in contrast with the two-phase CA model, in the three-phase CA model, if the same smaller impulse is applied, then a phase transition from free flow to synchronized flow (F → S transition) can be induced at the bottleneck. This explains why rather than the F → J transition, in the three-phase theory traffic breakdown at a highway bottleneck is governed by an F → S transition, as observed in real measured traffic data. None of two-phase traffic-flow theories incorporates an F → S transition in a metastable free flow at the bottleneck that is the main feature of the three-phase theory. On the one hand, this shows the incommensurability of three-phase and two-phase traffic-flow theories. On the other hand, this clarifies why none of the two-phase traffic-flow theories can explain the set of fundamental empirical features of traffic breakdown at highway bottlenecks.
Yang, Bin; Ming, Wenmei; Du, Mao-Hua; Keum, Jong K; Puretzky, Alexander A; Rouleau, Christopher M; Huang, Jinsong; Geohegan, David B; Wang, Xiaoping; Xiao, Kai
2018-05-01
A fundamental understanding of the interplay between the microscopic structure and macroscopic optoelectronic properties of organic-inorganic hybrid perovskite materials is essential to design new materials and improve device performance. However, how exactly the organic cations affect the structural phase transition and optoelectronic properties of the materials is not well understood. Here, real-time, in situ temperature-dependent neutron/X-ray diffraction and photoluminescence (PL) measurements reveal a transformation of the organic cation CH 3 NH 3 + from order to disorder with increasing temperature in CH 3 NH 3 PbBr 3 perovskites. The molecular-level order-to-disorder transformation of CH 3 NH 3 + not only leads to an anomalous increase in PL intensity, but also results in a multidomain to single-domain structural transition. This discovery establishes the important role that organic cation ordering has in dictating structural order and anomalous optoelectronic phenomenon in hybrid perovskites. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yamamoto, Kaichi; Kanematsu, Yusuke; Nagashima, Umpei; Ueda, Akira; Mori, Hatsumi; Tachikawa, Masanori
2016-11-02
κ-H 3 (Cat-EDT-TTF) 2 (H-TTF) is a hydrogen-bonded π-electron system which was found to reveal C2/c symmetry at 50-293 K, while its isotopologue, κ-D 3 (Cat-EDT-TTF) 2 (D-TTF), showed the phase transition at 185 K from C2/c to P1[combining macron]. To elucidate the origin of such a difference, we calculated the potential energy curves (PECs) for the hydrogen transfer along the H-bonds in these conductors. We found that both the π-stacking and the hydrogen nuclear quantum effect drastically affected the hydrogen transfer energy. By taking account of both effects, we obtained a symmetric single-well effective PEC for H-TTF, which indicated that the hydrogen was always located at the center of the H-bond. By contrast, the effective PEC of D-TTF was a low-barrier double-well, indicating that the position of the H-bonded deuterium would change according to the temperature. We concluded that the π-stacking and the nuclear quantum effect were the key factors for the appearance of phase transition only in D-TTF.
Strongly correlated materials.
Morosan, Emilia; Natelson, Douglas; Nevidomskyy, Andriy H; Si, Qimiao
2012-09-18
Strongly correlated materials are profoundly affected by the repulsive electron-electron interaction. This stands in contrast to many commonly used materials such as silicon and aluminum, whose properties are comparatively unaffected by the Coulomb repulsion. Correlated materials often have remarkable properties and transitions between distinct, competing phases with dramatically different electronic and magnetic orders. These rich phenomena are fascinating from the basic science perspective and offer possibilities for technological applications. This article looks at these materials through the lens of research performed at Rice University. Topics examined include: Quantum phase transitions and quantum criticality in "heavy fermion" materials and the iron pnictide high temperature superconductors; computational ab initio methods to examine strongly correlated materials and their interface with analytical theory techniques; layered dichalcogenides as example correlated materials with rich phases (charge density waves, superconductivity, hard ferromagnetism) that may be tuned by composition, pressure, and magnetic field; and nanostructure methods applied to the correlated oxides VO₂ and Fe₃O₄, where metal-insulator transitions can be manipulated by doping at the nanoscale or driving the system out of equilibrium. We conclude with a discussion of the exciting prospects for this class of materials. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Investigation of phase transitions in LiK 1- x(NH 4) xSO 4 mixed crystal
NASA Astrophysics Data System (ADS)
Freire, P. T. C.; Paraguassu, W.; Silva, A. P.; Pilla, O.; Teixeira, A. M. R.; Sasaki, J. M.; Mendes Filho, J.; Guedes, I.; Melo, F. E. A.
1999-02-01
We present Raman scattering results on LiK 1- x(NH 4) xSO 4 mixed crystal for temperatures between 100 and 300 K. We observed that in this temperature range the crystal undergoes two different phase transitions, which we call Bansal and Tomaszewski phase transitions. The introduction of ammonium ions in the potassium sites increases the C 66→C 3v4 (Bansal) phase transition temperature and decreases the Tomaszewski phase transition temperature. Finally, the most impressive effect of the presence of ammonium impurity in the LiKSO 4 structure is the decrease in the temperature hysteresis of Bansal phase transition and the almost complete destruction of hysteresis in the Tomaszewski phase transition, leading to a high temperature range of stability of the trigonal phase.
Structural phase transition in monolayer MoTe2 driven by electrostatic doping
NASA Astrophysics Data System (ADS)
Wang, Ying; Xiao, Jun; Zhu, Hanyu; Li, Yao; Alsaid, Yousif; Fong, King Yan; Zhou, Yao; Wang, Siqi; Shi, Wu; Wang, Yuan; Zettl, Alex; Reed, Evan J.; Zhang, Xiang
2017-10-01
Monolayers of transition-metal dichalcogenides (TMDs) exhibit numerous crystal phases with distinct structures, symmetries and physical properties. Exploring the physics of transitions between these different structural phases in two dimensions may provide a means of switching material properties, with implications for potential applications. Structural phase transitions in TMDs have so far been induced by thermal or chemical means; purely electrostatic control over crystal phases through electrostatic doping was recently proposed as a theoretical possibility, but has not yet been realized. Here we report the experimental demonstration of an electrostatic-doping-driven phase transition between the hexagonal and monoclinic phases of monolayer molybdenum ditelluride (MoTe2). We find that the phase transition shows a hysteretic loop in Raman spectra, and can be reversed by increasing or decreasing the gate voltage. We also combine second-harmonic generation spectroscopy with polarization-resolved Raman spectroscopy to show that the induced monoclinic phase preserves the crystal orientation of the original hexagonal phase. Moreover, this structural phase transition occurs simultaneously across the whole sample. This electrostatic-doping control of structural phase transition opens up new possibilities for developing phase-change devices based on atomically thin membranes.
Experimental Evidence for a Structural-Dynamical Transition in Trajectory Space.
Pinchaipat, Rattachai; Campo, Matteo; Turci, Francesco; Hallett, James E; Speck, Thomas; Royall, C Patrick
2017-07-14
Among the key insights into the glass transition has been the identification of a nonequilibrium phase transition in trajectory space which reveals phase coexistence between the normal supercooled liquid (active phase) and a glassy state (inactive phase). Here, we present evidence that such a transition occurs in experiments. In colloidal hard spheres, we find a non-Gaussian distribution of trajectories leaning towards those rich in locally favored structures (LFSs), associated with the emergence of slow dynamics. This we interpret as evidence for a nonequilibrium transition to an inactive LFS-rich phase. Reweighting trajectories reveals a first-order phase transition in trajectory space between a normal liquid and a LFS-rich phase. We also find evidence for a purely dynamical transition in trajectory space.
Electronic band structure and charge density wave transition in quasi-2D KMo6O17 purple bronze
NASA Astrophysics Data System (ADS)
Valbuena, M. A.; Avila, J.; Vyalikh, D. V.; Guyot, H.; Laubschat, C.; Molodtsov, S. L.; Asensio, M. C.
2008-03-01
High resolution angle-resolved photoemission of quasi-2D KMo6O17 purple bronze has been performed in the range from room temperature to 130 K, slightly above the charge density wave (CDW) transition (Tc = 110 K), and down to 35 K (well below Tc). In this paper we report a detailed study of how electronic band structure is affected by this transition driven by the hidden nesting scenario. The expected spectroscopic fingerprints of the CDW phase transition have been found and discussed according to the hidden one dimension and the development of a quasi-commensurate CDW. The excellent agreement between theory and our experimental results makes of potassium purple bronze a reference system for studying this type of instabilities.
Quantitative EPMA of Nano-Phase Iron-Silicides in Apollo 16 Lunar Regolith
NASA Astrophysics Data System (ADS)
Gopon, P.; Fournelle, J.; Valley, J. W.; Pinard, P. T.; Sobol, P.; Horn, W.; Spicuzza, M.; Llovet, X.; Richter, S.
2013-12-01
Until recently, quantitative EPMA of phases under a few microns in size has been extremely difficult. In order to achieve analytical volumes to analyze sub-micron features, accelerating voltages between 5 and 8 keV need to be used. At these voltages the normally used K X-ray transitions (of higher Z elements) are no longer excited, and we must rely of outer shell transitions (L and M). These outer shell transitions are difficult to use for quantitative EPMA because they are strongly affected by different bonding environments, the error associated with their mass attenuation coefficients (MAC), and their proximity to absorption edges. These problems are especially prevalent for the transition metals, because of the unfilled M5 electron shell where the Lα transition originates. Previous studies have tried to overcome these limitations by using standards that almost exactly matched their unknowns. This, however, is cumbersome and requires accurate knowledge of the composition of your sample beforehand, as well as an exorbitant number of well characterized standards. Using a 5 keV electron beam and utilizing non-standard X-ray transitions (Ll) for the transition metals, we are able to conduct accurate quantitative analyses of phases down to ~300nm. The Ll transition in the transition metals behaves more like a core-state transition, and unlike the Lα/β lines, is unaffected by bonding effects and does not lie near an absorption edge. This allows for quantitative analysis using standards do not have to exactly match the unknown. In our case pure metal standards were used for all elements except phosphorus. We present here data on iron-silicides in two Apollo 16 regolith grains. These plagioclase grains (A6-7 and A6-8) were collected between North and South Ray Craters, in the lunar highlands, and thus are associated with one or more large impact events. We report the presence of carbon, nickel, and phosphorus (in order of abundance) in these iron-silicide phases. Although carbon is an especially difficult measurement, (with contamination from the lab environment, sample, and vacuum system being a large problem) we found that the iron-silicide phases contain a few weight percent carbon. X-ray mapping shows carbon to be concentrated within the silicide blebs. We conducted sample reference (i.e. baseline) carbon measurements in standards mounted in the same block as the sample, to establish a contamination baseline then any carbon measured above this baseline was assumed to be real. This finding seems to indicate that while the iron-silicide phases formed in the reducing conditions of the lunar surface, these conditions were not low enough to form the phases on their own and needed the presence of carbon to reduce them down to the much lower reducing conditions were native silicon is stable. The source of the carbon and nickel found in the iron-silicides is most likely form an impactor, rather than from the lunar surface.
Magnetism and phase transitions in LaCoO3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belanger, David P; Durand, Alice M; Booth, C
2013-01-01
Neutron scattering and magnetometry measurements have been used to study phase transitions in LaCoO3 (LCO). For H 100 Oe, evidence for a ferromagnetic (FM) transition is observed at Tc 87 K. For 1 kOe H 60 kOe, no transition is apparent. For all H, Curie Weiss analysis shows predominantly antiferromagnetic (AFM) interactions for T > Tc, but the lack of long-range AFM order indicates magnetic frustration. We argue that the weak ferromagnetism in bulk LCO is induced by lattice strain, as is the case with thin films and nanoparticles. The lattice strain is present at the bulk surfaces and atmore » the interfaces between the LCO and a trace cobalt oxide phase. The ferromagnetic ordering in the LCO bulk is strongly affected by the Co O Co angle ( ), in agreement with recent band calculations which predict that ferromagnetic long-range order can only take place above a critical value, C. Consistent with recent thin film estimations, we find C D 162:8. For > C, we observe power-law behavior in the structural parameters. decreases with T until the critical temperature, To 37 K; below To the rate of change becomes very small. For T < To, FM order appears to be confined to regions close to the surfaces, likely due to the lattice strain keeping the local Co O Co angle above C.« less
A stress-induced phase transition model for semi-crystallize shape memory polymer
NASA Astrophysics Data System (ADS)
Guo, Xiaogang; Zhou, Bo; Liu, Liwu; Liu, Yanju; Leng, Jinsong
2014-03-01
The developments of constitutive models for shape memory polymer (SMP) have been motivated by its increasing applications. During cooling or heating process, the phase transition which is a continuous time-dependent process happens in semi-crystallize SMP and the various individual phases form at different temperature and in different configuration. Then, the transformation between these phases occurred and shape memory effect will emerge. In addition, stress applied on SMP is an important factor for crystal melting during phase transition. In this theory, an ideal phase transition model considering stress or pre-strain is the key to describe the behaviors of shape memory effect. So a normal distributed model was established in this research to characterize the volume fraction of each phase in SMP during phase transition. Generally, the experiment results are partly backward (in heating process) or forward (in cooling process) compared with the ideal situation considering delay effect during phase transition. So, a correction on the normal distributed model is needed. Furthermore, a nonlinear relationship between stress and phase transition temperature Tg is also taken into account for establishing an accurately normal distributed phase transition model. Finally, the constitutive model which taking the stress as an influence factor on phase transition was also established. Compared with the other expressions, this new-type model possesses less parameter and is more accurate. For the sake of verifying the rationality and accuracy of new phase transition and constitutive model, the comparisons between the simulated and experimental results were carried out.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renlund, Anita Mariana; Tappan, Alexander Smith; Miller, Jill C.
The HMX {beta}-{delta} solid-solid phase transition, which occurs as HMX is heated near 170 C, is linked to increased reactivity and sensitivity to initiation. Thermally damaged energetic materials (EMs) containing HMX therefore may present a safety concern. Information about the phase transition is vital to predictive safety models for HMX and HMX-containing EMs. We report work on monitoring the phase transition with real-time Raman spectroscopy aimed towards obtaining a better understanding of physical properties of HMX through the phase transition. HMX samples were confined in a cell of minimal free volume in a displacement-controlled or load-controlled arrangement. The cell wasmore » heated and then cooled at controlled rates while real-time Raman spectroscopic measurements were performed. Raman spectroscopy provides a clear distinction between the phases of HMX because the vibrational transitions of the molecule change with conformational changes associated with the phase transition. Temperature of phase transition versus load data are presented for both the heating and cooling cycles in the load-controlled apparatus, and general trends are discussed. A weak dependence of the temperature of phase transition on load was discovered during the heating cycle, with higher loads causing the phase transition to occur at a higher temperature. This was especially true in the temperature of completion of phase transition data as opposed to the temperature of onset of phase transition data. A stronger dependence on load was observed in the cooling cycle, with higher loads causing the reverse phase transitions to occur at a higher cooling temperature. Also, higher loads tended to cause the phase transition to occur over a longer period of time in the heating cycle and over a shorter period of time in the cooling cycle. All three of the pure HMX phases ({alpha}, {beta} and {delta}) were detected on cooling of the heated samples, either in pure form or as a mixture.« less
Quarantine-generated phase transition in epidemic spreading.
Lagorio, C; Dickison, M; Vazquez, F; Braunstein, L A; Macri, P A; Migueles, M V; Havlin, S; Stanley, H E
2011-02-01
We study the critical effect of quarantine on the propagation of epidemics on an adaptive network of social contacts. For this purpose, we analyze the susceptible-infected-recovered model in the presence of quarantine, where susceptible individuals protect themselves by disconnecting their links to infected neighbors with probability w and reconnecting them to other susceptible individuals chosen at random. Starting from a single infected individual, we show by an analytical approach and simulations that there is a phase transition at a critical rewiring (quarantine) threshold w(c) separating a phase (w
Controlling the Temperature and Speed of the Phase Transition of VO 2 Microcrystals
Yoon, Joonseok; Kim, Howon; Chen, Xian; ...
2015-12-29
Here, we investigated the control of two important parameters of vanadium dioxide (VO 2 ) microcrystals, the phase transition temperature and speed, by varying microcrystal width. By using the reflectivity change between insulating and metallic phases, phase transition temperature is measured by optical microscopy. As the width of square cylinder-shaped microcrystals decreases from ~70 to ~1 μm, the phase transition temperature (67 °C for bulk) varied as much as 26.1 °C (19.7 °C) during heating (cooling). In addition, the propagation speed of phase boundary in the microcrystal, i.e., phase transition speed, is monitored at the onset of phase transition bymore » using the high-speed resistance measurement. The phase transition speed increases from 4.6 × 10 2 to 1.7 × 10 4 μm/s as the width decreases from ~50 to ~2 μm. While the statistical description for a heterogeneous nucleation process explains the size dependence on phase transition temperature of VO 2 , the increase of effective thermal exchange process is responsible for the enhancement of phase transition speed of small VO 2 microcrystals. These findings not only enhance the understanding of VO 2 intrinsic properties but also contribute to the development of innovative electronic devices.« less
Controlling the Temperature and Speed of the Phase Transition of VO 2 Microcrystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Joonseok; Kim, Howon; Chen, Xian
Here, we investigated the control of two important parameters of vanadium dioxide (VO 2 ) microcrystals, the phase transition temperature and speed, by varying microcrystal width. By using the reflectivity change between insulating and metallic phases, phase transition temperature is measured by optical microscopy. As the width of square cylinder-shaped microcrystals decreases from ~70 to ~1 μm, the phase transition temperature (67 °C for bulk) varied as much as 26.1 °C (19.7 °C) during heating (cooling). In addition, the propagation speed of phase boundary in the microcrystal, i.e., phase transition speed, is monitored at the onset of phase transition bymore » using the high-speed resistance measurement. The phase transition speed increases from 4.6 × 10 2 to 1.7 × 10 4 μm/s as the width decreases from ~50 to ~2 μm. While the statistical description for a heterogeneous nucleation process explains the size dependence on phase transition temperature of VO 2 , the increase of effective thermal exchange process is responsible for the enhancement of phase transition speed of small VO 2 microcrystals. These findings not only enhance the understanding of VO 2 intrinsic properties but also contribute to the development of innovative electronic devices.« less
Origin of phase transition in VO2
NASA Astrophysics Data System (ADS)
Basu, Raktima; Sardar, Manas; Dhara, Sandip
2018-04-01
Vanadium dioxide (VO2) exhibits a reversible first-order metal to insulator transition (MIT) along with a structural phase transition (SPT) from monoclinic M1 to rutile tetragonal R via another two intermediate phases of monoclinic M2 and triclinic T at a technologically important temperature of 340K. In the present work, besides synthesizing M1 phase of VO2, we also stabilized M2 and T phases at room temperature by introducing native defects in the system and observed an increase in transition temperature with increase in native defects. Raman spectroscopic measurements were carried out to confirm the pure VO2 phases. Since the MIT is accompanied by SPT in these systems, the origin of the phase transition is still under debate. The controversy between MIT and SPT, whether electron-phonon coupling or strong electron-electron correlation triggers the phase transition in VO2 is also resolved by examining the presence of intermediate phase M2 during phase transition.
NASA Astrophysics Data System (ADS)
Yang, Yang; Xie, Yigao; Zhou, Xiaoqian; Zhong, Hui; Jiang, Qingzheng; Ma, Shengcan; Zhong, Zhenchen; Cui, Weibin; Wang, Qiang
2018-05-01
Interstitial effects of B and Li on the phase transition and magnetocaloric effect in Gd2In alloys had been studied. The antiferromagnetic (AFM) - ferromagnetic (FM) phase transition was found to be of first-order nature while ferromagnetic - paramagnetic (PM) phase transition was of second-order nature in B- or Li-doped Gd2In alloys. AFM-FM phase transition temperature was increased while FM-PM phase transition was decreased with more doping concentrations. During AFM-FM phase transition, the slope of temperature-dependent critical field (μ0Hcr) was increased by increased doping amounts. The magnetic entropy changes under small field change were enhanced by B and Li addition, which showed the beneficial effects of B and Li additions.
NASA Astrophysics Data System (ADS)
Wang, Kun; Chen, Jun; Zhang, Xueyang; Zhu, Wenjun
2017-09-01
Phase transitions and deformation twins are constantly reported in many BCC metals under high pressure, whose interactions are of fundamental importance to understand the strengthening mechanism of these metals under extreme conditions. However, the interactions between twins and phase transition in BCC metals remain largely unexplored. In this work, interactions between coherent twin boundaries and α ↔ ɛ phase transition of iron are investigated using both non-equilibrium molecular dynamics simulations and the nudged elastic band method. Mechanisms of both twin-assisted phase transition and reverse phase transition are studied, and orientation relationships between BCC and HCP phases are found to be ⟨"separators="|11 1 ¯ ⟩ B C C||⟨"separators="|1 ¯2 1 ¯ 0 ⟩ H C P and ⟨"separators="|1 1 ¯ 0 ⟩ B C C||⟨"separators="|0001 ⟩ H C P for both cases. The twin boundary corresponds to {"separators="|10 1 ¯ 0 } H C P after the phase transition. It is amazing that the reverse transition seems to be able to "memorize" and recover the initial BCC twins. The memory would be partly lost when plastic slips take place in the HCP phase before the reverse transition. In the recovered initial BCC twins, three major twin spacings are observed, which are well explained in terms of energy barriers of transition from the HCP phase to the BCC twin. Besides, the variant selection rule of the twin assisted phase transition is also discussed. The results of present work could be expected to give some clues for producing ultra-fine grain structures in materials exhibiting martensitic phase transition.
Superconductor to Mott insulator transition in YBa2Cu3O7/LaCaMnO3 heterostructures.
Gray, B A; Middey, S; Conti, G; Gray, A X; Kuo, C-T; Kaiser, A M; Ueda, S; Kobayashi, K; Meyers, D; Kareev, M; Tung, I C; Liu, Jian; Fadley, C S; Chakhalian, J; Freeland, J W
2016-09-15
The superconductor-to-insulator transition (SIT) induced by means such as external magnetic fields, disorder or spatial confinement is a vivid illustration of a quantum phase transition dramatically affecting the superconducting order parameter. In pursuit of a new realization of the SIT by interfacial charge transfer, we developed extremely thin superlattices composed of high Tc superconductor YBa2Cu3O7 (YBCO) and colossal magnetoresistance ferromagnet La0.67Ca0.33MnO3 (LCMO). By using linearly polarized resonant X-ray absorption spectroscopy and magnetic circular dichroism, combined with hard X-ray photoelectron spectroscopy, we derived a complete picture of the interfacial carrier doping in cuprate and manganite atomic layers, leading to the transition from superconducting to an unusual Mott insulating state emerging with the increase of LCMO layer thickness. In addition, contrary to the common perception that only transition metal ions may respond to the charge transfer process, we found that charge is also actively compensated by rare-earth and alkaline-earth metal ions of the interface. Such deterministic control of Tc by pure electronic doping without any hindering effects of chemical substitution is another promising route to disentangle the role of disorder on the pseudo-gap and charge density wave phases of underdoped cuprates.
Li, Joaquim; Gustavsson, Charlotte; Piculell, Lennart
2016-05-24
Detailed time- and space-resolved SAXS experiments show the variation with hydration of liquid crystalline structures in ethanol-cast 5-80 μm thick films of polyion-surfactant ion "complex salts" (CS). The CS were dodecyl- (C12) or hexadecyl- (C16) trimethylammonium surfactants with polyacrylate (DP 25 or 6000) counter-polyions. The experiments were carried out on vertical films in humid air above a movable water bath, so that gradients of hydration were generated, which could rapidly be altered. Scans over different positions along a film, kept fixed relative to the bath, showed that the surfactant aggregates of the various liquid-crystalline CS structures grow in cross-sectional area with decreasing hydration. This behavior is attributed to the low water content. Studies of films undergoing rapid dehydration, made possible by the original experimental setup, gave strong evidence that some of the investigated systems remain kinetically trapped for minutes in a nonequilibrium Pm3n micellar cubic phase before switching to the equilibrium P6mm 2D hexagonal phase. Both the length of the polyion and the length of the surfactant hydrocarbon "tail" affect the kinetics of the phase transition. The slowness of the cubic-to-hexagonal structural transition is attributed to the fact that it requires major rearrangements of the polyions and surfactant ions relative to each other. By contrast, other structure changes, such as between the hexagonal and rectangular phases, were observed to occur much more rapidly.
Phase Transitions of MgO Along the Hugoniot (Invited)
NASA Astrophysics Data System (ADS)
Root, S.; Shulenburger, L.; Lemke, R. W.; Cochrane, K. R.; Mattsson, T. R.
2013-12-01
The formation of terrestrial planets and planetary structure has become of great interest because of recent exoplanet discoveries of super earths. MgO is a major constituent of Earth's mantle, the rocky cores of gas giants such as Jupiter, and likely constitutes the interiors of many exoplanets. The high pressure - high temperature behavior of MgO directly affects equation of state models for planetary structure and formation. In this work, we examine single crystal MgO under shock compression utilizing experimental and density functional theory (DFT) methods to determine phase transformations along the Hugoniot. We perform plate impact experiments using Sandia's Z - facility on MgO up to 11.6 Mbar. The plate impact experiments generate highly accurate Hugoniot state data. The experimental results show the B1 - B2 solid - solid phase transition occurs near 4 Mbar on the Hugoniot. The solid - liquid transition is determined to be near 7 Mbar with a large region of B2-liquid coexistence. Using DFT methods, we also determine melt along the B1 and B2 solid phase boundaries as well as along the Hugoniot. The combined experimental and DFT results have determined the phase boundaries along the Hugoniot, which can be implemented into new planetary and EOS models. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Securities Administration under Contract No. DE-AC04-94AL85000.
The end-of-life phase of high-grade glioma patients: dying with dignity?
Sizoo, Eefje M; Taphoorn, Martin J B; Uitdehaag, Bernard; Heimans, Jan J; Deliens, Luc; Reijneveld, Jaap C; Pasman, H Roeline W
2013-01-01
In the end-of-life (EOL) phase, high-grade glioma (HGG) patients have a high symptom burden and often lose independence because of physical and cognitive dysfunction. This might affect the patient's personal dignity. We aimed to (a) assess the proportion of HGG patients dying with dignity as perceived by their relatives and (b) identify disease and care factors correlated with dying with dignity in HGG patients. We approached relatives of a cohort of 155 deceased HGG patients for the study. Participants completed a questionnaire concerning the EOL phase of the patient, covering several subthemes: (a) symptoms and signs, (b) health-related quality of life, (c) decision making, (d) place and quality of EOL care, and (e) dying with dignity. Relatives of 81 patients participated and 75% indicated that the patient died with dignity. These patients had fewer communication deficits, experienced fewer transitions between health care settings in the EOL phase, and more frequently died at their preferred place of death. Relatives were more satisfied with the physician providing EOL care and reported that the physician adequately explained treatment options. Multivariate analysis identified satisfaction with the physician, the ability to communicate, and the absence of transitions between settings as most predictive of a dignified death. Physicians caring for HGG patients in the EOL phase should timely focus on explaining possible treatment options, because patients experience communication deficits toward death. Physicians should strive to allow patients to die at their preferred place and avoid transitions during the last month of life.
Effect of hospitalization on gastrointestinal motility and pH in dogs.
Warrit, Kanawee; Boscan, Pedro; Ferguson, Leah E; Bradley, Allison M; Dowers, Kristy L; Twedt, David C
2017-07-01
OBJECTIVE To determine the effect of hospitalization on gastrointestinal motility and pH in healthy dogs. DESIGN Experimental study. ANIMALS 12 healthy adult dogs. PROCEDURES A wireless motility capsule (WMC) that measured pressure, transit time, and pH within the gastrointestinal tract was administered orally to dogs in 2 phases. In the first phase, dogs received the WMC at the hospital and then returned to their home to follow their daily routine. In the second phase, dogs were hospitalized, housed individually, had abdominal radiography performed daily, and were leash exercised 4 to 6 times/d until the WMC passed in the feces. All dogs received the same diet twice per day in both phases. Data were compared between phases with the Wilcoxon signed rank test. RESULTS Data were collected from 11 dogs; 1 dog was excluded because the WMC failed to exit the stomach. Median gastric emptying time during hospitalization (71.8 hours; range, 10.7 to 163.0 hours) was significantly longer than at home (17.6 hours; range, 9.7 to 80.8 hours). Values of all other gastric, small bowel, and large bowel parameters (motility index, motility pattern, pH, and transit time) were similar between phases. No change in gastric pH was detected over the hospitalization period. High interdog variability was evident for all measured parameters. CONCLUSIONS AND CLINICAL RELEVANCE Hospitalization of dogs may result in a prolonged gastric emptying time, which could adversely affect gastric emptying of meals, transit of orally administered drugs, or assessments of underlying motility disorders.
Microscopic origin of black hole reentrant phase transitions
NASA Astrophysics Data System (ADS)
Zangeneh, M. Kord; Dehyadegari, A.; Sheykhi, A.; Mann, R. B.
2018-04-01
Understanding the microscopic behavior of the black hole ingredients has been one of the important challenges in black hole physics during the past decades. In order to shed some light on the microscopic structure of black holes, in this paper, we explore a recently observed phenomenon for black holes namely reentrant phase transition, by employing the Ruppeiner geometry. Interestingly enough, we observe two properties for the phase behavior of small black holes that leads to reentrant phase transition. They are correlated and they are of the interaction type. For the range of pressure in which the system underlies reentrant phase transition, it transits from the large black holes phase to the small one which possesses higher correlation than the other ranges of pressures. On the other hand, the type of interaction between small black holes near the large/small transition line differs for usual and reentrant phase transitions. Indeed, for the usual case, the dominant interaction is repulsive whereas for the reentrant case we encounter an attractive interaction. We show that in the reentrant phase transition case, the small black holes behave like a bosonic gas whereas in the usual phase transition case, they behave like a quantum anyon gas.
Electrical Resistivity of natural Marcasite at High-pressures
NASA Astrophysics Data System (ADS)
Parthasarathy, Gopalakrishnarao
2013-06-01
Marcasite is considered to be a common iron sulfide in reducing Martian sediments and may enclose microbial remains during growth and hence study of marcasite may have significance in the search for fossil life on Mars. The high-pressure phase stability investigations of marcasite are useful in understanding the sulfide mineralogy of Martian surface, affected by meteorite impacts. The sulfides were characterized by electron microprobe micro analyses (EPMA), powder X-ray diffraction, DTA, and FTIR spectroscopic measurements. The samples were powdered using a porcelain mortar and pestle. The chemical composition of the sample was determined by an electron probe micro-analyzer (EPMA). High-pressure electrical resistivity measurements were carried out on natural marcasite, and marcasite rich samples (Marcasite 95 mol % pyrite 5 mol %) up to 7 GPa. Marcasite sample shows a discontinuous decrease in the electrical resistivity at 5. 2 (+/- 0.5) GPa indicating a first order phase transition. The Differential thermal analyses and the Fourier transform infrared spectroscopic measurements on the pressure quenched sample shows the characteristics of pyrite, indicating the pressure induced marcasite-to -pyrite transition of the natural marcasite at 5. 2 (+/- 0.5) GPa. The observation of marcasite to pyrite phase transition may be useful in estimating the pressure experienced by shock events on the Martian surface as well as the meteorites where marcasite- pyrite phases coexist. Financial support from CSIR-SHORE-PSC0205.
NASA Astrophysics Data System (ADS)
Carl, Eva-Regine; Mansfeld, Ulrich; Liermann, Hanns-Peter; Danilewsky, Andreas; Langenhorst, Falko; Ehm, Lars; Trullenque, Ghislain; Kenkmann, Thomas
2017-07-01
Hypervelocity collisions of solid bodies occur frequently in the solar system and affect rocks by shock waves and dynamic loading. A range of shock metamorphic effects and high-pressure polymorphs in rock-forming minerals are known from meteorites and terrestrial impact craters. Here, we investigate the formation of high-pressure polymorphs of α-quartz under dynamic and nonhydrostatic conditions and compare these disequilibrium states with those predicted by phase diagrams derived from static experiments under equilibrium conditions. We create highly dynamic conditions utilizing a mDAC and study the phase transformations in α-quartz in situ by synchrotron powder X-ray diffraction. Phase transitions of α-quartz are studied at pressures up to 66.1 and different loading rates. At compression rates between 0.14 and 1.96 GPa s-1, experiments reveal that α-quartz is amorphized and partially converted to stishovite between 20.7 GPa and 28.0 GPa. Therefore, coesite is not formed as would be expected from equilibrium conditions. With the increasing compression rate, a slight increase in the transition pressure occurs. The experiments show that dynamic compression causes an instantaneous formation of structures consisting only of SiO6 octahedra rather than the rearrangement of the SiO4 tetrahedra to form a coesite. Although shock compression rates are orders of magnitude faster, a similar mechanism could operate in impact events.
Whitfield, P. S.; Herron, N.; Guise, W. E.; ...
2016-10-21
Here, we examine the crystal structures and structural phase transitions of the deuterated, partially deuterated and hydrogenous organic-inorganic hybrid perovskite methyl ammonium lead iodide (MAPbI 3) using time-of-flight neutron and synchrotron X-ray powder diffraction. Near 330 K the high temperature cubic phases transformed to a body-centered tetragonal phase. The variation of the order parameter Q for this transition scaled with temperature T as Q (T c-T) , where T c is the critical temperature and the exponent was close to , as predicted for a tricritical phase transition. We also observed coexistence of the cubic and tetragonal phases over amore » range of temperature in all cases, demonstrating that the phase transition was in fact first-order, although still very close to tricritical. Upon cooling further, all the tetragonal phases transformed into a low temperature orthorhombic phase around 160 K, again via a first-order phase transition. Finally, based upon these results, we discuss the impact of the structural phase transitions upon photovoltaic performance of MAPbI 3 based solar cells.« less
Mirmelstein, A.; Podlesnyak, Andrey A.; dos Santos, Antonio M.; ...
2015-08-03
The pressure-induced structural phase transition in the intermediate-valence compound CeNi has been investigated by x-ray and neutron powder diffraction techniques. It is shown that the structure of the pressure-induced CeNi phase (phases) can be described in terms of the Pnma space group. Equations of state for CeNi on both sides of the phase transition are derived and an approximate P-T phase diagram is suggested for P<8 GPa and T<300 K. The observed Cmcm→Pnma structural transition is then analyzed using density functional theory calculations, which successfully reproduce the ground state volume, the phase transition pressure, and the volume collapse associated withmore » the phase transition.« less
NASA Astrophysics Data System (ADS)
Rosa, A. D.; Merkel, S.; Ghosh, S.; Hilairet, N.; Perrillat, J.; Mezouar, N.; Vaughan, G.
2013-12-01
The series of phase transitions between olivine, wadsleyite and ringwoodite play an essential role for large scale dynamical processes in the Earth mantle. Detailed knowledge of the microscopic mechanism at the origin of these high-pressure and high-temperature phase transformations is useful to connect global seismic observations and geodynamics. Indeed, the textures of these phases can be induced either during mantle flow or during the phase transformations and they greatly affect the characteristics of seismic wave propagation. Here, we present a new design of diamond anvil cell experiments to collect three-dimensional diffraction images and track individual grains inside a polycristalline sample at high pressure and high temperature. The instrumentation includes a new resistively heated diamond anvil cell developed at beamline ID27 of the ESRF which provided stable and homogenous temperature condition over more than 24 hours. In our experiments, the pressure is first increased up to 12 GPa at a constant temperature of T = 800 K. The temperature is then further increased to 1300 K to reach the stability field of the high-pressure polymorph. Upon further compression the transformation of olivine to its high-pressure polymorph is successfully monitored. At each pressure-temperature step and while the sample is transforming the crystallographic parameters, the orientations and positions of grains within the sample are tracked in situ using three-dimensional X-ray diffraction. This will provide important information on the micromechanical properties of olivine including orientation statistics, orientation relations between parent and daughter phases, and transformation textures at different stages of the phase transition. This in turn will help in interpreting the geophysical observations. Details of the experimental and analytical approach used in this study will be given.
Noise Spectroscopy in Strongly Correlated Oxides
NASA Astrophysics Data System (ADS)
Alsaqqa, Ali M.
Strongly correlated materials are an interesting class of materials, thanks to the novel electronic and magnetic phenomena they exhibit as a result of the interplay of various degrees of freedom. This gives rise to an array of potential applications, from Mott-FET to magnetic storage. Many experimental probes have been used to study phase transitions in strongly correlated oxides. Among these, resistance noise spectroscopy, together with conventional transport measurements, provides a unique viewpoint to understand the microscopic dynamics near the phase transitions in these oxides. In this thesis, utilizing noise spectroscopy and transport measurements, four different strongly correlated materials were studied: (1) neodymium nickel oxide (NdNiO 3) ultrathin films, (2) vanadium dioxide (VO2) microribbons, (3) copper vanadium bronze (CuxV2O 5) microribbons and (4) niobium triselenide (NbSe3) microribbons. Ultra thin films of rare-earth nickelates exhibit several temperature-driven phase transitions. In this thesis, we studied the metal-insulator and Neel transitions in a series of NdNiO3 films with different lattice mismatches. Upon colling down, the metal-insulator phase transition is accompanied by a structural (orthorohombic to monoclinic) and magnetic (paramagnetic to antiferromagnetic) transitions as well, making the problem more interesting and complex at the same time. The noise is of the 1/f type and is Gaussian in the high temperature phase, however deviations are seen in the low temperature phases. Below the metal-insulator transition, noise magnitude increases by orders of magnitude: a sign of inhomogeneous electrical conduction as result of phase separation. This is further assured by the non-Gaussian noise signature. At very low temperatures (T < 50 K), the noise behavior switches between Gaussian and non-Gaussian over several hours, possibly arising from dynamically competing ground states. VO2 is one of the most widely studied strongly correlated oxides and is important from the fundamental physics point of view and for applications. Its transition from a metal to an insulator (MIT) with simple application of voltage is quite interesting. For use in applications, e.g. transistors, it is very important to have a clear understanding of the MIT. Equally important is the question of whether the thermally- and electrically-driven transitions have the same origin. In this thesis, we tried to answer this question by utilizing three different tuning parameters: temperature, voltage bias and strain. Our results point to an unusual noise behavior in the high-temperature metallic phase, and provide valuable insight into the transport dynamics of this material. CuxV2O5 exhibit a metal-insulator transition and, more interestingly, a superconductivity transition. Unlike VO2, copper vanadium bronzes are much less studied and many questions are still open, including the possibility of charge ordering transition, just like in other members of the vanadium family. In this thesis, we studied this material and found evidences for charge ordering transitions and possibly other transitions as well. The last material, NbSe3, is a prototypical example of charge density wave systems, where Peierls transitions exist. Here, we study the effects of contacts on resistance noise in the 1D limit. The study aimed to confirm that the electric field threshold is sample length independent, to find out if there is a relation between contact separation and the noise generated and to explore the characteristics of the contact noise. The results confirm that the electric field threshold is independent of the sample length. It was also found that the separation between the contacts does not affect the noise. Finally, the contact noise is of the 1/f-type and has a Gaussian distribution. These results are timely for future device applications utilizing NbSe3.
Changes Caused by Fruit Extracts in the Lipid Phase of Biological and Model Membranes
Pruchnik, Hanna; Oszmiański, Jan; Sarapuk, Janusz; Kleszczyńska, Halina
2010-01-01
The aim of the study was to determine changes incurred by polyphenolic compounds from selected fruits in the lipid phase of the erythrocyte membrane, in liposomes formed of erythrocyte lipids and phosphatidylcholine liposomes. In particular, the effect of extracts from apple, chokeberry, and strawberry on the red blood cell morphology, on packing order in the lipid hydrophilic phase, on fluidity of the hydrophobic phase, as well as on the temperature of phase transition in DPPC liposomes was studied. In the erythrocyte population, the proportions of echinocytes increased due to incorporation of polyphenolic compounds. Fluorimetry with a laurdan probe indicated increased packing density in the hydrophilic phase of the membrane in presence of polyphenolic extracts, the highest effect being observed for the apple extract. Using the fluorescence probes DPH and TMA-DPH, no effect was noted inside the hydrophobic phase of the membrane, as the lipid bilayer fluidity was not modified. The polyphenolic extracts slightly lowered the phase transition temperature of phosphatidylcholine liposomes. The studies have shown that the phenolic compounds contained in the extracts incorporate into the outer region of the erythrocyte membrane, affecting its shape and lipid packing order, which is reflected in the increasing number of echinocytes. The compounds also penetrate the outer part of the external lipid layer of liposomes formed of natural and DPPC lipids, changing its packing order. PMID:21423329
Dynamics of a Landau-Zener transitions in a two-level system driven by a dissipative environment
NASA Astrophysics Data System (ADS)
Ateuafack, M. E.; Diffo, J. T.; Fai, L. C.
2016-02-01
The paper investigates the effects of a two-level quantum system coupled to transversal and longitudinal dissipative environment. The time-dependent phase accumulation, LZ transition probability and entropy in the presence of fast-ohmic, sub-ohmic and super-ohmic quantum noise are derived. Analytical results are obtained in terms of temperature, dissipation strength, LZ parameter and bath cutoff frequency. The bath is observed to modify the standard occupation difference by a decaying random phase factor and also produces dephasing during the transfer of population. The dephasing characteristics or the initial non-zero decoherence rate are observed to increase in time with the bath temperature and depend on the system-bath coupling strength and cutoff frequency. These parameters are found to strongly affect the memory and thus tailor the coherence process of the system.
NASA Astrophysics Data System (ADS)
Liu, Cheng-Wei
Phase transitions and their associated critical phenomena are of fundamental importance and play a crucial role in the development of statistical physics for both classical and quantum systems. Phase transitions embody diverse aspects of physics and also have numerous applications outside physics, e.g., in chemistry, biology, and combinatorial optimization problems in computer science. Many problems can be reduced to a system consisting of a large number of interacting agents, which under some circumstances (e.g., changes of external parameters) exhibit collective behavior; this type of scenario also underlies phase transitions. The theoretical understanding of equilibrium phase transitions was put on a solid footing with the establishment of the renormalization group. In contrast, non-equilibrium phase transition are relatively less understood and currently a very active research topic. One important milestone here is the Kibble-Zurek (KZ) mechanism, which provides a useful framework for describing a system with a transition point approached through a non-equilibrium quench process. I developed two efficient Monte Carlo techniques for studying phase transitions, one is for classical phase transition and the other is for quantum phase transitions, both are under the framework of KZ scaling. For classical phase transition, I develop a non-equilibrium quench (NEQ) simulation that can completely avoid the critical slowing down problem. For quantum phase transitions, I develop a new algorithm, named quasi-adiabatic quantum Monte Carlo (QAQMC) algorithm for studying quantum quenches. I demonstrate the utility of QAQMC quantum Ising model and obtain high-precision results at the transition point, in particular showing generalized dynamic scaling in the quantum system. To further extend the methods, I study more complex systems such as spin-glasses and random graphs. The techniques allow us to investigate the problems efficiently. From the classical perspective, using the NEQ approach I verify the universality class of the 3D Ising spin-glasses. I also investigate the random 3-regular graphs in terms of both classical and quantum phase transitions. I demonstrate that under this simulation scheme, one can extract information associated with the classical and quantum spin-glass transitions without any knowledge prior to the simulation.
Temperature-Controlled High-Speed AFM: Real-Time Observation of Ripple Phase Transitions.
Takahashi, Hirohide; Miyagi, Atsushi; Redondo-Morata, Lorena; Scheuring, Simon
2016-11-01
With nanometer lateral and Angstrom vertical resolution, atomic force microscopy (AFM) has contributed unique data improving the understanding of lipid bilayers. Lipid bilayers are found in several different temperature-dependent states, termed phases; the main phases are solid and fluid phases. The transition temperature between solid and fluid phases is lipid composition specific. Under certain conditions some lipid bilayers adopt a so-called ripple phase, a structure where solid and fluid phase domains alternate with constant periodicity. Because of its narrow regime of existence and heterogeneity ripple phase and its transition dynamics remain poorly understood. Here, a temperature control device to high-speed atomic force microscopy (HS-AFM) to observe dynamics of phase transition from ripple phase to fluid phase reversibly in real time is developed and integrated. Based on HS-AFM imaging, the phase transition processes from ripple phase to fluid phase and from ripple phase to metastable ripple phase to fluid phase could be reversibly, phenomenologically, and quantitatively studied. The results here show phase transition hysteresis in fast cooling and heating processes, while both melting and condensation occur at 24.15 °C in quasi-steady state situation. A second metastable ripple phase with larger periodicity is formed at the ripple phase to fluid phase transition when the buffer contains Ca 2+ . The presented temperature-controlled HS-AFM is a new unique experimental system to observe dynamics of temperature-sensitive processes at the nanoscopic level. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Method for identifying and probing phase transitions in materials
Asay, Blaine W.; Henson, Bryan F.; Sander, Robert K.; Robinson, Jeanne M.; Son, Steven F.; Dickson, Peter M.
2002-01-01
The present invention includes a method for identifying and probing phase transitions in materials. A polymorphic material capable of existing in at least one non-centrosymmetric phase is interrogated with a beam of laser light at a chosen wavelength and frequency. A phase transition is induced in the material while it is interrogated. The intensity of light scattered by the material and having a wavelength equal to one half the wavelength of the interrogating laser light is detected. If the phase transition results in the production of a non-centrosymmetric phase, the intensity of this scattered light increases; if the phase transition results in the disappearance of a non-centrosymmetric phase, the intensity of this scattered light decreases.
Spontaneous Symmetry Breaking of Domain Walls in Phase-Competing Regions
NASA Astrophysics Data System (ADS)
Ishizuka, Hiroaki; Yamada, Yasusada; Nagaosa, Naoto
2018-05-01
In this study, we investigate the nature of domain walls in an ordered phase in the phase-competing region of two Ising-type order parameters. We consider a two-component ϕ4 theory and show that the domain wall of the ground-state (primary) order parameter shows a second-order phase transition associated with the secondary order parameter of the competing phase; the effective theory of the phase transition is given by the Landau theory of an Ising-type phase transition. We find that the phase boundary of this phase transition is different from the spinodal line of the competing order. The phase transition is detected experimentally by the divergence of the susceptibility corresponding to the secondary order when the temperature is quenched to introduce the domain walls.
The infinite limit as an eliminable approximation for phase transitions
NASA Astrophysics Data System (ADS)
Ardourel, Vincent
2018-05-01
It is generally claimed that infinite idealizations are required for explaining phase transitions within statistical mechanics (e.g. Batterman 2011). Nevertheless, Menon and Callender (2013) have outlined theoretical approaches that describe phase transitions without using the infinite limit. This paper closely investigates one of these approaches, which consists of studying the complex zeros of the partition function (Borrmann et al., 2000). Based on this theory, I argue for the plausibility for eliminating the infinite limit for studying phase transitions. I offer a new account for phase transitions in finite systems, and I argue for the use of the infinite limit as an approximation for studying phase transitions in large systems.
[Physical activity during the transition period between occupation and retirement].
Strobl, H; Brehm, W; Tittlbach, S
2010-10-01
During the transition period between occupation and retirement, different mental challenges may arise as a consequence of the numerous changes and necessary reorientation to the following phase of life. Personal well-being is a precondition to cope with these challenges. Interviews with physically active people in the transition period between occupation and retirement, concerning the importance of physical activity in coping with mental challenges, were conducted. Physical activity is meant to affect well-being and the physical condition in a positive way. In addition, it should foster social contacts and make it easier to manage everyday life. Moreover, it is a measure of personal success during advanced age. Because of its influence on various physical, mental, and social aspects, physical activity can help a person to cope with mental challenges in the transition period between occupation and retirement.
fcc-bcc phase transition in plasma crystals using time-resolved measurements
NASA Astrophysics Data System (ADS)
Dietz, C.; Bergert, R.; Steinmüller, B.; Kretschmer, M.; Mitic, S.; Thoma, M. H.
2018-04-01
Three-dimensional plasma crystals are often described as Yukawa systems for which a phase transition between the crystal structures fcc and bcc has been predicted. However, experimental investigations of this transition are missing. We use a fast scanning video camera to record the crystallization process of 70 000 microparticles and investigate the existence of the fcc-bcc phase transition at neutral gas pressures of 30, 40, and 50 Pa. To analyze the crystal, robust phase diagrams with the help of a machine learning algorithm are calculated. This work shows that the phase transition can be investigated experimentally and makes a comparison with numerical results of Yukawa systems. The phase transition is analyzed in dependence on the screening parameter and structural order. We suggest that the transition is an effect of gravitational compression of the plasma crystal. Experimental investigations of the fcc-bcc phase transition will provide an opportunity to estimate the coupling strength Γ by comparison with numerical results of Yukawa systems.
Learning phase transitions by confusion
NASA Astrophysics Data System (ADS)
van Nieuwenburg, Evert P. L.; Liu, Ye-Hua; Huber, Sebastian D.
2017-02-01
Classifying phases of matter is key to our understanding of many problems in physics. For quantum-mechanical systems in particular, the task can be daunting due to the exponentially large Hilbert space. With modern computing power and access to ever-larger data sets, classification problems are now routinely solved using machine-learning techniques. Here, we propose a neural-network approach to finding phase transitions, based on the performance of a neural network after it is trained with data that are deliberately labelled incorrectly. We demonstrate the success of this method on the topological phase transition in the Kitaev chain, the thermal phase transition in the classical Ising model, and the many-body-localization transition in a disordered quantum spin chain. Our method does not depend on order parameters, knowledge of the topological content of the phases, or any other specifics of the transition at hand. It therefore paves the way to the development of a generic tool for identifying unexplored phase transitions.
Two kinds of phase transitions in a voting model
NASA Astrophysics Data System (ADS)
Hisakado, M.; Mori, S.
2012-08-01
In this paper, we discuss a voting model with two candidates, C0 and C1. We consider two types of voters—herders and independents. The voting of independents is based on their fundamental values, while the voting of herders is based on the number of previous votes. We can identify two kinds of phase transitions. One is an information cascade transition similar to a phase transition seen in the Ising model. The other is a transition of super and normal diffusions. These phase transitions coexist. We compared our results to the conclusions of experiments and identified the phase transitions in the upper limit of the time t by using the analysis of human behavior obtained from experiments.
NASA Astrophysics Data System (ADS)
Chen, J.; Xi, G.; Wang, W.
2008-02-01
Detecting phase transitions in neural networks (determined or random) presents a challenging subject for phase transitions play a key role in human brain activity. In this paper, we detect numerically phase transitions in two types of random neural network(RNN) under proper parameters.
Universal phase transition in community detectability under a stochastic block model.
Chen, Pin-Yu; Hero, Alfred O
2015-03-01
We prove the existence of an asymptotic phase-transition threshold on community detectability for the spectral modularity method [M. E. J. Newman, Phys. Rev. E 74, 036104 (2006) and Proc. Natl. Acad. Sci. (USA) 103, 8577 (2006)] under a stochastic block model. The phase transition on community detectability occurs as the intercommunity edge connection probability p grows. This phase transition separates a subcritical regime of small p, where modularity-based community detection successfully identifies the communities, from a supercritical regime of large p where successful community detection is impossible. We show that, as the community sizes become large, the asymptotic phase-transition threshold p* is equal to √[p1p2], where pi(i=1,2) is the within-community edge connection probability. Thus the phase-transition threshold is universal in the sense that it does not depend on the ratio of community sizes. The universal phase-transition phenomenon is validated by simulations for moderately sized communities. Using the derived expression for the phase-transition threshold, we propose an empirical method for estimating this threshold from real-world data.
Isothermal lipid phase transitions.
Cevc, G
1991-03-01
In liotropic lipid systems phase transitions can be induced isothermally by changing the solvent concentration or composition; alternatively, lipid composition can be modified by (bio)chemical means. The probability for isothermal phase transitions increases with the decreasing transition entropy; it is proportional to the magnitude of the transition temperature shift caused by transformation-inducing system variation. Manipulations causing large thermodynamic effects, such as lipid (de)hydration, binding of protons or divalent ions and macromolecular adsorption, but also close bilayer approach are, therefore, likely to cause structural lipid change(s) at a constant temperature. Net lipid charges enhance the membrane susceptibility to salt-induced isothermal phase transitions; a large proportion of this effect is due to the bilayer dehydration, however, rather than being a consequence of the decreased Coulombic electrostatic interactions. Membrane propensity for isothermal phase transitions, consequently, always increases with the hydrophilicity of the lipid heads, as well as with the desaturation and shortening of the lipid chains. Upon a phase change at a constant temperature, some of the interfacially bound solutes (e.g. protons or calcium) are released in the solution. Membrane permeability and fusogenicity simultaneously increase. In mixed systems, isothermal phase transitions, moreover, may result in lateral phase separation. All this opens up ways for the involvement of isothermal phase transitions in the regulation of biological processes.
NASA Astrophysics Data System (ADS)
Hilton, David
2011-10-01
In correlated electronic systems, observed electronic and structural behavior results from the complex interplay between multiple, sometimes competing degrees-of- freedom. One such material used to study insulator-to-metal transitions is vanadium dioxide, which undergoes a phase transition from a monoclinic-insulating phase to a rutile-metallic phase when the sample is heated to 340 K. The major open question with this material is the relative influence of this structural phase transition (Peirels transition) and the effects of electronic correlations (Mott transition) on the observed insulator-to-metal transition. Answers to these major questions are complicated by vanadium dioxide's sensitivity to perturbations in the chemical structure in VO2. For example, related VxOy oxides with nearly a 2:1 ratio do not demonstrate the insulator-to- metal transition, while recent work has demonstrated that W:VO2 has demonstrated a tunable transition temperature controllable with tungsten doping. All of these preexisting results suggest that the observed electronic properties are exquisitely sensitive to the sample disorder. Using ultrafast spectroscopic techniques, it is now possible to impulsively excite this transition and investigate the photoinduced counterpart to this thermal phase transition in a strongly nonequilibrium regime. I will discuss our recent results studying the terahertz-frequency conductivity dynamics of this photoinduced phase transition in the poorly understood near threshold temperature range. We find a dramatic softening of the transition near the critical temperature, which results primarily from the mixed phase coexistence near the transition temperature. To directly study this mixed phase behavior, we directly study the nucleation and growth rates of the metallic phase in the parent insulator using non-degenerate optical pump-probe spectroscopy. These experiments measure, in the time- domain, the coexistent phase separation in VO2 (spatially separated insulator and metal islands) and, more importantly, their dynamic evolution in response to optical excitation.
NASA Astrophysics Data System (ADS)
Thoraval, C.
2017-12-01
Describing the large-scale structures of mantle convection and quantifying the mass transfer between upper and lower mantle request to account for the role played by mineral phase transitions in the transition zone. We build a density distribution within the Earth mantle from velocity anomalies described by global seismic tomographic models. The density distribution includes thermal anomalies and topographies of the phase transitions at depths of 410 and 660 km. We compute the flow driven by this density distribution using a 3D spherical circulation model, which account for depth-dependent viscosity. The dynamic topographies at the surface and at the CMB and the geoid are calculated as well. Within the range of viscosity profiles allowing for a satisfying restitution of the long wavelength geoid, we perform a parametric study to decipher the role of the characteristics of phase diagrams - mainly the Clapeyron's slopes - and of the kinetics of phase transitions, which may modify phase transition topographies. Indeed, when a phase transition is delayed, the boundary between two mineral phases is both dragged by the flow and interfere with it. The results are compared to recent estimations of surface dynamic topography and to the phase transition topographies as revealed by seismic studies. The consequences are then discussed in terms of structure of mantle flow. Comparisons between various tomographic models allow us to enlighten the most robust features. At last, the role played by the phase transitions on the lateral variations of mass transfer between upper and lower mantle are quantified by comparison to cases with no phase transitions and confronted to regional tomographic models, which reflect the variability of the behaviors of the descending slabs in the transition zone.
Defect-induced local variation of crystal phase transition temperature in metal-halide perovskites.
Dobrovolsky, Alexander; Merdasa, Aboma; Unger, Eva L; Yartsev, Arkady; Scheblykin, Ivan G
2017-06-26
Solution-processed organometal halide perovskites are hybrid crystalline semiconductors highly interesting for low-cost and efficient optoelectronics. Their properties are dependent on the crystal structure. Literature shows a variety of crystal phase transition temperatures and often a spread of the transition over tens of degrees Kelvin. We explain this inconsistency by demonstrating that the temperature of the tetragonal-to-orthorhombic phase transition in methylammonium lead triiodide depends on the concentration and nature of local defects. Phase transition in individual nanowires was studied by photoluminescence microspectroscopy and super-resolution imaging. We propose that upon cooling from 160 to 140 K, domains of the crystal containing fewer defects stay in the tetragonal phase longer than highly defected domains that readily transform to the high bandgap orthorhombic phase at higher temperatures. The existence of relatively pure tetragonal domains during the phase transition leads to drastic photoluminescence enhancement, which is inhomogeneously distributed across perovskite microcrystals.Understanding crystal phase transition in materials is of fundamental importance. Using luminescence spectroscopy and super-resolution imaging, Dobrovolsky et al. study the transition from the tetragonal to orthorhombic crystal phase in methylammonium lead triiodide nanowires at low temperature.
Ab Initio Simulations of Temperature Dependent Phase Stability and Martensitic Transitions in NiTi
NASA Technical Reports Server (NTRS)
Haskins, Justin B.; Thompson, Alexander E.; Lawson, John W.
2016-01-01
For NiTi based alloys, the shape memory effect is governed by a transition from a low-temperature martensite phase to a high-temperature austenite phase. Despite considerable experimental and computational work, basic questions regarding the stability of the phases and the martensitic phase transition remain unclear even for the simple case of binary, equiatomic NiTi. We perform ab initio molecular dynamics simulations to describe the temperature-dependent behavior of NiTi and resolve several of these outstanding issues. Structural correlation functions and finite temperature phonon spectra are evaluated to determine phase stability. In particular, we show that finite temperature, entropic effects stabilize the experimentally observed martensite (B19') and austenite (B2) phases while destabilizing the theoretically predicted (B33) phase. Free energy computations based on ab initio thermodynamic integration confirm these results and permit estimates of the transition temperature between the phases. In addition to the martensitic phase transition, we predict a new transition between the B33 and B19' phases. The role of defects in suppressing these phase transformations is discussed.
Structural Rheology of the Smectic Phase
Fujii, Shuji; Komura, Shigeyuki; Lu, Chun-Yi David
2014-01-01
In this review article, we discuss the rheological properties of the thermotropic smectic liquid crystal 8CB with focal conic domains (FCDs) from the viewpoint of structural rheology. It is known that the unbinding of the dislocation loops in the smectic phase drives the smectic-nematic transition. Here we discuss how the unbinding of the dislocation loops affects the evolution of the FCD size, linear and nonlinear rheological behaviors of the smectic phase. By studying the FCD formation from the perpendicularly oriented smectic layers, we also argue that dislocations play a key role in the structural development in layered systems. Furthermore, similarities in the rheological behavior between the FCDs in the smectic phase and the onion structures in the lyotropic lamellar phase suggest that these systems share a common physical origin for the elasticity. PMID:28788123
Formation of the molecular crystal structure during the vacuum sublimation of paracetamol
NASA Astrophysics Data System (ADS)
Belyaev, A. P.; Rubets, V. P.; Antipov, V. V.; Bordei, N. S.
2015-04-01
The results from structural and thermal studies on the formation of molecular crystals during the vacuum sublimation of paracetamol from its vapor phase are given. It is established that the vapor-crystal phase transition proceeds in a complicated way as the superposition of two phase transitions: a first-order phase transition with a change in density, and a second-order phase transition with a change in ordering. It is shown that the latter is a smeared phase transition that proceeds with the formation of a pretransitional phase that is irreversibly dissipated during phase transformation, leading to the formation of crystals of the rhombic syngony. Data from differential scanning calorimetry and X-ray diffraction analysis are presented along with microphotographs.
Phase transitions in (NH4)2MoO2F4 crystal
NASA Astrophysics Data System (ADS)
Krylov, Alexander; Laptash, Natalia; Vtyurin, Alexander; Krylova, Svetlana
2016-11-01
The mechanisms of temperature and high pressure phase transitions have been studied by Raman spectroscopy. Room temperature (295 K) experiments under high hydrostatic pressure up to 3.6 GPa for (NH4)2 MoO2 F4 have been carried out. Experimental data indicates a phase transition into a new high-pressure phase for (NH4)2 MoO2 F4 at 1.2 GPa. This phase transition is related to the ordering anion octahedron groups [MoO2 F4]2- and is not associated with ammonium group. Raman spectra of small non-oriented crystals ranging from 10 to 350 K have been observed. The experiment shows anion groups [MoO2 F4]2- and ammonium in high temperature phase are disordered. The phase transition at T1 = 269.8 K is of the first-order, close to the tricritical point. The first temperature phase transition is related to the ordering anion octahedron groups [MoO2 F4]2-. Second phase transitions T2 = 180 K are associated with the ordering of ammonium. The data presented within this study demonstrate that 2D correlation analysis combined with traditional Raman spectroscopy are powerful tool to study phase transitions in the crystals.
Gan, Yinbo; Kumimoto, Rod; Liu, Chang; Ratcliffe, Oliver; Yu, Hao; Broun, Pierre
2006-06-01
As a plant shoot matures, it transitions through a series of growth phases in which successive aerial organs undergo distinct developmental changes. This process of phase change is known to be influenced by gibberellins (GAs). We report the identification of a putative transcription factor, GLABROUS INFLORESCENCE STEMS (GIS), which regulates aspects of shoot maturation in Arabidopsis thaliana. GIS loss-of-function mutations affect the epidermal differentiation of inflorescence organs, causing a premature decrease in trichome production on successive leaves, stem internodes, and branches. Overexpression has the opposite effect on trichome initiation and causes other heterochronic phenotypes, affecting flowering and juvenile-adult leaf transition and inducing the formation of rosette leaves on inflorescence stems. Genetic and gene expression analyses suggest that GIS acts in a GA-responsive pathway upstream of the trichome initiation regulator GLABROUS1 (GL1) and downstream of the GA signaling repressor SPINDLY (SPY). GIS mediates the induction of GL1 expression by GA in inflorescence organs and is antagonized in its action by the DELLA repressor GAI. The implication of GIS in the broader regulation of phase change is further suggested by the delay in flowering caused by GIS loss of function in the spy background. The discovery of GIS reveals a novel mechanism in the control of shoot maturation, through which GAs regulate cellular differentiation in plants.
X-ray Emission Spectroscopy in Magnetic 3d-Transition Metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iota, V; Park, J; Baer, B
2003-11-18
The application of high pressure affects the band structure and magnetic interactions in solids by modifying nearest-neighbor distances and interatomic potentials. While all materials experience electronic changes with increasing pressure, spin polarized, strongly electron correlated materials are expected to undergo the most dramatic transformations. In such materials, (d and f-electron metals and compounds), applied pressure reduces the strength of on-site correlations, leading to increased electron delocalization and, eventually, to loss of its magnetism. In this ongoing project, we study the electronic and magnetic properties of Group VIII, 3d (Fe, Co and Ni) magnetic transition metals and their compounds at highmore » pressures. The high-pressure properties of magnetic 3d-transition metals and compounds have been studied extensively over the years, because of iron being a major constituent of the Earth's core and its relevance to the planetary modeling to understand the chemical composition, internal structure, and geomagnetism. However, the fundamental scientific interest in the high-pressure properties of magnetic 3d-electron systems extends well beyond the geophysical applications to include the electron correlation-driven physics. The role of magnetic interactions in the stabilization of the ''non-standard'' ambient pressure structures of Fe, Co and Ni is still incompletely understood. Theoretical studies have predicted (and high pressure experiments are beginning to show) strong correlations between the electronic structure and phase stability in these materials. The phase diagrams of magnetic 3d systems reflect a delicate balance between spin interactions and structural configuration. At ambient conditions, the crystal structures of {alpha}-Fe(bcc) and {var_epsilon}-Co(hcp) phases depart from the standard sequence (hcp {yields} bcc{yields} hcp {yields} fcc), as observed in all other non-magnetic transition metals with increasing the d-band occupancy, and are different from those of their 4d- and 5d-counter parts. This anomalous behavior has been interpreted in terms of the spin-polarized d-band altering the d-band occupancy [1]. At high pressures, however, the d-valence band is expected to broaden resulting in a suppression or even a complete loss of magnetism. Experimentally, ferromagnetic {alpha}(bcc)-Fe has been confirmed to transform to non-magnetic {var_epsilon}-Fe (hcp) at 10 GPa [2,3]. Recently, we have also observed a similar transition in Co from ferromagnetic {alpha}(hcp)-Co to likely nonmagnetic {beta}(fcc)-Co at 105 GPa[4]. A similar structural phase transition is expected in Ni, probably in the second-order fcc-fcc transition. However, there has been no directly measured change in magnetism associated with the structural phase transition in Co, nor has yet been confirmed such an iso-structural phase transition in Ni. Similar electronic transitions have been proposed in these 3d-transition metal oxides (FeO, CoO and NiO) from high spin (magnetic) to low spin (nonmagnetic) states [5]. In each of these systems, the magnetic transition is accompanied by a first-order structural transition involving large volume collapse (10% in FeO, for example). So far, there have been no electronic measurements under pressure confirming these significant theoretical predictions, although the predicted pressures for the volume collapse transitions are within the experimental pressure range (80-200GPa).« less
Unconventional phase transitions in liquid crystals
NASA Astrophysics Data System (ADS)
Kats, E. I.
2017-12-01
According to classical textbooks on thermodynamics or statistical physics, there are only two types of phase transitions: continuous, or second-order, in which the latent heat L is zero, and first-order, in which L ≠ 0. Present-day textbooks and monographs also mention another, stand-alone type—the Berezinskii-Kosterlitz-Thouless transition, which exists only in two dimensions and shares some features with first- and second-order phase transitions. We discuss examples of non-conventional thermodynamic behavior (i.e., which is inconsistent with the theoretical phase transition paradigm now universally accepted). For phase transitions in smectic liquid crystals, mechanisms for nonconventional behavior are proposed and the predictions they imply are examined.
Superradiant phase transition with graphene embedded in one dimensional optical cavity
NASA Astrophysics Data System (ADS)
Li, Benliang; Liu, Tao; Hewak, Daniel W.; Wang, Qi Jie
2018-01-01
We theoretically investigate the cavity QED of graphene embedded in an optical cavity under perpendicular magnetic field. We consider the coupling of cyclotron transition and a multimode cavity described by a multimode Dicke model. This model exhibits a superradiant quantum phase transition, which we describe exactly in an effective Hamiltonian approach. The complete excitation spectrum in both the normal phase and superradiant phase regimes is given. In contrast to the single mode case, multimode coupling of cavity photon and cyclotron transition can greatly reduce the critical vacuum Rabi frequency required for quantum phase transition, and dramatically enhance the superradiant emission by fast modulating the Hamiltonian. Our work paves a way to experimental explorations of quantum phase transitions in solid state systems.
NASA Astrophysics Data System (ADS)
Cheng, Stephen Z. D.; Keller, Andrew
1998-08-01
Polymer phases can be described in the same way as phases in other condensed matter using a number density operator and its correlation functions. This description requires the understanding of symmetry operations and order at different atomic and molecular levels. Statistical mechanics provides a link between the microscopic description of the structure and motion and the macroscopic thermodynamic properties. Within the limits of the laws of thermodynamics, polymers exhibit a rich variety of phase transition behaviors. By definition, a first-order phase transition describes a transformation that involves a sudden change of thermodynamic properties at its transition temperature, whereas higher-order phase transitions are classified as critical phenomena. Of special interest is the role of metastability in phase and phase transition behaviors. Although a metastable state possesses a local free energy minimum, it is not at the global equilibrium. Furthermore, metastable states can also be associated with phase sizes. Metastable behavior is also observed in phase transformations that are impeded by kinetic limitations along the pathway to thermodynamic equilibrium. This is illustrated in structural and morphological investigations of crystallization and mesophase transitions, liquid-liquid phase separation, vitrification, and gel formation, as well as combinations of transformation processes. In these cases, the metastable state often becomes the dominant state for the entire system and is observed over a range of time and size scales. This review describes the general principles of metastability in polymer phases and phase transitions and provides illustrations from current experimental works in selected areas.
Origins of the structural phase transitions in MoTe2 and WTe2
NASA Astrophysics Data System (ADS)
Kim, Hyun-Jung; Kang, Seoung-Hun; Hamada, Ikutaro; Son, Young-Woo
2017-05-01
Layered transition metal dichalcogenides MoTe2 and WTe2 share almost similar lattice constants as well as topological electronic properties except their structural phase transitions. While the former shows a first-order phase transition between monoclinic and orthorhombic structures, the latter does not. Using a recently proposed van der Waals density functional method, we investigate structural stability of the two materials and uncover that the disparate phase transitions originate from delicate differences between their interlayer bonding states near the Fermi energy. By exploiting the relation between the structural phase transitions and the low energy electronic properties, we show that a charge doping can control the transition substantially, thereby suggesting a way to stabilize or to eliminate their topological electronic energy bands.
Catalysis of partial chiral symmetry restoration by Δ matter
NASA Astrophysics Data System (ADS)
Takeda, Yusuke; Kim, Youngman; Harada, Masayasu
2018-06-01
We study the phase structure of dense hadronic matter including Δ (1232 ) as well as N (939 ) based on the parity partner structure, where the baryons have their chiral partners with a certain amount of chiral invariant masses. We show that, in symmetric matter, Δ enters into matter in the density region of about one to four times normal nuclear matter density, ρB˜1 -4 ρ0 . The onset density of Δ matter depends on the chiral invariant mass of Δ ,mΔ 0 : As mΔ 0 increases, the onset density becomes bigger. The stable Δ -nucleon matter is realized for ρB≳1.5 ρ0 , i.e., the phase transition from nuclear matter to Δ -nucleon matter is of first order for small mΔ 0, and it is of second order for large mΔ 0. We find that, associated with the phase transition, the chiral condensate changes very rapidly; i.e., the chiral symmetry restoration is accelerated by Δ matter. As a result of the accelerations, there appear N*(1535 ) and Δ (1700 ) , which are the chiral partners to N (939 ) and Δ (1232 ) , in high-density matter, signaling the partial chiral symmetry restoration. Furthermore, we find that complete chiral symmetry restoration itself is delayed by Δ matter. We also calculate the effective masses, pressure, and symmetry energy to study how the transition to Δ matter affects such physical quantities. We observe that the physical quantities change drastically at the transition density.
Goto, Masaki; Sawaguchi, Hiroshi; Tamai, Nobutake; Matsuki, Hitoshi; Kaneshina, Shoji
2010-08-17
The bilayer phase behavior of diheptadecanoylphosphatidylcholine (C17PC) with different vesicle sizes (large multilamellar vesicle (LMV) and giant multilamellar vesicle (GMV)) was investigated by fluorescence spectroscopy using a polarity-sensitive fluorescent probe Prodan under atmospheric and high pressures. The difference in phase transitions and thermodynamic quantities of the transition was hardly observed between LMV and GMV used here. On the contrary, the Prodan fluorescence in the bilayer membranes changed depending on the size of vesicles as well as on the phase states. From the second derivative of fluorescence spectra, the three-dimensional image plots in which we can see the location of Prodan in the bilayer membrane as blue valleys were constructed for LMV and GMV under atmospheric pressure. The following characteristic behavior was found: (1) the Prodan molecules in GMV can be distributed to not only adjacent glycerol backbone region, but also near bulk-water region in the lamellar gel or ripple gel phase; (2) the blue valleys of GMV became deeper than those of LMV because of the greater surface density of the Prodan molecules per unit area of GMV than LMV; (3) the liquid crystalline phase of the bilayer excludes the Prodan molecules to a more hydrophilic region at the membrane surface with an increase in vesicle size; (4) the accurate information as to the phase transitions is gradually lost with increasing vesicle size. Under the high-pressure condition, the difference in Prodan fluorescence between LMV and GMV was essentially the same as the difference under atmospheric pressure except for the existence of the pressure-induced interdigitated gel phase. Further, we found that Prodan fluorescence spectra in the interdigitated gel phase were especially affected by the size of vesicles. This study revealed that the Prodan molecules can move around the headgroup region by responding not only to the phase state but also to the vesicle size, and they become a useful membrane probe, detecting important membrane properties such as the packing stress.
Boron-tuning transition temperature of vanadium dioxide from rutile to monoclinic phase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, J. J.; He, H. Y.; Xie, Y.
2014-11-21
The effect of the doped boron on the phase transition temperature between the monoclinic phase and the rutile phase of VO{sub 2} has been studied by performing first-principles calculations. It is found that the phase transition temperature decreases linearly with increasing the doping level of B in each system, no matter where the B atom is in the crystal. More importantly, the descent of the transition temperature is predicted to be as large as 83 K/at. % B, indicating that the boron concentration of only 0.5% can cause the phase transition at room temperature. These findings provide a new routinemore » of modulating the phase transition of VO{sub 2} and pave a way for the practicality of VO{sub 2} as an energy-efficient green material.« less
Exacerbated vulnerability of coupled socio-economic risk in complex networks
NASA Astrophysics Data System (ADS)
Zhang, Xin; Feng, Ling; Berman, Yonatan; Hu, Ning; Stanley, H. Eugene
2016-10-01
The study of risk contagion in economic networks has most often focused on the financial liquidities of institutions and assets. In practice the agents in a network affect each other through social contagion, i.e., through herd behavior and the tendency to follow leaders. We study the coupled risk between social and economic contagion and find it significantly more severe than when economic risk is considered alone. Using the empirical network from the China venture capital market we find that the system exhibits an extreme risk of abrupt phase transition and large-scale damage, which is in clear contrast to the smooth phase transition traditionally observed in economic contagion alone. We also find that network structure impacts market resilience and that the randomization of the social network of the market participants can reduce system fragility when there is herd behavior. Our work indicates that under coupled contagion mechanisms network resilience can exhibit a fundamentally different behavior, i.e., an abrupt transition. It also reveals the extreme risk when a system has coupled socio-economic risks, and this could be of interest to both policy makers and market practitioners.
Lashgari, Iman; Picano, Francesco; Breugem, Wim-Paul; Brandt, Luca
2014-12-19
The aim of this Letter is to characterize the flow regimes of suspensions of finite-size rigid particles in a viscous fluid at finite inertia. We explore the system behavior as a function of the particle volume fraction and the Reynolds number (the ratio of flow and particle inertia to viscous forces). Unlike single-phase flows, where a clear distinction exists between the laminar and the turbulent states, three different regimes can be identified in the presence of a particulate phase, with smooth transitions between them. At low volume fractions, the flow becomes turbulent when increasing the Reynolds number, transitioning from the laminar regime dominated by viscous forces to the turbulent regime characterized by enhanced momentum transport by turbulent eddies. At larger volume fractions, we identify a new regime characterized by an even larger increase of the wall friction. The wall friction increases with the Reynolds number (inertial effects) while the turbulent transport is weakly affected, as in a state of intense inertial shear thickening. This state may prevent the transition to a fully turbulent regime at arbitrary high speed of the flow.
Wu, Yi-Hsiu; Lo, Ting-Ya; She, Ming-Shiuan; Ho, Rong-Ming
2015-08-05
In this study, we aim to examine the morphological evolution of block copolymer (BCP) nanostructured thin films through solvent evaporation at different rates for solvent swollen polystyrene-block-poly(l-lactide) (PS-PLLA). Interesting phase transitions from disorder to perpendicular cylinder and then gyroid can be found while using a partially selective solvent for PS to swell PS-PLLA thin film followed by solvent evaporation. During the transitions, gyroid-forming BCP thin film with characteristic crystallographic planes of (111)G, (110)G, and (211)G parallel to air surface can be observed, and will gradually transform into coexisting (110)G and (211)G planes, and finally transforms to (211)G plane due to the preferential segregation of constituted block to the surface (i.e., the thermodynamic origin for self-assembly) that affects the relative amount of each component at the air surface. With the decrease on the evaporation rate, the disorder phase will transform to parallel cylinder and then directly to (211)G without transition to perpendicular cylinder phase. Most importantly, the morphological evolution of PS-PLLA thin films is strongly dependent upon the solvent removal rate only in the initial stage of the evaporation process due to the anisotropy of cylinder structure. Once the morphology is transformed back to the isotropic gyroid structure after long evaporation, the morphological evolution will only relate to the variation of the surface composition. Similar phase transitions at the substrate can also be obtained by controlling the ratio of PLLA-OH to PS-OH homopolymers to functionalize the substrate. As a result, the fabrication of well-defined nanostructured thin films with controlled orientation can be achieved by simple swelling and deswelling with controlled evaporation rate.
Laser-Induced Melting of Co-C Eutectic Cells as a New Research Tool
NASA Astrophysics Data System (ADS)
van der Ham, E.; Ballico, M.; Jahan, F.
2015-08-01
A new laser-based technique to examine heat transfer and energetics of phase transitions in metal-carbon fixed points and potentially to improve the quality of phase transitions in furnaces with poor uniformity is reported. Being reproducible below 0.1 K, metal-carbon fixed points are increasingly used as reference standards for the calibration of thermocouples and radiation thermometers. At NMIA, the Co-C eutectic point is used for the calibration of thermocouples, with the fixed point traceable to the International Temperature Scale (ITS-90) using radiation thermometry. For thermocouple use, these cells are deep inside a high-uniformity furnace, easily obtaining excellent melting plateaus. However, when used with radiation thermometers, the essential large viewing cone to the crucible restricts the furnace depth and introduces large heat losses from the front furnace zone, affecting the quality of the phase transition. Short laser bursts have been used to illuminate the cavity of a conventional Co-C fixed-point cell during various points in its melting phase transition. The laser is employed to partially melt the metal at the rear of the crucible providing a liquid-solid interface close to the region being observed by the reference pyrometer. As the laser power is known, a quantitative estimate of can be made for the Co-C latent heat of fusion. Using a single laser pulse during a furnace-induced melt, a plateau up to 8 min is observed before the crucible resumes a characteristic conventional melt curve. Although this plateau is satisfyingly flat, well within 100 mK, it is observed that the plateau is laser energy dependent and elevates from the conventional melt "inflection-point" value.
The End-of-Life Phase of High-Grade Glioma Patients: Dying With Dignity?
Taphoorn, Martin J.B.; Uitdehaag, Bernard; Heimans, Jan J.; Deliens, Luc; Reijneveld, Jaap C.; Pasman, H. Roeline W.
2013-01-01
Background. In the end-of-life (EOL) phase, high-grade glioma (HGG) patients have a high symptom burden and often lose independence because of physical and cognitive dysfunction. This might affect the patient's personal dignity. We aimed to (a) assess the proportion of HGG patients dying with dignity as perceived by their relatives and (b) identify disease and care factors correlated with dying with dignity in HGG patients. Methods. We approached relatives of a cohort of 155 deceased HGG patients for the study. Participants completed a questionnaire concerning the EOL phase of the patient, covering several subthemes: (a) symptoms and signs, (b) health-related quality of life, (c) decision making, (d) place and quality of EOL care, and (e) dying with dignity. Results. Relatives of 81 patients participated and 75% indicated that the patient died with dignity. These patients had fewer communication deficits, experienced fewer transitions between health care settings in the EOL phase, and more frequently died at their preferred place of death. Relatives were more satisfied with the physician providing EOL care and reported that the physician adequately explained treatment options. Multivariate analysis identified satisfaction with the physician, the ability to communicate, and the absence of transitions between settings as most predictive of a dignified death. Conclusions. Physicians caring for HGG patients in the EOL phase should timely focus on explaining possible treatment options, because patients experience communication deficits toward death. Physicians should strive to allow patients to die at their preferred place and avoid transitions during the last month of life. PMID:23335620
NASA Astrophysics Data System (ADS)
Iqbal, Mohsin; Duivenvoorden, Kasper; Schuch, Norbert
2018-05-01
We use projected entangled pair states (PEPS) to study topological quantum phase transitions. The local description of topological order in the PEPS formalism allows us to set up order parameters which measure condensation and deconfinement of anyons and serve as substitutes for conventional order parameters. We apply these order parameters, together with anyon-anyon correlation functions and some further probes, to characterize topological phases and phase transitions within a family of models based on a Z4 symmetry, which contains Z4 quantum double, toric code, double semion, and trivial phases. We find a diverse phase diagram which exhibits a variety of different phase transitions of both first and second order which we comprehensively characterize, including direct transitions between the toric code and the double semion phase.
The growth mechanism of grain boundary carbide in Alloy 690
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hui, E-mail: huili@shu.edu.cn; Institute of Materials, Shanghai University, Shanghai 200072; Xia, Shuang
2013-07-15
The growth mechanism of grain boundary M{sub 23}C{sub 6} carbides in nickel base Alloy 690 after aging at 715 °C was investigated by high resolution transmission electron microscopy. The grain boundary carbides have coherent orientation relationship with only one side of the matrix. The incoherent phase interface between M{sub 23}C{sub 6} and matrix was curved, and did not lie on any specific crystal plane. The M{sub 23}C{sub 6} carbide transforms from the matrix phase directly at the incoherent interface. The flat coherent phase interface generally lies on low index crystal planes, such as (011) and (111) planes. The M{sub 23}C{submore » 6} carbide transforms from a transition phase found at curved coherent phase interface. The transition phase has a complex hexagonal crystal structure, and has coherent orientation relationship with matrix and M{sub 23}C{sub 6}: (111){sub matrix}//(0001){sub transition}//(111){sub carbide}, <112{sup ¯}>{sub matrix}//<21{sup ¯}10>{sub transition}//<112{sup ¯}>{sub carbide}. The crystal lattice constants of transition phase are c{sub transition}=√(3)×a{sub matrix} and a{sub transition}=√(6)/2×a{sub matrix}. Based on the experimental results, the growth mechanism of M{sub 23}C{sub 6} and the formation mechanism of transition phase are discussed. - Highlights: • A transition phase was observed at the coherent interfaces of M{sub 23}C{sub 6} and matrix. • The transition phase has hexagonal structure, and is coherent with matrix and M{sub 23}C{sub 6}. • The M{sub 23}C{sub 6} transforms from the matrix directly at the incoherent phase interface.« less
Detecting critical state before phase transition of complex systems by hidden Markov model
NASA Astrophysics Data System (ADS)
Liu, Rui; Chen, Pei; Li, Yongjun; Chen, Luonan
Identifying the critical state or pre-transition state just before the occurrence of a phase transition is a challenging task, because the state of the system may show little apparent change before this critical transition during the gradual parameter variations. Such dynamics of phase transition is generally composed of three stages, i.e., before-transition state, pre-transition state, and after-transition state, which can be considered as three different Markov processes. Thus, based on this dynamical feature, we present a novel computational method, i.e., hidden Markov model (HMM), to detect the switching point of the two Markov processes from the before-transition state (a stationary Markov process) to the pre-transition state (a time-varying Markov process), thereby identifying the pre-transition state or early-warning signals of the phase transition. To validate the effectiveness, we apply this method to detect the signals of the imminent phase transitions of complex systems based on the simulated datasets, and further identify the pre-transition states as well as their critical modules for three real datasets, i.e., the acute lung injury triggered by phosgene inhalation, MCF-7 human breast cancer caused by heregulin, and HCV-induced dysplasia and hepatocellular carcinoma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altintas, Ferdi, E-mail: ferdialtintas@ibu.edu.tr; Eryigit, Resul, E-mail: resul@ibu.edu.tr
2012-12-15
We have investigated the quantum phase transitions in the ground states of several critical systems, including transverse field Ising and XY models as well as XY with multiple spin interactions, XXZ and the collective system Lipkin-Meshkov-Glick models, by using different quantumness measures, such as entanglement of formation, quantum discord, as well as its classical counterpart, measurement-induced disturbance and the Clauser-Horne-Shimony-Holt-Bell function. Measurement-induced disturbance is found to detect the first and second order phase transitions present in these critical systems, while, surprisingly, it is found to fail to signal the infinite-order phase transition present in the XXZ model. Remarkably, the Clauser-Horne-Shimony-Holt-Bellmore » function is found to detect all the phase transitions, even when quantum and classical correlations are zero for the relevant ground state. - Highlights: Black-Right-Pointing-Pointer The ability of correlation measures to detect quantum phase transitions has been studied. Black-Right-Pointing-Pointer Measurement induced disturbance fails to detect the infinite order phase transition. Black-Right-Pointing-Pointer CHSH-Bell function detects all phase transitions even when the bipartite density matrix is uncorrelated.« less
Strain and defect engineering on phase transition of monolayer black phosphorene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yan; Shi, Xiaoyang; Li, Mingjia
Under biaxial strain, SW-2 defect can move inward the phase boundary of α-P and β-P remarkably and promote the phase transition from α-P to β-P, serving as an excellent ‘phase transition catalyzer’.
Strain and defect engineering on phase transition of monolayer black phosphorene
Chen, Yan; Shi, Xiaoyang; Li, Mingjia; ...
2018-01-01
Under biaxial strain, SW-2 defect can move inward the phase boundary of α-P and β-P remarkably and promote the phase transition from α-P to β-P, serving as an excellent ‘phase transition catalyzer’.
Quantum phase transitions between a class of symmetry protected topological states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsui, Lokman; Jiang, Hong-Chen; Lu, Yuan-Ming
2015-07-01
The subject of this paper is the phase transition between symmetry protected topological states (SPTs). We consider spatial dimension d and symmetry group G so that the cohomology group, Hd+1(G,U(1)), contains at least one Z2n or Z factor. We show that the phase transition between the trivial SPT and the root states that generate the Z2n or Z groups can be induced on the boundary of a (d+1)-dimensional View the MathML source-symmetric SPT by a View the MathML source symmetry breaking field. Moreover we show these boundary phase transitions can be “transplanted” to d dimensions and realized in lattice modelsmore » as a function of a tuning parameter. The price one pays is for the critical value of the tuning parameter there is an extra non-local (duality-like) symmetry. In the case where the phase transition is continuous, our theory predicts the presence of unusual (sometimes fractionalized) excitations corresponding to delocalized boundary excitations of the non-trivial SPT on one side of the transition. This theory also predicts other phase transition scenarios including first order transition and transition via an intermediate symmetry breaking phase.« less
Quantum phase transitions between a class of symmetry protected topological states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsui, Lokman; Jiang, Hong -Chen; Lu, Yuan -Ming
2015-04-30
The subject of this paper is the phase transition between symmetry protected topological states (SPTs). We consider spatial dimension d and symmetry group G so that the cohomology group, H d+1(G,U(1)), contains at least one Z 2n or Z factor. We show that the phase transition between the trivial SPT and the root states that generate the Z 2n or Z groups can be induced on the boundary of a (d+1)-dimensional G x Z T 2-symmetric SPT by a Z T 2 symmetry breaking field. Moreover we show these boundary phase transitions can be “transplanted” to d dimensions and realizedmore » in lattice models as a function of a tuning parameter. The price one pays is for the critical value of the tuning parameter there is an extra non-local (duality-like) symmetry. In the case where the phase transition is continuous, our theory predicts the presence of unusual (sometimes fractionalized) excitations corresponding to delocalized boundary excitations of the non-trivial SPT on one side of the transition. This theory also predicts other phase transition scenarios including first order transition and transition via an intermediate symmetry breaking phase.« less
Size-dependent phase transition in methylammonium lead iodide perovskite microplate crystals
Li, Dehui; Wang, Gongming; Cheng, Hung-Chieh; Chen, Chih-Yen; Wu, Hao; Liu, Yuan; Huang, Yu; Duan, Xiangfeng
2016-01-01
Methylammonium lead iodide perovskite has attracted considerable recent interest for solution processable solar cells and other optoelectronic applications. The orthorhombic-to-tetragonal phase transition in perovskite can significantly alter its optical, electrical properties and impact the corresponding applications. Here, we report a systematic investigation of the size-dependent orthorhombic-to-tetragonal phase transition using a combined temperature-dependent optical, electrical transport and transmission electron microscopy study. Our studies of individual perovskite microplates with variable thicknesses demonstrate that the phase transition temperature decreases with reducing microplate thickness. The sudden decrease of mobility around phase transition temperature and the presence of hysteresis loops in the temperature-dependent mobility confirm that the orthorhombic-to-tetragonal phase transition is a first-order phase transition. Our findings offer significant fundamental insight on the temperature- and size-dependent structural, optical and charge transport properties of perovskite materials, and can greatly impact future exploration of novel electronic and optoelectronic devices from these materials. PMID:27098114
Size-dependent phase transition in methylammonium lead iodide perovskite microplate crystals
Li, Dehui; Wang, Gongming; Cheng, Hung -Chieh; ...
2016-04-21
Methylammonium lead iodide perovskite has attracted considerable recent interest for solution processable solar cells and other optoelectronic applications. The orthorhombic-to-tetragonal phase transition in perovskite can significantly alter its optical, electrical properties and impact the corresponding applications. Here, we report a systematic investigation of the size-dependent orthorhombic-to-tetragonal phase transition using a combined temperature-dependent optical, electrical transport and transmission electron microscopy study. Our studies of individual perovskite microplates with variable thicknesses demonstrate that the phase transition temperature decreases with reducing microplate thickness. The sudden decrease of mobility around phase transition temperature and the presence of hysteresis loops in the temperature-dependent mobility confirmmore » that the orthorhombic-to-tetragonal phase transition is a first-order phase transition. Lastly, our findings offer significant fundamental insight on the temperature-and size-dependent structural, optical and charge transport properties of perovskite materials, and can greatly impact future exploration of novel electronic and optoelectronic devices from these materials.« less
Conventional empirical law reverses in the phase transitions of 122-type iron-based superconductors
Yu, Zhenhai; Wang, Lin; Wang, Luhong; ...
2014-11-24
Phase transition of solid-state materials is a fundamental research topic in condensed matter physics, materials science and geophysics. It has been well accepted and widely proven that isostructural compounds containing different cations undergo same pressure-induced phase transitions but at progressively lower pressures as the cation radii increases. However, we discovered that this conventional law reverses in the structural transitions in 122-type iron-based superconductors. In this report, a combined low temperature and high pressure X-ray diffraction (XRD) measurement has identified the phase transition curves among the tetragonal (T), orthorhombic (O) and the collapsed-tetragonal (cT) phases in the structural phase diagram ofmore » the iron-based superconductor AFe 2As 2 (A = Ca, Sr, Eu, and Ba). As a result, the cation radii dependence of the phase transition pressure (T → cT) shows an opposite trend in which the compounds with larger ambient radii cations have a higher transition pressure.« less
Quasi-phases and pseudo-transitions in one-dimensional models with nearest neighbor interactions
NASA Astrophysics Data System (ADS)
de Souza, S. M.; Rojas, Onofre
2018-01-01
There are some particular one-dimensional models, such as the Ising-Heisenberg spin models with a variety of chain structures, which exhibit unexpected behaviors quite similar to the first and second order phase transition, which could be confused naively with an authentic phase transition. Through the analysis of the first derivative of free energy, such as entropy, magnetization, and internal energy, a "sudden" jump that closely resembles a first-order phase transition at finite temperature occurs. However, by analyzing the second derivative of free energy, such as specific heat and magnetic susceptibility at finite temperature, it behaves quite similarly to a second-order phase transition exhibiting an astonishingly sharp and fine peak. The correlation length also confirms the evidence of this pseudo-transition temperature, where a sharp peak occurs at the pseudo-critical temperature. We also present the necessary conditions for the emergence of these quasi-phases and pseudo-transitions.
Pressure-induced Lifshitz and structural transitions in NbAs and TaAs: experiments and theory
NASA Astrophysics Data System (ADS)
Nath Gupta, Satyendra; Singh, Anjali; Pal, Koushik; Muthu, D. V. S.; Shekhar, C.; Elghazali, Moaz A.; Naumov, Pavel G.; Medvedev, Sergey A.; Felser, C.; Waghmare, U. V.; Sood, A. K.
2018-05-01
High pressure Raman, resistivity and synchrotron x-ray diffraction studies on Weyl semimetals NbAs and TaAs have been carried out along with density functional theoretical (DFT) analysis to explain pressure induced structural and electronic topological phase transitions. The frequencies of first order Raman modes harden with increasing pressure, exhibiting a slope change at GPa for NbAs and GPa for TaAs. The resistivities of NbAs and TaAs exhibit a minimum at pressures close to these transition pressures and also a change in the bulk modulus is observed. Our first-principles calculations reveal that the transition is associated with an electronic Lifshitz transition at for NbAs while it is a structural phase transition from body centered tetragonal to hexagonal phase at for TaAs. Further, our DFT calculations show a structural phase transition at 24 GPa from body centered tetragonal phase to hexagonal phase.
The transition to the metallic state in low density hydrogen
McMinis, Jeremy; Morales, Miguel A.; Ceperley, David M.; ...
2015-11-18
Solid atomic hydrogen is one of the simplest systems to undergo a metal-insulator transition. Near the transition, the electronic degrees of freedom become strongly correlated and their description provides a difficult challenge for theoretical methods. As a result, the order and density of the phase transition are still subject to debate. In this work we use diffusion quantum Monte Carlo to benchmark the transition between the paramagnetic and anti-ferromagnetic phases of ground state body centered cubic atomic hydrogen. We locate the density of the transition by computing the equation of state for these two phases and identify the phase transitionmore » order by computing the band gap near the phase transition. These benchmark results show that the phase transition is continuous and occurs at a Wigner-Seitz radius of r s = 2.27(3)a 0. As a result, we compare our results to previously reported density functional theory, Hedin s GW approximation, and dynamical mean field theory results.« less
Superconductor to Mott insulator transition in YBa 2Cu 3O 7/LaCaMnO 3 heterostructures
Gray, B. A.; Middey, S.; Conti, G.; ...
2016-09-15
The superconductor-to-insulator transition (SIT) induced by means such as external magnetic fields, disorder or spatial confinement is a vivid illustration of a quantum phase transition dramatically affecting the superconducting order parameter. In this paper, in pursuit of a new realization of the SIT by interfacial charge transfer, we developed extremely thin superlattices composed of high Tc superconductor YBa 2Cu 3O 7 (YBCO) and colossal magnetoresistance ferromagnet La 0.67Ca 0.33MnO 3 (LCMO). By using linearly polarized resonant X-ray absorption spectroscopy and magnetic circular dichroism, combined with hard X-ray photoelectron spectroscopy, we derived a complete picture of the interfacial carrier doping inmore » cuprate and manganite atomic layers, leading to the transition from superconducting to an unusual Mott insulating state emerging with the increase of LCMO layer thickness. In addition, contrary to the common perception that only transition metal ions may respond to the charge transfer process, we found that charge is also actively compensated by rare-earth and alkaline-earth metal ions of the interface. Finally, such deterministic control of Tc by pure electronic doping without any hindering effects of chemical substitution is another promising route to disentangle the role of disorder on the pseudo-gap and charge density wave phases of underdoped cuprates.« less
Tischer, Alexander; Machha, Venkata R; Rösgen, Jörg; Auton, Matthew
2018-02-19
Protein phase diagrams have a unique potential to identify the presence of additional thermodynamic states even when non-2-state character is not readily apparent from the experimental observables used to follow protein unfolding transitions. Two-state analysis of the von Willebrand factor A3 domain has previously revealed a discrepancy in the calorimetric enthalpy obtained from thermal unfolding transitions as compared with Gibbs-Helmholtz analysis of free energies obtained from the Linear Extrapolation Method (Tischer and Auton, Prot Sci 2013; 22(9):1147-60). We resolve this thermodynamic conundrum using a Clausius-Clapeyron analysis of the urea-temperature phase diagram that defines how ΔH and the urea m-value interconvert through the slope of c m versus T, (∂cm/∂T)=ΔH/(mT). This relationship permits the calculation of ΔH at low temperature from m-values obtained through iso-thermal urea denaturation and high temperature m-values from ΔH obtained through iso-urea thermal denaturation. Application of this equation uncovers sigmoid transitions in both cooperativity parameters as temperature is increased. Such residual thermal cooperativity of ΔH and the m-value confirms the presence of an additional state which is verified to result from a cooperative phase transition between urea-expanded and thermally-compact denatured states. Comparison of the equilibria between expanded and compact denatured ensembles of disulfide-intact and carboxyamidated A3 domains reveals that introducing a single disulfide crosslink does not affect the presence of the additional denatured state. It does, however, make a small thermodynamically favorable free energy (∼-13 ± 1 kJ/mol) contribution to the cooperative denatured state collapse transition as temperature is raised and urea concentration is lowered. The thermodynamics of this "cooperative collapse" of the denatured state retain significant compensations between the enthalpy and entropy contributions to the overall free energy. © 2018 Wiley Periodicals, Inc.
The Effect of Aging on Muscular Dynamics Underlying Movement Patterns Changes.
Vernooij, Carlijn A; Rao, Guillaume; Berton, Eric; Retornaz, Frédérique; Temprado, Jean-Jacques
2016-01-01
Introduction: Aging leads to alterations not only within the complex subsystems of the neuro-musculo-skeletal system, but also in the coupling between them. Here, we studied how aging affects functional reorganizations that occur both within and between the behavioral and muscular levels, which must be coordinated to produce goal-directed movements. Using unimanual reciprocal Fitts' task, we examined the behavioral and muscular dynamics of older adults (74.4 ± 3.7 years) and compared them to those found for younger adults (23.2 ± 2.0 years). Methods: To achieve this objective, we manipulated the target size to trigger a phase transition in the behavioral regime and searched for concomitant signatures of a phase transition in the muscular coordination. Here, muscular coordination was derived by using the method of muscular synergy extraction. With this technique, we obtained functional muscular patterns through non-negative matrix factorization of the muscular signals followed by clustering the resulting synergies. Results: Older adults showed a phase transition in behavioral regime, although, in contrast to young participants, their kinematic profiles did not show a discontinuity. In parallel, muscular coordination displayed two typical signatures of a phase transition, that is, increased variability of coordination patterns and a reorganization of muscular synergies. Both signatures confirmed the existence of muscular reorganization in older adults, which is coupled with change in dynamical regime at behavioral level. However, relative to young adults, transition occurred at lower index of difficulty (ID) in older participants and the reorganization of muscular patterns lasted longer (over multiple IDs). Discussion: This implies that consistent changes occur in coordination processes across behavior and muscle. Furthermore, the repertoire of muscular patterns was reduced and somewhat modified for older adults, relative to young participants. This suggests that aging is not only related to changes in individual muscles (e.g., caused by dynapenia) but also in their coordination.
NASA Astrophysics Data System (ADS)
Lin, Hanxuan; Liu, Hao; Bai, Yu; Miao, Tian; Yu, Yang; Zhu, Yinyan; Chen, Hongyan; Kou, Yunfang; Niu, Jiebin; Wang, Wenbin; Yin, Lifeng; Shen, Jian
First order metal-insulator transition, accounting for various intriguing phenomena, is one of the most important phase transitions in condensed matter systems. Aside from the initial and final states, i.e. the metallic and insulating phases, no stable intermediate phase has been experimentally identified in such first order phase transition, though some transient phases do exist at the ultrafast time scale. Here, using our unique low-temperature, high-field magnetic force microscopy with photoexcitation, we directly observed a stable intermediate phase emerging and mediating the photoinduced first order metal-insulator transition in manganites. This phase is characteristic of low net magnetization and high resistivity. Our observations unveil the microscopic details of the photoinduced metal-insulator transition in manganites, which may be insightful to study first order metal-insulator transition in other condensed matter systems. This work was supported by National Key Research Program of China (2016YFA0300702), National Basic Research Program of China (973 Program) under the Grant No. 2013CB932901 and 2014CB921104; National Natural Science Foundation of China (11274071, 11504053).
Line tension effects on the wetting of nanostructures: an energy method
NASA Astrophysics Data System (ADS)
Guo, Hao-Yuan; Li, Bo; Feng, Xi-Qiao
2017-09-01
The superhydrophobicity and self-cleaning property of micro/nano-structured solid surfaces require a stable Cassie-Baxter (CB) wetting state at the liquid-solid interface. We present an energy method to investigate how the three-phase line tension affects the CB wetting state on nanostructured materials. For some nanostructures, the line tension may engender a distinct energy barrier, which restricts the position of the three-phase contact line and affects the stability of the CB wetting state. We ascertain the upper and lower limits of the critical pressure at the CB-Wenzel transition. Our results suggest that superhydrophobicity on nanostructures can be modulated by tailoring the line tension and harnessing the curvature effect. This study also provides new insights into the sinking phenomena observed in the nanoparticle-floating experiment.
NASA Astrophysics Data System (ADS)
Bouachraoui, Rachid; El Hachimi, Abdel Ghafour; Ziat, Younes; Bahmad, Lahoucine; Tahiri, Najim
2018-06-01
Electronic and magnetic properties of hexagonal Iron (II) Sulfide (hexagonal FeS) have been investigated by combining the Density functional theory (DFT) and Monte Carlo simulations (MCS). This compound is constituted by magnetic hexagonal lattice occupied by Fe2+ with spin state (S = 2). Based on ab initio method, we calculated the exchange coupling JFe-Fe between two magnetic atoms Fe-Fe in different directions. Also phase transitions, magnetic stability and magnetizations have been investigated in the framework of Monte Carlo simulations. Within this method, a second phase transition is observed at the Néel temperature TN = 450 K. This finding in good agreement with the reported data in the literature. The effect of the applied different parameters showed how can these parameters affect the critical temperature of this system. Moreover, we studied the density of states and found that the hexagonal FeS will be a promoting material for spintronic applications.
Cultivation and energy efficient harvesting of microalgae using thermoreversible sol-gel transition
Estime, Bendy; Ren, Dacheng; Sureshkumar, Radhakrishna
2017-01-01
Microalgae represent a promising source of renewable biomass for the production of biofuels and valuable chemicals. However, energy efficient cultivation and harvesting technologies are necessary to improve economic viability. A Tris-Acetate-Phosphate-Pluronic (TAPP) medium that undergoes a thermoreversible sol-gel transition is developed to efficiently culture and harvest microalgae without affecting the productivity as compared to that in traditional culture in a well-mixed suspension. After seeding microalgae in the TAPP medium in a solution phase at 15 °C, the temperature is increased by 7 °C to induce gelation. Within the gel, microalgae are observed to grow in large clusters rather than as isolated cells. The settling velocity of the microalgal clusters is approximately ten times larger than that of individual cells cultured in typical solution media. Such clusters are easily harvested gravimetrically by decreasing the temperature to bring the medium to a solution phase. PMID:28102313
Optimal back-to-front airplane boarding.
Bachmat, Eitan; Khachaturov, Vassilii; Kuperman, Ran
2013-06-01
The problem of finding an optimal back-to-front airplane boarding policy is explored, using a mathematical model that is related to the 1+1 polynuclear growth model with concave boundary conditions and to causal sets in gravity. We study all airplane configurations and boarding group sizes. Optimal boarding policies for various airplane configurations are presented. Detailed calculations are provided along with simulations that support the main conclusions of the theory. We show that the effectiveness of back-to-front policies undergoes a phase transition when passing from lightly congested airplanes to heavily congested airplanes. The phase transition also affects the nature of the optimal or near-optimal policies. Under what we consider to be realistic conditions, optimal back-to-front policies lead to a modest 8-12% improvement in boarding time over random (no policy) boarding, using two boarding groups. Having more than two groups is not effective.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun Yunzhou; Yi Lin; Wysin, G. M.
2008-10-15
The Berezinskii-Kosterlitz-Thouless (BKT) phase transition for the dilute planar rotator model on a triangular lattice is studied by using a hybrid Monte Carlo method. The phase-transition temperatures for different nonmagnetic impurity densities are obtained by three approaches: finite-size scaling of plane magnetic susceptibility, helicity modulus, and Binder's fourth cumulant. It is found that the phase-transition temperature decreases with increasing impurity density {rho} and the BKT phase transition vanishes when the magnetic occupancy falls to the site percolation threshold: 1-{rho}{sub c}=p{sub c}=0.5.
Local bias-induced phase transitions
Seal, Katyayani; Baddorf, Arthur P.; Jesse, Stephen; ...
2008-11-27
Electrical bias-induced phase transitions underpin a wide range of applications from data storage to energy generation and conversion. The mechanisms behind these transitions are often quite complex and in many cases are extremely sensitive to local defects that act as centers for local transformations or pinning. Furthermore, using ferroelectrics as an example, we review methods for probing bias-induced phase transitions and discuss the current limitations and challenges for extending the methods to field-induced phase transitions and electrochemical reactions in energy storage, biological and molecular systems.
Mixed-order phase transition in a colloidal crystal.
Alert, Ricard; Tierno, Pietro; Casademunt, Jaume
2017-12-05
Mixed-order phase transitions display a discontinuity in the order parameter like first-order transitions yet feature critical behavior like second-order transitions. Such transitions have been predicted for a broad range of equilibrium and nonequilibrium systems, but their experimental observation has remained elusive. Here, we analytically predict and experimentally realize a mixed-order equilibrium phase transition. Specifically, a discontinuous solid-solid transition in a 2D crystal of paramagnetic colloidal particles is induced by a magnetic field [Formula: see text] At the transition field [Formula: see text], the energy landscape of the system becomes completely flat, which causes diverging fluctuations and correlation length [Formula: see text] Mean-field critical exponents are predicted, since the upper critical dimension of the transition is [Formula: see text] Our colloidal system provides an experimental test bed to probe the unconventional properties of mixed-order phase transitions.
Mixed-order phase transition in a colloidal crystal
NASA Astrophysics Data System (ADS)
Alert, Ricard; Tierno, Pietro; Casademunt, Jaume
2017-12-01
Mixed-order phase transitions display a discontinuity in the order parameter like first-order transitions yet feature critical behavior like second-order transitions. Such transitions have been predicted for a broad range of equilibrium and nonequilibrium systems, but their experimental observation has remained elusive. Here, we analytically predict and experimentally realize a mixed-order equilibrium phase transition. Specifically, a discontinuous solid-solid transition in a 2D crystal of paramagnetic colloidal particles is induced by a magnetic field H. At the transition field Hs, the energy landscape of the system becomes completely flat, which causes diverging fluctuations and correlation length ξ∝|H2-Hs2|-1/2. Mean-field critical exponents are predicted, since the upper critical dimension of the transition is du=2. Our colloidal system provides an experimental test bed to probe the unconventional properties of mixed-order phase transitions.
Exoplanet phase curves at large phase angles. Diagnostics for extended hazy atmospheres
NASA Astrophysics Data System (ADS)
García Muñoz, A.; Cabrera, J.
2018-01-01
At optical wavelengths, Titan's brightness for large Sun-Titan-observer phase angles significantly exceeds its dayside brightness. The brightening that occurs near back-illumination is due to moderately large haze particles in the moon's extended atmosphere that forward scatters the incident sunlight. Motivated by this phenomenon, here we investigate the forward scattering from currently known exoplanets, its diagnostics possibilities, the observational requirements to resolve it and potential implications. An analytical expression is derived for the amount of starlight forward scattered by an exponential atmosphere that takes into account the finite angular size of the star. We use this expression to tentatively estimate how prevalent this phenomenon may be. Based on numerical calculations that consider exoplanet visibility, we identify numerous planets with predicted out-of-transit forward-scattering signals of up to tens of parts per million provided that aerosols of ≳1 μm size form over an extended vertical region near the optical radius level. We propose that the interpretation of available optical phase curves should be revised to constrain the strength of this phenomenon that might provide insight into aerosol scale heights and particle sizes. For the relatively general atmospheres considered here, forward scattering reduces the transmission-only transit depth by typically less than the equivalent to a scale height. For short-period exoplanets, the finite angular size of the star severely affects the amount of radiation scattered towards the observer at mid-transit.
Mukarakate, Calvin; Mittal, Ashutosh; Ciesielski, Peter N.; ...
2016-07-19
Here, cellulose is the primary biopolymer responsible for maintaining the structural and mechanical integrity of cell walls and, during the fast pyrolysis of biomass, may be restricting cell wall expansion and inhibiting phase transitions that would otherwise facilitate efficient escape of pyrolysis products. Here, we test whether modifications in two physical properties of cellulose, its crystalline allomorph and degree of crystallinity, alter its performance during fast pyrolysis. We show that both crystal allomorph and relative crystallinity of cellulose impact the slate of primary products produced by fast pyrolysis. For both cellulose-I and cellulose-II, changes in crystallinity dramatically impact the fastmore » pyrolysis product portfolio. In both cases, only the most highly crystalline samples produced vapors dominated by levoglucosan. Cellulose-III, on the other hand, produces largely the same slate of products regardless of its relative crystallinity and produced as much or more levoglucosan at all crystallinity levels compared to cellulose-I or II. In addition to changes in products, the different cellulose allomorphs affected the viscoelastic properties of cellulose during rapid heating. Real-time hot-stage pyrolysis was used to visualize the transition of the solid material through a molten phase and particle shrinkage. SEM analysis of the chars revealed additional differences in viscoelastic properties and molten phase behavior impacted by cellulose crystallinity and allomorph. Regardless of relative crystallinity, the cellulose-III samples displayed the most obvious evidence of having transitioned through a molten phase.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carl, Eva-Regine; Mansfeld, Ulrich; Liermann, Hanns-Peter
Hypervelocity collisions of solid bodies occur frequently in the solar system and affect rocks by shock waves and dynamic loading. A range of shock metamorphic effects and high-pressure polymorphs in rock-forming minerals are known from meteorites and terrestrial impact craters. In this paper, we investigate the formation of high-pressure polymorphs of α-quartz under dynamic and nonhydrostatic conditions and compare these disequilibrium states with those predicted by phase diagrams derived from static experiments under equilibrium conditions. We create highly dynamic conditions utilizing a mDAC and study the phase transformations in α-quartz in situ by synchrotron powder X-ray diffraction. Phase transitions ofmore » α-quartz are studied at pressures up to 66.1 and different loading rates. At compression rates between 0.14 and 1.96 GPa s -1, experiments reveal that α-quartz is amorphized and partially converted to stishovite between 20.7 GPa and 28.0 GPa. Therefore, coesite is not formed as would be expected from equilibrium conditions. With the increasing compression rate, a slight increase in the transition pressure occurs. The experiments show that dynamic compression causes an instantaneous formation of structures consisting only of SiO 6 octahedra rather than the rearrangement of the SiO 4 tetrahedra to form a coesite. Although shock compression rates are orders of magnitude faster, a similar mechanism could operate in impact events.« less
Carl, Eva-Regine; Mansfeld, Ulrich; Liermann, Hanns-Peter; ...
2017-03-27
Hypervelocity collisions of solid bodies occur frequently in the solar system and affect rocks by shock waves and dynamic loading. A range of shock metamorphic effects and high-pressure polymorphs in rock-forming minerals are known from meteorites and terrestrial impact craters. In this paper, we investigate the formation of high-pressure polymorphs of α-quartz under dynamic and nonhydrostatic conditions and compare these disequilibrium states with those predicted by phase diagrams derived from static experiments under equilibrium conditions. We create highly dynamic conditions utilizing a mDAC and study the phase transformations in α-quartz in situ by synchrotron powder X-ray diffraction. Phase transitions ofmore » α-quartz are studied at pressures up to 66.1 and different loading rates. At compression rates between 0.14 and 1.96 GPa s -1, experiments reveal that α-quartz is amorphized and partially converted to stishovite between 20.7 GPa and 28.0 GPa. Therefore, coesite is not formed as would be expected from equilibrium conditions. With the increasing compression rate, a slight increase in the transition pressure occurs. The experiments show that dynamic compression causes an instantaneous formation of structures consisting only of SiO 6 octahedra rather than the rearrangement of the SiO 4 tetrahedra to form a coesite. Although shock compression rates are orders of magnitude faster, a similar mechanism could operate in impact events.« less
Parladé, Meaghan V.; Iverson, Jana M.
2012-01-01
From a dynamic systems perspective, transition points in development are times of increased instability, during which behavioral patterns are susceptible to temporary decoupling. This study investigated the impact of the vocabulary spurt on existing patterns of communicative coordination. Eighteen typically developing infants were videotaped at home 1 month before, at, and after the vocabulary spurt. Infants were identified as spurters if they underwent a discrete phase transition in vocabulary development (marked by an inflection point), and compared with a group of nonspurters whose word-learning rates followed a trajectory of continuous change. Relative to surrounding sessions, there were significant reductions in overall coordination of communicative behaviors and in words produced in coordination at the vocabulary spurt session for infants who experienced more dramatic vocabulary growth. In contrast, nonspurters demonstrated little change across sessions. Findings underscore the importance of transitions as opportunities for observing processes of developmental change. PMID:21219063
Global quantum discord and quantum phase transition in XY model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Si-Yuan; Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190; Zhang, Yu-Ran, E-mail: yrzhang@iphy.ac.cn
We study the relationship between the behavior of global quantum correlations and quantum phase transitions in XY model. We find that the two kinds of phase transitions in the studied model can be characterized by the features of global quantum discord (GQD) and the corresponding quantum correlations. We demonstrate that the maximum of the sum of all the nearest neighbor bipartite GQDs is effective and accurate for signaling the Ising quantum phase transition, in contrast, the sudden change of GQD is very suitable for characterizing another phase transition in the XY model. This may shed lights on the study ofmore » properties of quantum correlations in different quantum phases.« less
First-order reversal curve of the magnetostructural phase transition in FeTe
Frampton, M. K.; Crocker, J.; Gilbert, D. A.; ...
2017-06-05
We apply the first-order reversal curve (FORC) method, adapted from studies of ferromagnetic materials, to the magnetostructural phase transition of Fe 1+yTe. FORC measurements reveal two features in the hysteretic phase transition, even in samples where traditional temperature measurements display only a single transition. For Fe 1.13Te, the influence of magnetic field suggests that the main feature is primarily structural while a smaller, slightly higher-temperature transition is magnetic in origin. By contrast, Fe 1.03Te has a single transition which shows a uniform response to magnetic field, indicating a stronger coupling of the magnetic and structural phase transitions. We also introducemore » uniaxial stress, which spreads the distribution width without changing the underlying energy barrier of the transformation. Finally, the work shows how FORC can help disentangle the roles of the magnetic and structural phase transitions in FeTe.« less
Sebastián, Nerea; López, David Orencio; Diez-Berart, Sergio; de la Fuente, María Rosario; Salud, Josep; Pérez-Jubindo, Miguel Angel; Ros, María Blanca
2011-01-01
In this work, a study of the nematic (N)–isotropic (I) phase transition has been made in a series of odd non-symmetric liquid crystal dimers, the α-(4-cyanobiphenyl-4’-yloxy)-ω-(1-pyrenimine-benzylidene-4’-oxy) alkanes, by means of accurate calorimetric and dielectric measurements. These materials are potential candidates to present the elusive biaxial nematic (NB) phase, as they exhibit both molecular biaxiality and flexibility. According to the theory, the uniaxial nematic (NU)–isotropic (I) phase transition is first-order in nature, whereas the NB–I phase transition is second-order. Thus, a fine analysis of the critical behavior of the N–I phase transition would allow us to determine the presence or not of the biaxial nematic phase and understand how the molecular biaxiality and flexibility of these compounds influences the critical behavior of the N–I phase transition. PMID:28824100
Dimensionality-strain phase diagram of strontium iridates
NASA Astrophysics Data System (ADS)
Kim, Bongjae; Liu, Peitao; Franchini, Cesare
2017-03-01
The competition between spin-orbit coupling, bandwidth (W ), and electron-electron interaction (U ) makes iridates highly susceptible to small external perturbations, which can trigger the onset of novel types of electronic and magnetic states. Here we employ first principles calculations based on density functional theory and on the constrained random phase approximation to study how dimensionality and strain affect the strength of U and W in (SrIrO3)m/(SrTiO3) superlattices. The result is a phase diagram explaining two different types of controllable magnetic and electronic transitions, spin-flop and insulator-to-metal, connected with the disruption of the Jeff=1 /2 state which cannot be understood within a simplified local picture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vázquez, Santiago; Davyt, Sebastián; Basbus, Juan F.
2015-08-15
Nanocrystalline La{sub 0.6}Sr{sub 0.4}Fe{sub 0.8}Cu{sub 0.2}O{sub 3−δ} (LSFCu) material was synthetized by combustion method using EDTA as fuel/chelating agent and NH{sub 4}NO{sub 3} as combustion promoter. Structural characterization using thermodiffraction data allowed to determine a reversible phase transition at 425 °C from a low temperature R-3c phase to a high temperature Pm-3m phase and to calculate the thermal expansion coefficient (TEC) of both phases. Important characteristics for cathode application as electronic conductivity and chemical compatibility with Ce{sub 0.9}Gd{sub 0.1}O{sub 2−δ} (CGO) electrolyte were evaluated. LSFCu presented a p-type conductor behavior with maximum conductivity of 135 S cm{sup −1} at 275more » °C and showed a good stability with CGO electrolyte at high temperatures. This work confirmed that as prepared LSFCu has excellent microstructural characteristics and an electrical conductivity between 100 and 60 S cm{sup −1} in the 500–700 °C range which is sufficiently high to work as intermediate temperature Solid Oxide Fuel Cells (IT-SOFCs) cathode. However a change in the thermal expansion coefficient consistent with a small oxygen loss process may affect the electrode-electrolyte interface during fabrication and operation of a SOFC. - Graphical abstract: Nanocrystalline La{sub 0.6}Sr{sub 0.4}Fe{sub 0.8}Cu{sub 0.2}O{sub 3−δ} was prepared by gel combustion and characterized by X-ray thermodiffraction and its conductivity was determined. The phase shows a reversible rhombohedral to cubic structural phase transition at 425 °C and a semiconductor to metallic phase transition at 275 °C. - Highlights: • LSFCu was prepared by gel combustion route using EDTA and NH{sub 4}NO{sub 3}. • LSFCu shows a reversible phase transition at 425 °C from R-3c to Pm-3m phase. • The sample has a maximum conductivity value of 135 S cm{sup −1} at 275 °C. • LSFCu shows a good chemical compatibility with CGO at 900 °C.« less
Thermodynamic phase transition of a black hole in rainbow gravity
NASA Astrophysics Data System (ADS)
Feng, Zhong-Wen; Yang, Shu-Zheng
2017-09-01
In this letter, using the rainbow functions that were proposed by Magueijo and Smolin, we investigate the thermodynamics and the phase transition of rainbow Schwarzschild black hole. First, we calculate the rainbow gravity corrected Hawking temperature. From this modification, we then derive the local temperature, free energy, and other thermodynamic quantities in an isothermal cavity. Finally, we analyze the critical behavior, thermodynamic stability, and phase transition of the rainbow Schwarzschild black hole. The results show that the rainbow gravity can stop the Hawking radiation in the final stages of black holes' evolution and lead to the remnants of black holes. Furthermore, one can observe that the rainbow Schwarzschild black hole has one first-order phase transition, two second-order phase transitions, and three Hawking-Page-type phase transitions in the framework of rainbow gravity theory.
NASA Astrophysics Data System (ADS)
Liu, R. M.; Zhuo, W. Z.; Chen, J.; Qin, M. H.; Zeng, M.; Lu, X. B.; Gao, X. S.; Liu, J.-M.
2017-07-01
We study the thermal phase transition of the fourfold degenerate phases (the plaquette and single-stripe states) in the two-dimensional frustrated Ising model on the Shastry-Sutherland lattice using Monte Carlo simulations. The critical Ashkin-Teller-like behavior is identified both in the plaquette phase region and the single-stripe phase region. The four-state Potts critical end points differentiating the continuous transitions from the first-order ones are estimated based on finite-size-scaling analyses. Furthermore, a similar behavior of the transition to the fourfold single-stripe phase is also observed in the anisotropic triangular Ising model. Thus, this work clearly demonstrates that the transitions to the fourfold degenerate states of two-dimensional Ising antiferromagnets exhibit similar transition behavior.
Effect of α-Tocopherol on the Microscopic Dynamics of Dimyristoylphosphatidylcholine Membrane
Sharma, V. K.; Mamontov, E.; Tyagi, M.; ...
2015-12-16
Vitamin E behaves as an antioxidant and is well known for its protective properties of the lipid membrane. The most biologically active form of vitamin E in the human organism is α-tocopherol (aToc). Recently (Marquardt, D.; et al. J. Am. Chem. Soc. 2014, 136, 203₋210) it has been shown that aToc resides near the center of dimyristoylphosphatidylcholine (DMPC) bilayer, which is in stark contrast with other PC membranes, where aToc is located near the lipid₋water interface. Here we report an unusual effect of this exceptional location of aToc on the dynamical behavior of DMPC membrane probed by incoherent elastic andmore » quasielastic neutron scattering. For pure DMPC vesicles, elastic scan data show two step-like drops in the elastic intensity at 288 and 297 K, which correspond to the pre- and main phase transitions, respectively. However, inclusion of aToc into DMPC membrane inhibits the step-like elastic intensity drops, indicating a significant impact of aToc on the phase behavior of the membrane. This observation is supported by our differential scanning calorimetry data, which shows that inclusion of aToc leads to a significant broadening of the main phase transition peak, whereas the peak corresponding to the pretransition disappears. We have performed quasielastic neutron scattering (QENS) measurements on DMPC vesicles with various concentrations of aToc at 280, 293, and 310 K. We have found that aToc affects both the lateral diffusion and the internal motions of the lipid molecules. Below the main phase transition temperature inclusion of aToc accelerates both the lateral and the internal lipid motions. On the other hand, above the main phase transition temperature the addition of aToc restricts only the internal motion, without a significant influence on the lateral motion. To conclude, our results support the finding that the location of aToc in DMPC membrane is deep within the bilayer.« less
NASA Astrophysics Data System (ADS)
Bag, Biplab; Sivananda, Dibya J.; Mandal, Pabitra; Banerjee, S. S.; Sood, A. K.; Grover, A. K.
2018-04-01
The vortex depinning phenomenon in single crystals of 2 H -Nb S2 superconductors is used as a prototype for investigating properties of the nonequilibrium (NEQ) depinning phase transition. The 2 H -Nb S2 is a unique system as it exhibits two distinct depinning thresholds, viz., a lower critical current Icl and a higher one Ich. While Icl is related to depinning of a conventional, static (pinned) vortex state, the state with Ich is achieved via a negative differential resistance (NDR) transition where the velocity abruptly drops. Using a generalized finite-temperature scaling ansatz, we study the scaling of current (I)-voltage (V) curves measured across Icl and Ich. Our analysis shows that for I >Icl , the moving vortex state exhibits Arrhenius-like thermally activated flow behavior. This feature persists up to a current value where an inflexion in the IV curves is encountered. While past measurements have often reported similar inflexion, our analysis shows that the inflexion is a signature of a NEQ phase transformation from a thermally activated moving vortex phase to a free flowing phase. Beyond this inflection in IV, a large vortex velocity flow regime is encountered in the 2 H -Nb S2 system, wherein the Bardeen-Stephen flux flow limit is crossed. In this regime the NDR transition is encountered, leading to the high Ich state. The IV curves above Ich we show do not obey the generalized finite-temperature scaling ansatz (as obeyed near Icl). Instead, they scale according to the Fisher's scaling form [Fisher, Phys. Rev. B 31, 1396 (1985), 10.1103/PhysRevB.31.1396] where we show thermal fluctuations do not affect the vortex flow, unlike that found for depinning near Icl.
NASA Astrophysics Data System (ADS)
Goossens, D. J.; Wu, Xiaodong; Prior, M.
2005-12-01
The ferroelectric phase transition in deuterated benzil, C 14H 10O 2, has been studied using capacitance measurements and neutron powder diffraction. Hydrogenous benzil shows a phase transition at 83.5 K from a high temperature P3 121 phase to a cell-doubled P2 1 phase. The phase transition in d-benzil occurs at 88.1 K, a small isotope effect. Neutron powder diffraction was consistent with a low temperature phase of space group P2 1. Upon deuteration the transition remained first-order and the dynamics of the phenyl ring dominated the behaviour. The isotope effect can be attributed to the difference in mass and moment of inertia between C 6H 5 and C 6D 5.
Mechanism and microstructures in Ga2O3 pseudomartensitic solid phase transition.
Zhu, Sheng-Cai; Guan, Shu-Hui; Liu, Zhi-Pan
2016-07-21
Solid-to-solid phase transition, although widely exploited in making new materials, challenges persistently our current theory for predicting its complex kinetics and rich microstructures in transition. The Ga2O3α-β phase transformation represents such a common but complex reaction with marked change in cation coordination and crystal density, which was known to yield either amorphous or crystalline products under different synthetic conditions. Here we, via recently developed stochastic surface walking (SSW) method, resolve for the first time the atomistic mechanism of Ga2O3α-β phase transformation, the pathway of which turns out to be the first reaction pathway ever determined for a new type of diffusionless solid phase transition, namely, pseudomartensitic phase transition. We demonstrate that the sensitivity of product crystallinity is caused by its multi-step, multi-type reaction pathway, which bypasses seven intermediate phases and involves all types of elementary solid phase transition steps, i.e. the shearing of O layers (martensitic type), the local diffusion of Ga atoms (reconstructive type) and the significant lattice dilation (dilation type). While the migration of Ga atoms across the close-packed O layers is the rate-determining step and yields "amorphous-like" high energy intermediates, the shearing of O layers contributes to the formation of coherent biphase junctions and the presence of a crystallographic orientation relation, (001)α//(201[combining macron])β + [120]α//[13[combining macron]2]β. Our experiment using high-resolution transmission electron microscopy further confirms the theoretical predictions on the atomic structure of biphase junction and the formation of (201[combining macron])β twin, and also discovers the late occurrence of lattice expansion in the nascent β phase that grows out from the parent α phase. By distinguishing pseudomartensitic transition from other types of mechanisms, we propose general rules to predict the product crystallinity of solid phase transition. The new knowledge on the kinetics of pseudomartensitic transition complements the theory of diffusionless solid phase transition.
The dynamic and geometric phase transition in the cellular network of pancreatic islet
NASA Astrophysics Data System (ADS)
Wang, Xujing
2013-03-01
The pancreatic islet is a micro-organ that contains several thousands of endocrine cells, majority of which being the insulin releasing β - cells . - cellsareexcitablecells , andarecoupledtoeachother through gap junctional channels. Here, using percolation theory, we investigate the role of network structure in determining the dynamics of the β-cell network. We show that the β-cell synchronization depends on network connectivity. More specifically, as the site occupancy is reducing, initially the β-cell synchronization is barely affected, until it reaches around a critical value, where the synchronization exhibit a sudden rapid decline, followed by an slow exponential tail. This critical value coincides with the critical site open probability for percolation transition. The dependence over bond strength is similar, exhibiting critical-behavior like dependence around a certain value of bond strength. These results suggest that the β-cell network undergoes a dynamic phase transition when the network is percolated. We further apply the findings to study diabetes. During the development of diabetes, the β - cellnetworkconnectivitydecreases . Siteoccupancyreducesfromthe reducing β-cell mass, and the bond strength is increasingly impaired from β-cell stress and chronic hyperglycemia. We demonstrate that the network dynamics around the percolation transition explain the disease dynamics around onset, including a long time mystery in diabetes, the honeymoon phenomenon.
NASA Astrophysics Data System (ADS)
Das, S. C.; Mandal, K.; Dutta, P.; Pramanick, S.; Chatterjee, S.
2018-02-01
The magnetic and magnetocaloric properties of a self-doped MnNiGe alloy of nominal composition MnNi0.9Ge1.1 have been investigated in ambient as well as in high pressure conditions. It orders ferromagnetically below around 225 K and undergoes first order martensitic phase transition (MPT) to an antiferromagnetic (AFM) martensite phase below 147 K. This self-doping results in a significant decrease in the lattice volume and hence the Mn-Mn intra-layer distance which induces ferromagnetism (FM) in otherwise AFM alloys. MPT affects this FM ordering and the alloy becomes predominantly AFM in nature below the structural transition temperature. The observed values of the magnetocaloric effects (MCE) are reasonably large at the magnetic (-5.5 J kg-1 K-1 for magnetic field changing from 0 to 50 kOe around 210 K) and structural (8.3 J kg-1 K-1 for magnetic field changing from 0 to 50 kOe around 136 K) transition temperatures in ambient condition. MCE is found to decrease with increasing external hydrostatic pressure (P) at MPT region, whilst this external P has vanishingly small effect on MCE around the magnetic transition temperature.
NASA Astrophysics Data System (ADS)
Ma, Fengxian; Gao, Guoping; Jiao, Yalong; Gu, Yuantong; Bilic, Ante; Zhang, Haijun; Chen, Zhongfang; Du, Aijun
2016-02-01
Single layered transition metal dichalcogenides have attracted tremendous research interest due to their structural phase diversities. By using a global optimization approach, we have discovered a new phase of transition metal dichalcogenides (labelled as T''), which is confirmed to be energetically, dynamically and kinetically stable by our first-principles calculations. The new T'' MoS2 phase exhibits an intrinsic quantum spin Hall (QSH) effect with a nontrivial gap as large as 0.42 eV, suggesting that a two-dimensional (2D) topological insulator can be achieved at room temperature. Most interestingly, there is a topological phase transition simply driven by a small tensile strain of up to 2%. Furthermore, all the known MX2 (M = Mo or W; X = S, Se or Te) monolayers in the new T'' phase unambiguously display similar band topologies and strain controlled topological phase transitions. Our findings greatly enrich the 2D families of transition metal dichalcogenides and offer a feasible way to control the electronic states of 2D topological insulators for the fabrication of high-speed spintronics devices.Single layered transition metal dichalcogenides have attracted tremendous research interest due to their structural phase diversities. By using a global optimization approach, we have discovered a new phase of transition metal dichalcogenides (labelled as T''), which is confirmed to be energetically, dynamically and kinetically stable by our first-principles calculations. The new T'' MoS2 phase exhibits an intrinsic quantum spin Hall (QSH) effect with a nontrivial gap as large as 0.42 eV, suggesting that a two-dimensional (2D) topological insulator can be achieved at room temperature. Most interestingly, there is a topological phase transition simply driven by a small tensile strain of up to 2%. Furthermore, all the known MX2 (M = Mo or W; X = S, Se or Te) monolayers in the new T'' phase unambiguously display similar band topologies and strain controlled topological phase transitions. Our findings greatly enrich the 2D families of transition metal dichalcogenides and offer a feasible way to control the electronic states of 2D topological insulators for the fabrication of high-speed spintronics devices. Electronic supplementary information (ESI) available: Detailed computational method; structural data of T'' MoS2; DOS of the T'' MoS2 phase under different strains; orbital energy of T'' MoS2 under different strains; electronic structures for all other five MX2 in the T'' phase; edge states of T'' MoS2. See DOI: 10.1039/c5nr07715j
Apparent critical phenomena in the superionic phase transition of Cu 2-xSe
Kang, Stephen Dongmin; Danilkin, Sergey A.; Aydemir, Umut; ...
2016-01-11
The superionic phase transition ofmore » $${\\mathrm{Cu}}_{2-x}\\mathrm{Se}$$ accompanies drastic changes in transport properties. The Seebeck coefficient increases sharply while the electrical conductivity and thermal diffusivity drops. Such behavior has previously been attributed to critical phenomena under the assumption of a continuous phase transition. However, applying Landau's criteria suggests that the transition should be first order. Using the phase diagram that is consistent with a first order transition, we show that the observed transport properties and heat capacity curves can be accounted for and modeled with good agreement. The apparent critical phenomena is shown to be a result of compositional degree-of-freedom. In conclusion, understanding of the phase transition allows to explain the enhancement in the thermoelectric figure-of-merit that is accompanied with the transition.« less
First-passage time of Brownian motion with dry friction.
Chen, Yaming; Just, Wolfram
2014-02-01
We provide an analytic solution to the first-passage time (FPT) problem of a piecewise-smooth stochastic model, namely Brownian motion with dry friction, using two different but closely related approaches which are based on eigenfunction decompositions on the one hand and on the backward Kolmogorov equation on the other. For the simple case containing only dry friction, a phase-transition phenomenon in the spectrum is found which relates to the position of the exit point, and which affects the tail of the FPT distribution. For the model containing as well a driving force and viscous friction the impact of the corresponding stick-slip transition and of the transition to ballistic exit is evaluated quantitatively. The proposed model is one of the very few cases where FPT properties are accessible by analytical means.
Deviatoric stress-induced phase transitions in diamantane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Fan; Lin, Yu; Dahl, Jeremy E. P.
2014-10-21
The high-pressure behavior of diamantane was investigated using angle-dispersive synchrotron x-ray diffraction (XRD) and Raman spectroscopy in diamond anvil cells. Our experiments revealed that the structural transitions in diamantane were extremely sensitive to deviatoric stress. Under non-hydrostatic conditions, diamantane underwent a cubic (space group Pa3) to a monoclinic phase transition at below 0.15 GPa, the lowest pressure we were able to measure. Upon further compression to 3.5 GPa, this monoclinic phase transformed into another high-pressure monoclinic phase which persisted to 32 GPa, the highest pressure studied in our experiments. However, under more hydrostatic conditions using silicone oil as a pressuremore » medium, the transition pressure to the first high-pressure monoclinic phase was elevated to 7–10 GPa, which coincided with the hydrostatic limit of silicone oil. In another experiment using helium as a pressure medium, no phase transitions were observed to the highest pressure we reached (13 GPa). In addition, large hysteresis and sluggish transition kinetics were observed upon decompression. Over the pressure range where phase transitions were confirmed by XRD, only continuous changes in the Raman spectra were observed. This suggests that these phase transitions are associated with unit cell distortions and modifications in molecular packing rather than the formation of new carbon-carbon bonds under pressure.« less
NASA Astrophysics Data System (ADS)
Wu, Ye; Yang, Jing; Wu, Xiang; Song, Maoshuang; Yoshino, Takashi; Zhai, Shuangmeng; Qin, Shan; Huang, Haijun; Lin, Jung-Fu
2016-08-01
The new hexagonal aluminous phase, named the NAL phase, is expected to be stable at depths of <1200 km in subducted slabs and believed to constitute 10~30 wt% of subducted mid-ocean ridge basalt together with the CaFe2O4-type aluminous phase. Here elasticity of the single-crystal NAL phase is investigated using Brillouin light scattering coupled with diamond anvil cells up to 20 GPa at room temperature. Analysis of the results shows that the substitution of iron lowers the shear modulus of the NAL phase by ~5% (~6 GPa) but does not significantly affect the adiabatic bulk modulus. The NAL phase exhibits high-velocity anisotropies with AVP = 14.7% and AVS = 15.12% for the Fe-bearing phase at ambient conditions. The high AVS of the NAL phase mainly results from the high anisotropy of the faster VS1 (13.9~15.8%), while the slower VS2 appears almost isotropic (0.1~2.8%) at ambient and high pressures. The AVP and AVS of the NAL phase decrease with increasing pressure but still have large values with AVP = 11.4% and AVS = 14.12% for the Fe-bearing sample at 20.4 GPa. The extrapolated AVP and AVS of the Fe-free and Fe-bearing NAL phases at 40 GPa are larger than those of bridgmanite at the same pressure. Together with its spin transition of iron and structural transition to the CF phase, the presence of the NAL phase with high-velocity anisotropies may contribute to the observed seismic anisotropy around subducted slabs in the uppermost lower mantle.
NASA Astrophysics Data System (ADS)
Hinatsu, Yukio; Doi, Yoshihiro
2017-06-01
The phase transition of ternary rare earth niobates Ln3NbO7 (Ln = Pr, Sm, Eu) was investigated by the measurements of high-temperature and low-temperature X-ray diffraction, differential scanning calorimetry (DSC) and differential thermal analysis (DTA). These compounds crystallize in an orthorhombic superstructure derived from the structure of cubic fluorite (space group Pnma for Ln = Pr; C2221 for Ln = Sm, Eu). Sm3NbO7 undergoes the phase transition when the temperature is increased through ca. 1080 K and above the transition temperature, its structure is well described with space group Pnma. For Eu3NbO7, the phase transition was not observed up to 1273 K Pr3NbO7 indicates the phase transition when the temperature is increased through ca. 370 K. The change of the phase transition temperature against the Ln ionic radius for Ln3NbO7 is quite different from those for Ln3MO7 (M = Mo, Ru, Re, Os, or Ir), i.e., no systematic relationship between the phase transition temperature and the Ln ionic radius has been observed for Ln3NbO7 compounds.
Lu, Qing; Kim, Jaegil; Straub, John E
2013-03-14
The generalized Replica Exchange Method (gREM) is extended into the isobaric-isothermal ensemble, and applied to simulate a vapor-liquid phase transition in Lennard-Jones fluids. Merging an optimally designed generalized ensemble sampling with replica exchange, gREM is particularly well suited for the effective simulation of first-order phase transitions characterized by "backbending" in the statistical temperature. While the metastable and unstable states in the vicinity of the first-order phase transition are masked by the enthalpy gap in temperature replica exchange method simulations, they are transformed into stable states through the parameterized effective sampling weights in gREM simulations, and join vapor and liquid phases with a succession of unimodal enthalpy distributions. The enhanced sampling across metastable and unstable states is achieved without the need to identify a "good" order parameter for biased sampling. We performed gREM simulations at various pressures below and near the critical pressure to examine the change in behavior of the vapor-liquid phase transition at different pressures. We observed a crossover from the first-order phase transition at low pressure, characterized by the backbending in the statistical temperature and the "kink" in the Gibbs free energy, to a continuous second-order phase transition near the critical pressure. The controlling mechanisms of nucleation and continuous phase transition are evident and the coexistence properties and phase diagram are found in agreement with literature results.
Mixed-order phase transition in a colloidal crystal
Tierno, Pietro; Casademunt, Jaume
2017-01-01
Mixed-order phase transitions display a discontinuity in the order parameter like first-order transitions yet feature critical behavior like second-order transitions. Such transitions have been predicted for a broad range of equilibrium and nonequilibrium systems, but their experimental observation has remained elusive. Here, we analytically predict and experimentally realize a mixed-order equilibrium phase transition. Specifically, a discontinuous solid–solid transition in a 2D crystal of paramagnetic colloidal particles is induced by a magnetic field H. At the transition field Hs, the energy landscape of the system becomes completely flat, which causes diverging fluctuations and correlation length ξ∝|H2−Hs2|−1/2. Mean-field critical exponents are predicted, since the upper critical dimension of the transition is du=2. Our colloidal system provides an experimental test bed to probe the unconventional properties of mixed-order phase transitions. PMID:29158388
Unconventional Magnetic Domain Structure in the Ferromagnetic Phase of MnP Single Crystals
NASA Astrophysics Data System (ADS)
Koyama, Tsukasa; Yano, Shin-ichiro; Togawa, Yoshihiko; Kousaka, Yusuke; Mori, Shigeo; Inoue, Katsuya; Kishine, Jun-ichiro; Akimitsu, Jun
2012-04-01
We have studied ferromagnetic (FM) structures in the FM phase of MnP single crystals by low-temperature Lorentz transmission electron microscopy and small-angle electron diffraction analysis. In Lorentz Fresnel micrographs, striped FM domain structures were observed at an external magnetic field less than 10 Oe in specimens with the ab-plane in their plane. From real- and reciprocal-space analyses, it was clearly identified that striped FM domains oriented to the c-axis appear with Bloch-type domain walls in the b-direction and order regularly along the a-axis with a constant separation less than 100 nm. Moreover, the magnetic chirality reverses in alternate FM domain walls. These specific spin configuration of striped FM domains will affect the magnetic phase transition from the FM phase to the proper screw spiral phase at low temperature or to the FAN phase in magnetic fields in MnP.
Ferroelectric to paraelectric phase transition mechanism in poled PVDF-TrFE copolymer films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pramanick, A.; T. Misture, Scott; Osti, Naresh C.
2017-11-01
Direct experimental insights into the structural and dynamical mechanisms for ferroelectric β to paraelectric α phase transition in a poled PVDF-TrFE copolymer is obtained from in situ x-ray diffraction and quasielastic neutron scattering measurements at high temperatures. It is observed that the β-to-α phase transition proceeds through two energetically distinct processes, which are identified here as the nucleation and growth of an intermediate γ phase with random skew linkages followed by a γ-to-α transition. The two energetically distinct microscopic processes can explain the stages of evolution for β-to-α phase transition observed from heat flow measurements.
NASA Astrophysics Data System (ADS)
Brock, Jeffrey; Khan, Mahmud
2018-05-01
The phase transitions and associated magnetocaloric properties of the Ni2Mn0.55CoxCr0.45-xGa (0 ≤ x ≤ 0.25) Heusler alloy system have been investigated. All samples exhibit a first-order martensitic phase transition, evidenced by a sharp drop in the resistivity versus temperature data and a thermomagnetic irreversibility in the dc magnetization data of the respective samples. Large magnetic entropy changes have also been observed near the phase transitions. The martensitic transformation temperature increases as Cr is partially replaced with Co. Additionally, this substitution leads to a partial decoupling of the magnetic and structural phase transitions, dramatically suppressing any magnetic hysteresis losses. Furthermore, the change in electrical resistivity during the phase transition remains relatively constant across the system, despite major changes in the degree of structural disorder and magnetostructural phase transition coupling. Detailed experimental results and conjectures as to the origin of these behaviors have been provided.
Microscopic Description of Thermodynamics of Lipid Membrane at Liquid-Gel Phase Transition
NASA Astrophysics Data System (ADS)
Kheyfets, B.; Galimzyanov, T.; Mukhin, S.
2018-05-01
A microscopic model of the lipid membrane is constructed that provides analytically tractable description of the physical mechanism of the first order liquid-gel phase transition. We demonstrate that liquid-gel phase transition is cooperative effect of the three major interactions: inter-lipid van der Waals attraction, steric repulsion and hydrophobic tension. The model explicitly shows that temperature-dependent inter-lipid steric repulsion switches the system from liquid to gel phase when the temperature decreases. The switching manifests itself in the increase of lateral compressibility of the lipids as the temperature decreases, making phase with smaller area more preferable below the transition temperature. The model gives qualitatively correct picture of abrupt change at transition temperature of the area per lipid, membrane thickness and volume per hydrocarbon group in the lipid chains. The calculated dependence of phase transition temperature on lipid chain length is in quantitative agreement with experimental data. Steric repulsion between the lipid molecules is shown to be the only driver of the phase transition, as van der Waals attraction and hydrophobic tension are weakly temperature dependent.
Ali, Roushown; Yashima, Masatomo
2003-05-01
Lattice parameters and the structural phase transition of La(0.68)(Ti(0.95),Al(0.05))O(3) have been investigated in situ in the temperature range 301-689 K by the synchrotron radiation powder diffraction (SR-PD) technique. High-angular-resolution SR-PD is confirmed to be a powerful technique for determining precise lattice parameters around a phase-transition temperature. The title compound exhibits a reversible phase transition between orthorhombic and tetragonal phases at 622.3 +/- 0.6 K. The following results were obtained: (i) the lattice parameters increased continuously with temperature, while the b/a ratio decreased continuously with temperature and became unity at the orthorhombic-tetragonal transition point; (ii) no hysteresis was observed between the lattice-parameter values measured on heating and on cooling. Results (i) and (ii) indicate that the orthorhombic-tetragonal phase transition is continuous and reversible. The b/a ratio is found to exhibit a more continuous temperature evolution than does the order parameter for a typical second-order phase transition based on Landau theory.
Gravitation waves from QCD and electroweak phase transitions
NASA Astrophysics Data System (ADS)
Chen, Yidian; Huang, Mei; Yan, Qi-Shu
2018-05-01
We investigate the gravitation waves produced from QCD and electroweak phase transitions in the early universe by using a 5-dimension holographic QCD model and a holographic technicolor model. The dynamical holographic QCD model is to describe the pure gluon system, where a first order confinement-deconfinement phase transition can happen at the critical temperature around 250 MeV. The minimal holographic technicolor model is introduced to model the strong dynamics of electroweak, it can give a first order electroweak phase transition at the critical temperature around 100-360 GeV. We find that for both GW signals produced from QCD and EW phase transitions, in the peak frequency region, the dominant contribution comes from the sound waves, while away from the peak frequency region the contribution from the bubble collision is dominant. The peak frequency of gravitation wave determined by the QCD phase transition is located around 10-7 Hz which is within the detectability of FAST and SKA, and the peak frequency of gravitational wave predicted by EW phase transition is located at 0.002 - 0.007 Hz, which might be detectable by BBO, DECIGO, LISA and ELISA.
Amorphous-amorphous transition in a porous coordination polymer.
Ohtsu, Hiroyoshi; Bennett, Thomas D; Kojima, Tatsuhiro; Keen, David A; Niwa, Yasuhiro; Kawano, Masaki
2017-07-04
The amorphous state plays a key role in porous coordination polymer and metal-organic framework phase transitions. We investigate a crystalline-to-amorphous-to-amorphous-to-crystalline (CAAC) phase transition in a Zn based coordination polymer, by X-ray absorption fine structure (XAFS) and X-ray pair distribution function (PDF) analysis. We show that the system shows two distinct amorphous phases upon heating. The first involves a reversible transition to a desolvated form of the original network, followed by an irreversible transition to an intermediate phase which has elongated Zn-I bonds.
Lewis, R N; McElhaney, R N
2000-01-01
The thermotropic phase behavior of lipid bilayer model membranes composed of the even-numbered, N-saturated 1,2-diacyl phosphatidylserines was studied by differential scanning calorimetry and by Fourier-transform infrared and (31)P-nuclear magnetic resonance spectroscopy. At pH 7.0, 0.1 M NaCl and in the absence of divalent cations, aqueous dispersions of these lipids, which have not been incubated at low temperature, exhibit a single calorimetrically detectable phase transition that is fully reversible, highly cooperative, and relatively energetic, and the transition temperatures and enthalpies increase progressively with increases in hydrocarbon chain length. Our spectroscopic observations confirm that this thermal event is a lamellar gel (L(beta))-to-lamellar liquid crystalline (L(alpha)) phase transition. However, after low temperature incubation, the L(beta)/L(alpha) phase transition of dilauroyl phosphatidylserine is replaced by a higher temperature, more enthalpic, and less cooperative phase transition, and an additional lower temperature, less enthalpic, and less cooperative phase transition appears in the longer chain phosphatidylserines. Our spectroscopic results indicate that this change in thermotropic phase behavior when incubated at low temperatures results from the conversion of the L(beta) phase to a highly ordered lamellar crystalline (L(c)) phase. Upon heating, the L(c) phase of dilauroyl phosphatidylserine converts directly to the L(alpha) phase at a temperature slightly higher than that of its original L(beta)/L(alpha) phase transition. Calorimetrically, this process is manifested by a less cooperative but considerably more energetic, higher-temperature phase transition, which replaces the weaker L(beta)/L(alpha) phase transition alluded to above. However, with the longer chain compounds, the L(c) phase first converts to the L(beta) phase at temperatures some 10-25 degrees C below that at which the L(beta) phase converts to the L(alpha) phase. Our results also suggest that shorter chain homologues form L(c) phases that are structurally related to, but more ordered than, those formed by the longer chain homologues, but that these L(c) phases are less ordered than those formed by other phospholipids. These studies also suggest that polar/apolar interfaces of the phosphatidylserine bilayers are more hydrated than those of other glycerolipid bilayers, possibly because of interactions between the polar headgroup and carbonyl groups of the fatty acyl chains. PMID:11023908
Two-order parameters theory of the metal-insulator phase transition kinetics in the magnetic field
NASA Astrophysics Data System (ADS)
Dubovskii, L. B.
2018-05-01
The metal-insulator phase transition is considered within the framework of the Ginzburg-Landau approach for the phase transition described with two coupled order parameters. One of the order parameters is the mass density which variation is responsible for the origin of nonzero overlapping of the two different electron bands and the appearance of free electron carriers. This transition is assumed to be a first-order phase one. The free electron carriers are described with the vector-function representing the second-order parameter responsible for the continuous phase transition. This order parameter determines mostly the physical properties of the metal-insulator transition and leads to a singularity of the surface tension at the metal-insulator interface. The magnetic field is involved into the consideration of the system. The magnetic field leads to new singularities of the surface tension at the metal-insulator interface and results in a drastic variation of the phase transition kinetics. A strong singularity in the surface tension results from the Landau diamagnetism and determines anomalous features of the metal-insulator transition kinetics.
Boundaries for martensitic transition of 7Li under pressure
Schaeffer, Anne Marie; Cai, Weizhao; Olejnik, Ella; ...
2015-08-14
We report that physical properties of lithium under extreme pressures continuously reveal unexpected features. These include a sequence of structural transitions to lower symmetry phases, metal-insulator-metal transition, superconductivity with one of the highest elemental transition temperatures, and a maximum followed by a minimum in its melting line. The instability of the bcc structure of lithium is well established by the presence of a temperature-driven martensitic phase transition. The boundaries of this phase, however, have not been previously explored above 3 GPa. All higher pressure phase boundaries are either extrapolations or inferred based on indirect evidence. Here we explore the pressuremore » dependence of the martensitic transition of lithium up to 7 GPa using a combination of neutron and X-ray scattering. We find a rather unexpected deviation from the extrapolated boundaries of the hR3 phase of lithium. Furthermore, there is evidence that, above ~3 GPa, once in fcc phase, lithium does not undergo a martensitic transition.« less
Pressure induced phase transitions in ceramic compounds containing tetragonal zirconia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sparks, R.G.; Pfeiffer, G.; Paesler, M.A.
Stabilized tetragonal zirconia compounds exhibit a transformation toughening process in which stress applied to the material induces a crystallographic phase transition. The phase transition is accompanied by a volume expansion in the stressed region thereby dissipating stress and increasing the fracture strength of the material. The hydrostatic component of the stress required to induce the phase transition can be investigated by the use of a high pressure technique in combination with Micro-Raman spectroscopy. The intensity of Raman lines characteristic for the crystallographic phases can be used to calculate the amount of material that has undergone the transition as a functionmore » of pressure. It was found that pressures on the order of 2-5 kBar were sufficient to produce an almost complete transition from the original tetragonal to the less dense monoclinic phase; while a further increase in pressure caused a gradual reversal of the transition back to the original tetragonal structure.« less
Tunable phase transition in single-layer TiSe2 via electric field
NASA Astrophysics Data System (ADS)
Liu, Lei; Zhuang, Houlong L.
2018-06-01
Phase transition represents an intriguing physical phenomenon that exists in a number of single-layer transition-metal dichalcogenides. This phenomenon often occurs below a critical temperature and breaks the long-range crystalline order leading to a reconstructed superstructure called the charge-density wave (CDW) structure, which can therefore be recovered by external stimuli such as temperature. Alternatively, we show here that another external stimulation, electric field can also result in the phase transition between the regular and CDW structures of a single-layer transition-metal dichalcogenide. We used single-layer TiSe2 as an example to elucidate the mechanism of the CDW followed by calculations of the electronic structure using a hybrid density functional. We found that applying electric field can tune the phase transition between the 1T and CDW phases of single-layer TiSe2. Our work opens up a route of tuning the phase transition of single-layer materials via electric field.
Pressure-induced Lifshitz and structural transitions in NbAs and TaAs: experiments and theory.
Gupta, Satyendra Nath; Singh, Anjali; Pal, Koushik; Muthu, D V S; Shekhar, C; Elghazali, Moaz A; Naumov, Pavel G; Medvedev, Sergey A; Felser, C; Waghmare, U V; Sood, A K
2018-05-10
High pressure Raman, resistivity and synchrotron x-ray diffraction studies on Weyl semimetals NbAs and TaAs have been carried out along with density functional theoretical (DFT) analysis to explain pressure induced structural and electronic topological phase transitions. The frequencies of first order Raman modes harden with increasing pressure, exhibiting a slope change at [Formula: see text] GPa for NbAs and [Formula: see text] GPa for TaAs. The resistivities of NbAs and TaAs exhibit a minimum at pressures close to these transition pressures and also a change in the bulk modulus is observed. Our first-principles calculations reveal that the transition is associated with an electronic Lifshitz transition at [Formula: see text] for NbAs while it is a structural phase transition from body centered tetragonal to hexagonal phase at [Formula: see text] for TaAs. Further, our DFT calculations show a structural phase transition at 24 GPa from body centered tetragonal phase to hexagonal phase.
Strength and Deformation of Solid Krypton and Xenon to Mbar Pressures
NASA Astrophysics Data System (ADS)
Brugman, B. L.; Lv, M.; Liu, J.; Park, C.; Popov, D.; Prakapenka, V. B.; Dorfman, S.
2017-12-01
Studying phase equilibria and deformation of rare gas solids (RGS) under pressure provides insight into their behavior in planetary bodies. Their simple bonding properties make them useful analogs for materials with similar structures and other van der Waals bonded materials. He, Ne, and Ar are useful as pressure-transmitting media in diamond anvil cell (DAC) experiments due to their low strength and inert chemistry, and Xe has been proposed as a pressure medium as well, but relatively little is known about the strength of Kr and Xe. The strength of heavy RGS may be affected by a martensitic transition from fcc to hcp structure, which is observed at lower pressures with higher Z. The pressure ranges of this transition in Kr and Xe in previous experimental and computational studies vary from 5 to 29 GPa for Xe and as high as 130 GPa for Kr. The transition may be further complicated by kinetics and multiple transition mechanisms. Modeling of phase equilibria and evaluation of Kr and Xe as pressure media may be improved by examination of elastic and plastic properties at extreme pressure. We studied phase transitions and deformation of Kr and Xe using synchrotron x-ray diffraction at Advanced Photon Source beamlines 13-ID-D and 16-BM-D in the DAC at pressures up to 118 GPa. The martensitic fcc-hcp phase transition begins as peak asymmetry and weak peaks in both Kr and Xe at pressures as low as 5 GPa. Intensity of hcp peaks in Xe increases continuously to 118 GPa. Weak hcp peaks were evident in Kr alongside fcc peaks from 5 to 94 GPa, contrary to theoretical predictions that the hcp transition does not begin below 110-130 GPa. Strength and plasticity of Kr and Xe were obtained by complementary lattice strain and peak width analysis of diffraction patterns in both axial and radial geometries as well as observation of pressure gradients by ruby fluorescence. Xe is approximately hydrostatic with strength comparable to common pressure media at pressures up to 10-12 GPa. Differential stress in Xe increases quickly above 12 GPa and then levels off above 30-50 GPa. This apparent reduction in strength coincides with dramatic growth of hcp peaks, suggesting that weakening is associated with the fcc-hcp transition. Strength is systematically higher for higher-Z RGS below the fcc-hcp transition, but transformation to the hcp structure modifies this trend.
The α-γ-ɛ triple point and phase boundaries of iron under shock compression
NASA Astrophysics Data System (ADS)
Li, Jun; Wu, Qiang; Xue, Tao; Geng, Huayun; Yu, Jidong; Jin, Ke; Li, Jiabo; Tan, Ye; Xi, Feng
2017-07-01
The phase transition of iron under shock compression has attracted much attention in recent decades because of its importance in fields such as condensed matter physics, geophysics, and metallurgy. At room temperature, the transition of iron from the α-phase (bcc) to the ɛ-phase (hpc) occurs at a stress of 13 GPa. At high temperature, a triple point followed by transformation to the γ-phase (fcc) is expected. However, the details of the high-temperature phase transitions of iron are still under debate. Here, we investigate the phase-transition behavior of polycrystalline iron under compression from room temperature to 820 K. The results show that the shock-induced phase transition is determined unequivocally from the measured three-wave-structure profiles, which clearly consist of an elastic wave, a plastic wave, and a phase-transition wave. The phase transition is temperature-dependent, with an average rate Δσtr/ΔT of -6.91 MPa/K below 700 K and -34.7 MPa/K at higher temperatures. The shock α-ɛ and α-γ phase boundaries intersect at 10.6 ± 0.53 GPa and 763 K, which agrees with the α-ɛ-γ triple point from early shock wave experiments and recent laser-heated diamond-anvil cell resistivity and in situ X-ray diffraction data but disagrees with the shock pressure-temperature phase diagram reported in 2009 by Zaretsky [J. Appl. Phys. 106, 023510 (2009)].
Exploring the transition from registered nurse to family nurse practitioner.
Poronsky, Cathlin Buckingham
2013-01-01
There is limited information available regarding the transition from registered nurse (RN) to family nurse practitioner (FNP). Several authors described this transition as taking place in 4 stages, and others described it as a 2-phase process. However, there is a lack of consensus about the definition of these stages and phases and at what point they occur for nurses who are making the transition from an RN to an FNP. From what is known, this multistage/2-phase transition is accompanied by feelings of anxiety, stress, role confusion, and emotional turmoil. As a nurse faculty member, the author theorized that nurse faculty might be in a position to provide support for graduate students making this transition in role. However, there was little information available about the transition phases, stages, and needs of students during graduate school. The search for a framework to explore transition yielded transition theory, which is described and applied to FNP transition in this article. Transition theory may be useful for examining more fully the phases and stages of RN-to-FNP transition. In this time of increased need for qualified primary care providers, it is essential that graduates of FNP programs transition into practice following graduation. Copyright © 2013 Elsevier Inc. All rights reserved.
The Kibble-Zurek mechanism in phase transitions of non-equilibrium systems
NASA Astrophysics Data System (ADS)
Cheung, Hil F. H.; Patil, Yogesh S.; Date, Aditya G.; Vengalattore, Mukund
2017-04-01
We experimentally realize a driven-dissipative phase transition using a mechanical parametric amplifier to demonstrate key signatures of a second order phase transition, including a point where the susceptibilities and relaxation time scales diverge, and where the system exhibits a spontaneous breaking of symmetry. Though reminiscent of conventional equilibrium phase transitions, it is unclear if such driven-dissipative phase transitions are amenable to the conventional Landau-Ginsburg-Wilson paradigm, which relies on concepts of scale invariance and universality, and recent work has shown that such phase transitions can indeed lie beyond such conventional universality classes. By quenching the system past the critical point, we investigate the dynamics of the emergent ordered phase and find that our measurements are in excellent agreement with the Kibble-Zurek mechanism. In addition to verifying the Kibble-Zurek hypothesis in driven-dissipative phase transitions for the first time, we also demonstrate that the measured critical exponents accurately reflect the interplay between intrinsic coherent dynamics and environmental correlations, showing a clear departure from mean field exponents in the case of non-Markovian system-bath interactions. We further discuss how reservoir engineering and the imposition of artificial environmental correlations can result in the stabilization of novel many-body quantum phases and aid in the creation of exotic non-equilibrium states of matter.
High pressure ferroelastic phase transition in SrTiO3
NASA Astrophysics Data System (ADS)
Salje, E. K. H.; Guennou, M.; Bouvier, P.; Carpenter, M. A.; Kreisel, J.
2011-07-01
High pressure measurements of the ferroelastic phase transition of SrTiO3 (Guennou et al 2010 Phys. Rev. B 81 054115) showed a linear pressure dependence of the transition temperature between the cubic and tetragonal phase. Furthermore, the pressure induced transition becomes second order while the temperature dependent transition is near a tricritical point. The phase transition mechanism is characterized by the elongation and tilt of the TiO6 octahedra in the tetragonal phase, which leads to strongly nonlinear couplings between the structural order parameter, the volume strain and the applied pressure. The phase diagram is derived from the Clausius-Clapeyron relationship and is directly related to a pressure dependent Landau potential. The nonlinearities of the pressure dependent strains lead to an increase of the fourth order Landau coefficient with increasing pressure and, hence, to a tricritical-second order crossover. This behaviour is reminiscent of the doping related crossover in isostructural KMnF3.
Continuous Easy-Plane Deconfined Phase Transition on the Kagome Lattice
NASA Astrophysics Data System (ADS)
Zhang, Xue-Feng; He, Yin-Chen; Eggert, Sebastian; Moessner, Roderich; Pollmann, Frank
2018-03-01
We use large scale quantum Monte Carlo simulations to study an extended Hubbard model of hard core bosons on the kagome lattice. In the limit of strong nearest-neighbor interactions at 1 /3 filling, the interplay between frustration and quantum fluctuations leads to a valence bond solid ground state. The system undergoes a quantum phase transition to a superfluid phase as the interaction strength is decreased. It is still under debate whether the transition is weakly first order or represents an unconventional continuous phase transition. We present a theory in terms of an easy plane noncompact C P1 gauge theory describing the phase transition at 1 /3 filling. Utilizing large scale quantum Monte Carlo simulations with parallel tempering in the canonical ensemble up to 15552 spins, we provide evidence that the phase transition is continuous at exactly 1 /3 filling. A careful finite size scaling analysis reveals an unconventional scaling behavior hinting at deconfined quantum criticality.
Anomalous structural transition of confined hard squares.
Gurin, Péter; Varga, Szabolcs; Odriozola, Gerardo
2016-11-01
Structural transitions are examined in quasi-one-dimensional systems of freely rotating hard squares, which are confined between two parallel walls. We find two competing phases: one is a fluid where the squares have two sides parallel to the walls, while the second one is a solidlike structure with a zigzag arrangement of the squares. Using transfer matrix method we show that the configuration space consists of subspaces of fluidlike and solidlike phases, which are connected with low probability microstates of mixed structures. The existence of these connecting states makes the thermodynamic quantities continuous and precludes the possibility of a true phase transition. However, thermodynamic functions indicate strong tendency for the phase transition and our replica exchange Monte Carlo simulation study detects several important markers of the first order phase transition. The distinction of a phase transition from a structural change is practically impossible with simulations and experiments in such systems like the confined hard squares.
Thermodynamics and glassy phase transition of regular black holes
NASA Astrophysics Data System (ADS)
Javed, Wajiha; Yousaf, Z.; Akhtar, Zunaira
2018-05-01
This paper is aimed to study thermodynamical properties of phase transition for regular charged black holes (BHs). In this context, we have considered two different forms of BH metrics supplemented with exponential and logistic distribution functions and investigated the recent expansion of phase transition through grand canonical ensemble. After exploring the corresponding Ehrenfest’s equation, we found the second-order background of phase transition at critical points. In order to check the critical behavior of regular BHs, we have evaluated some corresponding explicit relations for the critical temperature, pressure and volume and draw certain graphs with constant values of Smarr’s mass. We found that for the BH metric with exponential configuration function, the phase transition curves are divergent near the critical points, while glassy phase transition has been observed for the Ayón-Beato-García-Bronnikov (ABGB) BH in n = 5 dimensions.
The high-pressure phase transitions of hydroxides
NASA Astrophysics Data System (ADS)
Nishi, M.; Kuwayama, Y.; Tsuchiya, J.; Tsuchiya, T.; Irifune, T.
2017-12-01
The discovery of new high-pressure hydrous minerals has important implications for understanding the structure, dynamics, and evolution of the Earth, since hydrogen significantly affects the physical properties and stabilities of Earth's constituent minerals. Whereas hydrous minerals commonly dehydrate under pressures of around a few tens of gigapascals (GPa) and at temperature around 1,500 K, those with CaCl2-type crystal structure, MgSiO4H2 phase H, δ-AlOOH and ɛ-FeOOH, are known to be stable at pressures corresponding to the lower mantle. However, although the CaCl2-type hydroxides were suggested to form a solid solution owing to their similar crystal structure, there are few experimental studies on the stability of the hydroxide in such multicomponent. Moreover, ab initio calculations have predicted that some CaCl2-type hydroxides transform to pyrite-type structure at higher pressures. Here, we conducted high pressure-temperature experiments on pure AlOOH, FeOOH, and their solid solutions, with the aid of these first-principles predictions. We use in situ X-ray measurements in conjunction with a multi-anvil apparatus to study the high-pressure behaviour of hydroxides in the multicomponent system under middle lower mantle conditions. Solid solutions in wide compositional ranges between CaCl2-type δ-AlOOH and ɛ-FeOOH were recognized from X-ray diffraction patterns. Also, unit cell volume of FeOOH and (Al,Fe)OOH significantly decreased accompanied with the spin transition of iron at 50 GPa. Thus, the wide compositional ranges in CaCl2-type hydroxide are maintained beyond the depth of the middle lower mantle, where the spin transition of iron occurs. We used a laser-heated diamond anvil cell in order to study the stability of AlOOH and FeOOH at higher pressures above 70 GPa. We observed that ɛ-FeOOH transforms to the pyrite-type structure at above 80 GPa, which is consistent with the theoretical prediction. At conditions above 190 GPa and 2,500 K, we observed the phase transition of δ-AlOOH to its higher pressure phase at above 170 GPa although further experimental study should be required to determine the precise structure. Based on these experimental and theoretical results, the stability and phase transitions of hydrous phases in the lower mantle will be discussed.
NASA Astrophysics Data System (ADS)
Samatham, S. Shanmukharao; Suresh, K. G.
2017-01-01
The detailed magnetic study of complex 3d-electron based Fe3Ga4 is reported. It undergoes paramagnetic to antiferromagnetic (TN) and antiferromagnetic to ferromagnetic (TC) transitions respectively around 380 and 70 K. The thermal hysteresis of field-cooled cooling (FCC) and field-cooled warming (FCW) hints at first order phase transition below Curie temperature. A weak phase coexistence of ferro and antiferromagnetic phases is suggested by exploring the arrest-like first-order phenomenon. In the intermediate temperature range, field-driven metamagnetic transition from antiferro to ferromagnetic phase is confirmed. Further bringing the system very near to TN, field-induced transitions disappear and above TN predominant paramagnetic contribution is evident. The magnetic H-T phase diagram distinguishing different magnetic phases of Fe3Ga4 is obtained.
Nonequilibrium Phase Precursors during a Photoexcited Insulator-to-Metal Transition in V2O3
NASA Astrophysics Data System (ADS)
Singer, Andrej; Ramirez, Juan Gabriel; Valmianski, Ilya; Cela, Devin; Hua, Nelson; Kukreja, Roopali; Wingert, James; Kovalchuk, Olesya; Glownia, James M.; Sikorski, Marcin; Chollet, Matthieu; Holt, Martin; Schuller, Ivan K.; Shpyrko, Oleg G.
2018-05-01
Here, we photoinduce and directly observe with x-ray scattering an ultrafast enhancement of the structural long-range order in the archetypal Mott system V2O3 . Despite the ultrafast increase in crystal symmetry, the change of unit cell volume occurs an order of magnitude slower and coincides with the insulator-to-metal transition. The decoupling between the two structural responses in the time domain highlights the existence of a transient photoinduced precursor phase, which is distinct from the two structural phases present in equilibrium. X-ray nanoscopy reveals that acoustic phonons trapped in nanoscale twin domains govern the dynamics of the ultrafast transition into the precursor phase, while nucleation and growth of metallic domains dictate the duration of the slower transition into the metallic phase. The enhancement of the long-range order before completion of the electronic transition demonstrates the critical role the nonequilibrium structural phases play during electronic phase transitions in correlated electrons systems.
NASA Astrophysics Data System (ADS)
Puertas, Ricardo; Rute, Maria A.; Salud, Josep; López, David O.; Diez, Sergio; van Miltenburg, J. Kees; Pardo, Luis C.; Tamarit, Josep Ll.; Barrio, Maria; Pérez-Jubindo, Miguel A.; de La Fuente, Maria R.
2004-06-01
The stable solid polymorphism of cyclooctanol (C8H16O, for short C8 OH) is revealed to be a complex problem and only two stable solid phases, denoted on cooling from the liquid as phases I and II, are found using static (thermodynamic and x-ray diffraction) as well as dynamic (dielectric spectroscopy) experimental techniques. Both solid phases are known to exhibit glass transitions if they are cooled down fast enough to prevent transition to ordered crystalline states. Although glass transitions corresponding to both phases had been well documented by means of specific heat measurements, x-ray measurements constitute, as far as we know, the first evidence from the structural point of view. In addition, a great amount of dielectric works devoted to phase I and its glass transition, were published in the past but next to nothing relating to the dielectric properties of phase II and its glass transition. The nature of the disorder of phase II will be discussed.
Phase diagram of two-dimensional hard ellipses.
Bautista-Carbajal, Gustavo; Odriozola, Gerardo
2014-05-28
We report the phase diagram of two-dimensional hard ellipses as obtained from replica exchange Monte Carlo simulations. The replica exchange is implemented by expanding the isobaric ensemble in pressure. The phase diagram shows four regions: isotropic, nematic, plastic, and solid (letting aside the hexatic phase at the isotropic-plastic two-step transition [E. P. Bernard and W. Krauth, Phys. Rev. Lett. 107, 155704 (2011)]). At low anisotropies, the isotropic fluid turns into a plastic phase which in turn yields a solid for increasing pressure (area fraction). Intermediate anisotropies lead to a single first order transition (isotropic-solid). Finally, large anisotropies yield an isotropic-nematic transition at low pressures and a high-pressure nematic-solid transition. We obtain continuous isotropic-nematic transitions. For the transitions involving quasi-long-range positional ordering, i.e., isotropic-plastic, isotropic-solid, and nematic-solid, we observe bimodal probability density functions. This supports first order transition scenarios.
Learning phase transitions by confusion
NASA Astrophysics Data System (ADS)
van Nieuwenburg, Evert; Liu, Ye-Hua; Huber, Sebastian
Classifying phases of matter is a central problem in physics. For quantum mechanical systems, this task can be daunting owing to the exponentially large Hilbert space. Thanks to the available computing power and access to ever larger data sets, classification problems are now routinely solved using machine learning techniques. Here, we propose to use a neural network based approach to find transitions depending on the performance of the neural network after training it with deliberately incorrectly labelled data. We demonstrate the success of this method on the topological phase transition in the Kitaev chain, the thermal phase transition in the classical Ising model, and the many-body-localization transition in a disordered quantum spin chain. Our method does not depend on order parameters, knowledge of the topological content of the phases, or any other specifics of the transition at hand. It therefore paves the way to a generic tool to identify unexplored transitions.
Phase transition in the (Li 0.5-( x/2) K 0.5-( x/2) Cs x) 2SO 4 system
NASA Astrophysics Data System (ADS)
Hamed, A. E.; El-Aziz, Y. M. Abd.; Madi, N. K.; Kassem, M. E.
1995-12-01
Phase transition in the (Li 0.5-( x/2) K 0.5-( x/2) Cs x) 2SO 4 system was studied by measuring the specific heat at constant pressure, C p, as a function of temperature in the temperature range 300-800 K. For non-zero values of X ( X = 0.2%, 0.5%, 1% and 2%) the critical behaviour of the phase transition was found to change considerably compared with that of X = 0 or pure LiKSO 4. The observed change in the phase transition with increase of Cs 2SO 4 content ( X) was accompanied by a decrease in the thermodynamic parameters: the value of the specific heat at the transition point (Δ C P) max, the transition temperature, T1, and the value of the energy of ordering. The results were interpreted within the Landau thermodynamic theory of the phase transition.
Pressure induced phase transition and elastic properties of cerium mono-nitride (CeN)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yaduvanshi, Namrata, E-mail: namrata-yaduvanshi@yahoo.com; Singh, Sadhna
2016-05-23
In the present paper, we have investigated the high-pressure structural phase transition and elastic properties of cerium mono-nitride. We studied theoretically the structural properties of this compound (CeN) by using the improved interaction potential model (IIPM) approach. This compound exhibits first order crystallographic phase transition from NaCl (B{sub 1}) to tetragonal (BCT) phase at 37 GPa. The phase transition pressures and associated volume collapse obtained from present potential model (IIPM) show a good agreement with available theoretical data.
Nonequilibrium Phase Transition in a Model for Social Influence
NASA Astrophysics Data System (ADS)
Castellano, Claudio; Marsili, Matteo; Vespignani, Alessandro
2000-10-01
We present extensive numerical simulations of the Axelrod's model for social influence, aimed at understanding the formation of cultural domains. This is a nonequilibrium model with short range interactions and a remarkably rich dynamical behavior. We study the phase diagram of the model and uncover a nonequilibrium phase transition separating an ordered (culturally polarized) phase from a disordered (culturally fragmented) one. The nature of the phase transition can be continuous or discontinuous depending on the model parameters. At the transition, the size of cultural regions is power-law distributed.
Static and Dynamic Properties of Ferroelectric Thin Film Memories.
NASA Astrophysics Data System (ADS)
Duiker, Hendrik Matthew
Several properties of ferroelectric thin-film memories have been modeled. First, it has been observed experimentally that the bulk phase KNO_3 has a first-order phase transition, and that the transition temperature of KNO_3 thin-films increases as the thickness of the film is decreased. A Landau theory of first-order phase transitions in bulk systems has been generalized by adding surface terms to the free energy expansion to account for these transition properties. The model successfully describes the observed transition properties and predicts the existence of films in which the surfaces are ordered at temperatures higher than the bulk transition temperature. Second, the Avrami model of polarization-reversal kinetics has been modified to describe the following cases: ferroelectrics composed of a large number of small grains; ferroelectric thin-films in which nucleation occurs at the surfaces, not in the bulk; ferroelectrics in which long-range dipolar interactions significantly affect the nucleation rate; and non-square wave switching pulses. The models were verified by applying them to the results of two-dimensional Ising model simulations. It was shown that the models allow the possibility of directly obtaining microscopic parameters, such as the nucleation rate and domain wall velocity, from bulk measurements. Finally, a model describing the fatigue of ferroelectric memories has been developed. As a ferroelectric memory fatigues the spontaneous polarization per unit volume decreases, the switching time decreases, and eventually the memory "shorts out" and becomes conducting. The model assumes the following: during each polarization reversal the film undergoes, every unit cell in the film has a chance of "degrading" and thus losing an ion. Degraded cells no longer contribute to the polarization. The ions are allowed to diffuse to the surfaces of the film and form, with other ions, conducting dendrites which grow into the bulk of the film. Computer simulations performed on a two dimensional lattice with the above model successfully described the phenomena observed during the fatigue of PZT and other types of ferroelectric thin-film memories films.
NASA Astrophysics Data System (ADS)
Pontes, F. M.; Pontes, D. S. L.; Leite, E. R.; Longo, E.; Chiquito, A. J.; Pizani, P. S.; Varela, J. A.
2003-12-01
We have studied the phase transition behavior of Pb0.76Ca0.24TiO3 thin films using Raman scattering and dielectric measurement techniques. We also have studied the leakage current conduction mechanism as a function of temperature for these thin films on platinized silicon substrates. A Pb0.76Ca0.24TiO3 thin film was prepared using a soft chemical process, called the polymeric precursor method. The results showed that the dependence of the dielectric constant upon the frequency does not reveal any relaxor behavior. However, a diffuse character-type phase transition was observed upon transformation from a cubic paraelectric phase to a tetragonal ferroelectric phase. The temperature dependency of Raman scattering spectra was investigated through the ferroelectric phase transition. The soft mode showed a marked dependence on temperature and its disappearance at about 598 K. On the other hand, Raman modes persist above the tetragonal to cubic phase transition temperature, although all optical modes should be Raman inactive above the phase transition temperature. The origin of these modes must be interpreted in terms of a local breakdown of cubic symmetry by some kind of disorder. The lack of a well-defined transition temperature suggested a diffuse-type phase transition. This result corroborate the dielectric constant versus temperature data, which showed a broad ferroelectric phase transition in the thin film. The leakage current density of the PCT24 thin film was studied at elevated temperatures, and the data were well fitted by the Schottky emission model. The Schottky barrier height of the PCT24 thin film was estimated to be 1.49 eV.
Phased models for evaluating the performability of computing systems
NASA Technical Reports Server (NTRS)
Wu, L. T.; Meyer, J. F.
1979-01-01
A phase-by-phase modelling technique is introduced to evaluate a fault tolerant system's ability to execute different sets of computational tasks during different phases of the control process. Intraphase processes are allowed to differ from phase to phase. The probabilities of interphase state transitions are specified by interphase transition matrices. Based on constraints imposed on the intraphase and interphase transition probabilities, various iterative solution methods are developed for calculating system performability.
Mishra, Jhili; Swain, Jitendriya; Mishra, Ashok Kumar
2018-01-11
The thermoreversible sol-gel transition of pluronic F127 is markedly altered even with addition of submicellar concentration of sodium dodecyl sulfate (SDS) surfactant. Multiple fluorescence parameters like fluorescence intensity, fluorescence anisotropy and fluorescence lifetime of both the prototropic forms (anion (A - *) and phototautomer FT*) of the photoprototropic fluorescent probe fisetin has been efficiently used to understand the molecular level properties like polarity and microviscosity of the PF127-SDS system as a function of temperature. The SDS-induced increase in the interfacial hydrophobicity level is seen to affect the sol-gel phase transition of PF127 (21-18 °C). The E T (30) polarity parameter value of anionic emission of fisetin suggests that there is a considerable decrease in the polarity of the PF127 medium with increase in temperature and with the addition of SDS. The microviscosity progressively increases from ∼5 mPa s (sol state, 10 °C) to ∼22.01 mPa s (gel state 35 °C) in aqueous solution of PF127. The variation in microviscosity with addition of SDS in PF127-SDS mixed system is significant in sol phase whereas in gel phase this variation is significantly less. Temperature dependent fluorescence lifetime of FT* indicates that there is heterogeneity in distribution of fisetin molecules at different domains of PF127. This work also show-cases the sensitivity of fisetin toward change in polarity and change in sol-gel transition temperature of copolymer PF127 with variation in temperature (both forward and reverse directions) and SDS.
Non-equilibrium phase transitions in a driven-dissipative system of interacting bosons
NASA Astrophysics Data System (ADS)
Young, Jeremy T.; Foss-Feig, Michael; Gorshkov, Alexey V.; Maghrebi, Mohammad F.
2017-04-01
Atomic, molecular, and optical systems provide unique opportunities to study simple models of driven-dissipative many-body quantum systems. Typically, one is interested in the resultant steady state, but the non-equilibrium nature of the physics involved presents several problems in understanding its behavior theoretically. Recently, it has been shown that in many of these models, it is possible to map the steady-state phase transitions onto classical equilibrium phase transitions. In the language of Keldysh field theory, this relation typically only becomes apparent after integrating out massive fields near the critical point, leaving behind a single massless field undergoing near-equilibrium dynamics. In this talk, we study a driven-dissipative XXZ bosonic model and discover critical points at which two fields become gapless. Each critical point separates three different possible phases: a uniform phase, an anti-ferromagnetic phase, and a limit cycle phase. Furthermore, a description in terms of an equilibrium phase transition does not seem possible, so the associated phase transitions appear to be inherently non-equilibrium.
Phase transition phenomenon: A compound measure analysis
NASA Astrophysics Data System (ADS)
Kang, Bo Soo; Park, Chanhi; Ryu, Doojin; Song, Wonho
2015-06-01
This study investigates the well-documented phenomenon of phase transition in financial markets using combined information from both return and volume changes within short time intervals. We suggest a new measure for the phase transition behaviour of markets, calculated as a return distribution conditional on local variance in volume imbalance, and show that this measure successfully captures phase transition behaviour under various conditions. We analyse the intraday trade and quote dataset from the KOSPI 200 index futures, which includes detailed information on the original order size and the type of each initiating investor. We find that among these two competing factors, the submitted order size yields more explanatory power on the phenomenon of market phase transition than the investor type.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jie; Huang, Rong; Wei, Fenfen
2014-11-17
The phase transition of Bi-doped (∼3 at. %) GeTe nanowires from a rhombohedral (R) to a face-centered cubic (C) structure was observed in in situ high-temperature X-ray diffraction. The promotion of high-temperature R-C phase transition by a doping approach was revealed. Ab initio energy calculations of doped GeTe at various Bi doping concentrations were performed to interpret the promoted temperature-induced phase transitions. Those results indicated that the total energy differences between R and C structures of doped GeTe decreased as Bi doping concentrations increased, which facilitated R-C phase transitions.
Experimental Investigation of Transition to Turbulence as Affected by Passing Wakes
NASA Technical Reports Server (NTRS)
Kaszeta, Richard W.; Simon, Terrence W.; Ashpis, David (Technical Monitor)
2002-01-01
Experimental results from a study of the effects of passing wakes upon laminar-to-turbulent transition in a low-pressure turbine passage are presented. The test section geometry is designed to simulate the effects of unsteady wakes resulting from rotor-stator interaction upon laminar-to-turbulent transition in turbine blade boundary layers and separated flow regions over suction surfaces. Single-wire, thermal anemometry techniques were used to measure time-resolved and phase-averaged, wall-normal profiles of velocity, turbulence intensity, and intermittency at multiple streamwise locations over the turbine airfoil suction surface. These data are compared to steady state, wake-free data collected in the same geometry to identify the effects of wakes upon laminar-to-turbulent transition. Results are presented for flows with a Reynolds number based on suction surface length and exit velocity of 50,000 and an approach flow turbulence intensity of 2.5 percent. From these data, the effects of passing wakes and associated increased turbulence levels and varying pressure gradients on transition and separation in the near-wall flow are presented. The results show that the wakes affect transition both by virtue of their difference in turbulence level from that of the free-stream but also by virtue of their velocity deficit relative to the freestream velocity, and the concomitant change in angle of attack and temporal pressure gradients. The results of this study seem to support the theory that bypass transition is a response of the near-wall viscous layer to pressure fluctuations imposed upon it from the free-stream flow. The data also show a significant lag between when the wake is present over the surface and when transition begins. The accompanying CD-ROM includes tabulated data, animations, higher resolution plots, and an electronic copy of this report.
Influence of Pressure on Physical Property of Ammonia Borane and its Re-hydrogenation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jiuhua
The project systematically studied the high pressure behavior of ammonia borane and its derivative lithium amidoborane. Phase transitions in these materials are investigated in the pressure range up to 20 GPa and temperature range from 80 K to 400K. A number of new phase transitions are discovered in this pressure and temperature range including a second order transformation at 5 GPa and a first order transformation at 12 GPa at room temperature, and four new transitions at high pressure and low temperatures. The Clapeyron slopes for both pressure-induce tetragonal (I4mm) phase to orthorhombic (Cmc21) phase and temperature-induce tetragonal (I4mm) phasemore » to orthorhombic (Pmn21) phase are determined to be positive, indicating these phase transitions are exothermic. This result demonstrates that the high pressure orthorhombic phase of ammonia borane has lower enthalpy than that of tetragonal phase at ambient conditions. If we assume decomposition from the orthorhombic phase yields the same products as that from the tetragonal phase, the decomposition of the orthorhombic phase will be less exothermic. Therefore rehydrogenation from the decomposed product into the orthorhombic phase at high pressure may become easier. The project also studied the influences of nanoconfinement on the phase transitions. Comparative study using Raman spectroscopy indicates that the temperature induced I4mm to Pmn21 transition is suppressed from 217 K to 195 K when the sample is confined in SBA15 (7-9 nm pore size). When the pore size is reduced from 7-9 nm to 3-4 nm, this transition is totally suppressed in the temperature down to 80 K. A similar influence of the nanoconfiement on pressure induced phase transitions is also observed using Raman spectroscopy. The phase boundary between the I4mm phase and high pressure Cmc21 phase at ambient temperature shifts from 0.9 GPa to 0.5 GPa; and that between the Cmc21 phase and higher pressure P21 phase shifts from 10.2 GPa to 9.7 GPa.« less
Micellar-shape anisometry near isotropic-liquid-crystal phase transitions
NASA Astrophysics Data System (ADS)
Itri, R.; Amaral, L. Q.
1993-04-01
Micellar phases of the sodium dodecyl (lauryl) sulfate (SLS)-water-decanol system have been studied by x-ray scattering in the isotropic (I) phase, with emphasis on the I-->hexagonal (Hα) and I-->nematic-cylindrical (Nc) lyotropic liquid-crystal phase transitions. Analysis of the scattering curves is made through modeling of the product P(q)S(q), where P(q) is the micellar form factor and S(q) is the intermicellar interference function, calculated from screened Coulombic repulsion in a mean spherical approximation. Results show that micelles grow more by decanol addition near the I-->Nc transition (anisometry ν~=3) than by increased amphiphile concentration in the binary system near the I-->Hα phase transition (ν~=2.4). These results compare well with recent theories for isotropic-liquid-crystal phase transitions.
Almeida, Sintia; Legembre, Patrick; Edmond, Valérie; Azevedo, Vasco; Miyoshi, Anderson; Even, Sergine; Taieb, Frédéric; Arlot-Bonnemains, Yannick; Le Loir, Yves; Berkova, Nadia
2013-01-01
Staphylococcus aureus is a highly versatile, opportunistic pathogen and the etiological agent of a wide range of infections in humans and warm-blooded animals. The epithelial surface is its principal site of colonization and infection. In this work, we investigated the cytopathic effect of S. aureus strains from human and animal origins and their ability to affect the host cell cycle in human HeLa and bovine MAC-T epithelial cell lines. S. aureus invasion slowed down cell proliferation and induced a cytopathic effect, resulting in the enlargement of host cells. A dramatic decrease in the number of mitotic cells was observed in the infected cultures. Flow cytometry analysis revealed an S. aureus-induced delay in the G2/M phase transition in synchronous HeLa cells. This delay required the presence of live S. aureus since the addition of the heat-killed bacteria did not alter the cell cycle. The results of Western blot experiments showed that the G2/M transition delay was associated with the accumulation of inactive cyclin-dependent kinase Cdk1, a key inducer of mitosis entry, and with the accumulation of unphosphorylated histone H3, which was correlated with a reduction of the mitotic cell number. Analysis of S. aureus proliferation in asynchronous, G1- and G2-phase-enriched HeLa cells showed that the G2 phase was preferential for bacterial infective efficiency, suggesting that the G2 phase delay may be used by S. aureus for propagation within the host. Taken together, our results divulge the potential of S. aureus in the subversion of key cellular processes such as cell cycle progression, and shed light on the biological significance of S. aureus-induced host cell cycle alteration. PMID:23717407
Implications of slab mineralogy for subduction dynamics
NASA Astrophysics Data System (ADS)
Bina, Craig R.; Stein, Seth; Marton, Frederic C.; Van Ark, Emily M.
2001-12-01
Phase relations among mantle minerals are perturbed by the thermal environment of subducting slabs, both under equilibrium and disequilibrium (metastable) conditions. Such perturbations yield anomalies not only in seismic velocities but also in density. The buoyancy forces arising from these density anomalies may exert several important effects. They contribute to the stress field within the slab, in a fashion consistent with observed patterns of seismicity. They may affect subduction rates, both by inducing time-dependent velocity changes under equilibrium conditions and by imposing velocity limits through a thermal feedback loop under disequilibrium conditions. They may affect slab morphology, possibly inhibiting penetration of slabs into the lower mantle and allowing temporary stagnation of deflected or detached slabs. Latent heat release from phase transitions under disequilibrium conditions in slabs can yield isobaric superheating, which may generate adiabatic shear instabilities capable of triggering deep seismicity.
Raman spectra and phase transitions in Rb{sub 2}KInF{sub 6} elpasolite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krylov, A. S.; Krylova, S. N., E-mail: slanky@iph.krasn.ru; Vtyurin, A. N.
2011-01-15
The Raman spectra of Rb{sub 2}KInF{sub 6} elpasolite crystal have been studied in a wide temperature range, including two phase transitions: from the cubic phase to the tetragonal phase and then to the monoclinic phase. Several anomalies of internal modes of InF{sub 6} octahedra and low-frequency lattice vibrations, which are related to the structural changes at the transition points, have been found and quantitatively analyzed. The results of a quantitative analysis of the temperature dependences of the parameters of spectral lines are in good agreement with the thermodynamic data on the phase transitions.
Role of relativity in high-pressure phase transitions of thallium.
Kotmool, Komsilp; Chakraborty, Sudip; Bovornratanaraks, Thiti; Ahuja, Rajeev
2017-02-20
We demonstrate the relativistic effects in high-pressure phase transitions of heavy element thallium. The known first phase transition from h.c.p. to f.c.c. is initially investigated by various relativistic levels and exchange-correlation functionals as implemented in FPLO method, as well as scalar relativistic scheme within PAW formalism. The electronic structure calculations are interpreted from the perspective of energetic stability and electronic density of states. The full relativistic scheme (FR) within L(S)DA performs to be the scheme that resembles mostly with experimental results with a transition pressure of 3 GPa. The s-p hybridization and the valence-core overlapping of 6s and 5d states are the primary reasons behind the f.c.c. phase occurrence. A recent proposed phase, i.e., a body-centered tetragonal (b.c.t.) phase, is confirmed with a small distortion from the f.c.c. phase. We have also predicted a reversible b.c.t. → f.c.c. phase transition at 800 GPa. This finding has been suggested that almost all the III-A elements (Ga, In and Tl) exhibit the b.c.t. → f.c.c. phase transition at extremely high pressure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lenné, T.; Kent, B.; Koster, K.L.
Small angle X-ray scattering is used to study the effects of sugars on membranes during dehydration. Previous work has shown that the bilayer and chain-chain repeat spacings of DPPC bilayers are relatively unaffected by the presence of sugars. In this work we present a preliminary analysis of the electron density profiles of DPPC in the presence of sugars at low hydration. The difficulties of determining the correct phasing are discussed. Sugars and other small solutes have been shown to have an important role in improving the tolerance of a range of species to desiccation and freezing. In particular it hasmore » been shown that sugars can stabilize membranes in the fluid membrane phase during dehydration, and in the fully dehydrated state. Equivalently, at a particular hydration, the presence of sugars lowers the transition temperature between the fluid and gel phases. There are two competing models for explaining the effects of sugars on membrane phase transition temperatures. One, designated the water replacement hypothesis (WRH) states that sugars hydrogen bond to phospholipid headgroups, thus hindering the fluid-gel phase transition. One version of this model suggests that certain sugars (such as trehalose) achieve the measured effects by inserting between the phospholipid head groups. An alternative model explains the observed effects of sugars in terms of the sugars effect on the hydration repulsion that develops between opposing membranes during dehydration. The hydration repulsion leads to a lateral compressive stress in the bilayer which squeezes adjacent lipids more closely together, resulting in a transition to the gel phase. When sugars are present, their osmotic and volumetric effects reduce the hydration repulsion, reduce the compressive stress in the membranes, and therefore tend to maintain the average lateral separation between lipids. This model is called the hydration forces explanation (HFE). We recently showed that neither mono- nor di-saccharides affect the average distance between lipid chains in the bilayer, supporting the predictions of the HFE. In this paper we further investigate the effects of sugars on membrane structure by conducting electron density analysis of recent data. This preliminary analysis sheds additional light onto the effects of sugars on membrane structure.« less
Phase transitions in high magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arko, A.J.; Beers, C.J.; van Deursen, A.P.J.
1982-08-01
The purpose of this paper is to summarize some of the research activities recently performed at the Laboratorium voor Hoge Magneetvelden at the University of Nijmegen. The scope here and unifying aspect is magnetically induced phase transitions. Here we summarize transitions in the settling velocity of paramagnetic aggregates, suppression of spin fluctuations in UAl/sub 2/, the phase diagram of a ferroelectric chiral smectic liquid crystal near the Lifshitz point and the transition from 3D to 2D conduction in a GaAs FET. In no way does this represent a complete review of transitions, but rather a summary of phase transitions observedmore » at the magnet laboratory during the past year. 6 figures.« less
Mobility restrictions and glass transition behaviour of an epoxy resin under confinement.
Djemour, A; Sanctuary, R; Baller, J
2015-04-07
Confinement can have a big influence on the dynamics of glass formers in the vicinity of the glass transition. Already 40 to 50 K above the glass transition temperature, thermal equilibration of glass formers can be strongly influenced by the confining substrate. We investigate the linear thermal expansion and the specific heat capacity cp of an epoxy resin (diglycidyl ether of bisphenol A, DGEBA) in a temperature interval of 120 K around the glass transition temperature. The epoxy resin is filled into controlled pore glasses with pore diameters between 4 and 111 nm. Since DGEBA can form H-bonds with silica surfaces, we also investigate the influence of surface silanization of the porous substrates. In untreated substrates a core/shell structure of the epoxy resin can be identified. The glass transition behaviours of the bulk phase and that of the shell phase are different. In silanized substrates, the shell phase disappears. At a temperature well above the glass transition, a second transition is found for the bulk phase - both in the linear expansion data as well as in the specific heat capacity. The cp data do not allow excluding the glass transition of a third phase as being the cause for this transition, whereas the linear expansion data do so. The additional transition temperature is interpreted as a separation between two regimes: above this temperature, macroscopic flow of the bulk phase inside the porous structure is possible to balance the mismatch of thermal expansion coefficients between DGEBA and the substrate. Below the transition temperature, this degree of freedom is hindered by geometrical constraints of the porous substrates. Moreover, this second transition could also be found in the linear expansion data of the shell phase.
A time-dependent order parameter for ultrafast photoinduced phase transitions.
Beaud, P; Caviezel, A; Mariager, S O; Rettig, L; Ingold, G; Dornes, C; Huang, S-W; Johnson, J A; Radovic, M; Huber, T; Kubacka, T; Ferrer, A; Lemke, H T; Chollet, M; Zhu, D; Glownia, J M; Sikorski, M; Robert, A; Wadati, H; Nakamura, M; Kawasaki, M; Tokura, Y; Johnson, S L; Staub, U
2014-10-01
Strongly correlated electron systems often exhibit very strong interactions between structural and electronic degrees of freedom that lead to complex and interesting phase diagrams. For technological applications of these materials it is important to learn how to drive transitions from one phase to another. A key question here is the ultimate speed of such phase transitions, and to understand how a phase transition evolves in the time domain. Here we apply time-resolved X-ray diffraction to directly measure the changes in long-range order during ultrafast melting of the charge and orbitally ordered phase in a perovskite manganite. We find that although the actual change in crystal symmetry associated with this transition occurs over different timescales characteristic of the many electronic and vibrational coordinates of the system, the dynamics of the phase transformation can be well described using a single time-dependent 'order parameter' that depends exclusively on the electronic excitation.
Thermodynamics around the first-order ferromagnetic phase transition of Fe2P single crystals
NASA Astrophysics Data System (ADS)
Hudl, M.; Campanini, D.; Caron, L.; Höglin, V.; Sahlberg, M.; Nordblad, P.; Rydh, A.
2014-10-01
The specific heat and thermodynamics of Fe2P single crystals around the first-order paramagnetic to ferromagnetic (FM) phase transition at TC≃217 K are empirically investigated. The magnitude and direction of the magnetic field relative to the crystal axes govern the derived H -T phase diagram. Strikingly different phase contours are obtained for fields applied parallel and perpendicular to the c axis of the crystal. In parallel fields, the FM state is stabilized, while in perpendicular fields the phase transition is split into two sections, with an intermediate FM phase where there is no spontaneous magnetization along the c axis. The zero-field transition displays a textbook example of a first-order transition with different phase stability limits on heating and cooling. The results have special significance since Fe2P is the parent material to a family of compounds with outstanding magnetocaloric properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Shengchang; Graduate School, China Academy of Engineering Physics, Beijing 100088; Fu Libin
2011-08-15
We investigate the quantum phase transition in an ultracold atom-molecule conversion system. It is found that the system undergoes a phase transition from a mixed atom-molecule phase to a pure molecule phase when the energy bias exceeds a critical value. By constructing a coherent state as variational state, we get a good approximation of the quantum ground state of the system. Using this variational state, we deduce the critical point analytically. We then discuss the scaling laws characterizing the transition and obtain the corresponding critical exponents. Furthermore, the Berry curvature signature of the transition is studied. In particular, we findmore » that the derivatives of the Berry curvature with respect to total particle number intersect at the critical point. The underlying mechanism of this finding is discussed as well.« less
Possible existence of two amorphous phases of d-mannitol related by a first-order transition
NASA Astrophysics Data System (ADS)
Zhu, Men; Wang, Jun-Qiang; Perepezko, John H.; Yu, Lian
2015-06-01
We report that the common polyalcohol d-mannitol may have two amorphous phases related by a first-order transition. Slightly above its glass transition temperature Tg (284 K), the supercooled liquid (SCL) of d-mannitol transforms to a low-energy, apparently amorphous phase with stronger hydrogen bonds. The enthalpy of this so-called Phase X is approximately halfway between those of the known amorphous and crystalline phases, a position low for glass aging and high for crystal polymorphs. Similar to the SCL, Phase X is transparent with broad X-ray diffraction and Raman scattering; upon temperature cycling, it exhibits a glass-transition-like change of heat capacity. On fast heating, Phase X transforms back to the SCL near Tg + 50 K, enabling a determination of their equilibrium temperature. The presence of d-sorbitol as a plasticizer enables observation of a first-order transition from the SCL to Phase X entirely in the liquid state (liquid-liquid transition). The transition from d-mannitol's SCL to Phase X has intriguing similarities with the formation of the glacial phase of triphenyl phosphite (TPP) and the conversion from high-density to low-density amorphous ice, both studied intensely in the context of polyamorphism. All three processes occur near Tg with substantial enthalpy decrease toward the crystalline phases; the processes in water and d-mannitol both strengthen the hydrogen bonds. In contrast to TPP, d-mannitol's Phase X forms more rapidly and can transform back to the SCL. These features make d-mannitol a valuable new model for understanding polyamorphism.
Nature of the octahedral tilting phase transitions in perovskites: A case study of CaMnO3
NASA Astrophysics Data System (ADS)
Klarbring, Johan; Simak, Sergei I.
2018-01-01
The temperature-induced antiferrodistortive (AFD) structural phase transitions in CaMnO3, a typical perovskite oxide, are studied using first-principles density functional theory calculations. These transitions are caused by tilting of the MnO6 octahedra that are related to unstable phonon modes in the high-symmetry cubic perovskite phase. Transitions due to octahedral tilting in perovskites normally are believed to fit into the standard soft-mode picture of displacive phase transitions. We calculate phonon-dispersion relations and potential-energy landscapes as functions of the unstable phonon modes and argue based on the results that the phase transitions are better described as being of order-disorder type. This means that the cubic phase emerges as a dynamical average when the system hops between local minima on the potential-energy surface. We then perform ab initio molecular dynamics simulations and find explicit evidence of the order-disorder dynamics in the system. Our conclusions are expected to be valid for other perovskite oxides, and we finally suggest how to predict the nature (displacive or order-disorder) of the AFD phase transitions in any perovskite system.
NASA Astrophysics Data System (ADS)
Kaneko, Fumitoshi; Yamazaki, Kazuhiro; Kobayashi, Masamichi; Sato, Kiyotaka; Suzuki, Masao
1994-08-01
The infrared and Raman spectra of four polymorphic phases (α, α1, γ and γ1) of erucic acid ( cis-13-docosenoic acid) and those of two polymorphic phases (α and γ) of palmitoleic acid ( cis-9-hexadecenoic acid) were investigated. The γ and γ1 phases of erucic acid were analyzed on the basis of crystal structures determined by us. There were large spectral differences between γ and γ1 phases, which could be ascribed to the differences in the conformation of cis-olefin groups and the subcell structure. Two types of reversible solid state phase transitions (γ→α and γ1→α1 transitions) were followed by the infrared and Raman spectra. It was concluded that the mechanism of the γ→α phase transition of erucic and palmitoleic acids is essentially the same as that of oleic acid previously reported by us [ J. Phys. Chem.90, 6371 (1986)], i.e. this phase transition is of order-disorder type accompanied by a conformational disordering at the methyl-terminal chain. Spectral changes on the γ1→α1 transition suggested that a similar structural change took place during this transition but there were large structural differences between α and α1.
NASA Astrophysics Data System (ADS)
Belmonte, Donato; Ottonello, Giulio Armando; Vetuschi Zuccolini, Marino
2014-05-01
MgSiO3 polymorphs with the garnet, pyroxene and ilmenite structure play a key role in controlling phase equilibria and seismic velocity gradients in the mantle transition zone (440-660 km). Despite the relative abundance of structural and thermoelastic informations, thermodynamic data are still poorly constrained and their extrapolation at high pressure and temperature conditions is affected by large uncertainties. In this work, ab initio calculations of the thermodynamic properties of MgSiO3 polymorphs stable at MTZ conditions (tetragonal majorite, Mj; akimotoite, Ak; HP-clinoenstatite, HPCEn) have been carried out with the hybrid B3LYP density functional method. The static and vibrational features of these minerals (equation of state, elastic constants, seismic velocities and anisotropy, IR and Raman spectra, mode Grüneisen parameters) have been fully characterized in a broad range of P-T conditions. The vibrational density of states (vDOS) have been reproduced in the framework of quasi-harmonic approximation through a full phonon dispersion calculation or, alternatively, a modified Kieffer's model splitting the acoustic and optic modes contribution to the thermodynamic functions. The calculated heat capacities are in good agreement with the relatively few calorimetric investigations made so far on these minerals in the low- to medium-T range. However, physical unsoundness may affect the high-temperature extrapolation of calorimetric results, so that the use in phase equilibria calculation deserves great care. The calculated Gibbs free energies allow to define phase transition boundaries in the MgSiO3 phase diagram and locate the majorite-akimotite-perovskite triple point at P = 21.09 ± 0.13 GPa and T = 2247 ± 31 K. The effect of partial structural disorder in majorite, assessed via an interchange enthalpy (ΔHint = 15 kJ/mol) and configurational entropy [Sconf = 1.9 J/(mol×K)] contribution, must be taken into account to accurately reproduce the Mj-Ak-Pv triple point. The predicted Clapeyron slopes of the phase boundaries Mj-Pv, Mj-Ak, Ak-Pv and HPCEn-Mj turn out to be 2.2, 8.3, -4.0 and -3.6 MPa/K, respectively, in good agreement with experimental observations and thermodynamic optimizations as well. The geophysical implications concerning the role of non-olivine mineral phases in mantle dynamics, deep seismic discontinuities, density change and slab stagnation at 660 km depth are briefly outlined and discussed.
NASA Astrophysics Data System (ADS)
Mamin, R. F.; Shaposhnikova, T. S.; Kabanov, V. V.
2018-03-01
We have considered the model of the phase transition of the second order for the Coulomb frustrated 2D charged system. The coupling of the order parameter with the charge was considered as the local temperature. We have found that in such a system, an appearance of the phase-separated state is possible. By numerical simulation, we have obtained different types ("stripes," "rings," "snakes") of phase-separated states and determined the parameter ranges for these states. Thus the system undergoes a series of phase transitions when the temperature decreases. First, the system moves from the homogeneous state with a zero order parameter to the phase-separated state with two phases in one of which the order parameter is zero and, in the other, it is nonzero (τ >0 ). Then a first-order transition occurs to another phase-separated state, in which both phases have different and nonzero values of the order parameter (for τ <0 ). Only a further decrease of temperature leads to a transition to a homogeneous ordered state.
Non-Congruence of Thermally Induced Structural and Electronic Transitions in VO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nag, Joyeeta; HaglundJr., Richard F; Payzant, E Andrew
2012-01-01
The multifunctional properties of vanadium dioxide (VO2) arise from coupled first-order phase transitions: an insulator-to-metal transition (IMT) and a structural phase transition (SPT) from monoclinic to tetragonal. The characteristic signatures of the IMT and SPT are the hysteresis loops that track the phase transition from nucleation to stabilization of a new phase and back. A long-standing question about the mechanism of the VO2 phase transition is whether and how the almost-simultaneous electronic and structural transitions are related. Here we report independent measurements of the IMT and SPT hystereses in epitaxial VO2 films with differing morphologies. We show that, in bothmore » cases, the hystereses are not congruent, that the structural change requires more energy to reach completion. This result is independent of nanoscale morphology, so that the non- congruence is an intrinsic property of the VO2 phase transition. Our conclusion is supported by effective-medium calculations of the dielectric function incorporating the measured volume fractions of the monoclinic and tetragonal states. The results are consistent with the existence of an monoclinic correlated metallic state in which the electron- electron correlations characteristic of the monoclinic state begin to disappear before the transition to the tetragonal structural state.« less
Problem-Solving Phase Transitions During Team Collaboration.
Wiltshire, Travis J; Butner, Jonathan E; Fiore, Stephen M
2018-01-01
Multiple theories of problem-solving hypothesize that there are distinct qualitative phases exhibited during effective problem-solving. However, limited research has attempted to identify when transitions between phases occur. We integrate theory on collaborative problem-solving (CPS) with dynamical systems theory suggesting that when a system is undergoing a phase transition it should exhibit a peak in entropy and that entropy levels should also relate to team performance. Communications from 40 teams that collaborated on a complex problem were coded for occurrence of problem-solving processes. We applied a sliding window entropy technique to each team's communications and specified criteria for (a) identifying data points that qualify as peaks and (b) determining which peaks were robust. We used multilevel modeling, and provide a qualitative example, to evaluate whether phases exhibit distinct distributions of communication processes. We also tested whether there was a relationship between entropy values at transition points and CPS performance. We found that a proportion of entropy peaks was robust and that the relative occurrence of communication codes varied significantly across phases. Peaks in entropy thus corresponded to qualitative shifts in teams' CPS communications, providing empirical evidence that teams exhibit phase transitions during CPS. Also, lower average levels of entropy at the phase transition points predicted better CPS performance. We specify future directions to improve understanding of phase transitions during CPS, and collaborative cognition, more broadly. Copyright © 2017 Cognitive Science Society, Inc.
NASA Astrophysics Data System (ADS)
Li, Hui-Ling; Feng, Zhong-Wen; Zu, Xiao-Tao
2018-01-01
With motivation by holography, employing black hole entropy, two-point connection function and entanglement entropy, we show that, for the higher-dimensional Anti-de Sitter charged hairy black hole in the fixed charged ensemble, a Van der Waals-like phase transition can be observed. Furthermore, based on the Maxwell equal-area construction, we check numerically the equal-area law for a first order phase transition in order to further characterize the Van der Waals-like phase transition.
Phase transition of aragonite in abalone nacre
NASA Astrophysics Data System (ADS)
An, Yuanlin; Liu, Zhiming; Wu, Wenjian
2013-04-01
Nacre is composed of about 95 vol.% aragonite and 5 vol.% biopolymer and famous for its "brick and mortar" microstructure. The phase transition temperature of aragonite in nacre is lower than the pure aragonite. In situ XRD was used to identify the phase transition temperature from aragonite to calcite in nacre, based on the analysis of TG-DSC of fresh nacre and demineralized nacre. The results indicate that the microstructure and biopolymer are the two main factors that influence the phase transition temperature of aragonite in nacre.
Hennigar, Robie A; Mann, Robert B; Tjoa, Erickson
2017-01-13
We present what we believe is the first example of a "λ-line" phase transition in black hole thermodynamics. This is a line of (continuous) second order phase transitions which in the case of liquid ^{4}He marks the onset of superfluidity. The phase transition occurs for a class of asymptotically anti-de Sitter hairy black holes in Lovelock gravity where a real scalar field is conformally coupled to gravity. We discuss the origin of this phase transition and outline the circumstances under which it (or generalizations of it) could occur.
NASA Astrophysics Data System (ADS)
Hennigar, Robie A.; Mann, Robert B.; Tjoa, Erickson
2017-01-01
We present what we believe is the first example of a "λ -line" phase transition in black hole thermodynamics. This is a line of (continuous) second order phase transitions which in the case of liquid 4He marks the onset of superfluidity. The phase transition occurs for a class of asymptotically anti-de Sitter hairy black holes in Lovelock gravity where a real scalar field is conformally coupled to gravity. We discuss the origin of this phase transition and outline the circumstances under which it (or generalizations of it) could occur.
Colossal magnetic phase transition asymmetry in mesoscale FeRh stripes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uhlir, V.; Arregi, J. A.; Fullerton, E. E.
Coupled order parameters in phase-transition materials can be controlled using various driving forces such as temperature, magnetic and electric field, strain, spin-polarized currents and optical pulses. Tuning the material properties to achieve efficient transitions would enable fast and low-power electronic devices. Here we show that the first-order metamagnetic phase transition in FeRh films becomes strongly asymmetric in mesoscale structures. In patterned FeRh stripes we observed pronounced supercooling and an avalanche-like abrupt transition from the ferromagnetic to the antiferromagnetic phase, while the reverse transition remains nearly continuous over a broad temperature range. Although modest asymmetry signatures have been found in FeRhmore » films, the effect is dramatically enhanced at the mesoscale. The activation volume of the antiferromagnetic phase is more than two orders of magnitude larger than typical magnetic heterogeneities observed in films. Finally, the collective behaviour upon cooling results from the role of long-range ferromagnetic exchange correlations that become important at the mesoscale and should be a general property of first-order metamagnetic phase transitions.« less
Colossal magnetic phase transition asymmetry in mesoscale FeRh stripes
Uhlir, V.; Arregi, J. A.; Fullerton, E. E.
2016-10-11
Coupled order parameters in phase-transition materials can be controlled using various driving forces such as temperature, magnetic and electric field, strain, spin-polarized currents and optical pulses. Tuning the material properties to achieve efficient transitions would enable fast and low-power electronic devices. Here we show that the first-order metamagnetic phase transition in FeRh films becomes strongly asymmetric in mesoscale structures. In patterned FeRh stripes we observed pronounced supercooling and an avalanche-like abrupt transition from the ferromagnetic to the antiferromagnetic phase, while the reverse transition remains nearly continuous over a broad temperature range. Although modest asymmetry signatures have been found in FeRhmore » films, the effect is dramatically enhanced at the mesoscale. The activation volume of the antiferromagnetic phase is more than two orders of magnitude larger than typical magnetic heterogeneities observed in films. Finally, the collective behaviour upon cooling results from the role of long-range ferromagnetic exchange correlations that become important at the mesoscale and should be a general property of first-order metamagnetic phase transitions.« less
Phase diagram of quantum critical system via local convertibility of ground state
Liu, Si-Yuan; Quan, Quan; Chen, Jin-Jun; Zhang, Yu-Ran; Yang, Wen-Li; Fan, Heng
2016-01-01
We investigate the relationship between two kinds of ground-state local convertibility and quantum phase transitions in XY model. The local operations and classical communications (LOCC) convertibility is examined by the majorization relations and the entanglement-assisted local operations and classical communications (ELOCC) via Rényi entropy interception. In the phase diagram of XY model, LOCC convertibility and ELOCC convertibility of ground-states are presented and compared. It is shown that different phases in the phase diagram of XY model can have different LOCC or ELOCC convertibility, which can be used to detect the quantum phase transition. This study will enlighten extensive studies of quantum phase transitions from the perspective of local convertibility, e.g., finite-temperature phase transitions and other quantum many-body models. PMID:27381284
Brady, Nathaniel F.; Appavoo, Kannatassen; Seo, Minah; ...
2016-03-02
Here we report on ultrafast optical investigations of the light-induced insulator-to-metal phase transition in vanadium dioxide with controlled disorder generated by substrate mismatch. These results reveal common dynamics of this optically-induced phase transition that are independent of this disorder. Lastly, above the fluence threshold for completing the transition to the rutile crystalline phase, we find a common time scale, independent of sample morphology, of 40.5 ± 2 ps that is consistent with nucleation and growth dynamics of the R phase from the parent M1 ground state.
Fluctuation driven electroweak phase transition
NASA Technical Reports Server (NTRS)
Gleiser, Marcelo; Kolb, Edward W.
1991-01-01
We examine the dynamics of the electroweak phase transition in the early Universe. For Higgs masses in the range 46 less than or = M sub H less than or = 150 GeV and top quark masses less than 200 GeV, regions of symmetric and asymmetric vacuum coexist to below the critical temperature, with thermal equilibrium between the two phases maintained by fluctuations of both phases. We propose that the transition to the asymmetric vacuum is completed by percolation of these subcritical fluctuations. Our results are relevant to scenarios of baryogenesis that invoke a weakly first-order phase transition at the electroweak scale.
Fluctuation-driven electroweak phase transition. [in early universe
NASA Technical Reports Server (NTRS)
Gleiser, Marcelo; Kolb, Edward W.
1992-01-01
We examine the dynamics of the electroweak phase transition in the early Universe. For Higgs masses in the range 46 less than or = M sub H less than or = 150 GeV and top quark masses less than 200 GeV, regions of symmetric and asymmetric vacuum coexist to below the critical temperature, with thermal equilibrium between the two phases maintained by fluctuations of both phases. We propose that the transition to the asymmetric vacuum is completed by percolation of these subcritical fluctuations. Our results are relevant to scenarios of baryogenesis that invoke a weakly first-order phase transition at the electroweak scale.
Crystalline Structure and Vacancy Ordering across a Surface Phase Transition in Sn/Cu(001).
Martínez-Blanco, J; Joco, V; Quirós, C; Segovia, P; Michel, E G
2018-01-18
We report a surface X-ray diffraction study of the crystalline structure changes and critical behavior across the (3√2 × √2)R45° → (√2 × √2)R45° surface phase transition at 360 K for 0.5 monolayers of Sn on Cu(100). The phase transition is of the order-disorder type and is due to the disordering of the Cu atomic vacancies present in the low temperature phase. Two different atomic sites for Sn atoms, characterized by two different heights, are maintained across the surface phase transition.
Effect of Exogenous and Endogenous Nitrate Concentration on Nitrate Utilization by Dwarf Bean 1
Breteler, Hans; Nissen, Per
1982-01-01
The effect of the exogenous and endogenous NO3− concentration on net uptake, influx, and efflux of NO3− and on nitrate reductase activity (NRA) in roots was studied in Phaseolus vulgaris L. cv. Witte Krombek. After exposure to NO3−, an apparent induction period of about 6 hours occurred regardless of the exogenous NO3− level. A double reciprocal plot of the net uptake rate of induced plants versus exogenous NO3− concentration yielded four distinct phases, each with simple Michaelis-Menten kinetics, and separated by sharp breaks at about 45, 80, and 480 micromoles per cubic decimeter. Influx was estimated as the accumulation of 15N after 1 hour exposure to 15NO3−. The isotherms for influx and net uptake were similar and corresponded to those for alkali cations and Cl−. Efflux of NO3− was a constant proportion of net uptake during initial NO3− supply and increased with exogenous NO3− concentration. No efflux occurred to a NO3−-free medium. The net uptake rate was negatively correlated with the NO3− content of roots. Nitrate efflux, but not influx, was influenced by endogenous NO3−. Variations between experiments, e.g. in NO3− status, affected the values of Km and Vmax in the various concentration phases. The concentrations at which phase transitions occurred, however, were constant both for influx and net uptake. The findings corroborate the contention that separate sites are responsible for uptake and transitions between phases. Beyond 100 micromoles per cubic decimeter, root NRA was not affected by exogenous NO3− indicating that NO3− uptake was not coupled to root NRA, at least not at high concentrations. PMID:16662570
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Hanzheng; Randall, Clive A., E-mail: car4@psu.edu; Shimizu, Hiroyuki
2015-09-14
Hot-stage in situ transmission electron microscopy was employed to investigate the temperature-induced complex sequence of phase transitions in NaNbO{sub 3} polycrystalline. In addition to the commonly recognized P (Pbma) → R (Pmnm) → S (Pnmm) phase transitions, incommensurate phases were observed to exist in P and R phase regions. The former (in the P → R transition region) is coincident with a diffused dielectric peak appearing at ∼170 °C, and the latter (in the R → S transition region) serves as an intermediate structure to bridge the two sub-phases in the R phase region. The incommensurate phase in the P phasemore » region can be inferred from the polarization current density and differential dielectric permittivity anomalies, and it provides the bridge structure during the electric field-induced polarization reversal and antiferroelectric-to-ferroelectric transition in NaNbO{sub 3} solid solutions.« less
NASA Astrophysics Data System (ADS)
Sun, Xiaojuan; Perc, Matjaž; Kurths, Jürgen
2017-05-01
In this paper, we study effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks. Our focus is on the impact of two parameters, namely the time delay τ and the probability of partial time delay pdelay, whereby the latter determines the probability with which a connection between two neurons is delayed. Our research reveals that partial time delays significantly affect phase synchronization in this system. In particular, partial time delays can either enhance or decrease phase synchronization and induce synchronization transitions with changes in the mean firing rate of neurons, as well as induce switching between synchronized neurons with period-1 firing to synchronized neurons with period-2 firing. Moreover, in comparison to a neuronal network where all connections are delayed, we show that small partial time delay probabilities have especially different influences on phase synchronization of neuronal networks.
Sun, Xiaojuan; Perc, Matjaž; Kurths, Jürgen
2017-05-01
In this paper, we study effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks. Our focus is on the impact of two parameters, namely the time delay τ and the probability of partial time delay p delay , whereby the latter determines the probability with which a connection between two neurons is delayed. Our research reveals that partial time delays significantly affect phase synchronization in this system. In particular, partial time delays can either enhance or decrease phase synchronization and induce synchronization transitions with changes in the mean firing rate of neurons, as well as induce switching between synchronized neurons with period-1 firing to synchronized neurons with period-2 firing. Moreover, in comparison to a neuronal network where all connections are delayed, we show that small partial time delay probabilities have especially different influences on phase synchronization of neuronal networks.
Improving Climate Projections by Understanding How Cloud Phase affects Radiation
NASA Technical Reports Server (NTRS)
Cesana, Gregory; Storelvmo, Trude
2017-01-01
Whether a cloud is predominantly water or ice strongly influences interactions between clouds and radiation coming down from the Sun or up from the Earth. Being able to simulate cloud phase transitions accurately in climate models based on observational data sets is critical in order to improve confidence in climate projections, because this uncertainty contributes greatly to the overall uncertainty associated with cloud-climate feedbacks. Ultimately, it translates into uncertainties in Earth's sensitivity to higher CO2 levels. While a lot of effort has recently been made toward constraining cloud phase in climate models, more remains to be done to document the radiative properties of clouds according to their phase. Here we discuss the added value of a new satellite data set that advances the field by providing estimates of the cloud radiative effect as a function of cloud phase and the implications for climate projections.
Phase transitions in a system of hard rectangles on the square lattice
NASA Astrophysics Data System (ADS)
Kundu, Joyjit; Rajesh, R.
2014-05-01
The phase diagram of a system of monodispersed hard rectangles of size m ×mk on a square lattice is numerically determined for m =2,3 and aspect ratio k =1,2,...,7. We show the existence of a disordered phase, a nematic phase with orientational order, a columnar phase with orientational and partial translational order, and a solidlike phase with sublattice order, but no orientational order. The asymptotic behavior of the phase boundaries for large k is determined using a combination of entropic arguments and a Bethe approximation. This allows us to generalize the phase diagram to larger m and k, showing that for k ≥7, the system undergoes three entropy-driven phase transitions with increasing density. The nature of the different phase transitions is established and the critical exponents for the continuous transitions are determined using finite size scaling.
Pressure-Induced Phase Transitions of n-Tridecane
NASA Astrophysics Data System (ADS)
Yamashita, Motoi
Pressure-induced phase transition behavior of n-tridecane from the ordered phase through the rotator phase into the liquid phase has been investigated by using Fourier transform infrared spectroscopy at 25 °C. The transition between the ordered and rotator phases has been observed in the pressure range of 270-220 MPa and the transition between the rotator and liquid phases has been observed in the pressure range of 171-112 MPa, within the experimental error of ±50 MPa. The populations of the -gtg- + -gtg'-, -gg- and gt- defects determined from the methylene wagging mode are smaller in the rotator phase than in the liquid phase and are smaller under higher pressure in both of the rotator and liquid phases. A relationship has been found between the conformation and the intensity of the 890 cm-1 band, which has been assigned as the methyl rocking mode and has been considered as insensitive to conformation.
Chang, Cui-Zu; Zhao, Weiwei; Li, Jian; Jain, J K; Liu, Chaoxing; Moodera, Jagadeesh S; Chan, Moses H W
2016-09-16
Fundamental insight into the nature of the quantum phase transition from a superconductor to an insulator in two dimensions, or from one plateau to the next or to an insulator in the quantum Hall effect, has been revealed through the study of its scaling behavior. Here, we report on the experimental observation of a quantum phase transition from a quantum-anomalous-Hall insulator to an Anderson insulator in a magnetic topological insulator by tuning the chemical potential. Our experiment demonstrates the existence of scaling behavior from which we extract the critical exponent for this quantum phase transition. We expect that our work will motivate much further investigation of many properties of quantum phase transition in this new context.
NASA Astrophysics Data System (ADS)
Wang, Pei; Yi, Wei; Xianlong, Gao
2015-01-01
We study the quench dynamics of a one-dimensional ultracold Fermi gas with synthetic spin-orbit coupling. At equilibrium, the ground state of the system can undergo a topological phase transition and become a topological superfluid with Majorana edge states. As the interaction is quenched near the topological phase boundary, we identify an interesting dynamical phase transition of the quenched state in the long-time limit, characterized by an abrupt change of the pairing gap at a critical quenched interaction strength. We further demonstrate the topological nature of this dynamical phase transition from edge-state analysis of the quenched states. Our findings provide interesting clues for the understanding of topological phase transitions in dynamical processes, and can be useful for the dynamical detection of Majorana edge states in corresponding systems.
Possible higher order phase transition in large-N gauge theory at finite temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishimura, Hiromichi
2017-08-07
We analyze the phase structure of SU(¥) gauge theory at finite temperature using matrix models. Our basic assumption is that the effective potential is dominated by double-trace terms for the Polyakov loops. As a function of the temperature, a background field for the Polyakov loop, and a quartic coupling, it exhibits a universal structure: in the large portion of the parameter space, there is a continuous phase transition analogous to the third-order phase transition of Gross,Witten and Wadia, but the order of phase transition can be higher than third. We show that different confining potentials give rise to drastically differentmore » behavior of the eigenvalue density and the free energy. Therefore lattice simulations at large N could probe the order of phase transition and test our results. Critical« less
NASA Astrophysics Data System (ADS)
Peng, Yan; Wang, Bin; Liu, Yunqi
2018-03-01
We study the asymptotically flat quasi-local black hole/hairy black hole model with nonzero mass of the scalar field. We disclose effects of the scalar mass on transitions in a grand canonical ensemble with condensation behaviors of the parameter ψ 2, which is similar to approaches in holographic theories. We find that a more negative scalar mass makes the phase transition easier. We also obtain the analytical relation ψ 2∝ (Tc-T)^{1/2} around the critical phase transition points, implying a second order phase transition. Besides the parameter ψ 2, we show that metric solutions can be used to disclose properties of the transitions. In this work, we observe that phase transitions in a box are strikingly similar to holographic transitions in AdS gravity and the similarity provides insights into holographic theories.
Ickert, Stefanie; Hofmann, Johanna; Riedel, Jens; Beck, Sebastian; Pagel, Kevin; Linscheid, Michael W
2018-04-01
Mass spectrometry is applied as a tool for the elucidation of molecular structures. This premises that gas-phase structures reflect the original geometry of the analytes, while it requires a thorough understanding and investigation of the forces controlling and affecting the gas-phase structures. However, only little is known about conformational changes of oligonucleotides in the gas phase. In this study, a series of multiply charged DNA oligonucleotides (n = 15-40) has been subjected to a comprehensive tandem mass spectrometric study to unravel transitions between different ionic gas-phase structures. The nucleobase sequence and the chain length were varied to gain insights into their influence on the geometrical oligonucleotide organization. Altogether, 23 oligonucleotides were analyzed using collision-induced fragmentation. All sequences showed comparable correlation regarding the characteristic collision energy. This value that is also a measure for stability, strongly correlates with the net charge density of the precursor ions. With decreasing charge of the oligonucleotides, an increase in the fragmentation energy was observed. At a distinct charge density, a deviation from linearity was observed for all studied species, indicating a structural reorganization. To corroborate the proposed geometrical change, collisional cross-sections of the oligonucleotides at different charge states were determined using ion mobility-mass spectrometry. The results clearly indicate that an increase in charge density and thus Coulomb repulsion results in the transition from a folded, compact form to elongated structures of the precursor ions. Our data show this structural transition to depend mainly on the charge density, whereas sequence and size do not have an influence.
Short Vegetative Phase-Like MADS-Box Genes Inhibit Floral Meristem Identity in Barley1[W][OA
Trevaskis, Ben; Tadege, Million; Hemming, Megan N.; Peacock, W. James; Dennis, Elizabeth S.; Sheldon, Candice
2007-01-01
Analysis of the functions of Short Vegetative Phase (SVP)-like MADS-box genes in barley (Hordeum vulgare) indicated a role in determining meristem identity. Three SVP-like genes are expressed in vegetative tissues of barley: Barley MADS1 (BM1), BM10, and Vegetative to Reproductive Transition gene 2. These genes are induced by cold but are repressed during floral development. Ectopic expression of BM1 inhibited spike development and caused floral reversion in barley, with florets at the base of the spike replaced by tillers. Head emergence was delayed in plants that ectopically express BM1, primarily by delayed development after the floral transition, but expression levels of the barley VRN1 gene (HvVRN1) were not affected. Ectopic expression of BM10 inhibited spike development and caused partial floral reversion, where florets at the base of the spike were replaced by inflorescence-like structures, but did not affect heading date. Floral reversion occurred more frequently when BM1 and BM10 ectopic expression lines were grown in short-day conditions. BM1 and BM10 also inhibited floral development and caused floral reversion when expressed in Arabidopsis (Arabidopsis thaliana). We conclude that SVP-like genes function to suppress floral meristem identity in winter cereals. PMID:17114273
Ding, Xuan; He, Minxia; Kulkarni, Rajesh; Patel, Nita; Zhang, Xiaoyu
2013-08-01
Identifying the source of inter- and/or intrasubject variability in pharmacokinetics (PK) provides fundamental information in understanding the pharmacokinetics-pharmacodynamics relationship of a drug and project its efficacy and safety in clinical populations. This identification process can be challenging given that a large number of potential causes could lead to PK variability. Here we present an integrated approach of physiologically based absorption modeling to investigate the root cause of unexpectedly high PK variability of a Phase I clinical trial drug. LY2196044 exhibited high intersubject variability in the absorption phase of plasma concentration-time profiles in humans. This could not be explained by in vitro measurements of drug properties and excellent bioavailability with low variability observed in preclinical species. GastroPlus™ modeling suggested that the compound's optimal solubility and permeability characteristics would enable rapid and complete absorption in preclinical species and in humans. However, simulations of human plasma concentration-time profiles indicated that despite sufficient solubility and rapid dissolution of LY2196044 in humans, permeability and/or transit in the gastrointestinal (GI) tract may have been negatively affected. It was concluded that clinical PK variability was potentially due to the drug's antagonism on opioid receptors that affected its transit and absorption in the GI tract. Copyright © 2013 Wiley Periodicals, Inc.
Giant elastic tunability in strained BiFeO 3 near an electrically induced phase transition
Yu, Pu; Vasudevan, Rama K.; Tselev, Alexander; ...
2015-11-24
Elastic anomalies are signatures of phase transitions in condensed matters and have traditionally been studied using various techniques spanning from neutron scattering to static mechanical testing. Here, using band-excitation elastic/piezoresponse spectroscopy, we probed sub-MHz elastic dynamics of a tip bias-induced rhombohedral–tetragonal phase transition of strained (001)-BiFeO 3 (rhombohedral) ferroelectric thin films from ~10 3 nm 3 sample volumes. Near this transition, we observed that the Young's modulus intrinsically softens by over 30% coinciding with 2-3 folds enhancement of local piezoresponse. Coupled with phase-field modeling, we also addressed the influence of polarization switching and mesoscopic structural heterogeneities (e.g., domain walls) onmore » the kinetics of this phase transition, thereby providing fresh insights into the morphotropic phase boundary (MPB) in ferroelectrics. Moreover, the giant electrically tunable elastic stiffness and corresponding electromechanical properties observed here suggest potential applications of BiFeO 3 in next-generation frequency-agile electroacoustic devices, based on utilization of the soft modes underlying successive ferroelectric phase transitions.« less
The deconfining phase transition in and out of equilibrium
NASA Astrophysics Data System (ADS)
Bazavov, Oleksiy
Recent experiments carried out at the Relativistic Heavy Ion Collider at the Brookhaven National Laboratory provide strong evidence that a matter can be driven from a confined, low-temperature phase, observed in our every day world into a deconfined high-temperature phase of liberated quarks and gluons. The equilibrium and dynamical properties of the deconfining phase transition are thus of great theoretical interest, since they also provide an information about the first femtoseconds of the evolution of our Universe, when the hot primordial soup while cooling has undergone a chain of phase transitions. The aspects of the deconfining phase transition studied in this work include: the dynamics of the SU(3) gauge theory after the heating quench (which models rapid heating in the heavy-ion collisions), equilibrium properties of the phase transition in the SU(3) gauge theory with boundaries at low temperature (small volumes at RHIC suggest that boundary effects cannot be neglected and periodic boundary conditions normally used in lattice simulations do not correspond to the experimental situation), and a study of the order of the transition in U(1) gauge theory.
Quantum tricritical point in the temperature-pressure-magnetic field phase diagram of CeTiGe 3
Kaluarachchi, Udhara S.; Taufour, Valentin; Bud'ko, Sergey L.; ...
2018-01-22
We report the temperature-pressure-magnetic eld phase diagram of the ferromagnetic Kondolattice CeTiGe 3 determined by means of electrical resistivity measurements. Measurements up to ~5.8GPa reveal a rich phase diagram with multiple phase transitions. At ambient pressure, CeTiGe 3 orders ferromagnetically at T C =14 K. Application of pressure suppresses T C, but a pressure induced ferromagnetic quantum criticality is avoided by the appearance of two new successive transitions for p>4.1GPa that are probably antiferromagnetic in nature. These two transitions are suppressed under pressure, with the lower temperature phase being fully suppressed above 5.3GPa. The critical pressures for the presumed quantummore » phase transitions are p1≅4.1GPa and p2≅5.3GPa. Above 4.1GPa, application of magnetic eld shows a tricritical point evolving into a wing structure phase with a quantum tricritical point at 2.8T at 5.4GPa, where the rst order antiferromagneticferromagnetic transition changes into the second order antiferromagnetic-ferromagnetic transition.« less
Giant elastic tunability in strained BiFeO3 near an electrically induced phase transition
Li, Q; Cao, Y.; Yu, P.; Vasudevan, R. K.; Laanait, N.; Tselev, A.; Xue, F.; Chen, L. Q.; Maksymovych, P.; Kalinin, S. V.; Balke, N.
2015-01-01
Elastic anomalies are signatures of phase transitions in condensed matters and have traditionally been studied using various techniques spanning from neutron scattering to static mechanical testing. Here, using band-excitation elastic/piezoresponse spectroscopy, we probed sub-MHz elastic dynamics of a tip bias-induced rhombohedral−tetragonal phase transition of strained (001)-BiFeO3 (rhombohedral) ferroelectric thin films from ∼103 nm3 sample volumes. Near this transition, we observed that the Young's modulus intrinsically softens by over 30% coinciding with two- to three-fold enhancement of local piezoresponse. Coupled with phase-field modelling, we also addressed the influence of polarization switching and mesoscopic structural heterogeneities (for example, domain walls) on the kinetics of this phase transition, thereby providing fresh insights into the morphotropic phase boundary in ferroelectrics. Furthermore, the giant electrically tunable elastic stiffness and corresponding electromechanical properties observed here suggest potential applications of BiFeO3 in next-generation frequency-agile electroacoustic devices, based on the utilization of the soft modes underlying successive ferroelectric phase transitions. PMID:26597483
Shock loading and release behavior of silicon nitride
NASA Astrophysics Data System (ADS)
Kawai, N.; Tsuru, T.; Hidaka, N.; Liu, X.; Mashimo, T.
2017-01-01
Shock-reshock and shock-release experiments were performed on silicon nitride ceramics above and below its phase transition pressure. Experimental results clearly show the occurrence of elastic-plastic transition and phase transition during initial shock loading. The HEL and phase transition stress are determined as 11.6 and 34.5 GPa, respectively. Below the phase transition stress, the reshock profile consists of the single shock with short rise time, while the release profile shows the gradual release followed by rapid one. Above phase transition stress, reshock and release behavior varies with the initial shock stress. In the case of reshock and release from about 40 GPa, the reshock structure is considerably dispersed, while the release structure shows rapid release. In the reshock profile from about 50 GPa, the formation of the shock wave with the small ramped precursor is observed. And, the release response from same shocked condition shows initial gradual release and subsequent quite rapid one. These results would provide the information about how phase transformation kinetics effects on the reshock and release behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaluarachchi, Udhara S.; Taufour, Valentin; Bud'ko, Sergey L.
We report the temperature-pressure-magnetic eld phase diagram of the ferromagnetic Kondolattice CeTiGe 3 determined by means of electrical resistivity measurements. Measurements up to ~5.8GPa reveal a rich phase diagram with multiple phase transitions. At ambient pressure, CeTiGe 3 orders ferromagnetically at T C =14 K. Application of pressure suppresses T C, but a pressure induced ferromagnetic quantum criticality is avoided by the appearance of two new successive transitions for p>4.1GPa that are probably antiferromagnetic in nature. These two transitions are suppressed under pressure, with the lower temperature phase being fully suppressed above 5.3GPa. The critical pressures for the presumed quantummore » phase transitions are p1≅4.1GPa and p2≅5.3GPa. Above 4.1GPa, application of magnetic eld shows a tricritical point evolving into a wing structure phase with a quantum tricritical point at 2.8T at 5.4GPa, where the rst order antiferromagneticferromagnetic transition changes into the second order antiferromagnetic-ferromagnetic transition.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexandrov, D. V., E-mail: Dmitri.Alexandrov@usu.ru; Ivanov, A. A.
2009-05-15
The process of solidification of ternary systems in the presence of moving phase transition regions has been investigated theoretically in terms of the nonlinear equation of the liquidus surface. A mathematical model is developed and an approximate analytical solution to the Stefan problem is constructed for a linear temperature profile in two-phase zones. The temperature and impurity concentration distributions are determined, the solid-phase fractions in the phase transition regions are obtained, and the laws of motion of their boundaries are established. It is demonstrated that all boundaries move in accordance with the laws of direct proportionality to the square rootmore » of time, which is a general property of self-similar processes. It is substantiated that the concentration of an impurity of the substance undergoing a phase transition only in the cotectic zone increases in this zone and decreases in the main two-phase zone in which the other component of the substance undergoes a phase transition. In the process, the concentration reaches a maximum at the interface between the main two-phase zone and the cotectic two-phase zone. The revealed laws of motion of the outer boundaries of the entire phase transition region do not depend on the amount of the components under consideration and hold true for crystallization of a multicomponent system.« less
A comprehensive study on the structural evolution of HfO 2 thin films doped with various dopants
Park, Min Hyuk; Schenk, Tony; Fancher, Christopher M.; ...
2017-04-19
The origin of the unexpected ferroelectricity in doped HfO 2 thin films is now considered to be the formation of a non-centrosymmetric Pca2 1 orthorhombic phase. Due to the polycrystalline nature of the films as well as their extremely small thickness (~10 nm) and mixed orientation and phase composition, structural analysis of doped HfO 2 thin films remains a challenging task. As a further complication, the structural similarities of the orthorhombic and tetragonal phase are difficult to distinguish by typical structural analysis techniques such as X-ray diffraction. To resolve this issue, the changes in the grazing incidence X-ray diffraction (GIXRD)more » patterns of HfO 2 films doped with Si, Al, and Gd are systematically examined. For all dopants, the shift of o111/ t101 diffraction peak is observed with increasing atomic layer deposition (ALD) cycle ratio, and this shift is thought to originate from the orthorhombic to P4 2/ nmc tetragonal phase transition with decreasing aspect ratio (2 a/(b + c) for orthorhombic and c/a for the tetragonal phase). For quantitative phase analysis, Rietveld refinement is applied to the GIXRD patterns. A progressive phase transition from P2 1/c monoclinic to orthorhombic to tetragonal is confirmed for all dopants, and a strong relationship between orthorhombic phase fraction and remanent polarization value is uniquely demonstrated. The concentration range for the ferroelectric properties was the narrowest for the Si-doped HfO 2 films. As a result, the dopant size is believed to strongly affect the concentration range for the ferroelectric phase stabilization, since small dopants can strongly decrease the free energy of the tetragonal phase due to their shorter metal–oxygen bonds.« less
A comprehensive study on the structural evolution of HfO 2 thin films doped with various dopants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Min Hyuk; Schenk, Tony; Fancher, Christopher M.
The origin of the unexpected ferroelectricity in doped HfO 2 thin films is now considered to be the formation of a non-centrosymmetric Pca2 1 orthorhombic phase. Due to the polycrystalline nature of the films as well as their extremely small thickness (~10 nm) and mixed orientation and phase composition, structural analysis of doped HfO 2 thin films remains a challenging task. As a further complication, the structural similarities of the orthorhombic and tetragonal phase are difficult to distinguish by typical structural analysis techniques such as X-ray diffraction. To resolve this issue, the changes in the grazing incidence X-ray diffraction (GIXRD)more » patterns of HfO 2 films doped with Si, Al, and Gd are systematically examined. For all dopants, the shift of o111/ t101 diffraction peak is observed with increasing atomic layer deposition (ALD) cycle ratio, and this shift is thought to originate from the orthorhombic to P4 2/ nmc tetragonal phase transition with decreasing aspect ratio (2 a/(b + c) for orthorhombic and c/a for the tetragonal phase). For quantitative phase analysis, Rietveld refinement is applied to the GIXRD patterns. A progressive phase transition from P2 1/c monoclinic to orthorhombic to tetragonal is confirmed for all dopants, and a strong relationship between orthorhombic phase fraction and remanent polarization value is uniquely demonstrated. The concentration range for the ferroelectric properties was the narrowest for the Si-doped HfO 2 films. As a result, the dopant size is believed to strongly affect the concentration range for the ferroelectric phase stabilization, since small dopants can strongly decrease the free energy of the tetragonal phase due to their shorter metal–oxygen bonds.« less
[Effects of wind speed on drying processes of fuelbeds composed of Mongolian oak broad-leaves.
Zhang, Li Bin; Sun, Ping; Jin, Sen
2016-11-18
Water desorption processes of fuel beds with Mongolian oak broad-leaves were observed under conditions with various wind speeds but nearly constant air temperature and humidity. The effects of wind speed on drying coefficients of fuel beds with various moisture contents were analyzed. Three phases of drying process, namely high initial moisture content (>75%) of phase 1, transition state of phase 2, and equilibrium phase III could be identified. During phase 1, water loss rate under higher wind speed was higher than that under lower wind speed. Water loss rate under higher wind speed was lower than that under lower wind speed during phase 2. During phase 3, water loss rates under different wind speeds were similar. The wind effects decreased with the decrease of fuel moisture. The drying coefficient of the Mongolian oak broad-leaves fuel beds was affected by wind speed and fuel bed compactness, and the interaction between these two factors. The coefficient increased with wind speed roughly in a monotonic cubic polynomial form.
Kirkpatrick, T R; Belitz, D
2015-07-10
The third law of thermodynamics constrains the phase diagram of systems with a first-order quantum phase transition. For a zero conjugate field, the coexistence curve has an infinite slope at T=0. If a tricritical point exists at T>0, then the associated tricritical wings are perpendicular to the T=0 plane, but not to the zero-field plane. These results are based on the third law and basic thermodynamics only, and are completely general. As an explicit example we consider the ferromagnetic quantum phase transition in clean metals, where a first-order quantum phase transition is commonly observed.
Phase Transitions in Antibody Solutions: from Pharmaceuticals to Human Disease
NASA Astrophysics Data System (ADS)
Wang, Ying; Lomakin, Aleksey; Benedek, George; Dana Farber Cancer Institute Collaboration; Amgen Inc. Collaboration
2014-03-01
Antibodies are very important proteins. Natural antibodies play essential role in the immune system of human body. Pharmaceutical antibodies are used as drugs. Antibodies are also indispensable tools in biomedical research and diagnostics. Recently, a number of observations of phase transitions of pharmaceutical antibodies have been reported. These phase transitions are undesirable from the perspective of colloid stability of drug solutions in processing and storage, but can be used for protein purification, X-ray crystallography, and improving pharmokinetics of drugs. Phase transitions of antibodies can also take place in human body, particularly in multiple myeloma patients who overproduce monoclonal antibodies. These antibodies, in some cases, crystallize at body temperature and cause severe complications called cryoglobulinemia. I will present the results of our current studies on phase transitions of both pharmaceutical antibodies and cryoglobulinemia-associated antibodies. These studies have shown that different antibodies have different propensity to undergo phase transitions, but their phase behavior has universal features which are remarkably different from those of spherical proteins. I will discuss how studies of phase behavior can be useful in assessing colloid stability of pharmaceutical antibodies and in early diagnostics of cryoglobulinemia, as well as general implications of the fact that some antibodies can precipitate at physiological conditions.
Efficient Transmission of Subthreshold Signals in Complex Networks of Spiking Neurons
Torres, Joaquin J.; Elices, Irene; Marro, J.
2015-01-01
We investigate the efficient transmission and processing of weak, subthreshold signals in a realistic neural medium in the presence of different levels of the underlying noise. Assuming Hebbian weights for maximal synaptic conductances—that naturally balances the network with excitatory and inhibitory synapses—and considering short-term synaptic plasticity affecting such conductances, we found different dynamic phases in the system. This includes a memory phase where population of neurons remain synchronized, an oscillatory phase where transitions between different synchronized populations of neurons appears and an asynchronous or noisy phase. When a weak stimulus input is applied to each neuron, increasing the level of noise in the medium we found an efficient transmission of such stimuli around the transition and critical points separating different phases for well-defined different levels of stochasticity in the system. We proved that this intriguing phenomenon is quite robust, as it occurs in different situations including several types of synaptic plasticity, different type and number of stored patterns and diverse network topologies, namely, diluted networks and complex topologies such as scale-free and small-world networks. We conclude that the robustness of the phenomenon in different realistic scenarios, including spiking neurons, short-term synaptic plasticity and complex networks topologies, make very likely that it could also occur in actual neural systems as recent psycho-physical experiments suggest. PMID:25799449
Observation of polyamorphism in the phase change alloy Ge1Sb2Te4
NASA Astrophysics Data System (ADS)
Kalkan, B.; Sen, S.; Cho, J.-Y.; Joo, Y.-C.; Clark, S. M.
2012-10-01
A high-pressure synchrotron x-ray diffraction study of the phase change alloy Ge1Sb2Te4 demonstrates the existence of a polyamorphic phase transition between the "as deposited" low density amorphous (LDA) phase and a high density amorphous (HDA) phase at ˜10 GPa. The entropy of the HDA phase is expected to be higher than that of the LDA phase resulting in a negative Clapeyron slope for this transition. These phase relations may enable the polyamorphic transition to play a role in the memory and data storage applications.
NASA Technical Reports Server (NTRS)
Kolb, Edward W.
1991-01-01
In the original proposal, inflation occurred in the process of a strongly first-order phase transition. This model was soon demonstrated to be fatally flawed. Subsequent models for inflation involved phase transitions that were second-order, or perhaps weakly first-order; some even involved no phase transition at all. Recently the possibility of inflation during a strongly first-order phase transition has been revived. In this talk I will discuss some models for first-order inflation, and emphasize unique signatures that result if inflation is realized in a first-order transition. Before discussing first-order inflation, I will briefly review some of the history of inflation to demonstrate how first-order inflation differs from other models.
First-order inflation. [in cosmology
NASA Technical Reports Server (NTRS)
Kolb, Edward W.
1991-01-01
In the original proposal, inflation occurred in the process of a strongly first-order phase transition. This model was soon demonstrated to be fatally flawed. Subsequent models for inflation involved phase transitions that were second-order, or perhaps weakly first-order; some even involved no phase transition at all. Recently the possibility of inflation during a strongly first-order phase transition has been revived. In this paper, some models for first-order inflation are discussed, and unique signatures that result if inflation is realized in a first-order transition are emphasized. Some of the history of inflation is reviewed to demonstrate how first-order inflation differs from other models.
NASA/SPAN and DOE/ESnet-DECnet transition strategy for DECnet OSI/phase 5
NASA Technical Reports Server (NTRS)
Porter, Linda; Demar, Phil
1991-01-01
The technical issues are examined involved with the transition of very large DECnet networks from DECnet phase IV protocols to DECnet OSI/Phase V protocols. The networks involved are the NASA's Science Internet (NSI-DECnet) and the DOE's Energy Science network (ESnet-DECnet). These networks, along with the many universities and research institutions connected to them, combine to form a single DECnet network containing more than 20,000 transitions and crossing numerous organizational boundaries. Discussion of transition planning, including decisions about Phase V naming, addressing, and routing are presented. Also discussed are transition issues related to the use of non-DEC routers in the network.
Structural, magnetic, and magnetocaloric properties of bilayer manganite La1.38Sr1.62Mn2O7
NASA Astrophysics Data System (ADS)
Yang, Yu-E.; Xie, Yunfei; Xu, Lisha; Hu, Dazhi; Ma, Chunlan; Ling, Langsheng; Tong, Wei; Pi, Li; Zhang, Yuheng; Fan, Jiyu
2018-04-01
In this study, we investigated the structural, magnetic phase transition, and magnetocaloric properties of bilayer perovskite manganite La1.38Sr1.62Mn2O7 based on X-ray diffraction, electron paramagnetic resonance, and temperature-/magnetic field-dependent magnetization measurements. The structural characterization results showed the prepared sample had a tetragonal structure with the space group I4/mmm. The Curie temperature was determined as 114 K in the magnetization studies and a second-order paramagnetic-ferromagnetic transition was confirmed by the Arrott plot, which showed that the slopes were positive for all the curves. According to the variation in the electron paramagnetic resonance spectrum, we detected obvious electronic phase separation across a broad temperature range from 220 to 80 K in this magnetic material, thereby indicating that the paramagnetic and ferromagnetic phases coexist above as well as below the Curie temperature. Based on a plot of the isothermal magnetization versus the magnetic applied field, we deduced the maximum magnetic entropy change, which only reached 1.89 J/kg.K under an applied magnetic field of 7.0 T. These theoretical investigations indicated that in addition to the magnetoelastic couplings and electron interaction, electronic phase separation and anisotropic exchange interactions also affect the magnetic entropy changes in this bilayer manganite.
Finite-temperature phase transitions of third and higher order in gauge theories at large N
Nishimura, Hiromichi; Pisarski, Robert D.; Skokov, Vladimir V.
2018-02-15
We study phase transitions in SU(∞) gauge theories at nonzero temperature using matrix models. Our basic assumption is that the effective potential is dominated by double trace terms for the Polyakov loops. As a function of the various parameters, related to terms linear, quadratic, and quartic in the Polyakov loop, the phase diagram exhibits a universal structure. In a large region of this parameter space, there is a continuous phase transition whose order is larger than second. This is a generalization of the phase transition of Gross, Witten, and Wadia (GWW). Depending upon the detailed form of the matrix model,more » the eigenvalue density and the behavior of the specific heat near the transition differ drastically. Here, we speculate that in the pure gauge theory, that although the deconfining transition is thermodynamically of first order, it can be nevertheless conformally symmetric at infnite N.« less
Finite-temperature phase transitions of third and higher order in gauge theories at large N
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishimura, Hiromichi; Pisarski, Robert D.; Skokov, Vladimir V.
We study phase transitions in SU(∞) gauge theories at nonzero temperature using matrix models. Our basic assumption is that the effective potential is dominated by double trace terms for the Polyakov loops. As a function of the various parameters, related to terms linear, quadratic, and quartic in the Polyakov loop, the phase diagram exhibits a universal structure. In a large region of this parameter space, there is a continuous phase transition whose order is larger than second. This is a generalization of the phase transition of Gross, Witten, and Wadia (GWW). Depending upon the detailed form of the matrix model,more » the eigenvalue density and the behavior of the specific heat near the transition differ drastically. Here, we speculate that in the pure gauge theory, that although the deconfining transition is thermodynamically of first order, it can be nevertheless conformally symmetric at infnite N.« less
Horava-Lifshitz cosmology, entropic interpretation and quark-hadron phase transition
NASA Astrophysics Data System (ADS)
Kheyri, F.; Khodadi, M.; Sepangi, Hamid Reza
2013-05-01
Based on the assumptions of the standard model of cosmology, a phase transition associated with chiral symmetry breaking after the electroweak transition has occurred at approximately 10 μs after the Big Bang to convert a plasma of free quarks and gluons into hadrons. We consider such a phase transition in the context of a deformed Horava-Lifshitz cosmology. The Friedmann equation for the deformed Horava-Lifshitz universe is obtained using the entropic interpretation of gravity, proposed by Verlinde. We investigate the effects of the parameter ω appearing in the theory on the evolution of the physical quantities relevant to a description of the early universe, namely, the energy density and temperature before, during and after the phase transition. Finally, we study the cross-over phase transition in both high and low temperature regions in view of the recent lattice QCD simulations data.
Reconstructive phase transition in (NH4)3TiF7 accompanied by the ordering of TiF6 octahedra.
Molokeev, Maxim; Misjul, S V; Flerov, I N; Laptash, N M
2014-12-01
An unusual phase transition P4/mnc → Pa\\bar 3 has been detected after cooling the (NH4)3TiF7 compound. Some TiF6 octahedra, which are disordered in the room-temperature tetragonal structure, become ordered in the low-temperature cubic phase due to the disappearance of the fourfold axis. Other TiF6 octahedra undergo large rotations resulting in huge displacements of the F atoms by 1.5-1.8 Å that implies a reconstructive phase transition. It was supposed that phases P4/mbm and Pm\\bar 3m could be a high-temperature phase and a parent phase, respectively, in (NH4)3TiF7. Therefore, the sequence of phase transitions can be written as Pm\\bar 3m → P4/mbm → P4/mnc → Pa\\bar 3. The interrelation between (NH4)3TiF7, (NH4)3GeF7 and (NH4)3PbF7 is found, which allows us to suppose phase transitions in relative compounds.
NASA Astrophysics Data System (ADS)
Woodland, Alan B.
The orthorhombic to high-P monoclinic phase transition in (Mg,Fe)SiO3 pyroxene with a mantle-relevant composition (XFs = 0.1) is expected to occur at ˜300 km depth [Woodland and Angel, 1997]. However, the divariant nature of the phase transition in the Mg-Fe system leaves the question open as to whether this transition occurs over a narrow enough pressure interval to cause a seismic discontinuity. New experimental results with binary Mg-Fe pyroxenes constrain the divariant loop to be 0.2 GPa wide at the composition of XFs = 0.4 and on the order of 0.15 GPa for a mantle-relevant composition. This implies that the phase transition will be complete over a depth interval of about 5-6 km in the mantle and it is concluded that the divariant loop of the orthorhombic to high-P monoclinic phase transition in (Mg,Fe)SiO3 pyroxene is indeed narrow enough to produce a “jump” in seismic velocities. The experimentally observed metastable behavior of orthopyroxene could further reduce the effective depth interval of this phase transition. The expected location of this phase transition coincides with a small magnitude seismic discontinuity, the “X-discontinuity”, occasionally observed in seismic profiles at ˜300 km depth, and thus provides a viable petrologic explanation for the origin of this discontinuity, if it truly exists.
Possible existence of two amorphous phases of D-mannitol related by a first-order transition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Men; Yu, Lian, E-mail: lian.yu@wisc.edu; Wang, Jun-Qiang
2015-06-28
We report that the common polyalcohol D-mannitol may have two amorphous phases related by a first-order transition. Slightly above its glass transition temperature T{sub g} (284 K), the supercooled liquid (SCL) of D-mannitol transforms to a low-energy, apparently amorphous phase with stronger hydrogen bonds. The enthalpy of this so-called Phase X is approximately halfway between those of the known amorphous and crystalline phases, a position low for glass aging and high for crystal polymorphs. Similar to the SCL, Phase X is transparent with broad X-ray diffraction and Raman scattering; upon temperature cycling, it exhibits a glass-transition-like change of heat capacity.more » On fast heating, Phase X transforms back to the SCL near T{sub g} + 50 K, enabling a determination of their equilibrium temperature. The presence of D-sorbitol as a plasticizer enables observation of a first-order transition from the SCL to Phase X entirely in the liquid state (liquid-liquid transition). The transition from D-mannitol’s SCL to Phase X has intriguing similarities with the formation of the glacial phase of triphenyl phosphite (TPP) and the conversion from high-density to low-density amorphous ice, both studied intensely in the context of polyamorphism. All three processes occur near T{sub g} with substantial enthalpy decrease toward the crystalline phases; the processes in water and D-mannitol both strengthen the hydrogen bonds. In contrast to TPP, D-mannitol’s Phase X forms more rapidly and can transform back to the SCL. These features make D-mannitol a valuable new model for understanding polyamorphism.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krylov, A.S., E-mail: shusy@iph.krasn.ru; Sofronova, S.N.; Kolesnikova, E.M.
2014-10-15
The results of structural phase transitions mechanisms study in K{sub 3}WO{sub 3}F{sub 3}oxyfluoride are represented by different experimental and theoretical methods. The structural phase transition anomalies at T{sub 1}=452 K and T{sub 2}=414 K of Raman and IR spectra have been analyzed. Using vibrational spectroscopy methods, the NMR-experiment has been done to clarify the nature of found phase transitions: displacive types or order-disorder types. The model of “disordered” crystal was proposed, and the results of lattice dynamics calculation in frameworks of the generalized Gordon–Kim method of ordered (R3) and “disordered” crystals were compared. The high pressure phases were studied bymore » the Raman technique too. - Graphical abstract: (1) Two possible configuration of octahedra. (2). All phases Raman lines of octahedra. (3) All phases IR lines of octahedra. (4) NMR spectra of all phases. - Highlights: • The results of study oxyfluoride K{sub 3}WO{sub 3}F{sub 3} are represented by Raman, IR, NMR technique. • The high pressure phases were studied by the Raman technique. • The anionic octahedra [WO{sub 3}F{sub 3}]{sup 3−} are not ordered below the both phase transitions. • The ferroelectric phase is realized due to the shift of atoms without F/O ordering. • Both of found phase transitions are close to the second order.« less
NASA Astrophysics Data System (ADS)
Sharma, Shivani; Shahee, Aga; Yadav, Poonam; da Silva, Ivan; Lalla, N. P.
2017-11-01
Low-temperature high-magnetic field (2 K, 8 T) (LTHM) powder X-ray diffraction (XRD) and time of flight powder neutron diffraction (NPD), low-temperature transmission electron microscopic (TEM), and resistivity and magnetization measurements have been carried out to investigate the re-entrant charge ordering (CO), field induced structural phase transitions, and metastability in phase-separated La0.175Pr0.45Ca0.375MnO3-δ (LPCMO). Low-temperature TEM and XRD studies reveal that on cooling under zero-field, paramagnetic Pnma phase transforms to P21/m CO antiferromagnetic (AFM) insulating phase below ˜233 K. Unlike reported literature, no structural signature of CO AFM P21/m to ferromagnetic (FM) Pnma phase-transition during cooling down to 2 K under zero-field was observed. However, the CO phase was found to undergo a re-entrant transition at ˜40 K. Neutron diffraction studies revealed a pseudo CE type spin arrangement of the observed CO phase. The low-temperature resistance, while cooled under zero-field, shows insulator to metal like transition below ˜105 K with minima at ˜25 K. On application of field, the CO P21/m phase was found to undergo field-induced transition to FM Pnma phase, which shows irreversibility on field removal below ˜40 K. Zero-field warming XRD and NPD studies reveal that field-induced FM Pnma phase is a metastable phase, which arise due to the arrest of kinetics of the first-order phase transition of FM Pnma to CO-AFM P21/m phase, below 40 K. Thus, a strong magneto-structural coupling is observed for this system. A field-temperature (H-T) phase-diagram has been constructed based on the LTHM-XRD, which matches very nicely with the reported H-T phase-diagram constructed based on magnetic measurements. Due to the occurrence of gradual growth of the re-entrant CO phase and the absence of a clear structural signature of phase-separation of CO-AFM P21/m and FM Pnma phases, the H-T minima in the phase-diagram of the present LPCMO sample has been attributed to the strengthening of AFM interaction during re-entrant CO transition and not to glass like "dynamic to frozen" transition.
NASA Astrophysics Data System (ADS)
Proctor, K. W.; Montgomery, Q. W.; Prairie, J. C.
2016-02-01
Marine snow aggregates play a fundamental role in the marine carbon cycle. Since marine snow aggregates are larger and thus sink faster than individual phytoplankton, aggregates often dominate carbon flux. Previous studies have shown that marine snow aggregates will significantly decrease their settling velocity when passing through sharp density transitions within the ocean, a phenomenon defined as delayed settling. Given the importance of aggregate settling to carbon export, these small-scale changes in aggregate settling dynamics may have significant impacts on the efficiency of the biological pump. However, there is still a lack of knowledge about how different physical properties of aggregates can affect this delayed settling. In this study, we investigated the effect of phytoplankton growth phase on delayed settling behavior. Using phytoplankton cultures stopped at four different growth phases, we formed marine snow aggregates in the laboratory in rotating cylindrical tanks. We then observed individual aggregates as they settled through a stratified tank. We will present data which illustrates that aggregates experience greatly reduced settling rates when passing through sharp density gradients and that the growth phase of the phytoplankton used to form these aggregates has a significant effect on this delayed settling behavior. A thorough understanding of the impact of phytoplankton growth phase on the delayed settling behavior of marine snow will offer insight into the way phytoplankton growth phase may influence the efficiency of the biological pump, carbon flux, and the carbon cycle as a whole.
NASA Astrophysics Data System (ADS)
Konishi, Hiroaki; Hirano, Tatsumi; Takamatsu, Daiko; Gunji, Akira; Feng, Xiaoliang; Furutsuki, Sho; Okumura, Takefumi; Terada, Shohei; Tamura, Kazuhisa
2018-06-01
The potential in each state of charge (SOC) during charging of Li1.2Ni0.13Mn0.54Co0.13O2 is higher than that during discharging. In other words, the potential hysteresis occurs between charging and discharging. Furthermore, the potential in each SOC changes according to the charge-discharge operating conditions, indicating that the charge-discharge reaction mechanism is also affected. To clarify the effect of charge-discharge operating conditions on the electrochemical reaction, Li1.2Ni0.13Mn0.54Co0.13O2 was charged and discharged under various charge-discharge operating ranges, and open-circuit potential (OCP), crystal structure, and oxidation states of the transition metals were evaluated by electrochemical measurement, X-ray diffraction (XRD), and X-ray absorption fine structure (XAFS). These results indicate that OCP, lattice parameters, and oxidation states of the transition metals of Li1.2Ni0.13Mn0.54Co0.13O2 in each SOC are not constant. The XRD results indicate that two phases, namely, LiNi0.33Mn0.33Co0.33O2-like and Li2MnO3-like, exist in Li1.2Ni0.13Mn0.54Co0.13O2. For the LiNi0.33Mn0.33Co0.33O2-like phase, the relationship between OCP, lattice parameters, and oxidation states of the transition metals in each SOC is not affected by the charge-discharge operating conditions, indicating that extraction and insertion of lithium ions for the LiNi0.33Mn0.33Co0.33O2-like phase progresses at almost the same potential. Although the extraction and insertion of lithium ions for the Li2MnO3-like phase progresses at almost the same potential in the low-SOC region, the OCP and lattice parameter in each SOC in the high-SOC region are not constant. Therefore, the extraction of lithium ions from the Li2MnO3-like phase in the high-SOC region causes the potential hysteresis of Li1.2Ni0.13Mn0.54Co0.13O2.
Mihailescu, Cristian N; Symeou, Elli; Svoukis, Efthymios; Negrea, Raluca F; Ghica, Corneliu; Teodorescu, Valentin; Tanase, Liviu C; Negrila, Catalin; Giapintzakis, John
2018-04-25
Controlling the semiconductor-to-metal transition temperature in epitaxial VO 2 thin films remains an unresolved question both at the fundamental as well as the application level. Within the scope of this work, the effects of growth temperature on the structure, chemical composition, interface coherency and electrical characteristics of rutile VO 2 epitaxial thin films grown on TiO 2 substrates are investigated. It is hereby deduced that the transition temperature is lower than the bulk value of 340 K. However, it is found to approach this value as a function of increased growth temperature even though it is accompanied by a contraction along the V 4+ -V 4+ bond direction, the crystallographic c-axis lattice parameter. Additionally, it is demonstrated that films grown at low substrate temperatures exhibit a relaxed state and a strongly reduced transition temperature. It is suggested that, besides thermal and epitaxial strain, growth-induced defects may strongly affect the electronic phase transition. The results of this work reveal the difficulty in extracting the intrinsic material response to strain, when the exact contribution of all strain sources cannot be effectively determined. The findings also bear implications on the limitations in obtaining the recently predicted novel semi-Dirac point phase in VO 2 /TiO 2 multilayer structures.
Control of the orientation and photoinduced phase transitions of macrocyclic azobenzene.
Uchida, Emi; Sakaki, Kouji; Nakamura, Yumiko; Azumi, Reiko; Hirai, Yuki; Akiyama, Haruhisa; Yoshida, Masaru; Norikane, Yasuo
2013-12-16
Photoinduced phase transitions caused by photochromic reactions bring about a change in the state of matter at constant temperature. Herein, we report the photoinduced phase transitions of crystals of a photoresponsive macrocyclic compound bearing two azobenzene groups (1) at room temperature on irradiation with UV (365 nm) and visible (436 nm) light. The trans/trans isomer undergoes photoinduced phase transitions (crystal-isotropic phase-crystal) on UV light irradiation. The photochemically generated crystal exhibited reversible phase transitions between the crystal and the mesophase on UV and visible light irradiation. The molecular order of the randomly oriented crystals could be increased by irradiating with linearly polarized visible light, and the value of the order parameter was determined to be -0.84. Heating enhances the thermal cis-to-trans isomerization and subsequent cooling returned crystals of the trans/trans isomer. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Yao, Weiping; Yang, Chaohui; Jing, Jiliang
2018-05-01
From the viewpoint of holography, we study the behaviors of the entanglement entropy in insulator/superconductor transition with exponential nonlinear electrodynamics (ENE). We find that the entanglement entropy is a good probe to the properties of the holographic phase transition. Both in the half space and the belt space, the non-monotonic behavior of the entanglement entropy in superconducting phase versus the chemical potential is general in this model. Furthermore, the behavior of the entanglement entropy for the strip geometry shows that the confinement/deconfinement phase transition appears in both insulator and superconductor phases. And the critical width of the confinement/deconfinement phase transition depends on the chemical potential and the exponential coupling term. More interestingly, the behaviors of the entanglement entropy in their corresponding insulator phases are independent of the exponential coupling factor but depends on the width of the subsystem A.
Nonequilibrium Second-Order Phase Transition in a Cooper-Pair Insulator.
Doron, A; Tamir, I; Mitra, S; Zeltzer, G; Ovadia, M; Shahar, D
2016-02-05
In certain disordered superconductors, upon increasing the magnetic field, superconductivity terminates with a direct transition into an insulating phase. This phase is comprised of localized Cooper pairs and is termed a Cooper-pair insulator. The current-voltage characteristics measured in this insulating phase are highly nonlinear and, at low temperatures, exhibit abrupt current jumps. Increasing the temperature diminishes the jumps until the current-voltage characteristics become continuous. We show that a direct correspondence exists between our system and systems that undergo an equilibrium, second-order, phase transition. We illustrate this correspondence by comparing our results to the van der Waals equation of state for the liquid-gas mixture. We use the similarities to identify a critical point where an out of equilibrium second-order-like phase transition occurs in our system. Approaching the critical point, we find a power-law behavior with critical exponents that characterizes the transition.
Instability of Insulators near Quantum Phase Transitions
NASA Astrophysics Data System (ADS)
Doron, A.; Tamir, I.; Levinson, T.; Ovadia, M.; Sacépé, B.; Shahar, D.
2017-12-01
Thin films of amorphous indium oxide undergo a magnetic field driven superconducting to insulator quantum phase transition. In the insulating phase, the current-voltage characteristics show large current discontinuities due to overheating of electrons. We show that the onset voltage for the discontinuities vanishes as we approach the quantum critical point. As a result, the insulating phase becomes unstable with respect to any applied voltage making it, at least experimentally, immeasurable. We emphasize that unlike previous reports of the absence of linear response near quantum phase transitions, in our system, the departure from equilibrium is discontinuous. Because the conditions for these discontinuities are satisfied in most insulators at low temperatures, and due to the decay of all characteristic energy scales near quantum phase transitions, we believe that this instability is general and should occur in various systems while approaching their quantum critical point. Accounting for this instability is crucial for determining the critical behavior of systems near the transition.
On the Phase Transition of N-Isopropylcarbazole.
1986-05-01
vacinity of the phase transition (ca. T 137 + 40 K). We propose a semiquantitative interpretation of the phase transition in NIPC based on this assumption...the order parameter fluctuations in the vacinity of TO . V. Conclusions. The elastic properties of NIPC in the temperature range 90 K - 295 K have
Phase equilibrium in a water + n-hexane system with a high water content
NASA Astrophysics Data System (ADS)
Rasulov, S. M.; Orakova, S. M.; Isaev, Z. A.
2017-02-01
The P, ρ, and T-properties of a water + n-hexane system immiscible under normal conditions are measured piezometrically in the water mole fraction range of 0.918-0.977 at 309-685 K and pressures of up to 66 MPa. Two phase transitions are observed on each isochore corresponding to phase transitions of hydrocarbon liquid into gas or the dissolution of n-hexane in water and the transition of aqueous liquid into gas. The boundaries of phase transitions and their critical parameters are determined.
Superradiant phase transitions with three-level systems
NASA Astrophysics Data System (ADS)
Baksic, Alexandre; Nataf, Pierre; Ciuti, Cristiano
2013-02-01
We determine the phase diagram of N identical three-level systems interacting with a single photonic mode in the thermodynamical limit (N→∞) by accounting for the so-called diamagnetic term and the inequalities imposed by the Thomas-Reich-Kuhn (TRK) oscillator strength sum rule. The key role of transitions between excited levels and the occurrence of first-order phase transitions is discussed. We show that, in contrast to two-level systems, in the three-level case the TRK inequalities do not always prevent a superradiant phase transition in the presence of a diamagnetic term.
NASA Astrophysics Data System (ADS)
El-Nashar, Hassan F.
2017-06-01
We consider a system of three nonidentical coupled phase oscillators in a ring topology. We explore the conditions that must be satisfied in order to obtain the phases at the transition to a synchrony state. These conditions lead to the correct mathematical expressions of phases that aid to find a simple analytic formula for critical coupling when the oscillators transit to a synchronization state having a common frequency value. The finding of a simple expression for the critical coupling allows us to perform a linear stability analysis at the transition to the synchronization stage. The obtained analytic forms of the eigenvalues show that the three coupled phase oscillators with periodic boundary conditions transit to a synchrony state when a saddle-node bifurcation occurs.
Phase transition in organic-inorganic perovskite (C9H19NH3)2 PbI2Br2 of long-chain alkylammonium
NASA Astrophysics Data System (ADS)
Abid, H.; Trigui, A.; Mlayah, A.; Hlil, E. K.; Abid, Y.
2012-01-01
Single perovskite slab alkylammonium lead iodides bromides (C9H19NH3)2PbI2Br2 is a new member of the family of hybrid organic-inorganic perovskite compounds. It exhibits a single structural phase transition with changes in the conformation of alkylammonium chains below room temperature. Differential scanning calorimetry (DSC), powder X-ray diffraction and FT-Raman spectroscopy were used to investigate this phase transition. These changes were characterized by a decreased conformational disorder of the methylene units of the alkyl chains. Phase transition was examined in light of the interesting optical properties of this material, as well as the relevance of this system as models for phase transitions in lipid bilayers.
NASA Astrophysics Data System (ADS)
Ning, Guo; Guangfu, Zeng; Shiquan, Xi
1992-12-01
The solid-solid phase transitions in the perovskite-type layer compound [ n-C 16H 33NH 3] 2CoCl 4 have been studied by infrared spectroscopy. A new phase transition at 340 K was found by comparison with differential scanning calorimetry results. A temperature dependence study of the infrared spectra provides evidence of the occurrence of structural phase transitions related to the dynamics of the alkylammonium ions and hydrogen bonds. The main transition at 374 K corresponds to the conformational order-disorder change in the chain, which probably couples with reorientational motions of the NH 3 polar heads. GTG or GTG' defects appear in the high temperature disordered phase.
Holographic superconductors in the presence of dark matter
NASA Astrophysics Data System (ADS)
Rogatko, Marek; Wysokiński, Karol I.
2017-10-01
The application of the gauge-gravity duality, also known as anti-de Sitter/conformal field theory (AdS/CFT) correspondence to study condensed matter systems has resulted in a number of important findings. Using the analogy, we have studied the phase transitions between a holographic insulator and a metal at zero temperature as well as finite temperature transition between a metal and a holographic superconductor of s- and p-wave symmetry. The main aim of this note is to look in which way the dark matter might affect the properties of superconductors. The hope is that some of the observed modifications could be used to detect this ubiquitous but still elusive component of matter in the Universe.
Signatures of a dissipative phase transition in photon correlation measurements
NASA Astrophysics Data System (ADS)
Fink, Thomas; Schade, Anne; Höfling, Sven; Schneider, Christian; Imamoglu, Ataç
2018-04-01
Understanding and characterizing phase transitions in driven-dissipative systems constitutes a new frontier for many-body physics1-8. A generic feature of dissipative phase transitions is a vanishing gap in the Liouvillian spectrum9, which leads to long-lived deviations from the steady state as the system is driven towards the transition. Here, we show that photon correlation measurements can be used to characterize the corresponding critical slowing down of non-equilibrium dynamics. We focus on the extensively studied phenomenon of optical bistability in GaAs cavity polaritons10,11, which can be described as a first-order dissipative phase transition12-14. Increasing the excitation strength towards the bistable range results in an increasing photon-bunching signal along with a decay time that is prolonged by more than nine orders of magnitude as compared with that of single polaritons. In the limit of strong polariton interactions leading to pronounced quantum fluctuations, the mean-field bistability threshold is washed out. Nevertheless, the functional form with which the Liouvillian gap closes as the thermodynamic limit is approached provides a signature of the emerging dissipative phase transition. Our results establish photon correlation measurements as an invaluable tool for studying dynamical properties of dissipative phase transitions without requiring phase-sensitive interferometric measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Xiudi; Zhang, Hua; Chai, Guanqi
2014-03-01
Graphical abstract: Combining codeposition and short time post annealing, VO{sub 2} (M) with high quality and excellent phase transition performance is obtained. After mixing the VO{sub 2} powder with acrylic resin, the composite films deposited on glass show superior visible transmission and solar modulation, which can be used as an excellent candidate of low cost smart window in energy saving field. - Highlights: • The VO{sub 2} powder obtained by short time thermolysis method is high purity and crystallinity with superior phase transition performance. • The maximum decreasing efficiency of phase transition temperature is about −30 K/at% with w =more » 0.4 at%. • After mixing VO{sub 2} powder with acrylic resin, the maximal visible transmission of the composite films is 48% and the transmission modulation at 2000 nm is 37.3% with phase transition temperature of 66.2 °C. • Though the phase transition performance is weakened by tungsten doping, the film prepared by 1.3 at% tungsten doped VO{sub 2} still show superior transmission modulation about 26.4%, which means that it is a potential candidate as smart windows. - Abstract: VO{sub 2} powder with superior phase transition performance was prepared by convenient thermolysis method. The results illustrated that VO{sub 2} powder show high purity and crystallinity. VO{sub 2} particles are transformed from cluster to quasi-sphere with the increase of annealing temperature. The DSC analysis proves that VO{sub 2} show superior phase transition performance around 68 °C. The phase transition temperature can be reduced to 33.5 °C by 1.8 at% tungsten doping. The maximum decreasing efficiency of phase transition temperature is about −30 K/at% with w = 0.4 at%. After mixing VO{sub 2} powder with acrylic resin, the maximal visible transmission of the composite thin films on glass is 48% and the transmission modulation at 2000 nm is 37.3% with phase transition temperature of 66.2 °C. Though the phase transition performance is weakened by tungsten doping, the film prepared by 1.3 at% tungsten doped VO{sub 2} still show superior transmission modulation about 26.4% at 2000 nm, which means that it is a potential candidate as smart windows.« less
Pressure induced solid-solid reconstructive phase transition in LiGa O2 dominated by elastic strain
NASA Astrophysics Data System (ADS)
Hu, Qiwei; Yan, Xiaozhi; Lei, Li; Wang, Qiming; Feng, Leihao; Qi, Lei; Zhang, Leilei; Peng, Fang; Ohfuji, Hiroaki; He, Duanwei
2018-01-01
Pressure induced solid-solid reconstructive phase transitions for graphite-diamond, and wurtzite-rocksalt in GaN and AlN occur at significantly higher pressure than expected from equilibrium coexistence and their transition paths are always inconsistent with each other. These indicate that the underlying nucleation and growth mechanism in the solid-solid reconstructive phase transitions are poorly understood. Here, we propose an elastic-strain dominated mechanism in a reconstructive phase transition, β -LiGa O2 to γ -LiGa O2 , based on in situ high-pressure angle dispersive x-ray diffraction and single-crystal Raman scattering. This mechanism suggests that the pressure induced solid-solid reconstructive phase transition is neither purely diffusionless nor purely diffusive, as conventionally assumed, but a combination. The large elastic strains are accumulated, with the coherent nucleation, in the early stage of the transition. The elastic strains along the 〈100 〉 and 〈001 〉 directions are too large to be relaxed by the shear stress, so an intermediate structure emerges reducing the elastic strains and making the transition energetically favorable. At higher pressures, when the elastic strains become small enough to be relaxed, the phase transition to γ -LiGa O2 begins and the coherent nucleation is substituted with a semicoherent one with Li and Ga atoms disordered.
Temperature and magnetic field induced multiple magnetic transitions in DyAg(2).
Arora, Parul; Chattopadhyay, M K; Sharath Chandra, L S; Sharma, V K; Roy, S B
2011-02-09
The magnetic properties of the rare-earth intermetallic compound DyAg(2) are studied in detail with the help of magnetization and heat capacity measurements. It is shown that the multiple magnetic phase transitions can be induced in DyAg(2) both by temperature and magnetic field. The detailed magnetic phase diagram of DyAg(2) is determined experimentally. It was already known that DyAg(2) undergoes an incommensurate to commensurate antiferromagnetic phase transition close to 10 K. The present experimental results highlight the first order nature of this phase transition, and show that this transition can be induced by magnetic field as well. It is further shown that another isothermal magnetic field induced transition or metamagnetic transition exhibited by DyAg(2) at still lower temperatures is also of first order nature. The multiple magnetic phase transitions in DyAg(2) give rise to large peaks in the temperature dependence of the heat capacity below 17 K, which indicates its potential as a magnetic regenerator material for cryocooler related applications. In addition it is found that because of the presence of the temperature and field induced magnetic phase transitions, and because of short range magnetic correlations deep inside the paramagnetic regime, DyAg(2) exhibits a fairly large magnetocaloric effect over a wide temperature window, e.g., between 10 and 60 K.
Modelling Phase Transition Phenomena in Fluids
2015-07-01
Sublimation line r @@I Triple point ? Vapourisation liner @@I Critical point -Fusion line Solid Liquid Gas Figure 1: Schematic of a phase diagram means that the...velocity field can be set zero, and only the balance of energy constitutes the Stefan model. In contrast to this the liquid - gas phase transitions...defined by requiring that the phase-transition line is crossed in a direction from solid to liquid or from liquid to gas (vapour) phases. The term T∗ δs is
Autillo, Matthieu; Wilson, Richard E.
2017-09-22
A study of the phase transitions occurring in tetramethylammonium hexachlorometalate compounds with M = U IV, Np IV, Zr IV, Sn IV, Hf IV and Pt IV were performed using single-crystal X-ray diffraction across the temperature range 120 - 400K. When the crystals were cooled, movement of the octahedral [MCl 6] 2- anions induces a phase transition from Fm3m to Fd3c with a doubling of the unit cell. For the actinide compounds, no correlation between the f-electron configuration and the transition temperature was observed, instead, a correlation between the transition temperatures and both the [MCl 6] 2- anion and themore » TMA cation size is highlighted. Two phase transitions were observed and characterized. The first phase transition occurs with the ordering of the TMA cation and the second from a rotation of the [MCl 6] 2- octahedra. A third phase transition was observed at lower temperatures and was ascribed to a tetragonal distortion of the [MCl 6] 2- anions. Synthesis and study of their deuterated compounds did not show a significant isotope effect. As a result, Raman spectra performed on the protonated and deuterated compounds indicate only weak hydrogen bonding interactions between the TMA cations and the [MCl 6] 2- octahedra.« less
NASA Astrophysics Data System (ADS)
Delagrange, R.; Weil, R.; Kasumov, A.; Ferrier, M.; Bouchiat, H.; Deblock, R.
2018-05-01
In a quantum dot hybrid superconducting junction, the behavior of the supercurrent is dominated by Coulomb blockade physics, which determines the magnetic state of the dot. In particular, in a single level quantum dot singly occupied, the sign of the supercurrent can be reversed, giving rise to a π-junction. This 0 - π transition, corresponding to a singlet-doublet transition, is then driven by the gate voltage or by the superconducting phase in the case of strong competition between the superconducting proximity effect and Kondo correlations. In a two-level quantum dot, such as a clean carbon nanotube, 0- π transitions exist as well but, because more cotunneling processes are allowed, are not necessarily associated to a magnetic state transition of the dot. In this proceeding, after a review of 0- π transitions in Josephson junctions, we present measurements of current-phase relation in a clean carbon nanotube quantum dot, in the single and two-level regimes. In the single level regime, close to orbital degeneracy and in a regime of strong competition between local electronic correlations and superconducting proximity effect, we find that the phase diagram of the phase-dependent transition is a universal characteristic of a discontinuous level-crossing quantum transition at zero temperature. In the case where the two levels are involved, the nanotube Josephson current exhibits a continuous 0 - π transition, independent of the superconducting phase, revealing a different physical mechanism of the transition.
Unconventional transformation of spin Dirac phase across a topological quantum phase transition
Xu, Su-Yang; Neupane, Madhab; Belopolski, Ilya; Liu, Chang; Alidoust, Nasser; Bian, Guang; Jia, Shuang; Landolt, Gabriel; Slomski, Batosz; Dil, J. Hugo; Shibayev, Pavel P.; Basak, Susmita; Chang, Tay-Rong; Jeng, Horng-Tay; Cava, Robert J.; Lin, Hsin; Bansil, Arun; Hasan, M. Zahid
2015-01-01
The topology of a topological material can be encoded in its surface states. These surface states can only be removed by a bulk topological quantum phase transition into a trivial phase. Here we use photoemission spectroscopy to image the formation of protected surface states in a topological insulator as we chemically tune the system through a topological transition. Surprisingly, we discover an exotic spin-momentum locked, gapped surface state in the trivial phase that shares many important properties with the actual topological surface state in anticipation of the change of topology. Using a spin-resolved measurement, we show that apart from a surface bandgap these states develop spin textures similar to the topological surface states well before the transition. Our results offer a general paradigm for understanding how surface states in topological phases arise from a quantum phase transition and are suggestive for the future realization of Weyl arcs, condensed matter supersymmetry and other fascinating phenomena in the vicinity of a quantum criticality. PMID:25882717
Phase transitions in traffic flow on multilane roads.
Kerner, Boris S; Klenov, Sergey L
2009-11-01
Based on empirical and numerical analyses of vehicular traffic, the physics of spatiotemporal phase transitions in traffic flow on multilane roads is revealed. The complex dynamics of moving jams observed in single vehicle data measured by video cameras on American highways is explained by the nucleation-interruption effect in synchronized flow, i.e., the spontaneous nucleation of a narrow moving jam with the subsequent jam dissolution. We find that (i) lane changing, vehicle merging from on-ramps, and vehicle leaving to off-ramps result in different traffic phases-free flow, synchronized flow, and wide moving jams-occurring and coexisting in different road lanes as well as in diverse phase transitions between the traffic phases; (ii) in synchronized flow, the phase transitions are responsible for a non-regular moving jam dynamics that explains measured single vehicle data: moving jams emerge and dissolve randomly at various road locations in different lanes; (iii) the phase transitions result also in diverse expanded general congested patterns occurring at closely located bottlenecks.
Unconventional transformation of spin Dirac phase across a topological quantum phase transition
Xu, Su -Yang; Neupane, Madhab; Belopolski, Ilya; ...
2015-04-17
The topology of a topological material can be encoded in its surface states. These surface states can only be removed by a bulk topological quantum phase transition into a trivial phase. Here we use photoemission spectroscopy to image the formation of protected surface states in a topological insulator as we chemically tune the system through a topological transition. Surprisingly, we discover an exotic spin-momentum locked, gapped surface state in the trivial phase that shares many important properties with the actual topological surface state in anticipation of the change of topology. Using a spin-resolved measurement, we show that apart from amore » surface bandgap these states develop spin textures similar to the topological surface states well before the transition. Our results provide a general paradigm for understanding how surface states in topological phases arise from a quantum phase transition and are suggestive for the future realization of Weyl arcs, condensed matter supersymmetry and other fascinating phenomena in the vicinity of a quantum criticality.« less
NASA Astrophysics Data System (ADS)
Kuriakose, Maju; Chigarev, Nikolay; Raetz, Samuel; Bulou, Alain; Tournat, Vincent; Zerr, Andreas; Gusev, Vitalyi E.
2017-05-01
Picosecond acoustic interferometry is used to monitor in time the motion of the phase transition boundary between two water ice phases, VII and VI, coexisting at a pressure of 2.15 GPa when compressed in a diamond anvil cell at room temperature. By analyzing the time-domain Brillouin scattering signals accumulated for a single incidence direction of probe laser pulses, it is possible to access ratios of sound velocity values and of the refractive indices of the involved phases, and to distinguish between the structural phase transition and a recrystallization process. Two-dimensional spatial imaging of the phase transition dynamics indicates that it is initiated by the pump and probe laser pulses, preferentially at the diamond/ice interface. This method should find applications in three-dimensional monitoring with nanometer spatial resolution of the temporal dynamics of low-contrast material inhomogeneities caused by phase transitions or chemical reactions in optically transparent media.
Lee, Il-Hyung; Saha, Suvrajit; Polley, Anirban; Huang, Hector; Mayor, Satyajit; Rao, Madan; Groves, Jay T
2015-03-26
Lipid/cholesterol mixtures derived from cell membranes as well as their synthetic reconstitutions exhibit well-defined miscibility phase transitions and critical phenomena near physiological temperatures. This suggests that lipid/cholesterol-mediated phase separation plays a role in the organization of live cell membranes. However, macroscopic lipid-phase separation is not generally observed in cell membranes, and the degree to which properties of isolated lipid mixtures are preserved in the cell membrane remain unknown. A fundamental property of phase transitions is that the variation of tagged particle diffusion with temperature exhibits an abrupt change as the system passes through the transition, even when the two phases are distributed in a nanometer-scale emulsion. We support this using a variety of Monte Carlo and atomistic simulations on model lipid membrane systems. However, temperature-dependent fluorescence correlation spectroscopy of labeled lipids and membrane-anchored proteins in live cell membranes shows a consistently smooth increase in the diffusion coefficient as a function of temperature. We find no evidence of a discrete miscibility phase transition throughout a wide range of temperatures: 14-37 °C. This contrasts the behavior of giant plasma membrane vesicles (GPMVs) blebbed from the same cells, which do exhibit phase transitions and macroscopic phase separation. Fluorescence lifetime analysis of a DiI probe in both cases reveals a significant environmental difference between the live cell and the GPMV. Taken together, these data suggest the live cell membrane may avoid the miscibility phase transition inherent to its lipid constituents by actively regulating physical parameters, such as tension, in the membrane.
Confinement and low adhesion induce fast amoeboid migration of slow mesenchymal cells.
Liu, Yan-Jun; Le Berre, Maël; Lautenschlaeger, Franziska; Maiuri, Paolo; Callan-Jones, Andrew; Heuzé, Mélina; Takaki, Tohru; Voituriez, Raphaël; Piel, Matthieu
2015-02-12
The mesenchymal-amoeboid transition (MAT) was proposed as a mechanism for cancer cells to adapt their migration mode to their environment. While the molecular pathways involved in this transition are well documented, the role of the microenvironment in the MAT is still poorly understood. Here, we investigated how confinement and adhesion affect this transition. We report that, in the absence of focal adhesions and under conditions of confinement, mesenchymal cells can spontaneously switch to a fast amoeboid migration phenotype. We identified two main types of fast migration--one involving a local protrusion and a second involving a myosin-II-dependent mechanical instability of the cell cortex that leads to a global cortical flow. Interestingly, transformed cells are more prone to adopt this fast migration mode. Finally, we propose a generic model that explains migration transitions and predicts a phase diagram of migration phenotypes based on three main control parameters: confinement, adhesion, and contractility. Copyright © 2015 Elsevier Inc. All rights reserved.
Transitioning to a New Facility: The Crucial Role of Employee Engagement.
Slosberg, Meredith; Nejati, Adeleh; Evans, Jennie; Nanda, Upali
Transitioning to a new facility can be challenging for employees and detrimental to operations. A key aspect of the transition is employee understanding of, and involvement in, the design of the new facility. The literature lacks a comprehensive study of the impact of change engagement throughout the design, construction, and activation of a project as well as how that can affect perceptions, expectations, and, eventually, satisfaction of employees. The purpose of this research was to examine employee perceptions and satisfaction throughout a hospital design, construction, and activation process. Three pulse-point surveys were administered throughout the transition of a children's hospital emergency department and neonatal intensive care unit to a new facility. We also administered a postoccupancy survey 3 months after the move into the new facility. We received 544 responses and analyzed them to assess the relationship between involvement in design or change engagement initiatives and overall perceptions. The results revealed a strong relationship between employee engagement and their level of preparedness to move, readiness to adapt, and satisfaction. Early involvement in the design of a facility or new processes can significantly affect staff preparedness and readiness to adapt as well as employees' overall satisfaction with the building after occupancy. In addition, our findings suggest that keeping a finger on the pulse of employee perceptions and expectations throughout the design, construction, and activation phase is critical to employee preparedness and satisfaction in transitioning to a new facility.
Murakami, Tetsuro; Qamar, Seema; Lin, Julie Qiaojin; Schierle, Gabriele S. Kaminski; Rees, Eric; Miyashita, Akinori; Costa, Ana R.; Dodd, Roger B.; Chan, Fiona T.S.; Michel, Claire H.; Kronenberg-Versteeg, Deborah; Li, Yi; Yang, Seung-Pil; Wakutani, Yosuke; Meadows, William; Ferry, Rodylyn Rose; Dong, Liang; Tartaglia, Gian Gaetano; Favrin, Giorgio; Lin, Wen-Lang; Dickson, Dennis W.; Zhen, Mei; Ron, David; Schmitt-Ulms, Gerold; Fraser, Paul E.; Shneider, Neil A.; Holt, Christine; Vendruscolo, Michele; Kaminski, Clemens F.; St George-Hyslop, Peter
2015-01-01
Summary The mechanisms by which mutations in FUS and other RNA binding proteins cause ALS and FTD remain controversial. We propose a model in which low-complexity (LC) domains of FUS drive its physiologically reversible assembly into membrane-free, liquid droplet and hydrogel-like structures. ALS/FTD mutations in LC or non-LC domains induce further phase transition into poorly soluble fibrillar hydrogels distinct from conventional amyloids. These assemblies are necessary and sufficient for neurotoxicity in a C. elegans model of FUS-dependent neurodegeneration. They trap other ribonucleoprotein (RNP) granule components and disrupt RNP granule function. One consequence is impairment of new protein synthesis by cytoplasmic RNP granules in axon terminals, where RNP granules regulate local RNA metabolism and translation. Nuclear FUS granules may be similarly affected. Inhibiting formation of these fibrillar hydrogel assemblies mitigates neurotoxicity and suggests a potential therapeutic strategy that may also be applicable to ALS/FTD associated with mutations in other RNA binding proteins. PMID:26526393
High pressure spectroscopic studies of phase transition in VO2
NASA Astrophysics Data System (ADS)
Basu, Raktima; Mishra, K. K.; Ravindran, T. R.; Dhara, Sandip
2018-04-01
Vanadium dioxide (VO2) exhibits a reversible first-order metal to insulator transition (MIT) at a technologically important temperature of 340K. A structural phase transition (SPT) from monoclinic M1 to rutile tetragonal R is also reported via another two intermediate phases of monoclinic M2 and triclinic T. Metastable monoclinic M2 phase of VO2 was synthesized by Mg doping in the vapour transport process. Raman spectroscopic measurements were carried out at high pressure on V1-xMgxO2 microrods. Two reversible structural phase transitions from monoclinic M2 to triclinic T at 1.6 GPa and T to monoclinic M1 at 3.2 GPa are observed and are explained by structural relaxation of the strained phases.
Anomalous behaviour of thermodynamic properties at successive phase transitions in (NH4)3GeF7
NASA Astrophysics Data System (ADS)
Bogdanov, Evgeniy V.; Kartashev, Andrey V.; Pogoreltsev, Evgeniy I.; Gorev, Mikhail V.; Laptash, Natalia M.; Flerov, Igor N.
2017-12-01
Heat capacity, thermal dilatation, susceptibility to hydrostatic pressure and dielectric properties associated with succession of three phase transitions below room temperature in double fluoride salt (NH4)3GeF7 were studied. A possible transformation into the parent Pm-3m cubic phase was not observed up to the decomposition of compound. Nonferroelectric nature of structural distortions was confirmed. The DTA under pressure studies revealed a high temperature stability of two phases: P4/mbm and Pbam. The entropies of the phase transitions agree well with the model of structural distortions. Analysis of the thermal properties associated with the individual phase transitions in the framework of thermodynamic equations has shown a high reliability of the data obtained.
BKT phase transition in a 2D system with long-range dipole-dipole interaction
NASA Astrophysics Data System (ADS)
Fedichev, P. O.; Men'shikov, L. I.
2012-01-01
We consider phase transitions in 2D XY-like systems with long-range dipole-dipole interactions and demonstrate that BKT-type phase transition always occurs separating the ordered (ferroelectric) and the disordered (paraelectric) phases. The low-temperature phase corresponds to a thermal state with bound vortex-antivortex pairs characterized by linear attraction at large distances. Using the Maier-Schwabl topological charge model, we show that bound vortex pairs polarize and screen the vortex-antivortex interaction, leaving only the logarithmic attraction at sufficiently large separations between the vortices. At higher temperatures the pairs dissociate and the phase transition similar to BKT occurs, though at a larger temperature than in a system without the dipole-dipole interaction.
NASA Astrophysics Data System (ADS)
Shu, Xiao-Yu; Huang, Yong-Feng; Zong, Hong-Shi
2017-12-01
The phase transition from a neutron star to a quark star and its relation to gamma-ray bursts are investigated. A new model: the 2 + 1 flavor Nambu-Jona-Lasinio (NJL) model with the method of proper-time regularization (PTR) is utilized for the quark phase; while the Relativistic Mean Field (RMF) theory is used for the hadronic phase. The process of phase transition is studied by considering the chemical potential, paying special attention to the phase transition point and the emergence of strange quark matter. Characteristics of compact stars are illustrated, and the energy release during the phase transition is found to be ˜ 1052 erg.
Suppression of magnetostructural transition on GdSiGe thin film after thermal cyclings
Pires, A. L.; Belo, J. H.; Gomes, I. T.; ...
2016-09-08
The influence of thermal cycling on the microstructure, magnetic phase transition and magnetic entropy change of a Gd 5Si 1.3Ge 2.7 thin film up to 1000 cycles is investigated. The authors found that after 1000 cycles a strong reduction of the crystallographic phase responsible for the magnetostructural transition (Orthorhombic II phase) occurs. We attribute this to the chemical disorder, caused by the large number of expansion/compression cycles that the Orthorhombic II phase undergoes across the magnetostructural transition. The suppression of the magnetostructural transition corresponds to a drastic decrease of the thin film magnetic entropy change. Our results reveal the importancemore » of studying the thermal/magnetic cycles influence on magnetostructural transitions as they can damage a real-life device.« less
Optical study of phase transitions in single-crystalline RuP
NASA Astrophysics Data System (ADS)
Chen, R. Y.; Shi, Y. G.; Zheng, P.; Wang, L.; Dong, T.; Wang, N. L.
2015-03-01
RuP single crystals of MnP-type orthorhombic structure were synthesized by the Sn flux method. Temperature-dependent x-ray diffraction measurements reveal that the compound experiences two structural phase transitions, which are further confirmed by enormous anomalies shown in temperature-dependent resistivity and magnetic susceptibility. Particularly, the resistivity drops monotonically upon temperature cooling below the second transition, indicating that the material shows metallic behavior, in sharp contrast with the insulating ground state of polycrystalline samples. Optical conductivity measurements were also performed in order to unravel the mechanism of these two transitions. The measurement revealed a sudden reconstruction of band structure over a broad energy scale and a significant removal of conducting carriers below the first phase transition, while a charge-density-wave-like energy gap opens below the second phase transition.
Bingham, N. S.; Lampen, P.; Phan, M. H.; ...
2012-08-16
Bulk manganites of the form La 5/8–yPr yCa 3/8MnO₃ (LPCMO) exhibit a complex phase diagram due to coexisting charge-ordered antiferromagnetic (CO/AFM), charge-disordered paramagnetic (PM), and ferromagnetic (FM) phases. Because phase separation in LPCMO occurs on the microscale, reducing particle size to below this characteristic length is expected to have a strong impact on the magnetic properties of the system. Through a comparative study of the magnetic and magnetocaloric properties of single-crystalline (bulk) and nanocrystalline LPCMO (y=3/8) we show that the AFM, CO, and FM transitions seen in the single crystal can also be observed in the large particle sizes (400more » and 150 nm), while only a single PM to FM transition is found for the small particles (55 nm). Magnetic and magnetocaloric measurements reveal that decreasing particle size affects the balance of competing phases in LPCMO and narrows the range of fields over which PM, FM, and CO phases coexist. The FM volume fraction increases with size reduction, until CO is suppressed below some critical size, ~100 nm. With size reduction, the saturation magnetization and field sensitivity first increase as long-range CO is inhibited, then decrease as surface effects become increasingly important. The trend that the FM phase is stabilized on the nanoscale is contrasted with the stabilization of the charge-disordered PM phase occurring on the microscale, demonstrating that in terms of the characteristic phase separation length, a few microns and several hundred nanometers represent very different regimes in LPCMO.« less
Response of Global Lightning Activity Observed by the TRMM/LIS During Warm and Cold ENSO Phases
NASA Technical Reports Server (NTRS)
Chronis, Themis G.; Cecil, Dan; Goodman, Steven J.; Buechler, Dennis
2007-01-01
This paper investigates the response of global lightning activity to the transition from the warm (January February March-JFM 1998) to the cold (JFM 1999) ENSO phase. The nine-year global lightning climatology for these months from the Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) provides the observational baseline. Flash rate density is computed on a 5.0x5.0 degree lat/lon grid within the LIS coverage area (between approx.37.5 N and S) for each three month period. The flash rate density anomalies from this climatology are examined for these months in 1998 and 1999. The observed lightning anomalies spatially match the documented general circulation features that accompany the warm and cold ENSO events. During the warm ENSO phase the dominant positive lightning anomalies are located mostly over the Western Hemisphere and more specifically over Gulf of Mexico, Caribbean and Northern Mid-Atlantic. We further investigate specifically the Northern Mid-Atlantic related anomaly features since these show strong relation to the North Atlantic Oscillation (NAO). Furthermore these observed anomaly patterns show strong spatial agreement with anomalous upper level (200 mb) cold core cyclonic circulations. Positive sea surface temperature anomalies during the warm ENSO phase also affect the lightning activity, but this is mostly observed near coastal environments. Over the open tropical oceans, there is climatologically less lightning and the anomalies are less pronounced. Warm ENSO related anomalies over the Eastern Hemisphere are most prominent over the South China coast. The transition to the cold ENSO phase illustrates the detected lightning anomalies to be more pronounced over East and West Pacific. A comparison of total global lightning between warm and cold ENSO phase reveals no significant difference, although prominent regional anomalies are located over mostly oceanic environments. All three tropical "chimneys" (Maritime Continent, Central Africa, and Amazon Basin) do not show any particular response to this transition.
The phase diagram and transport properties of MgO from theory and experiment
NASA Astrophysics Data System (ADS)
Shulenburger, Luke
2013-06-01
Planetary structure and the formation of terrestrial planets have received tremendous interest due to the discovery of so called super-earth exoplanets. MgO is a major constituent of Earth's mantle, the rocky cores of gas giants and is a likely component of the interiors of many of these exoplanets. The high pressure - high temperature behavior of MgO directly affects equation of state models for planetary structure and formation. In this work, we examine MgO under extreme conditions using experimental and theoretical methods to determine its phase diagram and transport properties. Using plate impact experiments on Sandia's Z facility the solid-solid phase transition from B1 to B2 is clearly determined. The melting transition, on the other hand, is subtle, involving little to no signal in us-up space. Theoretical work utilizing density functional theory (DFT) provides a complementary picture of the phase diagram. The solid-solid phase transition is identified through a series of quasi-harmonic phonon calculations and thermodynamic integration, while the melt boundary is found using phase coexistence calculations. One issue of particular import is the calculation of reflectivity along the Hugoniot and the influence of the ionic structure on the transport properties. Particular care is necessary because of the underestimation of the band gap and attendant overestimation of transport properties due to the use of semi-local density functional theory. We will explore the impact of this theoretical challenge and its potential solutions in this talk. The integrated use of DFT simulations and high-accuracy shock experiments together provide a comprehensive understanding of MgO under extreme conditions. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Myhill, R.; Frost, D. J.; Panero, W. R.; Boffa Ballaran, T.; Miyajima, N.; Bureau, H.; Raepsaet, C.; Siersch, N.; Kohn, S. C.
2016-12-01
At mid-mantle pressures, stishovite undergoes a displacive phase transition to the calcium chloride structure. It has been argued that softening accompanying this phase transition leads to very low seismic velocities and that silica-rich materials in the lower mantle may therefore be effective scatterers of seismic energy. The post-stishovite phase is also a promising candidate for water storage in the lower mantle, as it is both stable at very high temperatures and isostructural with the high pressure hydrous phases delta-AlOOH and Phase H. Pure SiO2 post-stishovite is unquenchable, making ex-situ characterisation impossible. In this study, we exploit the stabilisation of the post-stishovite structure due to alumina incorporation to synthesise and quench large crystals of post-stishovite. Single crystals are characterised by X-ray diffraction, TEM and Raman spectroscopy, and water contents are analysed with elastic recoil detection and FTIR. We show that water contents in our post-stishovite crystals are consistent with an SiO2-AlOOH solid solution, containing 3-7 times more water per atom of aluminium than stishovite. Our results suggest that almost 1 wt % H2O could be incorporated into post-stishovite crystals in lower mantle mafic rocks. We use ab-initio simulations to investigate the effect of pressure on the mechanism of hydroxyl incorporation into aluminous stishovite and post-stishovite. Finally, we discuss the potential for post-stishovite to affect seismic velocities in the lower mantle. In addition to the scattering potential of the phase transition, patchy low velocity layers in the mid-mantle might represent regions where hydrous melts are reacting with post-stishovite. In the lowermost mantle, transformation of post-stishovite to seifertite could result in the formation of a hydrous melt that might explain seismologically observed ultra low velocity zones.
Phase Transition of H 2 in Subnanometer Pores Observed at 75 K
Olsen, Raina J.; Gillespie, Andrew K.; Contescu, Cristian I.; ...
2017-10-30
In this paper, we report a phase transition in H 2 adsorbed in a locally graphitic Saran carbon with subnanometer pores 0.5–0.65 nm in width, in which two layers of hydrogen can just barely squeeze, provided they pack tightly. The phase transition is observed at 75 K, temperatures far higher than other systems in which an adsorbent is known to increase phase transition temperatures: for instance, H 2 melts at 14 K in the bulk, but at 20 K on graphite because the solid H 2 is stabilized by the surface structure. Here we observe a transition at 75 Kmore » and 77–200 bar: from a low-temperature, low-density phase to a high-temperature, higher density phase. We model the low-density phase as a monolayer commensurate solid composed mostly of para-H 2 (the ground nuclear spin state, S = 0) and the high-density phase as an orientationally ordered bilayer commensurate solid composed mostly of ortho-H 2 (S = 1). We attribute the increase in density with temperature to the fact that the oblong ortho-H 2 can pack more densely. The transition is observed using two experiments. The high-density phase is associated with an increase in neutron backscatter by a factor of 7.0 ± 0.1. Normally, hydrogen produces no backscatter (scattering angle >90°). This backscatter appears along with a discontinuous increase in the excitation mass from 1.2 amu to 21.0 ± 2.3 amu, which we associate with collective nuclear spin excitations in the orientationally ordered phase. Film densities were measured using hydrogen adsorption. Finally, no phase transition was observed in H 2 adsorbed in control activated carbon materials.« less
Phase Transition of H 2 in Subnanometer Pores Observed at 75 K
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olsen, Raina J.; Gillespie, Andrew K.; Contescu, Cristian I.
In this paper, we report a phase transition in H 2 adsorbed in a locally graphitic Saran carbon with subnanometer pores 0.5–0.65 nm in width, in which two layers of hydrogen can just barely squeeze, provided they pack tightly. The phase transition is observed at 75 K, temperatures far higher than other systems in which an adsorbent is known to increase phase transition temperatures: for instance, H 2 melts at 14 K in the bulk, but at 20 K on graphite because the solid H 2 is stabilized by the surface structure. Here we observe a transition at 75 Kmore » and 77–200 bar: from a low-temperature, low-density phase to a high-temperature, higher density phase. We model the low-density phase as a monolayer commensurate solid composed mostly of para-H 2 (the ground nuclear spin state, S = 0) and the high-density phase as an orientationally ordered bilayer commensurate solid composed mostly of ortho-H 2 (S = 1). We attribute the increase in density with temperature to the fact that the oblong ortho-H 2 can pack more densely. The transition is observed using two experiments. The high-density phase is associated with an increase in neutron backscatter by a factor of 7.0 ± 0.1. Normally, hydrogen produces no backscatter (scattering angle >90°). This backscatter appears along with a discontinuous increase in the excitation mass from 1.2 amu to 21.0 ± 2.3 amu, which we associate with collective nuclear spin excitations in the orientationally ordered phase. Film densities were measured using hydrogen adsorption. Finally, no phase transition was observed in H 2 adsorbed in control activated carbon materials.« less
NASA Astrophysics Data System (ADS)
Kalita, Patricia; Specht, Paul; Root, Seth; Sinclair, Nicholas; Schuman, Adam; White, Melanie; Cornelius, Andrew L.; Smith, Jesse; Sinogeikin, Stanislav
2017-12-01
We report real-time observations of a phase transition in the ionic solid CaF2 , a model A B2 structure in high-pressure physics. Synchrotron x-ray diffraction coupled with dynamic loading to 27.7 GPa, and separately with static compression, follows, in situ, the fluorite to cotunnite structural phase transition, both on nanosecond and on minute time scales. Using Rietveld refinement techniques, we examine the kinetics and hysteresis of the transition. Our results give insight into the kinetic time scale of the fluorite-cotunnite phase transition under shock compression, which is relevant to a number of isomorphic compounds.
Domain wall formation in late-time phase transitions
NASA Technical Reports Server (NTRS)
Kolb, Edward W.; Wang, Yun
1992-01-01
We examine domain wall formulation in late time phase transitions. We find that in the invisible axion domain wall phenomenon, thermal effects alone are insufficient to drive different parts of the disconnected vacuum manifold. This suggests that domain walls do not form unless either there is some supplemental (but perhaps not unreasonable) dynamics to localize the scalar field responsible for the phase transition to the low temperature maximum (to an extraordinary precision) before the onset of the phase transition, or there is some non-thermal mechanism to produce large fluctuations in the scalar field. The fact that domain wall production is not a robust prediction of late time transitions may suggest future directions in model building.
Kalita, Patricia E.; Specht, Paul Elliot; Root, Seth; ...
2017-12-21
Here, we report real-time observations of a phase transition in the ionic solid CaF 2, a model AB 2 structure in high-pressure physics. Synchrotron x-ray diffraction coupled with dynamic loading to 27.7 GPa, and separately with static compression, follows, in situ, the fluorite to cotunnite structural phase transition, both on nanosecond and on minute time scales. Using Rietveld refinement techniques, we examine the kinetics and hysteresis of the transition. Our results give insight into the kinetic time scale of the fluorite-cotunnite phase transition under shock compression, which is relevant to a number of isomorphic compounds.
A resonant ultrasound spectroscopy study of the phase transitions in Na0.75CoO2
NASA Astrophysics Data System (ADS)
Keppens, Veerle; Sergienko, Ivan; Jin, Rongying
2005-03-01
The layered transition metal oxides NaxCoO2 have attracted much interest in the past few years. Crystals with the x˜0.75 composition undergo an order-disorder transition near 340 K, a spin-density-wave transition near 22 K and other subtle transitions at intermediate temperatures. These phase transitions, likely related to a rearrangement of the Na atoms among the available sites, have been mapped out using resonant ultrasound spectroscopy. The results are modeled within the Landau theory for second order phase transitions. [Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Dept. of Energy under contract DE-AC05-00OR22725
Calorimetric Study of Phase Transitions Involving Twist-Grain-Boundary TGB{A} and TGB{C} Phases
NASA Astrophysics Data System (ADS)
Navailles, L.; Garland, C. W.; Nguyen, H. T.
1996-09-01
High-resolution calorimetry has been used to determine the heat capacity and latent heat associated with phase transitions in the homologous series of chiral liquid crystals nF_2BTFO_1M_7 [ 3-fluoro-4(1-methylheptyloxy)4'-(4''-alkoxy-2'', 3''-difluorobenzoyloxy)tolane] . These compounds exhibit smectic-C^* (SmC^*), twist-grain-boundary (TGBA for n=10, TGBC for n=11, 12) and cholesteric (N^*) phases. All the phase transitions are first order with small to moderate latent heats. There is a large rounded excess heat capacity peak in the N^* phase that is consistent with the predicted appearance of short-range TGB order (chiral line liquid character). This is analogous to the development of an Abrikosov flux vortex liquid in type-II superconductors. Both the n=11 and 12 homologs exhibit two closely spaced transitions in the region where a single TGBC - N^* transition was expected. This suggests the existence of two thermodynamically distinct TGBC phases. Des exprériences de calorimétrie haute résolution ont été réalisées pour déterminer les chaleurs spécifiques et les chaleurs latentes associées aux transitions de phase des homologues de la série crystal liquide nF_2BTFO_1M_7: 3-fluoro-4[1-methyl-heptyloxy]4'-(4''-alcoxy-2'', 3''-difluorobenzoyloxy)tolanes. Ces produits présentent la phase smectique C^* (SmC^*), les phases à torsion par joint de grain (TGBA pour n=10 et TGBC pour n=11, 12) et la phase cholestérique (N^*). Toutes les transitions de phase sont du premier ordre. La chaleur latente associée à ces transitions est faibles ou modérée. Nous observons, dans la phase N^*, un grand pic arrondi qui est en accord avec les prédictions de l'apparition d'un ordre TGB à courte distance (liquide de ligne de dislocation). Ce phénomène est l'analogue du liquide de vortex dans les supraconducteurs de type II. Les composés n=11 et 12 présentent, dans la région où nous attendions une transition TGBC - N^* unique, deux transitions sur un très faible domaine de température. Ce résultat suggère l'existence de deux phases TGBC thermodynamiquement distinctes.
Revisiting non-Gaussianity from non-attractor inflation models
NASA Astrophysics Data System (ADS)
Cai, Yi-Fu; Chen, Xingang; Namjoo, Mohammad Hossein; Sasaki, Misao; Wang, Dong-Gang; Wang, Ziwei
2018-05-01
Non-attractor inflation is known as the only single field inflationary scenario that can violate non-Gaussianity consistency relation with the Bunch-Davies vacuum state and generate large local non-Gaussianity. However, it is also known that the non-attractor inflation by itself is incomplete and should be followed by a phase of slow-roll attractor. Moreover, there is a transition process between these two phases. In the past literature, this transition was approximated as instant and the evolution of non-Gaussianity in this phase was not fully studied. In this paper, we follow the detailed evolution of the non-Gaussianity through the transition phase into the slow-roll attractor phase, considering different types of transition. We find that the transition process has important effect on the size of the local non-Gaussianity. We first compute the net contribution of the non-Gaussianities at the end of inflation in canonical non-attractor models. If the curvature perturbations keep evolving during the transition—such as in the case of smooth transition or some sharp transition scenarios—the Script O(1) local non-Gaussianity generated in the non-attractor phase can be completely erased by the subsequent evolution, although the consistency relation remains violated. In extremal cases of sharp transition where the super-horizon modes freeze immediately right after the end of the non-attractor phase, the original non-attractor result can be recovered. We also study models with non-canonical kinetic terms, and find that the transition can typically contribute a suppression factor in the squeezed bispectrum, but the final local non-Gaussianity can still be made parametrically large.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandran, Ravi
In this research, phase transitions in the bulk electrodes for Li-ion batteries were investigated using neutron diffraction (ND) as well as neutron imaging techniques. The objectives of this research is to design of a novel in situ electrochemical cell to obtain Rietveld refinable neutron diffraction experiments using small volume electrodes of various laboratory/research-scale electrodes intended for Li-ion batteries. This cell is also to be used to investigate the complexity of phase transitions in Li(Mg) alloy electrodes, either by diffraction or by neutron imaging, which occur under electrochemical lithiation and delithiation, and to determine aspects of phase transition that enable/limit energymore » storage capacity. Additional objective is to investigate the phase transitions in electrodes made of etched micro-columns of silicon and investigate the effect of particle/column size on phase transitions and nonequilibrium structures. An in situ electrochemical cell was designed successfully and was used to study the phase transitions under in-situ neutron diffraction in both the electrodes (anode/cathode) simultaneously in graphite/LiCoO 2 and in graphite/LiMn 2O 4 cells each with two cells. The diffraction patterns fully validated the working of the in situ cell. Additional experimental were performed using the Si micro-columnar electrodes. The results revealed new lithiation phenomena, as evidenced by mosaicity formation in silicon electrode. These experiments were performed in Vulcan diffractometer at SNS, Oak Ridge National Laboratory. In parallel, the spatial distribution of Li during lithiation and delithiation processes in Li-battery electrodes were investigated. For this purpose, neutron tomographic imaging technique has been used for 3D mapping of Li distribution in bulk Li(Mg) alloy electrodes. It was possible to observe the phase boundary of Li(Mg) alloy indicating phase transition from Li-rich BCC β-phase to Li-lean α-phase. These experiments have been performed at CG-1D Neutron Imaging Prototype Station at SNS.« less
NASA Astrophysics Data System (ADS)
Liu, Xing; Fang, Bijun; Deng, Ji; Yan, Hong; Deng, Hao; Yue, Qingwen; Ding, Jianning; Zhao, Xiangyong; Luo, Haosu
2016-01-01
In this work, the temperature-dependent Raman spectra and electrical properties of the [001]-oriented 0.5 mol. % Mn-doped 0.35Pb(In1/2Nb1/2)O3-0.35Pb(Mg1/3Nb2/3)O3-0.30PbTiO3-Mn (PIMNT-Mn) single crystals were investigated. All the unpoled and poled PIMNT-Mn single crystals experience a ferroelectric tetragonal phase to paraelectric cubic phase transition (FET-PC) around 183 °C (TC), which exhibits a second-order transition behavior. Whereas, the poled PIMNT-Mn single crystals exhibit another two dielectric anomalies around 130 °C (TRM) and 148 °C (TMT), in which the ferroelectric rhombohedral phase to ferroelectric monoclinic phase (FER-FEM) and the ferroelectric monoclinic phase to ferroelectric tetragonal phase (FEM-FET) transitions take place, respectively. Both the two ferroelectric phase transitions exhibit a first-order transition behavior. The discontinuous change of the phase degree (θ) and frequencies (fr and fa) around TRM suggest the occurrence of the FER-FEM phase transition in the poled PIMNT-Mn single crystals. The narrowing of the 510 cm-1 and 582 cm-1 Raman modes around the TRM, TMT, and TC temperatures shown in the temperature-dependent Raman spectra suggests their increased ordering of the local structure. The intensity ratio of I272 cm-1/I801 cm-1 increases obviously around the phase transition temperatures (TRM, TMT, and TC), indicating the reduction of the long-range order. The anomalous broadening of the 272 cm-1 Raman mode around the TRM, TMT, and TC temperatures indicates the occurrence of the successive ferroelectric phase transitions (FER-FEM, FEM-FET, and FET-PC) with increasing temperature in the poled PIMNT-Mn single crystals.
Phase transitions in core-collapse supernova matter at sub-saturation densities
NASA Astrophysics Data System (ADS)
Pais, Helena; Newton, William G.; Stone, Jirina R.
2014-12-01
Phase transitions in hot, dense matter in the collapsing cores of massive stars have an important impact on the core-collapse supernova mechanism as they absorb heat, disrupt homology, and so weaken the developing shock. We perform a three-dimensional, finite temperature Skyrme-Hartree-Fock (SHF) study of inhomogeneous nuclear matter to determine the critical density and temperature for the phase transition between the pasta phase and homogeneous matter and its properties. We employ four different parametrizations of the Skyrme nuclear energy-density functional, SkM*, SLy4, NRAPR, and SQMC700, which span a range of saturation-density symmetry energy behaviors constrained by a variety of nuclear experimental probes. For each of these interactions we calculate free energy, pressure, entropy, and chemical potentials in the range of particle number densities where the nuclear pasta phases are expected to exist, 0.02-0.12 fm-3, temperatures 2-8 MeV, and a proton fraction of 0.3. We find unambiguous evidence for a first-order phase transition to uniform matter, unsoftened by the presence of the pasta phases. No conclusive signs of a first-order phase transition between the pasta phases is observed, and it is argued that the thermodynamic quantities vary continuously right up to the first-order phase transition to uniform matter. We compare our results with thermodynamic spinodals calculated using the same Skyrme parametrizations, finding that the effect of short-range Coulomb correlations and quantum shell effects included in our model leads to the pasta phases existing at densities up to 0.01 fm-3 above the spinodal boundaries, thus increasing the transition density to uniform matter by the same amount. The transition density is otherwise shown to be insensitive to the symmetry energy at saturation density within the range constrained by the concordance of a variety of experimental constraints, and can be taken to be a well determined quantity.
NASA Astrophysics Data System (ADS)
Mendelev, M. I.; Schmalian, J.; Wang, C. Z.; Morris, J. R.; Ho, K. M.
2006-09-01
We present molecular dynamics (MD) studies of the liquid structure, thermodynamics, and dynamics in a one-component system described by the Ercolessi-Adams embedded atom method potential for Al. We find two distinct noncrystalline phases in this system. One of them is a liquid phase and the second phase has similar structure but different equation of state. Moreover, this phase has qualitatively different dynamics than that in the liquid phase. The transitions between these two noncrystalline phases can be seen during MD simulation. The hysteresis in this transition suggests that this is a first-order transition. This conclusion is strongly supported by simulations of the two phases that demonstrate that these phases may coexist with a well-defined interface. We find the coexistent temperature and the interface mobility. Finally, we discuss how these results can be explained using modern models of vitrification.
Flipping the Switch from G1 to S Phase with E3 Ubiquitin Ligases
Rizzardi, Lindsay F.
2012-01-01
The cell cycle ensures genome maintenance by coordinating the processes of DNA replication and chromosome segregation. Of particular importance is the irreversible transition from the G1 phase of the cell cycle to S phase. This transition marks the switch from preparing chromosomes for replication (“origin licensing”) to active DNA synthesis (“origin firing”). Ubiquitin-mediated proteolysis is essential for restricting DNA replication to only once per cell cycle and is the major mechanism regulating the G1 to S phase transition. Although some changes in protein levels are attributable to regulated mRNA abundance, protein degradation elicits very rapid changes in protein abundance and is critical for the sharp and irreversible transition from one cell cycle stage to the next. Not surprisingly, regulation of the G1-to-S phase transition is perturbed in most cancer cells, and deregulation of key molecular events in G1 and S phase drives not only cell proliferation but also genome instability. In this review we focus on the mechanisms by which E3 ubiquitin ligases control the irreversible transition from G1 to S phase in mammalian cells. PMID:23634252
NASA Astrophysics Data System (ADS)
Staśkiewicz, Beata; Staśkiewicz, Anna
2017-07-01
Hydrothermal method has been used to synthesized the layered hybrid compound NH3(CH2)3NH3CdBr4 of perovskite architecture. Structural, dielectric and dilatometric properties of the compound have been analyzed. Negative thermal expansion (NTE) effect in the direction perpendicular to the perovskite plane as well as an unusual phase sequence have been reported based on X-ray diffraction analysis. Electric permittivity measurements evidenced the phase transitions at Tc1=326/328 K and Tc2=368/369 K. Relative linear expansion measurements almost confirmed these temperatures of phase transitions. Anomalies of electric permittivity and expansion behavior connected with the phase transitions are detected at practically the same temperatures as those observed earlier in differential scanning calorimetry (DSC), infrared (IR), far infrared (FIR) and Raman spectroscopy studies. Mechanism of the phase transitions is explained. Relative linear expansion study was prototype to estimate critical exponent value β for continuous phase transition at Tc1. It has been inferred that there is a strong interplay between the distortion of the inorganic network, those hydrogen bonds and the intermolecular interactions of the organic component.
Dielectric Study of the Phase Transitions in [P(CH3)4]2CuY4 (Y = Cl, Br)
NASA Astrophysics Data System (ADS)
Gesi, Kazuo
2002-05-01
Phase transitions in [P(CH3)4]2CuY4 (Y = Cl, Br) have been studied by dielectric measurements. In [P(CH3)4]2CuCl4, a slight break and a discontinuous jump on the dielectric constant vs. temperature curve are seen at the normal-incommensurate and the incommensurate-commensurate phase transitions, respectively. A small peak of dielectric constant along the b-direction exists just above the incommensurate-to-commensurate transition temperature. The anisotropic dielectric anomalies of [P(CH3)4]2CuBr4 at phase transitions were measured along the three crystallographic axes. The pressure-temperature phase diagram of [P(CH3)4]2CuCl4 was determined. The initial pressure coefficients of the normal-to-incommensurate and the incommensurate-to-commensurate transition temperatures are 0.19 K/MPa and 0.27 K/MPa, respectively. The incommensurate phase in [P(CH3)4]2CuCl4 disappears at a triple point which exists at 335 MPa and 443 K. The stability and the pressure effects of the incommensurate phases are much different among the four [Z(CH3)4]2CuY4 crystals (Z = N, P; Y = Cl, Br).
High-pressure phase transitions - Examples of classical predictability
NASA Astrophysics Data System (ADS)
Celebonovic, Vladan
1992-09-01
The applicability of the Savic and Kasanin (1962-1967) classical theory of dense matter to laboratory experiments requiring estimates of high-pressure phase transitions was examined by determining phase transition pressures for a set of 19 chemical substances (including elements, hydrocarbons, metal oxides, and salts) for which experimental data were available. A comparison between experimental and transition points and those predicted by the Savic-Kasanin theory showed that the theory can be used for estimating values of transition pressures. The results also support conclusions obtained in previous astronomical applications of the Savic-Kasanin theory.
NASA Astrophysics Data System (ADS)
Wang, Wei; Bi, Jiang-lin; Liu, Rui-jia; Chen, Xu; Liu, Jin-ping
2016-10-01
Monte Carlo simulation has been performed in detail to study magnetic and thermodynamic properties of a ferrimagnetic mixed-spin (1, 3/2) cylindrical Ising nanowire with core-shell structure. The ground phase diagrams are obtained for different single-ion anisotropies. The system can display rich phase transitions such as the second- and first-order phase transitions, the tricritical points and the compensation points. Especially, emphasis has been given to the effects of the single-ion anisotropy and the temperate on the magnetization, the internal energy, the specific heat, the compensation points and hysteresis loops of the system as well as two sublattices. A number of characteristic phenomena such as such as various types of magnetization curves and triple, duadruple as well as quintuple hysteresis loops behaviors have been observed for certain physical parameters, originating from the competitions among the anisotropies, temperature and the longitudinal magnetic field. It is found that the single-ion anisotropy and the temperature strongly affect the coercivity and the remanence of the system. A satisfactory agreement can be achieved from comparisons between our results and previous theoretical and experimental works.
Dynamical stability of plutonium alloys
NASA Astrophysics Data System (ADS)
Torrent, Marc; Dorado, Boris; Bieder, Jordan
Plutonium sits at the center of the actinide series and marks the transition between localization and delocalization of the 5 f electrons. From a metallurgical standpoint, the monoclinic α phase (stable at low T) is brittle, not suitable for engineering applications, as opposed to the ductile fcc δ phase (stable at 580K). The δ - α transition can be avoided by alloying δ-Pu with ''deltagen'' elements. There is a wide unexplored area for Pu when it comes to lattice dynamics. Due to the changes in the composition, the dynamical stability of is constantly challenged. Displ. cascades are created in the material, which in turn produce numerous of point defects. Therefore, the accumulation of defects preclude a thermodynamic equilibrium. Given the importance for engineering applications, it is crucial that we understand the mechanisms that lead to stabilization with respect to the alloy composition. We use first-principles calculations to provide evidence of the effect of defects/impurities (C, O, Al, Fe, Ni, Ga, Ce, U, Am) on the dynamical stability of δ-Pu. We show that this phase is dynamically unstable at low T and that it depends on the 5 f orbital occupancies. We investigate how defects affect the stability by comparing the phonon DoS.
Accelerating dark energy cosmological model in two fluids with hybrid scale factor
NASA Astrophysics Data System (ADS)
Mishra, B.; Sahoo, P. K.; Ray, Pratik P.
In this paper, we have investigated the anisotropic behavior of the accelerating universe in Bianchi V spacetime in the framework of General Relativity (GR). The matter field we have considered is of two non-interacting fluids, i.e. the usual string fluid and dark energy (DE) fluid. In order to represent the pressure anisotropy, the skewness parameters are introduced along three different spatial directions. To achieve a physically realistic solutions to the field equations, we have considered a scale factor, known as hybrid scale factor, which is generated by a time-varying deceleration parameter. This simulates a cosmic transition from early deceleration to late time acceleration. It is observed that the string fluid dominates the universe at early deceleration phase but does not affect nature of cosmic dynamics substantially at late phase, whereas the DE fluid dominates the universe in present time, which is in accordance with the observations results. Hence, we analyzed here the role of two fluids in the transitional phases of universe with respect to time which depicts the reason behind the cosmic expansion and DE. The role of DE with variable equation of state parameter (EoS) and skewness parameters, is also discussed along with physical and geometrical properties.
Mixed-order phase transition in a two-step contagion model with a single infectious seed.
Choi, Wonjun; Lee, Deokjae; Kahng, B
2017-02-01
Percolation is known as one of the most robust continuous transitions, because its occupation rule is intrinsically local. As one of the ways to break the robustness, occupation is allowed to more than one species of particles and they occupy cooperatively. This generalized percolation model undergoes a discontinuous transition. Here we investigate an epidemic model with two contagion steps and characterize its phase transition analytically and numerically. We find that even though the order parameter jumps at a transition point r_{c}, then increases continuously, it does not exhibit any critical behavior: the fluctuations of the order parameter do not diverge at r_{c}. However, critical behavior appears in mean outbreak size, which diverges at the transition point in a manner that the ordinary percolation shows. Such a type of phase transition is regarded as a mixed-order phase transition. We also obtain scaling relations of cascade outbreak statistics when the order parameter jumps at r_{c}.
Plasmonic Structures for CMOS Photonics and Control of Spontaneous Emission
2013-04-01
structures; v) developed CMOS Si photonic switching device based on the vanadium dioxide ( VO2 ) phase transition. vi) also engaged in a partnership with...CMOS Si photonic switching device based on the vanadium dioxide ( VO2 ) phase transition. vii. exploring approaches to enhance spontaneous emission in...size and bandwidth, we are exploring phase-change materials and, in particular, vanadium dioxide. VO2 undergoes an insulator-to-metal phase transition
Kaluarachchi, Udhara S.; Deng, Yuhang; Besser, Matthew F.; ...
2017-06-09
Transport and magnetic studies of PbTaSe 2 under pressure suggest the existence of two superconducting phases with the low temperature phase boundary at ~ 0.25 GPa that is defined by a very sharp, first order, phase transition. The first order phase transition line can be followed via pressure dependent resistivity measurements, and is found to be near 0.12 GPa near room temperature. Transmission electron microscopy and x-ray diffraction at elevated temperatures confirm that this first order phase transition is structural and occurs at ambient pressure near ~ 425 K. The new, high temperature/high pressure phase has a similar crystal structuremore » and slightly lower unit cell volume relative to the ambient pressure, room temperature structure. Based on first-principles calculations this structure is suggested to be obtained by shifting the Pb atoms from the 1 a to 1 e Wyckoff position without changing the positions of Ta and Se atoms. PbTaSe 2 has an exceptionally pressure sensitive, structural phase transition with Δ T s / Δ P ≈ -1400 K/GPa near room temperature, and ≈ -1700 K/GPa near 4 K. This first order transition causes a ~ 1 K (~ 25 % ) steplike decrease in T c as pressure is increased through 0.25 GPa.« less
Quantum multicriticality in disordered Weyl semimetals
NASA Astrophysics Data System (ADS)
Luo, Xunlong; Xu, Baolong; Ohtsuki, Tomi; Shindou, Ryuichi
2018-01-01
In electronic band structure of solid-state material, two band-touching points with linear dispersion appear in pairs in the momentum space. When they annihilate each other, the system undergoes a quantum phase transition from a three-dimensional (3D) Weyl semimetal (WSM) phase to a band insulator phase such as a Chern band insulator (CI) phase. The phase transition is described by a new critical theory with a "magnetic dipole"-like object in the momentum space. In this paper, we reveal that the critical theory hosts a novel disorder-driven quantum multicritical point, which is encompassed by three quantum phases: a renormalized WSM phase, a CI phase, and a diffusive metal (DM) phase. Based on the renormalization group argument, we first clarify scaling properties around the band-touching points at the quantum multicritical point as well as all phase boundaries among these three phases. Based on numerical calculations of localization length, density of states, and critical conductance distribution, we next prove that a localization-delocalization transition between the CI phase with a finite zero-energy density of states (zDOS) and DM phase belongs to an ordinary 3D unitary class. Meanwhile, a localization-delocalization transition between the Chern insulator phase with zero zDOS and a renormalized WSM phase turns out to be a direct phase transition whose critical exponent ν =0.80 ±0.01 . We interpret these numerical results by a renormalization group analysis on the critical theory.
NASA Astrophysics Data System (ADS)
Rizwan, C. L. Ahmed; Vaid, Deepak
2018-05-01
We study holographic superconductivity in low-energy stringy Garfinkle-Horowitz-Strominger (GHS) dilaton black hole background. We finds that superconducting properties are much similar to s-wave superconductors. We show that the second-order phase transition indicated from thermodynamic geometry is not different from superconducting phase transition.
Multipartite entanglement characterization of a quantum phase transition
NASA Astrophysics Data System (ADS)
Costantini, G.; Facchi, P.; Florio, G.; Pascazio, S.
2007-07-01
A probability density characterization of multipartite entanglement is tested on the one-dimensional quantum Ising model in a transverse field. The average and second moment of the probability distribution are numerically shown to be good indicators of the quantum phase transition. We comment on multipartite entanglement generation at a quantum phase transition.
40 CFR Appendix II to Part 1042 - Steady-State Duty Cycles
Code of Federal Regulations, 2011 CFR
2011-07-01
... the maximum test power. 3 Advance from one mode to the next within a 20-second transition phase. During the transition phase, command a linear progression from the torque setting of the current mode to... transition phase, command a linear progression from the torque setting of the current mode to the torque...
Shock loading and release behavior of silicon nitride
NASA Astrophysics Data System (ADS)
Kawai, Nobuaki; Tsuru, Taiki; Hidaka, Naoto; Liu, Xun; Mashimo, Tsutomu
2015-06-01
Shock-reshock and shock-release experiments were performed on silicon nitride ceramics above and below its phase transition pressure. Experimental results clearly show the occurrence of elastic-plastic transition and phase transition during initial shock loading. The HEL and phase transition stress are determined as 11.6 GPa and 34.5 GPa, respectively. Below the phase transition point, the reshock profile consists of the single shock with short rise time, while the release profile shows the gradual release followed by more rapid one. Above the phase transition point, reshock and release behavior varies with the initial shock stress. In the case of reshock and release from about 40 GPa, the reshock structure is considerably dispersed, while the release structure shows rapid release. In the reshock profile from about 50 GPa, the formation of the shock wave with the small ramped precursor is observed. And, the release response from same condition shows initial gradual release and subsequent quite rapid one. These results would provide the information about how phase transformation kinetics effects on the reshock and release behavior.
Non-resonant collider signatures of a singlet-driven electroweak phase transition
NASA Astrophysics Data System (ADS)
Chen, Chien-Yi; Kozaczuk, Jonathan; Lewis, Ian M.
2017-08-01
We analyze the collider signatures of the real singlet extension of the Standard Model in regions consistent with a strong first-order electroweak phase transition and a singlet-like scalar heavier than the Standard Model-like Higgs. A definitive correlation exists between the strength of the phase transition and the trilinear coupling of the Higgs to two singlet-like scalars, and hence between the phase transition and non-resonant scalar pair production involving the singlet at colliders. We study the prospects for observing these processes at the LHC and a future 100 TeV pp collider, focusing particularly on double singlet production. We also discuss correlations between the strength of the electroweak phase transition and other observables at hadron and future lepton colliders. Searches for non-resonant singlet-like scalar pair production at 100 TeV would provide a sensitive probe of the electroweak phase transition in this model, complementing resonant di-Higgs searches and precision measurements. Our study illustrates a strategy for systematically exploring the phenomenologically viable parameter space of this model, which we hope will be useful for future work.
Non-resonant collider signatures of a singlet-driven electroweak phase transition
Chen, Chien-Yi; Kozaczuk, Jonathan; Lewis, Ian M.
2017-08-22
We analyze the collider signatures of the real singlet extension of the Standard Model in regions consistent with a strong first-order electroweak phase transition and a singlet-like scalar heavier than the Standard Model-like Higgs. A definitive correlation exists between the strength of the phase transition and the trilinear coupling of the Higgs to two singlet-like scalars, and hence between the phase transition and non-resonant scalar pair production involving the singlet at colliders. We study the prospects for observing these processes at the LHC and a future 100 TeV pp collider, focusing particularly on double singlet production. We also discuss correlationsmore » between the strength of the electroweak phase transition and other observables at hadron and future lepton colliders. Searches for non-resonant singlet-like scalar pair production at 100 TeV would provide a sensitive probe of the electroweak phase transition in this model, complementing resonant di-Higgs searches and precision measurements. Our study illustrates a strategy for systematically exploring the phenomenologically viable parameter space of this model, which we hope will be useful for future work.« less
Histological characterization of peppermint shrimp ( Lysmata wurdemanni) androgenic gland
NASA Astrophysics Data System (ADS)
Liu, Xin; Zhang, Dong; Lin, Tingting
2017-12-01
The androgenic gland (AG) is an important endocrine gland for male reproductive function in crustaceans. In the present study, we investigated the histological characteristics of the androgenic gland of peppermint shrimp, Lysmata wurdemanni. The peppermint shrimp matures as male first, then some individuals may become euhermaphrodite after several moltings (transitional phase). Euhermaphrodite-phase shrimp acts as male at intermolts. However, it can be fertilized as a female immediately after molting. Considering the male reproductive function acts in its lifespan except for at larval stages, and female reproductive system starts to develop at transitional phase, we hypothesized that AG activity might be reduced to allow and promote vitellogenesis onset in early transitional phase and the following euhermaphrodite phase. So AG cell structure might be different in three phases in L. wurdemanni. The results showed that AG exists in the male in transitional and euhermaphrodite phases. The gland cell clusters surrounding the ejaculatory ducts locate at the roots of the fifth pereopods. The nucleus diameters are similar in the three phases while the nucleus- to-cell ratio is the lowest in euhermaphrodite phase. Our results indicated that for the individuals that will become euhermaphrodite, the cellular structure of AG changes since transitional phase. Male reproductive function which is still available in euhermaphrodite-phase shrimp should be due to the existence of the gland.
Measurement of a solid-state triple point at the metal-insulator transition in VO2.
Park, Jae Hyung; Coy, Jim M; Kasirga, T Serkan; Huang, Chunming; Fei, Zaiyao; Hunter, Scott; Cobden, David H
2013-08-22
First-order phase transitions in solids are notoriously challenging to study. The combination of change in unit cell shape, long range of elastic distortion and flow of latent heat leads to large energy barriers resulting in domain structure, hysteresis and cracking. The situation is worse near a triple point, where more than two phases are involved. The well-known metal-insulator transition in vanadium dioxide, a popular candidate for ultrafast optical and electrical switching applications, is a case in point. Even though VO2 is one of the simplest strongly correlated materials, experimental difficulties posed by the first-order nature of the metal-insulator transition as well as the involvement of at least two competing insulating phases have led to persistent controversy about its nature. Here we show that studying single-crystal VO2 nanobeams in a purpose-built nanomechanical strain apparatus allows investigation of this prototypical phase transition with unprecedented control and precision. Our results include the striking finding that the triple point of the metallic phase and two insulating phases is at the transition temperature, Ttr = Tc, which we determine to be 65.0 ± 0.1 °C. The findings have profound implications for the mechanism of the metal-insulator transition in VO2, but they also demonstrate the importance of this approach for mastering phase transitions in many other strongly correlated materials, such as manganites and iron-based superconductors.
Phase Behavior of Complex Superprotonic Solid Acids
NASA Astrophysics Data System (ADS)
Panithipongwut, Chatr
Superprotonic phase transitions and thermal behaviors of three complex solid acid systems are presented, namely Rb3H(SO4) 2-RbHSO4 system, Rb3H(SeO4)2-Cs 3H(SeO4)2 solid solution system, and Cs6 (H2SO4)3(H1.5PO4) 4. These material systems present a rich set of phase transition characteristics that set them apart from other, simpler solid acids. A.C. impedance spectroscopy, high-temperature X-ray powder diffraction, and thermal analysis, as well as other characterization techniques, were employed to investigate the phase behavior of these systems. Rb3H(SO4)2 is an atypical member of the M3H(XO4)2 class of compounds (M = alkali metal or NH4+ and X = S or Se) in that a transition to a high-conductivity state involves disproportionation into two phases rather than a simple polymorphic transition [1]. In the present work, investigations of the Rb3H(SO4)2-RbHSO4 system have revealed the disproportionation products to be Rb2SO 4 and the previously unknown compound Rb5H3(SO 4)4. The new compound becomes stable at a temperature between 25 and 140 °C and is isostructural to a recently reported trigonal phase with space group P3m of Cs5H 3(SO4)4 [2]. At 185 °C the compound undergoes an apparently polymorphic transformation with a heat of transition of 23.8 kJ/mol and a slight additional increase in conductivity. The compounds Rb3H(SeO4)2 and Cs 3H(SeO4)2, though not isomorphous at ambient temperatures, are quintessential examples of superprotonic materials. Both adopt monoclinic structures at ambient temperatures and ultimately transform to a trigonal (R3m) superprotonic structure at slightly elevated temperatures, 178 and 183 °C, respectively. The compounds are completely miscible above the superprotonic transition and show extensive solubility below it. Beyond a careful determination of the phase boundaries, we find a remarkable 40-fold increase in the superprotonic conductivity in intermediate compositions rich in Rb as compared to either end-member. The compound Cs6(H2SO4)3(H 1.5PO4)4 is unusual amongst solid acid compounds in that it has a complex cubic structure at ambient temperature and apparently transforms to a simpler cubic structure of the CsCl-type (isostructural with CsH2PO4) at its transition temperature of 100-120 °C [3]. Here it is found that, depending on the level of humidification, the superprotonic transition of this material is superimposed with a decomposition reaction, which involves both exsolution of (liquid) acid and loss of H2O. This reaction can be suppressed by application of sufficiently high humidity, in which case Cs6(H2SO4)3(H 1.5PO4)4 undergoes a true superprotonic transition. It is proposed that, under conditions of low humidity, the decomposition/dehydration reaction transforms the compound to Cs6(H2-0.5xSO 4)3(H1.5PO4)4-x, also of the CsCl structure type at the temperatures of interest, but with a smaller unit cell. With increasing temperature, the decomposition/dehydration proceeds to greater and greater extent and unit cell of the solid phase decreases. This is identified to be the source of the apparent negative thermal expansion behavior. References: [1] L.A. Cowan, R.M. Morcos, N. Hatada, A. Navrotsky, S.M. Haile, Solid State Ionics 179 (2008) (9-10) 305. [2] M. Sakashita, H. Fujihisa, K.I. Suzuki, S. Hayashi, K. Honda, Solid State Ionics 178 (2007) (21-22) 1262. [3] C.R.I. Chisholm, Superprotonic Phase Transitions in Solid Acids: Parameters affecting the presence and stability of superprotonic transitions in the MHnXO4 family of compounds (X=S, Se, P, As; M=Li, Na, K, NH4, Rb, Cs), Materials Science, California Institute of Technology, Pasadena, California (2003).
Quantum phase transition with dissipative frustration
NASA Astrophysics Data System (ADS)
Maile, D.; Andergassen, S.; Belzig, W.; Rastelli, G.
2018-04-01
We study the quantum phase transition of the one-dimensional phase model in the presence of dissipative frustration, provided by an interaction of the system with the environment through two noncommuting operators. Such a model can be realized in Josephson junction chains with shunt resistances and resistances between the chain and the ground. Using a self-consistent harmonic approximation, we determine the phase diagram at zero temperature which exhibits a quantum phase transition between an ordered phase, corresponding to the superconducting state, and a disordered phase, corresponding to the insulating state with localized superconducting charge. Interestingly, we find that the critical line separating the two phases has a nonmonotonic behavior as a function of the dissipative coupling strength. This result is a consequence of the frustration between (i) one dissipative coupling that quenches the quantum phase fluctuations favoring the ordered phase and (ii) one that quenches the quantum momentum (charge) fluctuations leading to a vanishing phase coherence. Moreover, within the self-consistent harmonic approximation, we analyze the dissipation induced crossover between a first and second order phase transition, showing that quantum frustration increases the range in which the phase transition is second order. The nonmonotonic behavior is reflected also in the purity of the system that quantifies the degree of correlation between the system and the environment, and in the logarithmic negativity as an entanglement measure that encodes the internal quantum correlations in the chain.
Higher order cumulants in colorless partonic plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherif, S.; Laboratoire de Physique et de Mathématiques Appliquées; Ahmed, M. A. A.
2016-06-10
Any physical system considered to study the QCD deconfinement phase transition certainly has a finite volume, so the finite size effects are inevitably present. This renders the location of the phase transition and the determination of its order as an extremely difficult task, even in the simplest known cases. In order to identify and locate the colorless QCD deconfinement transition point in finite volume T{sub 0}(V), a new approach based on the finite-size cumulant expansion of the order parameter and the ℒ{sub m,n}-Method is used. We have shown that both cumulants of higher order and their ratios, associated to themore » thermodynamical fluctuations of the order parameter, in QCD deconfinement phase transition behave in a particular enough way revealing pronounced oscillations in the transition region. The sign structure and the oscillatory behavior of these in the vicinity of the deconfinement phase transition point might be a sensitive probe and may allow one to elucidate their relation to the QCD phase transition point. In the context of our model, we have shown that the finite volume transition point is always associated to the appearance of a particular point in whole higher order cumulants under consideration.« less
Liquid-liquid phase transformations and the shape of the melting curve.
Makov, G; Yahel, E
2011-05-28
The phase diagram of elemental liquids has been found to be surprisingly rich, including variations in the melting curve and transitions in the liquid phase. The effect of these transitions in the liquid state on the shape of the melting curve is analyzed. First-order phase transitions intersecting the melting curve imply piecewise continuous melting curves, with solid-solid transitions generating upward kinks or minima and liquid-liquid transitions generating downward kinks or maxima. For liquid-liquid phase transitions proposed for carbon, phosphorous selenium, and possibly nitrogen, we find that the melting curve exhibits a kink. Continuous transitions imply smooth extrema in the melting curve, the curvature of which is described by an exact thermodynamic relation. This expression indicates that a minimum in the melting curve requires the solid compressibility to be greater than that of the liquid, a very unusual situation. This relation is employed to predict the loci of smooth maxima at negative pressures for liquids with anomalous melting curves. The relation between the location of the melting curve maximum and the two-state model of continuous liquid-liquid transitions is discussed and illustrated by the case of tellurium. © 2011 American Institute of Physics
NASA Astrophysics Data System (ADS)
Gallardo, M. C.; Jiménez, J.; Koralewski, M.; del Cerro, J.
1997-03-01
The specific heat c and the heat power W exchanged by a Deuterated Potassium Dihydrogen Phosphate ferroelectric-ferroelastic crystal have been measured simultaneously for both decreasing and increasing temperature at a low constant rate (0.06 K/h) between 175 and 240 K. The measurements were carried out under controlled uniaxial stresses of 0.3 and 4.5±0.1 bar applied to face (110). At Tt=207.9 K, a first order transition is produced with anomalous specific heat behavior in the interval where the transition heat appears. This anomalous behavior is explained in terms of the temperature variation of the heat power during the transition. During cooling, the transition occurs with coexistence of phases, while during heating it seems that metastable states are reached. Excluding data affected by the transition heat, the specific heat behavior agrees with the predictions of a 2-4-6 Landau potential in the range of 4-15 K below Tt while logarithmic behavior is obtained in the range from Tt to 1 K below Tt. Data obtained under 0.3 and 4.5 bar uniaxial stresses exhibit the same behavior.
Compact stars in Eddington-inspired Born-Infeld gravity: Anomalies associated with phase transitions
NASA Astrophysics Data System (ADS)
Sham, Y.-H.; Leung, P. T.; Lin, L.-M.
2013-03-01
We study how generic phase transitions taking place in compact stars constructed in the framework of the Eddington-inspired Born-Infeld (EiBI) gravity can lead to anomalous behavior of these stars. For the case with first-order phase transitions, compact stars in EiBI gravity with a positive coupling parameter κ exhibit a finite region with constant pressure, which is absent in general relativity. However, for the case with a negative κ, an equilibrium stellar configuration cannot be constructed. Hence EiBI gravity seems to impose stricter constraints on the microphysics of stellar matter. Besides, in the presence of spatial discontinuities in the sound speed cs due to phase transitions, the Ricci scalar is spatially discontinuous and contains δ-function singularities proportional to the jump in cs2 acquired in the associated phase transition.
Cubic to tetragonal phase transition of Tm{sup 3+} doped nanocrystals in oxyfluoride glass ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yiming; Fu, Yuting; Shi, Yahui
2016-02-15
Tm{sup 3+} ions doped β-PbF{sub 2} nanocrystals in oxyfluoride glass ceramics with different doping concentrations and thermal temperatures are prepared by a traditional melt-quenching and thermal treatment method to investigate the structure and the phase transition of Tm{sup 3+} doped nanocrystals. The structures are characterized by X-ray diffraction Rietveld analysis and confirmed with numerical simulation. The phase transitions are proved further by the emission spectra. Both of the doping concentration and thermal temperature can induce an O{sub h} to D{sub 4h} site symmetry distortion and a cubic to tetragonal phase transition. The luminescence of Tm{sup 3+} doped nanocrystals at 800more » nm was modulated by the phase transition of the surrounding crystal field.« less
The Higgs vacuum uplifted: revisiting the electroweak phase transition with a second Higgs doublet
NASA Astrophysics Data System (ADS)
Dorsch, G. C.; Huber, S. J.; Mimasu, K.; No, J. M.
2017-12-01
The existence of a second Higgs doublet in Nature could lead to a cosmological first order electroweak phase transition and explain the origin of the matter-antimatter asymmetry in the Universe. We explore the parameter space of such a two-Higgs-doublet-model and show that a first order electroweak phase transition strongly correlates with a significant uplifting of the Higgs vacuum w.r.t. its Standard Model value. We then obtain the spectrum and properties of the new scalars H 0, A 0 and H ± that signal such a phase transition, showing that the decay A 0 → H 0 Z at the LHC and a sizable deviation in the Higgs self-coupling λ hhh from its SM value are sensitive indicators of a strongly first order electroweak phase transition in the 2HDM.
Phase-field model of insulator-to-metal transition in VO2 under an electric field
NASA Astrophysics Data System (ADS)
Shi, Yin; Chen, Long-Qing
2018-05-01
The roles of an electric field and electronic doping in insulator-to-metal transitions are still not well understood. Here we formulated a phase-field model of insulator-to-metal transitions by taking into account both structural and electronic instabilities as well as free electrons and holes in VO2, a strongly correlated transition-metal oxide. Our phase-field simulations demonstrate that in a VO2 slab under a uniform electric field, an abrupt universal resistive transition occurs inside the supercooling region, in sharp contrast to the conventional Landau-Zener smooth electric breakdown. We also show that hole doping may decouple the structural and electronic phase transitions in VO2, leading to a metastable metallic monoclinic phase which could be stabilized through a geometrical confinement and the size effect. This work provides a general mesoscale thermodynamic framework for understanding the influences of electric field, electronic doping, and stress and strain on insulator-to-metal transitions and the corresponding mesoscale domain structure evolution in VO2 and related strongly correlated systems.
NASA Astrophysics Data System (ADS)
Majarshin, A. Jalili; Sabri, H.
2018-03-01
It is interesting that a change of nuclear shape may be described in terms of a phase transition. This paper studies the quantum phase transition of the U(5) to SO(6) in the interacting boson model (IBM) on the finite number N of bosons. This paper explores the well-known distinctive signatures of transition from spherical vibrational to γ-soft shape phase in the IBM with the variation of a control parameter. Quantum phase transitions occur as a result of properties of ground and excited states levels. We apply an affine \\widehat {SU(1,1)} approach to numerically solve non-linear Bethe Ansatz equation and point out what observables are particularly sensitive to the transition. The main aim of this work is to describe the most prominent observables of QPT by using IBM in shape coexistence configuration. We calculate energies of excited states and signatures of QPT as energy surface, energy ratio, energy differences, quadrupole electric transition rates and expectation values of boson number operators and show their behavior in QPT. These observables are calculated and examined for 98 - 102Mo isotopes.
Magnetic and Structural Phase Transitions in Thulium under High Pressures and Low Temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vohra, Yogesh K.; Tsoi, Georgiy M.; Samudrala, Gopi K.
2017-10-01
The nature of 4f electrons in many rare earth metals and compounds may be broadly characterized as being either "localized" or "itinerant", and is held responsible for a wide range of physical and chemical properties. The pressure variable has a very dramatic effect on the electronic structure of rare earth metals which in turn drives a sequence of structural and magnetic transitions. We have carried out four-probe electrical resistance measurements on rare earth metal Thulium (Tm) under high pressures to 33 GPa and low temperatures to 10 K to monitor the magnetic ordering transition. These studies are complemented by anglemore » dispersive x-ray diffraction studies to monitor crystallographic phase transitions at high pressures and low temperatures. We observe an abrupt increase in magnetic ordering temperature in Tm at a pressure of 17 GPa on phase transition from ambient pressure hcp-phase to α-Sm phase transition. In addition, measured equation of state (EOS) at low temperatures show anomalously low thermal expansion coefficients likely linked to magnetic transitions.« less
NASA Astrophysics Data System (ADS)
Majarshin, A. Jalili; Sabri, H.
2018-06-01
It is interesting that a change of nuclear shape may be described in terms of a phase transition. This paper studies the quantum phase transition of the U(5) to SO(6) in the interacting boson model (IBM) on the finite number N of bosons. This paper explores the well-known distinctive signatures of transition from spherical vibrational to γ-soft shape phase in the IBM with the variation of a control parameter. Quantum phase transitions occur as a result of properties of ground and excited states levels. We apply an affine \\widehat {SU(1,1)} approach to numerically solve non-linear Bethe Ansatz equation and point out what observables are particularly sensitive to the transition. The main aim of this work is to describe the most prominent observables of QPT by using IBM in shape coexistence configuration. We calculate energies of excited states and signatures of QPT as energy surface, energy ratio, energy differences, quadrupole electric transition rates and expectation values of boson number operators and show their behavior in QPT. These observables are calculated and examined for 98 - 102Mo isotopes.
NASA Astrophysics Data System (ADS)
Yamada, S.; Sagayama, H.; Sugimoto, K.; Arima, T.
2018-03-01
We have succeeded in growing large high-quality single crystals of double-perovskite NdBaMn2O6 with c-axis aligned. Curie-Weiss paramagnetism and metallic conduction are observed above 290 K (TMI ). The magnetic susceptibility suddenly drops at TMI accompanied by a metal-insulator transition. Pervious studies using polycrystalline samples proposed that this material undergoes a ferromagnetic phase transition near 300K, and that the magnetic anomaly at TMI should be ascribed to layered antiferromagnetic phase transition. However, single-crystalline samples do not show any anomaly that indicates the ferromagnetic phase transition above TMI . We assign the onset of magnetic anisotropy at 235 K as antiferromagnetic transition temperature TN . Though the magnetization just above TMI shows the ferromagnetic-like magnetic-field dependence, the magnetization does not saturate under 70kOe at 300K. The magnetization behavior implies ferromagnetic fluctuation in the paramagnetic phase. The ferromagnetic fluctuation are also observed just below TMI . Because a metamagnetic transition is observed at a higher magnetic field, the ferromagnetic fluctuation competes with antiferromagnetic fluctuation in this temperature range.
Application of global kinetic models to HMX beta-delta transition and cookoff processes.
Wemhoff, Aaron P; Burnham, Alan K; Nichols, Albert L
2007-03-08
The reduction of the number of reactions in kinetic models for both the HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) beta-delta phase transition and thermal cookoff provides an attractive alternative to traditional multi-stage kinetic models due to reduced calibration effort requirements. In this study, we use the LLNL code ALE3D to provide calibrated kinetic parameters for a two-reaction bidirectional beta-delta HMX phase transition model based on Sandia instrumented thermal ignition (SITI) and scaled thermal explosion (STEX) temperature history curves, and a Prout-Tompkins cookoff model based on one-dimensional time to explosion (ODTX) data. Results show that the two-reaction bidirectional beta-delta transition model presented here agrees as well with STEX and SITI temperature history curves as a reversible four-reaction Arrhenius model yet requires an order of magnitude less computational effort. In addition, a single-reaction Prout-Tompkins model calibrated to ODTX data provides better agreement with ODTX data than a traditional multistep Arrhenius model and can contain up to 90% fewer chemistry-limited time steps for low-temperature ODTX simulations. Manual calibration methods for the Prout-Tompkins kinetics provide much better agreement with ODTX experimental data than parameters derived from differential scanning calorimetry (DSC) measurements at atmospheric pressure. The predicted surface temperature at explosion for STEX cookoff simulations is a weak function of the cookoff model used, and a reduction of up to 15% of chemistry-limited time steps can be achieved by neglecting the beta-delta transition for this type of simulation. Finally, the inclusion of the beta-delta transition model in the overall kinetics model can affect the predicted time to explosion by 1% for the traditional multistep Arrhenius approach, and up to 11% using a Prout-Tompkins cookoff model.
Dynamical phase transitions in generalized Kuramoto model with distributed Sakaguchi phase
NASA Astrophysics Data System (ADS)
Banerjee, Amitava
2017-11-01
In this numerical work, we have systematically studied the dynamical phase transitions in the Kuramoto-Sakaguchi model of synchronizing phase oscillators controlled by disorder in the Sakaguchi phases. We derive the numerical steady state phase diagrams for quenched and annealed kinds of disorder in the Sakaguchi parameters, using the conventional order parameter and other such statistical quantities as strength of incoherence and discontinuity measures. We have also considered the correlation profile of the local order parameter fluctuations in the various phases identified. The phase diagrams for quenched disorder are qualitatively much different from those in the global coupling regime. The order of various transitions is confirmed by a study of the distribution of the order parameter and its fourth order Binder’s cumulant across the transition for an ensemble of initial distribution of phases. For the annealed type of disorder, in contrast to the case with quenched disorder, the system is almost insensitive to the amount of disorder. We also elucidate the role of chimeralike states in the synchronizing transition of the system, and study the effect of disorder on these states. Finally, we seek justification of our results from simulations guided by the Ott-Antonsen ansatz.
Dynamic Linkages Between the Transition Zone & Surface Plate Motions in 2D Models of Subduction
NASA Astrophysics Data System (ADS)
Arredondo, K.; Billen, M. I.
2013-12-01
While slab pull is considered the dominant force controlling plate motion and speed, its magnitude is controlled by slab behavior in the mantle, where tomographic studies show a wide range of possibilities from direct penetration to folding, or stagnation directly above the lower mantle (e.g. Fukao et al., 2009). Geodynamic studies have investigated various parameters, such as plate age and two phase transitions, to recreate observed behavior (e.g. Běhounková and Cízková, 2008). However, past geodynamic models have left out known slab characteristics that may have a large impact on slab behavior and our understanding of subduction processes. Mineral experiments and seismic observations have indicated the existence of additional phase transitions in the mantle transition zone that may produce buoyancy forces large enough to affect the descent of a subducting slab (e.g. Ricard et al., 2005). The current study systematically tests different common assumptions used in geodynamic models: kinematic versus free-slip boundary conditions, the effects of adiabatic heating, viscous dissipation and latent heat, compositional layering and a more complete suite of phase transitions. Final models have a complete energy equation, with eclogite, harzburgite and pyrolite lithosphere compositional layers, and seven composition-dependent phase transitions within the olivine, pyroxene and garnet polymorph minerals. Results show important feedback loops between different assumptions and new behavior from the most complete models. Kinematic models show slab weakening or breaking above the 660 km boundary and between compositional layers. The behavior in dynamic models with a free-moving trench and overriding plate is compared to the more commonly found kinematic models. The new behavior may have important implications for the depth distribution of deep earthquakes within the slab. Though the thermodynamic parameters of certain phase transitions may be uncertain, their presence and feedback to other added processes remain important, which could encourage mineralogical research into multiphase systems. Feedback from the compositionally complex slab to the dynamic trench may improve understanding on the mechanics of slab behavior in the upper and lower mantle and surface behavior of the subducting and overriding plates. Běhounková, M., and H. Cízková, Long-wavelength character of subducted slabs in the lower mantle, Earth and Planetary Science Letters, 275, 43-53, 2008. Fukao, Y., M. Obayashi, T. Nakakuki, and the Deep Slab Project Group, Stagnant slab: A review, Annual Reviews of Earth and Planetary Science, 37, 19-46, 2009. Ricard, Y., E. Mattern, and J. Matas, Synthetic tomographic images of slabs from mineral physics, in Earth's Deep Mantle: Structure, Composition, and Evolution, Geophysical Monograph Series, vol. 160, American Geophysical Union, 2005.
Chimeric Plastics : a new class of thermoplastic
NASA Astrophysics Data System (ADS)
Sonnenschein, Mark
A new class of thermoplastics (dubbed ``Chimerics'') is described that exhibits a high temperature glass transition followed by high performance elastomer properties, prior to melting. These transparent materials are comprised of co-continuous phase-separated block copolymers. One block is an amorphous glass with a high glass transition temperature, and the second is a higher temperature phase transition block creating virtual thermoreversible crosslinks. The material properties are highly influenced by phase separation on the order of 10-30 nanometers. At lower temperatures the polymer reflects the sum of the block copolymer properties. As the amorphous phase glass transition is exceeded, the virtual crosslinks of the higher temperature second phase dominate the plastic properties, resulting in rubber-like elasticity.
Studies of Two-Phase Flow Dynamics and Heat Transfer at Reduced Gravity Conditions
NASA Technical Reports Server (NTRS)
Witte, Larry C.; Bousman, W. Scott; Fore, Larry B.
1996-01-01
The ability to predict gas-liquid flow patterns is crucial to the design and operation of two-phase flow systems in the microgravity environment. Flow pattern maps have been developed in this study which show the occurrence of flow patterns as a function of gas and liquid superficial velocities as well as tube diameter, liquid viscosity and surface tension. The results have demonstrated that the location of the bubble-slug transition is affected by the tube diameter for air-water systems and by surface tension, suggesting that turbulence-induced bubble fluctuations and coalescence mechanisms play a role in this transition. The location of the slug-annular transition on the flow pattern maps is largely unaffected by tube diameter, liquid viscosity or surface tension in the ranges tested. Void fraction-based transition criteria were developed which separate the flow patterns on the flow pattern maps with reasonable accuracy. Weber number transition criteria also show promise but further work is needed to improve these models. For annular gas-liquid flows of air-water and air- 50 percent glycerine under reduced gravity conditions, the pressure gradient agrees fairly well with a version of the Lockhart-Martinelli correlation but the measured film thickness deviates from published correlations at lower Reynolds numbers. Nusselt numbers, based on a film thickness obtained from standard normal-gravity correlations, follow the relation, Nu = A Re(sup n) Pr(exp l/3), but more experimental data in a reduced gravity environment are needed to increase the confidence in the estimated constants, A and n. In the slug flow regime, experimental pressure gradient does not correlate well with either the Lockhart-Martinelli or a homogeneous formulation, but does correlate nicely with a formulation based on a two-phase Reynolds number. Comparison with ground-based correlations implies that the heat transfer coefficients are lower at reduced gravity than at normal gravity under the same flow conditions. Nusselt numbers can be correlated in a fashion similar to Chu and Jones.
Lima, Filipe S; Chaimovich, Hernan; Cuccovia, Iolanda M; Buchner, Richard
2013-08-13
The properties of ionic micelles are affected by the nature of the counterion. Specific ion effects can be dramatic, inducing even shape and phase changes in micellar solutions, transitions apparently related to micellar hydration and counterion binding at the micellar interface. Thus, determining the hydration and dynamics of ions in micellar systems capable of undergoing such transitions is a crucial step in understanding shape and phase changes. For cationic micelles, such transitions are common with large organic anions as counterions. Interestingly, however, phase separation also occurs for dodecyltrimethylammonium triflate (DTATf) micelles in the presence of sodium triflate (NaTf). Specific ion effects for micellar solutions of dodecyltrimethylammonium chloride (DTAC), bromide (DTAB), methanesulfonate (DTAMs), and triflate (DTATf) were studied with dielectric relaxation spectroscopy (DRS), a technique capable of monitoring hydration and counterion dynamics of micellar aggregates. In comparison to DTAB, DTAC, and DTAMs, DTATf micelles were found to be considerably less hydrated and showed reduced counterion mobility at the micellar interface. The obtained DTATf and DTAMs data support the reported central role of the anion's -CF3 moiety with respect to the properties of DTATf micelles. The reduced hydration observed for DTATf micelles was rationalized in terms of the higher packing of this surfactant compared to that of other DTA-based systems. The decreased mobility of Tf(-) anions condensed at the DTATf interface strongly suggests the insertion of Tf(-) in the micellar interface, which is apparently driven by the strong hydrophobicity of -CF3.
Effects of Fluctuations on Inhomogeneous Chiral Transitions
NASA Astrophysics Data System (ADS)
Lee, Tong-Gyu; Yoshiike, Ryo; Tatsumi, Toshitaka
We discuss the features of the order-parameter fluctuations in the normal phase near the phase boundary and their effects on the phase transition from the normal to the inhomogeneous phase with spatially modulated order parameter. Focusing on the chiral symmetry breaking, i.e., inhomogeneous chiral transition, we consider the fluctuation of the chiral pair consisting of quark-antiquark or quark-hole pair within the two-flavor Nambu-Jona-Lasinio model in the chiral limit. We clarify the roles of quantum and thermal fluctuations and also argue that anomalies for thermodynamic quantities in the inhomogeneous chiral transition should lead to phenomenological implications.
The quantum phase-transitions of water
NASA Astrophysics Data System (ADS)
Fillaux, François
2017-08-01
It is shown that hexagonal ices and steam are macroscopically quantum condensates, with continuous spacetime-translation symmetry, whereas liquid water is a quantum fluid with broken time-translation symmetry. Fusion and vaporization are quantum phase-transitions. The heat capacities, the latent heats, the phase-transition temperatures, the critical temperature, the molar volume expansion of ice relative to water, as well as neutron scattering data and dielectric measurements are explained. The phase-transition mechanisms along with the key role of quantum interferences and that of Hartley-Shannon's entropy are enlightened. The notions of chemical bond and force-field are questioned.
Tunable Bragg filters with a phase transition material defect layer
Wang, Xi; Gong, Zilun; Dong, Kaichen; ...
2016-01-01
We propose an all-solid-state tunable Bragg filter with a phase transition material as the defect layer. Bragg filters based on a vanadium dioxide defect layer sandwiched between silicon dioxide/titanium dioxide Bragg gratings are experimentally demonstrated. Temperature dependent reflection spectroscopy shows the dynamic tunability and hysteresis properties of the Bragg filter. Temperature dependent Raman spectroscopy reveals the connection between the tunability and the phase transition of the vanadium dioxide defect layer. This work paves a new avenue in tunable Bragg filter designs and promises more applications by combining phase transition materials and optical cavities.
Tunable Bragg filters with a phase transition material defect layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xi; Gong, Zilun; Dong, Kaichen
We propose an all-solid-state tunable Bragg filter with a phase transition material as the defect layer. Bragg filters based on a vanadium dioxide defect layer sandwiched between silicon dioxide/titanium dioxide Bragg gratings are experimentally demonstrated. Temperature dependent reflection spectroscopy shows the dynamic tunability and hysteresis properties of the Bragg filter. Temperature dependent Raman spectroscopy reveals the connection between the tunability and the phase transition of the vanadium dioxide defect layer. This work paves a new avenue in tunable Bragg filter designs and promises more applications by combining phase transition materials and optical cavities.
Pore closure in zeolitic imidazolate frameworks under mechanical pressure.
Henke, Sebastian; Wharmby, Michael T; Kieslich, Gregor; Hante, Inke; Schneemann, Andreas; Wu, Yue; Daisenberger, Dominik; Cheetham, Anthony K
2018-02-14
We investigate the pressure-dependent mechanical behaviour of the zeolitic imidazolate framework ZIF-4 (M(im) 2 ; M 2+ = Co 2+ or Zn 2+ , im - = imidazolate) with high pressure, synchrotron powder X-ray diffraction and mercury intrusion measurements. A displacive phase transition from a highly compressible open pore ( op ) phase with continuous porosity (space group Pbca , bulk modulus ∼1.4 GPa) to a closed pore ( cp ) phase with inaccessible porosity (space group P 2 1 / c , bulk modulus ∼3.3-4.9 GPa) is triggered by the application of mechanical pressure. Over the course of the transitions, both ZIF-4 materials contract by about 20% in volume. However, the threshold pressure, the reversibility and the immediate repeatability of the phase transition depend on the metal cation. ZIF-4(Zn) undergoes the op-cp phase transition at a hydrostatic mechanical pressure of only 28 MPa, while ZIF-4(Co) requires about 50 MPa to initiate the transition. Interestingly, ZIF-4(Co) fully returns to the op phase after decompression, whereas ZIF-4(Zn) remains in the cp phase after pressure release and requires subsequent heating to switch back to the op phase. These variations in high pressure behaviour can be rationalised on the basis of the different electron configurations of the respective M 2+ ions (3d 10 for Zn 2+ and 3d 7 for Co 2+ ). Our results present the first examples of op-cp phase transitions ( i.e. breathing transitions) of ZIFs driven by mechanical pressure and suggest potential applications of these functional materials as shock absorbers, nanodampers, or in mechanocalorics.
NASA Astrophysics Data System (ADS)
Kumar, Nardeep; Rúa, Armando; Fernández, Félix E.; Lysenko, Sergiy
2017-06-01
Photoinduced phase transitions in complex correlated systems occur very rapidly and involve the interplay between various electronic and lattice degrees of freedom. For these materials to be considered for practical applications, it is important to discover how their phase transitions take place. Here we use a novel ultrafast diffraction conoscopy technique to study the evolution of vanadium dioxide (VO2) from biaxial to uniaxial symmetry. A key finding in this study is an additional relaxation process through which the phase transition takes place. Our results show that the biaxial monoclinic crystal initially, within the first 100-300 fs, transforms to a transient biaxial crystal, and within the next 300-400 fs converts into a uniaxial rutile crystal. The characteristic times for these transitions depend on film morphology and are presumably altered by misfit strain. We take advantage of Landau phenomenology to describe the complex dynamics of VO2 phase transition in the femtosecond regime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoque, Md Nadim Ferdous; Islam, Nazifah; Li, Zhen
Practical hybrid perovskite solar cells (PSCs) must endure temperatures above the tetragonal-cubic structural phase transition of methylammonium lead iodide (MAPbI3). However, the ionic and optical properties of MAPbI3 in such a temperature range, and particularly, dramatic changes in these properties resulting from a structural phase transition, are not well studied. Herein, we report a striking contrast at approximately 45 degrees C in the ionic/electrical properties of MAPbl3 owing to a change of the ion activation energy from 0.7 to 0.5 eV, whereas the optical properties exhibit no particular transition except for the steady increase of the bandgap with temperature. Thesemore » observations can be explained by the 'continuous' nature of perovskite phase transition. We speculate that the critical temperature at which the ionic/electrical properties change, although related to crystal symmetry variation, is not necessarily the same temperature as when tetragonal-cubic structural phase transition occurs.« less
Wetting Transitions Displayed by Persistent Active Particles
NASA Astrophysics Data System (ADS)
Sepúlveda, Néstor; Soto, Rodrigo
2017-08-01
A lattice model for active matter is studied numerically, showing that it displays wetting transitions between three distinctive phases when in contact with an impenetrable wall. The particles in the model move persistently, tumbling with a small rate α , and interact via exclusion volume only. When increasing the tumbling rates α , the system transits from total wetting to partial wetting and unwetting phases. In the first phase, a wetting film covers the wall, with increasing heights when α is reduced. The second phase is characterized by wetting droplets on the wall with a periodic spacing between them. Finally, the wall dries with few particles in contact with it. These phases present nonequilibrium transitions. The first transition, from partial to total wetting, is continuous and the fraction of dry sites vanishes continuously when decreasing the tumbling rate α . For the second transition, from partial wetting to dry, the mean droplet distance diverges logarithmically when approaching the critical tumbling rate, with saturation due to finite-size effects.
NASA Astrophysics Data System (ADS)
Rainone, Corrado; Ferrari, Ulisse; Paoluzzi, Matteo; Leuzzi, Luca
2015-12-01
The short- and long-time dynamics of model systems undergoing a glass transition with apparent inversion of Kauzmann and dynamical arrest glass transition lines is investigated. These models belong to the class of the spherical mean-field approximation of a spin-1 model with p -body quenched disordered interaction, with p >2 , termed spherical Blume-Emery-Griffiths models. Depending on temperature and chemical potential the system is found in a paramagnetic or in a glassy phase and the transition between these phases can be of a different nature. In specific regions of the phase diagram coexistence of low-density and high-density paramagnets can occur, as well as the coexistence of spin-glass and paramagnetic phases. The exact static solution for the glassy phase is known to be obtained by the one-step replica symmetry breaking ansatz. Different scenarios arise for both the dynamic and the thermodynamic transitions. These include: (i) the usual random first-order transition (Kauzmann-like) for mean-field glasses preceded by a dynamic transition, (ii) a thermodynamic first-order transition with phase coexistence and latent heat, and (iii) a regime of apparent inversion of static transition line and dynamic transition lines, the latter defined as a nonzero complexity line. The latter inversion, though, turns out to be preceded by a dynamical arrest line at higher temperature. Crossover between different regimes is analyzed by solving mode-coupling-theory equations near the boundaries of paramagnetic solutions and the relationship with the underlying statics is discussed.
Analysis of Transition-Sensitized Turbulent Transport Equations
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; Thacker, William D.; Gatski, Thomas B.; Grosch, Chester E,
2005-01-01
The dynamics of an ensemble of linear disturbances in boundary-layer flows at various Reynolds numbers is studied through an analysis of the transport equations for the mean disturbance kinetic energy and energy dissipation rate. Effects of adverse and favorable pressure-gradients on the disturbance dynamics are also included in the analysis Unlike the fully turbulent regime where nonlinear phase scrambling of the fluctuations affects the flow field even in proximity to the wall, the early stage transition regime fluctuations studied here are influenced cross the boundary layer by the solid boundary. The dominating dynamics in the disturbance kinetic energy and dissipation rate equations are described. These results are then used to formulate transition-sensitized turbulent transport equations, which are solved in a two-step process and applied to zero-pressure-gradient flow over a flat plate. Computed results are in good agreement with experimental data.
Pressure-induced structural transition in chalcopyrite ZnSiP2
NASA Astrophysics Data System (ADS)
Bhadram, Venkata S.; Krishna, Lakshmi; Toberer, Eric S.; Hrubiak, Rostislav; Greenberg, Eran; Prakapenka, Vitali B.; Strobel, Timothy A.
2017-05-01
The pressure-dependent phase behavior of semiconducting chalcopyrite ZnSiP2 was studied up to 30 GPa using in situ X-ray diffraction and Raman spectroscopy in a diamond-anvil cell. A structural phase transition to the rock salt type structure was observed between 27 and 30 GPa, which is accompanied by soft phonon mode behavior and simultaneous loss of Raman signal and optical transmission through the sample. The high-pressure rock salt type phase possesses cationic disorder as evident from broad features in the X-ray diffraction patterns. The behavior of the low-frequency Raman modes during compression establishes a two-stage, order-disorder phase transition mechanism. The phase transition is partially reversible, and the parent chalcopyrite structure coexists with an amorphous phase upon slow decompression to ambient conditions.
Discriminative Cooperative Networks for Detecting Phase Transitions
NASA Astrophysics Data System (ADS)
Liu, Ye-Hua; van Nieuwenburg, Evert P. L.
2018-04-01
The classification of states of matter and their corresponding phase transitions is a special kind of machine-learning task, where physical data allow for the analysis of new algorithms, which have not been considered in the general computer-science setting so far. Here we introduce an unsupervised machine-learning scheme for detecting phase transitions with a pair of discriminative cooperative networks (DCNs). In this scheme, a guesser network and a learner network cooperate to detect phase transitions from fully unlabeled data. The new scheme is efficient enough for dealing with phase diagrams in two-dimensional parameter spaces, where we can utilize an active contour model—the snake—from computer vision to host the two networks. The snake, with a DCN "brain," moves and learns actively in the parameter space, and locates phase boundaries automatically.
Spin supercurrent and effect of quantum phase transition in the two-dimensional XY model
NASA Astrophysics Data System (ADS)
Lima, L. S.
2018-04-01
We have verified the influence of quantum phase transition on spin transport in the spin-1 two-dimensional XY model on the square lattice, with easy plane, single ion and exchange anisotropy. We analyze the effect of the phase transition from the Néel phase to the paramagnetic phase on the AC spin conductivity. Our results show a bit influence of the quantum phase transition on the conductivity. We also obtain a conventional spin transport for ω > 0 and an ideal spin transport in the limit of DC conductivity and therefore, a superfluid spin transport for the DC current in this limit. We have made the diagrammatic expansion for the Green-function with objective to include the effect exciton-exciton scattering on the results.
Thermal, optical, and dielectric properties of fluoride Rb2TaF7
NASA Astrophysics Data System (ADS)
Pogorel'tsev, E. I.; Mel'nikova, S. V.; Kartashev, A. V.; Gorev, M. V.; Flerov, I. N.; Laptash, N. M.
2017-05-01
The thermal, optical, and dielectric properties of fluoride Rb2TaF7 were investigated. It was observed that the variation in chemical pressure in fluorides A 2 +TaF7 caused by the cation substitution of rubidium for ammonium does not affect the ferroelastic nature of structural distortions, but leads to stabilization of the high- and low-temperature phases and enhancement of birefringence. The entropy of the phase transition P4/nmm ↔ Cmma is typical of the shift transformations, which is consistent with a model of the initial and distorted phase structures. The anisotropy of chemical pressure causes the change of signs of the anomalous strain and baric coefficient dT/ dp of Rb2TaF7 as compared with the values for its ammonium analog.
NASA Astrophysics Data System (ADS)
Ahn, Junyeong; Yang, Bohm-Jung
2017-04-01
We study a topological phase transition between a normal insulator and a quantum spin Hall insulator in two-dimensional (2D) systems with time-reversal and twofold rotation symmetries. Contrary to the case of ordinary time-reversal invariant systems, where a direct transition between two insulators is generally predicted, we find that the topological phase transition in systems with an additional twofold rotation symmetry is mediated by an emergent stable 2D Weyl semimetal phase between two insulators. Here the central role is played by the so-called space-time inversion symmetry, the combination of time-reversal and twofold rotation symmetries, which guarantees the quantization of the Berry phase around a 2D Weyl point even in the presence of strong spin-orbit coupling. Pair creation and pair annihilation of Weyl points accompanying partner exchange between different pairs induces a jump of a 2D Z2 topological invariant leading to a topological phase transition. According to our theory, the topological phase transition in HgTe /CdTe quantum well structure is mediated by a stable 2D Weyl semimetal phase because the quantum well, lacking inversion symmetry intrinsically, has twofold rotation about the growth direction. Namely, the HgTe /CdTe quantum well can show 2D Weyl semimetallic behavior within a small but finite interval in the thickness of HgTe layers between a normal insulator and a quantum spin Hall insulator. We also propose that few-layer black phosphorus under perpendicular electric field is another candidate system to observe the unconventional topological phase transition mechanism accompanied by the emerging 2D Weyl semimetal phase protected by space-time inversion symmetry.
Streets for Pedestrians and Transit : An Evaluation of Three Transit Malls in the United States
DOT National Transportation Integrated Search
1979-02-01
The report represents the second phase of a two-phase project designed to acquaint the planning community with the concept of transit malls and to provide information about three of the most important and interesting transit mall projects to a wider ...
Dewetting and spreading transitions for active matter on random pinning substrates.
Sándor, Cs; Libál, A; Reichhardt, C; Olson Reichhardt, C J
2017-05-28
We show that sterically interacting self-propelled disks in the presence of random pinning substrates exhibit transitions among a variety of different states. In particular, from a phase separated cluster state, the disks can spread out and homogeneously cover the substrate in what can be viewed as an example of an active matter wetting transition. We map the location of this transition as a function of activity, disk density, and substrate strength, and we also identify other phases including a cluster state, coexistence between a cluster and a labyrinth wetted phase, and a pinned liquid. Convenient measures of these phases include the cluster size, which dips at the wetting-dewetting transition, and the fraction of sixfold coordinated particles, which drops when dewetting occurs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anand, Sampurn; Mohanty, Subhendra; Dey, Ujjal Kumar, E-mail: sampurn@prl.res.in, E-mail: ujjal@cts.iitkgp.ernet.in, E-mail: mohanty@prl.res.in
Cosmological phase transitions can be a source of Stochastic Gravitational Wave (SGW) background. Apart from the dynamics of the phase transition, the characteristic frequency and the fractional energy density Ω{sub gw} of the SGW depends upon the temperature of the transition. In this article, we compute the SGW spectrum in the light of QCD equation of state provided by the lattice results. We find that the inclusion of trace anomaly from lattice QCD, enhances the SGW signal generated during QCD phase transition by ∼ 50% and the peak frequency of the QCD era SGW are shifted higher by ∼ 25%more » as compared to the earlier estimates without trace anomaly. This result is extremely significant for testing the phase transition dynamics near QCD epoch.« less
Shear-induced criticality near a liquid-solid transition of colloidal suspensions
NASA Astrophysics Data System (ADS)
Miyama, Masamichi J.; Sasa, Shin-Ichi
2011-02-01
We investigate colloidal suspensions under shear flow through numerical experiments. By measuring the time-correlation function of a bond-orientational order parameter, we find a divergent time scale near a transition point from a disordered fluid phase to an ordered fluid phase, where the order is characterized by a nonzero value of the bond-orientational order parameter. We also present a phase diagram in the (ρ,γ˙ex) plane, where ρ is the density of the colloidal particles and γ˙ex is the shear rate of the solvent. The transition line in the phase diagram terminates at the equilibrium transition point, while a critical region near the transition line vanishes continuously as γ˙ex→0.
Molecular dynamics study of intermediate phase of long chain alkyl sulfonate/water systems.
Poghosyan, Armen H; Arsenyan, Levon H; Shahinyan, Aram A
2013-01-08
Using atomic level simulation we aimed to investigate various intermediate phases of the long chain alkyl sulfonate/water system. Overall, about 800 ns parallel molecular dynamics simulation study was conducted for a surfactant/water system consisting of 128 sodium pentadecyl sulfonate and 2251 water molecules. The GROMACS software code with united atom force field was applied. Despite some differences, the analysis of main structural parameters is in agreement with X-ray experimental findings. The mechanism of self-assembly of SPDS molecules was also examined. At T = 323 K we obtained both tilted fully interdigitated and liquid crystalline-like disordered hydrocarbon chains; hence, the presence of either gel phase that coexists with a lamellar phase or metastable gel phase with fraction of gauche configuration can be assumed. Further increase of temperature revealed that the system underwent a transition to a lamellar phase, which was clearly identified by the presence of fully disordered hydrocarbon chains. The transition from gel-to-fluid phase was implemented by simulated annealing treatment, and the phase transition point at T = 335 K was identified. The surfactant force field in its presented set is surely enabled to fully demonstrate the mechanism of self-assembly and the behavior of phase transition making it possible to get important information around the phase transition point.
Limiting first-order phase transitions in dark gauge sectors from gravitational waves experiments
NASA Astrophysics Data System (ADS)
Addazi, Andrea
2017-03-01
We discuss the possibility to indirectly test first-order phase transitions of hidden sectors. We study the interesting example of a Dark Standard Model (D-SM) with a deformed parameter space in the Higgs potential. A dark electroweak phase transition can be limited from next future experiments like eLISA and DECIGO.
NASA Astrophysics Data System (ADS)
Schill, G. P.; Tolbert, M. A.
2013-05-01
Atmospheric ice nucleation on aerosol particles relevant to cirrus clouds remains one of the least understood processes in the atmosphere. Upper tropospheric aerosols as well as sub-visible cirrus residues are known to be enhanced in both sulfates and organics. The hygroscopic phase transitions of organic-sulfate particles can have an impact on both the cirrus cloud formation mechanism and resulting cloud microphysical properties. In addition to deliquescence and efflorescence, organic-sulfate particles are known to undergo another phase transition known as liquid-liquid phase separation. The ice nucleation properties of particles that have undergone liquid-liquid phase separation are unknown. Here, Raman microscopy coupled with an environmental cell was used to study the low temperature deliquescence, efflorescence, and liquid-liquid phase separation behavior of 2 : 1 mixtures of organic polyols (1,2,6-hexanetriol and 1 : 1 1,2,6-hexanetriol + 2,2,6,6-tetrakis(hydroxymethyl)cyclohexanol) and ammonium sulfate from 240-265 K. Further, the ice nucleation efficiency of these organic-sulfate systems after liquid-liquid phase separation and efflorescence was investigated from 210-235 K. Raman mapping and volume-geometry analysis indicate that these particles contain solid ammonium sulfate cores fully engulfed in organic shells. For the ice nucleation experiments, we find that if the organic coatings are liquid, water vapor diffuses through the shell and ice nucleates on the ammonium sulfate core. In this case, the coatings minimally affect the ice nucleation efficiency of ammonium sulfate. In contrast, if the coatings become semi-solid or glassy, ice instead nucleates on the organic shell. Consistent with recent findings that glasses can be efficient ice nuclei, the phase-separated particles are nearly as efficient at ice nucleation as pure crystalline ammonium sulfate.
NASA Astrophysics Data System (ADS)
Schill, G. P.; Tolbert, M. A.
2012-12-01
Atmospheric ice nucleation on aerosol particles relevant to cirrus clouds remains one of the least understood processes in the atmosphere. Upper tropospheric aerosols as well as sub-visible cirrus residues are known to be enhanced in both sulfates and organics. The hygroscopic phase transitions of organic-sulfate particles can have an impact on both the cirrus cloud formation mechanism and resulting cloud microphysical properties. In addition to deliquescence and efflorescence, organic-sulfate particles are known to undergo another phase transition known as liquid-liquid phase separation. The ice nucleation properties of particles that have undergone liquid-liquid phase separation are unknown. Here, Raman microscopy coupled with an environmental cell was used to study the low temperature deliquescence, efflorescence, and liquid-liquid phase separation behavior of 2:1 mixtures of organic polyols (1,2,6-hexanetriol, and 1:1 1,2,6-hexanetriol +2,2,6,6-tetrakis(hydroxymethyl)cycohexanol) and ammonium sulfate from 240-265 K. Further, the ice nucleation efficiency of these organic-sulfate systems after liquid-liquid phase separation and efflorescence was investigated from 210-235 K. Raman mapping and volume-geometry analysis indicates that these particles contain solid ammonium sulfate cores fully engulfed in organic shells. For the ice nucleation experiments, we find that if the organic coatings are liquid, water vapor diffuses through the shell and ice nucleates on the ammonium sulfate core. In this case, the coatings minimally affect the ice nucleation efficiency of ammonium sulfate. In contrast, if the coatings become semi-solid or glassy, ice instead nucleates on the organic shell. Consistent with recent findings that glasses can be efficient ice nuclei, the phase separated particles are nearly as efficient at ice nucleation as pure crystalline ammonium sulfate.
Synoptic Factors Affecting Structure Predictability of Hurricane Alex (2016)
NASA Astrophysics Data System (ADS)
Gonzalez-Aleman, J. J.; Evans, J. L.; Kowaleski, A. M.
2016-12-01
On January 7, 2016, a disturbance formed over the western North Atlantic basin. After undergoing tropical transition, the system became the first hurricane of 2016 - and the first North Atlantic hurricane to form in January since 1938. Already an extremely rare hurricane event, Alex then underwent extratropical transition [ET] just north of the Azores Islands. We examine the factors affecting Alex's structural evolution through a new technique called path-clustering. In this way, 51 ensembles from the European Centre for Medium-Range Weather Forecasts Ensemble Prediction System (ECMWF-EPS) are grouped based on similarities in the storm's path through the Cyclone Phase Space (CPS). The differing clusters group various possible scenarios of structural development represented in the ensemble forecasts. As a result, it is possible to shed light on the role of the synoptic scale in changing the structure of this hurricane in the midlatitudes through intercomparison of the most "realistic" forecast of the evolution of Alex and the other physically plausible modes of its development.
Hoang, Thai M.; Bharath, Hebbe M.; Boguslawski, Matthew J.; Anquez, Martin; Robbins, Bryce A.; Chapman, Michael S.
2016-01-01
Spontaneous symmetry breaking occurs in a physical system whenever the ground state does not share the symmetry of the underlying theory, e.g., the Hamiltonian. This mechanism gives rise to massless Nambu–Goldstone modes and massive Anderson–Higgs modes. These modes provide a fundamental understanding of matter in the Universe and appear as collective phase or amplitude excitations of an order parameter in a many-body system. The amplitude excitation plays a crucial role in determining the critical exponents governing universal nonequilibrium dynamics in the Kibble–Zurek mechanism (KZM). Here, we characterize the amplitude excitations in a spin-1 condensate and measure the energy gap for different phases of the quantum phase transition. At the quantum critical point of the transition, finite-size effects lead to a nonzero gap. Our measurements are consistent with this prediction, and furthermore, we demonstrate an adiabatic quench through the phase transition, which is forbidden at the mean field level. This work paves the way toward generating entanglement through an adiabatic phase transition. PMID:27503886
Renormalization group study of the melting of a two-dimensional system of collapsing hard disks
NASA Astrophysics Data System (ADS)
Ryzhov, V. N.; Tareyeva, E. E.; Fomin, Yu. D.; Tsiok, E. N.; Chumakov, E. S.
2017-06-01
We consider the melting of a two-dimensional system of collapsing hard disks (a system with a hard-disk potential to which a repulsive step is added) for different values of the repulsive-step width. We calculate the system phase diagram by the method of the density functional in crystallization theory using equations of the Berezinskii-Kosterlitz-Thouless-Halperin-Nelson-Young theory to determine the lines of stability with respect to the dissociation of dislocation pairs, which corresponds to the continuous transition from the solid to the hexatic phase. We show that the crystal phase can melt via a continuous transition at low densities (the transition to the hexatic phase) with a subsequent transition from the hexatic phase to the isotropic liquid and via a first-order transition. Using the solution of renormalization group equations with the presence of singular defects (dislocations) in the system taken into account, we consider the influence of the renormalization of the elastic moduli on the form of the phase diagram.
Pressure-induced fcc to hcp phase transition in Ni-based high entropy solid solution alloys
Zhang, Fuxiang; Zhao, Shijun; Jin, Ke; ...
2017-01-04
In this research, pressure-induced phase transition from the fcc to a hexagonal close-packed (hcp) structure wasfound in NiCoCrFe solid solution alloy starting at 13.5 GPa. The phase transition is very sluggish and the transition did not complete at ~ 40 GPa. The hcp structure is quenchable to ambient pressure. Only a very small amount (<5%) of hcp phase was found in the isostructural NiCoCr ternary alloy up to the pressure of 45 GPa and no obvious hcp phase was found in NiCoCrFePd system till to 74 GPa. Ab initio Gibbs free energy calculations indicated the energy differences between the fccmore » and the hcp phases for the three alloys are very small, but they are sensitive to temperature. Finally, the critical transition pressure in NiCoCrFe varies from 1 GPa at room temperature to 6 GPa at 500 K.« less
Pressure-induced fcc to hcp phase transition in Ni-based high entropy solid solution alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, F. X.; Zhao, Shijun; Jin, Ke
2017-01-04
A pressure-induced phase transition from the fcc to a hexagonal close-packed (hcp) structure was found in NiCoCrFe solid solution alloy starting at 13.5 GPa. The phase transition is very sluggish and the transition did not complete at ~40 GPa. The hcp structure is quenchable to ambient pressure. Only a very small amount (<5%) of hcp phase was found in the isostructural NiCoCr ternary alloy up to the pressure of 45 GPa and no obvious hcp phase was found in NiCoCrFePd system till to 74 GPa. Ab initio Gibbs free energy calculations indicated the energy differences between the fcc and themore » hcp phases for the three alloys are very small, but they are sensitive to temperature. The critical transition pressure in NiCoCrFe varies from ~1 GPa at room temperature to ~6 GPa at 500 K.« less
Phase transition induced strain in ZnO under high pressure
Yan, Xiaozhi; Dong, Haini; Li, Yanchun; ...
2016-05-13
Under high pressure, the phase transition mechanism and mechanical property of material are supposed to be largely associated with the transformation induced elastic strain. However, the experimental evidences for such strain are scanty. The elastic and plastic properties of ZnO, a leading material for applications in chemical sensor, catalyst, and optical thin coatings, were determined using in situ high pressure synchrotron axial and radial x-ray diffraction. The abnormal elastic behaviors of selected lattice planes of ZnO during phase transition revealed the existence of internal elastic strain, which arise from the lattice misfit between wurtzite and rocksalt phase. Furthermore, the strengthmore » decrease of ZnO during phase transition under non-hydrostatic pressure was observed and could be attributed to such internal elastic strain, unveiling the relationship between pressure induced internal strain and mechanical property of material. Ultimately, these findings are of fundamental importance to understanding the mechanism of phase transition and the properties of materials under pressure.« less
Monitoring a Silent Phase Transition in CH 3NH 3PbI 3 Solar Cells via Operando X-ray Diffraction
Schelhas, Laura T.; Christians, Jeffrey A.; Berry, Joseph J.; ...
2016-10-13
The relatively modest temperature of the tetragonal-to-cubic phase transition in CH 3NH 3PbI 3 perovskite is likely to occur during real world operation of CH 3NH 3PbI 3 solar cells. In this work, we simultaneously monitor the structural phase transition of the active layer along with solar cell performance as a function of the device operating temperature. The tetragonal to cubic phase transition is observed in the working device to occur reversibly at temperatures between 60.5 and 65.4 degrees C. In these operando measurements, no discontinuity in the device performance is observed, indicating electronic behavior that is insensitive to themore » structural phase transition. Here, this decoupling of device performance from the change in long-range order across the phase transition suggests that the optoelectronic properties are primarily determined by the local structure in CH 3NH 3PbI 3. That is, while the average crystal structure as probed by X-ray diffraction shows a transition from tetragonal to cubic, the local structure generally remains well characterized by uncorrelated, dynamic octahedral rotations that order at elevated temperatures but are unchanged locally.« less
Monitoring a Silent Phase Transition in CH 3NH 3PbI 3 Solar Cells via Operando X-ray Diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schelhas, Laura T.; Christians, Jeffrey A.; Berry, Joseph J.
The relatively modest temperature of the tetragonal-to-cubic phase transition in CH 3NH 3PbI 3 perovskite is likely to occur during real world operation of CH 3NH 3PbI 3 solar cells. In this work, we simultaneously monitor the structural phase transition of the active layer along with solar cell performance as a function of the device operating temperature. The tetragonal to cubic phase transition is observed in the working device to occur reversibly at temperatures between 60.5 and 65.4 degrees C. In these operando measurements, no discontinuity in the device performance is observed, indicating electronic behavior that is insensitive to themore » structural phase transition. Here, this decoupling of device performance from the change in long-range order across the phase transition suggests that the optoelectronic properties are primarily determined by the local structure in CH 3NH 3PbI 3. That is, while the average crystal structure as probed by X-ray diffraction shows a transition from tetragonal to cubic, the local structure generally remains well characterized by uncorrelated, dynamic octahedral rotations that order at elevated temperatures but are unchanged locally.« less
NASA Astrophysics Data System (ADS)
Kim, Joon-Seok; Juneja, Rinkle; Salke, Nilesh P.; Palosz, Witold; Swaminathan, Venkataraman; Trivedi, Sudhir; Singh, Abhishek K.; Akinwande, Deji; Lin, Jung-Fu
2018-03-01
Topological insulators have been the subject of intense research interest due to their unique surface states that are topologically protected against scattering or defects. However, the relationship between the crystal structure and topological insulator state remains to be clarified. Here, we show the effects of hydrostatic pressure on the structural, vibrational, and topological properties of the topological insulator Bi1.5Sb0.5Te1.8Se1.2 up to 45 GPa using X-ray diffraction and Raman spectroscopy in a diamond anvil cell, together with first-principles theoretical calculations. Two pressure-induced structural phase transitions were observed: from ambient rhombohedral R 3 ¯ m phase to a monoclinic C2/m phase at ˜13 GPa, and to a disordered I4/mmm phase at ˜22 GPa. In addition, the alloy undergoes several electronic transitions within the R 3 ¯ m phase: indirect to direct bulk band gap transition at ˜5.8 GPa, bulk gap closing with an appearance of Dirac semimetal (DSM) state at ˜8.2 GPa, and to a trivial semimetal state at ˜12.1 GPa. Anomalies in c/a ratio and Raman full width at half maximum that coincide with the DSM phase suggest the contribution of electron-phonon coupling to the transition. Compared to binary end members Bi2Te3, Bi2Se3, and Sb2Te3, the structural phase transition and anomaly were observed at higher pressures in Bi1.5Sb0.5Te1.8Se1.2. These results suggest that the topological transitions are precursors to the structural phase transitions.
NASA Astrophysics Data System (ADS)
Akahama, Yuichi; Okawa, Naoki; Sugimoto, Toshiyuki; Fujihisa, Hiroshi; Hirao, Naoshisa; Ohishi, Yasuo
2018-02-01
The structural phase transitions of tellurium (Te) are investigated at pressures of up to 330 GPa at 298 K using an X-ray powder diffraction technique. In the experiments, it was found that the high-pressure bcc phase (Te-V) transitioned to the fcc phase (Te-VI) at 99 GPa, although a double hcp phase (dhcp) coexisted with the fcc phase. As the pressure was increased and decreased, the dhcp phase vanished at 255 and 100 GPa, respectively. These results suggest that the dhcp phase is metastable at 298 K and the structure of the highest-pressure phase of Te is fcc. The present results provide important information regarding the high-pressure behavior of group-16 elements.
Quantum phase transitions in spin-1 X X Z chains with rhombic single-ion anisotropy
NASA Astrophysics Data System (ADS)
Ren, Jie; Wang, Yimin; You, Wen-Long
2018-04-01
We explore numerically the inverse participation ratios in the ground state of one-dimensional spin-1 X X Z chains with the rhombic single-ion anisotropy. By employing the techniques of density-matrix renormalization group, effects of the rhombic single-ion anisotropy on various information theoretical measures are investigated, such as the fidelity susceptibility, the quantum coherence, and the entanglement entropy. Their relations with the quantum phase transitions are also analyzed. The phase transitions from the Y -Néel phase to the large-Ex or the Haldane phase can be well characterized by the fidelity susceptibility. The second-order derivative of the ground-state energy indicates all the transitions are of second order. We also find that the quantum coherence, the entanglement entropy, the Schmidt gap, and the inverse participation ratios can be used to detect the critical points of quantum phase transitions. Results drawn from these quantum information observables agree well with each other. Finally we provide a ground-state phase diagram as functions of the exchange anisotropy Δ and the rhombic single-ion anisotropy E .
Deterministic matrices matching the compressed sensing phase transitions of Gaussian random matrices
Monajemi, Hatef; Jafarpour, Sina; Gavish, Matan; Donoho, David L.; Ambikasaran, Sivaram; Bacallado, Sergio; Bharadia, Dinesh; Chen, Yuxin; Choi, Young; Chowdhury, Mainak; Chowdhury, Soham; Damle, Anil; Fithian, Will; Goetz, Georges; Grosenick, Logan; Gross, Sam; Hills, Gage; Hornstein, Michael; Lakkam, Milinda; Lee, Jason; Li, Jian; Liu, Linxi; Sing-Long, Carlos; Marx, Mike; Mittal, Akshay; Monajemi, Hatef; No, Albert; Omrani, Reza; Pekelis, Leonid; Qin, Junjie; Raines, Kevin; Ryu, Ernest; Saxe, Andrew; Shi, Dai; Siilats, Keith; Strauss, David; Tang, Gary; Wang, Chaojun; Zhou, Zoey; Zhu, Zhen
2013-01-01
In compressed sensing, one takes samples of an N-dimensional vector using an matrix A, obtaining undersampled measurements . For random matrices with independent standard Gaussian entries, it is known that, when is k-sparse, there is a precisely determined phase transition: for a certain region in the (,)-phase diagram, convex optimization typically finds the sparsest solution, whereas outside that region, it typically fails. It has been shown empirically that the same property—with the same phase transition location—holds for a wide range of non-Gaussian random matrix ensembles. We report extensive experiments showing that the Gaussian phase transition also describes numerous deterministic matrices, including Spikes and Sines, Spikes and Noiselets, Paley Frames, Delsarte-Goethals Frames, Chirp Sensing Matrices, and Grassmannian Frames. Namely, for each of these deterministic matrices in turn, for a typical k-sparse object, we observe that convex optimization is successful over a region of the phase diagram that coincides with the region known for Gaussian random matrices. Our experiments considered coefficients constrained to for four different sets , and the results establish our finding for each of the four associated phase transitions. PMID:23277588
Shock, release and Taylor impact of the semicrystalline thermoplastic polytetrafluoroethylene
NASA Astrophysics Data System (ADS)
Bourne, N. K.; Brown, E. N.; Millett, J. C. F.; Gray, G. T.
2008-04-01
The high strain-rate response of polymers is a subject that has gathered interest over recent years due to their increasing engineering importance, particularly in load bearing applications subject to extremes of pressure and strain rate. The current work presents two specific sets of experiments interrogating the effect of dynamic, high-pressure loading in the regime of the phase II to phase III pressure-induced crystalline phase transition in polytetrafluoroethylene (PTFE). These are gas-gun driven plate- and Taylor impact. Together these experiments highlight several effects associated with the dynamic, pressure-induced phase transitions in PTFE. An elevated release wave speed shows evidence of a pressure-induced phase change at a stress commensurate with that observed statically. It is shown that convergence between analytic derivations of release wave speed and the data requires the phase II to III transition to occur. Taylor impact is an integrated test that highlights continuum behavior that has origin in mesoscale response. There is a rapid transition from ductile to brittle behavior observed that occurs at a pressure consistent with this phase transition.
Liquid-liquid phase transition in an ionic model of silica
NASA Astrophysics Data System (ADS)
Chen, Renjie; Lascaris, Erik; Palmer, Jeremy C.
2017-06-01
Recent equation of state calculations [E. Lascaris, Phys. Rev. Lett. 116, 125701 (2016)] for an ionic model of silica suggest that it undergoes a density-driven, liquid-liquid phase transition (LLPT) similar to the controversial transition hypothesized to exist in deeply supercooled water. Here, we perform extensive free energy calculations to scrutinize the model's low-temperature phase behavior and confirm the existence of a first-order phase transition between two liquids with identical compositions but different densities. The low-density liquid (LDL) exhibits tetrahedral order, which is partially disrupted in the high-density liquid (HDL) by the intrusion of additional particles into the primary neighbor shell. Histogram reweighting methods are applied to locate conditions of HDL-LDL coexistence and the liquid spinodals that bound the two-phase region. Spontaneous liquid-liquid phase separation is also observed directly in large-scale molecular dynamics simulations performed inside the predicted two-phase region. Given its clear LLPT, we anticipate that this model may serve as a paradigm for understanding whether similar transitions occur in water and other tetrahedral liquids.
Quantum phases with differing computational power.
Cui, Jian; Gu, Mile; Kwek, Leong Chuan; Santos, Marcelo França; Fan, Heng; Vedral, Vlatko
2012-05-01
The observation that concepts from quantum information has generated many alternative indicators of quantum phase transitions hints that quantum phase transitions possess operational significance with respect to the processing of quantum information. Yet, studies on whether such transitions lead to quantum phases that differ in their capacity to process information remain limited. Here we show that there exist quantum phase transitions that cause a distinct qualitative change in our ability to simulate certain quantum systems under perturbation of an external field by local operations and classical communication. In particular, we show that in certain quantum phases of the XY model, adiabatic perturbations of the external magnetic field can be simulated by local spin operations, whereas the resulting effect within other phases results in coherent non-local interactions. We discuss the potential implications to adiabatic quantum computation, where a computational advantage exists only when adiabatic perturbation results in coherent multi-body interactions.
Fourier transform infrared study of the phase transitions in (NH4)3VO2FO4
NASA Astrophysics Data System (ADS)
de Waal, D.; Heyns, A. M.
1994-01-01
Ammonium oxofluorovanadate compounds are known to show some potential as ferroelectric materials. The whole series of ammonium and sodium oxofluorovanadate compounds including Na3VO2F4 have already been prepared and investigated by means of various techniques including x-ray diffraction, EPR, and vibrational spectroscopy. It was established that the pure ammonium compound shows the two above mentioned transitions from phase A (below 200 K) to phase B (between 200 and 400 K) and phase C (above 400 K) while Na(NH4)2VO2F4 has only one transition from phase A to phase B around 400 K4. In the present study various aspects regarding the nature of the structures of (NH4)3VO2F3 and Na(NH4)2VO2F4 and its influence on the phase transitions have been investigated.
Evolution and control of the phase competition morphology in a manganite film
NASA Astrophysics Data System (ADS)
Zhou, Haibiao; Wang, Lingfei; Hou, Yubin; Huang, Zhen; Lu, Qingyou; Wu, Wenbin
2015-11-01
The competition among different phases in perovskite manganites is pronounced since their energies are very close under the interplay of charge, spin, orbital and lattice degrees of freedom. To reveal the roles of underlying interactions, many efforts have been devoted towards directly imaging phase transitions at microscopic scales. Here we show images of the charge-ordered insulator (COI) phase transition from a pure ferromagnetic metal with reducing field or increasing temperature in a strained phase-separated manganite film, using a home-built magnetic force microscope. Compared with the COI melting transition, this reverse transition is sharp, cooperative and martensitic-like with astonishingly unique yet diverse morphologies. The COI domains show variable-dimensional growth at different temperatures and their distribution can illustrate the delicate balance of the underlying interactions in manganites. Our findings also display how phase domain engineering is possible and how the phase competition can be tuned in a controllable manner.
Evolution and control of the phase competition morphology in a manganite film.
Zhou, Haibiao; Wang, Lingfei; Hou, Yubin; Huang, Zhen; Lu, Qingyou; Wu, Wenbin
2015-11-25
The competition among different phases in perovskite manganites is pronounced since their energies are very close under the interplay of charge, spin, orbital and lattice degrees of freedom. To reveal the roles of underlying interactions, many efforts have been devoted towards directly imaging phase transitions at microscopic scales. Here we show images of the charge-ordered insulator (COI) phase transition from a pure ferromagnetic metal with reducing field or increasing temperature in a strained phase-separated manganite film, using a home-built magnetic force microscope. Compared with the COI melting transition, this reverse transition is sharp, cooperative and martensitic-like with astonishingly unique yet diverse morphologies. The COI domains show variable-dimensional growth at different temperatures and their distribution can illustrate the delicate balance of the underlying interactions in manganites. Our findings also display how phase domain engineering is possible and how the phase competition can be tuned in a controllable manner.
Sequence heuristics to encode phase behaviour in intrinsically disordered protein polymers
Quiroz, Felipe García; Chilkoti, Ashutosh
2015-01-01
Proteins and synthetic polymers that undergo aqueous phase transitions mediate self-assembly in nature and in man-made material systems. Yet little is known about how the phase behaviour of a protein is encoded in its amino acid sequence. Here, by synthesizing intrinsically disordered, repeat proteins to test motifs that we hypothesized would encode phase behaviour, we show that the proteins can be designed to exhibit tunable lower or upper critical solution temperature (LCST and UCST, respectively) transitions in physiological solutions. We also show that mutation of key residues at the repeat level abolishes phase behaviour or encodes an orthogonal transition. Furthermore, we provide heuristics to identify, at the proteome level, proteins that might exhibit phase behaviour and to design novel protein polymers consisting of biologically active peptide repeats that exhibit LCST or UCST transitions. These findings set the foundation for the prediction and encoding of phase behaviour at the sequence level. PMID:26390327
Oka, Toshihiko; Saiki, Takahiro; Alam, Jahangir Md; Yamazaki, Masahito
2016-02-09
Electrostatic interaction is an important factor for phase transitions between lamellar liquid-crystalline (Lα) and inverse bicontinuous cubic (QII) phases. We investigated the effect of temperature on the low-pH-induced Lα to double-diamond cubic (QII(D)) phase transition in dioleoylphosphatidylserine (DOPS)/monoolein (MO) using time-resolved small-angle X-ray scattering with a stopped-flow apparatus. Under all conditions of temperature and pH, the Lα phase was directly transformed into an intermediate inverse hexagonal (HII) phase, and subsequently the HII phase slowly converted to the QII(D) phase. We obtained the rate constants of the initial step (i.e., the Lα to HII phase transition) and of the second step (i.e., the HII to QII(D) phase transition) using the non-negative matrix factorization method. The rate constant of the initial step increased with temperature. By analyzing this result, we obtained the values of its apparent activation energy, Ea (Lα → HII), which did not change with temperature but increased with an increase in pH. In contrast, the rate constant of the second step decreased with temperature at pH 2.6, although it increased with temperature at pH 2.7 and 2.8. These results indicate that the value of Ea (HII → QII(D)) at pH 2.6 increased with temperature, but the values of Ea (HII → QII(D)) at pH 2.7 and 2.8 were constant with temperature. The values of Ea (HII → QII(D)) were smaller than those of Ea (Lα → HII) at the same pH. We analyzed these results using a modified quantitative theory on the activation energy of phase transitions of lipid membranes proposed initially by Squires et al. (Squires, A. M.; Conn, C. E.; Seddon, J. M.; Templer, R. H. Soft Matter 2009, 5, 4773). On the basis of these results, we discuss the mechanism of this phase transition.